WorldWideScience

Sample records for pt atoms catalytic

  1. Atomic Layer Deposition of Pt Nanoparticles for Microengine with Promoted Catalytic Motion.

    Science.gov (United States)

    Jiang, Chi; Huang, Gaoshan; Ding, Shi-Jin; Dong, Hongliang; Men, Chuanling; Mei, Yongfeng

    2016-12-01

    Nanoparticle-decorated tubular microengines were synthesized by a combination of rolled-up nanotechnology and atomic layer deposition. The presence of Pt nanoparticles with different sizes and distributions on the walls of microengines fabricated from bilayer nanomembranes with different materials results in promoted catalytic reaction efficiency, which leads to an ultrafast speed (the highest speed 3200 μm/s). The motion speed of the decorated microengines fits the theoretical model very well, suggesting that the larger surface area is mainly responsible for the acceleration of the motion speed. The high-speed nanoparticle-decorated microengines hold considerable promise for a variety of applications.

  2. Ultrathin Coating of Confined Pt Nanocatalysts by Atomic Layer Deposition for Enhanced Catalytic Performance in Hydrogenation Reactions.

    Science.gov (United States)

    Wang, Meihua; Gao, Zhe; Zhang, Bin; Yang, Huimin; Qiao, Yan; Chen, Shuai; Ge, Huibin; Zhang, Jiankang; Qin, Yong

    2016-06-13

    Metal-support interfaces play a prominent role in heterogeneous catalysis. However, tailoring the metal-support interfaces to realize full utilization remains a major challenge. In this work, we propose a graceful strategy to maximize the metal-oxide interfaces by coating confined nanoparticles with an ultrathin oxide layer. This is achieved by sequential deposition of ultrathin Al2 O3 coats, Pt, and a thick Al2 O3 layer on carbon nanocoils templates by atomic layer deposition (ALD), followed by removal of the templates. Compared with the Pt catalysts confined in Al2 O3 nanotubes without the ultrathin coats, the ultrathin coated samples have larger Pt-Al2 O3 interfaces. The maximized interfaces significantly improve the activity and the protecting Al2 O3 nanotubes retain the stability for hydrogenation reactions of 4-nitrophenol. We believe that applying ALD ultrathin coats on confined catalysts is a promising way to achieve enhanced performance for other catalysts.

  3. Pt skin coated hollow Ag-Pt bimetallic nanoparticles with high catalytic activity for oxygen reduction reaction

    Science.gov (United States)

    Fu, Tao; Huang, Jianxing; Lai, Shaobo; Zhang, Size; Fang, Jun; Zhao, Jinbao

    2017-10-01

    The catalytic activity and stability of electrocatalyst is critical for the commercialization of fuel cells, and recent reports reveal the great potential of the hollow structures with Pt skin coat for developing high-powered electrocatalysts due to their highly efficient utilization of the Pt atoms. Here, we provide a novel strategy to prepare the Pt skin coated hollow Ag-Pt structure (Ag-Pt@Pt) of ∼8 nm size at room temperature. As loaded on the graphene, the Ag-Pt@Pt exhibits a remarkable mass activity of 0.864 A/mgPt (at 0.9 V, vs. reversible hydrogen electrode (RHE)) towards oxygen reduction reaction (ORR), which is 5.30 times of the commercial Pt/C catalyst, and the Ag-Pt@Pt also shows a better stability during the ORR catalytic process. The mechanism of this significant enhancement can be attributed to the higher Pt utilization and the unique Pt on Ag-Pt surface structure, which is confirmed by the density functional theory (DFT) calculations and other characterization methods. In conclusion, this original work offers a low-cost and environment-friendly method to prepare a high active electrocatalyst with cheaper price, and this work also discloses the correlation between surface structures and ORR catalytic activity for the hollow structures with Pt skin coat, which can be instructive for designing novel advanced electrocatalysts for fuel cells.

  4. Atomically thin Pt shells on Au nanoparticle cores: facile synthesis and efficient synergetic catalysis

    DEFF Research Database (Denmark)

    Engelbrekt, Christian; Seselj, Nedjeljko; Poreddy, Raju

    2016-01-01

    We present a facile synthesis protocol for atomically thin platinum (Pt) shells on top of gold (Au) nanoparticles (NPs) (Au@PtNPs) in one pot under mild conditions. The Au@PtNPs exhibited remarkable stability (> 2 years) at room temperature. The synthesis, bimetallic nanostructures and catalytic...... clearly show that the active surface is dominated by Pt with a specific surface area above 45 m2 per gram of Pt. Interactions with the Au core increase the activity of the Pt shell by up to 55% and improve catalytic selectivity compared to pure Pt. The Au@Pt NPs show exciting catalytic activity...

  5. SURFACE PROPERTIES AND CATALYTIC PERFORMANCE OF Pt ...

    African Journals Online (AJOL)

    salt (AO) layers, have been examined for their low cost, high catalytic activity and high thermal ... of each peak after subtraction of the S-shaped background and fitting to a curve mixed of ..... In addition, for the 0.3 % Pt/LaSrCoO4 and 0.5.

  6. Atomic states and properties of Pt-electrocatalyst

    Institute of Scientific and Technical Information of China (English)

    PENG; Hongjian

    2006-01-01

    Using the one-atom theory (OA), the atomic state of Pt-electrocatalyst with fcc structure was determined as follows: [Xe] (5dn)6.48 (5dc)2.02 (6Sc)1.48(6sf)0.02. The atomic states of this metal with hcp and bcc structures of primary characteristic crystals and liquid state was also studied. According to its atomic states, the relationship between the atomic states and crystalline structure, catalytic performance and conductivity was explained qualitatively. The potential curve, the temperature dependence of bulk modulus and linear thermal expansion coefficient of fcc-Pt were calculated quantitatively.

  7. Reactivity of Chemisorbed Oxygen Atoms and Their Catalytic Consequences during CH 4 –O 2 Catalysis on Supported Pt Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Chin, Ya-Huei(Cathy); Buda, Corneliu; Neurock, Matthew; Iglesia, Enrique

    2011-10-12

    Kinetic and isotopic data and density functional theory treatments provide evidence for the elementary steps and the active site requirements involved in the four distinct kinetic regimes observed during CH4 oxidation reactions using O2, H2O, or CO2 as oxidants on Pt clusters. These four regimes exhibit distinct rate equations because of the involvement of different kinetically relevant steps, predominant adsorbed species, and rate and equilibrium constants for different elementary steps. Transitions among regimes occur as chemisorbed oxygen (O*) coverages change on Pt clusters. O* coverages are given, in turn, by a virtual O2 pressure, which represents the pressure that would give the prevalent steady-state O* coverages if their adsorption–desorption equilibrium was maintained. The virtual O2 pressure acts as a surrogate for oxygen chemical potentials at catalytic surfaces and reflects the kinetic coupling between C–H and O=O activation steps. O* coverages and virtual pressures depend on O2 pressure when O2 activation is equilibrated and on O2/CH4 ratios when this step becomes irreversible as a result of fast scavenging of O* by CH4-derived intermediates. In three of these kinetic regimes, C–H bond activation is the sole kinetically relevant step, but occurs on different active sites, which evolve from oxygen–oxygen (O*–O*), to oxygen–oxygen vacancy (O*–*), and to vacancy–vacancy (*–*) site pairs as O* coverages decrease.

  8. Catalytically favorable surface patterns in Pt-Au nanoclusters

    KAUST Repository

    Mokkath, Junais Habeeb

    2013-01-01

    Motivated by recent experimental demonstrations of novel PtAu nanoparticles with highly enhanced catalytic properties, we present a systematic theoretical study that explores principal catalytic indicators as a function of the particle size and composition. We find that Pt electronic states in the vicinity of the Fermi level combined with a modified electron distribution in the nanoparticle due to Pt-to-Au charge transfer are the origin of the outstanding catalytic properties. From our model we deduce the catalytically favorable surface patterns that induce ensemble and ligand effects. © The Royal Society of Chemistry 2013.

  9. Halogen poisoning effect of Pt-TiO2 for formaldehyde catalytic oxidation performance at room temperature

    Science.gov (United States)

    Zhu, Xiaofeng; Cheng, Bei; Yu, Jiaguo; Ho, Wingkei

    2016-02-01

    Catalytic decomposition of formaldehyde (HCHO) at room temperature is an important method for HCHO removal. Pt-based catalysts are the optimal catalyst for HCHO decomposition at room temperature. However, the stability of this catalyst remains unexplored. In this study, Pt-TiO2 (Pt-P25) catalysts with and without adsorbed halogen ions (including F-, Cl-, Br-, and I-) were prepared through impregnation and ion modification. Pt-TiO2 samples with adsorbed halogen ions exhibited reduced catalytic activity for formaldehyde decomposition at room temperature compared with the Pt-TiO2 sample; the catalytic activity followed the order of F-Pt-P25, Cl-Pt-P25, Br-Pt-P25, and I-Pt-P25. Characterization results (including XRD, TEM, HRTEM, BET, XPS, and metal dispersion) showed that the adsorbed halogen ions can poison Pt nanoparticles (NPs), thereby reducing the HCHO oxidation activity of Pt-TiO2. The poison mechanism is due to the strong adsorption of halogen ions on the surface of Pt NPs. The adsorbed ions form coordination bonds with surface Pt atoms by transferring surplus electrons into the unoccupied 5d orbit of the Pt atom, thereby inhibiting oxygen adsorption and activation of the Pt NP surface. Moreover, deactivation rate increases with increasing diameter of halogen ions. This study provides new insights into the fabrication of high-performance Pt-based catalysts for indoor air purification.

  10. Theoretical study of the catalytic CO oxidation by Pt catalyst supported on Ge-doped grapheme.

    Science.gov (United States)

    Tang, Yanan; Yang, Zongxian; Dai, Xianqi; Lu, Zhansheng; Zhang, Yanxing; Fu, Zhaoming

    2014-09-01

    The geometry, electronic structure and catalytic properties of the anchored Pt atom on the Ge-doped graphene (Pt/Ge-graphene) substrates are investigated using the first-principles computations. It is found that Ge atoms can form strong covalent bonds with the carbon atoms at the vacancy site on the defective graphene. The Ge-graphene as substrate can effectively anchored Pt atoms and form supported Pt catalyst, which exhibits good catalytic activity for CO oxidation with a two-step route, starting with the Langmuir-Hinshelwood (LH) reaction followed by the Eley-Rideal (ER) reaction. The Ge dopant in graphene plays a vital role in enhancing the substrate-adsorbate interaction through facilitating the charge redistribution at their interfaces. The Ge-graphene can be used as the reactive support to control the stability and activity of the Pt catalysts. This work provides valuable guidance on fabricating carbon-based catalysts for CO oxidation, and validates the reactivity of single-atom catalyst for designing atomic-scale catalysts.

  11. Stellated Ag-Pt bimetallic nanoparticles: An effective platform for catalytic activity tuning

    Science.gov (United States)

    Liu, Hui; Ye, Feng; Yao, Qiaofeng; Cao, Hongbin; Xie, Jianping; Lee, Jim Yang; Yang, Jun

    2014-01-01

    The usefulness of Pt-based nanomaterials for catalysis can be greatly enhanced by coupling morphology engineering to the strategic presence of a second or even third metal. Here we demonstrate the design and preparation of stellated Ag-Pt bimetallic nanoparticles where significant activity difference between the methanol oxidation reaction (MOR) and the oxygen reduction reaction (ORR) may be realized by relegating Ag to the core or by hollowing out the core. In particular the stellated Pt surface, with an abundance of steps, edges, corner atoms, and {111} facets, is highly effective for the ORR but is ineffective for MOR. MOR activity is only observed in the presence of a Ag core through electronic coupling to the stellated Pt shell. The bimetallic Ag-Pt stellates therefore demonstrate the feasibility of tuning a Pt surface for two very different structure sensitive catalytic reactions. Stellated bimetallics may therefore be an effective platform for highly tunable catalyst designs. PMID:24495979

  12. Halogen poisoning effect of Pt-TiO{sub 2} for formaldehyde catalytic oxidation performance at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiaofeng; Cheng, Bei [State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Wuhan University of Technology, Luoshi Road 122#, Wuhan 430070 (China); Yu, Jiaguo, E-mail: jiaguoyu@yahoo.com [State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Wuhan University of Technology, Luoshi Road 122#, Wuhan 430070 (China); Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Ho, Wingkei, E-mail: keithho@ied.edu.hk [Department of Science and Environmental Studies and Centre for Education in Environmental Sustainability, The Hong Kong Institute of Education, Tai Po, N.T. Hong Kong (China)

    2016-02-28

    Graphical abstract: - Highlights: • The Pt-TiO{sub 2} catalyst is deactivated by adsorption of halogen ions. • The halogen poison is mainly attributed to the active site blocking of the Pt surface. • Halogen ions and Pt form Pt−X coordination bonds. • Large halogen diameter exhibits severe poisoning effect. - Abstract: Catalytic decomposition of formaldehyde (HCHO) at room temperature is an important method for HCHO removal. Pt-based catalysts are the optimal catalyst for HCHO decomposition at room temperature. However, the stability of this catalyst remains unexplored. In this study, Pt-TiO{sub 2} (Pt-P25) catalysts with and without adsorbed halogen ions (including F{sup −}, Cl{sup −}, Br{sup −}, and I{sup −}) were prepared through impregnation and ion modification. Pt-TiO{sub 2} samples with adsorbed halogen ions exhibited reduced catalytic activity for formaldehyde decomposition at room temperature compared with the Pt-TiO{sub 2} sample; the catalytic activity followed the order of F-Pt-P25, Cl-Pt-P25, Br-Pt-P25, and I-Pt-P25. Characterization results (including XRD, TEM, HRTEM, BET, XPS, and metal dispersion) showed that the adsorbed halogen ions can poison Pt nanoparticles (NPs), thereby reducing the HCHO oxidation activity of Pt-TiO{sub 2}. The poison mechanism is due to the strong adsorption of halogen ions on the surface of Pt NPs. The adsorbed ions form coordination bonds with surface Pt atoms by transferring surplus electrons into the unoccupied 5d orbit of the Pt atom, thereby inhibiting oxygen adsorption and activation of the Pt NP surface. Moreover, deactivation rate increases with increasing diameter of halogen ions. This study provides new insights into the fabrication of high-performance Pt-based catalysts for indoor air purification.

  13. Electrochemical promotion of catalytic reactions with Pt/C (or Pt/Ru/C)//PBI catalysts

    DEFF Research Database (Denmark)

    Petrushina, Irina; Bjerrum, Niels; Bandur, Viktor;

    2007-01-01

    The paper is an overview of the results of the investigation on electrochemical promotion of three catalytic reactions: methane oxidation with oxygen, NO reduction with hydrogen at 135 degrees C and Fischer-Tropsch synthesis (FTS) at 170 degrees C in the [CH4/O-2(or NO/H-2 or CO/H-2)/Ar//Pt(or Pt...

  14. Highly Dense Isolated Metal Atom Catalytic Sites

    DEFF Research Database (Denmark)

    Chen, Yaxin; Kasama, Takeshi; Huang, Zhiwei

    2015-01-01

    Atomically dispersed noble-metal catalysts with highly dense active sites are promising materials with which to maximise metal efficiency and to enhance catalytic performance; however, their fabrication remains challenging because metal atoms are prone to sintering, especially at a high metal...... loading. A dynamic process of formation of isolated metal atom catalytic sites on the surface of the support, which was achieved starting from silver nanoparticles by using a thermal surface-mediated diffusion method, was observed directly by using in situ electron microscopy and in situ synchrotron X......-ray diffraction. A combination of electron microscopy images with X-ray absorption spectra demonstrated that the silver atoms were anchored on five-fold oxygen-terminated cavities on the surface of the support to form highly dense isolated metal active sites, leading to excellent reactivity in catalytic oxidation...

  15. Enhanced catalytic properties of Pt-based electrode by doped Cu and Ce

    Science.gov (United States)

    Yue, Dehuai; Yang, Bin

    2017-08-01

    Novel PtCuCeO x composite membrane electrode materials were fabricated on the surface of graphite fibrous cloth by ion beam sputtering (IBS). The cyclic voltammetry (CV) and linear sweep voltammetry (LSV) were used to analyze the influence of doped Cu and Ce on the membrane electrocatalysis performance in a tri-electrode system. The phase composition, surface structure, interfacial structure and catalytic performance of PtCuCeO x membrane were studied by x-ray diffraction (XRD) and high resolution transmission electron microscope (HR-TEM&STEM). The results indicate that surface particles of membrane electrode are made up of PtCu alloy grains and a few CeO x grains, and the interface structure of oxide metal is formed between them. The crystal plane spacing between PtCu alloy grain is reduced by about 1.11% after the corrosion, which helps increase the electron density on Pt atom. As a result, the catalysis capability of PtCu alloy is enhanced. When the content of Ce is less than or equal to 0.28 wt.%, CeO x exists in the form of amorphous. It is exciting to demonstrate that the existence of CeO x enhances the dispersion of PtCuCeO x catalyst particles. The experimental results reveal that the synthesized material possesses the best electrochemical activity surface area (ESA) and exchange current density (i 0). Compared to pure Pt catalyst, this PtCuCeO x catalyst contains much less Pt content (only 42% of Pt catalyst). However, the electrochemical performance is enhanced by 71.8% compared with pure Pt.

  16. PdPt bimetallic nanoparticles enabled by shape control with halide ions and their enhanced catalytic activities.

    Science.gov (United States)

    Zhang, Jinfeng; Wan, Lei; Liu, Lei; Deng, Yida; Zhong, Cheng; Hu, Wenbin

    2016-02-21

    In this study, a new and convenient one step approach is described for synthesizing shape controlled PdPt bimetallic nanoparticles. It is found that the resultant morphologies of these PdPt nanoparticles can be well controlled by simply altering the participation of different halide ions that serve as shape controlling agents in the reaction solution. The dendritic core-shell PdPt bimetallic nanoparticles generated with Pt atoms adopt usual island growth pattern in the presence of Cl(-) ions, whereas the introduction of Br(-) ions with a relatively strong adsorption effect facilitate the formation of a layered core-shell structure due to the layered growth mode of Pt atoms on the exterior surface of the central Pd core. Moreover, the stronger adsorption function of I(-) ions and the resulting fast atomic diffusion promoted the generation of mesoporous core-shell PdPt bimetallic nanoparticles with many pore channels. In addition, the size of these synthesized PdPt nanoparticles exhibited a significant dependence on the concentration of the halide ions involved. Due to their specific structural features and synergistic effects, these PdPt catalysts exhibited shape-dependent catalytic performance and drastically enhanced electrocatalytic activities relative to that of commercial Pt black and Pt/C toward methanol oxidation.

  17. Atomically Precise Metal Nanoclusters for Catalytic Application

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Rongchao [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2016-11-18

    The central goal of this project is to explore the catalytic application of atomically precise gold nanoclusters. By solving the total structures of ligand-protected nanoclusters, we aim to correlate the catalytic properties of metal nanoclusters with their atomic/electronic structures. Such correlation unravel some fundamental aspects of nanocatalysis, such as the nature of particle size effect, origin of catalytic selectivity, particle-support interactions, the identification of catalytically active centers, etc. The well-defined nanocluster catalysts mediate the knowledge gap between single crystal model catalysts and real-world conventional nanocatalysts. These nanoclusters also hold great promise in catalyzing certain types of reactions with extraordinarily high selectivity. These aims are in line with the overall goals of the catalytic science and technology of DOE and advance the BES mission “to support fundamental research to understand, predict, and ultimately control matter and energy at the level of electrons, atoms, and molecules”. Our group has successfully prepared different sized, robust gold nanoclusters protected by thiolates, such as Au25(SR)18, Au28(SR)20, Au38(SR)24, Au99(SR)42, Au144(SR)60, etc. Some of these nanoclusters have been crystallographically characterized through X-ray crystallography. These ultrasmall nanoclusters (< 2 nm diameter) exhibit discrete electronic structures due to quantum size effect, as opposed to quasicontinuous band structure of conventional metal nanoparticles or bulk metals. The available atomic structures (metal core plus surface ligands) of nanoclusters serve as the basis for structure-property correlations. We have investigated the unique catalytic properties of nanoclusters (i.e. not observed in conventional nanogold catalysts) and revealed the structure-selectivity relationships. Highlights of our

  18. Catalytic reduction of NO by methane using a Pt/C/polybenzimidazole/Pt/C fuel cell

    DEFF Research Database (Denmark)

    Petrushina, Irina; Cleemann, Lars Nilausen; Refshauge, Rasmus;

    2007-01-01

    The catalytic NO reduction by methane was studied using a (NO,CH4,Ar),Pt|polybenzimidazole(PBI)–H3PO4|Pt,(H2,Ar) fuel cell at 135 and 165°C. It has been found that, without any reducing agent (like CH4), NO can be electrochemically reduced in the (NO, Ar), Pt/C|PBI–H3PO4|Pt/C, (H2,Ar) fuel cell...... with participation of H+ or electrochemically produced hydrogen. When added, methane partially suppresses the electrochemical reduction of NO. Methane outlet concentration monitoring has shown the CH4 participation in the chemical catalytic reduction, i.e., methane co-adsorption with NO inhibited the electrochemical...... NO reduction and introduced a dominant chemical path of the NO reduction. The products of the NO reduction with methane were N2, C2H4, and water. The catalytic NO reduction by methane was promoted when the catalyst was negatively polarized (−0.2 V). Repeated negative polarization of the catalyst increased...

  19. Investigation on CO catalytic oxidation reaction kinetics of faceted perovskite nanostructures loaded with Pt

    KAUST Repository

    Yin, S. M.

    2017-01-18

    Perovskite lead titanate nanostructures with specific {111}, {100} and {001} facets exposed, have been employed as supports to investigate the crystal facet effect on the growth and CO catalytic activity of Pt nanoparticles. The size, distribution and surface chemical states of Pt on the perovskite supports have been significantly modified, leading to a tailored conversion temperature and catalytic kinetics towards CO catalytic oxidation.

  20. Direct Visualization of Catalytically Active Sites at the FeO-Pt(111) Interface

    Energy Technology Data Exchange (ETDEWEB)

    Kudernatsch, Wilhelmine; Peng, Guowen; Zeuthen, Helene; Bai, Yunhai; Merte, L. R.; Lammich, Lutz; Besenbacher, Fleming; Mavrikakis, Manos; Wendt, Stefen

    2015-08-25

    Within the area of surface science, one of the “holy grails” is to directly visualize a chemical reaction at the atomic scale. Whereas this goal has been reached by high-resolution scanning tunneling microscopy (STM) in a number of cases for reactions occurring at flat surfaces, such a direct view is often inhibited for reaction occurring at steps and interfaces. Here we have studied the CO oxidation reaction at the interface between ultrathin FeO islands and a Pt(111) support by in situ STM and density functional theory (DFT) calculations. Time-lapsed STM imaging on this inverse model catalyst in O2 and CO environments revealed catalytic activity occurring at the FeO-Pt(111) interface and directly showed that the Fe-edges host the catalytically most active sites for the CO oxidation reaction. This is an important result since previous evidence for the catalytic activity of the FeO-Pt(111) interface is essentially based on averaging techniques in conjunction with DFT calculations. The presented STM results are in accord with DFTþU calculations, in which we compare possible CO oxidation pathways on oxidized Fe-edges and O-edges. We found that the CO oxidation reaction is more favorable on the oxidized Fe-edges, both thermodynamically and kinetically.

  1. Direct Visualization of Catalytically Active Sites at the FeO-Pt(111) Interface.

    Science.gov (United States)

    Kudernatsch, Wilhelmine; Peng, Guowen; Zeuthen, Helene; Bai, Yunhai; Merte, Lindsay R; Lammich, Lutz; Besenbacher, Flemming; Mavrikakis, Manos; Wendt, Stefan

    2015-08-25

    Within the area of surface science, one of the "holy grails" is to directly visualize a chemical reaction at the atomic scale. Whereas this goal has been reached by high-resolution scanning tunneling microscopy (STM) in a number of cases for reactions occurring at flat surfaces, such a direct view is often inhibited for reaction occurring at steps and interfaces. Here we have studied the CO oxidation reaction at the interface between ultrathin FeO islands and a Pt(111) support by in situ STM and density functional theory (DFT) calculations. Time-lapsed STM imaging on this inverse model catalyst in O2 and CO environments revealed catalytic activity occurring at the FeO-Pt(111) interface and directly showed that the Fe-edges host the catalytically most active sites for the CO oxidation reaction. This is an important result since previous evidence for the catalytic activity of the FeO-Pt(111) interface is essentially based on averaging techniques in conjunction with DFT calculations. The presented STM results are in accord with DFT+U calculations, in which we compare possible CO oxidation pathways on oxidized Fe-edges and O-edges. We found that the CO oxidation reaction is more favorable on the oxidized Fe-edges, both thermodynamically and kinetically.

  2. Concave Pd-Pt Core-Shell Nanocrystals with Ultrathin Pt Shell Feature and Enhanced Catalytic Performance.

    Science.gov (United States)

    Zhang, Ying; Bu, Lingzheng; Jiang, Kezhu; Guo, Shaojun; Huang, Xiaoqing

    2016-02-10

    One-pot creation of unique concave Pd-Pt core-shell polyhedra has been developed for the first time using an efficient approach. Due to the concave feature and ultrathin Pt shell, the created Pd-Pt core-shell polyhedra exhibit enhanced catalytic performance in both the electrooxidation of methanol and hydrogenation of nitrobenzene, as compared with commercial Pt black and Pd black catalysts. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Direct evidence for active site-dependent formic acid electro-oxidation by topmost-surface atomic redistribution in a ternary PtPdCu electrocatalyst.

    Science.gov (United States)

    Cui, Chun-Hua; Li, Hui-Hui; Cong, Huai-Ping; Yu, Shu-Hong; Tao, Franklin Feng

    2012-12-25

    The active site-dependent electrochemical formic acid oxidation was evidenced by the increased coverage of Pt in the topmost mixed PtPd alloy layer of ternary PtPdCu upon potential cycling, which demonstrated two catalytic pathways only in one catalyst owing to surface atomic redistribution in an acidic electrolyte environment.

  4. Monodisperse Pt atoms anchored on N-doped graphene as efficient catalysts for CO oxidation: A first-principles investigation

    KAUST Repository

    Liu, Xin

    2015-01-01

    We performed first-principles based calculations to investigate the electronic structure and the potential catalytic performance of Pt atoms monodispersed on N-doped graphene in CO oxidation. We showed that N-doping can introduce localized defect states in the vicinity of the Fermi level of graphene which will effectively stabilize the deposited Pt atoms. The binding energy of a single Pt atom onto a stable cluster of 3 pyridinic N (PtN3) is up to -4.47 eV, making the diffusion and aggregation of anchored Pt atoms difficult. Both the reaction thermodynamics and kinetics suggest that CO oxidation over PtN3 would proceed through the Langmuir-Hinshelwood mechanism. The reaction barriers for the formation and dissociation of the peroxide-like intermediate are determined to be as low as 0.01 and 0.08 eV, respectively, while that for the regeneration is only 0.15 eV, proving the potential high catalytic performance of PtN3 in CO oxidation, especially at low temperatures. The Pt-d states that are up-shifted by the Pt-N interaction account for the enhanced activation of O2 and the efficient formation and dissociation of the peroxide-like intermediate.

  5. Atomic Aggregation Processes in the Early Stages of Pt/Pt(111) Growth

    Institute of Scientific and Technical Information of China (English)

    ZHUANG Guo-Ce; ZHU Xiao-Bin; WANG Wei

    2000-01-01

    The atomic aggregation processes in the early stages of Pt/Pt(111) growth are studied by using kinetic Monte Carlo simulations. Our results show that the average neighbor coordination number of the atoms in a cluster is a function of temperature, agreeing well with the experiment observations of scanning tunneling microscopy. The influence of diffusion barriers of various atomic processes on the morphology of islands is also studied. Different morphologies of the islands (dendritic, fractal, or compact islands) are found.

  6. Catalytic Properties of AgPt Nanoshells as a Function of Size: Larger Outer Diameters Lead to Improved Performances.

    Science.gov (United States)

    Rodrigues, Thenner S; da Silva, Anderson G M; Gonçalves, Mariana C; Fajardo, Humberto V; Balzer, Rosana; Probst, Luiz F D; da Silva, Alisson H M; Assaf, Jose M; Camargo, Pedro H C

    2016-09-13

    We report herein a systematic investigation on the effect of the size of silver (Ag) nanoparticles employed as starting materials over the morphological features and catalytic performances of AgPt nanoshells produced by a combination of galvanic replacement between Ag and PtCl6(2-) and PtCl6(2-) reduction by hydroquinone. More specifically, we focused on Ag nanoparticles of four different sizes as starting materials, and found that the outer diameter, shell thickness, and the number of Pt surface atoms of the produced nanoshells increased with the size of the starting Ag nanoparticles. The produced AgPt nanoshells were supported into SiO2, and the catalytic performances of the AgPt/SiO2 nanocatalysts toward the gas-phase oxidation of benzene, toluene, and o-xylene (BTX oxidation) followed the order: AgPt 163 nm/SiO2 > AgPt 133 nm/SiO2 > AgPt 105 nm/SiO2 > AgPt 95 nm/SiO2. Interestingly, bigger AgPt nanoshell sizes lead to better catalytic performances in contrast to the intuitive prediction that particles having larger outer diameters tend to present poorer catalytic activities due to their lower surface to volume ratios as compared to smaller particles. This is in agreement with the H2 chemisorption results, and can be assigned to the increase in the Pt surface area with size due to the presence of smaller NPs islands at the surface of the nanoshells having larger outer diameters. This result indicates that, in addition to the overall diameters, the optimization of the surface morphology may play an important role over the optimization of catalytic activities in metal-based nanocatalysts, which can be even more pronounced that the size effect. Our data demonstrate that the control over surface morphology play a very important role relative to the effect of size to the optimization of catalytic performances in catalysts based on noble-metal nanostructures.

  7. Catalytic hydrogenation of CO2 over Pt- and Ni-doped graphene: A comparative DFT study.

    Science.gov (United States)

    Esrafili, Mehdi D; Sharifi, Fahimeh; Dinparast, Leila

    2017-08-28

    Today, the global greenhouse effect of carbon dioxide (CO2) is a serious environmental problem. Therefore, developing efficient methods for CO2 capturing and conversion to valuable chemicals is a great challenge. The aim of the present study is to investigate the catalytic activity of Pt- or Ni-doped graphene for the hydrogenation of CO2 by a hydrogen molecule. To gain a deeper insight into the catalytic mechanism of this reaction, the reliable density functional theory calculations are performed. The adsorption energies, geometric parameters, reaction barriers, and thermodynamic properties are calculated using the M06-2X density functional. Two reaction mechanisms are proposed for the hydrogenation of CO2. In the bimolecular mechanism, the reaction proceeds in two steps, initiating by the co-adsorption of CO2 and H2 molecules over the surface, followed by the formation of a OCOH intermediate by the transfer of H atom of H2 toward O atom of CO2. In the next step, formic acid is produced as a favorable product with the formation of CH bond. In our proposed termolecular mechanism, however, H2 molecule is directly activated by the two pre-adsorbed CO2 molecules. The predicted activation energy for the formation of the OCOH intermediate in the bimolecular mechanism is 20.8 and 47.9kcalmol(-1) over Pt- and Ni-doped graphene, respectively. On the contrary, the formation of the first formic acid in the termolecular mechanism is found as the rate-determining step over these surfaces, with an activation energy of 28.8 and 45.5kcal/mol. Our findings demonstrate that compared to the Ni-doped graphene, the Pt-doped surface has a relatively higher catalytic activity towards the CO2 reduction. These theoretical results could be useful in practical applications for removal and transformation of CO2 to value-added chemical products. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Catalyst Architecture for Stable Single Atom Dispersion Enables Site-Specific Spectroscopic and Reactivity Measurements of CO Adsorbed to Pt Atoms, Oxidized Pt Clusters, and Metallic Pt Clusters on TiO2.

    Science.gov (United States)

    DeRita, Leo; Dai, Sheng; Lopez-Zepeda, Kimberly; Pham, Nicholas; Graham, George W; Pan, Xiaoqing; Christopher, Phillip

    2017-10-11

    Oxide-supported precious metal nanoparticles are widely used industrial catalysts. Due to expense and rarity, developing synthetic protocols that reduce precious metal nanoparticle size and stabilize dispersed species is essential. Supported atomically dispersed, single precious metal atoms represent the most efficient metal utilization geometry, although debate regarding the catalytic activity of supported single precious atom species has arisen from difficulty in synthesizing homogeneous and stable single atom dispersions, and a lack of site-specific characterization approaches. We propose a catalyst architecture and characterization approach to overcome these limitations, by depositing ∼1 precious metal atom per support particle and characterizing structures by correlating scanning transmission electron microscopy imaging and CO probe molecule infrared spectroscopy. This is demonstrated for Pt supported on anatase TiO2. In these structures, isolated Pt atoms, Ptiso, remain stable through various conditions, and spectroscopic evidence suggests Ptiso species exist in homogeneous local environments. Comparing Ptiso to ∼1 nm preoxidized (Ptox) and prereduced (Ptmetal) Pt clusters on TiO2, we identify unique spectroscopic signatures of CO bound to each site and find CO adsorption energy is ordered: Ptiso ≪ Ptmetal atoms bonded to TiO2 and that Ptiso exhibits optimal reactivity because every atom is exposed for catalysis and forms an interfacial site with TiO2. This approach should be generally useful for studying the behavior of supported precious metal atoms.

  9. The effect of antimony-tin and indium-tin oxide supports on the catalytic activity of Pt nanoparticles for ammonia electro-oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Júlio César M. [Department of Chemical & Biological Engineering, Centre for Catalysis Research and Innovation (CCRI), University of Ottawa, 161 Louis-Pasteur, Ottawa, ON K1N 6N5 (Canada); Instituto de Pesquisas Energéticas e Nucleares, IPEN/CNEN-SP, Av. Prof. Lineu Prestes, 2242 Cidade Universitária, CEP 05508-900, São Paulo, SP (Brazil); Piasentin, Ricardo M.; Spinacé, Estevam V.; Neto, Almir O. [Instituto de Pesquisas Energéticas e Nucleares, IPEN/CNEN-SP, Av. Prof. Lineu Prestes, 2242 Cidade Universitária, CEP 05508-900, São Paulo, SP (Brazil); Baranova, Elena A., E-mail: elena.baranova@uottawa.ca [Department of Chemical & Biological Engineering, Centre for Catalysis Research and Innovation (CCRI), University of Ottawa, 161 Louis-Pasteur, Ottawa, ON K1N 6N5 (Canada)

    2016-09-01

    Platinum nanoparticles supported on carbon (Pt/C) and carbon with addition of ITO (Pt/C-ITO (In{sub 2}O{sub 3}){sub 9}·(SnO{sub 2}){sub 1}) and ATO (Pt/C-ATO (SnO{sub 2}){sub 9}·(Sb{sub 2}O{sub 5}){sub 1}) oxides were prepared by sodium borohydride reduction method and used for ammonia electro-oxidation reaction (AmER) in alkaline media. The effect of the supports on the catalytic activity of Pt for AmER was investigated using electrochemical (cyclic voltammetry and chronoamperometry) and direct ammonia fuel cell (DAFC) experiments. X-ray diffraction (XRD) showed Pt peaks attributed to the face-centered cubic (fcc) structure, as well as peaks characteristic of In{sub 2}O{sub 3} in ITO support and cassiterite SnO{sub 2} phase of ATO support. According to transmission electron micrographs the mean particles sizes of Pt over carbon were 5.4, 4.9 and 4.7 nm for Pt/C, Pt/C-ATO and Pt/C-ITO, respectively. Pt/C-ITO catalysts showed the highest catalytic activity for ammonia electrooxidation in both electrochemical and fuel cell experiments. We attributed this to the presence of In{sub 2}O{sub 3} phase in ITO, which provides oxygenated or hydroxide species at lower potentials resulting in the removal of poisonous intermediate, i.e., atomic nitrogen (N{sub ads}) and promotion of ammonia electro-oxidation. - Highlights: • Oxide support effect on the catalytic activity of Pt towards ammonia electro-oxidation. • Direct ammonia fuel cell (DAFC) performance using Pt over different supports as anode. • Pt/C-ITO shows better catalytic activity for ammonia oxidation than Pt/C and Pt/C-ATO.

  10. Structural characterization of Pt-Pd and Pd-Pt core-shell nanoclusters at atomic resolution.

    Science.gov (United States)

    Sanchez, Sergio I; Small, Matthew W; Zuo, Jian-min; Nuzzo, Ralph G

    2009-06-24

    We describe the results of a study at atomic resolution of the structures exhibited by polymer-capped monometallic and bimetallic Pt and Pd nanoclusters--models for nanoscale material electrocatalysts--as carried out using an aberration-corrected scanning transmission electron microscope (STEM). The coupling of sub-nanometer resolution with Z-contrast measurements provides unprecedented insights into the atomic structures and relative elemental speciation of Pt and Pd within these clusters. The work further defines the nature of deeply quenched states that prevent facile conversions of core-shell motifs to equilibrium alloys and the nature of nonidealities such as twinning (icosahedral cores) and atomic segregation that these structures can embed. The nature of the facet structure present in these model systems is revealed by theory directed modeling in which experimental intensity profiles obtained in Z-contrast measurements at atomic resolution are compared to simulated intensity profiles using theoretically predicted cluster geometries. These comparisons show close correspondences between experiment and model and highlight striking structural complexities in these systems that are compositionally sensitive and subject to amplification by subsequent cluster growth processes. The work demonstrates an empowering competency in nanomaterials research for STEM measurements carried out using aberration corrected microscopes, approaches that hold considerable promise for characterizing the structure of these and other important catalytic materials systems at the atomic scale.

  11. Pt3Ti nanoparticles: fine dispersion on SiO2 supports, enhanced catalytic CO oxidation, and chemical stability at elevated temperatures.

    Science.gov (United States)

    Saravanan, Govindachetty; Abe, Hideki; Xu, Ya; Sekido, Nobuaki; Hirata, Hirohito; Matsumoto, Shin-ichi; Yoshikawa, Hideki; Yamabe-Mitarai, Yoko

    2010-07-06

    A platinum-based intermetallic phase with an early d-metal, Pt(3)Ti, has been synthesized in the form of nanoparticles (NPs) dispersed on silica (SiO(2)) supports. The organometallic Pt and Ti precursors, Pt(1,5-cyclooctadiene)Cl(2) and TiCl(4)(tetrahydrofuran)(2), were mixed with SiO(2) and reduced by sodium naphthalide in tetrahydrofuran. Stoichiometric Pt(3)Ti NPs with an average particle size of 2.5 nm were formed on SiO(2) (particle size: 20-200 nm) with an atomically disordered FCC-type structure (Fm3m; a = 0.39 nm). A high dispersivity of Pt(3)Ti NPs was achieved by adding excessive amounts of SiO(2) relative to the Pt precursor. A 50-fold excess of SiO(2) resulted in finely dispersed, SiO(2)-supported Pt(3)Ti NPs that contained 0.5 wt % Pt. The SiO(2)-supported Pt(3)Ti NPs showed a lower onset temperature of catalysis by 75 degrees C toward the oxidation reaction of CO than did SiO(2)-supported pure Pt NPs with the same particle size and Pt fraction, 0.5 wt %. The SiO(2)-supported Pt(3)Ti NPs also showed higher CO conversion than SiO(2)-supported pure Pt NPs even containing a 2-fold higher weight fraction of Pt. The SiO(2)-supported Pt(3)Ti NPs retained their stoichiometric composition after catalytic oxidation of CO at elevated temperatures, 325 degrees C. Pt(3)Ti NPs show promise as a catalytic center of purification catalysts for automobile exhaust due to their high catalytic activity toward CO oxidation with a low content of precious metals.

  12. Catalytic mechanisms of Au₁₁ and Au₁₁-nPt n (n=1-2) clusters: a DFT investigation on the oxidation of CO by O₂.

    Science.gov (United States)

    Cheng, Xueli; Zhao, Yanyun; Li, Feng; Liu, Yongjun

    2015-09-01

    The oxidation of CO catalyzed by clusters of Au11, Au10Pt and Au9Pt2 was investigated using the M06 functional suite of the density functional theory. Au and Pt atoms were described with the double-ζ valence basis set Los Alamos National Laboratory 2-double-z (LanL2DZ), whereas the standard 6-311++G(d,p) basis set was employed for the C and O atoms. Our theoretical model showed that (1) after coordination to Au and Au-Pt cluster, O2 and CO are apparently activated, and Mulliken charges show that the gold atoms in the active sites of Au11 are negatively charged; (2) Au-Pt clusters with 11 atoms can effectively catalyze the oxidation of CO by O2; (3) Au11 exhibits good catalytic performance for the oxidation of CO; (4) oxidation of CO occurs preferably on the Au-Pt active sites in Pt-doped clusters, and the single-center mechanisms are more favorable energetically than the two-center mechanisms; (5) after adsorption, an O2 molecule oxidates two CO molecules via stepwise mechanisms; and (6) the catalytic processes are highly exothermic.

  13. Continuous Catalytic Hydrodeoxygenation of Guaiacol over Pt/SiO2 and Pt/H-MFI-90

    DEFF Research Database (Denmark)

    Hellinger, Melanie; Baier, Sina; Mortensen, Peter Mølgaard

    2015-01-01

    Hydrodeoxygenation of guaiacol in the presence of 1-octanol was studied in a fixed-bed reactor under mild conditions (50–250 °C) over platinum particles supported on silica (Pt/SiO2) and a zeolite with framework type MFI at a Si/Al-ratio of 45 (Pt/H-MFI-90). The deoxygenation selectivity strongly...... than 30 h, probably due to carbon deposition, whereas Pt/SiO2 was more stable. The catalytic activity of the zeolite catalyst could only partly be regained by calcination in air, as some of the acidic sites were lost....

  14. Microbial synthesis of bimetallic PdPt nanoparticles for catalytic reduction of 4-nitrophenol.

    Science.gov (United States)

    Tuo, Ya; Liu, Guangfei; Dong, Bin; Yu, Huali; Zhou, Jiti; Wang, Jing; Jin, Ruofei

    2017-02-01

    Bimetallic nanoparticles are generally believed to have improved catalytic activity and stability due to geometric and electronic changes. In this work, biogenic-Pd (bio-Pd), biogenic-Pt (bio-Pt), and biogenic-PdPt (bio-PdPt) nanoparticles were synthesized by Shewanella oneidensis MR-1 in the absence or presence of quinone. Compared with direct microbial reduction process, the addition of anthraquinone-2,6-disulfonate (AQDS) could promote the reduction efficiency of Pd(II) or/and Pt(IV) and result in decrease of particles size. All kinds of nanoparticles could catalyze 4-nitrophenol reduction by NaBH4 and their catalytic activities took the following order: bio-PdPt (AQDS) ∼ bio-PdPt > bio-Pd (AQDS) > bio-Pd > bio-Pt (AQDS) ∼ bio-Pt. Moreover, the bio-PdPt (AQDS) nanoparticles could be reused for 6 cycles. We believe that this simple and efficient biosynthesis approach for synthesizing bimetallic bio-PdPt nanocatalysts is important for preparing active and stable catalysts.

  15. Preparation of birnessite-supported pt nanoparticles and their application in catalytic oxidation of formaldehyde.

    Science.gov (United States)

    Liu, Linlin; Tian, Hua; He, Junhui; Wang, Donghui; Yang, Qiaowen

    2012-01-01

    Flaky and nanospherical birnessite and birnessite-supported Pt catalysts were successfully prepared and characterized by means of Xray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS) and N2 adsorption-desorption. Effects of the birnessite morphology and Pt reduction method on the catalytic activity for the complete oxidation of formaldehyde (HCHO) were investigated. It was found that flaky birnessite exhibited higher catalytic activity than nanospherical birnessite. The promoting effect of Pt on the birnessite catalyst indicated that the reduction method of the Pt precursor greatly influenced the catalytic performance. Flaky birnessite-supported Pt nanoparticles reduced by KBH4 showed the highest catalytic activity and could completely oxidize HCHO into CO2 and H20 at 50 degreesC, whereas the sample reduced using H2-plasma showed lower activity for HCHO oxidation. The differences in catalytic activity of these materials were jointly attributed to the effects of pore structure, surface active sites exposed to HCHO and the dispersion of Pt nanoparticles.

  16. Ternary Pt-Ru-Ni catalytic layers for methanol electrooxidation prepared by electrodeposition and galvanic replacement

    Directory of Open Access Journals (Sweden)

    Athanasios ePapaderakis

    2014-06-01

    Full Text Available Ternary Pt-Ru-Ni deposits on glassy carbon substrates, Pt-Ru(Ni/GC, have been formed by initial electrodeposition of Ni layers onto glassy carbon electrodes, followed by their partial exchange for Pt and Ru, upon their immersion into equimolar solutions containing complex ions of the precious metals. The overall morphology and composition of the deposits has been studied by SEM microscopy and EDS spectroscopy. Continuous but nodular films have been confirmed, with a Pt÷Ru÷Ni % bulk atomic composition ratio of 37÷12÷51 (and for binary Pt-Ni control systems of 47÷53. Fine topographical details as well as film thickness have been directly recorded using AFM microscopy. The composition of the outer layers as well as the interactions of the three metals present have been studied by XPS spectroscopy and a Pt÷Ru÷Ni % surface atomic composition ratio of 61÷12÷27 (and for binary Pt-Ni control systems of 85÷15 has been found, indicating the enrichment of the outer layers in Pt; a shift of the Pt binding energy peaks to higher values was only observed in the presence of Ru and points to an electronic effect of Ru on Pt. The surface electrochemistry of the thus prepared Pt-Ru(Ni/GC and Pt(Ni/GC electrodes in deaerated acid solutions (studied by cyclic voltammetry proves the existence of a shell consisting exclusively of Pt-Ru or Pt. The activity of the Pt-Ru(Ni deposits towards methanol oxidation (studied by slow potential sweep voltammetry is higher from that of the Pt(Ni deposit and of pure Pt; this enhancement is attributed both to the well-known Ru synergistic effect due to the presence of its oxides but also (based on the XPS findings to a modification effect of Pt electronic properties.

  17. Low temperature platinum atomic layer deposition on nylon-6 for highly conductive and catalytic fiber mats

    Energy Technology Data Exchange (ETDEWEB)

    Mundy, J. Zachary; Shafiefarhood, Arya; Li, Fanxing; Khan, Saad A.; Parsons, Gregory N., E-mail: gnp@ncsu.edu [Department of Chemical and Biomolecular Engineering, North Carolina State University, Engineering Building I, 911 Partners Way, Raleigh, North Carolina 27695-7905 (United States)

    2016-01-15

    Low temperature platinum atomic layer deposition (Pt-ALD) via (methylcyclopentadienyl)trimethyl platinum and ozone (O{sub 3}) is used to produce highly conductive nonwoven nylon-6 (polyamide-6, PA-6) fiber mats, having effective conductivities as high as ∼5500–6000 S/cm with only a 6% fractional increase in mass. The authors show that an alumina ALD nucleation layer deposited at high temperature is required to promote Pt film nucleation and growth on the polymeric substrate. Fractional mass gain scales linearly with Pt-ALD cycle number while effective conductivity exhibits a nonlinear trend with cycle number, corresponding to film coalescence. Field-emission scanning electron microscopy reveals island growth mode of the Pt film at low cycle number with a coalesced film observed after 200 cycles. The metallic coating also exhibits exceptional resistance to mechanical flexing, maintaining up to 93% of unstressed conductivity after bending around cylinders with radii as small as 0.3 cm. Catalytic activity of the as-deposited Pt film is demonstrated via carbon monoxide oxidation to carbon dioxide. This novel low temperature processing allows for the inclusion of highly conductive catalytic material on a number of temperature-sensitive substrates with minimal mass gain for use in such areas as smart textiles and flexible electronics.

  18. Design, synthesis and characterization of a Pt-Gd metal-organic framework containing potentially catalytically active sites.

    Science.gov (United States)

    Szeto, Kai C; Kongshaug, Kjell Ove; Jakobsen, Søren; Tilset, Mats; Lillerud, Karl Petter

    2008-04-21

    The heterobimetallic metal-organic framework {[(BPDC)PtCl(2)](3)(Gd(H(2)O)(3))(2)}.5H(2)O (BPDC = 2,2'-bipyridine-5,5'-dicarboxylate) has been designed and synthesized by hydrothermal methods. The new coordination polymer contains subunits of (BPDC)PtCl(2) (1) where both N atoms of the BPDC ligand are attached to a square-planar Pt(II) center. The two remaining cis coordination sites at Pt(II) are occupied by chloride ions. The final structure (2) of the polymeric network is obtained when Gd(III) ions link together the (BPDC)PtCl(2) units, which are organized in sheets, into larger blocks. These blocks are stacked along the crystallographic [010] direction and are held together by a hydrogen bonding scheme that involves carboxylate oxygen atoms and water molecules in the coordination sphere of Gd. The coordination polymer 2 can be obtained in a single-step reaction or in a two-step synthesis where the corresponding Pt complex (1) was first synthesized followed by reacting 1 with Gd(NO(3))(3).6H(2)O. In situ high temperature powder X-ray diffraction shows that the crystalline coordination polymer transforms into an anhydrous modification at 100 degrees C. This modification is stable to 350 degrees C, at which temperature the structure starts to decompose. The coordination sphere around platinum in the polymer closely resembles organometallic Pt complexes that have been previously found to catalytically or stoichiometrically activate and functionalize hydrocarbon C-H bonds in homogeneous systems.

  19. Effect of preparation parameters on catalytic properties of Pt/graphite

    Institute of Scientific and Technical Information of China (English)

    LIU Zhengqian; MA Jun; ZHAO Lei

    2007-01-01

    Catalytic ozonation of aqueous solutions of oxalic acid was examined in the presence of graphite-supported platinum catalysts.The catalytic activity of graphite was significantly enhanced by loading platinum.The removal efficiency of oxalic acid was 3.0%,47.6% and 99.3% for ozonation alone,graphite catalytic ozonation and Pt/graphite catalytic ozonation in 30 min under the experimental condition,respectively.The influence of support pretreatment,solvent,impregnation time,platinum loading amount and reduction temperature on the activity of Pt/graphite catalyst was investigated.The pretreatment of graphite support had no effect on activity improvement of Pt/graphite catalyst.Solvent and impregnation time also had no great effect on the activity.Platinum loading amount and reduction temperature influenced the catalyst activity significantly.The optimal catalytic performance of Pt/graphite was obtained when 1.0% platinum loading and 623 K of reduction temperature was adopted.The Pt/graphite catalyst was used for five times with no significant decrease in its activity and more than 90% oxalic acid removal was obtained.

  20. Heterogeneous Au-Pt nanostructures with enhanced catalytic activity toward oxygen reduction.

    Science.gov (United States)

    Ye, Feng; Liu, Hui; Hu, Weiwei; Zhong, Junyu; Chen, Yingying; Cao, Hongbin; Yang, Jun

    2012-03-14

    Heterogeneous Au-Pt nanostructures have been synthesized using a sacrificial template-based approach. Typically, monodispersed Au nanoparticles are prepared first, followed by Ag coating to form core-shell Au-Ag nanoparticles. Next, the galvanic replacement reaction between Ag shells and an aqueous H(2)PtCl(6) solution, whose chemical reaction can be described as 4Ag + PtCl(6)(2-)→ Pt + 4AgCl + 2Cl(-), is carried out at room temperature. Pure Ag shell is transformed into a shell made of Ag/Pt alloy by galvanic replacement. The AgCl formed simultaneously roughens the surface of alloy Ag-Pt shells, which can be manipulated to create a porous Pt surface for oxygen reduction reaction. Finally, Ag and AgCl are removed from core-shell Au-Ag/Pt nanoparticles using bis(p-sulfonatophenyl)phenylphosphane dihydrate dipotassium salt to produce heterogeneous Au-Pt nanostructures. The heterogeneous Au-Pt nanostructures have displayed superior catalytic activity towards oxygen reduction in direct methanol fuel cells because of the electronic coupling effect between the inner-placed Au core and the Pt shell.

  1. A low-temperature synthesis of electrochemical active Pt nanoparticles and thin films by atomic layer deposition on Si(111) and glassy carbon surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Rui [Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena, CA 91125 (United States); Han, Lihao [Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena, CA 91125 (United States); Photovoltaic Materials and Devices (PVMD) Laboratory, Delft University of Technology, P.O. Box 5031, GA Delft 2600 (Netherlands); Huang, Zhuangqun; Ferrer, Ivonne M. [Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena, CA 91125 (United States); Division of Chemistry and Chemical Engineering, California Institute of Technology, 210 Noyes Laboratory 127-72, Pasadena, CA 91125 (United States); Smets, Arno H.M.; Zeman, Miro [Photovoltaic Materials and Devices (PVMD) Laboratory, Delft University of Technology, P.O. Box 5031, GA Delft 2600 (Netherlands); Brunschwig, Bruce S., E-mail: bsb@caltech.edu [Beckman Institute, California Institute of Technology, Pasadena, CA 91125 (United States); Lewis, Nathan S., E-mail: nslewis@caltech.edu [Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena, CA 91125 (United States); Beckman Institute, California Institute of Technology, Pasadena, CA 91125 (United States); Division of Chemistry and Chemical Engineering, California Institute of Technology, 210 Noyes Laboratory 127-72, Pasadena, CA 91125 (United States); Kavli Nanoscience Institute, California Institute of Technology, Pasadena, CA 91125 (United States)

    2015-07-01

    Atomic layer deposition (ALD) was used to deposit nanoparticles and thin films of Pt onto etched p-type Si(111) wafers and glassy carbon discs. Using precursors of MeCpPtMe{sub 3} and ozone and a temperature window of 200–300 °C, the growth rate was 80–110 pm/cycle. X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and scanning electron microscopy (SEM) were used to analyze the composition, structure, morphology, and thickness of the ALD-grown Pt nanoparticle films. The catalytic activity of the ALD-grown Pt for the hydrogen evolution reaction was shown to be equivalent to that of e-beam evaporated Pt on glassy carbon electrode. - Highlights: • Pure Pt films were grown by atomic layer deposition (ALD) using MeCpPtMe3 and ozone. • ALD-grown Pt thin films had high growth rates of 110 pm/cycle. • ALD-grown Pt films were electrocatalytic for hydrogen evolution from water. • Electrocatalytic activity of the ALD Pt films was equivalent to e-beam deposited Pt. • No carbon species were detected in the ALD-grown Pt films.

  2. Thermally stable single atom Pt/m-Al2O3 for selective hydrogenation and CO oxidation

    KAUST Repository

    Zhang, Zailei

    2017-07-27

    Single-atom metal catalysts offer a promising way to utilize precious noble metal elements more effectively, provided that they are catalytically active and sufficiently stable. Herein, we report a synthetic strategy for Pt single-atom catalysts with outstanding stability in several reactions under demanding conditions. The Pt atoms are firmly anchored in the internal surface of mesoporous Al2O3, likely stabilized by coordinatively unsaturated pentahedral Al3+ centres. The catalyst keeps its structural integrity and excellent performance for the selective hydrogenation of 1,3-butadiene after exposure to a reductive atmosphere at 200 °C for 24 h. Compared to commercial Pt nanoparticle catalyst on Al2O3 and control samples, this system exhibits significantly enhanced stability and performance for n-hexane hydro-reforming at 550 °C for 48 h, although agglomeration of Pt single-atoms into clusters is observed after reaction. In CO oxidation, the Pt single-atom identity was fully maintained after 60 cycles between 100 and 400 °C over a one-month period.

  3. The stability and catalytic activity of W13@Pt42 core-shell structure

    Science.gov (United States)

    Huo, Jin-Rong; Wang, Xiao-Xu; Li, Lu; Cheng, Hai-Xia; Su, Yan-Jing; Qian, Ping

    2016-10-01

    This paper reports a study of the electronic properties, structural stability and catalytic activity of the W13@Pt42 core-shell structure using the First-principles calculations. The degree of corrosion of W13@Pt42 core-shell structure is simulated in acid solutions and through molecular absorption. The absorption energy of OH for this structure is lower than that for Pt55, which inhibits the poison effect of O containing intermediate. Furthermore we present the optimal path of oxygen reduction reaction catalyzed by W13@Pt42. Corresponding to the process of O molecular decomposition, the rate-limiting step of oxygen reduction reaction catalyzed by W13@Pt42 is 0.386 eV, which is lower than that for Pt55 of 0.5 eV. In addition by alloying with W, the core-shell structure reduces the consumption of Pt and enhances the catalytic efficiency, so W13@Pt42 has a promising perspective of industrial application.

  4. The stability and catalytic activity of W13@Pt42 core-shell structure

    Science.gov (United States)

    Huo, Jin-Rong; Wang, Xiao-Xu; Li, Lu; Cheng, Hai-Xia; Su, Yan-Jing; Qian, Ping

    2016-01-01

    This paper reports a study of the electronic properties, structural stability and catalytic activity of the W13@Pt42 core-shell structure using the First-principles calculations. The degree of corrosion of W13@Pt42 core-shell structure is simulated in acid solutions and through molecular absorption. The absorption energy of OH for this structure is lower than that for Pt55, which inhibits the poison effect of O containing intermediate. Furthermore we present the optimal path of oxygen reduction reaction catalyzed by W13@Pt42. Corresponding to the process of O molecular decomposition, the rate-limiting step of oxygen reduction reaction catalyzed by W13@Pt42 is 0.386 eV, which is lower than that for Pt55 of 0.5 eV. In addition by alloying with W, the core-shell structure reduces the consumption of Pt and enhances the catalytic efficiency, so W13@Pt42 has a promising perspective of industrial application. PMID:27759038

  5. The stability and catalytic activity of W13@Pt42 core-shell structure.

    Science.gov (United States)

    Huo, Jin-Rong; Wang, Xiao-Xu; Li, Lu; Cheng, Hai-Xia; Su, Yan-Jing; Qian, Ping

    2016-10-19

    This paper reports a study of the electronic properties, structural stability and catalytic activity of the W13@Pt42 core-shell structure using the First-principles calculations. The degree of corrosion of W13@Pt42 core-shell structure is simulated in acid solutions and through molecular absorption. The absorption energy of OH for this structure is lower than that for Pt55, which inhibits the poison effect of O containing intermediate. Furthermore we present the optimal path of oxygen reduction reaction catalyzed by W13@Pt42. Corresponding to the process of O molecular decomposition, the rate-limiting step of oxygen reduction reaction catalyzed by W13@Pt42 is 0.386 eV, which is lower than that for Pt55 of 0.5 eV. In addition by alloying with W, the core-shell structure reduces the consumption of Pt and enhances the catalytic efficiency, so W13@Pt42 has a promising perspective of industrial application.

  6. Effect of Sb Segregation on Conductance and Catalytic Activity at Pt/Sb-Doped SnO2 Interface: A Synergetic Computational and Experimental Study

    DEFF Research Database (Denmark)

    Hu, Qiang; Colmenares Rausseo, Luis César; Martinez, Umberto;

    2015-01-01

    Antimony doped tin dioxide (ATO) is considered a promising support material for Pt-based fuel cell cathodes, displaying enhanced stability over carbon-based supports. In this work, the effect of Sb segregation on the conductance and catalytic activity at Pt/ATO interface was investigated through...... a combined computational and experimental study. It was found that Sb-dopant atoms prefer to segregate toward the ATO/Pt interface. The deposited Pt catalysts, interestingly, not only promote Sb segregation, but also suppress the occurrence of Sb3+ species, a charge carrier neutralizer at the interface...... to support future applications of ATO/Pt-based materials as possible cathodes for PEMFC applications with enhanced durability under practical applications....

  7. Core–shell nanospheres Pt@SiO{sub 2} for catalytic hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Yujuan; Wang, Yuqing; Lu, Zhang-Hui, E-mail: luzh@jxnu.edu.cn; Chen, Xiangshu, E-mail: cxs66cn@jxnu.edu.cn; Xiong, Lihua

    2015-06-30

    Highlights: • Pt@SiO{sub 2} core–shell NPs are synthesized via a simple one-pot synthetic route. • Ultrafine Pt NPs (∼4 nm) are embedded in well-proportioned SiO{sub 2} nanospheres. • Pt@SiO{sub 2} shows a high activity and good durability for H{sub 2} generation from AB. - Abstract: Ultrafine platinum nanoparticles (NPs) embedded in silica nanospheres (Pt@SiO{sub 2}) have been synthesized in a NP-5/cyclohexane reversed-micelle system followed by NaBH{sub 4} reduction. The as-synthesized core–shell nanocatalysts Pt@SiO{sub 2} were characterized by scanning electron microscopy, transmission electron microscopes, X-ray powder diffraction analysis, energy dispersive X-ray spectrometer and nitrogen adsorption–desorption investigations. Interestingly, the as-synthesized core–shell nanocatalysts Pt@SiO{sub 2} showed an excellent catalytic performance in hydrogen generation from the hydrolysis of ammonia borane (BH{sub 3}NH{sub 3}, AB) at room temperature. Especially, the catalytic performance of the Pt@SiO{sub 2} remained almost unchanged after the five recycles and even after the heat treatment (673 K), because the silica shells inhibit aggregation or deformation of the metal cores. Besides, the kinetic studies showed that the catalytic hydrolysis of AB was first order with respect to the catalyst concentration and zero order with respect to the substrate concentration, respectively. The excellent catalytic activity and stability of Pt@SiO{sub 2} can make it have a bright future in the practical application.

  8. Atomic Structure Control of Silica Thin Films on Pt(111)

    KAUST Repository

    Crampton, Andrew S

    2015-05-27

    Metal oxide thin films grown on metal single crystals are commonly used to model heterogeneous catalyst supports. The structure and properties of thin silicon dioxide films grown on metal single crystals have only recently been thoroughly characterized and their spectral properties well established. We report the successful growth of a three- dimensional, vitreous silicon dioxide thin film on the Pt(111) surface and reproduce the closed bilayer structure previously reported. The confirmation of the three dimensional nature of the film is unequivocally shown by the infrared absorption band at 1252 cm−1. Temperature programmed desorption was used to show that this three-dimensional thin film covers the Pt(111) surface to such an extent that its application as a catalyst support for clusters/nanoparticles is possible. The growth of a three-dimensional film was seen to be directly correlated with the amount of oxygen present on the surface after the silicon evaporation process. This excess of oxygen is tentatively attributed to atomic oxygen being generated in the evaporator. The identification of atomic oxygen as a necessary building block for the formation of a three-dimensional thin film opens up new possibilities for thin film growth on metal supports, whereby simply changing the type of oxygen enables thin films with different atomic structures to be synthesized. This is a novel approach to tune the synthesis parameters of thin films to grow a specific structure and expands the options for modeling common amorphous silica supports under ultra high vacuum conditions.

  9. Catalytic Liquefaction of Humin Substances from Sugar Biorefineries with Pt/C in 2-Propanol

    NARCIS (Netherlands)

    Wang, Y.; Agarwal, S.; Heeres, H. J.

    The catalytic liquefaction of humins, the solid byproduct from the conversion of C6 sugars (glucose, fructose) to S-hydroxymethylfurfural (HMF) and levulinic acid (LA), using a supported Pt/C catalyst in isopropanol (IPA) as the solvent was investigated. At bench mark conditions (400 degrees C, 7 h,

  10. Effect of Pt:Sn atomic ratio on the preparation of PtSn/C electrocatalysts using electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Dionisio F.; Oliveira Neto, Almir; Pino, Eddy S.; Linardi, Marcelo; Spinace, Estevam V., E-mail: dfsilva@ipen.b, E-mail: espinace@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2009-07-01

    PtSn/C electrocatalysts were prepared with Pt:Sn atomic ratios of 3:1, 1:1 and 1:3 in water/2-propanol using electron beam irradiation. The obtained materials were characterized by EDX, XRD and cyclic voltammetry. The ethanol electro-oxidation was studied by chronoamperometry. The XRD diffractograms of the PtSn/C electrocatalysts showed typical face-centered cubic (fcc) structure of platinum and the presence of a SnO{sub 2} phase (cassiterite). The mean crystallite sizes of Pt fcc phase was in the range of 3.0-3.5 nm. The PtSn/C electrocatalysts were active for ethanol electro-oxidation at room temperature and the material prepared with Pt:Sn atomic ratio of 1:1 showed the best activity. (author)

  11. Atomic structure of water/Au, Ag, Cu and Pt atomic junctions.

    Science.gov (United States)

    Li, Yu; Kaneko, Satoshi; Fujii, Shintaro; Nishino, Tomoaki; Kiguchi, Manabu

    2017-02-08

    Much progress has been made in understanding the transport properties of atomic-scale conductors. We prepared atomic-scale metal contacts of Cu, Ag, Au and Pt using a mechanically controllable break junction method at 10 K in a cryogenic vacuum. Water molecules were exposed to the metal atomic contacts and the effect of molecular adsorption was investigated by electronic conductance measurements. Statistical analysis of the electronic conductance showed that the water molecule(s) interacted with the surface of the inert Au contact and the reactive Cu ant Pt contacts, where molecular adsorption decreased the electronic conductance. A clear conductance signature of water adsorption was not apparent at the Ag contact. Detailed analysis of the conductance behaviour during a contact-stretching process indicated that metal atomic wires were formed for the Au and Pt contacts. The formation of an Au atomic wire consisting of low coordination number atoms leads to increased reactivity of the inert Au surface towards the adsorption of water.

  12. Nickel-doped ceria nanoparticles for promoting catalytic activity of Pt/C for ethanol electrooxidation

    Science.gov (United States)

    Tan, Qiang; Du, Chunyu; Sun, Yongrong; Du, Lei; Yin, Geping; Gao, Yunzhi

    2014-10-01

    This paper reports the facile synthesis of monodispersed nickel-doped ceria nanoparticles by a thermal decomposition method, which is used to promote catalytic properties of Pt/C. The Pt/Ni-doped CeO2/C catalyst obtained exhibits remarkably high activity and stability towards the ethanol electrooxidation in acidic media. This is attributed to higher oxygen releasing capacity and stronger interaction of Ni-doped CeO2 with Pt than pure CeO2 nanoparticles that contribute positively to the removal of poisoning intermediates. We believe that the design concept and synthetic strategy of metal doped oxides used for fuel cell catalysts can be potentially extended to other catalytic fields.

  13. Catalytically highly active top gold atom on palladium nanocluster.

    Science.gov (United States)

    Zhang, Haijun; Watanabe, Tatsuya; Okumura, Mitsutaka; Haruta, Masatake; Toshima, Naoki

    2011-10-23

    Catalysis using gold is emerging as an important field of research in connection with 'green' chemistry. Several hypotheses have been presented to explain the markedly high activities of Au catalysts. So far, the origin of the catalytic activities of supported Au catalysts can be assigned to the perimeter interfaces between Au nanoclusters and the support. However, the genesis of the catalytic activities of colloidal Au-based bimetallic nanoclusters is unclear. Moreover, it is still a challenge to synthesize Au-based colloidal catalysts with high activity. Here we now present the 'crown-jewel' concept (Supplementary Fig. S1) for preparation of catalytically highly Au-based colloidal catalysts. Au-Pd colloidal catalysts containing an abundance of top (vertex or corner) Au atoms were synthesized according to the strategy on a large scale. Our results indicate that the genesis of the high activity of the catalysts could be ascribed to the presence of negatively charged top Au atoms.

  14. Pt/Al₂O₃-catalytic deoxygenation for upgrading of Leucaena leucocephala-pyrolysis oil.

    Science.gov (United States)

    Payormhorm, Jiraporn; Kangvansaichol, Kunn; Reubroycharoen, Presert; Kuchonthara, Prapan; Hinchiranan, Napida

    2013-07-01

    The aim of this study was to improve the quality of bio-oil produced from the pyrolysis of Leucaena leucocephala trunks via catalytic deoxygenation using Pt/Al2O3 (Pt content=1.32% (w/w)). The minimum molar ratio of oxygen/carbon (O/C) at 0.14 was achieved when the amount of catalyst was 10% (w/w, bio-oil) and was applied under 4 bar of initial nitrogen pressure at 340°C for 1h. The reaction mechanism of the catalytic deoxygenation, in terms of reforming, water-gas shift and dehydration reactions, was proposed. To consider the effect of different biomass types on the efficiency of catalytic deoxygenation, the bio-oils obtained from the pyrolysis of sawdust, rice straw and green microalgae were likewise evaluated for direct comparison.

  15. Effects of a TiC substrate on the catalytic activity of Pt for NO reduction.

    Science.gov (United States)

    Chu, Xingli; Fu, Zhaoming; Li, Shasha; Zhang, Xilin; Yang, Zongxian

    2016-05-11

    Density functional theory calculations are used to elucidate the catalytic properties of a Pt monolayer supported on a TiC(001) substrate (Pt/TiC) toward NO reduction. It is found that the compound system of Pt/TiC has a good stability due to the strong Pt-TiC interaction. The diverse dissociation paths (namely the direct dissociation mechanism and the dimeric mechanism) are investigated. The transition state searching calculations suggest that NO has strong diffusion ability and small activation energy for dissociation on the Pt/TiC. For NO reduction on the Pt/TiC surface, we have found that the direct dissociation mechanisms (NO + N + O → NO2 + N and NO + N + O → N2 + O + O) are easier with a smaller dissociation barrier than those on the Pt(111) surface; and the dimeric process (NO + NO → (NO)2 → N2O + O → N2 + O + O) is considered to be dominant or significant with even a lower energy barrier than that of the direct dissociation. The results show that Pt/TiC can serve as an efficient catalyst for NO reduction.

  16. Relationship between the catalytic activity of Pt/alumina and the relaxation process of the photoexcited electrons

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Junji, E-mail: j-itou@mail.nissan.co.jp [Advanced Materials Laboratory, Nissan Research Center, NISSAN MOTOR CO., LTD., 1 Natsushima-cho, Yokosuka-shi, Kanagawa 237-8523 (Japan); Department of Applied Physics and Chemistry, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585 (Japan); Hanaki, Yasunari [Advanced Materials Laboratory, Nissan Research Center, NISSAN MOTOR CO., LTD., 1 Natsushima-cho, Yokosuka-shi, Kanagawa 237-8523 (Japan); Shen, Qing [Department of Applied Physics and Chemistry, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585 (Japan); Department of Engineering Science, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585 (Japan); PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Toyoda, Taro [Department of Applied Physics and Chemistry, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585 (Japan); Department of Engineering Science, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585 (Japan)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer We determined the decay time of photoexcited electrons of Pt/Al{sub 2}O{sub 3}. Black-Right-Pointing-Pointer Faster decay of excited electrons in Pt/Al{sub 2}O{sub 3} leads to its faster oxidation rate. Black-Right-Pointing-Pointer Decreasing excited electron lifetime in Pt/Al{sub 2}O{sub 3} may decrease Pt consumption in catalytic convertors. - Abstract: In order to decrease the consumption of precious metals used in the catalytic converters used in automobiles, we studied the relationship between the catalytic activity of Pt/alumina (Pt/Al{sub 2}O{sub 3}) and the relaxation process of photoexcited electrons. Firstly, we studied the relationship between the size of the Pt particles in Pt/Al{sub 2}O{sub 3} and catalytic performance. Secondly, the relationship between the size of the Pt particles in Pt/Al{sub 2}O{sub 3} and the decay time of the excited electrons was studied using an improved transient grating (TG) technique. The results showed that faster decay of the excited electrons leads to greater oxidation rates. The decay time obtained with the improved TG technique gives an indication of the time that the exited electrons take to return to the ground state. According to studies utilizing FT-IR, one of the processes necessary for quickly generating CO{sub 2} with Pt is that the electron in the Pt-O bond moves to the Pt side and that the Pt{sup +} becomes Pt metal. Thus, the decay time obtained with the improved TG technique corresponds to the process whereby Pt{sup +} returns to Pt metal. Thus, we found that the consumption of precious metals can be reduced by increasing the speed of the decay of the excited electrons.

  17. Controlled synthesis of Pd-Pt alloy hollow nanostructures with enhanced catalytic activities for oxygen reduction.

    Science.gov (United States)

    Hong, Jong Wook; Kang, Shin Wook; Choi, Bu-Seo; Kim, Dongheun; Lee, Sang Bok; Han, Sang Woo

    2012-03-27

    Pd-Pt alloy nanocrystals (NCs) with hollow structures such as nanocages with porous walls and dendritic hollow structures and Pd@Pt core-shell dendritic NCs could be selectively synthesized by a galvanic replacement method with uniform Pd octahedral and cubic NCs as sacrificial templates. Fine control over the degree of galvanic replacement of Pd with Pt allowed the production of Pd-Pt NCs with distinctly different morphologies. The synthesized hollow NCs exhibited considerably enhanced oxygen reduction activities compared to those of Pd@Pt core-shell NCs and a commercial Pt/C catalyst, and their electrocatalytic activities were highly dependent on their morphologies. The Pd-Pt nanocages prepared from octahedral Pd NC templates exhibited the largest improvement in catalytic performance. We expect that the present work will provide a promising strategy for the development of efficient oxygen reduction electrocatalysts and can also be extended to the preparation of other hybrid or hetero-nanostructures with desirable morphologies and functions. © 2012 American Chemical Society

  18. Molecular Dynamics Simulation Study of Atomic Segregation of (PdPt)147 during the Heating Process

    Science.gov (United States)

    Xiao, X. Y.; Cheng, Z. F.; Xia, J. H.

    Research on the influence of alloy concentration and distribution on bimetallic cluster plays a key role in exploring new structural material. This paper studies the melting process of icosahedral bimetallic cluster (PdPt)147 with different Pt concentrations and different atomic distributions by using molecular dynamics with an embedded atom method. The results indicate that the mixed Pd-Pt cluster shows an irregular phenomenon between 580 and 630 K, i.e. the atomic energy decreases with the increase of temperature. This is because the surface energy of Pd is lower than that of Pt; the decreased energy due to Pd atomic segregation is larger than the increased energy due to heating during the segregation process. In addition, the temperature of Pd atomic segregation is strongly related to Pt concentration. This leads to that Pd atoms prefer to remain on the surface even after the cluster melted.

  19. Oriented-assembly of hollow FePt nanochains with tunable catalytic and magnetic properties

    Science.gov (United States)

    Liu, Jialong; Xia, Tianyu; Wang, Shouguo; Yang, Guang; Dong, Bowen; Wang, Chao; Ma, Qidi; Sun, Young; Wang, Rongming

    2016-06-01

    Hollow nanoparticles with large surface areas exhibit a lot of advantages for applications such as catalysis and energy storage. Furthermore, their performance can be manipulated by their deliberate assemblies. Dispersive hollow FePt nanospheres have been assembled into one-dimensional hollow FePt nanochains under the magnetic fields at room temperature. Based on the activation of galvanic replacement at different reaction stages, the size of hollow FePt nanochains can be deliberately manipulated varying from 20 nm to 300 nm, together with the length changing from 200 nm to 10 μm. The competition between movement of paramagnetic Fe3+ ions and shape recovering due to thermal fluctuations plays a critical effect on the structure of contact area between hollow nanospheres, leading to perforative structures. Compared with commercial Pt/C, well aligned hollow FePt nanochains show greatly enhanced catalytic activities in the methanol oxidation reaction (MOR) due to more favorable mass flow. Magnetic measurements indicate that the magnetic properties including Curie temperature and saturation magnetization can be tuned by the control of the size and shape of hollow nanochains.Hollow nanoparticles with large surface areas exhibit a lot of advantages for applications such as catalysis and energy storage. Furthermore, their performance can be manipulated by their deliberate assemblies. Dispersive hollow FePt nanospheres have been assembled into one-dimensional hollow FePt nanochains under the magnetic fields at room temperature. Based on the activation of galvanic replacement at different reaction stages, the size of hollow FePt nanochains can be deliberately manipulated varying from 20 nm to 300 nm, together with the length changing from 200 nm to 10 μm. The competition between movement of paramagnetic Fe3+ ions and shape recovering due to thermal fluctuations plays a critical effect on the structure of contact area between hollow nanospheres, leading to perforative

  20. Low temperature catalytic combustion of propane over Pt-based catalyst with inverse opal microstructure in a microchannel reactor.

    Science.gov (United States)

    Guan, Guoqing; Zapf, Ralf; Kolb, Gunther; Men, Yong; Hessel, Volker; Loewe, Holger; Ye, Jianhui; Zentel, Rudolf

    2007-01-21

    A novel Pt-based catalyst with highly regular, periodic inverse opal microstructure was fabricated in a microchannel reactor, and catalytic testing revealed excellent conversion and stable activity for propane combustion at low temperatures.

  1. Colorimetric detection of the flux of hydrogen peroxide released from living cells based on the high peroxidase-like catalytic performance of porous PtPd nanorods.

    Science.gov (United States)

    Ge, Shenguang; Liu, Weiyan; Liu, Haiyun; Liu, Fang; Yu, Jinghua; Yan, Mei; Huang, Jiadong

    2015-09-15

    One-dimensional PtPd porous nanorods (PtPd PNRs) were successfully synthesized through a bromide-induced galvanic replacement reaction between Pd nanowires and K2PtCl6. The PtPd PNRs were porous and alloy-structured with Pt/Pd atomic ratio up to 1:1 which were demonstrated by spectroscopic methods. We had also proved that the nanorods could function as peroxidase mimetic for the detection of H2O2, with the detection limit of 8.6 nM and the linear range from 20 nM to 50 mM. The result demonstrated that PtPd PNRs exhibited much higher affinity to H2O2 over other peroxidase mimetics due to synergistically integrating highly catalytic activity of two metals. On the basis of the peroxidase-like activity, the PtPd PNRs were used as a signal transducer to develop a novel and simple colorimetric method for the study of the flux of H2O2 released from living cell. By using 3,3,5,5-tetramethylbenzidine as substrate, the H2O2 concentration could be distinguished by naked-eye observation without any instrumentation or complicated design. The method developed a new platform for a reliable collection of information on cellular reactive oxygen species release. And the nanomaterial could be used as a power tool for a wide range of potential applications in biotechnology and medicine.

  2. Effect of BaO on Catalytic Activity of Pt-Rh TWC

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The effects of BaO doping on the three-way catalytic activity of Pt-Rh catalyst and on water-gas shift were investigated. The results show that the light-off temperatures of hydrocarbon and carbon monoxide and nitrogen oxides of the fresh catalysts slightly differ from those of the aged catalysts, and the catalysts containing CeO2-ZrO2-BaO have lower lightoff temperature and better catalytic activity than these containing BaO and CeO2-ZrO2 after hydrothermal aging for 5 h at 1000 C. The catalysts were characterized by means of the temperature-programmed reduction (TPR) in hydrogen and the temperature-programmed desorption (TPD) in oxygen. It is confirmed that the suggested route of CeO2-ZrO2-BaO by coprecipitation can improve the catalytic activity of catalysts.

  3. Energetic and structural analysis of 102-atom Pd-Pt nanoparticles

    Science.gov (United States)

    Pacheco-Contreras, Rafael; Arteaga-Guerrero, Alvaro; Borbon-Gonzalez, Dora Julia; Posada-Amarillas, Alvaro; Schoen, J. Christian; Johnston, Roy L.

    2009-03-01

    We present an extensive study of the structural and energetic changes of 102-atom PdmPt102-m nanoparticles as a function of composition m, where the interatomic interactions are modeled with the many-body Gupta potential. The minimum energy structures are obtained through a genetic algorithm. The excess energy is calculated, as well as the pair distribution function g(r). The radial distribution of the atoms is computed for each composition; the result indicates a multi-layer segregation for some compositions, with a shell growth sequence as follows: a core with a small number of Pd atoms is followed by an intermediate shell of Pt atoms and the external shell consists of Pd atoms. A region where Pd and Pt atoms are mixed is observed between the outermost and intermediate shells. Furthermore, the pure Pd102 and Pt102 nanoparticles have the same structure, while a variety of different structures are observed for the bimetallic clusters.

  4. Promotion of catalytic activity for methanol electro-oxidation on CoPc-Pt/C co-catalysts

    Institute of Scientific and Technical Information of China (English)

    WU JingJie; XU YiMin; PAN Mu; MA WenTao; TANG HaoLin

    2009-01-01

    The catalytic activity for methanol electro-oxidation on CoPc-Pt/C co-catalysts, prepared by impregnation method, was studied in details through electrochemical methods. Cyclic voltammetry (CV) result demonstrates that CoPc has higher forward anodic peak current density and jf/jb value (forward anodic peak current density/backward anodic peak current density) than Pt/C. Chronoamperometry (CA) analysis indicates that CoPc-Pt/C exhibits both excellent transient current density and stable current density for methanol electro-oxidation compared with Pt/C. Two main mechanisms related to the promotion of catalytic activity are as follows: CoPc-Pt/C has the activity of tolerance to carbonaceous intermediates, thus inhibiting the self-poisoning of catalysts; CoPc-Pt/C owns prominent intrinsic catalytic activity indicated by the apparent activation energy for methanol oxidation on CoPc-Pt/C, which is 18 kJ/mol, less than that on Pt and PtRu catalysts as reported.

  5. Synthesis-atomic structure-properties relationships in metallic nanoparticles by total scattering experiments and 3D computer simulations: case of Pt-Ru nanoalloy catalysts.

    Science.gov (United States)

    Prasai, Binay; Ren, Yang; Shan, Shiyao; Zhao, Yinguang; Cronk, Hannah; Luo, Jin; Zhong, Chuan-Jian; Petkov, Valeri

    2015-05-07

    An approach to determining the 3D atomic structure of metallic nanoparticles (NPs) in fine detail and using the unique knowledge obtained for rationalizing their synthesis and properties targeted for optimization is described and exemplified on Pt-Ru alloy NPs of importance to the development of devices for clean energy conversion such as fuel cells. In particular, PtxRu100-x alloy NPs, where x = 31, 49 and 75, are synthesized by wet chemistry and activated catalytically by a post-synthesis treatment involving heating under controlled N2-H2 atmosphere. So-activated NPs are evaluated as catalysts for gas-phase CO oxidation and ethanol electro-oxidation reactions taking place in fuel cells. Both as-synthesized and activated NPs are characterized structurally by total scattering experiments involving high-energy synchrotron X-ray diffraction coupled to atomic pair distribution functions (PDFs) analysis. 3D structure models both for as-synthesized and activated NPs are built by molecular dynamics simulations based on the archetypal for current theoretical modelling Sutton-Chen method. Models are refined against the experimental PDF data by reverse Monte Carlo simulations and analysed in terms of prime structural characteristics such as metal-to-metal bond lengths, bond angles and first coordination numbers for Pt and Ru atoms. Analysis indicates that, though of a similar type, the atomic structure of as-synthesized and respective activated NPs differ in several details of importance to NP catalytic properties. Structural characteristics of activated NPs and data for their catalytic activity are compared side by side and strong evidence found that electronic effects, indicated by significant changes in Pt-Pt and Ru-Ru metal bond lengths at NP surface, and practically unrecognized so far atomic ensemble effects, indicated by distinct stacking of atomic layers near NP surface and prevalence of particular configurations of Pt and Ru atoms in these layers, contribute to the

  6. Atomic structure and thermal stability of Pt-Fe bimetallic nanoparticles: from alloy to core/shell architectures.

    Science.gov (United States)

    Huang, Rao; Wen, Yu-Hua; Shao, Gui-Fang; Sun, Shi-Gang

    2016-06-22

    Bimetallic nanoparticles comprising noble metal and non-noble metal have attracted intense interest over the past few decades due to their low cost and significantly enhanced catalytic performances. In this article, we have explored the atomic structure and thermal stability of Pt-Fe alloy and core-shell nanoparticles by molecular dynamics simulations. In Fe-core/Pt-shell nanoparticles, Fe with three different structures, i.e., body-centered cubic (bcc), face-centered cubic (fcc), and amorphous phases, has been considered. Our results show that Pt-Fe alloy is the most stable configuration among the four types of bimetallic nanoparticles. It has been discovered that the amorphous Fe cannot stably exist in the core and preferentially transforms into the fcc phase. The phase transition from bcc to hexagonal close packed (hcp) has also been observed in bcc-Fe-core/Pt-shell nanoparticles. In contrast, Fe with the fcc structure is the most preferred as the core component. These findings are helpful for understanding the structure-property relationships of Pt-Fe bimetallic nanoparticles, and are also of significance to the synthesis and application of noble metal based nanoparticle catalysts.

  7. Structure of Pt/C and PtRu/C catalytic layers prepared by plasma sputtering and electric performance in direct methanol fuel cells (DMFC)

    Energy Technology Data Exchange (ETDEWEB)

    Caillard, A.; Brault, P.; Mathias, J. [Groupe de Recherche sur l' Energetique des Milieux Ionises, UMR6606 Universite d' Orleans, CNRS, Polytech' Orleans BP6744, F-45067 Orleans Cedex 2 (France); Coutanceau, C.; Leger, J.-M. [Laboratoire de Catalyse en Chimie Organique, UMR6503 Universite de Poitiers, CNRS, F-86022 Poitiers (France)

    2006-11-08

    Plasma sputtering process was used to deposit Pt and PtRu on conductive carbon diffusion layer. Low metal loading catalysts for methanol electrooxidation were prepared and characterized by TEM and XRD. The main result is that codeposition of Pt and Ru leads to alloy phase, whereas multi-layers deposition leads to no-alloyed structure. The electrochemical performance of sputtered Pt/C electrodes was compared with that of standard electrodes, and was found lower. However, the specific activity was much higher, indicating that the catalyst utilization efficiency was higher than that obtained with a standard electrode. Then, different bimetallic PtRu/C electrodes were prepared by plasma sputtering, leading to different catalyst structures (Pt and Ru multilayer deposition or simultaneous deposition of Pt and Ru) and composition (from 100:0 to 50:50 Pt/Ru atomic ratios). At last, the different PtRu electrodes were compared in term of DMFC electrical performance. The best efficiency of the DMFC was reached when both metals Pt and Ru are simultaneously deposited (alloyed) with a ruthenium atomic ratio of 30% or 40 % Ru depending of the working potentials of the cell. (author)

  8. Computational Study of Nb-Doped-SnO2/Pt Interfaces: Dopant Segregation, Electronic Transport, and Catalytic Properties

    DEFF Research Database (Denmark)

    Fu, Qiang; Halck, Niels Bendtsen; Hansen, Heine Anton

    2017-01-01

    in the subsurface layers of the NTO substrate, whereas their transport across the Pt/NTO interface is hindered by a high thermodynamic barrier under the operating condition of PEMFCs. The interfacial transport of Sn is, however, more facile, indicating possible formations of Sn Pt alloys and tin oxides...... functional theory and non equilibrium Green's function study, we investigate the Nb segregation at Pt/NTO interfaces under operational electrochemical conditions, and reveal the resulting effects on the electronic transport, as well as the catalytic properties. We find that the Nb dopants tend to aggregate....... The electronic conductivities of the Pt/NTO systems are not particularly sensitive to the distance of the Nb dopants relative to the interface, but depend explicitly on the Nb concentration and configuration. Through a dopant induced ligand effect, the NTO substrates can improve the catalytic activity of the Pt...

  9. Catalytic performance of Pt/HY-β in n-octane hydroisomerization

    Institute of Scientific and Technical Information of China (English)

    Jin Changlei; MA Bo; Zhang Xiwen; Ling Fengxiang; Zhang Zhizhi; Qin Bo

    2009-01-01

    A bifunctional catalyst Pt/HY-β was prepared from a bimicroporous composite zeolite Y-β. Characterization results showed that the specific surface area, pore volume, and acid amount of the catalyst Pt/HY-β all decreased compared to the original zeolite. The catalytic performance of this catalyst in n-octane hydroisomerization was investigated in a fixed bed stainless steel tubular reactor. The results showed that at a hydrogen/n-octane volume ratio of 1000, pressure of 0.6 MPa, temperature of 230 ℃ and LHSV of 3 h-1, the conversion of n-octane, yield of liquid, hydrocracking rate and yield of iso-octane were 52.32%, 88.66%, 12.60%, 39.51%, respectively.

  10. Doping of carbon nanotubes with aluminum atom to improve Pt adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Ganji, M.D., E-mail: ganji_md@yahoo.com [Department of Chemistry, Qaemshahr Branch, Islamic Azad University, Qaemshahr (Iran, Islamic Republic of); Ahangari, M. Ghorbanzadeh [Department of Mechanical Engineering, Mazandaran University, Babolsar (Iran, Islamic Republic of); Khosravi, A. [Department of Chemistry, Qaemshahr Branch, Islamic Azad University, Qaemshahr (Iran, Islamic Republic of)

    2014-01-30

    We implement the ab initio van der Waals (vdW) calculations at the density functional level of theory (vdW-DF) for the investigation of Pt adsorption ability of Al-doped carbon nanotubes (Al-CNTs). We present and discuss the energetically favorable sites for a single Pt atom adsorbed on the surface of Al-CNTs. Our results show significantly increment in the binding energy of Pt on the Al-CNT compared with pristine CNTs. We also find that Pt adsorption ability of Al-CNTs is more stronger than that of B- and N-doped CNTs. This is explained by the negative charges introduced in the neighboring C atoms by dopant atom. Our results verify that Al-doped CNTs seems to be more suitable materials for Pt adsorption than pure and also B- and N-doped CNTs.

  11. Doping of carbon nanotubes with aluminum atom to improve Pt adsorption

    Science.gov (United States)

    Ganji, M. D.; Ahangari, M. Ghorbanzadeh; Khosravi, A.

    2014-01-01

    We implement the ab initio van der Waals (vdW) calculations at the density functional level of theory (vdW-DF) for the investigation of Pt adsorption ability of Al-doped carbon nanotubes (Al-CNTs). We present and discuss the energetically favorable sites for a single Pt atom adsorbed on the surface of Al-CNTs. Our results show significantly increment in the binding energy of Pt on the Al-CNT compared with pristine CNTs. We also find that Pt adsorption ability of Al-CNTs is more stronger than that of B- and N-doped CNTs. This is explained by the negative charges introduced in the neighboring C atoms by dopant atom. Our results verify that Al-doped CNTs seems to be more suitable materials for Pt adsorption than pure and also B- and N-doped CNTs.

  12. Underpotential deposition-induced synthesis of composition-tunable Pt-Cu nanocrystals and their catalytic properties.

    Science.gov (United States)

    Jiang, Yaqi; Jia, Yanyan; Zhang, Jiawei; Zhang, Lei; Huang, Huang; Xie, Zhaoxiong; Zheng, Lansun

    2013-02-25

    Pt-Cu alloy octahedral nanocrystals (NCs) have been synthesized successfully by using N,N-dimethylformamide as both the solvent and the reducing agent in the presence of cetyltrimethylammonium chloride. Cu underpotential deposition (UPD) is found to play a key role in the formation of the Pt-Cu alloy NCs. The composition in the Pt-Cu alloy can be tuned by adjusting the ratio of metal precursors in solution. However, the Cu content in the Pt-Cu alloy NCs cannot exceed 50%. Due to the fact that Cu precursor cannot be reduced to metallic copper and the Cu content cannot exceed 50%, we achieved the formation of the Pt-Cu alloy by using Cu UPD on the Pt surface. In addition, the catalytic activities of Pt-Cu alloy NCs with different composition were investigated in electrocatalytic oxidation of formic acid. The results reveal that the catalytic performance is strongly dependent on Pt-Cu alloy composition. The sample of Pt(50)Cu(50) exhibits excellent activity in electrocatalytic oxidation of formic acid.

  13. Facile Synthesis of Bimetallic Pt-Ag/Graphene Composite and Its Electro-Photo-Synergistic Catalytic Properties for Methanol Oxidation

    Directory of Open Access Journals (Sweden)

    Shuhong Xu

    2016-09-01

    Full Text Available A Pt-Ag/graphene composite (Pt-Ag/GNs was synthesized by the facile aqueous solution method, in which Ag+ was first transformed into Ag2O under UV light irradiation, and then Ag2O, Pt2+, and graphene oxide (GO were simultaneously reduced by formic acid. It was found that Pt-Ag bimetallic nanoparticles were highly dispersed on the surface of graphene, and their size distribution was narrow with an average diameter of 3.3 nm. Electrocatalytic properties of the Pt-Ag/GNs composite were investigated by cyclic voltammograms (CVs, chronoamperometry (CA, CO-stripping voltammograms, and electrochemical impedance spectrum (EIS techniques. It was shown that the Pt-Ag/GNs composite has much higher catalytic activity and stability for the methanol oxidation reaction (MOR and better tolerance toward CO poisoning when compared with Pt/GNs and the commercially available Johnson Matthey 20% Pt/C catalyst (Pt/C-JM. Furthermore, the Pt-Ag/GNs composite showed efficient electro-photo-synergistic catalysis for MOR under UV or visible light irradiation. Particularly in the presence of UV irradiation, the Pt-Ag/GNs composite exhibited an ultrahigh mass activity of 1842.4 mA·mg−1, nearly 2.0 times higher than that without light irradiation (838.3 mA·mg−1.

  14. Support-shape Dependent Catalytic Activity in Pt/alumina Systems Using USANS/SANS

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Hoon; Han, Sugyeong; Ha, Heonphil; Byun, Jiyoung; Kim, Man-ho [KIST, Seoul (Korea, Republic of)

    2015-10-15

    Pt nanoparticles dispersed on ceramic powder such as alumina and ceria powder are used as catalyst materials to reduce pollution from automobile exhaust, power plant exhaust, etc. Much effort has been put to investigate the relationship between types of catalyst support materials and reactivity of the supported metallic particles. The surface shape of support materials can also be expected to control the catalysts size with the surface shape of support materials. In this presentation, we show our SANS (small angle neutron scattering) -USANS (ultra small angle neutron scattering) analysis on the structural differences of different shapes of the same γ alumina powder with different loadings of Pt nanoparticles. Then, the reactivity of the prepared catalyst materials are presented and discussed based on the investigation of the structure of the support materials by SANS. The shapes of gamma alumina, rod-like or plate-like shape, were determined from nanometer to micrometer with USANS and SANS analysis. We found that the platelet-like alumina consists of an aggregate of 2 - 3 layers, which further reduce specific surface area and catalytic activity compared to rod-like shape. Rod-like shape shows more than 100% enhancement in the catalytic activities in model three-way-catalyst (TWC) reactions of CO, NO, and C{sub 3}H{sub 6} at low temperature around 200 .deg. C.

  15. Synthesis-atomic structure-properties relationships in metallic nanoparticles by total scattering experiments and 3D computer simulations: case of Pt-Ru nanoalloy catalysts

    Science.gov (United States)

    Prasai, Binay; Ren, Yang; Shan, Shiyao; Zhao, Yinguang; Cronk, Hannah; Luo, Jin; Zhong, Chuan-Jian; Petkov, Valeri

    2015-04-01

    An approach to determining the 3D atomic structure of metallic nanoparticles (NPs) in fine detail and using the unique knowledge obtained for rationalizing their synthesis and properties targeted for optimization is described and exemplified on Pt-Ru alloy NPs of importance to the development of devices for clean energy conversion such as fuel cells. In particular, PtxRu100-x alloy NPs, where x = 31, 49 and 75, are synthesized by wet chemistry and activated catalytically by a post-synthesis treatment involving heating under controlled N2-H2 atmosphere. So-activated NPs are evaluated as catalysts for gas-phase CO oxidation and ethanol electro-oxidation reactions taking place in fuel cells. Both as-synthesized and activated NPs are characterized structurally by total scattering experiments involving high-energy synchrotron X-ray diffraction coupled to atomic pair distribution functions (PDFs) analysis. 3D structure models both for as-synthesized and activated NPs are built by molecular dynamics simulations based on the archetypal for current theoretical modelling Sutton-Chen method. Models are refined against the experimental PDF data by reverse Monte Carlo simulations and analysed in terms of prime structural characteristics such as metal-to-metal bond lengths, bond angles and first coordination numbers for Pt and Ru atoms. Analysis indicates that, though of a similar type, the atomic structure of as-synthesized and respective activated NPs differ in several details of importance to NP catalytic properties. Structural characteristics of activated NPs and data for their catalytic activity are compared side by side and strong evidence found that electronic effects, indicated by significant changes in Pt-Pt and Ru-Ru metal bond lengths at NP surface, and practically unrecognized so far atomic ensemble effects, indicated by distinct stacking of atomic layers near NP surface and prevalence of particular configurations of Pt and Ru atoms in these layers, contribute to the

  16. Efficient photothermal catalytic hydrogen production over nonplasmonic Pt metal supported on TiO2

    Science.gov (United States)

    Song, Rui; Luo, Bing; Jing, Dengwei

    2016-10-01

    Most of the traditional photocatalytic hydrogen productions were conducted under room temperature. In this work, we selected nonplasmonic Pt metal anchored on TiO2 nanoparticles with photothermal activity to explore more efficient hydrogen production technology over the whole solar spectrum. Photothermal experiments were carried out in a carefully designed top irradiated photocatalytic reactor that can withstand high temperature and relatively higher pressure. Four typical organic materials, i.e., methyl alcohol (MeOH), trielthanolamne (TEOA), formic acid (HCOOH) and glucose, were investigated. Formic acid, a typical hydrogen carrier, was found to show the best activity. In addition, the effects of different basic parameters such as sacrificial agent concentration and the temperature on the activity of hydrogen generation were systematically investigated for understanding the qualitative and quantitative effects of the photothermal catalytic reaction process. The hydrogen yields at 90 °C of the photothermal catalytic reaction with Pt/TiO2 are around 8.1 and 4.2 times higher than those of reactions carried out under photo or thermal conditions alone. We can see that the photothermal hydrogen yield is not the simple sum of the photo and thermal effects. This result indicated that the Pt/TiO2 nanoparticles can efficiently couple photo and thermal energy to more effectively drive hydrogen production. As a result, the excellent ability makes it superior to other conventional semiconductor photocatalysts and thermal catalysts. Future works could concentrate on exploring photothermal catalysis as well as the potential synergism between photo and thermal effects to find more efficient hydrogen production technology using the whole solar spectrum.

  17. Influence of surface preparation on atomic layer deposition of Pt films

    Institute of Scientific and Technical Information of China (English)

    Ge Liang; Hu Cheng; Zhu Zhiwei; Zhang Wei; Wu Dongping; Zhang Shili

    2012-01-01

    We report Pt deposition on a Si substrate by means of atomic layer deposition (ALD) using (methylcyclopentadienyl) trimethylplatinum (CH3CsH4Pt(CH3)3) and O2.Silicon substrates with both HF-last and oxidelast surface treatments are employed to investigate the influence of surface preparation on Pt-ALD.A significantlylonger incubation time and less homogeneity are observed for Pt growth on the HF-last substrate compared to the oxide-last substrate.An interfacial oxide layer at the Pt-Si interface is found inevitable even with HF treatment of the Si substrate immediately prior to ALD processing.A plausible explanation to the observed difference of Pt-ALD is discussed.

  18. Catalytic oxidation of cyclohexane to cyclohexanone and cyclohexanol by tert-butyl hydroperoxide over Pt/oxide catalysts

    Indian Academy of Sciences (India)

    I Rekkab-Hammoumraoui; A Choukchou-Braham; L Pirault-Roy; C Kappenstein

    2011-08-01

    Heterogeneous oxidation of cyclohexane with tertiobutyl hydroperoxide was carried out on Pt/oxide (Al2O3, TiO2 and ZrO2) catalysts in the presence of different solvents (acetic acid and acetonitrile). The catalysts were prepared using Pt(NH3)2(NO2)2 as a precursor and characterized by chemical analysis using the ICP–AES method, XRD, TEM, FTIR and BET surface area determination. The oxidation reaction was carried out at 70°C under atmospheric pressure. The results showed the catalytic performance of Pt/Al2O3 as being very high in terms of turnover frequency.

  19. Observation of temperature-dependent kinetics for catalytic CO oxidation over TiO2-supported Pt catalysts

    Science.gov (United States)

    Yu, Xiaomei; Wang, Yunfei; Kim, Ansoon; Kim, Yu Kwon

    2017-10-01

    TiO2-supported Pt catalysts were prepared for the study of CO oxidation kinetics at reaction conditions of pressures (1-100 Torr) and temperatures (300-500 K). We find two distinct temperature ranges with different reaction kinetics distinguished by an abrupt slope change at around 380 K in the Arrhenius plot only with the excess O2, not with the stoichiometric O2/CO ratio. We propose that Pt oxides are formed during the catalytic reactions with increasing temperatures under the oxidizing condition and the origin of the slope change is due to the changes in the reaction pathways of CO oxidation due to the Pt oxide formation.

  20. The Electrochemical Atomic Layer Deposition of Pt and Pd nanoparticles on Ni foam for the electrooxidation of alcohols

    CSIR Research Space (South Africa)

    Modibedi, RM

    2012-10-01

    Full Text Available Electrodeposition of Pt and Pd metal by surface limited redox replacement reactions was performed using the electrochemical atomic layer deposition. Carbon paper and Ni foam were used as substrates for metal deposition. Supported Pt and Pd...

  1. Preparation of PtPb/C Catalyst and Its Electro-oxidation Catalytic Performance for Formic Acid%PtPb/C催化剂的制备及其对甲酸电氧化的催化性能

    Institute of Scientific and Technical Information of China (English)

    刘双任; 陈金伟; 朱雪婧; 张洁; 江义武; 王瑞林

    2015-01-01

    目的:通过Pb元素的添加来提高Pt/C催化剂电催化氧化甲酸的性能。方法通过乙二醇协助硼氢化钠还原法,以氯铂酸为Pt源和硝酸铅为Pb源制备不同原子比的Pt x Pb/C催化剂。采用X射线衍射光谱法( XRD)和透射电子显微镜技术( TEM)表征样品的晶体结构和颗粒形貌;采用循环伏安法表征样品催化氧化甲酸的性能。结果利用乙二醇协助硼氢化钠还原法成功制得了Pt和Pb原子比不同的Ptx Pb/C催化剂,XRD和TEM测试结果表明这些样品均为Pt的面心立方结构,且颗粒大小均一、分散均匀,其平均粒径为4 nm左右。循环伏安测试结果表明Ptx Pb/C催化剂催化氧化甲酸的性能优于商业Pt/C催化剂的催化性能,且受Pt和Pb原子比的影响,当原子比为5:1时,其对氧化甲酸的催化性能最好,峰电位对应的Pt的比质量活性达到2000 mA/( mg Pt),远远高于商业Pt/C,同时计时电流曲线表明其具备良好的稳定性。结论 Pb原子的加入影响了Pt原子的电子结构,与Pb对Pt的协同作用共同促进了CO等中间产物在Pt表面的快速氧化,降低了催化氧化甲酸的初始电位,促使甲酸在低电位直接氧化为CO2和H2 O,提高了其催化氧化甲酸的峰电流,有效减轻了Pt中毒,提高了其催化活性。%ABSTRACT:Objective To improve the electro-oxidation catalytic performance of Pt/C catalyst for formic acid by adding the Pb element. Methods The Ptx Pb/C catalysts with different atomic ratios were prepared by an ethylene glycol-assisted NaBH4 reduction method. The structure and morphology of the catalyst were characterized by X-ray diffraction ( XRD) and transmission electron mi-croscopy ( TEM) , electrochemical performances were investigated by cyclic voltammetry. All electrochemical measurements were carried out in a conventional three-electrode electrochemical cell at 25 ℃ using cyclic voltammetry (CV) on a CHI 760B. Results The results of XRD and TEM showed

  2. Single-Atom Pt as Co-Catalyst for Enhanced Photocatalytic H2 Evolution.

    Science.gov (United States)

    Li, Xiaogang; Bi, Wentuan; Zhang, Lei; Tao, Shi; Chu, Wangsheng; Zhang, Qun; Luo, Yi; Wu, Changzheng; Xie, Yi

    2016-03-23

    Isolated single-atom platinum (Pt) embedded in the sub-nanoporosity of 2D g-C3 N4 as a new form of co-catalyst is reported. The highly stable single-atom co-catalyst maximizes the atom efficiency and alters the surface trap states of g-C3 N4 , leading to significantly enhanced photocatalytic H2 evolution activity, 8.6 times higher than that of Pt nanoparticles and up to 50 times that for bare g-C3 N4 .

  3. Laser-assisted atom probe tomography investigation of magnetic FePt nanoclusters: First experiments

    Energy Technology Data Exchange (ETDEWEB)

    Folcke, E.; Larde, R. [Groupe de Physique des Materiaux, UMR CNRS 6634, Universite de Rouen, 76801 Saint Etienne du Rouvray (France); Le Breton, J.M., E-mail: jean-marie.lebreton@univ-rouen.fr [Groupe de Physique des Materiaux, UMR CNRS 6634, Universite de Rouen, 76801 Saint Etienne du Rouvray (France); Gruber, M.; Vurpillot, F. [Groupe de Physique des Materiaux, UMR CNRS 6634, Universite de Rouen, 76801 Saint Etienne du Rouvray (France); Shield, J.E.; Rui, X. [Department of Mechanical and Materials Engineering, Nebraska Center for Materials and Nanoscience, University of Nebraska, N104 WSEC, Lincoln, NE 68588 (United States); Patterson, M.M. [Department of Physics, University of Wisconsin-Stout, Menomonie, WI 54751 (United States)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer FePt nanoclusters dispersed in a Cr matrix were studied by atom probe tomography. Black-Right-Pointing-Pointer Simulated experiments were conducted to study the artefacts of the analysis. Black-Right-Pointing-Pointer In FePt nanoclusters, Fe and Pt are present in equiatomic proportions. Black-Right-Pointing-Pointer FePt nanoclusters are homogeneous, no core-shell structure is observed. - Abstract: FePt nanoclusters dispersed in a Cr matrix have been investigated by laser-assisted atom probe tomography. The results were analysed according to simulated evaporation experiments. Three-dimensional (3D) reconstructions reveal the presence of nanoclusters roughly spherical in shape, with a size in good agreement with previous transmission electron microscopy observations. Some clusters appear to be broken up after the evaporation process due to the fact that the Cr matrix has a lower evaporation field than Fe and Pt. It is thus shown that the observed FePt nanoclusters are chemically homogeneous. They contain Fe and Pt in equiatomic proportions, with no core-shell structure observed.

  4. Prediction of atomic structure of Pt-based bimetallic nanoalloys by using genetic algorithm

    Science.gov (United States)

    Oh, Jung Soo; Nam, Ho-Seok; Choi, Jung-Hae; Lee, Seung-Cheol

    2013-05-01

    The atom-arrangements in Pt-based bimetallic nanoalloys were predicted by the combined use of genetic algorithm (GA) and molecular dynamics (MD) simulations. The nanoparticles of these nanoalloys were assumed to be a 3.5 nm-diameter truncated octahedron with Pt and noble metals of fixed composition ratio of 1:1. For the GA, a Python code, which concurrently linked with the MD method that uses the embedded atom method inter-atomic potentials, was developed for the prediction of the atom arrangements in these bimetallic nanoalloys. Successfully, the GA calculation predicted the core-shell structures for both Pt-Ag and Pt-Au nanoalloy, but an onion-like multilayered core-shell structure for Pt-Cu nanoalloy. The structural characteristics in the bimetallic nanoalloy were mainly due to the differences in the surface energy and cohesive energy between Pt and the other alloying metal elements and their miscibility gap and so on. Briefly, the prediction performance was analyzed to show the superior searching ability of GA.

  5. Synthesis, characterization and evaluation of green catalytic activity of nano Ag-Pt doped silicate

    Energy Technology Data Exchange (ETDEWEB)

    Murugavelu, M. [Department of Chemistry, Annamalai University, Annamalainagar 608 002 (India); Karthikeyan, B., E-mail: bkarthi_au@yahoo.com [Department of Chemistry, Annamalai University, Annamalainagar 608 002 (India)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Nanosized Ag-Pt loaded SiO{sub 2} was prepared by sol-gel method. Black-Right-Pointing-Pointer This catalyst has been characterized by different techniques. Black-Right-Pointing-Pointer Catalyst induces the reaction of condensation of indole and aldehyde in lesser time. Black-Right-Pointing-Pointer The coupled product is confirmed by spectral and DFT theoretical methods. - Abstract: In order to get materials with enhanced adsorption and organic transformation performance, nanosized Ag-Pt nanoparticles loaded SiO{sub 2} was prepared by sol-gel method. This catalyst has been characterized by Fourier transform infrared (FT-IR) spectra, diffuse reflectance spectra (DRS), fluorescence, high-resolution scanning electron microscopy (HR-SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM) and atomic force microscopy (AFM). Ag-Pt/SiO{sub 2} catalyst induces the reaction of condensation of indole and aldehyde to give bis(indolyl)methanes in striking lesser time under microwave (MW) irradiation and it has been examined with different substituted benzaldehydes. The coupled product is confirmed by FT-IR, {sup 1}H, {sup 13}C NMR and DFT theoretical methods.

  6. Atomic Structure of Pt3Ni Nanoframe Electrocatalysts by in Situ X-ray Absorption Spectroscopy.

    Science.gov (United States)

    Becknell, Nigel; Kang, Yijin; Chen, Chen; Resasco, Joaquin; Kornienko, Nikolay; Guo, Jinghua; Markovic, Nenad M; Somorjai, Gabor A; Stamenkovic, Vojislav R; Yang, Peidong

    2015-12-23

    Understanding the atomic structure of a catalyst is crucial to exposing the source of its performance characteristics. It is highly unlikely that a catalyst remains the same under reaction conditions when compared to as-synthesized. Hence, the ideal experiment to study the catalyst structure should be performed in situ. Here, we use X-ray absorption spectroscopy (XAS) as an in situ technique to study Pt3Ni nanoframe particles which have been proven to be an excellent electrocatalyst for the oxygen reduction reaction (ORR). The surface characteristics of the nanoframes were probed through electrochemical hydrogen underpotential deposition and carbon monoxide electrooxidation, which showed that nanoframe surfaces with different structure exhibit varying levels of binding strength to adsorbate molecules. It is well-known that Pt-skin formation on Pt-Ni catalysts will enhance ORR activity by weakening the binding energy between the surface and adsorbates. Ex situ and in situ XAS results reveal that nanoframes which bind adsorbates more strongly have a rougher Pt surface caused by insufficient segregation of Pt to the surface and consequent Ni dissolution. In contrast, nanoframes which exhibit extremely high ORR activity simultaneously demonstrate more significant segregation of Pt over Ni-rich subsurface layers, allowing better formation of the critical Pt-skin. This work demonstrates that the high ORR activity of the Pt3Ni hollow nanoframes depends on successful formation of the Pt-skin surface structure.

  7. CATALYTIC AND ELECTROCATALYTIC ACTIVITY OF Pt-Ru/C ELECTRODE FOR HYDROGEN OXIDATION IN ALKALINE

    Directory of Open Access Journals (Sweden)

    D. LABOU

    2008-07-01

    Full Text Available The kinetics of the oxidation of H2 on PtRu/C gas-diffusion electrode was studied by interfacing the electrode with aqueous electrolytes at different pH values. The conducting electrolytes were KOH and HClO4 aqueous solutions with different concentrations. It is shown that the nature of the aqueous electrolyte plays the role of an active catalyst support for the PtRu/C electrode which drastically affects its catalytic properties. During the aforementioned interaction, termed electrochemical metal support interaction (EMSI, the electrochemical potential of the electrons at the catalyst Fermi level is equalised with the electrochemical potential of the solvated electron in the aqueous electrolyte. The electrochemical experiments carried out at various pH values showed that the electrochemical promotion catalysis (EPOC is more intense when the catalyst-electrode is interfaced with electrolytes with high pH values where the OH– ionic conduction prevails. It was concluded that similar to the solid state electrochemical systems EPOC proceeds through the formation of a polar adsorbed promoting layer of , electrochemically supplied by the OH- species, at the three phase boundaries of the gas exposed gas diffusion catalyst-electrode surface.

  8. The effect of thermal treatment on the atomic structure of core-shell PtCu nanoparticles in PtCu/C electrocatalysts

    Science.gov (United States)

    Pryadchenko, V. V.; Belenov, S. V.; Shemet, D. B.; Volochaev, V. A.; Srabionyan, V. V.; Avakyan, L. A.; Tabachkova, N. Yu.; Guterman, V. E.; Bugaev, L. A.

    2017-08-01

    PtCu/C electrocatalysts with bimetallic PtCu nanoparticles were synthesized by successive chemical reduction of Cu2+ and Pt(IV) in a carbon suspension prepared based on an aqueous ethylene glycol solution. The atomic structure of as-prepared PtCu nanoparticles and nanoparticles subjected to thermal treatment at 350°C was examined using Pt L 3 and Cu K EXAFS spectra, transmission electron microscopy (TEM), and X-ray powder diffraction (XRD). The results of joint analysis of TEM microphotographs, XRD profiles, and EXAFS spectra suggest that the synthesized electrocatalysts contain PtCu nanoparticles with a Cu core-Pt shell structure and copper oxides Cu2O and CuO. Thermal treatment of electrocatalysts at 350°C results in partial reduction of copper oxides and fusion of bimetallic nanoparticles with the formation of both homogeneous and ordered PtCu solid solutions.

  9. Pt atoms stabilized on hexagonal boron nitride as efficient single-atom catalysts for CO oxidation: A first-principles investigation

    KAUST Repository

    Liu, Xin

    2015-01-01

    Taking CO oxidation as a probe, we investigated the electronic structure and reactivity of Pt atoms stabilized by vacancy defects on hexagonal boron nitride (h-BN) by first-principles-based calculations. As a joint effect of the high reactivity of both a single Pt atom and a boron vacancy defect (PtBV), the Pt-N interaction is -4.40 eV and is already strong enough to prohibit the diffusion and aggregation of the stabilized Pt atom. Facilitated by the upshifted Pt-d states originated from the Pt-N interaction, the barriers for CO oxidation through the Langmuir-Hinshelwood mechanism for formation and dissociation of peroxide-like intermediate and the regeneration are as low as 0.38, 0.10 and 0.04 eV, respectively, suggesting the superiority of PtBV as a catalyst for low temperature CO oxidation.

  10. Catalytic behavior of Pt nanoparticles dealuminated Y-zeolite for some n-alkane hydroisomerization

    Directory of Open Access Journals (Sweden)

    S.A. Hanafi

    2014-06-01

    Full Text Available Dealuminated zeolite Y-supported platinum was prepared adopting two dealumination methods, viz. fast (1, 3 and 6 h and slow method (18 h. The content of Pt was constant at 0.5 wt% in all investigated catalysts. The prepared samples were characterized using TGA/DSC, XRD, FTIR techniques, nitrogen adsorption at −196 °C and TEM-connected with energy dispersive spectroscopy (EDS. Surface acidity was investigated via pyridine adsorption using FT-IR spectroscopy. The parent and dealuminated Y-zeolite samples were characterized by their microporous system. By increasing the dealumination time to 6 h, the increased specific surface area and total pore volume indicated a sort of pore opening taking place with an increase in the accessibility of nitrogen molecules. DSC confirmed the thermal stability of the dealuminated zeolite samples up to 800 °C. The prepared catalysts were tested through hydroisomerization reactions of n-hexane and n-heptane using a micro-catalytic pulse technique. Different catalytic behaviors could be distinguished for the dealuminated samples based on competitive reactions; hydro-isomerization, hydrocracking and cyclization. Slow dealumination leads to the most selective catalysts for hydroisomerization. n-Heptane was converted to higher extent than n-hexane; cracking process was more evident when the former was fed to the reactor.

  11. Pt@Ag and Pd@Ag core/shell nanoparticles for catalytic degradation of Congo red in aqueous solution.

    Science.gov (United States)

    Salem, Mohamed A; Bakr, Eman A; El-Attar, Heba G

    2018-01-05

    Platinum/silver (Pt@Ag) and palladium/silver (Pd@Ag) core/shell NPs have been synthesized in two steps reaction using the citrate method. The progress of nanoparticle formation was followed by the UV/Vis spectroscopy. Transmission electron microscopy revealed spherical shaped core/shell nanoparticles with average particle diameter 32.17nm for Pt@Ag and 8.8nm for Pd@Ag. The core/shell NPs were further characterized by FT-IR and XRD. Reductive degradation of the Congo red dye was chosen to demonstrate the excellent catalytic activity of these core/shell nanostructures. The nanocatalysts act as electron mediators for the transfer of electrons from the reducing agent (NaBH4) to the dye molecules. Effect of reaction parameters such as nanocatalyst dose, dye and NaBH4 concentrations on the dye degradation was investigated. A comparison between the catalytic activities of both nanocatalysts was made to realize which of them the best in catalytic performance. Pd@Ag was the higher in catalytic activity over Pt@Ag. Such greater activity is originated from the smaller particle size and larger surface area. Pd@Ag nanocatalyst was catalytically stable through four subsequent reaction runs under the utilized reaction conditions. These findings can thus be considered as possible economical alternative for environmental safety against water pollution by dyes. Copyright © 2017. Published by Elsevier B.V.

  12. Effects of Ce on catalytic combustion of methane over Pd-Pt/Al2O3 catalyst.

    Science.gov (United States)

    Fan, Xing; Wang, Fan; Zhu, Tianle; He, Hong

    2012-01-01

    Activity and stability of 1%Pd-0.2%Pt/Al2O3 and 1%Pd-0.2%Pt/0.6%Ce/Al2O3 catalysts prepared by impregnation method for catalytic combustion of methane in air were investigated. The catalysts before and after reaction were characterized by BET, CO chemisorption, XRD and XP S techniques. Results showed that the presence of Ce significantly increased the activity and thermal stability of the Pd-Pt/Al2O3 catalyst towards methane combustion, which could be attributed to more highly-dispersed active PdO particles over the Pd-Pt/Ce/Al2O3 catalyst surface as well as the retarded sintering of PdO and the maintained oxidized state of surface Pd during the combustion process in the presence of Ce.

  13. Effects of Ce on catalytic combustion of methane over Pd-Pt/Al2O3 catalyst

    Institute of Scientific and Technical Information of China (English)

    Xing Fan; Fan Wang; Tianle Zhu; Hong He

    2012-01-01

    Activity and stability of 1%Pd-0.2%Pt/Al2O3 and 1%Pd-0.2%Pt/0.6%Ce/Al2O3 catalysts prepared by impregnation method for catalytic combustion of methane in air were investigated.The catalysts before and after reaction were characterized by BET,CO chemisorption,XRD and XPS techniques.Results showed that the presence of Ce significantly increased the activity and thermal stability of the Pd-Pt/Al2O3 catalyst towards methane combustion,which could be attributed to more highly-dispersed active PdO particles over the Pd-Pt/Ce/Al2O3 catalyst surface as well as the retarded sintering of PdO and the maintained oxidized state of surface Pd during the combustion process in the presence of Ce.

  14. The effect of mixed HCl-KCl competitive adsorbate on Pt adsorption and catalytic properties of Pt-Sn/Al2O3 catalysts in propane dehydrogenation

    Science.gov (United States)

    Zangeneh, Farnaz Tahriri; Taeb, Abbas; Gholivand, Khodayar; Sahebdelfar, Saeed

    2015-12-01

    The effect of competitive adsorbate concentration and combination on the adsorption of H2PtCl6 onto γ-Al2O3 in the preparation and performance of PtSnK/γ-Al2O3 catalyst for propane dehydrogenation was investigated. The catalysts were prepared by sequential impregnation of Sn and Pt precursors. The effect of competitor concentration on Pt adsorption was studied by using hydrochloric acid (0.1-0.3 M) and the effect of pH was studied by using KCl/HCl mixtures at constant (0.1 M) total chloride ion concentration. The catalysts were characterized by nitrogen adsorption/desorption, XRD, XRF, SEM and CO chemisorption. The catalytic performance tests were carried out in a fixed-bed quartz reactor under kinetic controlled condition for proper catalyst screening. It was found that the corrosive competitor HCl could be partially substituted with KCl without appreciable impact on catalyst performance with the advantage of lower acid attack on the support and reduced leaching of the deposited tin. A model based on initial concentration and uptake of the adsorbates was developed to obtain the adsorption parameters. Values of 890 μmol/g and 600 lit/mol were obtained for adsorption site concentration of the tin-impregnated support and equilibrium constant for Pt adsorption, respectively, for HCl concentration range of 0.1-0.3 M.

  15. Nanoporous bimetallic Pt-Au alloy nanocomposites with superior catalytic activity towards electro-oxidation of methanol and formic acid.

    Science.gov (United States)

    Zhang, Zhonghua; Wang, Yan; Wang, Xiaoguang

    2011-04-01

    We present a facile route to fabricate novel nanoporous bimetallic Pt-Au alloy nanocomposites by dealloying a rapidly solidified Al(75)Pt(15)Au(10) precursor under free corrosion conditions. The microstructure of the precursor and the as-dealloyed sample was characterized using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, high-resolution transmission electron microscopy, and energy dispersive X-ray (EDX) analysis. The Al(75)Pt(15)Au(10) precursor is composed of a single-phase Al(2)(Au,Pt) intermetallic compound, and can be fully dealloyed in a 20 wt.% NaOH or 5 wt.% HCl aqueous solution. The dealloying leads to the formation of the nanoporous Pt(60)Au(40) nanocomposites (np-Pt(60)Au(40) NCs) with an fcc structure. The morphology, size and crystal orientation of grains in the precursor can be conserved in the resultant nanoporous alloy. The np-Pt(60)Au(40) NCs consist of two zones with distinct ligament/channel sizes and compositions. The formation mechanism of these np-Pt(60)Au(40) NCs can be rationalized based upon surface diffusion of more noble elements and spinodal decomposition during dealloying. Electrochemical measurements demonstrate that the np-Pt(60)Au(40) NCs show superior catalytic activity towards the electro-oxidation of methanol and formic acid in the acid media compared to the commercial JM-Pt/C catalyst. This material can find potential applications in catalysis related areas, such as direct methanol or formic acid fuel cells. Our findings demonstrate that dealloying is an effective and simple strategy to realize the alloying of immiscible systems under mild conditions, and to fabricate novel nanostructures with superior performance.

  16. The acanthocephalan Paratenuisentis ambiguus as a sensitive indicator of the precious metals Pt and Rh from automobile catalytic converters

    Energy Technology Data Exchange (ETDEWEB)

    Sures, B.; Zimmermann, S.; Sonntag, C.; Stueben, D.; Taraschewski, H

    2003-04-01

    The eel parasite, Paratenuisentis ambiguus, takes up and accumulates catalytic metals. - Recent studies revealed that intestinal acanthocephalans of fish can accumulate heavy metals to concentrations orders of magnitude higher than those in the host tissues or the aquatic environment. This significant heavy metal accumulation by acanthocephalans, even surpassing that of established free living accumulation bioindicators, encouraged us to study the bioavailability of the platinum-group-metals (PGM) Pt and Rh for parasites. These precious metals are used in catalytic converters of cars for exhaust gas purification in Europe since the early 1980s. In addition to the beneficial effect in reducing the emission of CH{sub x}, CO and NO{sub x} of cars there is an increasing emission of these metals. However, it still remains unclear if these elements become accumulated in the biosphere and whether they affect the health of organisms. The present study reveals that in European eels (Anguilla anguilla) naturally infected with the eoacanthocephalan parasite Paratenuisentis ambiguus and experimentally exposed to ground catalytic converter material, the parasites take up and accumulate the catalytic active metals Pt and Rh whereas in the examined host tissues we found no metal uptake. Compared with the PGM concentrations in the water the worms contained 1600 times higher Rh and 50 times higher Pt concentrations. Thus, the parasites can be used as sentinel organisms reflecting even very low levels of precious metals.

  17. Catalytic

    Directory of Open Access Journals (Sweden)

    S.A. Hanafi

    2014-03-01

    Full Text Available A series of dealuminated Y-zeolites impregnated by 0.5 wt% Pt catalysts promoted by different amounts of Ni, Pd or Cr (0.3 and 0.6 wt% were prepared and characterized as hydrocracking catalysts. The physicochemical and structural characterization of the solid catalysts were investigated and reported through N2 physisorption, XRD, TGA-DSC, FT-IR and TEM techniques. Solid catalysts surface acidities were investigated through FT-IR spectroscopy aided by pyridine adsorption. The solid catalytic activities were evaluated through hydroconversion of n-hexane and n-heptane employing micro-catalytic pulse technique directly connected to a gas chromatograph analyzer. The thermal stability of the solids was also investigated up to 800 °C. Crystallinity studies using the XRD technique of all modified samples proved analogous to the parent Y-zeolite, exhibiting nearly an amorphous and microcrystalline character of the second metal oxides. Disclosure of bimetallic catalysts crystalline characterization, through XRD, was not viable. The nitrogen adsorption–desorption isotherms for all samples concluded type I adsorption isotherms, without any hysteresis loop, indicating that the entire pore system is composed of micropores. TEM micrographs of the solid catalysts demonstrate well-dispersed Pt, Ni and Cr nanoparticles having sizes of 2–4 nm and 7–8 nm, respectively. The catalytic activity results indicate that the bimetallic (0.5Pt–0.3Cr/D18H–Y catalyst is the most active towards n-hexane and n-heptane isomerization while (0.5Pt–0.6Ni/D18H–Y catalyst can be designed as most suitable as a cracking catalyst.

  18. Influence of Pt nanoparticles modified by La and Ce oxides on catalytic dehydrocyclization of n-alkanes

    Directory of Open Access Journals (Sweden)

    A.H. Samia

    2015-06-01

    Full Text Available Catalytic reforming accounts for a large share of the world’s gasoline production, it is the most important source of aromatics for the petrochemical industry. In addition, reforming of hydrocarbon on the dual-function catalysts has been found to form fundamentally different products in hydrogen diluents. Typical catalysts employed for this reforming process are Pt/Al2O3 and Pt-M/Al2O3, M being the promoter. These solids are characterized by both acid and metal functions which catalyze dehydrocyclization, dehydrogenation, isomerization and cracking processes. In this regard, information about cerium and lanthanum, as promoters, is hardly revealed. The present work aims to study the performance of Pt/Al2O3 catalysts modified by lanthanum or cerium during the conversion of cyclohexane, n-hexane and n-heptane. Catalytic activities of the prepared catalysts were tested using a micro catalytic pulse technique. Physicochemical characterization of the solid catalysts such as, surface area (SBET, Fourier transform infrared (FTIR, differential scanning calorimetry (DSC, thermogravimetric analysis (TGA, hydrogen-temperature programed reduction (H2-TPR, hydrogen-temperature-programed desorption (H2-TPD, CO2-TPD, NH3-TPD, high resolution transmission electron microscopy (HRTEM and X-ray diffraction (XRD were depicted. Results indicated clearly that Pt/Al2O3 catalyst is selective toward dehydrogenation to benzene which could be explained as due to the decrease in the active acid sites and the comparative segregation of the alumina support especially at 3% load of CeO. The presence of La2O3 in the Pt/Al2O3 catalyst promotes aromatization of n-hexane and n-heptane, also the dehydrocyclization of n-hexane is more difficult than that of n-heptane. Thus, modification of the Pt/Al2O3 catalyst by La, resulted in a more active and selective reforming catalyst.

  19. Pt3 Co Octapods as Superior Catalysts of CO2 Hydrogenation.

    Science.gov (United States)

    Khan, Munir Ullah; Wang, Liangbing; Liu, Zhao; Gao, Zehua; Wang, Shenpeng; Li, Hongliang; Zhang, Wenbo; Wang, Menglin; Wang, Zhengfei; Ma, Chao; Zeng, Jie

    2016-08-08

    As the electron transfer to CO2 is a critical step in the activation of CO2 , it is of significant importance to engineer the electronic properties of CO2 hydrogenation catalysts to enhance their activity. Herein, we prepared Pt3 Co nanocrystals with improved catalytic performance towards CO2 hydrogenation to methanol. Pt3 Co octapods, Pt3 Co nanocubes, Pt octapods, and Pt nanocubes were tested, and the Pt3 Co octapods achieved the best catalytic activity. Both the presence of multiple sharp tips and charge transfer between Pt and Co enabled the accumulation of negative charges on the Pt atoms in the vertices of the Pt3 Co octapods. Moreover, infrared reflection absorption spectroscopy confirmed that the high negative charge density at the Pt atoms in the vertices of the Pt3 Co octapods promotes the activation of CO2 and accordingly enhances the catalytic activity.

  20. Sublattice Localized Electronic States in Atomically Resolved Graphene-Pt(111) Edge-Boundaries

    OpenAIRE

    Merino-Mateo, Pablo; Pinardi, Anna Lisa; Méndez, Javier; López, María Francisca; Pérez, Rubén; Martín-Gago, José A.

    2014-01-01

    Understanding the connection of graphene with metal surfaces is a necessary step for developing atomically precise graphene-based technology. Combining high-resolution STM experiments and DFT calculations, we have unambiguously unveiled the atomic structure of the boundary between a graphene zigzag edge and a Pt(111) step. The graphene edges minimize their strain by inducing a 3-fold edge-reconstruction on the metal side. We show the existence of an unoccupied electronic state that is mostly ...

  1. Direct in situ observations of single Fe atom catalytic processes and anomalous diffusion at graphene edges

    Science.gov (United States)

    Zhao, Jiong; Deng, Qingming; Avdoshenko, Stanislav M.; Fu, Lei; Eckert, Jürgen; Rümmeli, Mark H.

    2014-01-01

    Single-atom catalysts are of great interest because of their high efficiency. In the case of chemically deposited sp2 carbon, the implementation of a single transition metal atom for growth can provide crucial insight into the formation mechanisms of graphene and carbon nanotubes. This knowledge is particularly important if we are to overcome fabrication difficulties in these materials and fully take advantage of their distinct band structures and physical properties. In this work, we present atomically resolved transmission EM in situ investigations of single Fe atoms at graphene edges. Our in situ observations show individual iron atoms diffusing along an edge either removing or adding carbon atoms (viz., catalytic action). The experimental observations of the catalytic behavior of a single Fe atom are in excellent agreement with supporting theoretical studies. In addition, the kinetics of Fe atoms at graphene edges are shown to exhibit anomalous diffusion, which again, is in agreement with our theoretical investigations. PMID:25331874

  2. Direct in situ observations of single Fe atom catalytic processes and anomalous diffusion at graphene edges.

    Science.gov (United States)

    Zhao, Jiong; Deng, Qingming; Avdoshenko, Stanislav M; Fu, Lei; Eckert, Jürgen; Rümmeli, Mark H

    2014-11-01

    Single-atom catalysts are of great interest because of their high efficiency. In the case of chemically deposited sp(2) carbon, the implementation of a single transition metal atom for growth can provide crucial insight into the formation mechanisms of graphene and carbon nanotubes. This knowledge is particularly important if we are to overcome fabrication difficulties in these materials and fully take advantage of their distinct band structures and physical properties. In this work, we present atomically resolved transmission EM in situ investigations of single Fe atoms at graphene edges. Our in situ observations show individual iron atoms diffusing along an edge either removing or adding carbon atoms (viz., catalytic action). The experimental observations of the catalytic behavior of a single Fe atom are in excellent agreement with supporting theoretical studies. In addition, the kinetics of Fe atoms at graphene edges are shown to exhibit anomalous diffusion, which again, is in agreement with our theoretical investigations.

  3. Atomic-Scale Mechanism for Hydrogenation of o-Cresol on Pt Catalysis

    Science.gov (United States)

    Li, Yaping; Liu, Zhimin; Xue, Wenhua; Crossley, Steven; Jentoft, Friederike; Wang, Sanwu

    Biofuels derived from lignocellulosic biomass have received significant attention lately due to increasing environmental concerns. With first-principles density-functional theory and ab initio molecular dynamic simulations, we investigated the atomic-scale mechanism of o-cresol hydrogenation on the Pt(111) surface. The formation of 2-methyl-cyclohexanone (the intermediate product) was found to involve two steps. The first step is the dehydrogenation, that is, the H atom in the hydroxyl group moves to the Pt surface. The second step is the hydrogenation, that is, the H atoms on Pt react with the carbon atoms in the aromatic ring. The first step involves a smaller barrier, suggesting that dehydrogenation occurs first, followed by hydrogenation of the ring. In particular, tautomerization is found to occur via a two-step process over the catalyst. On the other hand, 2-methyl-cyclohexanol (the final product) is produced through two paths. One is direct hydrogenation of the aromatic ring. Another pathway includes partial hydrogenation of the ring, dehydrogenation of -OH group, finally hydrogenation of remaining C atoms and the O atom. Our theoretical results agree well with the experimental observations. Supported by DOE (DE-SC0004600). This research used the supercomputer resources of NERSC, XSEDE, TACC.

  4. Epitaxial Growth of Multimetallic Pd@PtM (M = Ni, Rh, Ru) Core-Shell Nanoplates Realized by in Situ-Produced CO from Interfacial Catalytic Reactions.

    Science.gov (United States)

    Yan, Yucong; Shan, Hao; Li, Ge; Xiao, Fan; Jiang, Yingying; Yan, Youyi; Jin, Chuanhong; Zhang, Hui; Wu, Jianbo; Yang, Deren

    2016-12-14

    Pt-based multimetallic core-shell nanoplates have received great attention as advanced catalysts, but the synthesis is still challenging. Here we report the synthesis of multimetallic Pd@PtM (M = Ni, Rh, Ru) nanoplates including Pd@Pt nanoplates, in which Pt or Pt alloy shells with controlled thickness epitaxially grow on plate-like Pd seeds. The key to achieve high-quality Pt-based multimetallic nanoplates is in situ generation of CO through interfacial catalytic reactions associated with Pd nanoplates and benzyl alcohol. In addition, the accurate control in a trace amount of CO is also of great importance for conformal growth of multimetallic core-shell nanoplates. The Pd@PtNi nanoplates exhibit substantially improved activity and stability for methanol oxidation reaction (MOR) compared to the Pd@Pt nanoplates and commercial Pt catalysts due to the advantages arising from plate-like, core-shell, and alloy structures.

  5. Effect of Pt promotion on Ni/Al2O3 for the selective catalytic reduction of NO with hydrogen

    Science.gov (United States)

    Mihet, Maria; Lazar, Mihaela D.; Borodi, G.; Almasan, V.

    2013-11-01

    Ni/Al2O3 (10 wt.% Ni) and Ni-Pt/Al2O3 (10 wt.% Ni, 0.5 wt.% Pt) were comparatively tested in the hydrogen selective catalytic reduction process (H2-SCR), at reaction temperatures below 350°C. Catalytic activity tests consisted in temperature programmed reactions (TPRea) under plug flow conditions from 50 to 350°C, with a temperature rate of 5°C/min, using a feed stream with a reactant ratio NO:H2 = 1:1.3 and a GHSV of 4500 h-1. Promotion with Pt increases the catalytic performances of the Ni based catalyst, in respect to NO conversion, N2 selectivity and N2 yield. The reaction temperatures for NO conversion above 95% decrease significantly due to Pt addition, from 250°C for Ni/Al2O3 to 125°C for Ni-Pt/Al2O3. Characterization of catalysts was performed by: X ray powder diffraction (XRD) for the estimation of Ni crystallite size, temperature programmed reduction (TPR) for the catalyst reducibility, temperature programmed desorption of hydrogen (H2-TPD) for the investigation of active sites and metal dispersion on the support, N2 adsorption-desorption isotherms at -196°C for the determination of total specific surface area and pore size distribution, and H/D isotopic exchange on the catalyst surface. At the request of the Proceedings Editor, and all authors of the paper, an updated version of this article was published on 14 January 2014. Data presented in Table 1 of the original paper contained errors which have been corrected in the updated and re-published article. The Corrigendum attached to the corrected article PDF file explains the errors in more detail.

  6. Low-temperature selective catalytic reduction of NO with propylene in excess oxygen over the Pt/ZSM-5 catalyst.

    Science.gov (United States)

    Zhang, Zhixiang; Chen, Mingxia; Jiang, Zhi; Shangguan, Wenfeng

    2011-10-15

    A 0.5 wt% Pt/ZSM-5 catalyst was used for the low-temperature selective catalytic reduction (SCR) of NO with C(3)H(6) in the presence of excess oxygen. Under an atmosphere of 150 ppm NO, 150 ppm C(3)H(6) and 18 vol% O(2) (GHSV 72,000 h(-1)), Pt/ZSM-5 showed remarkably high catalytic performance giving 77.1% NO reduction to N(2) + N(2)O and 79.7% C(3)H(6) conversion to CO(2) simultaneously at 140 °C. The samples were characterized by means of NO temperature programmed desorption (TPD), NO/C(3)H(6) temperature programmed oxidation (TPO), BET surface area, XRD and TEM. The catalytic activities of C(3)H(6) combustion and NO oxidation are improved by well-dispersed platinum significantly. It is found that the enhanced activity of Pt/ZSM-5 for the low-temperature SCR is associated with its outstanding activities in the TPO processes of NO to NO(2) and C(3)H(6) to CO(2) in low temperature range.

  7. Postassembly Transformation of a Catalytically Active Composite Material, Pt@ZIF-8, via Solvent-Assisted Linker Exchange.

    Science.gov (United States)

    Stephenson, Casey J; Hupp, Joseph T; Farha, Omar K

    2016-02-15

    2-Methylimidazolate linkers of Pt@ZIF-8 are exchanged with imidazolate using solvent-assisted linker exchange (SALE) to expand the apertures of the parent material and create Pt@SALEM-2. Characterization of the material before and after SALE was performed. Both materials are active as catalysts for the hydrogenation of 1-octene, whereas the hydrogenation of cis-cyclohexene occurred only with Pt@SALEM-2, consistent with larger apertures for the daughter material. The largest substrate, β-pinene, proved to be unreactive with H2 when either material was employed as a candidate catalyst, supporting the contention that substrate molecules, for both composites, must traverse the metal-organic framework component in order to reach the catalytic nanoparticles.

  8. Effect of aluminum modification on catalytic properties of PtSn-based catalysts supported on SBA-15 for propane dehydrogenation

    Institute of Scientific and Technical Information of China (English)

    Yongzheng Duan; Yuming Zhou; Yiwei Zhang; Xiaoli Sheng; Shijian Zhou; Zewu Zhang

    2012-01-01

    The catalytic properties of PtSn-based catalysts supported on siliceous SBA-15 and Al-modified SBA-15,such as Al-incorporated SBA-15 (AlSBA-15) and alumina-modified SBA-15 (Al2O3/SBA-15),for propane dehydrogenation were investigated.Al2O3/SBA-15 was prepared either by an impregnation method using aluminum nitrate aqueous solution,or by the treatment of SBA-15 with a Al(OC3H7)3 solution in anhydrous toluene.N2-physisorption,FT-IR spectroscopy,solid-state 27Al MAS NMR spectroscopy,hydrogen chemisorption,XRF,NH3 temperature-programmed desorption,X-ray photoelectron spectroscopy and TPO were used to characterize these samples.Among these catalysts,the PtSn-based catalyst supported on Al2O3/SBA-15,which was grafted with Al(OC3H7)3,exhibited the best catalytic performance in terms of activity and stability The possible reason was due to the high Pt metal dispersion and/or the strong interactions among Pt,Sn,and the support.

  9. Atomically thick Pt-Cu nanosheets: self-assembled sandwich and nanoring-like structures.

    Science.gov (United States)

    Saleem, Faisal; Xu, Biao; Ni, Bing; Liu, Huiling; Nosheen, Farhat; Li, Haoyi; Wang, Xun

    2015-03-25

    Atomically thick and flexible Pt-Cu alloy nanosheets are prepared and loaded with either Pd or Pt to produce sandwich structures or nanoring-like nanosheet structures, respectively. Core-shell alloy nanoparticles containing Rh, Ir, and Ru are also prepared. All of these structures exhibit superior specific and mass activities for the oxidation of formic acid for fuel cells for portable electronic devices as compared to commercial Pd/C catalyst. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Ternary Pt-Ru-Ni catalytic layers for methanol electrooxidation prepared by electrodeposition and galvanic replacement

    OpenAIRE

    Athanasios ePapaderakis; Nikolaos ePliatsikas; Chara eProchaska; Kalliopi M. Papazisi; Balomenou, Stella P.; Dimitrios eTsiplakides; Panagiotis ePatsalas; Sotiris eSotiropoulos

    2014-01-01

    Ternary Pt-Ru-Ni deposits on glassy carbon substrates, Pt-Ru(Ni)/GC, have been formed by initial electrodeposition of Ni layers onto glassy carbon electrodes, followed by their partial exchange for Pt and Ru, upon their immersion into equimolar solutions containing complex ions of the precious metals. The overall morphology and composition of the deposits has been studied by SEM microscopy and EDS spectroscopy. Continuous but nodular films have been confirmed, with a Pt ÷ Ru ÷ Ni % bulk atomi...

  11. Interaction of gas phase atomic hydrogen with Pt(111): Direct evidence for the formation of bulk hydrogen species

    Institute of Scientific and Technical Information of China (English)

    JIANG ZhiQuan; HUANG WeiXin; BAO XinHe

    2007-01-01

    Employing hot tungsten filament to thermal dissociate molecular hydrogen, we generated gas phase atomic hydrogen under ultra-high vacuum (UHV) conditions and investigated its interaction with Pt(111) surface. Thermal desorption spectroscopy (TDS) results demonstrate that adsorption of molecular hydrogen on Pt(111) forms surface Had species whereas adsorption of atomic hydrogen forms not only surface Had species but also bulk Had species. Bulk Had species is more thermal-unstable than surface Had species on Pt(111), suggesting that bulk Had species is more energetic. This kind of weakly- adsorbed bulk Had species might be the active hydrogen species in the Pt-catalyzed hydrogenation reactions.

  12. Understanding Pt-ZnO:In Schottky nanocontacts by conductive atomic force microscopy

    Science.gov (United States)

    Chirakkara, Saraswathi; Choudhury, Palash Roy; Nanda, K. K.; Krupanidhi, S. B.

    2016-04-01

    Undoped and In doped ZnO (IZO) thin films are grown on Pt coated silicon substrates Pt/Si by pulsed laser deposition to fabricate Pt/ZnO:In Schottky diodes. The Schottky diodes were investigated by conventional two-probe current-voltage (I-V) measurements and by the I-V spectroscopy tool of conductive atomic force microscopy (C-AFM). The large deviation of the ideality factor from unity and the temperature dependent Schottky barrier heights (SBHs) obtained from the conventional method imply the presence of inhomogeneous interfaces. The inhomogeneity of SBHs is confirmed by C-AFM. Interestingly, the I-V curves at different points are found to be different, and the SBHs deduced from the point diodes reveal inhomogeneity at the nanoscale at the metal-semiconductor interface. A reduction in SBH and turn-on voltage along with enhancement in forward current are observed with increasing indium concentration.

  13. PEFC catalytic properties of Pt - Ni nanoparticles prepared by a plasma-gas-condensation

    Science.gov (United States)

    Umezawa, Michihisa; Ishikawa, Ryoichi; Miyazaki, Reona; Hihara, Takehiko

    2017-01-01

    Pt - Ni nanoparticles were fabricated via the gas phase method. Their performance as anode catalysts for the proton exchange membrane fuel cell was investigated as a function of Ni concentration. The microscopic configurations of the nanoparticles were rather heterogeneous; Pt-rich alloys existed in the core region of particles while a part of the surface layer was composed of the Ni-rich layer. Despite the Ni-rich layer in the shell region, the anode catalyst performance of the Pt - Ni nanoparticles was never deteriorated compared with that of the Pt ones. When the anode catalyst was composed of the Pt nanoparticles, a maximum power density of 112 mW/cm2 was obtained. However, 90% of the power density was still kept even when 40 at. % of Pt was replaced with Ni. The results suggest that a further decrease of Pt composition with maintaining its catalyst performance can be feasible by effective particle dispersing.

  14. New data on the mobility of Pt emitted from catalytic converters.

    Science.gov (United States)

    Fliegel, Daniel; Berner, Zsolt; Eckhardt, Detlef; Stüben, Doris

    2004-05-01

    The mobility and speciation of Pt was investigated in dust deposited in highway tunnels and in gully sediments. For this, a sequential extraction technique was used in combination with a microwave digestion procedure, followed by detection of Pt with high resolution ICP-MS. A digestion procedure using HNO(3)/HCl/H(2)O(2) was developed and its efficiency tested for environmental materials. Total Pt contents ranged from approximately 100 to 300 microg/kg. The high share of chemically mobile Pt in the tunnel dust (up to about 40%) indicates that Pt is predominantly emitted in a mobile form from the converter. The absence of a mobile fraction in the gully sediment is explained by the elution of Pt by run-off. Except for the mobile and easily mobilised fractions none of the other fractions of the sequential extraction contains Pt, neither in the dust samples nor in the gully sediment.

  15. Sub-4 nm PtZn Intermetallic Nanoparticles for Enhanced Mass and Specific Activities in Catalytic Electrooxidation Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Zhiyuan; Xiao, Chaoxian; Liu, Cong; Goh, Tian Wei; Zhou, Lin; Maligal-Ganesh, Raghu; Pei, Yuchen; Li, Xinle; Curtiss, Larry A.; Huang, Wenyu

    2017-03-22

    Atomically ordered intermetallic nanoparticles (iNPs) have sparked considerable interest in fuel cell applications by virtue of their exceptional electronic and structural properties. However, the synthesis of small iNPs in a controllable manner remains a formidable challenge because of the high temperature generally required in the formation of intermetallic phases. Here we report a general method for the synthesis of PtZn. iNPs (3.2 +/- 0.4 nm) on multiwalled carbon nanotubes (MWNT) via a facile and capping agent free strategy using a sacrificial mesoporous silica (mSiO(2)) shell. The as-prepared PtZn iNPs exhibited ca. 10 times higher mass activity in both acidic and basic solution toward the methanol oxidation reaction (MOR) compared to larger PtZn iNPs synthesized on MWNT without the mSiO2 shell. Density functional theory (DFT) calculations predict that PtZn systems go through a "non-CO" pathway for MOR because of the stabilization of the OH* intermediate by Zn atoms, while a pure Pt system forms highly stable COH* and CO* intermediates, leading to catalyst deactivation. Experimental studies on the origin of the backward oxidation peak of MOR coincide well with DFT predictions. Moreover, the calculations demonstrate that MOR on smaller PtZn iNPs is energetically more favorable than larger iNPs, due to their high density of corner sites and lower-lying energetic pathway. Therefore, smaller PtZn iNPs not only increase the number but also enhance the activity of the active sites in MOR compared with larger ones. This work opens a new avenue for the synthesis of small iNPs with more undercoordinated and enhanced active sites for fuel cell applications.

  16. Catalytic and DRIFTS study of the WGS reaction on Pt-based catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Vignatti, Ch.; Avila, M.S.; Apesteguia, C.R.; Garetto, T.F. [Catalysis Science and Engineering Research Group (GICIC), Instituto de Investigaciones en Catalisis y Petroquimica - INCAPE - (UNL-CONICET), Santiago del Estero 2654, 3000 Santa Fe (Argentina)

    2010-07-15

    The water-gas shift (WGS) activity of Pt/SiO{sub 2}, Pt/CeO{sub 2} and Pt/TiO{sub 2} catalysts was studied by in-situ diffuse reflection infrared Fourier transform spectroscopy (DRIFTS). Samples contained a similar amount of Pt, between 0.34 and 0.50%, and were characterized by employing a variety of physical and spectroscopic techniques. The catalyst activities were evaluated through both CO conversion versus temperature and CO conversion versus time tests. The DRIFTS spectra were obtained on stream during the WGS reaction at increasing temperatures, from 303 to 573 K. Reduced ceria was the only active support and promoted the WGS reaction on surface bridging OH groups that react with CO to form formate intermediates. Pt/SiO{sub 2} was more active than CeO{sub 2} and catalyzed the WGS reaction through a monofunctional redox mechanism on metallic Pt sites. The CO conversion turnover rate was more than one order of magnitude greater on Pt/CeO{sub 2} than on Pt/SiO{sub 2} showing that the reaction proceeds faster via a bifunctional metal-support mechanism. Platinum on Pt/CeO{sub 2} increased the concentration of OH groups by increasing the ceria reduction extent and also provided a faster pathway for the formation of formate intermediates in comparison to CeO{sub 2} support. Pt/TiO{sub 2} catalysts were clearly more active than Pt/CeO{sub 2}. The WGS reaction on Pt/TiO{sub 2} was catalyzed via a bifunctional metal-support mechanism, probably involving the activation of CO and water on the metal and the support, respectively. The role of platinum on Pt/TiO{sub 2} was critical for promoting the reduction of Ti{sup 4+} ions to Ti{sup 3+} which creates oxygen vacancies in the support to efficiently activate water. (author)

  17. Plasma-assisted atomic layer deposition of conformal Pt films in high aspect ratio trenches

    Science.gov (United States)

    Erkens, I. J. M.; Verheijen, M. A.; Knoops, H. C. M.; Keuning, W.; Roozeboom, F.; Kessels, W. M. M.

    2017-02-01

    To date, conventional thermal atomic layer deposition (ALD) has been the method of choice to deposit high-quality Pt thin films grown typically from (MeCp)PtMe3 vapor and O2 gas at 300 °C. Plasma-assisted ALD of Pt using O2 plasma can offer several advantages over thermal ALD, such as faster nucleation and deposition at lower temperatures. In this work, it is demonstrated that plasma-assisted ALD at 300 °C also allows for the deposition of highly conformal Pt films in trenches with high aspect ratio ranging from 3 to 34. Scanning electron microscopy inspection revealed that the conformality of the deposited Pt films was 100% in trenches with aspect ratio (AR) up to 34. These results were corroborated by high-precision layer thickness measurements by transmission electron microscopy for trenches with an aspect ratio of 22. The role of the surface recombination of O-radicals and the contribution of thermal ALD reactions is discussed.

  18. ADATOM, VACANCY AND SPUTTERING YIELDS OF ENERGETIC Pt ATOMS IMPACTING ON Pt(100) BY MOLECULAR DYNAMICS SIMULATION

    Institute of Scientific and Technical Information of China (English)

    YE ZI-YAN; ZHANG QING-YU

    2001-01-01

    We have studied the influence of incident atoms with low energy on the Pt(100) surface by molecular dynamics simulation. The interaction potential obtained by the embedded atom method (EAM) was used in the simulation. The incident energy changes from 0.leV to 200eV, and the target temperature ranges from 100 to 500 K. The target scales are 6×6×4 and 8×8×4 fcc cells for lower and higher incident energies, respectively. The adatom, sputtering, vacancy and backscattering yields are calculated. It was found that there is a sputtering threshold for the incident energy. When the incident energy is higher than the sputtering threshold, the sputtering yield increases with the increase of incident energy, and the sputtering shows a symmetrical pattern. We found that the adatom and vacancy yields increase as the incident energy increases. The vacancy yields are much higher than those obtained by Monte Carlo simulation. The dependence of the adatom and sputtering yields on the incident energy and the relative atomistic mechanisms are discussed.

  19. Reactivity of boron- and nitrogen-doped carbon nanotubes functionalized by (Pt, Eu) atoms toward O2 and CO: A density functional study

    Science.gov (United States)

    Abdel Aal, S.

    2016-01-01

    The adsorption behavior and electronic properties of CO and O2 molecules at the supported Pt and Eu atoms on (5,5) armchair SWCNT have been systematically investigated within density functional theory (DFT). Fundamental aspects such as adsorption energy, natural bond orbital (NBO), charge transfer, frontier orbitals and the projected density of states (PDOS) are elucidated to analyze the adsorption properties of CO and O2 molecules. The results reveal that B- and N-doping CNTs can enhance the binding strength and catalytic activity of Pt (Eu) anchored on the doped-CNT, where boron-doping is more effective. The electronic structures of supported metal are strongly influenced by the presence of gases. After adsorption of CO and O2, the changes in binding energy, charge transfer and conductance may lead to the different response in the metal-doped CNT-based sensors. It is expected that these results could provide helpful information for the design and fabrication of the CO and O2 sensing devices. The high catalytic activity of Pt supported at doped-CNT toward the interaction with CO and O2 may be attributed to the electronic resonance particularly among Pt-5d, CO-2π* and O2-2π* antibonding orbitals. In contrast to the supported Eu at doped-CNT, the Eu atom becomes more positively charged, which leads to weaken the CO adsorption and promote the O2 adsorption, consequently enhancing the activity for CO oxidation and alleviating the CO poisoning of the europium catalysts. A notable orbital hybridization and electrostatic interaction between these two species in adsorption process being an evidence of strong interaction. The electronic structure of O2 adsorbed on Eu-doped CNT resembles that of O2-, therefore the transferred charge weakens the O-O bonds and facilitates the dissociation process, which is the precondition for the oxygen reduction reaction (ORR).

  20. Improved catalytic performance of Pd nanowires for ethanol oxidation by monolayer of Pt

    Science.gov (United States)

    Huang, Zhongyuan; Zhou, Haihui; Chang, Yiwen; Fu, Chaopeng; Zeng, Fanyan; Kuang, Yafei

    2013-10-01

    Pd nanowires with diameter of 10-20 nm and length of several micrometers were prepared and monolayer of Pt was deposited on the Pd nanowires by using copper underpotential deposition and subsequent replacement of Cu by Pt. The products were characterized by using scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and energy spectrum analysis. The electrocatalytic performance of PdPt nanowires was studied by cyclic voltammetry and chronoamperometry. Electrochemical results show that the monolayer of Pt can improve not only the activity of Pd nanowires but also the stability for ethanol oxidation in alkaline medium.

  1. Au-supported Pt-Au mixed atomic monolayer electrocatalyst with ultrahigh specific activity for oxidation of formic acid in acidic solution.

    Science.gov (United States)

    Huang, Zhao; Liu, Yan; Xie, Fangyun; Fu, Yingchun; He, Yong; Ma, Ming; Xie, Qingji; Yao, Shouzhuo

    2012-12-25

    Au-supported Pt-Au mixed atomic monolayer electrocatalyst was prepared by underpotential deposition of Cu on Au and then redox replacement with noble metal atoms, which shows an ultrahigh Pt-mass (or Pt-area) normalized specific electrocatalytic activity of 102 mA μg(Pt)(-1) (124 mA cm(Pt)(-2)) for oxidation of formic acid in acidic aqueous solution.

  2. Rare earth-modified kaolin/NaY-supported Pd-Pt bimetallic catalyst for the catalytic combustion of benzene.

    Science.gov (United States)

    Zuo, Shufeng; Sun, Xuejie; Lv, Ningning; Qi, Chenze

    2014-08-13

    A new type of porous kaolin/NaY composite (KL-NY) with a large specific surface area and large pore sizes was synthesized through a one-step crystallization process, and rare earth-modified KL-NY-supported Pd-Pt catalysts were studied for benzene combustion. The results indicated that the pore volume and specific surface area of KL-NY after calcination and crystallization were 0.298 cm(3)/g and 365 m(2)/g, respectively, exhibiting appropriate pore structure and good thermal stability. Catalysts with rare earth metals greatly enhanced the activity of Pd/KL-NY, and the addition of Pt and Ce into the Pd catalyst improved the catalytic activity as well as the stability. The catalyst with an optimal Ce content and Pt/Pd molar ratio (0.2%Pd-Pt (6:1)/6%Ce/KL-NY) demonstrated the best activity for the complete oxidation of benzene at 230 °C, and the catalyst above maintained the 100% benzene conversion for 960 h.

  3. Structures and energetics of 98 atom Pd-Pt nanoalloys: potential stability of the Leary tetrahedron for bimetallic nanoparticles.

    Science.gov (United States)

    Paz-Borbón, Lauro Oliver; Mortimer-Jones, Thomas V; Johnston, Roy L; Posada-Amarillas, Alvaro; Barcaro, Giovanni; Fortunelli, Alessandro

    2007-10-14

    The energetics of 98 atom bimetallic Pd-Pt clusters are studied using a combination of: a genetic algorithm technique (to explore vast areas of the configurational space); a basin-hopping atom-exchange routine (to search for lowest-energy homotops at fixed composition); and a shell optimisation approach (to search for high symmetry isomers). The interatomic interactions between Pd and Pt are modelled by the Gupta many-body empirical potential. For most compositions, the putative global minima are found to have structures based on defective Marks decahedra, but in the composition range from Pd46Pt52 to Pd63Pt35, the Leary tetrahedron (LT)--a structure previously identified for 98 atom Lennard-Jones clusters--is consistently found as the most stable structure. Based on the excess energy stability criterion, Pd56Pt42 represents the most stable cluster across the entire composition range. This structure, a Td-symmetry LT, exhibits multi-layer segregation with an innermost core of Pd atoms, an intermediate layer of Pt atoms and an outermost Pd surface shell (Pd-Pt-Pd). The stability of the Leary tetrahedron is compared against other low-energy competing structural motifs: the Marks decahedron (Dh-M), a "quasi" tetrahedron (a closed-packed structure) and two other closed-packed structures. The stability of LT structures is rationalized in terms of their spherical shape and the large number of nearest neighbours.

  4. Probing the nanoscale structure of the catalytically active overlayer on Pt alloys with rare earths

    DEFF Research Database (Denmark)

    Pedersen, Anders Filsøe; Ulrikkeholm, Elisabeth Therese; Escribano, Maria Escudero

    2016-01-01

    PtxY and PtxGd exhibit exceptionally high activity for oxygen reduction, both in the polycrystalline form and the nanoparticulate form. In order to understand the origin of the enhanced activity of these alloys, we have investigated thin films of these alloys on bulk Pt(111) crystals, i.e. Y/Pt(1...

  5. One-pot, template-free synthesis of Pd-Pt single-crystalline hollow cubes with enhanced catalytic activity.

    Science.gov (United States)

    Sun, Long; Zhang, Zhicheng; Xu, Biao; Wang, Xun

    2013-07-01

    Hollow structures have attracted ever-growing interest owing to their various excellent properties. However, a facile strategy for their fabrication is still desired. Herein, Pd-Pt alloy with three different morphologies, that is, cubes, hollow cubes, and truncated octahedrons, is synthesized by using a one-pot, template-free method. The mechanism and dynamics of this system is also studied in detail. In particular, the hollow cubic structure represents enhanced catalytic activity in both coupling reactions and in the electrochemical oxidation of formic acid. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Treatment of a simulated phenolic effluent by heterogeneous catalytic ozonation using Pt/Al2O3.

    Science.gov (United States)

    Fajardo, Ana S; Martins, Rui C; Quinta-Ferreira, Rosa M

    2013-01-01

    Non-catalytic and catalytic ozonation over Pt/Al2O3 were considered in the treatment of a synthetic effluent composed of six phenolic acids usually present in olive mill wastewaters. In both processes the medium pH affected the rate of ozone decomposition and the formation of hydroxyl radicals. The optimum values were achieved for the catalytic system under pH 7 with 93.0 and 47.7%, respectively, of total phenol content and chemical oxygen demand (COD) removal, after 120 minutes of reaction. For pH 3, the catalytic ozonation followed a free radical pathway perceived by the presence of radical scavengers. No significant structural differences were observed between the fresh and used solid catalyst in X-ray diffraction analysis. Aluminium leaching behaviour was also evaluated at the end of each experiment. Moreover, a sequence of feed-batch trials involving the catalyst reutilization exhibited almost constant activity during the operation time. Eco-toxicological tests were performed for both processes, revealing that the treated effluent still presents some ecological impact, although it is lower than that for the raw wastewater.

  7. Atomic-Scale Snapshots of the Formation and Growth of Hollow PtNi/C Nanocatalysts.

    Science.gov (United States)

    Chattot, Raphaël; Asset, Tristan; Drnec, Jakub; Bordet, Pierre; Nelayah, Jaysen; Dubau, Laetitia; Maillard, Frédéric

    2017-03-30

    Determining the formation and growth mechanism of bimetallic nanoparticles (NPs) with atomic detail is fundamental to synthesize efficient "catalysts by design". However, an understanding of the elementary steps which take place during their synthesis remains elusive. Herein, we have exploited scanning transmission electron microscopy coupled to energy-dispersive X-ray spectroscopy, operando wide angle and small-angle X-ray scattering, and electrochemistry to unveil the formation and growth mechanism of hollow PtNi/C NPs. Such NPs, composed of a PtNi shell surrounding a nanoscale void, catalyze efficiently and sustainably the oxygen reduction reaction (ORR) in an acidic electrolyte. Our step-by-step study reveals that (i) Ni-rich/C NPs form first, before being embedded in a NixByOz shell, (ii) the combined action of galvanic displacement and the nanoscale Kirkendall effect then results in the sequential formation of Ni-rich core@Pt-rich/C shell and ultimately hollow PtNi/C NPs. The electrocatalytic properties for the ORR and the stability of the different synthesis intermediates were tested and structure-activity-stability relationships established both in acidic and alkaline electrolytes. Beyond its interest for the ORR electrocatalysis, this study also presents a methodology that is capable to unravel the formation and growth mechanism of various nanomaterials including preferentially shaped metal NPs, core@shell NPs, onion-like NPs, Janus NPs, or a combination of several of these structures.

  8. DEVELOPMENT OF ATOM-ECONOMICAL CATALYTIC PATHWAYS FOR CONVERSIONS OF SYNGAS TO ENERGY LIQUIDS

    Energy Technology Data Exchange (ETDEWEB)

    MAHAJAN,D.; WEGRZYN,J.E.; LEE,T.; GUREVICH,M.

    1999-03-01

    The subject of catalytic syngas conversions to fuels and chemicals is well studied (1--3). But globally, the recent focus is on development of technologies that offer an economical route to desired products (4). Economical transport of natural gas from remote locations and within clathrate hydrates is of continuing interest at Brookhaven National Laboratory (BNL). Under this project, a Liquid Phase Low Temperature (LPLT) concept is being applied to attain highly efficient transformations of natural-gas derived syngas to specific products. Furthermore, a more precise term ``Atom Economy'' has been recently introduced by Trost to describe development of highly efficient homogeneously catalyzed synthesis of organic molecules (5). Taken from reference 5, the term ``Atom Economy'' is defined as maximizing the number of atoms of all raw materials that end up in the product with any other reactant required on in catalytic amount. For application to methane transformations that may involve one or more steps, atom economy of each of these steps is critical. The authors, therefore, consider atom-economy synonymous with overall energy efficiency of a process. This paper describes potential liquid products from catalytic syngas conversions, i.e. gas to liquids (GTL) technologies and process considerations that are necessary for economical transport of natural gas. As such, the present study defines an atom-economical standard to directly compare competing GTL technologies.

  9. Atomic-scale Modelling of Electro-catalytic Surfaces and Dynamic Electrochemical Interfaces

    DEFF Research Database (Denmark)

    Hansen, Martin Hangaard

    This dissertation addresses numerical calculations on the atomic scale to study catalytic surfaces for electrochemistry. The first half of the thesis deals with calculations on the properties of catalytic surfaces, using well known methodology, whereas the second half of the thesis deals...... with the development of new methodology to explicitly include the electrolyte in the atomic scale calculations. Chapter 3 presents calculations on contracted and reconstructed platinum surfaces, which are relevant for development of catalysts for proton exchange membrane fuel cells. Correlation of the results...... evolution reaction. The results show that molybdenum carbides and borides have reactive surfaces, which is not in consistency with their high catalytic activity. A possible active facet is suggested for the molybdenum boride. It is likely, however, that other unexplored active sites, surface terminations...

  10. Preparation of Pt Ag alloy nanoisland/graphene hybrid composites and its high stability and catalytic activity in methanol electro-oxidation

    Directory of Open Access Journals (Sweden)

    Feng Lili

    2011-01-01

    Full Text Available Abstract In this article, PtAg alloy nanoislands/graphene hybrid composites were prepared based on the self-organization of Au@PtAg nanorods on graphene sheets. Graphite oxides (GO were prepared and separated to individual sheets using Hummer's method. Graphene nano-sheets were prepared by chemical reduction with hydrazine. The prepared PtAg alloy nanomaterial and the hybrid composites with graphene were characterized by SEM, TEM, and zeta potential measurements. It is confirmed that the prepared Au@PtAg alloy nanorods/graphene hybrid composites own good catalytic function for methanol electro-oxidation by cyclic voltammograms measurements, and exhibited higher catalytic activity and more stability than pure Au@Pt nanorods and Au@AgPt alloy nanorods. In conclusion, the prepared PtAg alloy nanoislands/graphene hybrid composites own high stability and catalytic activity in methanol electro-oxidation, so that it is one kind of high-performance catalyst, and has great potential in applications such as methanol fuel cells in near future.

  11. Effect of cerium addition on catalytic performance of PtSnNa/ZSM-5 catalyst for propane dehydrogenation

    Institute of Scientific and Technical Information of China (English)

    Mengwei Xue; Yuming Zhou; Yiwei Zhang; Xuan Liu; Yongzheng Duan; Xiaoli Sheng

    2012-01-01

    The effect of cerium addition on the catalytic performance of propane dehydrogenation over PtSnNa/ZSM-5 catalyst has been investigated by reaction tests and some physicochemical characterization such as XRD,BET,TEM,XPS.NH3-TPD,H2 chemisorption,TPR and TPO techniques.It has been found that with suitable amount of cerium addition,the platinum dispersion increased,while the carbon deposition tended to be eliminated easily.In these cases,the presence of cerium could not only realize the better distribution of metallic particles on the support,but also strengthen the interactions between Sn species and the support.Additionally,XPS spectra confirmed that more amounts of tin could exist in oxidized form,which was advantageous to the reaction.In our experiments,PtSnNaCe (1.1 wt%)/ZSM-5 catalyst exhibited the best catalytic performance.After running the reaction for 750 h,propane conversion was maintained higher than 30% with the corresponding selectivity to propylene of about 97%.

  12. Ni-, Pd-, or Pt-catalyzed ethylene dimerization: a mechanistic description of the catalytic cycle and the active species.

    Science.gov (United States)

    Roy, Dipankar; Sunoj, Raghavan B

    2010-03-07

    Two key mechanistic possibilities for group 10 transition metal [M(eta(3)-allyl)(PMe(3))](+) catalyzed (where M = Ni(II), Pd(II) and Pt(II)) ethylene dimerization are investigated using density functional theory methods. The nature of the potential active catalysts in these pathways is analyzed to gain improved insights into the mechanism of ethylene dimerization to butene. The catalytic cycle is identified as involving typical elementary steps in transition metal-catalyzed C-C bond formation reactions, such as oxidative insertion as well as beta-H elimination. The computed kinetic and thermodynamic features indicate that a commonly proposed metal hydride species (L(n)M-H) is less likely to act as the active species as compared to a metal-ethyl species (L(n)M-CH(2)CH(3)). Of the two key pathways considered, the active species is predicted to be a metal hydride in pathway-1, whereas a metal alkyl complex serves as the active catalyst in pathway-2. A metal-mediated hydride shift from a growing metal alkyl chain to the ethylene molecule, bound to the metal in an eta(2) fashion, is predicted to be the preferred route for the generation of the active species. Among the intermediates involved in the catalytic cycle, metal alkyls with a bound olefin are identified as thermodynamically stable for all three metal ions. In general, the Ni-catalyzed pathways are found to be energetically more favorable than those associated with Pd and Pt catalysts.

  13. An Atomic-Scale View of CO and H2 Oxidation on a Pt/Fe3 O4 Model Catalyst.

    Science.gov (United States)

    Bliem, Roland; van der Hoeven, Jessi; Zavodny, Adam; Gamba, Oscar; Pavelec, Jiri; de Jongh, Petra E; Schmid, Michael; Diebold, Ulrike; Parkinson, Gareth S

    2015-11-16

    Metal-support interactions are frequently invoked to explain the enhanced catalytic activity of metal nanoparticles dispersed over reducible metal oxide supports, yet the atomic-scale mechanisms are rarely known. In this report, scanning tunneling microscopy was used to study a Pt1-6/Fe3O4 model catalyst exposed to CO, H2, O2, and mixtures thereof at 550 K. CO extracts lattice oxygen atoms at the cluster perimeter to form CO2, creating large holes in the metal oxide surface. H2 and O2 dissociate on the metal clusters and spill over onto the support. The former creates surface hydroxy groups, which react with the support, ultimately leading to the desorption of water, while oxygen atoms react with Fe from the bulk to create new Fe3O4(001) islands. The presence of the Pt is crucial because it catalyzes reactions that already occur on the bare iron oxide surface, but only at higher temperatures.

  14. Electrochemical atomic layer deposition of Pt nanostructures on fuel cell gas diffusion layer

    CSIR Research Space (South Africa)

    Modibedi, M

    2010-12-01

    Full Text Available . Acta 42(10) 1587. 4. Stickney, J.L., et al., (2002) Encyclopedia of Electrochemistry, Wiley-VCH: Weinheim 513 5. Mkwizu T.S., Mathe M.K., Cukrowski I., (2010) Langmuir 26 (1) 570. Electrochemical Atomic Layer Deposition of Pt nanostructures on fuel... cell gas diffusion layer Mmalewane Modibedi1, Tumaini Mkwizu1, 2, Nikiwe Kunjuzwa1,3 , Kenneth Ozoemena1 and Mkhulu Mathe1 1. Energy and Processes, Materials Science and Manufacturing, The Council for Scientific and Industrial Research (CSIR...

  15. Enhanced creation of dispersive monolayer phonons in Xe/Pt(111) by inelastic helium atom scattering at low energies

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Bruch, Ludwig Walter

    2007-01-01

    Conditions likely to lead to enhanced inelastic atomic scattering that creates shear horizontal (SH) and longitudinal acoustic (LA) monolayer phonons are identified, specifically examining the inelastic scattering of He-4 atoms by a monolayer solid of Xe/Pt(111) at incident energies of 2-25 meV. ...

  16. Pt/YSZ electrochemical catalysts prepared by electrostatic spray deposition for selective catalytic reduction of NO by C{sub 3}H{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Lintanf, A.; Djurado, E. [Laboratoire d' Electrochimie et de Physico-Chimie des Materiaux et des Interfaces (LEPMI), ENSEEG/INPG/UJF/CNRS Institut National Polytechnique de Grenoble Domaine Universitaire, BP 75, 1130 rue de la Piscine, 38402 St Martin d' Heres Cedex (France); Vernoux, P. [Universite de Lyon, Institut de Recherches sur la Catalyse et l' Environnement de Lyon, UMR 5256, CNRS, Universite Claude Bernard Lyon 1, 2 avenue A. Einstein, 69626 Villeurbanne (France)

    2008-03-15

    Due to the great importance of automotive exhaust gas treatment, the catalytic activity was investigated in selective catalytic reduction of NO by propene on Pt films - with controlled microstructure - deposited on YSZ (8 mol% Y{sub 2}O{sub 3}-doped ZrO{sub 2}) by electrostatic spray deposition. This technique requires low Pt loadings in order to reduce costs and also to achieve high Pt particles dispersion with good reproducibility. This kind of electrochemical catalysts was found to be effective for NO reduction by propene in the presence of oxygen. A dense Pt film was found to be the most suitable. Furthermore, we have demonstrated that these electrochemical catalysts can implement the concept of electrochemical promotion of catalysis (EPOC). (author)

  17. Propane oxidation on Pt-WO3/g -AL2O3 catalytic systems

    Directory of Open Access Journals (Sweden)

    Silva M.A.Pereira da

    2003-01-01

    Full Text Available The oxidation of propane on was studied with Pt-xWO3/Al2O3 catalysts was studied ,by varying the concentration of tungsten sublayer. Thermal analysis and XRD in situ showed that the enrichment of tungsten at the surface is associated with the formation of HxWO3 bronze. FTIR results with C3H8 and O2 indicated that the catalyst surface properties and the interaction between W and Pt were modified. These modified surface complexes prevented the formation of acetates and formate species. The addition of W increased the activity of Pt/Al2O3 towards in C3H8 oxidation. Tungsten was the main responsible for the stability of the bimetallic catalysts in the presence of water.

  18. Controlling the spin of co atoms on pt(111) by hydrogen adsorption.

    Science.gov (United States)

    Dubout, Q; Donati, F; Wäckerlin, C; Calleja, F; Etzkorn, M; Lehnert, A; Claude, L; Gambardella, P; Brune, H

    2015-03-13

    We investigate the effect of H adsorption on the magnetic properties of individual Co atoms on Pt(111) with scanning tunneling microscopy. For pristine Co atoms, we detect no inelastic features in the tunnel spectra. Conversely, CoH and CoH2 show a number of low-energy vibrational features in their differential conductance identified by isotope substitution. Only the fcc-adsorbed species present conductance steps of magnetic origin, with a field splitting identifying their effective spin as Seff=2 for CoH and 3/2 for CoH2. The exposure to H2 and desorption through tunnel electrons allow the reversible control of the spin in half-integer steps. Because of the presence of the surface, the hydrogen-induced spin increase is opposite to the spin sequence of CoHn molecules in the gas phase.

  19. Catalytic reaction energetics by single crystal adsorption calorimetry: hydrocarbons on Pt(111).

    Science.gov (United States)

    Lytken, Ole; Lew, Wanda; Campbell, Charles T

    2008-10-01

    Single crystal adsorption calorimetry provides essential information about the energetics of surface reactions on well-defined surfaces where the adsorbed reaction products can be clearly identified. In this tutorial review, we cover the essentials of that technique, with emphasis on our lab's recent advances in sensitivity and temperature range, and demonstrate what can be achieved through a review of selected example studies concerning adsorption and dehydrogenation of hydrocarbons on Pt(111). A fairly complete reaction enthalpy diagram is presented for the dehydrogenation of cyclohexane to benzene on Pt(111).

  20. High-temperature catalytic reforming of n-hexane over supported and core-shell Pt nanoparticle catalysts: role of oxide-metal interface and thermal stability.

    Science.gov (United States)

    An, Kwangjin; Zhang, Qiao; Alayoglu, Selim; Musselwhite, Nathan; Shin, Jae-Youn; Somorjai, Gabor A

    2014-08-13

    Designing catalysts with high thermal stability and resistance to deactivation while simultaneously maintaining their catalytic activity and selectivity is of key importance in high-temperature reforming reactions. We prepared Pt nanoparticle catalysts supported on either mesoporous SiO2 or TiO2. Sandwich-type Pt core@shell catalysts (SiO2@Pt@SiO2 and SiO2@Pt@TiO2) were also synthesized from Pt nanoparticles deposited on SiO2 spheres, which were encapsulated by either mesoporous SiO2 or TiO2 shells. n-Hexane reforming was carried out over these four catalysts at 240-500 °C with a hexane/H2 ratio of 1:5 to investigate thermal stability and the role of the support. For the production of high-octane gasoline, branched C6 isomers are more highly desired than other cyclic, aromatic, and cracking products. Over Pt/TiO2 catalyst, production of 2-methylpentane and 3-methylpentane via isomerization was increased selectively up to 420 °C by charge transfer at Pt-TiO2 interfaces, as compared to Pt/SiO2. When thermal stability was compared between supported catalysts and sandwich-type core@shell catalysts, the Pt/SiO2 catalyst suffered sintering above 400 °C, whereas the SiO2@Pt@SiO2 catalyst preserved the Pt nanoparticle size and shape up to 500 °C. The SiO2@Pt@TiO2 catalyst led to Pt nanoparticle sintering due to incomplete protection of the TiO2 shells during the reaction at 500 °C. Interestingly, over the Pt/TiO2 catalyst, the average size of Pt nanoparticles was maintained even after 500 °C without sintering. In situ ambient pressure X-ray photoelectron spectroscopy demonstrated that the Pt/TiO2 catalyst did not exhibit TiO2 overgrowth on the Pt surface or deactivation by Pt sintering up to 600 °C. The extraordinarily high stability of the Pt/TiO2 catalyst promoted high reaction rates (2.0 μmol · g(-1) · s(-1)), which was 8 times greater than other catalysts and high isomer selectivity (53.0% of C6 isomers at 440 °C). By the strong metal-support interaction

  1. Interaction of gas phase atomic hydrogen with Pt(111):Direct evidence for the formation of bulk hydrogen species

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Employing hot tungsten filament to thermal dissociate molecular hydrogen,we generated gas phase atomic hydrogen under ultra-high vacuum(UHV)conditions and investigated its interaction with Pt(111) surface.Thermal desorption spectroscopy(TDS)results demonstrate that adsorption of molecular hy- drogen on Pt(111)forms surface Had species whereas adsorption of atomic hydrogen forms not only surface Had species but also bulk Had species.Bulk Had species is more thermal-unstable than surface Had species on Pt(111),suggesting that bulk Had species is more energetic.This kind of weakly- adsorbed bulk Had species might be the active hydrogen species in the Pt-catalyzed hydrogenation reactions.

  2. Catalytic reforming of glycerol in supercritical water over bimetallic Pt-Ni catalyst

    NARCIS (Netherlands)

    Chakinala, Anand G.; Swaaij, van Wim P.M.; Kersten, Sascha R.A.; Vlieger, de Dennis; Seshan, Kulathuiyer; Brilman, D.W.F. (Wim)

    2013-01-01

    Catalytic reforming of pure glycerol for the production of hydrogen at low temperature and short residence times in supercritical water was investigated using a bimetallic Pt–Ni catalyst supported on alumina. Initial tests were carried out to study the reforming activity of bimetallic Pt–Ni catalyst

  3. High Selectively Catalytic Conversion of Lignin-Based Phenols into para-/m-Xylene over Pt/HZSM-5

    Directory of Open Access Journals (Sweden)

    Guozhu Liu

    2016-01-01

    Full Text Available High selectively catalytic conversion of lignin-based phenols (m-cresol, p-cresol, and guaiacol into para-/m-xylene was performed over Pt/HZSM-5 through hydrodeoxygenation and in situ methylation with methanol. It is found that the p-/m-xylene selectivity is uniformly higher than 21%, and even increase up to 33.5% for m-cresol (with phenols/methanol molar ratio of 1/8. The improved p-/m-xylene selectivity in presence of methanol is attributed to the combined reaction pathways: methylation of m-cresol into xylenols followed by HDO into p-/m-xylene, and HDO of m-cresol into toluene followed by methylation into p-/m-xylene. Comparison of the product distribution over a series of catalysts indicates that both metals and supporters have distinct effect on the p-/m-xylene selectivity.

  4. AuCu@Pt Nanoalloys for Catalytic Application in Reduction of 4-Nitrophenol

    Directory of Open Access Journals (Sweden)

    Sadia Mehmood

    2016-01-01

    Full Text Available To enhance and optimize nanocatalyst ability for nitrophenol (4-NP reduction reaction we look beyond Au-metal nanoparticles and describe a new class of Au nanoalloys with controlled composition for core of AuCu-metals and Pt-metal shell. The reduction of 4-NP was investigated in aqueous media spectroscopically on 7.8 nm Au nanospheres (AuNSs, 8.3 nm AuCuNSs, and 9.1 nm AuCu@Pt core-shell NSs in diameter. The rate constants of the catalyzed reaction at room temperature, activation energies, and entropies of activation of reactions catalyzed by the AuCu@Pt core-shell NSs are found to have different values to those of the pure metal NSs. The results strongly support the proposal that catalysis by nanoparticles is taking place efficiently on the surface of NSs. These core-shell nanocatalysts exhibited stability throughout the reduction reaction and proved that heterogonous type mechanisms are most likely to be dominant in nanoalloy based catalysis if the surface of the NSs is not defected upon shell incorporation.

  5. Catalytic Hydrodeoxygenation of Bio-oil Model Compounds over Pt/HY Catalyst

    Science.gov (United States)

    Lee, Heejin; Kim, Hannah; Yu, Mi Jin; Ko, Chang Hyun; Jeon, Jong-Ki; Jae, Jungho; Park, Sung Hoon; Jung, Sang-Chul; Park, Young-Kwon

    2016-06-01

    The hydrodeoxygenation of a model compound of lignin-derived bio-oil, guaiacol, which can be obtained from the pyrolysis of biomass to bio-oil, has attracted considerable research attention because of its huge potential as a substitute for conventional fuels. In this study, platinum-loaded HY zeolites (Pt/HY) with different Si/Al molar ratios were used as catalysts for the hydrodeoxygenation of guaiacol, anisole, veratrole, and phenol to a range of hydrocarbons, such as cyclohexane. The cyclohexane (major product) yield increased with increasing number of acid sites. To produce bio-oil with the maximum level of cyclohexane and alkylated cyclohexanes, which would be suitable as a substitute for conventional transportation fuels, the Si/Al molar ratio should be optimized to balance the Pt particle-induced hydrogenation with acid site-induced methyl group transfer. The fuel properties of real bio-oil derived from the fast pyrolysis of cork oak was improved using the Pt/HY catalyst.

  6. A Fiber Optic Catalytic Sensor for Neutral Atom Measurements in Oxygen Plasma

    Directory of Open Access Journals (Sweden)

    Alenka Vesel

    2012-03-01

    Full Text Available The presented sensor for neutral oxygen atom measurement in oxygen plasma is a catalytic probe which uses fiber optics and infrared detection system to measure the gray body radiation of the catalyst. The density of neutral atoms can be determined from the temperature curve of the probe, because the catalyst is heated predominantly by the dissipation of energy caused by the heterogeneous surface recombination of neutral atoms. The advantages of this sensor are that it is simple, reliable, easy to use, noninvasive, quantitative and can be used in plasma discharge regions. By using different catalyst materials the sensor can also be applied for detection of neutral atoms in other plasmas. Sensor design, operation, example measurements and new measurement procedure for systematic characterization are presented.

  7. Catalytic conversion of alcohols having at least three carbon atoms to hydrocarbon blendstock

    Science.gov (United States)

    Narula, Chaitanya K.; Davison, Brian H.

    2015-11-13

    A method for producing a hydrocarbon blendstock, the method comprising contacting at least one saturated acyclic alcohol having at least three and up to ten carbon atoms with a metal-loaded zeolite catalyst at a temperature of at least 100°C and up to 550°C, wherein the metal is a positively-charged metal ion, and the metal-loaded zeolite catalyst is catalytically active for converting the alcohol to the hydrocarbon blendstock, wherein the method directly produces a hydrocarbon blendstock having less than 1 vol % ethylene and at least 35 vol % of hydrocarbon compounds containing at least eight carbon atoms.

  8. Catalytically Triggered Energy Release from Strained Organic Molecules: The Surface Chemistry of Quadricyclane and Norbornadiene on Pt(111).

    Science.gov (United States)

    Bauer, Udo; Mohr, Susanne; Döpper, Tibor; Bachmann, Philipp; Späth, Florian; Düll, Fabian; Schwarz, Matthias; Brummel, Olaf; Fromm, Lukas; Pinkert, Ute; Görling, Andreas; Hirsch, Andreas; Bachmann, Julien; Steinrück, Hans-Peter; Libuda, Jörg; Papp, Christian

    2017-01-31

    We have investigated the surface chemistry of the polycyclic valence-isomer pair norbornadiene (NBD) and quadricyclane (QC) on Pt(111). The NBD/QC system is considered to be a prototype for energy storage in strained organic compounds. By using a multimethod approach, including UV photoelectron, high-resolution X-ray photoelectron, and IR reflection-absorption spectroscopic analysis and DFT calculations, we could unambiguously identify and differentiate between the two molecules in the multilayer phase, which implies that the energy-loaded QC molecule is stable in this state. Upon adsorption in the (sub)monolayer regime, the different spectroscopies yielded identical spectra for NBD and QC at 125 and 160 K, when multilayer desorption takes place. This behavior is explained by a rapid cycloreversion of QC to NBD upon contact with the Pt surface. The NBD adsorbs in a η(2) :η(1) geometry with an agostic Pt-H interaction of the bridgehead CH2 subunit and the surface. Strong spectral changes are observed between 190 and 220 K because the hydrogen atom that forms the agostic bond is broke. This reaction yields a norbornadienyl intermediate species that is stable up to approximately 380 K. At higher temperatures, the molecule dehydrogenates and decomposes into smaller carbonaceous fragments.

  9. In situ spectroscopic ellipsometry during atomic layer deposition of Pt, Ru and Pd

    Science.gov (United States)

    Leick, N.; Weber, J. W.; Mackus, A. J. M.; Weber, M. J.; van de Sanden, M. C. M.; Kessels, W. M. M.

    2016-03-01

    The preparation of ultra-thin platinum-group metal films, such as Pt, Ru and Pd, by atomic layer deposition (ALD) was monitored in situ using spectroscopic ellipsometry in the photon energy range of 0.75-5 eV. The metals’ dielectric function was parametrized using a ‘flexible’ Kramers-Kronig consistent dielectric function because it was able to provide accurate curve shape control over the optical response of the metals. From this dielectric function, it was possible to extract the film thickness values during the ALD process. The important ALD process parameters, such as the nucleation period and growth per cycle of Pt, Ru and Pd could be determined from the thickness evolution. In addition to process parameters, the film resistivity in particular could be extracted from the modeled dielectric function. Spectroscopic ellipsometry thereby revealed itself as a feasible and valuable technique to be used in research and development applications, as well as for process monitoring during ALD.

  10. Radiolytic Synthesis of Pt-Ru Catalysts Based on Functional Polymer-Grafted MWNT and Their Catalytic Efficiency for CO and MeOH

    Directory of Open Access Journals (Sweden)

    Dae-Soo Yang

    2011-01-01

    Full Text Available Pt-Ru catalysts based on functional polymer-grafted MWNT (Pt-Ru@FP-MWNT were prepared by radiolytic deposition of Pt-Ru nanoparticles on functional polymer-grafted multiwalled carbon nanotube (FP-MWNT. Three different types of functional polymers, poly(acrylic acid (PAAc, poly(methacrylic acid (PMAc, and poly(vinylphenyl boronic acid (PVPBAc, were grafted on the MWNT surface by radiation-induced graft polymerization (RIGP. Then, Pt-Ru nanoparticles were deposited onto the FP-MWNT supports by the reduction of metal ions using γ-irradiation to obtain Pt-Ru@FP-MWNT catalysts. The Pt-Ru@FP-MWNT catalysts were then characterized by XRD, XPS, TEM ,and elemental analysis. The catalytic efficiency of Pt-Ru@FP-MWNT catalyst was examined for CO stripping and MeOH oxidation for use in a direct methanol fuel cell (DMFC. The Pt-Ru@PVPBAc-MWNT catalyst shows enhanced activity for electro-oxidation of CO and MeOH oxidation over that of the commercial E-TEK catalyst.

  11. Simultaneous leaching of Pt, Pd and Rh from automotive catalytic converters in chloride-containing solutions

    Science.gov (United States)

    Hasani, M.; Khodadadi, A.; Koleini, S. M. J.; Saeedi, A. H.; Meléndez, A. M.

    2017-01-01

    Dissolution of platinum group metals (PGM; herein Pt, Pd and Rh) in different chloride-based leaching systems from spent auto catalysts was performed. Response surface methodology and a five-level-five-factor central composite design were used to evaluate the effects of 1) temperature, 2) liquid-to-solid ratio, 3) stirring speed, 4) acid concentration and 5) particle size on extraction yield of PGM by aqua regia. Analysis of variance was used to determine the optimum conditions and most significant factors affecting the overall metal extraction. In the optimum conditions, leaching of Pt, Pd and Rh was 91.58%, 93.49% and 60.15%, respectively. The effect of different oxidizing agents on the PGM dissolution in chloride medium was studied comparatively in the following leaching systems: a) aqua regia/sulfuric acid mixture, b) hydrogen peroxide in sulfuric acid (piranha solution), c) sodium hypochlorite and d) copper(II). Dissolution of Rh is increased in both aqua regia and hydrogen peroxide/hydrochloric acid solutions by adding sulfuric acid.

  12. Study of high coverages of atomic oxygen on the Pt(111) surface

    Energy Technology Data Exchange (ETDEWEB)

    Parker, D.H.; Bartram, M.E.; Koel, B.E. (Univ. of Colorado, Boulder (United States))

    1989-01-01

    Atomic oxygen coverages of up to 0.75 monolayer (ML) may be adsorbed cleanly on Pt(111) surfaces under UHV conditions by exposure to NO{sub 2} at 400 K. The authors have studied this adsorbed oxygen layer by using AES, LEED, UPS, HREELS, TPD, and work function ({Delta}{phi}) measurements. The (2{times}2)-O structure formed at {theta}{sub o} = 0.25 ML is still apparent at {theta}{sub o} = 0.60 ML and a faint (2{times}2) pattern persists even up to {theta}{sub o} = 0.75 ML.AES and {Delta}{phi} measurements show no evidence for chemically distinct species in the adlayer as a function of oxygen coverage. HREELS spectra clearly rule out the presence of molecular oxygen and oxide species over the range of oxygen coverage studied. UPS also shows no shift in binding energy of the oxygen-derived peak as the coverage is increased. These spectroscopic probes indicate that all oxygen is present as atomic oxygen with no indication of oxide formation or molecular oxygen at any coverage. Multiple O{sub 2} desorption peaks observed in TPD are interpreted as arising largely from kinetic effects rather than a result of multiple, distinctly different chemical species, even though large changes in the Pt-O bond energy are determined from the TPD data. The activation energy for O{sub 2} desorption reflects the sum of the heat of dissociative adsorption of O{sub 2} and the activation energy for O{sub 2} desorption reflects the sum of the heat of dissociative adsorption of O{sub 2} and the activation energy for O{sub 2} dissociation. The structure in the O{sub 2} TPD spectrum is due to large changes in the activation energy for O{sub 2} desorption resulting from increases in the barrier to dissociative O{sub 2} chemisorption and decreases in the Pt-O bond energy.

  13. Atomic Layer Deposition of Pt Nanoparticles within the Cages of MIL-101: A Mild and Recyclable Hydrogenation Catalyst

    Directory of Open Access Journals (Sweden)

    Karen Leus

    2016-03-01

    Full Text Available We present the in situ synthesis of Pt nanoparticles within MIL-101-Cr (MIL = Materials Institute Lavoisier by means of atomic layer deposition (ALD. The obtained Pt@MIL-101 materials were characterized by means of N2 adsorption and X-ray powder diffraction (XRPD measurements, showing that the structure of the metal organic framework was well preserved during the ALD deposition. X-ray fluorescence (XRF and transmission electron microscopy (TEM analysis confirmed the deposition of highly dispersed Pt nanoparticles with sizes determined by the MIL-101-Cr pore sizes and with an increased Pt loading for an increasing number of ALD cycles. The Pt@MIL-101 material was examined as catalyst in the hydrogenation of different linear and cyclic olefins at room temperature, showing full conversion for each substrate. Moreover, even under solvent free conditions, full conversion of the substrate was observed. A high concentration test has been performed showing that the Pt@MIL-101 is stable for a long reaction time without loss of activity, crystallinity and with very low Pt leaching.

  14. Speciation of mercury in fish samples by flow injection catalytic cold vapour atomic absorption spectrometry.

    Science.gov (United States)

    Zhang, Yanlin; Adeloju, Samuel B

    2012-04-01

    A rapid flow injection catalytic cold vapour atomic absorption spectrometric (FI-CCV-AAS) method is described for speciation and determination of mercury in biological samples. Varying concentrations of NaBH(4) were employed for mercury vapour generation from inorganic and mixture of inorganic and organic (total) Hg. The presence of Fe(3+), Cu(2+) and thiourea had catalytic effect on mercury vapour generation from methylmercury (MeHg) and, when together, Cu(2+) and thiourea had synergistic catalytic effect on the vapour generation. Of the two metal ions, Fe(3+) gave the best sensitivity enhancement, achieving the same sensitivity for MeHg and inorganic Hg(2+). Due to similarity of resulting sensitivity, Hg(2+) was used successfully as a primary standard for quantification of inorganic and total Hg. The catalysis was homogeneous in nature, and it was assumed that the breaking of the C-Hg bond was facilitated by the delocalization of the 5d electron pairs in Hg atom. The extraction of MeHg and inorganic mercury (In-Hg) in fish samples were achieved quantitatively with hydrochloric acid in the presence of thiourea and determined by FI-CCV-AAS. The application of the method to the quantification of mercury species in a fish liver reference material DOLT-4 gave 91.5% and 102.3% recoveries for total and methyl mercury, respectively. The use of flow injection enabled rapid analysis with a sample throughput of 180 h(-1).

  15. Facile approach to prepare Pt decorated SWNT/graphene hybrid catalytic ink

    Energy Technology Data Exchange (ETDEWEB)

    Mayavan, Sundar, E-mail: sundarmayavan@cecri.res.in [Centre for Innovation in Energy Research, CSIR–Central Electrochemical Research Institute, Karaikudi 630006, Tamil Nadu (India); Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 305-701 (Korea, Republic of); Mandalam, Aditya; Balasubramanian, M. [Centre for Innovation in Energy Research, CSIR–Central Electrochemical Research Institute, Karaikudi 630006, Tamil Nadu (India); Sim, Jun-Bo [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 305-701 (Korea, Republic of); Choi, Sung-Min, E-mail: sungmin@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 305-701 (Korea, Republic of)

    2015-07-15

    Highlights: • Pt NPs were in situ synthesized onto CNT–graphene support in aqueous solution. • The as-prepared material was used directly as a catalyst ink without further treatment. • Catalyst ink is active toward methanol oxidation. • This approach realizes both scalable and greener production of hybrid catalysts. - Abstract: Platinum nanoparticles were in situ synthesized onto hybrid support involving graphene and single walled carbon nanotube in aqueous solution. We investigate the reduction of graphene oxide, and platinum nanoparticle functionalization on hybrid support by X-ray photoelectron spectroscopy, Raman spectroscopy, X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The as-prepared platinum on hybrid support was used directly as a catalyst ink without further treatment and is active toward methanol oxidation. This work realizes both scalable and greener production of highly efficient hybrid catalysts, and would be valuable for practical applications of graphene based fuel cell catalysts.

  16. Activation of propane C-H and C-C bonds by gas-phase Pt atom: a theoretical study

    National Research Council Canada - National Science Library

    Li, Fang-Ming; Yang, Hua-Qing; Ju, Ting-Yong; Li, Xiang-Yuan; Hu, Chang-Wei

    2012-01-01

    The reaction mechanism of the gas-phase Pt atom with C(3)H(8) has been systematically investigated on the singlet and triplet potential energy surfaces at CCSD(T)//BPW91/6-311++G(d, p), Lanl2dz level...

  17. Catalytic Performance and Characterization of Pt-Co/Al2O3Catalysts for CO2 Reforming of CH4 to Synthesis Gas

    Institute of Scientific and Technical Information of China (English)

    HUANG, Chuan-Jing; ZHENG, Xiao-Ming; MO, Liu-Ye; FEI, Jin-Hua

    2001-01-01

    Pt-Co/Al2O3 catalyst has been studied for CO2 reforming of CH4 to synthesis gas. It was found that the catalytic performance of the catalyst was sensitive to calcination temperature.When Co/Al2O3 was calcined at 1473 K prior to adding a small amount of Pt to it, the resulting bimetallic catalyst showed high activity, optimal stability and excellent resistance to carbon deposition, which was more effective to the reaction than Co/Al2O3 and Pt/Al2O3 catalysts. At lower metal loading, catalyst activity decreased in the following order: Pt-Co/Al2O3 > Pt/Al2O3 》 Co/Al2O3. With 9% Co, the Co/Al2O3calcined at 923 K was also active for CO2 reforming of CH4,however, its carbon formation was much more fast than that of the Pt-Co/Al2O3 catalyst. The XRD results indicated that Pt species well dispersed over the bimetallic catalyst. Its high dispersion was related to the presence of CoAl2O4, formed during calcining of Co/Al2O3 at high temperature before Pt addition. Promoted by Pt, CoAl2O4 in the catalyst could be reduced partially even at 923 K, the temperature of pre-re-duction for the reaction, confirmed by TPR. Based on these results, it was considered that the zerovalent platinum with high dispersion over the catalyst surface and the zerovalent cobalt resulting from CoAl2O4 reduction are responsible for high activity of the Pt-Co/Al2O3 catalyst, and the remain CoAl2O4 is beneficial to suppression of carbon deposition over the catalyst.

  18. Quantum simulation of exotic PT -invariant topological nodal loop bands with ultracold atoms in an optical lattice

    Science.gov (United States)

    Zhang, Dan-Wei; Zhao, Y. X.; Liu, Rui-Bin; Xue, Zheng-Yuan; Zhu, Shi-Liang; Wang, Z. D.

    2016-04-01

    Since the well-known PT symmetry has its fundamental significance and implication in physics, where PT denotes a joint operation of space inversion P and time reversal T , it is important and intriguing to explore exotic PT -invariant topological metals and to physically realize them. Here we develop a theory for a different type of topological metals that are described by a two-band model of PT -invariant topological nodal loop states in a three-dimensional Brillouin zone, with the topological stability being revealed through the PT -symmetry-protected nontrivial Z2 topological charge even in the absence of both P and T symmetries. Moreover, the gapless boundary modes are demonstrated to originate from the nontrivial topological charge of the bulk nodal loop. Based on these exact results, we propose an experimental scheme to realize and to detect tunable PT -invariant topological nodal loop states with ultracold atoms in an optical lattice, in which atoms with two hyperfine spin states are loaded in a spin-dependent three-dimensional optical lattice and two pairs of Raman lasers are used to create out-of-plane spin-flip hopping with site-dependent phase. It is shown that such a realistic cold-atom setup can yield topological nodal loop states, having a tunable band-touching ring with the twofold degeneracy in the bulk spectrum and nontrivial surface states. The nodal loop states are actually protected by the combined PT symmetry and are characterized by a Z2-type invariant (or topological charge), i.e., a quantized Berry phase. Remarkably, we demonstrate with numerical simulations that (i) the characteristic nodal ring can be detected by measuring the atomic transfer fractions in a Bloch-Zener oscillation; (ii) the topological invariant may be measured based on the time-of-flight imaging; and (iii) the surface states may be probed through Bragg spectroscopy. The present proposal for realizing topological nodal loop states in cold-atom systems may provide a unique

  19. Enhancing of catalytic properties of vanadia via surface doping with phosphorus using atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Strempel, Verena E.; Naumann d' Alnoncourt, Raoul, E-mail: r.naumann@bascat.tu-berlin.de [BasCat - UniCat BASF JointLab, Technische Universität Berlin, Sekr. EW K 01, Hardenbergstraße 36, 10623 Berlin (Germany); Löffler, Daniel [Process Research and Chemical Engineering, BASF SE, Carl-Bosch-Straße 38, 67056 Ludwigshafen (Germany); Kröhnert, Jutta; Skorupska, Katarzyna; Johnson, Benjamin [Department of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin (Germany); Driess, Matthias [BasCat - UniCat BASF JointLab, Technische Universität Berlin, Sekr. EW K 01, Hardenbergstraße 36, 10623 Berlin, Germany and Technische Universität Berlin, Institut für Chemie, Sekr. C2, Straße des 17. Juni 135, 10623 Berlin (Germany); Rosowski, Frank [BasCat - UniCat BASF JointLab, Technische Universität Berlin, Sekr. EW K 01, Hardenbergstraße 36, 10623 Berlin, Germany and Process Research and Chemical Engineering, BASF SE, Carl-Bosch-Straße 38, 67056 Ludwigshafen (Germany)

    2016-01-15

    Atomic layer deposition is mainly used to deposit thin films on flat substrates. Here, the authors deposit a submonolayer of phosphorus on V{sub 2}O{sub 5} in the form of catalyst powder. The goal is to prepare a model catalyst related to the vanadyl pyrophosphate catalyst (VO){sub 2}P{sub 2}O{sub 7} industrially used for the oxidation of n-butane to maleic anhydride. The oxidation state of vanadium in vanadyl pyrophosphate is 4+. In literature, it was shown that the surface of vanadyl pyrophosphate contains V{sup 5+} and is enriched in phosphorus under reaction conditions. On account of this, V{sub 2}O{sub 5} with the oxidation state of 5+ for vanadium partially covered with phosphorus can be regarded as a suitable model catalyst. The catalytic performance of the model catalyst prepared via atomic layer deposition was measured and compared to the performance of catalysts prepared via incipient wetness impregnation and the original V{sub 2}O{sub 5} substrate. It could be clearly shown that the dedicated deposition of phosphorus by atomic layer deposition enhances the catalytic performance of V{sub 2}O{sub 5} by suppression of total oxidation reactions, thereby increasing the selectivity to maleic anhydride.

  20. Phosphate-Doped Carbon Black as Pt Catalyst Support: Co-catalytic Functionality for Dimethyl Ether and Methanol Electro-oxidation

    DEFF Research Database (Denmark)

    Yin, Min; Huang, Yunjie; Li, Qingfeng

    2014-01-01

    Niobium-phosphate-doped (NbP-doped) carbon blacks were prepared as the composite catalyst support for Pt nanoparticles. Functionalities of the composite include intrinsic proton conductivity, surface acidity, and interfacial synergistic interactions with methanol and dimethyl ether (DME......). The supported Pt catalysts show significant improvement in catalytic activity towards the direct oxidation of methanol and DME, attributable to the enhanced adsorption and dehydrogenation of methanol and DME, as well as the presence of activated OH species in the catalysts. The latter is demonstrated...

  1. Influence of Pt atoms on the low temperature formation of epitaxial Pd monosilicide

    Science.gov (United States)

    Kawarada, H.; Mizugaki, K.; Ohdomari, I.

    1985-01-01

    The effect of Pt concentration in Pd thin films on the nucleation and growth of PdSi and PdxPt1-xSi (ternary monosilicide) has been investigated by transmission electron microscopy (TEM). Low concentration of Pt (10 at. %) in Pd film enhances PdSi formation at lower temperature than previously reported. It has been proposed that PdSi formation is governed by its slow nucleation. However, in our studies, the nucleation of PtSi, which is substituted for that of PdSi, triggers the subsequent PdSi growth at low temperatures. High concentration of Pt (55 at. %) in Pd-Pt alloy film lowers the temperature of the phase transformation from metal-rich silicide to monosilicide (PdxPt1-xSi). The temperature is the same as that of PtSi formation. In both cases, the monosilicide layers (about 20 nm) have an epitaxial relationship with (111) Si substrates.

  2. Exposure of Pt(5 5 3) and Rh(1 1 1) to atomic and molecular oxygen: do defects enhance subsurface oxygen formation?

    Science.gov (United States)

    Farber, Rachael G; Turano, Marie E; Oskorep, Eleanor C N; Wands, Noelle T; Juurlink, Ludo B F; Killelea, Daniel R

    2017-04-26

    Subsurface oxygen is known to form in transition metals, and is thought to be an important aspect of their ability to catalyze chemical reactions. The formation of subsurface oxygen is not, however, equivalent across all catalytically relevant metals. As a result, it is difficult to predict the stability and ease of the formation of subsurface oxygen in metals, as well as how the absorbed oxygen affects the chemical and physical properties of the metal. In comparing how a stepped platinum surface, Pt(5 5 3), responds to exposure to gas-phase oxygen atoms under ultra-high vacuum conditions to planar Rh(1 1 1), we are able to determine what role, if any, steps have on the capacity of a metal for subsurface oxygen formation. Despite the presence of regular defects, we found that only surface-bound oxygen formed on Pt(5 5 3). Alternatively, on the Rh(1 1 1) surface, oxygen readily absorbed into the selvedge of the metal. These results suggest that defects alone are insufficient for the formation of subsurface oxygen, and the ability of the metal to absorb oxygen is the primary factor in the formation and stabilization of subsurface oxygen.

  3. Exposure of Pt(5 5 3) and Rh(1 1 1) to atomic and molecular oxygen: do defects enhance subsurface oxygen formation?

    Science.gov (United States)

    Farber, Rachael G.; Turano, Marie E.; Oskorep, Eleanor C. N.; Wands, Noelle T.; Juurlink, Ludo B. F.; Killelea, Daniel R.

    2017-04-01

    Subsurface oxygen is known to form in transition metals, and is thought to be an important aspect of their ability to catalyze chemical reactions. The formation of subsurface oxygen is not, however, equivalent across all catalytically relevant metals. As a result, it is difficult to predict the stability and ease of the formation of subsurface oxygen in metals, as well as how the absorbed oxygen affects the chemical and physical properties of the metal. In comparing how a stepped platinum surface, Pt(5 5 3), responds to exposure to gas-phase oxygen atoms under ultra-high vacuum conditions to planar Rh(1 1 1), we are able to determine what role, if any, steps have on the capacity of a metal for subsurface oxygen formation. Despite the presence of regular defects, we found that only surface-bound oxygen formed on Pt(5 5 3). Alternatively, on the Rh(1 1 1) surface, oxygen readily absorbed into the selvedge of the metal. These results suggest that defects alone are insufficient for the formation of subsurface oxygen, and the ability of the metal to absorb oxygen is the primary factor in the formation and stabilization of subsurface oxygen.

  4. Catalytic activity of Pd-doped Cu nanoparticles for hydrogenation as a single-atom-alloy catalyst.

    Science.gov (United States)

    Cao, Xinrui; Fu, Qiang; Luo, Yi

    2014-05-14

    The single atom alloy of extended surfaces is known to provide remarkably enhanced catalytic performance toward heterogeneous hydrogenation. Here we demonstrate from first principles calculations that this approach can be extended to nanostructures, such as bimetallic nanoparticles. The catalytic properties of the single-Pd-doped Cu55 nanoparticles have been systemically examined for H2 dissociation as well as H atom adsorption and diffusion, following the concept of single atom alloy. It is found that doping a single Pd atom at the edge site of the Cu55 shell can considerably reduce the activation energy of H2 dissociation, while the single Pd atom doped at the top site or in the inner layers is much less effective. The H atom adsorption on Cu55 is slightly stronger than that on the Cu(111) surface; however, a larger nanoparticle that contains 147 atoms could effectively recover the weak binding of the H atoms. We have also investigated the H atom diffusion on the 55-atom nanoparticle and found that spillover of the produced H atoms could be a feasible process due to the low diffusion barriers. Our results have demonstrated that facile H2 dissociation and weak H atom adsorption could be combined at the nanoscale. Moreover, the effects of doping one more Pd atom on the H2 dissociation and H atom adsorption have also been investigated. We have found that both the doping Pd atoms in the most stable configuration could independently exhibit their catalytic activity, behaving as two single-atom-alloy catalysts.

  5. A comparative study of Pt and Pt-Pd core-shell nanocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Long, Nguyen Viet, E-mail: nguyenviet_long@yahoo.com [Department of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Posts and Telecommunications Institute of Technology, km 10 Nguyen Trai, Thanh Xuan, Ha Dong, Hanoi (Viet Nam); Laboratory for Nanotechnology, Vietnam National University, Ho Chi Minh, Linh Trung, Thu Duc, Ho Chi Minh (Viet Nam); Department of Molecular and Material Sciences, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakouen, Kasuga, Fukuoka 816-8580 (Japan); Ohtaki, Michitaka [Department of Molecular and Material Sciences, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakouen, Kasuga, Fukuoka 816-8580 (Japan); Hien, Tong Duy [Laboratory for Nanotechnology, Vietnam National University, Ho Chi Minh, Linh Trung, Thu Duc, Ho Chi Minh (Viet Nam); Randy, Jalem [Department of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Nogami, Masayuki, E-mail: nogami@nitech.ac.jp [Department of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan)

    2011-10-30

    Highlights: > The syntheses of Pt (4-8 nm) and Pt-Pd core-shell nanoparticles (15-25 nm) are showed. > Pt-Pd core-shell catalysts possess catalytic property much better than Pt catalysts. > Pt-Pd core-shell catalysts exhibit fast and highly stable catalytic activity. > Fascinatingly, size effect is not as really important as nanostructuring effect. > Fast, stable, sensitive hydrogen adsorption is very crucial for fuel cells. - Abstract: This comparative study characterizes two types of metallic and core-shell bimetallic nanoparticles prepared with our modified polyol method. These nanoparticles consist of Pt and Pt-Pd core-shell nanocatalysts exhibiting polyhedral morphologies. The controlled syntheses of Pt metallic nanoparticles in the 10-nm regime (4-8 nm) and Pt-Pd bimetallic core-shell nanoparticles in the 30-nm regime (15-25 nm) are presented. To realize our ultimate research goals for proton exchange membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs), we thoroughly investigate the dependence of the electrocatalytic properties of the nanoparticles on the structure, size and morphology. Significant differences in the electrocatalysis are also explained in experimental evidences of both Pt and Pt-Pd nanocatalysts. We suggested that the core-shell controlled morphologies and nanostructures of the Pd nanoshell as the Pd atomic monolayers will not only play an important role in producing inexpensive, novel Pt- and Pd-based nanocatalysts but also in designing more efficient Pt- and Pd-based nanocatalysts for practical use in DMFC technology. Our comparative results show that Pt-Pd nanocatalysts with Pd nanoshells exhibited much better electrocatalytic activity and stabilization compared to Pt nanocatalysts. Interestingly, we found that the size effect is not as strong as the nanostructuring effect on the catalytic properties of the researched nanoparticles. A nanostructure effect of the core-shell bimetallic nanoparticles was identified.

  6. Preparation method of Ni@Pt/C nanocatalyst affects the performance of direct borohydride-hydrogen peroxide fuel cell: Improved power density and increased catalytic oxidation of borohydride.

    Science.gov (United States)

    Hosseini, Mir Ghasem; Mahmoodi, Raana

    2017-08-15

    The Ni@Pt/C electrocatalysts were synthesized using two different methods: with sodium dodecyl sulfate (SDS) and without SDS. The metal loading in synthesized nanocatalysts was 20wt% and the molar ratio of Ni: Pt was 1:1. The structural characterizations of Ni@Pt/C electrocatalysts were investigated by field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HR-TEM). The electrocatalytic activity of Ni@Pt/C electrocatalysts toward BH4(-) oxidation in alkaline medium was studied by means of cyclic voltammetry (CV), chronopotentiometry (CP), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS). The results showed that Ni@Pt/C electrocatalyst synthesized without SDS has superior catalytic activity toward borohydride oxidation (22016.92AgPt(-1)) in comparison with a catalyst prepared in the presence of SDS (17766.15AgPt(-1)) in NaBH4 0.1M at 25°C. The Membrane Electrode Assembly (MEA) used in fuel cell set-up was fabricated with catalyst-coated membrane (CCM) technique. The effect of Ni@Pt/C catalysts prepared with two methods as anode catalyst on the performance of direct borohydride-hydrogen peroxide fuel cell was studied. The maximum power density was obtained using Ni@Pt/C catalyst synthesized without SDS at 60°C, 1M NaBH4 and 2M H2O2 (133.38mWcm(-2)). Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Preparation and properties of high performance Pt/TiO2 visible light catalytic materials%高性能可见光Pt/TiO2光催化材料的制备与性能研究

    Institute of Scientific and Technical Information of China (English)

    吴伟; 李燕春; 郑名; 胡洋; 何德伟; 底兰波; 张秀玲

    2015-01-01

    Using H 2 PtCl6 · 6 H 2 O and tetrabutyl titanate as Pt and Ti precursors,high performance Pt/TiO 2 visible light catalytic materials were successfully fabricated by sol-gel method.XRD and UV-Vis spectra were adopted to characterize the samples.XRD results indicated that the TiO 2 was anatase structure and the Pt-do-ping did not change the phase structure of TiO 2 and no characteristic diffraction peaks of Pt species were detec-ted.UV-Vis spectra showed that 0.6%Pt/TiO 2 exhibited good visible light absorption.Methylene blue was used as the model pollution agent to evaluate the visible light activity of Pt/TiO 2 .The results showed that with in-creasing the Pt doping amount,methylene blue degradation rate constant achieved the highest photocatalytic ef-ficiency at 0.6% Pt doping amount,and then kept at a constant level.XPS spectra were adopted to analyze the mechanism of visible light photocatalytic activity.%以钛酸四丁酯为钛源,H 2 PtCl6·6 H 2 O 为Pt 源,采用溶胶-凝胶法制备了高性能可见光 Pt/TiO 2光催化材料.采用 XRD 和 UV-Vis 对制备样品进行了表征.XRD 结果表明,制备 TiO 2为锐钛矿相结构, Pt 的加入未改变 TiO 2的晶相结构,且未发现 Pt 的相关衍射峰.UV-Vis 测试结果表明,0.6%Pt/TiO 2样品表现出较好的可见光吸收性能.在可见光条件下,以亚甲基蓝溶液为模拟污染物对 Pt/TiO 2的光催化性能进行考察.实验结果表明,随 Pt 掺杂量增加,亚甲基蓝降解速率常数先增大后趋于平缓,0.6%Pt/TiO 2的光催化效率最高.采用 XPS 对 Pt/TiO 2样品产生可见光催化活性的机理进行了分析.

  8. Low temperature selective catalytic reduction of NO over Pt-Zeolite using hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Ramachandran, B.; Choi, S.; Herman, R.G.; Stenger, H.G.; Sale, J.W.; Lyman, C.E.

    1999-07-01

    It has been found that platinum based zeolite catalysts are very active for the selective catalytic reduction (SCR) of nitrogen oxides (NOx) with hydrogen at low reaction temperatures, i.e. 200 C. The catalysts are active for NOx reduction in the presence of oxygen, water vapor (steam), and sulfur dioxide. It is notable that the use of hydrogen instead of ammonia as the reducing agent greatly reduces the formation of N{sub 2}O from NO over these low temperature catalysts. A testing protocol was established for testing NO reduction catalysts, and the reaction conditions utilized in this study, carried out at approximately ambient pressure, were the following (on a dry basis): NO = 400 ppm, H{sub 2} = 40000-20,000 ppm (0.4--2 vol%), O{sub 2} = 5 vol%, CO{sub 2} = 13 vol%, and N{sub 2} = balance. When water was added to the reactant mixture, it was added so that H{sub 2}O = 8 vol%. The total gas flow, expressed as gas hourly space velocity (GHSV), was 10,000 hr{sup {minus}1}, unless specified otherwise. Comparison tests were carried out using NH{sub 3} = 400 ppm in place of the H{sub 2}. Each of the gases was fed into the reactor gas manifold and controlled by a separate flow meter. The NO, H{sub 2} and NH{sub 3} components were utilized as mixtures in N{sub 2}, while CO{sub 2}, and O{sub 2} were added as pure gases. When experiments were carried out in the presence of sulfur dioxide, the SO{sub 2} was added via a SO{sub 2}/N{sub 2} gas mixture to achieve the desired SO{sub 2} concentration in the reactant gas mixture. In the exit stream, NO and N{sub 2}O were determined by an infrared analyzer.

  9. Mutation on Gly115 and Tyr205 of the cyclic dipeptide C2-prenyltransferase FtmPT1 increases its catalytic activity toward hydroxynaphthalenes.

    Science.gov (United States)

    Zhao, Wei; Fan, Aili; Tarcz, Sylwia; Zhou, Kang; Yin, Wen-Bing; Liu, Xiao-Qing; Li, Shu-Ming

    2017-03-01

    The fungal cyclic dipeptide prenyltransferase FtmPT1 from Aspergillus fumigatus catalyzes a regular C2-prenylation of brevianamide F (cyclo-L-Trp-L-Pro) and is involved in the biosynthesis of a number of biologically active natural products including tryprostatins, spirotryprostatins, verruculogen, and fumitremorgins. FtmPT1, like other members of the dimethylallyltryptophan synthase superfamily, was shown to have high substrate promiscuity for tryptophan-containing cyclic dipeptides and a few other aromatic substrates. A previous study demonstrated the acceptance of 1-naphthol by FtmPT1, but with very low product yield. In this study, we report the significantly increased acceptance of 1-naphthol and other hydroxynaphthalenes by FtmPT1_G115A and six FtmPT1_Y205X single mutants as well as FtmPT1_G115A_Y205C. These results provided an example for creation of biocatalysts with improved catalytic activity by site-directed mutagenesis.

  10. Dendrimer Templated Synthesis of One Nanometer Rh and Pt Particles Supported on Mesoporous Silica: Catalytic Activity for Ethylene and Pyrrole Hydrogenation.

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Wenyu; Kuhn, John N.; Tsung, Chia-Kuang; Zhang, Yawen; Habas, Susan E.; Yang, Peidong; Somorjai, Gabor A.

    2008-05-09

    Monodisperse rhodium (Rh) and platinum (Pt) nanoparticles as small as {approx}1 nm were synthesized within a fourth generation polyaminoamide (PAMAM) dendrimer, a hyperbranched polymer, in aqueous solution and immobilized by depositing onto a high-surface-area SBA-15 mesoporous support. X-ray photoelectron spectroscopy indicated that the as-synthesized Rh and Pt nanoparticles were mostly oxidized. Catalytic activity of the SBA-15 supported Rh and Pt nanoparticles was studied with ethylene hydrogenation at 273 and 293 K in 10 torr of ethylene and 100 torr of H{sub 2} after reduction (76 torr of H{sub 2} mixed with 690 torr of He) at different temperatures. Catalysts were active without removing the dendrimer capping but reached their highest activity after hydrogen reduction at a moderate temperature (423 K). When treated at a higher temperature (473, 573, and 673 K) in hydrogen, catalytic activity decreased. By using the same treatment that led to maximum ethylene hydrogenation activity, catalytic activity was also evaluated for pyrrole hydrogenation.

  11. CO oxidation mechanism on the γ-Al2O3 supported single Pt atom: First principle study

    Science.gov (United States)

    Gao, Hongwei

    2016-08-01

    Understanding the role of metal-support interaction for the supported single-atom catalysts is very important in heterogeneous catalysis. Here, Three different CO oxidation mechanisms on Pt/γ-Al2O3 catalyst were probed by periodic density functional theory (DFT) calculations in detail, namely the reactive O*sbnd Osbnd C*dbnd O intermediate mechanism, the reactive CO3 intermediate mechanism and the Pt-Al3+ double sites mechanism. According to the calculated results analysis, we concluded that the dominant reaction pathway at the low temperatures is the reactive O*sbnd Osbnd C*dbnd O intermediate mechanism. Our results are in very good agreement with the experimental evidence for O*sbnd Osbnd C*dbnd O coverage on Pt/γ-Al2O3 at room temperature by an in situ diffuse reflectance infrared detector.

  12. Self-assembly growth of alloyed NiPt nanocrystals with holothuria-like shape for oxygen evolution reaction with enhanced catalytic activity

    Directory of Open Access Journals (Sweden)

    Tao Ding

    2016-01-01

    Full Text Available Self-assembly growth of alloyed NiPt nanocrystals with holothuria-like wire shape has been achieved via a facile and moderate hydrothermal process at 120 °C for 1 h from the reaction of nickel nitrate and chloroplatinic acid in alkaline solution in the presence of ethanediamine and hydrazine hydrate. The holothuria-like alloyed NiPt wires are Ni-rich in composition (Ni23.6Pt and uniform in diameter with many tiny tips outstretched from the wires surface. The holothuria-like wires are assembled from granular subunits with the assistance of capping molecular of ethanediamine and the wires display an improved oxygen evolution reaction catalytic activity.

  13. Study on methane selective catalytic reduction of NO on Pt/Ce0.67Zr0.33O2 and its application

    Institute of Scientific and Technical Information of China (English)

    Zhimin Liu; Kangcai Wang; Xiaoyu Zhang; Jianli Wang; Hongyan Cao; Maochu Gong; Yaoqiang Chen

    2009-01-01

    Monolithic catalysts of Pt/La-Al2O3 and Pt/Ce0.67Zr0.33O2 were prepared to investigate methane selective catalytic reduction (SCR) of NO.The results indicate that Pt/Ce0.67Zr0.33O2 shows high activity and both NO and CH4 can be converted completely at 450 ℃.Meanwhile,NO and CH4 can be converted completely when there exists excess oxygen.The Pt/Ce0.67Zr0.33O2 catalyst were further investigated by using methane as reducing agent to SCR NO in a novel equipment which combined the CH4 selective catalytic reduction of NO with methane combustion.The result shows that the catalyst is high active and the novel equipment is very effective.The conversion of NO is above 92% under the conditions used in this work.The prepared burner and catalysts have great potential for application.

  14. Facile synthesis of polypyrrole functionalized nickel foam with catalytic activity comparable to Pt for the poly-generation of hydrogen and electricity

    Science.gov (United States)

    Tang, Tiantian; Li, Kan; Shen, Zhemin; Sun, Tonghua; Wang, Yalin; Jia, Jinping

    2016-01-01

    Polypyrrole functionalized nickel foam is facilely prepared through the potentiostatic electrodeposition. The PPy-functionalized Ni foam functions as a hydrogen-evolution cathode in a rotating disk photocatalytic fuel cell, in which hydrogen energy and electric power are generated by consuming organic wastes. The PPy-functionalized Ni foam cathode exhibits stable catalytic activities after thirteen continuous runs. Compared with net or plate structure, the Ni foam with a unique three-dimensional reticulate structure is conducive to the electrodeposition of PPy. Compared with Pt-group electrode, PPy-coated Ni foam shows a satisfactory catalytic performance for the H2 evolution. The combination of PPy and Ni forms a synergistic effect for the rapid trapping and removal of proton from solution and the catalytic reduction of proton to hydrogen. The PPy-functionalized Ni foam could be applied in photocatalytic and photoelectrochemical generation of H2. In all, we report a low cost, high efficient and earth abundant PPy-functionalized Ni foam with a satisfactory catalytic activities comparable to Pt for the practical application of poly-generation of hydrogen and electricity.

  15. Interaction of CO with PtxAg1-x/Pt(111) surface alloys: More than dilution by Ag atoms

    Science.gov (United States)

    Schüttler, K. M.; Mancera, L. A.; Diemant, T.; Groß, A.; Behm, R. J.

    2016-08-01

    We have investigated CO adsorption on structurally well-defined PtxAg1-x/Pt(111) surface alloys, combining temperature-programmed desorption (TPD) and infrared reflection absorption spectroscopy (IRRAS) as well as density functional theory (DFT) based calculations. This is part of a systematic approach including previous studies of CO adsorption on closely related Pt(111)- and Pd(111)-based surface alloys. Following changes in the adsorption properties with increasing Ag content and correlating them with structural changes allow us to assign desorption features to specific adsorption sites/ensembles identified in previous scanning tunneling microscopy (STM) measurements, and thus to identify and separate contributions from different effects such as geometric ensemble effects and electronic ligand/strain effects. DFT calculations give further insight into the nature of the metal-CO bond on these bimetallic sites. Most prominently, the growth of a new CO desorption feature at higher temperature (~ 550 K) in the TPD spectra of Ag-rich surface alloys, which is unique for the group of Pt(111)- and Pd(111)-based surface alloys, is attributed to CO adsorption on Pt atoms surrounded by a Ag-rich neighborhood. Adsorption on these sites manifests in an IR band down-shifted to significantly lower wave number. Systematic comparison of the present results with previous findings for CO adsorption on the related Pt(111)- and Pd(111)-based surface alloys gains a detailed insight into general trends in the adsorption behavior of bimetallic surfaces.

  16. Atomic-scale investigations of the struct. and dynamics of complex catalytic materials

    Energy Technology Data Exchange (ETDEWEB)

    Karl Sohlberg, Drexel University

    2007-05-16

    By some accounts, catalysis impacts ≥ 30% of GDP in developed countries [Maxwell, I. E. Nature 394, 325-326 (1998)]. Catalysis is the enabling technology for petroleum production, for control of gaseous emissions from petroleum combustion, and for the production of industrial and consumer chemicals. Future applications of catalysis are potentially even more far reaching. There is an ever-growing need to move the economy from a fossil-fuel energy base to cleaner alternatives. Hydrogen-based combustion systems and fuel cells could play a dominant role, given a plentiful and inexpensive source of hydrogen. Photocatalysis is the most promising clean technology for hydrogen production, relying solely on water and sunlight, but performance enhancements in photocatalysis are needed to make this technology economically competitive. Given the enormously wide spread utilization of catalysts, even incremental performance enhancements would have far-reaching benefits for multiple end-use sectors. In the area of fuel and chemical production, such improvements would translate into vast reductions in energy consumption. At the consumption end, improvements in the catalysts involved would yield tremendous reductions in pollution. In the area of photocatalysis, such efficiency improvements could finally render hydrogen an economically viable fuel. Prerequisite to the non-empirical design and refinement of improved catalysts is the identification of the atomic-scale structure and properties of the catalytically active sites. This has become a major industrial research priority. The focus of this research program was to combine atomic-resolution Z-contrast electron microscopy with first-principles density functional theory calculations to deliver an atomic-scale description of heterogeneous catalytic systems that could form the basis for non-empirical design of improved catalysts with greater energy efficiency.

  17. Electrodeposition of a Pt monolayer film: using kinetic limitations for atomic layer epitaxy.

    Science.gov (United States)

    Brimaud, Sylvain; Behm, R Jürgen

    2013-08-14

    A new and facile one-step method to prepare a smooth Pt monolayer film on a metallic substrate in the absence of underpotential deposition-type stabilizations is presented as a general approach and applied to the growth of Pt monolayer films on Au. The strongly modified electronic properties of these films were demonstrated by in situ IR spectroscopy at the electrified solid-liquid interface with adsorbed carbon monoxide serving as a probe molecule. The Pt monolayer on Au is kinetically stabilized by adsorbed CO, inhibiting further Pt deposition in higher layers.

  18. Thermally Stable Nanocatalyst for High Temperature Reactions: Pt-Mesoporous Silica Core-Shell Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Sang Hoon; Park, J.Y.; Tsung, C.-K.; Yamada, Y.; Yang, P.; Somorjai, G.A.

    2008-10-25

    Recent advances in colloidal synthesis enabled the precise control of size, shape and composition of catalytic metal nanoparticles, allowing their use as model catalysts for systematic investigations of the atomic-scale properties affecting catalytic activity and selectivity. The organic capping agents stabilizing colloidal nanoparticles, however, often limit their application in high-temperature catalytic reactions. Here we report the design of a high-temperature stable model catalytic system that consists of Pt metal core coated with a mesoporous silica shell (Pt{at}mSiO{sub 2}). While inorganic silica shells encaged the Pt cores up to 750 C in air, the mesopores directly accessible to Pt cores made the Pt{at}mSiO{sub 2} nanoparticles as catalytically active as bare Pt metal for ethylene hydrogenation and CO oxidation. The high thermal stability of Pt{at}mSiO{sub 2} nanoparticles permitted high-temperature CO oxidation studies, including ignition behavior, which was not possible for bare Pt nanoparticles because of their deformation or aggregation. The results suggest that the Pt{at}mSiO{sub 2} nanoparticles are excellent nanocatalytic systems for high-temperature catalytic reactions or surface chemical processes, and the design concept employed in the Pt{at}mSiO{sub 2} core-shell catalyst can be extended to other metal-metal oxide compositions.

  19. Structural and chemical characteristics of atomically smooth GaN surfaces prepared by abrasive-free polishing with Pt catalyst

    Science.gov (United States)

    Murata, Junji; Sadakuni, Shun; Okamoto, Takeshi; Hattori, Azusa N.; Yagi, Keita; Sano, Yasuhisa; Arima, Kenta; Yamauchi, Kazuto

    2012-06-01

    This paper reports the structural and chemical characteristics of atomically flat gallium nitride (GaN) surfaces prepared by abrasive-free polishing with platinum (Pt) catalyst. Atomic force microscopy revealed regularly alternating wide and narrow terraces with a step height equivalent to that of a single bilayer on the flattened GaN surfaces, which originate from the differences in etching rate of two neighboring terraces. The material removal characteristics of the method for GaN surfaces were investigated in detail. We confirmed that an atomically smooth GaN surface with an extremely small number of surface defects, including pits and scratches, can be achieved, regardless of the growth method, surface polarity, and doping concentration. X-ray photoelectron spectroscopy showed that the flattening method produces clean GaN surfaces with only trace impurities such as Ga oxide and metallic Ga. Contamination with the Pt catalyst was also evaluated using total-reflection X-ray fluorescence analysis. A wet cleaning method with aqua regia is proposed, which markedly eliminates this Pt contamination without affecting the surface morphology.

  20. Enhanced catalytic performance for methane combustion of 3DOM CoFe2O4 by co-loading MnOx and Pd-Pt alloy nanoparticles

    Science.gov (United States)

    Li, Xiangyu; Liu, Yuxi; Deng, Jiguang; Xie, Shaohua; Zhao, Xingtian; Zhang, Yang; Zhang, Kunfeng; Arandiyan, Hamidreza; Guo, Guangsheng; Dai, Hongxing

    2017-05-01

    Three-dimensionally ordered macroporous (3DOM) CoFe2O4, zMnOx/3DOM CoFe2O4 (z = 4.99-12.30 wt%), and yPd-Pt/6.70 wt% MnOx/3DOM CoFe2O4 (y = 0.44-1.81 wt%; Pd/Pt molar ratio = 2.1-2.2) have been prepared using the polymethyl methacrylate microspheres-templating, incipient wetness impregnation, and bubble-assisted polyvinyl alcohol-protected reduction strategies, respectively. All of the samples were characterized by means of various techniques. Catalytic performance of the samples was measured for methane combustion. It is shown that the as-prepared samples exhibited a high-quality 3DOM structure (103 ± 20 nm in pore size) and a surface area of 19-28 m2/g, and the noble metal or alloy nanoparticles (NPs) with a size of 2.2-3.0 nm were uniformly dispersed on the macropore wall surface of 3DOM CoFe2O4. The loading of MnOx on CoFe2O4 gave rise to a slight increase in activity, however, the dispersion of Pd-Pt NPs on 6.70MnOx/3DOM CoFe2O4 significantly enhanced the catalytic performance, with the 1.81Pd2.1Pt/6.70MnOx/3DOM CoFe2O4 sample showing the highest activity (T10% = 255 °C, T50% = 301 °C, and T90% = 372 °C at a space velocity of 20,000 mL/(g h)). We believe that the excellent catalytic activity of 1.81Pd2.1Pt/6.70MnOx/3DOM CoFe2O4 was related to its well-dispersed Pd-Pt alloy NPs, high adsorbed oxygen species concentration, good low-temperature reducibility, and strong interaction between MnOx or Pd-Pt NPs and 3DOM CoFe2O4.

  1. Measurement of atomic oxygen in the middle atmosphere using solid electrolyte sensors and catalytic probes

    Science.gov (United States)

    Eberhart, M.; Löhle, S.; Steinbeck, A.; Binder, T.; Fasoulas, S.

    2015-09-01

    The middle- and upper-atmospheric energy budget is largely dominated by reactions involving atomic oxygen (O). Modeling of these processes requires detailed knowledge about the distribution of this oxygen species. Understanding the mutual contributions of atomic oxygen and wave motions to the atmospheric heating is the main goal of the rocket project WADIS (WAve propagation and DISsipation in the middle atmosphere). It includes, amongst others, our instruments for the measurement of atomic oxygen that have both been developed with the aim of resolving density variations on small vertical scales along the trajectory. In this paper the instrument based on catalytic effects (PHLUX: Pyrometric Heat Flux Experiment) is introduced briefly. The experiment employing solid electrolyte sensors (FIPEX: Flux φ(Phi) Probe Experiment) is presented in detail. These sensors were laboratory calibrated using a microwave plasma as a source of atomic oxygen in combination with mass spectrometer reference measurements. The spectrometer was in turn calibrated for O with a method based on methane. In order to get insight into the horizontal variability, the rocket payload had instrument decks at both ends. Each housed several sensor heads measuring during both the up- and downleg of the trajectory. The WADIS project comprises two rocket flights during different geophysical conditions. Results from WADIS-1 are presented, which was successfully launched in June 2013 from the Andøya Space Center, Norway. FIPEX data were sampled at 100 Hz and yield atomic oxygen density profiles with a vertical resolution better than 9 m. This allows density variations to be studied on very small spatial scales. Numerical simulations of the flow field around the rocket were done at several points of the trajectory to assess the influence of aerodynamic effects on the measurement results. Density profiles peak at 3 × 1010 cm-3 at altitudes of 93.6 and 96 km for the up- and downleg, respectively.

  2. Research on atomic states, physical properties and catalytic performance of Ru metal

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Using the one-atom theory (OA) of pure metals, the atomic states of Ru metal with hcp structure, fcc structure, bcc structure and liquid state were determined as fol- lows: [Kr](4dn)3.78(4dc)2.22(5sc)1.77(5sf)0.23,Ψa(fcc-Ru)=[Kr](4dn)3.70(4dc)2.44 (5sc)1.42(5sf)0.44, Ψ a(bcc-Ru)=[Kr](4dn)4.00(4dc)2.22(5sc)1.56(5sf)0.22, Ψ a(L-Ru)=[Kr](4dn)4.00(4dc)2.00(5sc)1.52 (5sf)0.48. The potential curve and physical properties as a function of temperature for hcp-Ru such as lattice constant, cohesive energy, linear thermal expansion coeffi- cient, specific heat and Gibbs energy and so on were calculated quantitatively. The theoretical results are in excellent agreement with experimental value. The rela- tionship between the atomic states and catalytic performance was explained qualitatively and these supplied the designation of Ru metal and relative materials with theoretical instruction and complete data.

  3. Ce0.8Sn0.2O2-δ-C composite as a co-catalytic support for Pt catalysts toward methanol electrooxidation

    Science.gov (United States)

    Gu, Yu; Liu, Chuntao; Li, Yabei; Sui, Xulei; Wang, Kuo; Wang, Zhenbo

    2014-11-01

    Ce0.8Sn0.2O2-δ solid solution is fabricated using a simple one-step solvothermal method. The synthesized solid solution mixed with Vulcan XC-72 carbon black (denoted by Ce0.8Sn0.2O2-δ-C) is employed as a co-catalytic support for Pt catalysts toward methanol electrooxidation. X-ray diffraction (XRD), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, N2 adsorption/desorption and temperature programmed reduction (TPR) are used to characterize the properties of Ce0.8Sn0.2O2-δ solid solution. The results show that Ce0.8Sn0.2O2-δ possesses a high specific surface area, an enhanced conductivity and a high oxygen storage capacity (OSC). Pt catalysts grown around Ce0.8Sn0.2O2-δ on carbon black form a special Pt-Ce0.8Sn0.2O2-δ-C triple junction structure, and their electrocatalytic properties are investigated in detail by a series of electrochemical methods. As compared with Pt/CeO2-C and commercial Pt/C catalysts, Pt/Ce0.8Sn0.2O2-δ-C catalyst exhibits superior electrocatalytic activity and long-term stability for methanol electrooxidation in acid media. The origin of the enhanced electroctatlytic properties for Pt/Ce0.8Sn0.2O2-δ-C is closely related to the OSC of Ce0.8Sn0.2O2-δ and the triple junction structure.

  4. Current-voltage curves of atomic-sized transition metal contacts: An explanation of why Au is ohmic and Pt is not

    DEFF Research Database (Denmark)

    Nielsen, S.K.; Brandbyge, Mads; Hansen, K.

    2002-01-01

    We present an experimental study of current-voltage (I-V) curves on atomic-sized Au and Pt contacts formed under cryogenic vacuum (4.2 K). Whereas I-V curves for Au are almost Ohmic, the conductance G=I/V for Pt decreases with increasing voltage, resulting in distinct nonlinear I-V behavior...

  5. 氧掺杂石墨烯体系负载 Pt 团簇催化性能的理论研究%Theoretical study on catalytic property of Pt clusters supported on oxygen-doped graphene

    Institute of Scientific and Technical Information of China (English)

    唐亚楠; 李成刚; 陈卫光; 潘立军

    2015-01-01

    The stable configuration and catalytic property of tetrahedral Pt 4 clusters anchored on oxygen -doped graphene ( O -graphene ) substrate were studied using the first -principles calculations based density functional theory.The structural interconversions between adsorbed Pt 4 clusters on the O -graphene were investigated , it is found that the configuration 1 and 2 can easily interconvert into the configuration 3 with small energy barriers , and the configuration 3 has the most stability on the O -graphene .Based on the adsorption property of reactive gases , two mechanisms for the sequential CO oxidation reaction on the Pt 4/O-graphene were investigated for comparison . The study provides a valuable guidance on fabricating graphene -based functional nanomaterials .%基于密度泛函理论的第一性原理方法研究了氧原子掺杂石墨烯衬底负载Pt4团簇体系的稳定结构和催化性能。观察3个不同结构的Pt4团簇在石墨烯衬底相互转换的反应过程,结果表明:结构1和结构2转化为结构3需要克服较小的能量势垒,结构3的Pt4团簇在石墨烯衬底形成最稳定构型。在研究不同反应气体吸附特性的基础上,对比两种反应机理对CO氧化反应过程的影响。本研究为设计石墨烯纳米功能材料提供重要的理论参考。

  6. Influence of energetic ions and neutral atoms on the L1 0 ordering of FePt films

    Science.gov (United States)

    Cantelli, V.; von Borany, J.; Mücklich, A.; Zhou, Shengqiang; Grenzer, J.

    2007-04-01

    The A1 → L10 phase transition of Fe50Pt50 films, deposited at room-temperature on amorphous SiO2 by dc magnetron co-sputtering at 0.3 Pa, was studied with in-situ X-ray diffraction. An almost complete transition characterized by a long-range order parameter S > 0.8 is obtained already after a heat treatment at (320 ± 20) °C. A post-deposition He ion irradiation (50 keV, 1 × 1015 - 3 × 1016 cm-2) does not further reduce the transition temperature. Theoretical calculations reveal that, due to the negligible thermalization of the sputtered atoms and reflected ions in the plasma, a considerable fraction of energetic ions and atoms meet the substrate surface. The low transition temperature is explained by the impact of energetic ions and atoms which provoke significant adatom mobility and a decrease of the activation energy for atomic reordering by vacancies. Consequently, using deposition parameters leading to a strong thermalized plasma, the FePt films showed an increase of the transition temperature up to 400 °C, a lower S-value (S ≅ 0.6) and a reduced coercivity.

  7. Catalytic Intervention of MoO3 toward Ethanol Oxidation on PtPd Nanoparticles Decorated MoO3-Polypyrrole Composite Support.

    Science.gov (United States)

    De, Abhishek; Datta, Jayati; Haldar, Ipsita; Biswas, Mukul

    2016-10-14

    Ethanol oxidation reaction has been studied in acidic environment over PtPd nanoparticles (NPs) grown on the molybdenum oxide-polypyrrole composite (MOPC) support. The attempt was focused on using reduced Pt loading on non-carbon support for direct ethanol fuel cell (DEFC) operated with proton exchange membrane (PEM). As revealed in SEM study, a molybdenum oxide network exists in polypyrrole caging and the presence of metal NPs over the composite matrix is confirmed by TEM analysis. Further physicochemical characterizations such as XRD, EDAX, and XPS are followed in order to understand the surface morphology and composition of the hybrid structure. Electrochemical techniques such as voltammetry, choroamperometry, and impedance spectroscopy along with performance testing of an in-house-fabricated fuel cell are carried out to evaluate the catalytic activity of the materials for DEFC. The reaction products are estimated by ion chromatographic analysis. Considering the results obtained from the above characterization procedures, the best catalytic performance is exhibited by the Pt-Pd (1:1) on MOPC support. A clear intervention of the molybdenum oxide network is strongly advocated in the EOR sequence which increases the propensity of the reaction by making the metallites more energy efficient in terms of harnessing sufficient numbers of electrons than with the carbon support.

  8. Enhanced Catalytic Activity of Pt Supported on Nitrogen-Doped Reduced Graphene Oxide Electrodes for Fuel Cells.

    Science.gov (United States)

    Sun, Qizhong; Park, Soo-Jin; Kim, Seok

    2015-11-01

    We report an efficient method for the synthesis of nitrogen-doped reduced graphene oxide supported Pt nanocatalysts (Pt/N-RGO). Nitrogen-doped reduced graphene oxide (N-RGO) was prepared by pyrolysis of graphene oxide with cyanamide as a nitrogen source. Then, the Pt nanoparticles were deposited over N-RGO by one-step chemical polyol reduction process. The morphology and structure of as-prepared catalysts were characterized by transmission electron microscopy (TEM), and X-ray diffraction (XRD). Subsequently, electrocatalytic activities of the catalysts were evaluated by cyclic voltammetry (CV). As a result, the Pt/N-RGO catalysts exhibit the superior electrochemical activity toward methanol oxidation in compared with that of Pt loaded on undoped reduced graphene oxide (Pt/RGO) and Pt/carbon blacks (Pt/C). This was mainly attributed to the better distribution of Pt nanoparticles as well as the synergistic electrochemical effects of the nitrogen doped supports. These results demonstrate that N-RGO could be a promising candidate as a high performance catalyst support for a fuel cell application.

  9. Colloidal Toolbox Synthesis of Pt Nanoalloys

    DEFF Research Database (Denmark)

    Spanos, Ioannis

    and then dealloying them. Even without postheat treatment, the observed catalytic activity enhancement was significant after acid treatment,indicating that dealloying plays a crucial catalytic role, without having a detrimental effect on thestructure of the NPs. Apart from alloying though; changing the interparticle......, here raises the question, if such small NPs have a defined crystalstructure capable to justify such an effect on the catalytic activity of nanoalloys. X-rayPhotoelectron Diffraction (XPD) spectroscopy measurements connect the thermal and staticdisplacement of Pt atoms within the crystal lattice of Ptx...

  10. Correlação entre a estrutura atômica superficial e o processo de adsorção-dessorção reversível de hidrogênio em eletrodos monocristalinos Pt(111, Pt(100 e Pt(110 The correlation between the atomic surface structure and the reversible adsorption-desorption of hydrogen on single crystal Pt (111, Pt (100 and Pt (110 electrodes

    Directory of Open Access Journals (Sweden)

    Valderi Pacheco dos Santos

    2001-12-01

    Full Text Available Platinum is widely used as electrode in electrocatalytic processes, however the use of polycrystalline electrodes introduces a series of variables in the electrochemical system due to the aleatory contribution of all the crystallographic orientations with different surface packing of atoms. Single crystal platinum electrodes of low Miller index present surface structure of high regularity and serve as model to establish a correlation among the macroscopic and microscopic properties of the electrochemical interface. Therefore, the main aim of this work is the study of the voltammetric profiles of the reversible adsorption-desorption of hydrogen on Pt(100, Pt(110 and Pt(111, in order to correlate the electrochemical properties of each different orientation with the surface atomic structure.

  11. Pt skin on AuCu intermetallic substrate: a strategy to maximize Pt utilization for fuel cells.

    Science.gov (United States)

    Wang, Gongwei; Huang, Bing; Xiao, Li; Ren, Zhandong; Chen, Hao; Wang, Deli; Abruña, Héctor D; Lu, Juntao; Zhuang, Lin

    2014-07-09

    The dependence on Pt catalysts has been a major issue of proton-exchange membrane (PEM) fuel cells. Strategies to maximize the Pt utilization in catalysts include two main approaches: to put Pt atoms only at the catalyst surface and to further enhance the surface-specific catalytic activity (SA) of Pt. Thus far there has been no practical design that combines these two features into one single catalyst. Here we report a combined computational and experimental study on the design and implementation of Pt-skin catalysts with significantly improved SA toward the oxygen reduction reaction (ORR). Through screening, using density functional theory (DFT) calculations, a Pt-skin structure on AuCu(111) substrate, consisting of 1.5 monolayers of Pt, is found to have an appropriately weakened oxygen affinity, in comparison to that on Pt(111), which would be ideal for ORR catalysis. Such a structure is then realized by substituting the Cu atoms in three surface layers of AuCu intermetallic nanoparticles (AuCu iNPs) with Pt. The resulting Pt-skinned catalyst (denoted as Pt(S)AuCu iNPs) has been characterized in depth using synchrotron XRD, XPS, HRTEM, and HAADF-STEM/EDX, such that the Pt-skin structure is unambiguously identified. The thickness of the Pt skin was determined to be less than two atomic layers. Finally the catalytic activity of Pt(S)AuCu iNPs toward the ORR was measured via rotating disk electrode (RDE) voltammetry through which it was established that the SA was more than 2 times that of a commercial Pt/C catalyst. Taking into account the ultralow Pt loading in Pt(S)AuCu iNPs, the mass-specific catalytic activity (MA) was determined to be 0.56 A/mg(Pt)@0.9 V, a value that is well beyond the DOE 2017 target for ORR catalysts (0.44 A/mg(Pt)@0.9 V). These findings provide a strategic design and a realizable approach to high-performance and Pt-efficient catalysts for fuel cells.

  12. Optically sensitive devices based on Pt nano particles fabricated by atomic layer deposition and embedded in a dielectric stack

    Energy Technology Data Exchange (ETDEWEB)

    Mikhelashvili, V.; Padmanabhan, R.; Eisenstein, G. [Electrical Engineering Department, Technion, Haifa 3200 (Israel); Russell Berrie Nanotechnology Institute, Technion, Haifa 3200 (Israel); Meyler, B.; Yofis, S.; Weindling, S.; Salzman, J. [Electrical Engineering Department, Technion, Haifa 3200 (Israel); Atiya, G.; Cohen-Hyams, Z.; Kaplan, W. D. [Department of Material Science and Engineering, Technion, Haifa 3200 (Israel); Russell Berrie Nanotechnology Institute, Technion, Haifa 3200 (Israel); Ankonina, G. [Russell Berrie Nanotechnology Institute, Technion, Haifa 3200 (Israel); Photovoltaic Laboratory, Technion, Haifa 3200 (Israel)

    2015-10-07

    We report a series of metal insulator semiconductor devices with embedded Pt nano particles (NPs) fabricated using a low temperature atomic layer deposition process. Optically sensitive nonvolatile memory cells as well as optical sensors: (i) varactors, whose capacitance-voltage characteristics, nonlinearity, and peak capacitance are strongly dependent on illumination intensity; (ii) highly linear photo detectors whose responsivity is enhanced due to the Pt NPs. Both single devices and back to back pairs of diodes were used. The different configurations enable a variety of functionalities with many potential applications in biomedical sensing, environmental surveying, simple imagers for consumer electronics and military uses. The simplicity and planar configuration of the proposed devices makes them suitable for standard CMOS fabrication technology.

  13. Optically sensitive devices based on Pt nano particles fabricated by atomic layer deposition and embedded in a dielectric stack

    Science.gov (United States)

    Mikhelashvili, V.; Padmanabhan, R.; Meyler, B.; Yofis, S.; Atiya, G.; Cohen-Hyams, Z.; Weindling, S.; Ankonina, G.; Salzman, J.; Kaplan, W. D.; Eisenstein, G.

    2015-10-01

    We report a series of metal insulator semiconductor devices with embedded Pt nano particles (NPs) fabricated using a low temperature atomic layer deposition process. Optically sensitive nonvolatile memory cells as well as optical sensors: (i) varactors, whose capacitance-voltage characteristics, nonlinearity, and peak capacitance are strongly dependent on illumination intensity; (ii) highly linear photo detectors whose responsivity is enhanced due to the Pt NPs. Both single devices and back to back pairs of diodes were used. The different configurations enable a variety of functionalities with many potential applications in biomedical sensing, environmental surveying, simple imagers for consumer electronics and military uses. The simplicity and planar configuration of the proposed devices makes them suitable for standard CMOS fabrication technology.

  14. Influence of CeO2 morphology on the catalytic activity of CeO2-Pt hybrids for CO oxidation.

    Science.gov (United States)

    Singhania, Nisha; Anumol, E A; Ravishankar, N; Madras, Giridhar

    2013-11-21

    Ceria, because of its excellent redox behavior and oxygen storage capacity, is used as a catalyst for several technologically important reactions. In the present study, different morphologies of nano-CeO2 (rods, cubes, octahedra) were synthesized using the hydrothermal route. An ultrafast microwave-assisted method was used to efficiently attach Pt particles to the CeO2 polyhedra. These nanohybrids were tested as catalysts for the CO oxidation reaction. The CeO2/Pt catalyst with nanorods as the support was found to be the most active catalyst. XPS and IR spectroscopy measurements were carried out in order to obtain a mechanistic understanding and it was observed that the adsorbed carbonates with lower stability on the reactive planes of nanorods and cubes are the major contributor to this enhanced catalytic activity.

  15. Spatial distribution and tunneling of H and D atoms in (NH{sub 4}){sub 2}PtCl{sub 6} and (ND{sub 4}){sub 2}PtCl{sub 6} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Onoda-Yamamuro, Noriko [Department of Natural Sciences, College of Science and Engineering, Tokyo Denki Univ., Hatoyama, Saitama (Japan); Yamamuro, Osamu; Matsuo, Takasuke [Department of Chemistry, Graduate School of Science, Osaka Univ., Toyonaka, Osaka (Japan); Torii, Syuuki [Institute of Material Sciences, Univ. of Tsukuba, Tsukuba, Ibaraki (Japan); Kamiyama, Takashi [Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan); Kume, Yoshio [Department of Basic Science, Azabu Univ., Sagamihara, Kanagawa (Japan)

    2001-03-01

    Neutron powder diffraction experiments on (NH{sub 4}){sub 2}PtCl{sub 6} and (ND{sub 4}){sub 2}PtCl{sub 6} have been performed using the time-of-flight high-resolution powder diffractometer Sirius at the pulsed cold neutron source in KEK. The Rietveld and Fourier analysis of the data collected at 6 K revealed that the hydrogen atom in (NH{sub 4}){sub 2}PtCl{sub 6} is located about the three-fold axis with three distinct maxima of the distribution function. The result is interpreted in terms of the rotational tunneling of NH{sub 4}{sup +}. (author)

  16. CO oxidation catalyzed by Pt-embedded graphene: A first-principles investigation

    KAUST Repository

    Liu, Xin

    2014-01-01

    We addressed the potential catalytic role of Pt-embedded graphene in CO oxidation by first-principles-based calculations. We showed that the combination of highly reactive Pt atoms and defects over graphene makes the Pt-embedded graphene a superior mono-dispersed atomic catalyst for CO oxidation. The binding energy of a single Pt atom onto monovacancy defects is up to -7.10 eV, which not only ensures the high stability of the embedded Pt atom, but also vigorously excludes the possibility of diffusion and aggregation of embedded Pt atoms. This strong interfacial interaction also tunes the energy level of Pt-d states for the activation of O2, and promotes the formation and dissociation of the peroxide-like intermediate. The catalytic cycle of CO oxidation is initiated through the Langmuir-Hinshelwood mechanism, with the formation of a peroxide-like intermediate by the coadsorbed CO and O2, by the dissociation of which the CO2 molecule and an adsorbed O atom are formed. Then, another gaseous CO will react with the remnant O atom and make the embedded Pt atom available for the subsequent reaction. The calculated energy barriers for the formation and dissociation of the peroxide-like intermediate are as low as 0.33 and 0.15 eV, respectively, while that for the regeneration of the embedded Pt atom is 0.46 eV, indicating the potential high catalytic performance of Pt-embedded graphene for low temperature CO oxidation.

  17. Structural characterization and catalytic activity of Pt dendrimer encapsulated nanoparticles supported over Al2O3 for SCR of NOx.

    Science.gov (United States)

    Bae, HyunSook; Rao, Komateedi N; Ha, HeonPhil

    2011-07-01

    Pt/Al2O3 and Pt-Mg/Al2O3 nano composites were successfully prepared by dendrimer templated synthesis route. The obtained dendritic nanoparticles were dispersed in alumina support and they were evaluated for SCR of NOx using methane as reductant. Thermal analysis results of uncalcined samples revealed that the oxygen can accelerate the rate of dendrimer shell decomposition. X-ray diffractograms of 500 degrees C calcined samples disclosed the amorphous nature of materials, whereas 1000 degrees C air calcined samples showed enhanced crystallinity as well as diffraction pattern corresponding to Pt and PtO. HRTEM images of Pt40-G4OH dendritic nanoparticles showed uniform particulate distribution with average particle size of 2.4 nm. The STEM results of 0.5 Pt/Al2O3 sample calcined at 500 degrees C exhibited a wide range of particles between 2 and 20 nm. This indicates the huge segregation of platinum metal particles during impregnation and subsequent calcination. Among the synthesized materials 0.5 wt% Pt/Al2O3 sample showed excellent conversion and selectivity for SCR of NOx.

  18. Pt-Pd nanoelectrocatalyst of ultralow Pt content for the oxidation of formic acid: Towards tuning the reaction pathway

    Indian Academy of Sciences (India)

    Sourov Ghosh; C Retna Raj

    2015-05-01

    Synthesis of highly efficient functional electrocatalyst that favours the electrochemical oxidation of formic acid via CO-free dehydrogenation pathway is required for direct formic acid fuel cells. Traditional catalysts favour the dehydration pathway involving the generation of poisonous CO. Herein we demonstrate the superior electrocatalytic performance of Pt-Pd bimetallic nanoelectrocatalyst of ultralow Pt content and tuning the reaction pathway by controlling the Pt content. Bimetallic nanoparticles of Pt4Pd96, Pt7Pd93 and Pt47Pd53 compositions are synthesized by electrochemical co-deposition method in aqueous solution. The nanoparticles of ultralow Pt content, Pt4Pd96, favour the CO-free dehydrogenation pathway for formic acid oxidation with an onset potential of 0 V (SHE) whereas the Pt47Pd53 nanoparticles favour the dehydration pathway involving the formation of CO at high positive potential. The Pt content of the bimetallic nanoparticles actually controls the oxidation peak potential and catalytic activity. Significant negative shift (∼350 mV) in the oxidation peak potential and remarkable enhancement in the current density (2.6 times) are observed for Pt4Pd96 nanoparticles with respect to Pt47Pd53. The absence of three adjacent Pt and Pd atoms could be the reason for the suppression of CO pathway. The electrochemical impedance measurements indirectly support the CO-free pathway for the formic acid oxidation on Pt4Pd96 nanoparticles.

  19. Neighboring Hetero-Atom Assistance of Sacrificial Amines to Hydrogen Evolution Using Pt-Loaded TiO2-Photocatalyst

    Directory of Open Access Journals (Sweden)

    Masahide Yasuda

    2014-05-01

    Full Text Available Photocatalytic H2 evolution was examined using Pt-loaded TiO2-photocatalyst in the presence of amines as sacrificial agents. In the case of amines with all of the carbon attached to the hetero-atom such as 2-aminoethanol, 1,2-diamonoethane, 2-amino-1,3-propanediol, and 3-amino-1,2-propanediol, they were completely decomposed into CO2 and water to quantitatively evolve H2. On the other hand, the amines with both hetero-atoms and one methyl group at the β-positions (neighboring carbons of amino group such as 2-amino-1-propanol and 1,2-diaminopropane were partially decomposed. Also, the photocatalytic H2 evolution using amines without the hetero-atoms at the β-positions such as ethylamine, propylamine, 1-butylamine, 1,3-diaminopropane, 2-propylamine, and 2-butylamine was inefficient. Thus, it was found that the neighboring hetero-atom strongly assisted the degradation of sacrificial amines. Moreover, rate constants for H2 evolution were compared among amines. In conclusion, the neighboring hetero-atom did not affect the rate constants but enhanced the yield of hydrogen evolution.

  20. Evidence for non-conservative current-induced forces in the breaking of Au and Pt atomic chains

    Directory of Open Access Journals (Sweden)

    Carlos Sabater

    2015-12-01

    Full Text Available This experimental work aims at probing current-induced forces at the atomic scale. Specifically it addresses predictions in recent work regarding the appearance of run-away modes as a result of a combined effect of the non-conservative wind force and a ‘Berry force’. The systems we consider here are atomic chains of Au and Pt atoms, for which we investigate the distribution of break down voltage values. We observe two distinct modes of breaking for Au atomic chains. The breaking at high voltage appears to behave as expected for regular break down by thermal excitation due to Joule heating. However, there is a low-voltage breaking mode that has characteristics expected for the mechanism of current-induced forces. Although a full comparison would require more detailed information on the individual atomic configurations, the systems we consider are very similar to those considered in recent model calculations and the comparison between experiment and theory is very encouraging for the interpretation we propose.

  1. Evidence for non-conservative current-induced forces in the breaking of Au and Pt atomic chains.

    Science.gov (United States)

    Sabater, Carlos; Untiedt, Carlos; van Ruitenbeek, Jan M

    2015-01-01

    This experimental work aims at probing current-induced forces at the atomic scale. Specifically it addresses predictions in recent work regarding the appearance of run-away modes as a result of a combined effect of the non-conservative wind force and a 'Berry force'. The systems we consider here are atomic chains of Au and Pt atoms, for which we investigate the distribution of break down voltage values. We observe two distinct modes of breaking for Au atomic chains. The breaking at high voltage appears to behave as expected for regular break down by thermal excitation due to Joule heating. However, there is a low-voltage breaking mode that has characteristics expected for the mechanism of current-induced forces. Although a full comparison would require more detailed information on the individual atomic configurations, the systems we consider are very similar to those considered in recent model calculations and the comparison between experiment and theory is very encouraging for the interpretation we propose.

  2. Catalytic activity of bimetallic catalysts highly sensitive to the atomic composition and phase structure at the nanoscale.

    Science.gov (United States)

    Shan, Shiyao; Petkov, Valeri; Prasai, Binay; Wu, Jinfang; Joseph, Pharrah; Skeete, Zakiya; Kim, Eunjoo; Mott, Derrick; Malis, Oana; Luo, Jin; Zhong, Chuan-Jian

    2015-12-07

    The ability to determine the atomic arrangement in nanoalloy catalysts and reveal the detailed structural features responsible for the catalytically active sites is essential for understanding the correlation between the atomic structure and catalytic properties, enabling the preparation of efficient nanoalloy catalysts by design. Herein we describe a study of CO oxidation over PdCu nanoalloy catalysts focusing on gaining insights into the correlation between the atomic structures and catalytic activity of nanoalloys. PdCu nanoalloys of different bimetallic compositions are synthesized as a model system and are activated by a controlled thermochemical treatment for assessing their catalytic activity. The results show that the catalytic synergy of Pd and Cu species evolves with both the bimetallic nanoalloy composition and temperature of the thermochemical treatment reaching a maximum at a Pd : Cu ratio close to 50 : 50. The nanoalloys are characterized structurally by ex situ and in situ synchrotron X-ray diffraction, including atomic pair distribution function analysis. The structural data show that, depending on the bimetallic composition and treatment temperature, PdCu nanoalloys adopt two different structure types. One features a chemically ordered, body centered cubic (B2) type alloy consisting of two interpenetrating simple cubic lattices, each occupied with Pd or Cu species alone, and the other structure type features a chemically disordered, face-centered cubic (fcc) type of alloy wherein Pd and Cu species are intermixed at random. The catalytic activity for CO oxidation is strongly influenced by the structural features. In particular, it is revealed that the prevalence of chemical disorder in nanoalloys with a Pd : Cu ratio close to 50 : 50 makes them superior catalysts for CO oxidation in comparison with the same nanoalloys of other bimetallic compositions. However, the catalytic synergy can be diminished if the Pd50Cu50 nanoalloys undergo

  3. Preparation, Characterization of Hydrotalcites and the Catalytic Properties in Synthesis of o-Phenylphenol over Pt/CHT

    Institute of Scientific and Technical Information of China (English)

    YANG Piao-ping; WANG Zhen-lü; YU Jian-feng; LIU Qing-sheng; XUE Bin; ZHANG Zuo-wang; WU Tong-hao

    2005-01-01

    Mg/Al mixed oxides with molar ratios of 2_6 of Mg to Al used as supports for platinum catalysts were obtained by the thermal decomposition method. The effect of the composition of the mixed oxides on the physicochemical properties was studied by TPD, nitrogen sorption, XRD and TG-DTA characterization methods. The synthesis of o-phenylphenol(OPP) from a dimer(obtained from cyclohexanone condensation) was investigated over Pt/CHT catalysts and compared with those over Pt/MgO and Pt/Al2O3 catalysts. These catalysts show a high activity and selectivity for OPP, with a conversion reaching 93.8% and a selectivity reaching 87.9% in some experiments. For Pt/CHTx catalysts, the calcined hydrotalcites exhibited strong base sites, which were necessary to catalyze the synthesis of OPP.

  4. Kinetics of catalytic reforming with Pt-Sn catalyst; Modelisation cinetique du reformage catalytique sur catalyseur Pt-Sn/Al{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Cochegrue, H.

    2001-04-01

    Catalytic Reforming is one of the key processes for petrol refining as it produces gasoline with a high octane number and it is a main source of hydrogen. Refiners are asking for more accurate models in order to optimise their plants. An innovative methodology called 'Single Events' is very different from the classical empirical models because it takes into account the various reaction intermediates and reaction pathways. Some hypotheses based on the relative stability of the carbo-cations allow to get a small number of parameters, which are independent of the composition of the feedstock used. The main target of this work was to apply this methodology to the Catalytic Reforming. The single event network had to be first reduced to a late lumped reaction scheme, which incorporates the detailed knowledge of the elementary network while the intermediates and the reaction pathways are reduced: it can be applied now to naphtha feedstock, although the detailed composition is not yet well known. A pilot unit of Catalytic Reforming, which is representative of the industrial processes, was first designed for the kinetic experiments. Experiments with technical heptane were conducted with a fresh catalyst, which was cocked first, and with a used catalyst from a refinery plant. This latter was difficult to use because of its fast deactivation. However, the results obtained allowed to study the influence of the experimental parameters and of the poisoning by iron, and to estimate some of the main kinetic parameters of the model. (author)

  5. Fabrication of highly electro catalytic active layer of multi walled carbon nanotube/enzyme for Pt-free dye sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Arbab, Alvira Ayoub, E-mail: alvira_arbab@yahoo.com [Department of Organic and Nano Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Sun, Kyung Chul, E-mail: hytec@hanyang.ac.kr [Department of Fuel cells and hydrogen technology, Hanyang University, Seoul 133-791 (Korea, Republic of); Sahito, Iftikhar Ali, E-mail: iftikhar.sahito@faculty.muet.edu.pk [Department of Organic and Nano Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Qadir, Muhammad Bilal, E-mail: bilal_ntu81@hotmail.com [Department of Organic and Nano Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Jeong, Sung Hoon, E-mail: shjeong@hanyang.ac.kr [Department of Organic and Nano Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2015-09-15

    Graphical abstract: - Highlights: • We prepared three different types of enzyme dispersed multiwall carbon nanotube (E-MWCNT) layer for application in Pt-free dye sensitized solar cell (DSSCs). • E-MWCNT catalysts exhibited an extremely good electro-catalytic activity (ECA), compared with the conventional catalyst, when synthesized with lipase enzyme. • E-MWCNT as counter electrode exhibits a high power conversion efficiency (PCE) of 7.5%, which can be compared to 8% efficiency of Pt catalyst. - Abstract: Highly dispersed conductive suspensions of multi walled carbon nanotubes (MWCNT) can have intrinsic electrical and electrochemical characteristics, which make them useful candidate for platinum (Pt)-free, dye sensitized solar cells (DSSCs). High energy conversion efficiency of 7.52% is demonstrated in DSSCs, based on enzyme dispersed MWCNT (E-MWCNT) layer deposited on fluorine doped tin oxide (FTO) glass. The E-MWCNT layer shows a pivotal role as platform to reduce large amount of iodide species via electro catalytically active layer, fabricated by facile tape casting under air drying technique. The E-MWCNT layer with large surface area, high mechanical adhesion, and good interconnectivity is derived from an appropriate enzyme dispersion, which provides not only enhanced interaction sites for the electrolyte/counter electrode interface but also improved electron transport mechanism. The surface morphology and structural characterization were investigated using field emission-scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), x-ray photoelectron spectroscopy (XPS), Raman spectroscopy and electronic microscopy techniques. Electro catalytic activity (ECA) and electrochemical properties of E-MWCNT counter electrode (CE) were investigated using cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) measurements. The high power conversion efficiency (PCE) of E-MWCNT CE is associated with the low charge transfer

  6. Atomically flat surface of (0 0 1) textured FePt thin films by residual stress control

    Science.gov (United States)

    Liu, S. H.; Hsiao, S. N.; Chou, C. L.; Chen, S. K.; Lee, H. Y.

    2015-11-01

    Single-layered Fe52Pt48 films with thickness of 10 nm were sputter-deposited on glass substrates. Rapid thermal annealing with different heating rates (10-110 K/s) was applied to transform as-deposited fcc phase into L10 phase and meanwhile to align [0 0 1]-axis of L10 crystal along plane normal direction. Based on X-ray diffractometry using synchrotron radiation source, the texture coefficient of (0 0 1)-plane increases with increasing heating rate from 10 to 40 K/s, which is correlated with perpendicular magnetic anisotropy and in-plane tensile stress analyzed by asymmetric sin2 ψ method. Furthermore, it was revealed by atomic force microscopy that the dewetting process occurred as heating rate was raised up to 80 K/s and higher. The change in the microstructure due to stress relaxation leads to the degradation of (0 0 1) orientation and magnetic properties. Surface roughness is closely related to the in-plane tensile stress. Enhanced perpendicular magnetic anisotropy and atomically flat surface were achieved for the samples annealed at 40 K/s, which may be suitable for further practical applications. This work also suggests a feasible way for surface engineering by controlling internal stress of the FePt without introducing cap layer.

  7. Theoretical study of stabilities, electronic, and catalytic performance of supported platinum on modified graphene

    Science.gov (United States)

    Hongwei, Tian; Wei, Feng; Rui, Wang; Huiling, Liu; Xuri, Huang

    2015-11-01

    The geometry, electronic structure, and catalytic properties for CO oxidation of Pt atom supported on pri-graphene (PG), Haeckelite (H), and Stone-Wales-defect-graphene are investigated by density functional theory (DFT) calculations. In contrast to a Pt atom on PG, defective graphene, especially the Haeckelite, strongly stabilises the Pt atom and makes it more positive and thus the CO poisoning. At the same time the catalytic activities are as high as the pristine one. Langmuir-Hinshelwood mechanisms are favoured as the starting state and are followed by the Eley-Rideal reaction. The results indicate the benefit of Haeckelite as a substrate for the Pt atom and validate the reactivity of catalysts on the atomic scale with low cost and high activity.

  8. Comparing the catalytic oxidation of ethanol at the solid-gas and solid-liquid interfaces over size-controlled Pt nanoparticles: striking differences in kinetics and mechanism.

    Science.gov (United States)

    Sapi, Andras; Liu, Fudong; Cai, Xiaojun; Thompson, Christopher M; Wang, Hailiang; An, Kwangjin; Krier, James M; Somorjai, Gabor A

    2014-11-12

    Pt nanoparticles with controlled size (2, 4, and 6 nm) are synthesized and tested in ethanol oxidation by molecular oxygen at 60 °C to acetaldehyde and carbon dioxide both in the gas and liquid phases. The turnover frequency of the reaction is ∼80 times faster, and the activation energy is ∼5 times higher at the gas-solid interface compared to the liquid-solid interface. The catalytic activity is highly dependent on the size of the Pt nanoparticles; however, the selectivity is not size sensitive. Acetaldehyde is the main product in both media, while twice as much carbon dioxide was observed in the gas phase compared to the liquid phase. Added water boosts the reaction in the liquid phase; however, it acts as an inhibitor in the gas phase. The more water vapor was added, the more carbon dioxide was formed in the gas phase, while the selectivity was not affected by the concentration of the water in the liquid phase. The differences in the reaction kinetics of the solid-gas and solid-liquid interfaces can be attributed to the molecular orientation deviation of the ethanol molecules on the Pt surface in the gas and liquid phases as evidenced by sum frequency generation vibrational spectroscopy.

  9. Tuning the chemical activity through PtAu nanoalloying: a first principles study

    KAUST Repository

    Mokkath, Junais Habeeb

    2013-06-21

    The electronic structure and adsorption properties of 1.5 nm sized Pt, Au, and PtAu nanoclusters are studied by density functional theory. We explain the recent experimental finding that 20% Au content in PtAu nanoparticles is optimal to induce a dramatically different catalytic behavior. Our results show that the d-band center together with the density of states at the Fermi energy can be used as an indicator of the chemical activity of PtAu nanoclusters. The most favorable adsorption sites on the cluster surfaces as a function of the Pt/Au ratio are identified using atomic H as a probe.

  10. Designed nanostructured pt film for electrocatalytic activities by underpotential deposition combined chemical replacement techniques.

    Science.gov (United States)

    Huang, Minghua; Jin, Yongdong; Jiang, Heqing; Sun, Xuping; Chen, Hongjun; Liu, Baifeng; Wang, Erkang; Dong, Shaojun

    2005-08-18

    Multiple-deposited Pt overlayer modified Pt nanoparticle (MD-Pt overlayer/PtNPs) films were deliberately constructed on glassy carbon electrodes through alternately multiple underpotential deposition (UPD) of Ag followed redox replacement reaction by Pt (II) cations. The linear and regular growth of the films characterized by cyclic voltammetry was observed. Atomic force spectroscopy (AFM) provides the surface morphology of the nanostructured Pt films. Rotating disk electrode (RDE) voltammetry and rotating ring-disk electrode (RRDE) voltammetry demonstrate that the MD-Pt overlayer/PtNPs films can catalyze an almost four-electron reduction of O(2) to H(2)O in air-saturated 0.1 M H(2)SO(4). Thus-prepared Pt films behave as novel nanostructured electrocatalysts for dioxygen reduction and hydrogen evolution reaction (HER) with enhanced electrocatalytic activities, in terms of both reduction peak potential and peak current, when compared to that of the bulk polycrystalline Pt electrode. Additionally, it is noted that after multiple replacement cycles, the electrocatalytic activities improved remarkably, although the increased amount of Pt is very low in comparison to that of pre-modified PtNPs due to the intrinsic feature of the UPD-redox replacement technique. In other words, the electrocatalytic activities could be improved markedly without using very much Pt by the technique of tailoring the catalytic surface. These features may provide an interesting way to produce Pt catalysts with a reliable catalytic performance as well as a reduction in cost.

  11. Quantitative Prediction of Surface Segregation in Bimetallic Pt-MAlloy Nanoparticles (M=Ni, Re, Mo)

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guofeng; Van Hove, Michel A.; Ross, Phil N.; Baskes,Michael I.

    2005-06-20

    This review addresses the issue of surface segregation inbimetallic alloy nanoparticles, which are relevant to heterogeneouscatalysis, in particular for electro-catalysts of fuel cells. We describeand discuss a theoretical approach to predicting surface segregation insuch nanoparticles by using the Modified Embedded Atom Method and MonteCarlo simulations. In this manner it is possible to systematicallyexplore the behavior of such nanoparticles as a function of componentmetals, composition, and particle size, among other variables. We choseto compare Pt75Ni25, Pt75Re25, and Pt80Mo20 alloys as example systems forthis discussion, due to the importance of Pt in catalytic processes andits high-cost. It is assumed that the equilibrium nanoparticles of thesealloys have a cubo-octahedral shape, the face-centered cubic lattice, andsizes ranging from 2.5 nm to 5.0 nm. By investigating the segregation ofPt atoms to the surfaces of the nanoparticles, we draw the followingconclusions from our simulations at T= 600 K. (1) Pt75Ni25 nanoparticlesform a surface-sandwich structure in which the Pt atoms are stronglyenriched in the outermost and third layers while the Ni atoms areenriched in the second layer. In particular, a nearly pure Pt outermostsurface layer can be achieved in those nanoparticles. (2) EquilibriumPt75Re25 nanoparticles adopt a core-shell structure: a nearly pure Ptshell surrounding a more uniform Pt-Re core. (3) In Pt80Mo20nanoparticles, the facets are fully occupied by Pt atoms, the Mo atomsonly appear at the edges and vertices, and the Pt and Mo atoms arrangethemselves in an alternating sequence along the edges and vertices. Oursimulations quantitatively agree with previous experimental andtheoretical results for the extended surfaces of Pt-Ni, Pt-Re, and Pt-Moalloys. We further discuss the reasons for the different types of surfacesegregation found in the different alloys, and some of theirimplications.

  12. Size-confined growth of atom-precise nanoclusters in metal-organic frameworks and their catalytic applications

    Science.gov (United States)

    Liu, Lingli; Song, Yongbo; Chong, Hanbao; Yang, Sha; Xiang, Ji; Jin, Shan; Kang, Xi; Zhang, Jun; Yu, Haizhu; Zhu, Manzhou

    2016-01-01

    Using MOFs as size-selection templates, we have for the first time synthesized atom-precise Au11:PPh3 nanoclusters (NCs) and Au13Ag12:PPh3 NCs with high purity by a one-step, in situ reduction method. Specifically, we found that the product released from the frameworks of ZIF-8 is exclusively the Au11:PPh3 NCs rather than polydispersed NCs, and inside MIL-101(Cr) the Au13Ag12:PPh3 NCs constitute the exclusive product. The metal NC@MOF composites are also demonstrated for catalytic application. The high catalytic efficiency for the oxidation of benzyl alcohol indicates that atom-precise noble metal NCs@MOFs may act as a promising class of heterogeneous catalysts. The atom-precise NCs obtained in the MOF templated synthesis imply the future possibility of using MOFs of various pore sizes for the size-selective synthesis of atomically precise NCs. Meanwhile, metal NCs@MOFs will contribute to the understanding of the mechanism of nanocatalyst surface reactions and hence opens up enormous opportunities in heterogeneous catalysis.Using MOFs as size-selection templates, we have for the first time synthesized atom-precise Au11:PPh3 nanoclusters (NCs) and Au13Ag12:PPh3 NCs with high purity by a one-step, in situ reduction method. Specifically, we found that the product released from the frameworks of ZIF-8 is exclusively the Au11:PPh3 NCs rather than polydispersed NCs, and inside MIL-101(Cr) the Au13Ag12:PPh3 NCs constitute the exclusive product. The metal NC@MOF composites are also demonstrated for catalytic application. The high catalytic efficiency for the oxidation of benzyl alcohol indicates that atom-precise noble metal NCs@MOFs may act as a promising class of heterogeneous catalysts. The atom-precise NCs obtained in the MOF templated synthesis imply the future possibility of using MOFs of various pore sizes for the size-selective synthesis of atomically precise NCs. Meanwhile, metal NCs@MOFs will contribute to the understanding of the mechanism of nanocatalyst

  13. Direct imaging of thermally-activated grain-boundary diffusion in Cu/Co/IrMn/Pt exchange-bias structures using atom-probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Letellier, F.; Lardé, R.; Le Breton, J.-M., E-mail: jean-marie.lebreton@univ-rouen.fr [Groupe de Physique des Matériaux, UMR 6634 CNRS/Université et INSA de Rouen, F-76801 Saint Etienne du Rouvray (France); Lechevallier, L. [Groupe de Physique des Matériaux, UMR 6634 CNRS/Université et INSA de Rouen, F-76801 Saint Etienne du Rouvray (France); Département de GEII, Université de Cergy-Pontoise, F-95031 Cergy-Pontoise (France); Akmaldinov, K. [SPINTEC, Univ. Grenoble-Alpes/CNRS/INAC-CEA, F-38000 Grenoble (France); CROCUS Technology, F-38025 Grenoble (France); Auffret, S.; Dieny, B.; Baltz, V., E-mail: vincent.baltz@cea.fr [SPINTEC, Univ. Grenoble-Alpes/CNRS/INAC-CEA, F-38000 Grenoble (France)

    2014-11-28

    Magnetic devices are often subject to thermal processing steps, such as field cooling to set exchange bias and annealing to crystallize amorphous magnetic electrodes. These processing steps may result in interdiffusion and the subsequent deterioration of magnetic properties. In this study, we investigated thermally-activated diffusion in Cu/Co/IrMn/Pt exchange biased polycrystalline thin-film structures using atom probe tomography. Images taken after annealing at 400 °C for 60 min revealed Mn diffusion into Co grains at the Co/IrMn interface and along Pt grain boundaries for the IrMn/Pt stack, i.e., a Harrison type C regime. Annealing at 500 °C showed further Mn diffusion into Co grains. At the IrMn/Pt interface, annealing at 500 °C led to a type B behavior since Mn diffusion was detected both along Pt grain boundaries and also into Pt grains. The deterioration of the films' exchange bias properties upon annealing was correlated to the observed diffusion. In particular, the topmost Pt capping layer thickness turned out to be crucial since a faster deterioration of the exchange bias properties for thicker caps was observed. This is consistent with the idea that Pt acts as a getter for Mn, drawing Mn out of the IrMn layer.

  14. Electron density characteristics and charge transfer effect of hydrogen bond O-H···Pt(II): atoms in molecules study and natural bond orbital analysis

    Science.gov (United States)

    Zhang, Guiqiu; Li, Xiwen; Li, Yan; Chen, Dezhan

    2013-11-01

    In this report, we extended the works of Rizzato et al. [Angew. Chem. Int. Ed. 49, 7440 (2010)] on the nature of O-H...Pt hydrogen bond in trans-[PtCl2(NH3)(N-glycine)].H2O(1.H2O) complex, by computational study of O-H...Pt interaction in [NBu4][Pt(C6F5)3(8-hydroxyquinaldine)], with emphasis on charge transfer effect in this interaction of platinum(II) and hydrogen atom. According to the crystallographic geometry reported by José María Casas et al., [NBu4][Pt(C6F5)3(8-hydroxyquinaldine)] possesses one O-H...Pt hydrogen bridging interaction, similar to the case in trans-[PtCl2(NH3)(N-glycine)].H2O(1.H2O) complex. On the basis of topological criteria of electron density, we characterised this O-H...Pt interaction. Charge transferred between platinum(II) and σ*O-H orbital in this complex was calculated by using NBO method. The stabilised energy associated to charge transfer was estimated using a direct proportionality, that is 2-3 eV per electron transferred. Charge transfer effects in O-H...Pt hydrogen bonds were studied for these two complexes. Our results indicate that the interaction of O-H...Pt is closed-shell in nature with significant charge transfer, and that charge transfer effect is not negligible in the interaction of O-H...Pt. The second conclusion is different from the result of Rizzato et al.

  15. CATALYTIC COMBUSTION OF METHANE OVER Pt/γ-Al2O3 IN MICRO-COMBUSTOR WITH DETAILED CHEMICAL KINETIC MECHANISMS

    Directory of Open Access Journals (Sweden)

    JUNJIE CHEN

    2014-11-01

    Full Text Available Micro-scale catalytic combustion characteristics and heat transfer processes of preheated methane-air mixtures (φ = 0.4 in the plane channel were investigated numerically with detailed chemical kinetic mechanisms. The plane channel of length L = 10.0 mm, height H =1.0 mm and wall thickness δ = 0.1 mm, which inner horizontal surfaces contained Pt/γ-Al2O3 catalyst washcoat. The computational results indicate that the presence of the gas phase reactions extends mildly the micro-combustion stability limits at low and moderate inlet velocities due to the strong flames establishment, and have a more profound effect on extending the high-velocity blowout limits by allowing for additional heat release originating mainly from the incomplete CH4 gas phase oxidation in the plane channel. When the same mass flow rate (ρin × Vin is considered, the micro-combustion stability limits at p: 0.1 MPa are much narrower than at p: 0.6 MPa due to both gas phase and catalytic reaction activities decline with decreasing pressure. Catalytic micro-combustor can achieve stable combustion at low solid thermal conductivity ks < 0.1 W∙m-1•K-1, while the micro-combustion extinction limits reach their larger extent for the higher thermal conductivity ks = 20.0-100.0 W∙m-1•K-1. The existence of surface radiation heat transfers significantly effects on the micro-combustion stability limits and micro-combustors energy balance. Finally, gas phase combustion in catalytic micro-combustors can be sustained at the sub-millimeter scale (plane channel height of 0.25 mm.

  16. Electrochemical atomic layer deposition of Pt nanostructures on carbon paper and Ni foam; poster

    CSIR Research Space (South Africa)

    Louw, EK

    2012-07-01

    Full Text Available , 165, 667-677. 4. Stickney, J. L., Kim, Y.-G., Kim, J. Y., & Vairavapandian, D. (2006). Platinum nanofilm formation by EC-ALE via redox replacement of UDP copper: Studies using in-situ scanning tunneling microscopy. J.Phys. Chem. B, 110, 17998- 18006... industry. EXPERIMENTAL WORK Sequential electrodeposition coupled to Surface-limited Redox- replacement reactions: Synthesis of Pt electrocatalyst Cu 2+ (1) Clean substrate with blank electrolyte (BE); Inject Cu 2+ solution at E >> E Cu - Cu2...

  17. Atomic and electronic structure of CdTe/metal (Cu, Al, Pt) interfaces and their influence to the Schottky barrier

    Science.gov (United States)

    Odkhuu, Dorj; Miao, Mao-sheng; Aqariden, F.; Grein, Christoph; Kioussis, Nicholas

    2016-11-01

    Schottky barrier heights (SBHs) and other features of the interfaces are determining factors for the performance of the CdTe based high-energy photon detectors. Although known for long time that SBH is sensitive to surface treatment and metal contact growth method, there is a lack of understanding of the effect of the atomic and electronic structures of CdTe/metal interface on the SBH. Employing first-principles electronic structure calculations, we have systematically studied the structural stability and electronic properties of a number of representing structures of Cd Terminated CdTe/metal (Cu, Pt, and Al) interfaces. Comparison of the total energies of the various optimized structural configurations allows to identify the existence of Te-metal alloy formation at the interface. The SBHs of Cu, Pt, and Al metal contacts with a number of stable interface structures are determined by aligning the band edges of bulk CdTe with the Fermi level of the metal/CdTe system. We find that the metal-induced states in the gap play an essential role in determining the SBH.

  18. Realization of non-PT -symmetric optical potentials with all-real spectra in a coherent atomic system

    Science.gov (United States)

    Hang, Chao; Gabadadze, Gregory; Huang, Guoxiang

    2017-02-01

    We present a physical setup for realizing all-real-spectrum optical potentials with arbitrary gain-and-loss distributions in a coherent medium consisting of a cold three-level atomic gas driven by control and probe laser fields. We show that by the interference of Raman resonances and the Stark shift induced by a far-detuned laser field, tunable, non-parity-time (non-PT )-symmetric optical potentials with all-real spectra proposed recently by Nixon and Yang [Phys. Rev. A 93, 031802(R) (2016), 10.1103/PhysRevA.93.031802] can be actualized physically. We also show that when the real parts of the non-PT -symmetric optical potentials are tuned cross certain thresholds, phase transitions—where the eigenspectrum of the system changes from all real to complex—may occur and hence the stability of the probe-field propagation is altered. Our scheme can also be extended to high dimensions and to a nonlinear propagation regime, where stable optical solitons with power of the order of nano-Watts may be generated in the system.

  19. Inlfuence of the Alkali Treatment of HZSM-5 Zeolite on Catalytic Performance of PtSn-Based Catalyst for Propane Dehydrogenation

    Institute of Scientific and Technical Information of China (English)

    Huang Li; Zhou Shijian; Zhou Yuming; Zhang Yiwei; Xu Jun; Wang Li

    2013-01-01

    The porous material ATZ with micro-mesopore hierarchical porosity was prepared by alkali treatment of parent HZSM-5 zeolite and applied for propane dehydrogenation. The zeolite samples were characterized by XRD, N2-physisorption, and NH3-TPD analysis. The results showed that the alkali treatment can modify the physicochemical prop-erties of HZSM-5 zeolite. In this case, the porous material ATZ showed larger external surface area with less acid sites as compared to the HZSM-5 zeolite. It was found out that the alkali treatment of HZSM-5 zeolite could promote the catalytic performance of PtSn/ATZ catalyst. The possible reason was ascribed to the low acidity of ATZ. Furthermore, the presence of mesopores could reduce the carbon deposits on the metallic surface, which was also favorable for the dehydrogenation reaction.

  20. Synthesis and Catalytic Activity of Pt Monolayer on Pd Tetrahedral Nanocrystals with CO-adsorption-induced Removal of Surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Gong K.; Vukmirovic M.B.; Ma C.; Zhu Y.; Adzic R.R.

    2011-11-01

    We synthesized the Pt monolayer shell-Pd tetrahedral core electrocatalysts that are notable for their high activity and stable performance. A small number of low-coordination sites and defects, and high content of the (1 1 1)-oriented facets on Pd tetrahedron makes them a suitable support for a Pt monolayer to obtain an active O{sub 2} reduction reaction (ORR) electrocatalyst. The surfactants, used to control size and shape of Pd tetrahedral nanoparticles, are difficult to remove and cause adverse effects on the ORR. We describe a simple and noninvasive method to synthesize high-purity tetrahedral Pd nanocrystals (TH Pd) by combining a hydrothermal route and CO adsorption-induced removal of surfactants. Poly(vinylpyrrolidone) (PVP), used as a protecting and reducing agent in hydrothermal reactions, is strongly bonded to the surface of the resulting nanocrystals. We demonstrate that PVP was displaced efficiently by adsorbed CO. A clean surface was achieved upon CO stripping at a high potential (1.0 V vs RHE). It played a decisive role in improving the activity of the Pt monolayer/TH Pd electrocatalyst for the ORR. Furthermore, the results demonstrate a versatile method for removal of surfactants from various nanoparticles that severely limited their applications.

  1. The atomic structural dynamics of γ-Al2O3 supported Ir-Pt nanocluster catalysts prepared from a bimetallic molecular precursor: a study using aberration-corrected electron microscopy and X-ray absorption spectroscopy.

    Science.gov (United States)

    Small, Matthew W; Sanchez, Sergio I; Menard, Laurent D; Kang, Joo H; Frenkel, Anatoly I; Nuzzo, Ralph G

    2011-03-16

    This study describes a prototypical, bimetallic heterogeneous catalyst: compositionally well-defined Ir-Pt nanoclusters with sizes in the range of 1-2 nm supported on γ-Al(2)O(3). Deposition of the molecular bimetallic cluster [Ir(3)Pt(3)(μ-CO)(3)(CO)(3)(η-C(5)Me(5))(3)] on γ-Al(2)O(3), and its subsequent reduction with hydrogen, provides highly dispersed supported bimetallic Ir-Pt nanoparticles. Using spherical aberration-corrected scanning transmission electron microscopy (C(s)-STEM) and theoretical modeling of synchrotron-based X-ray absorption spectroscopy (XAS) measurements, our studies provide unambiguous structural assignments for this model catalytic system. The atomic resolution C(s)-STEM images reveal strong and specific lattice-directed strains in the clusters that follow local bonding configurations of the γ-Al(2)O(3) support. Combined nanobeam diffraction (NBD) and high-resolution transmission electron microscopy (HRTEM) data suggest the polycrystalline γ-Al(2)O(3) support material predominantly exposes (001) and (011) surface planes (ones commensurate with the zone axis orientations frequently exhibited by the bimetallic clusters). The data reveal that the supported bimetallic clusters exhibit complex patterns of structural dynamics, ones evidencing perturbations of an underlying oblate/hemispherical cuboctahedral cluster-core geometry with cores that are enriched in Ir (a result consistent with models based on surface energetics, which favor an ambient cluster termination by Pt) due to the dynamical responses of the M-M bonding to the specifics of the adsorbate and metal-support interactions. Taken together, the data demonstrate that strong temperature-dependent charge-transfer effects occur that are likely mediated variably by the cluster-support, cluster-adsorbate, and intermetallic bonding interactions.

  2. Tuning Surface Structure and Strain in Pd-Pt Core-Shell Nanocrystals for Enhanced Electrocatalytic Oxygen Reduction.

    Science.gov (United States)

    Xiong, Yalin; Shan, Hao; Zhou, Zhengnan; Yan, Yucong; Chen, Wenlong; Yang, Yaxiong; Liu, Yongfeng; Tian, He; Wu, Jianbo; Zhang, Hui; Yang, Deren

    2017-02-01

    Icosahedral, octahedral, and cubic Pd@Pt core-shell nanocrystals with two atomic Pt layers are epitaxially generated under thermodynamic control. Such icosahedra exhibit remarkably enhanced catalytic properties for oxygen reduction reaction compared to the octahedra and cubes as well as commercial Pt/C, which can be attributed to ligand and geometry effects, especially twin-induced strain effect that is revealed by geometrical phase analysis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Atomic-Scale Modeling of Particle Size Effects for the Oxygen Reduction Reaction of Pt

    DEFF Research Database (Denmark)

    Tritsaris, Georgios; Greeley, Jeffrey Philip; Rossmeisl, Jan;

    2011-01-01

    in both the specific and mass activities for particle sizes in the range between 2 and 30 nm. The mass activity is calculated to be maximized for particles of a diameter between 2 and 4 nm. Our study demonstrates how an atomic-scale description of the surface microstructure is a key component...

  4. Structural and catalytic characterization of mechanical mixtures of Pt/WOx-ZrO{sub 2} and Al{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Contreras, J.L., E-mail: jlcl@correo.azc.uam.m [Universidad Autonoma Metropolitana-Azcapotzalco, CBI, Dpto. Energia, Av. Sn. Pablo 180, Col. Reynosa, C.P. 02200, Mexico, DF (Mexico); Fuentes, G.A. [Universidad Autonoma Metropolitana-Iztapalapa, CBI, Depto. de IPH C.P. 09340, Mexico, DF (Mexico); Navarrete, J.; Vazquez, A. [Instituto Mexicano del Petroleo, IBP, Ger. de Catalizadores, Eje Central Lazaro Cardenas No. 152, C.P. 07300, Mexico, DF (Mexico); Zeifert, B.; Salmones, J. [Instituto Politecnico Nacional Mexico, ESIQIE, Laboratorio de Catalisis y Materiales, C.P. 07738, Mexico, DF (Mexico); Nuno, L. [Universidad Autonoma Metropolitana-Azcapotzalco, CBI, Dpto. Energia, Av. Sn. Pablo 180, Col. Reynosa, C.P. 02200, Mexico, DF (Mexico)

    2010-04-16

    The effect of the Bronsted/Lewis acid ratio on isomerization of n-heptane using Al{sub 2}O{sub 3} as a source of Lewis acidity and WOx/ZrO{sub 2} as a source of Bronsted and Lewis acidity was studied and controlled using mechanical mixtures of these solids. These mixtures were characterized by surface area, infrared spectroscopy of pyridine, X-ray diffraction and Raman spectroscopy. It was found that the presence of W=O stretching mode which was consistent with the presence of oxotungstate species which were the precursors of the acid sites. It was found out that as the oxotungstate structures increased, the selectivity to n-heptane isomers increased while the hydrocracking and dehydrocyclization selectivity decreased. The presence of Bronsted acidity of the WOx/ZrO{sub 2} domains, the increase of Knudsen diffusivity and the loss of Pt metallic area by strong interaction of the Pt with the WOx/ZrO{sub 2} explain this catalytic behavior.

  5. Growth of bismuth telluride thin film on Pt by electrochemical atomic layer epitaxy

    Institute of Scientific and Technical Information of China (English)

    ZHU Wen; YANG Jun-you; GAO Xian-hui; HOU Jie; ZHANG Tong-jun; CUI Kun

    2005-01-01

    An automated thin-layer flow cell electrodeposition system was developed for growing Bi2 Te3 thin film by ECALE. The dependence of the Bi and Te deposition potentials on Pt electrode was studied. In the first attempt,this reductive Te underpotential deposition (UPD)/reductive Bi UPD cycle was performed to 100 layers. A better linearity of the stripping charge with the number of cycles has been shown and confirmed a layer-by-layer growth mode, which is consistent with an epitaxial growth. The 4: 3 stoichiometric ratio of Bi to Te suggests that the incomplete charge transfer in HTeO2+ reduction excludes the possibility of Bi2 Te3 formation. X-ray photoelectron spectroscopy (XPS) analysis also reveals that the incomplete charge transfer in HTeO2+ occurs in Te direct deposition. The effective way of depositing Bi2 Te3 on Pt consists in oxidative Te UPD and reductive Bi UPD. The thin film deposited by this procedure was characterized by X-ray diffraction(XRD), scanning electron microscopy(SEM) and X-ray photoelectron spectroscopy(XPS). A polycrystalline characteristic was confirmed by XRD. The 2 : 3 stoichiometric ratio was confirmed by XPS. The SEM image indicates that the deposit looks like a series of buttons about 0.3 - 0.4 μm in diameter, which is corresponding with calculated thickness of the epitaxial film. This suggests that the particle growth appears to be linear with the number of cycles, as it is consistent with a layer by layer growth mode.

  6. Catalytic Activity and Stability of Oxides: The Role of Near-Surface Atomic Structures and Compositions

    KAUST Repository

    Feng, Zhenxing

    2016-05-05

    Conspectus Electrocatalysts play an important role in catalyzing the kinetics for oxygen reduction and oxygen evolution reactions for many air-based energy storage and conversion devices, such as metal–air batteries and fuel cells. Although noble metals have been extensively used as electrocatalysts, their limited natural abundance and high costs have motivated the search for more cost-effective catalysts. Oxides are suitable candidates since they are relatively inexpensive and have shown reasonably high activity for various electrochemical reactions. However, a lack of fundamental understanding of the reaction mechanisms has been a major hurdle toward improving electrocatalytic activity. Detailed studies of the oxide surface atomic structure and chemistry (e.g., cation migration) can provide much needed insights for the design of highly efficient and stable oxide electrocatalysts. In this Account, we focus on recent advances in characterizing strontium (Sr) cation segregation and enrichment near the surface of Sr-substituted perovskite oxides under different operating conditions (e.g., high temperature, applied potential), as well as their influence on the surface oxygen exchange kinetics at elevated temperatures. We contrast Sr segregation, which is associated with Sr redistribution in the crystal lattice near the surface, with Sr enrichment, which involves Sr redistribution via the formation of secondary phases. The newly developed coherent Bragg rod analysis (COBRA) and energy-modulated differential COBRA are uniquely powerful ways of providing information about surface and interfacial cation segregation at the atomic scale for these thin film electrocatalysts. In situ ambient pressure X-ray photoelectron spectroscopy (APXPS) studies under electrochemical operating conditions give additional insights into cation migration. Direct COBRA and APXPS evidence for surface Sr segregation was found for La1–xSrxCoO3−δ and (La1–ySry)2CoO4±δ/La1–xSrxCoO3

  7. Stabilizing a Platinum1 Single-Atom Catalyst on Supported Phosphomolybdic Acid without Compromising Hydrogenation Activity.

    Science.gov (United States)

    Zhang, Bin; Asakura, Hiroyuki; Zhang, Jia; Zhang, Jiaguang; De, Sudipta; Yan, Ning

    2016-07-11

    In coordination chemistry, catalytically active metal complexes in a zero- or low-valent state often adopt four-coordinate square-planar or tetrahedral geometry. By applying this principle, we have developed a stable Pt1 single-atom catalyst with a high Pt loading (close to 1 wt %) on phosphomolybdic acid(PMA)-modified active carbon. This was achieved by anchoring Pt on the four-fold hollow sites on PMA. Each Pt atom is stabilized by four oxygen atoms in a distorted square-planar geometry, with Pt slightly protruding from the oxygen planar surface. Pt is positively charged, absorbs hydrogen easily, and exhibits excellent performance in the hydrogenation of nitrobenzene and cyclohexanone. It is likely that the system described here can be extended to a number of stable SACs with superior catalytic activities.

  8. Influence of multi-hit capability on quantitative measurement of NiPtSi thin film with laser-assisted atom probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kinno, T., E-mail: teruyuki.kinno@toshiba.co.jp [Corporate Research and Development Center, Toshiba Corporation, 8 Shinsugita-cho, Isogo-ku, Yokohama 235-8522 (Japan); Akutsu, H.; Tomita, M. [Corporate Research and Development Center, Toshiba Corporation, 8 Shinsugita-cho, Isogo-ku, Yokohama 235-8522 (Japan); Kawanaka, S. [Center for Semiconductor Research and Development, Toshiba Corporation Semiconductor and Storage Products Company, 8 Shinsugita-cho, Isogo-ku, Yokohama 235-8522 (Japan); Sonehara, T. [Advanced Memory Development Center, Toshiba Corporation Semiconductor and Storage Products Company, 800 Yamano-Isshiki-cho, Yokkaichi, Mie 512-8550 (Japan); Hokazono, A. [Center for Semiconductor Research and Development, Toshiba Corporation Semiconductor and Storage Products Company, 8 Shinsugita-cho, Isogo-ku, Yokohama 235-8522 (Japan); Renaud, L.; Martin, I.; Benbalagh, R.; Salle, B. [Cameca SAS, 29 Quai des Gresillons, 92622 Gennevilliers Cedex (France); Takeno, S. [Corporate Research and Development Center, Toshiba Corporation, 8 Shinsugita-cho, Isogo-ku, Yokohama 235-8522 (Japan)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Laser-assisted atom probe tomography was applied to NiPtSi films on Si substrates. Black-Right-Pointing-Pointer Comparison of depth profiles of single-hit events and those of multi-hit events. Black-Right-Pointing-Pointer {approx}80% of Pt atoms were detected in multi-hit events. Black-Right-Pointing-Pointer Multiple-ion detection is important for Laser-assisted atom probe tomography. - Abstract: Laser-assisted atom probe tomography (LA-APT) was applied to NiPtSi (0, 30, and 50% Pt contents) thin films on Si substrates. Consistent results with those of high-resolution Rutherford backscattering spectrometry (HR-RBS) were obtained. Based on the obtained data sets, the composition profiles from only the signals of single-hit events, meaning detection of one ion by one laser pulse, were compiled. The profiles from only the signals of multi-hit events, meaning detection of multiple ions by one laser pulse, were also compiled. There were large discrepancies with respect to Ni and Pt concentrations among the compiled profiles and the original profiles including the signals of both types of detection events. Additionally, the profiles compiled from single-hit events showed that Si concentration in NiPtSi layer became smaller toward the surface, differing from the original profiles and the multi-hit profiles. These results suggest that capability of simultaneous multiple-ion detection is important for appropriate LA-APT analyses.

  9. Exotic high activity surface patterns in PtAu nanoclusters

    KAUST Repository

    Mokkath, Junais Habeeb

    2013-05-09

    The structure and chemical ordering of PtAu nanoclusters of 79, 135, and 201 atoms are studied via a combination of a basin hopping atom-exchange technique (to locate the lowest energy homotops at fixed composition), a symmetry orbit technique (to find the high symmetry isomers), and density functional theory local reoptimization (for determining the most stable homotop). The interatomic interactions between Pt and Au are derived from the empirical Gupta potential. The lowest energy structures show a marked tendency toward PtcoreAushell chemical ordering by enrichment of the more cohesive Pt in the core region and of Au in the shell region. We observe a preferential segregation of Pt atoms to (111) facets and Au atoms to (100) facets of the truncated octahedron cluster motif. Exotic surface patterns are obtained particularly for Pt-rich compositions, where Pt atoms are being surrounded by Au atoms. These surface arrangements boost the catalytic activity by creating a large number of active sites. © 2013 American Chemical Society.

  10. Electrocatalysis of fuel cells reaction on Pt and Pt-bimetallic anode catalysts: A selective review

    Directory of Open Access Journals (Sweden)

    Stamenković Vojislav

    2002-01-01

    Full Text Available In this review we selectively summarize recent progress, primarily from our laboratory, in the development of interrelationships between the kinetics of the fuel cells reactions and the structure/composition of anode catalysts. The focus is placed on two types of metallic surfaces: platinum single crystals and bimetallic surfaces based on Pt. In the first part it was illustrated that the hydcogen reaction is structure sensitive process, with Pt(110 being an order of magnitude more active than either of the atomically "flatter" (100 and (111 surfaces. The hydrogen reaction on Pt(hkl modified by pseudomorphic Pd (submonolayers shows the "volcano-like" behavior, having the maximum rate on Pt(111 modified by 1 ML of Pd. The Pt(111-Pd system is used to demonstrate how the energetics of intermediates formed in the hydrogen reaction is affected by interfacial bonding and energetic constraints produced between pseudomorphic Pd films and the Pt(111 substrate. In the second part it was shown that the oxidation of Ha in the presence of CO occurs concurrently with CO oxidation on Pt and Pt bimetallic surfaces. The Pt-Ru system is used to demonstrate that both the bifunctional effect and the ligand effect contribute to the influence of Ru on the CO oxidation rate and for Hz oxidation process in the presence of CO. The knowledge is then used to create the real-life catalyst with the catalytic activities which are, to the greatest extend possible similar to the tailor-made surface.

  11. Propane combustion over Pt/Al{sub 2}O{sub 3} catalysts with different crystalline structures of alumina

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jung Eun; Kim, Bo Bae; Park, Eun Duck [Ajou University, Suwon (Korea, Republic of)

    2015-11-15

    The effects of the crystalline phases (α-Al{sub 2}O{sub 3}, κ-Al{sub 2}O{sub 3}, δ-Al{sub 2}O{sub 3}, θ-Al{sub 2}O{sub 3}, η-Al{sub 2}O{sub 3}, and γ-Al{sub 2}O{sub 3}) of the alumina support of Pt/Al{sub 2}O{sub 3} catalysts on the catalyst activity toward propane combustion were examined. The catalysts were characterized by N{sub 2} physisorption, CO chemisorption, temperature-programmed reduction (TPR), temperature programmed oxidation (TPO), transmission electron microscopy (TEM), and infrared spectroscopy (IR) after CO chemisorption. The Pt dispersion of the catalysts (surface Pt atoms/total Pt atoms), measured via CO chemisorption, was more dependent on the crystalline structure of alumina than on the surface area of alumina. The highest catalytic activity for propane combustion was achieved with Pt/α-Al{sub 2}O{sub 3}, which has the lowest Brunauer, Emmett, and Teller (BET) surface area and Pt dispersion. The lowest catalytic activity for propane combustion was exhibited by Pt/γ-Al{sub 2}O{sub 3}, which has the highest BET surface area and Pt dispersion. The catalytic activity was confirmed to increase with increasing Pt particle size in Pt/δ-Al{sub 2}O{sub 3}. The apparent activation energies for propane combustion over Pt/α-Al{sub 2}O{sub 3}, Pt/κ- Al{sub 2}O{sub 3}, Pt/δ-Al{sub 2}O{sub 3}, Pt/θ-Al{sub 2}O{sub 3}, Pt/η-Al{sub 2}O{sub 3}, and Pt/γ-Al{sub 2}O{sub 3} were determined to be 24.7, 21.4, 24.3, 22.1, 24.0, and 19.1 kcal/mol, respectively.

  12. In-Situ Investigation of Gas Phase Radical Chemistry in the Catalytic Partial Oxidation of Methane on Pt

    OpenAIRE

    Geske, M.; Pelzer, K.; Horn, R.; Jentoft, F.; R. Schlögl

    2009-01-01

    The catalytic partial oxidation of methane on platinum was studied in situ under atmospheric pressure and temperatures between 1000 and 1300 °C. By combining radical measurements using a molecular beam mass spectrometer and threshold ionization with GC, GC-MS and temperature profile measurements it was demonstrated that a homogeneous reaction pathway is opened at temperatures above 1100 °C, in parallel to hetero-geneous reactions which start already at 600 °C. Before ignition of gas phase che...

  13. Study and modelling of deactivation by coke in catalytic reforming of hydrocarbons on Pt-Sn/Al{sub 2}O{sub 3} catalyst; La microbalance inertielle: etude et modelisation cinetique de la desactivation par le coke en reformage catalytique des hydrocarbures sur catalyseur Pt-Sn/Al{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Mathieu-Deghais, S.

    2004-07-01

    Catalytic reforming is the refining process that produces gasoline with a high octane number. During a reforming operation, undesired side reactions promote the formation of carbon deposits (coke) on the surface of the catalyst. As the reactions proceed, the coke accumulation leads to a progressive decrease of the catalyst activity and to a change in its selectivity. Getting this phenomenon under control is interesting to optimize the industrial plants. This work aims to improve the comprehension and the modeling of coke formation and its deactivating effect on reforming reactions, while working under conditions chosen within a range as close as possible to the industrial conditions of the regenerative process. The experimental study is carried out with a micro unit that is designed to observe simultaneously the coke formation and its influence on the catalyst activity. A vibrational microbalance reactor (TEOM - Tapered Element Oscillating Microbalance) is used to provide continuous monitoring of coke. On-line gas chromatography is used to observe the catalyst activity and selectivity as a function of the coke content. The coking experiments are performed on a fresh Pt-Sn/alumina catalyst, with mixtures of hydrocarbon molecules of 7 carbon atoms as hydrocarbon feeds. The coking tests permitted to highlight the operating parameters that may affect the amount of coke, and to identify the hydrocarbon molecules that behave as coke intermediate. A kinetic model for coke formation could be developed through the compilation of these results. The catalytic activity analysis permitted to point out the coke effect on both of the active phases of the catalyst, to construct a simplified reforming kinetic model that simulates the catalyst activity under the reforming conditions, and to quantify deactivation via deactivation functions. (author)

  14. Effects of Metal Composition and Ratio on Peptide-Templated Multimetallic PdPt Nanomaterials.

    Science.gov (United States)

    Merrill, Nicholas A; Nitka, Tadeusz T; McKee, Erik M; Merino, Kyle C; Drummy, Lawrence F; Lee, Sungsik; Reinhart, Benjamin; Ren, Yang; Munro, Catherine J; Pylypenko, Svitlana; Frenkel, Anatoly I; Bedford, Nicholas M; Knecht, Marc R

    2017-02-27

    It can be difficult to simultaneously control the size, composition, and morphology of metal nanomaterials under benign aqueous conditions. For this, bioinspired approaches have become increasingly popular due to their ability to stabilize a wide array of metal catalysts under ambient conditions. In this regard, we used the R5 peptide as a three-dimensional template for formation of PdPt bimetallic nanomaterials. Monometallic Pd and Pt nanomaterials have been shown to be highly reactive toward a variety of catalytic processes, but by forming bimetallic species, increased catalytic activity may be realized. The optimal metal-to-metal ratio was determined by varying the Pd:Pt ratio to obtain the largest increase in catalytic activity. To better understand the morphology and the local atomic structure of the materials, the bimetallic PdPt nanomaterials were extensively studied by transmission electron microscopy, extended X-ray absorption fine structure spectroscopy, X-ray photoelectron spectroscopy, and pair distribution function analysis. The resulting PdPt materials were determined to form multicomponent nanostructures where the Pt component demonstrated varying degrees of oxidation based upon the Pd:Pt ratio. To test the catalytic reactivity of the materials, olefin hydrogenation was conducted, which indicated a slight catalytic enhancement for the multicomponent materials. These results suggest a strong correlation between the metal ratio and the stabilizing biotemplate in controlling the final materials morphology, composition, and the interactions between the two metal species.

  15. Effects of Metal Composition and Ratio on Peptide-Templated Multimetallic PdPt Nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Merrill, Nicholas A.; Nitka, Tadeusz T.; McKee, Erik M.; Merino, Kyle C.; Drummy, Lawrence F.; Lee, Sungsik; Reinhart, Benjamin; Ren, Yang; Munro, Catherine J.; Pylypenko, Svitlana; Frenkel, Anatoly I.; Bedford, Nicholas M.; Knecht, Marc R.

    2017-02-22

    It can be difficult to simultaneously control the size, composition, and morphology of metal nanomaterials under benign aqueous conditions. For this, bio-inspired approaches have become increasing popular due to their ability to stabilize a wide array of metal catalysts under ambient conditions. In this regard, we used the R5 peptide as a 3D template for the formation of PdPt bimetallic nanomaterials. Monometallic Pd and Pt nanomaterials have been shown to be highly reactive towards a variety of catalytic processes, but by forming bimetallic species, increased catalytic activity may be realized. The optimal metal-to-metal ratio was determined by varying the Pd:Pt ratio to obtain the largest increase in catalytic activity. To better understand the morphology and the local atomic structure of the materials, the bimetallic PdPt nanomaterials were extensively studied using transmission electron microscopy, extended X-ray absorption fine structure spectroscopy, X-ray photoelectron spectroscopy, and pair distribution function analysis. The resulting PdPt materials were determined to form multicomponent nanostructures where the Pt component demonstrated varying degrees of oxidation based upon the Pd:Pt ratio. To test the catalytic reactivity of the materials, olefin hydrogenation was conducted which indicated a slight catalytic enhancement for the multicomponent materials. These results suggest a strong correlation between the metal ratio and the stabilizing biotemplate in controlling the final materials morphology, composition, and the interactions between the two metal species.

  16. Aqueous solution synthesis of Pt-M (M = Fe, Co, Ni) bimetallic nanoparticles and their catalysis for the hydrolytic dehydrogenation of ammonia borane.

    Science.gov (United States)

    Wang, Shuai; Zhang, Duo; Ma, Yanyun; Zhang, Hui; Gao, Jing; Nie, Yuting; Sun, Xuhui

    2014-08-13

    Platinum-based bimetallic nanocatalysts have attracted much attention due to their high-efficiency catalytic performance in energy-related applications such as fuel cell and hydrogen storage, for example, the hydrolytic dehydrogenation of ammonia borane (AB). In this work, a simple and green method has been demonstrated to successfully prepare Pt-M (M = Fe, Co, Ni) NPs with tunable composition (nominal Pt/M atomic ratios of 4:1, 1:1, and 1:4) in aqueous solution under mild conditions. All Pt-M NPs with a small size of 3-5 nm show a Pt fcc structure, suggesting the bimetallic formation (alloy and/or partial core-shell), examined by transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray absorption fine structure (XAFS) analysis. The catalytic activities of Pt-M NPs in the hydrolytic dehydrogenation of AB reveal that Pt-Ni NPs with a ratio of 4:1 show the best catalytic activity and even better than that of pure Pt NPs when normalized to Pt molar amount. The Ni oxidation state in Pt-Ni NPs has been suggested to be responsible for the corresponding catalytic activity for hydrolytic dehydrogenation of AB by XAFS study. This strategy for the synthesis of Pt-M NPs is simple and environmentally benign in aqueous solution with the potential for scale-up preparation and the in situ catalytic reaction.

  17. New methods of controlled monolayer-to-multilayer deposition of Pt for designing electrocatalysts at an atomic level

    Directory of Open Access Journals (Sweden)

    J. X. WANG

    2001-12-01

    Full Text Available Two new methods for monolayer-to-multileyer Pt deposition are presented. One involves Pt deposition by the replacement of an UPD metal monolayer on an electrode surface and the other the spontaneous deposition of Pt on Ru. The first method, exemplified by the replacement of a Cu monolayer on a Au(111 surface, occurs as a spontaneous irreversible redox reaction in which the Cu monolayer is oxidized by Pt cations, which are reduced and simultaneously deposited. The second method is illustrated by the deposition of Pt on a Ru(0001 surface and on carbon-supported Ru nanoparticles. This deposition takes place upon immersion of a UHV-prepared Ru(0001 crystal or Ru nanoparticles, reduced in H2, in a solution containing PtCl62- ions. The oxidation of Ru to RuOH by a local cell mechanism appears to be coupled with Pt deposition. This method facilitates the design of active Pt-Ru catalysts with ultimately low Pt loadings. Only a quarter of a monolayer of Pt on Ru nanoparticles yields an electrocatalyst with higher activity and CO tolerance for H2/CO oxidation than commercial Pt-Ru alloy electrocatalysts with considerably higher Pt loadings.

  18. Influence of method of preparation of Pt Ru/C electrocatalysts on the catalytic activity for the ethanol oxidation reaction in acidic medium; Influencia do metodo de preparacao de eletrocatalisadores PtRu/C sobre a atividade catalitica frente a reacao de oxidacao de etanol em meio acido

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Walber dos Santos; Silva, Uriel Lean Valente; Souza, Jose Pio Iudice de, E-mail: jpio@ufpa.br [Universidade Federal do Para, (UFPA), Belem, PA (Brazil). Instituto de Ciencias Exatas e Naturais. Faculdade de Quimica

    2013-09-01

    In this work the influence of variations in the borohydrate reduction method on the properties of Pt Ru/C electrocatalysts was investigated. The electrocatalysts were prepared using 1:1 ; 2:1; 5:1; 50:1 and 250:1 molar ratios of NaBH{sub 4} to metals. The reduction was also performed by dripping or by fast addition of the solution. The results showed that Pt Ru nanoparticles obtained by fast addition had the smallest crystallite sizes. It was also noted that the catalytic activity increased as the borohydrate:metal molar ratio increased. The Pt Ru/C electrocatalysts (50:1) obtained by fast addition presented the best catalytic activity for ethanol electro-oxidation. (author)

  19. Structure–activity relationships of Pt/Al2O3 catalysts for CO and NO oxidation at diesel exhaust conditions

    DEFF Research Database (Denmark)

    Boubnov, Alexey; Dahl, Søren; Johnson, Erik

    2012-01-01

    Structure–performance relationships for Pt/Al2O3 catalysts with mean Pt particle sizes of 1, 2, 3, 5 and 10nm are investigated for the catalytic oxidation of CO and NO under lean-burning diesel exhaust conditions. The most active catalysts for CO oxidation exhibit Pt particles of 2–3nm, having...... a large fraction of low-coordinated and reactive surface Pt atoms. Exploiting in situ XAFS, we find that a reversible Pt surface oxidation is connected to high CO conversion. NO oxidation is most efficient over the catalysts with the largest Pt particles mainly exhibiting surface Pt atoms on planar facets....... An irreversible Pt oxide formation observed during NO oxidation is a possible deactivation route and we suggest that the most active sites for NO oxidation are the ones least prone to surface oxidation. When both CO and NO are present in the reaction mixture, activity is increased for both reactions, suggesting...

  20. Site preference of NH3-adsorption on Co, Pt and CoPt surfaces: the role of charge transfer, magnetism and strain.

    Science.gov (United States)

    Bhattacharjee, S; Gupta, K; Jung, N; Yoo, S J; Waghmare, U V; Lee, S C

    2015-04-14

    Oxidation of Co at the surface poses a major problem in the cyclable use of CoPt, a cost-effective catalyst for proton exchange membrane fuel cells. This can be alleviated by attaching a ligand selectively to Co-sites to stop its oxidation without compromising the catalytic activity. Here, we present a comparative analysis of adsorption of NH3 on the (0001) surface of Co in the HCP structure and (111) surfaces of Pt and CoPt alloy in the FCC structure, using first-principles density functional theoretical calculations. While NH3 binds more strongly with the Pt surface than with the Co surface, we find that its binding with the Co atom is stronger than that with the Pt atom on the surface of the CoPt alloy. Our analysis of the charge density and electronic structure shows how this originates from (a) the electron transfer from the minority spin d-band of Co to Pt, and (b) shift in the energy of d-bands and the magnetic moments of Co atoms on the surface of the CoPt alloy relative to those on the (0001) surface of Co. Hybridization of the d-states of Co in CoPt with pz states of N in NH3 used to stop Co oxidation also results in improving the charge transfer from Co to Pt that is relevant to the catalytic activity of CoPt. We finally present the analysis of how the interaction of NH3 with the CoPt surface can be tuned with strain.

  1. Nanosized (mu12-Pt)Pd164-xPtx(CO)72(PPh3)20 (x approximately 7) containing Pt-centered four-shell 165-atom Pd-Pt core with unprecedented intershell bridging carbonyl ligands: comparative analysis of icosahedral shell-growth patterns with geometrically related Pd145(CO)x(PEt3)30 (x approximately 60) containing capped three-shell Pd145 core.

    Science.gov (United States)

    Mednikov, Evgueni G; Jewell, Matthew C; Dahl, Lawrence F

    2007-09-19

    Presented herein are the preparation and crystallographic/microanalytical/magnetic/spectroscopic characterization of the Pt-centered four-shell 165-atom Pd-Pt cluster, (mu(12)-Pt)Pd(164-x)Pt(x)(CO)(72)(PPh(3))(20) (x approximately 7), 1, that replaces the geometrically related capped three-shell icosahedral Pd(145) cluster, Pd(145)(CO)(x)(PEt(3))(30) (x approximately 60), 2, as the largest crystallographically determined discrete transition metal cluster with direct metal-metal bonding. A detailed comparison of their shell-growth patterns gives rise to important stereochemical implications concerning completely unexpected structural dissimilarities as well as similarities and provides new insight concerning possible synthetic approaches for generation of multi-shell metal clusters. 1 was reproducibly prepared in small yields (Pd-Pt anatomy of 1 consists of: (a) shell 1 with the centered (mu(12)-Pt) atom encapsulated by the 12-atom icosahedral Pt(x)Pd(12-x) cage, x = 1.2(3); (b) shell 2 with the 42-atom nu(2) icosahedral Pt(x)Pd(42-x) cage, x = 3.5(5); (c) shell 3 with the anti-Mackay 60-atom semi-regular rhombicosidodecahedral Pt(x)Pd(60-x) cage, x = 2.2(6); (d) shell 4 with the 50-atom nu(2) pentagonal dodecahedral Pd(50) cage. The total number of crystallographically estimated Pt atoms, 8 +/- 3, which was obtained from least-squares (Pt(x)/Pd(1-x))-occupancy analysis of the X-ray data that conclusively revealed the central atom to be pure Pt (occupancy factor, x = 1.00(3)), is fortuitously in agreement with that of 7.6(7) found from an X-ray Pt/Pd microanalysis (WDS spectrometer) on three crystals of 1. Our utilization of this site-occupancy (Pt(x)Pd(1-x))-analysis for shells 1-3 originated from the microanalytical results; otherwise, the presumed metal-core composition would have been (mu(12)-Pt)Pd(164). [Alternatively, the (mu(12)-Pt)M(164) core-geometry of 1 may be viewed as a pseudo-Ih Pt-centered six-shell successive nu(1) polyhedral system, each with

  2. Direct versus ligand-exchange synthesis of [PtAg28(BDT)12(TPP)4]4− nanoclusters: effect of a single-atom dopant on the optoelectronic and chemical properties

    KAUST Repository

    Bootharaju, Megalamane Siddaramappa

    2017-06-07

    Heteroatom doping of atomically precise nanoclusters (NCs) often yields a mixture of doped and undoped products of single-atom difference, whose separation is extremely difficult. To overcome this challenge, novel synthesis methods are required to offer monodisperse doped NCs. For instance, the direct synthesis of PtAg28 NCs produces a mixture of [Ag29(BDT)12(TPP)4]3- and [PtAg28(BDT)12(TPP)4]4- NCs (TPP: triphenylphosphine; BDT: 1,3-benzenedithiolate). Here, we designed a ligand-exchange (LE) strategy to synthesize single-sized, Pt-doped, superatomic Ag NCs [PtAg28(BDT)12(TPP)4]4- by LE of [Pt2Ag23Cl7(TPP)10] NCs with BDTH2 (1,3-benzenedithiol). The doped NCs were thoroughly characterized by optical and photoelectron spectroscopy, mass spectrometry, total electron count, and time-dependent density functional theory (TDDFT). We show that the Pt dopant occupies the center of the PtAg28 cluster, modulates its electronic structure and enhances its photoluminescence intensity and excited-state lifetime, and also enables solvent interactions with the NC surface. Furthermore, doped NCs showed unique reactivity with metal ions - the central Pt atom of PtAg28 could not be replaced by Au, unlike the central Ag of Ag29 NCs. The achieved synthesis of single-sized PtAg28 clusters will facilitate further applications of the LE strategy for the exploration of novel multimetallic NCs.

  3. Atomically Precise Growth of Catalytically Active Cobalt Sulfide on Flat Surfaces and within a Metal-Organic Framework via Atomic Layer Deposition.

    Science.gov (United States)

    Peters, Aaron W; Li, Zhanyong; Farha, Omar K; Hupp, Joseph T

    2015-08-25

    Atomic layer deposition (ALD) has been employed as a new synthetic route to thin films of cobalt sulfide on silicon and fluorine-doped tin oxide platforms. The self-limiting nature of the stepwise synthesis is established through growth rate studies at different pulse times and temperatures. Additionally, characterization of the materials by X-ray diffraction and X-ray photoelectron spectroscopy indicates that the crystalline phase of these films has the composition Co9S8. The nodes of the metal-organic framework (MOF) NU-1000 were then selectively functionalized with cobalt sulfide via ALD in MOFs (AIM). Spectroscopic techniques confirm uniform deposition of cobalt sulfide throughout the crystallites, with no loss in crystallinity or porosity. The resulting material, CoS-AIM, is catalytically active for selective hydrogenation of m-nitrophenol to m-aminophenol, and outperforms the analogous oxide AIM material (CoO-AIM) as well as an amorphous CoSx reference material. These results reveal AIM to be an effective method of incorporating high surface area and catalytically active cobalt sulfide in metal-organic frameworks.

  4. Atomic-level Pd-Pt alloying and largely enhanced hydrogen-storage capacity in bimetallic nanoparticles reconstructed from core/shell structure by a process of hydrogen absorption/desorption.

    Science.gov (United States)

    Kobayashi, Hirokazu; Yamauchi, Miho; Kitagawa, Hiroshi; Kubota, Yoshiki; Kato, Kenichi; Takata, Masaki

    2010-04-28

    We have achieved the creation of a solid-solution alloy where Pd and Pt are homogeneously mixed at the atomic level, by a process of hydrogen absorption/desorption as a trigger for core (Pd)/shell (Pt) nanoparticles. The structural change from core/shell to solid solution has been confirmed by in situ powder X-ray diffraction, energy dispersive spectra, solid-state (2)H NMR measurement, and hydrogen pressure-composition isotherms. The successfully obtained Pd-Pt solid-solution nanoparticles with a Pt content of 8-21 atom % had a higher hydrogen-storage capacity than Pd nanoparticles. Moreover, the hydrogen-storage capacity of Pd-Pt solid-solution nanoparticles can be tuned by changing the composition of Pd and Pt.

  5. Internal heavy atom effect of Au(III) and Pt(IV) on hypocrellin A for enhanced in vitro photodynamic therapy of cancer.

    Science.gov (United States)

    Zhou, Lin; Ge, Xuefeng; Liu, Jihua; Zhou, Jiahong; Wei, Shaohua; Li, Fuyou; Shen, Jian

    2013-10-01

    Hypocrellin A (HA), an a natural perylene quinine photosensitizers (PSs), can chelate with heavy metal ions, including Au(III) and Pt(IV), to form a 1:2 complex, which exhibits enhanced (1)O2 generation quantum yield through the increased intersystem crossing efficiency mediated by internal heavy atom effect. Besides, the chelate process greatly improved the water solubility of HA. Comparative studies with HA and complexes have demonstrated that the heavy-atom effect on HA molecules enhances the efficiency of in vitro photodynamic (PDT) efficacy.

  6. Following electron impact excitations of single Os, Pt, Hg, Pb and Po atom L subshells ionization cross section calculations by using Lotz’s equation

    Energy Technology Data Exchange (ETDEWEB)

    Aydinol, M., E-mail: aydinolm@dicle.edu.tr [Dicle University, Faculty of Science, Department of Physics, Diyarbakir, 21280 Turkey (Turkey); Aydeniz, D., E-mail: daydeniz@hotmail.com [Artuklu University, At Rectorate of Artuklu University, Mardin (Turkey)

    2016-03-25

    L shell ionization cross section and {sub Li} subshells ionization cross sections of Os, Pt, Hg, Pb, Po atoms calculated. For each atom, ten different electron impacty energy values E{sub oi} used. Calculations carried out by using nonrelativistic Lotz equation in Matlab. Ionization cross section values obtained for Eoi values in the energy range of E{sub Li} ≤E{sub oi}≤4E{sub Li} for each atom. Starting allmost from E{sub oi} = E{sub Li} (i = 1,2,3) values of the each subshell ionization threshold energy, ionization cross section are increasing rapidly with E{sub oi}. For a fixed E{sub oi} = 3. E{sub Li} values, while Z increases from Z = 76 to Z = 84, ionization cross section are decrease. These results help to understand some results which obtained from other electron-sigle atom impact studies on σ{sub Li} subshells.

  7. Determination of the positions of aluminum atoms introduced into SSZ-35 and the catalytic properties of the generated Brønsted acid sites.

    Science.gov (United States)

    Miyaji, Akimitsu; Kimura, Nobuhiro; Shiga, Akinobu; Hayashi, Yoshihiro; Nishitoba, Toshiki; Motokura, Ken; Baba, Toshihide

    2017-03-01

    The positions of aluminum (Al) atoms in SSZ-35 together with the characteristics of the generated protons were investigated by (27)Al multiple quantum magic-angle spinning (MQ-MAS), (29)Si MAS, and (1)H MAS NMR data analyses accompanied by a variable temperature (1)H MAS NMR analysis. The origin of the acidic -OH groups (Brønsted acid sites) generated by introducing Al atoms into the T sites was investigated and the T sites introduced into the Al atoms were revealed. To further determine the catalytic properties of the acidic protons generated in SSZ-35, the influence of the concentration of the Al atoms on the catalytic activity and selectivity during the transformation of toluene was examined.

  8. Catalytic converters as a source of platinum

    Directory of Open Access Journals (Sweden)

    A. Fornalczyk

    2011-10-01

    Full Text Available The increase of Platinum Group Metals demand in automotive industry is connected with growing amount of cars equipped with the catalytic converters. The paper presents the review of available technologies during recycling process. The possibility of removing platinum from the used catalytic converters applying pyrometallurgical and hyrdometallurgical methods were also investigated. Metals such as Cu, Pb, Ca, Mg, Cd were used in the pyrometallurgical research (catalytic converter was melted with Cu, Pb and Ca or Mg and Cd vapours were blown through the whole carrier. In hydrometallurgical research catalytic converters was dissolved in aqua regia. Analysis of Pt contents in the carrier before and after the process was performed by means of atomic absorption spectroscopy. Obtained result were discussed.

  9. Catalytic atom-transfer radical cyclization by copper/bipyridine species encapsulated in polysiloxane gel.

    Science.gov (United States)

    Motoyama, Yukihiro; Kamo, Kazuyuki; Yuasa, Akihiro; Nagashima, Hideo

    2010-04-07

    Novel polysiloxane gel, in which CuCl/bipyridine species are immobilized, is prepared by treatment of polymethylhydrosiloxane with 4,4'-bis[(2-propenyl)oxy]-2,2'-bipyridine and 1,5-hexadine in the presence of Karstedt's catalyst followed by addition of CuCl. This polysiloxane gel acts as a reusable catalyst in the atom-transfer radical cyclization of alpha-halogenated acetamide derivatives in high turnover numbers without allowing leakage of the metal species.

  10. The electrochemical atomic layer deposition of Pt and Pd nanoparticles on Ni foam for the electro oxidation of alcohols

    CSIR Research Space (South Africa)

    Modibedi, RM

    2013-01-01

    Full Text Available of the electrocatalytic activity of the prepared catalysts. TABLE I. Electrochemical Activity of Pt and Pd Towards the Oxidation of Methanol. Catalyst Onset potential (V vs Ag/AgCl) If/Ib Pt/Carbon paper 0.41 4.30 Pt/Ni foam 0.38 2.16 Pd/Carbon paper* Pd.../Ni foam* -0.456 -0.429 2.86 1.30 *: methanol oxidation performed in alkaline medium TABLE II. Electrochemical Activity of Pd Towards the Oxidation of Ethanol in alkaline electrolyte. Catalyst Onset potential (V vs Ag/AgCl) If/Ib Pd...

  11. Predicting the size- and shape-dependent cohesive energy and order-disorder transition temperature of Co-Pt nanoparticles by embedded-atom-method potential.

    Science.gov (United States)

    Liu, Chenze; Qi, Weihong; Ouyang, Bin; Wang, Xing; Huang, Baiyun

    2013-02-01

    The cohesive energy (CE) of CoPt nanoparticles (NPs) with different sizes and shapes have been calculated by embedded-atom-method (EAM) potential. It is shown that CE of NPs with order or disorder structures decreases with the decrease of particle size, while the shape effects become obvious only at small size. The CE difference per atom between order and disorder structures decreases with the decrease of particle size, indicating that the possibility of order-disorder transition in small size becomes larger compared with these in large size. Significantly, the CE difference varies in proportion to order-disorder transition temperature (T(c)), which suggests that one can predict order-disorder transition of NPs by calculation the cohesive energy. The present calculated T(c) of CoPt NPs is consistent with recent experiments, simulation and theoretical predictions, and the method can also be applied to study the order-disorder transition of FePt, FePd, and so on.

  12. Surface composition tuning of Au-Pt bimetallic nanoparticles for enhanced carbon monoxide and methanol electro-oxidation.

    Science.gov (United States)

    Suntivich, Jin; Xu, Zhichuan; Carlton, Christopher E; Kim, Junhyung; Han, Binghong; Lee, Seung Woo; Bonnet, Nicéphore; Marzari, Nicola; Allard, Lawrence F; Gasteiger, Hubert A; Hamad-Schifferli, Kimberly; Shao-Horn, Yang

    2013-05-29

    The ability to direct bimetallic nanoparticles to express desirable surface composition is a crucial step toward effective heterogeneous catalysis, sensing, and bionanotechnology applications. Here we report surface composition tuning of bimetallic Au-Pt electrocatalysts for carbon monoxide and methanol oxidation reactions. We establish a direct correlation between the surface composition of Au-Pt nanoparticles and their catalytic activities. We find that the intrinsic activities of Au-Pt nanoparticles with the same bulk composition of Au0.5Pt0.5 can be enhanced by orders of magnitude by simply controlling the surface composition. We attribute this enhancement to the weakened CO binding on Pt in discrete Pt or Pt-rich clusters surrounded by surface Au atoms. Our finding demonstrates the importance of surface composition control at the nanoscale in harnessing the true electrocatalytic potential of bimetallic nanoparticles and opens up strategies for the development of highly active bimetallic nanoparticles for electrochemical energy conversion.

  13. Evaluation of nanostructured Pt-Ru catalyst for application in DMFC

    Energy Technology Data Exchange (ETDEWEB)

    Ocampo, A.L.; Gamboa, S.A. [Centro de Investigacion en Energia-UNAM, Morelos (Mexico); Sebastien, P.J. [Centro de Investigacion en Energia-UNAM, Morelos (Mexico)]|[Chiapas Politecnica Univ., Chiapas (Mexico); Morgado, J.; Montoya, J.A. [IMP, Eje Central Lazaro Cardenas, (Mexico); Savadogo, O. [Ecole Polytechnique, Montreal, PQ (Canada). Laboratoire d' electrochimie et de materiaux energetiques

    2006-07-01

    Slow methanol oxidation kinetics and the poisoning of the anode catalyst are the major factors that limit the performance of the direct methanol fuel cell (DMFC). Catalysts with higher catalytic activity are needed in order to overcome these challenges. Although platinum (Pt) is a good catalyst for methanol oxidation, it can be highly affected by carbon monoxide (CO) reaction intermediates. Superior catalytic activity occurs in Pt based alloys, such as platinum ruthenium (Pt-Ru), platinum molybdenum (Pt-Mo), platinum tin (Pt-Sn), and platinum osmium (Pt-Os). This is due to the bifunctional mechanism and/or by the electronic effect, which indicates a promotional effect of the alloyed metal on Pt. The most studied binary system is the Pt-Ru (ruthenium), which has shown the best catalytic activity. There are many factors that influence the physical properties and the electrochemical performance of the Pt-Ru catalyst. These include the preparation method; the atomic ratio between platinum and ruthenium; the nature of the catalyst support; and, an optional heat treatment. Other important factors such as the particle size, the morphology, the electrochemically active area, and the crystalline phase influence the physical properties. In this study, nanostructured Pt-Ru catalysts were fabricated and evaluated physicochemically and electrochemically for its use in direct methanol fuel cell (DMFC). The catalysts were synthesized from the carbonyl compounds of Pt and Ru via a pyrolysis-condensation reaction. The high resolution results showed a homogenous distribution of the nanostructured catalysts on Vulcan support. The catalyst was evaluated by XRD, HRTEM, electrochemical impedance spectroscopy and the methanol oxidation on the catalyst was studied using volt-amperometry. The performance of the catalyst was found to be similar or better than the commercial one. It was concluded that it is possible to synthesize Pt-Ru/C with good morphological characteristics and improve it

  14. Ethanol Oxidation Reaction on Tandem Pt/Rh/SnOx Catalyst

    Directory of Open Access Journals (Sweden)

    Phuong Tu Mai

    2017-08-01

    Full Text Available To elucidate the atomic arrangement of a Pt-Rh-Sn ternary catalyst with a high catalytic activity for ethanol oxidation reaction (EOR and high CO2 selectivity, we prepared a tandem Pt/Rh/SnOx, in which a Rh adlayer was deposited on a Pt substrate (Rh coverage: 0.28, followed by depositing several layers of SnOx only on the Rh surface (Sn coverage: 0.07. For reference, Sn was randomly deposited on the Rh-modified Pt (Pt/Rh electrode whose Rh and Sn coverages were 0.22 and 0.36 (random Pt/Rh/SnOx. X-ray photoelectron spectroscopy demonstrated that Pt and Rh were metallic, and Sn was largely oxidized. Both Pt/Rh/SnOx electrodes were less positive in onset potential of EOR current density and higher in EOR current density than Pt and Rh/Pt electrodes. In situ infrared reflection-absorption spectroscopy demonstrated that the tandem Pt/Rh/SnOx electrode did not produce acetic acid, but produced CO2 in contrast to the random Pt/Rh/SnOx, suggesting that a tandem arrangement of Pt, Rh and SnOx, in which the Pt and SnOx sites were separated by the Rh sites, was effective for selective CO2 production. In the electrostatic electrolysis at 0.5 V vs. RHE, the tandem Pt/Rh/SnOx electrode exhibited higher EOR current density than the Pt and Pt/Rh electrodes after 1.5 h.

  15. Crystal structure of a trapped catalytic intermediate suggests that forced atomic proximity drives the catalysis of mIPS.

    Science.gov (United States)

    Neelon, Kelly; Roberts, Mary F; Stec, Boguslaw

    2011-12-07

    1-L-myo-inositol-phosphate synthase (mIPS) catalyzes the first step of the unique, de novo pathway of inositol biosynthesis. However, details about the complex mIPS catalytic mechanism, which requires oxidation, enolization, intramolecular aldol cyclization, and reduction, are not fully known. To gain further insight into this mechanism, we determined the crystal structure of the wild-type mIPS from Archaeoglobus fulgidus at 1.7 Å, as well as the crystal structures of three active-site mutants. Additionally, we obtained the structure of mIPS with a trapped 5-keto-glucose-6-phosphate intermediate at 2 Å resolution by a novel (to our knowledge) process of activating the crystal at high temperature. A comparison of all of the crystal structures of mIPS described in this work suggests a novel type of catalytic mechanism that relies on the forced atomic proximity of functional groups. The lysine cluster is contained in a small volume in the active site, where random motions of these side chains are responsible for the progress of the complex multistep reaction as well as for the low rate of catalysis. The mechanism requires that functional groups of Lys-274, Lys-278, Lys-306, and Lys-367 assume differential roles in the protonation/deprotonation steps that must occur during the mIPS reaction. This mechanism is supported by the complete loss of activity of the enzyme caused by the Leu-257 mutation to Ala that releases the lysine containment.

  16. Redox-inactive metal ions promoted the catalytic reactivity of non-heme manganese complexes towards oxygen atom transfer.

    Science.gov (United States)

    Choe, Cholho; Yang, Ling; Lv, Zhanao; Mo, Wanling; Chen, Zhuqi; Li, Guangxin; Yin, Guochuan

    2015-05-21

    Redox-inactive metal ions can modulate the reactivity of redox-active metal ions in a variety of biological and chemical oxidations. Many synthetic models have been developed to help address the elusive roles of these redox-inactive metal ions. Using a non-heme manganese(II) complex as the model, the influence of redox-inactive metal ions as a Lewis acid on its catalytic efficiency in oxygen atom transfer was investigated. In the absence of redox-inactive metal ions, the manganese(II) catalyst is very sluggish, for example, in cyclooctene epoxidation, providing only 9.9% conversion with 4.1% yield of epoxide. However, addition of 2 equiv. of Al(3+) to the manganese(II) catalyst sharply improves the epoxidation, providing up to 97.8% conversion with 91.4% yield of epoxide. EPR studies of the manganese(II) catalyst in the presence of an oxidant reveal a 16-line hyperfine structure centered at g = 2.0, clearly indicating the formation of a mixed valent di-μ-oxo-bridged diamond core, Mn(III)-(μ-O)2-Mn(IV). The presence of a Lewis acid like Al(3+) causes the dissociation of this diamond Mn(III)-(μ-O)2-Mn(IV) core to form monomeric manganese(iv) species which is responsible for improved epoxidation efficiency. This promotional effect has also been observed in other manganese complexes bearing various non-heme ligands. The findings presented here have provided a promising strategy to explore the catalytic reactivity of some di-μ-oxo-bridged complexes by adding non-redox metal ions to in situ dissociate those dimeric cores and may also provide clues to understand the mechanism of methane monooxygenase which has a similar diiron diamond core as the intermediate.

  17. Synthetically Tuned Atomic Ordering in PdCu Nanoparticles with Enhanced Catalytic Activity toward Solvent-Free Benzylamine Oxidation.

    Science.gov (United States)

    Marakatti, Vijaykumar S; Sarma, Saurav Ch; Joseph, Boby; Banerjee, Dipanjan; Peter, Sebastian C

    2017-02-01

    Synthesis of ordered compounds with nano size is of particular interest for tuning the surface properties with enhanced activity and selectivity toward various important industrial catalytic processes. In this work, we synthesized ordered PdCu nanoparticles as highly efficient catalyst for the solvent-free aerobic oxidation of benzylamine. The PdxCu1-x catalysts with different chemical compositions (x = 0, 0.25, 0.4, 0.5, 0.6, 0.75, 1) were prepared by polyol method using NaBH4 as a reducing agent and were well-characterized by X-ray diffraction (XRD), inductively coupled plasma optical emission spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy (TEM) energy-dispersive analysis of X-rays, and X-ray absorption fine structure. The effect of different metal concentrations of Pd and Cu on the formation of PdxCu1-x nanoparticles was investigated. The XRD and TEM confirmed the formation of ordered PdCu intermetallic phase with body-centered cubic (BCC) structure for the synthetic composition of Pd/Cu = 1:1. For compositions x = 0, 0.25, 0.75, and 1, PdxCu1-x alloy with face-centered cubic (FCC) structure was observed, whereas mixed phase of BCC and FCC was observed for x = 0.4 and 0.6. The use of strong reducing agent (NaBH4) was essential to synthesize PdCu ordered phase compared to weak reducing agents such as oleylamine and ascorbic acid. The PdCu nanocatalyst with ordered structure (BCC) showed excellent catalytic activity compared to PdxCu1-x alloy nanoparticles with FCC structure. The atomic ordering in the PdCu intermetallic was the driving force for the enhancement in the catalytic activity with high benzylamine conversion of 94.0% and dibenzylimine selectivity of 92.2% compared to its monometallic and alloy counterparts. Moreover, ordered PdCu alloy showed good recyclability and activity toward the oxidation of different amines.

  18. Synthesis of End Functional Polymers via Atom Transfer Radical Polymerization in Immobilized Catalytic System

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Cross-linked polystyrene with azo-crown ether functional side chain (PSt-1, 10-dicarbonyl-3,6,9-trizaocylcodecane) was prepared under microwave irradiation and the structure was characterized through FT-IR and element analysis. The functionalized cross-linked polystyrene (cross-link degree, 3.5%) combining with immobilized catalyst system (CuBr and ethyl α-bromo-isobutyrate) can catalyze atom transfer radical polymerization of Styrene. Neat polymer products can be obtained then. Complex of La and the polymer end group (EBiB) was synthesized. The third order nonlinear optical property of the polymer-La complex was investigated and the structure was also characterized by FT-IR and XPS.

  19. Substitute of Exp ensive Pt with Improved Electro-catalytic Performance and Higher Resistance to CO Poisoning for Methanol Oxidation:the Case of Synergistic Pt-Co3O4 Nanocomposite

    Institute of Scientific and Technical Information of China (English)

    Hongxiao Zhao; Zhi Zheng; Jing Li; Huimin Jia; Ka-wai Wong; Yidong Zhang; Woon Ming Lau

    2013-01-01

    In this paper, Pt-Co3O4 nanocomposite was synthesized by a sol-gel process combined with electrodeposition method. Its electrocatalytic activity towards methanol oxidation was investigated at room temperature using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and current density-time curve. It is found that the resultant Pt-Co3O4 catalysts with minute amount of Pt exhibite attractive electrocatalytic activity for methanol oxidation reaction (MOR) but with a high resistance CO poisoning due to the synergistic effects from Pt and Co3O4. Together with the low manufacturing cost of Co3O4, the reported nanostructured Pt-Co3O4 catalyst is expected to be a promising electrode material for direct methanol fuel cells (DMFC).

  20. How does the exchange of one oxygen atom with sulfur affect the catalytic cycle of carbonic anhydrase?

    Science.gov (United States)

    Schenk, Stephan; Kesselmeier, Jürgen; Anders, Ernst

    2004-06-21

    We have extended our investigations of the carbonic anhydrase (CA) cycle with the model system [(H(3)N)(3)ZnOH](+) and CO(2) by studying further heterocumulenes and catalysts. We investigated the hydration of COS, an atmospheric trace gas. This reaction plays an important role in the global COS cycle since biological consumption, that is, uptake by higher plants, algae, lichens, and soil, represents the dominant terrestrial sink for this gas. In this context, CA has been identified by a member of our group as the key enzyme for the consumption of COS by conversion into CO(2) and H(2)S. We investigated the hydration mechanism of COS by using density functional theory to elucidate the details of the catalytic cycle. Calculations were first performed for the uncatalyzed gas phase reaction. The rate-determining step for direct reaction of COS with H(2)O has an energy barrier of deltaG=53.2 kcal mol(-1). We then employed the CA model system [(H(3)N)(3)ZnOH](+) (1) and studied the effect on the catalytic hydration mechanism of replacing an oxygen atom with sulfur. When COS enters the carbonic anhydrase cycle, the sulfur atom is incorporated into the catalyst to yield [(H(3)N)(3)ZnSH](+) (27) and CO(2). The activation energy of the nucleophilic attack on COS, which is the rate-determining step, is somewhat higher (20.1 kcal mol(-1) in the gas phase) than that previously reported for CO(2). The sulfur-containing model 27 is also capable of catalyzing the reaction of CO(2) to produce thiocarbonic acid. A larger barrier has to be overcome for the reaction of 27 with CO(2) compared to that for the reaction of 1 with CO(2). At a well-defined stage of this cycle, a different reaction path can emerge: a water molecule helps to regenerate the original catalyst 1 from 27, a process accompanied by the formation of thiocarbonic acid. We finally demonstrate that nature selected a surprisingly elegant and efficient group of reactants, the [L(3)ZnOH](+)/CO(2)/H(2)O system, that helps

  1. Low Pt content direct methanol fuel cell anode catalyst: nanophase PtRuNiZr

    Science.gov (United States)

    Narayanan, Sekharipuram R. (Inventor); Whitacre, Jay F. (Inventor)

    2010-01-01

    A method for the preparation of a metallic material having catalytic activity that includes synthesizing a material composition comprising a metal content with a lower Pt content than a binary alloy containing Pt but that displays at least a comparable catalytic activity on a per mole Pt basis as the binary alloy containing Pt; and evaluating a representative sample of the material composition to ensure that the material composition displays a property of at least a comparable catalytic activity on a per mole Pt basis as a representative binary alloy containing Pt. Furthermore, metallic compositions are disclosed that possess substantial resistance to corrosive acids.

  2. Preparation and Electro-catalytic Activity of Pd@Pt/C Catalyst%低铂催化剂Pd@Pt/C的制备及其电催化活性的研究

    Institute of Scientific and Technical Information of China (English)

    陈容; 黄琦杰

    2016-01-01

    The kinetics of the oxygen reduction reaction in fuel cell cathodes is sluggish that needs using large amounts of Pt to compensate, which mainly leads to the high cost of fuel cell, as well as hider the large scale application of proton exchange membrane fuel cell. In order to overcome these problems, it needs to investigate high performance, low platinum loading, excellent durability electrocatalysts. Core-shell structure catalyst, because of its special structure which can make the Pt dispersion, utilization, and activity be greatly improved as well as reduce Pt loading, has been widely recognized as being among the most promising candidates to achieve the commercialization of proton exchange membrane fuel cell. A novel pulse deposition method was used to prepare a low platinum catalyst Pd@Pt/C. For the cathodic reduction of oxygen, Pd@ Pt/C catalyst demonstrated three times higher mass activity towards the cathodic reduction of oxygen than commercial Pt/C catalyst, exhibiting competitive performance compared with commercial Pt/C catalyst.%燃料电池阴极氧还原动力学缓慢,需要使用大量的铂催化剂,导致电池高昂的成本,制约了质子交换膜燃料电池的大规模产业化。解决这个瓶颈的关键在于研究与制备高性能、低铂载量、耐久性好的燃料电池催化剂。而核壳结构催化剂因其特殊的结构可以使得Pt的分散度、利用率、活性得到很大的提高。本文采用脉冲电流沉积的方法制备了Pd@Pt/C催化剂。电化学测试结果表明, Pd@Pt/C催化剂的氧还原活性可媲美商品的20% Pt/C催化剂, Pd@Pt/C催化剂的Pt质量活性可达JM Pt/C催化剂的3.1倍。

  3. Promoting effect of TiO2 on the catalytic performance of Pt-Au/TiO2(x)-CeO2 for the co-oxidation of CO and H2 at room temperature

    Science.gov (United States)

    Hong, Xiaowei; Sun, Ye; Zhu, Tianle; Liu, Zhiming

    2017-02-01

    In the present study the promoting effect of TiO2 on the catalytic performance of Pt-Au/TiO2(x)-CeO2 catalysts for the co-oxidation of CO and H2 at room temperature has been investigated. The results showed that the addition of TiO2 to Pt-Au/CeO2 catalyst enhances the activity for the co-oxidation of CO and H2, and Pt-Au/TiO2 (10%)-CeO2 catalyst was the most active catalyst. A series of characterization methods were used to elucidate the promoting effect of TiO2. It was found that the introduction of TiO2 to Pt-Au/CeO2 led to the increase of Ce3+ and Au+ species, both of which played important roles in the co-oxidation of CO and H2. Moreover, a possible mechanism of the simultaneous removal of CO and H2 has been proposed.

  4. The development of catalytic performance by coating Pt-Ni on CMI7000 membrane as a cathode of a microbial fuel cell.

    Science.gov (United States)

    Cetinkaya, Afsin Y; Ozdemir, Oguz Kaan; Koroglu, Emre Oguz; Hasimoglu, Aydin; Ozkaya, Bestami

    2015-11-01

    Performance of cathode materials in microbial fuel cell (MFC) from dairy wastewater has been investigated in laboratory tests. Both cyclic voltammogram experiments and MFC tests showed that Pt-Ni cathode much better than pure Pt cathode. MFC with platinum cathode had the maximum power density of 0.180 W m(-2) while MFC with Pt:Ni (1:1) cathode produced the maximum power density of 0.637 W m(-2), even if the mass mixing ratio of Pt is lower in the alloy were used. The highest chemical oxygen demand (COD) removal efficiency was around 82-86% in both systems. The cyclic voltammogram (CV) analyses show that Pt:Ni (1:1) offers higher specific surface area than Pt alone does. X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM) results showed that entire Pt:Ni (1:1) alloys can reduce the oxygen easily than pure platinum, even though less precious metal amount. The main outcome of this study is that Pt-Ni, may serve as a alternative catalyst in MFC applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Catalytic Performance of Activated Carbon Supported Pt-Ni Bimetallic Catalyst for Glycerol in situ Hydrogenolysis%活性炭负载Pt-Ni双金属催化剂上甘油水溶液原位加氢反应性能

    Institute of Scientific and Technical Information of China (English)

    孔丹旎; 江涛; 张一颖; 曹发海

    2016-01-01

    A series of activated carbon supported Pt-M( M=Fe, Ni, Co, Zn, Cu) bimetallic catalysts was prepared via KBH4 reduction method for glycerol in situ hydrogenolysis to produce 1, 2-propanediol. The results showed that Pt-Ni/AC catalyst with a Pt loading ( mass fraction ) of 2. 0% and a Pt/Ni mass ratio of 1:1 displayed excellent performance at 220℃ under 1. 0 MPa of N2 after 8 h reaction time, with a high selec-tivity of 60. 5% and a conversion of 98. 7%. In addition, the prepared Pt-Ni/AC had a good catalytic stabili-ty, which kept a high activity even after five cycles catalytic evaluation. The results from the characterization of catalysts by N2 physisorption, XRD, TEM and XPS indicated that nanoparticles with an average size of ca. 2 nm were uniformly dispersed on the support. And the majority of metals in nanoparticles are present in the zerovalent metallic state. The formation of Pt-Ni phase due to the incorporation of Ni in the Pt lattice was responsible for the strong interaction between Pt and Ni metal. The catalytic performance of Pt-Ni/AC was compared with that of Pt/AC and Ni/AC, it was clearly observed that Pt could promote the aqueous phase reforming of glycerol to hydrogen, and Ni could facilitate the hydrogenolysis of glycerol. The unique perfor-mance of Pt-Ni/AC bimetallic catalysts was attribute to the the synergistic effect between Pt and Ni.%采用KBH4液相还原法制备了系列活性炭( AC)负载的Pt-M( M=Fe, Ni, Co, Zn, Cu)双金属催化剂,考察了该系列催化剂对甘油水溶液原位加氢制备1,2-丙二醇反应的催化性能.结果表明,当Pt负载量(质量分数)为2.0%, Pt/Ni质量比为1:1时,在220℃和1.0 MPa氮气压力下反应8 h,2%Pt-2%Ni/AC催化剂上甘油转化率和1,2-丙二醇选择性分别达到98.7%和60.5%;且在5次重复使用过程中,催化剂保持较高的稳定性.采用氮气物理吸附-脱附实验、X 射线衍射( XRD)、透射电子显微镜( TEM)、选区电子衍射( SAED

  6. Scalable Nanoporous (Pt1-xNix)3Al Intermetallic Compounds as Highly Active and Stable Catalysts for Oxygen Electroreduction.

    Science.gov (United States)

    Han, Gao-Feng; Gu, Lin; Lang, Xing-You; Xiao, Bei-Bei; Yang, Zhen-Zhong; Wen, Zi; Jiang, Qing

    2016-12-07

    Author: Bimetallic platinum-nickel (Pt-Ni) alloys as oxygen reduction reaction (ORR) electrocatalysts show genuine potential to boost widespread use of low-temperature fuel cells in vehicles by virtue of their high catalytic activity. However, their practical implementation encounters primary challenges in structural and catalytic durability caused by the low formation heat of Pt-Ni alloys. Here, we report nanoporous (NP) (Pt1-xNix)3Al intermetallic nanoparticles as oxygen electroreduction catalyst NP (Pt1-xNix)3Al, which circumvents this problem by making use of the extraordinarily negative formation heats of Pt-Al and Ni-Al bonds. The NP (Pt1-xNix)3Al nanocatalyst, which is mass-produced by alloying/dealloying and mechanical crushing technologies, exhibits specific activity of 3.6 mA cm(-2)Pt and mass activity of 2.4 A mg(-1)Pt at 0.90 V as a result of both ligand and compressive strain effects, while strong Ni-Al and Pt-Al bonds ensure their exceptional durability by alleviating evolution of Pt, Ni, and Al components and dissolutions of Ni and Al atoms.

  7. Synphos modified Pt nanoclusters, their heterogenization by silica sol-gel entrapment, and catalytic activity in hydrogenolysis of bicyclo[2.2.2]oct-7-enes and hydrogenation of ethyl pyruvate

    Energy Technology Data Exchange (ETDEWEB)

    Neatu, F; Parvulescu, V I [Faculty of Chemistry, Department of Chemical Technology and Catalysis, University of Bucharest, B-dul Regina Elisabeta 4-12, Bucharest 030018 (Romania); Kraynov, A [Jacobs University Bremen, Campus Ring 8, D-28759 Bremen (Germany); Kranjc, K; Kocevar, M [Faculty of Chemistry and Chemical Technology, University of Ljubljana, Askerceva 5, SI-1000 Ljubljana (Slovenia); Ratovelomanana-Vidal, V [Laboratoire de Synthese Selective Organique et Produits Naturels, Ecole Nationale Superieure de Chimie de Paris, UMR 7573 CNRS, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05 (France); Richards, R [Department of Chemistry and Geochemistry, Colorado School of Mines, 1500 Illiniois, Golden, CO 80401 (United States)], E-mail: v_parvulescu@chem.unibuc.ro, E-mail: virginie-vidal@enscp.fr, E-mail: rrichard@mines.edu

    2008-06-04

    Platinum (Pt) colloids modified by the chiral ligand synphos were prepared with the goal of obtaining a catalytic nanomaterial and were subsequently embedded in silica to form a heterogeneous catalyst. The systems were characterized by {sup 31}P-NMR, x-ray diffraction, molecular modeling and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTs) measurements. These colloids, both as 'quasi-homogeneous catalysts' (or soluble heterogeneous catalysts) and embedded in silica (heterogeneous catalysts) were employed in the selective hydrogenolysis of highly sterically constrained bicyclo[2.2.2]oct-7-enes and hydrogenation of ethyl pyruvate.

  8. A theoretical investigation of the structural and electronic properties of 55-atom nanoclusters: The examples of Y–Tc and Pt

    Energy Technology Data Exchange (ETDEWEB)

    Batista, Krys E. A.; Piotrowski, Maurício J., E-mail: mauriciomjp@gmail.com [Department of Physics, Federal University of Pelotas, P.O. Box 354, 96010 − 900, Pelotas, RS (Brazil); Chaves, Anderson S.; Da Silva, Juarez L. F., E-mail: juarez-dasilva@iqsc.usp.br [São Carlos Institute of Chemistry, University of São Paulo, P.O. Box 780, 13560 − 970, São Carlos, SP (Brazil)

    2016-02-07

    Several studies have found that the Pt{sub 55} nanocluster adopts a distorted reduced core structure, DRC{sub 55}, in which there are 8–11 atoms in the core and 47–44 atoms in the surface, instead of the compact and high-symmetry icosahedron structure, ICO{sub 55}, with 13 and 42 atoms in the core and surface, respectively. The DRC structure has also been obtained as the putative global minimum configuration (GMC) for the Zn{sub 55} (3d), Cd{sub 55} (4d), and Au{sub 55} (5d) systems. Thus, the DRC{sub 55} structure has been reported only for systems with a large occupation of the d-states, where the effects of the occupation of the valence anti-bonding d-states might play an important role. Can we observe the DRC structure for 55-atom transition-metal systems with non-occupation of the anti-bonding d-states? To address this question, we performed a theoretical investigation of the Y {sub 55}, Zr{sub 55}, Nb{sub 55}, Mo{sub 55}, Tc{sub 55}, and Pt{sub 55} nanoclusters, employing density functional theory calculations. For the putative GMCs, we found that the Y {sub 55} adopts the ICO{sub 55} structure, while Nb{sub 55} and Mo{sub 55} adopt a bulk-like fragment based on the hexagonal close-packed structure and Tc{sub 55} adopts a face-centered cubic fragment; however, Zr{sub 55} adopts a DRC{sub 55} structure, like Zn{sub 55}, Cd{sub 55}, Pt{sub 55}, and Au{sub 55}. Thus we can conclude that the preference for DRC{sub 55} structure is not related to the occupation of the anti-bonding d-states, but to a different effect, in fact, a combination of structural and electronic effects. Furthermore, we obtained that the binding energy per atom follows the occupation of the bonding and anti-bonding model, i.e., the stability of the studied systems increases from Y to Tc with a small oscillation for Mo, which also explains the equilibrium bond lengths. We obtained a larger magnetic moment for Y {sub 55} (31 μ{sub B}) which can be explained by the localization of the d

  9. Preparation of Pt/K2La2Ti3O10 and its photo-catalytic activity for hydrogen evolution from methanol water solution

    Institute of Scientific and Technical Information of China (English)

    CUI; Wenquan

    2006-01-01

    ):A new series of layered perovskites exhibiting ion exchange,Inorg.Chem.,1987,26:4299-4301.[12]Takata,T.,Shinohara,K.,Tanaka,A.,Hara,M.,Kondo,J.N.,Domen,K.,A highly active photocatalyst for overall water splitting with a hydrated layered perovskite structure,J.Photochem.Photobiol.A:Chem.,1997,106(1-3):45-49.[13]Cui,W.Q.,Feng,L.R.,Xu,C.H.,Lü,S.J.,Qiu,F.L.,Hydrogen production by photocatalytic decomposition of methanol gas on Pt/TiO2 nano-film,Catal.Comm.,2004(5):533-536.[14]Herrmann,J.M.,Disdier,J.,Pichat,P.,Photoassisted platinum deposition on TiO2 powder using various platinum complexes,J.Phys.Chem.,1986,90:6028-6034.[15]Cui,W.Q.,Feng,L.R.,Xu,C.H.,Lü,S.J.,Qiu,F.L.,Studies on the photo-catalytic decomposition of methanol vapor on Pt-loaded nano-TiO2 particles,Acta Chim.Sinica (in Chinese),2005,63(3):203-209.[16]Ikeda,S.,Hara,M.,Kondo,J.N.,Domen,K.,Preparation of K2La2Ti3O10 by polymerized complex method and photocatalytic decomposition of water,Chem.Mater.,1998,10(1):72-77.[17]Yang,X.Y.,Per,Z.F.,Bai,R.Q.,Studies on dispersion of Pt by HOT,Petrochemical Technology,1978,7(4):352.[18]Fox,M.A.,Dulay,M.Y.,Heterogeneous photocatalysis,Chem.Rev.,1993,93(1):341-357.[19]Kudo,A.,Sakata,T.,Luminescent properties of nondoped and rare earth metal ion-doped K2La2Ti3O10 with layered perovskite structures:Importance of the hole trap process,J.Phys.Chem.,1995,99:15963-15967.

  10. Preparation and characterization of nano-sized Pt-Ru/C catalysts and their superior catalytic activities for methanol and ethanol oxidation.

    Science.gov (United States)

    Şen, Selda; Şen, Fatih; Gökağaç, Gülsün

    2011-04-21

    Carbon-supported PtRu nanoparticles (Ru/Pt: 0.25) were prepared by three different methods; simultaneous reduction of PtCl(4) and RuCl(3) (catalyst I) and changing the reduction order of PtCl(4) and RuCl(3) (catalysts II and III) to enhance the performance of the anodic catalysts for methanol and ethanol oxidation. Structure, microstructure and surface characterizations of all the catalysts were carried out by X-ray diffraction (XRD), transmission electron microscopy (TEM) coupled with energy dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The results of the XRD analysis showed that all catalysts had a face-centered cubic (fcc) structure with different and smaller lattice parameters than that of pure platinum, showing that the Ru incorporates into the Pt fcc structure by different ratios in all the catalysts. The typical particle sizes of all catalysts were in the range of 2-3 nm. The most active and stable catalyst for methanol and ethanol oxidation is catalyst III, in which a large amount (more than 90%) of PtRu alloy formation was observed. It has been found that this catalyst is about 8.0 and 33.4 times more active at ∼0.60 V towards the methanol and ethanol oxidation reactions, respectively, compared to the commercial Pt catalyst.

  11. Removal of Cooking Fume by Catalytic Combustion on Pt/La-Al2O3 + Ce0.5Zr0.5O2 Catalyst

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Four monolithic catalysts with low concentration of noble metal were prepared by the immersion method [ Pt/LaAl2O3, Pt/La-Al2O3 + Pt/OSM (2∶1), Pt/La-Al2O3 + Pt/OSM (1∶1) Pt/La-Al2O3 + Pt/OSM (1∶2)], and measurements of their activity were carried out in a conventional fixed-bed flow reactor. The results show that the oxygen storage material (OSM) that is added can promote the activity of the prepared catalysts and can decrease the complete conversion temperature of cooking fume. When the ratio between La-Al2O3 and OSM is 1∶ 1, the catalyst has the highest activity, and the complete conversion temperature of cooking fume is 270 ℃; the catalyst thus prepared can be applied in a wide range of gas hourly space velocity (GHSV) [from 10000 to 60000 h-1 ]. The catalyst obtained shows great potential for practical application.

  12. The effect of defects on the catalytic activity of single Au atom supported carbon nanotubes and reaction mechanism for CO oxidation.

    Science.gov (United States)

    Ali, Sajjad; Fu Liu, Tian; Lian, Zan; Li, Bo; Sheng Su, Dang

    2017-08-23

    The mechanism of CO oxidation by O2 on a single Au atom supported on pristine, mono atom vacancy (m), di atom vacancy (di) and the Stone Wales defect (SW) on single walled carbon nanotube (SWCNT) surface is systematically investigated theoretically using density functional theory. We determine that single Au atoms can be trapped effectively by the defects on SWCNTs. The defects on SWCNTs can enhance both the binding strength and catalytic activity of the supported single Au atom. Fundamental aspects such as adsorption energy and charge transfer are elucidated to analyze the adsorption properties of CO and O2 and co-adsorption of CO and O2 molecules. It is found that CO binds stronger than O2 on Au supported SWCNT. We clearly demonstrate that the defected SWCNT surface promotes electron transfer from the supported single Au atom to O2 molecules. On the other hand, this effect is weaker for pristine SWCNTs. It is observed that the high density of spin-polarized states are localized in the region of the Fermi level due to the strong interactions between Au (5d orbital) and the adjacent carbon (2p orbital) atoms, which influence the catalytic performance. In addition, we elucidate both the Langmuir-Hinshelwood (LH) and Eley-Rideal (ER) mechanisms of CO oxidation by O2. For the LH pathway, the barriers of the rate-limiting step are calculated to be 0.02 eV and 0.05 eV for Au/m-SWCNT and Au/di-SWCNT, respectively. To regenerate the active sites, an ER-like reaction occurs to form a second CO2 molecule. The ER pathway is observed on Au/m-SWCNT, Au/SW-SWCNT and Au/SWCNT in which the Au/m-SWCNT has a smaller barrier. The comparison with a previous study (Lu et al., J. Phys. Chem. C, 2009, 113, 20156-20160.) indicates that the curvature effect of SWCNTs is important for the catalytic property of the supported single Au. Overall, Au/m-SWCNT is identified as the most active catalyst for CO oxidation compared to pristine SWCNT, SW-SWCNT and di-SWCNT. Our findings give a clear

  13. Tuning the surface electronic structure of a Pt3Ti(111) electro catalyst

    Science.gov (United States)

    Paßens, M.; Caciuc, V.; Atodiresei, N.; Moors, M.; Blügel, S.; Waser, R.; Karthäuser, S.

    2016-07-01

    Increasing the efficiency and stability of bimetallic electro catalysts is particularly important for future clean energy technologies. However, the relationship between the surface termination of these alloys and their catalytic activity is poorly understood. Therefore, we report on fundamental UHV-SPM, LEED, and DFT calculations of the Pt3Ti(111) single crystal surface. Using voltage dependent imaging the surface termination of Pt3Ti(111) was studied with atomic resolution. Combining these images with simulated STM maps based on ab initio DFT calculations allowed us to identify the three upper layers of the Pt3Ti(111) single crystal and their influence upon the surface electronic structure. Our results show that small changes in the composition of the second and third atomic layer are of significant influence upon the surface electronic structure of the Pt3Ti electro catalyst. Furthermore, we provide relevant insights into the dependence of the surface termination on the preparation conditions.Increasing the efficiency and stability of bimetallic electro catalysts is particularly important for future clean energy technologies. However, the relationship between the surface termination of these alloys and their catalytic activity is poorly understood. Therefore, we report on fundamental UHV-SPM, LEED, and DFT calculations of the Pt3Ti(111) single crystal surface. Using voltage dependent imaging the surface termination of Pt3Ti(111) was studied with atomic resolution. Combining these images with simulated STM maps based on ab initio DFT calculations allowed us to identify the three upper layers of the Pt3Ti(111) single crystal and their influence upon the surface electronic structure. Our results show that small changes in the composition of the second and third atomic layer are of significant influence upon the surface electronic structure of the Pt3Ti electro catalyst. Furthermore, we provide relevant insights into the dependence of the surface termination on the

  14. Synthesis of Pt/K2CO3/MgAlOx–reduced graphene oxide hybrids as promising NOx storage–reduction catalysts with superior catalytic performance

    Science.gov (United States)

    Mei, Xueyi; Yan, Qinghua; Lu, Peng; Wang, Junya; Cui, Yuhan; Nie, Yu; Umar, Ahmad; Wang, Qiang

    2017-02-01

    Pt/K2CO3/MgAlOx–reduced graphene oxide (Pt/K/MgAlOx–rGO) hybrids were synthesized, characterized and tested as a promising NOx storage and reduction (NSR) catalyst. Mg–Al layered double hydroxides (LDHs) were grown on rGO via in situ hydrothermal crystallization. The structure and morphology of samples were thoroughly characterized using various techniques. Isothermal NOx adsorption tests indicated that MgAlOx–rGO hybrid exhibited better NOx trapping performance than MgAlOx, from 0.44 to 0.61 mmol · g‑1, which can be attributed to the enhanced particle dispersion and stabilization. In addition, a series of MgAlOx–rGO loaded with 2 wt% Pt and different loadings (5, 10, 15, and 20 wt%) of K2CO3 (denoted as Pt/K/MgAlOx–rGO) were obtained by sequential impregnation. The influence of 5% H2O on the NOx storage capacity of MgAlOx–rGO loaded with 2 wt% Pt and 10% K2CO3 (2Pt/10 K/MgAlOx–rGO) catalyst was also evaluated. In all, the 2Pt/10 K/MgAlOx–rGO catalyst not only exhibited high thermal stability and NOx storage capacity of 1.12 mmol · g‑1, but also possessed excellent H2O resistance and lean–rich cycling performance, with an overall 78.4% of NOx removal. This work provided a new scheme for the preparation of highly dispersed MgAlOx–rGO hybrid based NSR catalysts.

  15. Synthesis of Pt/K2CO3/MgAlOx–reduced graphene oxide hybrids as promising NOx storage–reduction catalysts with superior catalytic performance

    Science.gov (United States)

    Mei, Xueyi; Yan, Qinghua; Lu, Peng; Wang, Junya; Cui, Yuhan; Nie, Yu; Umar, Ahmad; Wang, Qiang

    2017-01-01

    Pt/K2CO3/MgAlOx–reduced graphene oxide (Pt/K/MgAlOx–rGO) hybrids were synthesized, characterized and tested as a promising NOx storage and reduction (NSR) catalyst. Mg–Al layered double hydroxides (LDHs) were grown on rGO via in situ hydrothermal crystallization. The structure and morphology of samples were thoroughly characterized using various techniques. Isothermal NOx adsorption tests indicated that MgAlOx–rGO hybrid exhibited better NOx trapping performance than MgAlOx, from 0.44 to 0.61 mmol · g−1, which can be attributed to the enhanced particle dispersion and stabilization. In addition, a series of MgAlOx–rGO loaded with 2 wt% Pt and different loadings (5, 10, 15, and 20 wt%) of K2CO3 (denoted as Pt/K/MgAlOx–rGO) were obtained by sequential impregnation. The influence of 5% H2O on the NOx storage capacity of MgAlOx–rGO loaded with 2 wt% Pt and 10% K2CO3 (2Pt/10 K/MgAlOx–rGO) catalyst was also evaluated. In all, the 2Pt/10 K/MgAlOx–rGO catalyst not only exhibited high thermal stability and NOx storage capacity of 1.12 mmol · g−1, but also possessed excellent H2O resistance and lean–rich cycling performance, with an overall 78.4% of NOx removal. This work provided a new scheme for the preparation of highly dispersed MgAlOx–rGO hybrid based NSR catalysts. PMID:28205630

  16. Catalytic liquid-phase oxidation of acetaldehyde to acetic acid over a Pt/CeO2-ZrO2-SnO2/γ-alumina catalyst.

    Science.gov (United States)

    Choi, Pil-Gyu; Ohno, Takanobu; Masui, Toshiyuki; Imanaka, Nobuhito

    2015-10-01

    Pt/CeO2-ZrO2-SnO2/γ-Al2O3 catalysts were prepared by co-precipitation and wet impregnation methods for catalytic oxidation of acetaldehyde to acetic acid in water. In the present catalysts, Pt and CeO2-ZrO2-SnO2 were successfully dispersed on the γ-Al2O3 support. Dependences of platinum content and reaction time on the selective oxidation of acetaldehyde to acetic acid were investigated to optimize the reaction conditions for obtaining both high acetaldehyde conversion and highest selectivity to acetic acid. Among the catalysts, a Pt(6.4wt.%)/Ce0.68Zr0.17Sn0.15O2.0(16wt.%)/γ-Al2O3 catalyst showed the highest acetaldehyde oxidation activity. On this catalyst, acetaldehyde was completely oxidized after the reaction at 0°C for 8hr, and the selectivity to acetic acid reached to 95% and higher after the reaction for 4hr and longer.

  17. Area-selective atomic layer deposition of platinum using photosensitive polyimide

    Science.gov (United States)

    Vervuurt, René H. J.; Sharma, Akhil; Jiao, Yuqing; Kessels, Wilhelmus (Erwin M. M.; Bol, Ageeth A.

    2016-10-01

    Area-selective atomic layer deposition (AS-ALD) of platinum (Pt) was studied using photosensitive polyimide as a masking layer. The polyimide films were prepared by spin-coating and patterned using photolithography. AS-ALD of Pt using poly(methyl-methacrylate) (PMMA) masking layers was used as a reference. The results show that polyimide has excellent selectivity towards the Pt deposition, after 1000 ALD cycles less than a monolayer of Pt is deposited on the polyimide surface. The polyimide film could easily be removed after ALD using a hydrogen plasma, due to a combination of weakening of the polyimide resist during Pt ALD and the catalytic activity of Pt traces on the polyimide surface. Compared to PMMA for AS-ALD of Pt, polyimide has better temperature stability. This resulted in an improved uniformity of the Pt deposits and superior definition of the Pt patterns. In addition, due to the absence of reflow contamination using polyimide the nucleation phase during Pt ALD is drastically shortened. Pt patterns down to 3.5 μm were created with polyimide, a factor of ten smaller than what is possible using PMMA, at the typical Pt ALD processing temperature of 300 °C. Initial experiments indicate that after further optimization of the polyimide process Pt features down to 100 nm should be possible, which makes AS-ALD of Pt using photosensitive polyimide a promising candidate for patterning at the nanoscale.

  18. Bipolar Resistive Switching Characteristics of HfO2/TiO2/HfO2 Trilayer-Structure RRAM Devices on Pt and TiN-Coated Substrates Fabricated by Atomic Layer Deposition

    Science.gov (United States)

    Zhang, Wei; Kong, Ji-Zhou; Cao, Zheng-Yi; Li, Ai-Dong; Wang, Lai-Guo; Zhu, Lin; Li, Xin; Cao, Yan-Qiang; Wu, Di

    2017-06-01

    The HfO2/TiO2/HfO2 trilayer-structure resistive random access memory (RRAM) devices have been fabricated on Pt- and TiN-coated Si substrates with Pt top electrodes by atomic layer deposition (ALD). The effect of the bottom electrodes of Pt and TiN on the resistive switching properties of trilayer-structure units has been investigated. Both Pt/HfO2/TiO2/HfO2/Pt and Pt/HfO2/TiO2/HfO2/TiN exhibit typical bipolar resistive switching behavior. The dominant conduction mechanisms in low and high resistance states (LRS and HRS) of both memory cells are Ohmic behavior and space-charge-limited current, respectively. It is found that the bottom electrodes of Pt and TiN have great influence on the electroforming polarity preference, ratio of high and low resistance, and dispersion of the operating voltages of trilayer-structure memory cells. Compared to using symmetric Pt top/bottom electrodes, the RRAM cells using asymmetric Pt top/TiN bottom electrodes show smaller negative forming voltage of -3.7 V, relatively narrow distribution of the set/reset voltages and lower ratio of high and low resistances of 102. The electrode-dependent electroforming polarity can be interpreted by considering electrodes' chemical activity with oxygen, the related reactions at anode, and the nonuniform distribution of oxygen vacancy concentration in trilayer-structure of HfO2/TiO2/HfO2 on Pt- and TiN-coated Si. Moreover, for Pt/HfO2/TiO2/HfO2/TiN devices, the TiN electrode as oxygen reservoir plays an important role in reducing forming voltage and improving uniformity of resistive switching parameters.

  19. Atoms

    Institute of Scientific and Technical Information of China (English)

    刘洪毓

    2007-01-01

    Atoms(原子)are all around us.They are something like the bricks (砖块)of which everything is made. The size of an atom is very,very small.In just one grain of salt are held millions of atoms. Atoms are very important.The way one object acts depends on what

  20. Catalytic recombination of dissociation products with Pt/SnO2 for rare and common isotope long-life, closed-cycle CO2 lasers

    Science.gov (United States)

    Brown, Kenneth G.; Sidney, B. D.; Schryer, D. R.; Upchurch, B. T.; Miller, I. M.

    1986-01-01

    This paper reports results on recombination of pulsed CO2 laser dissociation products with Pt/SnO2 catalysts, and supporting studies in a surrogate laboratory catalyst reactor. The closed-cycle, pulsed CO2 laser has been continuously operated for one million pulses with an overall power degradation of less than 5 percent by flowing the laser gas mixture through a 2-percent Pt/SnO2 catalyst bed. In the surrogate laboratory reactor, experiments have been conducted to determine isotopic exchange with the catalyst when using rare-isotope gases. The effects of catalyst pretreatment, sample weight, composition, and temperature on catalyst efficiency have also been determined.

  1. Ternary Pt9RhFex Nanoscale Alloys as Highly Efficient Catalysts with Enhanced Activity and Excellent CO-Poisoning Tolerance for Ethanol Oxidation.

    Science.gov (United States)

    Wang, Peng; Yin, Shibin; Wen, Ying; Tian, Zhiqun; Wang, Ningzhang; Key, Julian; Wang, Shuangbao; Shen, Pei Kang

    2017-03-22

    To address the problems of high cost and poor stability of anode catalysts in direct ethanol fuel cells (DEFCs), ternary nanoparticles Pt9RhFex (x = 1, 3, 5, 7, and 9) supported on carbon powders (XC-72R) have been synthesized via a facile method involving reduction by sodium borohydride followed by thermal annealing in N2 at ambient pressure. The catalysts are physically characterized by X-ray diffraction, scanning transmission electron microscopy, and X-ray photoelectron spectroscopy, and their catalytic performance for the ethanol oxidation reaction (EOR) is evaluated by cyclic and linear scan voltammetry, CO-stripping voltammograms, and chronopotentiometry. All the Pt9RhFex/C catalysts of different atomic ratios produce high EOR catalytic activity. The catalyst of atomic ratio composition 9:1:3 (Pt/Rh/Fe) has the highest activity and excellent CO-poisoning tolerance. Moreover, the enhanced EOR catalytic activity on Pt9RhFe3/C when compared to Pt9Rh/C, Pt3Fe/C, and Pt/C clearly demonstrates the presence of Fe improves catalytic performance. Notably, the onset potential for CO oxidation on Pt9RhFe3/C (0.271 V) is ∼55, 75, and 191 mV more negative than on Pt9Rh/C (0.326 V), Pt3Fe/C (0.346 V), and Pt/C (0.462 V), respectively, which implies the presence of Fe atoms dramatically improves CO-poisoning tolerance. Meanwhile, compared to the commercial PtRu/C catalyst, the peak potential on Pt9RhFe3/C for CO oxidation was just slightly changed after several thousand cycles, which shows high stability against the potential cycling. The possible mechanism by which Fe and Rh atoms facilitate the observed enhanced performance is also considered herein, and we conclude Pt9RhFe3/C offers a promising anode catalyst for direct ethanol fuel cells.

  2. Study of coordination environments around Pd and Pt in a Pd-core Pt-shell nanoparticle during heating

    Science.gov (United States)

    Nishimura, Y. F.; Hamaguchi, T.; Yamaguchi, S.; Takagi, H.; Dohmae, K.; Nonaka, T.; Nagai, Y.

    2016-05-01

    Local coordination environments around Pd and Pt in a Pd-core Pt-shell nanoparticle (NP) at temperatures ranging from 473 to 873 K was evaluated by utilizing in situ XAFS measurement technique to investigate the temperature range in which a core-shell structure is preserved. The core-shell structure was considered to be kept up to 673 K and start to change at about 773 K. Heating to 873 K accelerated atomic mixing in the core-shell NPs. Catalytic properties of the present Pd-core Pt-shell NP are available in the stoichiometric C3H6-O2 atmosphere at temperatures less than 773 K at most.

  3. Negative catalytic effect of water on the reactivity of hydrogen abstraction from the C-H bond of dimethyl ether by deuterium atoms through tunneling at low temperatures

    Science.gov (United States)

    Oba, Yasuhiro; Watanabe, Naoki; Kouchi, Akira

    2016-10-01

    We report an experimental study on the catalytic effect of solid water on the reactivity of hydrogen abstraction (H-abstraction) from dimethyl ether (DME) in the low-temperature solid DME-H2O complex. When DME reacted with deuterium atoms on a surface at 15-25 K, it was efficiently deuterated via successive tunneling H-abstraction and deuterium (D)-addition reactions. The 'effective' rate constant for DME-H2O + D was found to be about 20 times smaller than that of pure DME + D. This provides the first evidence that the presence of solid water has a negative catalytic effect on tunneling H-abstraction reactions.

  4. Nanoparticles of Pt and Ag supported in meso porous SiO{sub 2}: characterization and catalytic applications; Nanoparticulas de Pt y Ag soportadas en SiO{sub 2} mesoporosa: caracterizacion y aplicaciones cataliticas

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa, M.E.; Perez H, R.; Perez A, M.; Mondragon G, G. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico); Arenas A, J. [IFUNAM, A.P. 20-364, 01000 Mexico D.F. (Mexico)

    2004-07-01

    The surface properties of catalysts of Pt and Ag supported in conventional SiO{sub 2} hey have been studied through reduction reactions of N{sub 2}O with H{sub 2} which is a sensitive reaction to the structure. In our case it was used a meso porous ceramic support of SiO{sub 2} of great surface area (1100 m{sup 2}/gr), where it is caused a high dispersion of the metallic nanoparticles of Pt and Ag, the total charge of the active phase in the meso porous support was of 3% in weight. The catalysts show a variation in the percentages of conversion of N{sub 2}O depending on the size and dispersion of the metallic phases. (Author)

  5. The effect of Rhδ+ dopant in SrTiO3 on the active oxidation state of co-catalytic Pt nanoparticles in overall water splitting

    NARCIS (Netherlands)

    Zoontjes, M.G.C.; Han, K.; Huijben, M.; Wiel, van der W.G.; Mul, G.

    2016-01-01

    We report on the oxidation state of Pt nanoparticles when deposited on SrTiO3 or Rh-doped SrTiO3 under realistic solar water-splitting conditions. The oxidation state was investigated using state-of-the-art analysis of the reaction in a continuously stirred tank reactor (CSTR) connected to a micro g

  6. Adsorption and coupling of 4-aminophenol on Pt(111) surfaces

    Science.gov (United States)

    Otero-Irurueta, G.; Martínez, J. I.; Bueno, R. A.; Palomares, F. J.; Salavagione, H. J.; Singh, M. K.; Méndez, J.; Ellis, G. J.; López, M. F.; Martín-Gago, J. A.

    2016-04-01

    We have deposited 4-aminophenol on Pt(111) surfaces in ultra-high vacuum and studied the strength of its adsorption through a combination of STM, LEED, XPS and ab initio calculations. Although an ordered (2√3 × 2√3)R30° phase appears, we have observed that molecule-substrate interaction dominates the adsorption geometry and properties of the system. At RT the high catalytic activity of Pt induces aminophenol to lose the H atom from the hydroxyl group, and a proportion of the molecules lose the complete hydroxyl group. After annealing above 420 K, all deposited aminophenol molecules have lost the OH moiety and some hydrogen atoms from the amino groups. At this temperature, short single-molecule oligomer chains can be observed. These chains are the product of a new reaction that proceeds via the coupling of radical species that is favored by surface diffusion.

  7. Pd(II) and Pt(II) complexes of α-keto stabilized sulfur ylide: Synthesis, structural, theoretical and catalytic activity studies

    Science.gov (United States)

    Sabounchei, Seyyed Javad; Hashemi, Ali; Sedghi, Asieh; Bayat, Mehdi; Akhlaghi Bagherjeri, Fateme; Gable, Robert W.

    2017-05-01

    Reaction of dimethyl sulfide with 2, 3‧-dibromoacetophenone led to formation of sulfonium salt [Me2SCH2C(O)C6H4-m-Br]Br (1). The resulted sulfonium salt was treated with NaOH and gave the α-keto stabilized sulfur ylide Me2SC(H)C(O)C6H4-m-Br (2). This ligand was reacted with [MCl2(cod)] (M = Pd, Pt; cod = 1,5-cyclooctadiene) to form the new cis- and trans-[MCl2(ylide)2] (M = Pd (cis- and trans-3), Pt (cis- and trans-4)) complexes. Characterization of the obtained compounds was performed by elemental analysis, IR, 1H and 13C NMR. Recrystallization of dichlorobis(ylide) palladium(II) and platinum(II) complexes from DMSO solution yielded the crystalline products, which X-ray diffraction data revealed that the both compounds were crystallized as cis-[MCl2(ylide)(DMSO)] (M = Pd (5), Pt (6)) complexes. Also, a theoretical study on structure and nature of the Msbnd C bonding between the Y ligand (ylide) and [MCl2·DMSO] fragments in [YMCl2·DMSO] (M = Pd, Pt) complexes has been reported via NBO and energy-decomposition analysis (EDA). Furthermore, the palladium catalyzed Suzuki-Miyaura reaction of various aryl chlorides with arylboronic acids was performed. The results showed that the Pd(II) complexes cis- and trans-3 catalyzed efficiently coupling reactions at low catalyst loading and short reaction time.

  8. Recent Advances on Electro-Oxidation of Ethanol on Pt- and Pd-Based Catalysts: From Reaction Mechanisms to Catalytic Materials

    Directory of Open Access Journals (Sweden)

    Ye Wang

    2015-09-01

    Full Text Available The ethanol oxidation reaction (EOR has drawn increasing interest in electrocatalysis and fuel cells by considering that ethanol as a biomass fuel has advantages of low toxicity, renewability, and a high theoretical energy density compared to methanol. Since EOR is a complex multiple-electron process involving various intermediates and products, the mechanistic investigation as well as the rational design of electrocatalysts are challenging yet essential for the desired complete oxidation to CO2. This mini review is aimed at presenting an overview of the advances in the study of reaction mechanisms and electrocatalytic materials for EOR over the past two decades with a focus on Pt- and Pd-based catalysts. We start with discussion on the mechanistic understanding of EOR on Pt and Pd surfaces using selected publications as examples. Consensuses from the mechanistic studies are that sufficient active surface sites to facilitate the cleavage of the C–C bond and the adsorption of water or its residue are critical for obtaining a higher electro-oxidation activity. We then show how this understanding has been applied to achieve improved performance on various Pt- and Pd-based catalysts through optimizing electronic and bifunctional effects, as well as by tuning their surface composition and structure. Finally we point out the remaining key problems in the development of anode electrocatalysts for EOR.

  9. Catalytic hydrogenation of 3-chloro-4-methylnitrobenzene to 3-chloro-4-methylaniline over Pt/C catalyst%Pt/C催化加氢3-氯-4-甲基硝基苯制备3-氯-4-甲基苯胺

    Institute of Scientific and Technical Information of China (English)

    闫江梅; 崔静; 王昭文

    2016-01-01

    3-Chloro-4-methylaniline is an important organic intermediate for the synthesis of organic pig-ments,dyes and pesticides. 3-chloro-4-methylaniline was synthesized by low pressure catalytic hydrogena-tion of 3-chloro-4-methylnitrobenzene over 1%Pt/C catalyst. The effects of different solvents,reaction pressure,reaction temperatures and catalyst amount on the product yield were investigated. The results showed that 3-chloro-4-methylaniline yield of 99 . 08% and the dechlorination rate of 0 . 2% were obtained under the condition of 3-chloro-4-methylnitrobenzene 10 g,methanol 30 mL,1%Pt/C catalyst 0. 04 g, reaction temperature 80 ℃ and reaction pressure 1. 0 MPa. The catalyst could be reused five times.%3-氯-4-甲基苯胺是合成有机颜料、染料和农药的重要有机中间体。以3-氯-4-甲基硝基苯为原料,1%Pt/C为催化剂,低压催化加氢制备3-氯-4-甲基苯胺,考察不同溶剂、反应压力、反应温度和催化剂用量对产物收率的影响。结果表明,在3-氯-4-甲基硝基苯10 g、溶剂甲醇用量30 mL、1%Pt/C催化剂用量0.04 g、反应温度80℃和反应压力1.0 MPa条件下,3-氯-4-甲基苯胺收率99.08%,脱氯率0.2%,催化剂可重复使用5次。

  10. Catalytic activity trends of CO oxidation – A DFT study

    DEFF Research Database (Denmark)

    Jiang, Tao

    eigenmodes and eigenvalues, and improving algorithms for geometry optimization in electronic structure calculations. The catalytic activity of gold nanoparticles has received wide attention since the discovery of their activity on CO oxidation by Professor Haruta in 1987. By using density functional theory...... (DFT) and microkinetic modeling, we study CO oxidation reaction pathway on a number of transition and noble metals, i.e. Au, Ag, Pt, Pd, Cu, Ni, Rh, Ru, with different surface morphologies, close packed surfaces, stepped surfaces, kinked surfaces, as well as 12␣atom corner model of a larger...... nanoparticle. The upper bound of the catalytic activity (Sabatier activity) is then obtained and shows that at room temperature gold nanoparticle is the best catalyst for CO oxidation among all the metals considered. Under high temperature reaction condition, however, close packed Pt surface become most...

  11. Deep catalytic oxidation of heavy hydrocarbons on Pt/Al{sub 2}O{sub 3} catalysts; Oxydation catalytique totale des hydrocarbures lourds sur Pt/Al{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, F.

    1998-12-09

    Deep oxidation by air on Pt supported on alumina of a large number of heavy hydrocarbons representative of those found in a real Diesel car exhaust has been studied. Light-off temperatures between 140 and 320 deg. C on 1%Pt/alumina (80% metal dispersion) have been found. Results show that not only the physical state around the conversion area but also the chemical nature of the hydrocarbon plays an important role. Heavy hydrocarbons deep oxidation behaviour has been classified as a function of their chemical category (alkane, alkene, aromatics etc..). Oxidation of binary mixtures of hydrocarbons has shown strong inhibition effects on n-alkane or CO oxidation by polycyclic compounds like 1-methyl-naphthalene. In some cases, by-product compounds in the gas effluent (other than CO{sub 2} and H{sub 2}O) have been identified by mass-spectrometry leading to oxidation mechanism proposals for different hydrocarbons. Catalyst nature (metal dispersion, content) influence has also been studied. It is shown that turn-over activity is favoured by the increase of the metal bulk size. Acidity influence of the carrier has shown only very little influence on n-alkane or di-aromatic compound oxidation. (author)

  12. Electron transport in a Pt-CO-Pt nanocontact: Density functional theory calculations

    DEFF Research Database (Denmark)

    Strange, Mikkel; Thygesen, Kristian Sommer; Jacobsen, Karsten Wedel

    2006-01-01

    We have performed first-principles calculations for the mechanic and electric properties of pure Pt nanocontacts and a Pt contact with a single CO molecule adsorbed. For the pure Pt contacts we see a clear difference between point contacts and short chains in good agreement with experiments. We i...... of the transmission function for the Pt-CO-Pt contact, and show that the conductance is largely determined by the local d band at the Pt apex atoms....

  13. Effect of Particle Size Upon Pt/SiO2 Catalytic Cracking of n-Dodecane Under Supercritical Conditions: in situ SAXS and XANES Studies

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sungwon; Lee, Sungsik; Kumbhalkar, Mrunmayi; Wiaderek, Kamila M.; Dumesic, James A; Winans, Randall E.

    2017-01-01

    The endothermic cracking and dehydrogenation of n-dodecane is investigated over well-defined nanometer size platinum catalysts supported on SiO2 to study the particle size effects in the catalytic cracking reaction, with simultaneous in situ monitoring of the particle size and oxidation state of the working catalysts by in situ SAXS (small angle X-ray scattering) and XAS (X-ray absorption spectroscopy). The selectivity toward olefins products was found dominant in the 1 nm size platinum catalysts, whereas paraffins are dominant in the 2 nm catalysts. This reveals a strong correlation between catalytic performance and catalyst size as well as the stability of the nanoparticles in supercritical condition of n-dodecane. The presented results suggest that controlling the size and geometric structure of platinum nanocatalysts could lead to a fundamentally new level of understanding of nanoscale materials by monitoring the catalysts in realistic reaction conditions.

  14. Synthesis of PtRu nanoparticles from the hydrosilylation reaction and application as catalyst for direct methanol fuel cell.

    Science.gov (United States)

    Huang, Junchao; Liu, Zhaolin; He, Chaobin; Gan, Leong Ming

    2005-09-08

    Nanosized Pt, PtRu, and Ru particles were prepared by a novel process, the hydrosilylation reaction. The hydrosilylation reaction is an effective method of preparation not only for Pt particles but also for other metal colloids, such as Ru. Vulcan XC-72 was selected as catalyst support for Pt, PtRu, and Ru colloids, and TEM investigations showed nanoscale particles and narrow size distribution for both supported and unsupported metals. All Pt and Pt-rich catalysts showed the X-ray diffraction pattern of a face-centered cubic (fcc) crystal structure, whereas the Ru and Ru-rich alloys were more typical of a hexagonal close-packed (hcp) structure. As evidenced by XPS, most Pt and Ru atoms in the nanoparticles were zerovalent, except a trace of oxidation-state metals. The electrooxidation of liquid methanol on these catalysts was investigated at room temperature by cyclic voltammetry and chronoamperometry. The results concluded that some alloy catalysts showed higher catalytic activities and better CO tolerance than the Pt-only catalyst; Pt56Ru44/C have displayed the best electrocatalytic performance among all carbon-supported catalysts.

  15. Uses of red mud based catalytic additives in hydrocracking. Pt. 1. Preparation and basic experiments. Einsatz von katalytischen Zusaetzen auf Rotmassebasis beim Hydrocracking. T. 1. Praeparation und Basisversuche

    Energy Technology Data Exchange (ETDEWEB)

    Sourkouni-Argirusi, G.

    1994-10-01

    This report contains two sections. In the first section a limited review is presented and the preparation of the red mud based additives is described. The additives are characterized by composition and their catalytic activity in hydrocracking is investigated in a batch autoclave under an initial hydrogen pressure of 12 MPa at 435 C and 30 min residence time. A quantitative characterization of the products is given. Comparisons between the red mud additives and coke respectively a commercial catalyst are made. (orig.)

  16. Restructuring of hex-Pt(100) under CO gas environments: formation of 2-D nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Feng; Dag, Sefa; Wang, Lin-Wang; Liu, Zhi; Butcher, Derek; Salmeron, Miquel; Somorjai, Gabor A.

    2009-04-24

    The atomic-scale restructuring of hex-Pt(100) induced by carbon monoxide with a wide pressure range was studied with a newly designed chamber-in-chamber high-pressure STM and theoretical calculations. Both experimental and DFT calculation results show that CO molecules are bound to Pt nanoclusters through a tilted on-top configuration with a separation of {approx}3.7-4.1 {angstrom}. The phenomenon of restructuring of metal catalyst surfaces induced by adsorption, and in particular the formation of small metallic clusters suggests the importance of studying structures of catalyst surfaces under high pressure conditions for understanding catalytic mechanisms.

  17. Bimetallic Pt-Ni catalysts supported on usy zeolite for n-hexane isomerization

    Directory of Open Access Journals (Sweden)

    F. V. Barsi

    2009-06-01

    Full Text Available Isomerization of linear alkanes has had considerable importance for the refining industry because the isomers formed in this reaction have high octane number. Most works reported in the literature studied the use of bifunctional catalysts, i.e., ones that have acid sites and metallic sites. In this study, bifunctional monometallic (Ni or Pt and bimetallic catalysts (Pt-Ni, using HUSY zeolite as the support, were prepared in order to verify the role of the metal content and composition on the catalytic properties for n-hexane isomerization. The method used for metal dispersion in the zeolite was competitive ion exchange using ammine complexes [Ni(NH36]Cl2 and [Pt(NH34]Cl2 as precursors. Four series of catalysts with constant atomic metal content had total metal amounts between 130 and 280 µmol M/g cat. Catalysts were characterized by temperature programmed reduction (TPR and subjected to catalytic evaluation for n-hexane isomerization at 250 ºC and 1 atm using H2/C6 = 9 molar ratio. TPR results show an easier reducibility of Ni+2 cations in the presence of Pt, which was evidenced by the displacement of the reduction peak of those cations towards lower temperatures in bimetallic catalysts. The bimetallic catalysts presented a higher activity in the isomerization of n-hexane when compared to the monometallic ones, as well better stability as the Pt content in the solid increases. The results of the activity as a function of the Pt content in the bimetallic catalysts show a maximum value around 50% of Pt. An addition of Pt above this critical value leads to a small decrease of the catalytic activity.

  18. Metal-Assisted Hydrogen Storage on Pt-Decorated Single-Walled Carbon Nanohorns

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yun [National Institute of Standards and Technology (NIST); Brown, Craig [National Institute of Standards and Technology (NIST); Neumann, Dan [National Institute of Standards and Technology (NIST); Geohegan, David B [ORNL; Puretzky, Alexander A [ORNL; Rouleau, Christopher M [ORNL; Hu, Hui [ORNL; Styers-Barnett, David J [ORNL; Krasnov, Pavel O. [Rice University; Yakobson, Boris I. [Rice University

    2012-01-01

    The catalytic dissociation of hydrogen molecules by metal nanoparticles and spillover of atomic hydrogen onto various supports is a well-established phenomenon in catalysis. However, the mechanisms by which metal catalyst nanoparticles can assist in enhanced hydrogen storage on high-surface area supports are still under debate. Experimental measurements of metal-assisted hydrogen storage have been hampered by inaccurate estimation of atomically stored hydrogen deduced from comparative measurements between metal-decorated and undecorated samples. Here we report a temperature cycling technique combined with inelastic neutron scattering (INS) measurements of quantum rotational transitions of molecular H2 to more accurately quantify adsorbed hydrogen aided by catalytic particles using single samples. Temperature cycling measurements on single-wall carbon nanohorns (SWCNHs) decorated with 2-3 nm Pt nanoparticles showed 0.17 % mass fraction of metal-assisted hydrogen storage (at 0.5 MPa) at room temperature. Temperature cycling of Pt-decorated SWCNHs using a Sievert s apparatus also indicated metal-assisted hydrogen adsorption of 0.08 % mass fraction at 5 MPa at room temperature. No additional metal-assisted hydrogen storage was observed in SWCNH samples without Pt nanoparticles cycled to room temperature, or in Pt-SWCNHs when the temperature was cycled to less than 150K. The possible formation of C-H bonds due to spilled-over atomic hydrogen was also investigated using both INS and density functional theory calculations.

  19. Coating Platinum Nanoparticles with Methyl Radicals: Effects on Properties and Catalytic Implications.

    Science.gov (United States)

    Bar-Ziv, Ronen; Zilbermann, Israel; Shandalov, Michael; Shevchenko, Vladimir; Meyerstein, Dan

    2015-12-21

    It was recently reported that the reaction of methyl radicals with Pt(0) nanoparticles (NPs), prepared by the reduction of Pt(SO4)2 with NaBH4, is fast and yields as the major product stable (Pt(0)-NPs)-(CH3)n and as side products, in low yields, C2H6, C2H4, and some oligomers. We decided to study the effect of this coating on the properties of the Pt(0)-NPs. The results show that the coating can cover up to 75% of the surface Pt(0) atoms. The rate constant of the reaction, k((.)CH3+Pt(0)-NPs), decreases with the increase in the surface coverage, leading to competing reaction paths in the solution, which gradually become dominant, affecting the composition of the products. The methyl coating also affects the zeta potential, the UV spectra, and the electrocatalytic reduction of water in the presence of the NPs. Thus, the results suggest that binding alkyl radicals to Pt(0) surfaces might poison the NPs catalytic activity. When the Pt(0)-NPs are prepared by the reduction of a different precursor salt, PtCl6(2-), nearly no C2 H4 and oligomers are formed and the methyl coating covers a larger percentage of the surface Pt(0) atoms. The difference is attributed to the morphology of the Pt(0)-NPs: those prepared from Pt(SO4)2 are twinned nanocrystals, whereas those prepared from PtCl6(2-) consist mostly of single crystals. Thus, the results indicate that the side products, or most of them at least, are formed on the twinned Pt(0) nanocrystal edges created between (111) facets. In addition, the results show that Pt(0)-NPs react very differently compared with other noble metals, for example, Au(0) and Ag(0); this difference is attributed in part to the difference in the bond strength, (M(0)-NP)-CH3, and should be considered in heterogeneous catalytic processes involving alkyl radicals as intermediates.

  20. Electrodeposited Pt and Pt-Sn nanoparticles on Ti as anodes for direct methanol fuel cells

    Institute of Scientific and Technical Information of China (English)

    Hanaa B HASSAN

    2009-01-01

    Electro-oxidation of methanol was studied on titanium supported nanocrystallite Pt and Ptx-Sny catalysts prepared by electrodeposition techniques. Their electro-catalytic activities were studied in 0.5mol/L H2SO4 and compared to those of a smooth Pt, Pt/Pt and Pt-Sn/Pt electrodes. Platinum was deposited on Ti by galvanostatic and potentiostatic techniques. X-ray diffractometer (XRD) and energy dispersive X-ray (EDX) techniques were applied in order to investigate the chemical composition and the phase structure of the modified electrodes. Scanning electron microscopy (SEM) was used to characterize the surface morphology and to correlate the results obtained from the two electrochemical deposition methods. Results show that modified Pt/Ti electrodes prepared by the two methods have comparable performance and enhanced catalytic activity towards methanol electro-oxidation compared to Pt/Pt and smooth Pt electrodes. Steady state Tafel plots experiments show a higher rate of methanol oxidation on a Pt/Ti catalyst than that on a smooth Pt. Introduction of a small amount of Sn deposited with Pt improves the catalytic activity and the stability of prepared electrode with time as indicated from the cyclic votlammetry and the chronoamperometric experiments. The effect of variations in the composition for binary catalysts of the type Ptx-Sny/Ti towards the methanol oxidation reaction is reported. Consequently, the Ptx-Sny/Ti (x∶y (8∶1), molar ratio) catalyst is a very promising one for methanol oxidation.

  1. Ab-initio study of the coadsorption of Li and H on Pt(001), Pt(110) and Pt(111) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Saad, Farida [Laboratoire de Physique et Chimie Quantique, Faculte des Sciences, Universite Mouloud Mammeri, 15000 Tizi-Ouzou (Algeria); Zemirli, Mourad, E-mail: zemirlimourad@mail.ummto.dz [Laboratoire de Physique et Chimie Quantique, Faculte des Sciences, Universite Mouloud Mammeri, 15000 Tizi-Ouzou (Algeria); Benakki, Mouloud; Bouarab, Said [Laboratoire de Physique et Chimie Quantique, Faculte des Sciences, Universite Mouloud Mammeri, 15000 Tizi-Ouzou (Algeria)

    2012-02-15

    The coadsorption of Li and H atoms on Pt(001), Pt(110) and Pt(111) surfaces is studied using density functional theory with generalised gradient approximation. In all calculations Li, H and the two topmost layers of the metal were allowed to relax. At coverage of 0.25 mono-layer in a p(2 Multiplication-Sign 2) unit cell, lithium adsorption at the hollow site for the three surfaces is favoured over top and bridge sites. The most favoured adsorption sites for H atom on the Pt(001) and Pt(110) surfaces are the top and bridge sites, while on Pt(111) surface the fcc site appears to be slightly favoured over the hcp site. The coadsorption of Li and atomic hydrogen shows that the interaction between the two adsorbates is stabilising when they are far from each other. The analysis of Li, H and Pt local density of states shows that Li strongly interacts with the Pt surfaces.

  2. 用Pd-Cu-Pt/γ-Al2O3催化剂还原水中的硝酸盐%Catalytic Reduction of Nitrate in Water over Pd-Cu-Pt/γ-Al2O3 Catalyst

    Institute of Scientific and Technical Information of China (English)

    高建峰; 徐春彦; 王久芬; 庄源益

    2004-01-01

    以自制的高纯γ-Al2O3为载体,用双浸渍法制备了不同Pd/Cu比的Pd-Cu/γ-Al2O3催化剂,在间歇式反应器中直接处理含硝酸盐废水. 结果表明,利用不同Pd/Cu比的Pd-Cu/γ-Al2O3催化剂及Pd-Cu-Pt/γ-Al2O3催化剂,同时用甲酸为pH调节剂,在适合的条件下,于40 min内就能达到脱除硝酸盐的目的,氮脱除率可达95%. 这有可能发展成为一项有效和实用的水处理技术,特别是在以地下水作为饮用水源的农村地区.

  3. Electro-catalytic activity of multiwall carbon nanotube-metal (Pt or Pd) nanohybrid materials synthesized using microwave-induced reactions and their possible use in fuel cells

    Science.gov (United States)

    V, Lakshman Kumar; Ntim, Susana Addo; Sae-Khow, Ornthida; Janardhana, Chelli; Lakshminarayanan, V.; Mitra, Somenath

    2012-01-01

    Microwave induced reactions for immobilizing platinum and palladium nanoparticles on multiwall carbon nanotubes are presented. The resulting hybrid materials were used as catalysts for direct methanol, ethanol and formic acid oxidation in acidic as well as alkaline media. The electrodes are formed by simply mixing the hybrids with graphite paste, thus using a relatively small quantity of the precious metal. We report Tafel slopes and apparent activation energies at different potentials and temperatures. Ethanol electro-oxidation with the palladium hybrid showed an activation energy of 7.64 kJmol−1 which is lower than those observed for other systems. This system is economically attractive because Pd is significantly less expensive than Pt and ethanol is fast evolving as a commercial biofuel. PMID:23118490

  4. Electro-catalytic activity of multiwall carbon nanotube-metal (Pt or Pd) nanohybrid materials synthesized using microwave-induced reactions and their possible use in fuel cells.

    Science.gov (United States)

    V, Lakshman Kumar; Ntim, Susana Addo; Sae-Khow, Ornthida; Janardhana, Chelli; Lakshminarayanan, V; Mitra, Somenath

    2012-11-30

    Microwave induced reactions for immobilizing platinum and palladium nanoparticles on multiwall carbon nanotubes are presented. The resulting hybrid materials were used as catalysts for direct methanol, ethanol and formic acid oxidation in acidic as well as alkaline media. The electrodes are formed by simply mixing the hybrids with graphite paste, thus using a relatively small quantity of the precious metal. We report Tafel slopes and apparent activation energies at different potentials and temperatures. Ethanol electro-oxidation with the palladium hybrid showed an activation energy of 7.64 kJmol(-1) which is lower than those observed for other systems. This system is economically attractive because Pd is significantly less expensive than Pt and ethanol is fast evolving as a commercial biofuel.

  5. The Origin of Sulfur Tolerance in Supported Platinum Catalysts: The Relationship between Structural and Catalytic Properties in Acidic and Alkaline Pt/LTL.

    NARCIS (Netherlands)

    Koningsberger, D.C.; Miller, J.T.

    1996-01-01

    The reactivity, structure, and sulfur tolerance is compared for platinum supported on acidic and alkaline LTL zeolite. In the absence of sulfur, EXAFS spectroscopy indicates that small metallic platinum particles of approximately 6 to 14 atoms/cluster are present. The TOF for neopentane hydrogenolys

  6. Crystal Structure of a Trapped Catalytic Intermediate Suggests that Forced Atomic Proximity Drives the Catalysis of mIPS

    OpenAIRE

    Neelon, Kelly; Roberts, Mary F.; Stec, Boguslaw

    2011-01-01

    1-L-myo-inositol-phosphate synthase (mIPS) catalyzes the first step of the unique, de novo pathway of inositol biosynthesis. However, details about the complex mIPS catalytic mechanism, which requires oxidation, enolization, intramolecular aldol cyclization, and reduction, are not fully known. To gain further insight into this mechanism, we determined the crystal structure of the wild-type mIPS from Archaeoglobus fulgidus at 1.7 Å, as well as the crystal structures of three active-site mutant...

  7. 第一性原理研究Pt-Zr系统中化合物的生成焓/体模量与原子体积的线性相关性%Linear correlations of formation enthalpies/bulk modules and atomic volumes observed in Pt-Zr compounds by ab initio calculation

    Institute of Scientific and Technical Information of China (English)

    白雪; 李家好; 戴叶; 柳百新

    2013-01-01

    118 kinds of Pt-Zr phases were established and investigated by considering various structures. Then the related physical properties, such as structural stability, lattice constants, formation enthalpies, elastic constants and bulk moduli, are obtained by ab initio calculations. Based on the calculated results of formation enthalpies, the ground-state convex hull is derived for the Pt-Zr system. The calculated physical data would provide a basis for further thermodynamic calculations and atomistic simulations. For these Pt-Zr compounds, it is found there are a positive linear correlation between the formation enthalpies and atomic volumes, and a negative linear correlation between the bulk modules and atomic volumes.%通过第一性原理的计算方法,研究118种不同结构的Pt-Zr中间化合物,并选取相关的物理性能,如结构稳定性、晶格常数、生成焓、弹性常数以及体模量等进行计算。根据计算得出的生成焓信息,绘制Pt-Zr系统的基态能量曲线。计算得到的物理相关信息为未来的热力学计算和原子尺度模拟提供基础数据。在选取的 Pt-Zr化合物中,存在两组线性相关关系:生成焓与原子体积成正线性相关,而体模量与原子体积成负线性相关关系。

  8. A rational computational study of surface defect-mediated stabilization of low-dimensional Pt nanostructures on TiN(100).

    Science.gov (United States)

    Tak, Young Joo; Jang, Woosun; Richter, Norina A; Soon, Aloysius

    2015-04-21

    Platinum is known as a catalyst with exceptional reactivity for many important reactions, e.g. the oxygen reduction reaction. To reduce the high cost of pure platinum catalysts, platinum on a carbon support is widely used in industrial fuel cell applications. However, these Pt/C systems suffer from poor stability. As a cost-efficient and more durable alternative, Pt single-atom catalysts on a TiN support have recently been suggested, and it has been shown that the single-atom catalysts are stable when anchored at a nitrogen vacancy site on the TiN surface in a nitrogen-lean environment. To further explore the perspective of Pt/TiN catalytic systems, we provide insights into the stability and morphology of Pt nanostructures at the TiN(100) surface, using a density-functional theory approach in combination with ab initio atomistic thermodynamics. Our results show that the formation of two-dimensional Pt nano-layers is preferred over the formation of three-dimensional Pt nano-clusters on the TiN substrate. Similar to the single-atom catalysts, nano-layers of Pt can be stabilized on the TiN(100) surface by surface nitrogen vacancies under nitrogen-lean conditions. By analyzing the electronic metal-support interaction (EMSI) between the Pt nano-layer and the TiN surface with surface defects, we demonstrate that a strong EMSI between the surrounding Ti and Pt atoms is important for stabilizing the catalyst nano-layer at the TiN surface, and that N vacancies lead to stronger Pt-Ti interaction. This work provides a rational computational platform for the design of new generation high-performance Pt-based fuel cells.

  9. Observation of Pt-{10 0}-p(2 ? 2)-O reconstruction by an environmental TEM

    Institute of Scientific and Technical Information of China (English)

    Hengbo Li; Wentao Yuan; Ying Jiang; Zhengfei Zhang; Ze Zhang; Yong Wang n

    2016-01-01

    The surface structure of noble metal nanoparticles usually plays a crucial role during the catalytic process in the fields of energy and environment. It has been studied extensively by surface analytic methods, such as scanning tunneling microscopy. However, it is still challenging to secure a direct observation of the structural evolution of surfaces of nanocatalysts in reaction (gas and heating) conditions at the atomic scale. Here we report an in-situ observation of atomic reconstruction on Pt {100} surfaces exposed to oxygen in an environmental transmission electron microscope (TEM). Our high-resolution TEM images revealed that Pt-{100}-p(2 ? 2)-O reconstruction occurs during the reaction between oxygen atoms and{100} facets. A reconstruction model was proposed, and TEM images simulated according to this model with different defocus values match the experimental results well.

  10. Observation of Pt-{100}-p(2×2-O reconstruction by an environmental TEM

    Directory of Open Access Journals (Sweden)

    Hengbo Li

    2016-06-01

    Full Text Available The surface structure of noble metal nanoparticles usually plays a crucial role during the catalytic process in the fields of energy and environment. It has been studied extensively by surface analytic methods, such as scanning tunneling microscopy. However, it is still challenging to secure a direct observation of the structural evolution of surfaces of nanocatalysts in reaction (gas and heating conditions at the atomic scale. Here we report an in-situ observation of atomic reconstruction on Pt {100} surfaces exposed to oxygen in an environmental transmission electron microscope (TEM. Our high-resolution TEM images revealed that Pt-{100}-p(2×2-O reconstruction occurs during the reaction between oxygen atoms and {100} facets. A reconstruction model was proposed, and TEM images simulated according to this model with different defocus values match the experimental results well.

  11. Dosage de l'arsenic dans les charges de reformage catalytique par absorption atomique sans flamme Titration of Arsenic by Flameless Atomic Absorption in Catalytic Reforming Feedstocks

    Directory of Open Access Journals (Sweden)

    La Villa F.

    2006-11-01

    Full Text Available Nous décrivons une méthode de dosage de l'arsenic dans les charges de reformage catalytique par absorption atomique sans flamme. Après traitement de l'échantillon par une solution d'iode dans le toluène, l'arsenic est extrait par de l'acide nitrique dilué. L'addition de nitrate de magnésium a pour but de rendre l'arsenic extrait moins volatil. La méthode décrite permet d'atteindre une limite de détection de un microgramme par litre. Elle peut être appliquée à d'autres types de naphtas que les charges de reformage catalytique. This article describes a method for titrating arsenic in catalytic reforming feedstocks by flameless atomic absorption. After the sample has been treated by an iodine solution in toluene, the arsenic is extracted by diluted nitric acid. Magnesium nitrate is added sa as ta make the extracted arsenic less volatile. This method is capable of attaining a detection limit of one microgrom per liter. It con be applied to types of naphthos other than catalytic reforming feedstocks.

  12. Computational evaluation of sub-nanometer cluster activity of singly exposed copper atom with various coordinative environment in catalytic CO2 transformation

    Science.gov (United States)

    Shanmugam, Ramasamy; Thamaraichelvan, Arunachalam; Ganesan, Tharumeya Kuppusamy; Viswanathan, Balasubramanian

    2017-02-01

    Metal cluster, at sub-nanometer level has a unique property in the activation of small molecules, in contrast to that of bulk surface. In the present work, singly exposed active site of copper metal cluster at sub-nanometer level was designed to arrive at the energy minimised configurations, binding energy, electrostatic potential map, frontier molecular orbitals and partial density of states. The ab initio molecular dynamics was carried out to probe the catalytic nature of the cluster. Further, the stability of the metal cluster and its catalytic activity in the electrochemical reduction of CO2 to CO were evaluated by means of computational hydrogen electrode via calculation of the free energy profile using DFT/B3LYP level of theory in vacuum. The activity of the cluster is ascertained from the fact that the copper atom, present in a two coordinative environment, performs a more selective conversion of CO2 to CO at an applied potential of -0.35 V which is comparatively lower than that of higher coordinative sites. The present study helps to design any sub-nano level metal catalyst for electrochemical reduction of CO2 to various value added chemicals.

  13. The influence of copper in dealloyed binary platinum–copper electrocatalysts on methanol electroxidation catalytic activities

    Energy Technology Data Exchange (ETDEWEB)

    Poochai, Chatwarin [Department of Chemistry, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand); Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand); Veerasai, Waret, E-mail: waret.vee@mahidol.ac.th [Department of Chemistry, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand); Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand); Somsook, Ekasith [Department of Chemistry, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand); Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand); Dangtip, Somsak [Department of Physics, and NANOTEC COE at Mahidol University, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand)

    2015-08-01

    In this study, we prepared and characterized carbon paper-supported dealloyed binary Pt–Cu core–shell electrocatalysts (denoted as Pt{sub x}Cu{sub (100−x)/}CP) by cyclic co-electrodeposition and selective copper dealloying in an acidic medium, and we investigated the effect of the copper content in the samples on the catalytic activities toward methanol electroxidation reaction (MOR). X-ray photo-emission spectroscopy (XPS) and inductively coupled plasma atomic emission spectroscopy (ICP-AES) indicated that the structure of dealloyed binary Pt–Cu catalysts possessed a Pt-rich shell and a Cu rich core. X-ray absorption near edge spectroscopy (XANES) displayed that the oxidation states of Pt and Cu were zero and one, respectively, implying the formation of metallic Pt and Cu{sub 2}O, respectively. X-ray diffraction spectroscopy (XRD) confirmed that Cu was inserted into a face-centered cubic Pt structure forming Pt–Cu alloys. Scanning electron microscopy (SEM) and transmission electron microscope (TEM) displayed a cubic shape of Pt/CP and a spherical shape of Pt{sub x}Cu{sub (100−x)/}CP with several hundred nanometer sizes of agglomeration that depended on the Cu content. Cyclic voltammetry, chronoamperometry, and electrochemical impedance spectroscopy were performed to confirm that the sample of Pt{sub 70}Cu{sub 30}/CP exhibited the best catalytic activities in terms of the specific current, current density, catalytic poisoning tolerance, and stability. - Graphical abstract: Display Omitted - Highlights: • Binary electrocatalysts of Pt{sub x}Cu{sub (100−x)}/CP were prepared by cyclic co-electrodeposition and selective copper dealloying. • The structures of Pt{sub x}Cu{sub (100−x)}/CP were a Pt rich shell and a Cu rich core. • The Pt{sub 70}Cu{sub 30}/CP was the excellent catalytic activity towards methanol electrooxidation and CO{sub ads} tolerance.

  14. Origin of the catalytic activity of face-centered-cubic ruthenium nanoparticles determined from an atomic-scale structure.

    Science.gov (United States)

    Kumara, L S R; Sakata, Osami; Kohara, Shinji; Yang, Anli; Song, Chulho; Kusada, Kohei; Kobayashi, Hirokazu; Kitagawa, Hiroshi

    2016-11-09

    The 3-dimensional (3D) atomic-scale structure of newly discovered face-centered cubic (fcc) and conventional hexagonal close packed (hcp) type ruthenium (Ru) nanoparticles (NPs) of 2.2 to 5.4 nm diameter were studied using X-ray pair distribution function (PDF) analysis and reverse Monte Carlo (RMC) modeling. Atomic PDF based high-energy X-ray diffraction measurements show highly diffuse X-ray diffraction patterns for fcc- and hcp-type Ru NPs. We here report the atomic-scale structure of Ru NPs in terms of the total structure factor and Fourier-transformed PDF. It is found that the respective NPs have substantial structural disorder over short- to medium-range order atomic distances from the PDF analysis. The first-nearest-neighbor peak analyses show a significant size dependence for the fcc-type Ru NPs demonstrating the increase in the peak height due to an increase in the number density as a function of particle size. The bond angle and coordination number (CN) distribution for the RMC-simulated fcc- and hcp-type Ru NP models indicated inherited structural features from their bulk counterparts. The CN analysis of the whole NP and surface of each RMC model of Ru NPs show the low activation energy packing sites on the fcc-type Ru NP surface atoms. Finally, our newly defined order parameters for RMC simulated Ru NP models suggested that the enhancement of the CO oxidation activity of fcc-type NPs was due to a decrease in the close packing ordering that resulted from the increased NP size. These structural findings could be positively supported for synthesized low-cost and high performance nano-sized catalysts and have potential application in fuel-cell systems and organic synthesis.

  15. Ru-decorated Pt nanoparticles on N-doped multi-walled carbon nanotubes by atomic layer deposition for direct methanol fuel cells

    DEFF Research Database (Denmark)

    Johansson, Anne-Charlotte Elisabeth Birgitta; Yang, R.B.; Haugshøj, K.B.

    2013-01-01

    (methylcyclopentadienyl)platinum MeCpPtMe3, bis(ethylcyclopentadienyl)ruthenium Ru(EtCp)2 and O2 as the precursors. Catalysts with 5, 10 and 20 ALD Ru cycles grown onto the CNT-supported ALD Pt nanoparticles (150 cycles) were prepared and tested towards the electro-oxidation of CO and methanol, using cyclic voltammetry...

  16. Enhanced Electrochemical Catalytic Efficiencies of Electrochemically Deposited Platinum Nanocubes as a Counter Electrode for Dye-Sensitized Solar Cells

    Science.gov (United States)

    Wei, Yu-Hsuan; Tsai, Ming-Chi; Ma, Chen-Chi M.; Wu, Hsuan-Chung; Tseng, Fan-Gang; Tsai, Chuen-Horng; Hsieh, Chien-Kuo

    2015-12-01

    Platinum nanocubes (PtNCs) were deposited onto a fluorine-doped tin oxide glass by electrochemical deposition (ECD) method and utilized as a counter electrode (CE) for dye-sensitized solar cells (DSSCs). In this study, we controlled the growth of the crystalline plane to synthesize the single-crystal PtNCs at room temperature. The morphologies and crystalline nanostructure of the ECD PtNCs were examined by field emission scanning electron microscopy and high-resolution transmission electron microscopy. The surface roughness of the ECD PtNCs was examined by atomic force microscopy. The electrochemical properties of the ECD PtNCs were analyzed by cyclic voltammetry, Tafel polarization, and electrochemical impedance spectra. The Pt loading was examined by inductively coupled plasma mass spectrometry. The DSSCs were assembled via an N719 dye-sensitized titanium dioxide working electrode, an iodine-based electrolyte, and a CE. The photoelectric conversion efficiency (PCE) of the DSSCs with the ECD PtNC CE was examined under the illumination of AM 1.5 (100 mWcm-2). The PtNCs in this study presented a single-crystal nanostructure that can raise the electron mobility to let up the charge-transfer impedance and promote the charge-transfer rate. In this work, the electrocatalytic mass activity (MA) of the Pt film and PtNCs was 1.508 and 4.088 mAmg-1, respectively, and the MA of PtNCs was 2.71 times than that of the Pt film. The DSSCs with the pulse-ECD PtNC CE showed a PCE of 6.48 %, which is higher than the cell using the conventional Pt film CE (a PCE of 6.18 %). In contrast to the conventional Pt film CE which is fabricated by electron beam evaporation method, our pulse-ECD PtNCs maximized the Pt catalytic properties as a CE in DSSCs. The results demonstrated that the PtNCs played a good catalyst for iodide/triiodide redox couple reactions in the DSSCs and provided a potential strategy for electrochemical catalytic applications.

  17. Catalytic activity of metallic nanoisland coatings. The influence of size effects on the recombination properties

    Science.gov (United States)

    Tomilina, O. A.; Berzhansky, V. N.; Tomilin, S. V.; Shaposhnikov, A. N.

    2016-08-01

    The results of investigations of the quantum-size effects influence on selective properties of heterogeneous nanocatalysts are presents. As etalon exothermic reaction was used the reaction of atomic hydrogen recombination. The nanostructured Pd and Pt films on Teflon substrate were used as a samples of heterogeneous nanocatalysts. It was shown that for nanoparticles with various sizes the catalytic activity has the periodic dependence. It has been found that for certain sizes of nanoparticles their catalytic activity is less than that of Teflon substrate.

  18. Pt/MOx/SiO2, Pt/MOx/TiO2, and Pt/MOx/Al2O3 Catalysts for CO Oxidation

    OpenAIRE

    Hongmei Qin; Xiaoshuang Qian; Tao Meng; Yi Lin; Zhen Ma

    2015-01-01

    Conventional supported Pt catalysts have often been prepared by loading Pt onto commercial supports, such as SiO2, TiO2, Al2O3, and carbon. These catalysts usually have simple metal-support (i.e., Pt-SiO2) interfaces. To tune the catalytic performance of supported Pt catalysts, it is desirable to modify the metal-support interfaces by incorporating an oxide additive into the catalyst formula. Here we prepared three series of metal oxide-modified Pt catalysts (i.e., Pt/MOx/SiO2, Pt/MOx/TiO2, a...

  19. Tailoring of Pd-Pt bimetallic clusters with high stability for oxygen reduction reaction

    Science.gov (United States)

    Cheng, Daojian; Wang, Wenchuan

    2012-03-01

    The composition-dependent equilibrium structure and thermal stability of Pd-Pt clusters with the size of 55 atoms, and CO, O, OH, and O2 adsorption on these clusters have been studied using molecular simulation based on the Gupta empirical potential and density functional theory (DFT) calculations. It is found that Pd43Pt12 with a three-shell onionlike structure (TS-cluster) exhibits the highest relative stability in both DFT and Gupta levels and also the highest melting point at the Gupta level among these Pd-Pt clusters. In addition, the Pd43Pt12 TS-cluster possesses the weakest CO, O, OH, and O2 adsorption strength, compared to the Pt55, Pd55, and Pd13Pt42 clusters, indicating good catalytic activities toward the oxygen reduction reaction (ORR) among these Pd-Pt clusters considered. We expect that this kind of DFT-guided strategy by controlling the composition could provide a simple way for possibly searching new electrocatalysts.

  20. Fabrication of MgAl2Si2O8 : M0.01 (M = Ni2+, Cu2+, Pd2+, Pt2+ and Ru3+): catalytic effects for the reduction of 2- or 4-nitroanilines in water

    Indian Academy of Sciences (India)

    Serkan Dayan; Sevgi Öztürk; Nilgün Kayaci; Nilgun Kalaycioglu Ozpozan; Esra Öztürk

    2015-10-01

    Five new MgAl2Si2O8 : M0.01 (M = Ni2+, Cu2+, Pd2+, Pt2+ and Ru3+) materials were developed for the reduction of nitroarenes as catalysts by conventional solid state reaction at 1300°C. The prepared materials were characterized by thermal analysis, Fourier transform infrared spectroscopy, X-ray powder diffraction analysis, scanning electron microscopy, energy-dispersive X-ray analysis and nitrogen adsorption–desorption analysis. The catalytic activities of the prepared catalysts were tested in the reduction of 2- or 4-nitroanilines in aqueous media at ambient temperature in the presence of NaBH4 by UV–vis spectrophotometer. Furthermore, the MgAl2Si2O8 : M0.01 catalysts can be recovered by filtration and reused for five cycles for the reduction of 2-nitroaniline. These results show that the MgAl2Si2O8 : M0.01 catalysts can be used in practical applications in the reduction of nitroanilines.

  1. Methane Oxidation to Methanol without CO2 Emission: Catalysis by Atomic Negative Ions

    CERN Document Server

    Tesfamichael, Aron; Felfli, Zineb; Msezane, Alfred Z

    2014-01-01

    The catalytic activities of the atomic Y-, Ru-, At-, In-, Pd-, Ag-, Pt-, and Os- ions have been investigated theoretically using the atomic Au- ion as the benchmark for the selective partial oxidation of methane to methanol without CO2 emission. Dispersion-corrected density-functional theory has been used for the investigation. From the energy barrier calculations and the thermodynamics of the reactions, we conclude that the catalytic effect of the atomic Ag-, At-, Ru-, and Os- ions is higher than that of the atomic Au- ion catalysis of CH4 conversion to methanol. By controlling the temperature around 290K (Os-), 300K (Ag-), 310K (At-), 320K (Ru-) and 325K (Au-) methane can be completely oxidized to methanol without the emission of CO2. We conclude by recommending the investigation of the catalytic activities of combinations of the above negative ions for significant enhancement of the selective partial oxidation of methane to methanol.

  2. An Effective Approach towards the Immobilization of PtSn Nanoparticles on Noncovalent Modified Multi-Walled Carbon Nanotubes for Ethanol Electrooxidation

    Directory of Open Access Journals (Sweden)

    Xi Geng

    2016-03-01

    Full Text Available In this article, we describe an effective method to tether Pt and PtSn nanoparticles (NPs on polyelectrolyte modified multi-walled carbon nanotubes (MWCNTs for ethanol electrooxidation. By using a polymer wrapping technique, positively charged polyethyleneimine (PEI was attached onto carbon nanotubes (CNTs to provide preferential linking sites for metal precursors. Well-dispersed Pt and PtSn nanocrystals (2–5 nm were subsequently decorated on PEI-functionalized MWCNTs through the polyol reduction method. The successful non-covalent modification of MWCNTs was confirmed by Fourier transform infrared spectroscopy (FTIR and Zeta potential measurements. Energy dispersive X-ray (EDX spectrum indicates approximately 20 wt % Pt loading and a desirable Pt:Sn atomic ratio of 1:1. Electrochemical analysis demonstrated that the as-synthesized PtSn/PEI-MWCNTs nanocomposite exhibited improved catalytic activity and higher poison tolerance for ethanol oxidation as compared to Pt/PEI-MWCNTs and commercial Pt/XC-72 catalysts. The enhanced electrochemical performance may be attributed to the uniform dispersion of NPs as well as the mitigating of CO self-poisoning effect by the alloying of Sn element. This modification and synthetic strategy will be studied further to develop a diversity of carbon supported Pt-based hybrid nanomaterials for electrocatalysis.

  3. Catalytic role of TiO(2) terminal oxygen atoms in liquid-phase photocatalytic reactions: oxidation of aromatic compounds in anhydrous acetonitrile.

    Science.gov (United States)

    Montoya, Juan F; Bahnemann, Detlef W; Peral, José; Salvador, Pedro

    2014-08-04

    On the basis of experiments carried out with controlled amounts of residual oxygen and water, or by using oxygen-isotope-labeled Ti(18) O2 as the photocatalyst, we demonstrate that (18) Os atoms behave as real catalytic species in the photo-oxidation of acetonitrile-dissolved aromatic compounds such as benzene, phenol, and benzaldehyde with TiO2 . The experimental evidence allows a terminal-oxygen indirect electron-transfer (TOIET) mechanism to be proposed, which is a new pathway that involves the trapping of free photogenerated valence-band holes at Os species and their incorporation into the reaction products, with simultaneous generation of oxygen vacancies at the TiO2 surface and their subsequent healing with oxygen atoms from either O2 or H2 O molecules that are dissolved in the liquid phase. According to the TOIET mechanism, the TiO2 surface is not considered to remain stable, but is continuously changing in the course of the photocatalytic reaction, challenging earlier interpretations of TiO2 photocatalytic phenomena.

  4. Catalytic Synthesis of Substrate-Free, Aligned and Tailored High Aspect Ratio Multiwall Carbon Nanotubes in an Ultrasonic Atomization Head CVD Reactor

    Directory of Open Access Journals (Sweden)

    Fahad Ali Rabbani

    2016-01-01

    Full Text Available Chemical vapor deposition (CVD method has proven its benchmark, over other methods, for the production of different types of carbon nanotubes (CNT on commercial and lab scale. In this study, an injection vertical CVD reactor fitted with an ultrasonic atomization head was used in a pilot-plant scale (height 274 cm, radius 25 cm for semicontinuous production of multiwall carbon nanotubes (MWCNTs. p-Xylene was used as a hydrocarbon precursor in which ferrocene was dissolved and provided the cracking catalyst. Atomization of the feed solution resulted in full and even dispersion of the catalytic solution. This dispersion led to the production of high aspect ratio MWCNTs (ranging from 8,000 to 12,000 at 850°C. Different experimental parameters affecting the quality and quantity of the produced CNTs were investigated. These included temperature, reaction time, and flow rate of the reaction and carrier gases. Different properties of the produced CNTs were characterized using SEM and TEM, while TGA was used to evaluate their purity. Specific surface area of selected samples was calculated by BET.

  5. Oxygen-induced shape changes of Pt nanoparticles on MgO(100)

    Energy Technology Data Exchange (ETDEWEB)

    Hejral, Uta; Stierle, Andreas; Vlad, Alina; Delheusy, Melissa; Dosch, Helmut [Max-Planck-Institut fuer Metallforschung, Heisenbergstr. 3, 70569 Stuttgart (Germany)

    2010-07-01

    Platinum nanoparticles on oxide carrier materials are used in heterogenous catalysis and are applied successfully in reactions like the oxidation of hydrocarbons or carbon monoxide. In order to achieve better catalyst efficiency, lifetime and selectivity it is important to comprehend catalytic processes on an atomic basis. Thus, the interplay between particle shape, adsorbed oxygen, bulk oxides and catalytic activity needs to be understood. Therefore Pt nanoparticles have been grown epitaxially on MgO(100) substrates under controlled conditions. It has previously been reported that Rh nanoparticles undergo reversible shape changes induced by surface oxides. We have studied oxygen-induced shape changes of Pt nanoparticles on MgO(100) by means of in situ X-ray diffraction. The experiment was performed at 300 C and oxygen pressures ranging from UHV to 500 mbar. The experimental results are compared to theoretically predicted ones.

  6. A first-principle calculation of sulfur oxidation on metallic Ni(111) and Pt(111), and bimetallic Ni@Pt(111) and Pt@Ni(111) surfaces.

    Science.gov (United States)

    Yeh, Chen-Hao; Ho, Jia-Jen

    2012-09-17

    Sulfur, a pollutant known to poison fuel-cell electrodes, generally comes from S-containing species such as hydrogen sulfide (H(2)S). The S-containing species become adsorbed on a metal electrode and leave atomic S strongly bound to the metal surface. This surface sulfur is completely removed typically by oxidation with O(2) into gaseous SO(2). According to our DFT calculations, the oxidation of sulfur at 0.25 ML surface sulfur coverage on pure Pt(111) and Ni(111) metal surfaces is exothermic. The barriers to the formation of SO(2) are 0.41 and 1.07 eV, respectively. Various metals combined to form bimetallic surfaces are reported to tune the catalytic capabilities toward some reactions. Our results show that it is more difficult to remove surface sulfur from a Ni@Pt(111) surface with reaction barrier 1.86 eV for SO(2) formation than from a Pt@Ni(111) surface (0.13 eV). This result is in good agreement with the statement that bimetallic surfaces could demonstrate more or less activity than to pure metal surfaces by comparing electronic and structural effects. Furthermore, by calculating the reaction free energies we found that the sulfur oxidation reaction on the Pt@Ni(111) surface exhibits the best spontaneity of SO(2) desorption at either room temperature or high temperatures.

  7. Modular construction of size-selected multiple-core Pt-TiO₂ nanoclusters for electro-catalysis.

    Science.gov (United States)

    Blackmore, Caroline E; Rees, Neil V; Palmer, Richard E

    2015-11-14

    Size-selected binary platinum-titanium dioxide (Pt-TiO2) clusters have been generated using a magnetron sputtering gas condensation cluster source and imaged using a Scanning Transmission Electron Microscope (STEM) in High Angle Annular Dark Field (HAADF) mode. The core-shell clusters exhibit a Pt core of preferred size 30 ± 6 atoms (1 nm), embedded in an oxidised Ti shell, independent of the overall cluster size (varied between 2 nm and 5 nm). Smaller clusters, with mass ≤50 000 Daltons, show a single Pt core while larger clusters, ≥55 000 Daltons, feature multiple Pt cores, either isolated or aggregated within the TiO2 shell. These clusters may have applications in solar hydrogen production; preliminary work indicates catalytic active in the hydrogen evolution reaction.

  8. Growth of a Pt film on non-reduced ceria: a density functional theory study.

    Science.gov (United States)

    Loffreda, David; Delbecq, Françoise

    2012-01-28

    The growth of platinum on non-reduced CeO(2) (111) surface is studied by means of calculations based on the density functional theory. Particles of increasing size are formed on the oxide surface by incorporating the platinum atoms one by one until multilayer films are obtained. The main conclusion is that platinum atoms tend to maximize the number of metallic bonds and to approach the situation of the bulk, hence preferring films to particles, particles to isolated atoms, and a three-dimensional growth to a two-dimensional one. The supported particles and the films exhibit a contraction of the Pt-Pt distances, with respect to those of the Pt bulk, in order to match the ceria lattice. The density of states projected on the film surface platinum atoms shows important differences in shape and energy (lower d-band center) compared to the Pt(111) reference surface, which could be the major reason for the observed changes in catalytic reactivity when deposited particles are compared with single crystal surfaces.

  9. AN ANIMAL MODEL OF PLATINUM (PT) HYPERSENSITIVITY

    Science.gov (United States)

    Exposure to Pt salts has been associated with occupational asthma. Pt, the most active component and widely used metal in catalytic converters, is released in automobile exhaust and is a proposed diesel fuel additive. Thus, with the potential for widespread environmental distrib...

  10. Surface termination of CePt5/Pt (111 ): The key to chemical inertness

    Science.gov (United States)

    Praetorius, C.; Zinner, M.; Held, G.; Fauth, K.

    2015-11-01

    The surface termination of CePt5/Pt (111 ) is determined experimentally by LEED-IV. In accordance with recent theoretical predictions, a dense Pt terminated surface is being found. Whereas the CePt5 volume lattice comprises Pt kagome layers, additional Pt atoms occupy the associated hole positions at the surface. This finding provides a natural explanation for the remarkable inertness of the CePt5 intermetallic. Implications of the structural relaxations determined by LEED-IV analysis are discussed with regard to observations by scanning tunneling microscopy and electron spectroscopies.

  11. Preparation of 2,2′-dichlorohydrazobenzene through catalytic hydrogenation of o-chloronitrobenzene over Pt/C catalyst%Pt/C催化剂催化邻氯硝基苯加氢制备2,2′-二氯氢化偶氮苯

    Institute of Scientific and Technical Information of China (English)

    杨乔森

    2015-01-01

    Using o-nitrochlorobenzene as the raw material,2,2′-dichlorohydrazobenzene was prepared in the alkaline medium over Pt/C catalyst. The effects of the solvents,reaction pressure,reaction tempera-tures and sodium hydroxide concentration on the hydrogenation reaction was investigated. The optimum reaction condition was determined. The results showed that 2,2′-dichlorohydrazobenzene yield of more than 88% was obtained under the condition as follows:reaction temperature 80 ℃,reaction pressure 0. 8 MPa, sodium hydroxide mass fraction 20%,and toluene-sodium hydroxide mixture solution as the solvent. Com-pared with conventional processes of sulfide reduction and reduction of iron powder,the catalytic hydrogenation had more advantages with respect to reducing waste water and production cost.%以邻氯硝基苯为原料,在碱性环境中以Pt/C为催化剂,进行加氢还原生成2,2′-二氯氢化偶氮苯。考察溶剂、反应压力、反应温度及氢氧化钠浓度等对加氢反应的影响,确定了最佳的工艺条件,在氢氧化钠浓度20%、甲苯/氢氧化钠溶液作溶剂、反应温度80℃和反应压力0.8 MPa条件下,2,2′-二氯氢化偶氮苯收率超过88%。与传统硫化碱还原或铁粉还原工艺相比,催化加氢法在减少废水和降低成本等方面优势较大。

  12. The role of charge transfer in the oxidation state change of Ce atoms in the TM13-CeO2(111) systems (TM = Pd, Ag, Pt, Au): a DFT + U investigation.

    Science.gov (United States)

    Tereshchuk, Polina; Freire, Rafael L H; Ungureanu, Crina G; Seminovski, Yohanna; Kiejna, Adam; Da Silva, Juarez L F

    2015-05-28

    Despite extensive studies of transition metal (TM) clusters supported on ceria (CeO2), fundamental issues such as the role of the TM atoms in the change in the oxidation state of Ce atoms are still not well understood. In this work, we report a theoretical investigation based on static and ab initio molecular dynamics density functional theory calculations of the interaction of 13-atom TM clusters (TM = Pd, Ag, Pt, Au) with the unreduced CeO2(111) surface represented by a large surface unit cell and employing Hubbard corrections for the strong on-site Coulomb correlation in the Ce f-electrons. We found that the TM13 clusters form pyramidal-like structures on CeO2(111) in the lowest energy configurations with the following stacking sequence, TM/TM4/TM8/CeO2(111), while TM13 adopts two-dimensional structures at high energy structures. TM13 induces a change in the oxidation state of few Ce atoms (3 of 16) located in the topmost Ce layer from Ce(IV) (itinerant Ce f-states) to Ce(III) (localized Ce f-states). There is a charge flow from the TM atoms to the CeO2(111) surface, which can be explained by the electronegativity difference between the TM (Pd, Ag, Pt, Au) and O atoms, however, the charge is not uniformly distributed on the topmost O layer due to the pressure induced by the TM13 clusters on the underlying O ions, which yields a decrease in the ionic charge of the O ions located below the cluster and an increase in the remaining O ions. Due to the charge flow mainly from the TM8-layer to the topmost O-layer, the charge cannot flow from the Ce(IV) atoms to the O atoms with the same magnitude as in the clean CeO2(111) surface. Consequently, the effective cationic charge decreases mainly for the Ce atoms that have a bond with the O atoms not located below the cluster, and hence, those Ce atoms change their oxidation state from IV to III. This increases the size of the Ce(III) compared with the Ce(IV) cations, which builds-in a strain within the topmost Ce layer, and

  13. Pt-Si Bifunctional Surfaces for CO and Methanol Electro-Oxidation

    DEFF Research Database (Denmark)

    Permyakova, Anastasia A.; Han, Binghong; Jensen, Jens Oluf

    2015-01-01

    Bimetallic surfaces offer activity benefits derived from synergistic effects among active sites with uniquely different functions, which is particularly important for the development of highly effective heterogeneous catalysts for specific technological applications, such as energy conversion...... and storage. Here we report on Pt-Si bulk samples prepared by arc-melting, for the first time, with high activities toward the electro-oxidation of CO and methanol. Increasing the Si concentration on the surface was correlated with the shifts of onset oxidation potentials to lower values and higher activities...... for CO and methanol electro-oxidation. It is proposed that the reaction on the Pt-Si catalyst could follow a Langmuir-Hinshelwood type of mechanism, where substantially enhanced catalytic activity is attributed to the fine-tuning of the surface Pt-Si atomic structure....

  14. In Situ Generation of Two-Dimensional Au–Pt Core–Shell Nanoparticle Assemblies

    Directory of Open Access Journals (Sweden)

    Khalid Madiha

    2009-01-01

    Full Text Available Abstract Two-dimensional assemblies of Au–Pt bimetallic nanoparticles are generated in situ on polyethyleneimmine (PEI silane functionalized silicon and indium tin oxide (ITO coated glass surfaces. Atomic force microscopy (AFM, UV–Visible spectroscopy, and electrochemical measurements reveal the formation of core–shell structure with Au as core and Pt as shell. The core–shell structure is further supported by comparing with the corresponding data of Au nanoparticle assemblies. Static contact angle measurements with water show an increase in hydrophilic character due to bimetallic nanoparticle generation on different surfaces. It is further observed that these Au–Pt core–shell bimetallic nanoparticle assemblies are catalytically active towards methanol electro-oxidation, which is the key reaction for direct methanol fuel cells (DMFCs.

  15. Characterization of Pt catalysts supported in mixed oxides; Caracterizacion de catalizadores de Pt soportado en oxidos mixtos

    Energy Technology Data Exchange (ETDEWEB)

    Perez H, R.; Garcia C, M.A.; Gomez C, A.; Diaz, G. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2000-07-01

    The catalytic supports TiO{sub 2}, ZrO{sub 2} and TiO{sub 2}-ZrO{sub 2} were prepared by the sol-gel technique. The incorporation of Pt to the supports was by the classical impregnation method. The catalytic materials were characterized (Pt/TiO{sub 2}, Pt/ZrO{sub 2} and Pt/TiO{sub 2}-ZrO{sub 2}) by diverse techniques to determine: the texture (BET), evolution of the catalytic materials synthesised after drying and calcination (Infrared spectroscopy) and by Thermogravimetric analysis. (Author)

  16. Characterization of azo dyes on Pt and Pt/polyaniline/dispersed Pt electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Molina, J.; Fernandez, J.; Rio, A.I. del; Bonastre, J. [Departamento de Ingenieria Textil y Papelera, EPS de Alcoy, Universitat Politecnica de Valencia, Plaza Ferrandiz y Carbonell s/n, 03801 Alcoy (Spain); Cases, F., E-mail: fjcases@txp.upv.es [Departamento de Ingenieria Textil y Papelera, EPS de Alcoy, Universitat Politecnica de Valencia, Plaza Ferrandiz y Carbonell s/n, 03801 Alcoy (Spain)

    2012-06-15

    The electrochemical characterization of two organic dyes (amaranth and procion orange MX-2R) has been performed on Pt electrodes and Pt electrodes coated with polyaniline and dispersed Pt. Electrodes with different Pt loads have been synthesized and characterized obtaining that a load of 300 {mu}g cm{sup -2} was the optimum one. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) was employed to observe the distribution and morphology of the Pt nanoparticles. The electroactivity of the electrodes has also been characterized by means of scanning electrochemical microscopy (SECM). The chemical characterization of Pt dispersed Pani coated Pt electrodes (Pt-Pani-Pt) was performed by means of X-ray photoelectron spectroscopy (XPS). The electrochemical characterization of the dyes has been performed by means of cyclic voltammetry. Voltammograms have shown that the presence of the dyes diminishes characteristic Pt oxidation and reduction peaks. However, redox processes due to the dyes, appeared in the voltammograms. The different species responsible of these redox processes were generated in the vicinity of the electrode and were not adsorbed on the electrode surface since after stirring, the different redox processes disappeared. Characterization with different scan rates showed that redox processes of both dyes were controlled by diffusion.

  17. Facile Synthesis of Three-Dimensional Pt-TiO2 Nano-networks: A Highly Active Catalyst for the Hydrolytic Dehydrogenation of Ammonia-Borane.

    Science.gov (United States)

    Khalily, Mohammad Aref; Eren, Hamit; Akbayrak, Serdar; Susapto, Hepi Hari; Biyikli, Necmi; Özkar, Saim; Guler, Mustafa O

    2016-09-26

    Three-dimensional (3D) porous metal and metal oxide nanostructures have received considerable interest because organization of inorganic materials into 3D nanomaterials holds extraordinary properties such as low density, high porosity, and high surface area. Supramolecular self-assembled peptide nanostructures were exploited as an organic template for catalytic 3D Pt-TiO2 nano-network fabrication. A 3D peptide nanofiber aerogel was conformally coated with TiO2 by atomic layer deposition (ALD) with angstrom-level thickness precision. The 3D peptide-TiO2 nano-network was further decorated with highly monodisperse Pt nanoparticles by using ozone-assisted ALD. The 3D TiO2 nano-network decorated with Pt nanoparticles shows superior catalytic activity in hydrolysis of ammonia-borane, generating three equivalents of H2 . © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Reaction mechanism of ethylene glycol decomposition on Pt model catalysts: A density functional theory study

    Science.gov (United States)

    Lv, Cun-Qin; Yang, Bo; Pang, Xian-Yong; Wang, Gui-Chang

    2016-12-01

    Understanding and controlling bond beak sequence is important in catalytic processes. The DFT-GGA method combined with slab model was performed to study the ethylene glycol decomposition on various Pt model catalysts such as close-packed Pt(111), stepped Pt(211) and a more open one, Pt(100). Calculation results show that the adsorption energies of ethylene glycol and other decomposition species depend on the coordination number of surface atom, that is, low coordination number correspond to high adsorption energy. Moreover, it was found that final products of ethylene glycol decomposition are CO and H2 on all model catalysts, but the reaction mechanism varies: On Pt(111), the first step is Osbnd H bond scission, followed by Csbnd H bond cleavage, namely C2H6O2 → HOCH2CH2O + H → HOCH2CHO + 2H→ HOCH2CO +3H → OCH2CO + 4H → OCHCO + 5H → CO + HCO + 5H → 2CO + 6H→ 2CO + 3H2; On Pt(211) and Pt(100), however, it is a second Osbnd H bond cleavage that follows the initial Osbnd H bond scission, that is, C2H6O2 → HOCH2CH2O + H → OCH2CH2O + 2H → OCHCH2O + 3H → OCHCHO + 4H → 2HCO + 4H → 2CO + 6H → 2CO + 3H2 on Pt(211), and C2H6O2 →HOCH2CH2O+ H → OCH2CH2O + 2H→OCHCH2O+3H→OCCH2O+4H→CO+H2CO+4H→CO+HCO+5H→2CO+6H→2CO+3H2 on Pt(100) For the catalytic order of ethylene glycol to form H2, it may be determined based on the rate-controlling step, and it is Pt(111) > Pt(211) > Pt(100).

  19. Catalytic Conversion of Short-Chain Alcohols on Atomically Dispersed Au and Pd Supported on Nanoscale Metal Oxides

    Science.gov (United States)

    Wang, Chongyang

    With the development of technologies for cellulosic biomass conversion to fuels and chemicals, bio-alcohols are among the main alternative feedstocks to fossil fuels. The research pursued in my thesis was the investigation of gold and palladium as catalysts for the application of short aliphatic alcohols to hydrogen generation and value-added chemicals production. Specifically, selective methanol steam reforming and non-oxidative ethanol dehydrogenation to hydrogen and acetaldehyde were investigated in this thesis work. A major aim of the thesis was to develop atomically efficient catalysts with tuned surface chemistry for the desired reactions, using suitable synthesis methods. Methanol steam reforming (SRM) for hydrogen production has recently been investigated on gold catalysts to overcome the drawbacks of copper catalysts (deactivation, pyrophoricity). Previous work at Tufts University has shown that both CeO2 and ZnO are suitable supports for gold. In this thesis, nanoscale composite oxides ZnZrOx were prepared by a carbon hard-template method, which resulted in homogeneous distribution of Zn species in the matrix of ZrO2. Tunable surface chemistry of ZnZrO x was demonstrated by varying the Zn/Zr ratio to suppress the strong Lewis acidity of ZrO2, which leads to undesired production of CO through methanol decomposition. With atomic dispersion of gold, Au/ZnZrO x catalyzes the SRM reaction exclusively via the methanol self-coupling pathway up to 375°C. The activity of Au/ZnZrOx catalysts was compared to Au/TiO2, which is another catalyst system demonstrating atomic dispersion of gold. Similarity in the apparent activation energy of SRM on all the supported gold catalysts studied in this thesis and in the literature further confirms the same single-site Au-Ox-MO centers as active sites for SRM with indirect effects of the supports exploited. With this fundamental understanding of gold-catalyzed C1 alcohol reforming, the Au/ZnZrOx catalyst was evaluated for the

  20. Preparation and catalytic performance of Pt-K/γ-Al2O3 catalysts with different Pt distributions for synthesis of o-phenylphenol%不同Pt分布的Pt-K/γ-Al2O3催化剂制备及在邻苯基苯酚制备中的催化性能

    Institute of Scientific and Technical Information of China (English)

    丁洁莲; 曾崇余

    2012-01-01

    采用分布浸渍法制备了以Pt为活性组分,K2SO4为助剂的Pt-K/γ-Al2O3催化剂,通过调节浸渍液中HCl浓度改变活性组分Pt在载体中的分布并用于环己烯基环己酮(Dimer)脱氢合成邻苯基苯酚(OPP),并利用比表面积(BET)、X射线衍射(XRD)、H2程序升温还原(H2-TPR)和电子探针微量分析(EPMA)等手段对催化剂进行了表征.结果表明,通过调节浸渍液中HCl浓度的方法可有效调节催化剂的结构性质,活性组分与γ-Al2O3载体之间的相互作用以及Pt在载体上的分布.当浸渍液中HCl浓度为0.50%时,催化剂存在较高的比表面积,Pt在载体上存在最适宜的浸渍深度以及较弱的与载体之间的相互作用,从而调整了中间产物、OPP在催化剂表面的停留时间,抑制了副反应,可显著提高生成OPP的选择性.在液相空速LHSV0.12 g·g-1·h-1、H2空速33 ml·g-1·h-1、温度380℃的反应条件下,环己烯基环己酮转化率为100%,OPP选择性达90%以上.%Pt/y-Al2O3 catalysts promoted by K2SO4 were prepared by the impregnation method. Pt-K/γ-Al2O3 catalysts with different Pt distributions could be prepared by adding different HC1 contents to the impregnation solution and were used for preparing o-phenylphenol (OPP) from o-cyclohexenylcyclohexanone (Dimer) dehydrogenation. These catalysts were characterized by XRD, H2-TPR, BET and EPMA. The results showed that the interaction of Pt species with support, the structure of the catalyst and Pt distribution were modified by adding different HC1 contents to the impregnation solution. The catalyst with 0. 50%HCl concentration of the impregnation solution had the largest BET surface areas optimum Pt depth and weaker interaction between Pt and support. The residence time of intermediate products and OPP on the catalyst surface were adjusted, then the formation of byproducts was prohibited and the selectivity of OPP was obviously improved. The conversion of o

  1. Functional link between surface low-coordination sites and the electrochemical durability of Pt nanoparticles

    Science.gov (United States)

    Chung, Dong Young; Shin, Heejong; Yoo, Ji Mun; Lee, Kug-Seung; Lee, Nam-Suk; Kang, Kisuk; Sung, Yung-Eun

    2016-12-01

    A promising strategy for achieving enhanced catalytic activity involves the use of nanoscale electrocatalysts; however, their low stability remains a major challenge. Among the various performance-degradation mechanisms, atomic dissolution is known to cause severe nanoparticle deactivation. To date, the factors influencing these catalysts' durability are not understood. Herein, we assess the role of low-coordination surface sites, focusing on the atomic dissolution of Pt nanoparticles. The density of low-coordination sites was finely controlled, and no significant size change occurred. Based on our findings, we suggest that the initial low-coordination sites trigger metal dissolution, which subsequently accelerates Pt dissolution. We believe that controlling the surface coordination number can open new routes for the design of highly durable nanoscale electrocatalysts.

  2. Shape-selective catalysts for Fischer-Tropsch chemistry : atomic layer deposition of active catalytic metals. Activity report : January 1, 2005 - September 30, 2005.

    Energy Technology Data Exchange (ETDEWEB)

    Cronauer, D. C. (Chemical Sciences and Engineering Division)

    2011-04-15

    Argonne National Laboratory is carrying out a research program to create, prepare, and evaluate catalysts to promote Fischer-Tropsch (FT) chemistry - specifically, the reaction of hydrogen with carbon monoxide to form long-chain hydrocarbons. In addition to needing high activity, it is desirable that the catalysts have high selectivity and stability with respect to both mechanical strength and aging properties. The broad goal is to produce diesel fraction components and avoiding excess yields of both light hydrocarbons and heavy waxes. Originally the goal was to prepare shape-selective catalysts that would limit the formation of long-chain products and yet retain the active metal sites in a protected 'cage.' Such catalysts were prepared with silica-containing fractal cages. The activity was essentially the same as that of catalysts without the cages. We are currently awaiting follow-up experiments to determine the attrition strength of these catalysts. A second experimental stage was undertaken to prepare and evaluate active FT catalysts formed by atomic-layer deposition [ALD] of active components on supported membranes and particulate supports. The concept was that of depositing active metals (i.e. ruthenium, iron or cobalt) upon membranes with well defined flow channels of small diameter and length such that the catalytic activity and product molecular weight distribution could be controlled. In order to rapidly evaluate the catalytic membranes, the ALD coating processes were performed in an 'exploratory mode' in which ALD procedures from the literature appropriate for coating flat surfaces were applied to the high surface area membranes. Consequently, the Fe and Ru loadings in the membranes were likely to be smaller than those expected for complete monolayer coverage. In addition, there was likely to be significant variation in the Fe and Ru loading among the membranes due to difficulties in nucleating these materials on the aluminum oxide

  3. High catalytic activity of heteropolynuclear cyanide complexes containing cobalt and platinum ions: visible-light driven water oxidation.

    Science.gov (United States)

    Yamada, Yusuke; Oyama, Kohei; Gates, Rachel; Fukuzumi, Shunichi

    2015-05-04

    A near-stoichiometric amount of O2 was evolved as observed in the visible-light irradiation of an aqueous buffer (pH 8) containing [Ru(II) (2,2'-bipyridine)3 ] as a photosensitizer, Na2 S2 O8 as a sacrificial electron acceptor, and a heteropolynuclear cyanide complex as a water-oxidation catalyst. The heteropolynuclear cyanide complexes exhibited higher catalytic activity than a polynuclear cyanide complex containing only Co(III) or Pt(IV) ions as C-bound metal ions. The origin of the synergistic effect between Co and Pt ions is discussed in relation to electronic and local atomic structures of the complexes.

  4. Pt-graphene electrodes for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Hoshi, Hajime, E-mail: hoshi@ed.tus.ac.jp; Tanaka, Shumpei; Miyoshi, Takashi

    2014-12-15

    Highlights: • Graphene films with Pt nanoparticles were prepared from commercial graphene. • Pt consumption can be reduced by using Pt-graphene films. • The film showed improved catalytic activity for the reaction I{sub 3}{sup −}/I{sup −}. • The film can be used as the counter electrode of dye-sensitized solar cells (DSSCs). • The performance of DSSC was superior to that of the Pt electrode. - Abstract: A simple paste method for fabricating graphene films with Pt nanoparticles was developed. First, graphene pastes with Pt nanoparticles were prepared from commercially available graphene. The resulting films of graphene nanoplatelet aggregates with Pt nanoparticles (Pt-GNA) contained Pt nanoparticles distributed over the entire three-dimensional surface of the GNA. Then, the catalytic activity for the I{sub 3}{sup −}/I{sup −} redox reaction was evaluated by cyclic voltammetry. The GNA electrode exhibited higher activity than a graphene nanoplatelet electrode because of its higher effective surface area. Addition of Pt nanoparticles to the electrodes improved the catalytic activity. In particular, a large Faradaic current for the I{sub 3}{sup −}/I{sup −} reaction was observed for the Pt-GNA electrode. As the counter electrodes of dye-sensitized solar cells (DSSCs), their performance was consistent with the cyclic voltammetry results. In particular, the DSSC performance of the Pt-GNA electrode was superior to that of the Pt electrodes commonly used in DSSCs.

  5. Reduction of Pt2+ species in model Pt-CeO2 fuel cell catalysts upon reaction with methanol

    Science.gov (United States)

    Neitzel, Armin; Johánek, Viktor; Lykhach, Yaroslava; Skála, Tomáš; Tsud, Nataliya; Vorokhta, Mykhailo; Matolín, Vladimír; Libuda, Jörg

    2016-11-01

    The stability of atomically dispersed Pt2+ species on the surface of nanostructured CeO2 films during the reaction with methanol has been investigated by means of synchrotron radiation photoelectron spectroscopy and resonant photoemission spectroscopy. The isolated Pt2+ species were prepared at low Pt concentration in Pt-CeO2 film. Additionally, Pt2+ species coexisting with metallic Pt particles were prepared at high Pt concentration. We found that adsorption of methanol yields similar decomposition products regardless of Pt concentration in Pt-CeO2 films. A small number of oxygen vacancies formed during the methanol decomposition can be replenished in the Pt-CeO2 film with low Pt concentration by diffusion of oxygen from the bulk. In the presence of supported Pt particles, a higher number of oxygen vacancies leads to a partial reduction of the Pt2+ species. The isolated Pt2+ species are reduced under rather strongly reducing conditions only, i.e. during annealing under continuous exposure to methanol. Reduction of isolated Pt2+ species results in the formation of ultra-small Pt particles containing around 25 atoms per particle or less. Such ultra-small Pt particles demonstrate excellent stability against sintering during annealing of Pt-CeO2 film with low Pt concentration under reducing conditions.

  6. Hydrogenation of o-cresol on platinum catalyst: Catalytic experiments and first-principles calculations

    Science.gov (United States)

    Li, Yaping; Liu, Zhimin; Xue, Wenhua; Crossley, Steven P.; Jentoft, Friederike C.; Wang, Sanwu

    2017-01-01

    Catalytic experiments were performed for the hydrogenation of o-cresol in n-dodecane over a platinum catalyst. Batch reactions analyzed with an in-situ ATR IR probe suggest that the hydrogenation results in the formation of the final product, 2-methyl-cyclohexanol, with 2-methyl-cyclohexanone as the intermediate product. Ab initio density-functional theory was employed to investigate the atomic-scale mechanism of o-cresol hydrogenation on the Pt(111) surface. The formation of 2-methyl-cyclohexanone was found to involve two steps. The first step is a hydrogen abstraction, that is, the H atom in the hydroxyl group migrates to the Pt surface. The second step is hydrogenation, that is, the pre-existing H atoms on Pt react with the carbon atoms in the aromatic ring. On the other hand, 2-methyl-cyclohexanonol may be produced through two paths, with activation energies slightly greater than that for the formation of 2-methyl-cyclohexanone. One path involves direct hydrogenation of the aromatic ring. Another path involves three steps, with the partial hydrogenation of the ring as the first step, hydrogen abstraction of the sbnd OH group as the second, and hydrogenation of remaining C atoms and the O atom the last.

  7. Enhanced methanol electro-oxidation reaction on Pt-CoO{sub x}/MWCNTs hybrid electro-catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Nouralishahi, Amideddin, E-mail: Nouralishahi@ut.ac.ir [Catalysis and Nanostructured Materials Research Laboratory, School of Chemical Engineering, University of Tehran, P.O. Box 11155/4563, Tehran (Iran, Islamic Republic of); Caspian Faculty of Engineering, University of Tehran, P.O. Box 43841-119, Rezvanshahr (Iran, Islamic Republic of); Catalysis and Nanotechnology Research Division, Research Institute of Petroleum Industry (RIPI), P.O. Box 14665-1998, Tehran (Iran, Islamic Republic of); Rashidi, Ali Morad, E-mail: Rashidiam@ripi.ir [Catalysis and Nanotechnology Research Division, Research Institute of Petroleum Industry (RIPI), P.O. Box 14665-1998, Tehran (Iran, Islamic Republic of); Mortazavi, Yadollah, E-mail: Mortazav@ut.ac.ir [Catalysis and Nanostructured Materials Research Laboratory, School of Chemical Engineering, University of Tehran, P.O. Box 11155/4563, Tehran (Iran, Islamic Republic of); Khodadadi, Abbas Ali, E-mail: Khodadad@ut.ac.ir [Catalysis and Nanostructured Materials Research Laboratory, School of Chemical Engineering, University of Tehran, P.O. Box 11155/4563, Tehran (Iran, Islamic Republic of); Choolaei, Mohammadmehdi, E-mail: Choolaeimm@ripi.ir [Catalysis and Nanotechnology Research Division, Research Institute of Petroleum Industry (RIPI), P.O. Box 14665-1998, Tehran (Iran, Islamic Republic of)

    2015-04-30

    Highlights: • Promoting effects of Cobalt oxide on methanol electro-oxidation over Pt/MWCNTs are investigated. • Higher activity, about 2.9 times, and enhanced stability are observed on Pt-CoO{sub x}/MWCNTs. • Electrochemical active surface area of Pt nanoparticles is significantly improved upon CoO{sub x} addition. • Bi-functional mechanism is facilitated in presence of CoO{sub x}. - Abstract: The electro-catalytic behavior of Pt-CoO{sub x}/MWCNTs in methanol electro-oxidation reaction (MOR) is investigated and compared to that of Pt/MWCNTs. The electro-catalysts were synthesized by an impregnation method using NaBH{sub 4} as the reducing agent. The morphological and physical characteristics of samples are examined by XRD, TEM, ICP and EDS techniques. In the presence of CoO{sub x}, Pt nanoparticles were highly distributed on the support with an average particle size of 2 nm, an obvious decrease from 5.1 nm for Pt/MWCNTs. Cyclic voltammetry, CO-stripping, Chronoamperometry, and electrochemical impedance spectroscopy (EIS) measurements are used to study the electrochemical behavior of the electro-catalysts. The results revealed a considerable enhancement in the oxidation kinetics of CO{sub ads} on Pt active sites by the participation of CoO{sub x}. Compared to Pt/MWCNTs, Pt-CoO{sub x}/MWCNTs sample has a larger electrochemical active surface area (ECSA) and higher electro-catalytic activity and stability toward methanol electro-oxidation. According to the results of cyclic voltammetry, the forward anodic peak current density enhances more than 89% at the optimum atomic ratio of Pt:Co = 2:1. Furthermore, inclusion of cobalt oxide species causes the onset potential of methanol electro-oxidation reaction to shift 84 mV to negative values compared to that on Pt/MWCNTs. Based on EIS data, dehydrogenation of methanol is the rate-determining step of MOR on both Pt/MWCNTs and Pt-CoO{sub x}/MWCNTs, at small overpotentials. However, at higher overpotentials, the

  8. Mitsunobu Reactions Catalytic in Phosphine and a Fully Catalytic System.

    Science.gov (United States)

    Buonomo, Joseph A; Aldrich, Courtney C

    2015-10-26

    The Mitsunobu reaction is renowned for its mild reaction conditions and broad substrate tolerance, but has limited utility in process chemistry and industrial applications due to poor atom economy and the generation of stoichiometric phosphine oxide and hydrazine by-products that complicate purification. A catalytic Mitsunobu reaction using innocuous reagents to recycle these by-products would overcome both of these shortcomings. Herein we report a protocol that is catalytic in phosphine (1-phenylphospholane) employing phenylsilane to recycle the catalyst. Integration of this phosphine catalytic cycle with Taniguchi's azocarboxylate catalytic system provided the first fully catalytic Mitsunobu reaction.

  9. The study on carbon nanotubes-supported Pt catalysts for PEMFC

    Institute of Scientific and Technical Information of China (English)

    朱捷; 朱红; 康晓红; 葛奉娟; 杨玉国

    2004-01-01

    Carbon nanotube-supported-platinum (Pt/CNTs) and carbon-supported-platinum (Pt/C) catalysts were prepared by in situ chemical reduction method and analyzed by TEM and XRD. Then the experiments were carried out to test the performance of PEMFCs with the Pt electrodes. The results showed that in both catalyst, Pt was of small particle size (about 4 nm) and Pt/CNTs exhibited higher catalytic activity than Pt/C.

  10. Tetrahexahedral Pt Nanoparticles: Comparing the Oxygen Reduction Reaction under Transient vs Steady-State Conditions

    DEFF Research Database (Denmark)

    Deng, Yu-Jia; Wiberg, Gustav Karl Henrik; Zana, Alessandro

    2017-01-01

    -state conditions. As a benchmark, the ORR activity is compared with those of polycrystalline Pt and a commercial Pt/C catalyst. The results show that, under transient conditions, the catalytic performance of the THH Pt NPs and Pt/C are approximately the same and about 2 times lower than that of polycrystalline Pt....... However, under steady-state conditions the THH Pt NPs perform considerably better than Pt/C. Under steady-state conditions THH Pt NPs are even slightly more active than polycrystalline Pt...

  11. Studies of surface processes of electrocatalytic reduction of CO2 on Pt(210), Pt(310) and Pt(510)

    Institute of Scientific and Technical Information of China (English)

    FAN; ChunJie; FAN; YouJun; ZHEN; ChunHua; ZHENG; QingWei; SUN; ShiGang

    2007-01-01

    Surface processes of CO2 reduction on Pt(210), Pt(310), and Pt(510) electrodes were studied by cyclic voltammetry. Different surface structures of these platinum single crystal electrodes were obtained by various treatment conditions. The experimental results illustrated that the electrocatalytic activity of Pt single crystal electrodes towards CO2 reduction is decreased in an order of Pt(210)>Pt(310)>Pt(510), i.e., with the decrease of (110) step density on well-defined surfaces. When the surfaces were reconstructed due to oxygen adsorption, the catalytic activity of all the three electrodes has been enhanced to a certain extent. Although the activity order remains unchanged, the electrocatalytic activity has been enhanced more significantly as the density of (110) step sites is more intensive on the Pt single crystal surface. It has revealed that the more open the surface structure is, the more active the Pt single crystal electrode will be, and the easier for the electrode to be transformed into a surface structure that exhibits higher activity under external inductions. However, the relatively ordered surfaces of Pt single crystal electrode are comparatively stable under the same external inductions. The present study has gained knowledge on the interaction between CO2 and Pt single crystal electrode surfaces at a microscopic level, and thrown new insight into understanding the surface processes of electrocatalytic reduction of CO2.

  12. Nanoscale study of the ferroelectric properties of SrBi{sub 2}Nb{sub 2}O{sub 9} thin films grown by pulsed laser deposition on epitaxial Pt electrodes using atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Gautier, Brice; Duclere, Jean-Rene; Guilloux-Viry, Maryline

    2003-07-15

    SrBi{sub 2}Nb{sub 2}O{sub 9} (SBN) thin films deposited by laser ablation on epitaxial (1 0 0)Pt and (1 1 0)Pt have been studied using an atomic force microscope (AFM) in the so-called 'piezoresponse' mode. Previous X-ray studies have shown that in the first case two different orientations coexist in the film: a predominant (0 0 1) orientation with a (1 1 5) orientation. AFM topographical images reveal the presence of two different kinds of grains of different shape corresponding to each orientation and AFM piezoresponse images are in agreement with the crystallographic orientation of the grains: only the expected (1 1 5) oriented grains show a piezoelectric contrast. Moreover, hysteresis loops are obtained over (1 1 5) grains and not over (0 0 1) regions. Although (1 1 5) grains can be in a monodomain state, they also show intragranular ferroelectric domains with nanometric sizes, which orientation can be reversed by applying a dc field between the AFM tip and the grounded conductive bottom electrode of the sample. In the second case, the use of a (1 1 0)Pt electrode instead of a (1 0 0)Pt electrode leads to preferentially (1 1 6) SBN oriented films, inducing far better ferroelectrics properties. In spite of a weak remnant polarization, the surface shows an homogeneous polarization when a 1 {mu}mx1 {mu}m area is probed after the reversal of the polarization by the AFM tip.

  13. Effect of support and pre-treatment conditions on Pt-Sn catalysts: application to nitrate reduction in water.

    Science.gov (United States)

    Soares, Olívia Salomé G P; Jardim, Erika O; Reyes-Carmona, Alvaro; Ruiz-Martínez, Javier; Silvestre-Albero, Joaquín; Rodríguez-Castellón, Enrique; Orfão, José J M; Sepúlveda-Escribano, Antonio; Pereira, Manuel Fernando R

    2012-03-01

    The effect of the support (activated carbon or titanium dioxide) on the catalytic activity and selectivity to nitrogen of Pt-Sn catalysts in nitrate reduction was studied. The effects of the preparation conditions and the Pt:Sn atomic ratio were also evaluated. It was observed that the support plays an important role in nitrate reduction and that different preparation conditions lead to different catalytic activities and selectivities. Generally, the catalysts supported on activated carbon were less active but more selective to nitrogen than those supported on titanium dioxide. The monometallic Pt catalyst is active for nitrate reduction only when supported on titanium dioxide, which is explained by the involvement of the support in the reaction mechanism. The catalysts were characterized by different techniques, and significant changes on metal chemical states were observed for the different preparation conditions used. Only metallic Pt and oxidized Sn were observed at low calcination and reduction temperatures, but some metallic Sn was also present when high temperatures were used, being also possible the formation of Pt-Sn alloys.

  14. Graphene oxide-assisted facile synthesis of platinum-tellurium nanocubes with enhanced catalytic activity for formic acid electro-oxidation

    Science.gov (United States)

    Wang, Yichun; Chen, Jinwei; Zhou, Feilong; Zhang, Jie; Wei, Xiaoyang; Luo, Rui; Wang, Gang; Wang, Ruilin

    2017-08-01

    In order to obtain a loaded Pt-based catalyst with enhanced high activity and stability towards formic acid electro-oxidation (FAO), PtTe nanoparticles loaded on graphene oxide (GO) were fabricated by a facile and scalable method. XRD and HRTEM results show that the morphology of PtTe particles could be affected by the additive amount of GO and Te. It is observed that the supported PtTe particles are cubic. The XPS results show the change in the Pt electronic structure after the incorporation of Te, which impedes the chemisorption of the CO intermediate and promotes the dehydrogenation pathway of FAO. By electrochemical analysis, the performance towards FAO is greatly enhanced. The mass activity of PtTe/GO-67 is 2165.53 {{mA}} {{{mg}}}{{Pt}}-1 at 0.45 V (versus SCE), which is 11.5 times as high as that of Pt/C (188.44 {{mA}} {{{mg}}}{{Pt}}-1). The incorporation of Te atoms and the content of GO are two major parameters for tuning the crystal structure and morphology and enhancing catalytic activity.

  15. Electrochemical Promotion of Catalytic Reactions Using

    DEFF Research Database (Denmark)

    Petrushina, Irina; Bjerrum, Niels; Cleemann, Lars Nilausen

    2007-01-01

    This paper presents the results of a study on electrochemical promotion (EP) of catalytic reactions using Pt/C/polybenzimidazole(H3PO4)/Pt/C fuel cell performed by the Energy and Materials Science Group (Technical University of Denmark) during the last 6 years[1-4]. The development of our...... understanding of the nature of the electrochemical promotion is also presented....

  16. Insights on the SO2 Poisoning of Pt3Co/VC and Pt/VC Fuel Cell Catalysts

    Science.gov (United States)

    2010-01-01

    stripping voltammetry and underpotential deposition (upd) of copper adatoms. Then the performance of PEMFC cathodes employing 30wt.% Pt3Co/VC and 50wt.% Pt/VC...atoms (Pt and Cu atomic radii are 0.139 and 0.128nm, respectively [15]) makes copper underpotential deposition a perfect tool for evaluating the plat...the surface area of Pt3Co/VC catalyst is rigorously characterized by hydrogen adsorption,CO stripping voltammetry and under potential deposition (upd

  17. Highly improved resistive switching performances of the self-doped Pt/HfO2:Cu/Cu devices by atomic layer deposition

    Science.gov (United States)

    Liu, Sen; Wang, Wei; Li, QingJiang; Zhao, XiaoLong; Li, Nan; Xu, Hui; Liu, Qi; Liu, Ming

    2016-12-01

    Metal-oxide electrochemical metallization (ECM) memory is a promising candidate for the next generation nonvolatile memory. But this memory suffers from large dispersion of resistive switching parameters due to the intrinsic randomness of the conductive filament. In this work, we have proposed a self-doping approach to improve the resistive switching characteristics. The fabricated Pt/HfO2:Cu/Cu device shows outstanding nonvolatile memory properties, including high uniformity, good endurance, long retention and fast switching speed. The results demonstrate that the self-doping approach is an effective method to improve the metal-oxide ECM memory performances and the self-doped Pt/HfO2:Cu/Cu device has high potentiality for the nonvolatile memory applications in the future.

  18. Size and structure effects of Pt{sub N} (N = 12 − 13) clusters for the oxygen reduction reaction: First-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez-Kessler, P. L., E-mail: peter.rodriguez@ipicyt.edu.mx [Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí 78216 (Mexico); Rodríguez-Domínguez, A. R. [Instituto de Física, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78000 (Mexico)

    2015-11-14

    Size and structure effects on the oxygen reduction reaction on Pt{sub N} clusters with N = 12–13 atoms have been investigated using periodic density functional theory calculations with the generalized gradient approximation. To describe the catalytic activity, we calculated the O and OH adsorption energies on the cluster surface. The oxygen binding on the 3-fold hollow sites on stable Pt{sub 12−13} cluster models resulted more favorable for the reaction with O, compared with the Pt{sub 13}(I{sub h}) and Pt{sub 55}(I{sub h}) icosahedral particles, in which O binds strongly. However, the rate-limiting step resulted in the removal of the OH species due to strong adsorptions on the vertex sites, reducing the utility of the catalyst surface. On the other hand, the active sites of Pt{sub 12−13} clusters have been localized on the edge sites. In particular, the OH adsorption on a bilayer Pt{sub 12} cluster is the closest to the optimal target; with 0.0-0.2 eV weaker than the Pt(111) surface. However, more progress is necessary to activate the vertex sites of the clusters. The d-band center of Pt{sub N} clusters shows that the structural dependence plays a decisive factor in the cluster reactivity.

  19. First-principle investigation of the interactions between Pt{sub x}Ru{sub 55−x} (x = 0, 13, 42, 55) nanoparticles and [BMIM][PF{sub 6}] ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Ping; Liu, Chuan; Yang, Yongpeng; Huang, Shiping, E-mail: huangsp@mail.buct.edu.cn

    2015-05-01

    Highlights: • Interaction between PtRu nanoparticle and [BMIM][PF{sub 6}] is performed by DFT calculations. • The structure of Pt{sub 13}Ru{sub 42} nanoparticle is distorted induced by [BMIM][PF{sub 6}]. • The d-band center show that catalytic activities of Pt{sub 13}Ru{sub 42} and Ru{sub 55} are enhanced. • Two C atoms of [BMIM][PF{sub 6}] form the bond with Pt{sub 13}Ru{sub 42} nanoparticles. - Abstract: Density functional theory calculations have been performed to characterize the interactions between [BMIM][PF{sub 6}] ionic liquid and icosahedral Pt{sub x}Ru{sub 55−x} (x = 0, 13, 42, 55) nanoparticles. In Ru{sub 13}Pt{sub 42}–[BMIM][PF{sub 6}], only one F atom of the anion form the bond with nanoparticle, resulting in the smallest interaction energy (−0.56 eV). While in Pt{sub 13}Ru{sub 42}–[BMIM][PF{sub 6}], two F atoms of the anion together with two C atoms of cation form the bonds with nanoparticle, resulting in the biggest interaction energy (−10.65 eV). The interaction between [BMIM][PF{sub 6}] and Pt{sub 13}Ru{sub 42} is so strong that it induces a significant distortion in the original core–shell structure of Pt{sub 13}Ru{sub 42}. Moreover, after interacting with [BMIM][PF{sub 6}], the Pt{sub 55}, Pt{sub 13}Ru{sub 42} and Ru{sub 55} nanoparticles become more stable based on the negative relaxation energy. The d-band centers of Pt{sub 13}Ru{sub 42} and Ru{sub 55} shift from −1.90, −1.78 eV up to −1.78, −1.56 eV, suggesting that the catalytic activities of Pt{sub 13}Ru{sub 42} and Ru{sub 55} are enhanced.

  20. Solid-state charge-based device for control of catalytic carbon monoxide oxidation on platinum nanofilms using external bias and light.

    Science.gov (United States)

    Baker, L Robert; Hervier, Antoine; Kennedy, Griffin; Somorjai, Gabor A

    2012-05-09

    Using a Pt/Si catalytic nanodiode, we externally control the rate of CO oxidation on a Pt nanofilm. The catalytic reaction can be turned on and off by alternating between bias states of the device. Additionally, the reaction rate is sensitive to photocurrent induced by visible light. The effects of both bias and light show that negative charge on the Pt increases catalytic activity, while positive charge on the Pt decreases catalytic activity for CO oxidation.

  1. Bimetallic PtSn/C catalysts obtained via SOMC/M for glycerol steam reforming.

    Science.gov (United States)

    Pastor-Pérez, Laura; Merlo, Andrea; Buitrago-Sierra, Robison; Casella, Mónica; Sepúlveda-Escribano, Antonio

    2015-12-01

    A detailed study on the preparation of bimetallic PtSn/C catalysts using surface-controlled synthesis methods, and on their catalytic performance in the glycerol steam reforming reaction has been carried out. In order to obtain these well-defined bimetallic phases, techniques derived from Surface Organometallic Chemistry on Metals (SOMC/M) were used. The preparation process involved the reaction between an organometallic compound ((C4H9)4Sn) and a supported transition metal (Pt) in a H2 atmosphere. Catalysts with Sn/Pt atomic ratios of 0.2, 0.3, 0.5, and 0.7 were obtained, and characterized using several techniques: ICP, H2 chemisorption, TEM and XPS. These systems were tested in the glycerol steam reforming varying the reaction conditions (glycerol concentration and reaction temperature). The best performance was observed for the catalysts with the lowest tin contents (PtSn0.2/C and PtSn0.3/C). It was observed that the presence of tin increased the catalysts' stability when working under more severe reaction conditions.

  2. Oxidation of CO and surface properties of well characterized Pt{sub 3}Sn bimetallic alloy surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Stamenkovic, V.; Arenz, M.; Blizanac, B. B.; Ross, P. N.; Markovic, N. M. [University of California-Berkeley, Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States)

    2004-04-01

    The Pt{sub 3}Sn alloy is known to be one of the most active systems for carbon monoxide oxidation. This paper continues the effort begun earlier to explore the link between macroscopic level properties of the Pt{sub 3}Sn(hkl) surfaces in an electrochemical environment and in-situ atomic level characterization. Specifically, the work reported here entails a further examination of the Pt{sub 3}Sn(110) interface in an electrochemical environment as part of a detailed study of structural effects on electrocatalysis. Alloy surfaces have been characterized in ultra-high vacuum (UHV) by Auger electron microscopy, low energy ion scattering spectroscopy (LEISS) and low energy electron diffraction (LEED). Surface electrochemistry of carbon monoxide was studied in-situ by Fourier transform infrared (FTIR) spectroscopy. Result showed that in contrast to the Pt{sub 3}Sn(111) surface, changes in band morphology and vibrational properties are clearly absent on the Pt{sub 3}Sn(110) surface. In the case of the Pt{sub 3}Sn(hkl)-CO interaction, not only electronic effects, but also other factors, such as surface structure and intermolecular repulsion between adsorbed CO species were found to be responsible for high catalytic activity. 40 refs., 6 figs.

  3. Nanostructured Ti(0.7)Mo(0.3)O2 support enhances electron transfer to Pt: high-performance catalyst for oxygen reduction reaction.

    Science.gov (United States)

    Ho, Van Thi Thanh; Pan, Chun-Jern; Rick, John; Su, Wei-Nien; Hwang, Bing-Joe

    2011-08-03

    The slow rate of the oxygen reduction reaction (ORR) and the instability of Pt-based catalysts are two of the most important issues that must be solved in order to make proton exchange membrane fuel cells (PEMFCs) a reality. Additionally, the serious carbon corrosion on the cathode side is a critical problem with respect to the durability of catalyst that limits its wide application. Here, we present a new approach by exploring robust noncarbon Ti(0.7)Mo(0.3)O(2) used as a novel functionalized cocatalytic support for Pt. This approach is based on the novel nanostructure Ti(0.7)Mo(0.3)O(2) support with "electronic transfer mechanism" from Ti(0.7)Mo(0.3)O(2) to Pt that can modify the surface electronic structure of Pt, owing to a shift in the d-band center of the surface Pt atoms. Furthermore, another benefit of Ti(0.7)Mo(0.3)O(2) is the extremely high stability of Pt/Ti(0.7)Mo(0.3)O(2) during potential cycling, which is attributable to the strong metal/support interaction (SMSI) between Pt and Ti(0.7)Mo(0.3)O(2). This also enhances the inherent structural and chemical stability and the corrosion resistance of the TiO(2)-based oxide in acidic and oxidative environments. We also demonstrate that the ORR current densities generated using cocatalytic Pt/Ti(0.7)Mo(0.3)O(2) are respectively ~7- and 2.6-fold higher than those of commercial Pt/C and PtCo/C catalysts with the same Pt loading. This new approach opens a reliable path to the discovery advanced concept in designing new catalysts that can replace the traditional catalytic structure and motivate further research in the field.

  4. Diastereoselective Pt catalyzed cycloisomerization of polyenes to polycycles.

    Science.gov (United States)

    Geier, Michael J; Gagné, Michel R

    2014-02-26

    Application of a tridentate NHC containing pincer ligand to Pt catalyzed cascade cyclization reactions has allowed for the catalytic, diastereoselective cycloisomerization of biogenic alkene terminated substrates to the their polycyclic counterparts.

  5. Double-Side Co-Catalytic Activation of Anodic TiO2 Nanotube Membranes with Sputter-Coated Pt for Photocatalytic H2 Generation from Water/Methanol Mixtures.

    Science.gov (United States)

    Cha, Gihoon; Altomare, Marco; Truong Nguyen, Nhat; Taccardi, Nicola; Lee, Kiyoung; Schmuki, Patrik

    2017-02-01

    Self-standing TiO2 nanotube layers in the form of membranes are fabricated by self-organizing anodization of Ti metal and a potential shock technique. The membranes are then decorated by sputtering different Pt amounts i) only at the top, ii) only at the bottom or iii) at both top and bottom of the tube layers. The Pt-decorated membranes are transferred either in tube top-up or in tube top-down configuration onto FTO slides and are investigated, after crystallization, as photocatalysts for H2 generation using either front or back-side light irradiation. Double-side Pt-decoration of the tube membranes leads to higher H2 generation rates (independently of tube and light-irradiation configuration) compared to membranes decorated at only one side with similar overall Pt amounts. The results suggest that this effect cannot be only ascribed to the overall amount of Pt co-catalyst as such but also to its distribution at both tube extremities. This leads to optimized light absorption and electron diffusion/transfer dynamics: the central part of the membranes acts as light-harvesting zone and electrons therein generated can diffuse towards the Pt/TiO2 active zones (tube extremities) where they can react with the environment and generate H2 . © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Pt/MOx/SiO2, Pt/MOx/TiO2, and Pt/MOx/Al2O3 Catalysts for CO Oxidation

    Directory of Open Access Journals (Sweden)

    Hongmei Qin

    2015-04-01

    Full Text Available Conventional supported Pt catalysts have often been prepared by loading Pt onto commercial supports, such as SiO2, TiO2, Al2O3, and carbon. These catalysts usually have simple metal-support (i.e., Pt-SiO2 interfaces. To tune the catalytic performance of supported Pt catalysts, it is desirable to modify the metal-support interfaces by incorporating an oxide additive into the catalyst formula. Here we prepared three series of metal oxide-modified Pt catalysts (i.e., Pt/MOx/SiO2, Pt/MOx/TiO2, and Pt/MOx/Al2O3, where M = Al, Fe, Co, Cu, Zn, Ba, La for CO oxidation. Among them, Pt/CoOx/SiO2, Pt/CoOx/TiO2, and Pt/CoOx/Al2O3 showed the highest catalytic activities. Relevant samples were characterized by N2 adsorption-desorption, X-ray diffraction (XRD, transmission electron microscopy (TEM, H2 temperature-programmed reduction (H2-TPR, X-ray photoelectron spectroscopy (XPS, CO temperature-programmed desorption (CO-TPD, O2 temperature-programmed desorption (O2-TPD, and CO2 temperature-programmed desorption (CO2-TPD.

  7. Electrocatalytic activity of Pt grown by ALD on carbon nanotubes for Si-based DMFC applications

    DEFF Research Database (Denmark)

    Johansson, Alicia Charlotte; Dalslet, Bjarke Thomas; Yang, R.B.

    2012-01-01

    We present an anode design for silicon-based direct methanol fuel cell (DMFC) applications. Platinum was deposited conformally by atomic layer deposition (ALD) onto vertically aligned, nitrogendoped multi-walled carbon nanotubes (MWCNTs) grown on porous silicon. The deposition was carried out...... that ALD could be a MEMS compatible deposition technique for Si-based fuel cell applications. © The Electrochemical Society....... in a top-flow ALD reactor at 250°C, using MeCpPtMe3 and O2 as precursors. The anode was tested for the methanol oxidation reaction (MOR) in a three-electrode electrochemical set-up and it showed improved catalytic activity compared to a reference sample of Pt deposited on flat Si. It is demonstrated...

  8. Room temperature sensing of O2 and CO by atomic layer deposition prepared ZnO films coated with Pt nanoparticles

    NARCIS (Netherlands)

    Erkens, I.J.M.; Blauw, M.A.; Verheijen, M.A.; Roozeboom, F.; Kessels, W.M.M.

    2013-01-01

    Ultralow-power gas sensing devices need to operate without an energy consuming heater element. This requires the design of sensing devices that are so efficient that they can operate at room temperature (RT). Here, we report on the RT sensing performance of atomic layer deposition (ALD) prepared i-Z

  9. SISGR: Theoretically relating the surface composition of Pt alloys to their performance as the electrocatalysts of low-temperature fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guofeng

    2010-12-31

    The main goal of this project is to gain fundamental knowledge about the relation between surface composition and catalytic performance of Pt alloy catalysts for oxygen reduction reaction (ORR). Specific objectives are: to develop and improve a first-principles based multiscale computation approach to simulating surface segregation phenomena in Pt alloy surfaces; to evaluate the surface electronic structure and catalytic activity of Pt alloy catalysts and; to relate the surface composition to the catalytic performance of Pt alloy catalysts.

  10. Pt-Ni and Pt-M-Ni (M = Ru, Sn Anode Catalysts for Low-Temperature Acidic Direct Alcohol Fuel Cells: A Review

    Directory of Open Access Journals (Sweden)

    Ermete Antolini

    2017-01-01

    Full Text Available In view of a possible use as anode materials in acidic direct alcohol fuel cells, the electro-catalytic activity of Pt-Ni and Pt-M-Ni (M = Ru, Sn catalysts for methanol and ethanol oxidation has been widely investigated. An overview of literature data regarding the effect of the addition of Ni to Pt and Pt-M on the methanol and ethanol oxidation activity in acid environment of the resulting binary and ternary Ni-containing Pt-based catalysts is presented, highlighting the effect of alloyed and non-alloyed nickel on the catalytic activity of these materials.

  11. Isolation and Structural Characterization of a Mackay 55-Metal-Atom Two-Shell Icosahedron of Pseudo-Ih Symmetry, Pd55L12(μ3-CO)20 (L = PR3, R = Isopropyl): Comparative Analysis with Interior Two-Shell Icosahedral Geometries in Capped Three-Shell Pd145, Pt-Centered Four-Shell Pd-Pt M165, and Four-Shell Au133 Nanoclusters.

    Science.gov (United States)

    Erickson, Jeremiah D; Mednikov, Evgueni G; Ivanov, Sergei A; Dahl, Lawrence F

    2016-02-10

    We present the first successful isolation and crystallographic characterization of a Mackay 55-metal-atom two-shell icosahedron, Pd55L12(μ3-CO)20 (L = PPr(i)3) (1). Its two-shell icosahedron of pseudo-Ih symmetry (without isopropyl substituents) enables a structural/bonding comparison with interior 55-metal-atom two-shell icosahedral geometries observed within the multi-shell capped 145-metal-atom three-shell Pd145(CO)72(PEt3)30 and 165-metal-atom four-shell Pt-centered (μ12-Pt)Pd164-xPtx(CO)72(PPh3)20 (x ≈ 7) nanoclusters, and within the recently reported four-shell Au133(SC6H4-p-Bu(t))52 nanocluster. DFT calculations carried out on a Pd55(CO)20(PH3)12 model analogue, with triisopropyl phosphine substituents replaced by H atoms, revealed a positive +0.84 e charge for the entire Pd55 core, with a highly positive second-shell Pd42 surface of +1.93 e.

  12. Ca10Pt7Tt3 (Tt = Si, Ge): new platinide phases featuring electron-rich 4c-6e bonded [Pt7Tt3]20- intermetalloid clusters.

    Science.gov (United States)

    Doverbratt, Isa; Ponou, Siméon; Lidin, Sven; Fredrickson, Daniel C

    2012-11-05

    Two new phases Ca(10)Pt(7)Tt(3) (with Tt = Si, Ge) were obtained by reacting stoichiometric mixtures of the elements at high temperature. Their structures were refined from single crystal X-ray diffraction data. They are isostructural and crystallize in the Ba(10)Al(3)Ge(7) type structure, space group P6(3)/mcm (No. 193) with a = b = 8.7735(3) Å, c = 13.8260(5) Å, V = 921.66(6) Å(3), Z = 2 for Tt = Si, and a = b = 8.7995(6) Å, c = 13.9217(14) Å, V = 933.56(16) Å(3) for Tt = Ge phase. The most interesting structural features in these phases are the propeller shape {Pt(7)Tt(3)} (Tt = Si, Ge) intermetalloid clusters in a D(3h) local symmetry. LMTO electronic structure calculations and COHP analyses reveal that both Ca(10)Pt(7)Tt(3) (Tt = Si, Ge) phases are charge optimized, which is not predicted by the classical Zintl concept and the octet or Wade-Mingo's rules, but rather by a more complex bonding model based on the unprecedented electron-rich 4c-6e multicenter bonding. The clusters are best described as three-condensed trigonal planar [TtPt(3)](8-) units, resulting in a central Pt atom also with a trigonal planar coordination of three symmetrical equivalent Si/Ge atoms that are further connected to two terminal Pt atoms each. The "trefoil" electron-rich multicenter bonding is proposed here for the first time, and may be viewed as a unique bonding feature with potential relevance for the catalytic properties of the noble metal platinum.

  13. Synthesis and composition evolution of bimetallic Pd Pt alloy nanoparticles

    Science.gov (United States)

    Ren, Guoqiang; Shi, Honglan; Xing, Yangchuan

    2007-09-01

    This paper reports a study on the synthesis of Pd-Pt alloy nanoparticles and composition evolution of the alloys. The synthesis involves Pd and Pt acetylacetonate as the metal precursors and trioctylphosphine (TOP) as the solvent. Thermal decomposition of the Pd-TOP complex resulted in Pd nanoparticles, while substitution of Pt in the Pt-TOP complex by Pd allowed formation of the Pd-Pt alloys. It was observed that the Pd-Pt nanoparticles formed at the very beginning in the synthesis process are Pd rich with various nanoparticle sizes ranging from 1.5 to 25 nm in diameter. These nanoparticles averaged out through a digestive ripening process and reached a final size of 3.5 nm in about 10 min. The alloy compositions evolved throughout the synthesis process and only reached the preset Pd to Pt ratio of the precursors in 120 min. It was found that Pt acetylacetonate alone in TOP cannot produce Pt nanoparticles, which was attributed to the formation of a Pt-TOP complex and a strong coordination of Pt to the phosphine. This observation led us to propose an atomic exchange process between the Pt-TOP complex and the Pd atoms at the nanoparticle surface. As a result, the alloy formation process is limited by a substitution and diffusion rate of the Pt atoms at the surface of the alloy nanoparticles.

  14. 甲醇在不同结构氧化钨-Pt/C催化剂上的电催化氧化行为%Compared Study of Catalytic Activity for Methanol Oxidation on Different Pt-WO3/C Electrodes

    Institute of Scientific and Technical Information of China (English)

    闫鹏; 徐英明; 赵辉; 霍丽华; 高山

    2011-01-01

    Tungsten oxide-based nano-materials with two different crystal structures were prepared by hydrothermal method and characterized by X-ray diffraction ( XRD) and electron probe micro analyzer (EPMA) , respectively. The electrocatalytic activity for methanol oxidation on Pt-WO3/C electrode was studied by cyclic voltammetry. The results indicate that the electrocatalytic activity of Pt-WO3/C is much higher than that of Pt/C catalyst. For various amount of WO3, the catalyst with 20% mass fraction of WO3 has the best electrocatalytic activity. The electrocatalytic activity of the pyrochlore type tungsten oxide doped Pt/C electrode is higher than that of the tungsten bronze doped electrode, which is likely due to the strong attractions of OH^ on the surface of pyrochlore type tungsten oxide. The current density of the pyrochlore type tungsten oxide doped Pt/C electrode for electro-oxidation of methanol is 87. 2 x 10 "3 A/cm2 in 0. 5 mol/L CH30H + 1 mol/L H2SO4 solution.%采用水热法合成2种氧化钨( WO3)纳米材料,并利用XRD和电子探针显微分析仪(EPMA)进行了表征.利用循环伏安法研究了Pt-WO3/C电极对甲醇氧化的电催化活性.结果表明,Pt-WO#C催化剂对甲醇氧化的电催化活性优于Pt/C催化剂,且氧化钨质量分数为20%的Pt-氧化钨/C催化效果最好.与青铜相氧化钨掺杂的Pt/C电极比较,掺杂焦绿石型氧化钨的Pt/C电极催化性能有很大提高,这是由于焦绿石型氧化钨表面具有较多OH..质量分数20%的Pt-焦绿石型氧化钨/C在0.5mol/LCH3OH+1 mol/L H2SO4溶液中对甲醇氧化的峰电流密度达到87.2×10-3 A/cm2.

  15. Direct Determination of the Ionization Energies of PtC, PtO, and PtO2 with VUVRadiation

    Energy Technology Data Exchange (ETDEWEB)

    Citir, Murat; Metz, Ricardo B.; Belau, Leonid; Ahmed, Musahid

    2008-07-21

    Photoionization efficiency curves were measured for gas-phase PtC, PtO, and PtO2 using tunable vacuum ultraviolet (VUV) radiation at the Advanced Light Source. The molecules were prepared by laser ablation of a platinum tube, followed by reaction with CH4 or N2O and supersonic expansion. These measurements providethe first directly measured ionization energy for PtC, IE(PtC) = 9.45 +- 0.05 eV. The direct measurement also gives greatly improved ionization energies for the platinum oxides, IE(PtO) = 10.0 +- 0.1 eV and IE(PtO2) = 11.35 +- 0.05 eV. The ionization energy connects the dissociation energies of the neutral and cation, leading to greatly improved 0 K bond dissociation energies for the neutrals: D0(Pt-C) = 5.95 +- 0.07 eV, D0(Pt-O)= 4.30 +- 0.12 eV, and D0(OPt-O) = 4.41 +- 0.13 eV, as well as enthalpies of formation for the gas-phase molecules Delta H0 f,0(PtC(g)) = 701 +- 7 kJ/mol, Delta H0f,0(PtO(g)) = 396 +- 12 kJ/mol, and Delta H0f,0(PtO2(g)) = 218 +- 11 kJ/mol. Much of the error in previous Knudsen cell measurements of platinum oxide bond dissociation energies is due to the use of thermodynamic second law extrapolations. Third law values calculated using statistical mechanical thermodynamic functions are in much better agreement with values obtained from ionization energies and ion energetics. These experiments demonstrate that laser ablation production with direct VUV ionization measurements is a versatile tool to measure ionization energies and bond dissociation energies for catalytically interesting species such as metal oxides and carbides.

  16. Monte carlo simulations of segregation in Pt-Re catalyst nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guofeng; Van Hove, M.A.; Ross, P.N.; Baskes, M.I.

    2004-04-01

    We have investigated the segregation of Pt atoms to the surfaces of Pt-Re nanoparticles using the Monte Carlo method and Modified Embedded Atom Method potentials that we have developed for Pt-Re alloys. The Pt75Re25 nanoparticles (containing from 586 to 4033 atoms) are assumed to have disordered fcc configurations and cubo-octahedral shapes (terminated by {l_brace}111{r_brace} and {l_brace}100{r_brace} facets), while the Pt50Re50 and Pt25Re75 nanoparticles (containing from 587 to 4061 atoms) are assumed to have disordered hcp configurations and truncated hexagonal bipyramidal shapes (terminated by {l_brace}0001{r_brace} and {l_brace}101 {bar 1}{r_brace} facets). We predict that due to the segregation process the equilibrium Pt-Re nanoparticles would achieve a core-shell structure, with a Pt-enriched shell surrounding a Pt-deficient core. For fcc cubo-octahedral Pt75Re25 nanoparticles, the shells consist of almost 100 at. percent of Pt atoms. Even in the shells of hcp truncated hexagonal bipyramidal Pt50Re50 nanoparticles, the concentrations of Pt atoms exceed 85 at. percent (35 at. percent higher than the overall concentration of Pt atoms in these nanoparticles). Most prominently, all Pt atoms will segregate to the surfaces in the hcp truncated hexagonal bipyramidal Pt25Re75 nanoparticles containing less than 1000 atoms. We also find that the Pt atoms segregate preferentially to the vertex sites, less to edge sites, and least to facet sites on the shell of Pt-Re nanoparticles.

  17. PtRu colloid nanoparticles for CO oxidation in microfabricated reactors

    DEFF Research Database (Denmark)

    Klerke, Asbjørn; Saadi, Souheil; Toftegaard, Maja Bøg

    2006-01-01

    The catalytic activity of PtRu colloid nanoparticles for CO oxidation is investigated in microfabricated reactors. The measured catalytic performance describes a volcano curve as a function of the Pt/Ru ratio. The apparent activation energies for the different alloy catalysts are between 21 and 117...

  18. Calcium platinum aluminium, CaPtAl

    Directory of Open Access Journals (Sweden)

    Charles Fon Abi

    2011-10-01

    Full Text Available A preliminary X-ray study of CaPtAl has been reported previously by Hulliger [J. Alloys Compd (1993, 196, 225–228] based on X-ray powder diffraction data without structure refinement. With the present single-crystal X-ray study, we confirm the assignment of the TiNiSi type for CaPtAl, in a fully ordered inverse structure. All three atoms of the asymmetric unit have .m. site symmetry. The structure features a ∞3[AlPt] open framework with a fourfold coordination of Pt by Al atoms and vice versa. The Ca atoms are located in the large channels of the structure.

  19. Magnetic moments in chemically ordered mass-selected CoPt and FePt clusters

    Energy Technology Data Exchange (ETDEWEB)

    Dupuis, V., E-mail: Veronique.Dupuis@univ-lyon1.fr [Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne cedex (France); Khadra, G.; Linas, S.; Hillion, A. [Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne cedex (France); Gragnaniello, L. [Institute of Condensed Matter Physics, EPFL, CH-1015 Lausanne (Switzerland); Tamion, A.; Tuaillon-Combes, J.; Bardotti, L.; Tournus, F. [Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne cedex (France); Otero, E.; Ohresser, P. [Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin BP 48, F-91192 Gif-sur-Yvette Cedex (France); Rogalev, A.; Wilhelm, F. [European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble Cedex (France)

    2015-06-01

    By combining high photon flux and chemical selectivity, X-ray absorption spectroscopy and X-ray magnetic circular dichroism (XMCD) have been used to study the magnetism of CoPt and FePt clusters before and after their transition to the chemically ordered L1{sub 0}-like phase. Compared to the bulk, we find larger magnetic spin and orbital moments of Fe, Co and Pt atoms in nanoalloys. - Highlights: • Study of magnetism on well-defined CoPt and FePt clusters embedded in carbon matrix • X-ray magnetic circular dichroism (XMCD) at each specific Fe, Co and Pt edges, before and after annealing to induce transition to the chemically L1{sub 0}-like phase. • Quantitative values of the spin and orbital magnetic moments of Co (resp. Fe) and Pt after the chemical ordering transition. • Specific nanoalloy effects.

  20. Facile Synthesis of Nanoporous Pt-Y alloy with Enhanced Electrocatalytic Activity and Durability

    Science.gov (United States)

    Cui, Rongjing; Mei, Ling; Han, Guangjie; Chen, Jiyun; Zhang, Genhua; Quan, Ying; Gu, Ning; Zhang, Lei; Fang, Yong; Qian, Bin; Jiang, Xuefan; Han, Zhida

    2017-02-01

    Recently, Pt-Y alloy has displayed an excellent electrocatalytic activity for oxygen reduction reaction (ORR), and is regarded as a promising cathode catalyst for fuel cells. However, the bulk production of nanoscaled Pt-Y alloy with outstanding catalytic performance remains a great challenge. Here, we address the challenge through a simple dealloying method to synthesize nanoporous Pt-Y alloy (NP-PtY) with a typical ligament size of ~5 nm. By combining the intrinsic superior electrocatalytic activity of Pt-Y alloy with the special nanoporous structure, the NP-PtY bimetallic catalyst presents higher activity for ORR and ethanol oxidation reaction, and better electrocatalytic stability than the commercial Pt/C catalyst and nanoporous Pt alloy. The as-made NP-PtY holds great application potential as a promising electrocatalyst in proton exchange membrane fuel cells due to the advantages of facile preparation and excellent catalytic performance.

  1. Atomic layer deposition of Al{sub 2}O{sub 3} for single electron transistors utilizing Pt oxidation and reduction

    Energy Technology Data Exchange (ETDEWEB)

    McConnell, Michael S., E-mail: mmcconn5@nd.edu; Schneider, Louisa C.; Karbasian, Golnaz; Rouvimov, Sergei; Orlov, Alexei O.; Snider, Gregory L. [Department of Electrical Engineering, University of Notre Dame, 275 Fitzpatrick Hall, Notre Dame, Indiana 46556 (United States)

    2016-01-15

    This work describes the fabrication of single electron transistors using electron beam lithography and atomic layer deposition to form nanoscale tunnel transparent junctions of alumina (Al{sub 2}O{sub 3}) on platinum nanowires using either water or ozone as the oxygen precursor and trimethylaluminum as the aluminum precursor. Using room temperature, low frequency conductance measurements between the source and drain, it was found that devices fabricated using water had higher conductance than devices fabricated with ozone. Subsequent annealing caused both water- and ozone-based devices to increase in conductance by more than 2 orders of magnitude. Furthermore, comparison of devices at low temperatures (∼4 K) showed that annealed devices displayed much closer to the ideal behavior (i.e., constant differential conductance) outside of the Coulomb blockade region and that untreated devices showed nonlinear behavior outside of the Coulomb blockade region (i.e., an increase in differential conductance with source-drain voltage bias). Transmission electron microscopy cross-sectional images showed that annealing did not significantly change device geometry, but energy dispersive x-ray spectroscopy showed an unusually large amount of oxygen in the bottom platinum layer. This suggests that the atomic layer deposition process results in the formation of a thin platinum surface oxide, which either decomposes or is reduced during the anneal step, resulting in a tunnel barrier without the in-series native oxide contribution. Furthermore, the difference between ozone- and water-based devices suggests that ozone promotes atomic layer deposition nucleation by oxidizing the surface but that water relies on physisorption of the precursors. To test this theory, devices were exposed to forming gas at room temperature, which also reduces platinum oxide, and a decrease in resistance was observed, as expected.

  2. Electrically programmable-erasable In-Ga-Zn-O thin-film transistor memory with atomic-layer-deposited Al{sub 2}O{sub 3}/Pt nanocrystals/Al{sub 2}O{sub 3} gate stack

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Shi-Bing; Zhang, Wen-Peng; Liu, Wen-Jun; Ding, Shi-Jin, E-mail: sjding@fudan.edu.cn [State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433 (China)

    2015-12-15

    Amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistor (TFT) memory is very promising for transparent and flexible system-on-panel displays; however, electrical erasability has always been a severe challenge for this memory. In this article, we demonstrated successfully an electrically programmable-erasable memory with atomic-layer-deposited Al{sub 2}O{sub 3}/Pt nanocrystals/Al{sub 2}O{sub 3} gate stack under a maximal processing temperature of 300 {sup o}C. As the programming voltage was enhanced from 14 to 19 V for a constant pulse of 0.2 ms, the threshold voltage shift increased significantly from 0.89 to 4.67 V. When the programmed device was subjected to an appropriate pulse under negative gate bias, it could return to the original state with a superior erasing efficiency. The above phenomena could be attributed to Fowler-Nordheim tunnelling of electrons from the IGZO channel to the Pt nanocrystals during programming, and inverse tunnelling of the trapped electrons during erasing. In terms of 0.2-ms programming at 16 V and 350-ms erasing at −17 V, a large memory window of 3.03 V was achieved successfully. Furthermore, the memory exhibited stable repeated programming/erasing (P/E) characteristics and good data retention, i.e., for 2-ms programming at 14 V and 250-ms erasing at −14 V, a memory window of 2.08 V was still maintained after 10{sup 3} P/E cycles, and a memory window of 1.1 V was retained after 10{sup 5} s retention time.

  3. Fabrication of monometallic (Co, Pd, Pt, Au) and bimetallic (Pt/Au, Au/Pt) thin films with hierarchical architectures as electrocatalysts

    Science.gov (United States)

    Qiu, Cuicui; Zhang, Jintao; Ma, Houyi

    2010-05-01

    Co thin films with novel hierarchical structures were controllably fabricated by simple electrochemical deposition in the absence of hard and soft templates, which were used as sacrificial templates to further prepare noble metal (Pd, Pt, Au) hierarchical micro/nanostructures via metal exchange reactions. SEM characterization demonstrated that the resulting noble metal thin films displayed hierarchical architectures. The as-prepared noble metal thin films could be directly used as the anode catalysts for the electro-oxidation of formic acid. Moreover, bimetallic catalysts (Pt/Au, Au/Pt) fabricated based on the monometallic Au, Pt micro/nanostructures exhibited the higher catalytic activity compared to the previous monometallic catalysts.

  4. Synthesis of Pt3Ni Microspheres with High Performance for Rapid Degradation of Organic Dyes

    Science.gov (United States)

    Wang, Min; Yang, Yushi; Long, Jia; Mao, Zhou; Qiu, Tong; Wu, Qingzhi; Chen, Xiaohui

    2015-05-01

    In this study, Pt3Ni microspheres consisted of nanoparticles were synthesized without addition of surfactants via the solvothermal route. The obtained sample was characterized by X-ray diffraction (XRD), inductively coupled plasma-atomic emission spectrometer (ICP-AES), X-ray photoelectron spectroscopy (XPS), and field-emission scanning electron microscopy (FESEM). Furthermore, the catalytic performance of as-synthesized Pt3Ni microspheres was evaluated on the degradation of different organic dyes (methylene blue, methyl orange, Congo red, and rhodamine B). The results show that different dyes were rapidly decomposed by Pt3Ni microspheres in different pathways. Among different dyes, the formation and further degradation of the intermediates was observed during the degradation of methylene blue and methyl orange, suggesting the indirect degradation process of these dyes. This study provides not only a promising catalyst for the removal of organic contaminants for environment remediation, but also new insights for Pt3Ni alloy as a high-performance catalyst in organic synthesis.

  5. Synthesis of Pt3Ni microspheres with high performance for rapid degradation of organic dyes.

    Science.gov (United States)

    Wang, Min; Yang, Yushi; Long, Jia; Mao, Zhou; Qiu, Tong; Wu, Qingzhi; Chen, Xiaohui

    2015-12-01

    In this study, Pt3Ni microspheres consisted of nanoparticles were synthesized without addition of surfactants via the solvothermal route. The obtained sample was characterized by X-ray diffraction (XRD), inductively coupled plasma-atomic emission spectrometer (ICP-AES), X-ray photoelectron spectroscopy (XPS), and field-emission scanning electron microscopy (FESEM). Furthermore, the catalytic performance of as-synthesized Pt3Ni microspheres was evaluated on the degradation of different organic dyes (methylene blue, methyl orange, Congo red, and rhodamine B). The results show that different dyes were rapidly decomposed by Pt3Ni microspheres in different pathways. Among different dyes, the formation and further degradation of the intermediates was observed during the degradation of methylene blue and methyl orange, suggesting the indirect degradation process of these dyes. This study provides not only a promising catalyst for the removal of organic contaminants for environment remediation, but also new insights for Pt3Ni alloy as a high-performance catalyst in organic synthesis.

  6. Oxygen Reduction Reaction on Pt Overlayers Deposited onto a Gold Film: Ligand, Strain, and Ensemble Effect

    DEFF Research Database (Denmark)

    Deng, Yu-Jia; Tripkovic, Vladimir; Rossmeisl, Jan;

    2016-01-01

    We study the oxygen reduction reaction (ORR), the catalytic process occurring at the cathode in fuel cells, on Pt layers prepared by electrodeposition onto an Au substrate. Using a nominal Pt layer by layer deposition method previously proposed, imperfect layers of Pt on Au are obtained. The ORR ...

  7. Structure and reactivity of Pd-Pt clusters produced by laser vaporization of bulk alloys

    Science.gov (United States)

    Rousset, J. L.; Cadrot, A. M.; Lianos, L.; Renouprez, A. J.

    Pd-Pt nanoclusters are obtained by the focusing of an Nd:YAG laser onto rods of alloys. The aggregates, which are produced by plasma cooling via short helium bursts synchronized with the laser pulses, are collected on amorphous carbon or silicon substrates, in a UHV chamber. Transmission electron microscopy (TEM) experiments show that the diameters of the clusters range between 1.5 and 4.5 nm, and analytical microscopy indicates that they have the same composition as the vaporized rods. Low-energy ion scattering (LEIS) also shows that the surface of the obtained clusters is Pd enriched: the Pd concentration in the first atomic layer is found to be equal to 38% for a Pd17Pt83 rod composition and 87% for the Pd65 Pt35 alloy. The catalytic activity of these clusters in the hydrogenation of 1,3-butadiene to butenes and butane is measured in static mode, with mass spectrometry detection. The reactivity of the bimetallic clusters is explained by the atomic local order and low-coordination sites considered as ``hot sites''.

  8. Pt-Cu/SiO2对四氯化碳脱氯制四氯乙烯与甲烷氯化耦合反应的催化性能%CATALYTIC PERFORMANCE OF Pt-Cu/SiO2 FOR COUPLING REACTIONS BETWEEN DECHLORINATION OF CARBON TETRACHLORIDE TO TETRACHLOROETHYLENE AND CHORINATION OF METHANE

    Institute of Scientific and Technical Information of China (English)

    石小玉; 张东宝; 李明时; 鲁墨弘; 朱建军; 单玉华

    2010-01-01

    研究了甲烷作为氢源与四氯化碳的耦合反应.考察了Cu/SiO2、Pt/SiO2和Pt-Cu/SiO2催化剂对四氯化碳脱氯与甲烷氯化耦合反应的催化性能,以及Pt/Cu摩尔比对反应的影响.结果表明:Cu/SiO2催化剂对四氯化碳脱氯反应活性较高,其初始转化率为14.6%,而对甲烷氯化反应活性较低,转化率为1.7%;Pt/SiO2催化剂对甲烷氯化反应有较高活性,初始转化率5.37%,而对四氯化碳脱氯活性较低,转化率为13.4%;1%Pt-2%Cu/SiO2双金属催化剂对四氯化碳脱氯与甲烷氯化耦合反应表现出较高的活性和稳定性,四氯乙烯选择性接近100%.

  9. Template electrodeposition of catalytic nanomotors.

    Science.gov (United States)

    Wang, Joseph

    2013-01-01

    The combination of nanomaterials with electrode materials has opened new horizons in electroanalytical chemistry, and in electrochemistry in general. Over the past two decades we have witnessed an enormous activity aimed at designing new electrochemical devices based on nanoparticles, nanotubes or nanowires, and towards the use of electrochemical routes--particularly template-assisted electrodeposition--for preparing nanostructured materials. The power of template-assisted electrochemical synthesis is demonstrated in this article towards the preparation and the realization of self-propelled catalytic nanomotors, ranging from Pt-Au nanowire motors to polymer/Pt microtube engines. Design considerations affecting the propulsion behavior of such catalytic nanomotors are discussed along with recent bioanalytical and environmental applications. Despite recent major advances, artificial nanomotors have a low efficiency compared to their natural counterparts. Hopefully, the present Faraday Discussion will stimulate other electrochemistry teams to contribute to the fascinating area of artificial nanomachines.

  10. Catalytic wet oxidation of aqueous methylamine: comparative study on the catalytic performance of platinum-ruthenium, platinum, and ruthenium catalysts supported on titania.

    Science.gov (United States)

    Song, Aiying; Lu, Gongxuan

    2015-01-01

    Promotion of the dispersion of Ru species supported on TiO2 was achieved by introduction of Pt component and the role of Pt in enhancing the catalytic performances of Pt-Ru was investigated with catalytic wet air oxidation of methylamine used as a probing reaction. It was found that Pt-Ru/TiO2 displayed a much better catalytic performance compared with Pt/TiO2 and Ru/TiO2 catalysts due to having the highest dispersion of active species. Both high total organic carbon conversion and nitrogen selectivity (∼100%) over Pt-Ru/TiO2 catalyst were achieved at low temperature (200 °C). X-ray photoelectron spectroscopy characterization indicated that there were strong interactions between metal particles and the support, which may increase the catalytic performance of catalysts.

  11. EXPERIMENTAL EVIDENCE FOR THE FORMATION OF HIGHLY SUPERHYDROGENATED POLYCYCLIC AROMATIC HYDROCARBONS THROUGH H ATOM ADDITION AND THEIR CATALYTIC ROLE IN H2 FORMATION

    DEFF Research Database (Denmark)

    Thrower, John; Jørgensen, Bjarke; Friis, Emil Enderup;

    2012-01-01

    Mass spectrometry measurements show the formation of highly superhydrogenated derivatives of the polycyclic aromatic hydrocarbon molecule coronene through H atom addition reactions. The observed product mass distribution provides evidence also for abstraction reactions resulting in H2 formation...

  12. Perpendicular Magnetic Anisotropy and Induced Magnetic Structures of Pt Layers in the Fe/Pt Multilayers Investigated by Resonant X-ray Magnetic Scattering

    Science.gov (United States)

    Lee, Mihee; Takechi, Ryota; Hosoito, Nobuyoshi

    2017-02-01

    Depth distribution of the magnetization induced in the paramagnetic Pt layers of Fe/Pt multilayers was investigated by resonant X-ray magnetic scattering (RXMS) near the Pt L3 absorption edge. Two samples with different perpendicular magnetic anisotropy (PMA) were chosen for RXMS measurements. The magnetic depth profile of the Pt layer was determined in the magnetic saturation state of the Fe magnetization with the sample of weak PMA. The magnetization process of the Pt layer was investigated with the sample of moderate PMA. It is found that the Pt atoms near the interface region have a perpendicular component of the induced magnetization even in the saturation state of the Fe magnetization, suggesting that the PMA of Fe/Pt multilayers originates from the Pt atoms near the interface region. Concerning the magnetization process, the induced Pt magnetization is not proportional to the Fe magnetization. This implies a complicated magnetizing mechanism of the Pt layer by the Fe magnetization.

  13. Session 4: Enhanced sulfur resistance and catalytic properties of Pd-Pt supported on TiO{sub 2} - modified Al{sub 2}O{sub 3} in the hydrogenation of biphenyl and HDS of dibenzothiophene

    Energy Technology Data Exchange (ETDEWEB)

    Nunez, S.; Montesinos, A.; Viveros, T.; Los Reyes, J.A. de [Universidad Autonoma Metropolitana-Iztapalapa (Mexico)

    2004-07-01

    In the hydrotreatment (HDT) of petroleum cuts to produce diesel, the selection of active and highly selective catalysts for hydrogenation (HYD) of aromatics is a fundamental issue in the second stage of multi-staged processes. It is well know that precious metals (Pd-Pt mainly) are suitable for this reaction. However, sulfur compounds at low concentration may poison these catalysts. Thus, this work focuses on the evaluation in the hydrogenation of an aromatic compound of Pd-Pt catalysts supported on TiO{sub 2}-modified Al{sub 2}O{sub 3} by using two reactions in presence of sulfur, the hydrogenation (HYD) of biphenyl (BP) and the hydrodesulfurization (HDS) of dibenzothiophene (DBT). The obtained experimental results are given and explained. (O.M.)

  14. Reduction of Pt Usage in Fuel Cell Electrocatalysts Using Carbon Nanotubes and Non-Pt Metals

    Institute of Scientific and Technical Information of China (English)

    J. Nakamura; Y. Nagashima; T. Yamazaki; T. Matsumoto; E. Yoo

    2005-01-01

    @@ 1Introduction The high-priced and limited Pt constitutes a high barrier to commercialization of fuel cells. Pt is essential for the electrode catalyst of polymer electrolyte fuel cells (PEFCs). A reduction in Pt usage is one of the key requirements for the commercialization of fuel cells for use in everyday life, because of its high price and limited availability, and the difficulty of finding suitable substitutes. Non-Pt fuel cell catalysts will decrease the demand for Pt by PEFCs, enabling more Pt to be available for use in other essential products, and make fuel cells more popular[1]. The cheaper Mo2C is known to possess similar catalytic activities and electronic structures to Pt[2]. Carbon black (CB) is widely used as the support for Pt nanoparticles. However, we found that when carbon nanotubes (CNTs) rather than CB are used as the support, the performance is improved, especially below 600 mA/cm2[3,4]. Here, we show that a combination of Mo2C catalyst and carbon nanotubes in the anode provides performance as high as half that of the current PEFCs with Pt catalysts below 600mA/cm2.

  15. CO2 Activation and Hydrogenation by PtHn (-) Cluster Anions.

    Science.gov (United States)

    Zhang, Xinxing; Liu, Gaoxiang; Meiwes-Broer, Karl-Heinz; Ganteför, Gerd; Bowen, Kit

    2016-08-08

    Gas phase reactions between PtHn (-) cluster anions and CO2 were investigated by mass spectrometry, anion photoelectron spectroscopy, and computations. Two major products, PtCO2 H(-) and PtCO2 H3 (-) , were observed. The atomic connectivity in PtCO2 H(-) can be depicted as HPtCO2 (-) , where the platinum atom is bonded to a bent CO2 moiety on one side and a hydrogen atom on the other. The atomic connectivity of PtCO2 H3 (-) can be described as H2 Pt(HCO2 )(-) , where the platinum atom is bound to a formate moiety on one side and two hydrogen atoms on the other. Computational studies of the reaction pathway revealed that the hydrogenation of CO2 by PtH3 (-) is highly energetically favorable.

  16. Supported bimetallic Pt-Au nanoparticles: Structural features predicted by molecular dynamics simulations

    Science.gov (United States)

    Morrow, Brian H.; Striolo, Alberto

    2010-04-01

    We have utilized all-atom molecular dynamics simulations to study bimetallic Pt-Au nanoparticles supported by carbonaceous materials at 700 K. Nanoparticles containing 250 atoms with 25%, 50%, and 75% Pt ( Pt62Au188 , Pt125Au125 , and Pt188Au62 , respectively) were considered. A single graphite sheet and bundles of seven (10,10), (13,13), and (20,20) single-walled carbon nanotubes were used as supports. It was found that Pt125Au125 forms a well-defined Pt core covered by an Au shell, regardless of the support. Pt62Au188 exhibits a mixed Pt-Au core with an Au shell. Pt188Au62 has a Pt core with a mixed Pt-Au shell. The support affects the atomic distribution. We investigated the percentage of nanoparticle surface atoms that are Pt. Our results show that for Pt62Au188 and Pt125Pt125 , this percentage is lowest when there is no support and highest when carbon nanotubes are supports. We studied the size of clusters of Pt atoms on the nanoparticle surface, finding that the geometry of the support influences the distribution of cluster sizes. Finally, we found that the coordination states of the atoms on the nanoparticle surface are affected by the support structure. These results suggest that it is possible to tailor the distribution of atoms in Pt-Au nanoparticles by controlling the nanoparticle composition and the support geometry. Such level of control is desirable for improving selectivity of catalysts.

  17. Surface Structures of Cubo-octahedral Pt-Mo Catalyst Nanoparticles from Monte Carlo Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guofeng; Van Hove, M.A.; Ross, P.N.; Baskes, M.I.

    2005-03-31

    The surface structures of cubo-octahedral Pt-Mo nanoparticles have been investigated using the Monte Carlo method and modified embedded atom method potentials that we developed for Pt-Mo alloys. The cubo-octahedral Pt-Mo nanoparticles are constructed with disordered fcc configurations, with sizes from 2.5 to 5.0 nm, and with Pt concentrations from 60 to 90 at. percent. The equilibrium Pt-Mo nanoparticle configurations were generated through Monte Carlo simulations allowing both atomic displacements and element exchanges at 600 K. We predict that the Pt atoms weakly segregate to the surfaces of such nanoparticles. The Pt concentrations in the surface are calculated to be 5 to 14 at. percent higher than the Pt concentrations of the nanoparticles. Moreover, the Pt atoms preferentially segregate to the facet sites of the surface, while the Pt and Mo atoms tend to alternate along the edges and vertices of these nanoparticles. We found that decreasing the size or increasing the Pt concentration leads to higher Pt concentrations but fewer Pt-Mo pairs in the Pt-Mo nanoparticle surfaces.

  18. Atomic-Scale Determination of Active Facets on the MoVTeNb Oxide M1 Phase and Their Intrinsic Catalytic Activity for Ethane Oxidative Dehydrogenation.

    Science.gov (United States)

    Melzer, Daniel; Xu, Pinghong; Hartmann, Daniela; Zhu, Yuanyuan; Browning, Nigel D; Sanchez-Sanchez, Maricruz; Lercher, Johannes A

    2016-07-25

    Aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) has been used to image the basal {001} plane of the catalytically relevant M1 phase in MoVTeNb complex oxides. Facets {010}, {120}, and {210} are identified as the most frequent lateral termination planes of the crystals. Combination of STEM with He ion microscopy (HIM) images, Rietveld analysis, and kinetic tests reveals that the activation of ethane is correlated to the availability of facets {001}, {120}, and {210} at the surface of M1 crystals. The lateral facets {120} and {210} expose crystalline positions related to the typical active centers described for propane oxidation. Conversely, the low activity of the facet {010} is attributed to its configuration, consisting of only stable M6 O21 units connected by a single octahedron. Thus, we quantitatively demonstrated that differences in catalytic activity among M1 samples of equal chemical composition depend primarily on the morphology of the particles, which determines the predominant terminating facets.

  19. Self-supported interconnected Pt nanoassemblies as highly stable electrocatalysts for low-temperature fuel cells.

    Science.gov (United States)

    Xia, Bao Yu; Ng, Wan Theng; Wu, Hao Bin; Wang, Xin; Lou, Xiong Wen David

    2012-07-16

    In it for the long haul: Clusters of Pt nanowires (3D Pt nanoassemblies, Pt NA) serve as an electrocatalyst for low-temperature fuel cells. These Pt nanoassemblies exhibit remarkably high stability following thousands of voltage cycles and good catalytic activity, when compared with a commercial Pt catalyst and 20 % wt Pt catalyst supported on carbon black (20 % Pt/CB).

  20. Defect-induced loading of Pt nanoparticles on carbon nanotubes

    Science.gov (United States)

    Kim, Sung Jin; Park, Yong Jin; Ra, Eun Ju; Kim, Ki Kang; An, Kay Hyeok; Lee, Young Hee; Choi, Jae Young; Park, Chan Ho; Doo, Seok Kwang; Park, Min Ho; Yang, Cheol Woong

    2007-01-01

    Carbon nanotubes-supported Pt nanoparticles were loaded using a microwave oven on the defective carbon nanotubes generated by an additional oxidant during acid treatment. The authors' Raman spectra and x-ray diffraction analysis demonstrated that defects created during oxidation and microwave treatment acted as nucleation seeds for Pt adsorption. The generated Pt nanoparticles had the size distributions of 2-3nm and were uniformly distributed on the defects of carbon nanotubes. The authors' density functional calculations showed that the adsorption of Pt atom on the vacancy of nanotube was significantly stronger by s-p hybridization with carbon atoms near the defect site.

  1. Direct Dehydrogenation of n-Butane Over Pt/Sn/Zn-K/Al2O3 Catalyst: Effect of Hydrogen in the Feed.

    Science.gov (United States)

    Lee, Jong Kwon; Seo, Hyun; Kim, Jeong Kwon; Seo, Hanuk; Cho, Hye-Ran; Lee, Jinsuk; Chang, Hosik; Song, In Kyu

    2016-05-01

    Al2O3 was prepared by a sol-gel method for use as a support. Pt/Sn/Zn-K/Al2O3 catalyst was then prepared by a sequential impregnation method, and it was applied to the direct dehydrogenation of n-butane to n-butenes and 1,3-butadiene. Physicochemical properties of Pt/Sn/Zn-K/Al2O3 catalyst were examined by X-ray diffraction (XRD), nitrogen adsorption-desorption isotherm, inductively coupled plasma atomic emission spectroscopy (ICP-AES), temperature-programmed reduction (TPR), CO chemisorption, and temperature-programmed oxidation (TPO) measurements. In order to improve the catalyst stability, the effect of hydrogen in the feed on the catalytic performance in the direct dehydrogenation of n-butane was studied. The catalyst stability and reusability in the direct dehydrogenation of n-butane was also investigated. Experimental results revealed that the addition of hydrogen in the feed decreased conversion of n-butane and yield for total dehydrogenation products but improved the stability of the catalyst. The catalytic activity and stability of regenerated Pt/Sn/Zn-K/Al2O3 catalyst in the presence of hydrogen slightly decreased compared to those of fresh Pt/Sn/Zn-K/Al2O3 catalyst due to the slight sintering of platinum particles.

  2. Dynamics of the YSZ-Pt Interface

    DEFF Research Database (Denmark)

    Bay, Lasse; Jacobsen, Torben

    1997-01-01

    Yttria stabilized zirconia (YSZ)-Pt point electrodes were examined by linear potential sweep, potential step and impedance measurements at 1000 degrees C in air. Inductive loops and hysteresis phenomena with long relaxation times were found. Atomic force microscopy showed changes of the interface...... between Pt and YSZ induced by the current passage. These changes involve transport of solid and are slow enough to explain the large time constants. The low frequency capacitance and inductive loop forming an entire circle indicate the presence of gas reservoirs at the YSZ-Pt interface....

  3. Exploring the Potential of Different-Sized Supported Subnanometer Pt Clusters as Catalysts for Wet Chemical Applications

    KAUST Repository

    Rondelli, Manuel

    2017-05-10

    The use of physicochemical preparation techniques of metal clusters in the ultrahigh vacuum (UHV) allows for high control of cluster nuclearity and size distribution for fundamental studies in catalysis. Surprisingly, the potential of these systems as catalysts for organic chemistry transformations in solution has not been explored. To this end, single Pt atoms and Pt clusters with two narrow size distributions were prepared in the UHV and applied for the hydrogenation of p-chloronitrobenzene to p-chloroaniline in ethanol. Following the observation of very high catalytic turnovers (approaching the million molecules of p-nitroaniline formed per Pt cluster) and of size-dependent activity, this work addresses fundamental questions with respect to the suitability of these systems as heterogeneous catalysts for the conversion of solution-phase reagents. For this purpose, we employ scanning transmission electron microscopy (STEM) and X-ray photoelectron spectroscopy (XPS) characterization before and after reaction to assess the stability of the clusters on the support and the question of heterogeneity versus homogeneity in the catalytic process.

  4. Pt nanocatalysts supported on reduced graphene oxide for selective conversion of cellulose or cellobiose to sorbitol.

    Science.gov (United States)

    Wang, Ding; Niu, Wenqi; Tan, Minghui; Wu, Mingbo; Zheng, Xuejun; Li, Yanpeng; Tsubaki, Noritatsu

    2014-05-01

    Pt nanocatalysts loaded on reduced graphene oxide (Pt/RGO) were prepared by means of a convenient microwave-assisted reduction approach with ethylene glycol as reductant. The conversion of cellulose or cellobiose into sorbitol was used as an application reaction to investigate their catalytic performance. Various metal nanocatalysts loaded on RGO were compared and RGO-supported Pt exhibited the highest catalytic activity with 91.5 % of sorbitol yield from cellobiose. The catalytic performances of Pt nanocatalysts supported on different carbon materials or on silica support were also compared. The results showed that RGO was the best catalyst support, and the yield of sorbitol was as high as 91.5 % from cellobiose and 58.9 % from cellulose, respectively. The improvement of catalytic activity was attributed to the appropriate Pt particle size and hydrogen spillover effect of Pt/RGO catalyst. Interestingly, the size and dispersion of supported Pt particles could be easily regulated by convenient adjustment of the microwave heating temperature. The catalytic performance was found to initially increase and then decrease with increasing particle size. The optimum Pt particle size was 3.6 nm. These findings may offer useful guidelines for designing novel catalysts with beneficial catalytic performance for biomass conversion.

  5. A facile and general strategy for the synthesis of porous flowerlike Pt-based nanocrystals as effective electrocatalysts for alcohol oxidation

    Science.gov (United States)

    Huang, Da-Bing; Yuan, Qiang; He, Pei-Lei; Wang, Kai; Wang, Xun

    2016-08-01

    In this paper, porous flowerlike Pt-based (Pt, PdPt, RhPt and RhPdPt) nanocrystals were successfully achieved by a simple, economic, environmentally friendly route under the same synthetic conditions at 85 °C. The electrocatalytic properties of these flowerlike Pt-based nanocrystals toward alcohols (glycol, glycerol, methanol and ethanol) oxidation were investigated and they displayed enhanced catalytic performance compared with commercial Pt black. Among them, porous Pd45.5Pt54.5 nanoflowers showed the best catalytic performance with significant mass activity and long-term stability. More importantly, the current synthesis strategy can be easily amplified to gram-scale production.In this paper, porous flowerlike Pt-based (Pt, PdPt, RhPt and RhPdPt) nanocrystals were successfully achieved by a simple, economic, environmentally friendly route under the same synthetic conditions at 85 °C. The electrocatalytic properties of these flowerlike Pt-based nanocrystals toward alcohols (glycol, glycerol, methanol and ethanol) oxidation were investigated and they displayed enhanced catalytic performance compared with commercial Pt black. Among them, porous Pd45.5Pt54.5 nanoflowers showed the best catalytic performance with significant mass activity and long-term stability. More importantly, the current synthesis strategy can be easily amplified to gram-scale production. Electronic supplementary information (ESI) available: Experimental details, digital photos, TEM, XRD, CVs, EDX and tables. See DOI: 10.1039/c6nr04927c

  6. Surface noble metal modified PdM/C (M = Ru, Pt, Au) as anode catalysts for direct ethanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Han; Huang, Tao, E-mail: huangt@fudan.edu.cn; Yu, Aishui, E-mail: asyu@fudan.edu.cn

    2016-08-15

    In this article, we studied the surface noble metal modification on Pd nanoparticles, other than the homogeneous or core-shell structure. The surface modification will lead to the uneven constitution within the nanoparticles and thus more obvious optimization effect toward the catalyst brought by the lattice deformation. The surface of the as-prepared Pd nanoparticles was modified with Ru, Pt or Au by a moderate and green approach, respectively. XPS results confirm the interactive electron effects between Pd and the modified noble metal. Electrochemical measurements show that the surface noble metal modified catalysts not only show higher catalytic activity, but also better stability and durability. The PdM/C catalysts all exhibit good dispersion and very little agglomeration after long-term potential cycles toward ethanol oxidation. With only 10% metallic atomic ratio of Au, PdAu/C catalyst shows extraordinary catalytic activity and stability, the peak current reaches 1700 mA mg{sup −1} Pd, about 2.5 times that of Pd/C. Moreover, the PdAu/C maintains 40% of the catalytic activity after 4500 potential cycles. - Highlights: • Pd-based catalysts with complicated exposed facets. • Much enhanced electrocatalytic activity and stability with about 10% noble metal M (M = Ru, Pt, Au) on Pd nanoparticles. • The outstanding electrocatalytic performance of PdAu/C towards ethanol oxidation after the Au modification.

  7. Simple preparation of Pd-Pt nanoalloy catalysts for methanol-tolerant oxygen reduction

    Science.gov (United States)

    He, Wei; Liu, Juanying; Qiao, Yongjin; Zou, Zhiqing; Zhang, Xiaogang; Akins, Daniel L.; Yang, Hui

    Carbon-supported Pd-Pt bimetallic nanoparticles of different atomic ratios (Pd-Pt/C) have been prepared by a simple procedure involving the complexing of Pd and Pt species with sodium citrate followed by ethylene glycol reduction. As-prepared Pd-Pt alloy nanoparticles evidence a single-phase fcc disordered structure, and the degree of alloying is found to increase with Pd content. Both X-ray diffraction and transmission electron microscopy characterizations indicate that all the Pd-Pt/C catalysts possess a similar mean particle size of ca. 2.8 nm. The highest mass and specific activity of the oxygen reduction reaction (ORR) using the Pd-Pt/C catalysts are found with a Pd:Pt atomic ratio of 1:2. Moreover, all Pd-Pt alloy catalysts exhibit significantly enhanced methanol tolerance during the ORR than the Pt/C catalyst, ensuring a higher ORR performance while diminishing Pt utilization.

  8. Single step synthesis of gold-amino acid composite, with the evidence of the catalytic hydrogen atom transfer (HAT) reaction, for the electrochemical recognition of Serotonin

    Science.gov (United States)

    Choudhary, Meenakshi; Siwal, Samarjeet; Nandi, Debkumar; Mallick, Kaushik

    2016-03-01

    A composite architecture of amino acid and gold nanoparticles has been synthesized using a generic route of 'in-situ polymerization and composite formation (IPCF)' [1,2]. The formation mechanism of the composite has been supported by a model hydrogen atom (H•≡H++e-) transfer (HAT) type of reaction which belongs to the proton coupled electron transfer (PCET) mechanism. The 'gold-amino acid composite' was used as a catalyst for the electrochemical recognition of Serotonin.

  9. Structural requirements and reaction pathways in dimethyl ether combustion catalyzed by supported Pt clusters.

    Science.gov (United States)

    Ishikawa, Akio; Neurock, Matthew; Iglesia, Enrique

    2007-10-31

    The identity and reversibility of the elementary steps required for catalytic combustion of dimethyl ether (DME) on Pt clusters were determined by combining isotopic and kinetic analyses with density functional theory estimates of reaction energies and activation barriers to probe the lowest energy paths. Reaction rates are limited by C-H bond activation in DME molecules adsorbed on surfaces of Pt clusters containing chemisorbed oxygen atoms at near-saturation coverages. Reaction energies and activation barriers for C-H bond activation in DME to form methoxymethyl and hydroxyl surface intermediates show that this step is more favorable than the activation of C-O bonds to form two methoxides, consistent with measured rates and kinetic isotope effects. This kinetic preference is driven by the greater stability of the CH3OCH2* and OH* intermediates relative to chemisorbed methoxides. Experimental activation barriers on Pt clusters agree with density functional theory (DFT)-derived barriers on oxygen-covered Pt(111). Measured DME turnover rates increased with increasing DME pressure, but decreased as the O2 pressure increased, because vacancies (*) on Pt surfaces nearly saturated with chemisorbed oxygen are required for DME chemisorption. DFT calculations show that although these surface vacancies are required, higher oxygen coverages lead to lower C-H activation barriers, because the basicity of oxygen adatoms increases with coverage and they become more effective in hydrogen abstraction from DME. Water inhibits reaction rates via quasi-equilibrated adsorption on vacancy sites, consistent with DFT results indicating that water binds more strongly than DME on vacancies. These conclusions are consistent with the measured kinetic response of combustion rates to DME, O2, and H2O, with H/D kinetic isotope effects, and with the absence of isotopic scrambling in reactants containing isotopic mixtures of 18O2-16O2 or 12CH3O12CH3-13CH3O13CH3. Turnover rates increased with Pt

  10. The activity of ALD-prepared PtCo catalysts for ethanol oxidation in alkaline media

    OpenAIRE

    Santasalo-Aarnio, Annukka; Sairanen, Emma; Arán-Ais, Rosa M.; Figueiredo, Marta C.; Hua, Jiang; Feliu, Juan M.; Lehtonen, Juha; Karinen, Reetta; Kallio, Tanja

    2014-01-01

    Controlled bimetallic catalyst materials can be obtained using atomic layer deposition (ALD) method. In this paper, this method was applied to prepare Pt, PtCo, and PtCoPt nanoparticle catalysts on carbon support. Their activity for ethanol oxidation was studied by various electrochemical methods and the dependency of the reaction on temperature and mass transfer was evaluated. In addition, FTIR analysis was performed to confirm the reaction products. The results showed that bimetallic PtCo e...

  11. Hydrodeoxygenation of Guaiacol Over Pt/Al-SBA-15 Catalysts.

    Science.gov (United States)

    Yu, Mi Jin; Park, Sung Hoon; Jeon, Jong-Ki; Ryu, Changkook; Sohn, Jung Min; Kim, Sang Chai; Park, Young-Kwon

    2015-01-01

    Upgrading of bio-oil through catalytic hydrodeoxygenation (HDO) reaction was investigated for guaiacol as a model compound. A batch reactor was used for the reaction condition of 40 bar and 250 degrees C. The target product was cyclohexane. Pt/Al-SBA-15 with the Si/Al ratios of 20, 40, and 80 and Pt/HZSM-5 were used as the catalyst. The SBA-15 catalysts were characterized by N2 adsorption-desorption, X-ray diffraction analysis, and temperature programmed desorption of ammonia. The order of cyclohexane yield was Pt/Al-SBA-15 (Si/Al = 20) > Pt/Al-SBA-15(40) > Pt/Al-SBA-15 (80), indicating that the quantity of acid sites plays an important role in the HDO reaction. On the other hand, Pt/HZSM-5 led to a very low cyclohexane yield, in spite of its abundant strong acid sites, due to its small pore size.

  12. Giant Goos-Hänchen shift using PT symmetry

    Science.gov (United States)

    Ziauddin; Chuang, You-Lin; Lee, Ray-Kuang

    2015-07-01

    Influence of PT symmetry on the Goos-Hänchen (GH) shift in the reflected light is presented for an ensemble of atomic medium in a cavity, in the configuration of four-level N -type (87Rb atoms) systems driving by two copropagating strong laser fields and a weak probe field. The atom-field interaction follows the realization of PT symmetry by adjusting the coupling field detunings [J. Shenget al., Phys. Rev. A 88, 041803(R) (2013), 10.1103/PhysRevA.88.041803]. A giant enhancement for the GH shift in the reflected light is revealed when the PT -symmetry condition is satisfied.

  13. Functionalized graphene-Pt composites for fuel cells and photoelectrochemical cells

    Energy Technology Data Exchange (ETDEWEB)

    Diankov, Georgi; An, Jihwan; Park, Joonsuk; Goldhaber, David J. K.; Prinz, Friedrich B.

    2017-08-29

    A method of growing crystals on two-dimensional layered material is provided that includes reversibly hydrogenating a two-dimensional layered material, using a controlled radio-frequency hydrogen plasma, depositing Pt atoms on the reversibly hydrogenated two-dimensional layered material, using Atomic Layer Deposition (ALD), where the reversibly hydrogenated two-dimensional layered material promotes loss of methyl groups in an ALD Pt precursor, and forming Pt-O on the reversibly hydrogenated two-dimensional layered material, using combustion by O.sub.2, where the Pt-O is used for subsequent Pt half-cycles of the ALD process, where growth of Pt crystals occurs.

  14. Catalytic Radical Domino Reactions in Organic Synthesis.

    Science.gov (United States)

    Sebren, Leanne J; Devery, James J; Stephenson, Corey R J

    2014-02-07

    Catalytic radical-based domino reactions represent important advances in synthetic organic chemistry. Their development benefits synthesis by providing atom- and step-economical methods to complex molecules. Intricate combinations of radical, cationic, anionic, oxidative/reductive, and transition metal mechanistic steps result in cyclizations, additions, fragmentations, ring-expansions, and rearrangements. This Perspective summarizes recent developments in the field of catalytic domino processes.

  15. Preparation of catalysts PtSb{sub 2}O{sub 5}.SnO{sub 2} supported on carbon and ATO using the alcohol reduction method for electrochemical oxidation of ethanol; Preparacao de eletrocatalisadores PtSb{sub 2}O{sub 5}.SnO{sub 2} suportados em carbono e ATO pelo metodo da reducao por alcool para oxidacao eletroquimica do etanol

    Energy Technology Data Exchange (ETDEWEB)

    Ayoub, Jamil Mahmoud Said

    2013-06-01

    Pt Sn/C-ATO electrocatalysts with different Pt:Sn atomic ratios (90:10, 70:30 and 50:50) were prepared in a single step by an alcohol-reduction process using H{sub 2}PtCl{sub 6}.6H{sub 2}O and SnCl{sub 2}.2H{sub 2}O as metal sources and ethylene glycol as solvent and reducing agent and a physical mixture of carbon Vulcan XC72 (85 wt%) and Sb{sub 2}O{sub 5}.SnO{sub 2} (15 wt%) as support (C-ATO). The obtained materials were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The catalytic activity for ethanol electro-oxidation in acid medium was investigated by cyclic voltammetry and chronoamperometry and in single direct ethanol fuel cell (DEFC). XRD analyses showed that Pt(FCC), SnO{sub 2}, carbon and ATO phases coexist in the obtained materials. The electrochemical studies showed that PtSn/C-ATO electrocatalysts were more active for ethanol electro-oxidation than PtSn/C electrocatalyst. The experiments at 100 deg C on a single DEFC showed that the power density of the cell using Pt Sn/C-ATO (90:10) was nearly 100% higher than the one obtained using Pt Sn/C (50:50). FTIR measurements showed that the addition of ATO to Pt Sn/C favors the formation of acetic acid as a product while for PtSn/C acetaldehyde was the principal product formed. (author)

  16. Microwave-assisted synthesis of high-loading, highly dispersed Pt/carbon aerogel catalyst for direct methanol fuel cell

    Indian Academy of Sciences (India)

    Zhijun Guo; Hong Zhu; Xinwei Zhang; Fanghui Wang; Yubao Guo; Yongsheng Wei

    2011-06-01

    A Pt supported on carbon aerogel catalyst has been synthesized by the microwave-assisted polyol process. The Pt supported on carbon aerogel catalyst was characterized by high resolution transmission electron microscopy and X-ray diffraction. The results show a uniform dispersion of spherical Pt nanoparticles 2.5–3.0 nm in diameter. Cyclic voltammetry and chronoamperometry were used to evaluate the electrocatalytic activity of the Pt/carbon aerogel catalyst for methanol oxidation at room temperature. The Pt/carbon aerogel catalyst shows higher electrochemical catalytic activity and stability for methanol oxidation than a commercial Pt/C catalyst of the same Pt loading.

  17. Preparation of PtSn/C, PtRu/C, PtRh/C, PtRuRh/C and PtSnRh/C electrocatalysts using an alcohol-reduction process for methanol and ethanol oxidation; Preparacao e caracterizacao de eletrocatalisadores PtRu, PtSn, PtRh, PtRuRh e PtSnRh para oxidacao direta de alcoois em celulas a combustivel tipo PEM utilizando a metodologia da reducao por alcool

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Ricardo Rodrigues

    2009-07-01

    In this work, Pt/C, PtRh (90:10), PtRh/C (50:50), PtSn/C (50:50), PtRu (50:50)/C, PtRuRh/C (50:40:10) and PtSnRh/C (50:40:10) were prepared by an alcohol-reduction process with metal loading of 20 wt.% using H{sub 2}PtCl{sub 6}.6H{sub 2}O (Aldrich), SnCl{sub 2}.2H{sub 2}O (Aldrich),and RhCl{sub 2}.XH{sub 2}O (Aldrich) as metals sources and Vulcan XC72 as support. The electrocatalysts were characterized by EDX, XRD and cyclic voltammetry (CV). The electro-oxidation of ethanol was studied by CV, chronoamperomety at room temperature in acid medium and tests at 100 deg C on a single cell of a direct methanol or ethanol fuel cell. The EDX analysis showed that the metal atomic ratios of the obtained electrocatalysts were similar to the nominal atomic ratios used in the preparation. The diffractograms of electrocatalysts prepared showed four peaks at approximately 2{theta} =40 deg, 47 deg, 67 deg and 82 deg, which are associated with the (111), (200), (220) and (311) planes, respectively, of a face cubic-centered (fcc) structure characteristic of platinum and platinum alloys. The average crystallite sizes using the Scherrer equation and the calculated values were in the range of 2-3 nm. For Pt Sn/C and PtSnRh/C two additional peaks were observed at 2 = 34 deg and 52 deg that were identified as a SnO{sub 2} phase. Pt Sn/C (50:50) and PtSnRh/C (50:40:10) electro catalyst showed the best performance for ethanol oxidation at room temperature. For methanol oxidation at room temperature Pt Ru/C, Pt Sn/C and PtRuRh/C electrocatalysts showed the best performance. Tests at 100 deg C on a single cell of a direct ethanol fuel cell PtSnRh/C showed the best performance, for methanol oxidation PtRuRh/C showed the best performance. (author)

  18. Catalytic activity of Au nanoparticles

    DEFF Research Database (Denmark)

    Larsen, Britt Hvolbæk; Janssens, Ton V.W.; Clausen, Bjerne

    2007-01-01

    Au is usually viewed as an inert metal, but surprisingly it has been found that Au nanoparticles less than 3–5 nm in diameter are catalytically active for several chemical reactions. We discuss the origin of this effect, focusing on the way in which the chemical activity of Au may change with par......Au is usually viewed as an inert metal, but surprisingly it has been found that Au nanoparticles less than 3–5 nm in diameter are catalytically active for several chemical reactions. We discuss the origin of this effect, focusing on the way in which the chemical activity of Au may change...... with particle size. We find that the fraction of low-coordinated Au atoms scales approximately with the catalytic activity, suggesting that atoms on the corners and edges of Au nanoparticles are the active sites. This effect is explained using density functional calculations....

  19. Selective oxidation of methylamine over zirconia supported Pt-Ru, Pt and Ru catalysts

    Institute of Scientific and Technical Information of China (English)

    Aiying Song; Gongxuan Lu

    2015-01-01

    Pt–Ru, Pt and Ru catalysts supported on zirconia were prepared by impregnation method and were tested in se-lective oxidation of methylamine (MA) in aqueous media. Among three catalysts, Ru/ZrO2 was more active than Pt/ZrO2 while Pt–Ru/ZrO2 demonstrated the best catalytic activity due to the fact that Pt addition efficiently pro-moted the dispersion of active species in bimetallic catalyst. Therefore, the~100%TOC conversion and N2 selec-tivity were achieved over Pt–Ru/ZrO2, Pt/ZrO2 and Ru/ZrO2 catalysts at 190, 220 and 250 °C, respectively.

  20. Catalytic Synthesis of Substrate-Free, Aligned and Tailored High Aspect Ratio Multiwall Carbon Nanotubes in an Ultrasonic Atomization Head CVD Reactor

    OpenAIRE

    Fahad Ali Rabbani; Zuhair Omar Malaibari; Muataz Ali Atieh; Ammar Jamie

    2016-01-01

    Chemical vapor deposition (CVD) method has proven its benchmark, over other methods, for the production of different types of carbon nanotubes (CNT) on commercial and lab scale. In this study, an injection vertical CVD reactor fitted with an ultrasonic atomization head was used in a pilot-plant scale (height 274 cm, radius 25 cm) for semicontinuous production of multiwall carbon nanotubes (MWCNTs). p-Xylene was used as a hydrocarbon precursor in which ferrocene was dissolved and provided the ...

  1. Graphene supported nano particles of Pt-Ni for CO oxidation

    Science.gov (United States)

    Zhang, Cheng; Lv, Wei; Yang, Quanhong; Liu, Yuan

    2012-08-01

    In this study, a series of graphene supported Pt, Ni and Pt-Ni nano particles were successfully synthesized by a simple impregnation method. The resultant composites were characterized using SEM, XRD, HRTEM, XPS and TPR techniques and their catalytic performance for the oxidation of carbon monoxide was tested. It was shown that in the prepared metal/graphene composite, metal particles were highly dispersed on the graphene sheets (GS) with an average particle size of 1-3 nm. The results of catalytic performance tests indicate that the activity decreases in the order of Pt-Ni/GS, Pt/GS and Ni/GS. In the sample of Pt-Ni/GS, Pt-Ni alloy was formed, which contributed to the high activity of Pt-Ni/GS for CO oxidation.

  2. 染料敏化太阳能电池Pt/NiP/ITO对电极的制备和性能%Preparation and Performance of Pt/NiP/ITO Counter Electrode for DSSC

    Institute of Scientific and Technical Information of China (English)

    马换梅; 田建华; 廖文明; 单忠强

    2012-01-01

    NiP alloy film was firstly prepared on the surface of the ITO conductive glass substrate by an electroless plating method,and then,the nanoparticles of platinum were electrodeposited on the NiP–plated layer to obtain Pt/NiP/ITO counter electrode used in DSSC.The parameters of Pt electro-deposition on NiP alloy layer were optimized.The influences of NiP alloy structure and Pt loading on the surface morphology and catalytic activity of Pt/NiP/ITO electrode were investigated.The surface morphology of Pt/NiP/ITO electrode was analyzed by atomic force microscopy.The electrochemical performance of Pt/NiP/ITO electrode was characterized by cyclic voltammetry and electrochemical impedance spectroscopy.The photovoltaic performance was evaluated from photocurrent-voltage curves in a single DSSC.The result shows that the NiP alloy deposited on ITO substrate enhances the conductivity and light reflection performance of the counter electrode,and also improves the distribution of Pt particles on the surface of electrode,resulting in that Jscand η of the DSSC are increased by 4% and 11%,respectively.%在ITO导电玻璃表面化学镀NiP合金薄膜,然后电化学沉积Pt纳米粒子,形成染料敏化太阳能电池Pt/NiP/ITO对电极。优化了化学镀NiP合金的工艺条件;研究了NiP的结构和铂载量对Pt/NiP/ITO电极形貌和催化活性的影响。采用原子力显微镜分析Pt/NiP/ITO电极的表面形貌;采用循环伏安法、电化学交流阻抗法表征其电化学性能;采用单体DSSC的光电流–电压曲线表征其光伏性能。测试结果表明,在ITO基体上化学镀NiP合金,提高了电极的导电性和光反射能力,改善了电极表面Pt粒子的分布,使电池的短路电流密度和光电转化效率分别提高了4%和11%。

  3. Enhancing the activity and tuning the mechanism of formic acid oxidation at tetrahexahedral Pt nanocrystals by Au decoration.

    Science.gov (United States)

    Liu, Hai-Xia; Tian, Na; Brandon, Michael P; Pei, Jun; Huangfu, Zhi-Chao; Zhan, Chi; Zhou, Zhi-You; Hardacre, Christopher; Lin, Wen-Feng; Sun, Shi-Gang

    2012-12-21

    Tetrahexahedral Pt nanocrystals (THH Pt NCs), bound by high index facets, belong to an emerging class of nanomaterials that promise to bridge the gap between model and practical electrocatalysts. The atomically stepped surfaces of THH Pt NCs are extremely active for the electrooxidation of small organic molecules but they also readily accommodate the dissociative chemisorption of such species, resulting in poisoning by strongly adsorbed CO. Formic acid oxidation is an ideal reaction for studying the balance between these competing catalyst characteristics, since it can proceed by either a direct or a CO mediated pathway. Herein, we describe electrochemical and in situ FTIR spectroscopic investigations of formic acid electrooxidation at both clean and Au adatom decorated THH Pt NC surfaces. The Au decoration leads to higher catalytic currents and enhanced CO(2) production in the low potential range. As the CO oxidation behaviour of the catalyst is not improved by the presence of the Au, it is likely that the role of the Au is to promote the direct pathway. Beyond their fundamental importance, these results are significant in the development of stable, poison resistant anodic electrocatalysts for direct formic acid fuel cells.

  4. Selective and regular localization of accessible Pt nanoparticles inside the walls of an ordered silica: Application as a highly active and well-defined heterogeneous catalyst for propene and styrene hydrogenation reactions

    KAUST Repository

    Boualleg, Malika

    2011-12-01

    We describe here an original methodology related to the "build-the-bottle-around-the-ship" approach yielding a highly ordered silica matrix containing regularly distributed Pt nanoparticles (NPs) located inside the silica walls, Pt@{walls}SiO2. The starting colloidal solution of crystalline Pt nanoparticles was obtained from Pt(dba)2 (dba = dibenzylidene acetone) and 3-chloropropylsilane. The resulting nanoparticles (diameter: 2.0 ± 0.4 nm determined by HRTEM) resulted hydrophilic. The NPs present in the THF colloidal solution were incorporated inside the walls of a highly ordered 2D hexagonal mesoporous silica matrix via sol-gel process using a templating route with tetraethylorthosilicate, TEOS, as the silica source, and block copolymer (EthyleneOxide) 20(PropyleneOxide)70(EthyleneOxide)20 (Pluronic P123) as the structure-directing agent. Low-temperature calcination of the crude material at 593 K led to the final solid Pt@{walls}SiO2. Characterization by IR, HRTEM, BF-STEM and HAADF-STEM, SAXS, WAXS, XRD, XPS, H2 chemisorption, etc. of Pt@{walls}SiO2 confirmed the 2D hexagonal structuration and high mesoporosity (870 m2/g) of the material as well as the presence of stable 2-nm-sized crystalline Pt(0) NPs embedded inside the walls of the silica matrix. The material displayed no tendency to NPs sintering or leaching (Pt loading 0.3 wt.%) during its preparation. Pt@{walls}SiO2 was found to be a stable, selective and highly active hydrogenation catalyst. The catalytic performances in propene hydrogenation were tested under chemical regime conditions in a tubular flow reactor (278 K, propene/H2/He = 20/16/1.09 cm3/min, P tot = 1 bar) and were found superior to those of an homologous solid containing Pt NPs along its pore channels Pt@{pores}SiO2 and to those of a classical industrial catalysts Pt/Al2O3, (TOF = 2.3 s-1 vs. TOF = 0.90 and 0.92 s-1, respectively, calculated per surface platinum atoms). Pt@{walls}SiO2 also catalyzes fast and selective styrene

  5. Highly active mesoporous ferrihydrite supported pt catalyst for formaldehyde removal at room temperature.

    Science.gov (United States)

    Yan, Zhaoxiong; Xu, Zhihua; Yu, Jiaguo; Jaroniec, Mietek

    2015-06-01

    Ferrihydrite (Fh) supported Pt (Pt/Fh) catalyst was first prepared by combining microemulsion and NaBH4 reduction methods and investigated for room-temperature removal of formaldehyde (HCHO). It was found that the order of addition of Pt precursor and ferrihydrite in the preparation process has an important effect on the microstructure and performance of the catalyst. Pt/Fh was shown to be an efficient catalyst for complete oxidation of HCHO at room temperature, featuring higher activity than magnetite supported Pt (Pt/Fe3O4). Pt/Fh and Pt/Fe3O4 exhibited much higher catalytic activity than Pt supported over calcined Fh and TiO2. The abundance of surface hydroxyls, high Pt dispersion and excellent adsorption performance of Fh are responsible for superior catalytic activity and stability of the Pt/Fh catalyst. This work provides some indications into the design and fabrication of the cost-effective and environmentally benign catalysts with excellent adsorption and catalytic oxidation performances for HCHO removal at room temperature.

  6. Effect of Purification of Carbon Nanotubes on Catalytic Activity of Pt/CNTs in Electrochemical Oxidation of Methanol%碳纳米管纯化对Pt/CNTs催化甲醇电化学氧化活性的影响

    Institute of Scientific and Technical Information of China (English)

    杜秉忱; 刘长鹏; 韩飞; 邢巍; 陆天虹; 桑革

    2004-01-01

    探索了一种适用于Pt/CNTs催化剂的纯化方法.利用比表面积测定、X射线衍射(XRD)、透射电子显微镜(TEM)和电化学等手段进行了表征.研究结果表明,经该方法纯化的CNTs作为载体制备的阳极催化剂表现出明显优于相应的混酸氧化法纯化的CNTs为载体的催化剂催化性能.

  7. Prothrombin time (PT)

    Science.gov (United States)

    PT; Pro-time; Anticoagulant-prothrombin time; Clotting time: protime; INR; International normalized ratio ... PT is measured in seconds. Most of the time, results are given as what is called INR ( ...

  8. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction.

    Science.gov (United States)

    Lim, Byungkwon; Jiang, Majiong; Camargo, Pedro H C; Cho, Eun Chul; Tao, Jing; Lu, Xianmao; Zhu, Yimei; Xia, Younan

    2009-06-05

    Controlling the morphology of Pt nanostructures can provide a great opportunity to improve their catalytic properties and increase their activity on a mass basis. We synthesized Pd-Pt bimetallic nanodendrites consisting of a dense array of Pt branches on a Pd core by reducing K2PtCl4 with L-ascorbic acid in the presence of uniform Pd nanocrystal seeds in an aqueous solution. The Pt branches supported on faceted Pd nanocrystals exhibited relatively large surface areas and particularly active facets toward the oxygen reduction reaction (ORR), the rate-determining step in a proton-exchange membrane fuel cell. The Pd-Pt nanodendrites were two and a half times more active on the basis of equivalent Pt mass for the ORR than the state-of-the-art Pt/C catalyst and five times more active than the first-generation supportless Pt-black catalyst.

  9. Evaluation of Pt{sub 40}Pd{sub 60}/MWCNT electrocatalyst as ethylene glycol-tolerant oxygen reduction cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Morales-Acosta, D.; Arriaga, L.G. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, Parque Tecnologico Queretaro, Sanfandila, Pedro Escobedo, C.P. 76703 Queretaro (Mexico); Alvarez-Contreras, L. [Centro de Investigacion en Materiales Avanzados S.C., Complejo Industrial Chihuahua, C. P. 31109, Chihuahua, Chih. (Mexico); Luna, S. Fraire; Varela, F.J. Rodriguez [Cinvestav Unidad Saltillo, Carr. Saltillo-Monterrey Km. 13.5, Ramos Arizpe, Coahuila, C.P. 25900 (Mexico)

    2009-07-15

    Pt-Pd/MWCNT with Pt:Pd atomic ratio 40:60 and Pt/MWCNT electrocatalyst were synthesized and evaluated as oxygen reduction reaction (ORR) cathodes for Direct Ethylene Glycol Fuel Cells (DEGFC) applications. As reference, a commercial Pt/C material was also tested. We found that Pt-Pd/MWCNT has high tolerance capability to EG and higher selectivity for the ORR compared to the Pt-alone materials. As a result, the shift in onset potential for the ORR, E{sub onset}, at Pt-Pd/MWCNT was considerably smaller than the shift at Pt/MWCNT or Pt/C. The average particle size (from XRD) was 3.5 and 4 nm for Pt/MWCNT and Pt-Pd/MWCNT, respectively. A moderate degree of alloying was determined for the Pt-Pd material. An advantageous application of Pt-Pd electrocatalysts should be in DEGFCs. (author)

  10. Adsorption and ring-opening of lactide on the chiral metal surface Pt(321){sup S} studied by density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Franke, J.-H.; Kosov, D. S. [Department of Physics, Campus Plaine - CP 231, Universite Libre de Bruxelles, 1050 Brussels (Belgium)

    2015-01-28

    We study the adsorption and ring-opening of lactide on the naturally chiral metal surface Pt(321){sup S}. Lactide is a precursor for polylactic acid ring-opening polymerization, and Pt is a well known catalyst surface. We study, here, the energetics of the ring-opening of lactide on a surface that has a high density of kink atoms. These sites are expected to be present on a realistic Pt surface and show enhanced catalytic activity. The use of a naturally chiral surface also enables us to study potential chiral selectivity effects of the reaction at the same time. Using density functional theory with a functional that includes the van der Waals forces in a first-principles manner, we find modest adsorption energies of around 1.4 eV for the pristine molecule and different ring-opened states. The energy barrier to be overcome in the ring-opening reaction is found to be very small at 0.32 eV and 0.30 eV for LL- and its chiral partner DD-lactide, respectively. These energies are much smaller than the activation energy for a dehydrogenation reaction of 0.78 eV. Our results thus indicate that (a) ring-opening reactions of lactide on Pt(321) can be expected already at very low temperatures, and Pt might be a very effective catalyst for this reaction; (b) the ring-opening reaction rate shows noticeable enantioselectivity.

  11. Monte Carlo Simulations of Segregation in Pt-Ni Catalyst Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guofeng; Van Hove, Michel A.; Ross, Philip N.; Baskes, M.I.

    2004-04-01

    We have investigated the segregation of Pt atoms in the surfaces of Pt-Ni nanoparticles, using Modified Embedded Atom Model potentials and the Monte Carlo method. The nanoparticles are assumed to have disordered fcc configurations at two fixed overall concentrations (50 at. percent Pt and 75 at. percent Pt). We use four kinds of nanoparticle shapes [cube, tetrahedron, octahedron, and cubo-octahedron] terminated by {l_brace}111{r_brace} and {l_brace}100{r_brace} facets to examine the extent of the Pt segregation to the nanoparticle surfaces and determine the equilibrium structures of Pt-Ni nanoparticles at T=600 K. The model particles contain between 560 and 4631 atoms (particle size ranging from 2.5 to 5 nm). Our results imply that a complete (100)-facet reconstruction could make the cubo-octahendral Pt-Ni nanoparticles most energetically favorable, consistent with experimental observations. We predict that at 600 K due to segregation the equilibrium Pt50Ni50 nanoparticles with fewer than 2000 atoms and Pt75Ni25 nano particles with fewer than 4000 atoms would achieve a surface-sandwich structure, in which the Pt atoms are enriched in the outermost and third atomic shells while the Ni atoms are enriched in the second atomic shell. We also find that due to an order-disorder transition the Pt50Ni50 cubo-octahedral nanoparticles containing more than 2000 atoms would form a core-shell structure with a Pt-enriched surface and a Pt-deficient homogeneous core.

  12. Synthesis and characterization of Au@Pt nanoparticles

    Institute of Scientific and Technical Information of China (English)

    ZHAO Dan; WU Gang; XU Boqing

    2005-01-01

    Aucore-Ptshell (Au@Pt) nanoparticles were synthesized at room temperature by reducing K2PtCl6 with hydrogen in the solution containing Au colloids and polyvinylpyrrolidone (PVP). The particles obtained were characterized with UV-Vis, TEM and XPS techniques. UV-Vis spectra show that the surface plasmon absorption feature of Au colloids is significantly reduced with increasing the amount of reduced Pt. TEM images that the metals are found always appear as spherical nanoparticles and their sizes grow apparently due to the reduction of PtCl62- ions, indicating that Pt is deposited from solution onto Au particle surface and forms a Pt-layer with uniform thickness. In the XPS spectra, the signals of Au metal decrease due to the reductive deposition of Pt on the surface of the Au colloids. UV-Vis and XPS data are consistent in showing that when the amount of Pt in the AuPt colloids is increased to reach an overall atomic ratio of Pt/Au=2, the Pt deposits form a shell covering completely the surface of Au particles, demonstrating the core-shell structure of the synthesized AuPt particles.

  13. EXPERIMENTAL EVIDENCE FOR THE FORMATION OF HIGHLY SUPERHYDROGENATED POLYCYCLIC AROMATIC HYDROCARBONS THROUGH H ATOM ADDITION AND THEIR CATALYTIC ROLE IN H{sub 2} FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Thrower, J. D.; Jorgensen, B.; Friis, E. E.; Baouche, S.; Luntz, A. C.; Andersen, M.; Hammer, B.; Hornekaer, L. [Department of Physics and Astronomy and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C (Denmark); Mennella, V., E-mail: thrower@phys.au.dk [Istituto Nazionale di Astrofisica, Osservatorio Astronomico di Capodimonte, Via Moiariello 16, 80131 Napoli (Italy)

    2012-06-10

    Mass spectrometry measurements show the formation of highly superhydrogenated derivatives of the polycyclic aromatic hydrocarbon molecule coronene through H atom addition reactions. The observed product mass distribution provides evidence also for abstraction reactions resulting in H{sub 2} formation, in agreement with recent IR measurements. Complementary density functional theory calculations confirm the stability of the observed superhydrogenated species toward spontaneous H and H{sub 2} loss indicating that abstraction reactions may be the dominant route to H{sub 2} formation involving neutral polycyclic aromatic hydrocarbons (PAHs). The results indicate that highly superhydrogenated PAHs could well be formed and could act as efficient catalysts for H{sub 2} formation in the interstellar medium in low UV flux regions.

  14. Single-atom imino substitutions at A9 and A10 reveal distinct effects on the fold and function of the hairpin ribozyme catalytic core.

    Science.gov (United States)

    Spitale, Robert C; Volpini, Rosaria; Mungillo, Michael V; Krucinska, Jolanta; Cristalli, Gloria; Wedekind, Joseph E

    2009-08-25

    The hairpin ribozyme cleaves a phosphodiester bond within a cognate substrate. Structural and biochemical data indicate the conserved A9 and A10 bases reside close to the scissile bond but make distinct contributions to catalysis. To investigate these residues, we replaced the imino moiety of each base with N1-deazaadenosine. This single-atom change resulted in an 8-fold loss in k(obs) for A9 and displacement of the base from the active site; no effects were observed for A10. We propose that the imino moiety of A9 promotes a key water-mediated contact that favors transition-state formation, which suggests an enhanced chemical repertoire for RNA.

  15. Stable structure optimization of Au-Cu-Pt trimetallic nanoparticles based on genetic algorithm%基于遗传算法的Au-Cu-Pt三元合金纳米粒子的稳定结构研究∗

    Institute of Scientific and Technical Information of China (English)

    李铁军; 孙跃; 郑骥文; 邵桂芳; 刘暾东

    2015-01-01

    合金纳米粒子展示出单金属粒子所不具有的多功能性能,而其稳定结构的研究对于进一步了解其催化性能具有重要的意义。本文采用改进的遗传算法和量子修正Sutton-Chen型多体势对二十四面体Au-Cu-Pt三元合金纳米粒子的稳态结构进行了系统的研究。针对不同尺寸、不同组成比例的合金纳米粒子,探讨了遗传算法的收敛性及初始构型对稳态结构的影响。计算的结果表明:初始结构的选取并不影响最终的稳定结构,并且改进的遗传算法具有较好的稳定性; Au和Cu形成表面偏聚,而Pt则倾向于分布在内层;当Au或Cu比例较小时, Au和Cu表现出表面最大偏聚;当Au与Cu原子数之和大于表面原子数时,二者表现出竞争偏聚,且Cu的偏聚效应较强;随着Au, Cu原子数继续增长至大于表面和次表面原子数之和时, Au的偏聚性能增强。此外, Cu在占据表面后,会越过次外层,与Pt在内层形成混合相结构。%Alloy nanoparticles exhibit multifunctional properties different from monometallic nanoparticles. Especially, when a third metal is introduced into bimetallic nanoparticles system to form trimetallic nanoparticles, their chemical activities will be further improved. As the catalytic reaction of nanoparticles usually takes place on surfaces, and the activity and stability are closely related to their structures, therefore the research on the stable structure is crucial for understanding their catalytic activities. In addition, the electrochemically synthesized tetrahexahedral nanoparticles bound with high-index facets may exhibit greatly enhanced catalytic activity because of their large density of low coordination sites at the surface. Based on the above reasons, this paper carries out the investigation on the stable structures of tetrahexahedral Au-Cu-Pt trimetallic nanoparticles by using an improved genetic algorithm and the quantum-corrected Sutton-Chen (Q

  16. The Synthesis of Glycosyl Phosphite-Pt(Ⅱ) Complexes

    Institute of Scientific and Technical Information of China (English)

    Ling Hua CAO; Hong Yun GAO; Chuan Jian ZHOU; Yu Ting LIU

    2004-01-01

    Ethylene glycol phosphorochloridite 1 or catechol phosphorochloridite 2 reacted with isopropylidene derivatives of D-glucose, D-galactose, D-mannose and D-fructose, a series of glycosyl phosphites were obtained. These glycosyl phosphites form optically active complexes with simple Pt (Ⅱ) salts. Pt (Ⅱ) is coordinated to the phosphorus atom, most of the metal complexes are quite stable.

  17. XAS and XMCD studies of magnetic properties modifications of Pt/Co/Au and Pt/Co/Pt trilayers induced by Ga⁺ ions irradiation.

    Science.gov (United States)

    Mazalski, Piotr; Sveklo, Iosif; Kurant, Zbigniew; Ollefs, Katharina; Rogalev, Andrei; Wilhelm, Fabrice; Fassbender, Juergen; Baczewski, Lech Tomasz; Wawro, Andrzej; Maziewski, Andrzej

    2015-05-01

    Magnetic and magneto-optical properties of Pt/Co/Au and Pt/Co/Pt trilayers subjected to 30 keV Ga(+) ion irradiation are compared. In two-dimensional maps of these properties as a function of cobalt thickness and ion fluence, two branches with perpendicular magnetic anisotropy (PMA) for Pt/Co/Pt trilayers are well distinguished. The replacement of the Pt capping layer with Au results in the two branches still being visible but the in-plane anisotropy for the low-fluence branch is suppressed whereas the high-fluence branch displays PMA. The X-ray absorption spectra and X-ray magnetic circular dichroism (XMCD) spectra are discussed and compared with non-irradiated reference samples. The changes of their shapes and peak amplitude, particularly for the high-fluence branch, are related to the modifications of the local environment of Co(Pt) atoms and the etching effects induced by ion irradiation. Additionally, in irradiated trilayers the XMCD measurements at the Pt L2,3-edge reveal an increase of the magnetic moment induced in Pt atoms.

  18. Chain formation of metal atoms

    DEFF Research Database (Denmark)

    Bahn, Sune Rastad; Jacobsen, Karsten Wedel

    2001-01-01

    The possibility of formation of single-atomic chains by manipulation of nanocontacts is studied for a selection of metals (Ni, Pd, Pt, Cu, Ag, Au). Molecular dynamics simulations show that the tendency for chain formation is strongest for Au and Pt. Density functional theory calculations indicate...

  19. First principles computational investigation on the possibility of Pt-decorated SiC hexagonal sheet as a suitable material for oxygen reduction reaction

    Science.gov (United States)

    Darvish Ganji, M.; Agheb, R.; Darvish Ganji, H.; Ashrafian, S.

    2016-01-01

    First principles calculations play a significant role in developing and optimizing new energy storage and conversion materials especially at the nanoscale. In this work, the structural, energetics and, electronic properties of adsorbed Pt atom onto two-dimensional graphene, hexagonal BN (h-BN) and SiC (h-SiC) sheets have been investigated at DFT-B3LYP level of theory using coronene molecule as a suitable model. Spin-polarization and model size effects on the Pt adsorption properties have also been evaluated. Various positions for establishing Pt atom on the selected substrates have been considered and full structural optimization was carried out for all selected systems. The adsorption energies, electronic structures and charge population analysis indicated that in all the studied structures there were strong interaction between two interacting entities. It was also found that the adsorption ability of h-SiC is much stronger than the other counterparts with adsorption energy of -3.828 eV. We have also examined the O2 adsorption properties of Pt-decorated graphene, h-BN and h-SiC sheets for possible tunability of O2 adsorption strength of systems under study. We found that h-SiC sheet possess a weakened O2 adsorption energy among the selected substrates. In view of the strong stability of adsorbed Pt atom on h-SiC sheet and relatively weaker O2 adsorption energy, one can expect that h-SiC might be a promising material for support assistant as well as increasing the catalytic activity of Pt atoms compared to graphene and h-BN substrates. This may attribute to preventing aggregating of Pt atoms due to the strong fastening nature of the h-SiC sheet and also by affording a balance in the O2 adsorption strength that lead to enhanced catalyst turnover. Therefore, our first principles findings offer a unique opportunity for design and applications of SiC-based nanoscale supports in fuel cell technology.

  20. Efficient C-C bond splitting on Pt monolayer and sub-monolayer catalysts during ethanol electro-oxidation: Pt layer strain and morphology effects.

    Science.gov (United States)

    Loukrakpam, Rameshwori; Yuan, Qiuyi; Petkov, Valeri; Gan, Lin; Rudi, Stefan; Yang, Ruizhi; Huang, Yunhui; Brankovic, Stanko R; Strasser, Peter

    2014-09-21

    Efficient catalytic C-C bond splitting coupled with complete 12-electron oxidation of the ethanol molecule to CO2 is reported on nanoscale electrocatalysts comprised of a Pt monolayer (ML) and sub-monolayer (sML) deposited on Au nanoparticles (Au@Pt ML/sML). The Au@Pt electrocatalysts were synthesized using surface limited redox replacement (SLRR) of an underpotentially deposited (UPD) Cu monolayer in an electrochemical cell reactor. Au@Pt ML showed improved catalytic activity for ethanol oxidation reaction (EOR) and, unlike their Pt bulk and Pt sML counterparts, was able to generate CO2 at very low electrode potentials owing to efficient C-C bond splitting. To explain this, we explore the hypothesis that competing strain effects due to the Pt layer coverage/morphology (compressive) and the Pt-Au lattice mismatch (tensile) control surface chemisorption and overall activity. Control experiments on well-defined model Pt monolayer systems are carried out involving a wide array of methods such as high-energy X-ray diffraction, pair-distribution function (PDF) analysis, in situ electrochemical FTIR spectroscopy, and in situ scanning tunneling microscopy. The vibrational fingerprints of adsorbed CO provide compelling evidence on the relation between surface bond strength, layer strain and morphology, and catalytic activity.

  1. Direct determination of the ionization energies of PtC, PtO, and PtO2 with VUV radiation.

    Science.gov (United States)

    Citir, Murat; Metz, Ricardo B; Belau, Leonid; Ahmed, Musahid

    2008-10-02

    Photoionization efficiency curves were measured for gas-phase PtC, PtO, and PtO2 using tunable vacuum ultraviolet (VUV) radiation at the Advanced Light Source. The molecules were prepared by laser ablation of a platinum tube, followed by reaction with CH4 or N2O and supersonic expansion. These measurements provide the first directly measured ionization energy for PtC, IE(PtC) = 9.45 +/- 0.05 eV. The direct measurement also gives greatly improved ionization energies for the platinum oxides, IE(PtO) = 10.0 +/- 0.1 eV and IE(PtO2) = 11.35 +/- 0.05 eV. The ionization energy connects the dissociation energies of the neutral and cation, leading to greatly improved 0 K bond dissociation energies for the neutrals: D0(Pt-C) = 5.95 +/- 0.07 eV, D0(Pt-O) = 4.30 +/- 0.12 eV, and D0(OPt-O) = 4.41 +/- 0.13 eV, as well as enthalpies of formation for the gas-phase molecules DeltaH(0)(f,0)(PtC(g)) = 701 +/- 7 kJ/mol, DeltaH(0)(f,0)(PtO(g)) = 396 +/- 12 kJ/mol, and DeltaH(0)(f,0)(PtO2(g)) = 218 +/- 11 kJ/mol. Much of the error in previous Knudsen cell measurements of platinum oxide bond dissociation energies is due to the use of thermodynamic second law extrapolations. Third law values calculated using statistical mechanical thermodynamic functions are in much better agreement with values obtained from ionization energies and ion energetics. These experiments demonstrate that laser ablation production with direct VUV ionization measurements is a versatile tool to measure ionization energies and bond dissociation energies for catalytically interesting species such as metal oxides and carbides.

  2. DFT Study of Metal Atoms Adsorbed at Low-coordinated Sites of MgO (001) Surface

    Institute of Scientific and Technical Information of China (English)

    徐艺军; 章永凡; 陈文凯; 李俊篯

    2003-01-01

    The adsorption of metal atoms, Ni, Pd, Pt, Cu, Ag and Au, at low-coordinated edge and corner oxygen sites of MgO (001) surface has been studied theoretically by using density functional method with cluster models embedded in a large array of point charges. For comparison, the interaction of metal atoms with perfect regular oxygen site of MgO (001) surface was also calculated. As regards these metal atoms adsorbed at perfect oxygen sites of MgO (001) surface, Cu, Ag and Au are very weakly bonded to the surface of MgO; Ni, Pd and Pt, on the other hand, exhibit strong interactions with perfect oxygen sites of MgO (001) surface; the large adsorption energy shows that there exist strong bonds formed between these metal atoms with surface oxygen sites. For the metal atoms adsorbed at edge and corner sites, the adsorption energy is much increased, consistent with our previous study of CO and Cl2 adsorption on MgO (001) surface. This illustrates that the low-coordinated sites, especially corner site, are more advantageous positions for those metal atoms adsorbed on MgO (001) surface. The Mulliken population analysis indicates that the electron transferred from MgO to the metal atoms were increased with the decrease of the coordination numbers, which may be one of the reasons for changing catalytic efficiency and selectivity of the metal particles supported by MgO.

  3. A novel preparation method of Sn-modified Pt nanoparticles and application for methanol oxidation

    Science.gov (United States)

    Du, Yongling; Su, Biquan; Zhang, Nuo; Wang, Chunming

    2008-12-01

    With polystyrene latex spheres self-assembled on ITO glass as templates, highly ordered two-dimensional (2D) Pt nanoparticles (PtNPs) were prepared by electrochemical deposition. The morphology and element composition of PtNPs were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The electrocatalytic properties of PtNPs/ITO and Sn underpotential deposition (UPD) modified PtNPs/ITO for methanol oxidation has been investigated by cyclic voltammetry (CV) and chronoamperometry (CA). The excellent electrocatalytic activity can be observed for these catalytic systems.

  4. Site-selective Cu deposition on Pt dendrimer-encapsulated nanoparticles: correlation of theory and experiment.

    Science.gov (United States)

    Carino, Emily V; Kim, Hyun You; Henkelman, Graeme; Crooks, Richard M

    2012-03-07

    The voltammetry of Cu underpotential deposition (UPD) onto Pt dendrimer-encapsulated nanoparticles (DENs) containing an average of 147 Pt atoms (Pt(147)) is correlated to density functional theory (DFT) calculations. Specifically, the voltammetric peak positions are in good agreement with the calculated energies for Cu deposition and stripping on the Pt(100) and Pt(111) facets of the DENs. Partial Cu shells on Pt(147) are more stable on the Pt(100) facets, compared to the Pt(111) facets, and therefore, Cu UPD occurs on the 4-fold hollow sites of Pt(100) first. Finally, the structures of Pt DENs having full and partial monolayers of Cu were characterized in situ by X-ray absorption spectroscopy (XAS). The results of XAS studies are also in good agreement with the DFT-optimized models.

  5. Reactivity of hydrogen with uranium in the presence of Pt

    Energy Technology Data Exchange (ETDEWEB)

    Balooch, M.; Siekhaus, W.J.

    1997-07-01

    The surface-reaction of di-hydrogen with uranium in the presence of Pt clusters has been studied using scanning tunneling microscopy (STM). Uranium was deposited on highly oriented pyrolytic graphite (HOPG) and annealed at temperatures up to 1200{degrees}C to obtain atomically pyrolytic flat surfaces. Pt clusters were then formed using evaporation from a Pt source onto the surface and subsequent annealing. Hydrogen mainly attacked uranium in the vicinity of Pt clusters and formed hydride. The hydride formation probability is almost constant at 2.3x10{sup -4} over the range of exposures studied.

  6. The role of the cationic Pt sites in the adsorption properties of water and ethanol on the Pt4/Pt(111) and Pt4/CeO2(111) substrates: A density functional theory investigation

    Science.gov (United States)

    Seminovski, Yohanna; Tereshchuk, Polina; Kiejna, Adam; Da Silva, Juarez L. F.

    2016-09-01

    Finite site platinum particles, Ptn, supported on reduced or unreduced cerium oxide surfaces, i.e., CeO2-x(111) ( 0 CeO2-x has been improved in the last years; however, the identification of the active sites on the Ptn/CeO2-x(111) substrates is still far from complete. In this work, we applied density functional theory based calculations with the addition of the on-site Coulomb interactions (DFT+U) for the investigation of the active sites and the role of the Pt oxidation state on the adsorption properties of water and ethanol (probe molecules) on four selected substrates, namely, Pt(111), Pt4/Pt(111), CeO2(111), and Pt4/CeO2(111). Our results show that water and ethanol preferentially bind in the cationic sites of the base of the tetrahedron Pt4 cluster instead of the anionic lower-coordinated Pt atoms located on the cluster-top or in the surface Ce (cationic) and O (anionic) sites. The presence of the Pt4 cluster contributes to increase the adsorption energy of both molecules on Pt(111) and CeO2(111) surfaces; however, its magnitude increases less for the case of Pt4/CeO2(111). Thus, the cationic Pt sites play a crucial role in the adsorption properties of water and ethanol. Both water and ethanol bind to on-top sites via the O atom and adopt parallel and perpendicular configurations on the Pt(111) and CeO2(111) substrates, respectively, while their orientation is changed once the Pt4 cluster is involved, favoring H binding with the surface sites.

  7. Electrochemical properties of mixed WC and Pt-black powders

    Directory of Open Access Journals (Sweden)

    MAJA D. OBRADOVIC

    2008-12-01

    Full Text Available The electrochemical characteristics of a mixture of Pt-black and WC powders and its catalytic activity for methanol and formic acid oxidation were investigated in acid solution. XRD and AFM measurements revealed that the WC powder employed for the investigation was a single-phase material consisting of crystallites/spherical particles of average size of about 50 nm, which were agglomerated into much larger particles. Cyclic voltammetry showed that the WC underwent electrochemical oxidation, producing tungstate species. In the case of the mixed Pt + WC powders, the tungstate species were deposited on the Pt as a thin film of hydrous tungsten oxide. Enhanced hydrogen intercalation in the hydrous tungsten oxide was observed and it was proposed to be promoted in mixed powders by the presence of hydrogen adatoms on bare Pt sites. The determination of Pt surface area in the Pt + WC layer by stripping of underpotentially deposited Cu revealed that the entire Pt surface was accessible for underpotential deposition of Cu. Investigation of the electrochemical oxidation of methanol and formic acid on Pt + WC and pure Pt layers did not indicate electrocatalytic promotion due to the presence of WC.

  8. The synthesis of PdPt/carbon paper via surface limited redox replacement reactions for oxygen reduction reaction

    CSIR Research Space (South Africa)

    Motsoeneng, RG

    2015-09-01

    Full Text Available Surface-limited redox replacement reactions using the electrochemical atomic layer deposition (EC-ALD) technique were used to synthesize PdPt bimetallic electrocatalysts on carbon paper substrate. Electrocatalysts having different Pd:Pt ratio were...

  9. Enhanced Electrocatalytic Activity of Pt/3D Hierarchical Bimodal Macroporous Carbon Nanospheres.

    Science.gov (United States)

    Balgis, Ratna; Widiyastuti, W; Ogi, Takashi; Okuyama, Kikuo

    2017-07-19

    Proton exchange membrane fuel cells require electrocatalysts with a high platinum (Pt) loading, large active surface area, and favorable hydrodynamic profile for practical applications. Here, we report the design of three-dimensional hierarchical bimodal macroporous carbon nanospheres with an interconnected pore system, which are applied as an electrocatalyst support. Carbon-supported Pt (Pt/C) catalysts were prepared by aerosol spray pyrolysis followed by microwave chemical deposition. The hierarchical porous structures not only increased the dispersion of Pt nanoparticles but also improved catalytic performance. A hierarchical bimodal macroporous Pt/C catalyst with a mixture of 30 and 120 nm size pores showed the best performance. The electrochemical surface area and mass activity values of this support were 96 m(2) g(-1)-Pt and 378 mA mg(-1)-Pt, respectively at a Pt loading of 15 wt %.

  10. Silicon Nanowires with MoSx and Pt as Electrocatalysts for Hydrogen Evolution Reaction

    Directory of Open Access Journals (Sweden)

    S. H. Hsieh

    2016-01-01

    Full Text Available A convenient method was used for synthesizing Pt-nanoparticle/MoSx/silicon nanowires nanocomposites. Obtained Pt-MoSx/silicon nanowires electrocatalysts were characterized by transmission electron microscopy (TEM. The hydrogen evolution reaction efficiency of the Pt-MoSx/silicon nanowire nanocomposite catalysts was assessed by examining polarization and electrolysis measurements under solar light irradiations. The electrochemical characterizations demonstrate that Pt-MoSx/silicon nanowire electrodes exhibited an excellent catalytic activity for hydrogen evolution reaction in an acidic electrolyte. The hydrogen production capability of Pt-MoSx/silicon nanowires is also comparable to MoSx/silicon nanowires and Pt/silicon nanowires. Electrochemical impedance spectroscopy experiments suggest that the enhanced performance of Pt-MoSx/silicon nanowires can be attributed to the fast electron transfer between Pt-MoSx/silicon nanowire electrodes and electrolyte interfaces.

  11. Superconductivity in novel Ge-based skutterudites: {Sr,Ba}pt4Ge12.

    Science.gov (United States)

    Bauer, E; Grytsiv, A; Chen, Xing-Qiu; Melnychenko-Koblyuk, N; Hilscher, G; Kaldarar, H; Michor, H; Royanian, E; Giester, G; Rotter, M; Podloucky, R; Rogl, P

    2007-11-23

    Combining experiments and ab initio models we report on SrPt4Ge12 and BaPt4Ge12 as members of a novel class of superconducting skutterudites, where Sr or Ba atoms stabilize a framework entirely formed by Ge atoms. Below T(c)=5.35 and 5.10 K for BaPt4Ge12 and SrPt4Ge12, respectively, electron-phonon coupled superconductivity emerges, ascribed to intrinsic features of the Pt-Ge framework, where Ge-p states dominate the electronic structure at the Fermi energy.

  12. Study of Hydrogen Adsorption on Pt/WO3-ZrO2 through Pt Sites

    Institute of Scientific and Technical Information of China (English)

    Sugeng Triwahyono; Aishah Abdul Jalil; Hideshi Hattori

    2007-01-01

    The rate determining step and the energy barrier involved in hydrogen adsorption on Pt/WO3ZrO2 were studied based on the assumption that the hydrogen adsorption occurs only through Pt sites.The rate of hydrogen adsorption on Pt/WO3-ZrO2 Was measured in the adsorption temperature range of 323-573 K and an initial hydrogen pressure of 50 Torr.The rates of hydrogen uptake were very high for the initial few minutes and the adsorption continued for more than 5 h below 523 K.The hydrogen uptake far exceeded the H/Pt ratio of unity for all adsorption temperatures,indicating that the adsorption of hydrogen involved the dissociative adsorption of hydrogen on Pt sites to form hydrogen atoms.the spillover of hydrogen atoms onto the surface of the WO3-ZrO2 catalyst.the diffusion of spiltover hydrogen atom over the surface of the WO3-ZrO2 catalyst,and the formation of protonic acid site originated from hydrogen atom by releasing an electron in which the electron may react with a second hydrogen atom to form a hydride near the Lewis acid site.The rate determining step was the spillover with the activation energy of 12.3 kJ/mol.The rate of hydrogen adsorption cannot be expressed by the rate equation based on the assumption that the rate determining step is the surface diffusion.The activity of Pt/WO3-ZrO2 Was examined on n-heptane isomerization in which the increase of hydrogen partial pressure provided positive-effect on the conversion of n-heptane and negative-effect on the selectivity towards iso-heptane.

  13. Invisibility and PT symmetry

    OpenAIRE

    MOSTAFAZADEH, Ali

    2013-01-01

    PHYSICAL REVIEW A 87, 012103 (2013) Invisibility and PT symmetry Ali Mostafazadeh* Department of Mathematics, Koc¸ University, Sarıyer 34450, Istanbul, Turkey (Received 9 July 2012; published 3 January 2013) For a general complex scattering potential defined on a real line, we show that the equations governing invisibility of the potential are invariant under the combined action of parity and time-reversal (PT ) transformation. We determine the PT -symmetric as well as no...

  14. Fabrication of Pt deposited on carbon nanotubes and performance of its polymer electrolyte membrane fuel cells

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A new method of depositing nano-sized Pt particles on the surface of the carbon nano-tubes was introduced, and the performance of Pt/carbon nanotube compound on polymer electrolyte membrane fuel cells was measured. The experimental results show that the fine platinum particles (about 3 nm) were well dispersed on carbon nanotubes, which demonstrates the excellent catalytic properties of the Pt/CNTs compound in polymer electrolyte membrane fuel cells.

  15. Study of Catalytic Reaction at Electrode-Electrolyte Interfaces by a CV-XAFS Method

    Science.gov (United States)

    Kusano, Shogo; Matsumura, Daiju; Asazawa, Koichiro; Kishi, Hirofumi; Sakamoto, Tomokazu; Yamaguchi, Susumu; Tanaka, Hirohisa; Mizuki, Jun'ichiro

    2017-01-01

    A method combining cyclic voltammetry (CV) with x-ray absorption fine structure (XAFS) spectroscopy, viz. CV-XAFS, has been developed to enable in situ real-time investigation of atomic and electronic structures related to electrochemical reactions. We use this method to study the reaction of a Pt/C cathode catalyst in the oxygen reduction reaction (ORR) in an alkaline electrolyte, using x-ray energies near the Pt LIII edge for XAFS measurements. It was found that the current induced by the ORR was first observed at approximately 0.08 V versus Hg/HgO, although the Pt valence, which is reflected in the oxidation states, remained almost unchanged. The electronic structure of the catalytic surface in the ORR was observed to be different in the negative and positive scan directions of CV measurements. Hydrogen adsorption is also discussed on the basis of the observation of this spectral change. We have demonstrated that CV-XAFS provides dynamical structural and electronic information related to electrochemical reactions and can be used for in situ real-time measurements of a catalyst.

  16. Selectivity of Chemisorbed Oxygen in C–H Bond Activation and CO Oxidation and Kinetic Consequences for CH₄–O₂ Catalysis on Pt and Rh Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Chin, Ya-Huei; Buda, Corneliu; Neurock, Matthew; Iglesia, Enrique

    2011-10-06

    Rate measurements, density functional theory (DFT) within the framework of transition state theory, and ensemble-averaging methods are used to probe oxygen selectivities, defined as the reaction probability ratios for O* reactions with CO and CH₄, during CH₄–O₂ catalysis on Pt and Rh clusters. CO₂ and H₂O are the predominant products, but small amounts of CO form as chemisorbed oxygen atoms (O*) are depleted from cluster surfaces. Oxygen selectivities, measured using ¹²CO–¹³CH₄–O₂ reactants, increase with O₂/ CO ratio and O* coverage and are much larger than unity at all conditions on Pt clusters. These results suggest that O* reacts much faster with CO than with CH₄, causing any CO that forms and desorbs from metal cluster surfaces to react along the reactor bed with other O* to produce CO₂ at any residence time required for detectable extents of CH₄ conversion. O* selectivities were also calculated by averaging DFTderived activation barriers for CO and CH₄ oxidation reactions over all distinct surface sites on cubo-octahedral Pt clusters (1.8 nm diameter, 201 Pt atoms) at low O* coverages, which are prevalent at low O₂ pressures during catalysis. CO oxidation involves non-activated molecular CO adsorption as the kinetically relevant step on exposed Pt atoms vicinal of chemisorbed O* atoms (on *–O* site pairs). CH₄ oxidation occurs via kinetically relevant C–H bond activation on *–* site pairs involving oxidative insertion of a Pt atom into one of the C–H bonds in CH₄, forming a three-centered HC₃–Pt–H transition state. C–H bond activation barriers reflect the strength of Pt–CH₃ and Pt–H interactions at the transition state, which correlates, in turn, with the Pt coordination and with CH₃ * binding energies. Ensemble-averaged O* selectivities increase linearly with O₂/CO ratios, which define the O* coverages, via a proportionality constant. The proportionality constant is given by the ratio of rate

  17. Spin Waves Excitations of Co/Pt Multilayers

    Directory of Open Access Journals (Sweden)

    W. Zhou

    2012-01-01

    Full Text Available The present work investigated interlayer couplings of [Co(20 Å/Pt(30 Å]5, [Co(4 Å/Pt(7 Å]30, and [Co(4 Å/Pt(9 Å]30 multilayers with strong perpendicular magnetic anisotropy (PMA. Brillouin light scattering measurements were utilized to obtain spin waves of these samples with in-plane external magnetic fields. Interlayer couplings were found to be very sensitive to Pt thickness change from 7 Å to 9 Å, which implies that Pt atoms were more difficult to be polarized to provide interlayer coupling between Co layers than in the perpendicular external magnetic field situation. When Pt layer is 30 Å, the observed single spin wave can confirm the disappearance of interlayer coupling even when Co layer thickness is 20 Å.

  18. Pt Ru/C electrocatalysts prepared using electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Dionisio F.; Oliveira Neto, Almir; Pino, Eddy S.; Brandalise, Michele; Linardi, Marcelo; Spinace, Estevam V. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)]. E-mails: dfsilva@ipen.br; espinace@ipen.br

    2007-07-01

    Pt Ru/C electrocatalysts (carbon-supported Pt Ru nanoparticles) were prepared submitting water/ethylene glycol solutions containing Pt(IV) and Ru(III) ions and the carbon support to electron beam irradiation. The water/ethylene glycol ratio (v/v) was evaluated as synthesis parameters. The Pt Ru/C electrocatalysts were prepared with a nominal Pt:Ru atomic ratio of 50:50 and were characterized by energy dispersive X-ray analysis (EDX) and X-ray diffraction (XRD) and tested for methanol electro-oxidation using cyclic voltammetry and chronoamperometry. The obtained Pt Ru/C electrocatalysts showed the typical fcc structure of platinum-ruthenium alloys and the electrocatalytic activity depends on the water/ethylene glycol ratio used in the preparation.

  19. Efficient C–C bond splitting on Pt monolayer and sub-monolayer catalysts during ethanol electro-oxidation: Pt layer strain and morphology effects

    Energy Technology Data Exchange (ETDEWEB)

    Loukrakpam, Rameshwori; Yuan, Qiuyi; Petkov, Valeri; Gan, Lin; Rudi, Stefan; Yang, Ruizhi; Huang, Yunhui; Brankovic, Stanko R.; Strasser, Peter (TU Berlin); (Soochow); (CMU); (Huazhong); (Houston)

    2014-07-23

    Efficient catalytic C–C bond splitting coupled with complete 12-electron oxidation of the ethanol molecule to CO2 is reported on nanoscale electrocatalysts comprised of a Pt monolayer (ML) and sub-monolayer (sML) deposited on Au nanoparticles (Au@Pt ML/sML). The Au@Pt electrocatalysts were synthesized using surface limited redox replacement (SLRR) of an underpotentially deposited (UPD) Cu monolayer in an electrochemical cell reactor. Au@Pt ML showed improved catalytic activity for ethanol oxidation reaction (EOR) and, unlike their Pt bulk and Pt sML counterparts, was able to generate CO2 at very low electrode potentials owing to efficient C–C bond splitting. To explain this, we explore the hypothesis that competing strain effects due to the Pt layer coverage/morphology (compressive) and the Pt–Au lattice mismatch (tensile) control surface chemisorption and overall activity. Control experiments on well-defined model Pt monolayer systems are carried out involving a wide array of methods such as high-energy X-ray diffraction, pair-distribution function (PDF) analysis, in situ electrochemical FTIR spectroscopy, and in situ scanning tunneling microscopy. The vibrational fingerprints of adsorbed CO provide compelling evidence on the relation between surface bond strength, layer strain and morphology, and catalytic activity.

  20. First-principles study of phase equilibria in Cu-Pt-Rh disordered alloys.

    Science.gov (United States)

    Yuge, Koretaka

    2009-10-14

    Phase stability of Cu-Pt-Rh ternary disordered alloys is examined by a combination of cluster expansion techniques and Monte Carlo statistical simulation based on first-principles calculation. The sign of pseudo-binary ECIs indicates that neighboring Cu and Pt strongly prefer unlike-atom pairs, Pt and Rh weakly prefer unlike-atom pairs, and Cu and Rh atoms prefer like-atom pairs, indicating that the ternary alloy retains the ordering tendency of the constituent binary alloys. The formation energy of a random alloy at T = 1200 K exhibits a negative sign for a wide range of Pt-rich compositions, while at Pt-poor compositions of x≤0.25, the formation energy has a positive value. Calculated affinities for the random alloy show the variety of energetically favored bonds for the alloy: Cu-Pt bonds in both first-and second-nearest neighbor (1-NN and 2-NN) are energetically preferred for all the composition range, the Pt-Rh bond in 1-NN is preferred at Pt-rich compositions, the Pt-Rh in 2-NN and Rh-Cu in 1-NN bonds are unfavored for all compositions, and the Rh-Cu bond in 2-NN is unfavored for Pt-poor compositions. We elucidate that the ordering tendency of 1-NN and 2-NN Cu-Pt, 2-NN Pt-Rh and 1-NN Cu-Rh atoms in constituent binary alloys is retained for the whole composition range of Cu-Pt-Rh ternary alloys, while that of 1-NN Pt-Rh and 2-NN Cu-Rh atoms significantly depends on composition.

  1. Interfacial oxygen migration and its effect on the magnetic anisotropy in Pt/Co/MgO/Pt films

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xi; Feng, Chun, E-mail: fengchun@ustb.edu.cn, E-mail: ghyu@mater.ustb.edu.cn; Liu, Yang; Jiang, Shaolong; Hua Li, Ming; Hua Yu, Guang, E-mail: fengchun@ustb.edu.cn, E-mail: ghyu@mater.ustb.edu.cn [Department of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083 (China); Long Wu, Zheng [Analytical and Testing Center, Beijing Normal University, Beijing 100875 (China); Yang, Feng [State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249 (China)

    2014-02-03

    This paper reports the interfacial oxygen migration effect and its induced magnetic anisotropy evolution in Pt/Co/MgO/Pt films. During depositing the MgO layer, oxygen atoms from the MgO combine with the neighboring Co atoms, leading to the formation of CoO at the Co/MgO interface. Meanwhile, the films show in-plane magnetic anisotropy (IMA). After annealing, most of the oxygen atoms in CoO migrate back to the MgO layer, resulting in obvious improvement of Co/MgO interface and the enhancement of effective Co-O orbital hybridization. These favor the evolution of magnetic anisotropy from IMA to perpendicular magnetic anisotropy (PMA). The oxygen migration effect is achieved by the redox reaction at the Co/MgO interface. On the contrary, the transfer from IMA to PMA cannot be observed in Pt/Co/Pt films due to the lack of interfacial oxygen migration.

  2. Electrochemical Sensor for Oxidation of NO Based on Au-Pt Nanoparticles Self-assembly Film

    Institute of Scientific and Technical Information of China (English)

    XIE,Jia; YU,Zhihui; XIA,Dingguo

    2009-01-01

    Au-Pt bimetallic nanoparticles film used as an efficient electrochemical sensor was prepared by self-assembled Au-Pt bimetallic nanoparticles on a glassy carbon (GC) substrate using thioglycolic acid as a linker. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) showed that the Au-Pt nanoparticles self-assembly film was dense and uniform. Electrochemical experiments revealed that Au-Pt bimetallic nanoparticles film/GC electrode showed high electrocatalytic activity to the oxidation of nitric oxide.

  3. Preparation of PtRu/C and PtSn/C electrocatalysts using electron beam irradiation for direct and ethanol fuel cell; Preparacao de eletrocatalisadores PtRu/C e PtSn/C utilizando feixe de eletrons para aplicacao como anodo na oxidacao direta de metanol e etanol em celulas a combustivel de baixa temperatura

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Dionisio Furtunato da

    2009-07-01

    PtRu/C and PtSn/C electrocatalysts were prepared using electron beam irradiation. The metal ions were dissolved in water/2-propanol and water/ethylene glycol solutions and the carbon support was added. The resulting mixtures were irradiated under stirring. The effect of water/ethylene glycol and water/2-propanol (v/v) ratio, Pt:Ru and Pt:Sn atomic ratios, the irradiation time and dose rate were studied. The obtained materials were characterized by Energy dispersive analysis of X-rays (EDX), X-ray diffraction (XRD), cyclic voltammetry (CV) and Moessbauer spectroscopy. The electro-oxidation of methanol and ethanol were studied by cyclic voltammetry and chronoamperometry using the thin porous coating technique. The electrocatalysts were also tested on the Direct Methanol and Ethanol Fuel Cells. PtRu/C electrocatalysts prepared in water/ethylene glycol showed Pt:Ru atomic ratios different from the nominal ones. The results suggested that part of the Ru(III) ions were not reduced. The obtained materials showed the face-centered cubic (fcc) structure of Pt and Pt alloys with crystallite sizes of 2-3 nm. PtRu/C electrocatalysts prepared in water/2-propanol showed Pt:Ru atomic ratios similar to the nominal ones. The obtained materials also showed the fcc structure of platinum and platinum alloys with crystallite sizes of 3-4 nm. PtSn/C electrocatalysts prepared in water/ethylene glycol and water/2-propanol showed Pt:Sn atomic ratios similar to the nominal ones. The obtained materials showed the platinum (fcc) phase with crystallite sizes in the range of 2 - 4 nm and a SnO{sub 2} (cassiterite) phase. The obtained PtRu/C and PtSn/C electrocatalysts showed similar or superior performance for methanol and ethanol electro-oxidation compared to commercial PtRu/C (E-TEK) and PtSn/C (BASF) electrocatalysts. (author)

  4. Single Pd Atoms on θ-Al2O3 (010) Surface do not Catalyze NO Oxidation.

    Science.gov (United States)

    Narula, Chaitanya K; Allard, Lawrence F; Moses-DeBusk, Melanie; Stocks, G Malcom; Wu, Zili

    2017-04-03

    New convenient wet-chemistry synthetic routes have made it possible to explore catalytic activities of a variety of single supported atoms, however, the single supported atoms on inert substrates (e.g. alumina) are limited to adatoms and cations of Pt, Pd, and Ru. Previously, we have found that single supported Pt atoms are remarkable NO oxidation catalysts. In contrast, we report that Pd single atoms are completely inactive for NO oxidation. The diffuse reflectance infra-red spectroscopy (DRIFTS) results show the absence of nitrate formation on catalyst. To explain these results, we explored modified Langmuir-Hinshelwood type pathways that have been proposed for oxidation reactions on single supported atom. In the first pathway, we find that there is energy barrier for the release of NO2 which prevent NO oxidation. In the second pathway, our results show that there is no driving force for the formation of O=N-O-O intermediate or nitrate on single supported Pd atoms. The decomposition of nitrate, if formed, is an endothermic event.

  5. The electrooxidation mechanism of formic acid on platinum and on lead ad-atoms modified platinum studied with the kinetic isotope effect

    Science.gov (United States)

    Bełtowska-Brzezinska, M.; Łuczak, T.; Stelmach, J.; Holze, R.

    2014-04-01

    Kinetics and mechanism of formic acid (FA) oxidation on platinum and upd-lead ad-atoms modified platinum electrodes have been studied using unlabelled and deuterated compounds. Poisoning of the electrode surface by CO-like species was prevented by suppression of dissociative chemisorption of FA due to a fast competitive underpotential deposition of lead ad-atoms on the Pt surface from an acidic solution containing Pb2+ cations. Modification of the Pt electrode with upd lead induced a catalytic effect in the direct electrooxidation of physisorbed FA to CO2. With increasing degree of H/D substitution, the rate of this reaction decreased in the order: HCOOH > DCOOH ≥ HCOOD > DCOOD. HCOOH was oxidized 8.5-times faster on a Pt/Pb electrode than DCOOD. This primary kinetic isotope effect proves that the C-H- and O-H-bonds are simultaneously cleaved in the rate determining step. A secondary kinetic isotope effect was found in the dissociative chemisorption of FA in the hydrogen adsorption-desorption range on a bare Pt electrode after H/D exchange in the C-H bond, wherein the influence of deuterium substitution in the O-H group was negligibly small. Thus the C-H bond cleavage is accompanied by the C-OH and not the O-H bond split in the FA decomposition, producing CO-like species on the Pt surface sites.

  6. Domain wall pinning on strain relaxation defects in FePt(001)/Pt thin films

    Energy Technology Data Exchange (ETDEWEB)

    Attane, J. P.; Samson, Y.; Marty, A.; Halley, D.; Beigne, C.

    2001-08-06

    Thin FePt (001) films, grown by molecular-beam epitaxy on Pt(001), exhibit a very large perpendicular magnetic anisotropy (K{sub u}=5 x 10{sup 6}Jm{sup -3}) and a 100% magnetic remanence in perpendicular field. The lattice misfit between FePt and Pt (1.5%) relaxes through the pileup of a/6 <112> partial dislocations along {l_brace}111{r_brace} planes, leading to the formation of microtwins. Atomic force microscopy images demonstrate that this process induces a spontaneous rectangular nanostructuration of the sample, while magnetic force microscopy shows that the microtwins act as pinning sites for the magnetic walls. This leads to square magnetic domains and explains the large coercivity associated with the domain wall propagation. {copyright} 2001 American Institute of Physics.

  7. Domain wall pinning on strain relaxation defects in FePt(001)/Pt thin films

    Science.gov (United States)

    Attané, J. P.; Samson, Y.; Marty, A.; Halley, D.; Beigné, C.

    2001-08-01

    Thin FePt (001) films, grown by molecular-beam epitaxy on Pt(001), exhibit a very large perpendicular magnetic anisotropy (Ku=5×106J m-3) and a 100% magnetic remanence in perpendicular field. The lattice misfit between FePt and Pt (1.5%) relaxes through the pileup of a/6 partial dislocations along {111} planes, leading to the formation of microtwins. Atomic force microscopy images demonstrate that this process induces a spontaneous rectangular nanostructuration of the sample, while magnetic force microscopy shows that the microtwins act as pinning sites for the magnetic walls. This leads to square magnetic domains and explains the large coercivity associated with the domain wall propagation.

  8. Molybdenum-Doped PdPt@Pt Core-Shell Octahedra Supported by Ionic Block Copolymer-Functionalized Graphene as a Highly Active and Durable Oxygen Reduction Electrocatalyst.

    Science.gov (United States)

    Cho, Kie Yong; Yeom, Yong Sik; Seo, Heun Young; Kumar, Pradip; Lee, Albert S; Baek, Kyung-Youl; Yoon, Ho Gyu

    2017-01-18

    Development of highly active and durable electrocatalysts that can effectively electrocatalyze oxygen reduction reactions (ORR) still remains one important challenge for high-performance electrochemical conversion and storage applications such as fuel cells and metal-air batteries. Herein, we propose the combination of molybdenum-doped PdPt@Pt core-shell octahedra and the pyrene-functionalized poly(dimethylaminoethyl methacrylate)-b-poly[(ethylene glycol) methyl ether methacrylate] ionic block copolymer-functionalized reduced graphene oxide (Mo-PdPt@Pt/IG) to effectively augment the interfacial cohesion of both components using a tunable ex situ mixing strategy. The rationally designed Mo-PdPt@Pt core-shell octahedra have unique compositional benefits, including segregation of Mo atoms on the vertexes and edges of the octahedron and 2-3 shell layers of Pt atoms on a PdPt alloy core, which can provide highly active sites to the catalyst for ORR along with enhanced electrochemical stability. In addition, the ionic block copolymer functionalized graphene can facilitate intermolecular charge transfer and good stability of metal NPs, which arises from the ionic block copolymer interfacial layer. When the beneficial features of the Mo-PdPt@Pt and IG are combined, the Mo-PdPt@Pt/IG exhibits substantially enhanced activity and durability for ORR relative to those of commercial Pt/C. Notably, the Mo-PdPt@Pt/IG shows mass activity 31-fold higher than that of Pt/C and substantially maintains high activities after 10 000 cycles of intensive durability testing. The current study highlights the crucial strategies in designing the highly active and durable Pt-based octahedra and effective combination with functional graphene supports toward the synergetic effects on ORR.

  9. Ion-irradiation induced chemical ordering of FePt and FePtAu nanoparticles

    Science.gov (United States)

    Seetala, Naidu V.; Harrell, J. W.; Lawson, Jeremy; Nikles, David E.; Williams, John R.; Isaacs-Smith, Tamara

    2005-12-01

    We have studied the effect of ion-beam irradiation on reducing the ordering temperature of FePt and FePtAu nanoparticles. FePt and FePt(Au14%) 4 nm particles dispersed on a Si-substrate were irradiated by 300 keV Al-ions with a dose of 1 × 1016 ions/cm2 at 43 °C using a water-cooled flange in order to minimize the vacancy migration and voids formation within the collision cascades. Partial chemical ordering has been observed in as-irradiated particles with coercivity of 60-130 Oe. Post-irradiation annealing at 220 °C enhanced chemical ordering in FePt nanoparticles with coercivity of 3500 Oe, magnetic anisotropy of 1.5 × 107 erg/cc, and thermal stability factor of 130. A much higher 375 °C post-irradiation annealing was required in FePtAu, presumably because Au atoms were trapped at Fe/Pt lattice sites at lower temperatures. As the annealing temperature increased, anomalous features in the magnetization reversal curves were observed that disappeared at higher annealing temperatures.

  10. Ion-irradiation induced chemical ordering of FePt and FePtAu nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Seetala, Naidu V. [Department of Physics, Grambling State University, RWE Jones Drive, Carver Hall 81, Grambling, LA 71245 (United States)]. E-mail: naidusv@gram.edu; Harrell, J.W. [MINT Center, University of Alabama, Tuscaloosa, AL 35487 (United States); Lawson, Jeremy [MINT Center, University of Alabama, Tuscaloosa, AL 35487 (United States); Nikles, David E. [MINT Center, University of Alabama, Tuscaloosa, AL 35487 (United States); Williams, John R. [Department of Physics, Auburn University, Auburn, AL 36849 (United States); Isaacs-Smith, Tamara [Department of Physics, Auburn University, Auburn, AL 36849 (United States)

    2005-12-15

    We have studied the effect of ion-beam irradiation on reducing the ordering temperature of FePt and FePtAu nanoparticles. FePt and FePt(Au14%) 4 nm particles dispersed on a Si-substrate were irradiated by 300 keV Al-ions with a dose of 1 x 10{sup 16} ions/cm{sup 2} at 43 {sup o}C using a water-cooled flange in order to minimize the vacancy migration and voids formation within the collision cascades. Partial chemical ordering has been observed in as-irradiated particles with coercivity of 60-130 Oe. Post-irradiation annealing at 220 {sup o}C enhanced chemical ordering in FePt nanoparticles with coercivity of 3500 Oe, magnetic anisotropy of 1.5 x 10{sup 7} erg/cc, and thermal stability factor of 130. A much higher 375 {sup o}C post-irradiation annealing was required in FePtAu, presumably because Au atoms were trapped at Fe/Pt lattice sites at lower temperatures. As the annealing temperature increased, anomalous features in the magnetization reversal curves were observed that disappeared at higher annealing temperatures.

  11. 不同pH值下Pt-Sn/石墨烯复合材料的电催化性能%Preparation of Pt-Sn/graphene catalysts and their activities for ethanol electrooxidation in polyol synthesis

    Institute of Scientific and Technical Information of China (English)

    王永祯; 王勇

    2014-01-01

    Pt-Sn/graphene catalysts were prepared by heat treatment of a dispersion of graphene oxide, SnCl2 and H2 PtCl6 in eth-ylene glycol at 130℃ for 3 h after its pH value had been adjusted to 12 by NaOH, followed by centrifuging, washing with ethanol and water, and cryodrying. The pH value of the heat-treated dispersion was controlled by adding dilute nitric acid to 2, 4 and 6 to mediate the properties of the catalysts and its effects on the compositions, microstructure and catalytic activities of the resulting cata-lysts in ethanol electrooxidation. These were investigated by XRD, ICP, TEM and cyclic voltammetry. Results indicated that with decreasing pH values the Sn content increased, the Pt/Sn atom ratio decreased and the electrochemical activity increased. The cur-rent density for ethanol electrooxidation was increased by 120% at the pH value of 2 compared for the sample without nitric acid. The improvement of the catalytic activity can be ascribed to an increased loading of Sn and Pt since the oxidative product of ethylene glycol in the heat treatment acted as a chelating agent for metal nanoparticles under high pH values. A very simple acid-treatment-as-sisted polyol route to prepare graphene supported Pt-Sn nanoparticles were developed. To evaluate the composition, microstructure and electrochemical activity of catalysts treated with different pH values of acid solution have been characterized by XRD、ICP、TEM and cyclic voltammetry. And the changes of Pt and Sn metal particles loading on the surface of graphene were discussed. The results show that graphene is a good support. With the increase of pH values, the Sn content of catalysts increased and the electrochemical activity was improved. As the pH values of acid solution was decreased to 2, the synergistic effect of Pt and Sn reached its maxi-mum, and the current densities of ethanol electrooxidation with the catalysts were about 120% higher than that of original Pt-Sn/G catalysts, which also reached the

  12. High efficient electrooxidation of formic acid at a novel Pt-indole composite catalyst prepared by electrochemical self-assembly

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Weiqiang [Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013 (China); College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 (China); Wang, Chuanyi [Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011 (China); Xu, Jingkun [Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013 (China); Du, Yukou; Yang, Ping [College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 (China)

    2011-02-01

    Self-assembly of Pt and indole into a novel composite catalyst on a glassy carbon electrode (GC) has been developed by a one-step electrodeposition in the presence of 3.0 mM H{sub 2}PtCl{sub 6} and 0.1 mM indole. Compared to Pt/GC and Pt/C, the novel Pt-indole composite catalyst exhibits higher catalytic activity and stronger poisoning tolerance for electrooxidation of formic acid. The adsorption strength of CO on the prepared Pt-indole composite catalyst is greatly weakened as demonstrated by CO stripping voltammograms. Because of its advantageous catalytic activity and poisoning tolerance, the novel Pt-indole composite catalyst is anticipated to find interesting applications in many important fields such as energy and catalysis. (author)

  13. Atomic level study of water-gas shift catalysts via transmission electron microscopy and x-ray spectroscopy

    Science.gov (United States)

    Akatay, Mehmed Cem

    Water-gas shift (WGS), CO + H2O ⇆ CO2 + H2 (DeltaH° = -41 kJ mol -1), is an industrially important reaction for the production of high purity hydrogen. Commercial Cu/ZnO/Al2O3 catalysts are employed to accelerate this reaction, yet these catalysts suffer from certain drawbacks, including costly regeneration processes and sulfur poisoning. Extensive research is focused on developing new catalysts to replace the current technology. Supported noble metals stand out as promising candidates, yet comprise intricate nanostructures complicating the understanding of their working mechanism. In this study, the structure of the supported Pt catalysts is explored by transmission electron microscopy and X-ray spectroscopy. The effect of the supporting phase and the use of secondary metals on the reaction kinetics is investigated. Structural heterogeneities are quantified and correlated with the kinetic descriptors of the catalysts to develop a fundamental understanding of the catalytic mechanism. The effect of the reaction environment on catalyst structure is examined by in-situ techniques. This study benefitted greatly from the use of model catalysts that provide a convenient medium for the atomic level characterization of nanostructures. Based on these studies, Pt supported on iron oxide nano islands deposited on inert spherical alumina exhibited 48 times higher WGS turnover rate (normalized by the total Pt surface area) than Pt supported on bulk iron oxide. The rate of aqueous phase glycerol reforming reaction of Pt supported on multiwall carbon nanotubes (MWCNT) is promoted by co-impregnating with cobalt. The synthesis resulted in a variety of nanostructures among which Pt-Co bimetallic nanoparticles are found to be responsible for the observed promotion. The unprecedented WGS rate of Pt supported on Mo2C is explored by forming Mo 2C patches on top of MWCNTs and the rate promotion is found to be caused by the Pt-Mo bimetallic entities.

  14. Oxygen reduction on carbon supported Pt-W electrocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Meza, D.; Morales, U.; Salgado, L. [Departamento de Quimica, Area de Electroquimica, Universidad Autonoma Metropolitana, Unidad Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, 09340 Distrito Federal (Mexico); Roquero, P. [Unidad de Investigacion en Catalisis, Facultad de Quimica, UNAM, Ciudad Universitaria, 04510 Distrito Federal (Mexico)

    2010-11-15

    The catalytic activity of Pt-W electrocatalysts towards oxygen reduction reaction (ORR) was studied. Pt-W/C materials were prepared by thermolysis of tungsten and platinum carbonyl complexes in 1-2 dichloro-benzene during 48 h. The precursors were mixed to obtain relations of Pt:W: 50:50 and 80:20%w, respectively. The Pt carbonyl complex was previously synthesized by bubbling CO in a chloroplatinic acid solution. The synthesized materials were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), cyclic voltammetry (CV) and a rotating disk electrode (RDE). The results show that both materials (Pt{sub 50}W{sub 50}/C and Pt{sub 80}W{sub 20}/C) have a crystalline phase associated with metallic platinum and an amorphous phase related with tungsten and carbon. The particle size of the electrocatalysts depends on the relationship between platinum and tungsten. Finally, both materials exhibit catalytic activity for oxygen reduction. (author)

  15. High perpendicular hard magnetic properties of nanocomposite Co-rich Co-Pt/Pt double-layered films by epitaxial deposition without capped layer

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S.C., E-mail: chensc@mail.mcut.edu.t [Department of Materials Engineering, MingChi University of Technology, Taipei 243, Taiwan (China); Kuo, P.C.; Shen, C.L.; Hsu, S.L.; Fang, Y.H.; Lin, G.P.; Huang, K.T. [Institute of Materials Science and Engineering, National Taiwan University, Taipei 106, Taiwan (China)

    2009-07-01

    The HRTEM cross-sectional lattice image shows that a well epitaxial growth of hcp Co-rich Co-Pt (002) on Pt (111) underlayer leads to good perpendicular magnetic anisotropy of Co-rich Co-Pt film. It is found that both the perpendicular coercivity (Hc{sub perpendicular}) and perpendicular squareness (S{sub perpendicular}) of Co-rich Co-Pt films without Pt capped layer are larger than that of Co-rich Co-Pt films with Pt capped layer. The cross-sectional TEM-EDS and AES analysis confirm that the oxygen atoms will diffuse from film surface into the Co-rich Co-Pt film without adding Pt capped layer, and it react with cobalt atoms to form CoO, which is detected by XPS analysis. The increase in perpendicular hard magnetic properties of Co-rich Co-Pt film without Pt capped layer is mainly due to form CoO in the Co-rich Co-Pt film.

  16. Spectroelectrochemical Study of Carbon Monoxide and Ethanol Oxidation on Pt/C, PtSn(3:1/C and PtSn(1:1/C Catalysts

    Directory of Open Access Journals (Sweden)

    Rubén Rizo

    2016-09-01

    Full Text Available PtSn-based catalysts are one of the most active materials toward that contribute ethanol oxidation reaction (EOR. In order to gain a better understanding of the Sn influence on the carbon monoxide (principal catalyst poison and ethanol oxidation reactions in acidic media, a systematic spectroelectrochemical study was carried out. With this end, carbon-supported PtSnx (x = 0, 1/3 and 1 materials were synthesized and employed as anodic catalysts for both reactions. In situ Fourier transform infrared spectroscopy (FTIRS and differential electrochemical mass spectrometry (DEMS indicate that Sn diminishes the amount of bridge bonded CO (COB and greatly improves the CO tolerance of Pt-based catalysts. Regarding the effect of Sn loading on the EOR, it enhances the catalytic activity and decreases the onset potential. FTIRS and DEMS analysis indicate that the C-C bond scission occurs at low overpotentials and at the same potential values regardless of the Sn loading, although the amount of C-C bond breaking decreases with the rise of Sn in the catalytic material. Therefore, the elevated catalytic activity toward the EOR at PtSn-based electrodes is mainly associated with the improved CO tolerance and the incomplete oxidation of ethanol to form acetic acid and acetaldehyde species, causing the formation of a higher amount of both C2 products with the rise of Sn loading.

  17. Influence of various carbon nano-forms as supports for Pt catalyst on proton exchange membrane fuel cell performance

    Science.gov (United States)

    Bharti, Abha; Cheruvally, Gouri

    2017-08-01

    In this study, we discuss the influence of various carbon supports for Pt on proton exchange membrane (PEM) fuel cell performance. Here, Pt supported on various carbon nano-forms [Pt/carbon black (Pt/CB), Pt/single-walled carbon nanotubes (Pt/SWCNT), Pt/multi-walled carbon nanotubes (Pt/MWCNT) and Pt/graphene (Pt/G)] are synthesized by a facile, single step, microwave-assisted, modified chemical reduction route. Their physical, chemical and electrochemical characteristics pertaining to oxygen reduction reaction (ORR) catalytic activity and stability in PEM fuel cell are studied in detail by various techniques and compared. The study shows that the different carbon supports does not significantly affect the Pt particle size during synthesis, but leads to different amount of defective sites in the carbon framework which influence both the availability of active metal nano-catalysts and metal-support interaction. In-situ electrochemical investigations reveal that the different carbon supports influence both ORR catalytic activity and stability of the catalyst. This is further corroborated by the demonstration of varying polarization characteristics on PEM fuel cell performance by different carbon supported Pt catalysts. This study reveals MWCNT as the most suitable carbon support for Pt catalyst, exhibiting high activity and stability for ORR in PEM fuel cell.

  18. Catalytic Radical Domino Reactions in Organic Synthesis

    Science.gov (United States)

    Sebren, Leanne J.; Devery, James J.; Stephenson, Corey R.J.

    2014-01-01

    Catalytic radical-based domino reactions represent important advances in synthetic organic chemistry. Their development benefits synthesis by providing atom- and step-economical methods to complex molecules. Intricate combinations of radical, cationic, anionic, oxidative/reductive, and transition metal mechanistic steps result in cyclizations, additions, fragmentations, ring-expansions, and rearrangements. This Perspective summarizes recent developments in the field of catalytic domino processes. PMID:24587964

  19. Self-Decoration of PtNi Alloy Nanoparticles on Multiwalled Carbon Nanotubes for Highly Efficient Methanol Electro-Oxidation

    Institute of Scientific and Technical Information of China (English)

    Yu-Yan Zhou; Chang-Hai Liu; Jie Liu; Xin-Lei Cai; Ying Lu; Hui Zhang; Xu-Hui Sun; Sui-Dong Wang

    2016-01-01

    A simple one-pot method was developed to prepare PtNi alloy nanoparticles, which can be self-decorated on multiwalled carbon nanotubes in [BMIm][BF4] ionic liquid. The nanohybrids are targeting stable nanocatalysts for fuel cell applications. The sizes of the supported PtNi nanoparticles are uniform and as small as 1–2 nm. Pt-to-Ni ratio was controllable by simply selecting a PtNi alloy target. The alloy nanoparticles with Pt-to-Ni ratio of 1:1 show high catalytic activity and stability for methanol electro-oxidation. The performance is much higher compared with those of both Pt-only nanoparticles and commercial Pt/C catalyst. The electronic structure characterization on the PtNi nanoparticles demon-strates that the electrons are transferred from Ni to Pt, which can suppress the CO poisoning effect.

  20. Method to produce catalytically active nanocomposite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Erdemir, Ali; Eryilmaz, Osman Levent; Urgen, Mustafa; Kazmanli, Kursat

    2016-02-09

    A nanocomposite coating and method of making and using the coating. The nanocomposite coating is disposed on a base material, such as a metal or ceramic; and the nanocomposite consists essentially of a matrix of an alloy selected from the group of Cu, Ni, Pd, Pt and Re which are catalytically active for cracking of carbon bonds in oils and greases and a grain structure selected from the group of borides, carbides and nitrides.

  1. Surface enrichment of Pt in stable Pt-Ir nano-alloy particles on MgAl 2 O 4 spinel in oxidizing atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wei-Zhen; Nie, Lei; Cheng, Yingwen; Kovarik, Libor; Liu, Jun; Wang, Yong

    2017-04-01

    With the capability of MgAl2O4 spinel {111} nano-facets in stabilizing small Rh, Ir and Pt particles, bimetallic Ir-Pt catalysts on the same support were investigated, aiming at further lowering the catalyst cost by substituting expensive Pt with cheaper Ir in the bulk. Small Pt-Ir nano-alloy particles (< 2nm) were successfully stabilized on the spinel {111} nano-facets as expected. Interestingly, methanol oxidative dehydrogenation (ODH) rate on the surface Pt atoms increases with oxidizing aging but decreases upon reducing treatment, where Ir is almost inactive under the same reaction conditions. Up to three times enhancement in Pt exposure was achieved when the sample was oxidized at 800 °C in air for 1 week and subsequently reduced by H2 for 2 h, demonstrating successful surface enrichment of Pt on Pt-Ir nano-alloy particles. A dynamic stabilization mechanism involving wetting\

  2. Catalytic pyrolysis of waste mandarin over nanoporous materials.

    Science.gov (United States)

    Park, Young-Kwon; Kim, Jeong Wook; Park, Sung Hoon; Kim, Seong-Soo; Jeon, Jong-Ki; Lee, See Hoon

    2013-01-01

    Catalytic pyrolysis of waste mandarin was performed using nanoporous catalysts. AI-MCM-41 and Meso-MFI, which had different acid characteristics, were used. In addition, the characteristics of Pt/Meso-MFI were compared with those of Meso-MFI. To analyze the characteristics of the catalyst samples, Brunauer-Emmett-Teller surface area, temperature programmed desorption of NH3, and N2 adsorption-desorption analyses were performed. In addition, pyrolysis gas chromatography/mass spectrometry was used to facilitate the direct analysis of the pyrolytic products. The products obtained from catalytic pyrolysis contained a greater amount of valuable components than did those obtained from non-catalytic pyrolysis, indicating that catalytic pyrolysis improved the quality of the bio-oil. Additionally, valuable products such as furan and aromatic compounds were produced in greater quantities when Meso-MFI was used. When Pt/Meso-MFI was used, the amounts of furan and aromatic compounds produced increased even further.

  3. Ethylene glycol oxidation on Pt and Pt-Ru nanoparticle decorated polythiophene/multiwalled carbon nanotube composites for fuel cell applications.

    Science.gov (United States)

    Selvaraj, Vaithilingam; Alagar, Muthukaruppan

    2008-01-30

    A novel supporting material containing polythiophene (PTh) and multiwalled carbon nanotubes (MWCNTs) (PTh-CNTs) is prepared by in situ polymerization of thiophene on carbon nanotubes using FeCl(3) as oxidizing agent under sonication. The prepared polythiophene/CNT composites are further decorated with Pt and Pt-Ru nanoparticles by chemical reduction of the corresponding metal salts using HCHO as reducing agent at pH = 11 (Pt/PTh-CNT and Pt-Ru/PTh-CNT). The fabricated composite films decorated with nanoparticles were investigated towards the electrochemical oxidation of ethylene glycol (EG). The presence of carbon nanotubes in conjugation with a conducting polymer produces a good catalytic effect, which might be due to the higher electrochemically accessible surface areas, electronic conductivity and easier charge-transfer at polymer/electrolyte interfaces, which allows higher dispersion of Pt and Pt-Ru nanoparticles. Such nanoparticle modified PTh-CNT electrodes exhibit better catalytic behavior towards ethylene glycol oxidation. Results show that Pt/PTh-CNT and Pt-Ru/PTh-CNT modified electrodes show enhanced electrocatalytic activity and stability towards the electro-oxidation of ethylene glycol than the Pt/PTh electrodes, which shows that the composite film is more promising for applications in fuel cells.

  4. Ethylene glycol oxidation on Pt and Pt-Ru nanoparticle decorated polythiophene/multiwalled carbon nanotube composites for fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Selvaraj, Vaithilingam; Alagar, Muthukaruppan [Department of Chemical Engineering, Alagappa College of Technology, Anna University, Chennai 600025 (India)

    2008-01-30

    A novel supporting material containing polythiophene (PTh) and multiwalled car