WorldWideScience

Sample records for psychrophile psychromonas ingrahamii

  1. Genomics of an extreme psychrophile, Psychromonas ingrahamii

    Directory of Open Access Journals (Sweden)

    Hauser Loren J

    2008-05-01

    Full Text Available Abstract Background The genome sequence of the sea-ice bacterium Psychromonas ingrahamii 37, which grows exponentially at -12C, may reveal features that help to explain how this extreme psychrophile is able to grow at such low temperatures. Determination of the whole genome sequence allows comparison with genes of other psychrophiles and mesophiles. Results Correspondence analysis of the composition of all P. ingrahamii proteins showed that (1 there are 6 classes of proteins, at least one more than other bacteria, (2 integral inner membrane proteins are not sharply separated from bulk proteins suggesting that, overall, they may have a lower hydrophobic character, and (3 there is strong opposition between asparagine and the oxygen-sensitive amino acids methionine, arginine, cysteine and histidine and (4 one of the previously unseen clusters of proteins has a high proportion of "orphan" hypothetical proteins, raising the possibility these are cold-specific proteins. Based on annotation of proteins by sequence similarity, (1 P. ingrahamii has a large number (61 of regulators of cyclic GDP, suggesting that this bacterium produces an extracellular polysaccharide that may help sequester water or lower the freezing point in the vicinity of the cell. (2 P. ingrahamii has genes for production of the osmolyte, betaine choline, which may balance the osmotic pressure as sea ice freezes. (3 P. ingrahamii has a large number (11 of three-subunit TRAP systems that may play an important role in the transport of nutrients into the cell at low temperatures. (4 Chaperones and stress proteins may play a critical role in transforming nascent polypeptides into 3-dimensional configurations that permit low temperature growth. (5 Metabolic properties of P. ingrahamii were deduced. Finally, a few small sets of proteins of unknown function which may play a role in psychrophily have been singled out as worthy of future study. Conclusion The results of this genomic analysis

  2. Psychromonas boydii sp. nov., a gas-vacuolate, psychrophilic bacterium isolated from an Arctic sea-ice core.

    Science.gov (United States)

    Auman, Ann J; Breezee, Jennifer L; Gosink, John J; Schumann, Peter; Barnes, Carmen R; Kämpfer, Peter; Staley, James T

    2010-01-01

    A gas-vacuolate bacterium, strain 174(T), was isolated from a sea-ice core collected from Point Barrow, Alaska, USA. Comparative analysis of 16S rRNA gene sequences showed that this bacterium was most closely related to Psychromonas ingrahamii 37(T), with a similarity of >99 %. However, strain 174(T) could be clearly distinguished from closely related species by DNA-DNA hybridization; relatedness values determined by two different methods between strain 174(T) and P. ingrahamii 37(T) were 58.4 and 55.7 % and those between strain 174(T) and Psychromonas antarctica DSM 10704(T) were 46.1 and 33.1 %, which are well below the 70 % level used to define a distinct species. Phenotypic analysis, including cell size (strain 174(T) is the largest member of the genus Psychromonas, with rod-shaped cells, 8-18 microm long), further differentiated strain 174(T) from other members of the genus Psychromonas. Strain 174(T) could be distinguished from its closest relative, P. ingrahamii, by its utilization of D-mannose and D-xylose as sole carbon sources, its ability to ferment myo-inositol and its inability to use fumarate and glycerol as sole carbon sources. In addition, strain 174(T) contained gas vacuoles of two distinct morphologies and grew at temperatures ranging from below 0 to 10 degrees C and its optimal NaCl concentration for growth was 3.5 %. The DNA G+C content was 40 mol%. Whole-cell fatty acid analysis showed that 16 : 1omega7c and 16 : 0 comprised 44.9 and 26.4 % of the total fatty acid content, respectively. The name Psychromonas boydii sp. nov. is proposed for this novel species, with strain 174(T) (=DSM 17665(T) =CCM 7498(T)) as the type strain.

  3. Endotoxin Structures in the Psychrophiles Psychromonas marina and Psychrobacter cryohalolentis Contain Distinctive Acyl Features

    Directory of Open Access Journals (Sweden)

    Charles R. Sweet

    2014-07-01

    Full Text Available Lipid A is the essential component of endotoxin (Gram-negative lipopolysaccharide, a potent immunostimulatory compound. As the outer surface of the outer membrane, the details of lipid A structure are crucial not only to bacterial pathogenesis but also to membrane integrity. This work characterizes the structure of lipid A in two psychrophiles, Psychromonas marina and Psychrobacter cryohalolentis, and also two mesophiles to which they are related using MALDI-TOF MS and fatty acid methyl ester (FAME GC-MS. P. marina lipid A is strikingly similar to that of Escherichia coli in organization and total acyl size, but incorporates an unusual doubly unsaturated tetradecadienoyl acyl residue. P. cryohalolentis also shows structural organization similar to a closely related mesophile, Acinetobacter baumannii, however it has generally shorter acyl constituents and shows many acyl variants differing by single methylene (-CH2- units, a characteristic it shares with the one previously reported psychrotolerant lipid A structure. This work is the first detailed structural characterization of lipid A from an obligate psychrophile and the second from a psychrotolerant species. It reveals distinctive structural features of psychrophilic lipid A in comparison to that of related mesophiles which suggest constitutive adaptations to maintain outer membrane fluidity in cold environments.

  4. Isolation and Physiological Characterization of Psychrophilic Denitrifying Bacteria from Permanently Cold Arctic Fjord Sediments (Svalbard, Norway)

    Science.gov (United States)

    Canion, Andy; Prakash, Om; Green, Stefan J.; Jahnke, Linda; Kuypers, Marcel M. M.; Kostka, Joel E.

    2013-01-01

    A large proportion of reactive nitrogen loss from polar sediments is mediated by denitrification, but microorganisms mediating denitrification in polar environments remain poorly characterized. A combined approach of most-probable-number (MPN) enumeration, cultivation and physiological characterization was used to describe psychrophilic denitrifying bacterial communities in sediments of three Arctic fjords in Svalbard (Norway). A MPN assay showed the presence of 10(sup 3)-10(sup 6) cells of psychrophilic nitrate-respiring bacteria g(sup -1) of sediment. Fifteen strains within the Proteobacteria were isolated using a systematic enrichment approach with organic acids as electron donors and nitrate as an electron acceptor. Isolates belonged to five genera, including Shewanella, Pseudomonas, Psychromonas (Gammaproteobacteria), Arcobacter (Epsilonproteobacteria) and Herminiimonas (Betaproteobacteria). All isolates were denitrifiers, except Shewanella, which exhibited the capacity for dissimilatory nitrate reduction to ammonium (DNRA). Growth from 0 to 40 degC demonstrated that all genera except Shewanella were psychrophiles with optimal growth below 15 degC, and adaptation to low temperature was demonstrated as a shift from primarily C16:0 saturated fatty acids to C16:1 monounsaturated fatty acids at lower temperatures. This study provides the first targeted enrichment and characterization of psychrophilic denitrifying bacteria from polar sediments, and two genera, Arcobacter and Herminiimonas, are isolated for the first time from permanently cold marine sediments.

  5. Biomethanation under psychrophilic conditions.

    Science.gov (United States)

    Dhaked, Ram Kumar; Singh, Padma; Singh, Lokendra

    2010-12-01

    The biomethanation of organic matter represents a long-standing, well-established technology. Although at mesophilic and thermophilic temperatures the process is well understood, current knowledge on psychrophilic biomethanation is somewhat scarce. Methanogenesis is particularly sensitive to temperature, which not only affects the activity and structure of the microbial community, but also results in a change in the degradation pathway of organic matter. There is evidence of psychrophilic methanogenesis in natural environments, and a number of methanogenic archaea have been isolated with optimum growth temperatures of 15-25 °C. At psychrophilic temperatures, large amounts of heat are needed to operate reactors, thus resulting in a marginal or negative overall energy yield. Biomethanation at ambient temperature can alleviate this requirement, but for stable biogas production, a microbial consortium adapted to low temperatures or a psychrophilic consortium is required. Single-step or two-step high rate anaerobic reactors [expanded granular sludge bed (EGSB) and up flow anaerobic sludge bed (UASB)] have been used for the treatment of low strength wastewater. Simplified versions of these reactors, such as anaerobic sequencing batch reactors (ASBR) and anaerobic migrating blanket reactor (AMBR) have also been developed with the aim of reducing volume and cost. This technology has been further simplified and extended for the disposal of night soil in high altitude, low temperature areas of the Himalayas, where the hilly terrain, non-availability of conventional energy, harsh climate and space constraints limit the application of complicated reactors. Biomethanation at psychrophilic temperatures and the contribution made to night-soil degradation in the Himalayas are reviewed in this article. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Genome Reduction in Psychromonas Species within the Gut of an Amphipod from the Ocean’s Deepest Point

    KAUST Repository

    Zhang, Weipeng

    2018-04-25

    Amphipods are the dominant scavenging metazoan species in the Mariana Trench, the deepest known point in Earth\\'s oceans. Here the gut microbiota of the amphipod Hirondellea gigas collected from the Challenger and Sirena Deeps of the Mariana Trench were investigated. The 11 amphipod individuals included for analyses were dominated by Psychromonas, of which a nearly complete genome was successfully recovered (designated CDP1). Compared with previously reported free-living Psychromonas strains, CDP1 has a highly reduced genome. Genome alignment showed deletion of the trimethylamine N-oxide (TMAO) reducing gene cluster in CDP1, suggesting that the

  7. Genome Reduction in Psychromonas Species within the Gut of an Amphipod from the Ocean’s Deepest Point

    KAUST Repository

    Zhang, Weipeng; Tian, Ren-Mao; Sun, Jin; Bougouffa, Salim; Ding, Wei; Cai, Lin; Lan, Yi; Tong, Haoya; Li, Yongxin; Jamieson, Alan J.; Bajic, Vladimir B.; Drazen, Jeffrey C.; Bartlett, Douglas; Qian, Pei-Yuan

    2018-01-01

    Amphipods are the dominant scavenging metazoan species in the Mariana Trench, the deepest known point in Earth's oceans. Here the gut microbiota of the amphipod Hirondellea gigas collected from the Challenger and Sirena Deeps of the Mariana Trench were investigated. The 11 amphipod individuals included for analyses were dominated by Psychromonas, of which a nearly complete genome was successfully recovered (designated CDP1). Compared with previously reported free-living Psychromonas strains, CDP1 has a highly reduced genome. Genome alignment showed deletion of the trimethylamine N-oxide (TMAO) reducing gene cluster in CDP1, suggesting that the

  8. Genome Reduction in Psychromonas Species within the Gut of an Amphipod from the Ocean's Deepest Point.

    Science.gov (United States)

    Zhang, Weipeng; Tian, Ren-Mao; Sun, Jin; Bougouffa, Salim; Ding, Wei; Cai, Lin; Lan, Yi; Tong, Haoya; Li, Yongxin; Jamieson, Alan J; Bajic, Vladimir B; Drazen, Jeffrey C; Bartlett, Douglas; Qian, Pei-Yuan

    2018-01-01

    Amphipods are the dominant scavenging metazoan species in the Mariana Trench, the deepest known point in Earth's oceans. Here the gut microbiota of the amphipod Hirondellea gigas collected from the Challenger and Sirena Deeps of the Mariana Trench were investigated. The 11 amphipod individuals included for analyses were dominated by Psychromonas , of which a nearly complete genome was successfully recovered (designated CDP1). Compared with previously reported free-living Psychromonas strains, CDP1 has a highly reduced genome. Genome alignment showed deletion of the trimethylamine N -oxide (TMAO) reducing gene cluster in CDP1, suggesting that the "piezolyte" function of TMAO is more important than its function in respiration, which may lead to TMAO accumulation. In terms of nutrient utilization, the bacterium retains its central carbohydrate metabolism but lacks most of the extended carbohydrate utilization pathways, suggesting the confinement of Psychromonas to the host gut and sequestration from more variable environmental conditions. Moreover, CDP1 contains a complete formate hydrogenlyase complex, which might be involved in energy production. The genomic analyses imply that CDP1 may have developed adaptive strategies for a lifestyle within the gut of the hadal amphipod H. gigas. IMPORTANCE As a unique but poorly investigated habitat within marine ecosystems, hadal trenches have received interest in recent years. This study explores the gut microbial composition and function in hadal amphipods, which are among the dominant carrion feeders in hadal habitats. Further analyses of a dominant strain revealed genomic features that may contribute to its adaptation to the amphipod gut environment. Our findings provide new insights into animal-associated bacteria in the hadal biosphere.

  9. Genome Reduction in Psychromonas Species within the Gut of an Amphipod from the Ocean’s Deepest Point

    Science.gov (United States)

    Zhang, Weipeng; Tian, Ren-Mao; Sun, Jin; Bougouffa, Salim; Ding, Wei; Cai, Lin; Lan, Yi; Tong, Haoya; Li, Yongxin; Jamieson, Alan J.; Bajic, Vladimir B.; Drazen, Jeffrey C.; Bartlett, Douglas

    2018-01-01

    ABSTRACT Amphipods are the dominant scavenging metazoan species in the Mariana Trench, the deepest known point in Earth’s oceans. Here the gut microbiota of the amphipod Hirondellea gigas collected from the Challenger and Sirena Deeps of the Mariana Trench were investigated. The 11 amphipod individuals included for analyses were dominated by Psychromonas, of which a nearly complete genome was successfully recovered (designated CDP1). Compared with previously reported free-living Psychromonas strains, CDP1 has a highly reduced genome. Genome alignment showed deletion of the trimethylamine N-oxide (TMAO) reducing gene cluster in CDP1, suggesting that the “piezolyte” function of TMAO is more important than its function in respiration, which may lead to TMAO accumulation. In terms of nutrient utilization, the bacterium retains its central carbohydrate metabolism but lacks most of the extended carbohydrate utilization pathways, suggesting the confinement of Psychromonas to the host gut and sequestration from more variable environmental conditions. Moreover, CDP1 contains a complete formate hydrogenlyase complex, which might be involved in energy production. The genomic analyses imply that CDP1 may have developed adaptive strategies for a lifestyle within the gut of the hadal amphipod H. gigas. IMPORTANCE As a unique but poorly investigated habitat within marine ecosystems, hadal trenches have received interest in recent years. This study explores the gut microbial composition and function in hadal amphipods, which are among the dominant carrion feeders in hadal habitats. Further analyses of a dominant strain revealed genomic features that may contribute to its adaptation to the amphipod gut environment. Our findings provide new insights into animal-associated bacteria in the hadal biosphere. PMID:29657971

  10. Identification and expression of the tig gene coding for trigger factor from psychrophilic bacteria with no information of genome sequence available.

    Science.gov (United States)

    Lee, Kyunghee; Choi, Hyojung; Im, Hana

    2009-08-01

    Trigger factor (TF) plays a key role as a molecular chaperone with a peptidyl-prolyl cis-trans isomerase (PPIase) activity by which cells promote folding of newly synthesized proteins coming out of ribosomes. Since psychrophilic bacteria grow at a quite low temperature, between 4 and 15 degrees C, TF from such bacteria was investigated and compared with that of mesophilic bacteria E. coli in order to offer an explanation of cold-adaptation at a molecular level. Using a combination of gradient PCRs with homologous primers and LA PCR in vitro cloning technology, the tig gene was fully identified from Psychromonas arctica, whose genome sequence is not yet available. The resulting amino acid sequence of the TF was compared with other homologous TFs using sequence alignments to search for common domains. In addition, we have developed a protein expression system, by which TF proteins from P. arctica (PaTF) were produced by IPTG induction upon cloning the tig gene on expression vectors, such as pAED4. We have further examined the role of expressed psychrophilic PaTF on survival against cold treatment at 4 degrees C. Finally, we have attempted the in vitro biochemical characterization of TF proteins with His-tags expressed in a pET system, such as the PPIase activity of PaTF protein. Our results demonstrate that the expressed PaTF proteins helped cells survive against cold environments in vivo and the purified PaTF in vitro display the functional PPIase activity in a concentration dependent manner.

  11. Autolysis of psychrophilic bacteria from marine fish.

    OpenAIRE

    Makarios-Laham, I; Levin, R E

    1985-01-01

    Two psychrophillic bacterial isolates of marine fish origin unable to grow at 20 degrees C or above were found to be distinguishable on the basis of autolysis at elevated temperature in various buffer systems. Isolate OP2 exhibited autolysis at 30 degrees C and above, while isolate OP7 underwent autolysis only at 35 degrees C and above. Tris buffer at pH 7.0 and 8.0 and at 35 degrees C significantly protected isolate OP2 from autolysis and failed to do so with isolate OP7. At pH 5.0, suspensi...

  12. Studies on new antifreeze protein from the psychrophilic diatom ...

    African Journals Online (AJOL)

    Studies on new antifreeze protein from the psychrophilic diatom, Fragilariopsis cylindrus. ... African Journal of Biotechnology. Journal Home · ABOUT THIS ... The predicted gene product, AfpA, had a molecular mass of 27 kDa. Expression of ...

  13. Autolysis of psychrophilic bacteria from marine fish.

    Science.gov (United States)

    Makarios-Laham, I; Levin, R E

    1985-01-01

    Two psychrophillic bacterial isolates of marine fish origin unable to grow at 20 degrees C or above were found to be distinguishable on the basis of autolysis at elevated temperature in various buffer systems. Isolate OP2 exhibited autolysis at 30 degrees C and above, while isolate OP7 underwent autolysis only at 35 degrees C and above. Tris buffer at pH 7.0 and 8.0 and at 35 degrees C significantly protected isolate OP2 from autolysis and failed to do so with isolate OP7. At pH 5.0, suspension phosphate buffer resulted in significantly greater autolysis of both isolates than did suspension in succinate buffer. PMID:4004228

  14. Anaerobic Psychrophiles from Lake Zub and Lake Untersee, Antarctica

    Science.gov (United States)

    Townsend, Alisa; Pikuta, Elena V.; Guisler, Melissa; Stahl, Sarah; Hoover, Richard B.

    2009-01-01

    The study of samples from Antarctica 2008 and 2009 expeditions organized and successfully conducted by Richard Hoover led to the isolation of diverse anaerobic strains with psychrotolerant and psychrophilic physiology. Due to the fact that Lake Untersee has never been subject to microbiological study, this work with the samples has significant and pioneering impact to the knowledge about the biology of this unique ecosystem. Also, the astrobiological significance for the study of these ecosystems is based on new findings of ice covered water systems on other bodies of our solar system. Anaerobic psychrotolerant strain LZ-22 was isolated from a frozen sample of green moss with soils around the rhizosphere collected near Lake Zub in Antarctica. Morphology of strain LZ-22 was observed to be motile, rod shaped and spore-forming cells with sizes 1 x 5-10 micron. This new isolate is a mesophile with the maximum temperature of growth at 40C. Strain LZ-22 is able to live on media without NaCl and in media with up to 7% (w/v) NaCl. It is catalase negative and grows only on sugars with the best growth rate being on lactose. The strain is a neutrophile and grows between pH 5 and 9.0 with the optimum at 7.8. Another two strains UL7-96mG and LU-96m7P were isolated from deep water samples of Lake Untersee. Proteolytic strain LU-96m7P had a truly psychrophilic nature and refused to grow at room temperature. Sugarlytic strain UL7-96mG was found to be psychrotolerant, but its rate of growth at 3C was very high compared with other mesophiles. Two homoacetogenic psychrophilic strains A7AC-96m and AC-DS7 were isolated and purified from samples of Lake Untersee; both of them are able to grow chemolithotrophically on H2+CO2. In the presence of lactate, these strains are able to grow only at 0-18C, and growth at 22C was observed only with yeast extract stimulation. In this paper, physiological and morphological characteristics of novel psychrophilic and psychrotolerant isolates from

  15. Community size and metabolic rates of psychrophilic sulfate-reducing bacteria in Arctic marine sediments

    DEFF Research Database (Denmark)

    Knoblauch, C.; Jørgensen, BB; Harder, J.

    1999-01-01

    The numbers of sulfate reducers in two Arctic sediments within situ temperatures of 2.6 and -1.7 degrees C were determined. Most-probable-number counts were higher at 10 degrees C than at 20 degrees C, indicating the predominance of a psychrophilic community. Mean specific sulfate reduction rates...... of 19 isolated psychrophiles were compared to corresponding rates of 9 marine, mesophilic sulfate-reducing bacteria. The results indicate that, as a physiological adaptation to the permanently cold Arctic environment, psychrophilic sulfate reducers have considerably higher specific metabolic rates than...... their mesophilic counterparts at similarly low temperatures....

  16. Halophilic-Psychrophilic Bacteria from Tirich Mir Glacier, Pakistan, as Potential Candidate for Astrobiological Studies

    Science.gov (United States)

    Rafiq, M. R.; Anesio, A. M. A.; Hayat, M. H.; Zada, S. Z.; Sajjad, W. S.; Shah, A. A. S.; Hasan, F. H.

    2016-09-01

    Hindu Kush, Karakoram, and Himalaya region is referred to as 'third pole' and could be suitable as a terrestrial analog of Mars and increased possibility of finding polyextremophiles. Study is focused on halophilic psychrophiles.

  17. Microbial kinetic for In-Storage-Psychrophilic Anaerobic Digestion (ISPAD).

    Science.gov (United States)

    Madani-Hosseini, Mahsa; Mulligan, Catherine N; Barrington, Suzelle

    2014-12-15

    In-Storage-Psychrophilic-Anaerobic-Digestion (ISPAD) is a wastewater storage tank converted into an anaerobic digestion (AD) system by means of an airtight floating geo-membrane. For process optimization, ISPAD requires modelling with well-established microbial kinetics coefficients. The present objectives were to: obtain kinetics coefficients for the modelling of ISPAD; compare the prediction of the conventional and decomposition fitting approach, an innovative fitting technique used in other fields of science, and; obtain equations to predict the maximum growth rate (μmax) of microbial communities as a function of temperature. The method consisted in conducting specific Substrate Activity Tests (SAT) using ISPAD inoculum to monitor the rate of degradation of specific substrates at 8, 18 and 35 °C. Microbial kinetics coefficients were obtained by fitting the Monod equations to SAT. The statistical procedure of Least Square Error analysis was used to minimize the Sum of Squared Errors (SSE) between the measured ISPAD experimental data and the Monod equation values. Comparing both fitting methods, the decomposition approach gave higher correlation coefficient (R) for most kinetics values, as compared to the conventional approach. Tested to predict μmax with temperature, the Square Root equation better predicted temperature dependency of both acidogens and propionate degrading acetogens, while the Arrhenius equation better predicted that of methanogens and butyrate degrading acetogens. Increasing temperature from 18 to 35 °C did not affect butyrate degrading acetogens, likely because of their dominance, as demonstrated by microbial population estimation. The estimated ISPAD kinetics coefficients suggest a robust psychrophilic and mesophilic coexisting microbial community demonstrating acclimation to ambient temperature. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Psychrophiles and astrobiology: microbial life of frozen worlds

    Science.gov (United States)

    Pikuta, Elena V.; Hoover, Richard B.

    2003-01-01

    Most bodies of our Solar System are "Frozen Worlds" where the prevailing surface temperature remains at or below freezing. On Earth there are vast permanently frozen regions of permafrost, polar ice sheets, and glaciers and the deep oceans and deep-sea marine sediments have remained at 2 - 4°C for eons. Psychrophilic and psychrotrophic microbiota that inhabit these regimes provide analogs for microbial life that might inhabit ice sheets and permafrost of Mars, comets, or the ice/water interfaces or sediments deep beneath the icy crusts of Europa, Callisto, or Ganymede. Cryopreserved micro-organisms can remain viable (in a deep anabiotic state) for millions of years frozen in permafrost and ice. Psychrophilic and psychrotrophic (cold-loving) microbes can carry out metabolic processes in water films and brine, acidic, or alkaline chanels in permafrost or ice at temperatures far below 0°C. These microbes of the cryosphere help define the thermal and temporal limits of life on Earth and may provide clues to where and how to search for evidence of life elsewhere in the Cosmos. Astrobiologists at the NASA Marshall Space Flight Center have collected microbial extremophiles from the Pleistocene ice wedges and frozen thermokarst ponds from the Fox Permafrost Tunnel of Alaska. Microbes have also been isolated from samples of Magellanic Penguin guano from Patagonia; deep-sea marine muds near hydrothermal vents; snow and permafrost from Siberia, and deep ice cores, ice-bubble and cryoconite rocks of the Central Antarctic Ice Sheet. These samples have yielded microbial extremophiles representing a wide variety of anaerobic bacteria and archaea. These microbes have been isolated, cultured, characterized and analyzed by phylogenetic and genomic methods. Images were obtained by Phase Contrast, Environmental, Field Emission Scanning and Transmission Electron Microscopes to study the ultra-microstructure and elemental distribution in the composition of these micro-organisms. We

  19. Psychrophilic and Psychrotolerant Microbial Extremophiles in Polar Environments

    Science.gov (United States)

    Hoover, Richard B.; Pikuta, Elena V.

    2010-01-01

    The microbial extremophiles that inhabit the polar regions of our planet are of tremendous significance. The psychrophilic and psychrotolerant microorganisms, which inhabit all of the cold environments on Earth have important applications to Bioremediation, Medicine, Pharmaceuticals, and many other areas of Biotechnology. Until recently, most of the research on polar microorganisms was confined to studies of polar diatoms, yeast, fungi and cyanobacteria. However, within the past three decades, extensive studies have been conducted to understand the bacteria and archaea that inhabit the Arctic and Antarctic sea-ice, glaciers, ice sheets, permafrost and the cryptoendolithic, cryoconite and ice-bubble environments. These investigations have resulted in the discovery of many new genera and species of anaerobic and aerobic microbial extremophiles. Exotic enzymes, cold-shock proteins and pigments produced by some of the extremophiles from polar environments have the potential to be of great benefit to Mankind. Knowledge about microbial life in the polar regions is crucial to understanding the limitations and biodiversity of life on Earth and may provide valuable clues to the Origin of Life on Earth. The discovery of viable microorganisms in ancient ice from the Fox Tunnel, Alaska and the deep Vostok Ice has shown that microorganisms can remain alive while cryopreserved in ancient ice. The psychrophilic lithoautotrophic homoacetogen isolated from the deep anoxic trough of Lake Untersee is an ideal candidate for life that might inhabit comets or the polar caps of Mars. The spontaneous release of gas from within the Anuchin Glacier above Lake Untersee may provide clues to the ice geysers that erupt from the tiger stripe regions of Saturn s moon Enceladus. The methane productivity in the lower regimes of Lake Untersee may also provide insights into possible mechanisms for the recently discovered methane releases on Mars. Since most of the other water bearing bodies of our

  20. Biogas generation from in-storage psychrophilic anaerobic digestion.

    Science.gov (United States)

    Giard, David; Choiniere, Denis; Cordeau, Sébastien; Barrington, Suzelle

    2013-01-01

    In-storage psychrophilic anaerobic digestion (ISPAD) is a technology allowing livestock producers to operate an anaerobic digester with minimum technological know-how and for the cost of a conventional storage cover. Nevertheless, the system is exposed to ambient temperatures and biogas production is expected to vary with climatic conditions. The objective of the project was therefore to measure ISPAD biogas production during the winter and fall seasons for a region east of Montreal, Canada. A calibrated biogas monitoring system was used to monitor biogas methane and carbon dioxide concentrations inside a two-year-old field installation with a 1000 m3 storage capacity. Despite a leaking pumping hatch, winter 2010 (January to March) methane concentrations varied directly with solar radiation and maximum exterior temperature, rather than with manure temperature at 2.4 and 1.2 m depths which remained relatively constant between 1 and 5 degrees C. During a six-month-period from November 2009 to April 2010, inclusively, the field ISPAD degraded 34% of the manure volatile solids corresponding to an average methane production of 40 m3/d. The ISPAD biogas production could be further increased by improving its air tightness and intrusion and by regularly pumping out the biogas.

  1. Psychrophilic anaerobic digestion of swine manure slurry in sequencing batch reactors

    Energy Technology Data Exchange (ETDEWEB)

    Masse, D.I. [Agriculture Canada, Ottawa, ON (Canada). Food Research Branch; Droste, R.L. [Ottawa Univ., ON (Canada). Dept. of Civil Engineering

    1993-12-31

    This work presents preliminary results of an ongoing laboratory study to evaluate the feasibility of psychrophilic anaerobic digestion in sequencing batch reactors (SBR) for stabilizing, deodorizing and adding value to swine manure. Preliminary results show that the process is feasible. (author). 14 refs., 7 tabs.

  2. Psychrophilic anaerobic digestion of swine manure slurry in sequencing batch reactors

    Energy Technology Data Exchange (ETDEWEB)

    Masse, D I [Agriculture Canada, Ottawa, ON (Canada). Food Research Branch; Droste, R L [Ottawa Univ., ON (Canada). Dept. of Civil Engineering

    1994-12-31

    This work presents preliminary results of an ongoing laboratory study to evaluate the feasibility of psychrophilic anaerobic digestion in sequencing batch reactors (SBR) for stabilizing, deodorizing and adding value to swine manure. Preliminary results show that the process is feasible. (author). 14 refs., 7 tabs.

  3. Efficient aspartic acid production by a psychrophile-based simple biocatalyst.

    Science.gov (United States)

    Tajima, Takahisa; Hamada, Mai; Nakashimada, Yutaka; Kato, Junichi

    2015-10-01

    We previously constructed a Psychrophile-based Simple bioCatalyst (PSCat) reaction system, in which psychrophilic metabolic enzymes are inactivated by heat treatment, and used it here to study the conversion of aspartic acid from fumaric acid mediated by the activity of aspartate ammonia-lyase (aspartase). In Escherichia coli, the biosynthesis of aspartic acid competes with that of L-malic acid produced from fumaric acid by fumarase. In this study, E. coli aspartase was expressed in psychrophilic Shewanella livingstonensis Ac10 heat treated at 50 °C for 15 min. The resultant PSCat could convert fumaric acid to aspartic acid without the formation of L-malic acid because of heat inactivation of psychrophilic fumarase activity. Furthermore, alginate-immobilized PSCat produced high yields of aspartic acid and could be re-used nine times. The results of our study suggest that PSCat can be applied in biotechnological production as a new approach to increase the yield of target compounds.

  4. Effect of temperature on growth of psychrophilic and psychrotrophic members of Rhodotorula aurantiaca.

    Science.gov (United States)

    Sabri, A; Jacques, P; Weekers, F; Baré, G; Hiligsmann, S; Moussaïf, M; Thonart, P

    2000-01-01

    The thermo-dependence of growth kinetic parameters was investigated for the Antarctic psychrophilic strain Rhodotorula aurantiaca and a psychrotrophic strain of the same species isolated in Belgium (Ardennes area). Cell production, maximum growth rate (mu max), and half-saturation constant for glucose uptake (Ks) of both yeasts were temperature dependent. For the two yeasts, a maximum cell production was observed at about 0 degree C, and cell production decreased when temperature increased. The mu max values for both strains increased with temperature up to a maximum of 10 degrees C for the psychrophilic strain and 17 degrees C for the psychrotrophic strain. For both yeasts, Ks for glucose was relatively constant at low temperatures. It increased at temperatures above 10 degrees C for the psychrophilic strain and 17 degrees C for the psychrotrophic strain. Although its glucose affinity was lower, the psychrotrophic strain grew more rapidly than the psychrophilic one. The difference in growth rate and substrate affinity was related to the origin of the strain and the adaptation strategy of R. aurantiaca to environmental conditions.

  5. Functional responses and adaptation of mesophilic microbial communities to psychrophilic anaerobic digestion.

    Science.gov (United States)

    Gunnigle, Eoin; Nielsen, Jeppe L; Fuszard, Matthew; Botting, Catherine H; Sheahan, Jerome; O'Flaherty, Vincent; Abram, Florence

    2015-12-01

    Psychrophilic (functions. Methanomicrobiales abundance increased at low temperature, which correlated with an increased contribution of CH4 production from hydrogenotrophic methanogenesis at 15°C. Methanosarcinales utilized acetate and H2/CO2 as CH4 precursors at both temperatures and a partial shift from acetoclastic to hydrogenotrophic methanogenesis was observed for this archaeal population at 15°C. An upregulation of protein expression was reported at low temperature as well as the detection of chaperones indicating that mesophilic communities experienced stress during long-term exposure to 15°C. Overall, changes in microbial community structure and function were found to underpin the adaptation of mesophilic sludge to psychrophilic AD. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Start-up of a sequential dry anaerobic digestion of paunch under psychrophilic and mesophilic temperatures.

    Science.gov (United States)

    Nkemka, Valentine Nkongndem; Hao, Xiying

    2018-04-01

    The present laboratory study evaluated the sequential leach bed dry anaerobic digestion (DAD) of paunch under psychrophilic (22°C) and mesophilic (40°C) temperatures. Three leach bed reactors were operated under the mesophilic temperature in sequence at a solid retention time (SRT) of 40d with a new batch started 27d into the run of the previous one. A total of six batches were operated for 135d. The results showed that the mesophilic DAD of paunch was efficient, reaching methane yields of 126.9-212.1mLg -1 volatile solid (VS) and a VS reduction of 32.9-55.5%. The average daily methane production rate increased from 334.3mLd -1 to 571.4mLd -1 and 825.7mLd -1 when one, two and three leach bed reactors were in operation, respectively. The psychrophilic DAD of paunch was operated under a SRT of 100d and a total of three batches were performed in sequence for 300d with each batch starting after completion of the previous one. Improvements in the methane yield from 93.9 to 107.3 and 148.3mLg -1 VS and VS reductions of 24.8, 30.2 and 38.6% were obtained in the consecutive runs, indicating the adaptation of anaerobic microbes from mesophilic to psychrophilic temperatures. In addition, it took three runs for anaerobic microbes to reduce the volatile fatty acid accumulation observed in the first and second trials. This study demonstrates the potential of renewable energy recovery from paunch under psychrophilic and mesophilic temperatures. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  7. Cloning, expression, purification and crystallization of dihydrodipicolinate synthase from the psychrophile Shewanella benthica

    International Nuclear Information System (INIS)

    Wubben, Jacinta M.; Dogovski, Con; Dobson, Renwick C. J.; Codd, Rachel; Gerrard, Juliet A.; Parker, Michael W.; Perugini, Matthew A.

    2010-01-01

    Dihydrodipicolinate synthase (DHDPS) is an essential oligomeric enzyme of interest to antibiotic discovery research and studies probing the importance of quaternary structure to protein function, stability and dynamics. The cloning, expression, purification and crystallization of DHDPS from the psychrophilic (cold-dwelling) bacterium Shewanella benthica are described. Dihydrodipicolinate synthase (DHDPS) is an oligomeric enzyme that catalyzes the first committed step of the lysine-biosynthesis pathway in plants and bacteria, which yields essential building blocks for cell-wall and protein synthesis. DHDPS is therefore of interest to drug-discovery research as well as to studies that probe the importance of quaternary structure to protein function, stability and dynamics. Accordingly, DHDPS from the psychrophilic (cold-dwelling) organism Shewanella benthica (Sb-DHDPS) was cloned, expressed, purified and crystallized. The best crystals of Sb-DHDPS were grown in 200 mM ammonium sulfate, 100 mM bis-tris pH 5.0–6.0, 23–26%(w/v) PEG 3350, 0.02%(w/v) sodium azide and diffracted to beyond 2.5 Å resolution. Processing of diffraction data to 2.5 Å resolution resulted in a unit cell with space group P2 1 2 1 2 1 and dimensions a = 73.1, b = 84.0, c = 143.7 Å. These studies of the first DHDPS enzyme to be characterized from a bacterial psychrophile will provide insight into the molecular evolution of enzyme structure and dynamics

  8. Psychrophilic dry anaerobic digestion of cow feces and wheat straw: Feasibility studies

    International Nuclear Information System (INIS)

    Massé, Daniel I.; Saady, N.M.C.; Gilbert, Yan

    2015-01-01

    This paper reports a novel psychrophilic dry anaerobic digestion (PDAD) of cow feces (feces) and wheat straw (WS). Three feeding strategies (WS, feces, and feces plus WS) were assessed in pseudo sequential batch reactors (PSBR) during three successive cycles of around 21 days hydraulic retention time (HRT). Average specific methane yields on VS fed (L kg −1 ) of 129 ± 17 (WS only), 164 ± 23 (feces only (10–11% TS)) and 152 ± 6 (a mixture of feces plus WS (16% TS)) were obtained during the last three successive cycles. The average methane production rates on VS fed were 3.5 ± 1.5 and 3.6 ± 1.3 and 4.1 ± 0.4 L kg −1  d −1 for the three feeding strategies, respectively. The successive cycles revealed that the psychrophilic anaerobic digestion of high-solid content of cow feces and wheat straw is a reproducible process, practically feasible, and as efficient as mesophilic dry anaerobic digestion given that a well-adapted inoculum is developed and maintained. - Highlights: • Cow feces and wheat straw (CFWS) psychrophilic dry anaerobic digestion (PDAD). • PDAD of CFWS (TS 16% mass fraction) is feasible and as efficient as mesophilic DAD. • VS OLR 1.5 g kg −1  d −1 produced VS-based SMY of 152 ± 6 L kg −1 • Inoculum adaptation is a prerequisite to a stable PDAD

  9. Complete genome sequence of Pseudomonas antarctica PAMC 27494, a bacteriocin-producing psychrophile isolated from Antarctica.

    Science.gov (United States)

    Lee, Jaejin; Cho, Yong-Joon; Yang, Jae Young; Jung, You-Jung; Hong, Soon Gyu; Kim, Ok-Sun

    2017-10-10

    Antimicrobial-producing, cold-adapted microorganisms have great potential for biotechnological applications in food, pharmaceutical, and cosmetic industries. Pseudomonas antarctica PAMC 27494, a psychrophile exhibiting antimicrobial activity, was isolated from an Antarctic freshwater sample. Here we report the complete genome of P. antarctica PAMC 27494. The strain contains a gene cluster encoding microcin B which inhibits DNA regulations by targeting the DNA gyrase. PAMC 27494 may produce R-type pyocins and also contains a complete set of proteins for the biosynthesis of adenosylcobalamin and possibly induces plant growth by supplying pyrroloquinoline quionone molecules. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Psychrophilic Biomass Producers in the Trophic Chain of the Microbial Community of Lake Untersee, Antarctica

    Science.gov (United States)

    Pikuta, Elena V.; Hoover, Richard B.

    2010-01-01

    The study of photosynthetic microorganisms from the Lake Untersee samples showed dispersed distribution of phototrophs within 80 m water column. Lake Untersee represents a unique ecosystem that experienced complete isolation: sealed by the Anuchin Glacier for many millennia. Consequently, its biocenosis has evolved over a significant period of time without exchange or external interaction with species from other environments. The major producers of organic matter in Lake Untersee are represented by phototrophic and chemolithotrophic microorganisms. This is the traditional trophic scheme for lacustrine ecosystems on Earth. Among the phototrophs, diatoms were not found, which differentiates this lake from other known ecosystems. The dominant species among phototrophs was Chlamydomonas sp. with typical morphostructure: green chloroplasts, bright red round spot, and two polar flagella near the opening. As expected, the physiology of studied phototrophs was limited by low temperature, which defined them as obligate psychrophilic microorganisms. By the quantity estimation of methanogenesis in this lake, the litho-autotrophic production of organic matter is competitive with phototrophic production. However, pure cultures of methanogens have not yet been obtained. We discuss the primary producers of organic matter and the participation of our novel psychrophilic homoacetogen into the litho-autotrophic link of biomass production in Lake Untersee.

  11. Low-temperature chemotaxis, halotaxis and chemohalotaxis by the psychrophilic marine bacterium Colwellia psychrerythraea 34H.

    Science.gov (United States)

    Showalter, G M; Deming, J W

    2018-02-01

    A variety of ecologically important processes are driven by bacterial motility and taxis, yet these basic bacterial behaviours remain understudied in cold habitats. Here, we present a series of experiments designed to test the chemotactic ability of the model marine psychrophilic bacterium Colwellia psychrerythraea 34H, when grown at optimal temperature and salinity (8°C, 35 ppt) or its original isolation conditions (-1°C, 35 ppt), towards serine and mannose at temperatures from -8°C to 27°C (above its upper growth temperature of 18°C), and at salinities of 15, 35 and 55 ppt (at 8°C and -1°C). Results indicate that C. psychrerythraea 34H is capable of chemotaxis at all temperatures tested, with strongest chemotaxis at the temperature at which it was first grown, whether 8°C or -1°C. This model marine psychrophile also showed significant halotaxis towards 15 and 55 ppt solutions, as well as strong substrate-specific chemohalotaxis. We suggest that such patterns of taxis may enable bacteria to colonize sea ice, position themselves optimally within its extremely cold, hypersaline and temporally fluctuating microenvironments, and respond to various chemical signals therein. © 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and JohnWiley & Sons Ltd.

  12. Purification and characterization of cold-adapted beta-agarase from an Antarctic psychrophilic strain

    Directory of Open Access Journals (Sweden)

    Jiang Li

    2015-09-01

    Full Text Available An extracellular β-agarase was purified from Pseudoalteromonas sp. NJ21, a Psychrophilic agar-degrading bacterium isolated from Antarctic Prydz Bay sediments. The purified agarase (Aga21 revealed a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, with an apparent molecular weight of 80 kDa. The optimum pH and temperature of the agarase were 8.0 and 30 °C, respectively. However, it maintained as much as 85% of the maximum activities at 10 °C. Significant activation of the agarase was observed in the presence of Mg2+, Mn2+, K+; Ca2+, Na+, Ba2+, Zn2+, Cu2+, Co2+, Fe2+, Sr2+ and EDTA inhibited the enzyme activity. The enzymatic hydrolyzed product of agar was characterized as neoagarobiose. Furthermore, this work is the first evidence of cold-adapted agarase in Antarctic psychrophilic bacteria and these results indicate the potential for the Antarctic agarase as a catalyst in medicine, food and cosmetic industries.

  13. Desulfuromonas svalbardensis sp. nov. and Desulfuromusa ferrireducens sp. nov., psychrophilic, Fe(III)-reducing bacteria isolated from Arctic sediments, Svalbard

    DEFF Research Database (Denmark)

    Vandieken, Verona; Mussmann, Marc; Niemann, Helge

    2006-01-01

    Two psychrophilic, Gram-negative, rod-shaped, motile bacteria (strains 112T and 102T) that conserved energy from dissimilatory Fe(III) reduction concomitant with acetate oxidation were isolated from permanently cold Arctic marine sediments. Both strains grew at temperatures down to -2 degrees C...

  14. Desulfuromonas svalbardensis sp nov and Desulfuromusa ferrireducens sp nov., psychrophilic, Fe(III)-reducing bacteria isolated from Arctic sediments, Svalbard

    DEFF Research Database (Denmark)

    Vandieken, V.; Mussmann, M.; Niemann, Hans Henrik

    2006-01-01

    Two psychrophilic, Gram-negative, rod-shaped, motile bacteria (strains 112(T) and 102(T)) that conserved energy from dissimilatory Fe(III) reduction concomitant with acetate oxidation were isolated from permanently cold Arctic marine sediments. Both strains grew at temperatures down to -2 degrees C...

  15. Psychrophilic dry anaerobic digestion of dairy cow feces: Long-term operation

    Energy Technology Data Exchange (ETDEWEB)

    Massé, Daniel I., E-mail: Daniel.masse@agr.gc.ca; Cata Saady, Noori M.

    2015-02-15

    Highlights: • Psychrophilic dry anaerobic digestion (PDAD) of cow feces (CF) is feasible. • PDAD of CF is as efficient as mesophilic and thermophilic AD at TCL 21 days. • CF (13–16% TS at OLR 5.0 g TCOD{sub fed} kg{sup −1} inoculum d{sup −1}) yielded 222 ± 27 {sub N}L CH{sub 4} kg{sup −1} VS fed. - Abstract: This paper reports experimental results which demonstrate psychrophilic dry anaerobic digestion of cow feces during long-term operation in sequence batch reactor. Cow feces (13–16% total solids) has been anaerobically digested in 12 successive cycles (252 days) at 21 days treatment cycle length (TCL) and temperature of 20 °C using psychrotrophic anaerobic mixed culture. An average specific methane yield (SMY) of 184.9 ± 24.0, 189.9 ± 27.3, and 222 ± 27.7 {sub N}L CH{sub 4} kg{sup −1} of VS fed has been achieved at an organic loading rate of 3.0, 4.0, and 5.0 g TCOD kg{sup −1} inoculum d{sup −1} and TCL of 21 days, respectively. The corresponding substrate to inoculum ratio (SIR) was 0.39 ± 0.06, 0.48 ± .02, 0.53 ± 0.05, respectively. Average methane production rate of 10 ± 1.4 {sub N}L CH{sub 4} kg{sup −1} VS fed d{sup −1} has been obtained. The low concentration of volatile fatty acids indicated that hydrolysis was the reaction limiting step.

  16. Evaluation of Carcass Quality for Coliforms, Salmonella and Psychrophiles on Evisceration and Chiller lines in Yazd Province Industrial Poultry Slaughterhouses

    Directory of Open Access Journals (Sweden)

    M Mofidi

    2014-05-01

    In general, it can be said that secondary contamination in the slaughter line along with gradual increase in temperature of the chiller can increase bacterial load of both coliforms and salmonella but it will not affect the amount of psychrophile bacteria. Due to some differences between the studied slaughterhouses, microbial load of coliform and salmonella can be acheived by improving the management and installation of appropriate aquipments in the evisceration line.

  17. Genomic, Transcriptomic, and Proteomic Analysis Provide Insights Into the Cold Adaptation Mechanism of the Obligate Psychrophilic Fungus Mrakia psychrophila

    Directory of Open Access Journals (Sweden)

    Yao Su

    2016-11-01

    Full Text Available Mrakia psychrophila is an obligate psychrophilic fungus. The cold adaptation mechanism of psychrophilic fungi remains unknown. Comparative genomics analysis indicated that M. psychrophila had a specific codon usage preference, especially for codons of Gly and Arg and its major facilitator superfamily (MFS transporter gene family was expanded. Transcriptomic analysis revealed that genes involved in ribosome and energy metabolism were upregulated at 4°, while genes involved in unfolded protein binding, protein processing in the endoplasmic reticulum, proteasome, spliceosome, and mRNA surveillance were upregulated at 20°. In addition, genes related to unfolded protein binding were alternatively spliced. Consistent with other psychrophiles, desaturase and glycerol 3-phosphate dehydrogenase, which are involved in biosynthesis of unsaturated fatty acid and glycerol respectively, were upregulated at 4°. Cold adaptation of M. psychrophila is mediated by synthesizing unsaturated fatty acids to maintain membrane fluidity and accumulating glycerol as a cryoprotectant. The proteomic analysis indicated that the correlations between the dynamic patterns between transcript level changes and protein level changes for some pathways were positive at 4°, but negative at 20°. The death of M. psychrophila above 20° might be caused by an unfolded protein response.

  18. Psychrophile spoilers dominate the bacterial microbiome in musculature samples of slaughter pigs.

    Science.gov (United States)

    Mann, Evelyne; Wetzels, Stefanie U; Pinior, Beate; Metzler-Zebeli, Barbara U; Wagner, Martin; Schmitz-Esser, Stephan

    2016-07-01

    The aim of this study was to disentangle the microbial diversity on porcine musculature. The hypervariable V1-V2 region of the 16S rRNA gene was amplified from DNA samples of clinically healthy slaughter pigs (n=8). Pyrosequencing yielded 37,000 quality-controlled reads and a diverse microbiome with 54-159 OTUs per sample was detected. Interestingly, 6 out of 8 samples were strongly dominated by 1-2 highly abundant OTUs (best hits of highly abundant OTUs: Serratia proteamaculans, Pseudomonas syringae, Aeromonas allosaccharophila, Brochothrix thermosphacta, Acidiphilium cryptum and Escherichia coli). In 1g musculature scraping, 3.20E+06 16S rRNA gene copies and 4.45E+01 Enterobacteriaceae rRNA gene copies were detected with qPCR. We conclude that i.) next-generation sequencing technologies help encompass the full content of complex, bacterial contamination, ii.) psychrophile spoilers dominated the microbiota and iii.) E. coli is an effective marker species for pork contamination, as it was one of very few abundant species being present in all samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Structural prediction and comparative docking studies of psychrophilic β- Galactosidase with lactose, ONPG and PNPG against its counter parts of mesophilic and thermophilic enzymes.

    Science.gov (United States)

    Kumar, Ponnada Suresh; Pulicherla, Kk; Ghosh, Mrinmoy; Kumar, Anmol; Rao, Krs Sambasiva

    2011-01-01

    Enzymes from psychrophiles catalyze the reactions at low temperatures with higher specific activity. Among all the psychrophilic enzymes produced, cold active β-galactosidase from marine psychrophiles revalorizes a new arena in numerous areas at industrial level. The hydrolysis of lactose in to glucose and galactose by cold active β-galactosidase offers a new promising approach in removal of lactose from milk to overcome the problem of lactose intolerance. Herein we propose, a 3D structure of cold active β-galactosidase enzyme sourced from Pseudoalteromonas haloplanktis by using Modeler 9v8 and best model was developed having 88% of favourable region in ramachandran plot. Modelling was followed by docking studies with the help of Auto dock 4.0 against the three substrates lactose, ONPG and PNPG. In addition, comparative docking studies were also performed for the 3D model of psychrophilic β-galactosidase with mesophilic and thermophilic enzymes. Docking studies revealed that binding affinity of enzyme towards the three different substrates is more for psychrophilic enzyme when compared with mesophilic and thermophilic enzymes. It indicates that the enzyme has high specific activity at low temperature when compared with mesophilic and thermophilic enzymes.

  20. Molecular Structural Basis for the Cold Adaptedness of the Psychrophilic β-Glucosidase BglU in Micrococcus antarcticus.

    Science.gov (United States)

    Miao, Li-Li; Hou, Yan-Jie; Fan, Hong-Xia; Qu, Jie; Qi, Chao; Liu, Ying; Li, De-Feng; Liu, Zhi-Pei

    2016-01-22

    Psychrophilic enzymes play crucial roles in cold adaptation of microbes and provide useful models for studies of protein evolution, folding, and dynamic properties. We examined the crystal structure (2.2-Å resolution) of the psychrophilic β-glucosidase BglU, a member of the glycosyl hydrolase 1 (GH1) enzyme family found in the cold-adapted bacterium Micrococcus antarcticus. Structural comparison and sequence alignment between BglU and its mesophilic and thermophilic counterpart enzymes (BglB and GlyTn, respectively) revealed two notable features distinct to BglU: (i) a unique long-loop L3 (35 versus 7 amino acids in others) involved in substrate binding and (ii) a unique amino acid, His299 (Tyr in others), involved in the stabilization of an ordered water molecule chain. Shortening of loop L3 to 25 amino acids reduced low-temperature catalytic activity, substrate-binding ability, the optimal temperature, and the melting temperature (Tm). Mutation of His299 to Tyr increased the optimal temperature, the Tm, and the catalytic activity. Conversely, mutation of Tyr301 to His in BglB caused a reduction in catalytic activity, thermostability, and the optimal temperature (45 to 35°C). Loop L3 shortening and H299Y substitution jointly restored enzyme activity to the level of BglU, but at moderate temperatures. Our findings indicate that loop L3 controls the level of catalytic activity at low temperatures, residue His299 is responsible for thermolability (particularly heat lability of the active center), and long-loop L3 and His299 are jointly responsible for the psychrophilic properties. The described structural basis for the cold adaptedness of BglU will be helpful for structure-based engineering of new cold-adapted enzymes and for the production of mutants useful in a variety of industrial processes at different temperatures. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  1. The Genome Sequence of the psychrophilic archaeon, Methanococcoides burtonii: the Role of Genome Evolution in Cold-adaptation

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Michelle A.; Lauro, Federico M.; Williams, Timothy J.; Burg, Dominic; Siddiqui, Khawar S.; De Francisci, David; Chong, Kevin W.Y.; Pilak, Oliver; Chew, Hwee H.; De Maere, Matthew Z.; Ting, Lily; Katrib, Marilyn; Ng, Charmaine; Sowers, Kevin R.; Galperin, Michael Y.; Anderson, Iain J.; Ivanova, Natalia; Dalin, Eileen; Martinez, Michelle; Lapidus, Alla; Hauser, Loren; Land, Miriam; Thomas, Torsten; Cavicchioli, Ricardo

    2009-04-01

    Psychrophilic archaea are abundant and perform critical roles throughout the Earth's expansive cold biosphere. Here we report the first complete genome sequence for a psychrophilic methanogenic archaeon, Methanococcoides burtonii. The genome sequence was manually annotated including the use of a five tiered Evidence Rating system that ranked annotations from Evidence Rating (ER) 1 (gene product experimentally characterized from the parent organism) to ER5 (hypothetical gene product) to provide a rapid means of assessing the certainty of gene function predictions. The genome is characterized by a higher level of aberrant sequence composition (51%) than any other archaeon. In comparison to hyper/thermophilic archaea which are subject to selection of synonymous codon usage, M. burtonii has evolved cold adaptation through a genomic capacity to accommodate highly skewed amino acid content, while retaining codon usage in common with its mesophilic Methanosarcina cousins. Polysaccharide biosynthesis genes comprise at least 3.3% of protein coding genes in the genome, and Cell wall/membrane/envelope biogenesis COG genes are over-represented. Likewise, signal transduction (COG category T) genes are over-represented and M. burtonii has a high 'IQ' (a measure of adaptive potential) compared to many methanogens. Numerous genes in these two over-represented COG categories appear to have been acquired from {var_epsilon}- and {delta}-proteobacteria, as do specific genes involved in central metabolism such as a novel B form of aconitase. Transposases also distinguish M. burtonii from other archaea, and their genomic characteristics indicate they play an important role in evolving the M. burtonii genome. Our study reveals a capacity for this model psychrophile to evolve through genome plasticity (including nucleotide skew, horizontal gene transfer and transposase activity) that enables adaptation to the cold, and to the biological and physical changes that have

  2. ANAEROBIC DIGESTION MODEL ANALYSIS OF THE FERMENTATION PROCESS IN PSYCHROPHILIC AND MESOPHILIC CHAMBER IN ACCORDANCE WITH THE AMOUNT OF BIOGAS SOURCED

    Directory of Open Access Journals (Sweden)

    Dariusz Zdebik

    2015-03-01

    Full Text Available The paper presents problems concerning the modelling of anaerobic sludge stabilization, with the additional substrate (waste transported, dairy butchery sewage in psychrophilic fermentation conditions in the range 10–20 °C and mesophilic at 35 °C. Simulation test was conducted in the two digesters. Results of the study allowed to evaluate the effectiveness of conducting these processes in separate chambers, i.e. the psychrophilic and mesophilic chamber. During the simulations, terms of obtaining volatile fatty acids and biogas in conjunction with the operating conditions of the chambers indicated.

  3. Effect of temperature on sulphate reduction, growth rate and growth yield in five psychrophilic sulphate-reducing bacteria from Arctic sediments

    DEFF Research Database (Denmark)

    Knoblauch, C.; Jørgensen, BB

    1999-01-01

    Five psychrophilic sulphate-reducing bacteria (strains ASv26, LSv21, PSv29, LSv54 and LSv514) isolated from Arctic sediments were examined for their adaptation to permanently low temperatures, All strains grew at -1.8 degrees C, the freezing point of sea water, but their optimum temperature...... and T(opt). For strains LSv21 and LSv514, however, growth yields were highest at the lowest temperatures, around 0 degrees C. The results indicate that psychrophilic sulphate-reducing bacteria are specially adapted to permanently low temperatures by high relative growth rates and high growth yields...... at in site conditions....

  4. The fate of crop nutrients during digestion of swine manure in psychrophilic anaerobic sequencing batch reactors.

    Science.gov (United States)

    Massé, D I; Croteau, F; Masse, L

    2007-11-01

    The objectives of the study were to measure the levels of manure nutrients retained in psychrophilic anaerobic sequencing batch reactors (PASBRs) digesting swine manure, and to determine the distribution of nutrients in the sludge and supernatant zones of settled bioreactor effluent. Anaerobic digestion reduced the total solids (TS) concentration and the soluble chemical oxygen demand (SCOD) of manure by 71.4% and 79.9%, respectively. The nitrogen, potassium, and sodium fed with the manure to the PASBRs were recovered in the effluent. The bioreactors retained on average 25.5% of the P, 8.7% of the Ca, 41.5% of the Cu, 18.4% of the Zn, and 67.7% of the S fed to the PASBRs. The natural settling of bioreactor effluent allowed further nutrient separation. The supernatant fraction, which represented 71.4% of effluent volume, contained 61.8% of the total N, 67.1% of the NH4-N, and 73.3% of the Na. The settled sludge fraction, which represented 28.6% of the volume, contained 57.6% of the solids, 62.3% of the P, 71.6% of the Ca, 89.6% of the Mg, 76.1% of the Al, 90.0% of the Cu, 74.2% of the Zn, and 52.2% of the S. The N/P ratio was increased from 3.9 in the raw manure to 5.2 in the bioreactor effluent and 9.2 in the supernatant fraction of the settled effluent. The PASBR technology will then substantially decrease the manure management costs of swine operations producing excess phosphorus, by reducing the volume of manure to export outside the farm. The separation of nutrients will also allow land spreading strategies that increase the agronomic value of manure by matching more closely the crop nutrient requirements.

  5. Impact of Organic Loading Rate on Psychrophilic Anaerobic Digestion of Solid Dairy Manure

    Directory of Open Access Journals (Sweden)

    Noori M. Cata Saady

    2015-03-01

    Full Text Available Increasing the feed total solids to anaerobic digester improves the process economics and decreases the volume of liquid effluent from current wet anaerobic digestion. The objective of this study was to develop a novel psychrophilic (20 °C anaerobic digestion technology of undiluted cow feces (total solids of 11%–16%. Two sets of duplicate laboratory-scale sequence batch bioreactors have been operated at organic loading rates (OLR of 6.0 to 8.0 g total chemical oxygen demand (TCOD kg−1 inoculum day−1 (d−1 during 210 days. The results demonstrated that the process is feasible at treatment cycle length (TCL of 21 days; however, the quality of cow feces rather than the OLR had a direct influence on the specific methane yield (SMY. The SMY ranged between 124.5 ± 1.4 and 227.9 ± 4.8 normalized liter (NL CH4 kg−1 volatile solids (VS fed d−1. Substrate-to-inoculum mass ratio (SIR was 0.63 ± 0.05, 0.90 ± 0.09, and 1.06 ± 0.07 at OLR of 6.0, 7.0, and 8.0 g TCOD kg−1 inoculum d−1, respectively. No volatile fatty acids (VFAs accumulation has been observed which indicated that hydrolysis was the rate limiting step and VFAs have been consumed immediately. Bioreactors performance consistency in terms of the level of SMYs, VFAs concentrations at end of the TCL, pH stability and volatile solids reduction indicates a stable and reproducible process during the entire operation.

  6. Technical and operational feasibility of psychrophilic anaerobic digestion biotechnology for processing ammonia-rich waste

    International Nuclear Information System (INIS)

    Massé, Daniel I.; Rajagopal, Rajinikanth; Singh, Gursharan

    2014-01-01

    Highlights: • Long-term anaerobic digestion (AD) process at high-ammonia (>5 gN/L) is limited. • PADSBR technology was validated to treat N-rich waste with 8.2 ± 0.3 gNH 3 -N/L. • Excess ammonia (8.2 gN/L) did not affect the digestion process with no inhibition. • VFA, an indicator for process stability, did not accumulate in PADSBR. • Biomass acclimation in PADSBR ensured a high-stabilization of the AD process. - Abstract: Ammonia nitrogen plays a critical role in the performance and stability of anaerobic digestion (AD) of ammonia rich wastes like animal manure. Nevertheless, inhibition due to high ammonia remains an acute limitation in AD process. A successful long-term operation of AD process at high ammonia (>5 gN/L) is limited. This study focused on validating technical feasibility of psychrophilic AD in sequencing batch reactor (PADSBR) to treat swine manure spiked with NH 4 Cl up to 8.2 ± 0.3 gN/L, as a representative of N-rich waste. CODt, CODs, VS removals of 86 ± 3, 82 ± 2 and 73 ± 3% were attained at an OLR of 3 gCOD/L.d, respectively. High-ammonia had no effect on methane yields (0.23 ± 0.04 L CH 4 /gTCOD fed ) and comparable to that of control reactors, which fed with raw swine manure alone (5.5 gN/L). Longer solids/hydraulic retention times in PADSBRs enhanced biomass acclimation even at high-ammonia. Thus VFA, an indicator for process stability, did not accumulate in PADSBR. Further investigation is essential to establish the maximum concentrations of TKN and free ammonia that the PADSBR can sustain

  7. Anaerobic Psychrophiles from Alaska, Antarctica, and Patagonia: Implications to Possible Life on Mars and Europa

    Science.gov (United States)

    Hoover, Richard B.; Pikuta, Elena V.; Marsic, Damien; Ng, Joseph

    2002-01-01

    Microorganisms preserved within the permafrost, glaciers, and polar ice sheets of planet Earth provide analogs for microbial life forms that may be encountered in ice or permafrost of Mars, Europa, Callisto, Ganymede, asteroids, comets or other frozen worlds in the Cosmos. The psychrophilic and psychrotolerant microbes of the terrestrial cryosphere help establish the thermal and temporal limitations of life on Earth and provide clues to where and how we should search for evidence of life elsewhere in the Universe. For this reason, the cold-loving microorganisms are directly relevant to Astrobiology. Cryopreserved microorganisms can remain viable (in deep anabiosis) in permafrost and ice for millions of years. Permafrost, ice wedges, pingos, glaciers, and polar ice sheets may contain intact ancient DNA, lipids, enzymes, proteins, genes, and even frozen and yet viable ancient microbiota. Some microorganisms carry out metabolic processes in water films and brine, acidic, or alkaline channels in permafrost or ice at temperatures far below 0 C. Complex microbial communities live in snow, ice-bubbles, cryoconite holes on glaciers and ancient microbial ecosystems are cryopreserved within the permafrost, glaciers, and polar caps. In the Astrobiology group of the NASA Marshall Space Flight Center and the University of Alabama at Huntsville, we have employed advanced techniques for the isolation, culture, and phylogenetic analysis of many types of microbial extremophiles. We have also used the Environmental Scanning Electron Microscope to study the morphology, ultra-microstructure and chemical composition of microorganisms in ancient permafrost and ice. We discuss several interesting and novel anaerobic microorganisms that we have isolated and cultured from the Pleistocene ice of the Fox Tunnel of Alaska, guano of the Magellanic Penguin, deep-sea sediments from the vicinity of the Rainbow Hydrothermal Vent and enrichment cultures from ice of the Patriot Hills of Antarctica

  8. Ability of industrial anaerobic ecosystems to produce methane from ethanol in psychrophilic, mesophilic and thermophilic conditions

    International Nuclear Information System (INIS)

    Mabala, Jojo Charlie

    2012-01-01

    potential for adaptation depended on the presence of very specific methanogenic Archaea populations. When placing the adapted ecosystems in temperatures different from the original temperature, only mesophilic ecosystems adapted to psychrophilic temperatures. As expected, specific methanogenic activity was always obtained at the original temperature of the ecosystem. Analysis of bacterial and archaeal communities at the end of the acclimation period revealed that acclimation of thermophilic and mesophilic ecosystems to lower temperatures only modified slightly the structure of microbial communities. On the other hand, more significant changes were obtained when the incubation temperature was increased in comparison to the original temperature of the ecosystem. In summary, the study of the effect of incubation temperature (5 deg. C to 55 deg. C) on the fermentation activity and microbial population structure is a good model for laboratory study to understand the impact of abiotic factor on the structural and functional dynamics of a complex microbial community. (author) [fr

  9. Triacylglyceride composition and fatty acyl saturation profile of a psychrophilic and psychrotolerant fungal species grown at different temperatures.

    Science.gov (United States)

    Pannkuk, Evan L; Blair, Hannah B; Fischer, Amy E; Gerdes, Cheyenne L; Gilmore, David F; Savary, Brett J; Risch, Thomas S

    2014-01-01

    Pseudogymnoascus destructans is a psychrophilic fungus that infects cutaneous tissues in cave dwelling bats, and it is the causal agent for white nose syndrome (WNS) in North American (NA) bat populations. Geomyces pannorum is a related psychrotolerant keratinolytic species that is rarely a pathogen of mammals. In this study, we grew P. destructans and G. pannorum in static liquid cultures at favourable and suboptimal temperatures to: 1) determine if triacylglyceride profiles are species-specific, and 2) determine if there are differences in fatty acyl (FA) saturation levels with respect to temperature. Total lipids isolated from both fungal spp. were separated by thin-layer chromatography and determined to be primarily sterols (∼15 %), free fatty acids (FFAs) (∼45 %), and triacylglycerides (TAGs) (∼50 %), with minor amounts of mono-/diacylglycerides and sterol esters. TAG compositions were profiled by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF). Total fatty acid methyl esters (FAMEs) and acyl lipid unsaturation levels were determined by gas chromatography-mass spectrometry (GC-MS). Pseudogymnoascus destructans produced higher proportions of unsaturated 18C fatty acids and TAGs than G. pannorum. Pseudogymnoascus destructans and G. pannorum produced up to a two-fold increase in 18:3 fatty acids at 5 °C than at higher temperatures. TAG proportion for P. destructans at upper and lower temperature growth limits was greater than 50 % of total dried mycelia mass. These results indicate fungal spp. alter acyl lipid unsaturation as a strategy to adapt to cold temperatures. Differences between their glycerolipid profiles also provide evidence for a different metabolic strategy to support psychrophilic growth, which may influence P. destructans' pathogenicity to bats. Copyright © 2014 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  10. Structural Investigation of the Oligosaccharide Portion Isolated from the Lipooligosaccharide of the Permafrost Psychrophile Psychrobacter arcticus 273-4.

    Science.gov (United States)

    Casillo, Angela; Parrilli, Ermenegilda; Filomena, Sannino; Lindner, Buko; Lanzetta, Rosa; Parrilli, Michelangelo; Tutino, Maria Luisa; Corsaro, Maria Michela

    2015-07-22

    Psychrophilic microorganisms have successfully colonized all permanently cold environments from the deep sea to mountain and polar regions. The ability of an organism to survive and grow in cryoenviroments depends on a number of adaptive strategies aimed at maintaining vital cellular functions at subzero temperatures, which include the structural modifications of the membrane. To understand the role of the membrane in the adaptation, it is necessary to characterize the cell-wall components, such as the lipopolysaccharides, that represent the major constituent of the outer membrane. The aim of this study was to investigate the structure of the carbohydrate backbone of the lipooligosaccharide (LOS) isolated from the cold-adapted Psychrobacter arcticus 273-4. The strain, isolated from a 20,000-to-30,000-year-old continuously frozen permafrost in Siberia, was cultivated at 4 °C. The LOS was isolated from dry cells and analyzed by means of chemical methods. In particular, it was degraded either by mild acid hydrolysis or by hydrazinolysis and investigated in detail by (1)H and (13)C NMR spectroscopy and by ESI FT-ICR mass spectrometry. The oligosaccharide was characterized by the substitution of the heptose residue, usually linked to Kdo in the inner core, with a glucose, and for the unusual presence of N-acetylmuramic acid.

  11. Dioszegia antarctica sp. nov. and Dioszegia cryoxerica sp. nov., psychrophilic basidiomycetous yeasts from polar desert soils in Antarctica

    Science.gov (United States)

    Rodriguez, Russell J.; Connell, L.; Redman, R.; Barrett, A.; Iszard, M.; Fonseca, A.

    2010-01-01

    During a survey of the culturable soil fungal population in samples collected in Taylor Valley, South Victoria Land, Antarctica, 13 basidiomycetous yeast strains with orange-coloured colonies were isolated. Phylogenetic analyses of internal transcribed spacer (ITS) and partial LSU rRNA gene sequences showed that the strains belong to the Dioszegia clade of the Tremellales (Tremellomycetes, Agaricomycotina), but did not correspond to any of the hitherto recognized species. Two novel species, Dioszegia antarctica sp. nov. (type strain ANT-03-116T =CBS 10920T =PYCC 5970T) and Dioszegia cryoxerica sp. nov. (type strain ANT-03-071T =CBS 10919T =PYCC 5967T), are described to accommodate ten and three of these strains, respectively. Analysis of ITS sequences demonstrated intrastrain sequence heterogeneity in D. cryoxerica. The latter species is also notable for producing true hyphae with clamp connections and haustoria. However, no sexual structures were observed. The two novel species can be considered obligate psychrophiles, since they failed to grow above 20 °C and grew best between 10 and 15 °C.

  12. Non-Psychrophilic Methanogens Capable of Growth Following Long-Term Extreme Temperature Changes, with Application to Mars

    Directory of Open Access Journals (Sweden)

    Rebecca L. Mickol

    2018-04-01

    Full Text Available Although the martian environment is currently cold and dry, geomorphological features on the surface of the planet indicate relatively recent (<4 My freeze/thaw episodes. Additionally, the recent detections of near-subsurface ice as well as hydrated salts within recurring slope lineae suggest potentially habitable micro-environments within the martian subsurface. On Earth, microbial communities are often active at sub-freezing temperatures within permafrost, especially within the active layer, which experiences large ranges in temperature. With warming global temperatures, the effect of thawing permafrost communities on the release of greenhouse gases such as carbon dioxide and methane becomes increasingly important. Studies examining the community structure and activity of microbial permafrost communities on Earth can also be related to martian permafrost environments, should life have developed on the planet. Here, two non-psychrophilic methanogens, Methanobacterium formicicum and Methanothermobacter wolfeii, were tested for their ability to survive long-term (~4 year exposure to freeze/thaw cycles varying in both temperature and duration, with implications both for climate change on Earth and possible life on Mars.

  13. Non-Psychrophilic Methanogens Capable of Growth Following Long-Term Extreme Temperature Changes, with Application to Mars.

    Science.gov (United States)

    Mickol, Rebecca L; Laird, Sarah K; Kral, Timothy A

    2018-04-23

    Although the martian environment is currently cold and dry, geomorphological features on the surface of the planet indicate relatively recent (<4 My) freeze/thaw episodes. Additionally, the recent detections of near-subsurface ice as well as hydrated salts within recurring slope lineae suggest potentially habitable micro-environments within the martian subsurface. On Earth, microbial communities are often active at sub-freezing temperatures within permafrost, especially within the active layer, which experiences large ranges in temperature. With warming global temperatures, the effect of thawing permafrost communities on the release of greenhouse gases such as carbon dioxide and methane becomes increasingly important. Studies examining the community structure and activity of microbial permafrost communities on Earth can also be related to martian permafrost environments, should life have developed on the planet. Here, two non-psychrophilic methanogens, Methanobacterium formicicum and Methanothermobacter wolfeii , were tested for their ability to survive long-term (~4 year) exposure to freeze/thaw cycles varying in both temperature and duration, with implications both for climate change on Earth and possible life on Mars.

  14. Genome Sequence of Rhodoferax antarcticus ANT.BRT; A Psychrophilic Purple Nonsulfur Bacterium from an Antarctic Microbial Mat

    Directory of Open Access Journals (Sweden)

    Jennifer M. Baker

    2017-02-01

    Full Text Available Rhodoferax antarcticus is an Antarctic purple nonsulfur bacterium and the only characterized anoxygenic phototroph that grows best below 20 °C. We present here a high-quality draft genome of Rfx. antarcticus strain ANT.BRT, isolated from an Antarctic microbial mat. The circular chromosome (3.8 Mbp of Rfx. antarcticus has a 59.1% guanine + cytosine (GC content and contains 4036 open reading frames. In addition, the bacterium contains a sizable plasmid (198.6 kbp, 48.4% GC with 226 open reading frames that comprises about 5% of the total genetic content. Surprisingly, genes encoding light-harvesting complexes 1 and 3 (LH1 and LH3, but not light-harvesting complex 2 (LH2, were identified in the photosynthesis gene cluster of the Rfx. antarcticus genome, a feature that is unique among purple phototrophs. Consistent with physiological studies that showed a strong capacity for nitrogen fixation in Rfx. antarcticus, a nitrogen fixation gene cluster encoding a molybdenum-type nitrogenase was present, but no alternative nitrogenases were identified despite the cold-active phenotype of this phototroph. Genes encoding two forms of ribulose 1,5-bisphosphate carboxylase/oxygenase were present in the Rfx. antarcticus genome, a feature that likely provides autotrophic flexibility under varying environmental conditions. Lastly, genes for assembly of both type IV pili and flagella are present, with the latter showing an unusual degree of clustering. This report represents the first genomic analysis of a psychrophilic anoxygenic phototroph and provides a glimpse of the genetic basis for maintaining a phototrophic lifestyle in a permanently cold, yet highly variable, environment.

  15. Morphological and molecular characterizations of psychrophilic fungus Geomyces destructans from New York bats with White Nose Syndrome (WNS).

    Science.gov (United States)

    Chaturvedi, Vishnu; Springer, Deborah J; Behr, Melissa J; Ramani, Rama; Li, Xiaojiang; Peck, Marcia K; Ren, Ping; Bopp, Dianna J; Wood, Britta; Samsonoff, William A; Butchkoski, Calvin M; Hicks, Alan C; Stone, Ward B; Rudd, Robert J; Chaturvedi, Sudha

    2010-05-24

    Massive die-offs of little brown bats (Myotis lucifugus) have been occurring since 2006 in hibernation sites around Albany, New York, and this problem has spread to other States in the Northeastern United States. White cottony fungal growth is seen on the snouts of affected animals, a prominent sign of White Nose Syndrome (WNS). A previous report described the involvement of the fungus Geomyces destructans in WNS, but an identical fungus was recently isolated in France from a bat that was evidently healthy. The fungus has been recovered sparsely despite plentiful availability of afflicted animals. We have investigated 100 bat and environmental samples from eight affected sites in 2008. Our findings provide strong evidence for an etiologic role of G. destructans in bat WNS. (i) Direct smears from bat snouts, Periodic Acid Schiff-stained tissue sections from infected tissues, and scanning electron micrographs of bat tissues all showed fungal structures similar to those of G. destructans. (ii) G. destructans DNA was directly amplified from infected bat tissues, (iii) Isolations of G. destructans in cultures from infected bat tissues showed 100% DNA match with the fungus present in positive tissue samples. (iv) RAPD patterns for all G. destructans cultures isolated from two sites were indistinguishable. (v) The fungal isolates showed psychrophilic growth. (vi) We identified in vitro proteolytic activities suggestive of known fungal pathogenic traits in G. destructans. Further studies are needed to understand whether G. destructans WNS is a symptom or a trigger for bat mass mortality. The availability of well-characterized G. destructans strains should promote an understanding of bat-fungus relationships, and should aid in the screening of biological and chemical control agents.

  16. Morphological and molecular characterizations of psychrophilic fungus Geomyces destructans from New York bats with White Nose Syndrome (WNS.

    Directory of Open Access Journals (Sweden)

    Vishnu Chaturvedi

    Full Text Available BACKGROUND: Massive die-offs of little brown bats (Myotis lucifugus have been occurring since 2006 in hibernation sites around Albany, New York, and this problem has spread to other States in the Northeastern United States. White cottony fungal growth is seen on the snouts of affected animals, a prominent sign of White Nose Syndrome (WNS. A previous report described the involvement of the fungus Geomyces destructans in WNS, but an identical fungus was recently isolated in France from a bat that was evidently healthy. The fungus has been recovered sparsely despite plentiful availability of afflicted animals. METHODOLOGY/PRINCIPAL FINDINGS: We have investigated 100 bat and environmental samples from eight affected sites in 2008. Our findings provide strong evidence for an etiologic role of G. destructans in bat WNS. (i Direct smears from bat snouts, Periodic Acid Schiff-stained tissue sections from infected tissues, and scanning electron micrographs of bat tissues all showed fungal structures similar to those of G. destructans. (ii G. destructans DNA was directly amplified from infected bat tissues, (iii Isolations of G. destructans in cultures from infected bat tissues showed 100% DNA match with the fungus present in positive tissue samples. (iv RAPD patterns for all G. destructans cultures isolated from two sites were indistinguishable. (v The fungal isolates showed psychrophilic growth. (vi We identified in vitro proteolytic activities suggestive of known fungal pathogenic traits in G. destructans. CONCLUSIONS/SIGNIFICANCE: Further studies are needed to understand whether G. destructans WNS is a symptom or a trigger for bat mass mortality. The availability of well-characterized G. destructans strains should promote an understanding of bat-fungus relationships, and should aid in the screening of biological and chemical control agents.

  17. UV Radiation and Visible Light Induce hsp70 Gene Expression in the Antarctic Psychrophilic Ciliate Euplotes focardii.

    Science.gov (United States)

    Fulgentini, Lorenzo; Passini, Valerio; Colombetti, Giuliano; Miceli, Cristina; La Terza, Antonietta; Marangoni, Roberto

    2015-08-01

    The psychrophilic ciliate Euplotes focardii inhabits the shallow marine coastal sediments of Antarctica, where, over millions of years of evolution, it has reached a strict molecular adaptation to such a constant-temperature environment (about -2 °C). This long evolution at sub-zero temperatures has made E. focardii unable to respond to heat stress with the activation of its heat shock protein (hsp) 70 genes. These genes can, however, be expressed in response to other stresses, like the oxidative one, thus indicating that the molecular adaptation has exclusively altered the heat stress signaling pathways, while it has preserved hsp70 gene activation in response to other environmental stressors. Since radiative stress has proved to be affine to oxidative stress in several organisms, we investigated the capability of UV radiation to induce hsp70 transcription. E. focardii cell cultures were exposed to several different irradiation regimes, ranging from visible only to a mixture of visible, UV-A and UV-B. The irradiation values of each spectral band have been set to be comparable with those recorded in a typical Antarctic spring. Using Northern blot analysis, we measured the expression level of hsp70 immediately after irradiation (0-h-labeled samples), 1 h, and 2 h from the end of the irradiation. Surprisingly, our results showed that besides UV radiation, the visible light was also able to induce hsp70 expression in E. focardii. Moreover, spectrophotometric measurements have revealed no detectable endogenous pigments in E. focardii, making it difficult to propose a possible explanation for the visible light induction of its hsp70 genes. Further research is needed to conclusively clarify this point.

  18. Sources of psychrophilic and psychrotolerant clostridia causing spoilage of vacuum-packed chilled meats, as determined by PCR amplification procedure.

    Science.gov (United States)

    Broda, D M; Boerema, J A; Brightwell, G

    2009-07-01

    To determine possible preslaughter and processing sources of psychrophilic and psychrotolerant clostridia causing spoilage of vacuum-packed chilled meats. Molecular methods based on the polymerase chain reaction (PCR) amplification of specific 16S rDNA fragments were used to detect the presence of Clostridium gasigenes, Clostridium estertheticum, Clostridium algidicarnis and Clostridium putrefaciens in a total of 357 samples collected from ten slaughter stock supply farms, slaughter stock, two lamb-processing plants, their environments, dressed carcasses and final vacuum-packed meat stored at -0.5 degrees C for 5(1/2) weeks. Clostridium gasigenes, C. estertheticum and C. algidicarnis/C. putrefaciens were commonly detected in farm, faeces, fleece and processing environmental samples collected at the slaughter floor operations prior to fleece removal, but all these micro-organisms were detected in only 4 out of 26 cooling floor and chiller environmental samples. One out of 42 boning room environmental samples tested positive for the presence of C. gasigenes and C. estertheticum, but 25 out of 42 of these samples were positive for C. algidicarnis/C. putrefaciens. Nearly all of the 31 faecal samples tested positive for the presence of C. gasigenes and C. estertheticum; however, only two of these samples were positive for C. algidicarnis and/or C. putrefaciens. Clostridial species that were subject to this investigation were frequently detected on chilled dressed carcasses. The major qualitative and quantitative differences between the results of PCR detection obtained with the primers specific for 'blown pack' -causing clostridia (C. gasigenes and C. estertheticum) and those obtained with primers specific for C. algidicarnis and C. putrefaciens suggest that the control of meat spoilage caused by different groups of meat clostridia is best approached individually for each group. This paper provides information significant for controlling meat spoilage-causing clostridia

  19. Rhodonellum psychrophilum gen. nov., sp. nov., a novel psychrophilic and alkaliphilic bacterium of the phylum Bacteroidetes isolated from Greenland.

    Science.gov (United States)

    Schmidt, Mariane; Priemé, Anders; Stougaard, Peter

    2006-12-01

    A novel alkaliphilic and psychrophilic bacterium was isolated from the cold and alkaline ikaite tufa columns of the Ikka Fjord in south-west Greenland. According to 16S rRNA gene sequence analysis, strain GCM71(T) belonged to the family 'Flexibacteraceae' in the phylum Bacteroidetes. Strain GCM71(T), together with five related isolates from ikaite columns, formed a separate cluster with 86-93 % gene sequence similarity to their closest relative, Belliella baltica. The G+C content of the DNA from strain GCM71(T) was 43.1 mol%, whereas that of B. baltica was reported to be 35 mol%. DNA-DNA hybridization between strain GCM71(T) and B. baltica was 9.5 %. The strain was red pigmented, Gram-negative, strictly aerobic with non-motile, rod-shaped cells. The optimal growth conditions for strain GCM71(T) were pH 9.2-10.0, 5 degrees C and 0.6 % NaCl. The fatty acid profile of the novel strain was dominated by branched and unsaturated fatty acids (90-97 %), with a high abundance of iso-C(17 : 1)omega9c (17.5 %), iso-C(17 : 0) 3-OH (17.5 %) and summed feature 3, comprising iso-C(15 : 0) 2-OH and/or C(16 : 1)omega7c (12.6 %). Phylogenetic, chemotaxonomic and physiological characteristics showed that the novel strain could not be affiliated to any known genus. A new genus, Rhodonellum gen. nov., is proposed to accommodate the novel strain. Strain GCM71(T) (=DSM 17998(T)=LMG 23454(T)) is proposed as the type strain of the type species, Rhodonellum psychrophilum sp. nov.

  20. Psychrophilic and psychrotolerant fungi on bats and the presence of Geomyces spp. on bat wings prior to the arrival of white nose syndrome.

    Science.gov (United States)

    Johnson, Lynnaun J A N; Miller, Andrew N; McCleery, Robert A; McClanahan, Rod; Kath, Joseph A; Lueschow, Shiloh; Porras-Alfaro, Andrea

    2013-09-01

    Since 2006, Geomyces destructans, the causative agent of white nose syndrome (WNS), has killed over 5.7 million bats in North America. The current hypothesis suggests that this novel fungus is an invasive species from Europe, but little is known about the diversity within the genus Geomyces and its distribution on bats in the United States. We documented the psychrophilic and psychrotolerant fungal flora of hibernating bats prior to the arrival of WNS using culture-based techniques. A total of 149 cultures, which were obtained from 30 bats in five bat hibernacula located in four caves and one mine, were sequenced for the entire internal transcribed spacer (ITS) nuclear ribosomal DNA (nrDNA) region. Approximately 53 operational taxonomic units (OTUs) at 97% similarity were recovered from bat wings, with the community dominated by fungi within the genera Cladosporium, Fusarium, Geomyces, Mortierella, Penicillium, and Trichosporon. Eleven Geomyces isolates were obtained and placed in at least seven distinct Geomyces clades based on maximum-likelihood phylogenetic analyses. Temperature experiments revealed that all Geomyces strains isolated are psychrotolerant, unlike G. destructans, which is a true psychrophile. Our results confirm that a large diversity of fungi, including several Geomyces isolates, occurs on bats prior to the arrival of WNS. Most of these isolates were obtained from damaged wings. Additional studies need to be conducted to determine potential ecological roles of these abundant Geomyces strains isolated from bats.

  1. Effect of temperature on sulphate reduction, growth rate and growth yield in five psychrophilic sulphate-reducing bacteria from Arctic sediments

    DEFF Research Database (Denmark)

    Knoblauch, C.; Jørgensen, BB

    1999-01-01

    and T(opt). For strains LSv21 and LSv514, however, growth yields were highest at the lowest temperatures, around 0 degrees C. The results indicate that psychrophilic sulphate-reducing bacteria are specially adapted to permanently low temperatures by high relative growth rates and high growth yields......Five psychrophilic sulphate-reducing bacteria (strains ASv26, LSv21, PSv29, LSv54 and LSv514) isolated from Arctic sediments were examined for their adaptation to permanently low temperatures, All strains grew at -1.8 degrees C, the freezing point of sea water, but their optimum temperature...... for growth (T(opt)) were 7 degrees C (PSv29), 10 degrees C (ASv26, LSv54) and 18 degrees C (LSv21, LSv514), Although T(opt) was considerably above the in situ temperatures of their habitats (-1.7 degrees C and 2.6 degrees C), relative growth rates were still high at 0 degrees C, accounting for 25...

  2. [Phylogenetic diversity and cold-adaptive hydrolytic enzymes of culturable psychrophilic bacteria associated with sea ice from high latitude ocean, Artic].

    Science.gov (United States)

    Yu, Yong; Li, Hui-Rong; Chen, Bo; Zeng, Yin-Xin; He, Jian-Feng

    2006-04-01

    The phylogenetic diversity of culturable psychrophilic bacteria associated with sea ice from high latitude sea (77 degrees 30'N - 81 degrees 12'N), Canadian Basin and Greenland sea Arctic, was investigated. A total of 37 psychrophilic strains were isolated using three different methods of ( i ) spread plate method: 100 microL of each dilution ice-melt sample was spreaded onto the surface of Marine 2216 agar (DIFCO laboratories, Detroit, MI) and incubated for 2 to 6 weeks at 4 degrees C; ( ii ) bath culture and spread plate method: 1 mL of sample was added to 9mL of NSW (unamended natural seawater, 0.2 microm prefiltered and autoclaved) and incubated for 1 months at - 1 degrees C, then spread plate method was used to isolate bacterial strains from the pre-cultured samples; ( iii ) cold shock, bath culture and spread plate method: samples were exposed to - 20 degrees C for 24h, then bacterial strains isolated by bath culture and spread plate method under aerobic conditions. Nearly half of psychrophilic strains are isolated by using method iii . 16S rDNA nearly full-length sequence analysis reveal that psychrophilic strains fall in two phylogenetic divisions, gamma-proteobacteria (in the genera Colwellia, Marinobacter, Shewanella, Thalassomonas, Glaciecola, Marinomonas and Pseudoalteromonas) and Cytophaga-Flexibacter-Bacteroides (in the genera Flavobacterium and Psychroflexus). Nine of bacterial isolates (BSi20007, BSi20497, BSi20517, BSi20537, BSi20170, BSi20001, BSi20002, BSi20675 and BSi20101) quite likely represent novel species (16S rDNA sequence similarity below 97%). One of strains (BSi20002) from Canadian Basin shows 100% sequence similarity to the Antarctic Weddell sea ice isolate Marinobacter sp. ANT8277, suggesting bacteria may have a bipolar distribution at the species level. AF283859 sequences were submitted to the BLAST search program of the National Center for Biotechnology Information website (NCBI, http://www. ncbi. nlm.nih. gov). Twenty sequences

  3. Cow, sheep and llama manure at psychrophilic anaerobic co-digestion with low cost tubular digesters in cold climate and high altitude.

    Science.gov (United States)

    Martí-Herrero, J; Alvarez, R; Cespedes, R; Rojas, M R; Conde, V; Aliaga, L; Balboa, M; Danov, S

    2015-04-01

    The aim of this research is to evaluate the co-digestion of cow and llama manure combined with sheep manure, in psychrophilic conditions and real field low cost tubular digesters adapted to cold climate. Four digesters were monitored in cold climate conditions; one fed with cow manure, a second one with llama manure, the third one with co-digestion of cow-sheep manure and the fourth one was fed with llama-sheep manure. The slurry had a mean temperature of 16.6 °C, the organic load rate was 0.44 kgvs m(-3) d(-1) and the hydraulic retention time was 80 days. After one hundred days biogas production was stable, as was the methane content and the pH of the effluent. The co-digestion of cow-sheep manure results in a biogas production increase of 100% compared to the mono-digestion of cow manure, while co-digestion of llama-sheep manure results in a decrease of 50% in biogas production with respect to mono-digestion of llama manure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. A combination of luxR1 and luxR2 genes activates Pr-promoters of psychrophilic Aliivibrio logei lux-operon independently of chaperonin GroEL/ES and protease Lon at high concentrations of autoinducer.

    Science.gov (United States)

    Konopleva, Maria N; Khrulnova, Svetlana A; Baranova, Ancha; Ekimov, Leonid V; Bazhenov, Sergey V; Goryanin, Ignatiy I; Manukhov, Ilya V

    2016-05-13

    Lux-operon of psychrophilic bacteria Aliivibrio logei contains two copies of luxR and is regulated by Type I quorum sensing (QS). Activation of lux-operon of psychrophilic bacteria A. logei by LuxR1 requires about 100 times higher concentrations of autoinducer (AI) than the activation by LuxR2. On the other hand, LuxR1 does not require GroEL/ES chaperonin for its folding and cannot be degraded by protease Lon, while LuxR2 sensitive to Lon and requires GroEL/ES. Here we show that at 10(-5) - 10(-4)М concentrations of AI a combination of luxR1 and luxR2 products is capable of activating the Pr-promoters of A. logei lux-operon in Escherichia coli independently of GroEL/ES and protease Lon. The presence of LuxR1 assists LuxR2 in gro(-) cells when AI was added at high concentration, while at low concentration of AI in a cell LuxR1 decreases the LuxR2 activity. These observations may be explained by the formation of LuxR1/LuxR2 heterodimers that act in complex with AI independently from GroEL/ES and protease Lon. This study expands current understanding of QS regulation in A. logei as it implies cooperative regulation of lux-operon by LuxR1 and LuxR2 proteins. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Crystal structure of a cold-active protease (Pro21717) from the psychrophilic bacterium, Pseudoalteromonas arctica PAMC 21717, at 1.4 Å resolution: Structural adaptations to cold and functional analysis of a laundry detergent enzyme.

    Science.gov (United States)

    Park, Ha Ju; Lee, Chang Woo; Kim, Dockyu; Do, Hackwon; Han, Se Jong; Kim, Jung Eun; Koo, Bon-Hun; Lee, Jun Hyuck; Yim, Joung Han

    2018-01-01

    Enzymes isolated from organisms found in cold habitats generally exhibit higher catalytic activity at low temperatures than their mesophilic homologs and are therefore known as cold-active enzymes. Cold-active proteases are very useful in a variety of biotechnological applications, particularly as active ingredients in laundry and dishwashing detergents, where they provide strong protein-degrading activity in cold water. We identified a cold-active protease (Pro21717) from a psychrophilic bacterium, Pseudoalteromonas arctica PAMC 21717, and determined the crystal structure of its catalytic domain (CD) at a resolution of 1.4 Å. The Pro21717-CD structure shows a conserved subtilisin-like fold with a typical catalytic triad (Asp185, His244, and Ser425) and contains four calcium ions and three disulfide bonds. Interestingly, we observed an unexpected electron density at the substrate-binding site from a co-purified peptide. Although the sequence of this peptide is unknown, analysis of the peptide-complexed structure nonetheless provides some indication of the substrate recognition and binding mode of Pro21717. Moreover, various parameters, including a wide substrate pocket size, an abundant active-site loop content, and a flexible structure provide potential explanations for the cold-adapted properties of Pro21717. In conclusion, this is first structural characterization of a cold-adapted subtilisin-like protease, and these findings provide a structural and functional basis for industrial applications of Pro21717 as a cold-active laundry or dishwashing detergent enzyme.

  6. Mesophilic and psychrophilic digestion of liquid manure

    NARCIS (Netherlands)

    Zeeman, G.

    1991-01-01

    IN GENERAL

    In this thesis the possibilities for digestion of cow and pig manure are described for a completely stirred tank reactor system (CSTR) and an accumulation system (AC-system).
    For this purpose were researched:
    1. Anaerobic digestion

  7. Studies on new antifreeze protein from the psychrophilic diatom ...

    African Journals Online (AJOL)

    Administrator

    2011-09-12

    Sep 12, 2011 ... 27-kDa protein modified with His-tag. According to bioinformatics data, a comparison ... for plant biotechnology application on tomato. MATERIALS AND METHODS. The ESTs library was ... specific expression in tomato as previously described (Deng, 2003). Sequence analysis and prediction of protein ...

  8. PSYCHROPHILIC PSEUDOMONAS SP. RESISTANT TO MERCURY FROM PAVLODAR, KAZAKHSTAN

    Science.gov (United States)

    As mercury circulates and deposits globally, the remediation of extensive mercury contamination surrounding a chloralkali plant in Pavlodar, Kazakhstan is critical. High-levels of mercury contamination exist within the confines of the plant, at nearby off-site waste storage and e...

  9. Psychrophilic fungi from the world’s roof

    NARCIS (Netherlands)

    Wang, M.; Jiang, X.; Wu, W.; Hao, Y.; Su, Y.; Cai, L.; Xiang, M.; Liu, X.

    2015-01-01

    During a survey of cold-adapted fungi in alpine glaciers on the Qinghai-Tibet Plateau, 1 428 fungal isolates were obtained of which 150 species were preliminary identified. Phoma sclerotioides and Pseudogymnoascus pannorum were the most dominant species. Psychrotolerant species in Helotiales

  10. Lipidomic analysis of psychrophilic yeasts cultivated at different temperatures

    Czech Academy of Sciences Publication Activity Database

    Řezanka, Tomáš; Kolouchová, I.; Sigler, Karel

    2016-01-01

    Roč. 1861, č. 11 (2016), s. 1634-1642 ISSN 1388-1981 R&D Projects: GA ČR GA14-00227S Institutional support: RVO:61388971 Keywords : Lipidomic analysis * Phosphatidylcholine * Phosphatidylethanolamine Subject RIV: EE - Microbiology, Virology Impact factor: 5.547, year: 2016

  11. The Characterization of Psychrophilic Microorganisms and their potentially useful Cold-Active Glycosidases Final Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Brenchly, Jean E.

    2008-06-30

    Our studies of novel, cold-loving microorganisms have focused on two distinct extreme environments. The first is an ice core sample from a 120,000 year old Greenland glacier. The results of this study are particularly exciting and have been highlighted with press releases and additional coverage. The first press release in 2004 was based on our presentation at the General Meeting of the American Society for Microbiology and was augmented by coverage of our publication (Appl. Environ. Microbiol. 2005. Vol. 71:7806) in the Current Topics section of the ASM news journal, “Microbe.” Of special interest for this report was the isolation of numerous, phylogenetically distinct and potentially novel ultrasmall microorganisms. The detection and isolation of members of the ultrasmall population is significant because these cells pass through 0.2 micron pore filters that are generally used to trap microorganisms from environmental samples. Thus, analyses by other investigators that examined only cells captured on the filters would have missed a significant portion of this population. Only a few ultrasmall isolates had been obtained prior to our examination of the ice core samples. Our development of a filtration enrichment and subsequent cultivation of these organisms has added extensively to the collection of, and knowledge about, this important population in the microbial world.

  12. Adaptation of psychrophilic and psychrotrophic sulfate-reducing bacteria to permanently cold marine environments

    DEFF Research Database (Denmark)

    Isaksen, MF; Jørgensen, BB

    1996-01-01

    degrees C. The rates of sulfate reduction were measured by the (SO42-)-S-35 tracer technique at different experimental temperatures in sediment slurries, In sediment slurries from Mariager Fjord, sulfate reduction showed a mesophilic temperature response which was comparable to that of other temperate...... environments, In sediment slurries from Antarctica, the metabolic activity of psychrotrophic bacteria was observed with a respiration optimum at 18 to 19 degrees C during short-term incubations, However, over a 1-week incubation, the highest respiration rate was observed at 12.5 degrees C. Growth......The potential for sulfate reduction at low temperatures was examined in two different cold marine sediments, Mariager Fjord (Denmark), which is permanently cold (3 to 6 degrees C) but surrounded by seasonally warmer environments, and the Weddell Sea (Antarctica), which is permanently below 0...

  13. Immobilization of anaerobic bacteria on rubberized-coir for psychrophilic digestion of night soil.

    Science.gov (United States)

    Dhaked, Ram Kumar; Ramana, Karna Venkat; Tomar, Arvind; Waghmare, Chandrakant; Kamboj, Dev Vrat; Singh, Lokendra

    2005-08-01

    Low-ambient temperatures, biodigesters due to low-growth rate of the constituent bacterial consortium. Immobilization of anaerobic bacteria has been attempted in the biodigester operating at 10 degrees C. Various matrices were screened and evaluated for the immobilization of bacteria in digesters. Anaerobic digestion of night soil was carried out with hydraulic retention time in the range of 9-18 days. Among the tested matrices, rubberized-coir was found to be the most useful at 10 degrees C with optimum hydraulic retention time of 15 days. Optimum amount of coir was found as 25 g/L of the working volume of biodigesters. Immobilization of bacteria on the coir was observed by scanning electron microscopy and fluorescent microscopy. The study indicates that rubberized-coir can be utilized to increase biodegradation of night soil at higher organic loading. Another advantage of using this matrix is that it is renewable and easily available in comparison to other synthetic polymeric matrices.

  14. [Methanotrophs of the psychrophilic microbial community of the Russian Arctic tundra].

    Science.gov (United States)

    Berestovskaia, Iu Iu; Vasil'eva, L V; Chestnykh, O V; Zavarzin, G A

    2002-01-01

    In tundra, at a low temperature, there exists a slowly developing methanotrophic community. Methane-oxidizing bacteria are associated with plants growing at high humidity, such as sedge and sphagnum; no methonotrophs were found in polytrichous and aulacomnious mosses and lichens, typical of more arid areas. The methanotrophic bacterial community inhabits definite soil horizons, from moss dust to peat formed from it. Potential ability of the methanotrophic community to oxidize methane at 5 degrees C enhances with the depth of the soil profile in spite of the decreasing soil temperature. The methanotrophic community was found to gradually adapt to various temperatures due to the presence of different methane-oxidizing bacteria in its composition. Depending on the temperature and pH, different methanotrophs occupy different econiches. Within a temperature range from 5 to 15 degrees C, three morphologically distinct groups of methanotrophs could be distinguished. At pH 5-7 and 5-15 degrees C, forms morphologically similar to Methylobacter psychrophilus predominated, whereas at the acidic pH 4-6 and 10-15 degrees C, bipolar cells typical of Methylocella palustris were mostly found. The third group of methanotrophic bacteria growing at pH 5-7 and 5-10 degrees C was represented by a novel methanotroph whole large coccoid cells had a thick mucous capsule.

  15. Comparative analysis of membrane lipids in psychrophilic and mesophilic freshwater dinoflagellates

    Directory of Open Access Journals (Sweden)

    Andrea eAnesi

    2016-04-01

    Full Text Available Here we report the lipid profiles of ten dinoflagellate species originating from different freshwater habitats and grown at 4, 13 or 20°C akin to their natural occurrence. Lipids were determined by High Performance Liquid Chromatography-ElectroSpray Ionization-Mass Spectrometry in positive and negative ion modes. Besides the well-studied monogalactosyldiacylglycerol (MGDG and digalactosyldiacylglycerol (DGDG lipids, our study revealed the presence of intact molecular lipid species of trigalactosyldiacylglycerols (TGDG, betaine diacylglyceryl-carboxyhydroxymethylcholine (DGCC, sulfolipid sulfoquinovosyldiacylglycerols (SQDG and phospholipids, in particular phosphatidylcholine (PC, phosphatidylethanolamine (PE and phosphatidylglycerol (PG.In multivariate ordination, the freshwater dinoflagellates studied could be distinguished into two groups based on their lipid profiles. Peridinium aciculiferum, Borghiella dodgei, B. tenuissima and Tovellia coronata belonged to group 1 while Ceratium cornutum, Gymnodinium palustre, Jadwigia applanata, P. cinctum, P. willei and P. gatunense belonged to group 2. Indicator species analysis evidenced that group 1 was characterized by 36:9 MGDG and 36:9 DGDG and group 2 by 38:9 and 38:10 MGDG, 38:9 and 38:10 DGDG and 34:1 SQDG. We suggest that the grouping of dinoflagellates indicated their range of temperature tolerance. Furthermore, non-thylakoid lipids were linked to dinoflagellate phylogeny based on the large ribosomal sub-unit (28S LSU rather than their temperature tolerance. Thus certain lipids better reflected habitat adaptation while other lipids better reflected genetic diversity.

  16. Characterization of Stearoyl-CoA Desaturases from a Psychrophilic Antarctic Copepod, Tigriopus kingsejongensis.

    Science.gov (United States)

    Jung, Woongsic; Kim, Eun Jae; Han, Se Jong; Choi, Han-Gu; Kim, Sanghee

    2016-10-01

    Stearoyl-CoA desaturase is a key regulator in fatty acid metabolism that catalyzes the desaturation of stearic acid to oleic acid and controls the intracellular levels of monounsaturated fatty acids (MUFAs). Two stearoyl-CoA desaturases (SCD, Δ9 desaturases) genes were identified in an Antarctic copepod, Tigriopus kingsejongensis, that was collected in a tidal pool near the King Sejong Station, King George Island, Antarctica. Full-length complementary DNA (cDNA) sequences of two T. kingsejongensis SCDs (TkSCDs) were obtained from next-generation sequencing and isolated by reverse transcription PCR. DNA sequence lengths of the open reading frames of TkSCD-1 and TkSCD-2 were determined to be 1110 and 681 bp, respectively. The molecular weights deduced from the corresponding genes were estimated to be 43.1 kDa (TkSCD-1) and 26.1 kDa (TkSCD-2). The amino acid sequences were compared with those of fatty acid desaturases and sterol desaturases from various organisms and used to analyze the relationships among TkSCDs. As assessed by heterologous expression of recombinant proteins in Escherichia coli, the enzymatic functions of both stearoyl-CoA desaturases revealed that the amount of C16:1 and C18:1 fatty acids increased by greater than 3-fold after induction with isopropyl β-D-thiogalactopyranoside. In particular, C18:1 fatty acid production increased greater than 10-fold in E. coli expressing TkSCD-1 and TkSCD-2. The results of this study suggest that both SCD genes from an Antarctic marine copepod encode a functional desaturase that is capable of increasing the amounts of palmitoleic acid and oleic acid in a prokaryotic expression system.

  17. Adaptation of psychrophilic and psychrotrophic sulfate-reducing bacteria to permanently cold marine environments

    DEFF Research Database (Denmark)

    Isaksen, MF; Jørgensen, BB

    1996-01-01

    environments, In sediment slurries from Antarctica, the metabolic activity of psychrotrophic bacteria was observed with a respiration optimum at 18 to 19 degrees C during short-term incubations, However, over a 1-week incubation, the highest respiration rate was observed at 12.5 degrees C. Growth...... of the bacterial population at the optimal growth temperature could be an explanation for the low temperature optimum of the measured sulfate reduction, The potential for sulfate reduction was highest at temperatures well above the in situ temperature in all experiments, The results frorn sediment incubations were...... compared with those obtained from pure cultures of sulfate-reducing bacteria by using the psychrotrophic strain Itk10 and the mesophilic strain ak30. The psychrotrophic strain reduced sulfate optimally at 28 degrees C in short-term incubations, even though it could not grow at temperatures above 24 degrees...

  18. Production of certain hydrolytic enzymes by psychrophilic bacteria from the Antarctic krill, zooplankton and seawater

    Digital Repository Service at National Institute of Oceanography (India)

    Ramaiah, N.

    of hydrolytic enzymes compared to those strains collected either from water or krill samples. Based on these results, the functional role of bacterial enzymes in relation to trophodynamics of euphausiids and their role in the post-harvest technology of krill...

  19. Psychrophilic anaerobic digestion of guinea pig manure in low-cost tubular digesters at high altitude.

    Science.gov (United States)

    Garfí, Marianna; Ferrer-Martí, Laia; Villegas, Vidal; Ferrer, Ivet

    2011-05-01

    Guinea pig is one of the most common livestock in rural communities of the Andes. The aim of this research was to study the anaerobic digestion of guinea pig manure in low-cost unheated tubular digesters at high altitude. To this end, the performance of two pilot digesters was monitored during 7 months; and two greenhouse designs were compared. In the dome roof digester the temperature and biogas production were significantly higher than in the shed roof digester. However, the biogas production rate was low (0.04 m(biogas)(3)m(digester)(-3) d(-1)), which is attributed to the low organic loading rate (0.6 kg(VS)m(digester)(-3)d(-1)) and temperature (23°C) of the system, among other factors. In a preliminary fertilization study, the potato yield per hectare was increased by 100% using the effluent as biofertilizer. Improving manure management techniques, increasing the organic loading rate and co digesting other substrates may be considered to enhance the process. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Draft Genome Sequence of the Psychrophilic and Alkaliphilic Rhodonellum psychrophilum Strain GCM71T.

    Science.gov (United States)

    Hauptmann, Aviaja L; Glaring, Mikkel A; Hallin, Peter F; Priemé, Anders; Stougaard, Peter

    2013-12-05

    Rhodonellum psychrophilum GCM71(T), isolated from the cold and alkaline submarine ikaite columns in the Ikka Fjord in Greenland, displays optimal growth at 5 to 10°C and pH 10. Here, we report the draft genome sequence of this strain, which may provide insight into the mechanisms of adaptation to these extreme conditions.

  1. Recovery of metallo-tolerant and antibiotic resistant psychrophilic bacteria from Siachen glacier, Pakistan.

    Directory of Open Access Journals (Sweden)

    Muhammad Rafiq

    Full Text Available Cultureable bacterial diversity of previously unexplored Siachen glacier, Pakistan, was studied. Out of 50 isolates 33 (66% were Gram negative and 17 (34% Gram positive. About half of the isolates were pigment producers and were able to grow at 4-37°C. 16S rRNA gene sequences revealed Gram negative bacteria dominated by Proteobacteria (especially γ-proteobacteria and β-proteobacteria and Flavobacteria. The genus Pseudomonas (51.51%, 17 was dominant among γ- proteobacteria. β-proteobacteria constituted 4 (12.12% Alcaligenes and 4 (12.12% Janthinobacterium strains. Among Gram positive bacteria, phylum Actinobacteria, Rhodococcus (23.52%, 4 and Arthrobacter (23.52%, 4 were the dominating genra. Other bacteria belonged to Phylum Firmicutes with representative genus Carnobacterium (11.76%, 2 and 4 isolates represented 4 genera Bacillus, Lysinibacillus, Staphylococcus and Planomicrobium. Most of the Gram negative bacteria were moderate halophiles, while most of the Gram positives were extreme halophiles and were able to grow up to 6.12 M of NaCl. More than 2/3 of the isolates showed antimicrobial activity against multidrug resistant S. aureus, E. coli, Klebsiella pneumonia, Enterococcus faecium, Candida albicans, Aspergillus flavus and Aspergillus fumigatus and ATCC strains. Gram positive bacteria (94.11% were more resistant to heavy metals as compared to Gram negative (78.79% and showed maximum tolerance against iron and least tolerance against mercury.

  2. Kocuria polaris sp. nov., an orange-pigmented psychrophilic bacterium isolated from an Antarctic cyanobacterial mat sample.

    Science.gov (United States)

    Reddy, Gundlapally S N; Prakash, Jogadhenu S S; Prabahar, Vadivel; Matsumoto, Genki I; Stackebrandt, Erko; Shivaji, Sisinthy

    2003-01-01

    Strain CMS 76orT, an orange-pigmented bacterium, was isolated from a cyanobacterial mat sample from a pond located in McMurdo Dry Valley, Antarctica. On the basis of chemotaxonomic and phylogenetic properties, strain CMS 76orT was identified as a member of the genus Kocuria. It exhibited a 16S rDNA similarity of 99.8% and DNA-DNA similarity of 71% with Kocuria rosea (ATCC 186T). Phenotypic traits confirmed that strain CMS 78orT and K. rosea were well differentiated. Furthermore, strain CMS 76orT could be differentiated from the other reported species of Kocuria, namely Kocuria kristinae (ATCC 27570T), Kocuria varians (ATCC 15306T), Kocuria rhizophila (DSM 11926T) and Kocuria palustris (DSM 11025T), on the basis of a number of phenotypic features. Therefore, it is proposed that strain CMS 76orT (= MTCC 3702T = DSM 14382T) be assigned to a novel species of the genus Kocuria, as Kocuria polaris.

  3. Psychrophilic anaerobic co-digestion of highland barley straw with two animal manures at high altitude for enhancing biogas production

    International Nuclear Information System (INIS)

    Wei, Suzhen; Zhang, Hongfeng; Cai, Xiaobu; Xu, Jin; Fang, Jiangping; Liu, Heman

    2014-01-01

    Highlights: • High I/S ratio (>2/1) was favorable to both sole digestion and co-digestion. • Biogas production from BS was feasible at low temperature and low air pressure condition. • Long SRT (>80 days) is needed for biogas production at low temperature and low air pressure condition. • BS to manure ratio of 1/1 could increase biogas production. • IVS removal efficiency was correlated with biogas production. - Abstract: Biogas production from the co-digestion of highland barley straw (BS) with Tibet pig manure (TPM) and cow manure (CM) was investigated at Tibet plateau under low temperature (15 °C) condition. The effect of inoculum to substrate (I/S) ratio and BS to manure ratio on the biogas production was studied using a series of batch digesters performed at substrate concentration of 20%, based on total solid (TS). The results showed that biogas production from BS was feasible at low temperature and low air pressure condition. High I/S ratio (>2/1) and BS to manure ratio of 1/1 could increase the biogas production. Long solid retention time (SRT) (>80 days) was needed for biogas production at low temperature and low air pressure condition. The highest cumulative biogas production obtained from the co-digestion of BS with TPM and CM was 233.4 ml/gVS and 192.0 ml/gVS, respectively. Removal efficiencies of substrate showed that biogas production was correlated with the removal efficiency of water-insoluble volatile solids (IVS) but not with the change rate of soluble chemical oxygen demand (SCOD)

  4. Effects of hydrostatic pressure and temperature on the uptake and respiration of amino acids by a facultatively psychrophilic marine bacterium.

    Science.gov (United States)

    Paul, K. L.; Morita, R. Y.

    1971-01-01

    Studies of pressure and temperature effects on glutamic acid transport and utilization indicated that hydrostatic pressure and low temperature inhibit glutamate transport more than glutamate respiration. The effects of pressure on transport were reduced at temperatures near the optimum. Similar results were obtained for glycine, phenylalanine, and proline. Pressure effects on the transport systems of all four amino acids were reversible to some degree. Both proline and glutamic acid were able to protect their transport proteins against pressure damage. The data presented indicate that the uptake of amino acids by cells under pressure is inhibited, which is the cause of their inability to grow under pressure.

  5. Recombinant production, crystallization and preliminary X-ray analysis of PCNA from the psychrophilic archaeon Methanococcoides burtonii DSM 6242

    International Nuclear Information System (INIS)

    Byrne-Steele, Miranda L.; Hughes, Ronny C.; Ng, Joseph D.

    2009-01-01

    The proliferating cell nuclear antigen (PCNA) from the eurypsychrophilic archaeon M. burtonii DSM 6242 has been cloned, overproduced, purified and crystallized. Crystals were deemed to be suitable for X-ray analysis and structure determination to 2.40 Å resolution. Proliferating cell nuclear antigen (PCNA) is a DNA-clamping protein that is responsible for increasing the processivity of the replicative polymerases during DNA replication and repair. The PCNA from the eurypsychrophilic archaeon Methanococcoides burtonii DSM 6242 (MbPCNA) has been targeted for protein structural studies. A recombinant expression system has been created that overproduces MbPCNA with an N-terminal hexahistidine affinity tag in Escherichia coli. As a result, recombinant MbPCNA with a molecular mass of 28.3 kDa has been purified to at least 95% homogeneity and crystallized by vapor-diffusion equilibration. Preliminary X-ray analysis revealed a trigonal hexagonal R3 space group, with unit-cell parameters a = b = 102.5, c = 97.5 Å. A single MbPCNA crystal was subjected to complete diffraction data-set collection using synchrotron radiation and reflections were measured to 2.40 Å resolution. The diffraction data were of suitable quality for indexing and scaling and an unrefined molecular-replacement solution has been obtained

  6. Colonization of Snow by Microorganisms as Revealed Using Miniature Raman Spectrometers - Possibilities for Detecting Carotenoids of Psychrophiles on Mars?

    Science.gov (United States)

    Jehlička, Jan; Culka, Adam; Nedbalová, Linda

    2016-12-01

    We tested the potential of a miniaturized Raman spectrometer for use in field detection of snow algae pigments. A miniature Raman spectrometer, equipped with an excitation laser at 532 nm, allowed for the detection of carotenoids in cells of Chloromonas nivalis and Chlamydomonas nivalis at different stages of their life cycle. Astaxanthin, the major photoprotective pigment, was detected in algal blooms originating in snows at two alpine European sites that differed in altitude (Krkonoše Mts., Czech Republic, 1502 m a.s.l., and Ötztal Alps, Austria, 2790 m a.s.l.). Comparison is made with a common microalga exclusively producing astaxanthin (Haematococcus pluvialis). The handheld Raman spectrometer is a useful tool for fast and direct field estimations of the presence of carotenoids (mainly astaxanthin) within blooms of snow algae. Application of miniature Raman instruments as well as flight prototypes in areas where microbes are surviving under extreme conditions is an important stage in preparation for successful deployment of this kind of instrumentation in the framework of forthcoming astrobiological missions to Mars.

  7. Phylogeny of Cyclic Nitramine-Degrading Psychrophilic Bacteria in Marine Sediment and Their Potential Role in the Natural Attenuation of Explosives

    Science.gov (United States)

    2004-01-01

    prepared by dissolving Brewer Anaerobic Agar (Becton Dickson,Sparks, MD, USA) in marine salts medium. Liquid marine media used in the present study...were marine broth 2216 (Becton Dickinson, Sparks, MD) [7], or prepared by dissolving 0.1 or 1 g each of yeast extract, bacto peptone, and glucose in 1 l...biodegrada- tion All marine isolates (HAW-EB1–5, HAW-EB17, 18 and 21) grew well in marine broth 2216 or other peptone and yeast extract based media

  8. Expression and characterization of a recombinant psychrophilic γ-carbonic anhydrase (NcoCA) identified in the genome of the Antarctic cyanobacteria belonging to the genus Nostoc.

    Science.gov (United States)

    De Luca, Viviana; Del Prete, Sonia; Vullo, Daniela; Carginale, Vincenzo; Di Fonzo, Pietro; Osman, Sameh M; AlOthman, Zeid; Supuran, Claudiu T; Capasso, Clemente

    2016-10-01

    Carbonic anhydrases (CAs, EC 4.2.1.1) catalyze the CO2 hydration/dehydration reversible reaction: CO2 + H2O ⇄ [Formula: see text] + H(+). Living organisms encode for at least six distinct genetic families of such catalyst, the α-, β-, γ-, δ-, ζ- and η-CAs. The main function of the CAs is to quickly process the CO2 derived by metabolic processes in order to regulate acid-base homeostasis, connected to the production of protons (H(+)) and bicarbonate. Few data are available in the literature on Antarctic CAs and most of the scientific information regards CAs isolated from mammals or prokaryotes (as well as other mesophilic sources). It is of great interest to study the biochemical behavior of such catalysts identified in organism living in the Antarctic sea where temperatures average -1.9 °C all year round. The enzymes isolated from Antarctic organisms represent a useful tool to study the relations among structure, stability and function of proteins in organisms adapted to living at constantly low temperatures. In the present paper, we report in detail the cloning, purification, and physico-chemical properties of NcoCA, a γ-CA isolated from the Antarctic cyanobacterium Nostoc commune. This enzyme showed a higher catalytic efficiency at lower temperatures compared to mesophilic counterparts belonging to α-, β-, γ-classes, as well as a limited stability at moderate temperatures.

  9. Microbiological studies in schirmacher oasis, Antarctica: Effect of temperature on bacterial populations

    Digital Repository Service at National Institute of Oceanography (India)

    Matondkar, S.G.P.

    Seasonal and site wise variation in size and diversity of bacterial population was observed in Schirmacher Oasis, Antarctica. Prevailing soil temperature limited the distribution and abundance of groups of bacteria like psychrophiles, psychrotrophs...

  10. Microbiological properties of poultry breast meat treated with high-intensity ultrasound.

    Science.gov (United States)

    Piñon, M I; Alarcon-Rojo, A D; Renteria, A L; Carrillo-Lopez, L M

    2018-01-03

    Lactic acid, psychrophilic, and mesophilic bacteria, Escherichia coli, Salmonella spp. and Staphylococcus aureus were enumerated on chicken breasts after treatment with different high intensity ultrasound (frequency 40 kHz, intensity 9.6 W/cm -2 ) application times (0, 30, and 50 min) and packaging atmospheres (aerobic and vacuum) after a 7-day storage. The experiment was performed in commercial 7-week-old chicken breasts. Counts were performed prior to and immediately after ultrasonication, and on the 7th day of chill-storage. After sonication and storage, mesophiles, psychrophiles, LAB and S. aureus increased statistically. Psychrophiles decreased significantly under anaerobic packaging. There were no differences among ultrasonication times in terms of mesophiles, psychrophiles, LAB, E. coli and Salmonella spp. S. aureus numbers had a significant reduction after 50 min sonication. Under these experimental conditions, high-intensity ultrasound for 50 min is a control method of S. aureus and the anaerobic packaging reduces numbers of psychrophiles in chicken breast. The effect of ultrasound is only significant after the storage time. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Draft Genome Sequences of Human Pathogenic Fungus Geomyces pannorum Sensu Lato and Bat White Nose Syndrome Pathogen Geomyces (Pseudogymnoascus) destructans

    OpenAIRE

    Chibucos, Marcus C.; Crabtree, Jonathan; Nagaraj, Sushma; Chaturvedi, Sudha; Chaturvedi, Vishnu

    2013-01-01

    We report the draft genome sequences of Geomyces pannorum sensu lato and Geomyces (Pseudogymnoascus) destructans. G.?pannorum has a larger proteome than G.?destructans, containing more proteins with ascribed enzymatic functions. This dichotomy in the genomes of related psychrophilic fungi is a valuable target for defining their distinct saprobic and pathogenic attributes.

  12. Draft Genome Sequences of Human Pathogenic Fungus Geomyces pannorum Sensu Lato and Bat White Nose Syndrome Pathogen Geomyces (Pseudogymnoascus) destructans.

    Science.gov (United States)

    Chibucos, Marcus C; Crabtree, Jonathan; Nagaraj, Sushma; Chaturvedi, Sudha; Chaturvedi, Vishnu

    2013-12-19

    We report the draft genome sequences of Geomyces pannorum sensu lato and Geomyces (Pseudogymnoascus) destructans. G. pannorum has a larger proteome than G. destructans, containing more proteins with ascribed enzymatic functions. This dichotomy in the genomes of related psychrophilic fungi is a valuable target for defining their distinct saprobic and pathogenic attributes.

  13. Cloning, expression and structural stability of a cold-adapted ß-Galactosidase from Rahnella sp.R3

    Science.gov (United States)

    A novel gene was isolated for the first time from a psychrophilic gram-negative bacterium Rahnella sp.R3. It encoded a cold-adapted ß-galactosidase (R-ß-Gal). Recombinant R-ß-Gal was expressed in Escherichia coli BL21 (DE3), purified, and characterized. R-ß-Gal belongs to the glycosyl hydrolase fami...

  14. DNA-based detection of the fungal pathogen Geomyces destructans in soils from bat hibernacula

    Science.gov (United States)

    Daniel L. Lindner; Andrea Gargas; Jeffrey M. Lorch; Mark T. Banik; Jessie A. Glaeser; Thomas H. Kunz; David S. Blehert

    2011-01-01

    White-nose syndrome (WNS) is an emerging disease causing unprecedented morbidity and mortality among bats in eastern North America. The disease is characterized by cutaneous infection of hibernating bats by the psychrophilic fungus Geomyces destructans. Detection of G. destructans in environments occupied by bats will be critical...

  15. Western bats as a reservoir of novel Streptomyces species with antifungal activity.

    Science.gov (United States)

    White-nose syndrome (WNS), a bat infection caused by the psychrophilic (cold-loving) fungus, Pseudogymnoascus destructans, has caused the death of more than six million bats. In this study we evaluate the biocontrol potential of naturally occurring Actinobacteria isolated from WNS-free bats from New...

  16. Phylogenetic relationships among marine Alteromonas-like proteobacteria: emended description of the family Alteromonadaceae and proposal of Pseudoalteromonadaceae fam. nov., Colwelliaceae fam. nov., Shewanellaceae fam. nov., Moritellaceae fam. nov., Ferrimonadaceae fam. nov., Idiomarinaceae fam. nov. and Psychromonadaceae fam. nov.

    Science.gov (United States)

    Ivanova, Elena P; Flavier, Sébastien; Christen, Richard

    2004-09-01

    The phylogenetic relationships among marine Alteromonas-like bacteria of the genera Alteromonas, Pseudoalteromonas, Glaciecola, Thalassomonas, Colwellia, Idiomarina, Oceanimonas, Oceanisphaera, Shewanella, Moritella, Ferrimonas, Psychromonas and several other genera of the 'Gammaproteobacteria' were studied. Results of 16S rRNA gene sequence analyses revealed that some members of these genera formed several coherent groups at the family level. Characteristic signature oligonucleotides for studied taxa were defined. Signature positions are divided into three classes: (i) single compensatory mutations, (ii) double compensatory mutations and (iii) mutations affecting nucleotides not paired in the secondary structure. The 16S rRNA gene sequence similarity level within genera was 93 % or above. This value can be a useful additional criterion for genus discrimination. On the basis of this work and previous polyphasic taxonomic studies, the circumscription of the family Alteromonadaceae is limited to the genera Alteromonas and Glaciecola and the creation is proposed of the families Pseudoalteromonadaceae fam. nov. to accommodate bacteria of the genera Pseudoalteromonas and Algicola gen. nov. (formerly Pseudoalteromonas bacteriolytica) and Colwelliaceae fam. nov. to accommodate bacteria of the genera Colwellia and Thalassomonas. Bacteria of the genera Oceanimonas and Oceanisphaera formed a robust cluster and shared common signature oligonucleotides. Because of deep branching and lack of association with any other genus, the following families are proposed that include single genera: Idiomarinaceae fam. nov., Psychromonadaceae fam. nov., Moritellaceae fam. nov., Ferrimonadaceae fam. nov. and Shewanellaceae fam. nov. Finally, this study also revealed that [Hyphomicrobium] indicum should be reclassified as Photobacterium indicum comb. nov.

  17. Thermophilic Sulfate-Reducing Bacteria in Cold Marine Sediment

    DEFF Research Database (Denmark)

    ISAKSEN, MF; BAK, F.; JØRGENSEN, BB

    1994-01-01

    sulfate-reducing bacteria was detected. Time course experiments showed constant sulfate reduction rates at 4 degrees C and 30 degrees C, whereas the activity at 60 degrees C increased exponentially after a lag period of one day. Thermophilic, endospore-forming sulfate-reducing bacteria, designated strain...... C to search for presence of psychrophilic, mesophilic and thermophilic sulfate-reducing bacteria. Detectable activity was initially only in the mesophilic range, but after a lag phase sulfate reduction by thermophilic sulfate-reducing bacteria were observed. No distinct activity of psychrophilic...... P60, were isolated and characterized as Desulfotomaculum kuznetsovii. The temperature response of growth and respiration of strain P60 agreed well with the measured sulfate reduction at 50 degrees-70 degrees C. Bacteria similar to strain P60 could thus be responsible for the measured thermophilic...

  18. Microbiological studies of irradiated dried mackerel (Cybium guttatum Bloch and Schnieder)

    International Nuclear Information System (INIS)

    Ahmed, M.; Joardar, S.K.; Bhuiya, A.D.; Islam, M.S.

    1985-01-01

    Microbiological studies of sun-dried mackerel fish, Cybium guttatum, were conducted by exposing the fish to doses of gamma-rays from 0.50 to 8.00 kGy at the storage temperatures of 10.20 and 30oC. The reduction of bacterial flora was determined both qualitatively and quantitatively. At 4 kGyone log cycle reduction of bacterial flora was achieved and at 8 kGy the reduction was nearly 2 log cycles. The irradiated samples were stored for two months and viable bacterial counts were taken. Except in a few cases, reduction in viable counts occurred. Bacterial isolates were made and both Mesophiles and Psychrophiles were identified. Micrococcus, Staphylococcus, Corymebacterium and some Bacillus were found to be the prominent groups in mesophiles, while Bacillus dominated in psychrophiles. Staphylococcus was found to be the most dominant bacterial flora in unirradiated samples, but they were highly affected by irradiation

  19. TOPICAL REVIEW: Protein stability and enzyme activity at extreme biological temperatures

    Science.gov (United States)

    Feller, Georges

    2010-08-01

    Psychrophilic microorganisms thrive in permanently cold environments, even at subzero temperatures. To maintain metabolic rates compatible with sustained life, they have improved the dynamics of their protein structures, thereby enabling appropriate molecular motions required for biological activity at low temperatures. As a consequence of this structural flexibility, psychrophilic proteins are unstable and heat-labile. In the upper range of biological temperatures, thermophiles and hyperthermophiles grow at temperatures > 100 °C and synthesize ultra-stable proteins. However, thermophilic enzymes are nearly inactive at room temperature as a result of their compactness and rigidity. At the molecular level, both types of extremophilic proteins have adapted the same structural factors, but in opposite directions, to address either activity at low temperatures or stability in hot environments. A model based on folding funnels is proposed accounting for the stability-activity relationships in extremophilic proteins.

  20. Protein stability and enzyme activity at extreme biological temperatures

    International Nuclear Information System (INIS)

    Feller, Georges

    2010-01-01

    Psychrophilic microorganisms thrive in permanently cold environments, even at subzero temperatures. To maintain metabolic rates compatible with sustained life, they have improved the dynamics of their protein structures, thereby enabling appropriate molecular motions required for biological activity at low temperatures. As a consequence of this structural flexibility, psychrophilic proteins are unstable and heat-labile. In the upper range of biological temperatures, thermophiles and hyperthermophiles grow at temperatures > 100 0 C and synthesize ultra-stable proteins. However, thermophilic enzymes are nearly inactive at room temperature as a result of their compactness and rigidity. At the molecular level, both types of extremophilic proteins have adapted the same structural factors, but in opposite directions, to address either activity at low temperatures or stability in hot environments. A model based on folding funnels is proposed accounting for the stability-activity relationships in extremophilic proteins. (topical review)

  1. Thermophilic Sulfate-Reducing Bacteria in Cold Marine Sediment

    DEFF Research Database (Denmark)

    ISAKSEN, MF; BAK, F.; JØRGENSEN, BB

    1994-01-01

    C to search for presence of psychrophilic, mesophilic and thermophilic sulfate-reducing bacteria. Detectable activity was initially only in the mesophilic range, but after a lag phase sulfate reduction by thermophilic sulfate-reducing bacteria were observed. No distinct activity of psychrophilic...... sulfate-reducing bacteria was detected. Time course experiments showed constant sulfate reduction rates at 4 degrees C and 30 degrees C, whereas the activity at 60 degrees C increased exponentially after a lag period of one day. Thermophilic, endospore-forming sulfate-reducing bacteria, designated strain...... P60, were isolated and characterized as Desulfotomaculum kuznetsovii. The temperature response of growth and respiration of strain P60 agreed well with the measured sulfate reduction at 50 degrees-70 degrees C. Bacteria similar to strain P60 could thus be responsible for the measured thermophilic...

  2. Specific amino acids responsible for the cold adaptedness of Micrococcus antarcticus β-glucosidase BglU.

    Science.gov (United States)

    Miao, Li-Li; Fan, Hong-Xia; Qu, Jie; Liu, Ying; Liu, Zhi-Pei

    2017-03-01

    Psychrophilic enzymes display efficient activity at moderate or low temperatures (4-25 °C) and are therefore of great interest in biotechnological industries. We previously examined the crystal structure of BglU, a psychrophilic β-glucosidase from the bacterium Micrococcus antarcticus, at 2.2 Å resolution. In structural comparison and sequence alignment with mesophilic (BglB) and thermophilic (GlyTn) counterpart enzymes, BglU showed much lower contents of Pro residue and of charged amino acids (particularly positively charged) on the accessible surface area. In the present study, we investigated the roles of specific amino acid residues in the cold adaptedness of BglU. Mutagenesis assays showed that the mutations G261R and Q448P increased optimal temperature (from 25 to 40-45 °C) at the expense of low-temperature activity, but had no notable effects on maximal activity or heat lability. Mutations A368P, T383P, and A389E significantly increased optimal temperature (from 25 to 35-40 °C) and maximal activity (~1.5-fold relative to BglU). Thermostability of A368P and A389E increased slightly at 30 °C. Mutations K163P, N228P, and H301A greatly reduced enzymatic activity-almost completely in the case of H301A. Low contents of Pro, Arg, and Glu are important factors contributing to BglU's psychrophilic properties. Our findings will be useful in structure-based engineering of psychrophilic enzymes and in production of mutants suitable for a variety of industrial processes (e.g., food production, sewage treatment) at cold or moderate temperatures.

  3. Skin Lesions in European Hibernating Bats Associated with Geomyces destructans, the Etiologic Agent of White-Nose Syndrome

    OpenAIRE

    Wibbelt, Gudrun; Puechmaille, S?bastien J.; Ohlendorf, Bernd; M?hldorfer, Kristin; Bosch, Thijs; G?rf?l, Tam?s; Passior, Karsten; Kurth, Andreas; Lacremans, Daniel; Forget, Fr?d?ric

    2013-01-01

    White-nose syndrome (WNS) has claimed the lives of millions of hibernating insectivorous bats in North America. Its etiologic agent, the psychrophilic fungus Geomyces destructans, causes skin lesions that are the hallmark of the disease. The fungal infection is characterized by a white powdery growth on muzzle, ears and wing membranes. While WNS may threaten some species of North American bats with regional extinction, infection in hibernating bats in Europe seems not to be associated with si...

  4. MICROBIOLOGICAL SURVEY OF RETAIL HERBS AND SPICES

    Directory of Open Access Journals (Sweden)

    A. Santoro

    2009-12-01

    Full Text Available In the present study, 80 samples of herbs and spices were analyzed for the presence of Bacillus cereus, Salmonella spp., , Escherichia coli, total and fecal coliforms, Enterobacteriacaee, total mesophilic and psychrophilic aerobic organisms, and fungi. Samples were packaged in polyethylene bags or glass containers.High levels of mesophilic aerobic microorganisms were found in most of the samples. B. cereus was present in 27 samples, Clostrium perfringens was isolated from 3 samples, Salmonella spp. was not detected.

  5. Destructin-1 is a collagen-degrading endopeptidase secreted by Pseudogymnoascus destructans, the causative agent of white-nose syndrome

    OpenAIRE

    O'Donoghue, AJ; Knudsen, GM; Beekman, C; Perry, JA; Johnson, AD; DeRisi, JL; Craik, CS; Bennett, RJ

    2015-01-01

    © 2015, National Academy of Sciences. All rights reserved. Pseudogymnoascus destructans is the causative agent of white-nose syndrome, a disease that has caused the deaths of millions of bats in North America. This psychrophilic fungus proliferates at low temperatures and targets hibernating bats, resulting in their premature arousal from stupor with catastrophic consequences. Despite the impact of white-nose syndrome, little is known about the fungus itself or how it infects its mammalian ho...

  6. Resource capture and competitive ability of non-pathogenic Pseudogymnoascus spp. and P. destructans, the cause of white-nose syndrome in bats

    OpenAIRE

    Wilson, Michael B.; Held, Benjamin W.; Freiborg, Amanda H.; Blanchette, Robert A.; Salomon, Christine E.

    2017-01-01

    White-nose syndrome (WNS) is a devastating fungal disease that has been causing the mass mortality of hibernating bats in North America since 2006 and is caused by the psychrophilic dermatophyte Pseudogymnoascus destructans. Infected bats shed conidia into hibernaculum sediments and surfaces, but it is unknown if P. destructans can form stable, reproductive populations outside its bat hosts. Previous studies have found non-pathogenic Pseudogymnoascus in bat hibernacula, and these fungi may pr...

  7. Comparison of the White-Nose Syndrome Agent Pseudogymnoascus destructans to Cave-Dwelling Relatives Suggests Reduced Saprotrophic Enzyme Activity

    OpenAIRE

    Reynolds, Hannah T.; Barton, Hazel A.

    2014-01-01

    White-nose Syndrome (WNS) is an emerging infectious mycosis that has impacted multiple species of North American bats since its initial discovery in 2006, yet the physiology of the causal agent, the psychrophilic fungus Pseudogymnoascus destructans ( = Geomyces destructans), is not well understood. We investigated the ability of P. destructans to secrete enzymes that could permit environmental growth or affect pathogenesis and compared enzyme activity across several Pseudogymnoascus species i...

  8. Economic Feasibility of Installing an Anaerobic Digester on a Department of Defense Installation

    Science.gov (United States)

    2010-03-01

    permits anaerobic bacteria and enzymes to affect more waste than a lagoon does, as well as preventing a film or layer of scum forming on top of the waste...temperature classifications for anaerobic digestion. The three classes listed are: psychrophilic (4- 20 C), mesophilic (20-45 C), and thermophilic (45-60...operated at 55º C, 30 focusing on an optimum temperature for thermophilic bacteria. Despite previously discussed percentages for total solids in

  9. Effect of ISPAD Anaerobic Digestion on Ammonia Volatilization from Soil Applied Swine Manure

    OpenAIRE

    King, Susan; Schwalb, Michael; Giard, David; Whalen, Joann; Barrington, Suzelle

    2012-01-01

    Swine manure subjected to in-storage psychrophilic anaerobic digestion (ISPAD) undergoes proteins degradation but limited NH3 volatilization, producing an effluent rich in plant-available nitrogen. Accordingly, ISPAD effluent can offer a higher fertilizer value during land application, as compared to manure of similar age stored in an open tank. However, this additional nitrogen can also be lost by volatilization during land application. The objective of this study was therefore to measure NH...

  10. Pseudogymnoascus destructans: Causative Agent of White-Nose Syndrome in Bats Is Inhibited by Safe Volatile Organic Compounds

    OpenAIRE

    Sally Padhi; Itamar Dias; Victoria L. Korn; Joan W. Bennett

    2018-01-01

    White-nose syndrome (WNS) is caused by Pseudogymnoascus destructans, a psychrophilic fungus that infects hibernating bats and has caused a serious decline in some species. Natural aroma compounds have been used to control growth of fungal food storage pathogens, so we hypothesized that a similar strategy could work for control of P. destructans. The effectiveness of exposure to low concentrations of the vapor phase of four of these compounds was tested on mycelial plugs and conidiospores at t...

  11. Comparative economic analysis: Anaerobic digester case study

    International Nuclear Information System (INIS)

    Lusk, P.D.

    1991-01-01

    An economic guide is developed to assess the value of anaerobic digesters used on dairy farms. Two varieties of anaerobic digesters, a conventional mixed-tank mesophilic and an innovative earthen psychrophilic, are comparatively evaluated using a cost-effectiveness index. The two case study examples are also evaluated using three other investment merit statistics: simple payback period, net present value, and internal rate of return. Life-cycle savings are estimated for both varieties, with sensitivities considered for investment risk. The conclusion is that an earthen psychrophilic digester can have a significant economic advantage over a mixed-tank mesophilic digester because of lower capital cost and reduced operation and maintenance expenses. Because of this economic advantage, additional projects are being conducted in North Carolina to increase the rate of biogas utilization. The initial step includes using biogas for milk cooling at the dairy farm where the existing psychrophilic digester is located. Further, a new project is being initiated for electricity production with thermal reclaim at a swine operation

  12. [Diversity and bioactivity analysis of actinomycetes isolated from grand Shangri-La soil].

    Science.gov (United States)

    Cao, Yanru; Jiang, Yi; Xu, Lihua

    2009-01-01

    To obtain new pharmaceuticals and enzymes with high activity,we studied the composition as well as antimicrobial and enzyme activities of actinomycetes in Grand Shangri-La. Using 4 media,we isolated mesophilic and psychrophilic actinomycetes from 220 soil samples collected from areas with different altitudes in Grand Shangri-La. Twenty-five representative isolates were phylogenetically analyzed based on their 16S rRNA gene sequences. Antimicrobial activities against four bacteria and seven fungi were tested using agar well diffusion method. Genes encoding type I and II polyketide synthases (PKS I, PKS II), nonribosomal peptide synthase (NRPS) and polyene cytochrome P450 hydroxylase (CYP) were screened by PCR. Furthermore,several enzyme activities of psychrophilic actinomycetes were examined. The 25 representative strains belonged to 6 suborders, 12 families and 15 genera of the order Actinomycetals. For NRPS and CYP genes screening, positive strains were 14 and 11, respectively. Among the 111 actinomycetes isolated under low-temperature conditions, 88% were psychrotroph strains, 12% were psychrophilic actinomycetes, and most of them utilized gelatin, cellulose and chitin. Actinomycetes diversity is rich in Grand Shangri-la, and has the potential for conservation and utilization of actinomycetes resources.

  13. Efficient conversion of mannitol derived from brown seaweed to fructose for fermentation with a thraustochytrid.

    Science.gov (United States)

    Tajima, Takahisa; Tomita, Kousuke; Miyahara, Hiroyuki; Watanabe, Kenshi; Aki, Tsunehiro; Okamura, Yoshiko; Matsumura, Yukihiko; Nakashimada, Yutaka; Kato, Junichi

    2018-02-01

    Macroalgae are a promising biomass feedstock for energy and valuable chemicals. Mannitol and alginate are the major carbohydrates found in the microalga Laminaria japonica (Konbu). To convert mannitol to fructose for its utilization as a carbon source in mannitol non-assimilating bacteria, a psychrophile-based simple biocatalyst (PSCat) was constructed using a psychrophile as a host by expressing mesophilic enzymes, including mannitol 2-dehydrogenase for mannitol oxidation, and NADH oxidase and alkyl hydroxyperoxide reductase for NAD + regeneration. PSCat was treated at 40 °C to inactivate the psychrophilic enzymes responsible for byproduct formation and to increase the membrane permeability of the substrate. PSCat efficiently converted mannitol to fructose with high conversion yield without additional input of NAD + . Konbu extract containing mannitol was converted to fructose with hydroperoxide scavenging, inhibiting the mannitol dehydrogenase activity. Auranthiochytrium sp. could grow well in the presence of fructose converted by PSCat. Thus, PSCat is a potential carbohydrate converter for mannitol non-assimilating microorganism. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Anti-biofilm activities from marine cold adapted bacteria against staphylococci and Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Rosanna ePapa

    2015-12-01

    Full Text Available Microbial biofilms have great negative impacts on the world’s economy and pose serious problems to industry, public health and medicine. The interest in the development of new approaches for the prevention and treatment of bacterial adhesion and biofilm formation has increased. Since, bacterial pathogens living in biofilm induce persistent chronic infections due to the resistance to antibiotics and host immune system. A viable approach should target adhesive properties without affecting bacterial vitality in order to avoid the appearance of resistant mutants. Many bacteria secrete anti-biofilm molecules that function in regulating biofilm architecture or mediating the release of cells from it during the dispersal stage of biofilm life cycle. Cold-adapted marine bacteria represent an untapped reservoir of biodiversity able to synthesize a broad range of bioactive compounds, including anti-biofilm molecules.The anti-biofilm activity of cell-free supernatants derived from sessile and planktonic cultures of cold-adapted bacteria belonging to Pseudoalteromonas, Psychrobacter and Psychromonas species were tested against Staphylococcus aureus, Staphylococcus epidermidis and Pseudomonas aeruginosa strains. Reported results demonstrate that we have selected supernatants, from cold-adapted marine bacteria, containing non-biocidal agents able to destabilize biofilm matrix of all tested pathogens without killing cells. A preliminary physico-chemical characterization of supernatants was also performed, and these analyses highlighted the presence of molecules of different nature that act by inhibiting biofilm formation. Some of them are also able to impair the initial attachment of the bacterial cells to the surface, thus likely containing molecules acting as anti-biofilm surfactant molecules.The described ability of cold-adapted bacteria to produce effective anti-biofilm molecules paves the way to further characterization of the most promising molecules

  15. Single cell oils of the cold-adapted oleaginous yeast Rhodotorula glacialis DBVPG 4785

    Science.gov (United States)

    2010-01-01

    Background The production of microbial lipids has attracted considerable interest during the past decade since they can be successfully used to produce biodiesel by catalyzed transesterification with short chain alcohols. Certain yeast species, including several psychrophilic isolates, are oleaginous and accumulate lipids from 20 to 70% of biomass under appropriate cultivation conditions. Among them, Rhodotorula glacialis is a psychrophilic basidiomycetous species capable to accumulate intracellular lipids. Results Rhodotorula glacialis DBVPG 4785 is an oleaginous psychrophilic yeast isolated from a glacial environment. Despite its origin, the strain abundantly grew and accumulated lipids between -3 to 20°C. The temperature did not influence the yield coefficients of both biomass and lipids production, but had positive effect on the growth rate and thus on volumetric productivity of lipid. In glucose-based media, cellular multiplication occurred first, while the lipogenic phase followed whenever the culture was limited by a nutrient other than glucose. The extent of the carbon excess had positive effects on triacylglycerols production, that was maximum with 120 g L-1 glucose, in terms of lipid concentration (19 g L-1), lipid/biomass (68%) and lipid/glucose yields (16%). Both glucose concentration and growth temperature influenced the composition of fatty acids, whose unsaturation degree decreased when the temperature or glucose excess increased. Conclusions This study is the first proposed biotechnological application for Rhodotorula glacialis species, whose oleaginous biomass accumulates high amounts of lipids within a wide range of temperatures through appropriate cultivation C:N ratio. Although R. glacialis DBVPG 4785 is a cold adapted yeast, lipid production occurs over a broad range of temperatures and it can be considered an interesting microorganism for the production of single cell oils. PMID:20863365

  16. Single cell oils of the cold-adapted oleaginous yeast Rhodotorula glacialis DBVPG 4785

    Directory of Open Access Journals (Sweden)

    De Lucia Marzia

    2010-09-01

    Full Text Available Abstract Background The production of microbial lipids has attracted considerable interest during the past decade since they can be successfully used to produce biodiesel by catalyzed transesterification with short chain alcohols. Certain yeast species, including several psychrophilic isolates, are oleaginous and accumulate lipids from 20 to 70% of biomass under appropriate cultivation conditions. Among them, Rhodotorula glacialis is a psychrophilic basidiomycetous species capable to accumulate intracellular lipids. Results Rhodotorula glacialis DBVPG 4785 is an oleaginous psychrophilic yeast isolated from a glacial environment. Despite its origin, the strain abundantly grew and accumulated lipids between -3 to 20°C. The temperature did not influence the yield coefficients of both biomass and lipids production, but had positive effect on the growth rate and thus on volumetric productivity of lipid. In glucose-based media, cellular multiplication occurred first, while the lipogenic phase followed whenever the culture was limited by a nutrient other than glucose. The extent of the carbon excess had positive effects on triacylglycerols production, that was maximum with 120 g L-1 glucose, in terms of lipid concentration (19 g L-1, lipid/biomass (68% and lipid/glucose yields (16%. Both glucose concentration and growth temperature influenced the composition of fatty acids, whose unsaturation degree decreased when the temperature or glucose excess increased. Conclusions This study is the first proposed biotechnological application for Rhodotorula glacialis species, whose oleaginous biomass accumulates high amounts of lipids within a wide range of temperatures through appropriate cultivation C:N ratio. Although R. glacialis DBVPG 4785 is a cold adapted yeast, lipid production occurs over a broad range of temperatures and it can be considered an interesting microorganism for the production of single cell oils.

  17. Bat white-nose syndrome: An emerging fungal pathogen?

    Science.gov (United States)

    Blehert, D.S.; Hicks, A.C.; Behr, M.; Meteyer, C.U.; Berlowski-Zier, B. M.; Buckles, E.L.; Coleman, J.T.H.; Darling, S.R.; Gargas, A.; Niver, R.; Okoniewski, J.C.; Rudd, R.J.; Stone, W.B.

    2009-01-01

    White-nose syndrome (WNS) is a condition associated with an unprecedented bat mortality event in the northeastern United States. Since the winter of 2006*2007, bat declines exceeding 75% have been observed at surveyed hibernacula. Affected bats often present with visually striking white fungal growth on their muzzles, ears, and/or wing membranes. Direct microscopy and culture analyses demonstrated that the skin of WNS-affected bats is colonized by a psychro-philic fungus that is phylogenetically related to Geomyces spp. but with a conidial morphology distinct from characterized members of this genus. This report characterizes the cutaneous fungal infection associated with WNS.

  18. Psychrotolerant bacteria for remediation of oil-contaminated soils in the Arctic

    Science.gov (United States)

    Svarovskaya, L. I.; Altunina, L. K.

    2017-12-01

    Samples of oil-contaminated peat soil are collected in the region of the Barents Sea in Arctic Kolguyev Island. A model experiment on biodegradation of polluting hydrocarbons by natural microflora exhibiting psychrophilic properties is carried out at +10°C. The geochemical activity of pure hydrocarbon-oxidizing Acinetobacter, Pseudomonas, Bacillus and Rhodococcus cultures isolated from the soil is studied at a lower temperature. The concentration of soil contamination is determined within the range 18-57 g/kg. The biodegradation of oil by natural microflora is 60% under the conditions of a model experiment.

  19. Sensory, chemical and bacteriological changes during storage of iced squid ( Todaropsis eblanae )

    DEFF Research Database (Denmark)

    Paarup, T.; Sanchez, J.A.; Moral, A.

    2002-01-01

    Aims: To relate sensory shelf-life of iced whole and gutted squid to bacterial growth and chemical changes. Methods and Results: Cooked mantles from whole and gutted individuals were rejected after 10 and 12 days of storage, respectively, due to ammoniacal off-odours. Rate of production of both...... to spoilage through activity in the digestive gland, followed by diffusion of volatile compounds and amines to the mantle. Significance and Impact of the Study: Due to the psychrophilic nature of P. phosphoreum and Pseudoalteromonas sp., spread- plating and low temperature incubation are recommended...

  20. Iron bacterial phylogeny and their execution towards iron availability in Equatorial Indian Ocean and Coastal Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Rajasabapathy, R.; Mohandass, C.; VijayRaj, A.S.; Madival, V.V.; Meena, R.M.

    -264. Edwards K.J., W. Bach, T.M. McCollom and D.R. Rogers. 2004. Neutrophilic Iron-Oxidizing Bacteria in the Ocean: Their Habitats, Diversity, and Roles in Mineral Deposition, Rock Alteration, and Biomass Production in the Deep-Sea. Geomicrobiol. J. 21: 393...-404. Edwards K.J., D.R. Rogers, C.O. Wirsen and T.M. McCollom. 2003. Isolation and characterization of novel psychrophilic, neutrophilic, Fe-oxidizing chemolitho-autotrophic α- and γ -Proteobacteria from the deep sea. Appl. Environ. Microbiol. 69: 2906...

  1. Efficient anaerobic mono-digestion of N-rich slaughterhouse waste: influence of ammonia, temperature and trace elements.

    Science.gov (United States)

    Ortner, Markus; Leitzinger, Kerstin; Skupien, Sören; Bochmann, Günther; Fuchs, Werner

    2014-12-01

    Three mono-digestion experiments treating slaughterhouse waste with high TKN concentration (∼11g/kg) were applied in lab-scale at mesophilic and psychrophilic conditions to study the impact of high ammonia concentrations and additives. Precipitation of sulphur by addition of ferrous chloride did not influence process behaviour, whereas supplementation of trace elements significantly improved process stability by reducing volatile fatty acid concentration towards zero. The limit of NH4-N concentration causing a rise of VFAs to 19,000mg/l and reduction of methane by 25% was found between 7.7 and 9.1g/kg which correspond to NH3 concentrations of 830-1060mg/l. Psychrophilic operation (25°C) lowered inhibitory NH3 concentration to 140mg/l, but process performance was stable only at low OLR of 0.4kgVS/m(3)d. Robust performance at highest possible NH4-N concentration (7.7g/kg), low VFA accumulation and satisfying methane yield of about 280Nm(3)/t COD was observed at OLR of 2.5kgVS/m(3)d at 37°C. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Chemically pretreating slaughterhouse solid waste to increase the efficiency of anaerobic digestion.

    Science.gov (United States)

    Flores-Juarez, Cyntia R; Rodríguez-García, Adrián; Cárdenas-Mijangos, Jesús; Montoya-Herrera, Leticia; Godinez Mora-Tovar, Luis A; Bustos-Bustos, Erika; Rodríguez-Valadez, Francisco; Manríquez-Rocha, Juan

    2014-10-01

    The combined effect of temperature and pretreatment of the substrate on the anaerobic treatment of the organic fraction of slaughterhouse solid waste was studied. The goal of the study was to evaluate the effect of pretreating the waste on the efficiency of anaerobic digestion. The effect was analyzed at two temperature ranges (the psychrophilic and the mesophilic ranges), in order to evaluate the effect of temperature on the performance of the anaerobic digestion process for this residue. The experiments were performed in 6 L batch reactors for 30 days. Two temperature ranges were studied: the psychrophilic range (at room temperature, 18°C average) and the mesophilic range (at 37°C). The waste was pretreated with NaOH before the anaerobic treatment. The result of pretreating with NaOH was a 194% increase in the soluble chemical oxygen demand (COD) with a dose of 0.6 g NaOH per g of volatile suspended solids (VSS). In addition, the soluble chemical oxygen demand/total chemical oxygen demand ratio (sCOD/tCOD) increased from 0.31 to 0.7. For the anaerobic treatment, better results were observed in the mesophilic range, achieving 70.7%, 47% and 47.2% removal efficiencies for tCOD, total solids (TS), and volatile solids (VS), respectively. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  3. Combined effect of γ-irradiation and bacterial-fermented dextrose on microbiological quality of refrigerated pork sausages

    Science.gov (United States)

    Dussault, D.; Benoit, C.; Lacroix, M.

    2012-08-01

    The objective of this study was to evaluate the effect of a concentrated fermented dextrose (FD), a natural antimicrobial product, combined with low dose γ-irradiation (1.5 kGy) on the microbiological quality of fresh pork sausages. Fresh pork sausages containing the FD (0.25%, 0.5% and 0.75%) were prepared in a meat pilot plant and were irradiated using a UC-15A irradiator equipped with a 60Cobalt source. The γ-irradiation treatment alone was able to reduce the initial psychrophilic and mesophilic bacteria by more than 2 log CFU/g and kept the lactobacillus population under the detection limit (100 CFU/g). Results also showed that the FD alone was able to extend the shelf life of the sausages from 5 days up to 13 days. At day 13, the FD or irradiation alone showed 2 log CFU/g less mesophilic bacteria than the control. After combining FD and irradiation another reduction of the microbial count of 1 log CFU/g was observed. When combining the irradiation treatment with the FD results it showed a reduced growth rate of the psychrophilic and mesophilic bacteria compared to both treatments alone. This study demonstrated that FD with low dose gamma irradiation act in synergy to reduce the multiplication of the total bacterial flora in fresh sausages.

  4. Protein Adaptations in Archaeal Extremophiles

    Science.gov (United States)

    Reed, Christopher J.; Lewis, Hunter; Trejo, Eric; Winston, Vern; Evilia, Caryn

    2013-01-01

    Extremophiles, especially those in Archaea, have a myriad of adaptations that keep their cellular proteins stable and active under the extreme conditions in which they live. Rather than having one basic set of adaptations that works for all environments, Archaea have evolved separate protein features that are customized for each environment. We categorized the Archaea into three general groups to describe what is known about their protein adaptations: thermophilic, psychrophilic, and halophilic. Thermophilic proteins tend to have a prominent hydrophobic core and increased electrostatic interactions to maintain activity at high temperatures. Psychrophilic proteins have a reduced hydrophobic core and a less charged protein surface to maintain flexibility and activity under cold temperatures. Halophilic proteins are characterized by increased negative surface charge due to increased acidic amino acid content and peptide insertions, which compensates for the extreme ionic conditions. While acidophiles, alkaliphiles, and piezophiles are their own class of Archaea, their protein adaptations toward pH and pressure are less discernible. By understanding the protein adaptations used by archaeal extremophiles, we hope to be able to engineer and utilize proteins for industrial, environmental, and biotechnological applications where function in extreme conditions is required for activity. PMID:24151449

  5. A novel genetic system for recombinant protein secretion in the Antarctic Pseudoalteromonas haloplanktis TAC125

    Directory of Open Access Journals (Sweden)

    Marino Gennaro

    2006-12-01

    Full Text Available Abstract Background The final aim of recombinant protein production is both to have a high specific production rate and a high product quality. It was already shown that using cold-adapted bacteria as host vectors, some "intractable" proteins can be efficiently produced at temperature as low as 4°C. Results A novel genetic system for the production and secretion of recombinant proteins in the Antarctic Gram-negative bacterium Pseudoalteromonas haloplanktis TAC125 was set up. This system aims at combining the low temperature recombinant product production with the advantages of extra-cellular protein targeting. The psychrophilic α-amylase from Pseudoalteromonas haloplanktis TAB23 was used as secretion carrier. Three chimerical proteins were produced by fusing intra-cellular proteins to C-terminus of the psychrophilic α-amylase and their secretion was analysed. Data reported in this paper demonstrate that all tested chimeras were translocated with a secretion yield always higher than 80%. Conclusion Data presented here demonstrate that the "cold" gene-expression system is efficient since the secretion yield of tested chimeras is always above 80%. These secretion performances place the α-amylase derived secretion system amongst the best heterologous secretion systems in Gram-negative bacteria reported so far. As for the quality of the secreted passenger proteins, data presented suggest that the system also allows the correct disulphide bond formation of chimera components, secreting a fully active passenger.

  6. Physicochemical and microbiological characteristics of beef treated with high-intensity ultrasound and stored at 4 °C.

    Science.gov (United States)

    Caraveo, Omaro; Alarcon-Rojo, Alma D; Renteria, Ana; Santellano, Eduardo; Paniwnyk, Larysa

    2015-09-01

    The application of high-intensity ultrasound causes changes in the physical and chemical properties of biological materials including meat. In this study the physicochemical and microbiological characteristics of beef after the application of high-intensity ultrasound for 60 and 90 min and subsequent storage at 4 °C for 0, 2, 4, 6, 8 and 10 days were evaluated. The ultrasound-treated meat showed higher (P 0.05) between sonication times. The redness of ultrasound-treated meat was initially lower than that of control meat, but no difference (P > 0.05) was observed after day 8 of storage. The 90 min ultrasound-treated meat had higher (P < 0.05) yellowness during the entire storage period. Ultrasound decreased (P < 0.05) coliform, mesophilic and psychrophilic bacteria in the meat throughout the storage period; however, the original microbial loads increased constantly during refrigeration. The 90 min ultrasound-treated meat showed the greatest reduction in microbial load during storage. Coliforms and psychrophilic bacteria were the most affected by ultrasound. The application of high-intensity ultrasound to beef semitendinosus muscle stored at 4 °C decreased bacterial growth without affecting the physicochemical quality of meat. © 2014 Society of Chemical Industry.

  7. Protein Adaptations in Archaeal Extremophiles

    Directory of Open Access Journals (Sweden)

    Christopher J. Reed

    2013-01-01

    Full Text Available Extremophiles, especially those in Archaea, have a myriad of adaptations that keep their cellular proteins stable and active under the extreme conditions in which they live. Rather than having one basic set of adaptations that works for all environments, Archaea have evolved separate protein features that are customized for each environment. We categorized the Archaea into three general groups to describe what is known about their protein adaptations: thermophilic, psychrophilic, and halophilic. Thermophilic proteins tend to have a prominent hydrophobic core and increased electrostatic interactions to maintain activity at high temperatures. Psychrophilic proteins have a reduced hydrophobic core and a less charged protein surface to maintain flexibility and activity under cold temperatures. Halophilic proteins are characterized by increased negative surface charge due to increased acidic amino acid content and peptide insertions, which compensates for the extreme ionic conditions. While acidophiles, alkaliphiles, and piezophiles are their own class of Archaea, their protein adaptations toward pH and pressure are less discernible. By understanding the protein adaptations used by archaeal extremophiles, we hope to be able to engineer and utilize proteins for industrial, environmental, and biotechnological applications where function in extreme conditions is required for activity.

  8. Biomass production by Antarctic yeast strains: an investigation on the lipid composition

    International Nuclear Information System (INIS)

    Zlatanov, M.; Antova, G.; Angelova-Romova, M.; Pavlova, K.; Georgieva, K.; Rousenova-Videva, S.

    2010-01-01

    Psychrophilic yeast strains Rhodotorula glutinis AL_1_0_7, Sporobolomyces roseus AL_1_0_8, Cryptococcus albidus AL_5_5, Cryptococcus laurentii AL_5_6 and Cryptococcus laurentii AL_5_8 isolated from soil sample taken from the region of the Bulgarien base on Livingston Island, Antarctica, were studied. The biomass production was followed after cultivation of the yeasts in a medium with pH 5.3 at 15°C for 120 h. The biomass concentration by psychrophilic yeast strains was: R. glutinis AL_1_0_7-6.05 g/l, S. roseus AL108-5.78 g/l, Cr. albidus AL_5_5, Cr. laurentii AL_5_6 and Cr. laurentii AL_5_8-6.52 g/l, 6.84 g/l and 6.24 g/l, respectively. The extracted and separated lipids from the samples were supplied to analysis and the compositions of fatty acids, phospholipids, sterols as well as tocopherols were determined. Unsaturated fatty acids, mainly oleic (58.6-63.5%) and of saturated palmitic (18.2-24.5%), predominated in triacylglycerols. Sterols (0.1-0.3%) were valued in the dry yeast biomass. The content of phospholipids, mainly phosphatidylcholine, phosphatidylinositole and phosphatidylethanolamine was found to be in the range of 0.2-1.6%. The quantity of tocopherols was 0-26.3 mg/kg. All of tocopherol classes were established.

  9. Improvement of municipal wastewater pretreatment by direct membrane filtration.

    Science.gov (United States)

    Nascimento, Thiago A; Mejía, Fanny R; Fdz-Polanco, Fernando; Peña Miranda, Mar

    2017-10-01

    The high content of particulate matter in municipal wastewater hinders the conventional anaerobic treatments at psychrophilic temperatures. The hydrolysis of the particulate chemical oxygen demand (pCOD) could be the limiting step under these conditions. Therefore, new pretreatments or improved conventional pretreatments are needed in order to separate pCOD. In this work, direct membrane filtration of municipal wastewater, using an ultrafiltration membrane, was investigated. This intensive pretreatment, which aims to separate soluble chemical oxygen demand (sCOD) and to concentrate pCOD, together with anaerobic treatments of both streams at psychrophilic and mesophilic conditions respectively, could be an alternative to the conventional activated sludge process. The obtained results show a removal yield of 24.9% of the total solids (TS) and 45% of total chemical oxygen demand (tCOD), obtaining a permeate free of suspended solids. This physical removal implies the accumulation of solids inside the membrane tank, reaching the values of 45.4 and 4.4 g/L of TS in the sedimentation and filtration sections, respectively. The membrane operated with filtration, backwashing cycles and continuous gas sparging, with a permeate flux predominantly around 10 L/(m 2  h). The results show the viability of the technology to concentrate pCOD and so to improve energy recovery from municipal wastewater.

  10. Rhodotorula svalbardensis sp. nov., a novel yeast species isolated from cryoconite holes of Ny-Ålesund, Arctic.

    Science.gov (United States)

    Singh, Purnima; Singh, Shiv M; Tsuji, Masaharu; Prasad, Gandham S; Hoshino, Tamotsu

    2014-02-01

    A psychrophilic yeast species was isolated from glacier cryoconite holes of Svalbard. Nucleotide sequences of the strains were studied using D1/D2 domain, ITS region and partial sequences of mitochondrial cytochrome b gene. The strains belonged to a clade of psychrophilic yeasts, but showed marked differences from related species in the D1/D2 domain and biochemical characters. Effects of temperature, salt and media on growth of the cultures were also studied. Screening of the cultures for amylase, cellulase, protease, lipase, urease and catalase activities was carried out. The strains expressed high amylase and lipase activities. Freeze tolerance ability of the isolates indicated the formation of unique hexagonal ice crystal structures due to presence of 'antifreeze proteins' (AFPs). FAME analysis of cultures showed a unique trend of increase in unsaturated fatty acids with decrease in temperature. The major fatty acids recorded were oleic acid, linoleic acid, linolenic acid, palmitic acid, stearic acid, myristic acid and pentadecanoic acid. Based on sequence data and, physiological and morphological properties of the strains, we propose a novel species, Rhodotorula svalbardensis and designate strains MLB-I (CCP-II) and CRY-YB-1 (CBS 12863, JCM 19699, JCM 19700, MTCC 10952) as its type strains (Etymology: sval.bar.den'sis. N.L. fem. adj. svalbardensis pertaining to Svalbard). Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Extremophiles and their application to veterinary medicine

    Directory of Open Access Journals (Sweden)

    Irwin Jane A

    2004-06-01

    Full Text Available Extremophiles are organisms that can grow and thrive in harsh conditions, e.g., extremes of temperature, pH, salinity, radiation, pressure and oxygen tension. Thermophilic, halophilic and radiation-resistant organisms are all microbes, some of which are able to withstand multiple extremes. Psychrophiles, or cold-loving organisms, include not only microbes, but fish that live in polar waters and animals that can withstand freezing. Extremophiles are structurally adapted at a molecular level to withstand these conditions. Thermophiles have particularly stable proteins and cell membranes, psychrophiles have flexible cellular proteins and membranes and/or antifreeze proteins, salt-resistant halophiles contain compatible solutes or high concentrations of inorganic ions, and acidophiles and alkaliphiles are able to pump ions to keep their internal pH close to neutrality. Their interest to veterinary medicine resides in their capacity to be pathogenic, and as sources of enzymes and other molecules for diagnostic and pharmaceutical purposes. In particular, thermostable DNA polymerases are a mainstay of PCR-based diagnostics.

  12. Some like it hot, some like it cold: Temperature dependent biotechnological applications and improvements in extremophilic enzymes.

    Science.gov (United States)

    Siddiqui, Khawar Sohail

    2015-12-01

    The full biotechnological exploitation of enzymes is still hampered by their low activity, low stability and high cost. Temperature-dependent catalytic properties of enzymes are a key to efficient and cost-effective translation to commercial applications. Organisms adapted to temperature extremes are a rich source of enzymes with broad ranging thermal properties which, if isolated, characterized and their structure-function-stability relationship elucidated, could underpin a variety of technologies. Enzymes from thermally-adapted organisms such as psychrophiles (low-temperature) and thermophiles (high-temperature) are a vast natural resource that is already under scrutiny for their biotechnological potential. However, psychrophilic and thermophilic enzymes show an activity-stability trade-off that necessitates the use of various genetic and chemical modifications to further improve their properties to suit various industrial applications. This review describes in detail the properties and biotechnological applications of both cold-adapted and thermophilic enzymes. Furthermore, the review critically examines ways to improve their value for biotechnology, concluding by proposing an integrated approach involving thermally-adapted, genetically and magnetically modified enzymes to make biocatalysis more efficient and cost-effective. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Cold-Adapted Enzymes

    Science.gov (United States)

    Georlette, D.; Bentahir, M.; Claverie, P.; Collins, T.; D'amico, S.; Delille, D.; Feller, G.; Gratia, E.; Hoyoux, A.; Lonhienne, T.; Meuwis, M.-a.; Zecchinon, L.; Gerday, Ch.

    In the last few years, increased attention has been focused on enzymes produced by cold-adapted micro-organisms. It has emerged that psychrophilic enzymes represent an extremely powerful tool in both protein folding investigations and for biotechnological purposes. Such enzymes are characterised by an increased thermosensitivity and, most of them, by a higher catalytic efficiency at low and moderate temperatures, when compared to their mesophilic counterparts. The high thermosensitivity probably originates from an increased flexibility of either a selected area of the molecular edifice or the overall protein structure, providing enhanced abilities to undergo conformational changes during catalysis at low temperatures. Structure modelling and recent crystallographic data have allowed to elucidate the structural parameters that could be involved in this higher resilience. It was demonstrated that each psychrophilic enzyme adopts its own adaptive strategy. It appears, moreover, that there is a continuum in the strategy of protein adaptation to temperature, as the previously mentioned structural parameters are implicated in the stability of thermophilic proteins. Additional 3D crystal structures, site-directed and random mutagenesis experiments should now be undertaken to further investigate the stability-flexibility-activity relationship.

  14. Effect of a traditional marinating on properties of rainbow trout fillet during chilled storage.

    Science.gov (United States)

    Maktabi, Siavash; Zarei, Mehdi; Chadorbaf, Milad

    2016-01-01

    In recent years, there has been an increasing interest in using food additives from natural sources to improve taste and also extend the shelf-life of semi-preserved foodstuffs. The aim of this study was to examine the chemical and microbiological changes promoted by a local marinating process in rainbow trout fillets during chilled storage. Fish fillets were immersed in marinades and stored at 4 ˚C for 10 days and were analyzed for total volatile basic nitrogen (TVN), thiobarbitoric acid (TBA), water holding capacity (WHC), pH, mesophilic and psychrophilic bacterial count every two days. Variations in TBA and WHC were not statistically significant between marinated and control groups. The values of TVN, pH, total psychrophilic bacteria count (TPC) and total mesophilic bacteria count (TMC) in marinated samples were significantly lower than controls. The most obvious finding of this study was that traditional marinated rainbow trout fillet stored in 4 ˚C had no undesirable changes at least for eight days.

  15. Structural Adaptation of Cold-Active RTX Lipase from Pseudomonas sp. Strain AMS8 Revealed via Homology and Molecular Dynamics Simulation Approaches

    Directory of Open Access Journals (Sweden)

    Mohd. Shukuri Mohamad Ali

    2013-01-01

    Full Text Available The psychrophilic enzyme is an interesting subject to study due to its special ability to adapt to extreme temperatures, unlike typical enzymes. Utilizing computer-aided software, the predicted structure and function of the enzyme lipase AMS8 (LipAMS8 (isolated from the psychrophilic Pseudomonas sp., obtained from the Antarctic soil are studied. The enzyme shows significant sequence similarities with lipases from Pseudomonas sp. MIS38 and Serratia marcescens. These similarities aid in the prediction of the 3D molecular structure of the enzyme. In this study, 12 ns MD simulation is performed at different temperatures for structural flexibility and stability analysis. The results show that the enzyme is most stable at 0°C and 5°C. In terms of stability and flexibility, the catalytic domain (N-terminus maintained its stability more than the noncatalytic domain (C-terminus, but the non-catalytic domain showed higher flexibility than the catalytic domain. The analysis of the structure and function of LipAMS8 provides new insights into the structural adaptation of this protein at low temperatures. The information obtained could be a useful tool for low temperature industrial applications and molecular engineering purposes, in the near future.

  16. Microbial contamination of the air at the wastewater treatment plant

    Directory of Open Access Journals (Sweden)

    Monika Vítězová

    2012-01-01

    Full Text Available Wastewater treatment plants (WWTPs primarily serve to protect the environment. Their task is to clean waste water from the agglomerations. On the other hand wastewater treatment plants can also negatively affect the environment in their neighbourhood. These include emissions of odour and microorganisms. This article discusses the microbial contamination of the air, called bioaerosols in selected wastewater treatment plant for 18 000 p.e. From results of the work is evident that the largest group of microorganisms in the monitored air were psychrophilic and mesophilic bacteria and microscopic fungi. The number of psychrophilic bacteria ranged from 14 to 12 000 CFU/m3 (colony forming units in 1 m3, the number of mesophilic bacteria varied in the range from 20 to 18 500 CFU/m3 and the fungi from 25 to 32 000 CFU/m3 in the air. The amount of actinomycetes ranged from 1 to 1 030 CFU/m3 and faecal coliform bacteria from 0 to 2 500 CFU/m3. Furthermore, it was confirmed that the highest air contamination was around the activation tank, area for dewatered sludge and around the building of mechanical cleaning, depending on the season. The density of studied microorganisms correlated with air temperature.

  17. The utilization of gum tragacanth to improve the growth of Rhodotorula aurantiaca and the production of gamma-decalactone in large scale.

    Science.gov (United States)

    Alchihab, Mohamed; Destain, Jacqueline; Aguedo, Mario; Wathelet, Jean-Paul; Thonart, Philippe

    2010-09-01

    The production of gamma-decalactone and 4-hydroxydecanoic acid by the psychrophilic yeast R. aurantiaca was studied. The effect of both compounds on the growth of R. aurantiaca was also investigated and our results show that gamma-decalactone must be one of the limiting factors for its production. The addition of gum tragacanth to the medium at concentrations of 3 and 4 g/l seems to be an adequate strategy to enhance gamma-decalactone production and to reduce its toxicity towards the cell. The production of gamma-decalactone and 4-hydroxydecanoic acid was significantly higher in 20-l bioreactor than in 100-l bioreactor. By using 20 g/l of castor oil, 6.5 and 4.5 g/l of gamma-decalactone were extracted after acidification at pH 2.0 and distillation at 100 degrees C for 45 min in 20- and 100-l bioreactors, respectively. We propose a process at industrial scale using a psychrophilic yeast to produce naturally gamma-decalactone from castor oil which acts also as a detoxifying agent; moreover the process was improved by adding a natural gum.

  18. Evaluation of pectinolytic activities for oenological uses from psychrotrophic yeasts.

    Science.gov (United States)

    Sahay, S; Hamid, B; Singh, P; Ranjan, K; Chauhan, D; Rana, R S; Chaurse, V K

    2013-08-01

    Of the twenty-three morphotypes of yeasts isolated from soil capable of utilizing pectin as sole carbon source at 6°C, two yeast isolates, one psychrotolerant (PT1) and one psychrophilic (SPY11), were selected according to their ability to secrete pectinolytic enzymes under some oenological conditions (temperature 6 and 12°C and pH 3.5) and ability or inability to grow above 20°C, respectively. As compared to their optimal activity, the three pectinolytic enzymes viz., pectin methyl esterase (PME), endopolygalacturonase (endo-PG) and exopolygalacturonase (exo-PG) isolated and assayed at pH 3.5 from PT1 were found to retain 39, 60 and 60% activity at 12°C and 40, 79 and 74% activity at 28°C, respectively. Likewise, the enzymes PME and endo-PG at pH 3.5 from SPY11 displayed 46 and 86% activity at 12°C and 50 and 60% activity at 28°C, respectively. All these enzymes showed 20-90% of residual activity at pH 3.5 and 6°C. The yeast isolates PT1 and SPY11 were identified as Rhodotorula mucilaginosa and Cystofilobasidium capitatum, respectively, on the basis of morphological, physiological and molecular characteristics. This study presents the first report on pectinolytic activities under major oenological conditions from psychrotolerant isolate R. mucilaginosa PT1 and psychrophilic isolate C. capitatum SPY11. The cold-active pectinolytic enzymes (PME, endo-PG and exo-PG) from the newly isolated and identified psychrophilic yeast Cystofilobasidium capitatum SPY11 and psychrotolerant yeast Rhodotorula mucilaginosa PT1that exhibited 50-80% of their optimum activity under some major oenological conditions pH (3.5) and temperatures (6 and 12°C) could be applied to wine production and juice clarification at low temperature. The psychrotrophic yeasts themselves could be applied to cold process for the production of enzymes thus saving cost of energy and protecting process from contamination. © 2013 The Society for Applied Microbiology.

  19. Cold adaptation of the mononuclear molybdoenzyme periplasmic nitrate reductase from the Antarctic bacterium Shewanella gelidimarina

    International Nuclear Information System (INIS)

    Simpson, Philippa J.L.; Codd, Rachel

    2011-01-01

    Highlights: ► Cold-adapted phenotype of NapA from the Antarctic bacterium Shewanella gelidimarina. ► Protein homology model of NapA from S. gelidimarina and mesophilic homologue. ► Six amino acid residues identified as lead candidates governing NapA cold adaptation. ► Molecular-level understanding of designing cool-temperature in situ oxyanion sensors. -- Abstract: The reduction of nitrate to nitrite is catalysed in bacteria by periplasmic nitrate reductase (Nap) which describes a system of variable protein subunits encoded by the nap operon. Nitrate reduction occurs in the NapA subunit, which contains a bis-molybdopterin guanine dinucleotide (Mo–MGD) cofactor and one [4Fe–4S] iron–sulfur cluster. The activity of periplasmic nitrate reductase (Nap) isolated as native protein from the cold-adapted (psychrophilic) Antarctic bacterium Shewanella gelidimarina (Nap Sgel ) and middle-temperature adapted (mesophilic) Shewanella putrefaciens (Nap Sput ) was examined at varied temperature. Irreversible deactivation of Nap Sgel and Nap Sput occurred at 54.5 and 65 °C, respectively. When Nap Sgel was preincubated at 21–70 °C for 30 min, the room-temperature nitrate reductase activity was maximal and invariant between 21 and 54 °C, which suggested that Nap Sgel was poised for optimal catalysis at modest temperatures and, unlike Nap Sput , did not benefit from thermally-induced refolding. At 20 °C, Nap Sgel reduced selenate at 16% of the rate of nitrate reduction. Nap Sput did not reduce selenate. Sequence alignment showed 46 amino acid residue substitutions in Nap Sgel that were conserved in NapA from mesophilic Shewanella, Rhodobacter and Escherichia species and could be associated with the Nap Sgel cold-adapted phenotype. Protein homology modeling of Nap Sgel using a mesophilic template with 66% amino acid identity showed the majority of substitutions occurred at the protein surface distal to the Mo–MGD cofactor. Two mesophilic ↔ psychrophilic

  20. Biogeochemical Reactions Under Simulated Europa Ocean Conditions

    Science.gov (United States)

    Amashukeli, X.; Connon, S. A.; Gleeson, D. F.; Kowalczyk, R. S.; Pappalardo, R. T.

    2007-12-01

    Galileo data have demonstrated the probable presence of a liquid water ocean on Europa, and existence of salts and carbon dioxide in the satellite's surface ice (e.g., Carr et al., 1998; McCord et al., 1999, Pappalardo et al., 1999; Kivelson et al., 2000). Subsequently, the discovery of chemical signatures of extinct or extant life in Europa's ocean and on its surface became a distinct possibility. Moreover, understanding of Europa's potential habitability is now one of the major goals of the Europa Orbiter Flagship mission. It is likely, that in the early stages of Europa's ocean formation, moderately alkaline oceanic sulfate-carbonate species and a magnetite-silicate mantel could have participated in low-temperature biogeochemical sulfur, iron and carbon cycles facilitated by primitive organisms (Zolotov and Shock, 2004). If periodic supplies of fresh rock and sulfate-carbonate ions are available in Europa's ocean, then an exciting prospect exists that life may be present in Europa's ocean today. In our laboratory, we began the study of the plausible biogeochemical reactions under conditions appropriate to Europa's ocean using barophilic psychrophilic organisms that thrive under anaerobic conditions. In the near absence of abiotic synthetic pathways due to low Europa's temperatures, the biotic synthesis may present a viable opportunity for the formation of the organic and inorganic compounds under these extreme conditions. This work is independent of assumptions regarding hydrothermal vents at Europa's ocean floor or surface-derived oxidant sources. For our studies, we have fabricated a high-pressure (5,000 psi) reaction vessel that simulates aqueous conditions on Europa. We were also successful at reviving barophilic psychrophilic strains of Shewanella bacterium, which serve as test organisms in this investigation. Currently, facultative barophilic psychrophilic stains of Shewanella are grown in the presence of ferric food source; the strains exhibiting iron

  1. Post-harvest conservation of organic strawberries coated with cassava starch and chitosan

    Directory of Open Access Journals (Sweden)

    Raquel P Campos

    2011-10-01

    Full Text Available The strawberry is as non-climacteric fruit, but has a high post-harvest respiration rate, which leads to a rapid deterioration at room temperature. This study aimed to evaluate the application of biodegradable coating on postharvest conservation of organic strawberries, cv. Camarosa, packed in plastic hinged boxes and stored at 10ºC. The treatments consisted of: a control; b 2% cassava starch; c 1% chitosan; and d 2% cassava starch + 1% chitosan. Physical and chemical characteristics of fruits were evaluated at 3, 6 and 9 days of storage, and microbiological and sensory analyses were carried out at the end of the storage period. The treatments influenced positively the post-harvest quality of organic strawberries. The coating cassava starch + chitosan provided the best results, with less than 6% of loss in fruit mass, lower counts of yeast and psychrophilic microorganisms and the best appearance according to the sensory analysis.

  2. Novel Essential Role of Ethanol Oxidation Genes at Low Temperature Revealed by Transcriptome Analysis in the Antarctic Bacterium Pseudomonas extremaustralis

    DEFF Research Database (Denmark)

    Tribelli, Paula Maria; Solar Venero, Esmeralda C.; Ricardi, Martiniano M

    2015-01-01

    Temperature is one of the most important factors for bacterial growth and development. Cold environments are widely distributed on earth, and psychrotolerant and psychrophilic microorganisms have developed different adaptation strategies to cope with the stress derived from low temperatures....... Pseudomonas extremaustralis is an Antarctic bacterium able to grow under low temperatures and to produce high amounts of polyhydroxyalkanoates (PHAs). In this work, we analyzed the genome-wide transcriptome by RNA deep-sequencing technology of early exponential cultures of P. extremaustralis growing in LB...... with sodium octanoate. Additionally, p-rosaniline assay measurements showed the presence of alcohol dehydrogenase activity at both 8°C and 30°C, while the activity was abolished in a pqqB mutant strain. These results together with the detection of ethanol by gas chromatography in P. extremaustralis cultures...

  3. Wax Ester Analysis of Bats Suffering from White Nose Syndrome in Europe.

    Science.gov (United States)

    Řezanka, Tomáš; Viden, Ivan; Nováková, Alena; Bandouchová, Hana; Sigler, Karel

    2015-07-01

    The composition of wax esters (WE) in the fur of adult greater mouse-eared bats (Myotis myotis), either healthy or suffering from white nose syndrome (WNS) caused by the psychrophilic fungus Pseudogymnoascus destructans, was investigated by high-resolution mass spectrometry analysis in the positive ion mode. Profiling of lipid classes showed that WE are the most abundant lipid class, followed by cholesterol esters, and other lipid classes, e.g., triacylglycerols and phospholipids. WE abundance in non-polar lipids was gender-related, being higher in males than in females; in individuals suffering from WNS, both male and female, it was higher than in healthy counterparts. WE were dominated by species containing 18:1 fatty acids. Fatty alcohols were fully saturated, dominated by species containing 24, 25, or 26 carbon atoms. Two WE species, 18:1/18:0 and 18:1/20:0, were more abundant in healthy bats than in infected ones.

  4. Extraction of intracellular protein from Glaciozyma antarctica for proteomics analysis

    Science.gov (United States)

    Faizura, S. Nor; Farahayu, K.; Faizal, A. B. Mohd; Asmahani, A. A. S.; Amir, R.; Nazalan, N.; Diba, A. B. Farah; Muhammad, M. Nor; Munir, A. M. Abdul

    2013-11-01

    Two preparation methods of crude extracts of psychrophilic yeast Glaciozyma antarctica were compared in order to obtain a good recovery of intracellular proteins. Extraction with mechanical procedures using sonication was found to be more effective for obtaining good yield compare to alkaline treatment method. The procedure is simple, rapid, and produce better yield. A total of 52 proteins were identified by combining both extraction methods. Most of the proteins identified in this study involves in the metabolic process including glycolysis pathway, pentose phosphate pathway, pyruyate decarboxylation and also urea cyle. Several chaperons were identified including probable cpr1-cyclophilin (peptidylprolyl isomerase), macrolide-binding protein fkbp12 and heat shock proteins which were postulate to accelerate proper protein folding. Characteristic of the fundamental cellular processes inferred from the expressed-proteome highlight the evolutionary and functional complexity existing in this domain of life.

  5. High activity and low temperature optima of extracellular enzymes in Arctic sediments: implications for carbon cycling by heterotrophic microbial communities

    DEFF Research Database (Denmark)

    Arnosti, C.; Jørgensen, BB

    2003-01-01

    The rate of the initial step in microbial remineralization of organic carbon, extracellular enzymatic hydrolysis, was investigated as a function of temperature in permanently cold sediments from 2 fjords on the west coast of Svalbard (Arctic Ocean). We used 4 structurally distinct polysaccharides...... hydrolysis in order to determine the relative temperature responses of the initial and terminal steps in microbial remineralization of carbon. The temperature optimum of sulfate reduction, 21degreesC, was considerably lower than previous reports of sulfate reduction in marine sediments, but is consistent...... with recent studies of psychrophilic sulfate reducers isolated from Svalbard sediments. A calculation of potential carbon flow into the microbial food chain demonstrated that the activity of just one type of polysaccharide-hydrolyzing enzyme could in theory supply 21 to 100% of the carbon consumed via sulfate...

  6. A low temperature anaerobic digestion system reduces instability and produces optimal methane yield : case study of a Farrow to Finish farm marketing 10,000 hogs per year in Quebec

    Energy Technology Data Exchange (ETDEWEB)

    Villeneuve, E.; Boivin, S.; Hince, J.-F. [Bio-Terre Systems, Sherbrooke, PQ (Canada); Masse, D. [Agriculture and Agri-Food Canada, Ottawa, ON (Canada)

    2008-07-01

    This presentation described a joint collaboration between Agriculture and Agri-Food Canada (AAFC) and Bio-Terre Systems that resulted in the development of an innovative environmental solution for manure management. The solution which combines low-temperature anaerobic digestion, concentration of solids and production of green energy, responds to the growth of hog production in North America. A case study of a Farrow to Finish farm marketing 10,000 swine in St.-Hilaire, Quebec was presented with particular reference to background information on the farm, process stability and process performance. The Bio-Terre technology was discussed in detail including a discussion of the psychrophilic anaerobic digestion and microorganisms and sequencing batch reactor (SBR) process. The advantages and disadvantages of this process were presented. It was concluded that the process offers many benefits, including energy economy, improved health of animals, odorless spreading, better fertilizer, and reduction of land required. tabs., figs.

  7. Bacterial Ice Crystal Controlling Proteins

    Science.gov (United States)

    Lorv, Janet S. H.; Rose, David R.; Glick, Bernard R.

    2014-01-01

    Across the world, many ice active bacteria utilize ice crystal controlling proteins for aid in freezing tolerance at subzero temperatures. Ice crystal controlling proteins include both antifreeze and ice nucleation proteins. Antifreeze proteins minimize freezing damage by inhibiting growth of large ice crystals, while ice nucleation proteins induce formation of embryonic ice crystals. Although both protein classes have differing functions, these proteins use the same ice binding mechanisms. Rather than direct binding, it is probable that these protein classes create an ice surface prior to ice crystal surface adsorption. Function is differentiated by molecular size of the protein. This paper reviews the similar and different aspects of bacterial antifreeze and ice nucleation proteins, the role of these proteins in freezing tolerance, prevalence of these proteins in psychrophiles, and current mechanisms of protein-ice interactions. PMID:24579057

  8. Effect of freezing rate and storage time on shelf-life quality of hot boned and conventionally boned ground beef

    International Nuclear Information System (INIS)

    Gapud, V.G.; Schlimme, D.V.

    1986-01-01

    Commercially processed, 80% lean, chub packaged ground beef (both conventionally boned and hot boned) was frozen to O F (-18 0 C) at three rates: 72, 96, and 120 hours before storage at O F (-18 0 C). The meat was examined after 0, 1.5, 3, 6, 9, and 12 months storage for the following attributes: psychrophile and aerobic plate counts, free fatty acid (FFA) and thiobarbituric acid (TBA) values, niacin content, raw and cooked color, moisture, fat and protein contents, and cook shrink and texture of cooked patties. Freezing rates had no significant effect on microbial load, niacin content, color, or cook shrink and texture. Freezing rate had a significant effect upon TBA and FFA values. Niacin, cook shrink and moisture values declined and TBA and FFA values increased with storage. Raw meat Hunter L value increased and Hunter a/b value declined during storage. Substantial quality differences between meat types were found

  9. [Phylogenetic diversity of microorganisms associated with the deep-water sponge Baikalospongia intermedia].

    Science.gov (United States)

    Kalyzhnaya, O V; Itskovich, V B

    2014-07-01

    The diversity of bacteria associated with deep-water sponge Baikalospongia intermedia was evaluated by sequence analysis of 16S rRNA genes from two sponge samples collected in Lake Baikal from depths of 550 and 1204 m. A total of 64 operational taxonomic units, belonging to nine bacterial phyla, Proteobacteria (classes Alphaproteobacteria,. Betaproteobacteria, Gammaproteobacteria, and Deltaproteobacteria), Actinobacteria, Planctomycetes, Cloroflexi, Verrucomicrobia, Acidobacteria, Chlorobi, and Nitrospirae, including candidate phylum WS5, were identified. Phylogenetic analysis showed that the examined communities contained phylotypes exhibiting homology to uncultured bacteria from different lake ecosystems, freshwater sediments, soil and geological formations. Moreover, a number of phylotypes were relative to psychrophilic, methane-oxidizing, sulfate-reducing bacteria, and to microorganisms resistant to the influence of heavy metals. It seems likely that the unusual habitation conditions of deep-water sponges contribute to the taxonomic diversity of associated bacteria and have an influence on the presence of functionally important microorganisms in bacterial communities.

  10. Bayesian prediction of bacterial growth temperature range based on genome sequences

    DEFF Research Database (Denmark)

    Jensen, Dan Børge; Vesth, Tammi Camilla; Hallin, Peter Fischer

    2012-01-01

    Background: The preferred habitat of a given bacterium can provide a hint of which types of enzymes of potential industrial interest it might produce. These might include enzymes that are stable and active at very high or very low temperatures. Being able to accurately predict this based...... on a genomic sequence, would thus allow for an efficient and targeted search for production organisms, reducing the need for culturing experiments. Results: This study found a total of 40 protein families useful for distinction between three thermophilicity classes (thermophiles, mesophiles and psychrophiles...... that protein families associated with specific thermophilicity classes can provide effective input data for thermophilicity prediction, and that the naive Bayesian approach is effective for such a task. The program created for this study is able to efficiently distinguish between thermophilic, mesophilic...

  11. Improvement of the quality of nile bolti fish fillets by combination treatments with gamma irradiation

    International Nuclear Information System (INIS)

    El-Fouly, M.Z.; Hammad, A.A.I.; Yousef, B.M.

    1986-01-01

    Immersing bolti fish fillets in saturated solution of sodium chloride alone or plus 10 ppm of chlorotetracycline (CTC) resulted in remarkable reduction of total bacterial counts, psychrophilic, proteolytic and H 2 S producing bacteria. The treatments also decreased the growth rate of these groups of microorganisms during storage at 5 0 C and hence increased the shelf-life of fillets to 24 days storage. Treating the bolti fillets by 3 KGy gamma rays combined with salt and CTC caused highly depression in the mentioned groups but spots of fungi started to appear at the twenty first day of storage on the surface of irradiated fillets. Application of potassium sorbate as anti fungus instead of sodium chloride and CTC kept the bolti fillet in good quality as indicated by microbial, chemical and sensory determinations for more than four weeks at 5 0 C with decreasing the irradiation dose to only 1.5 kGy

  12. THE ASSESSMENT OF MICROBIOLOGICAL INDOOR AIR QUALITY IN BAKERIES

    Directory of Open Access Journals (Sweden)

    Elżbieta Wołejko

    2016-05-01

    Full Text Available The aim of this study was to assess microbiological indoor air quality of selected bakeries located in the region of Podlasie. The microbiological studies were conducted in autumn in 2014 in three selected bakeries. Microbiological air counts were measured by impaction using an air sampler MAS-100 NT. The microbiological air studies, comprised the determination of the total number of psychrophilic and mesophilic bacteria, namely indicator bacteria such as: bacteria of the species Pseudomonas fluorescens, mannitol-positive and mannitol-negative Staphylococc, the total number of bacteria from the Enterobacteriaceae family and fungi found in atmospheric air. The results of the study of indoor air polluted with the analyzed groups of microorganisms differed depending on the type of test air and the location of the manufacturing plant. In the plants, the concentration of mesophilic bacteria and mannitol–positive and mannitol-negative Staphylococcus exceeded the limit values of unpolluted air, according to the Polish Standard recommendations.

  13. The shelf life extension of refrigerated grass carp (Ctenopharyngodon idellus) fillets by chitosan coating combined with glycerol monolaurate.

    Science.gov (United States)

    Yu, Dawei; Jiang, Qixing; Xu, Yanshun; Xia, Wenshui

    2017-08-01

    A novel chitosan-based coating solution was prepared by combining glycerol monolaurate (GML) for shelf life extension of refrigerated grass carp fillets. The control and coated fillets were analyzed periodically for physicochemical (pH, thiobarbituric acid (TBA) value, total volatile basic nitrogen (TVB-N) value, K value, and shear force), microbiological (total viable counts (TVC), psychrophilic bacteria counts (PTC), Pseudomonads and H 2 S-producing bacteria) and sensorial characteristics. The results showed that chitosan-GML coated samples presented better quality preservation effects than chitosan coating alone. In addition, 2% chitosan enriched with 0.3% GML showed the significant (Pchitosan coating enriched with GML was a promising method to extend the shelf life of refrigerated fillets. Copyright © 2017. Published by Elsevier B.V.

  14. Use of Gamma Rays to Control of Internal Parasites and Pathogenic Bacteria in Silver side Fish (Bissaria)

    International Nuclear Information System (INIS)

    Shawki, H.A.; El-Hanafy, A.E.A.; Shagar, G.I.A.

    2014-01-01

    The usefulness of Gamma irradiation to control of internal parasites and pathogenic bacteria found in silver side fish (Atherina) (Bissaria) was investigated. The detected parasites and the prevalence were adult Trematode (37.5%); Cestodes (95%) and Nematode (22.5%) for control silver side fish. The counts of detected microorganisms, (Total bacterial count; Psychrophilic bacteria; Mold and yeast; E.coli and Staphyloccous aureus ) were 4.89 ; 2.30; 2.32; 2.31 and 2.04 log 10 cfu/g for control silver side fish, respectively. Applied irradiation doses reduce the infected rate by Trematode, Cestodes and Nematode, furthermore, gamma irradiation with different doses (0.5, 1, 2, 4 and 5 kGy) reduce the microorganisms count of silver side fish (Bissaria) samples and the rate of decrement increase with the dose increase. Total bacterial count was not detected by using dose 5 kGy while Psychrophilic bacteria were completely eliminated using dose 1 kGy. On the other hand mold and yeast; E.coli and Staph aureus in silver side fish samples were not detected after subjected to gamma irradiation with dose 4 kGy. The results suggest that the applied doses completely elimination different internal parasites and pathogenic bacteria found in silver side fish. Thus, it could be conclude that the irradiation dose of 4 kGy can be effectively applied to ensure the safety of internal parasites and pathogenic bacteria found in silver side fish (Atherina) (Bissaria) with regards to these harmful parasites and pathogenic bacteria

  15. Distribution and prevalence of airborne microorganisms in three commercial poultry processing plants.

    Science.gov (United States)

    Whyte, P; Collins, J D; McGill, K; Monahan, C; O'Mahony, H

    2001-03-01

    Airborne microbial contaminants and indicator organisms were monitored within three poultry processing plants (plants A, B, and C). In total, 15 cubic feet (c.f.) of air was sampled per location during 15 visits to each plant and quantitatively analyzed for total mesophilic and psychrophilic aerobic counts, thermophilic campylobacters, Escherichia coli, and Enterobacteriaceae. The prevalence of Salmonella spp. in air samples was also evaluated. Significant reductions in total aerobic counts were observed between defeathering and evisceration areas of the three plants (P defeathering areas of all plants compared to equivalent psychrophilic plate counts. Enterobacteriaceae counts were highest in the defeathering areas of all three plants with counts of log10 1.63, 1.53, and 1.18 CFU/15 c.f. recovered in plants A, B, and C, respectively. E. coli enumerated from air samples in the defeathering areas exhibited a similar trend to those obtained for Enterobacteriaceae with log10 1.67, 1.58, and 1.18 CFU for plants A, B, and C, respectively. Thermophilic campylobacters were most frequently isolated from samples in the defeathering areas followed by the evisceration areas. The highest mean counts of the organism were observed in plant A at 21 CFU/15 c.f. sample with plants B and C at 9 and 8 CFU/sample, respectively. With the exception of low levels of Enterobacteriaceae recovered from samples in the on-line air chill in plant A, E. coli, Enterobacteriaceae, or Campylobacter spp. were not isolated from samples in postevisceration sites in any of the plants examined. Salmonella spp. were not recovered from any samples during the course of the investigation.

  16. Tyr51: Key Determinant of the Low Thermostability of the Colwellia psychrerythraea Cold-Shock Protein.

    Science.gov (United States)

    Lee, Yeongjoon; Kwak, Chulhee; Jeong, Ki-Woong; Durai, Prasannavenkatesh; Ryu, Kyoung-Seok; Kim, Eun-Hee; Cheong, Chaejoon; Ahn, Hee-Chul; Kim, Hak Jun; Kim, Yangmee

    2018-05-18

    Cold-shock proteins (Csps) are expressed at lower-than-optimum temperatures, and they function as RNA chaperones; however, no structural studies on psychrophilic Csps have been reported. Here, we aimed to investigate the structure and dynamics of the Csp of psychrophile Colwellia psychrerythraea 34H, ( Cp-Csp). Although Cp-Csp shares sequence homology, common folding patterns, and motifs, including a five β-stranded barrel, with its thermophilic counterparts, its thermostability (37 °C) was markedly lower than those of other Csps. Cp-Csp binds heptathymidine with an affinity of 10 -7 M, thereby increasing its thermostability to 50 °C. Nuclear magnetic resonance spectroscopic analysis of the Cp-Csp structure and backbone dynamics revealed a flexible structure with only one salt bridge and 10 residues in the hydrophobic cavity. Notably, Cp-Csp contains Tyr51 instead of the conserved Phe in the hydrophobic core, and its phenolic hydroxyl group projects toward the surface. The Y51F mutation increased the stability of hydrophobic packing and may have allowed for the formation of a K3-E21 salt bridge, thereby increasing its thermostability to 43 °C. Cp-Csp exhibited conformational exchanges in its ribonucleoprotein motifs 1 and 2 (754 and 642 s -1 ), and heptathymidine binding markedly decreased these motions. Cp-Csp lacks salt bridges and has longer flexible loops and a less compact hydrophobic cavity resulting from Tyr51 compared to mesophilic and thermophilic Csps. These might explain the low thermostability of Cp-Csp. The conformational flexibility of Cp-Csp facilitates its accommodation of nucleic acids at low temperatures in polar oceans and its function as an RNA chaperone for cold adaptation.

  17. Effect of different film packaging on microbial growth in minimally processed cactus pear (Opuntia ficus-indica).

    Science.gov (United States)

    Palma, A; Mangia, N P; Fadda, A; Barberis, A; Schirra, M; D'Aquino, S

    2013-01-01

    Microorganisms are natural contaminants of fresh produce and minimally processed products, and contamination arises from a number of sources, including the environment, postharvest handling and processing. Fresh-cut products are particularly susceptible to microbial contaminations because of the changes occurring in the tissues during processing. In package gas composition of modified atmosphere packaging (MAP) in combination with low storage temperatures besides reducing physiological activity of packaged produce, can also delay pathogen growth. Present study investigated on the effect of MAPs, achieved with different plastic films, on microbial growth of minimally processed cactus pear (Opuntio ficus-indica) fruit. Five different plastic materials were used for packaging the manually peeled fruit. That is: a) polypropylene film (Termoplast MY 40 micron thickness, O2 transmission rate 300 cc/m2/24h); b) polyethylene film (Bolphane BHE, 11 micron thickness, O2 transmission rate 19000 cc/m2/24h); c) polypropylene laser-perforated films (Mach Packaging) with 8, 16 or 32 100-micron holes. Total aerobic psychrophilic, mesophilic microorganisms, Enterobacteriaceae, yeast, mould populations and in-package CO2, O2 and C2H4 were determined at each storage time. Different final gas compositions, ranging from 7.8 KPa to 17.1 KPa O2, and 12.7 KPa to 2.6 KPa CO2, were achieved with MY and micro perforated films, respectively. Differences were detected in the mesophilic, Enterobacteriaceae and yeast loads, while no difference was detected in psychrophilic microorganisms. At the end of storage, microbial load in fruits sealed with MY film was significantly lower than in those sealed with BHE and micro perforated films. Furthermore, fruits packed with micro-perforated films showed the highest microbial load. This occurrence may in part be related to in-package gas composition and in part to a continuous contamination of microorganisms through micro-holes.

  18. KOMBINASI BUMBU DAN ASAP CAIR DALAM MEMINIMALKAN PEMBENTUKAN HISTAMIN PADA IKAN KEMBUNG PEREMPUAN (Rastrelliger neglectus ASAP [Combination of Spice and Liquid Smoke in Minimizing Histamine Formation in the Smoked Mackerel (Rastrelliger neglectus

    Directory of Open Access Journals (Sweden)

    Abu Bakar Tawali

    2006-08-01

    Full Text Available Four spices (clove, cinnamon, tamarind and ginger were combined and applied to produce smoked female mackerel. The use of liquid smoke was compared with redistilled liquid smoke. The result showed that there was lower histamine content in smoked fish treated with spices after the use of liquid smoke and redistilled liquid smoke at (1.00 – 1.20mg/100g compared with the raw material (1.55mg/100g. Histamine content in all treatments increased during storage from 0.96 – 1.13 mg/100g to 6.40 -20.29mg/100g. The phenol content decreased during storage from 2.19% - 2.44% to 0.72% - 0.84%. Using of liquid smoke in combination with spice as well as without spice,resulted in decreasing of the free fatty acid (FFA content until 20 days of storage then increased, whereas using redistilled liquid smoke, resulted decreased of FFA during 10 days storage before increased. Total psychrophilic microbe was not detectable at 0 and 10 days storage but then increased at 20 and 30 days storage to 6.5x103 – 10.1x103cfu/ml and 7.5x103 – 15.5x103cfu/ml, respectively. Overall, combination between clove-cinnamon and liquid smoke which was applied to female mackerel showed the best result i.e.: lower histamine content, lower FFA, lower total psychrophilic microbe and lower phenol content than other treatments. The acceptability of smoked fish treated with clove-cinnamon and liquid smoke after 30 days storage showed higher value than other treatments.

  19. On the Temperature Dependence of Enzyme-Catalyzed Rates.

    Science.gov (United States)

    Arcus, Vickery L; Prentice, Erica J; Hobbs, Joanne K; Mulholland, Adrian J; Van der Kamp, Marc W; Pudney, Christopher R; Parker, Emily J; Schipper, Louis A

    2016-03-29

    One of the critical variables that determine the rate of any reaction is temperature. For biological systems, the effects of temperature are convoluted with myriad (and often opposing) contributions from enzyme catalysis, protein stability, and temperature-dependent regulation, for example. We have coined the phrase "macromolecular rate theory (MMRT)" to describe the temperature dependence of enzyme-catalyzed rates independent of stability or regulatory processes. Central to MMRT is the observation that enzyme-catalyzed reactions occur with significant values of ΔCp(‡) that are in general negative. That is, the heat capacity (Cp) for the enzyme-substrate complex is generally larger than the Cp for the enzyme-transition state complex. Consistent with a classical description of enzyme catalysis, a negative value for ΔCp(‡) is the result of the enzyme binding relatively weakly to the substrate and very tightly to the transition state. This observation of negative ΔCp(‡) has important implications for the temperature dependence of enzyme-catalyzed rates. Here, we lay out the fundamentals of MMRT. We present a number of hypotheses that arise directly from MMRT including a theoretical justification for the large size of enzymes and the basis for their optimum temperatures. We rationalize the behavior of psychrophilic enzymes and describe a "psychrophilic trap" which places limits on the evolution of enzymes in low temperature environments. One of the defining characteristics of biology is catalysis of chemical reactions by enzymes, and enzymes drive much of metabolism. Therefore, we also expect to see characteristics of MMRT at the level of cells, whole organisms, and even ecosystems.

  20. Increasing genomic diversity and evidence of constrained lifestyle evolution due to insertion sequences in Aeromonas salmonicida.

    Science.gov (United States)

    Vincent, Antony T; Trudel, Mélanie V; Freschi, Luca; Nagar, Vandan; Gagné-Thivierge, Cynthia; Levesque, Roger C; Charette, Steve J

    2016-01-12

    Aeromonads make up a group of Gram-negative bacteria that includes human and fish pathogens. The Aeromonas salmonicida species has the peculiarity of including five known subspecies. However, few studies of the genomes of A. salmonicida subspecies have been reported to date. We sequenced the genomes of additional A. salmonicida isolates, including three from India, using next-generation sequencing in order to gain a better understanding of the genomic and phylogenetic links between A. salmonicida subspecies. Their relative phylogenetic positions were confirmed by a core genome phylogeny based on 1645 gene sequences. The Indian isolates, which formed a sub-group together with A. salmonicida subsp. pectinolytica, were able to grow at either at 18 °C and 37 °C, unlike the A. salmonicida psychrophilic isolates that did not grow at 37 °C. Amino acid frequencies, GC content, tRNA composition, loss and gain of genes during evolution, pseudogenes as well as genes under positive selection and the mobilome were studied to explain this intraspecies dichotomy. Insertion sequences appeared to be an important driving force that locked the psychrophilic strains into their particular lifestyle in order to conserve their genomic integrity. This observation, based on comparative genomics, is in agreement with previous results showing that insertion sequence mobility induced by heat in A. salmonicida subspecies causes genomic plasticity, resulting in a deleterious effect on the virulence of the bacterium. We provide a proof-of-concept that selfish DNAs play a major role in the evolution of bacterial species by modeling genomes.

  1. Microbiological quality of raw donkey milk from Campania Region

    Directory of Open Access Journals (Sweden)

    Nicola Costanzo

    2012-07-01

    Full Text Available Microbiological quality of raw milk from eight healthy donkeys reared in Campania Region was investigated. A total of 152 samples were analyzed in order to evaluate the milk safety status trough monitoring mesophilic total bacterial count (TBC at 32°C and 20°C, psychrophilic TBC at 5°C, Enterobacteriaceae, Salmonella spp., Listeria monocytogenes, Staphylococcus aureus and somatic cell count (SCC. The ranges for mesophilic bacteria at 32°C, 20°C and psychrophilic bacteria at 5°C were, respectively, 2.80-4.00 Log CFU/mL, 2.84-3.92 Log CFU/mL and 1.27-2.12 Log CFU/mL. Enterobacteriaceae showed a load ranging between 0.68-1.93 Log CFU/mL. No pathogenic bacteria were isolated. Estimated SCC values were always under 50,000 cells/mL. Additionally quantitative changes of bacterial population in raw bulk milk during eight storing days at 8°C and 3°C, were evaluated. Firstly, fresh bulk milk was contaminated by bacteria with a mean TBC at 32°C and 20°C of 2.71 Log CFU/mL and 2.64 Log CFU/mL, respectively, whereas TBC at 5°C and Enterobacteriaceae were not detected. After eight days of storage at 8°C, TBC at 32°C, 20°C and Enterobacteriaceae increased by three Log and TBC at 5°C by five Log. On the other side, after eight days of storage at 3°C no gradual Log increase was detected. Our results showed that donkey milk could be a good healthy ingredient for feeding where good hygienic procedures are applied and storage is kept at temperature lower than 3°C.

  2. Combined effect of γ-irradiation and bacterial-fermented dextrose on microbiological quality of refrigerated pork sausages

    International Nuclear Information System (INIS)

    Dussault, D.; Benoit, C.; Lacroix, M.

    2012-01-01

    The objective of this study was to evaluate the effect of a concentrated fermented dextrose (FD), a natural antimicrobial product, combined with low dose γ-irradiation (1.5 kGy) on the microbiological quality of fresh pork sausages. Fresh pork sausages containing the FD (0.25%, 0.5% and 0.75%) were prepared in a meat pilot plant and were irradiated using a UC-15A irradiator equipped with a 60 Cobalt source. The γ-irradiation treatment alone was able to reduce the initial psychrophilic and mesophilic bacteria by more than 2 log CFU/g and kept the lactobacillus population under the detection limit (100 CFU/g). Results also showed that the FD alone was able to extend the shelf life of the sausages from 5 days up to 13 days. At day 13, the FD or irradiation alone showed 2 log CFU/g less mesophilic bacteria than the control. After combining FD and irradiation another reduction of the microbial count of 1 log CFU/g was observed. When combining the irradiation treatment with the FD results it showed a reduced growth rate of the psychrophilic and mesophilic bacteria compared to both treatments alone. This study demonstrated that FD with low dose gamma irradiation act in synergy to reduce the multiplication of the total bacterial flora in fresh sausages. - Highlights: ► A fermented dextrose (FD) with γ-irradiation in pork sausages was investigated. ► Pork sausages containing the FD were prepared and then irradiated. ► Combined treatment reduced the bacterial growth compared to the treatments alone. ► Combined treatment increased the shelf-life compared to both treatments alone.

  3. Shelf Life of Tilapia Fillets Treated with low dose Gamma Irradiation

    International Nuclear Information System (INIS)

    Mohamed, W.S.; El-Mossalami, I.I.

    2009-01-01

    The bacterial load (total bacterial count), Psychrophilic count, chemical and sensory examinations in Tilapia fish fillets were determined to evaluate its sanitary status and to increase its storage period during storage at -18 degree C for one year. The experiment was carried out at the time of receiving the samples and after gamma radiation treatment with dose levels of 1, 2 and 3 kGy. The initial total bacterial count was 5.4x10 0 cfu/gm and the psychrophilic count was 4x10 5 cfu/gm; it was slightly increased during freezing storage. The chemical parameters were more indicative in evaluating the shelf life of frozen fish; as they exceeded the permissible limits, so that the frozen non-irradiated samples were rejected after 6 months. The exposure to gamma irradiation at a dose of 1 kGy extended the storage time of the samples to 9 months while irradiation with 3 kGy extended the storage time of the samples to 12 months without changing its quality attributes. The quality during storage at -18 degree C of non irradiated and irradiated fish fillets was investigated every 3 months for one year by measuring the bacterial counts, chemical parameters and sensorial evaluation of the samples to study the effect of irradiation on increasing the storage time of fish fillets. So, it is recommended that fish fillets should be properly cleaned, packaged and exposed to gamma irradiation at a dose of 3 kGy to extend its freezing storage period

  4. Bacterial incorporation of leucine into protein down to -20 degrees C with evidence for potential activity in sub-eutectic saline ice formations.

    Science.gov (United States)

    Junge, Karen; Eicken, Hajo; Swanson, Brian D; Deming, Jody W

    2006-06-01

    Direct evidence for metabolism in a variety of frozen environments has pushed temperature limits for bacterial activity to increasingly lower temperatures, so far to -20 degrees C. To date, the metabolic activities of marine psychrophilic bacteria, important components of sea-ice communities, have not been studied in laboratory culture, not in ice and not below -12 degrees C. We measured [3H]-leucine incorporation into macromolecules (further fractionated biochemically) by the marine psychrophilic bacterium Colwellia psychrerythraea strain 34H over a range of anticipated activity-permissive temperatures, from +13 to -20 degrees C, including expected negative controls at -80 and -196 degrees C. For incubation temperatures below -1 degrees C, the cell suspensions [all in artificial seawater (ASW)] were first quick-frozen in liquid nitrogen. We also examined the effect of added extracellular polymeric substances (EPS) on [3H]-leucine incorporation. Results showed that live cells of strain 34H incorporated substantial amounts of [3H]-leucine into TCA-precipitable material (primarily protein) down to -20 degrees C. At temperatures from -1 to -20 degrees C, rates were enhanced by EPS. No activity was detected in the killed controls for strain 34H (or in Escherichia coli controls), which included TCA-killed, heat-killed, and sodium azide- and chloramphenicol-treated samples. Surprisingly, evidence for low but significant rates of intracellular incorporation of [3H]-leucine into protein was observed for both ASW-only and EPS-amended (and live only) samples incubated at -80 and -196 degrees C. Mechanisms that could explain the latter results require further study, but the process of vitrification promoted by rapid freezing and the presence of salts and organic polymers may be relevant. Overall, distinguishing between intracellular and extracellular aspects of bacterial activity appears important to understanding behavior at sub-freezing temperatures.

  5. Cold adaptation of the mononuclear molybdoenzyme periplasmic nitrate reductase from the Antarctic bacterium Shewanella gelidimarina

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Philippa J.L. [School of Chemistry, University of Sydney, New South Wales 2006 (Australia); Codd, Rachel, E-mail: rachel.codd@sydney.edu.au [School of Chemistry, University of Sydney, New South Wales 2006 (Australia); School of Medical Sciences (Pharmacology) and Bosch Institute, University of New South Wales, New South Wales 2006 (Australia)

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer Cold-adapted phenotype of NapA from the Antarctic bacterium Shewanella gelidimarina. Black-Right-Pointing-Pointer Protein homology model of NapA from S. gelidimarina and mesophilic homologue. Black-Right-Pointing-Pointer Six amino acid residues identified as lead candidates governing NapA cold adaptation. Black-Right-Pointing-Pointer Molecular-level understanding of designing cool-temperature in situ oxyanion sensors. -- Abstract: The reduction of nitrate to nitrite is catalysed in bacteria by periplasmic nitrate reductase (Nap) which describes a system of variable protein subunits encoded by the nap operon. Nitrate reduction occurs in the NapA subunit, which contains a bis-molybdopterin guanine dinucleotide (Mo-MGD) cofactor and one [4Fe-4S] iron-sulfur cluster. The activity of periplasmic nitrate reductase (Nap) isolated as native protein from the cold-adapted (psychrophilic) Antarctic bacterium Shewanella gelidimarina (Nap{sub Sgel}) and middle-temperature adapted (mesophilic) Shewanella putrefaciens (Nap{sub Sput}) was examined at varied temperature. Irreversible deactivation of Nap{sub Sgel} and Nap{sub Sput} occurred at 54.5 and 65 Degree-Sign C, respectively. When Nap{sub Sgel} was preincubated at 21-70 Degree-Sign C for 30 min, the room-temperature nitrate reductase activity was maximal and invariant between 21 and 54 Degree-Sign C, which suggested that Nap{sub Sgel} was poised for optimal catalysis at modest temperatures and, unlike Nap{sub Sput}, did not benefit from thermally-induced refolding. At 20 Degree-Sign C, Nap{sub Sgel} reduced selenate at 16% of the rate of nitrate reduction. Nap{sub Sput} did not reduce selenate. Sequence alignment showed 46 amino acid residue substitutions in Nap{sub Sgel} that were conserved in NapA from mesophilic Shewanella, Rhodobacter and Escherichia species and could be associated with the Nap{sub Sgel} cold-adapted phenotype. Protein homology modeling of Nap{sub Sgel} using a

  6. Rational Engineering of a Cold-Adapted α-Amylase from the Antarctic Ciliate Euplotes focardii for Simultaneous Improvement of Thermostability and Catalytic Activity.

    Science.gov (United States)

    Yang, Guang; Yao, Hua; Mozzicafreddo, Matteo; Ballarini, Patrizia; Pucciarelli, Sandra; Miceli, Cristina

    2017-07-01

    The α-amylases are endo-acting enzymes that hydrolyze starch by randomly cleaving the 1,4-α-d-glucosidic linkages between the adjacent glucose units in a linear amylose chain. They have significant advantages in a wide range of applications, particularly in the food industry. The eukaryotic α-amylase isolated from the Antarctic ciliated protozoon Euplotes focardii ( Ef Amy) is an alkaline enzyme, different from most of the α-amylases characterized so far. Furthermore, Ef Amy has the characteristics of a psychrophilic α-amylase, such as the highest hydrolytic activity at a low temperature and high thermolability, which is the major drawback of cold-active enzymes in industrial applications. In this work, we applied site-directed mutagenesis combined with rational design to generate a cold-active Ef Amy with improved thermostability and catalytic efficiency at low temperatures. We engineered two Ef Amy mutants. In one mutant, we introduced Pro residues on the A and B domains in surface loops. In the second mutant, we changed Val residues to Thr close to the catalytic site. The aim of these substitutions was to rigidify the molecular structure of the enzyme. Furthermore, we also analyzed mutants containing these combined substitutions. Biochemical enzymatic assays of engineered versions of Ef Amy revealed that the combination of mutations at the surface loops increased the thermostability and catalytic efficiency of the enzyme. The possible mechanisms responsible for the changes in the biochemical properties are discussed by analyzing the three-dimensional structural model. IMPORTANCE Cold-adapted enzymes have high specific activity at low and moderate temperatures, a property that can be extremely useful in various applications as it implies a reduction in energy consumption during the catalyzed reaction. However, the concurrent high thermolability of cold-adapted enzymes often limits their applications in industrial processes. The α-amylase from the

  7. Silicon Utilizing Microbial Bioactivities in the Biosphere

    Science.gov (United States)

    Sen, M. M.; Das, S.

    2012-12-01

    Diatoms are unicellular eukaryotic algae and an important member of the silicon utilizing organisms, that generate ~20% of the ~100 billion metric tons of organic carbon produced through photosynthesis on Earth each year. Fragilariopsis is a dominating psychrophilic diatom genus in polar sea ice. The two species Fragilariopsis cylindrus and Fragilariopsis curta are able to grow and divide below freezing temperature. Antifreeze proteins (AFPs), involved in cold adaptation in several psychrophilic organisms, are widespread in this two polar species. Achanthes minutissima isolated as dominant diatom has degradable effects involving petroleum hydocarbons. Phaeodactylum tricornutum, have antibacterial activity and the fatty acid, eicosapentaenoic acid (EPA), has been identified as one compound responsible for this activity. Other antibacterial compounds are monounsaturated fatty acid (9Z)-hexadecenoic acid (palmitoleic acid; C16:1 n-7) and the relatively unusual polyunsaturated fatty acid (6Z, 9Z, 12Z)-hexadecatrienoic acid (HTA; C16:3 n-4). Both are active against Gram-positive bacteria and many Gram-negative pathogen. Palmitoleic acid is active at micro-molar concentrations, kills bacteria rapidly, and is highly active against multidrug-resistant Staphylococcus aureus. Domoic acid -a neurotoxin produced by Pseudo-nitzschia accumulates in marine invertebrates. Evidences of sea lion (Zalophus californianus) and human poisoning following consumption of contaminated blue mussels (Mytilus edulis) is mainly due to this toxin. Among the most prominent features described in human beings was memory impairment which led to the name Amnesic Shellfish Poisoning [ASP]. Silicon utilizing organisms can act as a bioindicator of environmental contamination, thus a rapid change in phytochelatins to both the increase in and the withdrawal of environmental Cd stress was found in Thalassiosira nordenskioeldii. Some of them also can produce biofuels particularly diatoms have significant

  8. Why Earth cryopegs are interesting to astrobiologists?

    Science.gov (United States)

    Rivkina, Elizaveta; Spirina, Elena; Demidov, Nikita; Shcherbakova, Viktoria; Yoshikawa, Kenji; Gilichinsky, David

    The lenses of perennially overcooled water brines (cryopegs) derived from ancient marine sedi-ments and sandwiched within permafrost 10 to 120,000 years ago after the placeArctic Ocean regressions. In these lenses freezing is prevented by freezing-point depression due to the dis-solved salt and they remain liquid at the in situ temperatures down to -11oC as a result of their high sodium-chloride concentration (3-5 mol/l). Cryopegs make up the only habitat on Earth that is characterized by permanently subzero temperatures, high salinity, and isolation from the influence of external factors during geological time. During last years the biodiversity of cryopeg's indigenous microbial community along the Arctic coast of placePlaceNamePolar PlaceTypeOcean (Kara and placeEast Siberian Sea, placePla-ceNameJamal PlaceTypePeninsula and placePlaceTypeCape PlaceNameBarrow) were studied and the new species representing the different genera have been isolated and described. There were found both aerobic and anaerobic microorganisms: Psychrobacters, Sulfate-reducers, Clostridia, etc. The isolated bacteria grew at subzero temperatures, and were also tolerant to salt concentra-tions up to metricconverterProductID3 M3 M NaCl. The microorganisms detected in cryopegs are halophilic and psychrophilic organisms at the same time. The microbial activity detected in cryopegs (14C-labeled glucose consumption) at temperatures as low as metricconverterProductID-15?C-15C-15° C documents the fact that subzero temper-atures themselves do not exclude biochemical reactions. In situ microbial activity and survival of microorganisms in a low-temperature high-salt aquatic environment on a geological time scale indicates the special type of microbial adaptation. From the astrobiological perspective, mineral-enriched brines provide the only opportunity for free water within the Martian subsurface permafrost, formed when Mars became dry and cold. These brines, just as terrestrial cryopegs, may contain

  9. Milk processed by pulsed electric fields: evaluation of microbial quality, physicochemical characteristics, and selected nutrients at different storage conditions.

    Science.gov (United States)

    Bermúdez-Aguirre, Daniela; Fernández, Sulmer; Esquivel, Heracleo; Dunne, Patrick C; Barbosa-Cánovas, Gustavo V

    2011-01-01

    Pulsed electric fields (PEF) technology was used to pasteurize raw milk under selected treatments. Processing conditions were: temperature 20, 30, and 40 °C, electric field 30.76 to 53.84 kV/cm, and pulse numbers 12, 24, and 30 for skim milk (SM), and 12, 21, and 30 for whole milk (WM) (2 μs pulse width, monopolar). Physicochemical parameters (pH, electrical conductivity, density, color, solids nonfat [SNF]) and composition (protein and fat content) were measured after processing. Shelf life of SM and WM was assessed after processing at 46.15 kV/cm, combined with temperature (20 to 60 °C) and 30 pulses. Mesophilic and psychrophilic loads and pH were evaluated during storage at 4 and 21 °C. Results showed minor variations in physicochemical properties after processing. There was an interesting trend in SM in SNF, which decreased as treatment became stronger; similar behavior was observed for fat and protein, showing a 0.18% and 0.17% decrease, respectively, under the strongest conditions. Protein and fat content decreased in WM samples treated at 40 °C, showing a decrease in protein (0.11%), and an even higher decrease in fat content. During storage, PEF-treated milk samples showed higher stability at 4 °C with minor variations in pH; after 33 d, pH was higher than 6. However samples at 21 °C showed faster spoilage and pH dropped to 4 after 5 d. Growth of mesophilic bacteria was delayed in both milks after PEF processing, showing a 6- and 7-log cycles for SM and WM, respectively, after day 25 (4 °C); however, psychrophilic bacteria grew faster in both cases. Pulsed electric fields (PEF) technology in the pasteurization of liquid food products has shown positive results. Processing times can be reduced considerably, which in turn reduces the loss of nutrients and offers important savings in energy. PEF has been used successfully to pasteurize some liquid foods, but it is still not used commercially in milk pasteurization, although several trials have shown

  10. Potential of low-temperature anaerobic digestion to address current environmental concerns on swine production.

    Science.gov (United States)

    Massé, D I; Masse, L; Xia, Y; Gilbert, Y

    2010-04-01

    Environmental issues associated with swine production are becoming a major concern among the general public and are thus an important challenge for the swine industry. There is now a renewed interest in environmental biotechnologies that can minimize the impact of swine production and add value to livestock by-products. An anaerobic biotechnology called psychrophilic anaerobic digestion (PAD) in sequencing batch reactors (SBR) has been developed at Agriculture and Agri-Food Canada. This very stable biotechnology recovers usable energy, stabilizes and deodorizes manure, and increases the availability of plant nutrients. Experimental results indicated that PAD of swine manure slurry at 15 to 25 degrees C in intermittently fed SBR reduces the pollution potential of manure by removing up to 90% of the soluble chemical oxygen demand. The process performs well under intermittent feeding, once to 3 times a week, and without external mixing. Bioreactor feeding activities can thus be easily integrated into the routine manure removal procedures in the barn, with minimal interference with other farm operations and use of existing manure-handling equipment. Process stability was not affected by the presence of antibiotics in manure. The PAD process was efficient in eliminating populations of zoonotic pathogens and parasites present in raw livestock manure slurries. Psychrophilic anaerobic digestion in SBR could also be used for swine mortality disposal. The addition of swine carcasses, at loading rates representing up to 8 times the normal mortality rates on commercial farms, did not affect the stability of SBR. No operational problems were related to the formation of foam and scum. The biotechnology was successfully operated at semi-industrial and full commercial scales. Biogas production rate exceeded 0.20 L of methane per gram of total chemical oxygen demand fed to the SBR. The biogas was of excellent quality, with a methane concentration ranging from 70 to 80%. The

  11. Emerging Perspectives on the Natural Microbiome of Fresh Produce Vegetables

    Directory of Open Access Journals (Sweden)

    Colin R. Jackson

    2015-04-01

    Full Text Available Plants harbor a diverse microbiome existing as bacterial populations on the leaf surface (the phyllosphere and within plant tissues (endophytes. The composition of this microbiome has been largely unexplored in fresh produce vegetables, where studies have tended to focus on pathogen detection and survival. However, the application of next-generation 16S rRNA gene sequencing approaches is beginning to reveal the diversity of this produce-associated bacterial community. In this article we review what is known about the composition of the microbiome of fresh produce vegetables, placing it in the context of general phyllosphere research. We also demonstrate how next-generation sequencing can be used to assess the bacterial assemblages present on fresh produce, using fresh herbs as an example. That data shows how the use of such culture-independent approaches can detect groups of taxa (anaerobes, psychrophiles that may be missed by traditional culture-based techniques. Other issues discussed include questions as to whether to determine the microbiome during plant growth or at point of purchase or consumption, and the potential role of the natural bacterial community in mitigating pathogen survival.

  12. AIRBORNE MICROORGANISMS IN BROILER PROCESSING PLANTS.

    Science.gov (United States)

    KOTULA, A W; KINNER, J A

    1964-05-01

    Concentrations of total aerobic bacteria, molds, yeasts, coliforms, enterococci, and psychrophiles were determined in the air of two poultry processing plants with Andersen samplers and a mobile power supply. Total aerobic bacterial counts were highest in the dressing room, with diminishing numbers in the shackling, eviscerating, and holding rooms, when sampling was carried out during plant operation. The average counts per ft(3) of air in these four rooms were 2,200; 560; 230; and 62, respectively. (Each value is the average of 36 observations.) The number of organisms increased in the shackling and dressing rooms once processing was begun. Average total aerobic bacterial counts increased from 70 to 870 to 3,000 in the shackling room and from 310 to 4,900 to 7,000 in the dressing room when sampling was carried out at 5:00 am (before plant operations), 9:00 am, and 2:00 pm, respectively. (Each value is the mean of 12 observations.) Airborne molds might originate from a source other than the poultry being processed.

  13. Changes in Vascular Plant Biodiversity in the Netherlands in the 20th Century Explained by their Climatic and other Environmental Characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Tamis, W.L.M.; Van der Meijden, R.; Udo de Haes, H.A. [Nationaal Herbarium Nederland/Leiden University Branch, P.O. Box 9514, 2300, RA, Leiden (Netherlands); Van ' t Zelfde, M. [Institute of Environmental Sciences, Leiden University, P.O. Box 9518, 2300, RA, Leiden (Netherlands)

    2005-09-01

    In the Netherlands nation-wide databases are available with about 10 million records of occurrences of vascular plant species in the 20th century on a scale of approximately 1 km{sup 2}. These data were analysed with a view to identifying relationships between changes in botanical biodiversity and climatic and other environmental factors. Prior to analysis the data were corrected for several major forms of survey bias. The records were broken down into three periods: 1902-1949, 1975-1984 and 1985-1999. Using multiple regression analysis, differences between successive periods were related to plant functional characteristics as explanatory variables. Between the periods 1902-1949 and 1975-1984 there were small but significant increases in the presence of both thermophilic ('warm') and psychrophilic ('cold') species. However, in the final decades of the 20th century there was a marked increase in thermophilic species only, coinciding with the marked increase in ambient temperature observed during this period, evidence at least of a rapid response of Dutch flora to climate change. Urbanisation was also examined as an alternative explanation for the increase in thermophilic plant species and was found to explain only 50% of the increased presence of such species in the final decades of the 20th century. Besides temperature-related effects, the most important change during the 20th century was a strong decline in oligotrophic and a marked increase in eutrophic plant species.

  14. Biogas - a contribution to the solution of the problem of energy supply for cheese factories

    Energy Technology Data Exchange (ETDEWEB)

    Favre, R; Bachmann, M

    1985-01-01

    During a two years period the energy consumption of four different cheese factories has been analysed. The whey of the four cheese factories is used for fattening pigs in an attached piggery. All four factories are equipped with biogas-digesters which use the slurry from the piggeries for methane production. The overall energy consumption per ton of milk transformed varies from 600 and 885 MJ. This includes the energy used for heating the fermentation rooms and the cheese maker's flat as well as the energy used for the piggery. 10 to 40% of the total energy is being consumed in form of electricity. Three of the four digesters are working at temperatures of 30 to 35/sup 0/C. One is run in the psychrophilic range, i.e. without heating system. The heated systems use 20 to 40% of the total gas production for heating the digesters. The net gas production of all four systems is of the same order of magnitude. The necessary energy for milk transformation depends on the type of installation used and on the skill of the cheese maker to use his installation economically. Between 30 and 60% of the total energy demand of the four factories has been covered by biogas. Economic problems regarding the use of biogas in cheese factories are discussed.

  15. The Effect of Hydrostatic Pressure on Enrichments of Hydrocarbon Degrading Microbes From the Gulf of Mexico Following the Deepwater Horizon Oil Spill.

    Science.gov (United States)

    Marietou, Angeliki; Chastain, Roger; Beulig, Felix; Scoma, Alberto; Hazen, Terry C; Bartlett, Douglas H

    2018-01-01

    The Deepwater Horizon oil spill was one of the largest and deepest oil spills recorded. The wellhead was located at approximately 1500 m below the sea where low temperature and high pressure are key environmental characteristics. Using cells collected 4 months following the Deepwater Horizon oil spill at the Gulf of Mexico, we set up Macondo crude oil enrichments at wellhead temperature and different pressures to determine the effect of increasing depth/pressure to the in situ microbial community and their ability to degrade oil. We observed oil degradation under all pressure conditions tested [0.1, 15, and 30 megapascals (MPa)], although oil degradation profiles, cell numbers, and hydrocarbon degradation gene abundances indicated greatest activity at atmospheric pressure. Under all incubations the growth of psychrophilic bacteria was promoted. Bacteria closely related to Oleispira antarctica RB-8 dominated the communities at all pressures. At 30 MPa we observed a shift toward Photobacterium , a genus that includes piezophiles. Alphaproteobacterial members of the Sulfitobacter , previously associated with oil-degradation, were also highly abundant at 0.1 MPa. Our results suggest that pressure acts synergistically with low temperature to slow microbial growth and thus oil degradation in deep-sea environments.

  16. Biodegradation of n-alkanes on oil-seawater interfaces at different temperatures and microbial communities associated with the degradation.

    Science.gov (United States)

    Lofthus, Synnøve; Netzer, Roman; Lewin, Anna S; Heggeset, Tonje M B; Haugen, Tone; Brakstad, Odd Gunnar

    2018-04-01

    Oil biodegradation studies have mainly focused on microbial processes in dispersions, not specifically on the interfaces between the oil and the seawater in the dispersions. In this study, a hydrophobic adsorbent system, consisting of Fluortex fabrics, was used to investigate biodegradation of n-alkanes and microbial communities on oil-seawater interfaces in natural non-amended seawater. The study was performed over a temperature range from 0 to 20 °C, to determine how temperature affected biodegradation at the oil-seawater interfaces. Biodegradation of n-alkanes were influenced both by seawater temperature and chain-length. Biotransformation rates of n-alkanes decreased by reduced seawater temperature. Low rate coefficients at a seawater temperature of 0 °C were probably associated with changes in physical-chemical properties of alkanes. The primary bacterial colonization of the interfaces was predominated by the family Oceanospirillaceae at all temperatures, demonstrating the wide temperature range of these hydrocarbonoclastic bacteria. The mesophilic genus Oleibacter was predominant at the seawater temperature of 20 °C, and the psychrophilic genus Oleispira at 5 and 0 °C. Upon completion of n-alkane biotransformation, other oil-degrading and heterotrophic bacteria became abundant, including Piscirickettsiaceae (Cycloclasticus), Colwelliaceae (Colwellia), Altermonadaceae (Altermonas), and Rhodobacteraceae. This is one of a few studies that describe the biodegradation of oil, and the microbial communities associated with the degradation, directly at the oil-seawater interfaces over a large temperature interval.

  17. Effect of gamma irradiation on microbial load and sensory charactaristics of Nile Bolti fish during cold storage

    International Nuclear Information System (INIS)

    Roushdy, H.M.; Elfouly, M.Z.; Abdelbaki, M.M.; Taha, R.A.; Yousef, B.M.

    1984-01-01

    The main objective of this study is to investigate the effect of varying low dose levels of gamma radiation (0.5, 1.5 and 3.OKGY on the microbiological and organoleptic properties of bolti fish (Tilapia nilotica) under post irradiation cold storage conditions (5 0 C±1). It has been found that the maximum shelf life of fresh bolti fish does not exceed 6 days. A great reduction in the total microbial counts, psychrophilic and proteolytic bacteria could be achieved due to irradiation processes. The percentages of inactivated cells for these organisms reached 98.6% 100% and 81.7% respectively at the dose level 3.0 KGY. The values of microorganisms during storage at 5 0 C, indicated their progressive increase and the palatability scores was going, parallel with the increase in the microbial load. The dose of 3 KGY proved to be for keeping the microbial counts at lower level during storage and hence extended the shelf life of fresh bolti fish by three times as compared with the unirradiated samples

  18. Microbial community analysis of ambient temperature anaerobic digesters

    Energy Technology Data Exchange (ETDEWEB)

    Ciotola, R. [Ohio State Univ., Columbus, OH (United States). Dept. of Food, Agriculture and Biological Engineering

    2010-07-01

    This paper reported on a study in which designs for Chinese and Indian fixed-dome anaerobic digesters were modified in an effort to produce smaller and more affordable digesters. While these types of systems are common in tropical regions of developing countries, they have not been used in colder climates because of the low biogas yield during the winter months. Although there is evidence that sufficient biogas production can be maintained in colder temperatures through design and operational changes, there is a lack of knowledge about the seasonal changes in the composition of the microbial communities in ambient temperature digesters. More knowledge is needed to design and operate systems for maximum biogas yield in temperate climates. The purpose of this study was to cultivate a microbial community that maximizes biogas production at psychrophilic temperatures. The study was conducted on a 300 gallon experimental anaerobic digester on the campus of Ohio State University. Culture-independent methods were used on weekly samples collected from the digester in order to examine microbial community response to changes in ambient temperature. Microbial community profiles were established using universal bacterial and archaeal primers that targeted the 16S rRNA gene. In addition to the methanogenic archaea, this analysis also targeted some of the other numerically and functionally important microbial taxa in anaerobic digesters, such as hydrolytic, fermentative, acetogenic and sulfate reducing bacteria. According to preliminary results, the composition of the microbial community shifts with changes in seasonal temperature.

  19. Temperature-dependent growth of Geomyces destructans, the fungus that causes bat white-nose syndrome.

    Directory of Open Access Journals (Sweden)

    Michelle L Verant

    Full Text Available White-nose syndrome (WNS is an emergent disease estimated to have killed over five million North American bats. Caused by the psychrophilic fungus Geomyces destructans, WNS specifically affects bats during hibernation. We describe temperature-dependent growth performance and morphology for six independent isolates of G. destructans from North America and Europe. Thermal performance curves for all isolates displayed an intermediate peak with rapid decline in performance above the peak. Optimal temperatures for growth were between 12.5 and 15.8°C, and the upper critical temperature for growth was between 19.0 and 19.8°C. Growth rates varied across isolates, irrespective of geographic origin, and above 12°C all isolates displayed atypical morphology that may have implications for proliferation of the fungus. This study demonstrates that small variations in temperature, consistent with those inherent of bat hibernacula, affect growth performance and physiology of G. destructans, which may influence temperature-dependent progression and severity of WNS in wild bats.

  20. Management of the panzootic white-nose syndrome through culling of bats.

    Science.gov (United States)

    Hallam, Thomas G; McCracken, Gary F

    2011-02-01

    The probability of persistence of many species of hibernating bats in the United States is greatly reduced by an emerging infectious disease, white-nose syndrome (WNS). In the United States WNS is rapidly spreading and is associated with a psychrophilic fungus, Geomyces destructans. WNS has caused massive mortality of bats that hibernate. Efforts to control the disease have been ineffective. The culling of bats in hibernacula has been proposed as a way to break the transmission cycle or slow the spread of WNS. We formulated a disease model to examine the efficacy of culling to abate WNS in bat populations. We based the model dynamics on disease transmission in maternity roosts, swarms, and hibernacula, which are the arenas of contact among bats. Our simulations indicated culling will not control WNS in bats primarily because contact rates are high among colonial bats, contact occurs in multiple arenas, and periodic movement between arenas occurs. In general, culling is ineffective in the control of animal diseases in the wild. ©2010 Society for Conservation Biology.

  1. Predicting bat colony survival under controls targeting multiple transmission routes of white-nose syndrome.

    Science.gov (United States)

    Meyer, A D; Stevens, D F; Blackwood, J C

    2016-11-21

    White-nose syndrome (WNS) is a lethal infection of bats caused by the psychrophilic fungus Pseudogymnoascus destructans (Pd). Since the first cases of WNS were documented in 2006, it is estimated that as many as 5.5million bats have succumbed in the United States-one of the fastest mammalian die-offs due to disease ever observed, and the first known sustained epizootic of bats. WNS is contagious between bats, and mounting evidence suggests that a persistent environmental reservoir of Pd plays a significant role in transmission as well. It is unclear, however, the relative contributions of bat-to-bat and environment-to-bat transmission to disease propagation within a colony. We analyze a mathematical model to investigate the consequences of both avenues of transmission on colony survival in addition to the efficacy of disease control strategies. Our model shows that selection of the most effective control strategies is highly dependent on the primary route of WNS transmission. Under all scenarios, however, generalized culling is ineffective and while targeted culling of infected bats may be effective under idealized conditions, it primarily has negative consequences. Thus, understanding the significance of environment-to-bat transmission is paramount to designing effective management plans. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Temperature-dependent growth of Geomyces destructans, the fungus that causes bat white-nose syndrome.

    Science.gov (United States)

    Verant, Michelle L; Boyles, Justin G; Waldrep, William; Wibbelt, Gudrun; Blehert, David S

    2012-01-01

    White-nose syndrome (WNS) is an emergent disease estimated to have killed over five million North American bats. Caused by the psychrophilic fungus Geomyces destructans, WNS specifically affects bats during hibernation. We describe temperature-dependent growth performance and morphology for six independent isolates of G. destructans from North America and Europe. Thermal performance curves for all isolates displayed an intermediate peak with rapid decline in performance above the peak. Optimal temperatures for growth were between 12.5 and 15.8°C, and the upper critical temperature for growth was between 19.0 and 19.8°C. Growth rates varied across isolates, irrespective of geographic origin, and above 12°C all isolates displayed atypical morphology that may have implications for proliferation of the fungus. This study demonstrates that small variations in temperature, consistent with those inherent of bat hibernacula, affect growth performance and physiology of G. destructans, which may influence temperature-dependent progression and severity of WNS in wild bats.

  3. DNA-based detection of the fungal pathogen Geomyces destructans in soil from bat hibernacula

    Science.gov (United States)

    Lindner, Daniel L.; Gargas, Andrea; Lorch, Jeffrey M.; Banik, Mark T.; Glaeser, Jessie; Kunz, Thomas H.; Blehert, David S.

    2011-01-01

    White-nose syndrome (WNS) is an emerging disease causing unprecedented morbidity and mortality among bats in eastern North America. The disease is characterized by cutaneous infection of hibernating bats by the psychrophilic fungus Geomyces destructans. Detection of G. destructans in environments occupied by bats will be critical for WNS surveillance, management and characterization of the fungal lifecycle. We initiated an rRNA gene region-based molecular survey to characterize the distribution of G. destructans in soil samples collected from bat hibernacula in the eastern United States with an existing PCR test. Although this test did not specifically detect G. destructans in soil samples based on a presence/absence metric, it did favor amplification of DNA from putative Geomyces species. Cloning and sequencing of PCR products amplified from 24 soil samples revealed 74 unique sequence variants representing 12 clades. Clones with exact sequence matches to G. destructans were identified in three of 19 soil samples from hibernacula in states where WNS is known to occur. Geomyces destructans was not identified in an additional five samples collected outside the region where WNS has been documented. This study highlights the diversity of putative Geomyces spp. in soil from bat hibernacula and indicates that further research is needed to better define the taxonomy of this genus and to develop enhanced diagnostic tests for rapid and specific detection of G. destructans in environmental samples.

  4. Isolation and characterization of new strains of methanogens from cold terrestrial habitats.

    Science.gov (United States)

    Simankova, Maria V; Kotsyurbenko, Oleg R; Lueders, Tillmann; Nozhevnikova, Alla N; Wagner, Bianca; Conrad, Ralf; Friedrich, Michael W

    2003-06-01

    Five strains of methanogenic archaea (MT, MS, MM, MSP, ZB) were isolated from permanently and periodically cold terrestrial habitats. Physiological and morphological studies, as well as phylogenetic analyses of the new isolates were performed. Based on sequences of the 16S rRNA and methyl-coenzyme M reductase a-subunit (mcrA) genes all new isolates are closely related to known mesophilic and psychrotolerant methanogens. Both, phylogenetic analyses and phenotypic properties allow to classify strains MT, MS, and MM as members of the genus Methanosarcina. Strain MT is a new ecotype of Methanosarcina mazei, whereas strains MM and MS are very similar to each other and can be assigned to the recently described psychrotolerant species Methanosarcina lacustris. The hydrogenotrophic strain MSP is a new ecotype of the genus Methanocorpusculum. The obligately methylotrophic strain ZB is closely related to Methanomethylovorans hollandica and can be classified as new ecotype of this species. All new isolates, including the strains from permanently cold environments, are not true psychrophiles according to their growth temperature characteristics. In spite of the ability of all isolates to grow at temperatures as low as 1-5 degrees C, all of them have their growth optima in the range of moderate temperatures (25-35 degrees C). Thus, they can be regarded as psychrotolerant organisms. Psychrotolerant methanogens are thought to play an important role in methane production in both, habitats under seasonal temperature variations or from permanently cold areas.

  5. Protein thermodynamics can be predicted directly from biological growth rates.

    Directory of Open Access Journals (Sweden)

    Ross Corkrey

    Full Text Available Life on Earth is capable of growing from temperatures well below freezing to above the boiling point of water, with some organisms preferring cooler and others hotter conditions. The growth rate of each organism ultimately depends on its intracellular chemical reactions. Here we show that a thermodynamic model based on a single, rate-limiting, enzyme-catalysed reaction accurately describes population growth rates in 230 diverse strains of unicellular and multicellular organisms. Collectively these represent all three domains of life, ranging from psychrophilic to hyperthermophilic, and including the highest temperature so far observed for growth (122 °C. The results provide credible estimates of thermodynamic properties of proteins and obtain, purely from organism intrinsic growth rate data, relationships between parameters previously identified experimentally, thus bridging a gap between biochemistry and whole organism biology. We find that growth rates of both unicellular and multicellular life forms can be described by the same temperature dependence model. The model results provide strong support for a single highly-conserved reaction present in the last universal common ancestor (LUCA. This is remarkable in that it means that the growth rate dependence on temperature of unicellular and multicellular life forms that evolved over geological time spans can be explained by the same model.

  6. Microbial Community Analysis of Colored Snow from an Alpine Snowfield in Northern Japan Reveals the Prevalence of Betaproteobacteria with Snow Algae.

    Science.gov (United States)

    Terashima, Mia; Umezawa, Kazuhiro; Mori, Shoichi; Kojima, Hisaya; Fukui, Manabu

    2017-01-01

    Psychrophilic algae blooms can be observed coloring the snow during the melt season in alpine snowfields. These algae are important primary producers on the snow surface environment, supporting the microbial community that coexists with algae, which includes heterotrophic bacteria and fungi. In this study, we analyzed the microbial community of green and red-colored snow containing algae from Mount Asahi, Japan. We found that Chloromonas spp. are the dominant algae in all samples analyzed, and Chlamydomonas is the second-most abundant genus in the red snow. For the bacterial community profile, species belonging to the subphylum Betaproteobacteria were frequently detected in both green and red snow, while members of the phylum Bacteroidetes were also prominent in red snow. Furthermore, multiple independently obtained strains of Chloromonas sp. from inoculates of red snow resulted in the growth of Betaproteobacteria with the alga and the presence of bacteria appears to support growth of the xenic algal cultures under laboratory conditions. The dominance of Betaproteobacteria in algae-containing snow in combination with the detection of Chloromonas sp. with Betaproteobacteria strains suggest that these bacteria can utilize the available carbon source in algae-rich environments and may in turn promote algal growth.

  7. The role of salt bridges on the temperature adaptation of aqualysin I, a thermostable subtilisin-like proteinase.

    Science.gov (United States)

    Jónsdóttir, Lilja B; Ellertsson, Brynjar Ö; Invernizzi, Gaetano; Magnúsdóttir, Manuela; Thorbjarnardóttir, Sigríður H; Papaleo, Elena; Kristjánsson, Magnús M

    2014-12-01

    Differences in salt bridges are believed to be a structural hallmark of homologous enzymes from differently temperature-adapted organisms. Nevertheless, the role of salt bridges on structural stability is still controversial. While it is clear that most buried salt bridges can have a functional or structural role, the same cannot be firmly stated for ion pairs that are exposed on the protein surface. Salt bridges, found in X-ray structures, may not be stably formed in solution as a result of high flexibility or high desolvation penalty. More studies are thus needed to clarify the picture on salt bridges and temperature adaptation. We contribute here to this scenario by combining atomistic simulations and experimental mutagenesis of eight mutant variants of aqualysin I, a thermophilic subtilisin-like proteinase, in which the residues involved in salt bridges and not conserved in a psychrophilic homolog were systematically mutated. We evaluated the effects of those mutations on thermal stability and on the kinetic parameters. Overall, we show here that only few key charged residues involved in salt bridges really contribute to the enzyme thermal stability. This is especially true when they are organized in networks, as here attested by the D17N mutation, which has the most remarkable effect on stability. Other mutations had smaller effects on the properties of the enzyme indicating that most of the isolated salt bridges are not a distinctive trait related to the enhanced thermal stability of the thermophilic subtilase. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. On the role, ecology, phylogeny, and structure of dual-family immunophilins.

    Science.gov (United States)

    Barik, Sailen

    2017-11-01

    The novel class of dual-family immunophilins (henceforth abbreviated as DFI) represents naturally occurring chimera of classical FK506-binding protein (FKBP) and cyclophilin (CYN), connected by a flexible linker that may include a three-unit tetratricopeptide (TPR) repeat. Here, I report a comprehensive analysis of all current DFI sequences and their host organisms. DFIs are of two kinds: CFBP (cyclosporin- and FK506-binding protein) and FCBP (FK506- and cyclosporin-binding protein), found in eukaryotes. The CFBP type occurs in select bacteria that are mostly extremophiles, such as psychrophilic, thermophilic, halophilic, and sulfur-reducing. Essentially all DFI organisms are unicellular. I suggest that DFIs are specialized bifunctional chaperones that use their flexible interdomain linker to associate with large polypeptides or multisubunit megacomplexes to promote simultaneous folding or renaturation of two clients in proximity, essential in stressful and denaturing environments. Analysis of sequence homology and predicted 3D structures of the FKBP and CYN domains as well as the TPR linkers upheld the modular nature of the DFIs and revealed the uniqueness of their TPR domain. The CFBP and FCBP genes appear to have evolved in parallel pathways with no obvious single common ancestor. The occurrence of both types of DFI in multiple unrelated phylogenetic clades supported their selection in metabolic and environmental niche roles rather than a traditional taxonomic relationship. Nonetheless, organisms with these rare immunophilins may define an operational taxonomic unit (OTU) bound by the commonality of chaperone function.

  9. Improving the quality of ready-to-eat meals by gamma irradiation, cooked meat balls and mashed potatoes

    International Nuclear Information System (INIS)

    Rady, A.H.; Badr, H.M.; Abdel-Daiem, M.H.

    2005-01-01

    The possibilty of using gamma irradiation for improving the quality of ready-to-eat cooked meat balts and mashed potatoes were subjected to gamma irradiation at doses of 0, 1, 5, 3 and 4.5 KGy followed by cold storage (4± 1degree C). The effects of irradiation and cold storage on the microbiological aspects, chemical and organoleptic properties of samples were studied. The results showed that irradiation of the prepared meal components decreased their microbial counts (total bacteria, total psychrophilic bacteria and total yeast and molds), proportionally to the applied dose and prolonged their refrigerated shelf-life. Moreover, irradiation at 1.5 KGy reduced the counts of Enterobacteriaceae, Staphylococcus aureus and Enterococcus faecalis, while 3 KGy dose completely eliminated the presence of Enterobacteriaceae and Staphylococcus aureus and greatly reduced the counts of Enterococcus faecalis in samples. Salmonells was not detected in all irradiated and non-irraiated samples. On the other hand, gamma irradiation had no effects on the chemical composition and ph of meal components but increased the thiobarbituric acid (TBA) values of cooked meat balls

  10. Subglacial Lake Vostok (Antarctica accretion ice contains a diverse set of sequences from aquatic, marine and sediment-inhabiting bacteria and eukarya.

    Directory of Open Access Journals (Sweden)

    Yury M Shtarkman

    Full Text Available Lake Vostok, the 7(th largest (by volume and 4(th deepest lake on Earth, is covered by more than 3,700 m of ice, making it the largest subglacial lake known. The combination of cold, heat (from possible hydrothermal activity, pressure (from the overriding glacier, limited nutrients and complete darkness presents extreme challenges to life. Here, we report metagenomic/metatranscriptomic sequence analyses from four accretion ice sections from the Vostok 5G ice core. Two sections accreted in the vicinity of an embayment on the southwestern end of the lake, and the other two represented part of the southern main basin. We obtained 3,507 unique gene sequences from concentrates of 500 ml of 0.22 µm-filtered accretion ice meltwater. Taxonomic classifications (to genus and/or species were possible for 1,623 of the sequences. Species determinations in combination with mRNA gene sequence results allowed deduction of the metabolic pathways represented in the accretion ice and, by extension, in the lake. Approximately 94% of the sequences were from Bacteria and 6% were from Eukarya. Only two sequences were from Archaea. In general, the taxa were similar to organisms previously described from lakes, brackish water, marine environments, soil, glaciers, ice, lake sediments, deep-sea sediments, deep-sea thermal vents, animals and plants. Sequences from aerobic, anaerobic, psychrophilic, thermophilic, halophilic, alkaliphilic, acidophilic, desiccation-resistant, autotrophic and heterotrophic organisms were present, including a number from multicellular eukaryotes.

  11. Microbial community analysis of a coastal hot spring in Kagoshima, Japan, using molecular- and culture-based approaches.

    Science.gov (United States)

    Nishiyama, Minako; Yamamoto, Shuichi; Kurosawa, Norio

    2013-08-01

    Ibusuki hot spring is located on the coastline of Kagoshima Bay, Japan. The hot spring water is characterized by high salinity, high temperature, and neutral pH. The hot spring is covered by the sea during high tide, which leads to severe fluctuations in several environmental variables. A combination of molecular- and culture-based techniques was used to determine the bacterial and archaeal diversity of the hot spring. A total of 48 thermophilic bacterial strains were isolated from two sites (Site 1: 55.6°C; Site 2: 83.1°C) and they were categorized into six groups based on their 16S rRNA gene sequence similarity. Two groups (including 32 isolates) demonstrated low sequence similarity with published species, suggesting that they might represent novel taxa. The 148 clones from the Site 1 bacterial library included 76 operational taxonomy units (OTUs; 97% threshold), while 132 clones from the Site 2 bacterial library included 31 OTUs. Proteobacteria, Bacteroidetes, and Firmicutes were frequently detected in both clone libraries. The clones were related to thermophilic, mesophilic and psychrophilic bacteria. Approximately half of the sequences in bacterial clone libraries shared <92% sequence similarity with their closest sequences in a public database, suggesting that the Ibusuki hot spring may harbor a unique and novel bacterial community. By contrast, 77 clones from the Site 2 archaeal library contained only three OTUs, most of which were affiliated with Thaumarchaeota.

  12. The fungus Trichophyton redellii sp. nov. causes skin infections that resemble white-nose syndrome of hibernating bats

    Science.gov (United States)

    Lorch, Jeffrey M.; Minnis, Andrew M.; Meteyer, Carol U.; Redell, Jennifer A.; White, J. Paul; Kaarakka, Heather M.; Muller, Laura K.; Lindner, David L.; Verant, Michelle L.; Shearn-Bochsler, Valerie I.; Blehert, David S.

    2014-01-01

    Before the discovery of white-nose syndrome (WNS), a fungal disease caused by Pseudogymnoascus destructans, there were no reports of fungal skin infections in bats during hibernation. In 2011, bats with grossly visible fungal skin infections similar in appearance to WNS were reported from multiple sites in Wisconsin, USA, a state outside the known range of P. destructans and WNS at that time. Tape impressions or swab samples were collected from affected areas of skin from bats with these fungal infections in 2012 and analyzed by microscopy, culture, or direct DNA amplification and sequencing of the fungal internal transcribed spacer region (ITS). A psychrophilic species ofTrichophyton was isolated in culture, detected by direct DNA amplification and sequencing, and observed on tape impressions. Deoxyribonucleic acid indicative of the same fungus was also detected on three of five bat carcasses collected in 2011 and 2012 from Wisconsin, Indiana, and Texas, USA. Superficial fungal skin infections caused by Trichophyton sp. were observed in histopathology for all three bats. Sequencing of the ITS of Trichophyton sp., along with its inability to grow at 25 C, indicated that it represented a previously unknown species, described herein as Trichophyton redellii sp. nov. Genetic diversity present within T. redellii suggests it is native to North America but that it had been overlooked before enhanced efforts to study fungi associated with bats in response to the emergence of WNS.

  13. Stabilization of red fruit-based smoothies by high-pressure processing. Part A. Effects on microbial growth, enzyme activity, antioxidant capacity and physical stability.

    Science.gov (United States)

    Hurtado, Adriana; Guàrdia, Maria Dolors; Picouet, Pierre; Jofré, Anna; Ros, José María; Bañón, Sancho

    2017-02-01

    Non-thermal pasteurization by high-pressure processing (HPP) is increasingly replacing thermal processing (TP) to maintain the properties of fresh fruit products. However, most of the research on HPP-fruit products only partially addresses fruit-pressure interaction, which limits its practical interest. The objective of this study was to assess the use of a mild HPP treatment to stabilize red fruit-based smoothies (microbial, enzymatic, oxidative and physical stability). HPP (350 MPa/10 °C/5 min) was slightly less effective than TP (85 °C/7 min) in inactivating microbes (mesophilic and psychrophilic bacteria, coliforms, yeasts and moulds) in smoothies kept at 4 °C for up to 28 days. The main limitation of using HPP was its low efficacy in inactivating oxidative (polyphenol oxidase and peroxidase) and hydrolytic (pectin methyl esterase) enzymes. Data on antioxidant status, colour parameters, browning index, transmittance, turbidity and viscosity confirmed that the HPP-smoothies have a greater tendency towards oxidation and clarification, which might lead to undesirable sensory and nutritional changes (see Part B). The microbial quality of smoothies was adequately controlled by mild HPP treatment without affecting their physical-chemical characteristics; however, oxidative and hydrolytic enzymes are highly pressure-resistant, which suggests that additional strategies should be used to stabilize smoothies. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  14. Upstream Freshwater and Terrestrial Sources Are Differentially Reflected in the Bacterial Community Structure along a Small Arctic River and Its Estuary

    Science.gov (United States)

    Hauptmann, Aviaja L.; Markussen, Thor N.; Stibal, Marek; Olsen, Nikoline S.; Elberling, Bo; Bælum, Jacob; Sicheritz-Pontén, Thomas; Jacobsen, Carsten S.

    2016-01-01

    Glacier melting and altered precipitation patterns influence Arctic freshwater and coastal ecosystems. Arctic rivers are central to Arctic water ecosystems by linking glacier meltwaters and precipitation with the ocean through transport of particulate matter and microorganisms. However, the impact of different water sources on the microbial communities in Arctic rivers and estuaries remains unknown. In this study we used 16S rRNA gene amplicon sequencing to assess a small river and its estuary on the Disko Island, West Greenland (69°N). Samples were taken in August when there is maximum precipitation and temperatures are high in the Disko Bay area. We describe the bacterial community through a river into the estuary, including communities originating in a glacier and a proglacial lake. Our results show that water from the glacier and lake transports distinct communities into the river in terms of diversity and community composition. Bacteria of terrestrial origin were among the dominating OTUs in the main river, while the glacier and lake supplied the river with water containing fewer terrestrial organisms. Also, more psychrophilic taxa were found in the community supplied by the lake. At the river mouth, the presence of dominant bacterial taxa from the lake and glacier was unnoticeable, but these taxa increased their abundances again further into the estuary. On average 23% of the estuary community consisted of indicator OTUs from different sites along the river. Environmental variables showed only weak correlations with community composition, suggesting that hydrology largely influences the observed patterns. PMID:27708629

  15. The effect of different cooking procedures on microbiological and chemical quality characteristics of Tekirdağ meatballs.

    Science.gov (United States)

    Yilmaz, I; Yetim, H; Ockerman, H W

    2002-08-01

    In this research, the effects of different cooking processes (grilling, oven, and microwave cooking) on microbial flora and chemical composition of the raw and cooked meatballs as consumed in Tekirdağ were investigated. Microbial flora of the raw meatballs was as follows: total bacteria, 6.02 x 10(6) cfu/g; psychrophilic bacteria, 1.3 x 10(5) cfu/g; yeast and mould, 2.4 x 10(5) cfu/g; coliforms, 1.1 x 10(5) cfu/g; Escherichia coli, 1.0 x 10(2) cfu/g; total staphylococcae, 3.3 x 10(2) cfu/g; Staphylococcus aureus, 85 cfu/g. While Salmonella was found in only one sample, none of the samples contained Clostridium perfringens. The cooking processes clearly decreased the microbial flora (2-3 log cycles in grilling (71 degrees C) and oven-cooked (79 degrees C), 3-4 log cycles in microwave (97 degrees C) heating) of the meatballs. However, because of the crust formation and high moisture losses from the meatball surface in microwave heating, some sensorial defects were observed in the final product. Also, fat and moisture losses were higher in microwave cooking compared to the other cooking processes. In conclusion, it is advised to use slightly higher temperatures than used in the grilling or conventinal cooking procedures to increase microbial quality of the meatballs studied in this research.

  16. Antimicrobial activity of poultry bone and meat trimmings hydrolyzates in low-sodium turkey food.

    Science.gov (United States)

    Zanello, Pier Paolo; Sforza, Stefano; Dossena, Arnaldo; Lambertini, Francesca; Bottesini, Chiara; Nikolaev, Ilya V; Koroleva, Olga; Ciociola, Tecla; Magliani, Walter; Conti, Stefania; Polonelli, Luciano

    2014-02-01

    This research was aimed at the evaluation of the antimicrobial activity exerted by poultry protein hydrolyzates derived from industrial leftovers added to minced turkey meat, intended for the production of burgers for human consumption. Hydrolyzates were obtained through enzymatic hydrolysis from poultry bone and meat trimmings, as by-products from the poultry industry. Colony forming unit assays, under both laboratory and industrial conditions, were performed to assess microbial growth. Poultry protein hydrolyzates inhibited microbial growth occurring in semi-finished turkey meat during the normal retention period because of their water holding capacity resulting in a decreased water activity. Overall, the findings demonstrated that poultry protein hydrolyzates could decrease mesophilic, psychrophilic, and thermophilic bacterial growth for the entire product shelf-life. Bacterial growth inhibition obtained in minced turkey meat by addition of poultry protein hydrolyzates (1.5%), hygroscopic amino acids mixture (1.5%) or sodium chloride (1%) was similar. It is suggested that the use of hydrolyzates could allow the reduction of salt content in poultry meat based products leading to the production of low-sodium turkey food still maintaining acceptable sensory characteristics.

  17. Immobilization of Cold-Active Cellulase from Antarctic Bacterium and Its Use for Kelp Cellulose Ethanol Fermentation

    Directory of Open Access Journals (Sweden)

    Yi Bin Wang

    2015-01-01

    Full Text Available Immobilization is an effective way to solve the problem associated with the application of cold-active cellulase in industrial processes. In this study, a cold-active cellulase from the Antarctic psychrophilic bacterium Pseudoalteromonas sp. NJ64 was obtained, immobilized, and analyzed for optimal immobilization conditions. Then it was used in kelp cellulose ethanol fermentation, achieving a higher purity level of kelp cellulose ethanol. The enzymatic activity of this cold-active cellulase was 49.7 U/mL. The optimal immobilization process conditions were as follows: sodium alginate, 30 g/L; calcium chloride, 5 g/L; glutaraldehyde, 0.4%; and cross-linking time, 5 h. Under these conditions, the activity recovery rate was 51.58%. The optimum reaction temperature was at 40 °C, the optimum initial pH was 9.0, and the relative enzyme activity was 58.37% after being recovered seven times. A higher purity level of kelp cellulose ethanol has reached (37.37%. Immobilized cold-active cellulase can effectively hydrolyze the cellulose of kelp residue, which is a valuable component of cellulose bio-ethanol production and will have broad implications in the development of the ethanol industry in China.

  18. The genome of the polar eukaryotic microalga Coccomyxa subellipsoidea reveals traits of cold adaptation

    Energy Technology Data Exchange (ETDEWEB)

    Blanc, Guillaume; Agarkova, Irina; Grimwood, Jane; Kuo, Alan; Brueggeman, Andrew; Dunigan, David D.; Gurnon, James; Ladunga, Istvan; Lindquist, Erika; Lucas, Susan; Pangilinan, Jasmyn; Proschold, Thomas; Salamov, Asaf; Schmutz, Jeremy; Weeks, Donald; Tamada, Takashi; Lomsadze, Alexandre; Borodovsky, Mark; Claverie, Jean-Michel; Grigoriev, Igor V.; Van Etten, James L.

    2012-02-13

    Background Little is known about the mechanisms of adaptation of life to the extreme environmental conditions encountered in polar regions. Here we present the genome sequence of a unicellular green alga from the division chlorophyta, Coccomyxa subellipsoidea C-169, which we will hereafter refer to as C-169. This is the first eukaryotic microorganism from a polar environment to have its genome sequenced. Results The 48.8 Mb genome contained in 20 chromosomes exhibits significant synteny conservation with the chromosomes of its relatives Chlorella variabilis and Chlamydomonas reinhardtii. The order of the genes is highly reshuffled within synteny blocks, suggesting that intra-chromosomal rearrangements were more prevalent than inter-chromosomal rearrangements. Remarkably, Zepp retrotransposons occur in clusters of nested elements with strictly one cluster per chromosome probably residing at the centromere. Several protein families overrepresented in C. subellipsoidae include proteins involved in lipid metabolism, transporters, cellulose synthases and short alcohol dehydrogenases. Conversely, C-169 lacks proteins that exist in all other sequenced chlorophytes, including components of the glycosyl phosphatidyl inositol anchoring system, pyruvate phosphate dikinase and the photosystem 1 reaction center subunit N (PsaN). Conclusions We suggest that some of these gene losses and gains could have contributed to adaptation to low temperatures. Comparison of these genomic features with the adaptive strategies of psychrophilic microbes suggests that prokaryotes and eukaryotes followed comparable evolutionary routes to adapt to cold environments.

  19. Aerobic methanotrophic bacteria of cold ecosystems.

    Science.gov (United States)

    Trotsenko, Yuri A; Khmelenina, Valentina N

    2005-06-01

    This review summarizes the recent advances in understanding the ecophysiological role and structure-function features of methanotrophic bacteria living in various cold ecosystems. The occurrence of methanotrophs in a majority of psychrosphere sites was verified by direct measurement of their methane-utilizing activity, by electron microscopy and immunofluorescent observations, and analyses of specific signatures in cellular phospholipids and total DNAs extracted from environmental samples. Surprisingly, the phenotypic and genotypic markers of virtually all extant methanotrophs were detected in various cold habitats, such as underground waters, Northern taiga and tundra soils, polar lakes and permafrost sediments. Also, recent findings indicated that even after long-term storage in permafrost, some methanotrophs can oxidize and assimilate methane not only at positive but also at subzero temperatures. Pure cultures of psychrophilic and psychrotolerant methanotrophs were isolated and characterized as new genera and species: Methylobacter psychrophilus, Methylosphaera hansonii, Methylocella palustris, Methylocella silvestris, Methylocella tundrae, Methylocapsa acidiphila and Methylomonas scandinavica. However, our knowledge about their adaptive mechanisms and survival in cold ecosystems remains limited and needs to be established using both traditional and molecular microbiological methods.

  20. PhAP protease from Pseudoalteromonas haloplanktis TAC125: Gene cloning, recombinant production in E. coli and enzyme characterization

    Science.gov (United States)

    de Pascale, D.; Giuliani, M.; De Santi, C.; Bergamasco, N.; Amoresano, A.; Carpentieri, A.; Parrilli, E.; Tutino, M. L.

    2010-08-01

    Cold-adapted proteases have been found to be the dominant activity throughout the cold marine environment, indicating their importance in bacterial acquisition of nitrogen-rich complex organic compounds. However, few extracellular proteases from marine organisms have been characterized so far, and the mechanisms that enable their activity in situ are still largely unknown. Aside from their ecological importance and use as model enzyme for structure/function investigations, cold-active proteolytic enzymes offer great potential for biotechnological applications. Our studies on cold adapted proteases were performed on exo-enzyme produced by the Antarctic marine bacterium Pseudoalteromonas haloplanktis TAC125. By applying a proteomic approach, we identified several proteolytic activities from its culture supernatant. PhAP protease was selected for further investigations. The encoding gene was cloned and the protein was recombinantly produced in E. coli cells. The homogeneous product was biochemically characterised and it turned out that the enzyme is a Zn-dependent aminopeptidase, with an activity dependence from assay temperature typical of psychrophilic enzymes.

  1. Ecology of Subglacial Lake Vostok (Antarctica, Based on Metagenomic/Metatranscriptomic Analyses of Accretion Ice

    Directory of Open Access Journals (Sweden)

    Tom D'Elia

    2013-03-01

    Full Text Available Lake Vostok is the largest of the nearly 400 subglacial Antarctic lakes and has been continuously buried by glacial ice for 15 million years. Extreme cold, heat (from possible hydrothermal activity, pressure (from the overriding glacier and dissolved oxygen (delivered by melting meteoric ice, in addition to limited nutrients and complete darkness, combine to produce one of the most extreme environments on Earth. Metagenomic/metatranscriptomic analyses of ice that accreted over a shallow embayment and over the southern main lake basin indicate the presence of thousands of species of organisms (94% Bacteria, 6% Eukarya, and two Archaea. The predominant bacterial sequences were closest to those from species of Firmicutes, Proteobacteria and Actinobacteria, while the predominant eukaryotic sequences were most similar to those from species of ascomycetous and basidiomycetous Fungi. Based on the sequence data, the lake appears to contain a mixture of autotrophs and heterotrophs capable of performing nitrogen fixation, nitrogen cycling, carbon fixation and nutrient recycling. Sequences closest to those of psychrophiles and thermophiles indicate a cold lake with possible hydrothermal activity. Sequences most similar to those from marine and aquatic species suggest the presence of marine and freshwater regions.

  2. Identification, recombinant production and partial biochemical characterization of an extracellular cold-active serine-metalloprotease from an Antarctic Pseudomonas isolate

    Directory of Open Access Journals (Sweden)

    Natalia Fullana

    2017-08-01

    Full Text Available Cold-adapted enzymes are generally derived from psychrophilic microorganisms and have features that make them very attractive for industrial and biotechnological purposes. In this work, we identified a 50 kDa extracellular protease (MP10 from the Antarctic isolate Pseudomonas sp. AU10. The enzyme was produced by recombinant DNA technology, purified using immobilized metal affinity chromatography and partially characterized. MP10 is an alkaline thermosensitive serine-metallo protease with optimal activity at pH 8.0 and 40 ℃, in the presence of 1.5 mM Ca2+. MP10 showed 100% residual activity and stability (up to 60 min when incubated with 7% of non-ionic surfactants (Triton X-100, Tween-80 and Tween-20 and 1.5% of the oxidizing agent hydrogen peroxide. The 3D MP10 structure was predicted and compared with the crystal structure of mesophilic homologous protease produced by Pseudomonas aeruginosa PA01 (reference strain and other proteases, showing similarity in surface area and volume of proteins, but a significantly higher surface pocket area and volume of MP10. The observed differences presumably may explain the enhanced activity of MP10 for substrate binding at low temperatures. These results give insight to the potential use of MP10 in developing new biotechnologically processes active at low to moderate temperatures, probably with focus in the detergent industry.

  3. Effects of changes in temperature on treatment performance and energy recovery at mainstream anaerobic ceramic membrane bioreactor for food waste recycling wastewater treatment.

    Science.gov (United States)

    Cho, Kyungjin; Jeong, Yeongmi; Seo, Kyu Won; Lee, Seockheon; Smith, Adam L; Shin, Seung Gu; Cho, Si-Kyung; Park, Chanhyuk

    2018-05-01

    An anaerobic ceramic membrane bioreactor (AnCMBR) has been attracted as an alternative technology to co-manage various organic substrates. This AnCMBR study investigated process performance and microbial community structure at decreasing temperatures to evaluate the potential of AnCMBR treatment for co-managing domestic wastewater (DWW) and food waste-recycling wastewater (FRW). As a result, the water flux (≥6.9 LMH) and organic removal efficiency (≥98.0%) were maintained above 25 °C. The trend of methane production in the AnCMBR was similar except for at 15 °C. At 15 °C, the archaeal community structure did not shifted, whereas the bacterial community structure was changed. Various major archaeal species were identified as the mesophilic methanogens which unable to grow at 15 °C. Our results suggest that the AnCMBR can be applied to co-manage DWW and FRW above 20 °C. Future improvements including psychrophilic methanogen inoculation and process optimization would make co-manage DWW and FRW at lower temperature climates. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. keeping the quality of ready-to-eat meals by gamma irradiation

    International Nuclear Information System (INIS)

    Abdel Daiem, M.H.M.

    2004-01-01

    the possibility of using gamma irradiation for keeping the quality of ready-to-eat meals was studied. the prepared meals(included cooked meat balls, mashed potatoes, baked chicken meat with potato slices, baked fish and cooked rice)were subjected to gamma irradiation at doses of 0, 1.5,3 and 4.5 kGy followed by cold storage (4±1 c). then the effects of irradiation and cold storage on the microbiological aspects, chemical properties and organoleptic properties of samples were studied. the results showed that irradiation of the prepared meals decreased the counts of total bacteria, total psychrophilic bacteria and total yeasts and molds in all meals, proportionally to the applied dose, and prolonged their refrigerated shelf-life. moreover, irradiation at dose of 1.5 kGy reduced the counts of enterobacteriaceae, staphylococcus aureus, streptococcus faecalis and bacillus cereus, while 3 kGy dose completely eliminate the present enterobacteriaceae, staphylococcus aureus and bacillus cereus in all meals, in addition to streptococcus faecalis in samples of baked chicken with potatoes, baked fish and cooked rice

  5. Impact of high pressure processing on color, bioactive compounds, polyphenol oxidase activity, and microbiological attributes of pumpkin purée.

    Science.gov (United States)

    González-Cebrino, Francisco; Durán, Rocío; Delgado-Adámez, Jonathan; Contador, Rebeca; Bernabé, Rosario Ramírez

    2016-04-01

    Physicochemical parameters, bioactive compounds' content (carotenoids and total phenols), total antioxidant activity, and enzymatic activity of polyphenol oxidase (PPO) were evaluated after high pressure processing (HPP) on a pumpkin purée (cv. 'Butternut'). Three pressure levels (400, 500, and 600 MPa) were combined with three holding times (200, 400, and 600 s). The applied treatments reduced the levels of total aerobic mesophilic (TAM), total psychrophilic and psychrotrophic bacteria (TPP), and molds and yeasts (M&Y). All applied treatments did not affect enzymatic activity of PPO. Pressure level increased CIE L* values, which could enhance the lightness perception of high pressure (HP)-treated purées. No differences were found between the untreated and HP-treated purées regarding total phenols and carotenoids content (lutein, α-carotene, and β-carotene) and total antioxidant activity. HPP did not affect most quality parameters and maintained the levels of bioactive compounds. However, it did not achieve the complete inhibition of PPO, which could reduce the shelf-life of the pumpkin purée. © The Author(s) 2015.

  6. [Super sweet corn hybrids adaptability for industrial processing. I freezing].

    Science.gov (United States)

    Alfonzo, Braunnier; Camacho, Candelario; Ortiz de Bertorelli, Ligia; De Venanzi, Frank

    2002-09-01

    With the purpose of evaluating adaptability to the freezing process of super sweet corn sh2 hybrids Krispy King, Victor and 324, 100 cobs of each type were frozen at -18 degrees C. After 120 days of storage, their chemical, microbiological and sensorial characteristics were compared with a sweet corn su. Industrial quality of the process of freezing and length and number of rows in cobs were also determined. Results revealed yields above 60% in frozen corns. Length and number of rows in cobs were acceptable. Most of the chemical characteristics of super sweet hybrids were not different from the sweet corn assayed at the 5% significance level. Moisture content and soluble solids of hybrid Victor, as well as total sugars of hybrid 324 were statistically different. All sh2 corns had higher pH values. During freezing, soluble solids concentration, sugars and acids decreased whereas pH increased. Frozen cobs exhibited acceptable microbiological rank, with low activities of mesophiles and total coliforms, absence of psychrophiles and fecal coliforms, and an appreciable amount of molds. In conclusion, sh2 hybrids adapted with no problems to the freezing process, they had lower contents of soluble solids and higher contents of total sugars, which almost doubled the amount of su corn; flavor, texture, sweetness and appearance of kernels were also better. Hybrid Victor was preferred by the evaluating panel and had an outstanding performance due to its yield and sensorial characteristics.

  7. Significance of dissolved methane in effluents of anaerobically ...

    Science.gov (United States)

    The need for energy efficient Domestic Wastewater (DWW) treatment is increasing annually with population growth and expanding global energy demand. Anaerobic treatment of low strength DWW produces methane which can be used to as an energy product. Temperature sensitivity, low removal efficiencies (Chemical Oxygen Demand (COD), Suspended Solids (SS), and Nutrients), alkalinity demand, and potential greenhouse gas (GHG) emissions have limited its application to warmer climates. Although well designed anaerobic Membrane Bioreactors (AnMBRs) are able to effectively treat DWW at psychrophilic temperatures (10–30 °C), lower temperatures increase methane solubility leading to increased energy losses in the form of dissolved methane in the effluent. Estimates of dissolved methane losses are typically based on concentrations calculated using Henry's Law but advection limitations can lead to supersaturation of methane between 1.34 and 6.9 times equilibrium concentrations and 11–100% of generated methane being lost in the effluent. In well mixed systems such as AnMBRs which use biogas sparging to control membrane fouling, actual concentrations approach equilibrium values. Non-porous membranes have been used to recover up to 92.6% of dissolved methane and well suited for degassing effluents of Upflow Anaerobic Sludge Blanket (UASB) reactors which have considerable solids and organic contents and can cause pore wetting and clogging in microporous membrane modules. Micro

  8. Gamma irradiation prolongs the sea bass (Dicentrarchus labrax L) storage and delays the lipids membrane degradation

    International Nuclear Information System (INIS)

    Barkallah, Insaf; Mahjoub, Abdelmajid; Cheour, F.

    2005-01-01

    Sea bass have been submitted to gamma rays radiation at doses 0, 1, 2, 3 or 4 KGy at 0,087KGY/min rate and stored during 21 days at 1 0 C to evaluate the effects on the development of microorganisms as well as on the conservation and the degradation of membranes lipids Microbiological analysis has revealed only the presence of mesophils germs in muscles which are totally eliminated at dose 4 KGy. The presence of psychrophiles, halophiles, coliformes, fecaux and totals, Staphylococcus aureus and Clostridium sulfutoreducteurs has been noted in the visceres of sea bass. They are completely eliminated at dose 1KGy. Contents in nitrogen basic fowl (ABVT) and in trimethylamine (TMA), as well as the pH increase during storage of fish in relation with the reduction of phospholipids, the diminution of the degree of insaturation of the phospholipids and the free fat acidic fraction, and the increase of the report sterols on phospholipids. The irradiation to gamma rays allows to slow these changes and consequently reduced the deterioration of the sea bass. We conclude that the irradiation to gamma rays could have prolong the conservation of sea bass sea bass by preserving probably lipids membranes of the degradation and by inhibiting the development of microorganisms

  9. Effect of phosphate treatments on microbiological, physicochemical changes of spent hen muscle marinated with Tom Yum paste during chilled storage.

    Science.gov (United States)

    Wongwiwat, Pirinya; Wattanachant, Saowakon; Siripongvutikorn, Sunisa

    2010-06-01

    This research aimed to study the effect of phosphate on quality of ready-to-cook spent hen muscle marinated with Tom Yum paste, a famous Thai food made from chilli, lime leaves and garcinia (pH 2.5-2.9). The effects of phosphate treatments (phosphate types, soaking time, and phosphate concentration) on physical characteristics of spent hen muscle in high acid condition were investigated. Quality changes of muscles pretreated with or without phosphate and marinated with Tom Yum paste were determined during storage at 4 degrees C for 30 days. The acidified muscle pretreated with 40 g L(-1) sodium tripolyphosphate for 10 h had the highest marinade absorption, and the lowest cooking loss and shear force among all treatment samples. Microstructures of acidified muscle pretreated with and without sodium tripolyphosphate showed significant swelling with larger fibre diameter. Phosphate pretreatment had no influence on cooking loss, shear force and thiobarbituric acid reactive substance values of Tom Yum marinated muscle during storage. Tom Yum marination with phosphate pretreatment caused a higher increase in psychrophilic bacteria compared to that of marinating without phosphate. Phosphate pretreatment could not improve the physical quality of Tom-Yum marinated spent hen muscle and affected the antimicrobial property of Tom-Yum marinade, resulting in a reduction of shelf-life of the marinated muscle from 30 days to 20 days. Copyright (c) 2010 Society of Chemical Industry.

  10. Ice Lens Formation and Frost Heave at the Phoenix Landing Site

    Science.gov (United States)

    Zent, A. P.; Sizemore, H. G.; Remple, A. W.

    2011-01-01

    Several lines of evidence indicate that the volume of shallow ground ice in the martian high latitudes exceeds the pore volume of the host regolith. Boynton et al. found an optimal fit to the Mars Odyssey Gamma Ray Spectrometer (GRS) data at the Phoenix landing site by modeling a buried layer of 50-75% ice by mass (up to 90% ice by volume). Thermal and optical observations of recent impact craters in the northern hemisphere have revealed nearly pure ice. Ice deposits containing only 1-2% soil by volume were excavated by Phoenix. The leading hypothesis for the origin of this excess ice is that it developed in situ by a mechanism analogous to the formation of terrestrial ice lenses and needle ice. Problematically, terrestrial soil-ice segregation is driven by freeze/thaw cycling and the movement of bulk water, neither of which are expected to have occurred in the geologically recent past on Mars. If however ice lens formation is possible at temperatures less than 273 K, there are possible implications for the habitability of Mars permafrost, since the same thin films of unfrozen water that lead to ice segregation are used by terrestrial psychrophiles to metabolize and grow down to temperatures of at least 258 K.

  11. Ice Lens Formation, Frost Heave, Thin Films, and the Importance of the Polar H2O Reservoir at High Obliquity

    Science.gov (United States)

    Zent, A. P.; Sizemore, H. G.; Rempel, A. W.

    2011-01-01

    Several lines of evidence indicate that the volume of shallow ground ice in the martian high latitudes exceeds the pore volume of the host regolith. Boynton et al. found an optimal fit to the Mars Odyssey Gamma Ray Spectrometer (GRS) data at the Phoenix landing site by modeling a buried layer of 50-75% ice by mass (up to 90% ice by volume). Thermal and optical observations of recent impact craters in the northern hemisphere have revealed nearly pure ice. Ice deposits containing only 1-2% soil by volume were excavaged by Phoenix. One hypothesis for the origin of this excess ice is that it developed in situ by a mechanism analogous to the formation of terrestrial ice lenses and needle ice. Problematically, terrestrial soil-ice segregation is driven by freeze/thaw cycling and the movement of bulk water, neither of which are expected to have occurred in the geologically recent past on Mars. If however ice lens formation is possible at temperatures less than 273 K, there are possible implications for the habitability of Mars permafrost, since the same thin films of unfrozen water that lead to ice segregation are used by terrestrial psychrophiles to metaboluze and grow down to temperatures of at least 258 K.

  12. Simple surface foam application enhances bioremediation of oil-contaminated soil in cold conditions.

    Science.gov (United States)

    Jeong, Seung-Woo; Jeong, Jongshin; Kim, Jaisoo

    2015-04-09

    Landfarming of oil-contaminated soil is ineffective at low temperatures, because the number and activity of micro-organisms declines. This study presents a simple and versatile technique for bioremediation of diesel-contaminated soil, which involves spraying foam on the soil surface without additional works such as tilling, or supply of water and air. Surfactant foam containing psychrophilic oil-degrading microbes and nutrients was sprayed twice daily over diesel-contaminated soil at 6 °C. Removal efficiencies in total petroleum hydrocarbon (TPH) at 30 days were 46.3% for landfarming and 73.7% for foam-spraying. The first-order kinetic biodegradation rates for landfarming and foam-spraying were calculated as 0.019 d(-1) and 0.044 d(-1), respectively. Foam acted as an insulating medium, keeping the soil 2 °C warmer than ambient air. Sprayed foam was slowly converted to aqueous solution within 10-12h and infiltrated the soil, providing microbes, nutrients, water, and air for bioaugmentation. Furthermore, surfactant present in the aqueous solution accelerated the dissolution of oil from the soil, resulting in readily biodegradable aqueous form. Significant reductions in hydrocarbon concentration were simultaneously observed in both semi-volatile and non-volatile fractions. As the initial soil TPH concentration increased, the TPH removal rate of the foam-spraying method also increased. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Method for indirect quantification of CH4 production via H2O production using hydrogenotrophic methanogens

    Directory of Open Access Journals (Sweden)

    Ruth-Sophie eTaubner

    2016-04-01

    Full Text Available ydrogenotrophic methanogens are an intriguing group of microorganisms from the domain Archaea. They exhibit extraordinary ecological, biochemical, physiological characteristics colorbox{yellow}{and have a huge biotechnological potential}. Yet, the only possibility to assess the methane (CH$_4$ production potential of hydrogenotrophic methanogens is to apply gas chromatographic quantification of CH$_4$.In order to be able to effectively screen pure cultures of hydrogenotrophic methanogens regarding their CH$_4$ production potential we developed a novel method for indirect quantification of colorbox{yellow}{the} volumetric CH$_4$ production rate by measuring colorbox{yellow}{the} volumetric water production rate. This colorbox{yellow}{ } method was established in serum bottles for cultivation of methanogens in closed batch cultivation mode. Water production was colorbox{yellow}{estimated} by determining the difference in mass increase in an isobaric setting.This novel CH$_4$ quantification method is an accurate and precise analytical technique, colorbox{yellow}{which can be used} to rapidly screen pure cultures of methanogens regarding colorbox{yellow}{their} volumetric CH$_{4}$ evolution rate. colorbox{yellow}{It} is a cost effective alternative colorbox{yellow}{determining} CH$_4$ production of methanogens over CH$_4$ quantification by using gas chromatography, especially if colorbox{yellow}{ } applied as a high throughput quantification method. colorbox{yellow}{Eventually, the} method can be universally applied for quantification of CH$_4$ production from psychrophilic, thermophilic and hyperthermophilic hydrogenotrophic methanogens.

  14. Assessment of microbiological quality of water in the Nowohucki Reservoir with particular regard to microorganisms potentially dangerous to humans

    Directory of Open Access Journals (Sweden)

    Katarzyna Wolny-Koładka

    2016-12-01

    Full Text Available Introduction. This study was aimed to assess the microbiological quality of water in the Nowohucki Reservoir (Kraków, Poland as well as to determine whether its waters contain microorganisms potentially dangerous from an epidemiological point of view. Material and methods. Microbiological analyses included the determination of the number of mesophilic and psychrophilic bacteria, coliforms, fecal E. coli, as well as E. faecalis, C. perfringens, Staphylococcus spp. and Salmonella spp.. Water samples were collected 4 times per year on April 27th 2015 (spring, July 10th 2015 (summer, October 12th 2015 (autumn and December 29th 2015 (winter at 5 points within the area of the reservoir. Water and air temperature was measured onsite. Results. It was found that the prevalence of the analyzed microorganisms was affected by changing water and air temperature as well as by using this reservoir during holiday season for swimming purposes by local residents. All analyzed microbiological indicators of poor water quality were found in the analyzed water samples, which may pose a potential health risk to people swimming in the considered reservoir. Conclusions. From an epidemiological point of view, it is reasonable to include the Nowohucki Reservoir into a constant sanitary monitoring programme.

  15. Diversity of bacterioplankton in the surface seawaters of Drake Passage near the Chinese Antarctic station.

    Science.gov (United States)

    Xing, Mengxin; Li, Zhao; Wang, Wei; Sun, Mi

    2015-07-01

    The determination of relative abundances and distribution of different bacterial groups is a critical step toward understanding the functions of various bacteria and its surrounding environment. Few studies focus on the taxonomic composition and functional diversity of microbial communities in Drake Passage. In this study, marine bacterioplankton communities from surface seawaters at five locations in Drake Passage were examined by 16S rRNA gene sequence analyses. The results indicated that psychrophilic bacteria were the most abundant group in Drake Passage, and mainly made up of Bacillus, Aeromonas, Psychrobacter, Pseudomonas and Halomonas. Diversity analysis showed that surface seawater communities had no significant correlation with latitudinal gradient. Additionally, a clear difference among five surface seawater communities was evident, with 1.8% OTUs (only two) belonged to Bacillus consistent across five locations and 71% OTUs (80) existed in only one location. However, the few cosmopolitans had the largest population sizes. Our results support the hypothesis that the dominant bacterial groups appear to be analogous between geographical sites, but significant differences may be detected among rare bacterial groups. The microbial diversity of surface seawaters would be liable to be affected by environmental factors. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Drastic Environmental Change on Mars: Applying the Lessons Learned on Earth

    Science.gov (United States)

    Fairen, A.; Schulze-Makuch, D.; Irwin, L. N.

    2014-12-01

    Rapid and drastic environmental change has occurred frequently on Earth, posing a critical challenge to life. However, directional selection has overcome those challenges and driven life on our planet to ever increasing diversity and complexity. Based on our knowledge of the natural history of Earth, the effect of drastic environmental changes on a planet's biosphere can be attributed to three main factors: (1) the nature and time scale of change, (2) the composition of the biosphere prior to change, and (3) the nature of the environment following the change. Mars has undergone even larger environmental changes than Earth, from habitable conditions under which the origin of life (or transfer of life from Earth) seem plausible, to a dry and cold planet punctuated by wetter conditions. Given its planetary history, life on Mars could have retreated to a psychrophilic lifestyle in the deep subsurface or to environmental near-surface niches, such as hydrothermal regions and caves. Further, strong directional selection could have pushed putative martian life to evolve alternating cycles between active and dormant forms, as well as the innovation of new traits adapted to challenging near-surface conditions (e.g., use of H2O2 or perchlorates as antifreeze compounds).

  17. Cloning and characterization of a new cold-adapted and thermo-tolerant ι-carrageenase from marine bacterium Flavobacterium sp. YS-80-122.

    Science.gov (United States)

    Li, Shangyong; Hao, Jianhua; Sun, Mi

    2017-09-01

    ι-Carrageenases play a role in marine ι-carrageenan degradation, and their enzymatic hydrolysates are thought to be excellent antioxidants. In this study, we identified a new ι-carrageenase, encoded by cgiF, in psychrophilic bacterium Flavobacterium sp. YS-80-122. The deduced ι-carrageenase, CgiF, belongs to glycoside hydrolase family 82 and shows less than 40% amino acid identity with characterized ι-carrageenases. The activity of recombinant CgiF peaked at 30°C (1,207.8U/mg). Notably, CgiF is a cold-adapted ι-carrageenase, which showed 36.5% and 57% of the maximum activity at 10°C and 15°C, respectively. In addition, it is a thermo-tolerant enzyme that recovered 58.2% of its initial activity after heat shock. Furthermore, although the activity of CgiF was enhanced by NaCl, the enzyme is active in absence of NaCl. This study also shows that CgiF is an endo-type ι-carrageenase that hydrolyzes β-1,4-linkages of ι-carrageenan, yielding neo-ι-carratetraose as the main product. Its cold-adaptation, thermo-tolerance, NaCl independence and high neo-ι-carratetraose yield make CgiF an excellent candidate for industrial applications in production of ι-carrageen oligosaccharides from seaweed polysaccharides. Copyright © 2017. Published by Elsevier B.V.

  18. The application of impedance measurement to assess biofilm development on technical materials used for water supply system construction

    Science.gov (United States)

    Wolf, Mirela; Traczewska, Teodora; Grzebyk, Tomasz

    2017-11-01

    The lack of biological stability of water which is introduced into the network, leads primarily to its secondary contamination during transport to the consumer. The water that is biologically unstable creates ideal conditions for colonization of the inner surface of pipelines by microorganisms and adhesion of their products (biocorrosion). The studies was conducted using the identified microorganisms isolated from the water supply network which accounted inocula in continuous culture of biofilm in CDC reactor. As a result of studies it was revealed the presence of biofilm formed on different materials polyethylene, polypropylene, polyvinyl chloride, polybutylene. Microbiological biodiversity of organisms inhabiting a biofilm of the diversity of nucleic acids was used. It was observed the amount of the psychrophilic bacteria oscillation in the effluent from the reactor. It was also determined the affinity of various bacteria to the plastic through adhesion measurement using impedance spectroscopy. For impedance measurements apparatus SIGNAL RECOVERY 7280 DSP LOCK-IN AMPLIFIER was used, recording impedance components (real and imaginary). The results will allow for the creation of biosensor systems that can be used in predicting health risks in connection with drinking water and taking corrective actions.

  19. Detection of proteases from Sporosarcina aquimarina and Algoriphagus antarcticus isolated from Antarctic soil

    Directory of Open Access Journals (Sweden)

    Anderson F. Santos

    2015-03-01

    Full Text Available Two psychrophilic bacterial samples were isolated from King George Island soil, in Antarctica. The phylogenetic analysis based on the 16S rRNA (rrs gene led to the correlation with the closest related isolates as Sporosarcina aquimarina (99% and Algoriphagus antarcticus(99%, with query coverage of 99% and 98%, respectively.The spent culture media from both isolates displayed proteolytic activities detected by sodium dodecyl sulfate polyacrylamide gel electrophoresis containing gelatin as protein substrate. Under the employed conditions, S. aquimarina showed a 55 kDa protease with the best activity detected at pH 7.0 and at 27°C. A. antarcticusalso showed a single extracellular protease, however its molecular mass was around 90kDa and its best activity was detected at pH 9.0 and at 37°C. The proteases from both isolates were inhibited by 1,10-phenanthroline and EDTA, two metalloprotease inhibitors. This is the first record of protease detection in both species, and our results may contribute to broaden the basic knowledge of proteases from the Antarctica environment and may help prospecting future biotechnological applications of these enzymes.

  20. Shelf-life extension of refrigerated sea bass slices wrapped with fish protein isolate/fish skin gelatin-ZnO nanocomposite film incorporated with basil leaf essential oil.

    Science.gov (United States)

    Arfat, Yasir Ali; Benjakul, Soottawat; Vongkamjan, Kitiya; Sumpavapol, Punnanee; Yarnpakdee, Suthasinee

    2015-10-01

    Microbiological, chemical and sensory changes of sea bass slices wrapped with fish protein isolate (FPI)/fish skin gelatin (FSG) films incorporated with 3 % ZnO nanoparticles (ZnONP) (w/w, based on protein content) and 100 % basil leaf essential oil (BEO) (w/w, based on protein content) during storage of 12 days at 4 °C were investigated. Sea bass slices wrapped with FPI/FSG-ZnONP-BEO film had the lowest growth of psychrophilic bacteria, lactic acid bacteria and spoilage microorganisms including Pseudomonas , H2S-producing bacteria and Enterobacteriaceae throughout storage of 12 days in comparison with those wrapped with FPI/FSG-BEO, FPI/FSG-ZnONP, FPI/FSG film, polypropylene film (PP film) and the control (without wrapping), respectively (P < 0.05). Lowered increases in pH, total volatile base, peroxide value and TBARS value were found in FPI/FSG-ZnO-BEO film wrapped samples, compared with others (P < 0.05). Sensory evaluation revealed that shelf-life of sea bass slices was longest for samples wrapped with FPI/FSG-ZnONP-BEO film (12 days), as compared to the control (6 days) (P < 0.05).

  1. Upstream freshwater and terrestrial sources are differentially reflected in the bacterial community structure along a small Arctic river and its estuary

    Directory of Open Access Journals (Sweden)

    Aviaja Lyberth Hauptmann

    2016-09-01

    Full Text Available Glacier melting and altered precipitation patterns influence Arctic freshwater and coastal ecosystems. Arctic rivers are central to Arctic water ecosystems by linking glacier meltwaters and precipitation with the ocean through transport of particulate matter and microorganisms. However, the impact of different water sources on the microbial communities in Arctic rivers and estuaries remains unknown. In this study we used 16S rRNA gene amplicon sequencing to assess a small river and its estuary on the Disko Island, West Greenland (69°N. Samples were taken in August when there is maximum precipitation and temperatures are high in the Disko Bay area. We describe the bacterial community through a river into the estuary, including communities originating in a glacier and a proglacial lake. Our results show that water from the glacier and lake transports distinct communities into the river in terms of diversity and community composition. Bacteria of terrestrial origin were among the dominating OTUs in the main river, while the glacier and lake supplied the river with water containing fewer terrestrial organisms. Also, more psychrophilic taxa were found in the community supplied by the lake. At the river mouth, the presence of dominant bacterial taxa from the lake and glacier was unnoticeable, but these taxa increased their abundances again further into the estuary. On average 23% of the estuary community consisted of indicator OTUs from different sites along the river. Environmental variables showed only weak correlations with community composition, suggesting that hydrology largely influences the observed patterns.

  2. Effect of refrigerated storage on the quality characteristics of microwave cooked chicken seekh kababs extended with different non-meat proteins.

    Science.gov (United States)

    Bhat, Zuhaib Fayaz; Pathak, Vikas; Fayaz, Hina

    2013-10-01

    Storage quality of chicken seekh kababs extended with different legumes at optimum level viz. 15% cowpea, 15% green gram and 10% black bean were assessed in terms of physico-chemical, proximate, microbiological and sensory properties under aerobic packaging conditions at refrigeration temperature (4 ± 1°C). The chicken seekh kababs were prepared from spent hens meat by low power microwave method and extended with optimum level of different legume (hydrated 1:1 w/w) pastes replacing lean meat in the formulation. The chicken seekh kababs formulated without any extender served as control and were compared with extended chicken seekh kababs. The kababs were aerobically packaged in low density polyethylene (LDPE) pouches and were analyzed at a regular interval of 0, 7, 14 and 21 days during refrigerated storage at 4 ± 1°C. The results indicated a significant (p  0.05) increase and almost all the sensory attributes showed a declining trend with advancement of storage. Total plate count and psychrophillic count also increased significantly (p < 0.05) whereas coliforms were not detected throughout the period of storage. The products were acceptable throughout the storage period.

  3. Improvement in extracellular protease production by the marine antarctic yeast Rhodotorula mucilaginosa L7.

    Science.gov (United States)

    Chaud, Luciana C S; Lario, Luciana D; Bonugli-Santos, Rafaella C; Sette, Lara D; Pessoa Junior, Adalberto; Felipe, Maria das Graças de A

    2016-12-25

    Microorganisms from extreme and restrictive eco systems, such as the Antarctic continent, are of great interest due to their ability to synthesize products of commercial value. Among these, enzymes from psychrotolerant and psychrophilic microorganisms offer potential economical benefits due to their high activity at low and moderate temperatures. The cold adapted yeast Rhodotorula mucilaginosa L7 was selected out of 97 yeasts isolated from Antarctica as having the highest extracellular proteolytic activity in preliminary tests. The present study was aimed at evaluating the effects of nutrient composition (peptone, rice bran extract, ammonium sulfate, sodium chloride) and physicochemical parameters (temperature and pH) on its proteolytic activity. A 2 6-2 fractional factorial design experiment followed by a central composite design (CCD 2 3 ) was performed to optimize the culture conditions and improve the extracellular proteolytic activity. The results indicated that the presence of peptone in the medium was the most influential factor in protease production. Enzymatic activity was enhanced by the interaction between low glucose and peptone concentrations. The optimization of culture conditions with the aid of mathematical modeling enabled a c. 45% increase in proteolytic activity and at the same time reduced the amount of glucose and peptone required for the culture. Thus culture conditions established in this work may be employed in the biotechnological production of this protease. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Evidence for propagation of cold-adapted yeast in an ice core from a Siberian Altai glacier

    Science.gov (United States)

    Uetake, Jun; Kohshima, Shiro; Nakazawa, Fumio; Takeuchi, Nozomu; Fujita, Koji; Miyake, Takayuki; Narita, Hideki; Aizen, Vladimir; Nakawo, Masayoshi

    2011-03-01

    Cold environments, including glacier ice and snow, are known habitats for cold-adapted microorganisms. We investigated the potential for cold-adapted yeast to have propagated in the snow of the high-altitude Belukha glacier. We detected the presence of highly concentrated yeast (over 104 cells mL-1) in samples of both an ice core and firn snow. Increasing yeast cell concentrations in the same snow layer from July 2002 to July 2003 suggests that the yeast cells propagated in the glacier snow. A cold-adapted Rhodotorula sp. was isolated from the snow layer and found to be related to psychrophilic yeast previously found in other glacial environments (based on the D1/D2 26S rRNA domains). 26S rRNA clonal analysis directly amplified from meltwater within the ice core also revealed the presence of genus Rhodotorula. Analyses of the ice core showed that all peaks in yeast concentration corresponded to the peaks in indices of surface melting. These results support the hypothesis that occasional surface melting in an accumulation area is one of the major factors influencing cold-adapted yeast propagation.

  5. The Influence of Moderate Pressure and Subzero Temperature on the Shelf Life of Minced Cod, Salmon, Pork and Beef Meat

    Directory of Open Access Journals (Sweden)

    Ilona Kołodziejska

    2013-01-01

    Full Text Available The effect of moderate pressure at subzero temperature on natural microflora of minced cod, salmon, pork and beef meat was studied. Pressure of 193 MPa at –20 °C caused the reduction of total bacterial count in pork and beef meat by 1.1 and 0.6 log cycles, respectively, and by about 1.5 log cycles in fish meat. Under these conditions the psychrophilic and psychrotrophic bacteria were below the detection limit (<10 CFU/g of sample in pork and beef meat, while in cod and salmon meat they were reduced only by 1.3 and 2.0 log cycles, respectively. In all tested samples of meat treated with the pressure of 193 MPa at –20 °C, the number of coliforms was below 10 CFU/g. Under these conditions a significant reduction in the number of coagulase-positive Staphylococcus was also observed. During storage of samples at 4 °C after pressurization at 193 MPa and –20 °C, the inhibition of growth of all tested groups of bacteria was observed. Moderate pressure at subzero temperature does not ensure complete inactivation of bacteria; however, it allows the improvement of microbiological quality and extension of shelf life of food, which depends on the level of bacterial contamination of the initial raw material.

  6. Comparison of the white-nose syndrome agent Pseudogymnoascus destructans to cave-dwelling relatives suggests reduced saprotrophic enzyme activity.

    Science.gov (United States)

    Reynolds, Hannah T; Barton, Hazel A

    2014-01-01

    White-nose Syndrome (WNS) is an emerging infectious mycosis that has impacted multiple species of North American bats since its initial discovery in 2006, yet the physiology of the causal agent, the psychrophilic fungus Pseudogymnoascus destructans ( = Geomyces destructans), is not well understood. We investigated the ability of P. destructans to secrete enzymes that could permit environmental growth or affect pathogenesis and compared enzyme activity across several Pseudogymnoascus species isolated from both hibernating bats and cave sediments. We found that P. destructans produced enzymes that could be beneficial in either a pathogenic or saprotrophic context, such as lipases, hemolysins, and urease, as well as chitinase and cellulases, which could aid in saprotrophic growth. The WNS pathogen showed significantly lower activity for urease and endoglucanase compared to con-generic species (Pseudogymnoascus), which may indicate a shift in selective pressure to the detriment of P. destructans' saprotrophic ability. Based on the positive function of multiple saprotrophic enzymes, the causal agent of White-nose Syndrome shows potential for environmental growth on a variety of substrates found in caves, albeit at a reduced level compared to environmental strains. Our data suggest that if P. destructans emerged as an opportunistic infection from an environmental source, co-evolution with its host may have led to a reduced capacity for saprotrophic growth.

  7. Resource capture and competitive ability of non-pathogenic Pseudogymnoascus spp. and P. destructans, the cause of white-nose syndrome in bats.

    Directory of Open Access Journals (Sweden)

    Michael B Wilson

    Full Text Available White-nose syndrome (WNS is a devastating fungal disease that has been causing the mass mortality of hibernating bats in North America since 2006 and is caused by the psychrophilic dermatophyte Pseudogymnoascus destructans. Infected bats shed conidia into hibernaculum sediments and surfaces, but it is unknown if P. destructans can form stable, reproductive populations outside its bat hosts. Previous studies have found non-pathogenic Pseudogymnoascus in bat hibernacula, and these fungi may provide insight into the natural history of P. destructans. We compared the relatedness, resource capture, and competitive ability of non-pathogenic Pseudogymnoascus isolates with P. destructans to determine if they have similar adaptations for survival in hibernacula sediment. All non-pathogenic Pseudogymnoascus isolates grew faster, utilized a broader range of substrates with higher efficiency, and were generally more resistant to antifungals compared to P. destructans. All isolates also showed the ability to displace P. destructans in co-culture assays, but only some produced extractible antifungal metabolites. These results suggest that P. destructans would perform poorly in the same environmental niche as non-pathogenic Pseudogymnoascus, and must have an alternative saprophytic survival strategy if it establishes active populations in hibernaculum sediment and non-host surfaces.

  8. Effect of Trans, Trans-Farnesol on Pseudogymnoascus destructans and Several Closely Related Species.

    Science.gov (United States)

    Raudabaugh, Daniel B; Miller, Andrew N

    2015-12-01

    Bat white-nose syndrome, caused by the psychrophilic fungus Pseudogymnoascus destructans, has dramatically reduced the populations of many hibernating North American bat species. The search for effective biological control agents targeting P. destructans is of great importance. We report that the sesquiterpene trans, trans-farnesol, which is also a Candida albicans quorum sensing compound, prevented in vitro conidial germination for at least 14 days and inhibited growth of preexisting hyphae of five P. destructans isolates in filtered potato dextrose broth at 10 °C. Depending on the inoculation concentrations, both spore and hyphal inhibition occurred upon exposure to concentrations as low as 15-20 µM trans, trans-farnesol. In contrast, most North American Pseudogymnoascus isolates were more tolerant to the exposure of trans, trans-farnesol. Our results suggest that some Candida isolates may have the potential to inhibit the growth of P. destructans and that the sesquiterpene trans, trans-farnesol has the potential to be utilized as a biological control agent.

  9. Destructin-1 is a collagen-degrading endopeptidase secreted by Pseudogymnoascus destructans, the causative agent of white-nose syndrome.

    Science.gov (United States)

    O'Donoghue, Anthony J; Knudsen, Giselle M; Beekman, Chapman; Perry, Jenna A; Johnson, Alexander D; DeRisi, Joseph L; Craik, Charles S; Bennett, Richard J

    2015-06-16

    Pseudogymnoascus destructans is the causative agent of white-nose syndrome, a disease that has caused the deaths of millions of bats in North America. This psychrophilic fungus proliferates at low temperatures and targets hibernating bats, resulting in their premature arousal from stupor with catastrophic consequences. Despite the impact of white-nose syndrome, little is known about the fungus itself or how it infects its mammalian host. P. destructans is not amenable to genetic manipulation, and therefore understanding the proteins involved in infection requires alternative approaches. Here, we identify hydrolytic enzymes secreted by P. destructans, and use a novel and unbiased substrate profiling technique to define active peptidases. These experiments revealed that endopeptidases are the major proteolytic activities secreted by P. destructans, and that collagen, the major structural protein in mammals, is actively degraded by the secretome. A serine endopeptidase, hereby-named Destructin-1, was subsequently identified, and a recombinant form overexpressed and purified. Biochemical analysis of Destructin-1 showed that it mediated collagen degradation, and a potent inhibitor of peptidase activity was identified. Treatment of P. destructans-conditioned media with this antagonist blocked collagen degradation and facilitated the detection of additional secreted proteolytic activities, including aminopeptidases and carboxypeptidases. These results provide molecular insights into the secretome of P. destructans, and identify serine endopeptidases that have the clear potential to facilitate tissue invasion and pathogenesis in the mammalian host.

  10. Comparison of the white-nose syndrome agent Pseudogymnoascus destructans to cave-dwelling relatives suggests reduced saprotrophic enzyme activity.

    Directory of Open Access Journals (Sweden)

    Hannah T Reynolds

    Full Text Available White-nose Syndrome (WNS is an emerging infectious mycosis that has impacted multiple species of North American bats since its initial discovery in 2006, yet the physiology of the causal agent, the psychrophilic fungus Pseudogymnoascus destructans ( = Geomyces destructans, is not well understood. We investigated the ability of P. destructans to secrete enzymes that could permit environmental growth or affect pathogenesis and compared enzyme activity across several Pseudogymnoascus species isolated from both hibernating bats and cave sediments. We found that P. destructans produced enzymes that could be beneficial in either a pathogenic or saprotrophic context, such as lipases, hemolysins, and urease, as well as chitinase and cellulases, which could aid in saprotrophic growth. The WNS pathogen showed significantly lower activity for urease and endoglucanase compared to con-generic species (Pseudogymnoascus, which may indicate a shift in selective pressure to the detriment of P. destructans' saprotrophic ability. Based on the positive function of multiple saprotrophic enzymes, the causal agent of White-nose Syndrome shows potential for environmental growth on a variety of substrates found in caves, albeit at a reduced level compared to environmental strains. Our data suggest that if P. destructans emerged as an opportunistic infection from an environmental source, co-evolution with its host may have led to a reduced capacity for saprotrophic growth.

  11. Pseudogymnoascus destructans: Causative Agent of White-Nose Syndrome in Bats Is Inhibited by Safe Volatile Organic Compounds.

    Science.gov (United States)

    Padhi, Sally; Dias, Itamar; Korn, Victoria L; Bennett, Joan W

    2018-04-10

    White-nose syndrome (WNS) is caused by Pseudogymnoascus destructans , a psychrophilic fungus that infects hibernating bats and has caused a serious decline in some species. Natural aroma compounds have been used to control growth of fungal food storage pathogens, so we hypothesized that a similar strategy could work for control of P. destructans . The effectiveness of exposure to low concentrations of the vapor phase of four of these compounds was tested on mycelial plugs and conidiospores at temperatures of 5, 10 and 15 °C. Here we report the efficacy of vapor phase mushroom alcohol (1-octen-3-ol) for inhibiting mycelial and conidiospore growth of P. destructans at 0.4 and 0.8 µmol/mL and demonstrate that the R enantiomer of this compound is more effective than the S enantiomer, supporting the finding that biological systems can be sensitive to stereochemistry. Further, we report that vapor phase leaf aldehyde ( trans -2-hexenal), a common aroma compound associated with cut grass odors and also the major volatile compound in extra virgin olive oil, is more effective than mushroom alcohol. At 0.05 µmol/mL, trans -2-hexenal is fungicidal to both conidiospores and mycelia of P. destructans .

  12. The fungus Trichophyton redellii sp. Nov. Causes skin infections that resemble white-nose syndrome of hibernating bats.

    Science.gov (United States)

    Lorch, Jeffrey M; Minnis, Andrew M; Meteyer, Carol U; Redell, Jennifer A; White, J Paul; Kaarakka, Heather M; Muller, Laura K; Lindner, Daniel L; Verant, Michelle L; Shearn-Bochsler, Valerie; Blehert, David S

    2015-01-01

    Before the discovery of white-nose syndrome (WNS), a fungal disease caused by Pseudogymnoascus destructans, there were no reports of fungal skin infections in bats during hibernation. In 2011, bats with grossly visible fungal skin infections similar in appearance to WNS were reported from multiple sites in Wisconsin, US, a state outside the known range of P. destructans and WNS at that time. Tape impressions or swab samples were collected from affected areas of skin from bats with these fungal infections in 2012 and analyzed by microscopy, culture, or direct DNA amplification and sequencing of the fungal internal transcribed spacer region (ITS). A psychrophilic species of Trichophyton was isolated in culture, detected by direct DNA amplification and sequencing, and observed on tape impressions. Deoxyribonucleic acid indicative of the same fungus was also detected on three of five bat carcasses collected in 2011 and 2012 from Wisconsin, Indiana, and Texas, US. Superficial fungal skin infections caused by Trichophyton sp. were observed in histopathology for all three bats. Sequencing of the ITS of Trichophyton sp., along with its inability to grow at 25 C, indicated that it represented a previously unknown species, described herein as Trichophyton redellii sp. nov. Genetic diversity present within T. redellii suggests it is native to North America but that it had been overlooked before enhanced efforts to study fungi associated with bats in response to the emergence of WNS.

  13. Resource capture and competitive ability of non-pathogenic Pseudogymnoascus spp. and P. destructans, the cause of white-nose syndrome in bats.

    Science.gov (United States)

    Wilson, Michael B; Held, Benjamin W; Freiborg, Amanda H; Blanchette, Robert A; Salomon, Christine E

    2017-01-01

    White-nose syndrome (WNS) is a devastating fungal disease that has been causing the mass mortality of hibernating bats in North America since 2006 and is caused by the psychrophilic dermatophyte Pseudogymnoascus destructans. Infected bats shed conidia into hibernaculum sediments and surfaces, but it is unknown if P. destructans can form stable, reproductive populations outside its bat hosts. Previous studies have found non-pathogenic Pseudogymnoascus in bat hibernacula, and these fungi may provide insight into the natural history of P. destructans. We compared the relatedness, resource capture, and competitive ability of non-pathogenic Pseudogymnoascus isolates with P. destructans to determine if they have similar adaptations for survival in hibernacula sediment. All non-pathogenic Pseudogymnoascus isolates grew faster, utilized a broader range of substrates with higher efficiency, and were generally more resistant to antifungals compared to P. destructans. All isolates also showed the ability to displace P. destructans in co-culture assays, but only some produced extractible antifungal metabolites. These results suggest that P. destructans would perform poorly in the same environmental niche as non-pathogenic Pseudogymnoascus, and must have an alternative saprophytic survival strategy if it establishes active populations in hibernaculum sediment and non-host surfaces.

  14. Pseudogymnoascus destructans transcriptome changes during white-nose syndrome infections.

    Science.gov (United States)

    Reeder, Sophia M; Palmer, Jonathan M; Prokkola, Jenni M; Lilley, Thomas M; Reeder, DeeAnn M; Field, Kenneth A

    2017-11-17

    White nose syndrome (WNS) is caused by the psychrophilic fungus Pseudogymnoascus destructans that can grow in the environment saprotrophically or parasitically by infecting hibernating bats. Infections are pathological in many species of North American bats, disrupting hibernation and causing mortality. To determine what fungal pathways are involved in infection of living tissue, we examined fungal gene expression using RNA-Seq. We compared P. destructans gene expression when grown in culture to that during infection of a North American bat species, Myotis lucifugus, that shows high WNS mortality. Cultured P. destructans was grown at 10 to 14 C and P. destructans growing in vivo was presumably exposed to temperatures ranging from 4 to 8 C during torpor and up to 37 C during periodic arousals. We found that when P. destructans is causing WNS, the most significant differentially expressed genes were involved in heat shock responses, cell wall remodeling, and micronutrient acquisition. These results indicate that this fungal pathogen responds to host-pathogen interactions by regulating gene expression in ways that may contribute to evasion of host responses. Alterations in fungal cell wall structures could allow P. destructans to avoid detection by host pattern recognition receptors and antibody responses. This study has also identified several fungal pathways upregulated during WNS infection that may be candidates for mitigating infection pathology. By identifying host-specific pathogen responses, these observations have important implications for host-pathogen evolutionary relationships in WNS and other fungal diseases.

  15. Immune responses in hibernating little brown myotis (Myotis lucifugus) with white-nose syndrome.

    Science.gov (United States)

    Lilley, T M; Prokkola, J M; Johnson, J S; Rogers, E J; Gronsky, S; Kurta, A; Reeder, D M; Field, K A

    2017-02-08

    White-nose syndrome (WNS) is a fungal disease responsible for decimating many bat populations in North America. Pseudogymnoascus destructans ( Pd ), the psychrophilic fungus responsible for WNS, prospers in the winter habitat of many hibernating bat species. The immune response that Pd elicits in bats is not yet fully understood; antibodies are produced in response to infection by Pd , but they may not be protective and indeed may be harmful. To understand how bats respond to infection during hibernation, we studied the effect of Pd inoculation on the survival and gene expression of captive hibernating Myotis lucifugus with varying pre-hibernation antifungal antibody titres. We investigated gene expression through the transcription of selected cytokine genes ( Il6 , Il17a , Il1b , Il4 and Ifng ) associated with inflammatory, Th1, Th2 and Th17 immune responses in wing tissue and lymph nodes. We found no difference in survival between bats with low and high anti- Pd titres, although anti- Pd antibody production during hibernation differed significantly between infected and uninfected bats. Transcription of Il6 and Il17a was higher in the lymph nodes of infected bats compared with uninfected bats. Increased transcription of these cytokines in the lymph node suggests that a pro-inflammatory immune response to WNS is not restricted to infected tissues and occurs during hibernation. The resulting Th17 response may be protective in euthermic bats, but because it may disrupt torpor, it could be detrimental during hibernation. © 2017 The Author(s).

  16. Datasheet: Pseudogymnoascus destructans (white-nose syndrome fungus)

    Science.gov (United States)

    Blehert, David; Lankau, Emily W.

    2017-01-01

    Pseudogymnoascus destructans is a psychrophilic (cold-loving) fungus that causes white-nose syndrome (WNS), an emerging disease of North American bats that has caused unprecedented population declines. The fungus is believed to have been introduced to North America from Europe or Asia (where it is present but does not cause significant mortality), but the full extent of its native range is unknown. The route of introduction is also unknown. In North America, hibernating bats become infected with P. destructans when body temperature decreases during winter torpor into the range permissive for growth of this fungus. Infected bats may develop visible fungal growth on the nose or wings, awaken more frequently from torpor, and experience a cascade of physiologic changes that result in weight loss, dehydration, electrolyte imbalances, and death. P. destructans persists in the environments of underground bat hibernation sites (hibernacula) and is believed to spread primarily by natural movements of infected bats. The first evidence of WNS in North America is from a photograph of a hibernating bat taken during winter of 2005-2006 in a hibernaculum near Albany, New York. P. destructans subsequently spread rapidly from the northeastern United States throughout much of the eastern portions of the United States and Canada, and most recently (as of May 2017) was detected in Washington State. It has killed millions of bats, threatening some species with regional extirpation and putting at risk the valuable environmental services that bats provide by eating harmful insects.

  17. Life at extreme conditions: neutron scattering studies of biological molecules suggest that evolution selected dynamics

    International Nuclear Information System (INIS)

    Zaccai, Joseph Giuseppe

    2008-01-01

    The short review concentrates on recent work performed at the neutrons in biology laboratories of the Institut Laue Langevin and Institut de Biologie Structurale in Grenoble. Extremophile organisms have been discovered that require extreme conditions of temperature, pressure or solvent environment for survival. The existence of such organisms poses a significant challenge in understanding the physical chemistry of their proteins, in view of the great sensitivity of protein structure and stability to the aqueous environment and to external conditions in general. Results of neutron scattering measurements on the dynamics of proteins from extremophile organisms, in vitro as well as in vivo, indicated remarkably how adaptation to extreme conditions involves forces and fluctuation amplitudes that have been selected specifically, suggesting that evolutionary macromolecular selection proceeded via dynamics. The experiments were performed on a halophilic protein, and membrane adapted to high salt, a thermophilic enzyme adapted to high temperature and its mesophilic (adapted to 37 degC) homologue; and in vivo for psychrophilic, mesophilic, thermophilic and hyperthermophilic bacteria, adapted respectively to temperatures of 4 degC, 37 degC, 75 degC and 85 degC. Further work demonstrated the existence of a water component of exceptionally low mobility in an extreme halophile from the Dead Sea, which is not present in mesophile bacterial cells. (author)

  18. Oligomerization as a strategy for cold adaptation: Structure and dynamics of the GH1 β-glucosidase from Exiguobacterium antarcticum B7

    Science.gov (United States)

    Zanphorlin, Leticia Maria; de Giuseppe, Priscila Oliveira; Honorato, Rodrigo Vargas; Tonoli, Celisa Caldana Costa; Fattori, Juliana; Crespim, Elaine; de Oliveira, Paulo Sergio Lopes; Ruller, Roberto; Murakami, Mario Tyago

    2016-03-01

    Psychrophilic enzymes evolved from a plethora of structural scaffolds via multiple molecular pathways. Elucidating their adaptive strategies is instrumental to understand how life can thrive in cold ecosystems and to tailor enzymes for biotechnological applications at low temperatures. In this work, we used X-ray crystallography, in solution studies and molecular dynamics simulations to reveal the structural basis for cold adaptation of the GH1 β-glucosidase from Exiguobacterium antarcticum B7. We discovered that the selective pressure of low temperatures favored mutations that redesigned the protein surface, reduced the number of salt bridges, exposed more hydrophobic regions to the solvent and gave rise to a tetrameric arrangement not found in mesophilic and thermophilic homologues. As a result, some solvent-exposed regions became more flexible in the cold-adapted tetramer, likely contributing to enhance enzymatic activity at cold environments. The tetramer stabilizes the native conformation of the enzyme, leading to a 10-fold higher activity compared to the disassembled monomers. According to phylogenetic analysis, diverse adaptive strategies to cold environments emerged in the GH1 family, being tetramerization an alternative, not a rule. These findings reveal a novel strategy for enzyme cold adaptation and provide a framework for the semi-rational engineering of β-glucosidases aiming at cold industrial processes.

  19. Role of active site rigidity in activity: MD simulation and fluorescence study on a lipase mutant.

    Directory of Open Access Journals (Sweden)

    Md Zahid Kamal

    Full Text Available Relationship between stability and activity of enzymes is maintained by underlying conformational flexibility. In thermophilic enzymes, a decrease in flexibility causes low enzyme activity while in less stable proteins such as mesophiles and psychrophiles, an increase in flexibility is associated with enhanced enzyme activity. Recently, we identified a mutant of a lipase whose stability and activity were enhanced simultaneously. In this work, we probed the conformational dynamics of the mutant and the wild type lipase, particularly flexibility of their active site using molecular dynamic simulations and time-resolved fluorescence techniques. In contrast to the earlier observations, our data show that active site of the mutant is more rigid than wild type enzyme. Further investigation suggests that this lipase needs minimal reorganization/flexibility of active site residues during its catalytic cycle. Molecular dynamic simulations suggest that catalytically competent active site geometry of the mutant is relatively more preserved than wild type lipase, which might have led to its higher enzyme activity. Our study implies that widely accepted positive correlation between conformation flexibility and enzyme activity need not be stringent and draws attention to the possibility that high enzyme activity can still be accomplished in a rigid active site and stable protein structures. This finding has a significant implication towards better understanding of involvement of dynamic motions in enzyme catalysis and enzyme engineering through mutations in active site.

  20. In-vitro engineering of novel bioactivity in the natural enzymes

    Directory of Open Access Journals (Sweden)

    Vishvanath Tiwari

    2016-10-01

    Full Text Available Enzymes catalyze various biochemical functions with high efficiency and specificity. In-vitro design of the enzyme leads to novel bioactivity in this natural biomolecule that give answers of some vital questions like crucial residues in binding with substrate, molecular evolution, cofactor specificity etc. Enzyme engineering technology involves directed evolution, rational designing, semi-rational designing and structure-based designing using chemical modifications. Similarly, combined computational and in-vitro evolution approaches together help in artificial designing of novel bioactivity in the natural enzyme. DNA shuffling, error prone PCR and staggered extension process are used to artificially redesign active site of enzyme, which can alter its efficiency and specificity. Modifications of the enzyme can lead to the discovery of new path of molecular evolution, designing of efficient enzymes, locating active sites and crucial residues, shift in substrate and cofactor specificity. The methods and thermodynamics of in-vitro designing of the enzyme are also discussed. Similarly, engineered thermophilic and psychrophilic enzymes attain substrate specificity and activity of mesophilic enzymes that may also be beneficial for industry and therapeutics.

  1. Quality changes of sea bass slices wrapped with gelatin film incorporated with lemongrass essential oil.

    Science.gov (United States)

    Ahmad, Mehraj; Benjakul, Soottawat; Sumpavapol, Punnanee; Nirmal, Nilesh Prakash

    2012-04-16

    Microbiological, chemical and physical changes of sea bass slices wrapped with gelatin film incorporated with 25% (w/w) lemongrass essential oil (LEO) during storage of 12 days at 4 °C were investigated. Sea bass slices wrapped with LEO film had the retarded growth of lactic acid bacteria (LAB), psychrophilic bacteria and spoilage microorganisms including H₂S-producing bacteria and Enterobacteriaceae throughout storage of 12 days in comparison with the control and those wrapped with gelatin film without LEO (G film) (P<0.05). Lowered changes of colour, K value, total volatile base nitrogen (TVB) and TBARS value were also found in LEO film wrapped samples, compared with those wrapped with G film and control, respectively. Therefore, the incorporation of LEO into gelatin film could enhance the antimicrobial and antioxidative properties of the film, thereby maintaining the qualities and extending the shelf-life of the sea bass slices stored at refrigerated temperature. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Functional annotation of the mesophilic-like character of mutants in a cold-adapted enzyme by self-organising map analysis of their molecular dynamics.

    Science.gov (United States)

    Fraccalvieri, Domenico; Tiberti, Matteo; Pandini, Alessandro; Bonati, Laura; Papaleo, Elena

    2012-10-01

    Multiple comparison of the Molecular Dynamics (MD) trajectories of mutants in a cold-adapted α-amylase (AHA) could be used to elucidate functional features required to restore mesophilic-like activity. Unfortunately it is challenging to identify the different dynamic behaviors and correctly relate them to functional activity by routine analysis. We here employed a previously developed and robust two-stage approach that combines Self-Organising Maps (SOMs) and hierarchical clustering to compare conformational ensembles of proteins. Moreover, we designed a novel strategy to identify the specific mutations that more efficiently convert the dynamic signature of the psychrophilic enzyme (AHA) to that of the mesophilic counterpart (PPA). The SOM trained on AHA and its variants was used to classify a PPA MD ensemble and successfully highlighted the relationships between the flexibilities of the target enzyme and of the different mutants. Moreover the local features of the mutants that mostly influence their global flexibility in a mesophilic-like direction were detected. It turns out that mutations of the cold-adapted enzyme to hydrophobic and aromatic residues are the most effective in restoring the PPA dynamic features and could guide the design of more mesophilic-like mutants. In conclusion, our strategy can efficiently extract specific dynamic signatures related to function from multiple comparisons of MD conformational ensembles. Therefore, it can be a promising tool for protein engineering.

  3. Cold resistance and metabolic activity of lichens below 0 degC

    Science.gov (United States)

    Kappen, L.; Schroeter, B.; Scheidegger, C.; Sommerkorn, M.; Hestmark, G.

    Laboratory measurements show that lichens are extremely tolerant of freezing stress and of low-temperature exposure. Metabolic activity recovered quickly after severe and extended cold treatment. Experimental results demonstrate also that CO_2 exchange is already active at around -20 degC. The psychrophilic character of polar lichen species is demonstrated by optimum temperatures for net photosynthesis between 0 and 15 degC. In situ measurements show that lichens begin photosynthesizing below 0 degC if the dry thalli receive fresh snow. The lowest temperature measured in active lichens was -17 degC at a continental Antarctic site. The fine structure and the hydration state of photobiont and mycobiont cells were studied by low-temperature scanning electron microscopy (LTSEM) of frozen hydrated specimens. Water potentials of the frozen system are in the range of or even higher than those allowing dry lichens to start photosynthesis by water vapor uptake at +10 degC. The great success of lichens in polar and high alpine regions gives evidence of their physiological adaptation to low temperatures. In general lichens are able to persist through glacial periods, but extended snow cover and glaciation are limiting factors.

  4. [Analysis of structural characteristics of alpha-tubulins in plants with enhanced cold tolerance].

    Science.gov (United States)

    Nyporko, A Iu; Demchuk, O N; Blium, Ia B

    2003-01-01

    The uniqueness of the point substitutions in the sequences of two alpha-tubulin isotypes from psychrophilic alga Chloromonas that can determine the increased cold tolerance of this alga was analyzed. The comparison of all known amino acid sequences of plant alpha-tubulins enabled to ascertain that only M268-->V replacement is unique and may have a significant influence on spatial structure of plant alpha-tubulins. Modeling of molecular surfaces of alpha-tubulins from Chloromonas, Chalmydomonas reinhardtii and goose grass Eleusine indica showed that insertion of the amino acid replacement M268-->V into the sequence of goose grace tubulin led to the likening of this protein surface to the surface of native alpha-tubulin from Chloromonas. Alteration of local hydrophobic properties of alpha-tubulin molecular surface in interdimeric contact zone as a result of the mentioned replacement was shown that may play important role in increasing the level of cold resistance of microtubules. The crucial role of amino acid residue in 268 position for forming the interdimeric contact surface of alpha-tubulin molecule was revealed. The assumption is made about the importance of replacements at this position for plant tolerance to abiotic factors of different nature (cold, herbicides).

  5. The application of impedance measurement to assess biofilm development on technical materials used for water supply system construction

    Directory of Open Access Journals (Sweden)

    Wolf Mirela

    2017-01-01

    Full Text Available The lack of biological stability of water which is introduced into the network, leads primarily to its secondary contamination during transport to the consumer. The water that is biologically unstable creates ideal conditions for colonization of the inner surface of pipelines by microorganisms and adhesion of their products (biocorrosion. The studies was conducted using the identified microorganisms isolated from the water supply network which accounted inocula in continuous culture of biofilm in CDC reactor. As a result of studies it was revealed the presence of biofilm formed on different materials polyethylene, polypropylene, polyvinyl chloride, polybutylene. Microbiological biodiversity of organisms inhabiting a biofilm of the diversity of nucleic acids was used. It was observed the amount of the psychrophilic bacteria oscillation in the effluent from the reactor. It was also determined the affinity of various bacteria to the plastic through adhesion measurement using impedance spectroscopy. For impedance measurements apparatus SIGNAL RECOVERY 7280 DSP LOCK-IN AMPLIFIER was used, recording impedance components (real and imaginary. The results will allow for the creation of biosensor systems that can be used in predicting health risks in connection with drinking water and taking corrective actions.

  6. Terminalia arjuna: A novel natural preservative for improved lipid oxidative stability and storage quality of muscle foods

    Directory of Open Access Journals (Sweden)

    Insha Kousar Kalem

    2017-12-01

    Full Text Available The study was conducted to explore the possibility of utilization of Terminalia arjuna as a novel natural preservative in meat products by using chevon sausages as a model system. Chevon sausages were prepared by incorporating different levels of T. arjuna viz. T1 (0.25%, T2 (0.50% and T3 (0.75% and were assessed for various lipid oxidative stability and storage quality parameters under refrigerated (4 ± 1 °C conditions. T. arjuna showed a significant (p < 0.05 effect on the lipid oxidative stability as the treated products exhibited significantly (p < 0.05 lower TBARS (mg malonaldehyde/kg values in comparison to control. A significant (p < 0.05 effect was also observed on the microbial stability as T. arjuna incorporated products showed significantly (p < 0.05 lower values for total plate count (log cfu/g, psychrophilic count (log cfu/g, yeast and mould count (log cfu/g and FFA (% oleic acid values. Significantly (p < 0.05 higher scores were observed for various sensory parameters of the products incorporated with T. arjuna during refrigerated storage. T. arjuna successfully improved the lipid oxidative stability and storage quality of the model meat product and may be commercially exploited as a novel preservative in muscle foods. Keywords: Terminalia arjuna, Chevon sausages, Natural preservative, Lipid oxidation, Storage quality

  7. A cold active (2R,3R)-(-)-di-O-benzoyl-tartrate hydrolyzing esterase from Rhodotorula mucilaginosa.

    Science.gov (United States)

    Zimmer, Christian; Platz, Tanja; Cadez, Neza; Giffhorn, Friedrich; Kohring, Gert-Wieland

    2006-11-01

    In a screening procedure a pink-colored yeast was isolated from enrichment cultures with (2R,3R)-(-)-di-O-benzoyl-tartrate (benzoyl-tartrate) as the sole carbon source. The organism saar1 was identified by morphological, physiological, and 18S ribosomal DNA/internal transcribed spacer analysis as Rhodotorula mucilaginosa, a basidiomycetous yeast. During growth the yeast hydrolyzed the dibenzoyl ester stoichiometrically to the monoester using the separated benzoate as the growth substrate, before the monoester was further cleaved into benzoate and tartrate, which were both metabolized. The corresponding benzoyl esterase was purified from the culture supernatant and characterized as a monomeric glycosylated 86-kDa protein with an optimum pH of 7.5 and an optimum temperature of 45 degrees C. At 0 degrees C the esterase still exhibited 20% of the corresponding activity at 30 degrees C, which correlates it to psychrophilic enzymes. The esterase could hydrolyze short chain p-nitrophenyl-alkyl esters and several benzoyl esters like benzoyl-methyl ester, ethylene-glycol-dibenzoyl ester, phenyl-benzoyl ester, cocaine, and 1,5-anhydro-D: -fructose-tribenzoyl ester. However feruloyl-ethyl ester was not hydrolyzed. The activity characteristics let the enzyme appear as a promising tool for synthesis of benzoylated compounds for pharmaceutical, cosmetic, or fine chemical applications, even at low temperatures.

  8. ASSESSMENT OF MICROBIAL LOAD OF SAUSAGES PREPARED FROM DIFFERENT COMBINATION OF SPENT DUCK AND SPENT HEN MEAT

    Directory of Open Access Journals (Sweden)

    Rajesh Kumar

    2016-12-01

    Full Text Available Aim of the present study was to assess the microbial load of sausages prepared from different combination of spent duck and spent hen meat. The combination are 100% spent duck (T1, 75%+ 25% spent duck and spent hen (T2, 50%+50% spent duck and spent hen (T3, 25%+75% spent duck and spent hen (T4 and 100% spent hen (T5. All the samples of different combination were subjected to total plate count (TPC, total psychrophilic count (TPSC and total Coliform count (TCC. Mean of TPC for T1, T2, T3, T4 and T5 were 4.69, 4.62, 4.60, 4.49 and 4.46 log 10 CFU/gm respectively, while mean TPSC were 4.46, 4.46, 4.43, 4.36 and 4.36 log CFU/gm respectively There were no significant (p<0.05 difference between the different group of combination of sausages for TPS as well as TPSC but varies significantly (p<0.05 from 14th day of storage in both cases. The coliform group of bacteria will not be detected in any combination of sausages. It is concluded that microbial load of sausage prepared from spent duck is high and it is decreases as the percentage of duck meat decreases but, the upper limit of bacteria in each group of sausages is within limit and hence it is safe for human consumption.

  9. Intransience of functional components and distinctive properties of amla (Indian gooseberry) ice cream during short-term storage.

    Science.gov (United States)

    Goraya, Rajpreet Kaur; Bajwa, Usha

    2018-05-01

    Inclusion of processed amla have been found to enhance the functional properties and nutritional value of ice cream by augmenting the fiber content, total phenols, tannins, ascorbic acid and antioxidant activity. The present investigation assessed the changes in these constituents, color values (L, a* and b*), melting rate, sensory scores and microbiological quality of ice cream containing amla shreds, pulp, preserve, candy and powder during 60 days' storage at - 18 to - 20 °C. The total solids increased slightly whereas the antioxidant activity, total phenols, ascorbic acid and tannins decreased on storage. The L values declined whereas a* and b* values amplified, the rate of change being highest in candy containing sample followed by preserve. The first drip time of all the samples increased whereas melting rate decreased. The overall acceptability scores declined non significantly. Standard plate count of all the ice cream samples decreased significantly whereas yeast and molds were not detected throughout the storage. The psychrophiles were not spotted up to 30 days, thereafter, a small increase was observed.

  10. Potential of Biological Processes to Eliminate Antibiotics in Livestock Manure: An Overview

    Directory of Open Access Journals (Sweden)

    Daniel I. Massé

    2014-04-01

    Full Text Available Degrading antibiotics discharged in the livestock manure in a well-controlled bioprocess contributes to a more sustainable and environment-friendly livestock breeding. Although most antibiotics remain stable during manure storage, anaerobic digestion can degrade and remove them to various extents depending on the concentration and class of antibiotic, bioreactor operating conditions, type of feedstock and inoculum sources. Generally, antibiotics are degraded during composting > anaerobic digestion > manure storage > soil. Manure matrix variation influences extraction, quantification, and degradation of antibiotics, but it has not been well investigated. Fractioning of manure-laden antibiotics into liquid and solid phases and its effects on their anaerobic degradation and the contribution of abiotic (physical and chemical versus biotic degradation mechanisms need to be quantified for various manures, antibiotics types, reactor designs and temperature of operations. More research is required to determine the kinetics of antibiotics’ metabolites degradation during anaerobic digestion. Further investigations are required to assess the degradation of antibiotics during psychrophilic anaerobic digestion.

  11. The effect of chitosan-based edible film and high hydrostatic pressure process on the microbiological and chemical quality of rainbow trout (Oncorhynchus mykiss Walbaum) fillets during cold storage (4±1°C)

    Science.gov (United States)

    Günlü, Ali; Sipahioğlu, Sinem; Alpas, Hami

    2014-01-01

    The objective of this study is to determine the changes in the chemical and microbiological quality of fresh rainbow trout (Oncorhynchus mykiss Walbaum) fillets during storage at 4±1°C as a result of chitosan-based edible film coating, vacuum packaging and high pressure application processes. Chemical (pH, total volatile basic nitrogen and thiobarbituric acid index) and microbiological (total mesophilic and total psychrophilic microorganism) shelf life analyses were carried out in 4-day intervals for samples that were vacuum packaged (C), subjected to high pressure after vacuum packaging (high hydrostatic pressure (HHP)), vacuum packaged after being wrapped by chitosan-based film (CFW) and subjected to high pressure after vacuum packaging and being wrapped by chitosan-based film (HHP+CFW ). According to the chemical and microbiological shelf life analysis results of rainbow trout fillets, shelf life increases of 4 days in HHP group samples, 8 days in CFW group samples and 24 days in HHP+CFW group samples were provided in comparison with the control group. In conclusion, it was determined that high pressure and wrapping with chitosan-based film had protective effect both chemically and microbiologically and that the most effective protection was obtained when both methods were used together.

  12. Pseudogymnoascus destructans: Causative Agent of White-Nose Syndrome in Bats Is Inhibited by Safe Volatile Organic Compounds

    Directory of Open Access Journals (Sweden)

    Sally Padhi

    2018-04-01

    Full Text Available White-nose syndrome (WNS is caused by Pseudogymnoascus destructans, a psychrophilic fungus that infects hibernating bats and has caused a serious decline in some species. Natural aroma compounds have been used to control growth of fungal food storage pathogens, so we hypothesized that a similar strategy could work for control of P. destructans. The effectiveness of exposure to low concentrations of the vapor phase of four of these compounds was tested on mycelial plugs and conidiospores at temperatures of 5, 10 and 15 °C. Here we report the efficacy of vapor phase mushroom alcohol (1-octen-3-ol for inhibiting mycelial and conidiospore growth of P. destructans at 0.4 and 0.8 µmol/mL and demonstrate that the R enantiomer of this compound is more effective than the S enantiomer, supporting the finding that biological systems can be sensitive to stereochemistry. Further, we report that vapor phase leaf aldehyde (trans-2-hexenal, a common aroma compound associated with cut grass odors and also the major volatile compound in extra virgin olive oil, is more effective than mushroom alcohol. At 0.05 µmol/mL, trans-2-hexenal is fungicidal to both conidiospores and mycelia of P. destructans.

  13. Characterisation of a New Family of Carboxyl Esterases with an OsmC Domain.

    Directory of Open Access Journals (Sweden)

    Mai-Britt V Jensen

    Full Text Available Proteins in the serine esterase family are widely distributed in bacterial phyla and display activity against a range of biologically produced and chemically synthesized esters. A serine esterase from the psychrophilic bacterium Pseudoalteromonas arctica with a C-terminal OsmC-like domain was recently characterized; here we report on the identification and characterization of further putative esterases with OsmC-like domains constituting a new esterase family that is found in a variety of bacterial species from different environmental niches. All of these proteins contained the Ser-Asp-His motif common to serine esterases and a highly conserved pentapeptide nucleophilic elbow motif. We produced these proteins heterologously in Escherichia coli and demonstrated their activity against a range of esterase substrates. Two of the esterases characterized have activity of over two orders of magnitude higher than other members of the family, and are active over a wide temperature range. We determined the crystal structure of the esterase domain of the protein from Rhodothermus marinus and show that it conforms to the classical α/β hydrolase fold with an extended 'lid' region, which occludes the active site of the protein in the crystal. The expansion of characterized members of the esterase family and demonstration of activity over a wide-range of temperatures could be of use in biotechnological applications such as the pharmaceutical, detergent, bioremediation and dairy industries.

  14. The DNA-mimic antirestriction proteins ArdA ColIB-P9, Arn T4, and Ocr T7 as activators of H-NS-dependent gene transcription.

    Science.gov (United States)

    Melkina, Olga E; Goryanin, Ignatiy I; Zavilgelsky, Gennadii B

    2016-11-01

    The antirestriction proteins ArdA ColIb-P9, Arn T4 and Ocr T7 specifically inhibit type I and type IV restriction enzymes and belong to the family of DNA-mimic proteins because their three-dimensional structure is similar to the double-helical B-form DNA. It is proposed that the DNA-mimic proteins are able to bind nucleoid protein H-NS and alleviate H-NS-silencing of the transcription of bacterial genes. Escherichia coli lux biosensors were constructed by inserting H-NS-dependent promoters into a vector, thereby placing each fragment upstream of the promoterless Photorhabdus luminescens luxCDABE operon. It was demonstrated that the DNA-mimic proteins ArdA, Arn and Ocr activate the transcription of H-NS-dependent promoters of the lux operon of marine luminescent bacteria (mesophilic Aliivibrio fischeri and psychrophilic Aliivibrio logei), and the dps gene from E. coli. It was also demonstrated that the ArdA antirestriction protein, the genes of which are located on transmissive plasmids ColIb-P9, R64, PK101, decreases levels of H-NS silencing of the PluxC promoter during conjugation in the recipient bacteria. Copyright © 2016 Elsevier GmbH. All rights reserved.

  15. Storage test on apple juice after ultrasound treatment

    Directory of Open Access Journals (Sweden)

    Filomena Montemurro

    2014-03-01

    Full Text Available Apple juice, for its sensory and nutritional qualities, is consumed by people of all ages. Apples are an excellent source of several phenolic compounds and the presence of polyphenols is recognized for their health promoting antioxidant properties. Thermal pasteurization of fruit juices is the conventional method used for their preservation. Therefore, this constitutes the most extensively available methods for the inactivation of microorganisms in fruit juices but it causes side effects on their flavour and nutritional quality. Consumers tend to prefer recently extracted juices with fresh taste and minimal flavor or vitamin losses. To meet consumers’ demand, among the novel technologies that involve non-thermal processes, power ultrasound have been investigated as an alternative to conventional heat treatments. Objective of this study was to evaluate the effectiveness of the use of ultrasound in an attempt to maintain the organoleptic characteristics typical of a natural apple juice. In particular, it was evaluated the action on the microflora residing and shelf life of the product through microbiological and sensory analyses. Juice treated with ultrasound highlighted a reduction of aerobic mesophilic counts and psychrophilic bacteria respectively about 3 and 5 log CFU/mL and an enhanced yeast growth. The general opinion expressed by the panelist was in favour of the sonicated juice. This preliminary study showed that non-thermal methods such as power ultrasound technology may give new opportunities to develop fresh-like apple juice.

  16. Microbial deterioration of vacuum-packaged chilled beef cuts and techniques for microbiota detection and characterization: a review

    Directory of Open Access Journals (Sweden)

    Maria Lucila Hernández-Macedo

    2011-03-01

    Full Text Available Gas production from microbial deterioration in vacuum-packs of chilled meat leads to pack distension, which is commonly referred as blown pack. This phenomenon is attributed to some psychrophilic and psychrotrophic Clostridium species, as well as Enterobacteria. The ability of these microorganisms to grow at refrigeration temperatures makes the control by the meat industry a challenge. This type of deterioration has been reported in many countries including some plants in the Midwestern and Southeastern regions of Brazil. In addition to causing economic losses, spoilage negatively impacts the commercial product brand, thereby impairing the meat industry. In the case of strict anaerobes species they are difficult to grow and isolate using culture methods in conventional microbiology laboratories. Furthermore, conventional culture methods are sometimes not capable of distinguishing species or genera. DNA-based molecular methods are alternative strategies for detecting viable and non-cultivable microorganisms and strict anaerobic microorganisms that are difficult to cultivate. Here, we review the microorganisms and mechanisms involved in the deterioration of vacuum-packaged chilled meat and address the use of molecular methods for detecting specific strict anaerobic microorganisms and microbial communities in meat samples.

  17. Biodegradation of petroleum hydrocarbons at low temperatures

    International Nuclear Information System (INIS)

    Whyte, L. G.; Greer, C W.

    1999-01-01

    Bioremediation of contaminated Arctic sites has been proposed as the logistically and economically most favorable solution despite the known technical difficulties. The difficulties involve the inhibition of pollutants removal by biodegradation below freezing temperatures and the relative slowness of the process to remove enough hydrocarbon pollutants during the above-freezing summer months. Despite these formidable drawbacks, biodegradation of hydrocarbon contaminants is possible even in below-zero temperatures, especially if indigenous psychrophilic and psychrotropic micro-organism are used. This paper reports results of a study involving several hydrocarbon-degrading psychrotropic bacteria and suggests bioaugmentation with specific cold-adapted organisms and/or biostimulation with commercial fertilizers for enhancing degradation of specific contaminants in soils from northern Canada. An evaluation of the biodegradation potential of hydrocarbon contaminated soils in the high Arctic suggested that the contaminated soils contained sufficient numbers of cold-adapted hydrocarbon-degrading bacteria and that the addition of fertilizer was sufficient to enhance the level of hydrocarbon degradation at low ambient summer temperatures. 9 refs., 2 tabs., 3 figs

  18. A comparative study of cold- and warm-adapted Endonucleases A using sequence analyses and molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Davide Michetti

    Full Text Available The psychrophilic and mesophilic endonucleases A (EndA from Aliivibrio salmonicida (VsEndA and Vibrio cholera (VcEndA have been studied experimentally in terms of the biophysical properties related to thermal adaptation. The analyses of their static X-ray structures was no sufficient to rationalize the determinants of their adaptive traits at the molecular level. Thus, we used Molecular Dynamics (MD simulations to compare the two proteins and unveil their structural and dynamical differences. Our simulations did not show a substantial increase in flexibility in the cold-adapted variant on the nanosecond time scale. The only exception is a more rigid C-terminal region in VcEndA, which is ascribable to a cluster of electrostatic interactions and hydrogen bonds, as also supported by MD simulations of the VsEndA mutant variant where the cluster of interactions was introduced. Moreover, we identified three additional amino acidic substitutions through multiple sequence alignment and the analyses of MD-based protein structure networks. In particular, T120V occurs in the proximity of the catalytic residue H80 and alters the interaction with the residue Y43, which belongs to the second coordination sphere of the Mg2+ ion. This makes T120V an amenable candidate for future experimental mutagenesis.

  19. Effect of Corn Dried Distiller Grains with Solubles (DDGS in Dairy Cow Diets on Manure Bioenergy Production Potential

    Directory of Open Access Journals (Sweden)

    Daniel I. Massé

    2014-03-01

    Full Text Available The main objective of this study was to obtain scientifically sound data on the bioenergy potential of dairy manures from cows fed different levels of corn dried distillers grains with solubles (DDGS. Three diets differing in corn DDGS content were formulated: 0% corn DDGS (DDGS0; control diet, 10% corn DDGS (DDGS10 and 30% corn DDGS (DDGS30. Bioenergy production was determined in psychrophilic (25 ± 1 °C sequencing batch reactors (SBRs fed 3 g COD L−1·day−1 during a two-week feeding period followed by a two-week react period. Compared to the control diet, adding DDGS10 and DDGS30 to the dairy cow diet increased the daily amount of fat excreted in slurry by 29% and 70%, respectively. The addition of DDGS30 increased the cows’ daily production of fresh feces and slurry by 15% and 11%, respectively. Furthermore, the incorporation of DDGS30 in the diet increased the daily amounts of dry matter (DM, volatile solids (VS, neutral detergent fiber (NDF, acid detergent fiber (ADF and hemicellulose by 18%, 18%, 30%, 15% and 53%, respectively, compared to the control diet. While the addition of DDGS did not significantly affect the specific CH4 production per kg VS compared to the control diet, DDGS30 increased the per cow daily CH4 production by 14% compared to the control diet.

  20. Effect of Corn Dried Distiller Grains with Solubles (DDGS) in Dairy Cow Diets on Manure Bioenergy Production Potential.

    Science.gov (United States)

    Massé, Daniel I; Jarret, Guillaume; Benchaar, Chaouki; Saady, Noori M Cata

    2014-03-05

    The main objective of this study was to obtain scientifically sound data on the bioenergy potential of dairy manures from cows fed different levels of corn dried distillers grains with solubles (DDGS). Three diets differing in corn DDGS content were formulated: 0% corn DDGS (DDGS0; control diet), 10% corn DDGS (DDGS10) and 30% corn DDGS (DDGS30). Bioenergy production was determined in psychrophilic (25 ± 1 °C) sequencing batch reactors (SBRs) fed 3 g COD L(-1)·day(-1) during a two-week feeding period followed by a two-week react period. Compared to the control diet, adding DDGS10 and DDGS30 to the dairy cow diet increased the daily amount of fat excreted in slurry by 29% and 70%, respectively. The addition of DDGS30 increased the cows' daily production of fresh feces and slurry by 15% and 11%, respectively. Furthermore, the incorporation of DDGS30 in the diet increased the daily amounts of dry matter (DM), volatile solids (VS), neutral detergent fiber (NDF), acid detergent fiber (ADF) and hemicellulose by 18%, 18%, 30%, 15% and 53%, respectively, compared to the control diet. While the addition of DDGS did not significantly affect the specific CH₄ production per kg VS compared to the control diet, DDGS30 increased the per cow daily CH₄ production by 14% compared to the control diet.

  1. Bacterial diversity in permanently cold and alkaline ikaite columns from Greenland.

    Science.gov (United States)

    Schmidt, Mariane; Priemé, Anders; Stougaard, Peter

    2006-12-01

    Bacterial diversity in alkaline (pH 10.4) and permanently cold (4 degrees C) ikaite tufa columns from the Ikka Fjord, SW Greenland, was investigated using growth characterization of cultured bacterial isolates with Terminal-restriction fragment length polymorphism (T-RFLP) and sequence analysis of bacterial 16S rRNA gene fragments. More than 200 bacterial isolates were characterized with respect to pH and temperature tolerance, and it was shown that the majority were cold-active alkaliphiles. T-RFLP analysis revealed distinct bacterial communities in different fractions of three ikaite columns, and, along with sequence analysis, it showed the presence of rich and diverse bacterial communities. Rarefaction analysis showed that the 109 sequenced clones in the 16S rRNA gene library represented between 25 and 65% of the predicted species richness in the three ikaite columns investigated. Phylogenetic analysis of the 16S rRNA gene sequences revealed many sequences with similarity to alkaliphilic or psychrophilic bacteria, and showed that 33% of the cloned sequences and 33% of the cultured bacteria showed less than 97% sequence identity to known sequences in databases, and may therefore represent yet unknown species.

  2. Changes of physicochemical and microbiologicalparameters of infiltration water at Debina intake in Poznan, unique conditions - a flood

    Science.gov (United States)

    Kołaska, Sylwia; Jeż-Walkowiak, Joanna; Dymaczewski, Zbysław

    2018-02-01

    The paper presents characteristics of Debina infiltration intake which provides water for Poznan and neighbouring communes. The evaluation of effectiveness of infiltration process has been done based on the quality parameters of river water and infiltration water. The analysed water quality parameters are as follows: temperature, iron, manganese, DOCKMnO4, TOC, turbidity, colour, dissolved oxygen, free carbon dioxide, conductivity, total hardness, carbonate hardness, pH, heavy metals, detergents and microorganisms. The paper also includes an assessment of the impact of flood conditions on the quality of infiltration water and operation of infiltration intake. In this part of the paper the following parameters were taken into account: iron, manganese, DOCKMnO4, TOC, turbidity, colour, dissolved oxygen, free carbon dioxide, conductivity, total hardness, the total number of microorganisms in 36°C (mesophilic), the total number of microorganisms in 22°C (psychrophilic), coli bacteria, Clostridium perfringens, Escherichia coli, Enterococci. Analysis of the effects of flood on infiltration process leads to the following conclusions: the deterioration of infiltration water quality was due to the deterioration of river water quality, substantial shortening of groundwater passage and partial disappearance of the aeration zone. The observed deterioration of infiltration water quality did not affect the treated water quality, produced at water treatment plant.

  3. Proceedings of the Astrobiology Science Conference 2010. Evolution and Life: Surviving Catastrophes and Extremes on Earth and Beyond

    Science.gov (United States)

    2010-01-01

    The Program of the 2010 Astrobiology Science Conference: Evolution and Life: Surviving Catastrophes and Extremes on Earth and Beyond, included sessions on: 50 Years of Exobiology and Astrobiology: Greatest Hits; Extraterrestrial Molecular Evolution and Pre-Biological Chemistry: From the Interstellar Medium to the Solar System I; Human Exploration, Astronaut Health; Diversity in Astrobiology Research and Education; Titan: Past, Present, and Future; Energy Flow in Microbial Ecosystems; Extraterrestrial Molecular Evolution and Prebiological Chemistry: From the Interstellar Medium to the Solar System II; Astrobiology in Orbit; Astrobiology and Interdisciplinary Communication; Science from Rio Tinto: An Acidic Environment; Can We Rule Out Spontaneous Generation of RNA as the Key Step in the Origin of Life?; How Hellish Was the Hadean Earth?; Results from ASTEP and Other Astrobiology Field Campaigns I; Prebiotic Evolution: From Chemistry to Life I; Adaptation of Life in Hostile Space Environments; Extrasolar Terrestrial Planets I: Formation and Composition; Collaborative Tools and Technology for Astrobiology; Results from ASTEP and Other Astrobiology Field Campaigns II; Prebiotic Evolution: From Chemistry to Life II; Survival, Growth, and Evolution of Microrganisms in Model Extraterrestrial Environments; Extrasolar Terrestrial Planets II: Habitability and Life; Planetary Science Decadal Survey Update; Astrobiology Research Funding; Bioessential Elements Through Space and Time I; State of the Art in Life Detection; Terrestrial Evolution: Implications for the Past, Present, and Future of Life on Earth; Psychrophiles and Polar Environments; Life in Volcanic Environments: On Earth and Beyond; Geochronology and Astrobiology On and Off the Earth; Bioessential Elements Through Space and Time II; Origins and Evolution of Genetic Systems; Evolution of Advanced Life; Water-rich Asteroids and Moons: Composition and Astrobiological Potential; Impact Events and Evolution; A Warm, Wet

  4. Biogas - a contribution to solving the energy supply problem of cheese factories. Biogas - ein Beitrag zur Loesung des Energieversorgungsproblems der gewerblichen Kaesereien

    Energy Technology Data Exchange (ETDEWEB)

    Favre, R

    1984-01-01

    During a 2-years-monitoring period different types of biogas-plants installed in the cheese factories 'Giessen', 'Steinenbrugg', 'Niederstetten' and 'Bodmen' have been investigated. Piggeries with 400 to 700 finishing places were attached to these cheese factories. These four milk processing plants are representative of an average Swiss cheese factory processing 800,000 to 1,500,000 liters of milk a year. The investigations showed that the energy-demand of the cheese-factories is ideal for the use of biogas. The capacities of gas- and hot-water-storage can be planned with a minimum reserve because in most cases cheese fabrication takes place daily. Apart from the fabrication process, the residence of the cheese maker, the cheese cellar, the feed-preparation, the finishing building and the hot-water supply need heat. There are no longtime peak-demands. The swine manure, well qualified for biogas production, is digested during a retention time of 2 to 10 weeks. The plants are heated with biogas excepted the one installed in 'Bodmen'. The gas yield of the mesophilic working flow-plants reaches 0.4 (Nm/sup 3//kgOS), which means the double value of the psychrophilic working storage plant 'Bodmen'. The plants in 'Giessen' and 'Steinenbrugg' need 20 to 40 (%) of the gas-production for their reactor-heating. Therefore the net gas-production of all four plants remained nearly identic. In all cheese-factories the biogas is burned for the heat-supply. The biogas covered of the total energy demand in the average 40 (%) in 'Steinenbrugg', 60 (%) in 'Niederstetten' and 33 (%) in 'Bodmen'. In 'Giessen' the rate was lower due to biogas-tests. An imaginary cheese-factory in the size of 'Giessen' equipped with a total energy-modul (gas-motor, generator, heat-pump) was tested by ENSIM. The result proofed that an energy autarcy is possible due to an enormeous technical installation.

  5. Specific alterations in complement protein activity of little brown myotis (Myotis lucifugus hibernating in white-nose syndrome affected sites.

    Directory of Open Access Journals (Sweden)

    Marianne S Moore

    Full Text Available White-nose syndrome (WNS is the most devastating condition ever reported for hibernating bats, causing widespread mortality in the northeastern United States. The syndrome is characterized by cutaneous lesions caused by a recently identified psychrophilic and keratinophylic fungus (Geomyces destructans, depleted fat reserves, atypical behavior, and damage to wings; however, the proximate cause of mortality is still uncertain. To assess relative levels of immunocompetence in bats hibernating in WNS-affected sites compared with levels in unaffected bats, we describe blood plasma complement protein activity in hibernating little brown myotis (Myotis lucifugus based on microbicidal competence assays using Escherichia coli, Staphylococcus aureus and Candida albicans. Blood plasma from bats collected during mid-hibernation at WNS-affected sites had higher bactericidal ability against E. coli and S. aureus, but lower fungicidal ability against C. albicans when compared with blood plasma from bats collected at unaffected sites. Within affected sites during mid-hibernation, we observed no difference in microbicidal ability between bats displaying obvious fungal infections compared to those without. Bactericidal ability against E. coli decreased significantly as hibernation progressed in bats collected from an affected site. Bactericidal ability against E. coli and fungicidal ability against C. albicans were positively correlated with body mass index (BMI during late hibernation. We also compared complement activity against the three microbes within individuals and found that the ability of blood plasma from hibernating M. lucifugus to lyse microbial cells differed as follows: E. coli>S. aureus>C. albicans. Overall, bats affected by WNS experience both relatively elevated and reduced innate immune responses depending on the microbe tested, although the cause of observed immunological changes remains unknown. Additionally, considerable trade-offs may exist

  6. Hibernating little brown myotis (Myotis lucifugus) show variable immunological responses to white-nose syndrome.

    Science.gov (United States)

    Moore, Marianne S; Reichard, Jonathan D; Murtha, Timothy D; Nabhan, Morgan L; Pian, Rachel E; Ferreira, Jennifer S; Kunz, Thomas H

    2013-01-01

    White-nose syndrome (WNS) is an emerging infectious disease devastating hibernating North American bat populations that is caused by the psychrophilic fungus Geomyces destructans. Previous histopathological analysis demonstrated little evidence of inflammatory responses in infected bats, however few studies have compared other aspects of immune function between WNS-affected and unaffected bats. We collected bats from confirmed WNS-affected and unaffected sites during the winter of 2008-2009 and compared estimates of their circulating levels of total leukocytes, total immunoglobulins, cytokines and total antioxidants. Bats from affected and unaffected sites did not differ in their total circulating immunoglobulin levels, but significantly higher leukocyte counts were observed in bats from affected sites and particularly in affected bats with elevated body temperatures (above 20°C). Bats from WNS-affected sites exhibited significantly lower antioxidant activity and levels of interleukin-4 (IL-4), a cytokine that induces T cell differentiation. Within affected sites only, bats exhibiting visible fungal infections had significantly lower antioxidant activity and levels of IL-4 compared to bats without visible fungal infections. Overall, bats hibernating in WNS-affected sites showed immunological changes that may be evident of attempted defense against G. destructans. Observed changes, specifically elevated circulating leukocytes, may also be related to the documented changes in thermoregulatory behaviors of affected bats (i.e. increased frequencies in arousal from torpor). Alterations in immune function may reflect expensive energetic costs associated with these processes and intrinsic qualities of the immunocapability of hibernating bats to clear fungal infections. Additionally, lowered antioxidant activity indicates a possible imbalance in the pro- versus antioxidant system, may reflect oxidative tissue damage, and should be investigated as a contributor to WNS

  7. Specific alterations in complement protein activity of little brown myotis (Myotis lucifugus) hibernating in white-nose syndrome affected sites.

    Science.gov (United States)

    Moore, Marianne S; Reichard, Jonathan D; Murtha, Timothy D; Zahedi, Bita; Fallier, Renee M; Kunz, Thomas H

    2011-01-01

    White-nose syndrome (WNS) is the most devastating condition ever reported for hibernating bats, causing widespread mortality in the northeastern United States. The syndrome is characterized by cutaneous lesions caused by a recently identified psychrophilic and keratinophylic fungus (Geomyces destructans), depleted fat reserves, atypical behavior, and damage to wings; however, the proximate cause of mortality is still uncertain. To assess relative levels of immunocompetence in bats hibernating in WNS-affected sites compared with levels in unaffected bats, we describe blood plasma complement protein activity in hibernating little brown myotis (Myotis lucifugus) based on microbicidal competence assays using Escherichia coli, Staphylococcus aureus and Candida albicans. Blood plasma from bats collected during mid-hibernation at WNS-affected sites had higher bactericidal ability against E. coli and S. aureus, but lower fungicidal ability against C. albicans when compared with blood plasma from bats collected at unaffected sites. Within affected sites during mid-hibernation, we observed no difference in microbicidal ability between bats displaying obvious fungal infections compared to those without. Bactericidal ability against E. coli decreased significantly as hibernation progressed in bats collected from an affected site. Bactericidal ability against E. coli and fungicidal ability against C. albicans were positively correlated with body mass index (BMI) during late hibernation. We also compared complement activity against the three microbes within individuals and found that the ability of blood plasma from hibernating M. lucifugus to lyse microbial cells differed as follows: E. coli>S. aureus>C. albicans. Overall, bats affected by WNS experience both relatively elevated and reduced innate immune responses depending on the microbe tested, although the cause of observed immunological changes remains unknown. Additionally, considerable trade-offs may exist between energy

  8. Antifungal testing and high-throughput screening of compound library against Geomyces destructans, the etiologic agent of geomycosis (WNS in bats.

    Directory of Open Access Journals (Sweden)

    Sudha Chaturvedi

    Full Text Available Bats in the northeastern U.S. are affected by geomycosis caused by the fungus Geomyces destructans (Gd. This infection is commonly referred to as White Nose Syndrome (WNS. Over a million hibernating bats have died since the fungus was first discovered in 2006 in a cave near Albany, New York. A population viability analysis conducted on little brown bats (Myotis lucifugus, one of six bat species infected with Gd, suggests regional extinction of this species within 20 years. The fungus Gd is a psychrophile ("cold loving", but nothing is known about how it thrives at low temperatures and what pathogenic attributes allow it to infect bats. This study aimed to determine if currently available antifungal drugs and biocides are effective against Gd. We tested five Gd strains for their susceptibility to antifungal drugs and high-throughput screened (HTS one representative strain with SpectrumPlus compound library containing 1,920 compounds. The results indicated that Gd is susceptible to a number of antifungal drugs at concentrations similar to the susceptibility range of human pathogenic fungi. Strains of Gd were susceptible to amphotericin B, fluconazole, itraconazole, ketoconazole and voriconazole. In contrast, very high MICs (minimum inhibitory concentrations of flucytosine and echinocandins were needed for growth inhibition, which were suggestive of fungal resistance to these drugs. Of the 1,920 compounds in the library, a few caused 50%--to greater than 90% inhibition of Gd growth. A number of azole antifungals, a fungicide, and some biocides caused prominent growth inhibition. Our results could provide a theoretical basis for future strategies aimed at the rehabilitation of most affected bat species and for decontamination of Gd in the cave environment.

  9. Hibernating little brown myotis (Myotis lucifugus show variable immunological responses to white-nose syndrome.

    Directory of Open Access Journals (Sweden)

    Marianne S Moore

    Full Text Available White-nose syndrome (WNS is an emerging infectious disease devastating hibernating North American bat populations that is caused by the psychrophilic fungus Geomyces destructans. Previous histopathological analysis demonstrated little evidence of inflammatory responses in infected bats, however few studies have compared other aspects of immune function between WNS-affected and unaffected bats. We collected bats from confirmed WNS-affected and unaffected sites during the winter of 2008-2009 and compared estimates of their circulating levels of total leukocytes, total immunoglobulins, cytokines and total antioxidants. Bats from affected and unaffected sites did not differ in their total circulating immunoglobulin levels, but significantly higher leukocyte counts were observed in bats from affected sites and particularly in affected bats with elevated body temperatures (above 20°C. Bats from WNS-affected sites exhibited significantly lower antioxidant activity and levels of interleukin-4 (IL-4, a cytokine that induces T cell differentiation. Within affected sites only, bats exhibiting visible fungal infections had significantly lower antioxidant activity and levels of IL-4 compared to bats without visible fungal infections. Overall, bats hibernating in WNS-affected sites showed immunological changes that may be evident of attempted defense against G. destructans. Observed changes, specifically elevated circulating leukocytes, may also be related to the documented changes in thermoregulatory behaviors of affected bats (i.e. increased frequencies in arousal from torpor. Alterations in immune function may reflect expensive energetic costs associated with these processes and intrinsic qualities of the immunocapability of hibernating bats to clear fungal infections. Additionally, lowered antioxidant activity indicates a possible imbalance in the pro- versus antioxidant system, may reflect oxidative tissue damage, and should be investigated as a

  10. The White-Nose Syndrome Transcriptome: Activation of Anti-fungal Host Responses in Wing Tissue of Hibernating Little Brown Myotis.

    Science.gov (United States)

    Field, Kenneth A; Johnson, Joseph S; Lilley, Thomas M; Reeder, Sophia M; Rogers, Elizabeth J; Behr, Melissa J; Reeder, DeeAnn M

    2015-10-01

    White-nose syndrome (WNS) in North American bats is caused by an invasive cutaneous infection by the psychrophilic fungus Pseudogymnoascus destructans (Pd). We compared transcriptome-wide changes in gene expression using RNA-Seq on wing skin tissue from hibernating little brown myotis (Myotis lucifugus) with WNS to bats without Pd exposure. We found that WNS caused significant changes in gene expression in hibernating bats including pathways involved in inflammation, wound healing, and metabolism. Local acute inflammatory responses were initiated by fungal invasion. Gene expression was increased for inflammatory cytokines, including interleukins (IL) IL-1β, IL-6, IL-17C, IL-20, IL-23A, IL-24, and G-CSF and chemokines, such as Ccl2 and Ccl20. This pattern of gene expression changes demonstrates that WNS is accompanied by an innate anti-fungal host response similar to that caused by cutaneous Candida albicans infections. However, despite the apparent production of appropriate chemokines, immune cells such as neutrophils and T cells do not appear to be recruited. We observed upregulation of acute inflammatory genes, including prostaglandin G/H synthase 2 (cyclooxygenase-2), that generate eicosanoids and other nociception mediators. We also observed differences in Pd gene expression that suggest host-pathogen interactions that might determine WNS progression. We identified several classes of potential virulence factors that are expressed in Pd during WNS, including secreted proteases that may mediate tissue invasion. These results demonstrate that hibernation does not prevent a local inflammatory response to Pd infection but that recruitment of leukocytes to the site of infection does not occur. The putative virulence factors may provide novel targets for treatment or prevention of WNS. These observations support a dual role for inflammation during WNS; inflammatory responses provide protection but excessive inflammation may contribute to mortality, either by

  11. Skin lesions in European hibernating bats associated with Geomyces destructans, the etiologic agent of white-nose syndrome.

    Science.gov (United States)

    Wibbelt, Gudrun; Puechmaille, Sébastien J; Ohlendorf, Bernd; Mühldorfer, Kristin; Bosch, Thijs; Görföl, Tamás; Passior, Karsten; Kurth, Andreas; Lacremans, Daniel; Forget, Frédéric

    2013-01-01

    White-nose syndrome (WNS) has claimed the lives of millions of hibernating insectivorous bats in North America. Its etiologic agent, the psychrophilic fungus Geomyces destructans, causes skin lesions that are the hallmark of the disease. The fungal infection is characterized by a white powdery growth on muzzle, ears and wing membranes. While WNS may threaten some species of North American bats with regional extinction, infection in hibernating bats in Europe seems not to be associated with significant mortality. We performed histopathological investigations on biopsy samples of 11 hibernating European bats, originating from 4 different countries, colonized by G. destructans. One additional bat was euthanized to allow thorough examination of multiple strips of its wing membranes. Molecular analyses of touch imprints, swabs and skin samples confirmed that fungal structures were G. destructans. Additionally, archived field notes on hibernacula monitoring data in the Harz Mountains, Germany, over an 11-year period (2000-2011) revealed multiple capture-recapture events of 8 banded bats repeatedly displaying characteristic fungal colonization. Skin lesions of G. destructans-affected hibernating European bats are intriguingly similar to the epidermal lesions described in North American bats. Nevertheless, deep invasion of fungal hyphae into the dermal connective tissue with resulting ulceration like in North American bats was not observed in the biopsy samples of European bats; all lesions found were restricted to the layers of the epidermis and its adnexae. Two bats had mild epidermal cupping erosions as described for North American bats. The possible mechanisms for any difference in outcomes of G. destructans infection in European and North American bats still need to be elucidated.

  12. Application and microbial ecology of psychrotrophs in domestic wastewater treatment at low temperature.

    Science.gov (United States)

    Xu, Zhenzhen; Ben, Yue; Chen, Zhonglin; Jiang, Anxi; Shen, Jimin; Han, Xiaoyun

    2018-01-01

    The feasibility of a bunch of screened psychrotrophs being applied to low-temperature wastewater treatment was investigated. The screened psychrophillic strains are capable of growth at a broad temperature-range from 0 to 40 °C and exhibit a preferable TTC-dehydrogenase activity at low temperature (4-10 °C). Along the sharply fluctuant temperatures (25-4-25 °C), the screened psychrotrophs (compared with the indigenous mesophiles) demonstrate less fluctuations of COD removal and more rapid recovery after temperature shocks. COD removal of approximate 80% was recorded by single psychrotrophs (while only 10% by single mesophiles) at low temperature (4 °C). Soft polyurethane foam showed better performance for psychrotrophs immobilization, with the optimal filling rate of 30% (v/v) in the bioreactor. The observation shows that the immobilized psychrotrophs demonstrated a relatively high performance on both conventional and emerging organic contaminants removals at low temperature. In order to check the feasibility of the screened psychrotrophs in treating actual domestic wastewater, a pilot-scale ICABR bioreactor was operated firstly at low temperature (4 °C) and then at seasonal varying temperatures (0-30 °C) for one year, the influent COD of 150-600 mg L -1 was efficiently reduced to 40 ± 18 mg L -1 under the conditions of an overall hydraulic retention time of 10 h. Furthermore, psychrotrophs performed stably as the predominant bacteria family during the whole operation. This study provides evidence that microbial intensification with psychrotrophs was a feasible strategy to improve the efficiency of conventional wastewater treatment process at low temperature. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Ice-nucleation negative fluorescent pseudomonads isolated from Hebridean cloud and rain water produce biosurfactants

    Science.gov (United States)

    Ahern, H. E.; Walsh, K. A.; Hill, T. C. J.; Moffett, B. F.

    2006-10-01

    Microorganisms were discovered in clouds over 100 years ago but information on bacterial community structure and function is limited. Clouds may not only be a niche within which bacteria could thrive but they might also influence dynamic processes using ice nucleating and cloud condensing abilities. Cloud and rain samples were collected from two mountains in the Outer Hebrides, NW Scotland, UK. Community composition was determined using a combination of amplified 16S ribosomal DNA restriction analysis and sequencing. 256 clones yielded 100 operational taxonomic units (OTUs) of which half were related to bacteria from terrestrial psychrophilic environments. Cloud samples were dominated by a mixture of fluorescent Pseudomonas spp., some of which have been reported to be ice nucleators. It was therefore possible that these bacteria were using the ice nucleation (IN) gene to trigger the Bergeron-Findeisen process of raindrop formation as a mechanism for dispersal. In this study the IN gene was not detected in any of the isolates using both polymerase chain reaction (PCR) and differential scanning calorimetry (DSC). Instead 55% of the total isolates from both cloud and rain samples displayed significant biosurfactant activity when analyzed using the drop-collapse technique. All were characterised as fluorescent pseudomonads. Surfactants have been found to be very important in lowering atmospheric critical supersaturations required for the activation of aerosols into cloud condensation nuclei (CCN). It is also known that surfactants influence cloud droplet size and increase cloud lifetime and albedo. Some bacteria are known to act as CCN and so it is conceivable that these fluorescent pseudomonads are using surfactants to facilitate their activation from aerosols into CCN. This would allow water scavenging, countering desiccation, and assist in their widespread dispersal.

  14. Fluorescent pseudomonads isolated from Hebridean cloud and rain water produce biosurfactants but do not cause ice nucleation

    Science.gov (United States)

    Ahern, H. E.; Walsh, K. A.; Hill, T. C. J.; Moffett, B. F.

    2007-02-01

    Microorganisms were discovered in clouds over 100 years ago but information on bacterial community structure and function is limited. Clouds may not only be a niche within which bacteria could thrive but they might also influence dynamic processes using ice nucleating and cloud condensing abilities. Cloud and rain samples were collected from two mountains in the Outer Hebrides, NW Scotland, UK. Community composition was determined using a combination of amplified 16S ribosomal DNA restriction analysis and sequencing. 256 clones yielded 100 operational taxonomic units (OTUs) of which half were related to bacteria from terrestrial psychrophilic environments. Cloud samples were dominated by a mixture of fluorescent Pseudomonas spp., some of which have been reported to be ice nucleators. It was therefore possible that these bacteria were using the ice nucleation (IN) gene to trigger the Bergeron-Findeisen process of raindrop formation as a mechanism for dispersal. In this study the IN gene was not detected in any of the isolates using both polymerase chain reaction (PCR) and differential scanning calorimetry (DSC). Instead 55% of the total isolates from both cloud and rain samples displayed significant biosurfactant activity when analyzed using the drop-collapse technique. All isolates were characterised as fluorescent pseudomonads. Surfactants have been found to be very important in lowering atmospheric critical supersaturations required for the activation of aerosols into cloud condensation nuclei (CCN). It is also known that surfactants influence cloud droplet size and increase cloud lifetime and albedo. Some bacteria are known to act as CCN and so it is conceivable that these fluorescent pseudomonads are using surfactants to facilitate their activation from aerosols into CCN. This would allow water scavenging,~countering desiccation, and assist in their widespread dispersal.

  15. DNA sequence-specific dimeric bisbenzimidazoles DBP(n) and DBPA(n) as inhibitors of H-NS silencing in bacterial cells.

    Science.gov (United States)

    Melkina, Olga E; Koval, Vasilii S; Ivanov, Alexander A; Zhuze, Alexei L; Zavilgelsky, Gennadii B

    2018-03-01

    DNA sequence-specific fluorescent dimeric bisbenzimidazoles DBP(n) and DBPA(n), noncovalently interacting with A-T pairs in the minor groove of double-stranded DNA were used for studying and monitoring the expression of histone-like H-NS-dependent promoters. Histone-like H-NS selectively binds to AT-rich segments of DNA and silences a large number of genes in bacterial chromosomes. The H-NS-dependent promoters of Quorum Sensing (QS)-regulated lux operons of the marine bacteria mesophilic Aliivibrio fischeri, psychrophilic Aliivibrio logei were used. Escherichia coli lux biosensors were constructed by cloning fragments bearing QS-regulated promoters into the vector, thereby placing each fragment upstream of the promoterless Photorhabdus luminescens luxCDABE genes. It was shown that the dimeric bisbenzimidazoles DBP(n) and DBPA(n) counteract the H-NS silencing activity. Thus, the presence of DBP(n) or DBPA(n) in the medium leads to an approximately 10-100-fold increase in the level of transcription of QS promoters in E. coli hns + . The largest decrease in the level of H-NS repression was observed using ligands containing a linker with a length of ca. 18Å, such as DBP(2) and DBPA(2). Ligands containing linkers with n=1 and 3 are an order of magnitude less active; ligands with n=4 are inactive. DBPA(2) exhibits activity starting with a concentration of 0.5μM; the minimum concentration of DBP(2) is 5-7 times higher. It is suggested that A-T pairs located at five nucleotide pair intervals, which correspond to the linker length in highly active ligands with n=2, play a key role in the structure of H-NS-binding sites in QS-regulated promoters. Copyright © 2017 Elsevier GmbH. All rights reserved.

  16. Improving the quality of ready-to-eat meals by gamma irrdiation, Baked de-boned chicken meat with potatoe slices or baked fish and cooked rice

    International Nuclear Information System (INIS)

    Badr, H.M.; Rady, A.H.; Abdel-Daiem, M.H.; Khalaf, H.

    2005-01-01

    The present investigation was carried out to study the possibility of using gamma irradiation for improving the quality of ready-to-eat meals. The prepared meals (included baked chicken meat with potato slices or baked fish and cooked rice) were subjected to gamma irradiation at doses of O, 1.5, 3 and 4.5 KGy followed by cold storage (4 C). The effects of irradiation and cold storage on the microbiological aspects, chemical and organoleptic properties of samples were studied. The results showed that irradiation of the prepared meals decreased the initial total bacterial count, total psychrophilic bacteria and total yeast and molds, proportionally to the applied dose, hence prolonged their refrigerated shelf-life. Moreover, irradiation at dose of 1.5 KGy reduced the counts of Enterobacteriaceae, Staphylococcus aureus and Enterococcus faecalis, while 3 KGy dose completely eliminated these bacteria in all samples. Salmonella was not detected in all irradiated and non-irradiated meals and Vibrio sp. were absent in irradiated and non-irradiated baked fish. On the other hand, gamma irradiation had no remarkable effects neither on the chemical composition of the main component of meals nor on their ph, while it increased the thiobarbituric acid (TEA) value for baked chicken and fish meat. However, cold storage gradually increased the values of TEA and gradually decreased the ph value for irradiated and non-irradiated samples. Finally, irradiation treatments had no effects on the sensory properties (appearance, odor and taste) of all meals and extended their time of sensory preference

  17. Identification of a DNA restriction-modification system in Pectobacterium carotovorum strains isolated from Poland.

    Science.gov (United States)

    Waleron, K; Waleron, M; Osipiuk, J; Podhajska, A J; Lojkowska, E

    2006-02-01

    Polish isolates of pectinolytic bacteria from the species Pectobacterium carotovorum were screened for the presence of a DNA restriction-modification (R-M) system. Eighty-nine strains of P. carotovorum were isolated from infected potato plants. Sixty-six strains belonged to P. carotovorum ssp. atrosepticum and 23 to P. carotovorum ssp. carotovorum. The presence of restriction enzyme Pca17AI, which is an isoschizomer of EcoRII endonuclease, was observed in all isolates of P. c. atrosepticum but not in P. c. carotovorum. The biochemical properties, PCR amplification, and sequences of the Pca17AI restriction endonuclease and methyltransferase genes were compared with the prototype EcoRII R-M system genes. Only when DNA isolated from cells of P. c. atrosepticum was used as a template, amplification of a 680 bp homologous to the gene coding EcoRII endonuclease. Endonuclease Pca17AI, having a relatively low temperature optimum, was identified. PCR amplification revealed that the nucleotide sequence of genes for EcoRII and Pca17AI R-M are different. Dcm methylation was observed in all strains of Pectobacterium and other Erwinia species tested. The sequence of a DNA fragment coding Dcm methylase in P. carotovorum was different from that of Escherichia coli. Pca17AI is the first psychrophilic isoschizomer of EcoRII endonuclease. The presence of specific Dcm methylation in chromosomal DNA isolated from P. carotovorum is described for the first time. A 680 bp PCR product, unique for P. c. atrosepticum strains, could serve as a molecular marker for detection of these bacteria in environmental samples.

  18. Biodegradation of petroleum hydrocarbons in seawater at low temperatures (0-5 degrees C) and bacterial communities associated with degradation.

    Science.gov (United States)

    Brakstad, Odd G; Bonaunet, Kristin

    2006-02-01

    In this study biodegradation of hydrocarbons in thin oil films was investigated in seawater at low temperatures, 0 and 5 degrees C. Heterotrophic (HM) or oil-degrading (ODM) microorganisms enriched at the two temperatures showed 16S rRNA sequence similarities to several bacteria of Arctic or Antarctic origin. Biodegradation experiments were conducted with a crude mineral oil immobilized as thin films on hydrophobic Fluortex adsorbents in nutrient-enriched or sterile seawater. Chemical and respirometric analysis of hydrocarbon depletion showed that naphthalene and other small aromatic hydrocarbons (HCs) were primarily biodegraded after dissolution to the water phase, while biodegradation of larger polyaromatic hydrocarbons (PAH) and C(10)-C(36) n-alkanes, including n-hexadecane, was associated primarily with the oil films. Biodegradation of PAH and n-alkanes was significant at both 0 and 5 degrees C, but was decreased for several compounds at the lower temperature. n-Hexadecane biodegradation at the two temperatures was comparable at the end of the experiments, but was delayed at 0 degree C. Investigations of bacterial communities in seawater and on adsorbents by PCR amplification of 16S rRNA gene fragments and DGGE analysis indicated that predominant bacteria in the seawater gradually adhered to the oil-coated adsorbents during biodegradation at both temperatures. Sequence analysis of most DGGE bands aligned to members of the phyla Proteobacteria (Gammaproteobacteria) or Bacteroidetes. Most sequences from experiments at 0 degree C revealed affiliations to members of Arctic or Antarctic consortia, while no such homology was detected for sequences from degradation experiment run at 5 degrees C. In conclusion, marine microbial communities from cold seawater have potentials for oil film HC degradation at temperatures < or =5 degrees C, and psychrotrophic or psychrophilic bacteria may play an important role during oil HC biodegradation in seawater close to freezing

  19. Effect of fermented bamboo shoot on the quality and shelf life of nuggets prepared from desi spent hen

    Directory of Open Access Journals (Sweden)

    Ankur Das

    Full Text Available Aim: An investigation was carried out to prepare nuggets from the relatively tough and fibrous meat of desi spent hen using fermented bamboo shoot as a phytopreservative in order to enhance the physico-chemical, microbiological and keeping quality of the nuggets. Materials and Methods: Lean meat of desi spent hen was minced and blended along with other non-meat ingredients and fermented bamboo shoot @10%. The emulsion was filled in metallic moulds and steam cooked and cut into pieces. Ready-toeat nuggets thus prepared were packed in sterilized LDPE zip bags and stored at 4±1°C up-to 15 days for quality evaluation. Emulsion stability (%, cooking yield (%, a and proximate composition were studied on the day of preparation, while estimation of pH, TBA values, microbial load and sensory evaluation were carried out at 5 days interval and up-to 15th day of storage. Results: The emulsion stability (%, cooking yield (%, moisture (%, crude protein (% and total ash (% of FBS treated nuggets differed significantly (p<0.01 from the control products. Storage studies revealed significantly lower (p<0.01 pH, TBA value, total plate count, psychrophillic count and counts for yeast and moulds in FBS treated nuggets in comparison to control products. Both control and treated nuggets exhibited gradual loss of panel ratings during the storage period (4±1°C for 15 days, however, nuggets containing fermented bamboo shoot revealed significantly higher (p<0.01 mean sensory scores in terms of flavour, texture, juiciness and overall acceptability. Conclusion: Nuggets with better physico-chemical and shelf life can be prepared with incorporation of fermented bamboo shoot @10% (w/w to the nugget emulsion. [Vet World 2013; 6(7.000: 419-423

  20. A bacterial acyl aminoacyl peptidase couples flexibility and stability as a result of cold adaptation.

    Science.gov (United States)

    Brocca, Stefania; Ferrari, Cristian; Barbiroli, Alberto; Pesce, Alessandra; Lotti, Marina; Nardini, Marco

    2016-12-01

    Life in cold environments requires an overall increase in the flexibility of macromolecular and supramolecular structures to allow biological processes to take place at low temperature. Conformational flexibility supports high catalytic rates of enzymes in the cold but in several cases is also a cause of instability. The three-dimensional structure of the psychrophilic acyl aminoacyl peptidase from Sporosarcina psychrophila (SpAAP) reported in this paper highlights adaptive molecular changes resulting in a fine-tuned trade-off between flexibility and stability. In its functional form SpAAP is a dimer, and an increase in flexibility is achieved through loosening of intersubunit hydrophobic interactions. The release of subunits from the quaternary structure is hindered by an 'arm exchange' mechanism, in which a tiny structural element at the N terminus of one subunit inserts into the other subunit. Mutants lacking the 'arm' are monomeric, inactive and highly prone to aggregation. Another feature of SpAAP cold adaptation is the enlargement of the tunnel connecting the exterior of the protein with the active site. Such a wide channel might compensate for the reduced molecular motions occurring in the cold and allow easy and direct access of substrates to the catalytic site, rendering transient movements between domains unnecessary. Thus, cold-adapted SpAAP has developed a molecular strategy unique within this group of proteins: it is able to enhance the flexibility of each functional unit while still preserving sufficient stability. Structural data are available in the Protein Data Bank under the accession number 5L8S. © 2016 Federation of European Biochemical Societies.

  1. Designing and optimising anaerobic digestion systems: A multi-objective non-linear goal programming approach

    International Nuclear Information System (INIS)

    Nixon, J.D.

    2016-01-01

    This paper presents a method for optimising the design parameters of an anaerobic digestion (AD) system by using first-order kinetics and multi-objective non-linear goal programming. A model is outlined that determines the ideal operating tank temperature and hydraulic retention time, based on objectives for minimising levelised cost of electricity, and maximising energy potential and feedstock mass reduction. The model is demonstrated for a continuously stirred tank reactor processing food waste in two case study locations. These locations are used to investigate the influence of different environmental and economic climates on optimal conditions. A sensitivity analysis is performed to further examine the variation in optimal results for different financial assumptions and objective weightings. The results identify the conditions for the preferred tank temperature to be in the psychrophilic, mesophilic or thermophilic range. For a tank temperature of 35 °C, ideal hydraulic retention times, in terms of achieving a minimum levelised electricity cost, were found to range from 29.9 to 33 days. Whilst there is a need for more detailed information on rate constants for use in first-order models, multi-objective optimisation modelling is considered to be a promising option for AD design. - Highlights: • Nonlinear goal programming is used to optimise anaerobic digestion systems. • Multiple objectives are set including minimising the levelised cost of electricity. • A model is developed and applied to case studies for the UK and India. • Optimal decisions are made for tank temperature and retention time. • A sensitivity analysis is carried out to investigate different model objectives.

  2. Determination of the Minimum Inhibitory Concentration of the Barberry Extract and the Dried Residue of Red Grape and Their Effects on the Growth Inhibition of Sausage Bacteria by Using Response Surface Methodology (RSM

    Directory of Open Access Journals (Sweden)

    Fatemeh Riazi

    2015-09-01

    Full Text Available Background and Objectives: With regard to the hazards of nitrite, application of natural preservatives in order to reduce the microbial load of meat and meat products is increasing. Owing to their anti-bacterial properties, red barberry and the dried residue of red grape could be suitable replacers for nitrite. Materials and Methods: Agar dilution method was employed in order to determine the minimum inhibitory concentration (MIC of the barberry extract and the dried residue of red grape. The anti-microbial effects of the barberry extract (0-600 mg/kg, the dried residue of red grape (0-2% and nitrite (30-90 mg/kg were investigated on the total viable counts of Clostridium perfringens, as well as on the psychrophilic bacteria after 30 days of storage at 4°C. Finally, the effects of the three independent variables in the optimal sample were examined on the growth of the inoculated C. perfringens. Results: The MIC of the barberry extract and the dried residue of red grape on Staphylococcus aureus was 3 and 6 (mg/ml, respectively. In the case of Escherichia coli, it was 4 and 7 (mg/ml, respectively. The barberry extract and nitrite reduced the growth of the living aerobic bacteria significantly. The spores of the inoculated C. perfringens had no growth in the optimum sample during storage. Conclusions: The barberry extract and the dried residue of red grape as natural preservatives, could partially substitute for nitrite in order to reduce the microbial load of sausage.

  3. Microbiological characteristics of bioaerosol at the composting plant

    Directory of Open Access Journals (Sweden)

    Monika Vítězová

    2013-01-01

    Full Text Available The diversion of biodegradable waste from landfill is of key importance in developing a sustainable waste strategy for the next decade and beyond. The proliferation of waste treatment technologies such as mechanical biological treatment, anaerobic digestion and composting will be paramount in achieving this strategic goal. Composting plant is one of the end technology, which is widely used in waste processing of the biodegradable waste. These wastes originate from the maintenance of green areas in the cities and the municipalities and from the separatelly collected biodegradable waste from the citizens. There is also possible to process other biodegradable materials whose origin may be in other technologies of waste management at the composting plant. The most commonly used technology of composting is windrow system. Technological operations, which are necessary for the proper conduct of the composting process, may have negative influence on the environment in the immediate vicinity of composting plant. As pollutants we can mark particular odor and microorganisms. The largest group of microorganisms in the monitored air were psychrophilic and mesophilic bacteria and microscopic thermotolerant fungi. The amount of thermophillic actinomycetes ranged from 10 to 84.000 CFU∙m−3 (colony forming units per m3. Furthermore, it was confirmed that the maximum air contamination has been found during aeration of windrow by compost turner and during the sieving of the mature compost. For each indicator, the increase in concentrations due to the turning of compost windrow as compared to the background concentration obtained in natural environments and upwind of composting plants was determined. At a distance of 150 m from the composting plant, only low numbers of indicator organisms at a regular occurrence in the air has been found.

  4. Effect of Spices Mixture and Gamma Irradiation on Sausage Quality

    International Nuclear Information System (INIS)

    Anwar, M.M.; Sallam, E.M.

    2015-01-01

    This investigation was carried out to study the effect of spices mixture on reducing the oxidation of fat and to improve the quality and organoleptic characteristics as well as extension of shelf-life of beef sausage. Beef sausages were mixed with three different levels (0.5%, 1.5% and 2.5%) of spices mixture (cardamom, clove, cubeb, laurel leaves, cinnamon, black pepper, rosemary, parpicu, fennel and coriander). The sausages were packed in polyethylene bags and irradiated at 2.5, 5 and 7.5 kGy then stored at 5±1°C for 48 days. Microbiological, biochemical and physical analyses as well as organoleptic evaluation were carried out. Results indicated that increasing the spices level decreased the total bacterial count (TBC), molds, yeasts and psychrophilic bacteria (PB) while total volatile nitrogen (TVN), thiobarbituric acid (TBA), peroxide value (PV) and acid value (AV) were increased in treated samples (1.5% and 2.5%) as compared to control (0.5%). On the other hand, the spices decreased TVN, TBA, PV and AV in treated sausages during cold storage while the physical parameters were increased and the best qualities of cold irradiated sausages were observed at the level 2.5% then 1.5% of spices, and the cooking yield and cooking loss and the organoleptic scores (based on over all acceptability) were better than the control sample (0.5%). The results of spices mixture showed that the level 2.5% can reduce oxidation of fat and improve quality and organoleptic characteristics as well as extension of shelf-life of cold irradiated beef sausage stored for 48 days.

  5. Evolution of proteomes: fundamental signatures and global trends in amino acid compositions

    Directory of Open Access Journals (Sweden)

    Yeramian Edouard

    2006-12-01

    Full Text Available Abstract Background The evolutionary characterization of species and lifestyles at global levels is nowadays a subject of considerable interest, particularly with the availability of many complete genomes. Are there specific properties associated with lifestyles and phylogenies? What are the underlying evolutionary trends? One of the simplest analyses to address such questions concerns characterization of proteomes at the amino acids composition level. Results In this work, amino acid compositions of a large set of 208 proteomes, with significant number of representatives from the three phylogenetic domains and different lifestyles are analyzed, resorting to an appropriate multidimensional method: Correspondence analysis. The analysis reveals striking discrimination between eukaryotes, prokaryotic mesophiles and hyperthemophiles-themophiles, following amino acid usage. In sharp contrast, no similar discrimination is observed for psychrophiles. The observed distributional properties are compared with various inferred chronologies for the recruitment of amino acids into the genetic code. Such comparisons reveal correlations between the observed segregations of species following amino acid usage, and the separation of amino acids following early or late recruitment. Conclusion A simple description of proteomes according to amino acid compositions reveals striking signatures, with sharp segregations or on the contrary non-discriminations following phylogenies and lifestyles. The distribution of species, following amino acid usage, exhibits a discrimination between [high GC]-[high optimal growth temperatures] and [low GC]-[moderate temperatures] characteristics. This discrimination appears to coincide closely with the separation of amino acids following their inferred early or late recruitment into the genetic code. Taken together the various results provide a consistent picture for the evolution of proteomes, in terms of amino acid usage.

  6. A wide variety of putative extremophiles and large beta-diversity at the Mars Desert Research Station (Utah)

    Science.gov (United States)

    Direito, Susana O. L.; Ehrenfreund, Pascale; Marees, Andries; Staats, Martijn; Foing, Bernard; Röling, Wilfred F. M.

    2011-07-01

    Humankind's innate curiosity makes us wonder whether life is or was present on other planetary bodies such as Mars. The EuroGeoMars 2009 campaign was organized at the Mars Desert Research Station (MDRS) to perform multidisciplinary astrobiology research. MDRS in southeast Utah is situated in a cold arid desert with mineralogy and erosion processes comparable to those on Mars. Insight into the microbial community composition of this terrestrial Mars analogue provides essential information for the search for life on Mars: including sampling and life detection methodology optimization and what kind of organisms to expect. Soil samples were collected from different locations. Culture-independent molecular analyses directed at ribosomal RNA genes revealed the presence of all three domains of life (Archaea, Bacteria and Eukarya), but these were not detected in all samples. Spiking experiments revealed that this appears to relate to low DNA recovery, due to adsorption or degradation. Bacteria were most frequently detected and showed high alpha- and beta-diversity. Members of the Actinobacteria, Proteobacteria, Bacteroidetes and Gemmatimonadetes phyla were found in the majority of samples. Archaea alpha- and beta-diversity was very low. For Eukarya, a diverse range of organisms was identified, such as fungi, green algae and several phyla of Protozoa. Phylogenetic analysis revealed an extraordinary variety of putative extremophiles, mainly Bacteria but also Archaea and Eukarya. These comprised radioresistant, endolithic, chasmolithic, xerophilic, hypolithic, thermophilic, thermoacidophilic, psychrophilic, halophilic, haloalkaliphilic and alkaliphilic micro-organisms. Overall, our data revealed large difference in occurrence and diversity over short distances, indicating the need for high-sampling frequency at similar sites. DNA extraction methods need to be optimized to improve extraction efficiencies.

  7. In vitro immunobiological activity of an Antarctic streptomyces polysaccharide

    International Nuclear Information System (INIS)

    Toshkova, R.; Yossifova, L.; Gardeva, E.; Zvetkova, E.; Ivanova, V.

    2010-01-01

    Antarctic Streptomyces sp. 1010, were obtained from sea water samples (Livingston Island, Antarctica), during the Third Bulgarian Antarctic Scientific Expedition (1994-1995). The ecophysiological methods for isolation and characterization of these active, cold-adapted, Gram-positive microorganisms (psychrophiles) in morphological, phenotypic, genetic and taxonomic aspects, have been earlier reported. In this study, a new extracellular polysaccharide (heteropolysaccharide) has been isolated and purified from cultured broth of the Antarctic Streptomyces sp. 1010. The monosaccharide content of the Antarctic streptomyces heteropolysaccharide has been examined by TLC and GC/MS. The mitogenic and immuno potential properties of the purified Antarctic Streptomyces polysaccharide (ASMP) have been studied in vitro - in the short-term cultures of human peripheral blood mononuclear cells (hPBMCs - lymphocytes and monocytes) and mouse spleen lymphocytes (mouse splenocytes - mSps). The results obtained show that ASMP has a double lectin-like effect on the proliferative activity of hPBMCs: similar to this of Con A on the lymphoid cells (preliminary T-lymphocytes) and to the effect of LPS on the mononuclear from monocyte-macrophage lineage. Expressed as proliferative index (PI), the mitogenic response of mSps to the in vitro influence of ASMP was also higher than PI in the negative, as well as in the positive controls (mSps, cultured in the presence of PHA, Con A and LPS). The new Antarctic Streptomyces' heteropolysaccharide examined could be useful in the future as an immunomodulative biologically active substance and its extracellular production may contribute to the development of thermobiochemistry, immunomodulative drug therapy and immunopharmaceutical industry. (authors)

  8. Drastic environmental change and its effects on a planetary biosphere

    Science.gov (United States)

    Schulze-Makuch, Dirk; Irwin, Louis N.; Fairén, Alberto G.

    2013-07-01

    Environmental conditions can change drastically and rapidly during the natural history of a planetary body. These changes affect the biosphere and can spur evolution via the mechanism of directional selection leading to the innovation of new processes and forms of life, or alternatively leading to the extinction of certain life forms. Based on the natural history of Earth, the effect on a planet's biosphere depends on three factors: (1) the nature and time scale of change, (2) the composition of the biosphere prior to change, and (3) the nature of the environment following the change. Though Earth has undergone various periods of drastic environmental change, life has shown an enormous resiliency and became more diverse and complex as a consequence of these events. Mars and Venus have undergone even larger environmental changes, both from habitable conditions under which the origin of life (or transfer of life from Earth) seem plausible, to a dry and cold planet punctuated by wetter conditions, and a hyperthermic greenhouse, respectively. Given its planetary history, life on Mars could have retreated to a psychrophilic lifestyle in the deep subsurface or to environmental near-surface niches, such as hydrothermal regions and caves. Further, strong directional selection could have pushed putative martian life to evolve alternating cycles between active and dormant forms, as well as the innovation of new traits adapted to challenging near-surface conditions. Life in the subsurface or on the surface of Venus seems impossible today, but microorganisms may have adapted to thrive in the lower cloud layer, possibly using a biochemical strategy analogous to Photosystem I and chemoautotrophic sulfur metabolism, and employing cycloocta sulfur for UV protection.

  9. Adaptation of model proteins from cold to hot environments involves continuous and small adjustments of average parameters related to amino acid composition.

    Science.gov (United States)

    De Vendittis, Emmanuele; Castellano, Immacolata; Cotugno, Roberta; Ruocco, Maria Rosaria; Raimo, Gennaro; Masullo, Mariorosario

    2008-01-07

    The growth temperature adaptation of six model proteins has been studied in 42 microorganisms belonging to eubacterial and archaeal kingdoms, covering optimum growth temperatures from 7 to 103 degrees C. The selected proteins include three elongation factors involved in translation, the enzymes glyceraldehyde-3-phosphate dehydrogenase and superoxide dismutase, the cell division protein FtsZ. The common strategy of protein adaptation from cold to hot environments implies the occurrence of small changes in the amino acid composition, without altering the overall structure of the macromolecule. These continuous adjustments were investigated through parameters related to the amino acid composition of each protein. The average value per residue of mass, volume and accessible surface area allowed an evaluation of the usage of bulky residues, whereas the average hydrophobicity reflected that of hydrophobic residues. The specific proportion of bulky and hydrophobic residues in each protein almost linearly increased with the temperature of the host microorganism. This finding agrees with the structural and functional properties exhibited by proteins in differently adapted sources, thus explaining the great compactness or the high flexibility exhibited by (hyper)thermophilic or psychrophilic proteins, respectively. Indeed, heat-adapted proteins incline toward the usage of heavier-size and more hydrophobic residues with respect to mesophiles, whereas the cold-adapted macromolecules show the opposite behavior with a certain preference for smaller-size and less hydrophobic residues. An investigation on the different increase of bulky residues along with the growth temperature observed in the six model proteins suggests the relevance of the possible different role and/or structure organization played by protein domains. The significance of the linear correlations between growth temperature and parameters related to the amino acid composition improved when the analysis was

  10. A Viable Microbial Community in a Subglacial Volcanic Crater Lake, Iceland

    Science.gov (United States)

    Gaidos, Eric; Lanoil, Brian; Thorsteinsson, Thorsteinn; Graham, Andrew; Skidmore, Mark; Han, Suk-Kyun; Rust, Terri; Popp, Brian

    2004-09-01

    We describe a viable microbial community in a subglacial lake within the Grímsvötn volcanic caldera, Iceland. We used a hot water drill to penetrate the 300-m ice shelf and retrieved lake water and volcanic tephra sediments. We also acquired samples of borehole water before and after penetration to the lake, overlying glacial ice and snow, and water from a nearby subaerial geothermal lake for comparative analyses. Lake water is at the freezing point and fresh (total dissolved solids = 260 mg L-1). Detectable numbers of cells were found in samples of the lake water column and tephra sediments: 2 × 104 ml-1 and 4 × 107 g-1, respectively. Plate counts document abundant cold-adapted cultivable organisms in the lake water, but not in the borehole (before penetration) or glacial ice. Denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene fragments amplified from genomic DNA extracted from Gr??msv??tn samples indicates that the lake community is distinct from the assemblages of organisms in borehole water (before penetration) and the overlying ice and snow. Sequencing of selected DGGE bands revealed that many sequences are highly similar to known psychrophilic organisms or cloned DNA from other cold environments. Significant uptake of 14C-labeled bicarbonate occurred in dark, low-temperature incubations of lake water samples, indicating the presence of autotrophs. Acetylene reduction assays under similar incubation conditions showed no significant nitrogen fixation potential by lake water samples. This may be a consequence of the inhibition of diazotrophy by nitrogen in the lake.

  11. Biodegradability of northern crude oil

    Energy Technology Data Exchange (ETDEWEB)

    Cook, F D; Westlake, D W.S.

    1976-01-01

    Field studies on the microbiological degradation of crude oils encompassed the placing of oil-soaked plots in two areas in the Northwest Territories and Alberta. Replicate plots received amendments of fertilizer, oil-utilizing bacteria, fertilizer plus bacteria or were untreated except for the oil. Changes in microbial numbers and chemical composition of recovered oil were determined periodically. The initial stimulatory effect on bacterial numbers brought about by the addition of fertilizers to oil-soaked plots diminished two years after the application to a point where the differences were no longer significant. Experiments carried out in the Norman Wells area to determine the effect of the amount of fertilizer applied on oil degradation have yielded inconclusive results. The data suggest that at least 2.7 kg of urea-phosphate fertilizer per kl of oil is required to maintain a reasonable oil degradation rate. Preliminary studies on the use of fertilizer coated with chemicals to increase its hydrophobic character indicate that they could be useful in treating wet-land oil spills. Soils from the McKenzie River drainage basin indicate that bacteria are present which can use oil under mesophilic conditions. However, the ability to use the same oil under psychrophilic conditions is more restricted. At least one bacterial species from each mixed population studied was capable of bringing about chemical changes in oil similar to those observed for the original mixed culture. The potential hazards and uses of the seeding of oil spills is discussed relative to the environmental conditions found in the northern part of Canada. 35 refs., 2 figs., 15 tabs.

  12. Using a Novel Partitivirus in Pseudogymnoascus destructans to Understand the Epidemiology of White-Nose Syndrome.

    Directory of Open Access Journals (Sweden)

    Vaskar Thapa

    2016-12-01

    Full Text Available White-nose syndrome is one of the most lethal wildlife diseases, killing over 5 million North American bats since it was first reported in 2006. The causal agent of the disease is a psychrophilic filamentous fungus, Pseudogymnoascus destructans. The fungus is widely distributed in North America and Europe and has recently been found in some parts of Asia, but interestingly, no mass mortality is observed in European or Asian bats. Here we report a novel double-stranded RNA virus found in North American isolates of the fungus and show that the virus can be used as a tool to study the epidemiology of White-nose syndrome. The virus, termed Pseudogymnoascus destructans partitivirus-pa, contains 2 genomic segments, dsRNA 1 and dsRNA 2 of 1.76 kbp and 1.59 kbp respectively, each possessing a single open reading frame, and forms isometric particles approximately 30 nm in diameter, characteristic of the genus Gammapartitivirus in the family Partitiviridae. Phylogenetic analysis revealed that the virus is closely related to Penicillium stoloniferum virus S. We were able to cure P. destructans of the virus by treating fungal cultures with polyethylene glycol. Examination of 62 isolates of P. destructans including 35 from United States, 10 from Canada and 17 from Europe showed virus infection only in North American isolates of the fungus. Bayesian phylogenetic analysis using nucleotide sequences of the viral coat protein geographically clustered North American isolates indicating fungal spread followed by local adaptation of P. destructans in different regions of the United States and Canada. This is the first demonstration that a mycovirus potentially can be used to study fungal disease epidemiology.

  13. Ectoparasites may serve as vectors for the white-nose syndrome fungus.

    Science.gov (United States)

    Lučan, Radek K; Bandouchova, Hana; Bartonička, Tomáš; Pikula, Jiri; Zahradníková, Alexandra; Zukal, Jan; Martínková, Natália

    2016-01-13

    Vertebrate ectoparasites frequently play a role in transmission of infectious agents. Pseudogymnoascus destructans is a psychrophilic fungus known to cause white-nose syndrome (WNS), an emerging infectious disease of bats. It is transmitted with direct contact between bats or with contaminated environment. The aim of this study was to examine wing mites from the family Spinturnicidae parasitizing hibernating bats for the presence of P. destructans propagules as another possible transmission route. Wing mites collected from 33 bats at four hibernation sites in the Czech Republic were inspected for the presence and load of pathogen's DNA using quantitative PCR. Simultaneously, wing damage of inspected bats caused by WNS was quantified using ultraviolet light (UV) transillumination and the relationship between fungal load on wing mites and intensity of infection was subjected to correlation analysis. All samples of wing mites were positive for the presence of DNA of P. destructans, indicating a high probability of their role in the transmission of the pathogen's propagules between bats. Mechanical transport of adhesive P. destructans spores and mycelium fragments on the body of spinturnicid mites is highly feasible. The specialised lifestyle of mites, i.e., living on bat wing membranes, the sites most typically affected by fungal growth, enables pathogen transport. Moreover, P. destructans metabolic traits suggest an ability to grow and sporulate on a range of organic substrates, including insects, which supports the possibility of growth on bat ectoparasites, at least in periods when bats roost in cold environments and enter torpor. In addition to transport of fungal propagules, mites may facilitate entry of fungal hyphae into the epidermis through injuries caused by biting.

  14. Using a Novel Partitivirus in Pseudogymnoascus destructans to Understand the Epidemiology of White-Nose Syndrome.

    Science.gov (United States)

    Thapa, Vaskar; Turner, Gregory G; Hafenstein, Susan; Overton, Barrie E; Vanderwolf, Karen J; Roossinck, Marilyn J

    2016-12-01

    White-nose syndrome is one of the most lethal wildlife diseases, killing over 5 million North American bats since it was first reported in 2006. The causal agent of the disease is a psychrophilic filamentous fungus, Pseudogymnoascus destructans. The fungus is widely distributed in North America and Europe and has recently been found in some parts of Asia, but interestingly, no mass mortality is observed in European or Asian bats. Here we report a novel double-stranded RNA virus found in North American isolates of the fungus and show that the virus can be used as a tool to study the epidemiology of White-nose syndrome. The virus, termed Pseudogymnoascus destructans partitivirus-pa, contains 2 genomic segments, dsRNA 1 and dsRNA 2 of 1.76 kbp and 1.59 kbp respectively, each possessing a single open reading frame, and forms isometric particles approximately 30 nm in diameter, characteristic of the genus Gammapartitivirus in the family Partitiviridae. Phylogenetic analysis revealed that the virus is closely related to Penicillium stoloniferum virus S. We were able to cure P. destructans of the virus by treating fungal cultures with polyethylene glycol. Examination of 62 isolates of P. destructans including 35 from United States, 10 from Canada and 17 from Europe showed virus infection only in North American isolates of the fungus. Bayesian phylogenetic analysis using nucleotide sequences of the viral coat protein geographically clustered North American isolates indicating fungal spread followed by local adaptation of P. destructans in different regions of the United States and Canada. This is the first demonstration that a mycovirus potentially can be used to study fungal disease epidemiology.

  15. Growth medium and incubation temperature alter the Pseudogymnoascus destructans transcriptome: implications in identifying virulence factors.

    Science.gov (United States)

    Donaldson, Michael E; Davy, Christina M; Vanderwolf, Karen J; Willis, Craig K R; Saville, Barry J; Kyle, Christopher J

    2018-02-23

    Pseudogymnoascus destructans is the causal agent of bat white-nose syndrome (WNS), which is devastating some North American bat populations. Previous transcriptome studies provided insight regarding the molecular mechanisms involved in WNS; however, it is unclear how different environmental parameters could influence pathogenicity. This information could be useful in developing management strategies to mitigate the negative impacts of P. destructans on bats. We cultured three P. destructans isolates from Atlantic Canada on two growth media (potato dextrose agar and Sabouraud dextrose agar) that differ in their nitrogen source, and at two separate incubation temperatures (4 C and 15 C) that approximate the temperature range of bat hibernacula during the winter and a temperature within its optimal mycelial growth range. We conducted RNA sequencing to determine transcript levels in each sample and performed differential gene expression (DGE) analyses to test the influence of growth medium and incubation temperature on gene expression. We also compared our in vitro results with previous RNA-sequencing data sets generated from P. destructans growing on the wings of a susceptible host, Myotis lucifugus. Our findings point to a critical role for substrate and incubation temperature in influencing the P. destructans transcriptome. DGE analyses suggested that growth medium plays a larger role than temperature in determining P. destructans gene expression and that although the psychrophilic fungus responds to different nitrogen sources, it may have evolved for continued growth at a broad range of low temperatures. Further, our data suggest that down-regulation of the RNA-interference pathway and increased fatty acid metabolism are involved in the P. destructans-bat interaction. Finally, we speculate that to reduce the activation of host defense responses, P. destructans minimizes changes in the expression of genes encoding secreted proteins during bat colonization.

  16. The White-Nose Syndrome Transcriptome: Activation of Anti-fungal Host Responses in Wing Tissue of Hibernating Little Brown Myotis.

    Directory of Open Access Journals (Sweden)

    Kenneth A Field

    2015-10-01

    Full Text Available White-nose syndrome (WNS in North American bats is caused by an invasive cutaneous infection by the psychrophilic fungus Pseudogymnoascus destructans (Pd. We compared transcriptome-wide changes in gene expression using RNA-Seq on wing skin tissue from hibernating little brown myotis (Myotis lucifugus with WNS to bats without Pd exposure. We found that WNS caused significant changes in gene expression in hibernating bats including pathways involved in inflammation, wound healing, and metabolism. Local acute inflammatory responses were initiated by fungal invasion. Gene expression was increased for inflammatory cytokines, including interleukins (IL IL-1β, IL-6, IL-17C, IL-20, IL-23A, IL-24, and G-CSF and chemokines, such as Ccl2 and Ccl20. This pattern of gene expression changes demonstrates that WNS is accompanied by an innate anti-fungal host response similar to that caused by cutaneous Candida albicans infections. However, despite the apparent production of appropriate chemokines, immune cells such as neutrophils and T cells do not appear to be recruited. We observed upregulation of acute inflammatory genes, including prostaglandin G/H synthase 2 (cyclooxygenase-2, that generate eicosanoids and other nociception mediators. We also observed differences in Pd gene expression that suggest host-pathogen interactions that might determine WNS progression. We identified several classes of potential virulence factors that are expressed in Pd during WNS, including secreted proteases that may mediate tissue invasion. These results demonstrate that hibernation does not prevent a local inflammatory response to Pd infection but that recruitment of leukocytes to the site of infection does not occur. The putative virulence factors may provide novel targets for treatment or prevention of WNS. These observations support a dual role for inflammation during WNS; inflammatory responses provide protection but excessive inflammation may contribute to mortality

  17. Crystal Structure of Hyperthermophilic Endo-β-1,4-glucanase

    Science.gov (United States)

    Zheng, Baisong; Yang, Wen; Zhao, Xinyu; Wang, Yuguo; Lou, Zhiyong; Rao, Zihe; Feng, Yan

    2012-01-01

    Endo-β-1,4-glucanase from thermophilic Fervidobacterium nodosum Rt17-B1 (FnCel5A), a new member of glycosyl hydrolase family 5, is highly thermostable and exhibits the highest activity on carboxymethylcellulose among the reported homologues. To understand the structural basis for the thermostability and catalytic mechanism, we report here the crystal structures of FnCel5A and the complex with glucose at atomic resolution. FnCel5A exhibited a (β/α)8-barrel structure typical of clan GH-A of the glycoside hydrolase families with a large and deep catalytic pocket located in the C-terminal end of the β-strands that may permit substrate access. A comparison of the structure of FnCel5A with related structures from thermopile Clostridium thermocellum, mesophile Clostridium cellulolyticum, and psychrophile Pseudoalteromonas haloplanktis showed significant differences in intramolecular interactions (salt bridges and hydrogen bonds) that may account for the difference in their thermostabilities. The substrate complex structure in combination with a mutagenesis analysis of the catalytic residues implicates a distinctive catalytic module Glu167-His226-Glu283, which suggests that the histidine may function as an intermediate for the electron transfer network between the typical Glu-Glu catalytic module. Further investigation suggested that the aromatic residues Trp61, Trp204, Phe231, and Trp240 as well as polar residues Asn51, His127, Tyr228, and His235 in the active site not only participated in substrate binding but also provided a unique microenvironment suitable for catalysis. These results provide substantial insight into the unique characteristics of FnCel5A for catalysis and adaptation to extreme temperature. PMID:22128157

  18. Role of disulphide bonds in a thermophilic serine protease aqualysin I from Thermus aquaticus YT-1.

    Science.gov (United States)

    Sakaguchi, Masayoshi; Takezawa, Makoto; Nakazawa, Rie; Nozawa, Kazutaka; Kusakawa, Taro; Nagasawa, Takeshi; Sugahara, Yasusato; Kawakita, Masao

    2008-05-01

    A thermophilic serine protease, Aqualysin I, from Thermus aquaticus YT-1 has two disulphide bonds, which are also found in a psychrophilic serine protease from Vibrio sp. PA-44 and a proteinase K-like enzyme from Serratia sp. at corresponding positions. To understand the significance of these disulphide bonds in aqualysin I, we prepared mutants C99S, C194S and C99S/C194S (WSS), in which Cys69-Cys99, Cys163-Cys194 and both of these disulphide bonds, respectively, were disrupted by replacing Cys residues with Ser residues. All mutants were expressed stably in Escherichia coli. The C99S mutant was 68% as active as the wild-type enzyme at 40 degrees C in terms of k(cat) value, while C194S and WSS were only 6 and 3%, respectively, as active, indicating that disulphide bond Cys163-Cys194 is critically important for maintaining proper catalytic site conformation. Mutants C194S and WSS were less thermostable than wild-type enzyme, with a half-life at 90 degrees C of 10 min as compared to 45 min of the latter and with transition temperatures on differential scanning calorimetry of 86.7 degrees C and 86.9 degrees C, respectively. Mutant C99S was almost as stable as the wild-type aqualysin I. These results indicate that the disulphide bond Cys163-Cys194 is more important for catalytic activity and conformational stability of aqualysin I than Cys67-Cys99.

  19. Desulfofrigus sp. prevails in sulfate-reducing dilution cultures from sediments of the Benguela upwelling area.

    Science.gov (United States)

    Kraft, Beate; Engelen, Bert; Goldhammer, Tobias; Lin, Yu-Shih; Cypionka, Heribert; Könneke, Martin

    2013-04-01

    Sediments of coastal upwelling areas are generally characterized by a high content of organic carbon that is mainly degraded via anaerobic microbial processes including sulfate reduction as a major terminal oxidation step. Despite the high importance of sulfate reduction in these sediments, the identity of sulfate-reducing bacteria (SRB) has remained almost unknown. Here, we applied a cultivation-based approach using selective enrichment conditions to study the diversity and distribution of active SRB in sediments along a transect perpendicular to the continental slope off the coast of Namibia (Meteor-cruise M76/1). To promote growth of the most abundant SRB, dilution series were prepared and amended with hydrogen, acetate, or a mixture of monomers representing typical substrates for SRB. Growth of SRB could be detected in the presence of all electron donors and from sediment down to 4 m depth. 16S rRNA gene-based DGGE analysis and sequencing revealed the predominance of SRB related to psychrophiles in particular to the genus Desulfofrigus, which made up 1 % of the total microbial community, accounting for an absolute abundance of up to 4.8 × 10(7)  cells mL(-1) . In general, the abundance of cultured SRB changed with depth and between the different sampling sites and correlated with the content of organic carbon as previously reported. Growth of chemolithotrophic SRB in relatively high dilution steps and the enrichment of methanogens as well as acetogens from deeper sediment point to a competition between hydrogen-utilizing microbial processes and their biogeochemical significance in deep sediment layers of the Benguela upwelling area. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  20. Skin lesions in European hibernating bats associated with Geomyces destructans, the etiologic agent of white-nose syndrome.

    Directory of Open Access Journals (Sweden)

    Gudrun Wibbelt

    Full Text Available White-nose syndrome (WNS has claimed the lives of millions of hibernating insectivorous bats in North America. Its etiologic agent, the psychrophilic fungus Geomyces destructans, causes skin lesions that are the hallmark of the disease. The fungal infection is characterized by a white powdery growth on muzzle, ears and wing membranes. While WNS may threaten some species of North American bats with regional extinction, infection in hibernating bats in Europe seems not to be associated with significant mortality. We performed histopathological investigations on biopsy samples of 11 hibernating European bats, originating from 4 different countries, colonized by G. destructans. One additional bat was euthanized to allow thorough examination of multiple strips of its wing membranes. Molecular analyses of touch imprints, swabs and skin samples confirmed that fungal structures were G. destructans. Additionally, archived field notes on hibernacula monitoring data in the Harz Mountains, Germany, over an 11-year period (2000-2011 revealed multiple capture-recapture events of 8 banded bats repeatedly displaying characteristic fungal colonization. Skin lesions of G. destructans-affected hibernating European bats are intriguingly similar to the epidermal lesions described in North American bats. Nevertheless, deep invasion of fungal hyphae into the dermal connective tissue with resulting ulceration like in North American bats was not observed in the biopsy samples of European bats; all lesions found were restricted to the layers of the epidermis and its adnexae. Two bats had mild epidermal cupping erosions as described for North American bats. The possible mechanisms for any difference in outcomes of G. destructans infection in European and North American bats still need to be elucidated.

  1. Effect of cerulenin on fatty acid composition and gene expression pattern of DHA-producing strain Colwellia psychrerythraea strain 34H.

    Science.gov (United States)

    Wan, Xia; Peng, Yun-Feng; Zhou, Xue-Rong; Gong, Yang-Min; Huang, Feng-Hong; Moncalián, Gabriel

    2016-02-06

    Colwellia psychrerythraea 34H is a psychrophilic bacterium able to produce docosahexaenoic acid (DHA). Polyketide synthase pathway is assumed to be responsible for DHA production in marine bacteria. Five pfa genes from strain 34H were confirmed to be responsible for DHA formation by heterogeneous expression in Escherichia coli. The complexity of fatty acid profile of this strain was revealed by GC and GC-MS. Treatment of cells with cerulenin resulted in significantly reduced level of C16 monounsaturated fatty acid (C16:1(Δ9t), C16:1(Δ7)). In contrast, the amount of saturated fatty acids (C10:0, C12:0, C14:0), hydroxyl fatty acids (3-OH C10:0 and 3-OH C12:0), as well as C20:4ω3, C20:5ω3 and C22:6ω3 were increased. RNA sequencing (RNA-Seq) revealed the altered gene expression pattern when C. psychrerythraea cells were treated with cerulenin. Genes involved in polyketide synthase pathway and fatty acid biosynthesis pathway were not obviously affected by cerulenin treatment. In contrast, several genes involved in fatty acid degradation or β-oxidation pathway were dramatically reduced at the transcriptional level. Genes responsible for DHA formation in C. psychrerythraea was first cloned and characterized. We revealed the complexity of fatty acid profile in this DHA-producing strain. Cerulenin could substantially change the fatty acid composition by affecting the fatty acid degradation at transcriptional level. Acyl-CoA dehydrogenase gene family involved in the first step of β-oxidation pathway may be important to the selectivity of degraded fatty acids. In addition, inhibition of FabB protein by cerulenin may lead to the accumulation of malonyl-CoA, which is the substrate for DHA formation.

  2. Bovine pancreatic trypsin inhibitor immobilized onto sepharose as a new strategy to purify a thermostable alkaline peptidase from cobia (Rachycentron canadum) processing waste.

    Science.gov (United States)

    França, Renata Cristina da Penha; Assis, Caio Rodrigo Dias; Santos, Juliana Ferreira; Torquato, Ricardo José Soares; Tanaka, Aparecida Sadae; Hirata, Izaura Yoshico; Assis, Diego Magno; Juliano, Maria Aparecida; Cavalli, Ronaldo Olivera; Carvalho, Luiz Bezerra de; Bezerra, Ranilson Souza

    2016-10-15

    A thermostable alkaline peptidase was purified from the processing waste of cobia (Rachycentron canadum) using bovine pancreatic trypsin inhibitor (BPTI) immobilized onto Sepharose. The purified enzyme had an apparent molecular mass of 24kDa by both sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and mass spectrometry. Its optimal temperature and pH were 50°C and 8.5, respectively. The enzyme was thermostable until 55°C and its activity was strongly inhibited by the classic trypsin inhibitors N-ρ-tosyl-l-lysine chloromethyl ketone (TLCK) and benzamidine. BPTI column allowed at least 15 assays without loss of efficacy. The purified enzyme was identified as a trypsin and the N-terminal amino acid sequence of this trypsin was IVGGYECTPHSQAHQVSLNSGYHFC, which was highly homologous to trypsin from cold water fish species. Using Nα-benzoyl-dl-arginine ρ-nitroanilide hydrochloride (BApNA) as substrate, the apparent km value of the purified trypsin was 0.38mM, kcat value was 3.14s(-1), and kcat/km was 8.26s(-1)mM(-1). The catalytic proficiency of the purified enzyme was 2.75×10(12)M(-1) showing higher affinity for the substrate at the transition state than other fish trypsin. The activation energy (AE) of the BApNA hydrolysis catalyzed by this enzyme was estimated to be 11.93kcalmol(-1) while the resulting rate enhancement of this reaction was found to be approximately in a range from 10(9) to 10(10)-fold evidencing its efficiency in comparison to other trypsin. This new purification strategy showed to be appropriate to obtain an alkaline peptidase from cobia processing waste with high purification degree. According with N-terminal homology and kinetic parameters, R. canadum trypsin may gathers desirable properties of psychrophilic and thermostable enzymes. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Microbiological evaluation of anatomical organs submitted to glycerinization and freeze-drying techniques

    Directory of Open Access Journals (Sweden)

    Marianna Justo

    2016-06-01

    Full Text Available Alternatives conservation techniques are being requested with the proposal of formaldehyde substitution. Formaldehyde results in excessive anatomical specimens' weight and it can cause serious health problems to the manipulator, such as cancer. However, it provides an efficient germicide and fungicide action depending on concentration. The substitute techniques are glicerinization and freeze-drying which have advantages such as non-production of smells, lightness of the organs and dispenses the use of fixatives in conservation. As well as both intrinsic and extrinsic factors interfere in microbial growth, microbiological analyzes are essential to detect possible deteriorative microorganisms in organs and concluding effectively the technique used. Formalinized, glycerinated and freeze-drying organs were collected in three different times which were intercalated by two months, except formalinization that had one evaluation. The procedure required the use of sterilized swabs wetted in peptone water and molds measuring 5,0 cm x 10,0 cm positioned on two different piece's local resulting in 100 cm2 of area, to spread plate of total moulds, mesophiles (except in freeze-drying, psychrophilic (only in freeze-drying and Pseudomonas sp (except in formalinization. All the plates were counted and compared between each technique's evaluations by variance analyzes. Both alternatives techniques resulted in zero or in very low microbial quantity to cause health problems as well as it preserve pieces morphology. All values of all analyzes resulted below 1/ml, showing that glicerinization and freeze-drying techniques are so as efficient as formaldehyde. Keywords: Organs conservation, Anatomical techniques, Microbiology, Microbial growth

  4. Colwellia psychrerythraea strains from distant deep sea basins show adaptation to local conditions

    Directory of Open Access Journals (Sweden)

    Stephen M Techtmann

    2016-05-01

    Full Text Available Many studies have shown that microbes, which share nearly identical 16S rRNA genes, can have highly divergent genomes. Microbes from distinct parts of the ocean also exhibit biogeographic patterning. Here we seek to better understand how certain microbes from the same species have adapted for growth under local conditions. The phenotypic and genomic heterogeneity of three strains of Colwellia psychrerythraea was investigated in order to understand adaptions to local environments. Colwellia are psychrophilic heterotrophic marine bacteria ubiquitous in cold marine ecosystems. We have recently isolated two Colwellia strains: ND2E from the Eastern Mediterranean and GAB14E from the Great Australian Bight. The 16S rRNA sequence of these two strains were greater than 98.2% identical to the well-characterized C. psychrerythraea 34H, which was isolated from arctic sediments. Salt tolerance, and carbon source utilization profiles for these strains were determined using Biolog Phenotype Microarrays’. These strains exhibited distinct salt tolerance, which was not associated with the salinity of sites of isolation. The carbon source utilization profiles were distinct with less than half of the tested carbon sources being metabolized by all three strains. Whole genome sequencing revealed that the genomes of these three strains were quite diverse with some genomes having up to 1600 strain-specific genes. Many genes involved in degrading strain-specific carbon sources were identified. There appears to be a link between carbon source utilization and location of isolation with distinctions observed between the Colwellia isolate recovered from sediment compared to water column isolates.

  5. Potential of Biological Processes to Eliminate Antibiotics in Livestock Manure: An Overview

    Science.gov (United States)

    Massé, Daniel I.; Cata Saady, Noori M.; Gilbert, Yan

    2014-01-01

    Simple Summary Beside their use to treat infections, antibiotics are used excessively as growth promoting factors in livestock industry. Animals discharge in their feces and urine between 70%–90% of the antibiotic administrated unchanged or in active metabolites. Because livestock manure is re-applied to land as a fertilizer, concerns are growing over spread of antibiotics in water and soil. Development of antibiotic resistant bacteria is a major risk. This paper reviewed the potential of anaerobic digestion to degrade antibiotics in livestock manure. Anaerobic digestion can degrade manure-laden antibiotic to various extents depending on the concentration and class of antibiotic, bioreactor operating conditions, type of feedstock and inoculum sources. Abstract Degrading antibiotics discharged in the livestock manure in a well-controlled bioprocess contributes to a more sustainable and environment-friendly livestock breeding. Although most antibiotics remain stable during manure storage, anaerobic digestion can degrade and remove them to various extents depending on the concentration and class of antibiotic, bioreactor operating conditions, type of feedstock and inoculum sources. Generally, antibiotics are degraded during composting > anaerobic digestion > manure storage > soil. Manure matrix variation influences extraction, quantification, and degradation of antibiotics, but it has not been well investigated. Fractioning of manure-laden antibiotics into liquid and solid phases and its effects on their anaerobic degradation and the contribution of abiotic (physical and chemical) versus biotic degradation mechanisms need to be quantified for various manures, antibiotics types, reactor designs and temperature of operations. More research is required to determine the kinetics of antibiotics’ metabolites degradation during anaerobic digestion. Further investigations are required to assess the degradation of antibiotics during psychrophilic anaerobic digestion. PMID

  6. Effect of ISPAD Anaerobic Digestion on Ammonia Volatilization from Soil Applied Swine Manure

    Directory of Open Access Journals (Sweden)

    Susan King

    2012-01-01

    Full Text Available Swine manure subjected to in-storage psychrophilic anaerobic digestion (ISPAD undergoes proteins degradation but limited NH3 volatilization, producing an effluent rich in plant-available nitrogen. Accordingly, ISPAD effluent can offer a higher fertilizer value during land application, as compared to manure of similar age stored in an open tank. However, this additional nitrogen can also be lost by volatilization during land application. The objective of this study was therefore to measure NH3 volatilization from both ISPAD and open tank swine manures when applied to 5 different soils, namely, washed sand, a Ste Rosalie clay, an Upland sandy loam, a St Bernard loam, and an Ormstown loam. This research was conducted using laboratory wind tunnels simulating land application. The five experimental soils offered similar pH values but different water holding capacity, cation exchange capacity, cation saturation, and organic matter. After 47 h of wind tunnel monitoring, the % of total available nitrogen (TAN or NH4 + and NH3 volatilized varied with both manure and soil type. For all soil types, the ISPAD manure consistently lost less NH3 as compared to the open tank manure, averaging 53% less. Lower volatile solids content improving manure infiltration into the soil and a more complex ionic solution explain the effect of the ISPAD manure advantages. This was reinforced by the St Bernard sandy loam losing the same nitrogen mass for both manures, because of its higher pH and buffer pH coupled with an intermediate CEC resulting in more soil solution NH3. Within each manure type, % TAN volatilized was highest for washed sand and lowest for the clay soil. As a result, ISPAD manure can offer up to 21% more plant-available nitrogen fertilizer especially when the manure is not incorporated into the soil following its application.

  7. CHANGES IN THE QUALITY OF DRESSED CHICKEN OBTAINED FROM DIFFERENT SOURCES DURING FROZEN STORAGE

    Directory of Open Access Journals (Sweden)

    Santosh Kumar HT

    2014-06-01

    Full Text Available This present study examines the preservation quality of dressed chicken procured from different sources of processing during storage at –18±1ºC. Breast portion of the dressed birds obtained from three different sources, viz. market/road side slaughtered chicken (MSC, retail slaughtered chicken (RSC, and scientifically slaughtered chicken (SSC, were cut into chunks, divided into 250 g portions, packed in polyethylene bags, stored at –18±1ºC and evaluated at 30 days intervals for changes in quality attributes. Frozen storage had no marked influence on pH change of the samples. SSC samples had higher extract release volume (15.34±0.08 to 13.45±0.93 ml than MSC (13.00±0.19 to 9.91±0.97 ml and RSC samples (13.65±0.24 to 11.70±1.21ml. There was significant increase (P<0.05 in thiobarbituric acid of all three sample types during storage but values were well below the threshold level of spoilage. SSC samples showed lower tyrosine content throughout frozen storage compared to MSC and RSC samples. A significant decline in microbial load, viz. total viable count, coliform count, psychrophilic count and yeast and moulds count were noticed during frozen storage. Organoleptic attributes, viz. appearance, flavour, texture and overall palatability were not affected due to frozen storage except juiciness in MSC samples which decreased (P<0.05 from 6.53±0.13 to 5.96±0.11 on 90 days of storage. Although the scientifically slaughtered chicken had better quality, all the sample types could be stored at –18±1ºC till 90 days without much deterioration in their quality.

  8. Optimization of supercritical carbon dioxide treatment for the inactivation of the natural microbial flora in cubed cooked ham.

    Science.gov (United States)

    Ferrentino, Giovanna; Balzan, Sara; Spilimbergo, Sara

    2013-02-15

    This study aims to investigate the effects of supercritical carbon dioxide (SC-CO₂) treatment on the inactivation of the natural microbial flora in cubed cooked ham. Response surface methodology with a central composite design was applied to determine the optimal process conditions and investigate the effect of three independent variables (pressure, temperature and treatment time). Additionally, analyses of texture, pH and color together with a storage study of the product were performed to determine its microbial and qualitative stability. Response surface analysis revealed that 12 MPa, 50 °C, 5 min were the optimal conditions to obtain about 3.0, 1.6, and 2.5 Log(CFU/g) reductions of mesophilic aerobic bacteria, psychrophilic bacteria and lactic acid bacteria respectively. Inactivation to undetectable levels of yeasts and molds and coliforms was also obtained. A storage study of 30 days at 4 °C was carried out on the treated product (12 MPa, 50 °C, 5 min) monitoring microbial growth, pH, texture, and color parameters (L*, a*, b* and ΔE). Microbial loads slightly increased and after 30 days of storage reached the same levels detected in the fresh product. Color parameters (L*, a*, b*) showed slight variations while pH and texture did not change significantly. On the basis of the results obtained, SC-CO₂ can be considered a promising technique to microbiologically stabilize cubed cooked ham and, in general, cut/sliced meat products without affecting its quality attributes. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Phylogenetic resolution and habitat specificity of members of the Photobacterium phosphoreum species group.

    Science.gov (United States)

    Ast, Jennifer C; Dunlap, Paul V

    2005-10-01

    Substantial ambiguity exists regarding the phylogenetic status of facultatively psychrophilic luminous bacteria identified as Photobacterium phosphoreum, a species thought to be widely distributed in the world's oceans and believed to be the specific bioluminescent light-organ symbiont of several deep-sea fishes. Members of the P. phosphoreum species group include luminous and non-luminous strains identified phenotypically from a variety of different habitats as well as phylogenetically defined lineages that appear to be evolutionarily distinct. To resolve this ambiguity and to begin developing a meaningful knowledge of the geographic distributions, habitats and symbiotic relationships of bacteria in the P. phosphoreum species group, we carried out a multilocus, fine-scale phylogenetic analysis based on sequences of the 16S rRNA, gyrB and luxABFE genes of many newly isolated luminous strains from symbiotic and saprophytic habitats, together with previously isolated luminous and non-luminous strains identified as P. phosphoreum from these and other habitats. Parsimony analysis unambiguously resolved three evolutionarily distinct clades, phosphoreum, iliopiscarium and kishitanii. The tight phylogenetic clustering within these clades and the distinct separation between them indicates they are different species, P. phosphoreum, Photobacterium iliopiscarium and the newly recognized 'Photobacterium kishitanii'. Previously reported non-luminous strains, which had been identified phenotypically as P. phosphoreum, resolved unambiguously as P. iliopiscarium, and all examined deep-sea fishes (specimens of families Chlorophthalmidae, Macrouridae, Moridae, Trachichthyidae and Acropomatidae) were found to harbour 'P. kishitanii', not P. phosphoreum, in their light organs. This resolution revealed also that 'P. kishitanii' is cosmopolitan in its geographic distribution. Furthermore, the lack of phylogenetic variation within 'P. kishitanii' indicates that this facultatively

  10. Low temperature S(0) biomineralization at a supraglacial spring system in the Canadian High Arctic.

    Science.gov (United States)

    Gleeson, D F; Williamson, C; Grasby, S E; Pappalardo, R T; Spear, J R; Templeton, A S

    2011-07-01

    Elemental sulfur (S(0) ) is deposited each summer onto surface ice at Borup Fiord pass on Ellesmere Island, Canada, when high concentrations of aqueous H(2) S are discharged from a supraglacial spring system. 16S rRNA gene clone libraries generated from sulfur deposits were dominated by β-Proteobacteria, particularly Ralstonia sp. Sulfur-cycling micro-organisms such as Thiomicrospira sp., and ε-Proteobacteria such as Sulfuricurvales and Sulfurovumales spp. were also abundant. Concurrent cultivation experiments isolated psychrophilic, sulfide-oxidizing consortia, which produce S(0) in opposing gradients of Na(2) S and oxygen. 16S rRNA gene analyses of sulfur precipitated in gradient tubes show stable sulfur-biomineralizing consortia dominated by Marinobacter sp. in association with Shewanella, Loktanella, Rubrobacter, Flavobacterium, and Sphingomonas spp. Organisms closely related to cultivars appear in environmental 16S rRNA clone libraries; none currently known to oxidize sulfide. Once consortia were simplified to Marinobacter and Flavobacteria spp. through dilution-to-extinction and agar removal, sulfur biomineralization continued. Shewanella, Loktanella, Sphingomonas, and Devosia spp. were also isolated on heterotrophic media, but none produced S(0) alone when reintroduced to Na(2) S gradient tubes. Tubes inoculated with a Marinobacter and Shewanella spp. co-culture did show sulfur biomineralization, suggesting that Marinobacter may be the key sulfide oxidizer in laboratory experiments. Light, florescence and scanning electron microscopy of mineral aggregates produced in Marinobacter experiments revealed abundant cells, with filaments and sheaths variably mineralized with extracellular submicron sulfur grains; similar biomineralization was not observed in abiotic controls. Detailed characterization of mineral products associated with low temperature microbial sulfur-cycling may provide biosignatures relevant to future exploration of Europa and Mars. © 2011

  11. [Changes in the bacteriological, chemical and organoleptic characteristics of the Antartic krill (Euphausia superba) during storage at 0-2 degrees C].

    Science.gov (United States)

    Locati, G A; Espeche, M E; Fraile, E R

    1980-01-01

    A study was performed on the bacteriological, chemical and organoleptic characteristics of antartic krill (Euphausia superba) stored at 0-2 degrees C. After 6-8 hours of storage a dark color started in the head and legs and spread slowly to the tail. Within 24 hours 17% of the total nitrogen was lost by hepatopancreas autolisis. After 72 hours the krill became inedible due to strong amoniacal odor and flavor. These changes were associated with the multiplication of aerobic psychrophilic bacteria. The bacterial counts of freshly caught krill ranged between 3,7 X 10(2)/g and 2,5 X 10(5)/g at 21 degrees C. During storage at 0-2 degrees C the counts gradually increased and off-odors were produced when they reached values of 10(6)/g at 21 degrees C. The total volatile bases content of freshly caught krill, 0.018 to 0.038%, increased considerably during storage reaching values of approximately 0.100% when off-odors became noticeable and 0.200% or more when the odor was clearly ammoniacal. Pseudomonas spp Gp. II (Shewan) were predominant in the bacterial flora of the freshly caught krill along with Moraxella spp Alcalígenes spp, Vibrio spp, Micrococcus spp and coryneforms. The spoilage flora developed during cold storage consisted mainly of Pseudomonas spp G. II (96-100%). The results were related to the saline composition of medium; however, Pseudomonas spp Gp. II were predominant with both media used.

  12. Astrobiological implications of dim light phototrophy in deep-sea red clays

    Science.gov (United States)

    Das, Anindita; Singh, Tanya; LokaBharathi, P. A.; Dhakephalkar, Prashant K.; Mallik, Sweta; Kshirsagar, Pranav R.; Khadge, N. H.; Nath, B. Nagender; Bhattacharya, Satadru; Dagar, Aditya Kumar; Kaur, Prabhjot; Ray, Dwijesh; Shukla, Anil D.; Fernandes, Christabelle E. G.; Fernandes, Sheryl O.; Thomas, Tresa Remya A.; Mamatha, S. S.; Mourya, Babu Shashikant; Meena, Ram Murti

    2017-02-01

    Red clays of Central Indian Basin (CIB) under influence of trace of Rodriguez Triple Junction exhibited chemoautotrophy, low temperature hydrothermal alterations and photoautotrophic potential. Seamount flank TVBC-08, hosting such signatures revealed dominance of aerobic anoxygenic phototroph Erythrobacter, with 93% of total 454 pyrosequencing tags. Subsequently, enrichments for both aerobic (Erythrobacter) and anaerobic anoxygenic phototrophs (green and purple sulphur bacteria) under red and white LED light illumination, with average irradiance 30.66 W m-2, were attempted for three red-clay sediment cores. Successful enrichments were obtained after incubation for c.a. 120 days at 4°± 2 °C and 25°± 2 °C, representing ambient psychrophilic and low temperature hydrothermal alteration conditions respectively. During hydrothermal cooling, a microbial succession from anaerobic chemolithotrophy to oxygenic photoautotrophy through anaerobic/aerobic anoxygenic phototrophic microbes is indicated. Spectral absorbance patterns of the methanol extracted cell pellets showed peaks corresponding to metal sulphide precipitations, the Soret band of chlorosome absorbance by photosystem II and absence of peaks at Qy transition band. Dendritic nano-structures of metal sulphides are common in these sediments and are comparable with other sulphidic paleo-marine Martian analogues. Significant blue and redshifts have been observed for the experimental samples relative to the un-inoculated medium. These observations indicate the propensity of metal-sulphide deposits contributing to chemiluminiscence supporting the growth of phototrophs at least partially, in the otherwise dark abyss. The effects of other geothermal heat and light sources are also under further consideration. The potential of phototrophic microbial cells to exhibit Doppler shift in absorbance patterns is significant towards understanding planetary microbial habitability. Planetary desiccation could considerably

  13. Culture independent genomic comparisons reveal environmental adaptations for Altiarchaeales

    Directory of Open Access Journals (Sweden)

    Jordan T Bird

    2016-08-01

    Full Text Available The recently proposed candidatus order Altiarchaeales remains an uncultured archaeal lineage composed of genetically diverse, globally widespread organisms frequently observed in anoxic subsurface environments. In spite of 15 years of studies on the psychrophilic biofilm-producing Candidatus (Ca. Altiarchaeum hamiconexum and its close relatives, very little is known about the phylogenetic and functional diversity of the widespread free-living marine members of this taxon. From methanogenic sediments in the White Oak River Estuary, NC, we sequenced a single cell amplified genome (SAG, WOR_SCG_SM1, and used it to identify and refine two high-quality genomes from metagenomes, WOR_79 and WOR_86-2, from the same site in a different year. These three genomic reconstructions form a monophyletic group which also includes three previously published genomes from metagenomes from terrestrial springs and a SAG from Sakinaw Lake in a group previously designated as pMC2A384. A synapomorphic mutation in the Altiarchaeales tRNA synthetase β subunit, pheT, causes the protein to be encoded as two subunits at distant loci. Consistent with the terrestrial spring clades, our estuarine genomes contain a near-complete autotrophic metabolism, H2 or CO as potential electron donors, a reductive acetyl-CoA pathway for carbon fixation, and methylotroph-like NADP(H-dependent dehydrogenase. Phylogenies based on 16S rRNA genes and concatenated conserved proteins identify two distinct sub-clades of Altiarchaeales, Alti-1 populated by organisms from actively flowing springs, and Alti-2 which is more widespread, diverse, and not associated with visible mats. The core Alti-1 genome supports Alti-1 as adapted for the stream environment, with lipopolysaccharide production capacity, extracellular hami structures. The core Alti-2 genome members of this clade are free-living, with distinct mechanisms for energy maintenance, motility, osmoregulation, and sulfur redox reactions. These

  14. The impact of permafrost-associated microorganisms on hydrate formation kinetics

    Science.gov (United States)

    Luzi-Helbing, Manja; Liebner, Susanne; Spangenberg, Erik; Wagner, Dirk; Schicks, Judith M.

    2016-04-01

    The relationship between gas hydrates, microorganisms and the surrounding sediment is extremely complex: On the one hand, microorganisms producing methane provide the prerequisite for gas hydrate formation. As it is known most of the gas incorporated into natural gas hydrates originates from biogenic sources. On the other hand, as a result of microbial activity gas hydrates are surrounded by a great variety of organic compounds which are not incorporated into the hydrate structure but may influence the formation or degradation process. For gas hydrate samples from marine environments such as the Gulf of Mexico a direct association between microbes and gas hydrates was shown by Lanoil et al. 2001. It is further assumed that microorganisms living within the gas hydrate stability zone produce biosurfactants which were found to enhance the hydrate formation process significantly and act as nucleation centres (Roger et al. 2007). Another source of organic compounds is sediment organic matter (SOM) originating from plant material or animal remains which may also enhance hydrate growth. So far, the studies regarding this relationship were focused on a marine environment. The scope of this work is to extend the investigations to microbes originating from permafrost areas. To understand the influence of microbial activity in a permafrost environment on the methane hydrate formation process and the stability conditions of the resulting hydrate phase we will perform laboratory studies. Thereby, we mimic gas hydrate formation in the presence and absence of methanogenic archaea (e.g. Methanosarcina soligelidi) and other psychrophilic bacteria isolated from permafrost environments of the Arctic and Antarctic to investigate their impact on hydrate induction time and formation rates. Our results may contribute to understand and predict the occurrences and behaviour of potential gas hydrates within or adjacent to the permafrost. Lanoil BD, Sassen R, La Duc MT, Sweet ST, Nealson KH

  15. Isolation and genome sequencing of four Arctic marine Psychrobacter strains exhibiting multicopper oxidase activity.

    Science.gov (United States)

    Moghadam, Morteza Shojaei; Albersmeier, Andreas; Winkler, Anika; Cimmino, Lorenzo; Rise, Kjersti; Hohmann-Marriott, Martin Frank; Kalinowski, Jörn; Rückert, Christian; Wentzel, Alexander; Lale, Rahmi

    2016-02-16

    Marine cold-temperature environments are an invaluable source of psychrophilic microbial life for new biodiscoveries. An Arctic marine bacterial strain collection was established consisting of 1448 individual isolates originating from biota, water and sediment samples taken at a various depth in the Barents Sea, North of mainland Norway, with an all year round seawater temperature of 4 °C. The entire collection was subjected to high-throughput screening for detection of extracellular laccase activity with guaiacol as a substrate. In total, 13 laccase-positive isolates were identified, all belonging to the Psychrobacter genus. From the most diverse four strains, based on 16S rRNA gene sequence analysis, all originating from the same Botryllus sp. colonial ascidian tunicate sample, genomic DNA was isolated and genome sequenced using a combined approach of whole genome shotgun and 8 kb mate-pair library sequencing on an Illumina MiSeq platform. The genomes were assembled and revealed genome sizes between 3.29 and 3.52 Mbp with an average G + C content of around 42%, with one to seven plasmids present in the four strains. Bioinformatics based genome mining was performed to describe the metabolic potential of these four strains and to identify gene candidates potentially responsible for the observed laccase-positive phenotype. Up to two different laccase-like multicopper oxidase (LMCO) encoding gene candidates were identified in each of the four strains. Heterologous expression of P11F6-LMCO and P11G5-LMCO2 in Escherichia coli BL21 (DE3) resulted in recombinant proteins exhibiting 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS) and guaiacol oxidizing activity. Thirteen Psychrobacter species with laccase-positive phenotype were isolated from a collection of Arctic marine bacteria. Four of the isolates were genome sequenced. The overall genome features were similar to other publicly available Psychrobacter genome sequences except for P11G5 harboring seven

  16. Evolution of Hydrocarbon-Degrading Microbial Communities in the Aftermath of the Deepwater Horizon Oil Well Blowout in the Gulf of Mexico

    Science.gov (United States)

    Andersen, G.; Dubinsky, E. A.; Chakraborty, R.; Hollibaugh, J. T.; Hazen, T. C.

    2012-12-01

    carbon source and characterized. Pure cultures were obtained from bacteria similar to those found to dominate hydrocarbon plumes and anomalous oxygen depressions by molecular community analysis. Respirometry studies confirmed that the isolates were able to metabolize the MC-252 oil. Our results from both molecular and culture analysis indicate that indigenous psychrophilic consortia of microorganisms thriving at 5°C from the oil-plume depth water were able to rapidly respond to dispersed oil at depth. The microbial community was highly dynamic and structured by changes in hydrocarbon composition over time. The spill caused sustained alterations in subsurface microbial communities and impacted the deep ocean for at least months after well containment.

  17. Low-pass sequencing for microbial comparative genomics

    Directory of Open Access Journals (Sweden)

    Kennedy Sean

    2004-01-01

    Full Text Available Abstract Background We studied four extremely halophilic archaea by low-pass shotgun sequencing: (1 the metabolically versatile Haloarcula marismortui; (2 the non-pigmented Natrialba asiatica; (3 the psychrophile Halorubrum lacusprofundi and (4 the Dead Sea isolate Halobaculum gomorrense. Approximately one thousand single pass genomic sequences per genome were obtained. The data were analyzed by comparative genomic analyses using the completed Halobacterium sp. NRC-1 genome as a reference. Low-pass shotgun sequencing is a simple, inexpensive, and rapid approach that can readily be performed on any cultured microbe. Results As expected, the four archaeal halophiles analyzed exhibit both bacterial and eukaryotic characteristics as well as uniquely archaeal traits. All five halophiles exhibit greater than sixty percent GC content and low isoelectric points (pI for their predicted proteins. Multiple insertion sequence (IS elements, often involved in genome rearrangements, were identified in H. lacusprofundi and H. marismortui. The core biological functions that govern cellular and genetic mechanisms of H. sp. NRC-1 appear to be conserved in these four other halophiles. Multiple TATA box binding protein (TBP and transcription factor IIB (TFB homologs were identified from most of the four shotgunned halophiles. The reconstructed molecular tree of all five halophiles shows a large divergence between these species, but with the closest relationship being between H. sp. NRC-1 and H. lacusprofundi. Conclusion Despite the diverse habitats of these species, all five halophiles share (1 high GC content and (2 low protein isoelectric points, which are characteristics associated with environmental exposure to UV radiation and hypersalinity, respectively. Identification of multiple IS elements in the genome of H. lacusprofundi and H. marismortui suggest that genome structure and dynamic genome reorganization might be similar to that previously observed in the

  18. Low temperature reduction of hexavalent chromium by a microbial enrichment consortium and a novel strain of Arthrobacter aurescens

    Directory of Open Access Journals (Sweden)

    Thompson Vicki S

    2006-01-01

    Full Text Available Abstract Background Chromium is a transition metal most commonly found in the environment in its trivalent [Cr(III] and hexavalent [Cr(VI] forms. The EPA maximum total chromium contaminant level for drinking water is 0.1 mg/l (0.1 ppm. Many water sources, especially underground sources, are at low temperatures (less than or equal to 15 Centigrade year round. It is important to evaluate the possibility of microbial remediation of Cr(VI contamination using microorganisms adapted to these low temperatures (psychrophiles. Results Core samples obtained from a Cr(VI contaminated aquifer at the Hanford facility in Washington were enriched in Vogel Bonner medium at 10 Centigrade with 0, 25, 50, 100, 200, 400 and 1000 mg/l Cr(VI. The extent of Cr(VI reduction was evaluated using the diphenyl carbazide assay. Resistance to Cr(VI up to and including 1000 mg/l Cr(VI was observed in the consortium experiments. Reduction was slow or not observed at and above 100 mg/l Cr(VI using the enrichment consortium. Average time to complete reduction of Cr(VI in the 30 and 60 mg/l Cr(VI cultures of the consortium was 8 and 17 days, respectively at 10 Centigrade. Lyophilized consortium cells did not demonstrate adsorption of Cr(VI over a 24 hour period. Successful isolation of a Cr(VI reducing organism (designated P4 from the consortium was confirmed by 16S rDNA amplification and sequencing. Average time to complete reduction of Cr(VI at 10 Centigrade in the 25 and 50 mg/l Cr(VI cultures of the isolate P4 was 3 and 5 days, respectively. The 16S rDNA sequence from isolate P4 identified this organism as a strain of Arthrobacter aurescens, a species that has not previously been shown to be capable of low temperature Cr(VI reduction. Conclusion A. aurescens, indigenous to the subsurface, has the potential to be a predominant metal reducer in enhanced, in situ subsurface bioremediation efforts involving Cr(VI and possibly other heavy metals and radionuclides.

  19. Influence of in-package cold plasma treatment on microbiological shelf life and appearance of fresh chicken breast fillets.

    Science.gov (United States)

    Wang, Jiamei; Zhuang, Hong; Hinton, Arthur; Zhang, Jianhao

    2016-12-01

    The effect of in-package cold plasmas (CP) was studied on microbiological shelf life and surface lightness of fresh chicken fillets (pectoralis major). Chicken fillets were packaged in food trays in air or modified atmosphere (MA) gas (O2:CO2:N2 = 65:30:5) and stored at 4 °C after exposed to an in-package cold plasma (80 kV for 180 s) treatment. Populations of mesophiles, psychrophiles, and pseudomonas spp. were measured as indicators for microbiological shelf life and CIELAB L(∗) values as an indicator for raw meat appearance. Results show that regardless of microbial type, there were no significant differences in microbial counts between the control and CP treated chicken fillets packed in air. However, in the MA packages, microbial counts were consistently lower than the non-treated control during refrigerated storage. Regardless of CP treatment, the microbial counts on the samples packed in air were much higher than in MA. They were more than 6 logs cfu/g in air compared to fewer than 4 logs cfu/g in MA after 7 d storage and fewer than 6 logs cfu/g after 14 d storage. Regardless of CP treatment and gas composition in package, there were no significant differences in the surface L(∗) value between the fillets pre-treatment and those after storage at 4 °C. These results demonstrate that the effects of in-package CP treatments on microbiological shelf life of fresh chicken fillets depend upon headspace composition in packages. When fresh chicken fillets are packed in air, CP treatment has no effect on microbiological shelf life. MA packages with high O2 and CO2 significantly extend shelf life and CP treatment with MA can at least double shelf life of fresh chicken meat (more than 14 days). Regardless of headspace composition, in-package CP does not have negative effects on chicken meat appearance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Phenotypic divergence along geographic gradients reveals potential for rapid adaptation of the White-nose Syndrome pathogen, Pseudogymnoascus destructans, in North America.

    Science.gov (United States)

    Forsythe, Adrian; Giglio, Victoria; Asa, Jonathan; Xu, Jianping

    2018-06-18

    White-nose Syndrome (WNS) is an ongoing epizootic affecting multiple species of North American bats, caused by epidermal infections of the psychrophilic filamentous fungus, Pseudogymnoascus destructans Since its introduction from Europe, WNS has spread rapidly across eastern North America and resulted in high mortality rates in bats. At present, the mechanisms behind its spread and the extent of its adaptation to different geographic and ecological niches remain unknown. The objective of this study was to examine the geographic patterns of phenotypic variation and the potential evidence for adaptation among strains representing broad geographic locations in eastern North America. The morphological features of these strains were evaluated on artificial medium, and the viability of asexual arthroconidia of representative strains were investigated after storage at high (23°C), moderate (14°C), and low (4°C) temperatures at different lengths of times. Our analyses identified evidence for a geographic pattern of colony morphology changes among the clonal descendants of the fungus, with trait values correlated with increased distance from the epicenter of WNS. Our genomic comparisons of three representative isolates revealed novel genetic polymorphisms and suggested potential candidate mutations that might be related to some of the phenotypic changes. These results show that even though this pathogen arrived in North America only recently and reproduces asexually, there has been substantial evolution and phenotypic diversification during its rapid clonal expansion. Importance The causal agent of White-nose Syndrome in bats is Pseudogymnoascus destructans , a filamentous fungus recently introduced from its native range in Europe. Infections caused by P. destructans have progressed across the eastern parts of Canada and the United States over the last ten years. It is not clear how the disease is spread as the pathogen is unable to grow above 23°C and ambient

  1. Elimination of Pathogen Escherichia coli O157:H7 in Ground Beef by a Newly Isolated Strain of Lactobacillus acidophilus during Storage at 5°C

    Directory of Open Access Journals (Sweden)

    Alireza Goodarzi

    2016-06-01

    Full Text Available Background and Objective: Constant use of limited number of lactic acid bacteria species in biopreservation can cause genetic degradation and or rising resistance against food pathogens or antimicrobial substances they produce. For this objective, a newly isolated strain of Lactobacillus acidophilus possessing high antimicrobial activity was evaluated as a candidate for use in biopreservation.Materials and Methods: Antibacterial activity was evaluated by agar disk diffusion method. Hydrogen peroxide amount was measured by Merckoquant Peroxide test strips. Microbiological analysis of the ground beef infected by Escherichia coli O157:H7 and treated by Lactobacillus acidophilus GH 201was done by plating of serial dilution in physiological saline on Tryptose agar.Results and Conclusion: The cells (109 CFU ml-1 of Lactobacillus acidophilus produced significant amount of antibacterial substances mainly hydrogen peroxide (28 and 30 μg ml-1 in sodium phosphate buffer (0.2 M, pH 6.5 and LAPTg at 5°C during submerged cultivation with no growth, respectively. Submerged co-cultivation of Escherichia coli O157:H7 with lactobacilli in LAPTg broth at 5°C reduced the total number of the pathogen more than 2 log for 5 days. In case of solid state cultivation on agar-based medium, the maximum inhibitory zones on Escherichia coli O157:H7 lawn around the disks soaked by different amounts of washed Lactobacillus acidophilus cells appear for one-day cold exposition. The size of inhibition zone depends on the concentration of lactic acid bacteria cells. The cell suspension intended for treatment must contain 108-9CFU ml-1 of lactic acid bacteria. Lactobacillus acidophilus reduced the initial amount (2×105 CFU ml-1 of Escherichia coli O157:H7 in ground beef up to 2 log for 5 days of solid-state co-cultivation. The application of Lactobacillus acidophilus bacteria expanded the shelf-life of ground beef due to inhibition of psychrophilic

  2. [INTESTINAL FAILURE AND YERSINIA PSEUDOTUBERCULOSIS TRANSLOCATION IN THE DEVELOPMENTOF EXPERIMENTAL GENERALIZED INFECTION].

    Science.gov (United States)

    Chicherin, I Yu; Pogorelky, I P; Lundovskikh, I A; Darmov, I V; Gorshkov, A S; Shabalina, M R

    2016-01-01

    To determine the value of intestinal failure and translocation of bacteria Y. pseudotuberculosis, and normal intestinal microbiota in the initiation and generalization of infection in experimental pseudotuberculosis in conventional white mice, as well as pathological manifestation of it as a response to the adhesion and colonization of the mucosus membrane by pathogenic bacteria Y. pseudotuberculosis. Experimental models of pseudotuberculosis in conventional white mice used the pathogenic Y. pseudotuberculosis 147 serotype I strain, containing a calcium-dependence plasmid with a molecular weight of 47 MDa. Cultivation of the pseudotuberculosis pathogen given its psychrophilic was performed on Hottinger agar at a temperature of (4-5) °C. The lactobacilli strain L plantarum 8P-A3 was isolated from a lyophilized commercial probiotic Lactobacterin (manufactured by "NPO Microgen", Russia) and used to obtain native culture supernatant fluid of lactobacilli, the composition of which was detected by gas-liquid chromatography with mass-selective detection. Gentamicin for parenteral administration was manufactured by JSC "Biochemist", Russia. Pathomorphological examination was performed on the 4-6th day of the experiment. Fragments of the small intestine, liver, kidneys, and lungs from dead animals were chosen for examination. Tissues were fixed in 10% neutral formalin, dehydrated in isopropanol and embedded in paraffin. Preparations were stained with Ehrlich hematoxylin and eosin, examined on the microscope "Mikmed-2" (JSC "LOMO", Russia) under magnification x 200-x1000. Statistical processing of the experimental results was carried out according to the method of Kerber in modification of I.P. Ashmarin and A.A. Vorobyov. The role of intestinal failure and translocation of bacteria Y. pseudotuberculosis, and normal intestinal microbiota in the initiation and generalization of infection in animals has been found. It has been proved that the oral administration of supernatant

  3. Thermal adaptation of mesophilic and thermophilic FtsZ assembly by modulation of the critical concentration.

    Directory of Open Access Journals (Sweden)

    Luis Concha-Marambio

    Full Text Available Cytokinesis is the last stage in the cell cycle. In prokaryotes, the protein FtsZ guides cell constriction by assembling into a contractile ring-shaped structure termed the Z-ring. Constriction of the Z-ring is driven by the GTPase activity of FtsZ that overcomes the energetic barrier between two protein conformations having different propensities to assemble into polymers. FtsZ is found in psychrophilic, mesophilic and thermophilic organisms thereby functioning at temperatures ranging from subzero to >100°C. To gain insight into the functional adaptations enabling assembly of FtsZ in distinct environmental conditions, we analyzed the energetics of FtsZ function from mesophilic Escherichia coli in comparison with FtsZ from thermophilic Methanocaldococcus jannaschii. Presumably, the assembly may be similarly modulated by temperature for both FtsZ orthologs. The temperature dependence of the first-order rates of nucleotide hydrolysis and of polymer disassembly, indicated an entropy-driven destabilization of the FtsZ-GTP intermediate. This destabilization was true for both mesophilic and thermophilic FtsZ, reflecting a conserved mechanism of disassembly. From the temperature dependence of the critical concentrations for polymerization, we detected a change of opposite sign in the heat capacity, that was partially explained by the specific changes in the solvent-accessible surface area between the free and polymerized states of FtsZ. At the physiological temperature, the assembly of both FtsZ orthologs was found to be driven by a small positive entropy. In contrast, the assembly occurred with a negative enthalpy for mesophilic FtsZ and with a positive enthalpy for thermophilic FtsZ. Notably, the assembly of both FtsZ orthologs is characterized by a critical concentration of similar value (1-2 μM at the environmental temperatures of their host organisms. These findings suggest a simple but robust mechanism of adaptation of FtsZ, previously shown

  4. Bacterial biomass and activity in the deep waters of the eastern Atlantic—evidence of a barophilic community

    Science.gov (United States)

    Patching, J. W.; Eardly, D.

    1997-09-01

    Bacterial biomass and activity were investigated in deep waters at two sites in the eastern Atlantic, of similar depth (4560-4800 m), but varying in their nutritional status. The Northern (N) site was eutrophic and subject to a strong seasonal input of surface derived organic matter (phytodetritus) to the sediment. The Southern (S) site was oligotrophic. Deep water at this site does not appear to receive any strong seasonal input. Bacterial numbers in the deep water column at the N site showed no significant seasonal variation but were greater than those at the S site. Deep water bacteria were typically small and free-living. From biovolume determinations, it was estimated that mean concentrations of bacterial organic carbon at depths greater than 500 m were 0.12 (0.03-0.29) μg C 1 -1 and 0.02 (0.01-0.04) μg C 1 -1 at the N and S sites, respectively. Rates of thymidine and leucine incorporation were used as indicators of bacterial activity. Bacterial communities in water in contact with the sediment (SCW; sediment contact water) at both sites (but especially at the S site) were strongly barophilic at in situ temperatures (2.5-4.1°C). The barophilic response of thymidine incorporation was enhanced when SCW samples from the N site were incubated at 11.5°C. It is proposed that this result indicated an elevating effect of pressure on cardinal temperatures and that the SCW community was obligately psychrophilic when unpressurised. Comparison of cell-specific incorporation rates determined under in situ conditions showed bacteria in the SCW to have levels of activity comparable with bacteria from a depth of 150 m. Thymidine incorporation rates were highest in SCW samples taken at the N site in May 1988 and September 1989. Thymidine incorporation by SCW samples taken immediately before (10 April 1994) the main spring-bloom-associated deposition of phytodetritus was significantly lower and comparable with that determined for the oligotrophic S site. The attributes

  5. Molecular cloning, expression and biochemical characterisation of a cold-adapted novel recombinant chitinase from Glaciozyma antarctica PI12

    Directory of Open Access Journals (Sweden)

    Ramli Aizi

    2011-11-01

    Full Text Available Abstract Background Cold-adapted enzymes are proteins produced by psychrophilic organisms that display a high catalytic efficiency at extremely low temperatures. Chitin consists of the insoluble homopolysaccharide β-(1, 4-linked N-acetylglucosamine, which is the second most abundant biopolymer found in nature. Chitinases (EC 3.2.1.14 play an important role in chitin recycling in nature. Biodegradation of chitin by the action of cold-adapted chitinases offers significant advantages in industrial applications such as the treatment of chitin-rich waste at low temperatures, the biocontrol of phytopathogens in cold environments and the biocontrol of microbial spoilage of refrigerated food. Results A gene encoding a cold-adapted chitinase (CHI II from Glaciozyma antarctica PI12 was isolated using Rapid Amplification of cDNA Ends (RACE and RT-PCR techniques. The isolated gene was successfully expressed in the Pichia pastoris expression system. Analysis of the nucleotide sequence revealed the presence of an open reading frame of 1,215 bp, which encodes a 404 amino acid protein. The recombinant chitinase was secreted into the medium when induced with 1% methanol in BMMY medium at 25°C. The purified recombinant chitinase exhibited two bands, corresponding to the non-glycosylated and glycosylated proteins, by SDS-PAGE with molecular masses of approximately 39 and 50 kDa, respectively. The enzyme displayed an acidic pH characteristic with an optimum pH at 4.0 and an optimum temperature at 15°C. The enzyme was stable between pH 3.0-4.5 and was able to retain its activity from 5 to 25°C. The presence of K+, Mn2+ and Co2+ ions increased the enzyme activity up to 20%. Analysis of the insoluble substrates showed that the purified recombinant chitinase had a strong affinity towards colloidal chitin and little effect on glycol chitosan. CHI II recombinant chitinase exhibited higher Vmax and Kcat values toward colloidal chitin than other substrates at low

  6. Preliminary quality assessment of bovine colostrum

    Directory of Open Access Journals (Sweden)

    Alessandro Taranto

    2013-02-01

    Full Text Available Data on bovine colostrum quality are scarce or absent, although Commission Regulations No 1662/2006 and No 1663/2006 include colostrum in the context of chapters on milk. Thus the aim of the present work is to study some physical, chemical, hygiene and safety quality parameters of bovine colostrum samples collected from Sicily and Calabria dairy herds. Thirty individual samples were sampled after 2-3 days from partum. The laboratory tests included: pH, fat (FT, total nitrogen (TN, lactose (LTS and dry matter (NM percentage (Lactostar and somatic cell count (CCS (DeLaval cell counter DCC. Bacterial counts included: standard plate count (SPC, total psychrophilic aerobic count (PAC, total, fecal coliforms by MPN (Most Probable Number, sulphite-reducing bacteria (SR. Salmonella spp. was determined. Bacteriological examinations were performed according to the American Public Health Association (APHA methods, with some adjustements related to the requirements of the study. Statistical analysis of data was performed by Spearman’s rank correlation coefficient. The results showed a low variability of pH values and FT, TN and DM percentage between samples; whereas LTS trend was less noticeable. A significant negative correlation (P<0.01 was observed between pH, TN and LTS amount. The correlation between LTS and TN contents was highly significant (P<0.001. Highly significant and negative was the correlation (P<0.001 between DM, NT and LTS content. SPC mean values were 7.54 x106 CFU/mL; PAC mean values were also high (3.3x106 CFU/mL. Acceptable values of coagulase positive staphylococci were showed; 3 Staphylococcus aureus and 1 Staphylococcus epidermidis strains was isolated. Coagulase negative staphylococci counts were low. A high variability in the number of TC, as for FC was observed; bacterial loads were frequently fairly high. Salmonella spp. and SR bacteria were absent. It was assumed that bacteria from samples had a prevailing environmental origin

  7. Comets, Asteroids, and the Origin of the Biosphere

    Science.gov (United States)

    Hoover, Richard B.

    2006-01-01

    range of temperatures in cavities and voids at different depths just beneath the crust of a comet. The possibility that liquid water may exist over a wide range of temperatures on comets significantly enhances the possibility that these bodies may harbor niches suitable for microbial communities and ecosystems. Such niches would by ideal for the growth of psychrophilic, mesophilic, and possibly even thermophilic chemolithotrophs and photoautotrophs such as the motile filamentous cyanobacteria (e.g., Calothrix, Oscillatoria, Phormidium, and Spirulina) that can grow in geothermal springs and geysers at temperatures ranging from 320K to 345K and in cold polar desert soils. This paper reviews the observational data in support of the hypothesis that liquid water can exist in permafrost-like active regions just beneath the surface of comets when near perihelion and provides additional arguments in support of the hypothesis that comets, carbonaceous meteorites, and asteroids may have played a significant role in the origin and evolution of the Biosphere and in the distribution of microbial life throughout the Solar System.

  8. Comets, Asteroids, Meteorites, and the Origin of the Biosphere

    Science.gov (United States)

    Hoover, Richard B.

    2006-01-01

    During the past few decades, the delivery of water, organics, and prebiotic chemicals to the Biosphere of Earth during the Hadean (4.5-3.8 Ga) period of heavy bombardment by comets and asteroids has become more widely accepted. Comets are still largely regarded as frigid, pristine bodies of protosolar nebula material that are devoid of liquid water and therefore unsuitable for life. Complex organic compounds have been observed in comets and on the water-rich asteroid 1998 KY26 and near IR observations have indicated the presence of crystalline water ice and ammonia hydrate on the large Kuiper Belt object (50000) Quaoar that has resurfacing suggesting cryovolcanic outgassing. Spacecraft observations of the chemical compositions and characteristics of the nuclei of several comets (Halley, Borrelly, Wild 2, and Tempel 1) have shown that comets contain complex organic chemicals; that water is the predominant volatile; and that extremely high temperatures (approx. 350-400 K) can be reached on the surfae of the very black (albedo approx. 0.03) nuclei of comets when they approach the Sun. Impact craters and pinnacles observed on comet Wild 2 suggest a thick crust. Episodic outbursts and jets from the nuclei of several comets indicate that localized regimes of liquid water and water vapor can periodically exist beneath the comet crust. The Deep Impact mission found the temperature of the nucleus of comet Tempel 1 at 1.5 AU varied from a minimum of 280 plus or minus 8 K the 330K (57 C) on the sunlit side. In this paper it is argued that that pools and films of liquid water exist (within a wide range of temperatures) in cavities and voids just beneath the hot, black crust. The possibility of liquid water existing over a wide range of temperatures significantly enhances the possibility that comets might contain niches suitable for the growth of microbial communities and ecosystems. These regimes would be ideal for the growth of psychrophilic, mesophilic, and thermophilic

  9. Cell survival in a simulated Mars environment

    Science.gov (United States)

    Todd, Paul; Kurk, Michael Andy; Boland, Eugene; Thomas, David

    2016-07-01

    were introduced on the first day (less than 1 hour). All Samples were mixed into Mars regolith simulant for this test. Biological samples consisting of Cyanobacteria: Anabena sp., Chroococcidiopsis CCMEE171, Plectonema boryanum; Eubacteria: Bacillus subtilis, Pseudomonas aeruginosa, and Eukaryota: Chlorella ellipsoidia were maintained in the simulator under the above-described conditions. The exposed specimens were tested for intracellular esterase activity (fluorescein diacetate (FDA) hydrolysis), chlorophyll content (where appropriate) and reproductive survival (colony formation on nutrient plates). These tests all yielded low-level positive results indicating some survival in all cases. Three control populations of each species were simultaneously exposed to -80 C dark storage, +4 C dark storage, and +25 C diurnal cycles in the same Mars regolith simulant (Orbital Technologies, Madison, WI). The survival hierarchy based on intracellular esterase assay, in decreasing order of survival was Anabena > Chroococcidiopsis > Pseudomonas > Bacillus subtilis > Chlorella > Plectonema, and the range of survival based on this test was 8% - 50%. The survival hierarchy based on post-exposure colony growth was Plectonema > Chroococcidiopsis = Chlorella > Anabena, and Pseudomonas exhibited higher survival than Bacillus subtilis. These results indicate a need for longer-term high-fidelity planetary simulation studies of a wider variety of microbial species including extremophiles, such as psychrophilic strains like Psychrobacter spp., Planococcus halocryophilus, Rhodococcus sp. and the yeast Rhodotorula sp. that could be found in human environments. This research was supported by NASA NIAC Phase I Grant "Mars Ecopoiesis Testbed" NNX14AM97G.

  10. Conservation of papaya minimally processed with the use of edible coating based on xanthan gum Conservação de mamão minimamente processado com uso de revestimento comestível à base de goma xantana

    Directory of Open Access Journals (Sweden)

    William Renzo Cortez-Vega

    2013-09-01

    Full Text Available The objective of this study was to evaluate the preservation of papaya minimally processed by the use of edible coatings based on xanthan gum for 12 days at 4±1 °C. Different treatments were performed: control (T1 uncoated; 1 % glycerol and 0.5 % xanthan gum (T2; 1 % glycerol, 0.5 % xanthan gum and 1 % chitosan (T3; 1 % glycerol, 0.5 % xanthan gum and 0.25 % guar gum (T4; 1 % glycerol, 0.5 % xanthan gum, 0.25 % guar gum and 1 % chitosan (T5. Such coatings were prepared in aqueous solution and added to them 1% glycerol. In the control treatment and the coated pieces of papaya were analyzed weight loss, firmness, pH, titratable acidity, color, and microbiological groups: psychrophilic, Salmonella spp., total coliform and thermotolerant. The different coatings based on xanthan gum were effective in preserving papaya minimally processed, relative to control sample. The addition of guar gum to xanthan coatings influenced negatively in the weight loss and the parameters of color, lightness, a* and b*. The addition of chitosan (T3 beneficially influence in reducing weight loss, maintenance of luminosity and a smaller reduction in parameters a* and b*, however, was not observed antimicrobial effect. Thus, it is suggested as an edible coatings papaya minimally processed coatings composed only xanthan gum (T2, which caused a reduction of weight loss, maintenance of lightness and b* and smaller reduction in a*. However, experiments aimed at maintaining firmness, pH and acidity should be conducted in future. Neste trabalho foi avaliada a conservação do mamão “Formosa” minimamente processado, com o uso de revestimento comestível à base de goma xantana, por 12 dias a 4±1 °C. Foram realizados os tratamentos: controle (T1, sem revestimento; revestimento com 0,5% de goma xantana (T2; revestimento com 0,5% de goma xantana e 1% de quitosana (T3; revestimento com 0,5% de goma xantana e 0,25% de goma guar (T4; revestimento com 0,5% de goma xantana, 0

  11. Isolation and identification of yeasts and filamentous fungi from yoghurts in Brazil Isolamento e identificação de leveduras e fungos filamentosos em iogurtes

    Directory of Open Access Journals (Sweden)

    Silvia Regina Moreira

    2001-06-01

    Full Text Available Seventy-two cartons of yoghurt were sampled three times at monthly intervals from four different local manufacturers. Total counts were close to 6 x 10(7 cells g-1 of yoghurt. Yeast counts varied from 1 to 2,700 g-1. There was no evidence of systematic contamination at source but this longitudinal study revealed that ad hoc contamination and improper storage led to the higher yeast counts. Contamination was generally higher in the hotter months but was lower overall than reported from other countries. A total of 577 yeast isolates were identified belonging to ten species. The most abundant yeasts were, in order, Debaryomyces hansenii, Saccharomyces cerevisiae, Mrakia frigida, Hansenula spp., Candida parapsilosis, Debaryomyces castellii and Candida maltosa. The psychrophilic yeast Mrakia frigida is reported for the first time in yoghurts. Low level contamination with Monilia and Penicillium species was found in a few samples. Growth tests suggested that ability to ferment sucrose, growth at 5° C and in the presence of 300 µg g-1 sorbate preservative, were the three most significant physiological properties to account for these yeasts in yoghurts. The data also suggest that warmer weather and inadequate refrigeration are the principal causes of higher levels of contamination, increased diversity and change in microbial flora.Setenta e duas embalagens de iogurtes de quatro indústrias diferentes foram analisadas durante três épocas diferentes com intervalo mensal. A população microbiana total encontrada foi em torno de 6 x 10(7 células g-1 de iogurte. A contagem de leveduras variou entre 1 a 2.700 células g-1. Não foi possível observar uma sistemática contaminação, mas este estudo longitudinal revelou que contaminação ad hoc e armazenamento impróprio pode levar a elevadas populações de leveduras. De modo geral foi detectada uma contaminação maior nos meses mais quentes do ano mas em valores inferiores aos encontrados em outros

  12. Canceling effect leads temperature insensitivity of hydrolytic enzymes in soil

    Science.gov (United States)

    Razavi, Bahar S.; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2015-04-01

    Extracellular enzymes are important for decomposition of many macromolecules abundant in soil such as cellulose, hemicelluloses and proteins (Allison et al., 2010; Chen et al., 2012). The temperature sensitivity of enzymes responsible for organic matter decomposition is the most crucial parameter for prediction of the effects of global warming on carbon cycle. Temperature responses of biological systems are often expressed as a Q10 functions; The Q10 describes how the rate of a chemical reaction changes with a temperature increase for 10 °C The aim of this study was to test how the canceling effect will change with variation in temperature interval, during short-term incubation. We additionally investigated, whether canceling effect occurs in a broad range of concentrations (low to high) and whether it is similar for the set of hydrolytic enzymes within broad range of temperatures. To this end, we performed soil incubation over a temperature range of 0-40°C (with 5°C steps). We determined the activities of three enzymes involved in plant residue decomposition: β-glucosidase and cellobiohydrolase, which are commonly measured as enzymes responsible for degrading cellulose (Chen et al., 2012), and xylanase, which degrades xylooligosaccharides (short xylene chain) in to xylose, thus being responsible for breaking down hemicelluloses (German et al., 2011). Michaelis-Menten kinetics measured at each temperature allowed to calculate Q10 values not only for the whole reaction rates, but specifically for maximal reaction rate (Vmax) and substrate affinity (Km). Subsequently, the canceling effect - simultaneous increase of Vmax and Km with temperature was analyzed within 10 and 5 degree of temperature increase. Three temperature ranges (below 10, between 15 and 25, and above 30 °C) clearly showed non-linear but stepwise increase of temperature sensitivity of all three enzymes and allowed to conclude for predominance of psychrophilic, mesophilic and thermophilic

  13. The extreme environments and their microbes as models for extraterrestrial life

    Science.gov (United States)

    Seckbach, J.; Oren, A.; Chela-Flores, J.

    2008-09-01

    Life exists almost everywhere on Earth. Presence of liquid water is a prerequisite for life (Oren, 2008). Living organisms are not only found in `normal' habitats (from the anthropocentric view). Many types, especially of microorganisms, not only tolerate harsh environmental conditions, but even thive in them. Such organisms that resist very harsh physical and chemical conditions in their habitats are termed `extremophiles'. Some extremophilic microorganisms are able to overcome more than one type of extreme conditions in their environment. For example, some `polyextremophiles' grow under hundreds of atmospheres of hydrostatic pressure (barophiles) and at very low, or alternatively at very high temperatures. In many hot springs there are acido-thermophiles that tolerate elevated temperatures and very low pH levels (e.g. the Cyanidium caldarium group, see Seckbach 1994). Members of Cyanidium are able to thrive in pure CO2, a condition not tolerated by most algae (Seckbach et al., 1970). Some thermophilic Archaea grow at temperatures up to 1130C and possibly even higher. In the Arctic and Antarctic regions and in the permafrost region in Siberia there are cold-loving microorganisms (psychrophiles) which are able to grow at -200C. Many types of Bacteria and Archaea tolerate extreme dryness, and spores of Bacillus and relatives that have been encapsulated within salt crystals may have survived in a dormant state for thousands and even millions of years, and still can be revived today. Other extremophiles tolerate salt concentrations up to saturation. Halophilic microorganisms such as found in the Dead Sea or in the Great Salt Lake have developed different strategies to cope with the high osmotic pressure of their environment. Some (e.g. the unicellular green alga Dunaliella salina) balance the salts in their medium by accumulating organic compounds such as glycerol. Others (halophilic Archaea of the order Halobacteriales, as well as a few representatives of the