WorldWideScience

Sample records for psv2neo selectable plasmid

  1. Stable maintenance of multiple plasmids in E. coli using a single selective marker.

    Science.gov (United States)

    Schmidt, Calvin M; Shis, David L; Nguyen-Huu, Truong D; Bennett, Matthew R

    2012-10-19

    Plasmid-based genetic systems in Escherichia coli are a staple of synthetic biology. However, the use of plasmids imposes limitations on the size of synthetic gene circuits and the ease with which they can be placed into bacterial hosts. For instance, unique selective markers must be used for each plasmid to ensure their maintenance in the host. These selective markers are most often genes encoding resistance to antibiotics such as ampicillin or kanamycin. However, the simultaneous use of multiple antibiotics to retain different plasmids can place undue stress on the host and increase the cost of growth media. To address this problem, we have developed a method for stably transforming three different plasmids in E. coli using a single antibiotic selective marker. To do this, we first examined two different systems with which two plasmids may be maintained. These systems make use of either T7 RNA polymerase-specific regulation of the resistance gene or split antibiotic resistance enzymes encoded on separate plasmids. Finally, we combined the two methods to create a system with which three plasmids can be transformed and stably maintained using a single selective marker. This work shows that large-scale plasmid-based synthetic gene circuits need not be limited by the use of multiple antibiotic resistance genes.

  2. Selection of a multidrug resistance plasmid by sublethal levels of antibiotics and heavy metals.

    Science.gov (United States)

    Gullberg, Erik; Albrecht, Lisa M; Karlsson, Christoffer; Sandegren, Linus; Andersson, Dan I

    2014-10-07

    How sublethal levels of antibiotics and heavy metals select for clinically important multidrug resistance plasmids is largely unknown. Carriage of plasmids generally confers substantial fitness costs, implying that for the plasmid-carrying bacteria to be maintained in the population, the plasmid cost needs to be balanced by a selective pressure conferred by, for example, antibiotics or heavy metals. We studied the effects of low levels of antibiotics and heavy metals on the selective maintenance of a 220-kbp extended-spectrum β-lactamase (ESBL) plasmid identified in a hospital outbreak of Klebsiella pneumoniae and Escherichia coli. The concentrations of antibiotics and heavy metals required to maintain plasmid-carrying bacteria, the minimal selective concentrations (MSCs), were in all cases below (almost up to 140-fold) the MIC of the plasmid-free susceptible bacteria. This finding indicates that the very low antibiotic and heavy metal levels found in polluted environments and in treated humans and animals might be sufficiently high to maintain multiresistance plasmids. When resistance genes were moved from the plasmid to the chromosome, the MSC decreased, showing that MSC for a specific resistance conditionally depends on genetic context. This finding suggests that a cost-free resistance could be maintained in a population by an infinitesimally low concentration of antibiotic. By studying the effect of combinations of several compounds, it was observed that for certain combinations of drugs each new compound added lowered the minimal selective concentration of the others. This combination effect could be a significant factor in the selection of multidrug resistance plasmids/bacterial clones in complex multidrug environments. Importance: Antibiotic resistance is in many pathogenic bacteria caused by genes that are carried on large conjugative plasmids. These plasmids typically contain multiple antibiotic resistance genes as well as genes that confer resistance to

  3. Plasmid selection in Escherichia coli using an endogenous essential gene marker

    Directory of Open Access Journals (Sweden)

    Good Liam

    2008-08-01

    Full Text Available Abstract Background Antibiotic resistance genes are widely used for selection of recombinant bacteria, but their use risks contributing to the spread of antibiotic resistance. In particular, the practice is inappropriate for some intrinsically resistant bacteria and in vaccine production, and costly for industrial scale production. Non-antibiotic systems are available, but require mutant host strains, defined media or expensive reagents. An unexplored concept is over-expression of a host essential gene to enable selection in the presence of a chemical inhibitor of the gene product. To test this idea in E. coli, we used the growth essential target gene fabI as the plasmid-borne marker and the biocide triclosan as the selective agent. Results The new cloning vector, pFab, enabled selection by triclosan at 1 μM. Interestingly, pFab out-performed the parent pUC19-ampicillin system in cell growth, plasmid stability and plasmid yield. Also, pFab was toxic to host cells in a way that was reversed by triclosan. Therefore, pFab and triclosan are toxic when used alone but in combination they enhance growth and plasmid production through a gene-inhibitor interaction. Conclusion The fabI-triclosan model system provides an alternative plasmid selection method based on essential gene over-expression, without the use of antibiotic-resistance genes and conventional antibiotics.

  4. Use of FabV-Triclosan Plasmid Selection System for Efficient Expression and Production of Recombinant Proteins in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Syed A Ali

    Full Text Available Maintenance of recombinant plasmid vectors in host bacteria relies on the presence of selection antibiotics in the growth media to suppress plasmid -free segregants. However, presence of antibiotic resistance genes and antibiotics themselves is not acceptable in several applications of biotechnology. Previously, we have shown that FabV-Triclosan selection system can be used to select high and medium copy number plasmid vectors in E. coli. Here, we have extended our previous work and demonstrated that expression vectors containing FabV can be used efficiently to express heterologous recombinant proteins in similar or better amounts in E. coli host when compared with expression vectors containing β-lactamase. Use of small amount of non-antibiotic Triclosan as selection agent in growth medium, enhanced plasmid stability, applicability in various culture media, and compatibility with other selection systems for multiple plasmid maintenance are noteworthy features of FabV-Triclosan selection system.

  5. Plasmid Vectors for Xylella fastidiosa Utilizing a Toxin-Antitoxin System for Stability in the Absence of Antibiotic Selection.

    Science.gov (United States)

    Burbank, Lindsey P; Stenger, Drake C

    2016-08-01

    The phytopathogen Xylella fastidiosa causes disease in a variety of important crop and landscape plants. Functional genetic studies have led to a broader understanding of virulence mechanisms used by this pathogen in the grapevine host. Plasmid shuttle vectors are important tools in studies of bacterial genetics but there are only a limited number of plasmid vectors available that replicate in X. fastidiosa, and even fewer that are retained without antibiotic selection. Two plasmids are described here that show stable replication in X. fastidiosa and are effective for gene complementation both in vitro and in planta. Plasmid maintenance is facilitated by incorporation of the PemI/PemK plasmid addiction system, consisting of PemK, an endoribonuclease toxin, and its cognate antitoxin, PemI. Vector pXf20pemIK utilizes a native X. fastidiosa replication origin as well as a high-copy-number pUC origin for propagation in Escherichia coli cloning strains. Broad-host-range vector pBBR5pemIK is a medium- to low-copy-number plasmid based on the pBBR1 backbone. Both plasmids are maintained for extended periods of time in the absence of antibiotic selection, as well as up to 14 weeks in grapevine, without affecting bacterial fitness. These plasmids present an alternative to traditional complementation and expression vectors which rely on antibiotic selection for plasmid retention.

  6. Effect of growth rate and selection pressure on rates of transfer of an antibiotic resistance plasmid between E. coli strains

    NARCIS (Netherlands)

    Schuurmans, J.M.; Hijum, S.A.F.T. van; Piet, J.R.; Handel, N.; Smelt, J.; Brul, S.; Kuile, B.H. ter

    2014-01-01

    Antibiotic resistance increases costs for health care and causes therapy failure. An important mechanism for spreading resistance is transfer of plasmids containing resistance genes and subsequent selection. Yet the factors that influence the rate of transfer are poorly known. Rates of plasmid

  7. Construction of two selectable markers for integrative/conjugative plasmids in Flavobacterium columnare

    Science.gov (United States)

    Zhang, Jin; Zou, Hong; Wang, Liangfa; Huang, Bei; Li, Nan; Wang, Guitang; Nie, Pin

    2012-03-01

    Flavobacterium columnare, the etiological agent of columnaris disease, is one of the most important and widespread bacterial pathogens of freshwater fish. In this study, we constructed two artificial selectable markers (chloramphenicol and spectinomycin resistance) for gene transfer in F. columnare. These two new artificial selectable markers, which were created by placing the chloramphenicol or spectinomycin resistance gene under the control of the native acs regulatory region of F. columnare, were functional in both F. columnare and Escherichia coli. The integrative/conjugative plasmids constructed by using these markers were introduced into F. columnare G4 via electroporation or conjugation. The integrated plasmid DNA was confirmed by Southern blotting and PCR analysis. These two markers can be employed in future investigations into gene deletion and the pathogenicity of virulence factors in F. columnare.

  8. Plasmid vectors for Xylella fastidiosa utilizing a toxin-antitoxin system for plasmid stability in the absence of antibiotic selection

    Science.gov (United States)

    The phytopathogen Xylella fastidiosa causes disease in a variety of important crop and landscape plants. Functional genetic studies have led to a broader understanding of virulence mechanisms used by this pathogen in the grapevine host. Plasmid shuttle vectors are important tools in studies of bacte...

  9. Biochemical construction and selection of hybrid plasmids containing specific segments of the Escherichia coli genome.

    Science.gov (United States)

    Clarke, L; Carbon, J

    1975-11-01

    Using a poly(dA-dT) "connector" method, a population of annealed hybrid circular DNAs was constructed in vitro; each hybrid DNA circle containing one full-length molecule of poly(dT)-tailed DNA from E1 colicinogenic factor (Col E1) fragmented by EcoRI endonuclease annealed to any one of a collection of poly(dA)-tailed linear DNA fragments of the entire E. coli genome. This annealed, but unligated, hybrid DNA was used to transform several different auxotrophic mutants of E. coli, and by direct selection, bacterial clones were isolated which contained specific hybrid plasmids. In this manner, bacterial strains containing Col E1 hybrid plasmids carrying the entire tryptophan operon or the arabinsoe and leucine operons were isolated. The methods described should allow the molecular cloning of any portion of the E. coli genome by selection from a pool of DNA molecules containing at least several hundred different hybrids representing the entire bacterial genome.

  10. Selective pressure affects transfer and establishment of a Lactobacillus plantarum resistance plasmid in the gastrointestinal environment

    DEFF Research Database (Denmark)

    Feld, Louise; Schjorring, S.; Hammer, Karin

    2008-01-01

    Objectives and methods: A Lactobacillus plantarum strain recently isolated from French raw-milk cheese was tested for its ability to transfer a small plasmid pLFE1 harbouring the erythromycin resistance gene erm(B) to Enterococcus faecalis. Mating was studied in vitro and in different...... gastrointestinal environments using gnotobiotic rats as a simple in vivo model and streptomycin-treated mice as a more complex model. Transfer and establishment of transconjugants in the intestine were investigated with and without selective pressure. Results: Compared with the relatively low transfer frequency...... of similar to 5.7 x 10(-8) transconjugants/recipient obtained in vitro by filter mating, a surprisingly high number of transconjugants (10(-4) transconjugants/recipient) was observed in gnotobiotic rats even without antibiotic treatment. When erythromycin was administered, a transfer rate of similar to 100...

  11. Quantitative analysis of replication-related mutation and selection pressures in bacterial chromosomes and plasmids using generalised GC skew index

    Directory of Open Access Journals (Sweden)

    Suzuki Haruo

    2009-12-01

    Full Text Available Abstract Background Due to their bi-directional replication machinery starting from a single finite origin, bacterial genomes show characteristic nucleotide compositional bias between the two replichores, which can be visualised through GC skew or (C-G/(C+G. Although this polarisation is used for computational prediction of replication origins in many bacterial genomes, the degree of GC skew visibility varies widely among different species, necessitating a quantitative measurement of GC skew strength in order to provide confidence measures for GC skew-based predictions of replication origins. Results Here we discuss a quantitative index for the measurement of GC skew strength, named the generalised GC skew index (gGCSI, which is applicable to genomes of any length, including bacterial chromosomes and plasmids. We demonstrate that gGCSI is independent of the window size and can thus be used to compare genomes with different sizes, such as bacterial chromosomes and plasmids. It can suggest the existence of different replication mechanisms in archaea and of rolling-circle replication in plasmids. Correlation of gGCSI values between plasmids and their corresponding host chromosomes suggests that within the same strain, these replicons have reproduced using the same replication machinery and thus exhibit similar strengths of replication strand skew. Conclusions gGCSI can be applied to genomes of any length and thus allows comparative study of replication-related mutation and selection pressures in genomes of different lengths such as bacterial chromosomes and plasmids. Using gGCSI, we showed that replication-related mutation or selection pressure is similar for replicons with similar machinery.

  12. Construction of adeno-associated virus packaging plasmids and cells that directly select for AAV helper functions.

    Science.gov (United States)

    Whiteway, Alistair; Deru, Wale; Prentice, H Grant; Anderson, Robert

    2003-12-01

    Recombinant adeno-associated virus type 2 (rAAV) has promise for use as a gene therapy vector. Potential problems in the production of rAAV stocks are both the limited amount of recombinant virus that is produced by traditional methods and the possibility of wild-type replication competent adeno-associated virus (wtAAV) contamination. The presence of these contaminants is largely dependent upon the helper plasmid used. Whilst wtAAV is not a pathogen, the presence of these contaminants is undesirable as they may affect experiments concerning the biology of rAAV. Additionally as protocols using rAAV with altered tropism are becoming more prevalent, it is important that no recombination be permitted that may cause the creation of a replication competent AAV with modified (targeting) capsids. Many experimental protocols require the generation of large amounts of high titre rAAV stocks. We describe the production of several AAV helper plasmids and cell lines designed to achieve this goal. These plasmids possess split AAV rep and cap genes to eliminate the production of wtAAV and they possess a selection mechanism which is operatively linked to expression from the AAV cap gene. This allows positive selection of those cells expressing the highest level of the structural capsid proteins and therefore those cells which yield the highest amount of rAAV.

  13. BACTERIAL PLASMIDS

    Directory of Open Access Journals (Sweden)

    Marina Dinic

    2007-12-01

    Full Text Available Plasmids, extrachromosomal DNA, were identified in bacteria pertaining to family of Enterobacteriacae for the very first time. After that, they were discovered in almost every single observed strain. The structure of plasmids is made of circular double chain DNA molecules which are replicated autonomously in a host cell. Their length may vary from few up to several hundred kilobase (kb. Among the bacteria, plasmids are mostly transferred horizontally by conjugation process. Plasmid replication process can be divided into three stages: initiation, elongation, and termination. The process involves DNA helicase I, DNA gyrase, DNA polymerase III, endonuclease, and ligase.Plasmids contain genes essential for plasmid function and their preservation in a host cell (the beginning and the control of replication. Some of them possess genes whichcontrol plasmid stability. There is a common opinion that plasmids are unnecessary fora growth of bacterial population and their vital functions; thus, in many cases they can be taken up or kicked out with no lethal effects to a plasmid host cell. However,there are numerous biological functions of bacteria related to plasmids. Plasmids identification and classification are based upon their genetic features which are presented permanently in all of them, and these are: abilities to preserve themselves in a host cell and to control a replication process. In this way, plasmids classification among incompatibility groups is performed. The method of replicon typing, which is based on genotype and not on phenotype characteristics, has the same results as in compatibility grouping.

  14. Repression/depression of conjugative plasmids and their influence on the mutation-selection balance in static environments.

    Directory of Open Access Journals (Sweden)

    Yoav Atsmon-Raz

    Full Text Available We study the effect that conjugation-mediated Horizontal Gene Transfer (HGT has on the mutation-selection balance of a population in a static environment. We consider a model whereby a population of unicellular organisms, capable of conjugation, comes to mutation-selection balance in the presence of an antibiotic, which induces a first-order death rate constant [Formula: see text] for genomes that are not resistant. We explicitly take into consideration the repression/de-repression dynamics of the conjugative plasmid, and assume that a de-repressed plasmid remains temporarily de-repressed after copying itself into another cell. We assume that both repression and de-repression are characterized by first-order rate constants [Formula: see text]and [Formula: see text], respectively. We find that conjugation has a deleterious effect on the mean fitness of the population, suggesting that HGT does not provide a selective advantage in a static environment, but is rather only useful for adapting to new environments. This effect can be ameliorated by repression, suggesting that while HGT is not necessarily advantageous for a population in a static environment, its deleterious effect on the mean fitness can be negated via repression. Therefore, it is likely that HGT is much more advantageous in a dynamic landscape. Furthermore, in the limiting case of a vanishing spontaneous de-repression rate constant, we find that the fraction of conjugators in the population undergoes a phase transition as a function of population density. Below a critical population density, the fraction of conjugators is zero, while above this critical population density the fraction of conjugators rises continuously to one. Our model for conjugation-mediated HGT is related to models of infectious disease dynamics, where the conjugators play the role of the infected (I class, and the non-conjugators play the role of the susceptible (S class.

  15. VapB type 8 plasmids in Rhodococcus equi isolated from the small intestine of pigs and comparison of selective culture media.

    Science.gov (United States)

    Lara, G H B; Takai, S; Sasaki, Y; Kakuda, T; Listoni, F J P; Risseti, R M; de Morais, A B C; Ribeiro, M G

    2015-09-01

    The virulence-plasmid profile of Rhodococcus equi strains isolated from Suidae and humans is similar. Recent evidence suggests that the consumption of pork products contaminated with faeces might be a potential source of R. equi infections in humans, mainly to patients with rhodococcosis without history of contact with pigs or pig farms. This study investigated the virulence-associated genes (vapA and vapB) and plasmid profiles of R. equi among the 150 samples of small intestinal content obtained from slaughtered pigs. In addition, all samples were subjected to microbiological culture in conventional sheep blood agar and CAZ-NB, TCP and TVP selective media. A total of 40 (26·7%) of the samples recovered R. equi, with two samples recovering isolates harbouring the VapB type 8 plasmid. Among the 150 pigs sampled herein, CAZ-NB was considered the best selective medium for the isolation of R. equi from faeces. Our results provide evidence that the contamination of slaughtered pig carcasses with pathogenic R. equi might occur through faeces, representing a public health concern. Furthermore, this study is the first description of R. equi strains carrying the VapB plasmid in the gut of pigs. Intermediately virulent (VapB) is a common plasmid-type harboured by R. equi isolated from pigs and humans with AIDS. Curiously, humans with rhodococcosis usually have no history of contact with pigs or pig farms. Virulence-plasmid profile of 40 R. equi isolated among 150 small intestine content samples from pigs revelled two carrying isolates with the VapB type-8 plasmids. Moreover, comparison of three selective culture media shows that CAZ-NB was the best. Our results provide evidence that contamination of slaughtered pig carcasses with pathogenic R. equi might occur through faeces, representing a public health concern. Furthermore, R. equi carrying VapB type-8 plasmids types are described for the first time in the gut of the pig. © 2015 The Society for Applied

  16. Replication of pSV2-gpt in COS-1 cells: stability of plasmid DNA in the presence and absence of biochemical selection.

    Science.gov (United States)

    Tsui, L C; Breitman, M L

    1985-03-01

    We have previously demonstrated that COS-1 cell lines transformed by pSV2-gpt and maintained under biochemical selection replicate multiple copies of extrachromosomal plasmid DNA (1). We have now examined the replication and stability of this DNA in a representative cell line. In situ hybridization analyses revealed that intense replication of pSV2-gpt occurs in only a small subpopulation of cells and results from bursts of plasmid replication that occur periodically and spontaneously in the cell population. This suggests that COS-1 cells are only semipermissive for pSV2-gpt replication. No correlation was observed between levels of pSV2-gpt replication and the presence or absence of biochemical selection for the Gpt marker. However, growth of cells under nonselective conditions led to a rapid and progressive loss of pSV2-gpt DNA. This loss correlated with segregation of Gpt- revertants that lacked detectable plasmid sequences. Hence, maintenance of pSV2-gpt in the cell line was dependent on continuous biochemical selection. Stable replication of pSV2-gpt could be observed as late as four months after transfection, suggesting that this system might be useful for propagation of cloned DNA in COS-1 cells for extended periods of time. However, by nine months, extensive rearrangements of pSV2-gpt sequences were detected, indicating ultimate instability of the plasmid in the host cells.

  17. Construction of novel pJRD215-derived plasmids using chloramphenicol acetyltransferase (cat gene as a selection marker for Acidithiobacillus caldus.

    Directory of Open Access Journals (Sweden)

    Rui Wang

    Full Text Available Acidithiobacillus caldus, a Gram-negative, chemolithotrophic sulfur-oxidizing bacterium, is widely applied in bioleaching. The absence of an ideal selection marker has become a major obstacle to achieve high efficiency of the gene transfer system for A. caldus. Plasmid pJRD215, widely used in Acidithiobacillus spp., has severe drawbacks in molecular manipulations and potential biosafety issues due to its mobility. Therefore, finding a new selection marker and constructing new plasmids have become an urgent and fundamental work for A. caldus.Effective inhibitory effect of chloramphenicol on the growth of A. caldus was elucidated for the first time. The P2-cat gene cassette, including a chloramphenicol acetyltransferase gene (cat from plasmid pACBSR and a promoter (P2 upstream of the tetracycline resistance gene on pBR322, was designed, chloramphenicol acetyltransferase was expressed in A. caldus, and the enzyme activity was assessed. A new vector pSDU1 carrying the replication and mobilization regions derived from pJRD215, the P2-cat gene cassette and a multiple cloning site from pUC19 was successfully constructed. Compared with pJRD215, pSDU1 had a 27-fold increase in electrotransformation efficiency (30.43±0.88×104 CFU/μg DNA for pSDU1 and 1.09±0.11×104 CFU/μg DNA for pJRD215, better carrying capacity and could offer more convenience for the restriction enzyme digestion. In addition, the generated plasmid pSDU1Δmob, a novel non-mobilizable derivative of pSDU1 lacking some DNA sequences involved in the mobilization process, had increased copy number in A. caldus and lost its mobility for biosafety considerations. Both pSDU1 and pSDU1Δmob exhibited stable maintenance in A. caldus within 50 passages. However, further deletion of orfEF region involved in regulating repAC operon resulted in a negative effect on transformation efficiency, copy number and stability of plasmid pSDU1ΔmobΔorfEF in A. caldus.Chloramphenicol was proved to be an

  18. Plasmids in Gram negatives: molecular typing of resistance plasmids.

    Science.gov (United States)

    Carattoli, Alessandra

    2011-12-01

    A plasmid is defined as a double stranded, circular DNA molecule capable of autonomous replication. By definition, plasmids do not carry genes essential for the growth of host cells under non-stressed conditions but they have systems which guarantee their autonomous replication also controlling the copy number and ensuring stable inheritance during cell division. Most of the plasmids confer positively selectable phenotypes by the presence of antimicrobial resistance genes. Plasmids evolve as an integral part of the bacterial genome, providing resistance genes that can be easily exchanged among bacteria of different origin and source by conjugation. A multidisciplinary approach is currently applied to study the acquisition and spread of antimicrobial resistance in clinically relevant bacterial pathogens and the established surveillance can be implemented by replicon typing of plasmids. Particular plasmid families are more frequently detected among Enterobacteriaceae and play a major role in the diffusion of specific resistance genes. For instance, IncFII, IncA/C, IncL/M, IncN and IncI1 plasmids carrying extended-spectrum beta-lactamase genes and acquired AmpC genes are currently considered to be "epidemic resistance plasmids", being worldwide detected in Enterobacteriaceae of different origin and sources. The recognition of successful plasmids is an essential first step to design intervention strategies preventing their spread. Copyright © 2011 Elsevier GmbH. All rights reserved.

  19. Saccharomyces cerevisiae single-copy plasmids for auxotrophy compensation, multiple marker selection, and for designing metabolically cooperating communities [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Michael Mülleder

    2016-09-01

    Full Text Available Auxotrophic markers are useful tools in cloning and genome editing, enable a large spectrum of genetic techniques, as well as facilitate the study of metabolite exchange interactions in microbial communities. If unused background auxotrophies are left uncomplemented however, yeast cells need to be grown in nutrient supplemented or rich growth media compositions, which precludes the analysis of biosynthetic metabolism, and which leads to a profound impact on physiology and gene expression. Here we present a series of 23 centromeric plasmids designed to restore prototrophy in typical Saccharomyces cerevisiae laboratory strains. The 23 single-copy plasmids complement for deficiencies in HIS3, LEU2, URA3, MET17 or LYS2 genes and in their combinations, to match the auxotrophic background of the popular functional-genomic yeast libraries that are based on the S288c strain. The plasmids are further suitable for designing self-establishing metabolically cooperating (SeMeCo communities, and possess a uniform multiple cloning site to exploit multiple parallel selection markers in protein expression experiments.

  20. Detection of 140 clinically relevant antibiotic-resistance genes in the plasmid metagenome of wastewater treatment plant bacteria showing reduced susceptibility to selected antibiotics.

    Science.gov (United States)

    Szczepanowski, Rafael; Linke, Burkhard; Krahn, Irene; Gartemann, Karl-Heinz; Gützkow, Tim; Eichler, Wolfgang; Pühler, Alfred; Schlüter, Andreas

    2009-07-01

    To detect plasmid-borne antibiotic-resistance genes in wastewater treatment plant (WWTP) bacteria, 192 resistance-gene-specific PCR primer pairs were designed and synthesized. Subsequent PCR analyses on total plasmid DNA preparations obtained from bacteria of activated sludge or the WWTP's final effluents led to the identification of, respectively, 140 and 123 different resistance-gene-specific amplicons. The genes detected included aminoglycoside, beta-lactam, chloramphenicol, fluoroquinolone, macrolide, rifampicin, tetracycline, trimethoprim and sulfonamide resistance genes as well as multidrug efflux and small multidrug resistance genes. Some of these genes were only recently described from clinical isolates, demonstrating genetic exchange between clinical and WWTP bacteria. Sequencing of selected resistance-gene-specific amplicons confirmed their identity or revealed that the amplicon nucleotide sequence is very similar to a gene closely related to the reference gene used for primer design. These results demonstrate that WWTP bacteria are a reservoir for various resistance genes. Moreover, detection of about 64 % of the 192 reference resistance genes in bacteria obtained from the WWTP's final effluents indicates that these resistance determinants might be further disseminated in habitats downstream of the sewage plant.

  1. Plasmids containing insertion elements are potential transposons.

    OpenAIRE

    Ohtsubo, E; Zenilman, M; Ohtsubo, H

    1980-01-01

    We studied in vivo recombination between the plasmid pHS1, a temperature-sensitive replication mutant carrying tetracycline resistance, and pSM1, a small plasmid carrying one copy of the insertion element IS1. Recombinant plasmids were found by selection for tetracycline resistance at 42 degrees C. Their formation was independent of recA function. Analysis of the physical structures of various recombinant DNA molecules with electron microscopy and restriction endonucleases revealed that pSMI ...

  2. Plasmid segregation mechanisms

    DEFF Research Database (Denmark)

    Ebersbach, Gitte; Gerdes, Kenn; Charbon, Gitte Ebersbach

    2005-01-01

    Bacterial plasmids encode partitioning (par) loci that ensure ordered plasmid segregation prior to cell division. par loci come in two types: those that encode actin-like ATPases and those that encode deviant Walker-type ATPases. ParM, the actin-like ATPase of plasmid R1, forms dynamic filaments...... that segregate plasmids paired at mid-cell to daughter cells. Like microtubules, ParM filaments exhibit dynamic instability (i.e., catastrophic decay) whose regulation is an important component of the DNA segregation process. The Walker box ParA ATPases are related to MinD and form highly dynamic, oscillating...... filaments that are required for the subcellular movement and positioning of plasmids. The role of the observed ATPase oscillation is not yet understood. However, we propose a simple model that couples plasmid segregation to ParA oscillation. The model is consistent with the observed movement...

  3. Multilocus sequence typing of IncN plasmids

    DEFF Research Database (Denmark)

    García-Fernández, Aurora; Villa, Laura; Moodley, Arshnee

    2011-01-01

    categorization of IncN plasmids. METHODS: Twelve fully sequenced IncN plasmids available at GenBank were analysed in silico for selecting the loci for the IncN-specific pMLST. A total of 58 plasmids originating from different reservoirs (human, pig, poultry, cattle and horses) and geographic regions (Italy......OBJECTIVES: Incompatibility group N (IncN) plasmids have been associated with the dissemination of antimicrobial resistance and are a major vehicle for the spread of blaVIM-1 in humans and blaCTX-M-1 in animals. A plasmid multilocus sequence typing (pMLST) scheme was developed for rapid...

  4. In vitro evolution of an atrazine-degrading population under cyanuric acid selection pressure: evidence for the selective loss of a 47 kb region on the plasmid ADP1 containing the atzA, B and C genes.

    Science.gov (United States)

    Changey, F; Devers-Lamrani, M; Rouard, N; Martin-Laurent, F

    2011-12-15

    The adaptation of microorganisms to pesticide biodegradation relies on the recruitment of catabolic genes by horizontal gene transfer and homologous recombination mediated by insertion sequences (IS). This environment-friendly function is maintained in the degrading population but it has a cost which could diminish its fitness. The loss of genes in the course of evolution being a major mechanism of ecological specialization, we mimicked evolution in vitro by sub-culturing the atrazine-degrading Pseudomonas sp. ADP in a liquid medium containing cyanuric acid as the sole source of nitrogen. After 120 generations, a new population evolved, which replaced the original one. This new population grew faster on cyanuric acid but showed a similar cyanuric acid degrading ability. Plasmid profiles and Southern blot analyses revealed the deletion of a 47 kb region from pADP1 containing the atzABC genes coding for the enzymes that turn atrazine into cyanuric acid. Long PCR and sequencing analyses revealed that this deletion resulted from a homologous recombination between two direct repeats of a 110-bp, identical to ISPps1 of Pseudomonas huttiensis, flanking the deleted 47 kb region. The loss of a region containing three functional genes constitutively expressed thereby constituting a genetic burden under cyanuric acid selection pressure was responsible for the gain in fitness of the new population. It highlights the IS-mediated plasticity of the pesticide-degrading potential and shows that IS not only favours the expansion of the degrading genetic potential thanks to dispersion and duplication events but also contribute to its reduction thanks to deletion events. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Population dynamics model for plasmid bearing and plasmid lacking ...

    African Journals Online (AJOL)

    user

    Population dynamics model for plasmid bearing and plasmid lacking cells for streptokinase production in continuous flow stirred tank bioreactor. Pavan Kumar, Sanjoy Ghosh*. Computational Bioprocess Engineering Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee-247667, ...

  6. Lambda gpP-DnaB Helicase Sequestration and gpP-RpoB Associated Effects: On Screens for Auxotrophs, Selection for RifR, Toxicity, Mutagenicity, Plasmid Curing

    Directory of Open Access Journals (Sweden)

    Sidney Hayes

    2016-06-01

    Full Text Available The bacteriophage lambda replication initiation protein P exhibits a toxic effect on its Escherichia coli (E. coli host, likely due to the formation of a dead-end P-DnaB complex, sequestering the replicative DnaB helicase from further activity. Intracellular expression of P triggers SOS-independent cellular filamentation and rapidly cures resident ColE1 plasmids. The toxicity of P is suppressed by alleles of P or dnaB. We asked whether P buildup within a cell can influence E. coli replication fidelity. The influence of P expression from a defective prophage, or when cloned and expressed from a plasmid was examined by screening for auxotrophic mutants, or by selection for rifampicin resistant (RifR cells acquiring mutations within the rpoB gene encoding the β-subunit of RNA polymerase (RNAP, nine of which proved unique. Using fluctuation assays, we show that the intracellular expression of P evokes a mutator effect. Most of the RifR mutants remained PS and localized to the Rif binding pocket in RNAP, but a subset acquired a PR phenotype, lost sensitivity to ColE1 plasmid curing, and localized outside of the pocket. One PR mutation was identical to rpo*Q148P, which alleviates the UV-sensitivity of ruv strains defective in the migration and resolution of Holliday junctions and destabilizes stalled RNAP elongation complexes. The results suggest that P-DnaB sequestration is mutagenic and supports an earlier observation that P can interact with RNAP.

  7. Mechanisms of plasmid segregation: have multicopy plasmids been overlooked?

    Science.gov (United States)

    Million-Weaver, Samuel; Camps, Manel

    2014-09-01

    Plasmids are self-replicating pieces of DNA typically bearing non-essential genes. Given that plasmids represent a metabolic burden to the host, mechanisms ensuring plasmid transmission to daughter cells are critical for their stable maintenance in the population. Here we review these mechanisms, focusing on two active partition strategies common to low-copy plasmids: par systems type I and type II. Both involve three components: an adaptor protein, a motor protein, and a centromere, which is a sequence area in the plasmid that is recognized by the adaptor protein. The centromere-bound adaptor nucleates polymerization of the motor, leading to filament formation, which can pull plasmids apart (par I) or push them towards opposite poles of the cell (par II). No such active partition mechanisms are known to occur in high copy number plasmids. In this case, vertical transmission is generally considered stochastic, due to the random distribution of plasmids in the cytoplasm. We discuss conceptual and experimental lines of evidence questioning the random distribution model and posit the existence of a mechanism for segregation in high copy number plasmids that moves plasmids to cell poles to facilitate transmission to daughter cells. This mechanism would involve chromosomally-encoded proteins and the plasmid origin of replication. Modulation of this proposed mechanism of segregation could provide new ways to enhance plasmid stability in the context of recombinant gene expression, which is limiting for large-scale protein production and for bioremediation. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. In Silico Detection and Typing of Plasmids using PlasmidFinder and Plasmid Multilocus Sequence Typing

    DEFF Research Database (Denmark)

    Carattoli, Alessandra; Zankari, Ea; García-Fernández, Aurora

    2014-01-01

    into a Web tool called PlasmidFinder that can be used for replicon sequence analysis of raw, contig group, or completely assembled and closed plasmid sequencing data. The PlasmidFinder database currently consists of 116 replicon sequences that match with at least at 80% nucleotide identity all replicon...... of Salmonella enterica serovar Typhimurium isolates. PlasmidFinder identified a total of 103 replicons and between zero and five different plasmid replicons within each of 49 S. Typhimurium draft genomes tested. The pMLST Web tool was able to subtype genomic sequencing data of plasmids, revealing both known...

  9. Plasmid-Mediated Bioaugmentation for the Bioremediation of Contaminated Soils.

    Science.gov (United States)

    Garbisu, Carlos; Garaiyurrebaso, Olatz; Epelde, Lur; Grohmann, Elisabeth; Alkorta, Itziar

    2017-01-01

    Bioaugmentation, or the inoculation of microorganisms (e.g., bacteria harboring the required catabolic genes) into soil to enhance the rate of contaminant degradation, has great potential for the bioremediation of soils contaminated with organic compounds. Regrettably, cell bioaugmentation frequently turns into an unsuccessful initiative, owing to the rapid decrease of bacterial viability and abundance after inoculation, as well as the limited dispersal of the inoculated bacteria in the soil matrix. Genes that encode the degradation of organic compounds are often located on plasmids and, consequently, they can be spread by horizontal gene transfer into well-established, ecologically competitive, indigenous bacterial populations. Plasmid-mediated bioaugmentation aims to stimulate the spread of contaminant degradation genes among indigenous soil bacteria by the introduction of plasmids, located in donor cells, harboring such genes. But the acquisition of plasmids by recipient cells can affect the host's fitness, a crucial aspect for the success of plasmid-mediated bioaugmentation. Besides, environmental factors (e.g., soil moisture, temperature, organic matter content) can play important roles for the transfer efficiency of catabolic plasmids, the expression of horizontally acquired genes and, finally, the contaminant degradation activity. For plasmid-mediated bioaugmentation to be reproducible, much more research is needed for a better selection of donor bacterial strains and accompanying plasmids, together with an in-depth understanding of indigenous soil bacterial populations and the environmental conditions that affect plasmid acquisition and the expression and functioning of the catabolic genes of interest.

  10. Plasmid-Mediated Bioaugmentation for the Bioremediation of Contaminated Soils

    Directory of Open Access Journals (Sweden)

    Carlos Garbisu

    2017-10-01

    Full Text Available Bioaugmentation, or the inoculation of microorganisms (e.g., bacteria harboring the required catabolic genes into soil to enhance the rate of contaminant degradation, has great potential for the bioremediation of soils contaminated with organic compounds. Regrettably, cell bioaugmentation frequently turns into an unsuccessful initiative, owing to the rapid decrease of bacterial viability and abundance after inoculation, as well as the limited dispersal of the inoculated bacteria in the soil matrix. Genes that encode the degradation of organic compounds are often located on plasmids and, consequently, they can be spread by horizontal gene transfer into well-established, ecologically competitive, indigenous bacterial populations. Plasmid-mediated bioaugmentation aims to stimulate the spread of contaminant degradation genes among indigenous soil bacteria by the introduction of plasmids, located in donor cells, harboring such genes. But the acquisition of plasmids by recipient cells can affect the host’s fitness, a crucial aspect for the success of plasmid-mediated bioaugmentation. Besides, environmental factors (e.g., soil moisture, temperature, organic matter content can play important roles for the transfer efficiency of catabolic plasmids, the expression of horizontally acquired genes and, finally, the contaminant degradation activity. For plasmid-mediated bioaugmentation to be reproducible, much more research is needed for a better selection of donor bacterial strains and accompanying plasmids, together with an in-depth understanding of indigenous soil bacterial populations and the environmental conditions that affect plasmid acquisition and the expression and functioning of the catabolic genes of interest.

  11. Conjugative Plasmids of Neisseria gonorrhoeae

    NARCIS (Netherlands)

    Pachulec, Emilia; van der Does, Chris

    2010-01-01

    Many clinical isolates of the human pathogen Neisseria gonorrhoeae contain conjugative plasmids. The host range of these plasmids is limited to Neisseria species, but presence of a tetracycline (tetM) determinant inserted in several of these plasmids is an important cause of the rapid spread of

  12. Insertion element IS102 resides in plasmid pSC101.

    OpenAIRE

    Ohtsubo, H; Zenilman, M; Ohtsubo, E

    1980-01-01

    In vivo recombination was found to occur between plasmid pHS1, a temperature-sensitive replication mutant of pSC101 carrying tetracycline resistance, and plasmid ColE1 after selection for tetracycline resistance at the restrictive temperature, 42 degrees C. Extensive analysis of the physical structures of three of these recombinant plasmids, using restriction endonucleases and the electron microscope heteroduplex method, revealed that the plasmid pHS1 was integrated into different sites on Co...

  13. Plasmid and clonal interference during post horizontal gene transfer evolution.

    Science.gov (United States)

    Bedhomme, S; Perez Pantoja, D; Bravo, I G

    2017-04-01

    Plasmids are nucleic acid molecules that can drive their own replication in a living cell. They can be transmitted horizontally and can thrive in the host cell to high-copy numbers. Plasmid replication and gene expression consume cellular resources and cells carrying plasmids incur fitness costs. But many plasmids carry genes that can be beneficial under certain conditions, allowing the cell to endure in the presence of antibiotics, toxins, competitors or parasites. Horizontal transfer of plasmid-encoded genes can thus instantaneously confer differential adaptation to local or transient selection conditions. This conflict between cellular fitness and plasmid spread sets the scene for multilevel selection processes. We have engineered a system to study the short-term evolutionary impact of different synonymous versions of a plasmid-encoded antibiotic resistance gene. Applying experimental evolution under different selection conditions and deep sequencing allowed us to show rapid local adaptation to the presence of antibiotic and to the specific version of the resistance gene transferred. We describe the presence of clonal interference at two different levels: at the within-cell level, because a single cell can carry several plasmids, and at the between-cell level, because a bacterial population may contain several clones carrying different plasmids and displaying different fitness in the presence/absence of antibiotic. Understanding the within-cell and between-cell dynamics of plasmids after horizontal gene transfer is essential to unravel the dense network of mobile elements underlying the worldwide threat to public health of antibiotic resistance. © 2017 John Wiley & Sons Ltd.

  14. DNA sequence analysis of plasmids from multidrug resistant Salmonella enterica serotype Heidelberg isolates.

    Directory of Open Access Journals (Sweden)

    Jing Han

    Full Text Available Salmonella enterica serovar Heidelberg is among the most detected serovars in swine and poultry, ranks among the top five serotypes associated with human salmonellosis and is disproportionately associated with invasive infections and mortality in humans. Salmonella are known to carry plasmids associated with antimicrobial resistance and virulence. To identify plasmid-associated genes in multidrug resistant S. enterica serovar Heidelberg, antimicrobial resistance plasmids from five isolates were sequenced using the 454 LifeSciences pyrosequencing technology. Four of the isolates contained incompatibility group (Inc A/C multidrug resistance plasmids harboring at least eight antimicrobial resistance genes. Each of these strains also carried a second resistance plasmid including two IncFIB, an IncHI2 and a plasmid lacking an identified Inc group. The fifth isolate contained an IncI1 plasmid, encoding resistance to gentamicin, streptomycin and sulfonamides. Some of the IncA/C plasmids lacked the full concert of transfer genes and yet were able to be conjugally transferred, likely due to the transfer genes carried on the companion plasmids in the strains. Several non-IncA/C resistance plasmids also carried putative virulence genes. When the sequences were compared to previously sequenced plasmids, it was found that while all plasmids demonstrated some similarity to other plasmids, they were unique, often due to differences in mobile genetic elements in the plasmids. Our study suggests that Salmonella Heidelberg isolates harbor plasmids that co-select for antimicrobial resistance and virulence, along with genes that can mediate the transfer of plasmids within and among other bacterial isolates. Prevalence of such plasmids can complicate efforts to control the spread of S. enterica serovar Heidelberg in food animal and human populations.

  15. Toxin Plasmids of Clostridium perfringens

    Science.gov (United States)

    Li, Jihong; Adams, Vicki; Bannam, Trudi L.; Miyamoto, Kazuaki; Garcia, Jorge P.; Uzal, Francisco A.; Rood, Julian I.

    2013-01-01

    SUMMARY In both humans and animals, Clostridium perfringens is an important cause of histotoxic infections and diseases originating in the intestines, such as enteritis and enterotoxemia. The virulence of this Gram-positive, anaerobic bacterium is heavily dependent upon its prolific toxin-producing ability. Many of the ∼16 toxins produced by C. perfringens are encoded by large plasmids that range in size from ∼45 kb to ∼140 kb. These plasmid-encoded toxins are often closely associated with mobile elements. A C. perfringens strain can carry up to three different toxin plasmids, with a single plasmid carrying up to three distinct toxin genes. Molecular Koch's postulate analyses have established the importance of several plasmid-encoded toxins when C. perfringens disease strains cause enteritis or enterotoxemias. Many toxin plasmids are closely related, suggesting a common evolutionary origin. In particular, most toxin plasmids and some antibiotic resistance plasmids of C. perfringens share an ∼35-kb region containing a Tn916-related conjugation locus named tcp (transfer of clostridial plasmids). This tcp locus can mediate highly efficient conjugative transfer of these toxin or resistance plasmids. For example, conjugative transfer of a toxin plasmid from an infecting strain to C. perfringens normal intestinal flora strains may help to amplify and prolong an infection. Therefore, the presence of toxin genes on conjugative plasmids, particularly in association with insertion sequences that may mobilize these toxin genes, likely provides C. perfringens with considerable virulence plasticity and adaptability when it causes diseases originating in the gastrointestinal tract. PMID:23699255

  16. Genetic transformation of a clinical (genital tract), plasmid-free isolate of Chlamydia trachomatis: engineering the plasmid as a cloning vector.

    Science.gov (United States)

    Wang, Yibing; Kahane, Simona; Cutcliffe, Lesley T; Skilton, Rachel J; Lambden, Paul R; Persson, Kenneth; Bjartling, Carina; Clarke, Ian N

    2013-01-01

    Our study had three objectives: to extend the plasmid-based transformation protocol to a clinical isolate of C. trachomatis belonging to the trachoma biovar, to provide "proof of principle" that it is possible to "knock out" selected plasmid genes (retaining a replication competent plasmid) and to investigate the plasticity of the plasmid. A recently developed, plasmid-based transformation protocol for LGV isolates of C. trachomatis was modified and a plasmid-free, genital tract C. trachomatis isolate from Sweden (SWFP-) was genetically transformed. Transformation of this non-LGV C. trachomatis host required a centrifugation step, but the absence of the natural plasmid removed the need for plaque purification of transformants. Transformants expressed GFP, were penicillin resistant and iodine stain positive for accumulated glycogen. The transforming plasmid did not recombine with the host chromosome. A derivative of pGFP::SW2 carrying a deletion of the plasmid CDS5 gene was engineered. CDS5 encodes pgp3, a protein secreted from the inclusion into the cell cytoplasm. This plasmid (pCDS5KO) was used to transform C. trachomatis SWFP-, and established that pgp3 is dispensable for plasmid function. The work shows it is possible to selectively delete segments of the chlamydial plasmid, and this is the first step towards a detailed molecular dissection of the role of the plasmid. The 3.6 kb β-galactosidase cassette was inserted into the deletion site of CDS5 to produce plasmid placZ-CDS5KO. Transformants were penicillin resistant, expressed GFP and stained for glycogen. In addition, they expressed β-galactosidase showing that the lacZ cassette was functional in C. trachomatis. An assay was developed that allowed the visualisation of individual inclusions by X-gal staining. The ability to express active β-galactosidase within chlamydial inclusions is an important advance as it allows simple, rapid assays to measure directly chlamydial infectivity without the need for

  17. On the (im)possibility of reconstructing plasmids from whole-genome short-read sequencing data.

    Science.gov (United States)

    Arredondo-Alonso, Sergio; Willems, Rob J; van Schaik, Willem; Schürch, Anita C

    2017-10-01

    To benchmark algorithms for automated plasmid sequence reconstruction from short-read sequencing data, we selected 42 publicly available complete bacterial genome sequences spanning 12 genera, containing 148 plasmids. We predicted plasmids from short-read data with four programs (PlasmidSPAdes, Recycler, cBar and PlasmidFinder) and compared the outcome to the reference sequences. PlasmidSPAdes reconstructs plasmids based on coverage differences in the assembly graph. It reconstructed most of the reference plasmids (recall=0.82), but approximately a quarter of the predicted plasmid contigs were false positives (precision=0.75). PlasmidSPAdes merged 84 % of the predictions from genomes with multiple plasmids into a single bin. Recycler searches the assembly graph for sub-graphs corresponding to circular sequences and correctly predicted small plasmids, but failed with long plasmids (recall=0.12, precision=0.30). cBar, which applies pentamer frequency analysis to detect plasmid-derived contigs, showed a recall and precision of 0.76 and 0.62, respectively. However, cBar categorizes contigs as plasmid-derived and does not bin the different plasmids. PlasmidFinder, which searches for replicons, had the highest precision (1.0), but was restricted by the contents of its database and the contig length obtained from de novo assembly (recall=0.36). PlasmidSPAdes and Recycler detected putative small plasmids (50 kbp) containing repeated sequences remains challenging and limits the high-throughput analysis of plasmids from short-read whole-genome sequencing data.

  18. A series of template plasmids for Escherichia coli genome engineering.

    Science.gov (United States)

    Deb, Shalini S; Reshamwala, Shamlan M S; Lali, Arvind M

    2016-06-01

    Metabolic engineering strategies often employ multi-copy episomal vectors to overexpress genes. However, chromosome-based overexpression is preferred as it avoids the use of selective pressure and reduces metabolic burden on the cell. We have constructed a series of template plasmids for λ Red-mediated Escherichia coli genome engineering. The template plasmids allow construction of genome integrating cassettes that can be used to integrate single copies of DNA sequences at predetermined sites or replace promoter regions. The constructed cassettes provide flexibility in terms of expression levels achieved and antibiotics used for selection, as well as allowing construction of marker-free strains. The modular design of the template plasmids allows replacement of genetic parts to construct new templates. Gene integration and promoter replacement using the template plasmids are illustrated. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Persistence Mechanisms of Conjugative Plasmids

    DEFF Research Database (Denmark)

    Bahl, Martin Iain; Hansen, Lars H.; Sørensen, Søren Johannes

    2009-01-01

    maintenance in the host cell. These importantly include the ability to self-mobilize in a process termed conjugative transfer, which may occur across species barriers. Other plasmid stabilizing mechanisms include the multimer resolution system, active partitioning, and post-segregational-killing of plasmid...

  20. A Biobrick Library for Cloning Custom Eukaryotic Plasmids

    OpenAIRE

    Marco Constante; Raik Grünberg; Mark Isalan

    2011-01-01

    Researchers often require customised variations of plasmids that are not commercially available. Here we demonstrate the applicability and versatility of standard synthetic biological parts (biobricks) to build custom plasmids. For this purpose we have built a collection of 52 parts that include multiple cloning sites (MCS) and common protein tags, protein reporters and selection markers, amongst others. Importantly, most of the parts are designed in a format to allow fusions that maintain th...

  1. Transfection of normal human and Chinese hamster DNA corrects diepoxybutane-induced chromosomal hypersensitivity of Fanconi anemia fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Shaham, M.; Adler, B.; Ganguly, S.; Chaganti, R.S.K.

    1987-08-01

    Cultured cells from individuals affected with Fanconi anemia (FA) exhibit spontaneous chromosome breakage and hypersensitivity to the cell killing and clastogenic effects of the difunctional alkylating agent diepoxybutane (DEB). The authors report here the correction of both of these DEB-hypersensitivity phenotypes of FA cells achieved by cotransfection of normal placental of Chinese hamster lung cell DNA and the plasmid pSV2-neo-SVgpt. Transfectants were selected for clonogenic survival after treatment with DEB at a dose of 5 ..mu..gml. At this dose of DEB, the clonogenicity of normal fibroblasts was reduced to 50% and that of FA fibroblasts was reduced to zero. DEB-resistant (DEB/sup r/) colonies selected in this system exhibited a normal response to DEB-induced chromosome breakage and resistance to repeated DEB treatment. The neo and gpt sequences were detected by Southern blot analysis of DNA from one of four DEB/sup r/ colonies independently derived from transfection of human DNA and one of three DEB/sup r/ colonies independently derived from transfection of Chinese hamster DNA. The results demonstrate that DNA sequences that complement the two hallmark cellular phenotypes (cellular and chromosomal hypersensitivity to alkylating agents) of FA are present in human as well as Chinese hamster DNA. The cloning of these genes using transfection strategies can be expected to enable molecular characterization of FA

  2. Why There Are No Essential Genes on Plasmids.

    Science.gov (United States)

    Tazzyman, Samuel J; Bonhoeffer, Sebastian

    2015-12-01

    Mobile genetic elements such as plasmids are important for the evolution of prokaryotes. It has been suggested that there are differences between functions coded for by mobile genes and those in the "core" genome and that these differences can be seen between plasmids and chromosomes. In particular, it has been suggested that essential genes, such as those involved in the formation of structural proteins or in basic metabolic functions, are rarely located on plasmids. We model competition between genotypically varying bacteria within a single population to investigate whether selection favors a chromosomal location for essential genes. We find that in general, chromosomal locations for essential genes are indeed favored. This is because the inheritance of chromosomes is more stable than that for plasmids. We define the "degradation" rate as the rate at which chance genetic processes, for example, mutation, deletion, or translocation, render essential genes nonfunctioning. The only way in which plasmids can be a location for functioning essential genes is if chromosomal genes degrade faster than plasmid genes. If the two degradation rates are equal, or if plasmid genes degrade faster than chromosomal genes, functioning essential genes will be found only on chromosomes. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Antagonistic Donor Density Effect Conserved in Multiple Enterococcal Conjugative Plasmids

    Science.gov (United States)

    Bandyopadhyay, Arpan; O'Brien, Sofie; Frank, Kristi L.; Dunny, Gary M.

    2016-01-01

    plasmid-free recipients triggers the conjugative transfer in plasmid-containing donors, and an inhibitor peptide encoded on the plasmid and produced by donor cells serves to modulate the donor response in accordance with the relative abundance of donors and recipients. We demonstrate that high donor density reduces the conjugation frequency of both of these plasmids, which is a consequence of increased inhibitor concentration in high-donor-density cultures. While most antibiotic strategies end up selecting resistant strains and disrupting the community balance, manipulating bacterial signaling mechanisms can serve as an alternate strategy to prevent the spread of antibiotic resistance. PMID:27208137

  4. Differences in the stability of the plasmids of Yersinia pestis cultures in vitro: impact on virulence

    Directory of Open Access Journals (Sweden)

    TC Leal-Balbino

    2004-11-01

    Full Text Available Plasmid and chromosomal genes encode determinants of virulence for Yersinia pestis, the causative agent of plague. However, in vitro, Y. pestis genome is very plastic and several changes have been described. To evaluate the alterations in the plasmid content of the cultures in vitro and the impact of the alterations to their pathogenicity, three Y. pestis isolates were submitted to serial subculture, analysis of the plasmid content, and testing for the presence of characteristic genes in each plasmid of colonies selected after subculture. Different results were obtained with each strain. The plasmid content of one of them was shown to be stable; no apparent alteration was produced through 32 subcultures. In the other two strains, several alterations were observed. LD50 in mice of the parental strains and the derived cultures with different plasmid content were compared. No changes in the virulence plasmid content could be specifically correlated with changes in the LD50.

  5. AAVS1-Targeted Plasmid Integration in AAV Producer Cell Lines.

    Science.gov (United States)

    Luo, Yuxia; Frederick, Amy; Martin, John M; Scaria, Abraham; Cheng, Seng H; Armentano, Donna; Wadsworth, Samuel C; Vincent, Karen A

    2017-06-01

    Adeno-associated virus (AAV) producer cell lines are created via transfection of HeLaS3 cells with a single plasmid containing three components (the vector sequence, the AAV rep and cap genes, and a selectable marker gene). As this plasmid contains both the cis (Rep binding sites) and trans (Rep protein encoded by the rep gene) elements required for site-specific integration, it was predicted that plasmid integration might occur within the AAVS1 locus on human chromosome 19 (chr19). The objective of this study was to investigate whether integration in AAVS1 might be correlated with vector yield. Plasmid integration sites within several independent cell lines were assessed via Southern, fluorescence in situ hybridization (FISH) and PCR analyses. In the Southern analyses, the presence of fragments detected by both rep- and AAVS1-specific probes suggested that for several mid- and high-producing lines, plasmid DNA had integrated into the AAVS1 locus. Analysis with puroR and AAVS1-specific probes suggested that integration in AAVS1 was a more widespread phenomenon. High-producing AAV2-secreted alkaline phosphatase (SEAP) lines (masterwell 82 [MW82] and MW278) were evaluated via FISH using probes specific for the plasmid, AAVS1, and a chr19 marker. FISH analysis detected two plasmid integration sites in MW278 (neither in AAVS1), while a total of three sites were identified in MW82 (two in AAVS1). An inverse PCR assay confirmed integration within AAVS1 for several mid- and high-producing lines. In summary, the FISH, Southern, and PCR data provide evidence of site-specific integration of the plasmid within AAVS1 in several AAV producer cell lines. The data also suggest that integration in AAVS1 is a general phenomenon that is not necessarily restricted to high producers. The results also suggest that plasmid integration within the AAVS1 locus is not an absolute requirement for a high vector yield.

  6. Interspecific plasmid transfer between Streptococcus pneumoniae and Bacillus subtilis

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa, M. (Inst. de Immunologia y Biologia Microbiana, Velazquez, Madrid, Spain); Lopez, P.; Perez-Urena, M.T.; Lacks, S.A.

    1982-01-01

    The streptococcal plasmids pMV158 and pLS1, grown in Streptococcus pneumoniae, were transformed to Bacillus subtilis by DNA-mediated transformation.The plasmids were unchanged in the new host; no deletions were observed in 80 instances of transfer. Hybrid plasmids were produced by recombining the EcoRI fragment of pBD6 that confers Km/sup r/ with EcoRI-cut pLS1, which confers Tc/sup r/. The simple hybrid, pMP2, was transferable to both species and expressed Tc/sup r/ and Km/sup r/ in both. A derivative, pMP5, which contained an insertion in the pBD6 component, expressed a higher level of kanomycin resistance and was more easily selected in S. pneumoniae. Another derivative, pMP3, which contained an additional EcoRI fragment, presumably of pneumococcal chromosomal DNA, could not be transferred to B. subtilis. Previous findings that monomeric plasmid forms could transform S. pneumoniae but not B. subtilis were confirmed using single plasmid preparations. Although plasmids extracted from either species were readily transferred to S. pneumoniae, successive passage in B. subtilis increased the ability of plasmid extracts to transfer the plasmid to a B. subtilis recipient. This adaptation was tentatively ascribed to an enrichment of multimeric forms in extracts of B. subtilis as compared to S. pneumoniae. A review of host ranges exhibited by plasmids of Gram-positive bacteria suggested differences in their ability to use particular host replication functions. (JMT)

  7. The genetic basis of plasmid tropism between Chlamydia trachomatis and Chlamydia muridarum.

    Science.gov (United States)

    Wang, Yibing; Cutcliffe, Lesley T; Skilton, Rachel J; Ramsey, Kyle H; Thomson, Nicholas R; Clarke, Ian N

    2014-10-01

    The development of genetic transformation technology for Chlamydia trachomatis using its endogenous plasmid has recently been described. Chlamydia muridarum cannot be transformed by the C. trachomatis plasmid, indicating a barrier between chlamydial species. To determine which regions of the plasmid conferred the species specificity, we used the novel approach of transforming wild-type C. muridarum carrying the endogenous plasmid pNigg and forced recombination with the C. trachomatis vector pGFP::SW2 which carries the complete C. trachomatis plasmid (pSW2). Penicillin and chloramphenicol-resistant transformants expressing the green fluorescent protein were selected. Recovery of plasmids from these transformants showed they were recombinants. The differences between the pSW2 and pNigg allowed identification of the recombination breakpoints and showed that pGFP::SW2 had exchanged a ~ 1 kbp region with pNigg covering CDS 2. The recombinant plasmid (pSW2NiggCDS2) is maintained under antibiotic selection when transformed into plasmid-cured C. muridarum. The ability to select for recombinants in C. muridarum shows that the barrier is not at transformation, but at the level of plasmid replication or maintenance. Our studies show that CDS 2, together with adjoining sequences, is the main determinant of plasmid tropism. © 2014 The Authors. Pathogens and Disease published by John Wiley & Sons on behalf of the Federation of European Microbiological Societies.

  8. The genetic basis of plasmid tropism between Chlamydia trachomatis and Chlamydia muridarum

    Science.gov (United States)

    Wang, Yibing; Cutcliffe, Lesley T; Skilton, Rachel J; Ramsey, Kyle H; Thomson, Nicholas R; Clarke, Ian N

    2014-01-01

    The development of genetic transformation technology for Chlamydia trachomatis using its endogenous plasmid has recently been described. Chlamydia muridarum cannot be transformed by the C. trachomatis plasmid, indicating a barrier between chlamydial species. To determine which regions of the plasmid conferred the species specificity, we used the novel approach of transforming wild-type C. muridarum carrying the endogenous plasmid pNigg and forced recombination with the C. trachomatis vector pGFP::SW2 which carries the complete C. trachomatis plasmid (pSW2). Penicillin and chloramphenicol-resistant transformants expressing the green fluorescent protein were selected. Recovery of plasmids from these transformants showed they were recombinants. The differences between the pSW2 and pNigg allowed identification of the recombination breakpoints and showed that pGFP::SW2 had exchanged a ∼ 1 kbp region with pNigg covering CDS 2. The recombinant plasmid (pSW2NiggCDS2) is maintained under antibiotic selection when transformed into plasmid-cured C. muridarum. The ability to select for recombinants in C. muridarum shows that the barrier is not at transformation, but at the level of plasmid replication or maintenance. Our studies show that CDS 2, together with adjoining sequences, is the main determinant of plasmid tropism. PMID:24700815

  9. Persistence and reversal of plasmid-mediated antibiotic resistance.

    Science.gov (United States)

    Lopatkin, Allison J; Meredith, Hannah R; Srimani, Jaydeep K; Pfeiffer, Connor; Durrett, Rick; You, Lingchong

    2017-11-22

    In the absence of antibiotic-mediated selection, sensitive bacteria are expected to displace their resistant counterparts if resistance genes are costly. However, many resistance genes persist for long periods in the absence of antibiotics. Horizontal gene transfer (primarily conjugation) could explain this persistence, but it has been suggested that very high conjugation rates would be required. Here, we show that common conjugal plasmids, even when costly, are indeed transferred at sufficiently high rates to be maintained in the absence of antibiotics in Escherichia coli. The notion is applicable to nine plasmids from six major incompatibility groups and mixed populations carrying multiple plasmids. These results suggest that reducing antibiotic use alone is likely insufficient for reversing resistance. Therefore, combining conjugation inhibition and promoting plasmid loss would be an effective strategy to limit conjugation-assisted persistence of antibiotic resistance.

  10. Photonic plasmid stability of transformed Salmonella Typhimurium: A comparison of three unique plasmids

    Directory of Open Access Journals (Sweden)

    Lay Donald

    2009-07-01

    Full Text Available Abstract Background Acquiring a highly stable photonic plasmid in transformed Salmonella Typhimurium for use in biophotonic studies of bacterial tracking in vivo is critical to experimental paradigm development. The objective of this study was to determine stability of transformed Salmonella Typhimurium (S. typh-lux using three different plasmids and characterize their respective photonic properties. Results In presence of ampicillin (AMP, S. typh-lux with pCGLS-1, pAK1-lux and pXEN-1 plasmids exhibited 100% photon-emitting colonies over a 10-d study period. Photon emitters of S. typh-lux with pCGLS-1, pAK1-lux and pXEN-1 without AMP selection decreased over time (P 7 to 1 × 109 CFU, P 0.05; although photonic emissions across a range of bacterial concentrations were not different (1 × 104 to 1 × 106 CFU, P > 0.05. For very low density bacterial concentrations imaged in 96 well plates photonic emissions were positively correlated with bacterial concentration (P 3 to 1 × 105 CFU low to high were different in the 96-well plate format (P Conclusion These data characterize photon stability properties for S. typh-lux transformed with three different photon generating plasmids that may facilitate real-time Salmonella tracking using in vivo or in situ biophotonic paradigms.

  11. Chromosomal transformation of Escherichia coli recD strains with linearized plasmids.

    OpenAIRE

    Russell, C B; Thaler, D S; Dahlquist, F W

    1989-01-01

    Wild-type Escherichia coli are resistant to genetic transformation by purified linear DNA, probably in part because of exonuclease activity. We demonstrate that E. coli containing a recD mutation could be easily transformed by linearized plasmids containing a selectable marker. The marker was transferred to the chromosome by homologous recombination, whereas plasmid markers not in the region of homology were lost.

  12. Characterization of the Ac/Ds behaviour in transgenic tomato plants using plasmid rescue

    NARCIS (Netherlands)

    Rommens, Caius M.T.; Rudenko, George N.; Dijkwel, Paul P.; Haaren, Mark J.J. van; Ouwerkerk, Pieter B.F.; Blok, Karin M.; Nijkamp, H. John J.; Hille, Jacques

    1992-01-01

    We describe the use of plasmid rescue to facilitate studies on the behaviour of Ds and Ac elements in transgenic tomato plants. The rescue of Ds elements relies on the presence of a plasmid origin of replication and a marker gene selective in Escherichia coli within the element. The position within

  13. Distribution of virulence plasmids within Salmonellae.

    Science.gov (United States)

    Woodward, M J; McLaren, I; Wray, C

    1989-03-01

    The virulence region of the Salmonella dublin 50 MDa plasmid shared homology with 678 of 1021 salmonellae tested in colony hybridization experiments. The majority of S. dublin, S. typhimurium and S. enteritidis isolates tested hybridized with the region whereas, with the exception of S. hessarek, S. pullorum and S. gallinarum, other serotypes did not. Homologous virulence regions were plasmid encoded. In S. typhimurium a common 60 MDa plasmid was present in all phage types tested but not in DT4, DT37 and DT170. Smaller plasmids showing partial homology were found in DT12, DT18, DT193 and DT204C. In S. enteritidis a distinct plasmid profile for each of eight phage types was observed. Hybridizing plasmids were found in DT3, DT4, DT8, DT9 and DT11 whereas DT7, which was plasmid free, and DT10 and DT14, which harboured plasmids, did not hybridize. The extent of homology shared between S. dublin, S. typhimurium and S. enteritidis virulence plasmids was about 10 MDa and appeared conserved. Virulence plasmids from S. typhimurium and S. enteritidis did not show homology with a region of the S. dublin 50 MDa plasmid which was not associated with virulence functions whereas plasmids of about 24 MDa and 38 MDa in some S. typhimurium phage types did. The association of conserved virulence regions upon differing plasmids within salmonellae is discussed with reference to possible mechanisms of distribution and evolution of virulence genes.

  14. PLASMIDS FROM ANAEROCELLUM THERMOPHILUM AND USES THEREOF

    DEFF Research Database (Denmark)

    2003-01-01

    The present invention concerns the isolation of plasmids from extremely thermophilic anaerobic microorganisms and their use in genetic transformation of thermophilic and mesophilic microorganisms. More particular the invention concerns the use of thermostable plasmid vectors as tools for creating...

  15. Multiple drug resistant carbapenemases producing Acinetobacter baumannii isolates harbours multiple R-plasmids

    Directory of Open Access Journals (Sweden)

    Rajagopalan Saranathan

    2014-01-01

    Full Text Available Background & objectives: The nosocomial human pathogen Acinetobacter baumannii has high propensity to develop resistance to antimicrobials and to become multidrug resistant (MDR, consequently complicating the treatment. This study was carried out to investigate the presence of resistant plasmids (R-plasmids among the clinical isolates of A. baumannii. In addition, the study was performed to check the presence of common β-lactamases encoding genes on these plasmids. Methods: A total of 55 clinical isolates of A. baumannii were included in the study and all were subjected to plasmid DNA isolation, followed by PCR to check the presence of resistance gene determinants such as blaOXA-23 , blaOXA-51, blaOXA-58 and blaIMP-1 on these plasmids that encode for oxacillinase (OXA and metallo-β-lactamase (MBL type of carbapenemases. Plasmid curing experiments were carried out on selected isolates using ethidium bromide and acridine orange as curing agents and the antibiotic resistance profiles were evaluated before and after curing. Results: All the isolates were identified as A. baumannii by 16SrDNA amplification and sequencing. Plasmid DNA isolated from these isolates showed the occurrence of multiple plasmids with size ranging from 500bp to ≥ 25 kb. The percentage of blaOXA-51 and blaOXA-23 on plasmids were found to be 78 and 42 per cent, respectively and 20 isolates (36% carried blaIMP-1 gene on plasmids. Significant difference was observed in the antibiograms of plasmid cured isolates when compared to their parental ones. The clinical isolates became susceptible to more than two antibiotic classes after curing of plasmids indicating plasmid borne resistance. Interpretation & conclusions: Our study determined the plasmid mediated resistance mechanisms and occurrence of different resistance genes on various plasmids isolated from MDR A. baumannii. The present findings showed the evidence for antibiotic resistance mediated through multiple plasmids in

  16. Hairy root: plasmid encodes virulence traits in Agrobacterium rhizogenes.

    OpenAIRE

    White, F. F.; Nester, E W

    1980-01-01

    Agrobacterium rhizogenes strain 15834, which incites hairy root disease in plants, harbors three large plasmids: pAr15834a (107 x 10(6) daltons), pAr15834b (154 x 10(6) daltons), and pAr15834c (258 x 10(6) daltons). Kanamycin-resistant transconjugants were selected in a cross of kanamycin-resistant derivate of strain 15834 and an avirulent recipient. The transconjugants belonging to one class were virulent and contained all three donor plasmids. These transconjugants also acquired sensitivity...

  17. Genetic transformation of a clinical (genital tract, plasmid-free isolate of Chlamydia trachomatis: engineering the plasmid as a cloning vector.

    Directory of Open Access Journals (Sweden)

    Yibing Wang

    Full Text Available Our study had three objectives: to extend the plasmid-based transformation protocol to a clinical isolate of C. trachomatis belonging to the trachoma biovar, to provide "proof of principle" that it is possible to "knock out" selected plasmid genes (retaining a replication competent plasmid and to investigate the plasticity of the plasmid. A recently developed, plasmid-based transformation protocol for LGV isolates of C. trachomatis was modified and a plasmid-free, genital tract C. trachomatis isolate from Sweden (SWFP- was genetically transformed. Transformation of this non-LGV C. trachomatis host required a centrifugation step, but the absence of the natural plasmid removed the need for plaque purification of transformants. Transformants expressed GFP, were penicillin resistant and iodine stain positive for accumulated glycogen. The transforming plasmid did not recombine with the host chromosome. A derivative of pGFP::SW2 carrying a deletion of the plasmid CDS5 gene was engineered. CDS5 encodes pgp3, a protein secreted from the inclusion into the cell cytoplasm. This plasmid (pCDS5KO was used to transform C. trachomatis SWFP-, and established that pgp3 is dispensable for plasmid function. The work shows it is possible to selectively delete segments of the chlamydial plasmid, and this is the first step towards a detailed molecular dissection of the role of the plasmid. The 3.6 kb β-galactosidase cassette was inserted into the deletion site of CDS5 to produce plasmid placZ-CDS5KO. Transformants were penicillin resistant, expressed GFP and stained for glycogen. In addition, they expressed β-galactosidase showing that the lacZ cassette was functional in C. trachomatis. An assay was developed that allowed the visualisation of individual inclusions by X-gal staining. The ability to express active β-galactosidase within chlamydial inclusions is an important advance as it allows simple, rapid assays to measure directly chlamydial infectivity without

  18. The 2-micron plasmid as a nonselectable, stable, high copy number yeast vector

    Science.gov (United States)

    Ludwig, D. L.; Bruschi, C. V.

    1991-01-01

    The endogenous 2-microns plasmid of Saccharomyces cerevisiae has been used extensively for the construction of yeast cloning and expression plasmids because it is a native yeast plasmid that is able to be maintained stably in cells at high copy number. Almost invariably, these plasmid constructs, containing some or all 2-microns sequences, exhibit copy number levels lower than 2-microns and are maintained stably only under selective conditions. We were interested in determining if there was a means by which 2-microns could be utilized for vector construction, without forfeiting either copy number or nonselective stability. We identified sites in the 2-microns plasmid that could be used for the insertion of genetic sequences without disrupting 2-microns coding elements and then assessed subsequent plasmid constructs for stability and copy number in vivo. We demonstrate the utility of a previously described 2-microns recombination chimera, pBH-2L, for the manipulation and transformation of 2-microns as a pure yeast plasmid vector. We show that the HpaI site near the STB element in the 2-microns plasmid can be utilized to clone yeast DNA of at least 3.9 kb with no loss of plasmid stability. Additionally, the copy number of these constructs is as high as levels reported for the endogenous 2-microns.

  19. Exploring the evolutionary dynamics of plasmids: the Acinetobacter pan-plasmidome

    Science.gov (United States)

    2010-01-01

    Background Prokaryotic plasmids have a dual importance in the microbial world: first they have a great impact on the metabolic functions of the host cell, providing additional traits that can be accumulated in the cell without altering the gene content of the bacterial chromosome. Additionally and/or alternatively, from a genome perspective, plasmids can provide a basis for genomic rearrangements via homologous recombination and so they can facilitate the loss or acquisition of genes during these events, which eventually may lead to horizontal gene transfer (HGT). Given their importance for conferring adaptive traits to the host organisms, the interest in plasmid sequencing is growing and now many complete plasmid sequences are available online. Results By using the newly developed Blast2Network bioinformatic tool, a comparative analysis was performed on the plasmid and chromosome sequence data available for bacteria belonging to the genus Acinetobacter, an ubiquitous and clinically important group of γ-proteobacteria. Data obtained showed that, although most of the plasmids lack mobilization and transfer functions, they have probably a long history of rearrangements with other plasmids and with chromosomes. Indeed, traces of transfers between different species can be disclosed. Conclusions We show that, by combining plasmid and chromosome similarity, identity based, network analysis, an evolutionary scenario can be described even for highly mobile genetic elements that lack extensively shared genes. In particular we found that transposases and selective pressure for mercury resistance seem to have played a pivotal role in plasmid evolution in Acinetobacter genomes sequenced so far. PMID:20181243

  20. Plasmid construction using recombination activity in the fission yeast Schizosaccharomyces pombe.

    Science.gov (United States)

    Chino, Ayako; Watanabe, Kenji; Moriya, Hisao

    2010-03-11

    Construction of plasmids is crucial in modern genetic manipulation. As of now, the common method for constructing plasmids is to digest specific DNA sequences with restriction enzymes and to ligate the resulting DNA fragments with DNA ligase. Another potent method to construct plasmids, known as gap-repair cloning (GRC), is commonly used in the budding yeast Saccharomyces cerevisiae. GRC makes use of the homologous recombination activity that occurs within the yeast cells. Due to its flexible design and efficiency, GRC has been frequently used for constructing plasmids with complex structures as well as genome-wide plasmid collections. Although there have been reports indicating GRC feasibility in the fission yeast Schizosaccharomyces pombe, this species is not commonly used for GRC as systematic studies of reporting GRC efficiency in S. pombe have not been performed till date. We investigated GRC efficiency in S. pombe in this study. We first showed that GRC was feasible in S. pombe by constructing a plasmid that contained the LEU2 auxotrophic marker gene in vivo and showed sufficient efficiency with short homology sequences (>25 bp). No preference was shown for the sequence length from the cut site in the vector plasmid. We next showed that plasmids could be constructed in a proper way using 3 DNA fragments with 70% efficiency without any specific selections being made. The GRC efficiency with 3 DNA fragments was dramatically increased >95% in lig4Delta mutant cell, where non-homologous end joining is deficient. Following this approach, we successfully constructed plasmid vectors with leu1+, ade6+, his5+, and lys1+ markers with the low-copy stable plasmid pDblet as a backbone by applying GRC in S. pombe. We concluded that GRC was sufficiently feasible in S. pombe for genome-wide gene functional analysis as well as for regular plasmid construction. Plasmids with different markers constructed in this research are available from NBRP-yeast (http://yeast.lab.nig.ac.jp/).

  1. Plasmid stability analysis based on a new theoretical model employing stochastic simulations.

    Directory of Open Access Journals (Sweden)

    Olesia Werbowy

    Full Text Available Here, we present a simple theoretical model to study plasmid stability, based on one input parameter which is the copy number of plasmids present in a host cell. The Monte Carlo approach was used to analyze random fluctuations affecting plasmid replication and segregation leading to gradual reduction in the plasmid population within the host cell. This model was employed to investigate maintenance of pEC156 derivatives, a high-copy number ColE1-type Escherichia coli plasmid that carries an EcoVIII restriction-modification system. Plasmid stability was examined in selected Escherichia coli strains (MG1655, wild-type; MG1655 pcnB, and hyper-recombinogenic JC8679 sbcA. We have compared the experimental data concerning plasmid maintenance with the simulations and found that the theoretical stability patterns exhibited an excellent agreement with those empirically tested. In our simulations, we have investigated the influence of replication fails (α parameter and uneven partition as a consequence of multimer resolution fails (δ parameter, and the post-segregation killing factor (β parameter. All of these factors act at the same time and affect plasmid inheritance at different levels. In case of pEC156-derivatives we concluded that multimerization is a major determinant of plasmid stability. Our data indicate that even small changes in the fidelity of segregation can have serious effects on plasmid stability. Use of the proposed mathematical model can provide a valuable description of plasmid maintenance, as well as enable prediction of the probability of the plasmid loss.

  2. Key features of mcr-1-bearing plasmids from Escherichia coli isolated from humans and food

    Directory of Open Access Journals (Sweden)

    Katrin Zurfluh

    2017-09-01

    Full Text Available Abstract Background Mcr-1-harboring Enterobacteriaceae are reported worldwide since their first discovery in 2015. However, a limited number of studies are available that compared full-length plasmid sequences of human and animal origins. Methods In this study, mcr-1-bearing plasmids from seven Escherichia coli isolates recovered from patients (n = 3, poultry meat (n = 2 and turkey meat (n = 2 in Switzerland were further analyzed and compared. Isolates were characterized by multilocus sequence typing (MLST. The mcr-1-bearing plasmids were transferred by transformation into reference strain E. coli DH5α and MCR-1-producing transformants were selected on LB-agar supplemented with 2 mg/L colistin. Purified plasmids were then sequenced and compared. Results MLST revealed six distinct STs, illustrating the high clonal diversity among mcr-1-positive E. coli isolates of different origins. Two different mcr-1-positive plasmids were identified from a single E. coli ST48 human isolate. All other isolates possessed a single mcr-1 harboring plasmid. Transferable IncI2 (size ca. 60–61 kb and IncX4 (size ca. 33–35 kb type plasmids each bearing mcr-1 were found associated with human and food isolates. None of the mcr-1-positive IncI2 and IncX4 plasmids possessed any additional resistance determinants. Surprisingly, all but one of the sequenced mcr-1-positive plasmids lacked the ISApl1 element, which is a key element mediating acquisition of mcr-1 into various plasmid backbones. Conclusions There is strong evidence that the food chain may be an important transmission route for mcr-1-bearing plasmids. Our data suggest that some “epidemic” plasmids rather than specific E. coli clones might be responsible for the spread of the mcr-1 gene along the food chain.

  3. Ornamental fish as a source of plasmid-mediated quinolone resistance genes and antibiotic resistance plasmids.

    Science.gov (United States)

    Dobiasova, Hana; Kutilova, Iva; Piackova, Veronika; Vesely, Tomas; Cizek, Alois; Dolejska, Monika

    2014-07-16

    Growing ornamental fish industry is associated with public health concerns including extensive antibiotic use accompanied by increasing antibiotic resistance. The aim of this study was to analyze Aeromonas isolates from imported tropical ornamental fish and coldwater koi carps bred in the Czech Republic to assess the potential risk of ornamental fish as a source of plasmid-mediated quinolone resistance genes (PMQR) and antibiotic resistance plasmids. A collection of Aeromonas spp. with reduced susceptibility to ciprofloxacin (MIC ≥ 0.05 mg/L) was selected for the detection of PMQR genes. Isolates harbouring PMQR genes were further analyzed for the additional antibiotic resistance, integron content, clonality, biofilm production and transferability of PMQR genes by conjugation and transformation. Comparative analysis of plasmids carrying PMQR genes was performed. Fifteen (19%, n=80) isolates from koi carps and 18 (24%, n=76) isolates from imported ornamental fish were positive for qnrS2, aac(6')-Ib-cr or qnrB17 genes. PMQR-positive isolates from imported ornamental fish showed higher MIC levels to quinolones, multiresistance and diverse content of antibiotic resistance genes and integrons compared to the isolates from the carps. Related IncU plasmids harbouring qnrS2 and aac(6')-Ib-cr genes were found in Aeromonas spp. from imported ornamental fish and koi carps from various geographical areas. Ornamental fish may represent a potential source of multiresistant bacteria and mobile genetic elements for the environment and for humans. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Plasmid size can affect the ability of Escherichia coli to produce high-quality plasmids.

    Science.gov (United States)

    Yang, Junlin; Yang, Yong

    2012-11-01

    Large molecular weight plasmids are often used in gene therapy and DNA vaccines. To investigate the effect of plasmid size on the performance of Escherichia coli host strains during plasmid preparation, we employed E. coli JM109 and TOP10 cells to prepare four plasmids ranging from 4.7 to 16.8 kb in size. Each plasmid was extracted from JM109 and TOP10 cells using an alkaline lysis mini-preparation method. However, when commercial kits were used to extract the same plasmids from JM109 cells, the large molecular weight plasmids substantially degraded, compared with their smaller counterparts. No degradation was observed when the four plasmids were extracted from E. coli TOP10 cells using the same commercial kit. We conclude, therefore, that the performance of E. coli in high quality plasmid preparations can be affected by plasmid size.

  5. Characterization of plasmids in extensively drug-resistant acinetobacter strains isolated in India and Pakistan.

    Science.gov (United States)

    Jones, Lim S; Carvalho, Maria J; Toleman, Mark A; White, P Lewis; Connor, Thomas R; Mushtaq, Ammara; Weeks, Janis L; Kumarasamy, Karthikeyan K; Raven, Katherine E; Török, M Estée; Peacock, Sharon J; Howe, Robin A; Walsh, Timothy R

    2015-02-01

    The blaNDM-1 gene is associated with extensive drug resistance in Gram-negative bacteria. This probably spread to Enterobacteriaceae from Acinetobacter spp., and we characterized plasmids associated with blaNDM-1 in Acinetobacter spp. to gain insight into their role in this dissemination. Four clinical NDM-1-producing Acinetobacter species strains from India and Pakistan were investigated. A plasmid harboring blaNDM-1, pNDM-40-1, was characterized by whole-genome sequencing of Acinetobacter bereziniae CHI-40-1 and comparison with related plasmids. The presence of similar plasmids in strains from Pakistan was sought by PCR and sequencing of amplicons. Conjugation frequency was tested and stability of pNDM-40-1 investigated by real-time PCR of isolates passaged with and without antimicrobial selection pressure. A. bereziniae and Acinetobacter haemolyticus strains contained plasmids similar to the pNDM-BJ01-like plasmids identified in Acinetobacter spp. in China. The backbone of pNDM-40-1 was almost identical to that of pNDM-BJ01-like plasmids, but the transposon harboring blaNDM-1, Tn125, contained two short deletions. Escherichia coli and Acinetobacter pittii transconjugants were readily obtained. Transconjugants retained pNDM-40-1 after a 14-day passage experiment, although stability was greater with meropenem selection. Fragments of pNDM-BJ01-like plasmid backbones are found near blaNDM-1 in some genetic contexts from Enterobacteriaceae, suggesting that cross-genus transfer has occurred. pNDM-BJ01-like plasmids have been described in isolates originating from a wide geographical region in southern Asia. In vitro data on plasmid transfer and stability suggest that these plasmids could have contributed to the spread of blaNDM-1 into Enterobacteriaceae. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  6. Staphylococcus aureus plasmids without mobilization genes are mobilized by a novel conjugative plasmid from community isolates.

    Science.gov (United States)

    O'Brien, F G; Ramsay, J P; Monecke, S; Coombs, G W; Robinson, O J; Htet, Z; Alshaikh, F A M; Grubb, W B

    2015-03-01

    To describe a family of conjugative plasmids isolated from colonizing community Staphylococcus aureus and determine their ability to mobilize unrelated antimicrobial resistance/virulence plasmids, not encoding mobilization functions. Plasmid pWBG749 was labelled with Tn551 (pWBG749e) to enable laboratory manipulation. Plasmid pWBG749e was conjugated into S. aureus of seven different lineages that harboured unrelated plasmids and mobilization experiments were performed. Plasmids were screened by EcoRI restriction and hybridization with probes prepared from unique pWBG749 conjugation genes. Conjugative plasmids pWBG745, pWBG748 and pWBG749 belong to the same conjugative-plasmid family as the vancomycin resistance plasmid pBRZ01. Plasmid pWBG749e mobilized five unrelated plasmids. Mobilized plasmid pWBG744 is a pIB485-family plasmid that was also found in international S. aureus. Plasmid pWBG749e can mobilize unrelated S. aureus plasmids whose means of dissemination have not previously been understood. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. Source–sink plasmid transfer dynamics maintain gene mobility in soil bacterial communities

    Science.gov (United States)

    Wood, A. Jamie

    2016-01-01

    Horizontal gene transfer is a fundamental process in bacterial evolution that can accelerate adaptation via the sharing of genes between lineages. Conjugative plasmids are the principal genetic elements mediating the horizontal transfer of genes, both within and between bacterial species. In some species, plasmids are unstable and likely to be lost through purifying selection, but when alternative hosts are available, interspecific plasmid transfer could counteract this and maintain access to plasmid-borne genes. To investigate the evolutionary importance of alternative hosts to plasmid population dynamics in an ecologically relevant environment, we established simple soil microcosm communities comprising two species of common soil bacteria, Pseudomonas fluorescens and Pseudomonas putida, and a mercury resistance (HgR) plasmid, pQBR57, both with and without positive selection [i.e., addition of Hg(II)]. In single-species populations, plasmid stability varied between species: although pQBR57 survived both with and without positive selection in P. fluorescens, it was lost or replaced by nontransferable HgR captured to the chromosome in P. putida. A simple mathematical model suggests these differences were likely due to pQBR57’s lower intraspecific conjugation rate in P. putida. By contrast, in two-species communities, both models and experiments show that interspecific conjugation from P. fluorescens allowed pQBR57 to persist in P. putida via source–sink transfer dynamics. Moreover, the replacement of pQBR57 by nontransferable chromosomal HgR in P. putida was slowed in coculture. Interspecific transfer allows plasmid survival in host species unable to sustain the plasmid in monoculture, promoting community-wide access to the plasmid-borne accessory gene pool and thus potentiating future evolvability. PMID:27385827

  8. High-frequency transformation of Brevibacterium lactofermentum protoplasts by plasmid DNA.

    Science.gov (United States)

    Santamaria, R I; Gil, J A; Martin, J F

    1985-01-01

    An efficient polyethylene glycol-assisted method for transformation of Brevibacterium lactofermentum protoplasts that uses plasmid vectors has been developed. Two small plasmids, pUL330 (5.2 kilobases) and pUL340 (5.8 kilobases), both containing the kanamycin resistance gene from transposon Tn5 and the replication origin of the natural plasmid pBL1 of B. lactofermentum, were selected as vectors. Supercoiled forms of the plasmids yielded a 100-fold higher transformation frequency than did linear forms. The optimal transformation frequency was achieved with 10 ng of DNA in 1 ml of transformation buffer. Higher concentrations of plasmid DNA resulted in a decrease in transformation frequency per microgram of DNA. Optimal transformation was obtained with 25 to 35% polyethylene glycol 6000. Under optimal conditions, 10(6) transformants per microgram of DNA were obtained. PMID:3980445

  9. Virulence Plasmids of Spore-Forming Bacteria.

    Science.gov (United States)

    Adams, Vicki; Li, Jihong; Wisniewski, Jessica A; Uzal, Francisco A; Moore, Robert J; McClane, Bruce A; Rood, Julian I

    2014-12-01

    Plasmid-encoded virulence factors are important in the pathogenesis of diseases caused by spore-forming bacteria. Unlike many other bacteria, the most common virulence factors encoded by plasmids in Clostridium and Bacillus species are protein toxins. Clostridium perfringens causes several histotoxic and enterotoxin diseases in both humans and animals and produces a broad range of toxins, including many pore-forming toxins such as C. perfringens enterotoxin, epsilon-toxin, beta-toxin, and NetB. Genetic studies have led to the determination of the role of these toxins in disease pathogenesis. The genes for these toxins are generally carried on large conjugative plasmids that have common core replication, maintenance, and conjugation regions. There is considerable functional information available about the unique tcp conjugation locus carried by these plasmids, but less is known about plasmid maintenance. The latter is intriguing because many C. perfringens isolates stably maintain up to four different, but closely related, toxin plasmids. Toxin genes may also be plasmid-encoded in the neurotoxic clostridia. The tetanus toxin gene is located on a plasmid in Clostridium tetani, but the botulinum toxin genes may be chromosomal, plasmid-determined, or located on bacteriophages in Clostridium botulinum. In Bacillus anthracis it is well established that virulence is plasmid determined, with anthrax toxin genes located on pXO1 and capsule genes on a separate plasmid, pXO2. Orthologs of these plasmids are also found in other members of the Bacillus cereus group such as B. cereus and Bacillus thuringiensis. In B. thuringiensis these plasmids may carry genes encoding one or more insecticidal toxins.

  10. Transformation of Shewanella baltica with ColE1-like and P1 plasmids and their maintenance during bacterial growth in cultures.

    Science.gov (United States)

    Milewska, Klaudia; Węgrzyn, Grzegorz; Szalewska-Pałasz, Agnieszka

    2015-09-01

    The presence of natural plasmids has been reported for many Shewanella isolates. However, knowledge about plasmid replication origin and segregation mechanisms is not extensive for this genus. Shewanella baltica is an important species in the marine environment due to its denitrification ability in oxygen-deficient zones and the potential role in bioremediation processes. However, no information about possible use of plasmid vectors in this species has been reported to date. Here we report that plasmids with ColE1-type and plasmid P1 origin can transform S. baltica and replicate in this bacterium. Without the antibiotic selection pressure plasmid maintenance is less efficient than in Escherichia coli. Nevertheless, cultivation of S. baltica in the presence of appropriate antibiotics caused relatively stable maintenance of ColE1-like and P1-derived plasmids. This indicates that plasmid-based genetic manipulations and gene transfer in S. baltica are possible. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Hairy root: plasmid encodes virulence traits in Agrobacterium rhizogenes.

    Science.gov (United States)

    White, F F; Nester, E W

    1980-01-01

    Agrobacterium rhizogenes strain 15834, which incites hairy root disease in plants, harbors three large plasmids: pAr15834a (107 x 10(6) daltons), pAr15834b (154 x 10(6) daltons), and pAr15834c (258 x 10(6) daltons). Kanamycin-resistant transconjugants were selected in a cross of kanamycin-resistant derivate of strain 15834 and an avirulent recipient. The transconjugants belonging to one class were virulent and contained all three donor plasmids. These transconjugants also acquired sensitivity to the bacteriocin agrocin 84. The loss of plasmids from virulent transconjugants during growth at 37 degrees C indicated that virulence genes reside on pAr15834b, whereas agrocin 84 sensitivity genes reside on pAr15834a. The pathology induced by the virulent transconjugants containing only pAr15834b was identical to that produced by the wild-type strain of A. rhizogenes. Restriction endonuclease fragment analysis of plasmids from the transconjugants and the donor revealed that pAr15834c is a cointegrate of pAr15834a and pAr15834b. Kanamycin-resistant transconjugants belonging to a second class were avirulent and contained an altered form of pAr15834b. Strain 15834 can utilize octopine. However, this trait was not detected in any of the transconjugants. Octopine is not synthesized by infected plant tissue. Images PMID:6245060

  12. A biobrick library for cloning custom eukaryotic plasmids.

    Science.gov (United States)

    Constante, Marco; Grünberg, Raik; Isalan, Mark

    2011-01-01

    Researchers often require customised variations of plasmids that are not commercially available. Here we demonstrate the applicability and versatility of standard synthetic biological parts (biobricks) to build custom plasmids. For this purpose we have built a collection of 52 parts that include multiple cloning sites (MCS) and common protein tags, protein reporters and selection markers, amongst others. Importantly, most of the parts are designed in a format to allow fusions that maintain the reading frame. We illustrate the collection by building several model contructs, including concatemers of protein binding-site motifs, and a variety of plasmids for eukaryotic stable cloning and chromosomal insertion. For example, in 3 biobrick iterations, we make a cerulean-reporter plasmid for cloning fluorescent protein fusions. Furthermore, we use the collection to implement a recombinase-mediated DNA insertion (RMDI), allowing chromosomal site-directed exchange of genes. By making one recipient stable cell line, many standardised cell lines can subsequently be generated, by fluorescent fusion-gene exchange. We propose that this biobrick collection may be distributed peer-to-peer as a stand-alone library, in addition to its distribution through the Registry of Standard Biological Parts (http://partsregistry.org/).

  13. A biobrick library for cloning custom eukaryotic plasmids.

    Directory of Open Access Journals (Sweden)

    Marco Constante

    Full Text Available Researchers often require customised variations of plasmids that are not commercially available. Here we demonstrate the applicability and versatility of standard synthetic biological parts (biobricks to build custom plasmids. For this purpose we have built a collection of 52 parts that include multiple cloning sites (MCS and common protein tags, protein reporters and selection markers, amongst others. Importantly, most of the parts are designed in a format to allow fusions that maintain the reading frame. We illustrate the collection by building several model contructs, including concatemers of protein binding-site motifs, and a variety of plasmids for eukaryotic stable cloning and chromosomal insertion. For example, in 3 biobrick iterations, we make a cerulean-reporter plasmid for cloning fluorescent protein fusions. Furthermore, we use the collection to implement a recombinase-mediated DNA insertion (RMDI, allowing chromosomal site-directed exchange of genes. By making one recipient stable cell line, many standardised cell lines can subsequently be generated, by fluorescent fusion-gene exchange. We propose that this biobrick collection may be distributed peer-to-peer as a stand-alone library, in addition to its distribution through the Registry of Standard Biological Parts (http://partsregistry.org/.

  14. Impact of conjugal transfer on the stability of IncP-1 plasmid pKJK5 in bacterial populations.

    Science.gov (United States)

    Bahl, Martin Iain; Hansen, Lars Hestbjerg; Sørensen, Søren J

    2007-01-01

    The intrinsic stability of IncP-1 plasmid pKJK5 was assessed in both an Escherichia coli and a Kluyvera sp. population maintained in bacterial mats and in liquid nutrient broth without selective pressure. A fluorescence tagging/flow cytometry approach was used to detect and quantify plasmid loss from populations harboring either conjugation-proficient or -deficient pKJK5 derivatives. The results show that the plasmid's ability to conjugate plays an important role in its stable maintenance in populations of both species. This effect was most pronounced in dense bacterial populations and to a far lesser extent during growth in liquid broth. Furthermore, conjugation-proficient plasmids were able to spread infectiously in the bacterial mats initiated with various ratios of plasmid-harboring cells, resulting in a nearly exclusively plasmid-harboring population.

  15. Indigenous plasmids in a production line of strains for penicillin G acylase derived from Escherichia coli W.

    Science.gov (United States)

    Sobotková, L; Grafková, J; Stĕpánek, V; Vacík, T; Maresová, H; Kyslík, P

    1999-01-01

    Three indigenous plasmids designated pRK1, pRK2 and pRK3 were identified among producers of penicillin G acylase (PGA) derived from the strain Escherichia coli W ATCC 9637. Their size and copy number (CN) in E. coli W were determined (kb; CN): pRK1 (80; 3.4), pRK2 (5.1; 71), and pRK3 (4.8; 13.7). Strain E. coli RE2 harboring these plasmids was used for selection of strains with reduced number of plasmids: the strain RE3 without plasmid pRK1 and the plasmid-less strain cERE3 were isolated. Indigenous plasmids did not code for the resistance determinants against 23 antibiotics and 10 heavy metals.

  16. The expression of a plasmid-specified exported protein causes structural plasmid instability in Bacillus subtilis

    NARCIS (Netherlands)

    Cordes, C.; Meima, R; Twiest, B; Kazemier, B; Venema, G; vanDijl, JM; Bron, S

    The rolling-circle plasmid pGP1 was used to study the effects of the expression of a plasmid-specified exported protein on structural plasmid stability in Bacillus subtilis. pGP1 contains a fusion between the Bacillus licheniformis penP gene, encoding a C-terminally truncated penicillinase, and the

  17. Antimicrobial susceptibility pattern and plasmid-mediated ...

    African Journals Online (AJOL)

    Background: Staphylococcal infections constitute problems to health care institutions. Its resistance to antibiotic has been associated with resistant plasmids (R-plasmid) that have the ability to mediate the production of drug inactivated enzymes such as â-lactamase. Method: Forty five Staphylococcus aureus (S. aureus) and ...

  18. Plasmid-encoded iron uptake systems

    NARCIS (Netherlands)

    Stork, M.; Di Lorenzo, Manuela

    2014-01-01

    Plasmids confer genetic information that benefits the bacterial cells containing them. In pathogenic bacteria, plasmids often harbor virulence determinants that enhance the pathogenicity of the bacterium. The ability to acquire iron in environments where it is limited, for instance the eukaryotic

  19. A convenient and rapid method for genetic transformation of E. coli with plasmids.

    Science.gov (United States)

    Chen, X; Guo, P; Xie, Z; Shen, P

    2001-12-01

    A convenient and rapid method for the genetic transformation of Escherichia coli with plasmids is proposed. By mixing the recipient cells and plasmid DNA and spreading them directly on selective medium plates containing Ca2+, the so-called 'plate transformation' could achieve almost the same transformation efficiency as the classical transformation method with calcium. The whole protocol takes only about 2 min, its simplicity compared favorably, not only to the usual protocol, but also to all other documented modifications.

  20. Effects of a recombinant gene expression on ColE1-like plasmid segregation in Escherichia coli.

    Science.gov (United States)

    Popov, Mladen; Petrov, Stefan; Nacheva, Genoveva; Ivanov, Ivan; Reichl, Udo

    2011-03-01

    Segregation of expression plasmids leads to loss of recombinant DNA from transformed bacterial cells due to the irregular distribution of plasmids between the daughter cells during cell division. Under non-selective conditions this segregational instability results in a heterogeneous population of cells, where the non-productive plasmid-free cells overgrow the plasmid-bearing cells thus decreasing the yield of recombinant protein. Amongst the factors affecting segregational plasmid instability are: the plasmid design, plasmid copy-number, host cell genotype, fermentation conditions etc. This study aims to investigate the influence of transcription and translation on the segregation of recombinant plasmids designed for constitutive gene expression in Escherichia coli LE392 at glucose-limited continuous cultivation. To this end a series of pBR322-based plasmids carrying a synthetic human interferon-gamma (hIFNγ) gene placed under the control of different regulatory elements (promoter and ribosome-binding sites) were used as a model. Bacterial growth and product formation kinetics of transformed E. coli LE392 cells cultivated continuously were described by a structured kinetic model proposed by Lee et al. (1985). The obtained results demonstrated that both transcription and translation efficiency strongly affected plasmid segregation. The segregation of plasmid having a deleted promoter did not exceed 5% after 190 h of cultivation. The observed high plasmid stability was not related with an increase in the plasmid copy-number. A reverse correlation between the yield of recombinant protein (as modulated by using different ribosome binding sites) and segregational plasmid stability (determined by the above model) was also observed. Switching-off transcription of the hIFNγ gene has a stabilising effect on ColE1-like plasmids against segregation, which is not associated with an increase in the plasmid copy-number. The increased constitutive gene expression has a

  1. Effects of a recombinant gene expression on ColE1-like plasmid segregation in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Ivanov Ivan

    2011-03-01

    Full Text Available Abstract Background Segregation of expression plasmids leads to loss of recombinant DNA from transformed bacterial cells due to the irregular distribution of plasmids between the daughter cells during cell division. Under non-selective conditions this segregational instability results in a heterogeneous population of cells, where the non-productive plasmid-free cells overgrow the plasmid-bearing cells thus decreasing the yield of recombinant protein. Amongst the factors affecting segregational plasmid instability are: the plasmid design, plasmid copy-number, host cell genotype, fermentation conditions etc. This study aims to investigate the influence of transcription and translation on the segregation of recombinant plasmids designed for constitutive gene expression in Escherichia coli LE392 at glucose-limited continuous cultivation. To this end a series of pBR322-based plasmids carrying a synthetic human interferon-gamma (hIFNγ gene placed under the control of different regulatory elements (promoter and ribosome-binding sites were used as a model. Results Bacterial growth and product formation kinetics of transformed E. coli LE392 cells cultivated continuously were described by a structured kinetic model proposed by Lee et al. (1985. The obtained results demonstrated that both transcription and translation efficiency strongly affected plasmid segregation. The segregation of plasmid having a deleted promoter did not exceed 5% after 190 h of cultivation. The observed high plasmid stability was not related with an increase in the plasmid copy-number. A reverse correlation between the yield of recombinant protein (as modulated by using different ribosome binding sites and segregational plasmid stability (determined by the above model was also observed. Conclusions Switching-off transcription of the hIFNγ gene has a stabilising effect on ColE1-like plasmids against segregation, which is not associated with an increase in the plasmid copy

  2. Genomic and functional characterization of qnr-encoding plasmids from municipal wastewater biosolid Klebsiella pneumoniae isolates

    Directory of Open Access Journals (Sweden)

    Ella eKaplan

    2015-12-01

    Full Text Available Municipal wastewater treatment facilities are considered to be hotspots for antibiotic resistance since they conjoin high densities of environmental and fecal bacteria with selective pressure in the form of sub-therapeutic concentrations of antibiotics. Discharged effluents and biosolids from these facilities can disseminate antibiotic resistant genes to terrestrial and aquatic environments, potentially contributing to the increasing global trend in antibiotic resistance. This phenomenon is especially pertinent when resistance genes are associated with mobile genetic elements such as conjugative plasmids, which can be transferred between bacterial phyla. Fluoroquinolones are among the most abundant antibiotic compounds detected in wastewater treatment facilities, especially in biosolids, where due to their hydrophobic properties they accumulate to concentrations that may exceed 40 mg/L. Although fluoroquinolone resistance is traditionally associated with mutations in the gyrA/topoisomerase IV genes, there is increasing evidence of plasmid-mediated quinolone resistance, which is primarily encoded on qnr genes. In this study, we sequenced seven qnr-harboring plasmids from a diverse collection of Klebsiella strains, isolated from dewatered biosolids from a large wastewater treatment facility in Israel. One of the plasmids, termed pKPSH-11XL was a large (185.4 kbp, multi-drug resistance, IncF-type plasmid that harbored qnrB and 10 additional antibiotic resistance genes that conferred resistance to 5 different antibiotic families. It was highly similar to the pKPN3-like plasmid family that has been detected in multidrug resistant clinical Klebsiella isolates. In contrast, the six additional plasmids were much smaller (7-9Kbp and harbored a qnrS -type gene. These plasmids were highly similar to each other and closely resembled pGNB2, a plasmid isolated from a German wastewater treatment facility. Comparative genome analyses of pKPSH-11XL and other p

  3. Factors affecting plasmid production in Escherichia coli from a resource allocation standpoint

    Directory of Open Access Journals (Sweden)

    Cunningham Drew S

    2009-05-01

    production; mutations that reduce acetate production would also be advantageous. The results further suggest that using some other means for plasmid selection than antibiotic resistance, or at least weakening the marker's expression, would be beneficial because it would allow more precursor metabolites, energy, and reducing power to be put toward plasmid production. Thus far, the impact of eliminating Pyk activity has been explored experimentally, with significantly higher plasmid yields resulting.

  4. The Standard European Vector Architecture (SEVA) plasmid toolkit.

    Science.gov (United States)

    Durante-Rodríguez, Gonzalo; de Lorenzo, Víctor; Martínez-García, Esteban

    2014-01-01

    The Standard European Vector Architecture (SEVA) toolkit is a simple and powerful resource for constructing optimal plasmid vectors based on a backbone and three interchangeable modules flanked by uncommon restriction sites. Functional modules encode several origins of replication, diverse antibiotic selection markers, and a variety of cargoes with different applications. The backbone and DNA modules have been minimized and edited for flaws in their sequence and/or functionality. A protocol for the utilization of the SEVA platform to construct transcriptional and translational fusions between a promoter under study (the arsenic-responsive Pars of Pseudomonas putida KT2440) and the reporter lacZ gene is described. The resulting plasmid collection was instrumental to measure and compare the β-galactosidase activity that report gene expression (i.e., transcription and translation) in different genetic backgrounds.

  5. Evaluating metabolic stress and plasmid stability in plasmid DNA production by Escherichia coli.

    Science.gov (United States)

    Silva, Filomena; Queiroz, João A; Domingues, Fernanda C

    2012-01-01

    In the context of recombinant DNA technology, the development of feasible and high-yielding plasmid DNA production processes has regained attention as more evidence for its efficacy as vectors for gene therapy and DNA vaccination arise. When producing plasmid DNA in Escherichia coli, a number of biological restraints, triggered by plasmid maintenance and replication as well as culture conditions are responsible for limiting final biomass and product yields. This termed "metabolic burden" can also cause detrimental effects on plasmid stability and quality, since the cell machinery is no longer capable of maintaining an active metabolism towards plasmid synthesis and the stress responses elicited by plasmid maintenance can also cause increased plasmid instability. The optimization of plasmid DNA production bioprocesses is still hindered by the lack of information on the host metabolic responses as well as information on plasmid instability. Therefore, systematic and on-line approaches are required not only to characterise this "metabolic burden" and plasmid stability but also for the design of appropriate metabolic engineering and culture strategies. The monitoring tools described to date rapidly evolve from laborious, off-line and at-line monitoring to online monitoring, at a time-scale that enables researchers to solve these bioprocessing problems as they occur. This review highlights major E. coli biological alterations caused by plasmid maintenance and replication, possible causes for plasmid instability and discusses the ability of currently employed bioprocess monitoring techniques to provide information in order to circumvent metabolic burden and plasmid instability, pointing out the possible evolution of these methods towards online bioprocess monitoring. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. A colony bank containing synthetic Col El hybrid plasmids representative of the entire E. coli genome.

    Science.gov (United States)

    Clarke, L; Carbon, J

    1976-09-01

    Using the poly(dA-dT) "connector" method (Lobbanand Kaiser, 1973), a population of annealed hybrid circular DNAs was constructed in vitro; each hybrid DNA circle contained one molecule of poly(dT)-tailed Col El-DNA (LRI) annealed to any one of a collection of poly(dA)-tailed linear DNA fragments, produced originally by shearing total E. coli DNA to an average size of 8.5 x 10(6) daltons. This annealed DNA preparation (12 mug) was used to transform an F+ recA E. coli strain (JA200), selecting transformants by their resistance to colicin El. A collection or "bank" pf pver 2000 colicin El-resistant clones was thereby obtained, 70% of which were shown to contain hybrid Col El DNA (E. coli) plasmids. This colony bank is large enough to include hybrid plasmids representative of the entire E. coli genome. Individual plasmids have been readily identified by replica mating the collection onto plates seeded with cultures of various F- auxotrophic recipients, selecting for complementation of the auxotrophic markers by F-mediated transfer of hybrid plasmids to the F- recipients. In this manner, over 80 hybrid Col El-DNA (E. coli), plasmid-bearing clones have been identified in the colony bank, and about 40 known E. coli genes have been tentatively assigned to these various plasmids. The hybrid plasmids are transferred efficiently from F+ donors to appropriate F- recipients. The use of this method to establish similar colony banks in E. coli containing hybrid plasmids representative of various simple eucaryotic genomes is discussed.

  7. Plasmid construction using recombination activity in the fission yeast Schizosaccharomyces pombe.

    Directory of Open Access Journals (Sweden)

    Ayako Chino

    Full Text Available BACKGROUND: Construction of plasmids is crucial in modern genetic manipulation. As of now, the common method for constructing plasmids is to digest specific DNA sequences with restriction enzymes and to ligate the resulting DNA fragments with DNA ligase. Another potent method to construct plasmids, known as gap-repair cloning (GRC, is commonly used in the budding yeast Saccharomyces cerevisiae. GRC makes use of the homologous recombination activity that occurs within the yeast cells. Due to its flexible design and efficiency, GRC has been frequently used for constructing plasmids with complex structures as well as genome-wide plasmid collections. Although there have been reports indicating GRC feasibility in the fission yeast Schizosaccharomyces pombe, this species is not commonly used for GRC as systematic studies of reporting GRC efficiency in S. pombe have not been performed till date. METHODOLOGY/PRINCIPAL FINDINGS: We investigated GRC efficiency in S. pombe in this study. We first showed that GRC was feasible in S. pombe by constructing a plasmid that contained the LEU2 auxotrophic marker gene in vivo and showed sufficient efficiency with short homology sequences (>25 bp. No preference was shown for the sequence length from the cut site in the vector plasmid. We next showed that plasmids could be constructed in a proper way using 3 DNA fragments with 70% efficiency without any specific selections being made. The GRC efficiency with 3 DNA fragments was dramatically increased >95% in lig4Delta mutant cell, where non-homologous end joining is deficient. Following this approach, we successfully constructed plasmid vectors with leu1+, ade6+, his5+, and lys1+ markers with the low-copy stable plasmid pDblet as a backbone by applying GRC in S. pombe. CONCLUSIONS/SIGNIFICANCE: We concluded that GRC was sufficiently feasible in S. pombe for genome-wide gene functional analysis as well as for regular plasmid construction. Plasmids with different

  8. Plasmid and chromosome segregation in prokaryotes

    DEFF Research Database (Denmark)

    Møller-Jensen, Jakob; Bugge Jensen, Rasmus; Gerdes, Kenn

    2000-01-01

    Recent major advances in the understanding of prokaryotic DNA segregation have been achieved by using fluorescence microscopy to visualize the localization of cellular components. Plasmids and bacterial chromosomes are partitioned in a highly dynamic fashion, suggesting the presence of a mitotic......-like apparatus in prokaryotes. The identification of chromosomal homologues of the well-characterized plasmid partitioning genes indicates that there could be a general mechanism of bacterial DNA partitioning. Udgivelsesdato: July 1...

  9. Curing of plasmid pXO1 from Bacillus anthracis using plasmid incompatibility.

    Directory of Open Access Journals (Sweden)

    Xiankai Liu

    Full Text Available The large plasmid pXO1 encoding the anthrax toxin is important for the virulence of Bacillus anthracis. It is essential to cure pXO1 from B. anthracis to evaluate its role in the pathogenesis of anthrax infection. Because conventional methods for curing plasmids (e.g., curing agents or growth at elevated temperatures can induce mutations in the host chromosomal DNA, we developed a specific and reliable method to eliminate pXO1 from B. anthracis using plasmid incompatibility. Three putative replication origins of pXO1 were inserted into a temperature-sensitive plasmid to generate three incompatible plasmids. One of the three plasmids successfully eliminated the large plasmid pXO1 from B. anthracis vaccine strain A16R and wild type strain A16. These findings provided additional information about the replication/partitioning of pXO1 and demonstrated that introducing a small incompatible plasmid can generate plasmid-cured strains of B. anthracis without inducing spontaneous mutations in the host chromosome.

  10. Tracking F plasmid TraI relaxase processing reactions provides insight into F plasmid transfer

    OpenAIRE

    Dostál, Lubomír; Shao, Sichen; Schildbach, Joel F.

    2010-01-01

    Early in F plasmid conjugative transfer, the F relaxase, TraI, cleaves one plasmid strand at a site within the origin of transfer called nic. The reaction covalently links TraI Tyr16 to the 5′-ssDNA phosphate. Ultimately, TraI reverses the cleavage reaction to circularize the plasmid strand. The joining reaction requires a ssDNA 3′-hydroxyl; a second cleavage reaction at nic, regenerated by extension from the plasmid cleavage site, may generate this hydroxyl. Here we confirm that TraI is tran...

  11. Behavior of IncQ Plasmids in Agrobacterium tumefaciens

    NARCIS (Netherlands)

    Hille, Jacques; Schilperoort, Rob

    1981-01-01

    Inc-Q plasmids were introduced into Agrobacterium tumefuciens, by mobilization from Escherichia coli with an Inc-P plasmid, or by transformation with purified plasmid DNA. It was found that they were stably maintained. The presence of an Inc-Q plasmid did not influence tumorigenicity. These results

  12. Clostridium perfringens type A–E toxin plasmids

    Science.gov (United States)

    Freedman, John C.; Theoret, James R.; Wisniewski, Jessica A.; Uzal, Francisco A.; Rood, Julian I.; McClane, Bruce A.

    2014-01-01

    Clostridium perfringens relies upon plasmid-encoded toxin genes to cause intestinal infections. These toxin genes are associated with insertion sequences that may facilitate their mobilization and transfer, giving rise to new toxin plasmids with common backbones. Most toxin plasmids carry a transfer of clostridial plasmids locus mediating conjugation, which likely explains the presence of similar toxin plasmids in otherwise unrelated C. perfringens strains. The association of many toxin genes with insertion sequences and conjugative plasmids provides virulence flexibility when causing intestinal infections. However, incompatibility issues apparently limit the number of toxin plasmids maintained by a single cell. PMID:25283728

  13. Improved heterologous erythromycin A production through expression plasmid re-design.

    Science.gov (United States)

    Jiang, Ming; Fang, Lei; Pfeifer, Blaine A

    2013-01-01

    The production of complex compounds from technically convenient microorganisms is an emerging route to the chemical diversity found in the surrounding environment. In this study, the antibiotic compound erythromycin A is produced from Escherichia coli as an alternative to native production through the soil bacterium Saccharopolyspora erythraea. By doing so, there is an opportunity to apply and refine engineering strategies for the manipulation of the erythromycin biosynthetic pathway and for the overproduction of this and other complex natural compounds. Previously, E. coli-derived production was enabled by the introduction of the entire erythromycin pathway (20 genes total) using separately selectable expression plasmids which demonstrated negative effects on final biosynthesis through metabolic burden and plasmid instability. In this study, improvements to final production were made by altering the design of the expression plasmids needed for biosynthetic pathway introduction. Specifically, the total number of genes and plasmids was pruned to reduce both metabolic burden and plasmid instability. Further, a comparison was conducted between species-specific (E. coli vs. S. coelicolor) protein chaperonins. Results indicate improvements in growth and plasmid retention metrics. The newly designed expression platform also increased erythromycin A production levels 5-fold. In conclusion, the steps outlined in this report were designed to upgrade the E. coli erythromycin A production system, led to improved final compound titers, and suggest additional forms of pathway engineering to further improve results from heterologous production attempts. © 2013 American Institute of Chemical Engineers.

  14. Multiple antimicrobial resistance region of a putative virulence plasmid from an Escherichia coli isolate incriminated in avian colibacillosis.

    Science.gov (United States)

    Johnson, Timothy J; Skyberg, Jerod; Nolan, Lisa K

    2004-01-01

    Infections due to Escherichia coli have been costly to the poultry industry, but the exact virulence mechanisms used by these organisms to cause disease in birds remain undefined. Several factors have been shown to contribute to the virulence of avian E. coli, and many of the genes encoding these factors have been found on large conjugative plasmids. Because of the occurrence of antimicrobial resistance genes on these same plasmids, it is possible that the use of antimicrobial agents may select for persistence of E. coli containing such plasmids. In the present study, a subclone of one of these plasmids was identified as likely containing some virulence and antimicrobial resistance genes. In an effort to better understand the relationship between virulence and resistance in these plasmids, this subclone was sequenced and the sequence analyzed. Analysis of this 30-kilobase (kb) region of plasmid pTJ100 revealed a mosaic of virulence genes, insertion sequences, antimicrobial resistance cassettes, and their remnants. Many of the resistance genes found in this region were expressed under laboratory conditions, indicating that certain antimicrobial agents, including disinfectants, antibiotics, and heavy metals, could promote selection of E. coli containing such plasmids in the production environment. Also, analysis of the G + C content of this clone indicated that it is the likely consequence of a complex evolution with components derived from various sources. The occurrence of many mobile elements in conjunction with antimicrobial resistance and virulence genes in this 30-kb region may indicate that the genetic constitution of the clone is quite plastic. Although further study will be required to better define this plasmid's role in avian E. coli virulence, the sequence described here is, to our knowledge, the longest known contiguous sequence of a ColV plasmid yet presented. Analysis of this sequence indicates that this clone and its parent plasmid may be important to

  15. Development and host compatibility of plasmids for two important ruminant pathogens, Mycoplasma bovis and Mycoplasma agalactiae.

    Directory of Open Access Journals (Sweden)

    Shukriti Sharma

    Full Text Available Mycoplasma bovis is a cause of pneumonia, mastitis, arthritis and otitis media in cattle throughout the world. However, despite its clinical significance, there is a paucity of tools to genetically manipulate it, impeding our capacity to further explore the molecular basis of its virulence. To address this limitation, we developed a series of homologous and heterologous replicable plasmids from M. bovis and M. agalactiae. The shortest replicable oriC plasmid based on the region downstream of dnaA in M. bovis was 247 bp and contained two DnaA boxes, while oriC plasmids based on the region downstream of dnaA in M. agalactiae strains 5632 and PG2 were 219 bp and 217 bp in length, respectively, and contained only a single DnaA box. The efficiency of transformation in M. bovis and M. agalactiae was inversely correlated with the size of the oriC region in the construct, and, in general, homologous oriC plasmids had a higher transformation efficiency than heterologous oriC plasmids. The larger pWholeoriC45 and pMM21-7 plasmids integrated into the genomic oriC region of M. bovis, while the smaller oriC plasmids remained extrachromosomal for up to 20 serial passages in selective media. Although specific gene disruptions were not be achieved in M. bovis in this study, the oriC plasmids developed here could still be useful as tools in complementation studies and for expression of exogenous genes in both M. bovis and M. agalactiae.

  16. Prevalence and characterization of plasmids carrying sulfonamide resistance genes among Escherichia coli from pigs, pig carcasses and human.

    Science.gov (United States)

    Wu, Shuyu; Dalsgaard, Anders; Hammerum, Anette M; Porsbo, Lone J; Jensen, Lars B

    2010-07-30

    Sulfonamide resistance is very common in Escherichia coli. The aim of this study was to characterize plasmids carrying sulfonamide resistance genes (sul1, sul2 and sul3) in E. coli isolated from pigs and humans with a specific objective to assess the genetic diversity of plasmids involved in the mobility of sul genes. A total of 501 E. coli isolates from pig feces, pig carcasses and human stools were tested for their susceptibility to selected antimicrobial. Multiplex PCR was conducted to detect the presence of three sul genes among the sulfonamide-resistant E. coli isolates. Fifty-seven sulfonamide-resistant E. coli were selected based on presence of sul resistance genes and subjected to conjugation and/or transformation experiments. S1 nuclease digestion followed by pulsed-field gel electrophoresis was used to visualize and determine the size of plasmids. Plasmids carrying sul genes were characterized by PCR-based replicon typing to allow a comparison of the types of sul genes, the reservoir and plasmid present. A total of 109/501 isolates exhibited sulfonamide resistance. The relative prevalences of sul genes from the three reservoirs (pigs, pig carcasses and humans) were 65%, 45% and 12% for sul2, sul1, and sul3, respectively. Transfer of resistance through conjugation was observed in 42/57 isolates. Resistances to streptomycin, ampicillin and trimethoprim were co-transferred in most strains. Class 1 integrons were present in 80% of sul1-carrying plasmids and 100% of sul3-carrying plasmids, but only in 5% of sul2-carrying plasmids. The sul plasmids ranged from 33 to 160-kb in size and belonged to nine different incompatibility (Inc) groups: FII, FIB, I1, FIA, B/O, FIC, N, HI1 and X1. IncFII was the dominant type in sul2-carrying plasmids (52%), while IncI1 was the most common type in sul1 and sul3-carrying plasmids (33% and 45%, respectively). Multireplicons were found associated with all three sul genes. Sul genes were distributed widely in E. coli isolated

  17. Prevalence and characterization of plasmids carrying sulfonamide resistance genes among Escherichia coli from pigs, pig carcasses and human

    Directory of Open Access Journals (Sweden)

    Hammerum Anette M

    2010-07-01

    Full Text Available Abstract Background Sulfonamide resistance is very common in Escherichia coli. The aim of this study was to characterize plasmids carrying sulfonamide resistance genes (sul1, sul2 and sul3 in E. coli isolated from pigs and humans with a specific objective to assess the genetic diversity of plasmids involved in the mobility of sul genes. Methods A total of 501 E. coli isolates from pig feces, pig carcasses and human stools were tested for their susceptibility to selected antimicrobial. Multiplex PCR was conducted to detect the presence of three sul genes among the sulfonamide-resistant E. coli isolates. Fifty-seven sulfonamide-resistant E. coli were selected based on presence of sul resistance genes and subjected to conjugation and/or transformation experiments. S1 nuclease digestion followed by pulsed-field gel electrophoresis was used to visualize and determine the size of plasmids. Plasmids carrying sul genes were characterized by PCR-based replicon typing to allow a comparison of the types of sul genes, the reservoir and plasmid present. Results A total of 109/501 isolates exhibited sulfonamide resistance. The relative prevalences of sul genes from the three reservoirs (pigs, pig carcasses and humans were 65%, 45% and 12% for sul2, sul1, and sul3, respectively. Transfer of resistance through conjugation was observed in 42/57 isolates. Resistances to streptomycin, ampicillin and trimethoprim were co-transferred in most strains. Class 1 integrons were present in 80% of sul1-carrying plasmids and 100% of sul3-carrying plasmids, but only in 5% of sul2-carrying plasmids. The sul plasmids ranged from 33 to 160-kb in size and belonged to nine different incompatibility (Inc groups: FII, FIB, I1, FIA, B/O, FIC, N, HI1 and X1. IncFII was the dominant type in sul2-carrying plasmids (52%, while IncI1 was the most common type in sul1 and sul3-carrying plasmids (33% and 45%, respectively. Multireplicons were found associated with all three sul genes

  18. Characterization of a Cryptic and Intriguing Low Molecular Weight Plasmid.

    Science.gov (United States)

    Carneiro, Lilian C; Mendes, Paulo Vinicius C; Silva, Silvana P; Souza, Guilherme R L; Bataus, Luiz Artur M

    2016-03-01

    The complete nucleotide sequence of cryptic plasmid pVCM04 isolated from Salmonella enterica serovar Enteritidis was determined and analyzed. pVCM04 contains 3853 bp with 53.6 % GC content and has twelve ORFs with more than 50 amino acids. Five of these sequences showed homology with replication and mobilization proteins. ORF1 and ORF2 showed homology with replication proteins, while ORFs 3-5 showed homology with mobilization proteins. The pVCM04 possesses a region associated with the theta-type replication mechanism. BLASTn search analysis revealed unexpectedly no similarity with sequences deposited in GenBank. The nucleotide sequence of pVCM04 can be divided into two arms: the region between nucleotides 552-1774 (encoding RepA and RepB) and the region between nucleotides 1775-3853 (encoding MobA, MobB and MobC). Codon bias pattern is distinct between mobA and repA, so the program Modeltest was used to select the best evolutionary model to study these genes. The result of ModelTest (model GTR+G for mobA and model HKY+G for repA) suggests that these genes would be subject to different selective pressures. Considering the differences in the codon usage, the selection of two different evolutionary models, and the absence of plasmids with homology to pVCM04 in GenBank, we believe that pVCM04 is a chimeric molecule and represents a new plasmid lineage.

  19. High-level plasmid-mediated gentamicin resistance and pheromone response of plasmids present in clinical isolates of Enterococcus faecalis.

    OpenAIRE

    Shiojima, M; Tomita, H; Tanimoto, K; Fujimoto, S; Ike, Y

    1997-01-01

    Eleven pheromone-responding plasmids encoding erythromycin or gentamicin resistance were isolated from multiresistant clinical Enterococcus faecalis isolates. The plasmids were classified into six types with respect to their pheromone responses. The three erythromycin resistance plasmids responded to different pheromones. Of the eight gentamicin resistance plasmids, four plasmids responded to same pheromone. Southern hybridization studies showed that the genes involved in regulation of the ph...

  20. Isolation of a conjugative F-like plasmid from a multidrug-resistant Escherichia coli strain CM6 using tandem shock wave-mediated transformation.

    Science.gov (United States)

    Soto-Alonso, G; Cruz-Medina, J A; Caballero-Pérez, J; Arvizu-Hernández, I; Ávalos-Esparza, L M; Cruz-Hernández, A; Romero-Gómez, S; Rodríguez, A L; Pastrana-Martínez, X; Fernández, F; Loske, A M; Campos-Guillén, J

    2015-07-01

    Genetic characterization of plasmids from bacterial strains provides insight about multidrug resistance. Ten wild type Escherichia coli (E. coli) strains isolated from cow fecal samples were characterized by their antibiotic resistance profile, plasmid patterns and three different identification methods. From one of the strains, a fertility factor-like plasmid was replicated using tandem shock wave-mediated transformation. Underwater shock waves with a positive pressure peak of up to approximately 40 MPa, followed by a pressure trough of approximately -19 MPa were generated using an experimental piezoelectric shock wave source. Three different shock wave energies and a fixed delay of 750 μs were used to study the relationship between energy and transformation efficiency (TE), as well as the influence of shock wave energy on the integrity of the plasmid. Our results showed that the mean shock wave-mediated TE and the integrity of the large plasmid (~70 kb) were reduced significantly at the energy levels tested. The sequencing analysis of the plasmid revealed a high identity to the pHK17a plasmid, including the replication system, which was similar to the plasmid incompatibility group FII. It also showed that it carried an extended spectrum beta-lactamase gene, ctx-m-14. Furthermore, diverse genes for the conjugative mechanism were identified. Our results may be helpful in improving methodologies for conjugative plasmid transfer and directly selecting the most interesting plasmids from environmental samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Distribution of small native plasmids in Streptococcus pyogenes in India.

    Science.gov (United States)

    Bergmann, René; Nerlich, Andreas; Chhatwal, Gursharan S; Nitsche-Schmitz, D Patric

    2014-05-01

    Complete characterization of a Streptococcus pyogenes population from a defined geographic region comprises information on the plasmids that circulate in these bacteria. Therefore, we determined the distribution of small plasmids (pyogenes isolates from India, where diversity of strains and incidence rates of S. pyogenes infections are high. The collection comprised 77 emm-types. For plasmid detection and discrimination, we developed PCRs for different plasmid replication initiation protein genes, the putative repressor gene copG and bacteriocin genes dysA and scnM57. Plasmid distribution was limited to 13 emm-types. Co-detection analysis using aforementioned PCRs revealed four distinct plasmid sub-types, two of which were previously unknown. Representative plasmids pA852 and pA996 of the two uncharacterized plasmid sub-types were sequenced. These two plasmids could be assigned to the pMV158 and the pC194/pUB110 family of rolling-circle plasmids, respectively. The majority of small plasmids found in India belonged to the two newly characterized sub-types, with pA852- and pA996-like plasmids amounting to 42% and 22% of all detected plasmids, respectively. None of the detected plasmids coded for a known antibiotic resistance gene. Instead, all of the four plasmid sub-types carried known or potential bacteriocin genes. These genes may have influence on the evolutionary success of certain S. pyogenes genotypes. Notably, pA852-like plasmids were found in all isolates of the most prevalent emm-type 11.0. Together, a priori fitness of this genotype and increased fitness due to the acquired plasmids may have rendered type emm11.0 successful and caused the prevalence of pA852-like plasmids in India. Copyright © 2013 Elsevier GmbH. All rights reserved.

  2. Persistence of Antibiotic Resistance Plasmids in Biofilms

    Science.gov (United States)

    2014-10-01

    potential of supporting future research on therapeutic agents targeting maintenance and spread of MDR plasmids. Such therapies will ultimately be...in! the! evolution! of! plasmid! stability! in! biofilms!is!critical!in!our!search!for!targets!for!alternative! therapeutic !approaches.!!The!goal! of...Estimates[days=="D0"] if(!length(baselines)) stop("No data were present for day 0. Aborting .") out<-x[0,1:2] for(i in unique(days)){ if(i

  3. Tracking F plasmid TraI relaxase processing reactions provides insight into F plasmid transfer.

    Science.gov (United States)

    Dostál, Lubomír; Shao, Sichen; Schildbach, Joel F

    2011-04-01

    Early in F plasmid conjugative transfer, the F relaxase, TraI, cleaves one plasmid strand at a site within the origin of transfer called nic. The reaction covalently links TraI Tyr16 to the 5'-ssDNA phosphate. Ultimately, TraI reverses the cleavage reaction to circularize the plasmid strand. The joining reaction requires a ssDNA 3'-hydroxyl; a second cleavage reaction at nic, regenerated by extension from the plasmid cleavage site, may generate this hydroxyl. Here we confirm that TraI is transported to the recipient during transfer. We track the secondary cleavage reaction and provide evidence it occurs in the donor and F ssDNA is transferred to the recipient with a free 3'-hydroxyl. Phe substitutions for four Tyr within the TraI active site implicate only Tyr16 in the two cleavage reactions required for transfer. Therefore, two TraI molecules are required for F plasmid transfer. Analysis of TraI translocation on various linear and circular ssDNA substrates supports the assertion that TraI slowly dissociates from the 3'-end of cleaved F plasmid, likely a characteristic essential for plasmid re-circularization.

  4. Prevalence and characterization of plasmids carrying sulfonamide resistance genes among Escherichia coli from pigs, pig carcasses and human

    DEFF Research Database (Denmark)

    Shuyu, Wu; Dalsgaard, A.; Hammerum, A. M.

    2010-01-01

    Background Sulfonamide resistance is very common in Escherichia coli. The aim of this study was to characterize plasmids carrying sulfonamide resistance genes (sul1, sul2 and sul3) in E. coli isolated from pigs and humans with a specific objective to assess the genetic diversity of plasmids...... isolates. Fifty-seven sulfonamide-resistant E. coli were selected based on presence of sul resistance genes and subjected to conjugation and/or transformation experiments. S1 nuclease digestion followed by pulsed-field gel electrophoresis was used to visualize and determine the size of plasmids. Plasmids...... involved in the mobility of sul genes. Methods A total of 501 E. coli isolates from pig feces, pig carcasses and human stools were tested for their susceptibility to selected antimicrobial. Multiplex PCR was conducted to detect the presence of three sul genes among the sulfonamide-resistant E. coli...

  5. A conjugative 38 kB plasmid is present in multiple subspecies of Xylella fastidiosa.

    Science.gov (United States)

    Rogers, Elizabeth E; Stenger, Drake C

    2012-01-01

    A ≈ 38kB plasmid (pXF-RIV5) was present in the Riv5 strain of Xylella fastidiosa subsp. multiplex isolated from ornamental plum in southern California. The complete nucleotide sequence of pXF-RIV5 is almost identical to that of pXFAS01 from X. fastidiosa subsp. fastidiosa strain M23; the two plasmids vary at only 6 nucleotide positions. BLAST searches and phylogenetic analyses indicate pXF-RIV5 and pXFAS01 share some similarity to chromosomal and plasmid (pXF51) sequences of X. fastidiosa subsp. pauca strain 9a5c and more distant similarity to plasmids from a wide variety of bacteria. Both pXF-RIV5 and pXFAS01 encode homologues of a complete Type IV secretion system involved in conjugation and DNA transfer among bacteria. Mating pair formation proteins (Trb) from Yersinia pseudotuberculosis IP31758 are the mostly closely related non-X. fastidiosa proteins to most of the Trb proteins encoded by pXF-RIV5 and pXFAS01. Unlike many bacterial conjugative plasmids, pXF-RIV5 and pXFAS01 do not carry homologues of known accessory modules that confer selective advantage on host bacteria. However, both plasmids encode seven hypothetical proteins of unknown function and possess a small transposon-associated region encoding a putative transposase and associated factor. Vegetative replication of pXF-RIV5 and pXFAS01 appears to be under control of RepA protein and both plasmids have an origin of DNA replication (oriV) similar to that of pRP4 and pR751 from Escherichia coli. In contrast, conjugative plasmids commonly encode TrfA and have an oriV similar to those found in IncP-1 incompatibility group plasmids. The presence of nearly identical plasmids in single strains from two distinct subspecies of X. fastidiosa is indicative of recent horizontal transfer, probably subsequent to the introduction of subspecies fastidiosa to the United States in the late 19(th) century.

  6. A conjugative 38 kB plasmid is present in multiple subspecies of Xylella fastidiosa.

    Directory of Open Access Journals (Sweden)

    Elizabeth E Rogers

    Full Text Available A ≈ 38kB plasmid (pXF-RIV5 was present in the Riv5 strain of Xylella fastidiosa subsp. multiplex isolated from ornamental plum in southern California. The complete nucleotide sequence of pXF-RIV5 is almost identical to that of pXFAS01 from X. fastidiosa subsp. fastidiosa strain M23; the two plasmids vary at only 6 nucleotide positions. BLAST searches and phylogenetic analyses indicate pXF-RIV5 and pXFAS01 share some similarity to chromosomal and plasmid (pXF51 sequences of X. fastidiosa subsp. pauca strain 9a5c and more distant similarity to plasmids from a wide variety of bacteria. Both pXF-RIV5 and pXFAS01 encode homologues of a complete Type IV secretion system involved in conjugation and DNA transfer among bacteria. Mating pair formation proteins (Trb from Yersinia pseudotuberculosis IP31758 are the mostly closely related non-X. fastidiosa proteins to most of the Trb proteins encoded by pXF-RIV5 and pXFAS01. Unlike many bacterial conjugative plasmids, pXF-RIV5 and pXFAS01 do not carry homologues of known accessory modules that confer selective advantage on host bacteria. However, both plasmids encode seven hypothetical proteins of unknown function and possess a small transposon-associated region encoding a putative transposase and associated factor. Vegetative replication of pXF-RIV5 and pXFAS01 appears to be under control of RepA protein and both plasmids have an origin of DNA replication (oriV similar to that of pRP4 and pR751 from Escherichia coli. In contrast, conjugative plasmids commonly encode TrfA and have an oriV similar to those found in IncP-1 incompatibility group plasmids. The presence of nearly identical plasmids in single strains from two distinct subspecies of X. fastidiosa is indicative of recent horizontal transfer, probably subsequent to the introduction of subspecies fastidiosa to the United States in the late 19(th century.

  7. An Enterobacter plasmid as a new genetic background for the transposon Tn1331

    Directory of Open Access Journals (Sweden)

    Alavi MR

    2011-11-01

    Full Text Available Mohammad R Alavi1,2, Vlado Antonic2, Adrien Ravizee1, Peter J Weina3, Mina Izadjoo1,2, Alexander Stojadinovic21Division of Wound Biology and Translational Research, Armed Forces Institute of Pathology and American Registry of Pathology, Washington DC, 2Combat Wound Initiative Program, Walter Reed Army Medical Center, Washington DC, 3The Walter Reed Army Institute of Research, Silver Spring, MD, USABackground: Genus Enterobacter includes important opportunistic nosocomial pathogens that could infect complex wounds. The presence of antibiotic resistance genes in these microorganisms represents a challenging clinical problem in the treatment of these wounds. In the authors’ screening of antibiotic-resistant bacteria from complex wounds, an Enterobacter species was isolated that harbors antibiotic-resistant plasmids conferring resistance to Escherichia coli. The aim of this study was to identify the resistance genes carried by one of these plasmids.Methods: The plasmids from the Enterobacter isolate were propagated in E. coli and one of the plasmids, designated as pR23, was sequenced by the Sanger method using fluorescent dye-terminator chemistry on a genetic analyzer. The assembled sequence was annotated by search of the GenBank database.Results: Plasmid pR23 is composed of the transposon Tn1331 and a backbone plasmid that is identical to the plasmid pPIGDM1 from Enterobacter agglomerans. The multidrug-resistance transposon Tn1331, which confers resistance to aminoglycoside and beta lactam antibiotics, has been previously isolated only from Klebsiella. The Enterobacter plasmid pPIGDM1, which carries a ColE1-like origin of replication and has no apparent selective marker, appears to provide a backbone for propagation of Tn1331 in Enterobacter. The recognition sequence of Tn1331 transposase for insertion into pPIGDM1 is the pentanucleotide TATTA, which occurs only once throughout the length of this plasmid.Conclusion: Transposition of Tn1331 into

  8. Stress responses and replication of plasmids in bacterial cells

    Directory of Open Access Journals (Sweden)

    Wegrzyn Alicja

    2002-05-01

    Full Text Available Abstract Plasmids, DNA (or rarely RNA molecules which replicate in cells autonomously (independently of chromosomes as non-essential genetic elements, play important roles for microbes grown under specific environmental conditions as well as in scientific laboratories and in biotechnology. For example, bacterial plasmids are excellent models in studies on regulation of DNA replication, and their derivatives are the most commonly used vectors in genetic engineering. Detailed mechanisms of replication initiation, which is the crucial process for efficient maintenance of plasmids in cells, have been elucidated for several plasmids. However, to understand plasmid biology, it is necessary to understand regulation of plasmid DNA replication in response to different environmental conditions in which host cells exist. Knowledge of such regulatory processes is also very important for those who use plasmids as expression vectors to produce large amounts of recombinant proteins. Variable conditions in large-scale fermentations must influence replication of plasmid DNA in cells, thus affecting the efficiency of recombinant gene expression significantly. Contrary to extensively investigated biochemistry of plasmid replication, molecular mechanisms of regulation of plasmid DNA replication in response to various environmental stress conditions are relatively poorly understood. There are, however, recently published studies that add significant data to our knowledge on relations between cellular stress responses and control of plasmid DNA replication. In this review we focus on plasmids derived from bacteriophage λ that are among the best investigated replicons. Nevertheless, recent results of studies on other plasmids are also discussed shortly.

  9. Gene expression system in green sulfur bacteria by conjugative plasmid transfer.

    Directory of Open Access Journals (Sweden)

    Chihiro Azai

    Full Text Available Gene transfer and expression systems in green sulfur bacteria were established by bacterial conjugation with Escherichia coli. Conjugative plasmid transfer from E. coli S17-1 to a thermophilic green sulfur bacterium, Chlorobaculum tepidum (formerly Chlorobium tepidum WT2321, was executed with RSF1010-derivative broad-host-range plasmids, named pDSK5191 and pDSK5192, that confer erythromycin and streptomycin/spectinomycin resistance, respectively. The transconjugants harboring these plasmids were reproducibly obtained at a frequency of approximately 10(-5 by selection with erythromycin and a combination of streptomycin and spectinomycin, respectively. These plasmids were stably maintained in C. tepidum cells in the presence of these antibiotics. The plasmid transfer to another mesophilic green sulfur bacterium, C. limnaeum (formerly Chlorobium phaeobacteroides RK-j-1, was also achieved with pDSK5192. The expression plasmid based on pDSK5191 was constructed by incorporating the upstream and downstream regions of the pscAB gene cluster on the C. tepidum genome, since these regions were considered to include a constitutive promoter and a ρ-independent terminator, respectively. Growth defections of the ∆cycA and ∆soxB mutants were completely rescued after introduction of pDSK5191-cycA and -soxB that were designed to express their complementary genes. On the other hand, pDSK5191-6xhis-pscAB, which incorporated the gene cluster of 6xhis-pscA and pscB, produced approximately four times more of the photosynthetic reaction center complex with His-tagged PscA as compared with that expressed in the genome by the conventional natural transformation method. This expression system, based on conjugative plasmid, would be applicable to general molecular biological studies of green sulfur bacteria.

  10. Plasmids in methanotrophic bacteria: isolation, characterization and DNA hybridization analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lidstrom, M.E.; Wopat, A.E.

    1984-01-01

    Ten strains of obligate methanotrophs were screened for the presence of plasmid DNA using a variety of methods. Plasmids were detected in all strains except Methylococcus capsulatus Bath. No significant similarity between plasmids was observed with respect to size or restriction digest patterns except for three strains of Methylosinus trichosporium, which appeared to contain the same three plasmids. Nitrocellulose filter hybridization revealed that the plasmid DNA from the M. trichosporium strains shared a small region of homology with the plasmid DNA from Methylosinus sporium 5. All of the plasmids remain cryptic. As the first step in characterization, a restriction digest map of the 55 kb plasmid found in Methylomonas albus BG8 was constructed. 22 references, 4 figures, 3 tables.

  11. Plasmids in methanotrophic bacteria: isolation, characterization and DNA hybridization analysis.

    Science.gov (United States)

    Lidstrom, M E; Wopat, A E

    1984-11-01

    Ten strains of obligate methanotrophs were screened for the presence of plasmid DNA using a variety of methods. Plasmids were detected in all strains except Methylococcus capsulatus Bath. No significant similarity between plasmids was observed with respect to size or restriction digest patterns except for three strains of Methylosinus trichosporium, which appeared to contain the same three plasmids. Nitrocellulose filter hybridization revealed that the plasmid DNA from the M. trichosporium strains shared a small region of homology with the plasmid DNA from Methylosinus sporium 5. All of the plasmids remain cryptic. As the first step in characterization, a restriction digest map of the 55 kb plasmid found in Methylomonas albus BG8 was constructed.

  12. Reduced Immunogenicity of DNA Vaccine Plasmids in Mixtures

    National Research Council Canada - National Science Library

    Sedegah, M; Charoenvit, Y; Minh, L; Belmonte, M; Majam, V. F; Abot, S; Ganeshan, H; Kumar, S; Bacon, D. J; Stowers, A; Narum, D. L; Carucci, D. J; Rogers, W. O

    2004-01-01

    We measured the ability of nine DNA vaccine plasmids encoding candidate malaria vaccine antigens to induce antibodies and interferon-gamma responses when delivered alone or in a mixture containing all nine plasmids...

  13. Plasmid Diversity and Horizontal Transfer in Marine Sediment Microbial Communities

    National Research Council Canada - National Science Library

    Sobecky, Patricia

    2002-01-01

    .... While plasmid exchange is an important mechanism by which bacterial populations can evolve and adapt, there remains a lack of information regarding the role of horizontal plasmid-mediated transfer...

  14. Construction of mammary gland specific expression plasmid pIN ...

    African Journals Online (AJOL)

    DR. NJ TONUKARI

    2012-04-03

    ). In order to verify plasmid bioactivity, plasmid pIN was transiently transfected into human breast cancer cell line Bcap-37 (Zhang et al.,. 2009). Quantitative PCR results showed that pIN could be transcribed successfully in ...

  15. Plasmid mediated quinolone resistance in Enterobacteriaceae

    NARCIS (Netherlands)

    Veldman, K.T.; LS Klinisch Onderzoek Wagenaar

    2014-01-01

    This thesis describes the occurrence of Plasmid Mediated Quinolone Resistance (PMQR) in Salmonella and E. coli from The Netherlands and other European countries. Furthermore, the genetic background of these genes was characterized. Fluoroquinolones are widely used antibiotics in both human and

  16. antimicrobial susceptibility and plasmids from escherichia coli

    African Journals Online (AJOL)

    2001-10-02

    Oct 2, 2001 ... 78 No. IO October 200]. ANTIMICROBIAL SUSCEPTIBILITY AND PLASMIDS FROM ESCHERICHIA COLI ISOLATED FROM RATS. FM. Gakuya, BVM, MSc, Field Veterinarian, Kenya Wildlife Services, M.N. Kyule, BVM, ... Request for reprints to: Dr FM. ... profile index (API) 20E strips (Bio Merieux, Marcy~l?

  17. Deciphering conjugative plasmid permissiveness in wastewater microbiomes

    DEFF Research Database (Denmark)

    Jacquiod, Samuel Jehan Auguste; Brejnrod, Asker Daniel; Milani, Stefan Morberg

    2017-01-01

    inlet sewage and outlet treated water using the broad-host range IncP-1 conjugative plasmid, pKJK5. A thorough molecular approach coupling metagenomes to 16S rRNA DNA/cDNA amplicon sequencing was established to characterize microbiomes using the ecological concept of functional response groups. A broad...

  18. Optimization of plasmid electrotransformation into Escherichia coli ...

    African Journals Online (AJOL)

    Application of statistical methods to determine the appropriate processes have been suggested for genetic engineering and biotechnology technique such as electroporation. This study explains the use of Taguchi statistical method to optimize the conditions for efficient plasmid transformation into Escherichia coli via ...

  19. Antimicrobial resistance patterns and plasmid profiles of ...

    African Journals Online (AJOL)

    Objectives: To determine the frequency of resistance of Staphylococcus aureus to various antimicrobial agents, and the relationship between antimicrobial resistance of the isolates and carriage of plasmids. Design: A random sampling of milk and meat samples was carried out. Setting: Milk was collected from various dairy ...

  20. antimicrobial susceptibility and plasmids from escherichia coli

    African Journals Online (AJOL)

    2001-10-02

    Oct 2, 2001 ... shown to occur among different animal species, between humans, and from animals to humans and vice versa(5,6). Antibiotic resistant E. coli may be passed from animals to humans through contact with faecal material or faecally contaminated food sources. Normal E. coli flora acquire resistance plasmids ...

  1. Salmonella virulence plasmid: pathogenesis and ecology.

    Science.gov (United States)

    Silva, Claudia; Puente, José Luis; Calva, Edmundo

    2017-06-22

    A current view on the role of the Salmonella virulence plasmid in the pathogenesis of animal and human hosts is discussed; including the possible relevance in secondary ecological niches. Various strategies towards further studies in this respect are proposed within the One Health Concept. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Phenotypic and Molecular Characterization of Plasmid- Encoded ...

    African Journals Online (AJOL)

    Purpose: To investigate the distribution of plasmid-encoded extended spectrum beta-lacatamases (ESBLs) in Lahore, Pakistan using different phenotypic and molecular methods. Methods: Escherichia coli and Klebsiella spp were obtained over a period of nineteen months (June 2007 to December 2008). Both were tested ...

  3. Plasmid-Mediated Tolerance Toward Environmental Pollutants.

    Science.gov (United States)

    Segura, Ana; Molina, Lázaro; Ramos, Juan Luis

    2014-12-01

    The survival capacity of microorganisms in a contaminated environment is limited by the concentration and/or toxicity of the pollutant. Through evolutionary processes, some bacteria have developed or acquired mechanisms to cope with the deleterious effects of toxic compounds, a phenomenon known as tolerance. Common mechanisms of tolerance include the extrusion of contaminants to the outer media and, when concentrations of pollutants are low, the degradation of the toxic compound. For both of these approaches, plasmids that encode genes for the degradation of contaminants such as toluene, naphthalene, phenol, nitrobenzene, and triazine or are involved in tolerance toward organic solvents and heavy metals, play an important role in the evolution and dissemination of these catabolic pathways and efflux pumps. Environmental plasmids are often conjugative and can transfer their genes between different strains; furthermore, many catabolic or efflux pump genes are often associated with transposable elements, making them one of the major players in bacterial evolution. In this review, we will briefly describe catabolic and tolerance plasmids and advances in the knowledge and biotechnological applications of these plasmids.

  4. antimicrobial resistance patterns and plasmid profiles of ...

    African Journals Online (AJOL)

    hi-tech

    2000-09-01

    Sep 1, 2000 ... Chloramphenicol-resistant Salmonella newport traced through hamburger to dairy farms. N. Engl. J. Med., 1987; 316:565 -570. 22. Mayer, L. W. N. Use of plasmid profiles in epidemiological surveillance of disease outbreaks and in tracing antibiotic resistance. Clin. Microbiol. Rev. 1988; 1: 228 -243. 23.

  5. A novel suicide plasmid for efficient gene mutation in Listeria monocytogenes

    Science.gov (United States)

    Although several plasmids have been used in Listeria monocytogenes for generating mutants by allelic exchange, construction of L. monocytogenes mutants has been inefficient due to lack of effective selection markers for first and second recombination events. To address this problem, we have develope...

  6. Replicon typing of plasmids carrying blaCTX-M-1 in Enterobacteriaceae of animal, environmental and human origin

    Directory of Open Access Journals (Sweden)

    Katrin eZurfluh

    2014-10-01

    Full Text Available Objectives: The aim of this work was to determine the plasmid replicon profiles of a collection of blaCTX-M-1-positive enterobacterial strains. The isolates originated from chicken in the production pyramid, healthy food-producing animals at slaughter (chicken, calves and pigs, chicken retail meat, environmental isolates originating from water bodies, and isolates from humans. A selection of IncI and IncN plasmids were characterized by multilocus sequence typing in order to determine their epidemiological relatedness. Methods: Transconjugants of 74 blaCTX-M-1-positive isolates were analysed by PCR-based replicon typing and by PCR-based plasmid multilocus sequence typing.Results: The incompatibility groups detected among the blaCTX-M-1-harboring plasmids included IncI1, IncN, IncHI1B, IncF, IncFIIS, IncFIB and IncB/O, with plasmid lineage IncI1/ST3 predominating in isolates from chicken and from humans. Lineage IncN/ST1 was detected mainly in isolates from pigs. For the first time, blaCTX-M-1 genes encoded on IncHI1 plasmids were detected in isolates from cattle and from water bodies.Conclusions: This study identifies plasmid lineages that are contributing to the dissemination of blaCTX-M-1 genes in the food chain, the environment, and humans.

  7. Progressive Rearrangement of Telomeric Sequences Added to Both the ITR Ends of the Yeast Linear pGKL Plasmid

    Directory of Open Access Journals (Sweden)

    Gunge Norio

    2003-01-01

    Full Text Available Relocation into the nucleus of the yeast cytoplasmic linear plasmids was studied using a monitor plasmid pCLU1. In Saccharomyces cerevisiae, the nuclearly-relocated pCLU1 replicated in a linear form (termed pTLU-type plasmid which carried the host telomeric repeats TG1-3 of 300-350 bp at both ends. The telomere sequences mainly consisted of a major motif TGTGTGGGTGTGG which was complementary to part of the RNA template of yeast telomerase and were directly added to the very end of the pCLU1-terminal element ITR (inverted terminal repeat, suggesting that the ITR end played a role as a substrate of telomerase. The telomere sequences varied among isolated pTLU-type plasmids, but the TG1-3 organization was symmetrically identical on both ends of any one plasmid. During cell growth under non-selective condition, the telomeric repeat sequences were progressively rearranged on one side, but not on the opposite side of pTLU plasmid ends. This indicates that the mode of telomeric DNA replication or repair differed between both ends. Clonal analysis showed that the intense rearrangement of telomeric DNA was closely associated with extreme instability of pTLU plasmids.

  8. Molecular and Population Analyses of a Recombination Event in the Catabolic Plasmid pJP4

    OpenAIRE

    Larraín-Linton, Juanita; De la Iglesia, Rodrigo; Melo, Francisco; González, Bernardo

    2006-01-01

    Cupriavidus necator JMP134(pJP4) harbors a catabolic plasmid, pJP4, which confers the ability to grow on chloroaromatic compounds. Repeated growth on 3-chlorobenzoate (3-CB) results in selection of a recombinant strain, which degrades 3-CB better but no longer grows on 2,4-dichlorophenoxyacetate (2,4-D). We have previously proposed that this phenotype is due to a double homologous recombination event between inverted repeats of the multicopies of this plasmid within the cell. One recombinant ...

  9. Plasmids of distinct IncK lineages show compatible phenotypes

    NARCIS (Netherlands)

    Rozwandowicz, Marta; Brouwer, Michael S.M.; Zomer, Aldert L.; Bossers, Alex; Harders, Frank; Mevius, Dik J.; Wagenaar, Jaap A.; Hordijk, Joost

    2017-01-01

    IncK plasmids are some of the main carriers of blaCTX-M-14 and blaCMY-2genes and show high similarity to other plasmids belonging to the I complex, including IncB/O plasmids. Here, we studied the phylogenetic relationship of 37 newly sequenced IncK and IncB/O plasmids. We

  10. Optimization of a plasmid electroporation protocol for Aeromonas salmonicida subsp. salmonicida.

    Science.gov (United States)

    Dallaire-Dufresne, Stéphanie; Emond-Rheault, Jean-Guillaume; Attéré, Sabrina A; Tanaka, Katherine H; Trudel, Mélanie V; Frenette, Michel; Charette, Steve J

    2014-03-01

    Aeromonas salmonicida subsp. salmonicida is a major fish pathogen. Molecular tools are required to study the virulence and genomic stability of this bacterium. An efficient electroporation-mediated transformation protocol for A. salmonicida subsp. salmonicida would make genetic studies faster and easier. In the present study, we designed the 4.1-kb pSDD1 plasmid as a tool for optimizing an electroporation protocol for A. salmonicida subsp. salmonicida. We systematically tested the electroporation conditions to develop a protocol that generates the maximum number of transformants. Under these optimal conditions (25 kV/cm, 200 Ω, 25 μF), we achieved an electroporation efficiency of up to 1×10(5) CFU/μg DNA. The electroporation protocol was also tested using another plasmid of 10.6-kb and three different strains of A. salmonicida subsp. salmonicida. The strains displayed significant differences in their electro-transformation competencies. Strain 01-B526 was the easiest to electroporate, especially with the pSDD1 plasmid. This plasmid was stably maintained in the 01-B526 transformants, as were the native plasmids, but could be easily cured by removing the selection conditions. This is the first efficient electroporation protocol reported for A. salmonicida subsp. salmonicida, and offers new possibilities for studying this bacterium. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Cloning of Two Bacteriocin Genes from a Lactococcal Bacteriocin Plasmid

    NARCIS (Netherlands)

    Belkum, Marco J. van; Hayema, Bert Jan; Geis, Arnold; Kok, Jan; Venema, Gerard

    1989-01-01

    Lactococcus lactis subsp. cremoris 9B4 plasmid p9B4-6 (60 kilobases [kb]), which specifies bacteriocin production and immunity, was analyzed with restriction endonucleases, and fragments of this plasmid were cloned into shuttle vectors based on the broad-host-range plasmid pWVO1. Two regions on

  12. Compositional discordance between prokaryotic plasmids and host chromosomes

    Directory of Open Access Journals (Sweden)

    van Kampen Antoine HC

    2006-02-01

    Full Text Available Abstract Background Most plasmids depend on the host replication machinery and possess partitioning genes. These properties confine plasmids to a limited range of hosts, yielding a close and presumably stable relationship between plasmid and host. Hence, it is anticipated that due to amelioration the dinucleotide composition of plasmids is similar to that of the genome of their hosts. However, plasmids are also thought to play a major role in horizontal gene transfer and thus are frequently exchanged between hosts, suggesting dinucleotide composition dissimilarity between plasmid and host genome. We compared the dinucleotide composition of a large collection of plasmids with that of their host genomes to shed more light on this enigma. Results The dinucleotide frequency, coined the genome signature, facilitates the identification of putative horizontally transferred DNA in complete genome sequences, since it was found to be typical for a certain genome, and similar between related species. By comparison of the genome signature of 230 plasmid sequences with that of the genome of each respective host, we found that in general the genome signature of plasmids is dissimilar from that of their host genome. Conclusion Our results show that the genome signature of plasmids does not resemble that of their host genome. This indicates either absence of amelioration or a less stable relationship between plasmids and their host. We propose an indiscriminate lifestyle for plasmids preserving the genome signature discordance between these episomes and host chromosomes.

  13. Host induced changes in plasmid profile of Xanthomonas ...

    African Journals Online (AJOL)

    We investigated host-induced changes of plasmid profile in two laboratory subcultured races of Xanthomonas axonopodis pv. malvacearum (Xam). Laboratory subcultured isolates contained fewer plasmids (i.e. two plasmids of size 60 and 40 kb) presumably due to loss or undetectable low copy number during subculturing.

  14. Compositional discordance between prokaryotic plasmids and host chromosomes

    NARCIS (Netherlands)

    van Passel, M.W.J.; Bart, A.; Luyf, A.C.M.; van Kampen, A.H.C.; van der Ende, A.

    2006-01-01

    Background: Most plasmids depend on the host replication machinery and possess partitioning genes. These properties confine plasmids to a limited range of hosts, yielding a close and presumably stable relationship between plasmid and host. Hence, it is anticipated that due to amelioration the

  15. Plasmid Segregation: Spatial Awareness at the Molecular Level

    DEFF Research Database (Denmark)

    Møller-Jensen, Jakob; Gerdes, Kenn

    2007-01-01

    In bacteria, low-copy number plasmids ensure their stable inheritance by partition loci (par), which actively distribute plasmid replicates to each side of the cell division plane. Using time-lapse fluorescence microscopic tracking of segregating plasmid molecules, a new study provides novel insi...

  16. Comparative genomics of multidrug resistance-encoding IncA/C plasmids from commensal and pathogenic Escherichia coli from multiple animal sources.

    Directory of Open Access Journals (Sweden)

    Claudia Fernández-Alarcón

    Full Text Available Incompatibility group A/C (IncA/C plasmids have received recent attention for their broad host range and ability to confer resistance to multiple antimicrobial agents. Due to the potential spread of multidrug resistance (MDR phenotypes from foodborne pathogens to human pathogens, the dissemination of these plasmids represents a public health risk. In this study, four animal-source IncA/C plasmids isolated from Escherichia coli were sequenced and analyzed, including isolates from commercial dairy cows, pigs and turkeys in the U.S. and Chile. These plasmids were initially selected because they either contained the floR and tetA genes encoding for florfenicol and tetracycline resistance, respectively, and/or the bla(CMY-2 gene encoding for extended spectrum β-lactamase resistance. Overall, sequence analysis revealed that each of the four plasmids retained a remarkably stable and conserved backbone sequence, with differences observed primarily within their accessory regions, which presumably have evolved via horizontal gene transfer events involving multiple modules. Comparison of these plasmids with other available IncA/C plasmid sequences further defined the core and accessory elements of these plasmids in E. coli and Salmonella. Our results suggest that the bla(CMY-2 plasmid lineage appears to have derived from an ancestral IncA/C plasmid type harboring floR-tetAR-strAB and Tn21-like accessory modules. Evidence is mounting that IncA/C plasmids are widespread among enteric bacteria of production animals and these emergent plasmids have flexibility in their acquisition of MDR-encoding modules, necessitating further study to understand the evolutionary mechanisms involved in their dissemination and stability in bacterial populations.

  17. Functional characterization of replication and stability factors of an incompatibility group P-1 plasmid from Xylella fastidiosa.

    Science.gov (United States)

    Lee, Min Woo; Rogers, Elizabeth E; Stenger, Drake C

    2010-12-01

    Xylella fastidiosa strain riv11 harbors a 25-kbp plasmid (pXF-RIV11) belonging to the IncP-1 incompatibility group. Replication and stability factors of pXF-RIV11 were identified and used to construct plasmids able to replicate in X. fastidiosa and Escherichia coli. Replication in X. fastidiosa required a 1.4-kbp region from pXF-RIV11 containing a replication initiation gene (trfA) and the adjacent origin of DNA replication (oriV). Constructs containing trfA and oriV from pVEIS01, a related IncP-1 plasmid of the earthworm symbiont Verminephrobacter eiseniae, also were competent for replication in X. fastidiosa. Constructs derived from pXF-RIV11 but not pVEIS01 replicated in Agrobacterium tumefaciens, Xanthomonas campestris, and Pseudomonas syringae. Although plasmids bearing replication elements from pXF-RIV11 or pVEIS01 could be maintained in X. fastidiosa under antibiotic selection, removal of selection resulted in plasmid extinction after 3 weekly passages. Addition of a toxin-antitoxin addiction system (pemI/pemK) from pXF-RIV11 improved plasmid stability such that >80 to 90% of X. fastidiosa cells retained plasmid after 5 weekly passages in the absence of antibiotic selection. Expression of PemK in E. coli was toxic for cell growth, but toxicity was nullified by coexpression of PemI antitoxin. Deletion of N-terminal sequences of PemK containing the conserved motif RGD abolished toxicity. In vitro assays revealed a direct interaction of PemI with PemK, suggesting that antitoxin activity of PemI is mediated by toxin sequestration. IncP-1 plasmid replication and stability factors were added to an E. coli cloning vector to constitute a stable 6.0-kbp shuttle vector (pXF20-PEMIK) suitable for use in X. fastidiosa.

  18. Molecular characterisation of blaESBL-harbouring conjugative plasmids identified in multi-drug resistant Escherichia coli isolated from food-producing animals and healthy humans

    Directory of Open Access Journals (Sweden)

    Juan eWang

    2013-07-01

    Full Text Available Background: Extended-spectrum β-lactamse (ESBL-encoding genes are frequently mapped to plasmids, yet few of these structures have been characterized at the molecular level, to date.Methods: Eighty-seven ESBL-producing E. coli were isolated from fecal samples of food-producing animals and healthy humans in Switzerland from 2009 to 2011. Plasmid DNA of all isolates was purified. Broth mating assays were carried out individually for 32 isolates to determine if the ESBL marker could be transferred by conjugation. The plasmid sizes were determined by S1 nuclease pulsed-field gel electrophoresis (PFGE and the plasmids were typed by PCR-based replicon typing. Susceptibility tests by disk diffusion followed with a re-analysis S1-nuclease PFGE and PCR reactions were performed to confirm plasmid transfer. Microarray was performed to detect additional antibiotic resistance markers and multi-locus sequence typing (MLST was also performed in selected donor strains. The phylotypes were identified by triplex PCR.Results: About half (n=46 of the 87 isolates carried small (< 20-kb plasmids. All selected 32 isolates contained large plasmids (ranging in sizes from 20- to 600-kb. Eleven plasmid replicon types were detected. Of these, IncFIA (n=5, IncFIB (n=9 and IncK/B (n=4 were common. Nine isolates demonstrated the ability to transfer their cefotaxime resistance marker at high transfer rates. Plasmid profile re-analysis of these transconjugants identified 16 plasmids. IncFIB and IncI1 were the most prevalent replicon types. Phylogenetic grouping showed that five of the nine donor strains belonged to phylogroup B1. Nine different STs were identified in nine tested donor strains.Conclusions: Characterization of these ESBL-encoding conjugative plasmids extends our understanding on these resistance markers in multi-drug resistant E. coli cultured from healthy human and animal sources.

  19. IncP-1 and PromA group plasmids are major providers of horizontal gene transfer capacities across bacteria in the mycosphere of different soil fungi.

    Science.gov (United States)

    Zhang, Miaozhi; Visser, Sander; Pereira e Silva, Michele C; van Elsas, Jan Dirk

    2015-01-01

    Plasmids of the IncP-1β group have been found to be important carriers of accessory genes that enhance the ecological fitness of bacteria, whereas plasmids of the PromA group are key agents of horizontal gene transfer in particular soil settings. However, there is still a paucity of knowledge with respect to the diversity, abundance, and involvement in horizontal gene transfer of plasmids of both groups in the mycosphere. Using triparental exogenous isolation based on the IncQ tracer plasmid pSUP104 as well as direct molecular detection, we analyzed the pool of mobilizer and self-transferable plasmids in mycosphere soil. Replicate mushroom types that were related to Russula, Inocybe, Ampulloclitocybe, and Galerina spp. were sampled from a forest soil area, and bulk soil was used as the control. The data showed that the levels of IncP-1β plasmids are significantly raised across several of the mycospheres analyzed, whereas those of PromA group plasmids were similar across the mycospheres and corresponding bulk soil. Moreover, the frequencies of triparental exogenous isolation of mobilizer plasmids into a Pseudomonas fluorescens recipient strain were significantly elevated in communities from several mycospheres as compared with those from bulk soil. Molecular analysis of selected transconjugants, as well as from directly isolated strains, revealed the presence of plasmids of three size groups, i.e., (1) 40-45, (2) 50-60, and (3) ≥60 kb, across all isolations. Replicon typing using IncN, IncW and IncA/C proxies revealed no positive signals. In contrast, a suite of plasmids produced signals with IncP-1β as well as PromA type replicon typing systems. Moreover, a selected subset of plasmids, obtained from the Inocybe and Galerina isolates, was transferred out further, revealing their capacities to transfer and mobilize across a broad host range.

  20. Plasmid flux in Escherichia coli ST131 sublineages, analyzed by plasmid constellation network (PLACNET, a new method for plasmid reconstruction from whole genome sequences.

    Directory of Open Access Journals (Sweden)

    Val F Lanza

    2014-12-01

    Full Text Available Bacterial whole genome sequence (WGS methods are rapidly overtaking classical sequence analysis. Many bacterial sequencing projects focus on mobilome changes, since macroevolutionary events, such as the acquisition or loss of mobile genetic elements, mainly plasmids, play essential roles in adaptive evolution. Existing WGS analysis protocols do not assort contigs between plasmids and the main chromosome, thus hampering full analysis of plasmid sequences. We developed a method (called plasmid constellation networks or PLACNET that identifies, visualizes and analyzes plasmids in WGS projects by creating a network of contig interactions, thus allowing comprehensive plasmid analysis within WGS datasets. The workflow of the method is based on three types of data: assembly information (including scaffold links and coverage, comparison to reference sequences and plasmid-diagnostic sequence features. The resulting network is pruned by expert analysis, to eliminate confounding data, and implemented in a Cytoscape-based graphic representation. To demonstrate PLACNET sensitivity and efficacy, the plasmidome of the Escherichia coli lineage ST131 was analyzed. ST131 is a globally spread clonal group of extraintestinal pathogenic E. coli (ExPEC, comprising different sublineages with ability to acquire and spread antibiotic resistance and virulence genes via plasmids. Results show that plasmids flux in the evolution of this lineage, which is wide open for plasmid exchange. MOBF12/IncF plasmids were pervasive, adding just by themselves more than 350 protein families to the ST131 pangenome. Nearly 50% of the most frequent γ-proteobacterial plasmid groups were found to be present in our limited sample of ten analyzed ST131 genomes, which represent the main ST131 sublineages.

  1. Plasmid Flux in Escherichia coli ST131 Sublineages, Analyzed by Plasmid Constellation Network (PLACNET), a New Method for Plasmid Reconstruction from Whole Genome Sequences

    Science.gov (United States)

    Garcillán-Barcia, M. Pilar; Mora, Azucena; Blanco, Jorge; Coque, Teresa M.; de la Cruz, Fernando

    2014-01-01

    Bacterial whole genome sequence (WGS) methods are rapidly overtaking classical sequence analysis. Many bacterial sequencing projects focus on mobilome changes, since macroevolutionary events, such as the acquisition or loss of mobile genetic elements, mainly plasmids, play essential roles in adaptive evolution. Existing WGS analysis protocols do not assort contigs between plasmids and the main chromosome, thus hampering full analysis of plasmid sequences. We developed a method (called plasmid constellation networks or PLACNET) that identifies, visualizes and analyzes plasmids in WGS projects by creating a network of contig interactions, thus allowing comprehensive plasmid analysis within WGS datasets. The workflow of the method is based on three types of data: assembly information (including scaffold links and coverage), comparison to reference sequences and plasmid-diagnostic sequence features. The resulting network is pruned by expert analysis, to eliminate confounding data, and implemented in a Cytoscape-based graphic representation. To demonstrate PLACNET sensitivity and efficacy, the plasmidome of the Escherichia coli lineage ST131 was analyzed. ST131 is a globally spread clonal group of extraintestinal pathogenic E. coli (ExPEC), comprising different sublineages with ability to acquire and spread antibiotic resistance and virulence genes via plasmids. Results show that plasmids flux in the evolution of this lineage, which is wide open for plasmid exchange. MOBF12/IncF plasmids were pervasive, adding just by themselves more than 350 protein families to the ST131 pangenome. Nearly 50% of the most frequent γ–proteobacterial plasmid groups were found to be present in our limited sample of ten analyzed ST131 genomes, which represent the main ST131 sublineages. PMID:25522143

  2. Ecological and genetic determinants of plasmid distribution in Escherichia coli.

    Science.gov (United States)

    Medaney, Frances; Ellis, Richard J; Raymond, Ben

    2016-11-01

    Bacterial plasmids are important carriers of virulence and antibiotic resistance genes. Nevertheless, little is known of the determinants of plasmid distribution in bacterial populations. Here the factors affecting the diversity and distribution of the large plasmids of Escherichia coli were explored in cattle grazing on semi-natural grassland, a set of populations with low frequencies of antibiotic resistance genes. Critically, the population genetic structure of bacterial hosts was chararacterized. This revealed structured E. coli populations with high diversity between sites and individuals but low diversity within cattle hosts. Plasmid profiles, however, varied considerably within the same E. coli genotype. Both ecological and genetic factors affected plasmid distribution: plasmid profiles were affected by site, E. coli diversity, E. coli genotype and the presence of other large plasmids. Notably 3/26 E. coli serotypes accounted for half the observed plasmid-free isolates indicating that within species variation can substantially affect carriage of the major conjugative plasmids. The observed population structure suggest that most of the opportunities for within species plasmid transfer occur between different individuals of the same genotype and support recent experimental work indicating that plasmid-host coevolution, and epistatic interactions on fitness costs are likely to be important in determining occupancy. © 2016 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  3. Reduced immunogenicity of DNA vaccine plasmids in mixtures.

    Science.gov (United States)

    Sedegah, M; Charoenvit, Y; Minh, L; Belmonte, M; Majam, V F; Abot, S; Ganeshan, H; Kumar, S; Bacon, D J; Stowers, A; Narum, D L; Carucci, D J; Rogers, W O

    2004-03-01

    We measured the ability of nine DNA vaccine plasmids encoding candidate malaria vaccine antigens to induce antibodies and interferon-gamma responses when delivered alone or in a mixture containing all nine plasmids. We further examined the possible immunosuppressive effect of individual plasmids, by assessing a series of mixtures in which each of the nine vaccine plasmids was replaced with a control plasmid. Given alone, each of the vaccine plasmids induced significant antibody titers and, in the four cases for which appropriate assays were available, IFN-gamma responses. Significant suppression or complete abrogation of responses were seen when the plasmids were pooled in a nine-plasmid cocktail and injected in a single site. Removal of single genes from the mixture frequently reduced the observed suppression. Boosting with recombinant poxvirus increased the antibody response in animals primed with either a single gene or the mixture, but, even after boosting, responses were higher in animals primed with single plasmids than in those primed with the nine-plasmid mixture. Boosting did not overcome the suppressive effect of mixing for IFN-gamma responses. Interactions between components in a multiplasmid DNA vaccine may limit the ability to use plasmid pools alone to induce responses against multiple targets simultaneously.

  4. Restriction enzyme analysis of plasmids from Haemophilus influenzae.

    Science.gov (United States)

    Harkess, N K; Murray, M L

    1978-05-01

    Examination of Haemophilus influenzae strains isolated in New Orleans revealed ampicillin-resistant strains with plasmids of size classes not previously detected in North America. The molecular weight of plasmids in five ampicillin-resistant strains ranged from 0.8 x 10(6) daltons (0.8 Mdal) to 36 Mdal. The molecular weights of the plasmids were determined by sucrose gradient centrifugation, electron microscopy, and agarose gel electrophoresis. Plasmids of the previously detected 30-Mdal size class were found in three of the five ampicillin-resistant strains. Restriction enzyme analysis is consistent with a close relationship between these three 30-Mdal plasmids. Of the two remaining ampicillin-resistant strains, one contained a single plasmid of 36 Mdal and the other contained two plasmids of 0.8 and 2.3 Mdal.

  5. Plasmid and chromosome partitioning: surprises from phylogeny

    DEFF Research Database (Denmark)

    Gerdes, Kenn; Møller-Jensen, Jakob; Bugge Jensen, Rasmus

    2000-01-01

    origin regions to specific subcellular sites (i.e. the poles or quarter-cell positions). Two types of partitioning ATPases are known: the Walker-type ATPases encoded by the par/sop gene family (type I partitioning loci) and the actin-like ATPase encoded by the par locus of plasmid R1 (type II...... partitioning locus). A phylogenetic analysis of the large family of Walker type of partitioning ATPases yielded a surprising pattern: most of the plasmid-encoded ATPases clustered into distinct subgroups. Surprisingly, however, the par loci encoding these distinct subgroups have different genetic organizations...... and thus divide the type I loci into types Ia and Ib. A second surprise was that almost all chromosome-encoded ATPases, including members from both Gram-negative and Gram-positive Bacteria and Archaea, clustered into one distinct subgroup. The phylogenetic tree is consistent with lateral gene transfer...

  6. Plasmid profiles of Acinetobacter and Enterobacter species of hospital origin: restriction endonuclease analysis of plasmid DNA and transformation of Escherichia coli by R plasmids.

    Science.gov (United States)

    Spiliopoulou, I; Droukopoulou, A; Athanassiadou, A; Dimitracopoulos, G

    1992-04-01

    A total of 37 multi-resistant strains (20 Acinetobacter calcoaceticus and 17 Enterobacter cloacae) were isolated from patients of the Intensive Care Units. All the isolates were examined for resistance to a battery of antimicrobial agents by the disk diffusion method. Plasmid profiles and restriction endonuclease analysis of plasmid DNA by EcoR1 revealed the spread of one A. calcoaceticus and two E. cloacae endemic strains. Transformation experiments on Escherichia coli competent cells by three plasmids established the presence of R plasmids in the multi-resistant isolates.

  7. Clostridium perfringens urease genes are plasmid borne.

    OpenAIRE

    Dupuy, B; Daube, G; Popoff, M R; Cole, S T

    1997-01-01

    Although many bacteria are ureolytic, and in some cases urease acts as a virulence factor, the urease phenotype has not been analyzed in the anaerobic pathogen Clostridium perfringens. In this study, approximately 2% of C. perfringens strains, representing the principal biotypes, were found to harbor the urease structural genes, ureABC, and these were localized on large plasmids that often encode, in addition, the lethal epsilon or iota toxins or the enterotoxin. This represents the first rep...

  8. Modeling sRNA-regulated Plasmid Maintenance

    CERN Document Server

    Gong, Chen Chris

    2016-01-01

    We study a theoretical model for the toxin-antitoxin (hok/sok) mechanism for plasmid maintenance in bacteria. Toxin-antitoxin systems enforce the maintenance of a plasmid through post-segregational killing of cells that have lost the plasmid. Key to their function is the tight regulation of expression of a protein toxin by an sRNA antitoxin. Here, we focus on the nonlinear nature of the regulatory circuit dynamics of the toxin-antitoxin mechanism. The mechanism relies on a transient increase in protein concentration rather than on the steady state of the genetic circuit. Through a systematic analysis of the parameter dependence of this transient increase, we confirm some known design features of this system and identify new ones: for an efficient toxin-antitoxin mechanism, the synthesis rate of the toxin's mRNA template should be lower that of the sRNA antitoxin, the mRNA template should be more stable than the sRNA antitoxin, and the mRNA-sRNA complex should be more stable than the sRNA antitoxin. Moreover, ...

  9. CARTOGRAPHIE DU PLASMIDE pSU100, PLASMIDE CRYPTIQUE DE LACTOBACILLUS CASEI

    Directory of Open Access Journals (Sweden)

    F BENSALAH

    2003-06-01

    Ce plasmide appelé pSU100 a été cloné dans le vecteur de transformation pUC18 au site EcoRI chez E. coli JM103. Les profils électrophorétiques de restriction obtenus par des digestions simples, doubles et triples sous l’action de 33 endonucléases, ont contribué à l’élaboration d’une carte de restriction de ce plasmide. Cinq sites uniques ont été identifiés, ainsi que d’autres sites doubles et multiples. Une étude préliminaire du rôle physiologique de ce plasmide a permis de déceler une résistance à la kanamycine.

  10. Plasmid transfer between bacteria in soil microcosms and the field

    Directory of Open Access Journals (Sweden)

    Eric Smit

    1997-01-01

    Full Text Available In ibis review factors influencing conjugal plasmid transfer between bacteria and the possible role of naturally occurring selftransmissible plasmide for the dissemination of recombinant DNA in soil will be discussed. In microcosm studies, plasmid transfer between various species of introduced bacteria has been detected. Moreover, plamid transfer to indigenous soil micoorganisms was observed. Soil is an oligotrophic environment and plasmid transfer occurred mainly under conditions which were nutritionally favourable for bacteria, such as in the plant rhizosphere and in the presence of clay minerais or added nutrients. Mobilizable plasmids, lacking the ability to transfer themselves, have been reported to be transferred in the presence of selftransmissible plasmids. A study comparing conjugal transfer in microcosme with those in the field revealed that the transfer rates found in microcosme and in the field were similar. Transfer of chromosomal DNA by plasmid RP4 could only be shown on filters and was not observed in soil. Transfer of plasmids carrying biodegradative genes appeared to be favoured in the presence of the compound that can be degraded. Evidence was found for the presence of naturally-occurring selftransmissible plasmids in bacteria in the rhizosphere which could mobilize recombinant plasmids.

  11. Characterization of plasmid pOR1 from Ornithobacterium rhinotracheale and construction of a shuttle plasmid.

    Science.gov (United States)

    Jansen, Ruud; Chansiripornchai, Niwat; Gaastra, Wim; van Putten, Jos P M

    2004-10-01

    The bacterium Ornithobacterium rhinotracheale has been recognized as an emerging pathogen in poultry since about 10 years ago. Knowledge of this bacterium and its mechanisms of virulence is still very limited. Here we report the development of a transformation system that enables genetic modification of O. rhinotracheale. The system is based on a cryptic plasmid, pOR1, that was derived from an O. rhinotracheale strain of serotype K. Sequencing indicated that the plasmid consisted of 14,787 nucleotides. Sequence analysis revealed one replication origin and several rep genes that control plasmid replication and copy number, respectively. In addition, pOR1 contains genes with similarity to a heavy-metal-transporting ATPase, a TonB-linked siderophore receptor, and a laccase. Reverse transcription-PCR demonstrated that these genes were transcribed. Other putative open reading frames exhibited similarities with a virulence-associated protein in Actinobacillus actinomycetemcomitans and a number of genes coding for proteins with unknown function. An Escherichia coli-O. rhinotracheale shuttle plasmid (pOREC1) was constructed by cloning the replication origin and rep genes from pOR1 and the cfxA gene from Bacteroides vulgatus, which codes for resistance to the antibiotic cefoxitin, into plasmid pGEM7 by using E. coli as a host. pOREC1 was electroporated into O. rhinotracheale and yielded cefoxitin-resistant transformants. The pOREC1 isolated from these transformants was reintroduced into E. coli, demonstrating that pOREC1 acts as an independent replicon in both E. coli and O. rhinotracheale, fulfilling the criteria for a shuttle plasmid that can be used for transformation, targeted mutagenesis, and the construction of defined attenuated vaccine strains.

  12. Rescue of avian adeno-associated virus from a recombinant plasmid containing deletions in the viral inverted terminal repeats.

    Science.gov (United States)

    Wang, Jianye; Zhu, Liqian; Zhu, Jun; Zhang, Xinjun; Tao, Jie; Duan, Qiangde; Zhu, Guoqiang

    2012-01-01

    We have previously reported the complete genome sequence of avian adeno-associated virus (AAAV) strain YZ-1, isolated from healthy chickens in China. In this study, we describe the successful rescue of infectious virions from a recombinant plasmid containing the genome of YZ-1 with deletions in the viral inverted terminal repeats (ITRs). The complete genome of YZ-1 was cloned into a bacterial plasmid by a modified "A-T" cloning method. Six recombinant plasmids were selected for further experiments. Sequence analysis indicated that the six clones shared identical internal sequences except for the various deletions within ITRs at either end of the cloned genome. The recombinant plasmid pYZ525, harboring a YZ-1 genome with a 96-nt deletion at the 5' end, was used to transfect CEL or HEK293 cells in the presence of the CELO virus or a helper plasmid, and rescued virions were obtained by both of the methods despite the presence of the deletions. Here, for the first time, we provide evidence that a certain number of nt deletions in the ITRs are not lethal for the rescue of viable AAAV from recombinant plasmids. This study provides insight into the unique biology of AAAV and the mechanism of viral replication.

  13. Dominating types of penicillinase-plasmids in Neisseria gonorrhoeae strains isolated in 2010-2012 in Warsaw.

    Science.gov (United States)

    Mlynarczyk-Bonikowska, Beata; Kujawa, Marlena; Mynarczyk, Graiyna; Malejczyk, Magdalena; Majewski, Slawomir

    The reason of Neisseria gonorrhoeae resistance to penicillin is often production of TEM beta-lactamases encoded by plasmids. The most common types of the plasmid are Africa, Asia and Toronto/Rio. Another reason of resistance can be mutations in bacterial chromosome. The aim of the study was to investigate the types of plasmids occurring in in Neisseria gonorrhoeae strains isolated in 2010-2012 in Warsaw. From 218 isolated in 2010, 2011 and at the beginning of 2012 from patients of Medical University in Warsaw we selected 12 strains producing beta- lactamase (penicillinase producing N. gonorrhoeae, PPNG). d B-tests to investigate bacterial sensitivity to penicillin and cefiriaxon. The types of plasmids were determined with PCR. The Beta-lactamases were encoded by Toronto/Rio (41,7%), Asia (33,3%) and Africa (25,0%) plasmids. All the strains were resistant to penicillin (MIC 2-8 mg/L) and sensitive to ceftriaxon (MIC 0,004-0,032 mg/L). All of the investigate PPNG strains were penicillin resistant and ceftriaxon sensitive. The dominating type of the penicillinase plasmid was Toronto/Rio.

  14. Effect of cumin (Cuminum cyminum) seed essential oil on biofilm formation and plasmid Integrity of Klebsiella pneumoniae.

    Science.gov (United States)

    Derakhshan, Safoura; Sattari, Morteza; Bigdeli, Mohsen

    2010-01-01

    Seeds of the cumin plant (Cuminum cyminum L.) have been used since many years in Iranian traditional medicine. We assessed the effect of cumin seed essential oil on the biofilm-forming ability of Klebsiella pneumoniae strains and on the integrity of a native resistance plasmid DNA from K. pneumoniae isolates, treated with essential oil. Antibacterial coaction between the essential oil and selected antibiotic disks were determined for inhibiting K. pneumoniae. The essential oil of the cumin seeds was obtained by hydrodistillation in a Clavenger system. A simple method for the formation of biofilms on semiglass lamellas was established. The biofilms formed were observed by scanning electron microscopy (SEM). The effect of essential oil on plasmid integrity was studied through the induction of R-plasmid DNA degradation. The plasmid was incubated with essential oil, and agarose gel electrophoresis was performed. Disk diffusion assay was employed to determine the coaction. The essential oil decreased biofilm formation and enhanced the activity of the ciprofloxacin disk. The incubation of the R-plasmid DNA with essential oil could not induce plasmid DNA degradation. The results of this study suggest the potential use of cumin seed essential oil against K. pneumoniae in vitro, may contribute to the in vivo efficacy of this essential oil.

  15. Yeast transformation mediated by Agrobacterium strains harboring an Ri plasmid: comparative study between GALLS of an Ri plasmid and virE of a Ti plasmid.

    Science.gov (United States)

    Kiyokawa, Kazuya; Yamamoto, Shinji; Sato, Yukari; Momota, Naoto; Tanaka, Katsuyuki; Moriguchi, Kazuki; Suzuki, Katsunori

    2012-07-01

    Agrobacterium strains containing a Ti plasmid can transfer T-DNA not only to plants but also to fungi, including the yeast Saccharomyces cerevisiae. However, no Agrobacterium strain harboring an Ri plasmid has been evaluated in fungal transformation. Some Ri plasmids have GALLS , instead of virE1 and virE2. GALLS protein can functionally substitute in plant transformation for a structurally different protein VirE2. In this study, we compared the yeast transformation ability among Agrobacterium donors: a strain containing a Ti plasmid, strains harboring either an agropine-type or a mikimopine-type Ri plasmid, and a strain having a modified Ri plasmid supplemented with a Ti plasmid type virE operon. Agrobacterium strains possessing GALLS transformed yeast cells far less efficiently than the strain containing virE operon. Production of GALLS in recipient yeast cells improved the yeast transformation mediated by an Agrobacterium strain lacking neither GALLS nor virE operon. A reporter assay to detect mobilization of the proteins fused with Cre recombinase revealed that VirE2 protein is much more abundant in yeast cells than GALLS. Based on these results, we concluded that the low yeast transformability mediated by Agrobacterium strains having the Ri plasmid is because of low amount of mobilized GALLS in yeast cells. © 2012 The Authors Journal compilation © 2012 by the Molecular Biology Society of Japan/Blackwell Publishing Ltd.

  16. Native plasmids restrict growth of Phaeobacter inhibens DSM 17395: Energetic costs of plasmids assessed by quantitative physiological analyses.

    Science.gov (United States)

    Trautwein, Kathleen; Will, Sabine Eva; Hulsch, Reiner; Maschmann, Uwe; Wiegmann, Katharina; Hensler, Michael; Michael, Victoria; Ruppersberg, Hanna; Wünsch, Daniel; Feenders, Christoph; Neumann-Schaal, Meina; Kaltenhäuser, Sabine; Ulbrich, Marcus; Schmidt-Hohagen, Kerstin; Blasius, Bernd; Petersen, Jörn; Schomburg, Dietmar; Rabus, Ralf

    2016-12-01

    Plasmid carriage is associated with energetic costs, and thus only those plasmids providing fitness benefits are stably maintained in the host lineage. Marine bacteria of the Roseobacter clade harbor up to 11 extrachromosomal replicons, adding lifestyle-relevant and possibly habitat success-promoting functions to their genomic repertoire. Phaeobacter inhibens DSM 17395 is a nutritionally versatile representative, carrying three stable and functionally distinct plasmids (65, 78, and 262 kb). The present study investigates the physiological and energetic consequences of plasmid carriage in P. inhibens DSM 17395, employing mutants cured from all native plasmids in every possible combination (seven different). Cultivation in process-controlled bioreactors with casamino acids as organic substrate revealed a complex physiological response, suggesting existence of functional interconnections between the replicons. Deletion of the 262 kb plasmid boosted growth rate (>3-fold) and growth efficiency (yields for carbon, O2 and CO2 ), which was not observed for the 65 or 78 kb plasmid. Carriage of the 262 kb plasmid was most costly for the wild type, i.e. contributing ∼50% to its energetic (dissimilatory) expenditures. Cost-benefit analysis of plasmid carriage reflects the high value of plasmids for niche specialization of P. inhibens DSM 17395 and most likely also for related Phaeobacter species. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  17. Sequence of Two Plasmids from Clostridium perfringens Chicken Necrotic Enteritis Isolates and Comparison with C. perfringens Conjugative Plasmids

    Science.gov (United States)

    Parreira, Valeria R.; Costa, Marcio; Eikmeyer, Felix; Blom, Jochen; Prescott, John F.

    2012-01-01

    Twenty-six isolates of Clostridium perfringens of different MLST types from chickens with necrotic enteritis (NE) (15 netB-positive) or from healthy chickens (6 netB-positive, 5 netB-negative) were found to contain 1–4 large plasmids, with most netB-positive isolates containing 3 large and variably sized plasmids which were more numerous and larger than plasmids in netB-negative isolates. NetB and cpb2 were found on different plasmids consistent with previous studies. The pathogenicity locus NELoc1, which includes netB, was largely conserved in these plasmids whereas NeLoc3, present in the cpb2 containing plasmids, was less well conserved. A netB-positive and a cpb2-positive plasmid were likely to be conjugative, and the plasmids were completely sequenced. Both plasmids possessed the intact tcp conjugative region characteristic of C. perfringens conjugative plasmids. Comparative genomic analysis of nine CpCPs, including the two plasmids described here, showed extensive gene rearrangements including pathogenicity locus and accessory gene insertions around rather than within the backbone region. The pattern that emerges from this analysis is that the major toxin-containing regions of the variety of virulence-associated CpCPs are organized as complex pathogenicity loci. How these different but related CpCPs can co-exist in the same host has been an unanswered question. Analysis of the replication-partition region of these plasmids suggests that this region controls plasmid incompatibility, and that CpCPs can be grouped into at least four incompatibility groups. PMID:23189158

  18. [Distribution and diversity of conjugative plasmids among some multiple antibiotic resistant E.coli strains isolated from river waters].

    Science.gov (United States)

    Cernat, Ramona; Lazăr, Veronica; Balotescu, Carmen; Cotar, Ani; Coipan, Elena; Cojocaru, Cristina

    2002-01-01

    In natural bacterial communities the microbial structure and functions are subjected to dynamic environmental and genetic adaptation. Plasmid-mediated horizontal genes transfer has a major impact on the adaptability of bacteria, exemplified by the interspecific and intergeneric transfer of antibioresistance genes in a variety of aquatic media. The high incidence of resistant bacteria has been documented for fresh waters, marine waters and chronically polluted waters. The aim of this study was to establish the distribution and diversity of plasmids and to study the transfer of plasmids harboring multiple antimicrobial-resistance determinants (R plasmids) belong to 12 multiple antibiotic resistant E. coli strains isolated from river waters. Antimicrobial resistance patterns were performed for aminoglycosides (gentamycin, kanamycin), beta-lactams (ampicillin), cephalosporins (ceftazidime and cefotaxime), tetracycline, nalidixic acid and chloramphenicol by disk diffusion method following NCCLS recommendations. Minimum inhibitory concentrations (MICs) were performed using dilution method in Mueller-Hinton broth with a 0.06-64 micrograms/ml concentration range for all antimicrobials and bacterial inoculum corresponding to 0.5 standard of the McFarland scale. For the data analysis NCCLS breakpoints for resistance and sensitivity were used. Bacterial plasmid isolation was performed by an alkaline lysis method. Genetic characterization was performed by agarose gel electrophoresis and spectrophotometric analysis. R-plasmid transfer frequencies were estimated by conjugation of drug-resistant E. coli strains used as donors with E. coli DH5 alpha F recipient marked with chromosomal resistance to nalidixic acid (Nal). The drug resistance markers possessed by a particular donor strain were sequentially used to screen for R+ transconjugants by incorporation the particular drug in the selective media. All E. coli strains are multiple antibiotic resistant, 65% of them being

  19. Permissiveness of soil microbial communities towards broad host range plasmids

    DEFF Research Database (Denmark)

    Klümper, Uli

    . Plasmids are implicated in the rapid spread of antibiotic resistance and the emergence of multi-resistant pathogenic bacteria, making it crucial to be able to quantify, understand, and, ideally, control plasmid transfer in mixed microbial communities. The fate of plasmids in microbial communities...... for plasmids carrying antibiotic resistance genes is increasingly suspected to majorly contribute to the emergence of multi-resistant pathogens. More specifically, I examined what fraction of a soil microbial community is permissive to plasmids, identified the phylogenetic identity of this fraction and studied......Horizontal transfer of mobile genetic elements facilitates adaptive and evolutionary processes in bacteria. Among the known mobile genetic elements, plasmids can confer their hosts with accessory adaptive traits, such as antibiotic or heavy metal resistances, or additional metabolic pathways...

  20. Large linear plasmids of Borrelia species that cause relapsing fever.

    Science.gov (United States)

    Miller, Shelley Campeau; Porcella, Stephen F; Raffel, Sandra J; Schwan, Tom G; Barbour, Alan G

    2013-08-01

    Borrelia species of relapsing fever (RF) and Lyme disease (LD) lineages have linear chromosomes and both linear and circular plasmids. Unique to RF species, and little characterized to date, are large linear plasmids of ∼160 kb, or ∼10% of the genome. By a combination of Sanger and next-generation methods, we determined the sequences of large linear plasmids of two New World species: Borrelia hermsii, to completion of its 174-kb length, and B. turicatae, partially to 114 kb of its 150 kb. These sequences were then compared to corresponding sequences of the Old World species B. duttonii and B. recurrentis and to plasmid sequences of LD Borrelia species. The large plasmids were largely colinear, except for their left ends, about 27 kb of which was inverted in New World species. Approximately 60% of the B. hermsii lp174 plasmid sequence was repetitive for 6 types of sequence, and half of its open reading frames encoded hypothetical proteins not discernibly similar to proteins in the database. The central ∼25 kb of all 4 linear plasmids was syntenic for orthologous genes for plasmid maintenance or partitioning in Borrelia species. Of all the sequenced linear and circular plasmids in Borrelia species, the large plasmid's putative partition/replication genes were most similar to those of the 54-kb linear plasmids of LD species. Further evidence for shared ancestry was the observation that two of the hypothetical proteins were predicted to be structurally similar to the LD species' CspA proteins, which are encoded on the 54-kb plasmids.

  1. Demonstration of a Capsule Plasmid in Bacillus anthracis,

    Science.gov (United States)

    1984-11-16

    is mediated by a Bacillus thrigiensis fertility plasmid, pXOl2, pXO2 was trans- 7 ferred from B. antraisto Bacillus cereus . B. cereus transcipients...I .. .,°... INTRODUCTION Bacillus anthracis requires two virulence factors to cause disease. One of S these is a toxin composed of three different...to B. cereus , we made use of the Bacillus mating system in which plasmid transfer is mediated by the S fertility plasmid, pXO12 (11). A B. anthracis

  2. Conjugative botulinum neurotoxin-encoding plasmids in Clostridium botulinum.

    Directory of Open Access Journals (Sweden)

    Kristin M Marshall

    Full Text Available BACKGROUND: Clostridium botulinum produces seven distinct serotypes of botulinum neurotoxins (BoNTs. The genes encoding different subtype neurotoxins of serotypes A, B, F and several dual neurotoxin-producing strains have been shown to reside on plasmids, suggesting that intra- and interspecies transfer of BoNT-encoding plasmids may occur. The objective of the present study was to determine whether these C. botulinum BoNT-encoding plasmids are conjugative. METHODOLOGY/PRINCIPAL FINDINGS: C. botulinum BoNT-encoding plasmids pBotCDC-A3 (strain CDC-A3, pCLJ (strain 657Ba and pCLL (strain Eklund 17B were tagged with the erythromycin resistance marker (Erm using the ClosTron mutagenesis system by inserting a group II intron into the neurotoxin genes carried on these plasmids. Transfer of the tagged plasmids from the donor strains CDC-A3, 657Ba and Eklund 17B to tetracycline-resistant recipient C. botulinum strains was evaluated in mating experiments. Erythromycin and tetracycline resistant transconjugants were isolated from donor:recipient mating pairs tested. Transfer of the plasmids to the transconjugants was confirmed by pulsed-field gel electrophoresis (PFGE and Southern hybridizations. Transfer required cell-to-cell contact and was DNase resistant. This indicates that transfer of these plasmids occurs via a conjugation mechanism. CONCLUSIONS/SIGNIFICANCE: This is the first evidence supporting conjugal transfer of native botulinum neurotoxin-encoding plasmids in C. botulinum, and provides a probable mechanism for the lateral distribution of BoNT-encoding plasmids to other C. botulinum strains. The potential transfer of C. botulinum BoNT-encoding plasmids to other bacterial hosts in the environment or within the human intestine is of great concern for human pathogenicity and necessitates further characterization of these plasmids.

  3. Identification of plasmid partition function in coryneform bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Kurusu, Yasurou; Satoh, Yukie; Inui, Masayuki; Kohama, Keiko; Kobayashi, Miki; Terasawa, Masato; Yukawa, Hideaki (Mitsubishi Petrochemical Co., Ltd., Ibaraki (Japan))

    1991-03-01

    The authors have identified and characterized a partition function that is required for stable maintenance of plasmids in the coryneform bacteria Brevibacterium flavum MJ233 and Corynebacterium glutamicum ATCC 31831. This function is localized to a HindIII-NspV fragment (673 bp) adjacent to the replication region of the plasmid, named pBY503, from Brevibacterium stationis IFO 12144. The function was independent of copy number control and was not associated directly with plasmid replication functions. This fragment was able to stabilize the unstable plasmids in cis but not in trans.

  4. Impact of plasmid quality on lipoplex-mediated transfection.

    Science.gov (United States)

    De La Vega, Jonathan; Braak, Bas Ter; Azzoni, Adriano R; Monteiro, Gabriel A; Prazeres, Duarte Miguel F

    2013-11-01

    This work investigates the impact of quality attributes (impurity content, plasmid charge, and compactness) of plasmid DNA isolated with different purification methodologies on the characteristics of lipoplexes prepared thereof (size, zeta potential, stability) and on their ability to transfect mammalian cells. A 3.7 kb plasmid with a green fluorescence protein (GFP) reporter gene, Lipofectamine®-based liposomes, and Chinese Hamster Ovary (CHO) cells were used as models. The plasmid was purified by hydrophobic interaction chromatography (HIC)/gel filtration, and with three commercial kits, which combine the use of chaotropic salts with silica membranes/glass fiber fleeces. The HIC-based protocol delivered a plasmid with the smallest hydrodynamic diameter (144 nm) and zeta potential (-46.5 mV), which is virtually free from impurities. When formulated with Lipofectamine®, this plasmid originated the smallest (146 nm), most charged (+13 mV), and most stable lipoplexes. In vitro transfection experiments further showed that these lipoplexes performed better in terms of plasmid uptake (∼500,000 vs. ∼100,000-200,000 copy number/cell), transfection efficiency (50% vs. 20%-40%), and GFP expression levels (twofold higher) when compared with lipoplexes prepared with plasmids isolated using commercial kits. Overall our observations highlight the potential impact that plasmid purification methodologies can have on the outcome of gene transfer experiments and trials. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.

  5. A common genomic framework for a diverse assembly of plasmids in the symbiotic nitrogen fixing bacteria.

    Directory of Open Access Journals (Sweden)

    Lisa C Crossman

    2008-07-01

    Full Text Available This work centres on the genomic comparisons of two closely-related nitrogen-fixing symbiotic bacteria, Rhizobium leguminosarum biovar viciae 3841 and Rhizobium etli CFN42. These strains maintain a stable genomic core that is also common to other rhizobia species plus a very variable and significant accessory component. The chromosomes are highly syntenic, whereas plasmids are related by fewer syntenic blocks and have mosaic structures. The pairs of plasmids p42f-pRL12, p42e-pRL11 and p42b-pRL9 as well large parts of p42c with pRL10 are shown to be similar, whereas the symbiotic plasmids (p42d and pRL10 are structurally unrelated and seem to follow distinct evolutionary paths. Even though purifying selection is acting on the whole genome, the accessory component is evolving more rapidly. This component is constituted largely for proteins for transport of diverse metabolites and elements of external origin. The present analysis allows us to conclude that a heterogeneous and quickly diversifying group of plasmids co-exists in a common genomic framework.

  6. Nasty viruses, costly plasmids, population dynamics, and the conditions for establishing and maintaining CRISPR-mediated adaptive immunity in bacteria.

    Directory of Open Access Journals (Sweden)

    Bruce R Levin

    2010-10-01

    Full Text Available Clustered, Regularly Interspaced Short Palindromic Repeats (CRISPR abound in the genomes of almost all archaebacteria and nearly half the eubacteria sequenced. Through a genetic interference mechanism, bacteria with CRISPR regions carrying copies of the DNA of previously encountered phage and plasmids abort the replication of phage and plasmids with these sequences. Thus it would seem that protection against infecting phage and plasmids is the selection pressure responsible for establishing and maintaining CRISPR in bacterial populations. But is it? To address this question and provide a framework and hypotheses for the experimental study of the ecology and evolution of CRISPR, I use mathematical models of the population dynamics of CRISPR-encoding bacteria with lytic phage and conjugative plasmids. The results of the numerical (computer simulation analysis of the properties of these models with parameters in the ranges estimated for Escherichia coli and its phage and conjugative plasmids indicate: (1 In the presence of lytic phage there are broad conditions where bacteria with CRISPR-mediated immunity will have an advantage in competition with non-CRISPR bacteria with otherwise higher Malthusian fitness. (2 These conditions for the existence of CRISPR are narrower when there is envelope resistance to the phage. (3 While there are situations where CRISPR-mediated immunity can provide bacteria an advantage in competition with higher Malthusian fitness bacteria bearing deleterious conjugative plasmids, the conditions for this to obtain are relatively narrow and the intensity of selection favoring CRISPR weak. The parameters of these models can be independently estimated, the assumption behind their construction validated, and the hypotheses generated from the analysis of their properties tested in experimental populations of bacteria with lytic phage and conjugative plasmids. I suggest protocols for estimating these parameters and outline the

  7. Sustaining protein synthesis in the absence of rapid cell division: an investigation of plasmid-encoded protein expression in Escherichia coli during very slow growth.

    Science.gov (United States)

    Flickinger, M C; Rouse, M P

    1993-01-01

    The minimum growth rate capable of supporting plasmid-encoded gene expression is determined using continuous cultures of Escherichia coli MZ9387 at dilution rates (D) as low as 5% of the maximum specific growth rate. Expression from a low copy number plasmid, pMPR166, encoding cyanase under the control of P(lac) is investigated in order to study plasmid-encoded gene expression under conditions approaching starvation. Plasmid copy number was stabilized by selection in the presence of 500 micrograms/mL chloramphenicol by constitutive expression of chloramphenicol acetyl transferase (CAT). Plasmid retention was determined by dot-blot hybridization and chloramphenicol resistance. The contribution of plasmid maintenance and cyanase expression to the maximum cell yield (Y'x/s) and the maintenance coefficient (ms) was determined for MZ9387 and MZ9387:pMPR166 under uninduced and IPTG-induced conditions. The values of Y'x/s and ms for non-plasmid-bearing cultures were 0.56 g of cell dry mass (DCM)/g of glucose and 0.26 g of glucose/g of DCM.h, respectively. The cell yield for plasmid-bearing cultures under uninduced conditions (Y 0'x/s) was 0.28 g of DCM/g of glucose, with m0s = 0.08 g of glucose/g of DCM.h. These values decreased following induction of cyanase expression. Glucose consumption in the presence of IPTG was linearly related to the growth rate at D cyanase expression alters metabolism and glucose consumption. The fraction of plasmid-free cells decreased with decreasing Damköhler number (Da). These data confirm the usefulness of Da for predicting the relationship between plasmid-free and plasmid-bearing cells where plasmids are stabilized by concentrations of antibiotic greater than the minimum plasmid-free host cell growth inhibitory concentration. Specific cyanase expression increased as the dilution rate decreased to D = 0.15 h-1. Between D = 0.15 h-1 and D = 0.14 h-1, expression decreased 7-fold. At very low dilution rates (D < or = 0.06 h-1), nonseptated

  8. Conjugation-mediated horizontal gene transfer of Clostridium perfringens plasmids in the chicken gastrointestinal tract results in the formation of new virulent strains.

    Science.gov (United States)

    Lacey, Jake A; Keyburn, Anthony L; Ford, Mark E; Portela, Ricardo W; Johanesen, Priscilla A; Lyras, Dena; Moore, Robert J

    2017-10-13

    Clostridium perfringens is a gastrointestinal pathogen capable of causing disease in a variety of hosts. Necrotic enteritis in chickens is caused by C. perfringens strains that produce the pore-forming toxin NetB, the major virulence factor for this disease. Like many other C. perfringens toxins and antibiotic resistance genes, NetB is encoded on a conjugative plasmid. Conjugative transfer of the netB-containing plasmid pJIR3535 has been demonstrated in vitro with a netB null mutant. This study has investigated the effect of plasmid transfer on disease pathogenesis, with two genetically distinct transconjugants constructed under in vitro conditions, within the intestinal tract of chickens. This study also demonstrates that plasmid transfer can occur naturally in the host gut environment, without the need for antibiotic selective pressure to be applied. The demonstration of plasmid transfer within the chicken host may have implications for disease progression and pathogenesis of C. perfringens-mediated disease. Such horizontal gene transfer events are likely to be common in the clostridia and may be a key factor in strain evolution, both within animals and in the wider environment.ImportanceClostridium perfringens is a major gastrointestinal pathogen of poultry. C. perfringens strains that express the NetB pore-forming toxin, which is encoded on a conjugative plasmid, cause necrotic enteritis. This study demonstrated that the conjugative transfer of the netB containing plasmid to two different non-pathogenic strains converted them into disease causing strains with similar disease-causing capability as the donor strain. Plasmid transfer of netB and antibiotic resistance was also demonstrated to occur within the gastrointestinal tract of chickens, with approximately 14% of isolates recovered comprising of three distinct, in vivo derived, transconjugant types. The demonstration of in vivo plasmid transfer indicates the potential importance of strain plasticity and the

  9. Dealing with the evolutionary downside of CRISPR immunity: bacteria and beneficial plasmids.

    Directory of Open Access Journals (Sweden)

    Wenyan Jiang

    Full Text Available The immune systems that protect organisms from infectious agents invariably have a cost for the host. In bacteria and archaea CRISPR-Cas loci can serve as adaptive immune systems that protect these microbes from infectiously transmitted DNAs. When those DNAs are borne by lytic viruses (phages, this protection can provide a considerable advantage. CRISPR-Cas immunity can also prevent cells from acquiring plasmids and free DNA bearing genes that increase their fitness. Here, we use a combination of experiments and mathematical-computer simulation models to explore this downside of CRISPR-Cas immunity and its implications for the maintenance of CRISPR-Cas loci in microbial populations. We analyzed the conjugational transfer of the staphylococcal plasmid pG0400 into Staphylococcus epidermidis RP62a recipients that bear a CRISPR-Cas locus targeting this plasmid. Contrary to what is anticipated for lytic phages, which evade CRISPR by mutations in the target region, the evasion of CRISPR immunity by plasmids occurs at the level of the host through loss of functional CRISPR-Cas immunity. The results of our experiments and models indicate that more than 10(-4 of the cells in CRISPR-Cas positive populations are defective or deleted for the CRISPR-Cas region and thereby able to receive and carry the plasmid. Most intriguingly, the loss of CRISPR function even by large deletions can have little or no fitness cost in vitro. These theoretical and experimental results can account for the considerable variation in the existence, number and function of CRISPR-Cas loci within and between bacterial species. We postulate that as a consequence of the opposing positive and negative selection for immunity, CRISPR-Cas systems are in a continuous state of flux. They are lost when they bear immunity to laterally transferred beneficial genes, re-acquired by horizontal gene transfer, and ascend in environments where phage are a major source of mortality.

  10. Construction and Application of R Prime Plasmids, Carrying Different Segments of an Octopine Ti Plasmid from Agrobacterium tumefaciens, for Complementation of vir Genes

    NARCIS (Netherlands)

    Hille, Jacques; Klasen, Ina; Schilperoort, Rob

    1982-01-01

    Several R prime plasmids have been obtained with high efficiency, by enclosing the R plasmid replicator, in an R::Ti cointegrate plasmid, between two copies of the transposon Tn1831, in the same orientation. These R primes carry different segments of an octopine Ti plasmid, and are compatible with

  11. Enhancement of plasmid-mediated stable gene expression by ...

    African Journals Online (AJOL)

    In contrast, in Chinese hamster ovary (CHO)-S cells, only a marginal effect on plasmid-mediated EGFP expression by WPRE was observed. The measurable increase of EGFP expression at the protein level was paralleled by an increase of EGFP RNA. Further test of the effect of WPRE on plasmid-mediated gene ...

  12. Widespread plasmid resistance genes among Proteus species in ...

    African Journals Online (AJOL)

    Widespread plasmid resistance genes among Proteus species in diabetic wounds of patients in the Ahmadu Bello university teaching hospital (ABUTH) Zaria. ... African Journal of Biotechnology ... Plasmids have been known to play a major role in the dissemination of antibiotics resistance genes in a microbial population.

  13. Homology of plasmids in strains of unicellular cyanobacteria

    NARCIS (Netherlands)

    Hondel, C.A.M.J.J. van den; Keegstra, W.; Borrias, W.E.; Arkel, G.A. van

    Six strains of unicellular cyanobacteria were examined for the presence of plasmids. Analysis of lysates of these strains by CsCl-ethidium bromide density centrifugation yielded a major chromosomal DNA band and a minor band containing covalently closed circular plasmid DNA, as shown by electron

  14. Functional analysis of three plasmids from Lactobacillus plantarum

    NARCIS (Netherlands)

    Kranenburg, R. van; Golic, N.; Bongers, R.; Leer, R.J.; Vos, W.M. de; Siezen, R.J.; Kleerebezem, M.

    2005-01-01

    Lactobacillus plantarum WCFS1 harbors three plasmids, pWCFS101, pWCFS102, and pWCFS103, with sizes of 1,917, 2,365, and 36,069 bp, respectively. The two smaller plasmids are of unknown function and contain replication genes that are likely to function via the rolling-circle replication mechanism.

  15. Plasmid mediated resistance in multidrug resistant bacteria isolated ...

    African Journals Online (AJOL)

    98 Kb and 0.87 Kb. The plasmid analysis of the results obtained in this study showed that the predominant plasmid molecular size was 977bp which occurred frequently among the Citrobacter spp and Staph aureus. These findings suggest an increased resistance to the antibiotics commonly used for the treatment of ...

  16. Genomic comparison of archaeal conjugative plasmids from Sulfolobus

    DEFF Research Database (Denmark)

    Greve, Bo Bjørn

    2004-01-01

    All of the known self-transmissable plasmids of the Archaea have been found in the genus Sulfolobus. To gain more insight into archaeal conjugative processes, four newly isolated self-transmissable plasmids, pKEF9, pHVE14, pARN3 and pARN4, were sequenced and subjected to a comparative sequence...

  17. Two novel conjugative plasmids from a single strain of Sulfolobus

    NARCIS (Netherlands)

    Erauso, G.; Stedman, K.M.; Werken, van de H.J.G.; Zillig, W.; Oost, van der J.

    2006-01-01

    Two conjugative plasmids (CPs) were isolated and characterized from the same 'Sulfolobus islandicus' strain, SOG2/4, The plasmids were separated from each other and transferred into Sulfolobus soltataricus. One has a high copy number and is not stable (pSOG1) whereas the other has a low copy number

  18. Replication and maintenance of plasmids in Bacillus subtilis

    NARCIS (Netherlands)

    Meijer, Wilhelmus Johannes Jozef

    1995-01-01

    Plasmids and their derived gene cloning and expression vectors play a prominent role in almost all area's of molecular genetics. A disadvantage, however, is the frequently observed high level of instability of plasmids, especially when they contain heterologous DNA. Two types of instability can be

  19. Broad host range of streptococcal macrolide resistance plasmids.

    OpenAIRE

    Buu-Hoï, A; Bieth, G; Horaud, T

    1984-01-01

    Four macrolide-lincosamide-streptogramin B resistance plasmids transferred into 13 recipients belonging to Streptococcus, Staphylococcus, and Listeria genera. The plasmids were stably maintained in all new hosts except Streptococcus sanguis, Streptococcus pneumoniae, Staphylococcus aureus, and Listeria innocua and were identical to those found in the corresponding donor strains.

  20. Chromosomal targeting of replicating plasmids in the yeast Hansenula polymorpha

    NARCIS (Netherlands)

    Faber, Klaas Nico; Swaving, Gert Jan; Faber, Folkert; Ab, Geert; Harder, Willem; Veenhuis, Marten; Haima, Pieter

    1992-01-01

    Using an optimized transformation protocol we have studied the possible interactions between transforming plasmid DNA and the Hansenula polymorpha genome. Plasmids consisting only of a pBR322 replicon, an antibiotic resistance marker for Escherichia coli and the Saccharomyces cerevisiae LEU2 gene

  1. Production and pharmaceutical formulation of plasmid DNA vaccines

    NARCIS (Netherlands)

    van der Heijden, I.

    2013-01-01

    Research leading to the thesis ‘Production and pharmaceutical formulation of plasmid DNA vaccines‘ can be divided into two parts. The first part describes the development of a Good Manufacturing Practice (GMP) compliant plasmid DNA production process of pDNA vaccines for the treatment of Human

  2. Plasmid Borne Resistance in Klebsiella Isolates from Kenyatta ...

    African Journals Online (AJOL)

    Eighty six Klebsiella isolates from Kenyatta National Hospital and the Centre for Microbiology, Kenya Medical Research Institute, Nairobi were screened for resistance to commonly prescribed antimicrobial agents and for their plasmid content. Plasmids were transferred into Esherichia coli K-12 and resulting transconjugants ...

  3. Plasmid Borne Resistance in Klebsiella Isolates from Kenyatta ...

    African Journals Online (AJOL)

    Nx 6110

    Nairobi, Kenya. Eighty six Klebsiella isolates from Kenyatta National Hospital and the Centre for. Microbiology, Kenya Medical Research Institute, Nairobi were screened for resistance to commonly prescribed antimicrobial agents and for their plasmid content. Plasmids were transferred into Esherichia coli K-12 and resulting.

  4. Ubiquity of plasmids in coding for toluene and xylene metabolism in soil bacteria: evidence for the existence of new TOL plasmids.

    Science.gov (United States)

    Williams, P A; Worsey, M J

    1976-01-01

    Thirteen bacteria have been isolated from nine different soil samples by selective enrichment culture on m-toluate (m-methylbenzoate) minimal medium. Eight of these were classified as Pseudomonas putida, one as a fluorescent Pseudomonas sp., and four as nonfluorescent Pseudomonas sp. All 13 strains appeared to carry TOL plasmids superficially similar to that previously described in P. putida mt-2 in that: (i) all the wild-type strains could utilize toluene, m-xylene, and p-xylene as sole carbon and energy sources, (ii) these growth substrates were metabolized through the corresponding alcohols and aldehydes to benzoate, m-toluate, and p-toluate, respectively, and thence by the divergent meta (or alpha-ketoacid) pathway, and (iii) the isolates could simultaneously and spontaneously lose their ability to utilize the hydrocarbons, alcohols, aldehydes, and acids, particularly during growth on benzoate, giving rise to cured strains which could grow only on benzaldehyde and benzoate of the aromatic substrates by the alternative ortho (or beta-ketoadipate) pathway. Eight of the isolates were able to transfer their TOL plasmids into their own cured strains, but only five were able to transfer them in interstrain conjugation into the cured strains, but only five were able to transfer them in interstrain conjugation into the cured derivative of P. putida mt-2. However, P. putida mt-2 was able to transfer its TOL plasmid into 11 of the cured isolates, and eight of these were able to retransmit this foreign plasmid in intrastrain conjugation with their own cured derivatives. Three of the isolates, MT 14, MT 15, and MT 20, differed significantly from the others in that the wild-type strains dissimilated the p-methyl-substituted substrates poorly, and also, during growth on benzoate, in addition to the cured derivatives, they gave rise to derivatives with a phenotype intermediate between the cured and wild-type strains, the biochemical and genetic nature of which has not been

  5. Gene Amplification by PCR and Subcloning into a GFP-Fusion Plasmid Expression Vector as a Molecular Biology Laboratory Course

    Science.gov (United States)

    Bornhorst, Joshua A.; Deibel, Michael A.; Mulnix, Amy B.

    2004-01-01

    A novel experimental sequence for the advanced undergraduate laboratory course has been developed at Earlham College. Utilizing recent improvements in molecular techniques for a time-sensitive environment, undergraduates were able to create a chimera of a selected gene and green fluorescent protein (GFP) in a bacterial expression plasmid over the…

  6. Transformation of a plasmid-free, genital tract isolate of Chlamydia trachomatis with a plasmid vector carrying a deletion in CDS6 revealed that this gene regulates inclusion phenotype.

    Science.gov (United States)

    Wang, Yibing; Cutcliffe, Lesley T; Skilton, Rachel J; Persson, Kenneth; Bjartling, Carina; Clarke, Ian N

    2013-03-01

    The development of a plasmid-based genetic transformation protocol for Chlamydia trachomatis provides the basis for the detailed investigation of the function of the chlamydial plasmid and its individual genes or coding sequences (CDS). In this study we constructed a plasmid vector with CDS6 deleted (pCDS6KO) from the original Escherichia coli/C. trachomatis shuttle vector pGFP::SW2. pCDS6KO was transformed into a clinical isolate of C. trachomatis from Sweden that is plasmid-free (C. trachomatis SWFP-). Penicillin-resistant transformants expressing the green fluorescent protein were selected. These transformants did not stain with iodine, indicating that this property is regulated by CDS6 or its gene product. In addition, mature inclusions of C. trachomatis SWFP- transformed by pCDS6KO displayed an identical morphological phenotype to the untransformed plasmid-free recipient host. In this phenotype the morphology of inclusions was altered with the chlamydiae lining the periphery of the inclusion leaving a 'hole' in the centre. These green fluorescent inclusions appear 'doughnut-shaped' with an empty centre when examined under blue light, giving rise to a characteristic 'black hole' phenotype. Our study demonstrates the power of the new genetic system for investigating chlamydial gene function using gene deletion technology. © 2013 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  7. Transformation of a plasmid-free, genital tract isolate of Chlamydia trachomatis with a plasmid vector carrying a deletion in CDS6 revealed that this gene regulates inclusion phenotype

    Science.gov (United States)

    Wang, Yibing; Cutcliffe, Lesley T; Skilton, Rachel J; Persson, Kenneth; Bjartling, Carina; Clarke, Ian N

    2013-01-01

    The development of a plasmid-based genetic transformation protocol for Chlamydia trachomatis provides the basis for the detailed investigation of the function of the chlamydial plasmid and its individual genes or coding sequences (CDS). In this study we constructed a plasmid vector with CDS6 deleted (pCDS6KO) from the original Escherichia coli/C. trachomatis shuttle vector pGFP::SW2. pCDS6KO was transformed into a clinical isolate of C. trachomatis from Sweden that is plasmid-free (C. trachomatis SWFP–). Penicillin-resistant transformants expressing the green fluorescent protein were selected. These transformants did not stain with iodine, indicating that this property is regulated by CDS6 or its gene product. In addition, mature inclusions of C. trachomatis SWFP– transformed by pCDS6KO displayed an identical morphological phenotype to the untransformed plasmid-free recipient host. In this phenotype the morphology of inclusions was altered with the chlamydiae lining the periphery of the inclusion leaving a ‘hole’ in the centre. These green fluorescent inclusions appear ‘doughnut-shaped’ with an empty centre when examined under blue light, giving rise to a characteristic ‘black hole’ phenotype. Our study demonstrates the power of the new genetic system for investigating chlamydial gene function using gene deletion technology. PMID:23620154

  8. Hairy-root-inducing plasmid: physical map and homology to tumor-inducing plasmids.

    Science.gov (United States)

    Huffman, G A; White, F F; Gordon, M P; Nester, E W

    1984-01-01

    A physical map was constructed for the 250-kilobase plasmid pRiA4b, which confers the virulence properties of a strain of Agrobacterium rhizogenes for hairy root disease in plants. The complete HindIII and KpnI restriction map was determined from a collection of overlapping HindIII partial digest clones. Homologous regions with two well-characterized plasmids that confer virulence for crown gall disease, plasmids pTiA6 and pTiT37, were mapped on pRiA4b. As much as 160 kilobases of pRiA4b had detectable homology to one or both of these crown-gall-tumor-inducing plasmids. About 33 kilobases of pRiA4b hybridized to the vir region of pTiA6, a segment of DNA required for virulence of Agrobacterium tumefaciens. Portions of pTiA6 and pTiT37 transferred into plant cells in crown gall disease (T-DNA), shared limited homology with scattered regions of pRiA4b. The tumor morphology loci tms-1 and tms-2 from the T-DNA of pTiA6 hybridized to pRiA4b. A T-DNA fragment containing the tml and tmr tumor morphology loci also hybridized to pRiA4b, but the homology has not been defined to a locus and is probably not specific to tmr. A segment of pRiA4b T-DNA which was transferred into plant cells in hairy root disease lacked detectable homology to pTiA6 and had limited homology at one end to the T-DNA of pTiT37. Images PMID:6690423

  9. Photoreactivation of Ultraviolet-Irradiated, Plasmid-Bearing and Plasmid-Free Strains of Bacillus anthracis

    Science.gov (United States)

    1985-12-19

    for transfer of plasmids among Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis . J. Bacteriol. 162:543-550. 2. Beall, F. A., N. J...25. Romlg, W. R., and 0. Wyss. 1957. Some effects of ultraviolet radiation on sporulating cultures of Bacillus cereus. J. Bacteriol. 74:386-391. 26...NUMBER __ vation Bacillus anthracis) ś 7. AUTHOR(’a) B.KusnShD . CONTRACT OR GRANT NUMBER(a) PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT

  10. Diversity and Global Distribution of IncL/M Plasmids Enabling Horizontal Dissemination of β-Lactam Resistance Genes among the Enterobacteriaceae

    Directory of Open Access Journals (Sweden)

    Marcin Adamczuk

    2015-01-01

    Full Text Available Antibiotic resistance determinants are frequently associated with plasmids and other mobile genetic elements, which simplifies their horizontal transmission. Several groups of plasmids (including replicons of the IncL/M incompatibility group were found to play an important role in the dissemination of resistance genes encoding β-lactamases. The IncL/M plasmids are large, broad host range, and self-transmissible replicons. We have identified and characterized two novel members of this group: pARM26 (isolated from bacteria inhabiting activated sludge from a wastewater treatment plant and pIGT15 (originating from a clinical strain of Escherichia coli. This instigated a detailed comparative analysis of all available sequences of IncL/M plasmids encoding β-lactamases. The core genome of these plasmids is comprised of 20 genes with conserved synteny. Phylogenetic analyses of these core genes allowed clustering of the plasmids into four separate groups, which reflect their antibiotic resistance profiles. Examination of the biogeography of the IncL/M plasmids revealed that they are most frequently found in bacteria of the family Enterobacteriaceae originating from the Mediterranean region and Western Europe and that they are able to persist in various ecological niches even in the absence of direct antibiotic selection pressure.

  11. Successful Establishment of Plasmids R1 and pMV158 in a New Host Requires the Relief of the Transcriptional Repression of Their Essential rep Genes

    Directory of Open Access Journals (Sweden)

    José Á. Ruiz-Masó

    2017-12-01

    the plasmid replicate at approximately the same rate as the chromosome at any time after transformation, which results in maximal plasmid loss rate in the absence of selection. Overall, these findings indicate that unrepressed activity of the Cop-regulated promoter is crucial for the successful colonization of the recipient bacterial cells by the plasmid.

  12. Milk-originated Bacillus cereus sensu lato strains harbouring Bacillus anthracis-like plasmids are genetically and phenotypically diverse.

    Science.gov (United States)

    Bartoszewicz, Marek; Marjańska, Paulina Sylwia

    2017-10-01

    Bacillus cereus sensu lato is widely distributed in food products, including raw and processed milk. Plasmids often determine bacterial virulence and toxicity, but their role in the evolution of B. cereus sensu lato is only partly known. Here, we observed that nearly 8% of B. cereus sensu lato isolates were positive for pXO1-like plasmids and 12% for pXO2-like plasmids in raw and ultra-heat-treated (UHT) milk from one dairy plant. However, pXO1-like plasmids were significantly more frequent in raw milk, while pXO2-like plasmids were more frequent in processed milk. Strains from raw and UHT milk were enterotoxigenic, with up to one-fifth of the isolates being psychrotolerant. Phylogenetic assessment using multi-locus sequence typing revealed a polyphyletic structure for these bacilli, with distinct groups of cold-adapted isolates and pathogenic strains (including emetic B. cereus). Populations corresponding to both sampling sites exhibited significant linkage disequilibrium and the presence of purifying selection. The far-from-clonal population structure indicated the presence of sequence types or ecotypes adapted to specific conditions in the dairy industry. A high recombination-to-mutation ratio suggested an important role for horizontal gene transfer among B. cereus sensu lato isolates in milk. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. An activation domain of plasmid R1 TraI protein delineates stages of gene transfer initiation.

    Science.gov (United States)

    Lang, Silvia; Kirchberger, Paul C; Gruber, Christian J; Redzej, Adam; Raffl, Sandra; Zellnig, Guenther; Zangger, Klaus; Zechner, Ellen L

    2011-12-01

    Bacterial conjugation is a form of type IV secretion that transports protein and DNA to recipient cells. Specific bacteriophage exploit the conjugative pili and cell envelope spanning protein machinery of these systems to invade bacterial cells. Infection by phage R17 requires F-like pili and coupling protein TraD, which gates the cytoplasmic entrance of the secretion channel. Here we investigate the role of TraD in R17 nucleoprotein uptake and find parallels to secretion mechanisms. The relaxosome of IncFII plasmid R1 is required. A ternary complex of plasmid oriT, TraD and a novel activation domain within the N-terminal 992 residues of TraI contributes a key mechanism involving relaxase-associated properties of TraI, protein interaction and the TraD ATPase. Helicase-associated activities of TraI are dispensable. These findings distinguish for the first time specific protein domains and complexes that process extracellular signals into distinct activation stages in the type IV initiation pathway. The study also provided insights into the evolutionary interplay of phage and the plasmids they exploit. Related plasmid F adapted to R17 independently of TraI. It follows that selection for phage resistance drives not only variation in TraA pilins but diversifies TraD and its binding partners in a plasmid-specific manner. © 2011 Blackwell Publishing Ltd.

  14. Measuring the Rate of Conjugal Plasmid Transfer and Phage Infection in a Bacterial Population Using Quantitative PCR

    Science.gov (United States)

    Wan, Zhenmao; Goddard, Noel

    2012-02-01

    Horizontal gene transfer between species is an important mechanism for bacterial genome evolution. In Escherichia coli, conjugation is the transfer from a donor(F^+) to a recipient(F^-) cell through cell-to-cell contact. We demonstrate a novel qPCR method for quantifying the transfer kinetics of the F plasmid in a population by enumerating the relative abundance of genetic loci unique to the plasmid and the chromosome. This approach allows us to query the plasmid transfer rate without the need for selective culturing with unprecedented single locus resolution. It also allows us to investigate the inhibition of conjugation in the presence of filamentous bacteriophages M13. Experimental data is then compared with numerical simulation using a mass action, resource limited model.

  15. Physical structure and genetic expression of the sulfonamide-resistance plasmid pLS80 and its derivatives in Streptococcus pneumoniae and Bacillus subtilis

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, P.; Espinosa, M.; Lacks, S.A.

    1984-01-01

    The 10-kb chromosomal fragment of Streptococcus pneumoniae cloned in pLS80 contains the sul-d allele of the pneumococcal gene for dihydropteroate synthase. As a single copy in the chromosome this allele confers resistance to sulfanilamide at 0.2 mg/ml; in the multicopy plasmid it confers resistance to 2.0 mg/ml. The sul-d mutation was mapped by restriction analysis to a 0.4-kb region. A spontaneous deletion beginning approx. 1.5 kb to the right of the sul-d mutation prevented gene function, possibly by removing a promoter. This region could be restored by chromosomal facilitation and be demonstrated in the plasmid by selection for sulfonamide resistance. Under selection for a vector marker, tetracycline resistance, only the deleted plasmid was detectable, apparently as a result of plasmid segregation and the advantageous growth rates of cells with smaller plasmids. When such cells were selected for sulfonamide resistance, the deleted region returned to the plasmid, presumably by equilibration between the chromosome and the plasmid pool, to give a low frequency (approx. 10/sup -3/) of cells resistant to sulfanilamide at 2.0 mg/ml. Models for the mechanisms of chromosomal facilitation and equilibration are proposed. Several derivatives of pLS80 could be transferred to Bacillus subtilis, where they conferred resistance to sulfanilamide at 2 mg/ml, thereby demonstrating cross-species expression of the pneumococcal gene. Transfer of the plasmids to B. subtilis gave rise to large deletions to the left of the sul-d marker, but these deletions did not interfere with the sul-d gene function. Restriction maps of pLS80 and its variously deleted derivatives are presented.

  16. Characterization of plasmids carrying oqxAB in bla(CTX-M)-negative Escherichia coli isolates from food-producing animals.

    Science.gov (United States)

    Liu, Bao-Tao; Li, Liang; Fang, Liang-Xing; Sun, Jian; Liao, Xiao-Ping; Yang, Qiu-E; Huang, Ting; Liu, Ya-Hong

    2014-12-01

    To study the characteristics of plasmids harboring oqxAB among bla(CTX-M)-negative Escherichia coli isolates and search for oqxAB-harboring plasmids similar to plasmids carrying oqxAB-bla(CTX-M) reported previously, conjugation experiment was performed for 115 randomly selected oqxAB-positive but bla(CTX-M)-negative E. coli isolates from diseased animals in Guangdong, China. S1 nuclease pulsed-field gel electrophoresis (PFGE) and southern blotting experiments were performed to investigate the location of oqxAB and other resistance genes. The EcoRI digestion profiles of the plasmids with oqxAB were also analyzed. The clonal relatedness of donor isolates was investigated by PFGE. In this study, 32 oqxAB transconjugants were successfully obtained and most transconjugants showed multidrug resistances. Eleven replicon combination types were found in these transconjugants. floR and oqxAB were found on the same plasmids in all nine transconjugants resistant to florfenicol. The sequences between floR and oqxAB were identical in most transconjugants and the two genes were both linked with tnp in insertion sequences. Nine F18:A-:B1 plasmids with only oqxAB shared identical EcoRI digestion profiles and the profiles were also identical with that of a plasmid carrying oqxAB-bla(CTX-M) found previously. Co-transfer of plasmids carrying oqxAB and fosA3, respectively, was also observed in one isolate. This study demonstrates the dissemination of oqxAB among bla(CTX-M)-negative E. coli isolates was mainly mediated by identical F18:A-:B1 plasmids. A novel arrangement of regions between floR and oqxAB might play an important role in the dissemination of floR-oqxAB. This is the first description of the genetic environment of the relationship between oqxAB and floR in E. coli.

  17. An updated view of plasmid conjugation and mobilization in Staphylococcus.

    Science.gov (United States)

    Ramsay, Joshua P; Kwong, Stephen M; Murphy, Riley J T; Yui Eto, Karina; Price, Karina J; Nguyen, Quang T; O'Brien, Frances G; Grubb, Warren B; Coombs, Geoffrey W; Firth, Neville

    2016-01-01

    The horizontal gene transfer facilitated by mobile genetic elements impacts almost all areas of bacterial evolution, including the accretion and dissemination of antimicrobial-resistance genes in the human and animal pathogen Staphylococcus aureus. Genome surveys of staphylococcal plasmids have revealed an unexpected paucity of conjugation and mobilization loci, perhaps suggesting that conjugation plays only a minor role in the evolution of this genus. In this letter we present the DNA sequences of historically documented staphylococcal conjugative plasmids and highlight that at least 3 distinct and widely distributed families of conjugative plasmids currently contribute to the dissemination of antimicrobial resistance in Staphylococcus. We also review the recently documented "relaxase-in trans" mechanism of conjugative mobilization facilitated by conjugative plasmids pWBG749 and pSK41, and discuss how this may facilitate the horizontal transmission of around 90% of plasmids that were previously considered non-mobilizable. Finally, we enumerate unique sequenced S. aureus plasmids with a potential mechanism of mobilization and predict that at least 80% of all non-conjugative S. aureus plasmids are mobilizable by at least one mechanism. We suggest that a greater research focus on the molecular biology of conjugation is essential if we are to recognize gene-transfer mechanisms from our increasingly in silico analyses.

  18. Impact of plasmid-borne oqxAB on the development of fluoroquinolone resistance and bacterial fitness in Escherichia coli.

    Science.gov (United States)

    Wang, Jing; Guo, Ze-Wen; Zhi, Chan-Ping; Yang, Tong; Zhao, Jing-Jing; Chen, Xiao-Jie; Zeng, Li; Lv, Lu-Chao; Zeng, Zhen-Ling; Liu, Jian-Hua

    2017-05-01

    To investigate the impact of plasmid-borne oqxAB genes on the development of fluoroquinolone resistance, mutations and bacterial fitness in Escherichia coli . MICs and mutation prevention concentrations were compared among E. coli strain TOP10 and two corresponding transformants harbouring the OqxAB-encoding plasmids. Mutants were selected by serial passages with the 0.5-fold MIC of ciprofloxacin, and were randomly selected to determine mutations. Bacterial fitness was evaluated by competition assays in vitro and in vivo . The oqxAB -carrying plasmids contributed to a 4-8-fold increase in the ciprofloxacin MIC and increased the ciprofloxacin mutation prevention concentration by 8-16-fold. The MIC of ciprofloxacin for the two transformants increased faster than that of E. coli TOP10 by serial passaging. Novel mutations in gyrB (A468P or F458V) were first observed. Mutations in gyrA were distributed at codons 87 and 83 in the two transformants, whereas mutation A119E in gyrA dominated in the TOP10 mutants. Although the two oqxAB -bearing plasmids caused a decrease in fitness in vitro , their fitness increased when combined with more than one chromosomal mutation, and clear biological benefits were observed in vivo . The mutations in gyrB were associated with a fitness cost, which could be compensated for by additional mutations. The novel mutation gyrA ΔS83 significantly reduced biological fitness both in vitro and in vivo , and was thus quickly replaced by more beneficial mutations in the population. The possession of plasmid-borne oqxAB may facilitate the evolution of fluoroquinolone resistance, and the fitness cost of OqxAB-encoding plasmids could be compensated by additional chromosomal mutations.

  19. β-Carotene production by Saccharomyces cerevisiae with regard to plasmid stability and culture media.

    Science.gov (United States)

    Lange, Nicole; Steinbüchel, Alexander

    2011-09-01

    A recombinant Saccharomyces cerevisiae strain was used for the production of β-carotene. The episomal plasmid YEplac195YB/I/E was extended by a gene coding for the mevalonate kinase (mvaK1) from Staphylococcus aureus. The adh1 promoter was chosen for constitutive expression of mvaK1. The recombinant strain S. cerevisiae G175 (YEplac-CaroSA) synthesised β-carotene by expressing the carotenogenic genes of Xanthophyllomyces dendrorhous together with the mvaK1 gene. Cells of this strain were investigated for their carotenoid contents in YNB and YPD media. A corresponding mvaK1 transcript in the recombinant yeast host was verified. Growth experiments of a specific erg12 deletion mutant showed that the mevalonate kinase (MvaK1) was able to complement the function of the deleted native mevalonate kinase (Erg12) from S. cerevisiae in the MVA pathway under control of the constitutive adh1 promoter. Cells of S. cerevisiae G175 (YEplac-CaroSA) exhibited high plasmid stability under either selective or non-selective cultivation conditions. Time course experiments demonstrated high plasmid stability even over extended cultivation periods. Carotenoid production was therefore also stable in larger culture volumes. Due to the stability of the plasmid, cultivation of the cells in complex YPD medium was possible, and 14.3 mg β-carotene per litre and a cell density of 9 g cell dry matter (CDM) per litre were achieved. The highest amount of 3,897 μg β-carotene per gramme CDM at a cell density of 1 g CDM per litre was measured after cultivation of the cells in YNB medium with glucose as sole carbon source.

  20. A curated dataset of complete Enterobacteriaceae plasmids compiled from the NCBI nucleotide database

    Directory of Open Access Journals (Sweden)

    Alex Orlek

    2017-06-01

    Full Text Available Thousands of plasmid sequences are now publicly available in the NCBI nucleotide database, but they are not reliably annotated to distinguish complete plasmids from plasmid fragments, such as gene or contig sequences; therefore, retrieving complete plasmids for downstream analyses is challenging. Here we present a curated dataset of complete bacterial plasmids from the clinically relevant Enterobacteriaceae family. The dataset was compiled from the NCBI nucleotide database using curation steps designed to exclude incomplete plasmid sequences, and chromosomal sequences misannotated as plasmids. Over 2000 complete plasmid sequences are included in the curated plasmid dataset. Protein sequences produced from translating each complete plasmid nucleotide sequence in all 6 frames are also provided. Further analysis and discussion of the dataset is presented in an accompanying research article: “Ordering the mob: insights into replicon and MOB typing…” (Orlek et al., 2017 [1]. The curated plasmid sequences are publicly available in the Figshare repository.

  1. A curated dataset of complete Enterobacteriaceae plasmids compiled from the NCBI nucleotide database.

    Science.gov (United States)

    Orlek, Alex; Phan, Hang; Sheppard, Anna E; Doumith, Michel; Ellington, Matthew; Peto, Tim; Crook, Derrick; Walker, A Sarah; Woodford, Neil; Anjum, Muna F; Stoesser, Nicole

    2017-06-01

    Thousands of plasmid sequences are now publicly available in the NCBI nucleotide database, but they are not reliably annotated to distinguish complete plasmids from plasmid fragments, such as gene or contig sequences; therefore, retrieving complete plasmids for downstream analyses is challenging. Here we present a curated dataset of complete bacterial plasmids from the clinically relevant Enterobacteriaceae family. The dataset was compiled from the NCBI nucleotide database using curation steps designed to exclude incomplete plasmid sequences, and chromosomal sequences misannotated as plasmids. Over 2000 complete plasmid sequences are included in the curated plasmid dataset. Protein sequences produced from translating each complete plasmid nucleotide sequence in all 6 frames are also provided. Further analysis and discussion of the dataset is presented in an accompanying research article: "Ordering the mob: insights into replicon and MOB typing…" (Orlek et al., 2017) [1]. The curated plasmid sequences are publicly available in the Figshare repository.

  2. [Epidemiologic study of 2 S. typhimurium outbreaks using plasmid fingerprints].

    Science.gov (United States)

    Baumgartner, A; Breer, C; Schopfer, K

    1989-04-05

    An outbreak of salmonellosis in an old people's home is reported. The infectious agent, S. typhi-murium, was isolated not only from several inmates but also from sick cows of the farm belonging to the home, in animal feed, from employees of the local butcher's shop, and finally in sludge from the local sewage plant. Plasmid analysis provided evidence of a common origin for the isolated S. typhi-murium strains. The incriminated strains harboured, together with two low-molecular-weight plasmids, a plasmid of approximately 50 Mdal, which was also demonstrated in some other S. typhi-murium strains isolated from clinical cases in the area around St. Gallen.

  3. Expansion of the IncX plasmid family for improved identification and typing of novel plasmids in drug-resistant Enterobacteriaceae

    DEFF Research Database (Denmark)

    Johnson, Timothy J.; Bielak, Eliza Maria; Fortini, Daniela

    2012-01-01

    IncX plasmids are narrow host range plasmids of Enterobactericeae that have been isolated for over 50years. They are known to encode type IV fimbriae enabling their own conjugative transfer, and to provide accessory functions to their host bacteria such as resistance towards antimicrobial agents...... and biofilm formation. Previous plasmid-based replicon typing procedures have indicated that the prevalence of IncX plasmids is low among members of the Enterobacteriaceae. However, examination of a number of IncX-like plasmid sequences and their occurrence in various organisms suggests that IncX plasmid...... backbone, but that they are quite divergent with respect to nucleotide and amino acid similarity. Based on phylogenetic comparisons of the sequenced IncX plasmids, the IncX plasmid group has been expanded to include at least four subtypes, IncX1-IncX4. A revised IncX plasmid replicon typing procedure...

  4. Removal of endotoxins from plasmid DNA: analysis of aggregative interaction of mobile divalent metal cations with endotoxins and plasmid DNA.

    Science.gov (United States)

    Ongkudon, Clarence M; Hodges, Emma; Murphy, Kathleen; Danquah, Michael K

    2012-11-01

    Endotoxin lipopolysaccharide removal from plasmid DNA-based vaccine remains a very challenging task for bioprocess engineers. This paper examined the potential use and advantages of divalent cation (Zn(2+), Ca(2+), Mg(2+)) induced aggregation as a plasmid DNA purification method for lipopolysaccharide removal. Analysis of zeta potential, hydrodynamic size, percentage of aggregation; UV-Vis spectroscopy and electron microscopy were performed to determine the optimal cation for preferential aggregation of lipopolysaccharide over plasmid DNA. The results from the hydrodynamic size analysis showed that the addition of Zn(2+) resulted in the maximum theoretical number of lipopolysaccharide molecules per aggregate particle. Dynamic light scattering analysis showed that plasmid DNA aggregates formed a larger maximum hydrodynamic size when it was treated with Ca(2+) than the other two cations. The K(m) value for lipopolysaccharide-Zn(2+) was substantially low (0.28 M) and considerably large (>2 M) for plasmid DNA-Zn(2+). Scatchard plots for plasmid DNA cations showed positive slopes indicating that there was a minimum concentration of plasmid DNA or cations before a significant aggregation occurred. This work concluded that Zn(2+) had the most preferential aggregative interaction with lipopolysaccharide compared to Mg(2+) and Ca(2+). © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Bacteriologic and plasmid analysis of etiologic agents of conjunctivitis in Lagos, Nigeria.

    Science.gov (United States)

    Iwalokun, Bamidele Abiodun; Oluwadun, Afolabi; Akinsinde, Kehinde Adewale; Niemogha, Mary Theressa; Nwaokorie, Fransisca Obiageri

    2011-09-01

    of the complexity of infections showed that 25 specimens elicited mono-infections, while cases of polymicrobial infections caused by two pathogens and three or more pathogens constituted 51.8% and 18.1% of conjunctivitis specimens screened, respectively. The disparity in the percentage contribution of three infection patterns was significant (P susceptibility testing revealed chloramphenicol and ofloxacin as the least and most active antibiotics tested as 99 (63.9%) and 149 (96.1%) of the 155 recovered isolates were sensitive to them. On the whole, the least susceptible pathogen was P. aeruginosa with sensitivities ranging from 20% to 80%, while Moraxella sp. represented the most sensitive pathogen with sensitivities ranging from 71.4% to 100%. Other bacterial isolates also elicited antibiotic sensitivities in the range of 33.3-100%. A total of 101 isolates were screened for plasmids, of which 45 harbored plasmids, yielding a plasmid frequency of 44.6%. Conjugal transfer of resistance to chloramphenicol, ampicillin, and streptomycin was detected in the transconjugants after the mating experiment. The antibiotic resistances were transferred either singly or in combination from six of the seven selected donor strains. The antibiotic resistance pattern transferred by these donor strains was partial and was associated with the transfer of R plasmids of sizes 21.3, 15.2, and 5.0 kb from three of the six transferable strains. The frequencies of transfer of antibiotype or R plasmids to the transconjugants ranged from 1.8 × 10(-7) to 1.4 × 10(-5) transconjugants per donor strain. Conjunctivitis as an eye problem in Lagos is polymicrobial with infections associated with transferable R plasmids for chloramphenicol, ampicillin, and streptomycin. Continuous surveillance of conjunctivitis in relation to etiology, drug susceptibility, and plasmid transferability in the study area is therefore recommended.

  6. Induction and construct UV protective yeast plasmid.

    Science.gov (United States)

    Cuero, Raul; McKay, David S

    2013-07-10

    In this study, we apply concepts of synthetic biology in combination with conventional methods to assemble different genetic components to construct yeast resistant to UV radiation, and to induce production of anti-UV proteins. This work combines sequences of different promoters, STRESS-proteins, heat shock protein (HSP), kinase proteins, alcohol dehydrogenase protein (ADH), ribosomal binding sites, fluorescent reporter proteins, terminators, and a synthetic ribosomal switch. The aim of this investigation was to induce an anti-UV proteins, and to construct an anti-UV yeast plasmid to be used for protection of skin cells against UV radiation. This investigation demonstrates induction and construction of anti-UV genes and production of their corresponding proteins. Cultures of Saccharomyces cerevisiae (ATCC # 66348) were exposed to short-wave UV radiation and were then subjected to time-PCR to assess specific gene expression. Proteins were identified using two dimensional difference gel electrophoresis (2D DIGE) and LC-MS/MS. Different up-regulated and down-regulated proteins were identified. Highly expressed identified proteins were cloned into S. cerevisiae using a synthetic biology approach. Extracts from UV-induced genetically transformed yeasts were used to protect skin cell cultures (ATCC #2522-CRL) in vitro. Both microscopic analysis and an apoptosis assay showed protection of the skin cell cultures against UV radiation. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Enhancement of plasmid-mediated stable gene expression by ...

    African Journals Online (AJOL)

    ARL

    2012-06-12

    Jun 12, 2012 ... Key words: Mammalian cells, plasmid vector, stable gene expression, protein therapeutics, woodchuck hepatitis ... embryonic kidney (HEK293) cell expression system, have ..... Animal cell cultures: recent achievements and.

  8. Conjugative plasmids: Vessels of the communal gene pool

    DEFF Research Database (Denmark)

    Norman, Anders; Hansen, Lars H.; Sørensen, Søren Johannes

    2009-01-01

    Comparative whole-genome analyses have demonstrated that horizontal gene transfer (HGT) provides a significant contribution to prokaryotic genome innovation. The evolution of specific prokaryotes is therefore tightly linked to the environment in which they live and the communal pool of genes...... available within that environment. Here we use the term supergenome to describe the set of all genes that a prokaryotic ‘individual' can draw on within a particular environmental setting. Conjugative plasmids can be considered particularly successful entities within the communal pool, which have enabled HGT...... over large taxonomic distances. These plasmids are collections of discrete regions of genes that function as ‘backbone modules' to undertake different aspects of overall plasmid maintenance and propagation. Conjugative plasmids often carry suites of ‘accessory elements' that contribute adaptive traits...

  9. a positive control plasmid for reporter gene assay

    African Journals Online (AJOL)

    STORAGESEVER

    2008-07-04

    903 for ... qualification as a positive control for luciferase reporter gene assays. Key words: Reporter gene plasmid, luciferase assay, .... tissue-specific promoters by gene gun. Br. J. Dermatol. 144: 34-39. Naylor LH (1999).

  10. Antimicrobial, heavy metal resistance and plasmid profile of ...

    African Journals Online (AJOL)

    The antimicrobial, heavy metal resistance patterns and plasmid profiles of Coliforms (Enterobacteriacea) isolated from nosocomial infections and healthy human faeces were compared. Fifteen of the 25 isolates from nosocomial infections were identified as Escherichia coli, and remaining as Kelebsiella pneumoniae.

  11. Chromosomal context and replication properties of ARS plasmids in ...

    Indian Academy of Sciences (India)

    ARS) elements function as plasmid as well as chromosomal replication origins in yeasts. As compared to ARSs, different chromosomal origins vary greatly in their efficiency and timing of replication probably due to their wider chromosomal ...

  12. Plasmid profile and antimicrobial resistance ratings of enterococci ...

    African Journals Online (AJOL)

    L'analyse du profil plasmidique d'Enterococcus spp. a révélé les bandes d'ADN plasmidique allant de la taille de 800 a 2. 000 bp qui semblait bandes brillantes. Les grands ont été perdus lors de stockage de cellules,, certains étaient moins plasmide. Pas de corrélation entre schémas de plasmides et la résistance aux ...

  13. Construction of mammary gland specific expression plasmid pIN ...

    African Journals Online (AJOL)

    The backbone plasmid pBC1 contained goat β-casein 5′ arm and β-casein 3′ arm, to target mammary gland-specific gene expression. First, the igf-1 gene was cloned from liver tissue harvested from a Saanen dairy goat and inserted downstream of the β-casein 5' arm. Then the neo gene was amplified from plasmid ...

  14. The Native Plasmid pML21 Plays a Role in Stress Tolerance in Enterococcus faecalis ML21, as Analyzed by Plasmid Curing Using Plasmid Incompatibility.

    Science.gov (United States)

    Zuo, Fang-Lei; Chen, Li-Li; Zeng, Zhu; Feng, Xiu-Juan; Yu, Rui; Lu, Xiao-Ming; Ma, Hui-Qin; Chen, Shang-Wu

    2016-02-01

    To investigate the role of the native plasmid pML21 in Enterococcus faecalis ML21's response to abiotic stresses, the plasmid pML21 was cured based on the principle of plasmid incompatibility and segregational instability, generating E. faecalis mutant strain ML0. The mutant and the wild strains were exposed to abiotic stresses: bile salts, low pH, H2O2, ethanol, heat, and NaCl, and their survival rate was measured. We found that curing of pML21 lead to reduced tolerance to stress in E. faecalis ML0, especially oxidative and osmotic stress. Complementation analysis suggested that the genes from pML21 played different role in stress tolerance. The result indicated that pML21 plays a role in E. faecalis ML21's response to abiotic stresses.

  15. Comparative analysis of conjugative plasmids mediating gentamicin resistance in Staphylococcus aureus.

    OpenAIRE

    Goering, R V; Ruff, E A

    1983-01-01

    Five gentamicin-resistant clinical isolates of Staphylococcus aureus were found to contain self-transmissible plasmids of 32 to 37 megadaltons in size. Restriction endonuclease digests of the plasmids were markedly similar to those of reference plasmids of unrelated geographical origin, thus suggesting the significant contribution of common conjugal plasmids to the emergence of gentamicin resistance in S. aureus populations.

  16. Construction and Use of Flow Cytometry Optimized Plasmid-Sensor Strains

    DEFF Research Database (Denmark)

    Bahl, Martin Iain; Oregaard, Gunnar; Sørensen, Søren Johannes

    2009-01-01

    stability of the plasmid is high. The method presented here relies on a phenotypic (green fluorescence protein) marker, which is switched on if the host bacteria loses the residing plasmid. The incorporation of flow cytometry for single-cell detection and discrimination between plasmid-free and plasmid...

  17. High efficiency transformation of Penicillium nalgiovense with integrative and autonomously replicating plasmids.

    Science.gov (United States)

    Fierro, Francisco; Laich, Federico; García-Rico, Ramón O; Martín, Juan F

    2004-01-15

    Penicillium nalgiovense is a filamentous fungus that is acquiring increasing biotechnological importance in the food industry due to its widespread use as starter culture for cured and fermented meat products. Strains of P. nalgiovense can be improved by genetic modification to remove the production of penicillin and other potentially hazardous secondary metabolites, to improve its capacity to control the growth of undesirable fungi and bacteria on the meat product, and other factors that contribute to the ripening of the product in order to get safer and better quality foods. Genetic manipulation of P. nalgiovense has been limited by the lack of molecular genetics tools that were available for this fungus, particularly for "self-cloning" avoiding the use of exogenous DNAs. In this article we describe a series of vectors, selectable markers and transformation methods that can be used for efficient transformation of P. nalgiovense, gene cloning and expression. A uridine auxotrophic P. nalgiovense mutant with an inactive pyrG gene has been isolated. The P. nalgiovense wild-type pyrG gene was cloned and sequenced, and vectors carrying the gene were shown to complement the pyrG mutant. Autonomously replicating plasmids carrying the AMA1 region from Aspergillus nidulans transformed P. nalgiovense very efficiently; these plasmids were shown to be maintained as stable extrachromosomal elements in P. nalgiovense and could be rescued in Escherichia coli. The mitotic stability of self-replicative AMA1 plasmids in P. nalgiovense was higher than that reported for Penicillium chrysogenum.

  18. Characterization of the partitioning system of Myxococcus plasmid pMF1.

    Directory of Open Access Journals (Sweden)

    Xia Sun

    Full Text Available pMF1 is the only autonomously replicating plasmid that has been recently identified in myxobacteria. This study characterized the partitioning (par system of this plasmid. The fragment that significantly increased the retaining stability of plasmids in Myxococcus cells in the absence of selective antibiotics contained three open reading frames (ORFs pMF1.21-pMF1.23 (parCAB. The pMF1.22 ORF (parA is homologous to members of the parA ATPase family, with the highest similarity (56% to the Sphingobium japonicum ParA-like protein, while the other two ORFs had no homologs in GenBank. DNase I footprinting and electrophoretic mobility shift assays showed that the pMF1.23 (parB product is a DNA-binding protein of iteron DNA sequences, while the product of pMF1.21 (parC has no binding activity but is able to enhance the DNA-binding activity of ParB to iterons. The ParB protein autogenously repressed the expression of the par genes, consistent with the type Ib par pattern, while the ParC protein has less repressive activity. The ParB-binding iteron sequences are distributed not only near the partitioning gene loci but also along pMF1. These results indicate that the pMF1 par system has novel structural and functional characteristics.

  19. Acquisition of Carbapenem Resistance by Plasmid-Encoded-AmpC-Expressing Escherichia coli.

    Science.gov (United States)

    van Boxtel, Ria; Wattel, Agnes A; Arenas, Jesús; Goessens, Wil H F; Tommassen, Jan

    2017-01-01

    Although AmpC β-lactamases can barely degrade carbapenems, if at all, they can sequester them and prevent them from reaching their targets. Thus, carbapenem resistance in Escherichia coli and other Enterobacteriaceae can result from AmpC production and simultaneous reduction of antibiotic influx into the periplasm by mutations in the porin genes. Here we investigated the route and genetic mechanisms of acquisition of carbapenem resistance in a clinical E. coli isolate carrying bla CMY-2 on a plasmid by selecting for mutants that are resistant to increasing concentrations of meropenem. In the first step, the expression of OmpC, the only porin produced in the strain under laboratory conditions, was lost, leading to reduced susceptibility to meropenem. In the second step, the expression of the CMY-2 β-lactamase was upregulated, leading to resistance to meropenem. The loss of OmpC was due to the insertion of an IS1 element into the ompC gene or to frameshift mutations and premature stop codons in this gene. The bla CMY-2 gene was found to be located on an IncIγ plasmid, and overproduction of the CMY-2 enzyme resulted from an increased plasmid copy number due to a nucleotide substitution in the inc gene. The clinical relevance of these genetic mechanisms became evident from the analysis of previously isolated carbapenem-resistant clinical isolates, which appeared to carry similar mutations. Copyright © 2016 American Society for Microbiology.

  20. Interfering with glycolysis causes Sir2-dependent hyper-recombination of Saccharomyces cerevisiae plasmids.

    Science.gov (United States)

    Ralser, Markus; Zeidler, Ute; Lehrach, Hans

    2009-01-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a key metabolic regulator implicated in a variety of cellular processes. It functions as a glycolytic enzyme, a protein kinase, and a metabolic switch under oxidative stress. Its enzymatic inactivation causes a major shift in the primary carbohydrate flux. Furthermore, the protein is implicated in regulating transcription, ER-to-Golgi transport, and apoptosis. We found that Saccharomyces cerevisiae cells null for all GAPDH paralogues (Tdh1, Tdh2, and Tdh3) survived the counter-selection of a GAPDH-encoding plasmid when the NAD(+) metabolizing deacetylase Sir2 was overexpressed. This phenotype required a fully functional copy of SIR2 and resulted from hyper-recombination between S. cerevisiae plasmids. In the wild-type background, GAPDH overexpression increased the plasmid recombination rate in a growth-condition dependent manner. We conclude that GAPDH influences yeast episome stability via Sir2 and propose a model for the interplay of Sir2, GAPDH, and the glycolytic flux.

  1. Interfering with glycolysis causes Sir2-dependent hyper-recombination of Saccharomyces cerevisiae plasmids.

    Directory of Open Access Journals (Sweden)

    Markus Ralser

    Full Text Available Glyceraldehyde-3-phosphate dehydrogenase (GAPDH is a key metabolic regulator implicated in a variety of cellular processes. It functions as a glycolytic enzyme, a protein kinase, and a metabolic switch under oxidative stress. Its enzymatic inactivation causes a major shift in the primary carbohydrate flux. Furthermore, the protein is implicated in regulating transcription, ER-to-Golgi transport, and apoptosis. We found that Saccharomyces cerevisiae cells null for all GAPDH paralogues (Tdh1, Tdh2, and Tdh3 survived the counter-selection of a GAPDH-encoding plasmid when the NAD(+ metabolizing deacetylase Sir2 was overexpressed. This phenotype required a fully functional copy of SIR2 and resulted from hyper-recombination between S. cerevisiae plasmids. In the wild-type background, GAPDH overexpression increased the plasmid recombination rate in a growth-condition dependent manner. We conclude that GAPDH influences yeast episome stability via Sir2 and propose a model for the interplay of Sir2, GAPDH, and the glycolytic flux.

  2. Molecular cloning of the plasmid RP4 primase region in a multi-host-range tacP expression vector.

    Science.gov (United States)

    Fürste, J P; Pansegrau, W; Frank, R; Blöcker, H; Scholz, P; Bagdasarian, M; Lanka, E

    1986-01-01

    Plasmid RP4 primase was overproduced by utilizing autoregulated high-level expression vector systems in Escherichia coli and in four other Gram-negative bacterial species. Analysis of the products in E. coli revealed that in addition to the two primase polypeptides of 118 and 80 kDa the pri region of RP4 encodes two smaller proteins of 16.5 and 8.6 kDa. The transcript for the four RP4-specified products is polycistronic. The vector system used in E. coli is based on the plasmid pKK223-3 (Brosius and Holy, 1984), a ColE1-type replicon which contains a polylinker sequence flanked on one side by the controllable tac promoter and on the other side by two strong transcriptional terminators. The gene for the lac repressor (lacIQ) was inserted to render the use of the plasmid independent from repressor-overproducing strains. The gene cartridge essential for high-level expression and selection was combined with the RSF1010 replicon to generate a vector plasmid functioning in a wide variety of Gram-negative hosts. The versatility of the vector family was extended by constructing derivatives that contain the polylinker in inverted orientation relative to the tac promoter. Therefore, the orientation of the cloned fragment can be chosen by 'forced cloning' into the appropriately selected vector.

  3. Identification of pOENI-1 and related plasmids in Oenococcus oeni strains performing the malolactic fermentation in wine.

    Science.gov (United States)

    Favier, Marion; Bilhère, Eric; Lonvaud-Funel, Aline; Moine, Virginie; Lucas, Patrick M

    2012-01-01

    Plasmids in lactic acid bacteria occasionally confer adaptive advantages improving the growth and behaviour of their host cells. They are often associated to starter cultures used in the food industry and could be a signature of their superiority. Oenococcus oeni is the main lactic acid bacteria species encountered in wine. It performs the malolactic fermentation that occurs in most wines after alcoholic fermentation and contributes to their quality and stability. Industrial O. oeni starters may be used to better control malolactic fermentation. Starters are selected empirically by virtue of their fermentation kinetics and capacity to survive in wine. This study was initiated with the aim to determine whether O. oeni contains plasmids of technological interest. Screening of 11 starters and 33 laboratory strains revealed two closely related plasmids, named pOENI-1 (18.3-kb) and pOENI-1v2 (21.9-kb). Sequence analyses indicate that they use the theta mode of replication, carry genes of maintenance and replication and two genes possibly involved in wine adaptation encoding a predicted sulphite exporter (tauE) and a NADH:flavin oxidoreductase of the old yellow enzyme family (oye). Interestingly, pOENI-1 and pOENI-1v2 were detected only in four strains, but this included three industrial starters. PCR screenings also revealed that tauE is present in six of the 11 starters, being probably inserted in the chromosome of some strains. Microvinification assays performed using strains with and without plasmids did not disclose significant differences of survival in wine or fermentation kinetics. However, analyses of 95 wines at different phases of winemaking showed that strains carrying the plasmids or the genes tauE and oye were predominant during spontaneous malolactic fermentation. Taken together, the results revealed a family of related plasmids associated with industrial starters and indigenous strains performing spontaneous malolactic fermentation that possibly

  4. Identification of pOENI-1 and related plasmids in Oenococcus oeni strains performing the malolactic fermentation in wine.

    Directory of Open Access Journals (Sweden)

    Marion Favier

    Full Text Available Plasmids in lactic acid bacteria occasionally confer adaptive advantages improving the growth and behaviour of their host cells. They are often associated to starter cultures used in the food industry and could be a signature of their superiority. Oenococcus oeni is the main lactic acid bacteria species encountered in wine. It performs the malolactic fermentation that occurs in most wines after alcoholic fermentation and contributes to their quality and stability. Industrial O. oeni starters may be used to better control malolactic fermentation. Starters are selected empirically by virtue of their fermentation kinetics and capacity to survive in wine. This study was initiated with the aim to determine whether O. oeni contains plasmids of technological interest. Screening of 11 starters and 33 laboratory strains revealed two closely related plasmids, named pOENI-1 (18.3-kb and pOENI-1v2 (21.9-kb. Sequence analyses indicate that they use the theta mode of replication, carry genes of maintenance and replication and two genes possibly involved in wine adaptation encoding a predicted sulphite exporter (tauE and a NADH:flavin oxidoreductase of the old yellow enzyme family (oye. Interestingly, pOENI-1 and pOENI-1v2 were detected only in four strains, but this included three industrial starters. PCR screenings also revealed that tauE is present in six of the 11 starters, being probably inserted in the chromosome of some strains. Microvinification assays performed using strains with and without plasmids did not disclose significant differences of survival in wine or fermentation kinetics. However, analyses of 95 wines at different phases of winemaking showed that strains carrying the plasmids or the genes tauE and oye were predominant during spontaneous malolactic fermentation. Taken together, the results revealed a family of related plasmids associated with industrial starters and indigenous strains performing spontaneous malolactic fermentation that

  5. In vivo cloning of up to 16 kb plasmids in E. coli is as simple as PCR.

    Directory of Open Access Journals (Sweden)

    Faqing Huang

    Full Text Available The precise assembly of defined DNA sequences into plasmids is an essential task in bioscience research. While a number of molecular cloning techniques have been developed, many methods require specialized expensive reagents or laborious experimental procedure. Not surprisingly, conventional cloning techniques based on restriction digestion and ligation are still commonly used in routine DNA cloning. Here, we describe a simple, fast, and economical cloning method based on RecA- and RecET-independent in vivo recombination of DNA fragments with overlapping ends using E. coli. All DNA fragments were prepared by a 2-consecutive PCR procedure with Q5 DNA polymerase and used directly for transformation resulting in 95% cloning accuracy and zero background from parental template plasmids. Quantitative relationships were established between cloning efficiency and three factors-the length of overlapping nucleotides, the number of DNA fragments, and the size of target plasmids-which can provide general guidance for selecting in vivo cloning parameters. The method may be used to accurately assemble up to 5 DNA fragments with 25 nt overlapping ends into relatively small plasmids, and 3 DNA fragments into plasmids up to 16 kb in size. The whole cloning procedure may be completed within 2 days by a researcher with little training in cloning. The combination of high accuracy and zero background eliminates the need for screening a large number of colonies. The method requires no enzymes other than Q5 DNA polymerase, has no sequence restriction, is highly reliable, and represents one of the simplest, fastest, and cheapest cloning techniques available. Our method is particularly suitable for common cloning tasks in the lab where the primary goal is to quickly generate a plasmid with a pre-defined sequence at low costs.

  6. Development of a transformation system for Chlamydia trachomatis: restoration of glycogen biosynthesis by acquisition of a plasmid shuttle vector.

    Science.gov (United States)

    Wang, Yibing; Kahane, Simona; Cutcliffe, Lesley T; Skilton, Rachel J; Lambden, Paul R; Clarke, Ian N

    2011-09-01

    Chlamydia trachomatis remains one of the few major human pathogens for which there is no transformation system. C. trachomatis has a unique obligate intracellular developmental cycle. The extracellular infectious elementary body (EB) is an infectious, electron-dense structure that, following host cell infection, differentiates into a non-infectious replicative form known as a reticulate body (RB). Host cells infected by C. trachomatis that are treated with penicillin are not lysed because this antibiotic prevents the maturation of RBs into EBs. Instead the RBs fail to divide although DNA replication continues. We have exploited these observations to develop a transformation protocol based on expression of β-lactamase that utilizes rescue from the penicillin-induced phenotype. We constructed a vector which carries both the chlamydial endogenous plasmid and an E.coli plasmid origin of replication so that it can shuttle between these two bacterial recipients. The vector, when introduced into C. trachomatis L2 under selection conditions, cures the endogenous chlamydial plasmid. We have shown that foreign promoters operate in vivo in C. trachomatis and that active β-lactamase and chloramphenicol acetyl transferase are expressed. To demonstrate the technology we have isolated chlamydial transformants that express the green fluorescent protein (GFP). As proof of principle, we have shown that manipulation of chlamydial biochemistry is possible by transformation of a plasmid-free C. trachomatis recipient strain. The acquisition of the plasmid restores the ability of the plasmid-free C. trachomatis to synthesise and accumulate glycogen within inclusions. These findings pave the way for a comprehensive genetic study on chlamydial gene function that has hitherto not been possible. Application of this technology avoids the use of therapeutic antibiotics and therefore the procedures do not require high level containment and will allow the analysis of genome function by

  7. Development of a transformation system for Chlamydia trachomatis: restoration of glycogen biosynthesis by acquisition of a plasmid shuttle vector.

    Directory of Open Access Journals (Sweden)

    Yibing Wang

    2011-09-01

    Full Text Available Chlamydia trachomatis remains one of the few major human pathogens for which there is no transformation system. C. trachomatis has a unique obligate intracellular developmental cycle. The extracellular infectious elementary body (EB is an infectious, electron-dense structure that, following host cell infection, differentiates into a non-infectious replicative form known as a reticulate body (RB. Host cells infected by C. trachomatis that are treated with penicillin are not lysed because this antibiotic prevents the maturation of RBs into EBs. Instead the RBs fail to divide although DNA replication continues. We have exploited these observations to develop a transformation protocol based on expression of β-lactamase that utilizes rescue from the penicillin-induced phenotype. We constructed a vector which carries both the chlamydial endogenous plasmid and an E.coli plasmid origin of replication so that it can shuttle between these two bacterial recipients. The vector, when introduced into C. trachomatis L2 under selection conditions, cures the endogenous chlamydial plasmid. We have shown that foreign promoters operate in vivo in C. trachomatis and that active β-lactamase and chloramphenicol acetyl transferase are expressed. To demonstrate the technology we have isolated chlamydial transformants that express the green fluorescent protein (GFP. As proof of principle, we have shown that manipulation of chlamydial biochemistry is possible by transformation of a plasmid-free C. trachomatis recipient strain. The acquisition of the plasmid restores the ability of the plasmid-free C. trachomatis to synthesise and accumulate glycogen within inclusions. These findings pave the way for a comprehensive genetic study on chlamydial gene function that has hitherto not been possible. Application of this technology avoids the use of therapeutic antibiotics and therefore the procedures do not require high level containment and will allow the analysis of genome

  8. In vivo cloning of up to 16 kb plasmids in E. coli is as simple as PCR.

    Science.gov (United States)

    Huang, Faqing; Spangler, Joseph Rankin; Huang, Allen Yang

    2017-01-01

    The precise assembly of defined DNA sequences into plasmids is an essential task in bioscience research. While a number of molecular cloning techniques have been developed, many methods require specialized expensive reagents or laborious experimental procedure. Not surprisingly, conventional cloning techniques based on restriction digestion and ligation are still commonly used in routine DNA cloning. Here, we describe a simple, fast, and economical cloning method based on RecA- and RecET-independent in vivo recombination of DNA fragments with overlapping ends using E. coli. All DNA fragments were prepared by a 2-consecutive PCR procedure with Q5 DNA polymerase and used directly for transformation resulting in 95% cloning accuracy and zero background from parental template plasmids. Quantitative relationships were established between cloning efficiency and three factors-the length of overlapping nucleotides, the number of DNA fragments, and the size of target plasmids-which can provide general guidance for selecting in vivo cloning parameters. The method may be used to accurately assemble up to 5 DNA fragments with 25 nt overlapping ends into relatively small plasmids, and 3 DNA fragments into plasmids up to 16 kb in size. The whole cloning procedure may be completed within 2 days by a researcher with little training in cloning. The combination of high accuracy and zero background eliminates the need for screening a large number of colonies. The method requires no enzymes other than Q5 DNA polymerase, has no sequence restriction, is highly reliable, and represents one of the simplest, fastest, and cheapest cloning techniques available. Our method is particularly suitable for common cloning tasks in the lab where the primary goal is to quickly generate a plasmid with a pre-defined sequence at low costs.

  9. Identification of pOENI-1 and Related Plasmids in Oenococcus oeni Strains Performing the Malolactic Fermentation in Wine

    Science.gov (United States)

    Favier, Marion; Bilhère, Eric; Lonvaud-Funel, Aline; Moine, Virginie; Lucas, Patrick M.

    2012-01-01

    Plasmids in lactic acid bacteria occasionally confer adaptive advantages improving the growth and behaviour of their host cells. They are often associated to starter cultures used in the food industry and could be a signature of their superiority. Oenococcus oeni is the main lactic acid bacteria species encountered in wine. It performs the malolactic fermentation that occurs in most wines after alcoholic fermentation and contributes to their quality and stability. Industrial O. oeni starters may be used to better control malolactic fermentation. Starters are selected empirically by virtue of their fermentation kinetics and capacity to survive in wine. This study was initiated with the aim to determine whether O. oeni contains plasmids of technological interest. Screening of 11 starters and 33 laboratory strains revealed two closely related plasmids, named pOENI-1 (18.3-kb) and pOENI-1v2 (21.9-kb). Sequence analyses indicate that they use the theta mode of replication, carry genes of maintenance and replication and two genes possibly involved in wine adaptation encoding a predicted sulphite exporter (tauE) and a NADH:flavin oxidoreductase of the old yellow enzyme family (oye). Interestingly, pOENI-1 and pOENI-1v2 were detected only in four strains, but this included three industrial starters. PCR screenings also revealed that tauE is present in six of the 11 starters, being probably inserted in the chromosome of some strains. Microvinification assays performed using strains with and without plasmids did not disclose significant differences of survival in wine or fermentation kinetics. However, analyses of 95 wines at different phases of winemaking showed that strains carrying the plasmids or the genes tauE and oye were predominant during spontaneous malolactic fermentation. Taken together, the results revealed a family of related plasmids associated with industrial starters and indigenous strains performing spontaneous malolactic fermentation that possibly

  10. Transfer of conjugative plasmids among bacteria under environmentally relevant conditions

    DEFF Research Database (Denmark)

    Musovic, Sanin

    Mobile genetiske elementer (f.eks. plasmider), der ofte bærer ekstra funktioner såsom antibiotikaresistens, eller kataboliske- og xenobiotiske nedbrydnings gener, antages at have en meget vigtigt evolutionær rolle for bakterier. I denne PhD afhandling undersøgte jeg størrelsen af plasmid overførsel...... under de miljørelevante substrat-begrænsede forhold, den del og diversitet af bakteriel samfund der er involveret i overførslen, og effekten af plasmid donor cellens fysiologiske status og de miljørelevante faktorer (selektive tryk) på plasmid spredning. En ny metode til at kvantificere den fraktion af...... det oprindelige bakteriesamfund der tager andel i plasmid overførsel blev udviklet. Dyrknings-minimal metode i kombination med reporter gen teknologi og moderne mikroskopi viste en meget høj forekomst af RP4:gfp plasmid overførsel til oprindelige jord bakterier af et bredt værtskab. Der blev også vist...

  11. The broad-host-range plasmid pSFA231 isolated from petroleum-contaminated sediment represents a new member of the PromA plasmid family

    National Research Council Canada - National Science Library

    Li, Xiaobin; Top, Eva M; Wang, Yafei; Brown, Celeste J; Yao, Fei; Yang, Shan; Jiang, Yong; Li, Hui

    2015-01-01

    A self-transmissible broad-host-range (BHR) plasmid pSFA231 was isolated from petroleum-contaminated sediment in Shen-fu wastewater irrigation zone, China, using the triparental mating exogenous plasmid capture method...

  12. The broad-host-range plasmid pSFA231 isolated from petroleum-contaminated sediment represents a new member of the PromA plasmid family

    National Research Council Canada - National Science Library

    Li, Xiaobin; Top, Eva M; Wang, Yafei; Brown, Celeste J; Yao, Fei; Yang, Shan; Jiang, Yong; Li, Hui

    2014-01-01

    A self-transmissible broad-host-range (BHR) plasmid pSFA231 was isolated from petroleum-contaminated sediment in Shen-fu wastewater irrigation zone, China, using the triparental mating exogenous plasmid capture method...

  13. Multiple pathways of plasmid DNA transfer in Helicobacter pylori.

    Directory of Open Access Journals (Sweden)

    Stefanie Rohrer

    Full Text Available Many Helicobacter pylori (Hp strains carry cryptic plasmids of different size and gene content, the function of which is not well understood. A subgroup of these plasmids (e.g. pHel4, pHel12, contain a mobilisation region, but no cognate type IV secretion system (T4SS for conjugative transfer. Instead, certain H. pylori strains (e.g. strain P12 carrying plasmid pHel12 can harbour up to four T4SSs in their genome (cag-T4SS, comB, tfs3, tfs4. Here, we show that such indigenous plasmids can be efficiently transferred between H. pylori strains, even in the presence of extracellular DNaseI eliminating natural transformation. Knockout of a plasmid-encoded mobA relaxase gene significantly reduced plasmid DNA transfer in the presence of DNaseI, suggesting a DNA conjugation or mobilisation process. To identify the T4SS involved in this conjugative DNA transfer, each individual T4SS was consecutively deleted from the bacterial chromosome. Using a marker-free counterselectable gene deletion procedure (rpsL counterselection method, a P12 mutant strain was finally obtained with no single T4SS (P12ΔT4SS. Mating experiments using these mutants identified the comB T4SS in the recipient strain as the major mediator of plasmid DNA transfer between H. pylori strains, both in a DNaseI-sensitive (natural transformation as well as a DNaseI-resistant manner (conjugative transfer. However, transfer of a pHel12::cat plasmid from a P12ΔT4SS donor strain into a P12ΔT4SS recipient strain provided evidence for the existence of a third, T4SS-independent mechanism of DNA transfer. This novel type of plasmid DNA transfer, designated as alternate DNaseI-Resistant (ADR mechanism, is observed at a rather low frequency under in vitro conditions. Taken together, our study describes for the first time the existence of three distinct pathways of plasmid DNA transfer between H. pylori underscoring the importance of horizontal gene transfer for this species.

  14. Prevalence, plasmids and antibiotic resistance correlation of enteric bacteria in different drinking water resources in sohag, egypt.

    Science.gov (United States)

    AbdelRahim, Khalid Abdalla Ali; Hassanein, Ahmed Mohamed; Abd El Azeiz, Heikal Abd El Hakim

    2015-01-01

    One of the major health causing problems is contamination of drinking water sources with human pathogenic bacteria. Enteric bacteria such as Shigella, Salmonella and Escherichia coli are most enteric bacteria causing serious health problems. Occurrence of such bacteria infection, which may resist antibiotics, increases the seriousness of problem. The aim of this study was to examine the prevalence of some enteric bacteria (Shigella, Salmonella and E. coli) in addition to Pseudomonas. The antibiotic susceptibility of these bacteria was also tested, in addition to assessing plasmid(s) roles in supposed resistance. MRSA genes in non-staphylococci were clarified. Water samples were collected from different drinking sources (Nile, ground water) and treated tap water. Selective media were used to isolate enteric bacteria and Pseudomonas. These bacteria were identified, counted and examined for its susceptibility against 10 antibiotics. The plasmids were screened in these strains. MRSA genes were also examined using PCR. Thirty-two bacterial strains were isolated from Nile and ground water and identified as S. flexneri, S. sonnei, S. serovar Newport, Pseudomonas aeruginosa and E. coli strains according to standard methods. According to antibiotic susceptibility test, 81% of strains were resistant to Cefepime, whereas 93.75% were sensitive to Ciprofloxacin. Correlation analysis between plasmids profiles and antibiotics sensitivities showed that 50% of the total strains had plasmids. These strains showed resistance to 50% of the used antibiotics (as average value); whereas, the plasmids free strains (50%) were resistant to 48.7% of the antibiotics. No distinct correlation between plasmids and antibiotic resistance in some strains could be concluded in this study. No MRSA gene was detected among these non-staphylococci strains. No bacteria were isolated from treated tap water. Thirty-three bacterial strains; 10 strains of E. coli, 10 strains of S. flexneri, 3 strains S

  15. Relationship of plasmids responsible for hairy root and crown gall tumorigenicity.

    Science.gov (United States)

    White, F F; Nester, E W

    1980-01-01

    Three strains of Agrobacterium rhizogenes were examined for plasmids. Strains 15834 and A4 contained essentially identical large plasmids, pAr15834c and pArA4c, respectively (approximately 260 x 10(6) daltons). These plasmids can dissociate to two smaller plasmid species. Strain TR105 contained only a single plasmid, which was homologous with the dissociation product of pAr15834c, pAr15834b. Plasmid pAr15834c shared little overall sequence homology with other Ti plasmids. One region of conserved homology between pAr15834c and a region of the octopine type plasmid pTiB6806 which contains oncogenicity functions was detected. Lower levels of homology were detected with sequences which are distributed throughout 65% of pTiB6806. Homology with the so-called common deoxyribonucleic acid in the integrated plasmid deoxyribonucleic acid region was detected only after lowering the stringency of hybridization (Tm, -41 degrees C). Furthermore, the A. rhizogenes plasmid is compatible with other Ti plasmids. Therefore, the results suggest that the virulence plasmids of A. rhizogenes are functionally similar to other Ti plasmids, yet have diverged sufficiently from an ancestral Ti plasmid that they now represent a distinct plasmid type based on homology, compatibility, and virulence. Images PMID:7430069

  16. Plasmids and rickettsial evolution: insight from Rickettsia felis.

    Directory of Open Access Journals (Sweden)

    Joseph J Gillespie

    2007-03-01

    Full Text Available The genome sequence of Rickettsia felis revealed a number of rickettsial genetic anomalies that likely contribute not only to a large genome size relative to other rickettsiae, but also to phenotypic oddities that have confounded the categorization of R. felis as either typhus group (TG or spotted fever group (SFG rickettsiae. Most intriguing was the first report from rickettsiae of a conjugative plasmid (pRF that contains 68 putative open reading frames, several of which are predicted to encode proteins with high similarity to conjugative machinery in other plasmid-containing bacteria.Using phylogeny estimation, we determined the mode of inheritance of pRF genes relative to conserved rickettsial chromosomal genes. Phylogenies of chromosomal genes were in agreement with other published rickettsial trees. However, phylogenies including pRF genes yielded different topologies and suggest a close relationship between pRF and ancestral group (AG rickettsiae, including the recently completed genome of R. bellii str. RML369-C. This relatedness is further supported by the distribution of pRF genes across other rickettsiae, as 10 pRF genes (or inactive derivatives also occur in AG (but not SFG rickettsiae, with five of these genes characteristic of typical plasmids. Detailed characterization of pRF genes resulted in two novel findings: the identification of oriV and replication termination regions, and the likelihood that a second proposed plasmid, pRFdelta, is an artifact of the original genome assembly.Altogether, we propose a new rickettsial classification scheme with the addition of a fourth lineage, transitional group (TRG rickettsiae, that is unique from TG and SFG rickettsiae and harbors genes from possible exchanges with AG rickettsiae via conjugation. We offer insight into the evolution of a plastic plasmid system in rickettsiae, including the role plasmids may have played in the acquirement of virulence traits in pathogenic strains, and the

  17. Transformation of Streptococcus sanguis Challis with Streptococcus lactis plasmid DNA.

    Science.gov (United States)

    Harlander, S K; McKay, L L

    1984-01-01

    Streptococcus lactis plasmid DNA, which is required for the fermentation of lactose (plasmid pLM2001), and a potential streptococcal cloning vector plasmid (pDB101) which confers resistance to erythromycin were evaluated by transformation into Streptococcus sanguis Challis. Plasmid pLM2001 transformed lactose-negative (Lac-) mutants of S. sanguis with high efficiency and was capable of conferring lactose-metabolizing ability to a mutant deficient in Enzyme IIlac, Factor IIIlac, and phospho-beta-galactosidase of the lactose phosphoenolpyruvate-phosphotransferase system. Plasmid pDB101 was capable of high-efficiency transformation of S. sanguis to antibiotic resistance, and the plasmid could be readily isolated from transformed strains. However, when 20 pLM2001 Lac+ transformants were analyzed by a variety of techniques for the presence of plasmids, none could be detected. In addition, attempts to cure the Lac+ transformants by treatment with acriflavin were unsuccessful. Polyacrylamide gel electrophoresis was used to demonstrate that the transformants had acquired a phospho-beta-galactosidase characteristic of that normally produced by S. lactis and not S. sanguis. It is proposed that the genes required for lactose fermentation may have become stabilized in the transformants due to their integration into the host chromosome. The efficient transformation into and expression of pLM2001 and pDB101 genes in S. sanguis provides a model system which could allow the development of a system for cloning genes from dairy starter cultures into S. sanguis to examine factors affecting their expression and regulation. Images PMID:6435522

  18. THE ENDOGENOUS BACILLUS-SUBTILIS (NATTO) PLASMIDS PTA1015 AND PTA1040 CONTAIN SIGNAL PEPTIDASE-ENCODING GENES - IDENTIFICATION OF A NEW STRUCTURAL MODULE ON CRYPTIC PLASMIDS

    NARCIS (Netherlands)

    MEIJER, WJJ; DEJONG, A; BEA, G; WISMAN, A; TJALSMA, H; VENEMA, G; BRON, S; MAARTEN, J; VANDIJL, JM

    Various strains of Bacillus subtilis (natto) contain small cryptic plasmids that replicate via the rolling-circle mechanism. Like plasmids from other Gram-positive bacteria, these plasmids are composed of several distinct structural modules. A new structural module was identified on the B. subtilis

  19. Dictation of the shape of mesoscale semiconductor nanoparticle assemblies by plasmid DNA

    Science.gov (United States)

    Coffer, Jeffrey L.; Bigham, Shelli R.; Li, Xin; Pinizzotto, Russell F.; Rho, Young Gyu; Pirtle, Robert M.; Pirtle, Irma L.

    1996-12-01

    We have developed a method of semiconductor nanostructure fabrication relying on the size and shape of a polynucleotide to dictate the overall structure of an assembly of individual nanoparticles. This is exemplified by our use of the 3455-basepair circular plasmid DNA molecule pUCLeu4 which, when anchored to a suitably derivatized substrate, yields an array of semiconductor nanoparticles matching the shape of the biopolymer stabilizer. The viability of the methodology was confirmed using data from high resolution transmission electron microscopy, selected area electron diffraction, and linear optical absorption spectroscopy. This is a unique demonstration of the self-assembly of mesoscale semiconductor nanostructures using biological macromolecules as templates.

  20. Dcm methylation is detrimental to plasmid transformation in Clostridium thermocellum.

    Science.gov (United States)

    Guss, Adam M; Olson, Daniel G; Caiazza, Nicky C; Lynd, Lee R

    2012-05-06

    Industrial production of biofuels and other products by cellulolytic microorganisms is of interest but hindered by the nascent state of genetic tools. Although a genetic system for Clostridium thermocellum DSM1313 has recently been developed, available methods achieve relatively low efficiency and similar plasmids can transform C. thermocellum at dramatically different efficiencies. We report an increase in transformation efficiency of C. thermocellum for a variety of plasmids by using DNA that has been methylated by Escherichia coli Dam but not Dcm methylases. When isolated from a dam+dcm+E. coli strain, pAMG206 transforms C. thermocellum 100-fold better than the similar plasmid pAMG205, which contains an additional Dcm methylation site in the pyrF gene. Upon removal of Dcm methylation, transformation with pAMG206 showed a four- to seven-fold increase in efficiency; however, transformation efficiency of pAMG205 increased 500-fold. Removal of the Dcm methylation site from the pAMG205 pyrF gene via silent mutation resulted in increased transformation efficiencies equivalent to that of pAMG206. Upon proper methylation, transformation efficiency of plasmids bearing the pMK3 and pB6A origins of replication increased ca. three orders of magnitude. E. coli Dcm methylation decreases transformation efficiency in C. thermocellum DSM1313. The use of properly methylated plasmid DNA should facilitate genetic manipulation of this industrially relevant bacterium.

  1. Dcm methylation is detrimental to plasmid transformation in Clostridium thermocellum

    Directory of Open Access Journals (Sweden)

    Guss Adam M

    2012-05-01

    Full Text Available Abstract Background Industrial production of biofuels and other products by cellulolytic microorganisms is of interest but hindered by the nascent state of genetic tools. Although a genetic system for Clostridium thermocellum DSM1313 has recently been developed, available methods achieve relatively low efficiency and similar plasmids can transform C. thermocellum at dramatically different efficiencies. Results We report an increase in transformation efficiency of C. thermocellum for a variety of plasmids by using DNA that has been methylated by Escherichia coli Dam but not Dcm methylases. When isolated from a dam+dcm+E. coli strain, pAMG206 transforms C. thermocellum 100-fold better than the similar plasmid pAMG205, which contains an additional Dcm methylation site in the pyrF gene. Upon removal of Dcm methylation, transformation with pAMG206 showed a four- to seven-fold increase in efficiency; however, transformation efficiency of pAMG205 increased 500-fold. Removal of the Dcm methylation site from the pAMG205 pyrF gene via silent mutation resulted in increased transformation efficiencies equivalent to that of pAMG206. Upon proper methylation, transformation efficiency of plasmids bearing the pMK3 and pB6A origins of replication increased ca. three orders of magnitude. Conclusions E. coli Dcm methylation decreases transformation efficiency in C. thermocellum DSM1313. The use of properly methylated plasmid DNA should facilitate genetic manipulation of this industrially relevant bacterium.

  2. Dcm methylation is detrimental to plasmid transformation in Clostridium thermocellum

    Energy Technology Data Exchange (ETDEWEB)

    Guss, Adam M [ORNL; Olson, Daniel G. [Thayer School of Engineering at Dartmouth; Caiazza, Nicky [Mascoma Corporation; Lynd, Lee R [Thayer School of Engineering at Dartmouth

    2012-01-01

    BACKGROUND: Industrial production of biofuels and other products by cellulolytic microorganisms is of interest but hindered by the nascent state of genetic tools. Although a genetic system for Clostridium thermocellum DSM1313 has recently been developed, available methods achieve relatively low efficiency and similar plasmids can transform C. thermocellum at dramatically different efficiencies. RESULTS: We report an increase in transformation efficiency of C. thermocellum for a variety of plasmids by using DNA that has been methylated by Escherichia coli Dam but not Dcm methylases. When isolated from a dam+ dcm+ E. coli strain, pAMG206 transforms C. thermocellum 100-fold better than the similar plasmid pAMG205, which contains an additional Dcm methylation site in the pyrF gene. Upon removal of Dcm methylation, transformation with pAMG206 showed a four- to seven-fold increase in efficiency; however, transformation efficiency of pAMG205 increased 500-fold. Removal of the Dcm methylation site from the pAM205 pyrF gene via silent mutation resulted in increased transformation efficiencies equivalent to that of pAMG206. Upon proper methylation, transformation efficiency of plasmids bearing the pMK3 and pB6A origins of replication increased ca. three orders of magnitude. CONCLUSION: E. coli Dcm methylation decreases transformation efficiency in C. thermocellum DSM1313. The use of properly methylated plasmid DNA should facilitate genetic manipulation of this industrially relevant bacterium.

  3. Protein Pattern and Plasmid Profile of Lactic Acid Bacteria Isolated from Dahi, A Traditional Fermented Milk Product of Pakistan

    Directory of Open Access Journals (Sweden)

    Tariq Masud

    2007-01-01

    Full Text Available A total of 116 isolates were identified from randomly collected market dahi samples from Rawalpindi, Pakistan. Lactic acid bacteria dominated the microbial population of dahi and were identified according to their morphological and physiological characteristics. Among these lactobacilli were frequently occurring organisms. The phenotypic and biochemical analyses gave a diversity of species (8 presumptive species. The most abundant species were Lactobacillus delbrueckii subsp. bulgaricus (28 isolates and Streptococcus thermophilus (25 isolates. Some contaminants such as Staphylococcus, Micrococcus and Saccharomyces spp. were also observed. The whole cell protein profiles of selected strains of lactic acid bacteria were examined by SDS-PAGE. It was observed that each species yielded a different electrophoretic pattern. It was further observed that among the strains investigated for the analysis of plasmid DNA 22 strains were found positive, 8 strains of L. delbrueckii subsp. bulgaricus followed by 5 of L. acidophilus, 4 of L. casei, 3 of L. helveticus and one of each L. delbrueckii subsp. delbrueckii and L. delbrueckii subsp. lactis, whereas no plasmid was observed in S. thermophilus and L. lactis strains investigated during the study. All the plasmids isolated were mostly large size plasmids and ranged from 20 to 25 kb in size.

  4. Molecular Characterization of Adenylyl Cyclase Complex Proteins Using Versatile Protein-Tagging Plasmid Systems in Cryptococcus neoformans.

    Science.gov (United States)

    So, Yee-Seul; Yang, Dong-Hoon; Jung, Kwang-Woo; Huh, Won-Ki; Bahn, Yong-Sun

    2017-02-28

    In this study, we aimed to generate a series of versatile tagging plasmids that can be used in diverse molecular biological studies of the fungal pathogen Cryptococcus neoformans. We constructed 12 plasmids that can be used to tag a protein of interest with a GFP, mCherry, 4×FLAG, or 6×HA, along with nourseothricin-, neomycin-, or hygromycin-resistant selection markers. Using this tagging plasmid set, we explored the adenylyl cyclase complex (ACC), consisting of adenylyl cyclase (Cac1) and its associated protein Aca1, in the cAMP-signaling pathway, which is critical for the pathogenicity of C. neoformans. We found that Cac1-mCherry and Aca1-GFP were mainly colocalized as punctate forms in the cell membrane and nonnuclear cellular organelles. We also demonstrated that Cac1 and Aca1 interacted in vivo by coimmunoprecipitation, using Cac1-6×HA and Aca1-4×FLAG tagging strains. Bimolecular fluorescence complementation further confirmed the in vivo interaction of Cac1 and Aca1 in live cells. Finally, protein pull-down experiments using aca1Δ::ACA1-GFP and aca1Δ::ACA1- GFP cac1Δ strains and comparative mass spectrometry analysis identified Cac1 and a number of other novel ACC-interacting proteins. Thus, this versatile tagging plasmid system will facilitate diverse mechanistic studies in C. neoformans and further our understanding of its biology.

  5. A high security double lock and key mechanism in HUH relaxases controls oriT-processing for plasmid conjugation.

    Science.gov (United States)

    Carballeira, José Daniel; González-Pérez, Blanca; Moncalián, Gabriel; de la Cruz, Fernando

    2014-01-01

    Relaxases act as DNA selection sieves in conjugative plasmid transfer. Most plasmid relaxases belong to the HUH endonuclease family. TrwC, the relaxase of plasmid R388, is the prototype of the HUH relaxase family, which also includes TraI of plasmid F. In this article we demonstrate that TrwC processes its target nic-site by means of a highly secure double lock and key mechanism. It is controlled both by TrwC-DNA intermolecular interactions and by intramolecular DNA interactions between several nic nucleotides. The sequence specificity map of the interaction between TrwC and DNA was determined by systematic mutagenesis using degenerate oligonucleotide libraries. The specificity map reveals the minimal nic sequence requirements for R388-based conjugation. Some nic-site sequence variants were still able to form the U-turn shape at the nic-site necessary for TrwC processing, as observed by X-ray crystallography. Moreover, purified TrwC relaxase effectively cleaved ssDNA as well as dsDNA substrates containing these mutant sequences. Since TrwC is able to catalyze DNA integration in a nic-site-containing DNA molecule, characterization of nic-site functionally active sequence variants should improve the search quality of potential target sequences for relaxase-mediated integration in any target genome. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Treatment with cefotaxime affects expression of conjugation associated proteins and conjugation transfer frequency of an IncI1 plasmid in Escherichia coli

    DEFF Research Database (Denmark)

    Møller, Thea S.B.; Liu, Gang; Boysen, Anders

    2017-01-01

    Horizontal gene transfer (HGT) is the major mechanism responsible for spread of antibiotic resistance. Antibiotic treatment has been suggested to promote HGT, either by directly affecting the conjugation process itself or by selecting for conjugations subsequent to DNA transfer. However, recent......-regulation of the transfer machinery was confirmed at the transcriptional level for five selected genes. The CTX treatment did not cause induction of the SOS-response as revealed by absence of significantly regulated SOS associated proteins in the proteome and no significant up-regulation of recA and sfiA genes...... research suggests that the effect of antibiotic treatment on plasmid conjugation frequencies, and hence the spread of resistance plasmids, may have been overestimated. We addressed the question by quantifying transfer proteins and conjugation frequencies of a blaCTX-M-1 encoding IncI1 resistance plasmid...

  7. Haemophilus parainfluenzae causing sexually transmitted urethritis. Report of a case and evidence for a beta-lactamase plasmid mobilizable to Escherichia coli by an Inc-W plasmid.

    Science.gov (United States)

    Facinelli, B; Montanari, M P; Varaldo, P E

    1991-01-01

    A multiple antibiotic resistance, beta-lactamase-producing strain of Haemophilus parainfluenzae was isolated from a patient with sexually transmitted urethritis that was contracted in Northwest Africa. The strain was found to harbor a small (3.2 megadaltons) plasmid encoding for beta-lactamase production, which was successfully mobilized to Escherichia coli in triparental mating experiments by means of a broad host-range Inc-W conjugative plasmid. Since H. parainfluenzae is believed to be a source and reservoir for the spread of beta-lactamase plasmids to other bacterial species, such a plasmid mobilization may suggest a new possible means for resistance plasmid dissemination.

  8. The conjugative plasmid of a bean-nodulating Sinorhizobium fredii strain is assembled from sequences of two Rhizobium plasmids and the chromosome of a Sinorhizobium strain

    Directory of Open Access Journals (Sweden)

    Brom Susana

    2011-06-01

    Full Text Available Abstract Background Bean-nodulating Rhizobium etli originated in Mesoamerica, while soybean-nodulating Sinorhizobium fredii evolved in East Asia. S. fredii strains, such as GR64, have been isolated from bean nodules in Spain, suggesting the occurrence of conjugative transfer events between introduced and native strains. In R. etli CFN42, transfer of the symbiotic plasmid (pRet42d requires cointegration with the endogenous self-transmissible plasmid pRet42a. Aiming at further understanding the generation of diversity among bean nodulating strains, we analyzed the plasmids of S. fredii GR64: pSfr64a and pSfr64b (symbiotic plasmid. Results The conjugative transfer of the plasmids of strain GR64 was analyzed. Plasmid pSfr64a was self-transmissible, and required for transfer of the symbiotic plasmid. We sequenced pSfr64a, finding 166 ORFs. pSfr64a showed three large segments of different evolutionary origins; the first one presented 38 ORFs that were highly similar to genes located on the chromosome of Sinorhizobium strain NGR234; the second one harbored 51 ORFs with highest similarity to genes from pRet42d, including the replication, but not the symbiosis genes. Accordingly, pSfr64a was incompatible with the R. etli CFN42 symbiotic plasmid, but did not contribute to symbiosis. The third segment contained 36 ORFs with highest similarity to genes localized on pRet42a, 20 of them involved in conjugative transfer. Plasmid pRet42a was unable to substitute pSfr64a for induction of pSym transfer, and its own transfer was significantly diminished in GR64 background. The symbiotic plasmid pSfr64b was found to differ from typical R. etli symbiotic plasmids. Conclusions S. fredii GR64 contains a chimeric transmissible plasmid, with segments from two R. etli plasmids and a S. fredii chromosome, and a symbiotic plasmid different from the one usually found in R. etli bv phaseoli. We infer that these plasmids originated through the transfer of a symbiotic-conjugative-plasmid

  9. Characterization of blaCMY-2 plasmids in Salmonella and Escherichia coli isolates from food animals in Canada.

    Science.gov (United States)

    Martin, Laura C; Weir, Emily K; Poppe, Cornelis; Reid-Smith, Richard J; Boerlin, Patrick

    2012-02-01

    One hundred thirty-four bla(CMY-2) plasmids from Salmonella and Escherichia coli strains from animals and food in Canada were characterized. Five plasmid groups were identified based on replicon type and restriction profiles. Three groups contained E. coli plasmids only. IncA/C plasmids included most multiresistant plasmids and all those of bovine origin.

  10. Mitochondrial pAL2-1 plasmid homologs are senescence factors in Podospora anserina independent of intrinsic senescence

    NARCIS (Netherlands)

    Diepeningen, van A.D.; Debets, A.J.M.; Slakhorst-Wandel, S.M.; Hoekstra, R.F.

    2008-01-01

    Since the first description of a linear mitochondrial plasmid in Podospora anserina, pAL2-1, and homologous plasmids have gone from being considered beneficial longevity plasmids, via neutral genetic elements, toward mutator plasmids causing senescence. The plasmid has an invertron structure, with

  11. Mitochondrial pAL2-1 plasmid homologs are senescence factors in Podospora anserina independent of intrinsic senescence

    NARCIS (Netherlands)

    van Diepeningen, Anne D; Debets, Alfons J M; Slakhorst, S Marijke; Hoekstra, Rolf F

    Since the first description of a linear mitochondrial plasmid in Podospora anserina, pAL2-1, and homologous plasmids have gone from being considered beneficial longevity plasmids, via neutral genetic elements, toward mutator plasmids causing senescence. The plasmid has an invertron structure, with

  12. Comparative Genomics of an IncA/C Multidrug Resistance Plasmid from Escherichia coli and Klebsiella Isolates from Intensive Care Unit Patients and the Utility of Whole-Genome Sequencing in Health Care Settings

    Science.gov (United States)

    Hazen, Tracy H.; Zhao, LiCheng; Boutin, Mallory A.; Stancil, Angela; Robinson, Gwen; Harris, Anthony D.; Rasko, David A.

    2014-01-01

    The IncA/C plasmids have been implicated for their role in the dissemination of β-lactamases, including gene variants that confer resistance to expanded-spectrum cephalosporins, which are often the treatment of last resort against multidrug-resistant, hospital-associated pathogens. A blaFOX-5 gene was detected in 14 Escherichia coli and 16 Klebsiella isolates that were cultured from perianal swabs of patients admitted to an intensive care unit (ICU) of the University of Maryland Medical Center (UMMC) in Baltimore, MD, over a span of 3 years. Four of the FOX-encoding isolates were obtained from subsequent samples of patients that were initially negative for an AmpC β-lactamase upon admission to the ICU, suggesting that the AmpC β-lactamase-encoding plasmid was acquired while the patient was in the ICU. The genomes of five E. coli isolates and six Klebsiella isolates containing blaFOX-5 were selected for sequencing based on their plasmid profiles. An ∼167-kb IncA/C plasmid encoding the FOX-5 β-lactamase, a CARB-2 β-lactamase, additional antimicrobial resistance genes, and heavy metal resistance genes was identified. Another FOX-5-encoding IncA/C plasmid that was nearly identical except for a variable region associated with the resistance genes was also identified. To our knowledge, these plasmids represent the first FOX-5-encoding plasmids sequenced. We used comparative genomics to describe the genetic diversity of a plasmid encoding a FOX-5 β-lactamase relative to the whole-genome diversity of 11 E. coli and Klebsiella isolates that carry this plasmid. Our findings demonstrate the utility of whole-genome sequencing for tracking of plasmid and antibiotic resistance gene distribution in health care settings. PMID:24914121

  13. New naphthalene-biodegrading plasmid pBS4

    Energy Technology Data Exchange (ETDEWEB)

    Skryabin, G.K.; Kochetkov, V.V.; Eremin, A.A.; Perebityuk, A.N.; Starovoitov, I.I.; Boronin, A.M.

    1980-01-01

    Four biodegradative plasmids controlling naphthalene catabolism by bacteria of the genus Pseudomonas are now known. The plasmids differ from each other in a number of properties, including in genetic systems determining the synthesis of enzymes involved in divergent pathways of the biological transformation of naphthalene. A new pathway of naphthalene catabolism through gentisic acid was shown earlier in our laboratory. However, the nature of the genetic control of the synthesis of enzymes of this pathway was not known. The results of an investigation of the genetic control of naphthalene catabolism through gentisic acid are presented in this report.

  14. Ribonucleases, antisense RNAs and the control of bacterial plasmids.

    Science.gov (United States)

    Saramago, Margarida; Bárria, Cátia; Arraiano, Cecília M; Domingues, Susana

    2015-03-01

    In the last decade regulatory RNAs have emerged as powerful tools to regulate the expression of genes both in prokaryotes and in eukaryotes. RNases, by degrading these RNA molecules, control the right amount of regulatory RNAs, which is fundamental for an accurate regulation of gene expression in the cell. Remarkably the first antisense RNAs identified were plasmid-encoded and their detailed study was crucial for the understanding of prokaryotic antisense RNAs. In this review we highlight the role of RNases in the precise modulation of antisense RNAs that control plasmid replication, maintenance and transfer. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Recombinogenic engineering of conjugative plasmids with fluorescent marker cassettes

    DEFF Research Database (Denmark)

    Reisner, A.; Molin, Søren; Zechner, E.L.

    2002-01-01

    An efficient approach for the insertion of fluorescent marker genes with sequence specificity into conjugative plasmids in Escherichia coli is described. For this purpose, homologous recombination of linear double-stranded targeting DNA was mediated by the bacteriophage lambda recombination...... resistance genes and fluorescent markers. The choice of 5' non-homologous extensions in primer pairs used for amplifying the marker cassettes determines the site specificity of the targeting DNA. This methodology is applicable to the modification of all plasmids that replicate in E coli and is not restricted...

  16. "Direct cloning in Lactobacillus plantarum: electroporation with non-methylated plasmid DNA enhances transformation efficiency and makes shuttle vectors obsolete".

    Science.gov (United States)

    Spath, Katharina; Heinl, Stefan; Grabherr, Reingard

    2012-10-25

    Lactic acid bacteria (LAB) play an important role in agricultural as well as industrial biotechnology. Development of improved LAB strains using e.g. library approaches is often limited by low transformation efficiencies wherefore one reason could be differences in the DNA methylation patterns between the Escherichia coli intermediate host for plasmid amplification and the final LAB host. In the present study, we examined the influence of DNA methylation on transformation efficiency in LAB and developed a direct cloning approach for Lactobacillus plantarum CD033. Therefore, we propagated plasmid pCD256 in E. coli strains with different dam/dcm-methylation properties. The obtained plasmid DNA was purified and transformed into three different L. plantarum strains and a selection of other LAB species. Best transformation efficiencies were obtained using the strain L. plantarum CD033 and non-methylated plasmid DNA. Thereby we achieved transformation efficiencies of ~ 10(9) colony forming units/μg DNA in L. plantarum CD033 which is in the range of transformation efficiencies reached with E. coli. Based on these results, we directly transformed recombinant expression vectors received from PCR/ligation reactions into L. plantarum CD033, omitting plasmid amplification in E. coli. Also this approach was successful and yielded a sufficient number of recombinant clones. Transformation efficiency of L. plantarum CD033 was drastically increased when non-methylated plasmid DNA was used, providing the possibility to generate expression libraries in this organism. A direct cloning approach, whereby ligated PCR-products where successfully transformed directly into L. plantarum CD033, obviates the construction of shuttle vectors containing E. coli-specific sequences, as e.g. a ColEI origin of replication, and makes amplification of these vectors in E. coli obsolete. Thus, plasmid constructs become much smaller and occasional structural instability or mutagenesis during E. coli

  17. Various pAQU plasmids possibly contribute to disseminate tetracycline resistance gene tet(M) among marine bacterial community.

    Science.gov (United States)

    Nonaka, Lisa; Maruyama, Fumito; Onishi, Yuki; Kobayashi, Takeshi; Ogura, Yoshitoshi; Hayashi, Tetsuya; Suzuki, Satoru; Masuda, Michiaki

    2014-01-01

    Emergence of antibiotic-resistant bacteria in the aquaculture environment is a significant problem for disease control of cultured fish as well as in human public health. Conjugative mobile genetic elements (MGEs) are involved in dissemination of antibiotic resistance genes (ARGs) among marine bacteria. In the present study, we first designed a PCR targeting traI gene encoding essential relaxase for conjugation. By this new PCR, we demonstrated that five of 83 strains isolated from a coastal aquaculture site had traI-positive MGEs. While one of the five strains that belonged to Shewanella sp. was shown to have an integrative conjugative element of the SXT/R391 family (ICEVchMex-like), the MGEs of the other four strains of Vibrio spp. were shown to have the backbone structure similar to that of previously described in pAQU1. The backbone structure shared by the pAQU1-like plasmids in the four strains corresponded to a ~100-kbp highly conserved region required for replication, partition and conjugative transfer, suggesting that these plasmids constituted "pAQU group." The pAQU group plasmids were shown to be capable of conjugative transfer of tet(M) and other ARGs from the Vibrio strains to E. coli. The pAQU group plasmid in one of the examined strains was designated as pAQU2, and its complete nucleotide sequence was determined and compared with that of pAQU1. The results revealed that pAQU2 contained fewer ARGs than pAQU1 did, and most of the ARGs in both of these plasmids were located in the similar region where multiple transposases were found, suggesting that the ARGs were introduced by several events of DNA transposition into an ancestral plasmid followed by drug selection in the aquaculture site. The results of the present study indicate that the "pAQU group" plasmids may play an important role in dissemination of ARGs in the marine environment.

  18. Mutation in ESBL Plasmid from Escherichia coli O104:H4 Leads Autoagglutination and Enhanced Plasmid Dissemination

    Directory of Open Access Journals (Sweden)

    Mickaël Poidevin

    2018-02-01

    Full Text Available Conjugative plasmids are one of the main driving force of wide-spreading of multidrug resistance (MDR bacteria. They are self-transmittable via conjugation as carrying the required set of genes and cis-acting DNA locus for direct cell-to-cell transfer. IncI incompatibility plasmids are nowadays often associated with extended-spectrum beta-lactamases producing Enterobacteria in clinic and environment. pESBL-EA11 was isolated from Escherichia coli O104:H4 outbreak strain in Germany in 2011. During the previous study identifying transfer genes of pESBL-EA11, it was shown that transposon insertion at certain DNA region of the plasmid, referred to as Hft, resulted in great enhancement of transfer ability. This suggested that genetic modifications can enhance dissemination of MDR plasmids. Such ‘superspreader’ mutations have attracted little attention so far despite their high potential to worsen MDR spreading. Present study aimed to gain our understanding on regulatory elements that involved pESBL transfer. While previous studies of IncI plasmids indicated that immediate downstream gene of Hft, traA, is not essential for conjugative transfer, here we showed that overexpression of TraA in host cell elevated transfer rate of pESBL-EA11. Transposon insertion or certain nucleotide substitutions in Hft led strong TraA overexpression which resulted in activation of essential regulator TraB and likely overexpression of conjugative pili. Atmospheric Scanning Electron Microscopy observation suggested that IncI pili are distinct from other types of conjugative pili (such as long filamentous F-type pili and rather expressed throughout the cell surface. High transfer efficiency in the mutant pESBL-EA11 was involved with hyperpiliation which facilitates cell-to-cell adhesion, including autoagglutination. The capability of plasmids to evolve to highly transmissible mutant is alarming, particularly it might also have adverse effect on host pathogenicity.

  19. Coselection for resistance to multiple late-generation human therapeutic antibiotics encoded on tetracycline resistance plasmids captured from uncultivated stream and soil bacteria.

    Science.gov (United States)

    Herrick, J B; Haynes, R; Heringa, S; Brooks, J M; Sobota, L T

    2014-08-01

    Transmissible plasmids captured from stream and soil bacteria conferring resistance to tetracycline in Pseudomonas were evaluated for linked resistance to antibiotics used in the treatment of human infections. Cells released from stream sediments and soils were conjugated with a rifampicin-resistant, plasmid-free Pseudomonas putida recipient and selected on tetracycline and rifampicin. Each transconjugant contained a single 50-80 kb plasmid. Resistance to 11 antibiotics, in addition to tetracycline, was determined for the stream transconjugants using a modification of the Stokes disc diffusion antibiotic susceptibility assay. Nearly half of plasmids conferred resistance to six or more antibiotics. Resistance to streptomycin, gentamicin, and/or ticarcillin was conferred by a majority of the plasmids, and resistance to additional human clinical use antibiotics such as piperacillin/tazobactam, ciprofloxacin and aztreonam was observed. MICs of 16 antibiotics for representative sediment and soil transconjugants revealed large increases, relative to the Ps. putida recipient, for 11 of 16 antibiotics tested, including the expanded spectrum antibiotics cefotaxime and ceftazidime, as well as piperacillin/tazobactam, lomefloxacin and levofloxacin. Resistance to multiple antibiotics-including those typically used in clinical Pseudomonas and enterobacterial infections-can be conferred by transmissible plasmids in streams and soils. Selective pressure exerted by the use of one antibiotic, such as the common agricultural antibiotic tetracycline, may result in the persistence of linked genes conferring resistance to important human clinical antibiotics. This may impact the spread of resistance to human use antibiotics even in the absence of direct selection. © 2014 The Society for Applied Microbiology.

  20. Transfer of plasmid-mediated ampicillin resistance from Haemophilus to Neisseria gonorrhoeae requires an intervening organism.

    Science.gov (United States)

    McNicol, P J; Albritton, W L; Ronald, A R

    1986-01-01

    Haemophilus species have been implicated as the source of plasmid-mediated ampicillin resistance in Neisseria gonorrhoeae. Previous attempts to transfer conjugally the resistance plasmids from Haemophilus species to N. gonorrhoeae have met with limited success. Using both biparental and triparental mating systems, it was found that transfer will occur if the commensal Neisseria species, Neisseria cinerea, is used as a transfer intermediate. This organism stably maintains resistance plasmids of Haemophilus and facilitates transfer of these plasmids to N. gonorrhoeae, in a triparental mating system, at a transfer frequency of 10(-8). Both Haemophilus ducreyi and N. gonorrhoeae carry mobilizing plasmids capable of mediating conjugal transfer of the same resistance plasmids. However, restriction endonuclease mapping and DNA hybridization studies indicate that the mobilizing plasmids are distinctly different molecules. Limited homology is present within the transfer region of these plasmids.

  1. Broad host range plasmids can invade an unexpectedly diverse fraction of a soil bacterial community

    DEFF Research Database (Denmark)

    Klümper, Uli; Riber, Leise; Dechesne, Arnaud

    2014-01-01

    range of IncP- and IncPromA-type broad host range plasmids from three proteobacterial donors to a soil bacterial community. We identified transfer to many different recipients belonging to 11 different bacterial phyla. The prevalence of transconjugants belonging to diverse Gram-positive Firmicutes...... and Actinobacteria suggests that inter-Gram plasmid transfer of IncP-1 and IncPromA-type plasmids is a frequent phenomenon. While the plasmid receiving fractions of the community were both plasmid- and donor- dependent, we identified a core super-permissive fraction that could take up different plasmids from diverse...... donor strains. This fraction, comprising 80% of the identified transconjugants, thus has the potential to dominate IncP- and IncPromA-type plasmid transfer in soil. Our results demonstrate that these broad host range plasmids have a hitherto unrecognized potential to transfer readily to very diverse...

  2. Screening of degradative plasmids from Arthrobacter sp. HW08 and ...

    African Journals Online (AJOL)

    They contained 7 major open reading frames. SW (400 mg l-1), as only carbon source, cultivated with the mixture of the five plasmid-transformants was degraded within 6 h. The degrading capability was equivalent to that of strain HW08. SW degradative ability of minimum combinations was pUCSW-2, 3, 5 > pUCSW-1, 2, ...

  3. Plasmid profile of multi antibiotic resistant staphylococcus aureus ...

    African Journals Online (AJOL)

    Plasmid profile of multi antibiotic resistant staphylococcus aureus isolated from diabetic wounds from patients at Nsukka, South-eastern, Nigeria. ... not susceptible to current antibiotics. This could suggest an imminent change in resistant pattern as observed, particularly in an area already reported as high antibiotic use.

  4. Antibiogram and plasmid profiling of carbapenemase and extended ...

    African Journals Online (AJOL)

    Antibiogram and plasmid profiling of carbapenemase and extended spectrum Beta-lactamase (ESBL) producing Escherichia coli and Klebsiella pneumoniae in ... acidometric method, while ESBL and carbapenemase activity was determined using the double-disk diffusion test as well as the Modified Hodge test (MHT).

  5. Pharmaceutical development of the plasmid DNA vaccine pDERMATT

    NARCIS (Netherlands)

    Quaak, S.G.L.

    2009-01-01

    The discovery of tumor specific antigens and self tolerance mechanisms against these antigens led to the assumption that antigens circulating at sufficient concentration levels could break this self tolerance mechanism and evoke immunological antitumor effects. pDERMATT (plasmid DNA encoding

  6. Comparative Analysis Of Antibiotic Resistance And R-Plasmids Of ...

    African Journals Online (AJOL)

    Bacterial resistance to antibiotics constitutes a major cause of failure in the treatment of bacterial infections. The genetic exchange of plasmids containing antibiotic resistant determinants between bacteria is believed to play a critical role in the evolution of antibiotics resistant bacteria and this has been shown in S. aureus.

  7. plasmid mediated resistance in multidrug resistant bacteria isolated

    African Journals Online (AJOL)

    User

    PLASMID MEDIATED RESISTANCE IN MULTIDRUG RESISTANT BACTERIA. ISOLATED FROM CHILDREN WITH SUSPECTED SEPTICAEMIA IN ZARIA,. NIGERIA. AbdulAziz, Z. A.,1* Ehinmidu, J. O.,1 Adeshina, G. O.,1 Pala, Y. Y2., Yusuf, S. S2. and. Bugaje, M. A.3. 1Department of Pharmaceutics and Pharmaceutical ...

  8. Host induced changes in plasmid profile of Xanthomonas ...

    African Journals Online (AJOL)

    user

    2011-03-28

    Mar 28, 2011 ... J. Microbiol. 41:740-745. Das IK (1997). Role of cotton associated bacteria in expression of bacterial blight of cotton with special reference to plasmid-borne characters. Dissertation, Indian Agricultural Research Institute, New. Delhi, India. Delannoy E, Lyon BR, Marmey P, Jalloul A, Daniel JF, Montillet JL,.

  9. Synthetic Fatty Acids Prevent Plasmid-Mediated Horizontal Gene Transfer

    Science.gov (United States)

    Getino, María; Sanabria-Ríos, David J.; Fernández-López, Raúl; Campos-Gómez, Javier; Sánchez-López, José M.; Fernández, Antonio; Carballeira, Néstor M.

    2015-01-01

    ABSTRACT Bacterial conjugation constitutes a major horizontal gene transfer mechanism for the dissemination of antibiotic resistance genes among human pathogens. Antibiotic resistance spread could be halted or diminished by molecules that interfere with the conjugation process. In this work, synthetic 2-alkynoic fatty acids were identified as a novel class of conjugation inhibitors. Their chemical properties were investigated by using the prototype 2-hexadecynoic acid and its derivatives. Essential features of effective inhibitors were the carboxylic group, an optimal long aliphatic chain of 16 carbon atoms, and one unsaturation. Chemical modification of these groups led to inactive or less-active derivatives. Conjugation inhibitors were found to act on the donor cell, affecting a wide number of pathogenic bacterial hosts, including Escherichia, Salmonella, Pseudomonas, and Acinetobacter spp. Conjugation inhibitors were active in inhibiting transfer of IncF, IncW, and IncH plasmids, moderately active against IncI, IncL/M, and IncX plasmids, and inactive against IncP and IncN plasmids. Importantly, the use of 2-hexadecynoic acid avoided the spread of a derepressed IncF plasmid into a recipient population, demonstrating the feasibility of abolishing the dissemination of antimicrobial resistances by blocking bacterial conjugation. PMID:26330514

  10. Plasmid-determined heavy metal resistances in Staphylococcus aureus

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, A.; Schottel, J.; Silver, S.

    1976-01-01

    Plasmid PI258 of S. aureus has separate genes determining resistance to cadmium and to mercury and the organomercurial phenylmercury acetate. Mercury(ial) resistance is due to the inducible synthesis of a mercury volatilization system. Hg/sup 2 +/ and mercury in phenylmercury acetate is enzymatically reduced to Hg/sup 0/, which is insoluble in water and highly volatile. PI258 differs from most enteric or pseudomonad plasmids which have been studied which determine resistance only to inorganic Hg/sup 2 +/. Cadmium resistance has been found only with staph plasmids. Cadmium resistance is constitutive and is associated with a lower accumulation of cadmium by the plasmid-bearing resistant cells. Cadmium accumulation by sensitive cells is energy-dependent and has those characteristics usually associated with a transmembrane active transport system. There is a specific interrelationship between cadmium accumulation and manganese accumulation and retention. Cd/sup 2 +/ competitively inhibits the uptake of Mn/sup 2 +/ and accelerates the loss of intracellular Mn/sup 2 +/ by the sensitive but has no effect on the resistant S. aureus. Under similar conditions there is no differential effect of Cd/sup 2 +/ on Mg/sup 2 +/, Zn/sup 2 +/, Co/sup 2 +/ or Rb/sup +/ accumulation or exchange between the sensitive and the resistant strains.

  11. Plasmid Conjugation in E. coli and Drug Resistance

    African Journals Online (AJOL)

    Prof. Ogunji

    longer hospital stays. To cub this, it is imperative to checkmate the rate at which over the counter drugs are sold and antibiotic misused in animal feeds. This will ... more the copy number of resistance plasmid present in a bacterial cell, the higher the resistant ability of ..... Comparative study of the surface properties of three.

  12. Investigation of plasmid DNA and antibiotic resistance in some ...

    African Journals Online (AJOL)

    Several similar and distinct profiles were identified for most resistant and sensitive isolates. It appeared that a single strain containing a plasmid conferring multiple drug resistance emerged within the bacterial population and was able to adapt and to survive the challenges of antibiotics as they were introduced into clinical ...

  13. Studying plasmid horizontal transfer in situ: a critical review

    DEFF Research Database (Denmark)

    Sørensen, Søren Johannes; Bailey, Mark; Hansen, Lars Hestbjerg

    2005-01-01

    This review deals with the prospective, experimental documentation of horizontal gene transfer (HGT) and its role in real-time, local adaptation. We have focused on plasmids and their function as an accessory and/or adaptive gene pool. Studies of the extent of HGT in natural environments have...

  14. Effect of Surfactants on Plasmid DNA Stability and Release from ...

    African Journals Online (AJOL)

    ... diffusion mechanism was found to predominate in DNA release. Conclusion: The microspheres were non-toxic to the neuro-2a cells which suggest they can be potentially used in the gene therapy of neuronal diseases. Keywords: Surfactant, Gene therapy, Microspheres, Polylactic glycolide, Plasmid DNA, Supercoil index, ...

  15. Quinolones Resistance And R-Plasmids Of Clinical Isolates Of ...

    African Journals Online (AJOL)

    Background: There has been reported incidence in the emergence of. Quinolones resistance in clinical isolates in Nigeria and the level in resistance has been on the increase. Objective: To determine the antimicrobial resistance patterns and plasmids profiles of 67 clinical Pseudomonas species from a teaching hospital ...

  16. Antibiotic resistance plasmids in wastewater treatment plants and ...

    African Journals Online (AJOL)

    Antibiotic resistance plasmids found in wastewater treatment plants (WWTPs) may represent a threat to public health if they are readily disseminated into the environment and ultimately into pathogenic bacteria. The wastewater environments provide an ideal ecosystem for development and evolution of antibiotic resistance ...

  17. PLASMID PROFILES OF KLEBSIELLA ISOLATES IN ILORIN, NIGERIA

    African Journals Online (AJOL)

    This study was carried out to identify factors responsible for poor clinical outcome in Klebsiella infections due to antibiotic resistance, and to detect the type of plasmids harbored by various strains of Klebsiella. Three hundred Klebsiella spp. were isolated from various clinical samples at the University of Ilorin Teaching ...

  18. The technology of large-scale pharmaceutical plasmid purification ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-01-04

    Jan 4, 2010 ... As an alternative, a new plasmid purification technology with cetyltrimethylammonium bromide (CTAB) is ... into account the application of animal. DNA vaccine, the cost of purification must be decreased. .... mixture was immediately transfered to 20, 26, 32 and 42°C water bath for another 10 min, afterwards ...

  19. Plasmid Conjugation in E. coli and Drug Resistance | Igwe ...

    African Journals Online (AJOL)

    The emergence of multidrug resistance in clinical Escherichia coli has been associated significantly with plasmid mediated genes in carriers; which is an important cause of morbidity and mortality in developing countries. This study aimed at determining the antibiotics susceptibility pattern of E. coli isolates claimed to be ...

  20. Resistant plasmid profile analysis of multidrug resistant Escherichia ...

    African Journals Online (AJOL)

    Background: Multi-drug resistant Escherichia coli has become a major threat and cause of many urinary tract infections (UTIs) in Abeokuta, Nigeria. Objectives: This study was carried out to determine the resistant plasmids of multidrug resistant Escherichia coli isolated from (Urinary tract infections)UTIs in Abeokuta.

  1. IncFII Conjugative Plasmid-Mediated Transmission of blaNDM-1 Elements among Animal-Borne Escherichia coli Strains.

    Science.gov (United States)

    Lin, Dachuan; Xie, Miaomiao; Li, Ruichao; Chen, Kaichao; Chan, Edward Wai-Chi; Chen, Sheng

    2017-01-01

    This study aims to investigate the prevalence and transmission dynamics of the bla NDM-1 gene in animal Escherichia coli strains. Two IncFII bla NDM-1 -encoding plasmids with only minor structural variation in the MDR region, pHNEC46-NDM and pHNEC55-NDM, were found to be responsible for the transmission of bla NDM-1 in these strains. The bla NDM-1 gene can be incorporated into plasmids and stably inherited in animal-borne E. coli strains that can be maintained in animal gut microflora even without carbapenem selection pressure. Copyright © 2016 American Society for Microbiology.

  2. Presence of Glycopeptide-Encoding Plasmids in Enterococcal Isolates from Food and Humans in Denmark

    DEFF Research Database (Denmark)

    Migura, Lourdes Garcia; Valenzuela, Antonio Jesus Sanchez; Jensen, Lars Bogø

    2011-01-01

    developed techniques for classification of plasmids. Replicons associated with sex pheromone-inducible plasmids were detected in all GR E. faecalis, whereas GR Enterococcus faecium contained plasmids known to be widely distributed among enterococci. vanA resistance is common in E. faecium isolates from meat...... and animals in Europe and is rarely found in E. faecalis. This article describes the first characterization of MGE from vanA mediated E. faecalis, thus linking this resistance genotype to pheromone responding plasmids....

  3. Plasmid r1 conjugative DNA processing is regulated at the coupling protein interface.

    Science.gov (United States)

    Mihajlovic, Sanja; Lang, Silvia; Sut, Marta V; Strohmaier, Heimo; Gruber, Christian J; Koraimann, Günther; Cabezón, Elena; Moncalián, Gabriel; de la Cruz, Fernando; Zechner, Ellen L

    2009-11-01

    Selective substrate uptake controls initiation of macromolecular secretion by type IV secretion systems in gram-negative bacteria. Type IV coupling proteins (T4CPs) are essential, but the molecular mechanisms governing substrate entry to the translocation pathway remain obscure. We report a biochemical approach to reconstitute a regulatory interface between the plasmid R1 T4CP and the nucleoprotein relaxosome dedicated to the initiation stage of plasmid DNA processing and substrate presentation. The predicted cytosolic domain of T4CP TraD was purified in a predominantly monomeric form, and potential regulatory effects of this protein on catalytic activities exhibited by the relaxosome during transfer initiation were analyzed in vitro. TraDDeltaN130 stimulated the TraI DNA transesterase activity apparently via interactions on both the protein and the DNA levels. TraM, a protein interaction partner of TraD, also increased DNA transesterase activity in vitro. The mechanism may involve altered DNA conformation as TraM induced underwinding of oriT plasmid DNA in vivo (DeltaL(k) = -4). Permanganate mapping of the positions of duplex melting due to relaxosome assembly with TraDDeltaN130 on supercoiled DNA in vitro confirmed localized unwinding at nic but ruled out formation of an open complex compatible with initiation of the TraI helicase activity. These data link relaxosome regulation to the T4CP and support the model that a committed step in the initiation of DNA export requires activation of TraI helicase loading or catalysis.

  4. Plasmid profiling of bacterial isolates from confined environments

    Science.gov (United States)

    van Houdt, Rob; Provoost, Ann; Coninx, Ilse; Leys, Natalie; Mergeay, Max

    Plasmid profiling of bacterial isolates from confined environments R. Van Houdt, I. Coninx, A. Provoost, N. Leys, and M. Mergeay Expertise group for Molecular and Cellular Biology, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN), Boeretang 200, B-2400 Mol, Belgium. Human exploration of extreme and isolated hostile environments such as space requires special confined small volume habitats to protect and house the crew. However, human confinement in such small volume habitats has restrictions on waste disposal and personal hygiene and inevitably generates a particular community of microorganisms within the habitat. These microorganisms are mainly originating from the crew (skin, mucous membranes, upper respiratory tract, mouth, and gastrointestinal tract) but also include the residing environmental microorganisms. Earth-based confined habitats such as the Antarctic Research Station Concordia are used as test beds for long-duration spaceflights to study the physiologic and psychological adaptation to isolated environments. The dynamics of the environmental microbial population in such a test bed could render additional insights in assessing the potential health risks in long-duration space missions. Not only total bacterial contamination levels are important, but it is essential to identify also the predominant microbial taxa and their mobile genetic elements (MGE). These MGEs could be exchanged between bacteria by horizontal gene transfer and may alter the pathogenic potential since they often carry antibiotic resistance or more in general adaptation-enhancing traits. In this study several bacterial strains isolated in the Concordia research station were examined for their plasmid content. An optimized protocol for extraction of large plasmids showed the present of at least one plasmid in 50% of the strains. For all strains the minimal inhibitory concentration of a range of antibiotics was determined indicating resistance to

  5. Novel plasmid conferring kanamycin and tetracycline resistance in turkey-derived Campylobacter jejuni strain 11601MD

    Science.gov (United States)

    In Campylobacter spp., resistance to the antibiotics kanamycin and tetracycline is frequently associated with plasmid-borne genes. However, relatively few plasmids of Campylobacter jejuni have been fully characterized to date. A novel plasmid (p11601MD; 44,095 bp.) harboring tet(O) was identified in...

  6. A home made kit for plasmid DNA mini-preparation | Kotchoni ...

    African Journals Online (AJOL)

    Using this new method, a good plasmid preparation can be made in approximately one hour. The plasmids are suitable for any subsequent molecular applications in the laboratory. By applying the recommendations to avoid contaminations and to maximize the plasmid yield and quality during extraction, this protocol could ...

  7. A Bipolar Spindle of Antiparallel ParM Filaments Drives Bacterial Plasmid Segregation

    DEFF Research Database (Denmark)

    Gayathri, P; Fujii, T; Møller-Jensen, Jakob

    2012-01-01

    To ensure their stable inheritance by daughter cells during cell division, bacterial low copy-number plasmids make simple DNA segregating machines that use an elongating protein filament between sister plasmids. In the ParMRC system of Escherichia coli R1 plasmid, ParM, an actin-like protein, forms...

  8. Expansion of a plasmid classification system for Gram-positive bacteria and determination of the diversity of plasmids in Staphylococcus aureus strains of human, animal, and food origins

    DEFF Research Database (Denmark)

    Lozano, C.; Garcia-Migura, L.; Aspiroz, C.

    2012-01-01

    An expansion of a previously described plasmid classification was performed and used to reveal the plasmid content of a collection of 92 Staphylococcus aureus strains of different origins. rep genes of other genera were detected in Staphylococcus. S1 pulsed-field gel electrophoresis (PFGE) hybrid......) hybridizations were performed with 18 representative S. aureus strains, and a high number of plasmids of different sizes and organizations were detected. Copyright © 2012, American Society for Microbiology. All Rights Reserved....

  9. Plasmidic qnrA3 enhances Escherichia coli fitness in absence of antibiotic exposure.

    Directory of Open Access Journals (Sweden)

    Adrien Michon

    Full Text Available The widespread presence of plasmid-mediated quinolone resistance determinants, particularly qnr genes, has become a current issue. By protecting DNA-gyrase from quinolones, Qnr proteins confer a low level quinolone resistance that is not sufficient to explain their emergence. Since Qnr proteins were hypothesized to act as DNA-binding protein regulators, qnr genes could have emerged by providing a selective advantage other than antibiotic resistance. We investigated host fitness of Escherichia coli isogenic strains after acquisition of the qnrA3 gene, inserted either alone onto a small plasmid (pBR322, or harbored on a large conjugative native plasmid, pHe96(qnrA3 found in a clinical isolate. The isogenic strains were derived from the susceptible E. coli CFT073, a virulent B2 group strain known to infect bladder and kidneys in a mouse model of pyelonephritis. In vitro experiments included growth analysis by automatic spectrophotometry and flow cytometry, and competitions with CFU enumeration. In vivo experiments included infection with each strain and pairwise competitions in absence of antimicrobial exposure. As controls for our experiments we used mutations known to reduce fitness (rpsL K42N mutation or to enhance fitness (tetA deletion in pBR322. E. coli CFT073 transformed with pBRAM(PBR322-qnrA3 had significantly higher maximal OD than E. coli CFT073 transformed with pBR322 or pBR322ΔtetA, and in vivo competitions were more often won by the qnrA3 carrying strain (24 victories vs. 9 loss among 42 competitions, p = 0.001. In contrast, when pHe96(qnrA3 was introduced by conjugation in E. coli CFT073, it exerted a fitness cost shown by an impaired growth observed in vitro and in vivo and a majority of lost competitions (33/35, p<0.0001. In conclusion, qnrA3 acquisition enhanced bacterial fitness, which may explain qnr emergence and suggests a regulation role of qnr. However, fitness was reduced when qnrA3 was inserted onto multidrug

  10. PifC and Osa, Plasmid Weapons against Rival Conjugative Coupling Proteins

    Science.gov (United States)

    Getino, María; Palencia-Gándara, Carolina; Garcillán-Barcia, M. Pilar; de la Cruz, Fernando

    2017-01-01

    Bacteria display a variety of mechanisms to control plasmid conjugation. Among them, fertility inhibition (FI) systems prevent conjugation of co-resident plasmids within donor cells. Analysis of the mechanisms of inhibition between conjugative plasmids could provide new alternatives to fight antibiotic resistance dissemination. In this work, inhibition of conjugation of broad host range IncW plasmids was analyzed in the presence of a set of co-resident plasmids. Strong FI systems against plasmid R388 conjugation were found in IncF/MOBF12 as well as in IncI/MOBP12 plasmids, represented by plasmids F and R64, respectively. In both cases, the responsible gene was pifC, known also to be involved in FI of IncP plasmids and Agrobacterium T-DNA transfer to plant cells. It was also discovered that the R388 gene osa, which affects T-DNA transfer, also prevented conjugation of IncP-1/MOBP11 plasmids represented by plasmids RP4 and R751. Conjugation experiments of different mobilizable plasmids, helped by either FI-susceptible or FI-resistant transfer systems, demonstrated that the conjugative component affected by both PifC and Osa was the type IV conjugative coupling protein. In addition, in silico analysis of FI proteins suggests that they represent recent acquisitions of conjugative plasmids, i.e., are not shared by members of the same plasmid species. This implies that FI are rapidly-moving accessory genes, possibly acting on evolutionary fights between plasmids for the colonization of specific hosts. PMID:29201021

  11. Remarkable stability of an instability-prone lentiviral vector plasmid in Escherichia coli Stbl3.

    Science.gov (United States)

    Al-Allaf, Faisal A; Tolmachov, Oleg E; Zambetti, Lia Paola; Tchetchelnitski, Viktoria; Mehmet, Huseyin

    2013-02-01

    Large-scale production of plasmid DNA to prepare therapeutic gene vectors or DNA-based vaccines requires a suitable bacterial host, which can stably maintain the plasmid DNA during industrial cultivation. Plasmid loss during bacterial cell divisions and structural changes in the plasmid DNA can dramatically reduce the yield of the desired recombinant plasmid DNA. While generating an HIV-based gene vector containing a bicistronic expression cassette 5'-Olig2cDNA-IRES-dsRed2-3', we encountered plasmid DNA instability, which occurred in homologous recombination deficient recA1 Escherichia coli strain Stbl2 specifically during large-scale bacterial cultivation. Unexpectedly, the new recombinant plasmid was structurally changed or completely lost in 0.5 L liquid cultures but not in the preceding 5 mL cultures. Neither the employment of an array of alternative recA1 E. coli plasmid hosts, nor the lowering of the culture incubation temperature prevented the instability. However, after the introduction of this instability-prone plasmid into the recA13E. coli strain Stbl3, the transformed bacteria grew without being overrun by plasmid-free cells, reduction in the plasmid DNA yield or structural changes in plasmid DNA. Thus, E. coli strain Stbl3 conferred structural and maintenance stability to the otherwise instability-prone lentivirus-based recombinant plasmid, suggesting that this strain can be used for the faithful maintenance of similar stability-compromised plasmids in large-scale bacterial cultivations. In contrast to Stbl2, which is derived wholly from the wild type isolate E. coli K12, E. coli Stbl3 is a hybrid strain of mixed E. coli K12 and E. coli B parentage. Therefore, we speculate that genetic determinants for the benevolent properties of E. coli Stbl3 for safe plasmid propagation originate from its E. coli B ancestor.

  12. Plasmid-Chromosome Recombination of Irradiated Shuttle Vector DNA in African Green Monkey Kidney Cells.

    Science.gov (United States)

    Mudgett, John Stuart

    1987-09-01

    An autonomously replicating shuttle vector was used to investigate the enhancement of plasmid-chromosome recombination in mammalian host cells by ultraviolet light and gamma radiation. Sequences homologous to the shuttle vector were stably inserted into the genome of African Green Monkey kidney cells to act as the target substrate for these recombination events. The SV40- and pBR322-derived plasmid DNA was irradiated with various doses of radiation before transfection into the transformed mammalian host cells. The successful homologous transfer of the bacterial ampicillin resistance (amp^{rm r}) gene from the inserted sequences to replace a mutant amp^->=ne on the shuttle vector was identified by plasmid extraction and transformation into E. coli host cells. Ultraviolet light (UV) was found not to induce homologous plasmid-chromosome recombination, while gamma radiation increased the frequency of recombinant plasmids detected. The introduction of specific double -strand breaks in the plasmid or prolonging the time of plasmid residence in the mammalian host cells also enhanced plasmid-chromosome recombination. In contrast, plasmid mutagenesis was found to be increased by plasmid UV irradiation, but not to change with time. Plasmid survival, recombination, and mutagenesis were not affected by treating the mammalian host cells with UV light prior to plasmid transfection. The amp^{rm r} recombinant plasmid molecules analyzed were found to be mostly the result of nonconservative exchanges which appeared to involve both homologous and possibly nonhomologous interactions with the host chromosome. The observation that these recombinant structures were obtained from all of the plasmid alterations investigated suggests a common mechanistic origin for plasmid -chromosome recombination in these mammalian cells.

  13. Incidence of plasmids in marine Vibrio spp. isolated from an oil field in the northwestern Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Hada, H.S.; Sizemore, R.K.

    1981-01-01

    Presumptive marine Vibrio spp. were collected from an operational oil field and control site located in the northwest Gulf of Mexico. Of 440 isolates analyzed for the presence of extrachromosomal deoxyribonucleic acid elements or plasmids by using the cleared lysate and agarose gel techniques, 31% showed distinct plasmid bands on agarose gels. A majority of the plasmids detected were estimated to have mollecular masses of 10 x 10/sup 6/ or less. Multiple plasmids were observed in approximately half of the plasmid-containing strains. A number of isolates contained plasmids with similar banding and mobility patterns. The oil field area had noticeably more plasmid-containing strains (35 versus 23% in the control site) and a greater number of plasmids per plasmid-containing strain (an average of 2.5 plasmids, vs 1.5 in the control site). Oil field discharges might have resulted in increased plasmid incidence and diversity.

  14. High Heterogeneity of Escherichia coli Sequence Types Harbouring ESBL/AmpC Genes on IncI1 Plasmids in the Colombian Poultry Chain.

    Science.gov (United States)

    Castellanos, Luis Ricardo; Donado-Godoy, Pilar; León, Maribel; Clavijo, Viviana; Arevalo, Alejandra; Bernal, Johan F; Timmerman, Arjen J; Mevius, Dik J; Wagenaar, Jaap A; Hordijk, Joost

    2017-01-01

    Escherichia coli producing ESBL/AmpC enzymes are unwanted in animal production chains as they may pose a risk to human and animal health. Molecular characterization of plasmids and strains carrying genes that encode these enzymes is essential to understand their local and global spread. To investigate the diversity of genes, plasmids and strains in ESBL/AmpC-producing E. coli from the Colombian poultry chain isolated within the Colombian Integrated Program for Antimicrobial Resistance Surveillance (Coipars). A total of 541 non-clinical E. coli strains from epidemiologically independent samples and randomly isolated between 2008 and 2013 within the Coipars program were tested for antimicrobial susceptibility. Poultry isolates resistant to cefotaxime (MIC ≥ 4 mg/L) were screened for ESBL/AmpC genes including blaCTX-M, blaSHV, blaTEM, blaCMY and blaOXA. Plasmid and strain characterization was performed for a selection of the ESBL/AmpC-producing isolates. Plasmids were purified and transformed into E. coli DH10B cells or transferred by conjugation to E. coli W3110. When applicable, PCR Based Replicon Typing (PBRT), plasmid Multi Locus Sequence Typing (pMLST), plasmid Double Locus Sequence Typing (pDLST) and/or plasmid Replicon Sequence Typing (pRST) was performed on resulting transformants and conjugants. Multi Locus Sequence Typing (MLST) was used for strain characterization. In total, 132 of 541 isolates were resistant to cefotaxime and 122 were found to carry ESBL/AmpC genes. Ninety-two harboured blaCMY-2 (75%), fourteen blaSHV-12 (11%), three blaSHV-5 (2%), five blaCTX-M-2 (4%), one blaCTX-M-15 (1%), one blaCTX-M-8 (1%), four a combination of blaCMY-2 and blaSHV-12 (4%) and two a combination of blaCMY-2 and blaSHV-5 (2%). A selection of 39 ESBL/AmpC-producing isolates was characterized at the plasmid and strain level. ESBL/AmpC genes from 36 isolates were transferable by transformation or conjugation of which 22 were located on IncI1 plasmids. These IncI1

  15. High Heterogeneity of Escherichia coli Sequence Types Harbouring ESBL/AmpC Genes on IncI1 Plasmids in the Colombian Poultry Chain.

    Directory of Open Access Journals (Sweden)

    Luis Ricardo Castellanos

    Full Text Available Escherichia coli producing ESBL/AmpC enzymes are unwanted in animal production chains as they may pose a risk to human and animal health. Molecular characterization of plasmids and strains carrying genes that encode these enzymes is essential to understand their local and global spread.To investigate the diversity of genes, plasmids and strains in ESBL/AmpC-producing E. coli from the Colombian poultry chain isolated within the Colombian Integrated Program for Antimicrobial Resistance Surveillance (Coipars.A total of 541 non-clinical E. coli strains from epidemiologically independent samples and randomly isolated between 2008 and 2013 within the Coipars program were tested for antimicrobial susceptibility. Poultry isolates resistant to cefotaxime (MIC ≥ 4 mg/L were screened for ESBL/AmpC genes including blaCTX-M, blaSHV, blaTEM, blaCMY and blaOXA. Plasmid and strain characterization was performed for a selection of the ESBL/AmpC-producing isolates. Plasmids were purified and transformed into E. coli DH10B cells or transferred by conjugation to E. coli W3110. When applicable, PCR Based Replicon Typing (PBRT, plasmid Multi Locus Sequence Typing (pMLST, plasmid Double Locus Sequence Typing (pDLST and/or plasmid Replicon Sequence Typing (pRST was performed on resulting transformants and conjugants. Multi Locus Sequence Typing (MLST was used for strain characterization.In total, 132 of 541 isolates were resistant to cefotaxime and 122 were found to carry ESBL/AmpC genes. Ninety-two harboured blaCMY-2 (75%, fourteen blaSHV-12 (11%, three blaSHV-5 (2%, five blaCTX-M-2 (4%, one blaCTX-M-15 (1%, one blaCTX-M-8 (1%, four a combination of blaCMY-2 and blaSHV-12 (4% and two a combination of blaCMY-2 and blaSHV-5 (2%. A selection of 39 ESBL/AmpC-producing isolates was characterized at the plasmid and strain level. ESBL/AmpC genes from 36 isolates were transferable by transformation or conjugation of which 22 were located on IncI1 plasmids. These IncI1

  16. Isolation and Characterization of a Rolling-Circle-Type Plasmid from Rhodococcus erythropolis and Application of the Plasmid to Multiple-Recombinant-Protein Expression

    OpenAIRE

    Nakashima, Nobutaka; Tamura, Tomohiro

    2004-01-01

    We isolated, sequenced, and characterized the cryptic plasmid pRE8424 from Rhodococcus erythropolis DSM8424. Plasmid pRE8424 is a 5,987-bp circular plasmid; it carries six open reading frames and also contains cis-acting elements, specifically a single-stranded origin and a double-stranded origin, which are characteristic of rolling-circle-replication plasmids. Experiments with pRE8424 derivatives carrying a mutated single-stranded origin sequence showed that single-stranded DNA intermediates...

  17. Type 3 fimbriae encoded on plasmids are expressed from a unique promoter without affecting host motility, facilitating an exceptional phenotype that enhances conjugal plasmid transfer

    DEFF Research Database (Denmark)

    Madsen, Jonas Stenløkke; Riber, Leise; Kot, Witold Piotr

    2016-01-01

    on plasmids is systematically different, as MrkH, a c-di-GMP dependent transcriptional activator is not needed for strong expression of the fimbriae. MrkH is required for expression of type 3 fimbriae of the Klebsiella pneumoniae chromosome, wherefrom the fimbriae operon (mrkABCDF) of plasmids is believed...... to have originated. We find that mrkABCDFs of plasmids are highly expressed via a unique promoter that differs from the original Klebsiella promoter resulting in fundamental behavioral consequences. Plasmid associated mrkABCDFs did not influence the swimming behavior of the host, that hereby acquired...

  18. Regular Cellular Distribution of Plasmids by Oscillating and Filament-forming ParA ATPase of Plasmid pB171

    DEFF Research Database (Denmark)

    Ebersbach, Gitte; Ringgaard, Simon; Møller-Jensen, Jakob

    2006-01-01

    with each other in a bacterial two-hybrid assay but do not interact with FtsZ, eight other essential cell division proteins or MreB actin. Based on these observations, we propose a simple model for how oscillating ParA filaments can mediate regular cellular distribution of plasmids. The model functions......Centromere-like loci from bacteria segregate plasmids to progeny cells before cell division. The ParA ATPase (a MinD homologue) of the par2 locus from plasmid pB171 forms oscillating helical structures over the nucleoid. Here we show that par2 distributes plasmid foci regularly along the length...

  19. Regular cellular distribution of plasmids by oscillating and filament-forming ParA ATPase of plasmid pB171

    DEFF Research Database (Denmark)

    Ebersbach, Gitte; Ringgaard, Simon; Møller-Jensen, Jakob

    2006-01-01

    with each other in a bacterial two-hybrid assay but do not interact with FtsZ, eight other essential cell division proteins or MreB actin. Based on these observations, we propose a simple model for how oscillating ParA filaments can mediate regular cellular distribution of plasmids. The model functions......Centromere-like loci from bacteria segregate plasmids to progeny cells before cell division. The ParA ATPase (a MinD homologue) of the par2 locus from plasmid pB171 forms oscillating helical structures over the nucleoid. Here we show that par2 distributes plasmid foci regularly along the length...

  20. Mucosal delivery of human papillomavirus pseudovirus-encapsidated plasmids improves the potency of DNA vaccination.

    Science.gov (United States)

    Graham, B S; Kines, R C; Corbett, K S; Nicewonger, J; Johnson, T R; Chen, M; LaVigne, D; Roberts, J N; Cuburu, N; Schiller, J T; Buck, C B

    2010-09-01

    Mucosal immunization may be important for protection against pathogens whose transmission and pathogenesis target the mucosal tissue. The capsid proteins of human papillomavirus (HPV) confer tropism for the basal epithelium and can encapsidate DNA during self-assembly to form pseudovirions (PsVs). Therefore, we produced mucosal vaccine vectors by HPV PsV encapsidation of DNA plasmids expressing an experimental antigen derived from the M and M2 proteins of respiratory syncytial virus (RSV). Intravaginal (IVag) delivery elicited local and systemic M-M2-specific CD8+ T-cell and antibody responses in mice that were comparable to an approximately 10,000-fold higher dose of naked DNA. A single HPV PsV IVag immunization primed for M-M2-specific-IgA in nasal and vaginal secretions. Based on light emission and immunofluorescent microscopy, immunization with HPV PsV-encapsidated luciferase- and red fluorescent protein (RFP)-expressing plasmids resulted in transient antigen expression (mucosal immunization that could provide new vaccine options for selected mucosal pathogens.

  1. Optimum range of plasmid supercoiled DNA for preparation of ccompetent Top 10 E. coli

    Directory of Open Access Journals (Sweden)

    Muhammad Tahir Majeed

    2011-05-01

    Full Text Available Objectives: In-house preparation of chemically competent andelectrocompetent Top 10 E. coli is not only economical butmeets the needs for most of the molecular cloning work. Forsuch transformations an optimum range of plasmidsupercoiled DNA is needed. Therefore, the present studydescribes the modification of two protocols for the preparationof such cells, and optimization of the amount of plasmidsupercoiled DNA required for better efficiency.Materials and methods: As most of the available protocols torender bacterial cells competent need special media orchemicals and are time consuming, the methods from HelenDonis-Keller Laboratory Manual of Washington University inSt. Louis and Goldberg Laboratory Standard Protocols of theUnited States Department of Agriculture have been used aftermeticulous selection and with few modifications for preparingchemically competent and electrocompetent Top 10 E. coli,respectively. The transformation was carried out using pUC19supercoiled plasmid DNA.Results: The transformation efficiencies of chemicallycompetent and electrocompetent Top 10 E. coli were found tobe 1.1 x 106 and 7.88 x 107 tranformants/μg of DNA,respectively. Such efficiencies are slightly higher than therequired (105-106 transformants/μg DNA for most of thecloning experimentation.Conclusion: The results of the present study indicatethat for sufficient transformation competence rates theoptimum range of plasmid supercoiled DNA is 10 ng forchemically competent and 0.1 ng for electrocompetentTop 10 E. coli.

  2. Multiplex iterative plasmid engineering for combinatorial optimization of metabolic pathways and diversification of protein coding sequences.

    Science.gov (United States)

    Li, Yifan; Gu, Qun; Lin, Zhenquan; Wang, Zhiwen; Chen, Tao; Zhao, Xueming

    2013-11-15

    Engineering complex biological systems typically requires combinatorial optimization to achieve the desired functionality. Here, we present Multiplex Iterative Plasmid Engineering (MIPE), which is a highly efficient and customized method for combinatorial diversification of plasmid sequences. MIPE exploits ssDNA mediated λ Red recombineering for the introduction of mutations, allowing it to target several sites simultaneously and generate libraries of up to 10(7) sequences in one reaction. We also describe "restriction digestion mediated co-selection (RD CoS)", which enables MIPE to produce enhanced recombineering efficiencies with greatly simplified coselection procedures. To demonstrate this approach, we applied MIPE to fine-tune gene expression level in the 5-gene riboflavin biosynthetic pathway and successfully isolated a clone with 2.67-fold improved production in less than a week. We further demonstrated the ability of MIPE for highly multiplexed diversification of protein coding sequence by simultaneously targeting 23 codons scattered along the 750 bp sequence. We anticipate this method to benefit the optimization of diverse biological systems in synthetic biology and metabolic engineering.

  3. Conservation of Plasmid-Encoded Traits among Bean-Nodulating Rhizobium Species

    Science.gov (United States)

    Brom, Susana; Girard, Lourdes; García-de los Santos, Alejandro; Sanjuan-Pinilla, Julio M.; Olivares, José; Sanjuan, Juan

    2002-01-01

    Rhizobium etli type strain CFN42 contains six plasmids. We analyzed the distribution of genetic markers from some of these plasmids in bean-nodulating strains belonging to different species (Rhizobium etli, Rhizobium gallicum, Rhizobium giardinii, Rhizobium leguminosarum, and Sinorhizobium fredii). Our results indicate that independent of geographic origin, R. etli strains usually share not only the pSym plasmid but also other plasmids containing symbiosis-related genes, with a similar organization. In contrast, strains belonging to other bean-nodulating species seem to have acquired only the pSym plasmid from R. etli. PMID:11976134

  4. Movement and equipositioning of plasmids by ParA filament disassembly

    DEFF Research Database (Denmark)

    Ringgaard, Simon; van Zon, Jeroen; Howard, Martin

    2009-01-01

    Bacterial plasmids encode partitioning (par) loci that confer stable plasmid inheritance. We showed previously that, in the presence of ParB and parC encoded by the par2 locus of plasmid pB171, ParA formed cytoskeletal-like structures that dynamically relocated over the nucleoid. Simultaneously, ...... of the plasmids. Mathematical modeling of ParA and plasmid dynamics support these interpretations. Mutational analysis supports a molecular mechanism in which the ParB/parC complex controls ParA filament depolymerization....

  5. Effect of lipopolysaccharide mutations on recipient ability of Salmonella typhimurium for incompatibility group H plasmids.

    OpenAIRE

    Sherburne, C; Taylor, D E

    1997-01-01

    Previous investigations of the incompatibility group F, P, and I plasmid systems revealed the important role of the outer membrane components in the conjugal transfer of these plasmids. We have observed variability in transfer frequency of three incompatibility group H plasmids (IncHI1 plasmid R27, IncHI2 plasmid R478, and a Tn7 derivative of R27, pDT2454) upon transfer into various Salmonella typhimurium lipopolysaccharide (LPS) mutants derived from a common parental strain, SL1027. Recipien...

  6. Cloning, sequencing, and sequence analysis of two novel plasmids from the thermophilic anaerobic bacterium Anaerocellum thermophilum

    DEFF Research Database (Denmark)

    Clausen, Anders; Mikkelsen, Marie Just; Schrøder, I.

    2004-01-01

    The nucleotide sequence of two novel plasmids isolated from the extreme thermophilic anaerobic bacterium Anaerocellum thermophilum DSM6725 (A. thermophilum), growing optimally at 70degreesC, has been determined. pBAS2 was found to be a 3653 bp plasmid with a GC content of 43%, and the sequence...... revealed 10 open reading frames (ORFs). The two largest of these, namely Orf21 and Orf41, showed similarity to a Bacillus plasmid recombinase and a Pseudoalteromonas plasmid replication protein, respectively. A sequence with homology to double stranded replication origins from rolling circle plasmids...

  7. Survival and evolution of a large multidrug resistance plasmid in new clinical bacterial hosts

    DEFF Research Database (Denmark)

    Porse, Andreas; Schønning, Kristian; Munck, Christian

    2016-01-01

    Large conjugative plasmids are important drivers of bacterial evolution and contribute significantly to the dissemination of antibiotic resistance. Although plasmid borne multidrug resistance is recognized as one of the main challenges in modern medicine, the adaptive forces shaping the evolution...... of these plasmids within pathogenic hosts are poorly understood. Here we study plasmid-host adaptations following transfer of a 73 kb conjugative multidrug resistance plasmid to naïve clinical isolates of Klebsiella pneumoniae and Escherichia coli We use experimental evolution, mathematical modelling and population...

  8. Characterization of plasmids from Listeria monocytogenes and Listeria innocua strains isolated from short-ripened cheeses.

    Science.gov (United States)

    Margolles, A; de los Reyes-Gavilán, C G

    1998-02-17

    The plasmid content of 30 isolates of Listeria monocytogenes and 18 isolates of Listeria innocua obtained from short-ripened cheeses was analysed. The isolates of L. monocytogenes serogroup 1 harboured a single plasmid, pLM33 (33.2 kbp), whereas the serogroup 4 isolates did not contain plasmids. One group of L. innocua strains harboured the plasmid pLI71 (71 kbp) and another one contained two plasmids: pLI59 (59.5 kbp) and pLI56 (56.5 kbp). These plasmid groups were in accordance with clusters previously defined by pulsed-field gel electrophoresis analysis of the chromosomal DNA of Listeria isolates. Plasmids pLM33, pLI71 and pLI59 shared homology regions of at least 20 kbp. Plasmid pLI56 did not encode genes for any known character (such as carbohydrate fermentation, resistance to antibiotics, heavy metals or disinfectants, growth at low pH, NaCl tolerance or thermal inactivation by pasteurisation) and displayed different characteristics to the other three plasmids. It was also the only one cured from the parent strain and the sole plasmid not digested by the restriction enzyme PstI. In addition, its lack of homology with pLM33, pLI71 and pLI59 enhanced the possibility of a different origin for plasmid pLI56.

  9. Various pAQU plasmids possibly contribute to disseminate tetracycline resistance gene tet(M among marine bacterial community

    Directory of Open Access Journals (Sweden)

    Lisa eNonaka

    2014-05-01

    Full Text Available Emergence of antibiotic-resistant bacteria in the aquaculture environment is a significant problem for disease control of cultured fish in as well as in human public health. Conjugative mobile genetic elements (MGEs are involved in dissemination of antibiotic resistance genes (ARGs among marine bacteria. In the present study, we first designed a PCR targeting traI gene encoding essential relaxase for conjugation. By this new PCR, we demonstrated that five of 83 strains isolated from a coastal aquaculture site had traI-positive MGEs. While one of the five strains that belonged to Shewanella sp. was shown to have an integrative conjugative element of the SXT/R391 family (ICEVchMex, the MGEs of the other four strains of Vibrio spp. were shown to have the backbone structure similar to that of previously described in pAQU1. The backbone structure shared by the pAQU1-like MGEs in the four strains corresponded to a ~100-kbp highly conserved region required for replication, partition and conjugative transfer, suggesting that these MGEs are plasmids that constitute pAQU group. The pAQU group plasmids were shown to be capable of conjugative transfer of tet(M and other ARGs from the Vibrio strains to E. coli. The pAQU group plasmid in one of the examined strains was designated as pAQU2, and its complete nucleotide sequence was determined and compared with that of pAQU1. The results revealed that pAQU2 contained fewer ARGs than pAQU1 did, and most of the ARGs in both of these plasmids were located in the similar region where multiple transposases were found, suggesting that the ARGs were introduced by several events of DNA transposition into an ancestral plasmid followed by drug selection in the aquaculture site. The results of the present study indicate that the pAQU group plasmids may play an important role in dissemination of ARGs in the marine environment.

  10. Asymmetrical Inheritance of Plasmids Depends on Dynamic Cellular Geometry and Volume Exclusion Effects.

    Directory of Open Access Journals (Sweden)

    Jai A Denton

    Full Text Available The asymmetrical inheritance of plasmid DNA, as well as other cellular components, has been shown to be involved in replicative aging. In Saccharomyces cerevisiae, there is an ongoing debate regarding the mechanisms underlying this important asymmetry. Currently proposed models suggest it is established via diffusion, but differ on whether a diffusion barrier is necessary or not. However, no study so far incorporated key aspects to segregation, such as dynamic morphology changes throughout anaphase or plasmids size. Here, we determine the distinct effects and contributions of individual cellular variability, plasmid volume and moving boundaries in the asymmetric segregation of plasmids. We do this by measuring cellular nuclear geometries and plasmid diffusion rates with confocal microscopy, subsequently incorporating this data into a growing domain stochastic spatial simulator. Our modelling and simulations confirms that plasmid asymmetrical inheritance does not require an active barrier to diffusion, and provides a full analysis on plasmid size effects.

  11. [Evolutionary engineering in Salmonella: emergence of hybrid virulence-resistance plasmids in non-typhoid serotypes].

    Science.gov (United States)

    Mendoza, María Del Carmen; Herrero, Ana; Rodicio, María Rosario

    2009-01-01

    An example of evolutive engineering in bacterial pathogens is the emergence of hybrid virulence-resistance (VR) plasmids in Salmonella enterica, resulting from an association between antimicrobial resistance determinants and specific virulence plasmids of the S. typhimurium and S. choleraesuis serotypes. VR plasmids all possess the spv (Salmonella plasmid virulence) operon, which is involved in systemic infection; however, they differ in the presence of other virulence determinants and in the resistance gene profile. VR plasmids of S. typhimurium have been found in Europe, and show resistance regions with different levels of complexity that can include class 1 integrons and various transposons. VR plasmids of S. choleraesuis, detected in strains isolated in Taiwan, only confer resistance to ampicillin and sulfonamides. Both serotypes are zoonotic and the presence of hybrid VR plasmids may confer an adaptive advantage under certain conditions, resulting in bacterial strains that are more difficult to treat and have a higher epidemic potential.

  12. Dataset of plasmid DNA extraction using different magnetic nanoparticles (MNPs

    Directory of Open Access Journals (Sweden)

    H. Rahnama

    2016-12-01

    MNPs were characterized by energy dispersive spectroscopy (EDS and transmission electron microscopy (TEM. Finally, the overall efficiency of different MNPs (Fe3O4, Fe3O4/SiO2, Fe3O4/SiO2/TiO2 in plasmid DNA isolation was compared using gel electrophoresis analysis. The data supplied in this article supports the accompanying publication “Comparative study of three magnetic nano-particles (FeSO4, FeSO4/SiO2, FeSO4/SiO2/TiO2 in plasmid DNA extraction” (H. Rahnama, A. Sattarzadeh, F. Kazemi, N. Ahmadi, F. Sanjarian, Z. Zand, 2016 [1].

  13. Plasmids and packaging cell lines for use in phage display

    Science.gov (United States)

    Bradbury, Andrew M.

    2012-07-24

    The invention relates to a novel phagemid display system for packaging phagemid DNA into phagemid particles which completely avoids the use of helper phage. The system of the invention incorporates the use of bacterial packaging cell lines which have been transformed with helper plasmids containing all required phage proteins but not the packaging signals. The absence of packaging signals in these helper plasmids prevents their DNA from being packaged in the bacterial cell, which provides a number of significant advantages over the use of both standard and modified helper phage. Packaged phagemids expressing a protein or peptide of interest, in fusion with a phage coat protein such as g3p, are generated simply by transfecting phagemid into the packaging cell line.

  14. Polymerase chain reaction-based gene removal from plasmids

    Directory of Open Access Journals (Sweden)

    Vishnu Vardhan Krishnamurthy

    2015-09-01

    Full Text Available This data article contains supplementary figures and methods to the research article entitled, “Multiplex gene removal by two-step polymerase chain reactions” (Krishnamurthy et al., Anal. Biochem., 2015, doi:http://dx.doi.org/10.1016/j.ab.2015.03.033, which presents a restriction-enzyme free method to remove multiple DNA segments from plasmids. Restriction-free cloning methods have dramatically improved the flexibility and speed of genetic manipulation compared to conventional assays based on restriction enzyme digestion (Lale and Valla, 2014. DNA Cloning and Assembly Methods, vol. 1116. Here, we show the basic scheme and characterize the success rate for single and multiplex gene removal from plasmids. In addition, we optimize experimental conditions, including the amount of template, multiple primers mixing, and buffers for DpnI treatment, used in the one-pot reaction for multiplex gene removal.

  15. Human Microbiota: a Reservoir of Plasmids Conferring Colistin Resistance

    Directory of Open Access Journals (Sweden)

    Chao Yang

    2016-07-01

    Full Text Available Discovery of the plasmid-borne mcr-1 gene conferring colistin resistance has compromised use of the final group of antibiotics, the polymyxins, in treating Gram-negative bacterial infections. In my last report, I documented detection of this gene in China, and then Denmark. To date, it has been detected in more than 16 countries, including Algeria, Belgium, Cambodia, China, Denmark, France, Germany, Japan, Laos, Malaysia, Portugal, Switzerland, Thailand, the Netherlands, United Kingdom, and Vietnam.

  16. Efficient transformation of Bacillus thuringiensis requires nonmethylated plasmid DNA.

    OpenAIRE

    Macaluso, A; Mettus, A M

    1991-01-01

    The transformation efficiency of Bacillus thuringiensis depends upon the source of plasmid DNA. DNA isolated from B. thuringiensis, Bacillus megaterium, or a Dam- Dcm- Escherichia coli strain efficiently transformed several B. thuringiensis strains, B. thuringiensis strains were grouped according to which B. thuringiensis backgrounds were suitable sources of DNA for transformation of other B. thuringiensis strains, suggesting that B. thuringiensis strains differ in DNA modification and restri...

  17. Dcm methylation is detrimental to plasmid transformation in Clostridium thermocellum

    OpenAIRE

    Guss, Adam M; Olson, Daniel G; Caiazza, Nicky C; Lynd, Lee R

    2012-01-01

    Abstract Background Industrial production of biofuels and other products by cellulolytic microorganisms is of interest but hindered by the nascent state of genetic tools. Although a genetic system for Clostridium thermocellum DSM1313 has recently been developed, available methods achieve relatively low efficiency and similar plasmids can transform C. thermocellum at dramatically different efficiencies. Results We report an increase in transformation efficiency of C. thermocellum for a variety...

  18. Transferrable Antibiotic Resistance Plasmids in Urban Coastal Wetlands

    OpenAIRE

    Cummings, David E.; Top, Eva

    2011-01-01

    The overarching hypothesis driving this research is that antibiotic resistance genes released into the natural environment through urban storm water may persist, creating a reservoir of resistance genes that have the potential to return to the human community through various vectors such as birds, insects, and fish. The specific aim of this Program Development grant is to assess the diversity of multidrug-resistance plasmids in sediments of two urban wetlands.

  19. Influence of plasma-generated reactive species on the plasmid DNA structure and plasmid-mediated transformation of Escherichia coli cells

    Science.gov (United States)

    Lee, Geon Joon; Choi, Min Ah; Kim, Daewook; Kim, Jun Young; Ghimire, Bhagirath; Choi, Eun Ha; Kim, Seong Hwan

    2017-09-01

    The influence of plasma-generated reactive species on the conformation of plasmid DNA (pDNA) and the transformation efficiency of Escherichia coli cells were studied. An atmospheric-pressure plasma jet (APPJ) was used to generate reactive oxygen and nitrogen species (RONS) in an aqueous solution. When E. coli cells were transformed, the transformation efficiency of E. coli with the APPJ-treated plasmid was lower than with the APPJ-untreated plasmid. Transformation efficiency was reduced due to structural modification and degradation of the pDNA by the APPJ. Plasma treatment caused structural modification of the plasmid from the supercoiled form to the linear form, and also decreased the amount of plasmid by degrading the deoxyribonucleic acid (DNA) structure accompanied by disruption of nucleobases and DNA strand breakage. The formation of linear plasmid from supercoiled plasmid by the APPJ treatment was verified through electrophoretic analysis of the NdeI restriction enzyme-cut supercoiled plasmid. The structural modification and/or decrease in the amount of pDNA are attributed to the RONS from the plasma itself and to those derived from the interaction of plasma radicals with the aqueous solution. The effect of plasma treatment on the transformation efficiency of E. coli cells was more pronounced with the linear plasmid than with the supercoiled plasmid, indicating that the linear plasmid is more vulnerable to RONS. Overall, these results revealed that plasma-generated RONS can modify the structural and optical properties of bacterial pDNA, thus affecting its biological function.

  20. The broad-host-range plasmid pSFA231 isolated from petroleum-contaminated sediment represents a new member of the PromA plasmid family

    Directory of Open Access Journals (Sweden)

    Xiaobin eLi

    2015-01-01

    Full Text Available A self-transmissible broad-host-range (BHR plasmid pSFA231 was isolated from petroleum-contaminated sediment in Shen-fu wastewater irrigation zone, China, using the triparental mating exogenous plasmid capture method. Based on its complete sequence the plasmid has a size of 41.5 kb and codes for 50 putative open reading frames (orfs, 28 of which represent genes involved in replication, partitioning and transfer functions of the plasmid. Phylogenetic analysis grouped pSFA231 into the newly defined PromA plasmid family, which currently includes five members. Further comparative genomic analysis shows that pSFA231 shares the common backbone regions with the other PromA plasmids, i.e., genes involved in replication, maintenance and control, and conjugative transfer. Nevertheless, phylogenetic divergence was found in specific gene products. We propose to divide the PromA group into two subgroups, PromA-α (pMRAD02, pSB102 and PromA-β (pMOL98, pIPO2T, pSFA231, pTer331, based on the splits network analysis of the RepA protein. Interestingly, a cluster of hypothetical orfs located between parA and traA of pSFA231 shows high similarity with the corresponding regions on pMOL98, pIPO2T and pTer331, suggesting these hypothetical orfs may represent ‘‘essential’’ plasmid backbone genes for the PromA-β subgroup. Alternatively, they may also be accessory genes that were first acquired and then stayed as the plasmid diverged. Our study increases the available collection of complete genome sequences of BHR plasmids, and since pSFA231 is the only characterized PromA plasmid from China, our findings also enhance our understanding of the genetic diversity of this plasmid group in different parts of the world.

  1. The broad-host-range plasmid pSFA231 isolated from petroleum-contaminated sediment represents a new member of the PromA plasmid family.

    Science.gov (United States)

    Li, Xiaobin; Top, Eva M; Wang, Yafei; Brown, Celeste J; Yao, Fei; Yang, Shan; Jiang, Yong; Li, Hui

    2014-01-01

    A self-transmissible broad-host-range (BHR) plasmid pSFA231 was isolated from petroleum-contaminated sediment in Shen-fu wastewater irrigation zone, China, using the triparental mating exogenous plasmid capture method. Based on its complete sequence the plasmid has a size of 41.5 kb and codes for 50 putative open reading frames (orfs), 29 of which represent genes involved in replication, partitioning and transfer functions of the plasmid. Phylogenetic analysis grouped pSFA231 into the newly defined PromA plasmid family, which currently includes five members. Further comparative genomic analysis shows that pSFA231 shares the common backbone regions with the other PromA plasmids, i.e., genes involved in replication, maintenance and control, and conjugative transfer. Nevertheless, phylogenetic divergence was found in specific gene products. We propose to divide the PromA group into two subgroups, PromA-α (pMRAD02, pSB102) and PromA-β (pMOL98, pIPO2T, pSFA231, pTer331), based on the splits network analysis of the RepA protein. Interestingly, a cluster of hypothetical orfs located between parA and traA of pSFA231 shows high similarity with the corresponding regions on pMOL98, pIPO2T, and pTer331, suggesting these hypothetical orfs may represent "essential" plasmid backbone genes for the PromA-β subgroup. Alternatively, they may also be accessory genes that were first acquired and then stayed as the plasmid diverged. Our study increases the available collection of complete genome sequences of BHR plasmids, and since pSFA231 is the only characterized PromA plasmid from China, our findings also enhance our understanding of the genetic diversity of this plasmid group in different parts of the world.

  2. Characterization of a Large Antibiotic Resistance Plasmid Found in Enteropathogenic Escherichia coli Strain B171 and Its Relatedness to Plasmids of Diverse E. coli and Shigella Strains.

    Science.gov (United States)

    Hazen, Tracy H; Michalski, Jane; Nagaraj, Sushma; Okeke, Iruka N; Rasko, David A

    2017-09-01

    Enteropathogenic Escherichia coli (EPEC) is a leading cause of severe infantile diarrhea in developing countries. Previous research has focused on the diversity of the EPEC virulence plasmid, whereas less is known regarding the genetic content and distribution of antibiotic resistance plasmids carried by EPEC. A previous study demonstrated that in addition to the virulence plasmid, reference EPEC strain B171 harbors a second, larger plasmid that confers antibiotic resistance. To further understand the genetic diversity and dissemination of antibiotic resistance plasmids among EPEC strains, we describe the complete sequence of an antibiotic resistance plasmid from EPEC strain B171. The resistance plasmid, pB171_90, has a completed sequence length of 90,229 bp, a GC content of 54.55%, and carries protein-encoding genes involved in conjugative transfer, resistance to tetracycline (tetA), sulfonamides (sulI), and mercury, as well as several virulence-associated genes, including the transcriptional regulator hha and the putative calcium sequestration inhibitor (csi). In silico detection of the pB171_90 genes among 4,798 publicly available E. coli genome assemblies indicates that the unique genes of pB171_90 (csi and traI) are primarily restricted to genomes identified as EPEC or enterotoxigenic E. coli However, conserved regions of the pB171_90 plasmid containing genes involved in replication, stability, and antibiotic resistance were identified among diverse E. coli pathotypes. Interestingly, pB171_90 also exhibited significant similarity with a sequenced plasmid from Shigella dysenteriae type I. Our findings demonstrate the mosaic nature of EPEC antibiotic resistance plasmids and highlight the need for additional sequence-based characterization of antibiotic resistance plasmids harbored by pathogenic E. coli. Copyright © 2017 American Society for Microbiology.

  3. An improved method for including upper size range plasmids in metamobilomes.

    Directory of Open Access Journals (Sweden)

    Anders Norman

    Full Text Available Two recently developed isolation methods have shown promise when recovering pure community plasmid DNA (metamobilomes/plasmidomes, which is useful in conducting culture-independent investigations into plasmid ecology. However, both methods employ multiple displacement amplification (MDA to ensure suitable quantities of plasmid DNA for high-throughput sequencing. This study demonstrates that MDA greatly favors smaller circular DNA elements (10 Kbp. Throughout the study, we used two model plasmids, a 4.4 Kbp cloning vector (pBR322, and a 56 Kbp conjugative plasmid (pKJK10, to represent lower- and upper plasmid size ranges, respectively. Subjecting a mixture of these plasmids to the overall isolation protocol revealed a 34-fold over-amplification of pBR322 after MDA. To address this bias, we propose the addition of an electroelution step that separates different plasmid size ranges prior to MDA in order to reduce size-dependent competition during incubation. Subsequent analyses of metamobilome data from wastewater spiked with the model plasmids showed in silica recovery of pKJK10 to be very poor with the established method and a 1,300-fold overrepresentation of pBR322. Conversely, complete recovery of pKJK10 was enabled with the new modified protocol although considerable care must be taken during electroelution to minimize cross-contamination between samples. For further validation, non-spiked wastewater metamobilomes were mapped to more than 2,500 known plasmid genomes. This displayed an overall recovery of plasmids well into the upper size range (median size: 30 kilobases with the modified protocol. Analysis of de novo assembled metamobilome data also suggested distinctly better recovery of larger plasmids, as gene functions associated with these plasmids, such as conjugation, was exclusively encoded in the data output generated through the modified protocol. Thus, with the suggested modification, access to a large uncharacterized pool of

  4. Spaceflight Effects on Genetics and Plasmids of Streptomycetes

    Science.gov (United States)

    Voeikova, T. A.; Emelyanova, L. K.; Tyaglov, B. V.; Novikova, L. M.; Goins, T. L.; Pyle, B. H.

    2008-06-01

    In 2007, experiments with streptomycetes were conducted during a 12-day flight of the Russian Foton-M3 spacecraft. The flight (F), synchronous control (SC) and laboratory control (LC) specimens were kept at 30°C. The objective of the experiments was to study spaceflight effects on the streptomycetes growth, differentiation, pigmentation, enzyme formation, genetic stability of plasmid and crossing between strains. It was found that the frequency of strain Streptomyces lividans segregation, the enzyme synthesis, pigmentation, and the level of sporulation were higher in F than in SC organisms. The study of pIJ702 plasmid inheritance in S. lividans showed that the frequency of plasmid loss in F and LC was similar and lower than that in SC specimens. The study of melanin synthesis in S. lividans (pIJ702) strain demonstrated decreased melanin specific yield and increased biomass accumulation in F microorganisms. HPTLC analysis of melanin showed that the number, molecular mass and the percentage of fractions were similar in SC and LC but different in F organisms. The study of spaceflight effects on genetic recombination in crosses between Streptomyces coelicolor A3(2) auxotrophic mutants showed that the frequency of various recombinant classes in F specimens differed from that in SC and LC. The frequency of a distal donor marker entry to the recipient in F was higher than in SC and LC.

  5. A precise excision of the complete Epstein-Barr virus genome in a plasmid based on a bacterial artificial chromosome.

    Science.gov (United States)

    Yu, Zhengyuan; Lu, Jianhong; Yu, Haibo; Yan, Qijia; Zuo, Lielian; Li, Guiyuan

    2011-09-01

    The Maxi-EBV is a bacterial artificial chromosome (BAC)-based plasmid that contains the complete Epstein-Barr virus (EBV) genome of 172 kb. This plasmid also carries an additional cassette of 11.5 kb in size for the expression of a mini F factor, selection markers and GFP. In the intracellular study of EBV infection based on the Maxi-EBV system, a parallel control that only contains this 11.5 kb vector is desirable but unavailable. In order to construct the vector in this approach, a clean deletion of the complete EBV genome from the Maxi-EBV was performed. This was achieved by homologous recombination using the bacteriophage λ Red system. Initially, an FRT-flanked kanamycin-resistance (kan) fragment of 1.4 kb with 61 bp homologies on the ends was introduced into the Maxi-EBV plasmid, replacing the 172-kb EBV genome. The kan gene was then removed by Flp/FRT excision. The results of identification demonstrated that the mutation was generated precisely. The results highlight the feasibility for a genome as large as 172 kb to be replaced by a greatly shorter fragment and for a much smaller vector backbone to be retrieved. Cell lines derived from the transfection of the vector will subsequently be appropriate controls in the related study. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Effect of ecological factors on conjugal transfer of chromium-resistant plasmid in Escherichia coli isolated from tannery effluent.

    Science.gov (United States)

    Verma, Tuhina; Ramteke, P W; Garg, S K

    2002-01-01

    The influence of total organic carbon (TOC), pH, and mating temperature on transfer of chromium-resistant plasmid between Escherichia coli strains in terms of variation in the number of transconjugants formed and variation in transfer frequency was investigated. In vitro transfer was studied in five chromate-tolerant E. coli strains isolated from tannery effluent using E. coli K12 J62 (Nal(r) Lac-) as a recipient. Conjugal transfer of different selection markers was observed in three strains. The study was carried out in sterile wastewater. A gradual decrease was observed both in the number of transconjugants and in transfer frequencies as the concentration of TOC in the mating medium descended from 10,095 to 1.2 mg of C/L, obtaining the maximum values with a TOC concentration of 10,095 mg of C/L. The number of transconjugants and the transfer frequency were maximum at 30 degrees C. However, neither the transfer frequency nor the transconjugant number varied significantly in the range of pHs assayed. The strains were also found resistant to different heavy metals and antibiotics. Curing of these strains resulted in loss of one or more resistance markers indicating the plasmid-borne resistance. Itis inferred that plasmid transferby conjugation occurs in wastewater bodies within a wide range of conditions.

  7. Role of sog polypeptides specified by plasmid ColIb-P9 and their transfer between conjugating bacteria.

    Science.gov (United States)

    Merryweather, A; Rees, C E; Smith, N M; Wilkins, B M

    1986-11-01

    The sog gene of the conjugative plasmid ColIb-P9 specifies two sequence-related polypeptides with the N-terminal third of the larger product having DNA primase activity. To resolve the function of the C-terminal portion of the polypeptides, we constructed a ColIb mutant containing a Tn5 insertion in the 3' region of sog. The mutation truncated sog gene products without inactivating DNA primase and rendered the plasmid defective in conjugation. Tests for the presence of conjugative pili, for complementation by a sog+ recombinant, and for mobilization of small origin of transfer (oriT) recombinant plasmids indicated that the mutant ColIb allows conjugative aggregation of cells but it is defective in DNA transfer at some stage subsequent to its initiation at oriT. Physical evidence is given that normal sog polypeptides are among a group of proteins transferred selectively from the donor to the recipient cell by a conjugation-specific process. No transfer of the mutant sog proteins was detected. It is proposed that the C-terminal region of sog polypeptides facilitates transfer of single-stranded ColIb DNA between conjugating cells following initiation of transfer at the oriT site, and that in this role the proteins are transmitted to the recipient cell.

  8. Dissemination of blaOXA-23 in Acinetobacter spp. in China: main roles of conjugative plasmid pAZJ221 and transposon Tn2009.

    Science.gov (United States)

    Liu, Li-Lin; Ji, Shu-Juan; Ruan, Zhi; Fu, Ying; Fu, Yi-Qi; Wang, Yan-Fei; Yu, Yun-Song

    2015-04-01

    Production of the OXA-23 carbapenemase is the most common reason for the increasing carbapenem resistance in Acinetobacter spp. This study was conducted to reveal the genetic basis of blaOXA-23 dissemination in Acinetobacter spp. in China. A total of 63 carbapenem-resistant OXA-23-producing Acinetobacter sp. isolates, representing different backgrounds, were selected from 28 hospitals in 18 provinces for this study. Generally, two patterns of plasmids carrying blaOXA-23 were detected according to S1-nuclease pulsed-field gel electrophoresis and Southern blot hybridization. A ca. 78-kb plasmid, designated pAZJ221, was found in 23 Acinetobacter baumannii and three Acinetobacter nosocomialis isolates, while a novel ca. 50-kb plasmid was carried by only two other A. baumannii isolates. Three of these isolates had an additional copy of blaOXA-23 on the chromosome. Transformation of the two plasmids succeeded, but only pAZJ221 was conjugative. Plasmid pAZJ221 was sequenced completely and found to carry no previously known resistance genes except blaOXA-23. The blaOXA-23 gene of the remaining 35 isolates was chromosome borne. The blaOXA-23 genetic environments were correlated with Tn2009 in 57 isolates, Tn2008 in 5 isolates, and Tn2006 in 1 isolate. The MIC values for the carbapenems with these isolates were not significantly associated with the genomic locations or the copy numbers of blaOXA-23. Overall, these observations suggest that the plasmid pAZJ221 and Tn2009 have effectively contributed to the wide dissemination of blaOXA-23 in Acinetobacter spp. in China and that horizontal gene transfer may play an important role in dissemination of the blaOXA-23 gene. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  9. Carriage of extended-spectrum beta-lactamase-plasmids does not reduce fitness but enhances virulence in some strains of pandemic E. coli lineages

    Directory of Open Access Journals (Sweden)

    Katharina eSchaufler

    2016-03-01

    Full Text Available Pathogenic ESBL-producing E. coli lineages occur frequently worldwide, not only in a human health context but in animals and the environment, also in settings with low antimicrobial pressures. This study investigated the fitness costs of ESBL-plasmids and their influence on chromosomally encoded features associated with virulence, such as those involved in the planktonic and sessile behaviors of ST131 and ST648 E. coli. ESBL-plasmid-carrying wild-type E. coli strains, their corresponding ESBL-plasmid-cured variants (PCV, and complementary ESBL-carrying transformants were comparatively analyzed using growth curves, Omnilog® phenotype microarray (PM assays, macrocolony and biofilm formation, swimming motility, and RNA sequence analysis. Growth curves and PM results pointed towards similar growth and metabolic behaviors among the strains. Phenotypic differences in some strains were detected, including enhanced curli fimbriae and/or cellulose production as well as a reduced swimming capacity of some ESBL-carrying strains, as compared to their respective PCVs. RNA sequencing mostly confirmed the phenotypic results, suggesting that the chromosomally encoded csgD pathway is a key factor involved. These results contradict the hypothesis that ESBL-plasmid-carriage leads to a fitness loss in ESBL-carrying strains. Instead, the results indicate an influence of some ESBL-plasmids on chromosomally encoded features associated with virulence in some E. coli strains. In conclusion, apart from antibiotic resistance selective advantages, ESBL-plasmid-carriage may also lead to enhanced virulence or adaption to specific habitats in some strains of pandemic ESBL-producing E. coli lineages.

  10. Large-scale plasmid DNA processing: evidence that cell harvesting and storage methods affect yield of supercoiled plasmid DNA.

    Science.gov (United States)

    Kong, Simyee; Rock, Cassandra F; Booth, Andrew; Willoughby, Nicholas; O'Kennedy, Ronan D; Relton, Julian; Ward, John M; Hoare, Mike; Levy, M Susana

    2008-09-01

    The effect of bacterial-cell centrifugation and handling on the initial stages of plasmid processing was investigated. Escherichia coli cells containing either a 6 or 20 kb plasmid were grown in 75- and 450-litre bioreactors, and the process yield of the early recovery stages was characterized in terms of SC pDNA (supercoiled plasmid DNA) recovered. In all cases, the cells were totally recovered using either a continuous-feed, intermittent-solids-discharge, disc-stack centrifuge or a continuous-feed, batch-discharge, solid-bowl centrifuge. The cells were then either processed immediately or stored frozen. The centrifugation method considerably affected the yield of SC pDNA, and there was evidence that the intermittent discharge of cells from a centrifuge operating at high speed led to a sediment containing lysed cells and degraded pDNA. This led to estimated plasmid yield losses of up to 40% as compared with cells recovered from laboratory or solid-bowl centrifuges, where there is evidently no cell stress on discharge. By inference, the cell stress on feed to either of the continuous centrifuges studied was not implicated in product loss. Freezing of the recovered cells gives a convenient hold stage prior to further processing. In all cases, this extra freeze-thaw stage led to loss of SC pDNA, and this was in addition to the loss attributed to cell lysis during centrifugation discharge. Only average yields can be gained from pilot plant-scale studies; separate laboratory-based experiments indicated that this loss of SC pDNA is determined by the time and temperature for which the resuspended cells are held.

  11. A Site-Specific Integrative Plasmid Found in Pseudomonas aeruginosa Clinical Isolate HS87 along with A Plasmid Carrying an Aminoglycoside-Resistant Gene.

    Directory of Open Access Journals (Sweden)

    Dexi Bi

    Full Text Available Plasmids play critical roles in bacterial fitness and evolution of Pseudomonas aeruginosa. Here two plasmids found in a drug-resistant P. aeruginosa clinical isolate HS87 were completely sequenced. The pHS87b plasmid (11.2 kb carries phage-related genes and function-unknown genes. Notably, pHS87b encodes an integrase and has an adjacent tRNAThr-associated attachment site. A corresponding integrated form of pHS87b at the tRNAThr locus was identified on the chromosome of P. aeruginosa, showing that pHS87b is able to site-specifically integrate into the 3'-end of the tRNAThr gene. The pHS87a plasmid (26.8 kb displays a plastic structure containing a putative replication module, stability factors and a variable region. The RepA of pHS87a shows significant similarity to the replication proteins of pPT23A-family plasmids. pHS87a carries a transposon Tn6049, a truncated insertion sequence ΔIS1071 and a Tn402-like class 1 integron which contains an aacA4 cassette that may confer aminoglycoside resistance. Thus, pHS87b is a site-specific integrative plasmid whereas pHS87a is a plastic antibiotic resistance plasmid. The two native plasmids may promote the fitness and evolution of P. aeruginosa.

  12. Plasmid-mediated resistance to cephalosporins and quinolones in Escherichia coli from American crows in the USA.

    Science.gov (United States)

    Jamborova, Ivana; Dolejska, Monika; Zurek, Ludek; Townsend, Andrea K; Clark, Anne B; Ellis, Julie C; Papousek, Ivo; Cizek, Alois; Literak, Ivan

    2017-05-01

    American crow (Corvus brachyrhynchos) faeces were tested for Escherichia coli with plasmid-mediated quinolone resistance (PMQR), extended-spectrum beta-lactamases (ESBL) and AmpC beta-lactamases. A total of 590 faecal samples were collected at four roosting sites in the USA and cultivated on selective media. Pulsed-field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST) were performed to assess clonality. Transferability of resistance genes was studied using conjugation and transformation bioassays. In total, 78 (13%, n = 590) cefotaxime-resistant isolates were obtained, of which 66 and 12 displayed AmpC and ESBL phenotypes, respectively. Fifty-four AmpC-producing isolates carried bla CMY-2 . Isolates producing ESBLs contained genes bla CTX-M-27 (5 isolates), bla CTX-M-15 (4), bla CTX-M-14 (2) and bla CTX-M-1 (1). Ninety isolates (15%, n = 590) with reduced susceptibility to ciprofloxacin were obtained, among which 14 harboured PMQR genes aac(6')-Ib-cr (4 isolates), qnrB19 (3), qnrS1 (2), qnrA1 (2), qnrB2 (1), qnrB6 (1) and qnrD3 (1). High genetic diversity was revealed by PFGE and MLST. Epidemiologically important E. coli clones (e.g., ST131, ST405) were identified. Plasmids carrying bla CMY-2 were assigned predominantly to IncA/C (8 plasmids), IncI1/ST23 (5) and IncI1/ST12 (3). The study demonstrates a widespread occurrence of E. coli with ESBL, AmpC and PMQR genes associated with clinically important multidrug-resistant clones and epidemic plasmids, in American crows. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  13. Development of a Ti plasmid vector for plant genetic engineering. Progress report, April 15, 1981-April 14, 1984

    Energy Technology Data Exchange (ETDEWEB)

    Chilton, M.D.

    1984-02-01

    The Agrobacterium Ti plasmids have the natural ability to insert a specific portion of their DNA, called T-DNA, into the nuclear genome of host plant cells, where it is maintained, replicated and transcribed into mRNA that is translated into foreign protein products. These pathogenic Ti plasmids in nature are acting as gene vectors, for they insert genes that benefit Agrobacterium in several ways. They encode novel enzymes that divert host plant metabolites into storage forms (compounds called opines) that are inaccessible to the plant and to other organisms, but that are specifically catabolized by Agrobacterium. Other genes in the transferred DNA (T-DNA) bring about elevated auxin and cytokinin biosynthesis, causing the tumorous cells to grow autonomously (increasing the size of the opine factory). The present project, begun three years ago, had as its objective the domestication of the Ti plasmid pTi T37 as a gene vector for introduction of desirable genes into higher plants. Three obstacles had to be overcome to this end: (1) insertion of foreign DNA precisely into T-DNA (technically challenging because of the enormous size of the Ti plasmid); (2) developing a disarmed form of the T-DNA that would not cause cells to grow as tumors (a problem because tumor cells could not regenerate into complete plants); and (3) developing new selectable or screenable markers to allow facile isolation of the transformed cells containing genetically engineered T-DNA necessary because the tumorous trait is not usable in the disarmed vector. All of these objectives have been accomplished in the course of the last three years.

  14. Linezolid resistance in clinical isolates of Staphylococcus epidermidis from German hospitals and characterization of two cfr-carrying plasmids.

    Science.gov (United States)

    Bender, Jennifer; Strommenger, Birgit; Steglich, Matthias; Zimmermann, Ortrud; Fenner, Ines; Lensing, Carmen; Dagwadordsch, Urantschimeg; Kekulé, Alexander S; Werner, Guido; Layer, Franziska

    2015-01-01

    This study was a detailed investigation of Staphylococcus epidermidis clinical isolates exhibiting linezolid resistance. Thirty-six linezolid-resistant S. epidermidis from eight German hospitals, including isolates from suspected hospital-associated outbreaks between January 2012 and April 2013, were analysed with respect to their antimicrobial susceptibility and the presence of cfr and/or mutations in the 23S rRNA, rplC, rplD and rplV genes. Relatedness of isolates was estimated by MLST and SmaI macrorestriction analysis. Characterization of cfr plasmids was carried out by means of Illumina sequencing. The MICs of linezolid varied substantially between the isolates. No apparent correlation was detected between the level of resistance, the presence of cfr and ribosomal target site mutations. S. epidermidis isolates from two hospitals were confirmed as clonally related, indicating the spread of the respective clone over a period of 1 year. Next-generation sequencing revealed two different categories of cfr-expressing plasmids, both of them varying in genetic arrangement and composition from previously published cfr plasmids: p12-00322-like plasmids showed incorporation of cfr into a pGO1-like backbone and displayed capabilities for intra- and inter-species conjugational transfer. To date, linezolid-resistant S. epidermidis have rarely been isolated from human clinical sources in Germany. Here, we describe the emergence and outbreaks of these strains. We detected previously described and novel point mutations in the 23S ribosomal genes. The cfr gene was only present in six isolates. However, this is the first known description of cfr incorporation into conjugative vectors; under selective pressure, these vectors could give reasonable cause for concern. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Relative entropy differences in bacterial chromosomes, plasmids, phages and genomic islands

    DEFF Research Database (Denmark)

    Bohlin, Jon; van Passel, Mark W. J.; Snipen, Lars

    2012-01-01

    Background: We sought to assess whether the concept of relative entropy (information capacity), could aid our understanding of the process of horizontal gene transfer in microbes. We analyzed the differences in information capacity between prokaryotic chromosomes, genomic islands (GI), phages...... with the strongest association being in phages. Relative entropy was also found to be lower in the obligate intracellular Mycobacterium leprae than in the related M. tuberculosis when measured on a shared set of highly conserved genes. Conclusions: We argue that relative entropy differences reflect how plasmids......, phages and GIs interact with microbial host chromosomes and that all these biological entities are, or have been, subjected to different selective pressures. The rate at which amelioration of horizontally acquired DNA occurs within the chromosome is likely to account for the small differences between...

  16. Plasmid CDS5 influences infectivity and virulence in a mouse model of Chlamydia trachomatis urogenital infection.

    Science.gov (United States)

    Ramsey, K H; Schripsema, J H; Smith, B J; Wang, Y; Jham, B C; O'Hagan, K P; Thomson, N R; Murthy, A K; Skilton, R J; Chu, P; Clarke, I N

    2014-08-01

    The native plasmid of both Chlamydia muridarum and Chlamydia trachomatis has been shown to control virulence and infectivity in mice and in lower primates. We recently described the development of a plasmid-based genetic transformation protocol for Chlamydia trachomatis that for the first time provides a platform for the molecular dissection of the function of the chlamydial plasmid and its individual genes or coding sequences (CDS). In the present study, we transformed a plasmid-free lymphogranuloma venereum isolate of C. trachomatis, serovar L2, with either the original shuttle vector (pGFP::SW2) or a derivative of pGFP::SW2 carrying a deletion of the plasmid CDS5 gene (pCDS5KO). Female mice were inoculated with these strains either intravaginally or transcervically. We found that transformation of the plasmid-free isolate with the intact pGFP::SW2 vector significantly enhanced infectivity and induction of host inflammatory responses compared to the plasmid-free parental isolate. Transformation with pCDS5KO resulted in infection courses and inflammatory responses not significantly different from those observed in mice infected with the plasmid-free isolate. These results indicate a critical role of plasmid CDS5 in in vivo fitness and in induction of inflammatory responses. To our knowledge, these are the first in vivo observations ascribing infectivity and virulence to a specific plasmid gene. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  17. Exploring Antibiotic Resistance Genes and Metal Resistance Genes in Plasmid Metagenomes from Wastewater Treatment Plants

    Directory of Open Access Journals (Sweden)

    An-Dong eLi

    2015-09-01

    Full Text Available Plasmids operate as independent genetic elements in microorganism communities. Through horizontal gene transfer, they can provide their host microorganisms with important functions such as antibiotic resistance and heavy metal resistance. In this study, six metagenomic libraries were constructed with plasmid DNA extracted from influent, activated sludge and digested sludge of two wastewater treatment plants. Compared with the metagenomes of the total DNA extracted from the same sectors of the wastewater treatment plant, the plasmid metagenomes had significantly higher annotation rates, indicating that the functional genes on plasmids are commonly shared by those studied microorganisms. Meanwhile, the plasmid metagenomes also encoded many more genes related to defense mechanisms, including ARGs. Searching against an antibiotic resistance genes (ARGs database and a metal resistance genes (MRGs database revealed a broad-spectrum of antibiotic (323 out of a total 618 subtypes and metal resistance genes (23 out of a total 23 types on these plasmid metagenomes. The influent plasmid metagenomes contained many more resistance genes (both ARGs and MRGs than the activated sludge and the digested sludge metagenomes. Sixteen novel plasmids with a complete circular structure that carried these resistance genes were assembled from the plasmid metagenomes. The results of this study demonstrated that the plasmids in wastewater treatment plants could be important reservoirs for resistance genes, and may play a significant role in the horizontal transfer of these genes.

  18. PSI:Biology-materials repository: a biologist's resource for protein expression plasmids.

    Science.gov (United States)

    Cormier, Catherine Y; Park, Jin G; Fiacco, Michael; Steel, Jason; Hunter, Preston; Kramer, Jason; Singla, Rajeev; LaBaer, Joshua

    2011-07-01

    The Protein Structure Initiative:Biology-Materials Repository (PSI:Biology-MR; MR; http://psimr.asu.edu ) sequence-verifies, annotates, stores, and distributes the protein expression plasmids and vectors created by the Protein Structure Initiative (PSI). The MR has developed an informatics and sample processing pipeline that manages this process for thousands of samples per month from nearly a dozen PSI centers. DNASU ( http://dnasu.asu.edu ), a freely searchable database, stores the plasmid annotations, which include the full-length sequence, vector information, and associated publications for over 130,000 plasmids created by our laboratory, by the PSI and other consortia, and by individual laboratories for distribution to researchers worldwide. Each plasmid links to external resources, including the PSI Structural Biology Knowledgebase ( http://sbkb.org ), which facilitates cross-referencing of a particular plasmid to additional protein annotations and experimental data. To expedite and simplify plasmid requests, the MR uses an expedited material transfer agreement (EP-MTA) network, where researchers from network institutions can order and receive PSI plasmids without institutional delays. As of March 2011, over 39,000 protein expression plasmids and 78 empty vectors from the PSI are available upon request from DNASU. Overall, the MR's repository of expression-ready plasmids, its automated pipeline, and the rapid process for receiving and distributing these plasmids more effectively allows the research community to dissect the biological function of proteins whose structures have been studied by the PSI.

  19. Low biological cost of carbapenemase-encoding plasmids following transfer from Klebsiella pneumoniae to Escherichia coli.

    Science.gov (United States)

    Di Luca, Maria Chiara; Sørum, Vidar; Starikova, Irina; Kloos, Julia; Hülter, Nils; Naseer, Umaer; Johnsen, Pål J; Samuelsen, Ørjan

    2017-01-01

    The objective of this study was to determine the biological cost, stability and sequence of two carbapenemase-encoding plasmids containing bla KPC-2 (pG12-KPC-2) and bla VIM-1 (pG06-VIM-1) isolated from Klebsiella pneumoniae when newly acquired by uropathogenic Escherichia coli clinical isolates of different genetic backgrounds. The two plasmids were transferred into plasmid-free E. coli clinical isolates by transformation. The fitness effect of newly acquired plasmids on the host cell was assessed in head-to-head competitions with the corresponding isogenic strain. Plasmid stability was estimated by propagating monocultures for ∼312 generations. Plasmid nucleotide sequences were determined using next-generation sequencing technology. Assembly, gap closure, annotation and comparative analyses were performed. Both plasmids were stably maintained in three of four E. coli backgrounds and resulted in low to moderate reductions in host fitness ranging from 1.1% to 3.6%. A difference in fitness cost was observed for pG12-KPC-2 between two different genetic backgrounds, while no difference was detected for pG06-VIM-1 between three different genetic backgrounds. In addition, a difference was observed between pG12-KPC-2 and pG06-VIM-1 in the same genetic background. In general, the magnitude of biological cost of plasmid carriage was both host and plasmid dependent. The sequences of the two plasmids showed high backbone similarity to previously circulating plasmids in K. pneumoniae. The low to modest fitness cost of newly acquired and stably maintained carbapenemase-encoding plasmids in E. coli indicates a potential for establishment and further dissemination into other Enterobacteriaceae species. We also show that the fitness cost is both plasmid and host specific. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Novel plasmids and resistance phenotypes in Yersinia pestis: unique plasmid inventory of strain Java 9 mediates high levels of arsenic resistance.

    Directory of Open Access Journals (Sweden)

    Mark Eppinger

    Full Text Available Growing evidence suggests that the plasmid repertoire of Yersinia pestis is not restricted to the three classical virulence plasmids. The Java 9 strain of Y. pestis is a biovar Orientalis isolate obtained from a rat in Indonesia. Although it lacks the Y. pestis-specific plasmid pMT, which encodes the F1 capsule, it retains virulence in mouse and non-human primate animal models. While comparing diverse Y. pestis strains using subtractive hybridization, we identified sequences in Java 9 that were homologous to a Y. enterocolitica strain carrying the transposon Tn2502, which is known to encode arsenic resistance. Here we demonstrate that Java 9 exhibits high levels of arsenic and arsenite resistance mediated by a novel promiscuous class II transposon, named Tn2503. Arsenic resistance was self-transmissible from Java 9 to other Y. pestis strains via conjugation. Genomic analysis of the atypical plasmid inventory of Java 9 identified pCD and pPCP plasmids of atypical size and two previously uncharacterized cryptic plasmids. Unlike the Tn2502-mediated arsenic resistance encoded on the Y. enterocolitica virulence plasmid; the resistance loci in Java 9 are found on all four indigenous plasmids, including the two novel cryptic plasmids. This unique mobilome introduces more than 105 genes into the species gene pool. The majority of these are encoded by the two entirely novel self-transmissible plasmids, which show partial homology and synteny to other enterics. In contrast to the reductive evolution in Y. pestis, this study underlines the major impact of a dynamic mobilome and lateral acquisition in the genome evolution of the plague bacterium.

  1. Characterization of IncI1 sequence type 71 epidemic plasmid lineage responsible for the recent dissemination of CTX-M-65 extended-spectrum β-lactamase in the Bolivian Chaco region.

    Science.gov (United States)

    Riccobono, Eleonora; Di Pilato, Vincenzo; Di Maggio, Tiziana; Revollo, Carmen; Bartoloni, Alessandro; Pallecchi, Lucia; Rossolini, Gian Maria

    2015-09-01

    During the last decade, a significant diffusion of CTX-M-type extended-spectrum β-lactamases (ESBLs) was observed in commensal Escherichia coli from healthy children in the Bolivian Chaco region, with initial dissemination of CTX-M-2, which was then replaced by CTX-M-15 and CTX-M-65. In this work, we demonstrate that the widespread dissemination of CTX-M-65 observed in this context was related to the polyclonal spreading of an IncI1 sequence type 71 (ST71) epidemic plasmid lineage. The structure of the epidemic plasmid population was characterized by complete sequencing of four representatives and PCR mapping of the remainder (n = 16). Sequence analysis showed identical plasmid backbones (similar to that of the reference IncI1 plasmid, R64) and a multiresistance region (MRR), which underwent local microevolution. The MRR harbored genes responsible for resistance to β-lactams, aminoglycosides, florfenicol, and fosfomycin (with microevolution mainly consisting of deletion events of resistance modules). The bla CTX-M-65 module harbored by the IncI1 ST71 epidemic plasmid was apparently derived from IncN-type plasmids, likely via IS26-mediated mobilization. The plasmid could be transferred by conjugation to several different enterobacterial species (Escherichia coli, Cronobacter sakazakii, Enterobacter cloacae, Klebsiella oxytoca, Klebsiella pneumoniae, and Salmonella enterica) and was stably maintained without selective pressure in these species, with the exception of K. oxytoca and S. enterica. Fitness assays performed in E. coli recipients demonstrated that the presence of the epidemic plasmid was apparently not associated with a significant biological cost. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  2. A comparison of methods for extracting plasmids from a difficult to lyse bacterium: Lactobacillus casei.

    Science.gov (United States)

    Alimolaei, Mojtaba; Golchin, Mehdi

    2017-01-01

    There are few practical protocols to extract efficient plasmid DNA from the difficult-to-lyse bacterium, Lactobacillus casei. This is related to production of a large amount of exopolysaccharide coat and its special physiological characteristics. In this study, we optimized a protocol to extract efficient plasmid DNA from a recombinant L. casei strain. Different extraction methods were evaluated in three classes of conventional, kit-based, and combined protocols. The quantity and quality of the extracted plasmid DNA were determined by spectrophotometry, agarose gel electrophoresis, and PCR. Results revealed that the yield of the extracted plasmids differed for each protocol and conventional protocols showed higher plasmid yields. We suggested an effective, inexpensive protocol to extract plasmid DNA from the recombinant L. casei for downstream biological processes. Copyright © 2016 International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  3. Quantifying and visualizing the transfer of exogenous plasmids to environmental microbial communities

    DEFF Research Database (Denmark)

    Dechesne, Arnaud

    2015-01-01

    Plasmid transfer is deemed responsible for the rapid spread of antibiotic resistance among microbes. While broad host range plasmids are known to transfer to diverse hosts in pure culture, their transfer potential to complex communities has not been comprehensively studied. The ability of a commu......Plasmid transfer is deemed responsible for the rapid spread of antibiotic resistance among microbes. While broad host range plasmids are known to transfer to diverse hosts in pure culture, their transfer potential to complex communities has not been comprehensively studied. The ability......, our findings highlight the high potential for exogenous plasmids to be transferred to soil microbial communities and indicate that community permissiveness – as affected by environmental conditions- needs to be considered to predict the fate of plasmids in the environment....

  4. Conjugation is necessary for a bacterial plasmid to survive under protozoan predation.

    Science.gov (United States)

    Cairns, Johannes; Jalasvuori, Matti; Ojala, Ville; Brockhurst, Michael; Hiltunen, Teppo

    2016-02-01

    Horizontal gene transfer by conjugative plasmids plays a critical role in the evolution of antibiotic resistance. Interactions between bacteria and other organisms can affect the persistence and spread of conjugative plasmids. Here we show that protozoan predation increased the persistence and spread of the antibiotic resistance plasmid RP4 in populations of the opportunist bacterial pathogen Serratia marcescens. A conjugation-defective mutant plasmid was unable to survive under predation, suggesting that conjugative transfer is required for plasmid persistence under the realistic condition of predation. These results indicate that multi-trophic interactions can affect the maintenance of conjugative plasmids with implications for bacterial evolution and the spread of antibiotic resistance genes. © 2016 The Author(s).

  5. Characterization of large plasmids encoding resistance to toxic heavy metals in Salmonella abortus equi.

    Science.gov (United States)

    Ghosh, A; Singh, A; Ramteke, P W; Singh, V P

    2000-05-27

    Salmonella abortus equi vaccine strains were found to be resistant to high levels of toxic heavy metals--arsenic, chromium, cadmium, and mercury. The two strains 157 and 158 were resistant to ampicillin also. Curing of these strains resulted in loss of one or more resistance marker indicating plasmid borne resistance. Plasmid profile of strain 157 showed presence of three plasmids of 85, 54, and 0.1 Kb, whereas 158 strain showed presence of 85 Kb and 2 Kb plasmids. Plasmids were isolated from strain 157 and introduced into E. coli DH5alpha with a transformation efficiency of 2 x 10(3) transformants/microg DNA. Interestingly the transformants were resistant to antibiotics, heavy metals (As, Cr, Cd, Hg) and was also able to utilize citrate, a trait specific to Salmonella species. We report and establish for the first time the transferable large plasmids encoding resistance to various heavy metals, antibiotics and biochemical nature of S. abortus equi.

  6. Survival and evolution of a large multidrug resistance plasmid in new clinical bacterial hosts

    DEFF Research Database (Denmark)

    Porse, Andreas; Schønning, Kristian; Munck, Christian

    2016-01-01

    Large conjugative plasmids are important drivers of bacterial evolution and contribute significantly to the dissemination of antibiotic resistance. Although plasmid borne multidrug resistance is recognized as one of the main challenges in modern medicine, the adaptive forces shaping the evolution...... of these plasmids within pathogenic hosts are poorly understood. Here we study plasmid-host adaptations following transfer of a 73 kb conjugative multidrug resistance plasmid to naïve clinical isolates of Klebsiella pneumoniae and Escherichia coli We use experimental evolution, mathematical modelling and population...... consistently followed by all evolved E. coli lineages exposes a trade-off between horizontal and vertical transmission that may ultimately limit the dissemination potential of clinical multidrug resistance plasmids in these hosts....

  7. Second generation sequencing for elucidating the diversity of bacteria and plasmids in soil

    DEFF Research Database (Denmark)

    Holmsgaard, Peter Nikolai

    but also plasmids diversity in soil. The plasmid group in focus are the broad host range IncP-1 plasmids that were studied by amplicon pyroseqeuncing of the trfA gene encoding the replication initiation proteins. The thesis consists of an introduction spanning microbial ecology, IncP-1 plasmids......, paper microcosms with material from a pre-adapted biopurification system (BPS) were spiked with the herbicide linuron and the effect on the bacterial and plasmid community was studied. The genus Variovorax previously shown to degrade linuron was found to be one of the main positive responders....... The relative abundance of IncP-1β1 plasmids also increased. In papers four and five, the mobile genetic elements and bacterial diversity, respectively, was studied over a pesticide spraying season in the same BPS used in paper three. The addition of pesticides decreased overall bacterial diversity...

  8. Towards Concurrent Data Transmission: Exploiting Plasmid Diversity by Bacterial Conjugation.

    Science.gov (United States)

    Unluturk, Bige D; Islam, M Siblee; Balasubramaniam, Sasitharan; Ivanov, Stepan

    2017-06-01

    The progress of molecular communication (MC) is tightly connected to the progress of nanomachine design. State-of-the-art states that nanomachines can be built either from novel nanomaterials by the help of nanotechnology or they can be built from living cells which are modified to function as intended by synthetic biology. With the growing need of the biomedical applications of MC, we focus on developing bio-compatible communication systems by engineering the cells to become MC nanomachines. Since this approach relies on modifying cellular functions, the improvements in the performance can only be achieved by integrating new biological properties. A previously proposed model for molecular communication is using bacteria as information carriers between transmitters and receivers, also known as bacterial nanonetworks. This approach has suggested encoding information into the plasmids inserted into the bacteria which leads to extra overhead for the receivers to decode and analyze the plasmids to obtain the encoded information. Another scheme, which is proposed in this paper, is to determine the digital information transmitted based on the quantity of bacteria emitted. While this scheme has its simplicity, the major drawback is the low-data rate resulting from the long propagation of the bacteria. To improve the performance, this paper proposes a distributed modulation scheme utilizing three bacterial properties, namely, engineering of plasmids, conjugation, and bacterial motility. In particular, genetic engineering allows us to engineer the different combinations of genes representing the different series of bits. When compared with binary density modulation and the M-ary density modulation, it is shown that the distributed modulation scheme outperforms the other two approaches in terms of bit error probability as well as the achievable rate for varying quantity of bacteria transmitted, distances, as well as time slot length.

  9. Plasmid profile as fingerprinting of typing Pseudomonas aeruginosa

    OpenAIRE

    El-Naggar, Wael; El-Emam, M; Hassan, R; George, S

    2014-01-01

    Pyocine production typing and restriction fragment length polymorphism (RFLP) of plasmid DNA with BamH1 (BamH1 RFLP) were compared for intraspecies discrimination of 100 Pseudomonas aeruginosa isolates. Typeability of pyocine production method was 76% while that of BamH1 RFLP was 100%. BamHl RFLP was highly discriminative so as to distinguish unrelated isolates of close lineage. However, it was not a good method to identify isolates of unrelated lineage because BamH1 RFLP appeared to be a sub...

  10. Plasmids as scribbling pads for operon formation and propagation.

    Science.gov (United States)

    Norris, Vic; Merieau, Annabelle

    2013-09-01

    Many bacterial genes are in operons and the process whereby operons are formed is therefore fundamental. To help elucidate this process, we propose in the Scribbling Pad hypothesis that bacteria have been constantly using plasmids for genetic experimentation and, in particular, for the construction of operons. This hypothesis simultaneously solves the problems of the creation of operons and the way operons are propagated. We cite results in the literature to support the hypothesis and make experimental predictions to test it. Copyright © 2013 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  11. In vitro footprinting of promoter regions within supercoiled plasmid DNA.

    Science.gov (United States)

    Sun, Daekyu

    2010-01-01

    Polypurine/polypyrimidine (pPu/pPy) tracts, which exist in the promoter regions of many growth-related genes, have been proposed to be very dynamic in their conformation. In this chapter, we describe a detailed protocol for DNase I and S1 nuclease footprinting experiments with supercoiled plasmid DNA containing the promoter regions to probe whether there are conformational transitions to B-type DNA, melted DNA, and G-quadruplex structures within this tract. This is demonstrated with the proximal promoter region of the human vascular endothelial growth factor (VEGF) gene, which also contains multiple binding sites for Sp1 and Egr-1 transcription factors.

  12. Plasmid-encoded diacetyl (acetoin) reductase in Leuconostoc pseudomesenteroides

    DEFF Research Database (Denmark)

    Rattray, Fergal P; Myling-Petersen, Dorte; Larsen, Dianna

    2003-01-01

    ) reductases reported previously. Downstream of the butA gene of L. pseudomesenteroides, but coding in the opposite orientation, a putative DNA recombinase was identified. A two-step PCR approach was used to construct FPR02, a butA mutant of the wild-type strain, CHCC2114. FPR02 had significantly reduced......A plasmid-borne diacetyl (acetoin) reductase (butA) from Leuconostoc pseudomesenteroides CHCC2114 was sequenced and cloned. Nucleotide sequence analysis revealed an open reading frame encoding a protein of 257 amino acids which had high identity at the amino acid level to diacetyl (acetoin...

  13. In vivo DNA cloning and adjacent gene fusing with a mini-Mu-lac bacteriophage containing a plasmid replicon.

    OpenAIRE

    Groisman, E A; Castilho, B A; Casadaban, M J

    1984-01-01

    A mini-Mu bacteriophage containing a high copy number plasmid replicon was constructed to clone genes in vivo. A chloramphenicol resistance gene for independent selection and the lacZYA operon to form gene fusions were also incorporated into this phage. This mini-Mu element can transpose at a high frequency when derepressed, and it can be complemented by a helper Mu prophage for lytic growth. DNA sequences that are flanked by two copies of this mini-Mu can be packaged along with them. After i...

  14. Cefotaxime resistant Escherichia coli collected from a healthy volunteer; characterisation and the effect of plasmid loss.

    Directory of Open Access Journals (Sweden)

    Miranda Kirchner

    Full Text Available In this study 6 CTX-M positive E. coli isolates collected during a clinical study examining the effect of antibiotic use in a human trial were analysed. The aim of the study was to analyse these isolates and assess the effect of full or partial loss of plasmid genes on bacterial fitness and pathogenicity. A DNA array was utilised to assess resistance and virulence gene carriage. Plasmids were characterised by PCR-based replicon typing and addiction system multiplex PCR. A phenotypic array and insect virulence model were utilised to assess the effect of plasmid-loss in E. coli of a large multi-resistance plasmid. All six E. coli carrying bla CTX-M-14 were detected from a single participant and were identical by pulse field gel electrophoresis and MLST. Plasmid profiling and arrays indicated absence of a large multi-drug resistance (MDR F-replicon plasmid carrying blaTEM, aadA4, strA, strB, dfrA17/19, sul1, and tetB from one isolate. Although this isolate partially retained the plasmid it showed altered fitness characteristics e.g. inability to respire in presence of antiseptics, similar to a plasmid-cured strain. However, unlike the plasmid-cured or plasmid harbouring strains, the survival rate for Galleria mellonella infected by the former strain was approximately 5-times lower, indicating other possible changes accompanying partial plasmid loss. In conclusion, our results demonstrated that an apparently healthy individual can harbour bla CTX-M-14 E. coli strains. In one such strain, isolated from the same individual, partial absence of a large MDR plasmid resulted in altered fitness and virulence characteristics, which may have implications in the ability of this strain to infect and any subsequent treatment.

  15. IncH plasmids in Escherichia coli strains isolated from broiler chicken carcasses.

    OpenAIRE

    Chaslus-Dancla, E; Lafont, J P

    1985-01-01

    Plasmids conferring tellurite resistance were transferred at low temperature (27 degrees C) from Escherichia coli strains isolated from chicken carcasses at the time of slaughter and after storage. They belonged to group IncH, as evidenced by their large molecular weight and incompatibility with plasmid pIP233. E. coli strains contaminating chickens meat can thus represent a source of IncH plasmids in the food chain of humans.

  16. Plasmids of Carotenoid-Producing Paracoccus spp. (Alphaproteobacteria) - Structure, Diversity and Evolution

    OpenAIRE

    Maj, Anna; Dziewit, Lukasz; Czarnecki, Jakub; Wlodarczyk, Miroslawa; Baj, Jadwiga; Skrzypczyk, Grazyna; Giersz, Dorota; Bartosik, Dariusz

    2013-01-01

    Plasmids are components of many bacterial genomes. They enable the spread of a large pool of genetic information via lateral gene transfer. Many bacterial strains contain mega-sized replicons and these are particularly common in Alphaproteobacteria. Considerably less is known about smaller alphaproteobacterial plasmids. We analyzed the genomes of 14 such plasmids residing in 4 multireplicon carotenoid-producing strains of the genus Paracoccus (Alphaproteobacteria): P. aestuarii DSM 19484, P. ...

  17. General Mutagenesis of F Plasmid TraI Reveals Its Role in Conjugative Regulation

    OpenAIRE

    Haft, Rembrandt J. F.; Palacios, Gilberto; Nguyen, Tran; Mally, Manuela; Gachelet, Eliora G.; Zechner, Ellen L.; Traxler, Beth

    2006-01-01

    Bacteria commonly exchange genetic information by the horizontal transfer of conjugative plasmids. In gram-negative conjugation, a relaxase enzyme is absolutely required to prepare plasmid DNA for transit into the recipient via a type IV secretion system. Here we report a mutagenesis of the F plasmid relaxase gene traI using in-frame, 31-codon insertions. Phenotypic analysis of our mutant library revealed that several mutant proteins are functional in conjugation, highlighting regions of TraI...

  18. Stability of plasmid content in Salmonella wien in late phases of the epidemic history.

    OpenAIRE

    Casalino, M.; Comanducci, A; Nicoletti, M; Maimone, F

    1984-01-01

    Prevalence, genetic characteristics, and EcoRI cleavage analysis of plasmids identified in clinical strains of Salmonella wien isolated in recent years showed that the plasmid content in this serotype has remained uniform and stable over more than a decade and also late in the epidemic history. No correlation between decrease in S. wien isolations and naturally occurring systematic changes in the DNA of its most common FIme plasmid was structurally detectable.

  19. Composite IS1-tetracycline resistance elements in aerobactin-encoding FIme plasmids from epidemic Salmonella wien.

    OpenAIRE

    Casalino, M.; Nicoletti, M; Junakovic, N; Maimone, F

    1988-01-01

    Class B tetracycline resistance determinants have been identified in two aerobactin-encoding FIme plasmids representative of those isolated from epidemic Salmonella wien. Genetic data, restriction enzyme analysis of recombinant and mutant plasmids, and Southern blot hybridizations indicate that in both plasmids the class B determinant so far found and described only on Tn10-like transposons is part of a different genetic element. This composite insertion sequence element is about 7 kilobases ...

  20. Role of plasmids in Lactobacillus brevis BSO 464 hop tolerance and beer spoilage.

    Science.gov (United States)

    Bergsveinson, Jordyn; Baecker, Nina; Pittet, Vanessa; Ziola, Barry

    2015-02-01

    Specific isolates of lactic acid bacteria (LAB) can grow in the harsh beer environment, thus posing a threat to brew quality and the economic success of breweries worldwide. Plasmid-localized genes, such as horA, horC, and hitA, have been suggested to confer hop tolerance, a trait required for LAB survival in beer. The presence and expression of these genes among LAB, however, do not universally correlate with the ability to grow in beer. Genome sequencing of the virulent beer spoilage organism Lactobacillus brevis BSO 464 revealed the presence of eight plasmids, with plasmids 1, 2, and 3 containing horA, horC, and hitA, respectively. To investigate the roles that these and the other five plasmids play in L. brevis BSO 464 growth in beer, plasmid curing with novobiocin was used to derive 10 plasmid variants. Multiplex PCRs were utilized to determine the presence or absence of each plasmid, and how plasmid loss affected hop tolerance and growth in degassed (noncarbonated) beer was assessed. Loss of three of the eight plasmids was found to affect hop tolerance and growth in beer. Loss of plasmid 2 (horC and 28 other genes) had the most dramatic effect, with loss of plasmid 4 (120 genes) and plasmid 8 (47 genes) having significant, but smaller, impacts. These results support the contention that genes on mobile genetic elements are essential for bacterial growth in beer and that beer spoilage ability is not dependent solely on the three previously described hop tolerance genes or on the chromosome of a beer spoilage LAB isolate.

  1. Natural Transformation of Acinetobacter calcoaceticus by Plasmid DNA Adsorbed on Sand and Groundwater Aquifer Material

    OpenAIRE

    Chamier, Bärbel; Lorenz, Michael G.; Wackernagel, Wilfried

    1993-01-01

    It is known that plasmid DNA and linear duplex DNA molecules adsorb to chemically purified mineral grains of sand and to particles of several clay fractions. It seemed desirable to examine whether plasmid DNA would also adsorb to nonpurified mineral materials taken from the environment and, particularly, whether adsorbed plasmid DNA would be available for natural transformation of bacteria. Therefore, microcosms consisting of chemically pure sea sand plus buffered CaCl2 solution were compared...

  2. Reporter gene expression in dendritic cells after gene gun administration of plasmid DNA

    OpenAIRE

    Watkins, Craig; Hopkins, John; Harkiss, Gordon

    2005-01-01

    Dendritic cells (DC) play an integral role in plasmid DNA vaccination. However, the interaction between plasmid DNA and DC in vivo is incompletely understood. In this report, we utilise the sheep pseudoafferent cannulation model to examine the interaction between plasmid DNA encoding enhanced green fluorescent protein (pEGFP) and afferent lymph DC (ALDC) following gene gun administration. The results show that peaks of fluorescent ALDC tended to appear around days 1-4 and 9-13, then erratical...

  3. The Origin of Mutants Under Selection: How Natural Selection Mimics Mutagenesis (Adaptive Mutation)

    Science.gov (United States)

    Maisnier-Patin, Sophie; Roth, John R.

    2015-01-01

    Selection detects mutants but does not cause mutations. Contrary to this dictum, Cairns and Foster plated a leaky lac mutant of Escherichia coli on lactose medium and saw revertant (Lac+) colonies accumulate with time above a nongrowing lawn. This result suggested that bacteria might mutagenize their own genome when growth is blocked. However, this conclusion is suspect in the light of recent evidence that revertant colonies are initiated by preexisting cells with multiple copies the conjugative F′lac plasmid, which carries the lac mutation. Some plated cells have multiple copies of the simple F′lac plasmid. This provides sufficient LacZ activity to support plasmid replication but not cell division. In nongrowing cells, repeated plasmid replication increases the likelihood of a reversion event. Reversion to lac+ triggers exponential cell growth leading to a stable Lac+ revertant colony. In 10% of these plated cells, the high-copy plasmid includes an internal tandem lac duplication, which provides even more LacZ activity—sufficient to support slow growth and formation of an unstable Lac+ colony. Cells with multiple copies of the F′lac plasmid have an increased mutation rate, because the plasmid encodes the error-prone (mutagenic) DNA polymerase, DinB. Without DinB, unstable and stable Lac+ revertant types form in equal numbers and both types arise with no mutagenesis. Amplification and selection are central to behavior of the Cairns–Foster system, whereas mutagenesis is a system-specific side effect or artifact caused by coamplification of dinB with lac. Study of this system has revealed several broadly applicable principles. In all populations, gene duplications are frequent stable genetic polymorphisms, common near-neutral mutant alleles can gain a positive phenotype when amplified under selection, and natural selection can operate without cell division when variability is generated by overreplication of local genome subregions. PMID:26134316

  4. High instability of a nematicidal Cry toxin plasmid in Bacillus thuringiensis.

    Science.gov (United States)

    Sheppard, Anna E; Nakad, Rania; Saebelfeld, Manja; Masche, Anna C; Dierking, Katja; Schulenburg, Hinrich

    2016-01-01

    In bacterial pathogens, virulence factors are often carried on plasmids and other mobile genetic elements, and as such, plasmid evolution is central in understanding pathogenicity. Bacillus thuringiensis is an invertebrate pathogen that uses plasmid-encoded crystal (Cry) toxins to establish infections inside the host. Our study aimed to quantify stability of two Cry toxin-encoding plasmids, BTI_23p and BTI_16p, under standard laboratory culturing conditions. These two plasmids are part of the genome of the B. thuringiensis strain MYBT18679, which is of particular interest because of its high pathogenicity towards nematodes. One of the plasmids, BTI_23p, was found to be highly unstable, with substantial loss occurring within a single growth cycle. Nevertheless, longer term experimental evolution in the absence of a host revealed maintenance of the plasmid at low levels in the bacterial populations. BTI_23p encodes two nematicidal Cry toxins, Cry21Aa2 and Cry14Aa1. Consistent with previous findings, loss of the plasmid abolished pathogenicity towards the nematode Caenorhabditis elegans, which could be rescued by addition of Cry21Aa2-expressing Escherichia coli. These results implicate BTI_23p as a plasmid that is required for successful infection, yet unstable when present at high frequency in the population, consistent with the role of Cry toxins as public goods. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Construction of an Escherichia coli-Clostridium perfringens shuttle vector and plasmid transformation of Clostridium perfringens.

    OpenAIRE

    Kim, A Y; Blaschek, H P

    1989-01-01

    A stable shuttle vector which replicates in Escherichia coli and Clostridium perfringens was constructed by ligating a 3.6-kilobase (kb) fragment of plasmid pBR322 with C. perfringens plasmid pHB101 (3.1 kb). The marker for this shuttle plasmid originated from the 1.3-kb chloramphenicol resistance gene of plasmid pHR106. The resulting shuttle vector, designated pAK201, is 8 kb in size and codes for resistance to 20 micrograms of chloramphenicol per ml in both E. coli and C. perfringens. Follo...

  6. Microneedle-mediated transcutaneous immunization with plasmid DNA coated on cationic PLGA nanoparticles

    Science.gov (United States)

    Kumar, Amit; Wonganan, Piyanuch; Sandoval, Michael A.; Li, Xinran; Zhu, Saijie; Cui, Zhengrong

    2012-01-01

    Previously, it was shown that microneedle-mediated transcutaneous immunization with plasmid DNA can potentially induce a stronger immune response than intramuscular injection of the same plasmid DNA. In the present study, we showed that the immune responses induced by transcutaneous immunization by applying plasmid DNA onto a skin area pretreated with solid microneedles were significantly enhanced by coating the plasmid DNA on the surface of cationic nanoparticles. In addition, the net surface charge of the DNA-coated nanoparticles significantly affected their in vitro skin permeation and their ability to induce immune responses in vivo. Transcutaneous immunization with plasmid DNA-coated net positively charged anoparticles elicited a stronger immune response than with plasmid DNA-coated net negatively charged nanoparticles or by intramuscular immunization with plasmid DNA alone. Transcutaneous immunization with plasmid DNA-coated net positively charged nanoparticles induced comparable immune responses as intramuscular injection of them, but transcutaneous immunization was able to induce specific mucosal immunity and a more balanced T helper type 1 and type 2 response. The ability of the net positively charged DNA-coated nanoparticles to induce a strong immune response through microneedle-mediated transcutaneous immunization may be attributed to their ability to increase the expression of the antigen gene encoded by the plasmid and to more effectively stimulate the maturation of antigen-presenting cells. PMID:22921518

  7. Construction of Stable Fluorescent Reporter Plasmids for Use in Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Michelle D. Rodriguez

    2017-12-01

    Full Text Available Here, the genes encoding three different fluorescent proteins were cloned into the stably maintained Staphylococcus aureus shuttle vector pKK30. The resulting plasmids were transformed into two S. aureus strains; SH1000 and RN4220. Stability assays illustrated that the three recombinant plasmids retained near 100% maintenance in vitro for 160 generations. S. aureus strain SH1000 expressing green fluorescent protein was then inoculated in an ovine model and in vivo stability for 6 days was demonstrated. In essence, these reporter plasmids represent a useful set of tools for dynamic imaging studies in S. aureus. These three reporter plasmids are available through BEI Resources.

  8. Influence of Plasmid Type on the Replication of Rhodococcus equi in Host Macrophages.

    Science.gov (United States)

    Willingham-Lane, Jennifer M; Berghaus, Londa J; Giguère, Steeve; Hondalus, Mary K

    2016-01-01

    The soil-dwelling, saprophytic actinomycete Rhodococcus equi is a multihost, facultative intracellular pathogen of macrophages. When inhaled by susceptible foals, it causes severe bronchopneumonia. It is also a pathogen of pigs, which may develop submaxillary lymphadenitis upon exposure. R. equi isolates obtained from foals and pigs possess conjugative plasmids housing a pathogenicity island (PAI) containing a novel family of genes of unknown function called the virulence-associated protein or vap family. The PAI regions of the equine and swine plasmids differ in vap gene composition, with equine isolates possessing six vap genes, including the major virulence determinant vapA, while the PAIs of swine isolates house vapB and five other unique vap genes. Possession of the pVAPA-type virulence plasmid by equine isolates bestows the capacity for intramacrophage replication essential for disease development in vivo. Swine isolates of R. equi are largely unstudied. Here, we show that R. equi isolates from pigs, carrying pVAPB-type plasmids, are able to replicate in a plasmid-dependent manner in macrophages obtained from a variety of species (murine, swine, and equine) and anatomical locations. Similarly, equine isolates carrying pVAPA-type plasmids are capable of replication in swine macrophages. Plasmid swapping between equine and swine strains through conjugation did not alter the intracellular replication capacity of the parental strain, indicating that coevolution of the plasmid and chromosome is not crucial for this attribute. These results demonstrate that while distinct plasmid types exist among R. equi isolates obtained from equine and swine sources, this tropism is not determined by host species-specific intramacrophage replication capabilities. IMPORTANCE This work greatly advances our understanding of the opportunistic pathogen Rhodococcus equi, a disease agent of animals and immunocompromised people. Clinical isolates from diseased foals carry a

  9. Complete sequence and detailed analysis of the first indigenous plasmid from Xanthomonas oryzae pv. oryzicola.

    Science.gov (United States)

    Niu, Xiang-Na; Wei, Zhi-Qiong; Zou, Hai-Fan; Xie, Gui-Gang; Wu, Feng; Li, Kang-Jia; Jiang, Wei; Tang, Ji-Liang; He, Yong-Qiang

    2015-10-24

    Bacterial plasmids have a major impact on metabolic function and adaptation of their hosts. An indigenous plasmid was identified in a Chinese isolate (GX01) of the invasive phytopathogen Xanthomonas oryzae pv. oryzicola (Xoc), the causal agent of rice bacterial leaf streak (BLS). To elucidate the biological functions of the plasmid, we have sequenced and comprehensively annotated the plasmid. The plasmid DNA was extracted from Xoc strain GX01 by alkaline lysis and digested with restriction enzymes. The cloned and subcloned DNA fragments in pUC19 were sequenced by Sanger sequencing. Sequences were assembled by using Sequencher software. Gaps were closed by primer walking and sequencing, and multi-PCRs were conducted through the whole plasmid sequence for verification. BLAST, phylogenetic analysis and dinucleotide calculation were performed for gene annotation and DNA structure analysis. Transformation, transconjugation and stress tolerance tests were carried out for plasmid function assays. The indigenous plasmid from Xoc strain GX01, designated pXOCgx01, is 53,206-bp long and has been annotated to possess 64 open reading frames (ORFs), including genes encoding type IV secretion system, heavy metal exporter, plasmid stability factors, and DNA mobile factors, i.e., the Tn3-like transposon. Bioinformatics analysis showed that pXOCgx01 has a mosaic structure containing different genome contexts with distinct genomic heterogeneities. Phylogenetic analysis indicated that the closest relative of pXOCgx01 is pXAC64 from Xanthomonas axonopodis pv. citri str. 306. It was estimated that there are four copies of pXOCgx01 per cell of Xoc GX01 by PCR assay and the calculation of whole genome shotgun sequencing data. We demonstrate that pXOCgx01 is a self-transmissible plasmid and can replicate in some Xanthomonas spp. strains, but not in Escherichia coli DH5α. It could significantly enhance the tolerance of Xanthomonas oryzae pv. oryzae PXO99A to the stresses of heavy metal

  10. The evolution of collective restraint: policing and obedience among non-conjugative plasmids.

    Directory of Open Access Journals (Sweden)

    Kyriakos Kentzoglanakis

    2013-04-01

    Full Text Available The repression of competition by mechanisms of policing is now recognized as a major force in the maintenance of cooperation. General models on the evolution of policing have focused on the interplay between individual competitiveness and mutual policing, demonstrating a positive relationship between within-group diversity and levels of policing. We expand this perspective by investigating what is possibly the simplest example of reproductive policing: copy number control (CNC among non-conjugative plasmids, a class of extra-chromosomal vertically transmitted molecular symbionts of bacteria. Through the formulation and analysis of a multi-scale dynamical model, we show that the establishment of stable reproductive restraint among plasmids requires the co-evolution of two fundamental plasmid traits: policing, through the production of plasmid-coded trans-acting replication inhibitors, and obedience, expressed as the binding affinity of plasmid-specific targets to those inhibitors. We explain the intrinsic replication instabilities that arise in the absence of policing and we show how these instabilities are resolved by the evolution of copy number control. Increasing levels of policing and obedience lead to improvements in group performance due to tighter control of local population size (plasmid copy number, delivering benefits both to plasmids, by reducing the risk of segregational loss and to the plasmid-host partnership, by increasing the rate of cell reproduction, and therefore plasmid vertical transmission.

  11. Development of an expression plasmid and its use in genetic manipulation of Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum (higher Basidiomycetes).

    Science.gov (United States)

    Yu, Xuya; Ji, Sen-Lin; He, Yi-Long; Ren, Meng-Fei; Xu, Jun-Wei

    2014-01-01

    We report the construction of a plasmid, pJW-EXP, designed for the expression of homologous and heterologous genes in Ganoderma lucidum. pJW-EXP was generated from the plasmid pMD19-T by inserting the G. lucidum glyceraldehyde-3-phosphate dehydrogenase gene promoter, the G. lucidum iron-sulfur protein subunit of succinate dehydrogenase gene terminator and the homologous carboxin-resistance gene as selection marker. This expression plasmid can be efficiently transformed into Ganoderma through polyethylene glycol-mediated protoplast transformation. Southern blot analysis showed that most of the integrated DNA appeared as multiple copies in the genome. The applicability of the constructed plasmid was tested by expression of the truncated G. lucidum 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) gene that encodes the catalytic domain of HMGR. Overexpression of the truncated HMGR gene, which is a key gene in the biosynthetic pathway of the antitumor compounds, ganoderic acids, increased the transcription of the HMGR gene and enhanced ganoderic acid accumulation. pJW-EXP can serve as a useful tool in the genetic improvement and metabolic engineering of Ganoderma.

  12. Unique Helicase Determinants in the Essential Conjugative TraI Factor from Salmonella enterica Serovar Typhimurium Plasmid pCU1

    Energy Technology Data Exchange (ETDEWEB)

    McLaughlin, Krystle J.; Nash, Rebekah P.; Redinbo, Mathew R. (UNC)

    2014-06-16

    The widespread development of multidrug-resistant bacteria is a major health emergency. Conjugative DNA plasmids, which harbor a wide range of antibiotic resistance genes, also encode the protein factors necessary to orchestrate the propagation of plasmid DNA between bacterial cells through conjugative transfer. Successful conjugative DNA transfer depends on key catalytic components to nick one strand of the duplex DNA plasmid and separate the DNA strands while cell-to-cell transfer occurs. The TraI protein from the conjugative Salmonella plasmid pCU1 fulfills these key catalytic roles, as it contains both single-stranded DNA-nicking relaxase and ATP-dependent helicase domains within a single, 1,078-residue polypeptide. In this work, we unraveled the helicase determinants of Salmonella pCU1 TraI through DNA binding, ATPase, and DNA strand separation assays. TraI binds DNA substrates with high affinity in a manner influenced by nucleic acid length and the presence of a DNA hairpin structure adjacent to the nick site. TraI selectively hydrolyzes ATP, and mutations in conserved helicase motifs eliminate ATPase activity. Surprisingly, the absence of a relatively short (144-residue) domain at the extreme C terminus of the protein severely diminishes ATP-dependent strand separation. Collectively, these data define the helicase motifs of the conjugative factor TraI from Salmonella pCU1 and reveal a previously uncharacterized C-terminal functional domain that uncouples ATP hydrolysis from strand separation activity.

  13. Stem loop sequences specific to transposable element IS605 are found linked to lipoprotein genes in Borrelia plasmids.

    Directory of Open Access Journals (Sweden)

    Nicholas Delihas

    Full Text Available BACKGROUND: Plasmids of Borrelia species are dynamic structures that contain a large number of repetitive genes, gene fragments, and gene fusions. In addition, the transposable element IS605/200 family, as well as degenerate forms of this IS element, are prevalent. In Helicobacter pylori, flanking regions of the IS605 transposase gene contain sequences that fold into identical small stem loops. These function in transposition at the single-stranded DNA level. METHODOLOGY/PRINCIPAL FINDINGS: In work reported here, bioinformatics techniques were used to scan Borrelia plasmid genomes for IS605 transposable element specific stem loop sequences. Two variant stem loop motifs are found in the left and right flanking regions of the transposase gene. Both motifs appear to have dispersed in plasmid genomes and are found "free-standing" and phylogenetically conserved without the associated IS605 transposase gene or the adjacent flanking sequence. Importantly, IS605 specific stem loop sequences are also found at the 3' ends of lipoprotein genes (PFam12 and PFam60, however the left and right sequences appear to develop their own evolutionary patterns. The lipoprotein gene-linked left stem loop sequences maintain the IS605 stem loop motif in orthologs but only at the RNA level. These show mutations whereby variants fold into phylogenetically conserved RNA-type stem loops that contain the wobble non-Watson-Crick G-U base-pairing. The right flanking sequence is associated with the family lipoprotein-1 genes. A comparison of homologs shows that the IS605 stem loop motif rapidly dissipates, but a more elaborate secondary structure appears to develop in its place. CONCLUSIONS/SIGNIFICANCE: Stem loop sequences specific to the transposable element IS605 are present in plasmid regions devoid of a transposase gene and significantly, are found linked to lipoprotein genes in Borrelia plasmids. These sequences are evolutionarily conserved and/or structurally developed in

  14. Long term stability of lyophilized plasmid DNA pDERMATT.

    Science.gov (United States)

    van der Heijden, Iris; Beijnen, Jos H; Nuijen, Bastiaan

    2013-09-10

    In this short note we report on the shelf-life stability of pDERMATT (plasmid DNA encoding recombinant MART-1 and tetanus toxin fragment-c) 2mg lyophilized powder for reconstitution for intradermal administration, used in an in-house, investigator-initiated clinical phase I study. pDERMATT was stored at 25°C/60% relative humidity (6 months), 2-8°C (24 months), and -20°C (66 months) in the dark and analyzed at several timepoints during the conduct of the clinical study for appearance, identity, purity (plasmid topology), content and residual water content. pDERMATT appeared stable at all storage conditions for the periods tested which, although patient inclusion in the study was significantly delayed, ensured the clinical supply needs. This study shows that lyophilization is an useful tool to preserve the quality of the pDNA and can prevent the need for costly and time-consuming additional manufacture of drug product in case of study delays, not uncommon at the early stage of drug development. To our knowledge, this is the first study reporting shelf life stability of a pDNA formulation for more than 5 years. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. IncHI2 Plasmids Are Predominant in Antibiotic-Resistant Salmonella Isolates

    Directory of Open Access Journals (Sweden)

    Wenyao Chen

    2016-09-01

    Full Text Available The wide usage of antibiotics contributes to the increase in the prevalence of antibiotic-resistant Salmonella. Plasmids play a critical role in horizontal transfer of antibiotic resistance markers in Salmonella. This study aimed to screen and characterize plasmid profiles responsible for antibiotic resistance in Salmonella and ultimately to clarify the molecular mechanism of transferable plasmid-mediated antibiotic resistance. A total of 226 Salmonella isolates were examined for antimicrobial susceptibility by a disk diffusion method. Thirty-two isolates (14.2% were resistant to at least one antibiotic. The presence of plasmid-mediated quinolone resistance (PMQR genes and β-lactamase genes were established by PCR amplification. PCR-based replicon typing (PBRT revealed that these 32 isolates represented seven plasmid incompatibility groups (IncP, HI2, A/C, FIIs, FIA, FIB, and I1, and the IncHI2 (59.4% was predominant. Antibiotic resistance markers located on plasmids were identified through plasmid curing. Fifteen phenotypic variants were obtained with the curing efficiency of 46.9% (15/32. The cured plasmids mainly belong to the HI2 incompatibility group. The elimination of IncHI2 plasmids correlated with the loss of β-lactamase genes (blaOXA-1 and blaTEM-1 and PMQR genes (qnrA and aac(6’-Ib-cr. Both IncHI2 and IncI1 plasmids in a S. enterica serovar Indiana isolate SJTUF 10584 were lost by curing. The blaCMY-2-carrying plasmid pS10584 from SJTUF 10584 was fully sequenced. Sequence analysis revealed that it possessed a plasmid scaffold typical for IncI1 plasmids with the unique genetic arrangement of IS1294-△ISEcp1-blaCMY-2-blc-sugE-△ecnR inserted into the colicin gene cia. These data suggested that IncHI2 was the major plasmid lineage contributing to the dissemination of antibiotic resistance in Salmonella and the activity of multiple mobile genetic elements may contribute to antibiotic resistance evolution and dissemination between

  16. Plasmids of carotenoid-producing Paracoccus spp. (Alphaproteobacteria) - structure, diversity and evolution.

    Science.gov (United States)

    Maj, Anna; Dziewit, Lukasz; Czarnecki, Jakub; Wlodarczyk, Miroslawa; Baj, Jadwiga; Skrzypczyk, Grazyna; Giersz, Dorota; Bartosik, Dariusz

    2013-01-01

    Plasmids are components of many bacterial genomes. They enable the spread of a large pool of genetic information via lateral gene transfer. Many bacterial strains contain mega-sized replicons and these are particularly common in Alphaproteobacteria. Considerably less is known about smaller alphaproteobacterial plasmids. We analyzed the genomes of 14 such plasmids residing in 4 multireplicon carotenoid-producing strains of the genus Paracoccus (Alphaproteobacteria): P. aestuarii DSM 19484, P. haeundaensis LG P-21903, P. marcusii DSM 11574 and P. marcusii OS22. Comparative analyses revealed mosaic structures of the plasmids and recombinational shuffling of diverse genetic modules involved in (i) plasmid replication, (ii) stabilization (including toxin-antitoxin systems of the relBE/parDE, tad-ata, higBA, mazEF and toxBA families) and (iii) mobilization for conjugal transfer (encoding relaxases of the MobQ, MobP or MobV families). A common feature of the majority of the plasmids is the presence of AT-rich sequence islets (located downstream of exc1-like genes) containing genes, whose homologs are conserved in the chromosomes of many bacteria (encoding e.g. RelA/SpoT, SMC-like proteins and a retron-type reverse transcriptase). The results of this study have provided insight into the diversity and plasticity of plasmids of Paracoccus spp., and of the entire Alphaproteobacteria. Some of the identified plasmids contain replication systems not described previously in this class of bacteria. The composition of the plasmid genomes revealed frequent transfer of chromosomal genes into plasmids, which significantly enriches the pool of mobile DNA that can participate in lateral transfer. Many strains of Paracoccus spp. have great biotechnological potential, and the plasmid vectors constructed in this study will facilitate genetic studies of these bacteria.

  17. Plasmids of carotenoid-producing Paracoccus spp. (Alphaproteobacteria - structure, diversity and evolution.

    Directory of Open Access Journals (Sweden)

    Anna Maj

    Full Text Available Plasmids are components of many bacterial genomes. They enable the spread of a large pool of genetic information via lateral gene transfer. Many bacterial strains contain mega-sized replicons and these are particularly common in Alphaproteobacteria. Considerably less is known about smaller alphaproteobacterial plasmids. We analyzed the genomes of 14 such plasmids residing in 4 multireplicon carotenoid-producing strains of the genus Paracoccus (Alphaproteobacteria: P. aestuarii DSM 19484, P. haeundaensis LG P-21903, P. marcusii DSM 11574 and P. marcusii OS22. Comparative analyses revealed mosaic structures of the plasmids and recombinational shuffling of diverse genetic modules involved in (i plasmid replication, (ii stabilization (including toxin-antitoxin systems of the relBE/parDE, tad-ata, higBA, mazEF and toxBA families and (iii mobilization for conjugal transfer (encoding relaxases of the MobQ, MobP or MobV families. A common feature of the majority of the plasmids is the presence of AT-rich sequence islets (located downstream of exc1-like genes containing genes, whose homologs are conserved in the chromosomes of many bacteria (encoding e.g. RelA/SpoT, SMC-like proteins and a retron-type reverse transcriptase. The results of this study have provided insight into the diversity and plasticity of plasmids of Paracoccus spp., and of the entire Alphaproteobacteria. Some of the identified plasmids contain replication systems not described previously in this class of bacteria. The composition of the plasmid genomes revealed frequent transfer of chromosomal genes into plasmids, which significantly enriches the pool of mobile DNA that can participate in lateral transfer. Many strains of Paracoccus spp. have great biotechnological potential, and the plasmid vectors constructed in this study will facilitate genetic studies of these bacteria.

  18. Immunogenicity of intrathecal plasmid gene delivery: cytokine release and effects on transgene expression

    Science.gov (United States)

    Hughes, Travis S.; Langer, Stephen J.; Virtanen, Salla I.; Chavez, Raymond A.; Watkins, Linda R.; Milligan, Erin D.; Leinwand, Leslie A.

    2013-01-01

    Background One method for the delivery of therapeutic proteins to the spinal cord is to inject nonviral gene vectors including plasmid DNA into the cerebrospinal fluid (CSF) that surrounds the spinal cord (intrathecal space). This approach has produced therapeutic benefits in animal models of disease and several months of protein expression; however, there is little information available on the immune response to these treatments in the intrathecal space, the relevance of plasmid CpG sequences to any plasmid-induced immune response, or the effect of this immune response on transgene expression. Methods In the present study, coding or noncoding plasmids were delivered to the intrathecal space of the lumbar spinal region in rats. Lumbosacral CSF was then collected at various time points afterwards for monitoring of cytokines and transgene expression. Results This work demonstrates, for the first time, increased tumor necrosis factor-α and interleukin-1 in response to intrathecal plasmid vector injection and provides evidence indicating that this response is largely absent in a CpG-depleted vector. Transgene expression in the CSF is not significantly affected by this immune response. Expression after intrathecal plasmid injection is variable across rats but correlates with the amount of tissue associated plasmid and is increased by disrupting normal CSF flow. Conclusions The data obtained in the present study indicate that plasmid immunogenicity may affect intrathecal plasmid gene therapy safety but not transgene expression in the CSF. Furthermore, the development of methods to prevent loss of plasmid via CSF flow out of the central nervous system through the injection hole and/or natural outflow routes may increase intrathecal plasmid gene delivery efficacy. PMID:19533588

  19. Effective transfer of a 47 kb NDM-1-positive plasmid among Acinetobacter species.

    Science.gov (United States)

    Huang, Tzu-Wen; Lauderdale, Tsai-Ling; Liao, Tsai-Lien; Hsu, Ming-Chia; Chang, Feng-Yee; Chang, Shan-Chwen; Khong, Wei Xin; Ng, Oon Tek; Chen, Ying-Tsong; Kuo, Shu-Chen; Chen, Te-Li; Mu, Jung-Jung; Tsai, Shih-Feng

    2015-10-01

    To investigate the link between two NDM-1-positive Acinetobacter isolates from the same hospital, the plasmid profiles of the isolates were examined. These two isolates were found from a surveillance programme within 3 months from two patients without obvious physical contact or hospitalization time overlap. Antimicrobial susceptibility tests, genome sequencing of both isolates and plasmid transfer experiments were performed. A comparative study of similar plasmids was performed using BLAST analysis. The antimicrobial susceptibility of the isolates (Acinetobacter soli M131 and Acinetobacter pittii MS32) and their Escherichia coli transconjugants revealed a conjugative plasmid that carried the carbapenem resistance determinant. Eleven plasmids were observed in M131 and three in MS32. Each isolate shared an identical plasmid that carried the blaNDM-1 gene. This 47 271 bp plasmid harbours a conserved blaNDM-1-containing region that is flanked by ISAba125 and ISAba11 elements, and also contains a Ti-type conjugative operon. The plasmid is nearly identical in sequence to those of Acinetobacter isolates from China. In contrast to the mobilization of the blaNDM-1 sequence in Enterobacteriaceae, which is mainly by transposition, this plasmid moves as a whole among Acinetobacter species. Consistently, this plasmid was found to transfer effectively by in vitro conjugation to several Acinetobacter species. The clinical and laboratory findings suggest that Acinetobacter species may serve as a reservoir of this blaNDM-1 plasmid. Our study demonstrates the potential of applying genome sequencing to the surveillance of antimicrobial-resistant bacteria. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Novel assay to measure the plasmid mobilizing potential of mixed microbial communities

    Directory of Open Access Journals (Sweden)

    Uli eKlümper

    2014-12-01

    Full Text Available Mobilizable plasmids lack necessary genes for complete conjugation and are therefore non-self-transmissible. Instead, they rely on the conjugation system of conjugal plasmids to be horizontally transferred to new recipients. While community permissiveness, the fraction of a mixed microbial community that can receive self-transmissible conjugal plasmids, has been studied, the intrinsic ability of a community to mobilize plasmids that lack conjugation systems is unexplored. Here, we present a novel framework and experimental method to estimate the mobilization potential of mixed communities. We compare the transfer frequency of a mobilizable plasmid to that of a mobilizing and conjugal plasmid measured for a model strain and for the assayed community. With Pseudomonas putida carrying the gfp-tagged mobilizable RSF1010 plasmid as donor strain, we conducted solid surface mating experiments with either a P. putida strain carrying the mobilizing plasmid RP4 or a model bacterial community that was extracted from the inner walls of a domestic shower conduit. Additionally, we estimated the permissiveness of the same community for RP4 using P. putida as donor strain. The permissiveness of the model community for RP4 (at 1.16x10-4 transconjugants per recipient (T/R was similar to that previously measured for soil microbial communities. RSF1010 was mobilized by the model community at a frequency of 1.16x10-5 T/R, only one order of magnitude lower than its permissiveness to RP4. This mobilization frequency is unexpectedly high considering that (i mobilization requires the presence of mobilizing conjugal plasmids within the permissive fraction of the recipients; (ii in pure culture experiments with P. putida retromobilization of RSF1010 through RP4 only took place in approximately half of the donors receiving the conjugal plasmid in the first step. Further work is needed to establish how plasmid mobilization potential varies within and across microbial

  1. Vaccination of mice with plasmids expressing processed capsid protein of foot-and-mouth disease virus - Importance of dominant and subdominant epitopes for antigenicity and protection

    DEFF Research Database (Denmark)

    Frimann, Tine; Barfoed, Annette Malene; Aasted, Bent

    2007-01-01

    example of a dominant and variable site. This variability is a problem when designing vaccines against this disease, because it necessitates a close match between vaccine strain and virus in an outbreak. We have introduced a series of mutations into viral capsid proteins with the aim of selectively...... as compared to mice vaccinated with wild type epitopes. Most of the modifications did not adversely affect the ability of the plasmids to induce complete protection of mice against homologous challenge....

  2. Site-specific deletions of chromosomally located DNA segments with the multimer resolution system of broad-host-range plasmid RP4

    DEFF Research Database (Denmark)

    Sternberg, Claus; Eberl, Leo; Sanchezromero, Juan M.

    1995-01-01

    The multimer resolution system (mrs) of the broad-host-range plasmid RP4 has been exploited to develop a general method that permits the precise excision of chromosomal segments in a variety of gram-negative bacteria. The procedure is based on the site-specific recombination between two directly...... transposons inserted in the chromosome of Pseudomonas putida, This strategy permits the stable inheritance of heterologous DNA segments virtually devoid of the sequences used initially to select their insertion....

  3. [Intra- and intermolecular recombination of test plasmids in K12 Escherichia coli cells carrying an RTF derivative of the R1drd-19 plasmid].

    Science.gov (United States)

    Terent'ev, M A; Chenin, L S

    1989-03-01

    The RTF derivative of the plasmid R1drd-19 was found to stimulate recombination of the tester plasmids in a recB mutant of Escherichia coli K12. The frequency of intramolecular recombination is increased 3.5 and 20-fold, as compared to the one in rec+ and rec- strains, respectively. The frequency of interplasmid recombination is enhanced 4 and 9-fold, respectively. Considerable heterogeneity of the recombination products of the tester plasmid intramolecular recombination in recB-/RTFR1-19 strain has been revealed. It is hypothesized that a "recombinase" encoded by Rldrd-19 plasmid determines a new minor pathway in recB- (Rec P) which differs in activity and, perhaps substrate specificity from the main Rec BCD pathway.

  4. [Transforming activity of plasmid R6K DNA on Serratia marcescens strain 20-10. The behavior of the plasmid in the transformants].

    Science.gov (United States)

    Gnedoĭ, S N; Levashev, V S; Babushkina, L M

    1978-09-01

    The authors described transformation of S. marcescens, strain 20-10, of the isolated R6K plasmide DNA. As demonstrated by centrifugation in cesium chloride gradient and electrophoresis in agarose, the plasmide was present in the transformants in the form identical to R6K in E. coli K12. Analysis of the transforming activity of R6K plasmide from Serratia and E. coli K12 strains with a complete and defective restriction system showed S. marsescens, strain 20-10, to possess specific system of restriction and modification. In studying beta-lactamase activity and Serratia and E. coli strains ampicillin and streptomycin resistance revealed differences in the phenotypical expression of the plasmide signs in the heterologous and homologous host.

  5. Co-spread of metal and antibiotic resistance within ST3-IncHI2 plasmids from E. coli isolates of food-producing animals.

    Science.gov (United States)

    Fang, Liangxing; Li, Xingping; Li, Liang; Li, Shumin; Liao, Xiaoping; Sun, Jian; Liu, Yahong

    2016-05-04

    Concerns have been raised in recent years regarding co-selection for antibiotic resistance among bacteria exposed to heavy metals, particularly copper and zinc, used as growth promoters for some livestock species. In this study, 25 IncHI2 plasmids harboring oqxAB (20/25)/blaCTX-M (18/25) were found with sizes ranging from ∼260 to ∼350 kb and 22 belonged to the ST3-IncHI2 group. In addition to blaCTX-M and oqxAB, pcoA-E (5/25) and silE-P (5/25), as well as aac(6')-Ib-cr (18/25), floR (16/25), rmtB (6/25), qnrS1(3/25) and fosA3 (2/25), were also identified on these IncHI2 plasmids. The plasmids carried pco and sil contributed to increasing in the MICs of CuSO4 and AgNO3. The genetic context surrounding the two operons was well conserved except some variations within the pco operon. The ~32 kb region containing the two operons identified in the IncHI2 plasmids was also found in chromosomes of different Enterobacteriaceae species. Further, phylogenetic analysis of this structure showed that Tn7-like transposon might play an important role in cross-genus transfer of the sil and pco operons among Enterobacteriaceae. In conclusion, co-existence of the pco and sil operons, and oqxAB/blaCTX-M as well as other antibiotic resistance genes on IncHI2 plasmids may promote the development of multidrug-resistant bacteria.

  6. Mutagenicity of the peroxisome proliferators clofibrate, Wyeth 14,643 and di-2-ethylhexyl phthalate in the lacZ plasmid-based transgenic mouse mutation assay

    Directory of Open Access Journals (Sweden)

    Boerrigter Michaël

    2004-01-01

    Full Text Available Abstract Background Peroxisome proliferators are considered rodent carcinogens that are putative human non-carcinogens based on the presumed absence of direct genetic toxicity in rodent and human cells and the resistance of human cells to the induction of peroxisomes by peroxisome proliferators. The highly sensitive lacZ plasmid-based transgenic mouse mutation assay was employed to investigate the mutagenicity of several peroxisome proliferators based on several lines of evidence suggesting that these agents may in fact exert a genotoxic effect. Methods Male and female lacZ-plasmid based transgenic mice were treated at 4 months of age with 6 doses of 2,333 mg di-2-ethylhexyl phthalate (DHEP, 200 mg Wyeth-14,643, or 90 mg clofibrate per kg of bodyweight, respectively, over a two-week period. Control animals were treated with the respective vehicles only (35% propyl glycol for DEHP and Wyeth-14,643 treatment controls and sterile water for clofibrate treatment controls. The mutant frequency in liver, kidney and spleen DNA was determined as the proportion of retrieved mutant and wild-type lacZ plasmids expressed in Escherichia Coli C host cells employing a positive selection system for mutant plasmids. Results Exposure to DEHP or Wyeth-14,643 significantly increased the mutant frequency in liver, but not in kidney or spleen, of both female and male mice. Treatment with clofibrate did not lead to an increased mutant frequency in any of the organs studied. Conclusion The results indicate that some peroxisome proliferators display an organ-specific mutagenicity in lacZ plasmid-based transgenic mice consistent with historical observations of organ- and compound-specific carcinogenicity.

  7. Characterization of Extended-Spectrum β-Lactamase-Carrying Plasmids in Clinical Isolates of Klebsiella pneumoniae from Taiwan.

    Science.gov (United States)

    Chang, Chung-Yu; Lin, Heng-Jia; Chang, Lin-Li; Ma, Ling; Siu, L Kristopher; Tung, Yi-Ching; Lu, Po-Liang

    2017-01-01

    We analyzed the replicon types, sizes, and restriction fragment length polymorphism (RFLP) typing of plasmids carrying extended-spectrum β-lactamase (ESBL) genes in Klebsiella pneumoniae isolates from Taiwan. Fifty-one Escherichia coli transconjugant strains with plasmids from ESBL-producing K. pneumoniae from the Taiwan Surveillance of Antimicrobial Resistance III Program in 2002 were included. All the 51 plasmids carried a bla CTX-M gene, the majority of which were bla CTX-M-3 (28/51 [54.9%]). Plasmids ranged in size from 126 to 241 kb by S1 nuclease digestion and subsequent pulsed-field gel electrophoresis, and the most common plasmid size (37.3%) was 161-170 kb. The most common replicon type of plasmids was incompatibility group (Inc)A/C (60.8%). The IncA/C plasmids all carried bla CTX-M (bla CTX-M-3, -14, -15 ), and some also carried bla SHV (bla SHV-5, -12 ) genes. All 51 plasmids could be typed with PstI, and 27 (52.9%) belonged to 10 clusters. Thirty-eight of the 51 plasmids were typable with BamHI, and 21 plasmids (55.3%) fell into 7 clusters. Plasmids in the same cluster belonged to the same incompatibility group, with the exception of cluster C6. In conclusion, IncA/C plasmids are the main plasmid type responsible for the dissemination of ESBL genes of K. pneumoniae from Taiwan. RFLP with PstI possessed better discriminatory power than that with BamHI and PCR-based replicon typing for ESBL-carrying plasmids in K. pneumoniae in this study. Greater than 50% of plasmids fell into clusters, and >60% of cluster-classified plasmids were present in clonally unrelated isolates, indicating that horizontal transfer of plasmids plays an important role in the spread of ESBL genes.

  8. Previously undescribed plasmids recovered from activated sludge confer tetracycline resistance and phenotypic changes to Acinetobacter oleivorans DR1.

    Science.gov (United States)

    Hong, Hyerim; Ko, Hyeok-Jin; Choi, In-Geol; Park, Woojun

    2014-02-01

    We used culture-dependent and culture-independent methods to extract previously undescribed plasmids harboring tetracycline (TC) resistance genes from activated sludge. The extracted plasmids were transformed into naturally competent Acinetobacter oleivorans DR1 to recover a non-Escherichia coli-based plasmid. The transformed cells showed 80-100-fold higher TC resistance than the wild-type strain. Restriction length polymorphism performed using 30 transformed cells showed four different types of plasmids. Illumina-based whole sequencing of the four plasmids identified three previously unreported plasmids and one previously reported plasmid. All plasmids carried TC resistance-related genes (tetL, tetH), tetracycline transcriptional regulators (tetR), and mobilization-related genes. As per expression analysis, TC resistance genes were functional in the presence of TC. The recovered plasmids showed mosaic gene acquisition through horizontal gene transfer. Membrane fluidity, hydrophobicity, biofilm formation, motility, growth rate, sensitivity to stresses, and quorum sensing signals of the transformed cells were different from those of the wild-type cells. Plasmid-bearing cells seemed to have an energy burden for maintaining and expressing plasmid genes. Our data showed that acquisition of TC resistance through plasmid uptake is related to loss of biological fitness. Thus, cells acquiring antibiotic resistance plasmids can survive in the presence of antibiotics, but must pay ecological costs.

  9. “Direct cloning in Lactobacillus plantarum: Electroporation with non-methylated plasmid DNA enhances transformation efficiency and makes shuttle vectors obsolete”

    Directory of Open Access Journals (Sweden)

    Spath Katharina

    2012-10-01

    Full Text Available Abstract Background Lactic acid bacteria (LAB play an important role in agricultural as well as industrial biotechnology. Development of improved LAB strains using e.g. library approaches is often limited by low transformation efficiencies wherefore one reason could be differences in the DNA methylation patterns between the Escherichia coli intermediate host for plasmid amplification and the final LAB host. In the present study, we examined the influence of DNA methylation on transformation efficiency in LAB and developed a direct cloning approach for Lactobacillus plantarum CD033. Therefore, we propagated plasmid pCD256 in E. coli strains with different dam/dcm-methylation properties. The obtained plasmid DNA was purified and transformed into three different L. plantarum strains and a selection of other LAB species. Results Best transformation efficiencies were obtained using the strain L. plantarum CD033 and non-methylated plasmid DNA. Thereby we achieved transformation efficiencies of ~ 109 colony forming units/μg DNA in L. plantarum CD033 which is in the range of transformation efficiencies reached with E. coli. Based on these results, we directly transformed recombinant expression vectors received from PCR/ligation reactions into L. plantarum CD033, omitting plasmid amplification in E. coli. Also this approach was successful and yielded a sufficient number of recombinant clones. Conclusions Transformation efficiency of L. plantarum CD033 was drastically increased when non-methylated plasmid DNA was used, providing the possibility to generate expression libraries in this organism. A direct cloning approach, whereby ligated PCR-products where successfully transformed directly into L. plantarum CD033, obviates the construction of shuttle vectors containing E. coli-specific sequences, as e.g. a ColEI origin of replication, and makes amplification of these vectors in E. coli obsolete. Thus, plasmid constructs become much smaller and occasional

  10. Identification of R plasmids mediating gentamicin resistance from Escherichia coli strains in Japan.

    OpenAIRE

    Ike, Y; Fujisawa-Kon, N; Shimizu, S; Motohashi, K; Hashimoto, H; Mitsuhashi, S

    1981-01-01

    Eight gentamicin-resistant Escherichia coli were identified from among 630 E. coli strans isolated from parenteral infections. All eight strains were multiply resistant and harbored R plasmids mediating gentamicin resistance. The R plasmids specified the formation of two types of aminoglycoside-inactivating enzymes AAD (2") and APH (3').

  11. Presence and analysis of plasmids in human and animal associated Arcobacter species

    DEFF Research Database (Denmark)

    Douidah, Laid; De Zutter, Lieven; Van Nieuwerburgh, Filip

    2014-01-01

    35 coding sequences, including seven genes in a contiguous region of 11.6 kbp that encodes an orthologous type IV secretion system found in the Wolinella succinogenes genome, Helicobacter pylori and Campylobacter jejuni plasmids, which makes this plasmid interesting for further exploration....

  12. Specific structural probing of plasmid-coded ribosomal RNAs from Escherichia coli

    DEFF Research Database (Denmark)

    Aagaard, C; Rosendahl, G; Dam, M

    1991-01-01

    The preferred method for construction and in vivo expression of mutagenised Escherichia coli ribosomal RNAs (rRNAs) is via high copy number plasmids. Transcription of wild-type rRNA from the seven chromosomal rrn operons in strains harbouring plasmid-coded mutant rRNAs leads to a heterogeneous ri...

  13. Determination of the plasmid size and location of d-endotoxin genes ...

    African Journals Online (AJOL)

    The genes encoding the d-endotoxins of Bacillus thuringiensis are located on plasmids ranging in size from 45 to 1000 kb. Plasmid size and variety are diagnostic features for characterizing subspecies of this aerobic spore-forming crystalliferous entomopathogen. Two of 25 B. thuringiensis isolates obtained from Middle ...

  14. Introduction of transposon Tn901 into a plasmid of Anacystis nidulans: preparation for cloning in cyanobacteria

    NARCIS (Netherlands)

    van den Hondel, C. A.; Verbeek, S.; van der Ende, A.; Weisbeek, P. J.; Borrias, W. E.; van Arkel, G. A.

    1980-01-01

    We have used the TEM beta-lactamase transposon Tn901, located on Escherichia coli plasmid pRI46, to introduce in vivo a genetic marker into plasmid pUH24, present in the cyanobacterial strain Anacystis nidulans R-2. Restriction enzyme analysis and heteroduplex studies of the 8.3 x 10(6)-dalton

  15. Using the CRISPR/Cas9 system to eliminate native plasmids of Zymomonas mobilis ZM4.

    Science.gov (United States)

    Cao, Qing-Hua; Shao, Huan-Huan; Qiu, Hui; Li, Tao; Zhang, Yi-Zheng; Tan, Xue-Mei

    2017-03-01

    The CRISPR/Cas system can be used to simply and efficiently edit the genomes of various species, including animals, plants, and microbes. Zymomonas mobilis ZM4 is a highly efficient, ethanol-producing bacterium that contains five native plasmids. Here, we constructed the pSUZM2a-Cas9 plasmid and a single-guide RNA expression plasmid. The pSUZM2a-Cas9 plasmid was used to express the Cas9 gene cloned from Streptococcus pyogenes CICC 10464. The single-guide RNA expression plasmid pUC-T7sgRNA, with a T7 promoter, can be used for the in vitro synthesis of single-guide RNAs. This system was successfully employed to knockout the upp gene of Escherichia coli and the replicase genes of native Z. mobilis plasmids. This is the first study to apply the CRISPR/Cas9 system of S. pyogenes to eliminate native plasmids in Z. mobilis. It provides a new method for plasmid curing and paves the way for the genomic engineering of Z. mobilis.

  16. Plasmid-mediated colistin resistance in Escherichia coli from the Arabian Peninsula

    Directory of Open Access Journals (Sweden)

    Ágnes Sonnevend

    2016-09-01

    Conclusions: This is the first report on the presence of the plasmid-coded mcr-1 gene in a variety of multi-resistant clinical isolates from the Arabian Peninsula indicating that several commonly used antibiotics can potentially facilitate the spread of mcr-1 carrying strains, or directly, mcr-1 containing plasmids.

  17. CHARACTERIZATION OF SINGLE-STRAND ORIGINS OF CRYPTIC ROLLING-CIRCLE PLASMIDS FROM BACILLUS-SUBTILIS

    NARCIS (Netherlands)

    MEIJER, WJJ; VENEMA, G; BRON, S

    1995-01-01

    In this paper we describe the isolation and characterization of single strand origins (SSOs) of several cryptic Bacillus subtilis plasmids which use the rolling-circle mechanism of replication, The plasmids used in this study involved pTA1015, pTA1020, pTA1030, pTA1040, pTA1050 and pTA1060, The SSO

  18. [Cloning of a large plasmid pBMB28 in Bacillus thuringiensis].

    Science.gov (United States)

    Qi, Jun-Liang; Zhu, Yi-Guang; Shang, Hui; Ji, Fang; Zhu, Qian; Sun, Ming

    2011-10-01

    Bacillus thuringiensis serovar. finitimus strain YBT-020 is a typical strain with the spore-crystal association (SCA) phenotype. In our previous studies, plasmid curing experiment suggested that native plasmid pBMB28 of strain YBT-020 might contribute to the SCA phenotype. Thus, plasmid pBMB28 was cloned in order to isolate the genes related to SCA on pBMB28. Using shuttle vector pEMB0557, a shuttle genomic bacterial artificial chromosome (BAC) library of B. thuringiensis strain YBT-020 was constructed. The plasmid pBMB231 containing crystal protein gene cry28Aa, which was located on plasmid pBMB28, was screened out. By SDS-PAGE analysis and microscopic observation, we discovered the recombinant strain BMB231 that originated from the electrotransfer strain BMB171 with pBMB231 could produce Cry28Aa protein. With the chromosome walking strategy and terminal sequencing of pBMB231, four clones covering the full length of plasmid pBMB28 were screened out from this BAC library. With pulsed gel analysis of the four BAC clones and terminal sequencing, the size of the plasmid was calculated to be 140 kb. This study additionally revealed that we could clone a large plasmid from B. thuringiensis by genomic BAC library construction and overlaping fragment screening.

  19. trans-Acting Virulence Functions of the Octopine Ti Plasmid from Agrobacterium tumefaciens

    NARCIS (Netherlands)

    Hille, Jacques; Kan, Jan van; Schilperoort, Rob

    1984-01-01

    All Ti plasmid-encoded virulence functions that were studied act in trans. An octopine Ti plasmid-specific vir operon, called vir-O, located on an EcoRI restriction fragment has been characterized. Sequences with promoter activity in Escherichia coli were identified for a second vir operon, called

  20. Plasmid metagenomics reveals multiple antibiotic resistance gene classes among the gut microbiomes of hospitalised patients

    DEFF Research Database (Denmark)

    Jitwasinkul, Tossawan; Suriyaphol, Prapat; Tangphatsornruang, Sithichoke

    2016-01-01

    Antibiotic resistance genes are rapidly spread between pathogens and the normal flora, with plasmids playing an important role in their circulation. This study aimed to investigate antibiotic resistance plasmids in the gut microbiome of hospitalised patients. Stool samples were collected from sev...

  1. Comparative genomics of the conjugation region of F-like plasmids: five shades of F

    Directory of Open Access Journals (Sweden)

    Raul Fernandez Lopez

    2016-11-01

    Full Text Available The F plasmid is the foremost representative of a large group of conjugative plasmids, prevalent in Escherichia coli, and widely distributed among the Enterobacteriae. These plasmids are of clinical relevance, given their frequent association with virulence determinants, colicins and antibiotic resistance genes. Originally defined by their sensitivity to certain male-specific phages, IncF plasmids share a conserved conjugative system and regulatory circuits. In order to determine whether the genetic architecture and regulation circuits are preserved among these plasmids, we analyzed the natural diversity of F-like plasmids. Using the relaxase as a phylogenetic marker, we identified 256 plasmids belonging to the IncF/ MOBF12 group, present as complete DNA sequences in the NCBI database. By comparative genomics, we identified five major groups of F-like plasmids. Each shows a particular operon structure and alternate regulatory systems. Results show that the IncF/ MOBF12 conjugation gene cluster conforms a diverse and ancient group, which evolved alternative regulatory schemes in its adaptation to different environments and bacterial hosts.

  2. Novel archaeal plasmid pAH1 and its interactions with the lipothrixvirus AFV1

    DEFF Research Database (Denmark)

    Basta, Tamara; Smyth, John; Forterre, Patrick

    2009-01-01

    to establish a system for studying plasmid-virus interactions we characterized the genome of pAH1 which closely resembles those of the Sulfolobus conjugative plasmids pARN3 and pARN4. pAH1 integrates site specifically into, and excises from, the host chromosome indicating a dynamic interaction with the latter...

  3. Plant-inducible virulence promoter of the Agrobacterium tumefaciens Ti plasmid

    NARCIS (Netherlands)

    Okker, Robert J.H.; Spaink, Herman; Hille, Jacques; Brussel, Ton A.N. van; Lugtenberg, Ben; Schilperoort, Rob A.

    1984-01-01

    Agrobacterium tumefaciens is the causative agent of crown gall, a plant tumour that can arise on most species of dicotyledonous plants. The tumour-inducing capacity of the bacterium requires the presence of a large plasmid, designated the Ti plasmid, which itself contains two regions essential for

  4. Construction of recombinant ZNF230/GFP fused plasmids and their expression and cellular localization

    DEFF Research Database (Denmark)

    Xu, Wen-Ming; Zhang, Si-Zhong; Qiu, Wei-Min

    2004-01-01

    cutting, the mutated human and mouse ZNF230(znf230) were inserted into mammalian expression plasmid pEGFP-N1. Thus we constructed the plasmid with fusion gene of ZNF230 and green fluorescent protein(GFP). Then the Cos cell was transfected with the fused gene by liposome. Fluorescence microscopy showed...

  5. Microarray analysis of Inc A/C Plasmids in a population of Multidrug resistant Salmonella enterica

    Science.gov (United States)

    Bacteria plasmids are fragments of extra-chromosomal double stranded deoxyribonucleic acid (DNA) that can contain a variety of genes beneficial to the survival of the host bacteria. Classification and tracking of bacterial plasmids is valuable for the study of horizontal gene transfer of drug resis...

  6. Microarray based analysis of Inc A/C Plasmids in Multidrug resistant Salmonella enterica

    Science.gov (United States)

    Bacteria plasmids are fragments of extra-chromosomal double stranded deoxyribonucleic acid (DNA) that can contain a variety of genes beneficial to the survival of the host bacteria. Classification and tracking of bacterial plasmids is valuable for the study of horizontal gene transfer of drug resis...

  7. Replicon typing of plasmids encoding resistance to newer beta-lactams.

    Science.gov (United States)

    Carattoli, Alessandra; Miriagou, Vivi; Bertini, Alessia; Loli, Alexandra; Colinon, Celine; Villa, Laura; Whichard, Jean M; Rossolini, Gian Maria

    2006-07-01

    Polymerase chain reaction-based replicon typing represents a novel method to describe the dissemination and follow the evolution of resistance plasmids. We used this approach to study 26 epidemiologically unrelated Enterobacteriaceae and demonstrate the dominance of incompatibility (Inc) A/C or Inc N-related plasmids carrying some emerging resistance determinants to extended-spectrum cephalosporins and carbapenems.

  8. Replicon Typing of Plasmids Encoding Resistance to Newer β-Lactams

    Science.gov (United States)

    Miriagou, Vivi; Bertini, Alessia; Loli, Alexandra; Colinon, Celine; Villa, Laura; Whichard, Jean M.; Rossolini, Gian Maria

    2006-01-01

    Polymerase chain reaction–based replicon typing represents a novel method to describe the dissemination and follow the evolution of resistance plasmids. We used this approach to study 26 epidemiologically unrelated Enterobacteriaceae and demonstrate the dominance of incompatibility (Inc) A/C or Inc N-related plasmids carrying some emerging resistance determinants to extended-spectrum cephalosporins and carbapenems. PMID:16836838

  9. A classification system for plasmids from Enterococci and other Gram-positive bacteria

    DEFF Research Database (Denmark)

    Jensen, Lars Bogø; Garcia-Migura, Lourdes; Valenzuela, Antonio Jesus Sanchez

    2010-01-01

    A classification system for plasmids isolated from enterococci and other Gram-positive bacteria was developed based on 111 published plasmid sequences from enterococci and other Gram-positive bacteria; mostly staphylococci. Based on PCR amplification of conserved areas of the replication initiating...

  10. Diversity and stability of plasmids from glycopeptide resistant Enterococcus faecium isolated from pigs in Denmark

    DEFF Research Database (Denmark)

    Hasman, H.; Villadsen, A. G.; Aarestrup, Frank Møller

    2005-01-01

    In this paper, we examine the plasmid variation between a subset of unrelated GRE isolated from pigs in Denmark between 1995 and 2001 (five from each of the years). The isolates were tested with PFGE, plasmid RFLP, and subsequently Southern blotting with an IS1216V probe. Of the 35 isolates, 31 b...

  11. Plasmid Complement of Lactococcus lactis NCDO712 Reveals a Novel Pilus Gene Cluster

    NARCIS (Netherlands)

    Tarazanova, Mariya; Beerthuyzen, Marke; Siezen, Roland; Fernandez-Gutierrez, Marcela M; de Jong, Anne; van der Meulen, Sjoerd; Kok, Jan; Bachmann, Herwig

    2016-01-01

    Lactococcus lactis MG1363 is an important gram-positive model organism. It is a plasmid-free and phage-cured derivative of strain NCDO712. Plasmid-cured strains facilitate studies on molecular biological aspects, but many properties which make L. lactis an important organism in the dairy industry

  12. Characterization of cells transformed by Ad5/Ad12 hybrid early region I plasmids

    NARCIS (Netherlands)

    Bernards, R.A.; Houweling, A.; Schrier, P.I.; Bos, J.L.; Eb, A.J. van der

    1982-01-01

    Early region I (EI) of the human adenoviruses consists of two transcriptional units, EIa and EIb. We have constructed plasmids containing hybrid EI regions from the nononcogenic adenovirus type 5 (Ad5) and the highly oncogenic Ad12. Each plasmid essentially contains the EIa region of one serotype

  13. Cotransformation of linear chromosomal DNA and plasmid DNA in Escherichia coli

    NARCIS (Netherlands)

    Bergmans, H.E.N.; Kooijman, D.H.; Hoekstra, W.P.M.

    1980-01-01

    Transformation of Ca²⁺-heat shocked Escherichia coli cells with plasmid DNA has become an indispensable technique in the study of plasmids and in genetic engineering. The process of induction of competence by Ca²⁺-heat shock is still poorly understood, but it has been argued that only a

  14. Improving putrescine production by Corynebacterium glutamicum by fine-tuning ornithine transcarbamoylase activity using a plasmid addiction system.

    Science.gov (United States)

    Schneider, Jens; Eberhardt, Dorit; Wendisch, Volker F

    2012-07-01

    Corynebacterium glutamicum shows a great potential for the production of the polyamide monomer putrescine (1,4-diaminobutane). Previously, we constructed the putrescine-producing strain PUT1 by deletion of argF, the gene for ornithine transcarbamoylase (OTC), and argR, encoding the L-arginine repressor, combined with heterologous expression of the Escherichia coli gene for L-ornithine decarboxylase SpeC. As a consequence of argF deletion, this strain requires supplementation of L-arginine and shows growth-decoupled putrescine production. To avoid costly supplementation with L-arginine and the strong feedback inhibition of the key enzyme N-acetylglutamate kinase (ArgB) by L-arginine, a plasmid addiction system for low-level argF expression was developed. By fine-tuning argF expression through modifications of the promoter, the translational start codon and/or the ribosome binding site, high productivity and titer could be obtained. OTC activity varied almost thousandfold between 960 and 1 mU mg⁻¹ resulting in putrescine yields on glucose from less than 0.001 up to 0.26 g g⁻¹, the highest yield in bacteria reported to date. The most promising strain, designated PUT21, was characterized comprehensively. PUT21 strain grew with a rate of 0.19 h⁻¹ in mineral salt medium without the need for L-arginine supplementation and produced putrescine with a yield of 0.16 g g⁻¹ glucose at a volumetric productivity of 0.57 g L⁻¹ h⁻¹ and a specific productivity of 0.042 g g⁻¹ h⁻¹. The carbon balance suggested that no major unidentified by-product was produced. Compared to the first-generation strain PUT1, the putrescine yield observed with PUT21 was increased by 60%. In fed-batch cultivation with C. glutamicum PUT21, a putrescine titer of 19 g L⁻¹ at a volumetric productivity of 0.55 g L⁻¹ h⁻¹ and a yield of 0.16 g g⁻¹ glucose could be achieved. Moreover, while plasmid segregation of the initial strain required antibiotic selection

  15. Restoration of mutability in non-mutable Escherichia coli carrying different plasmids.

    Science.gov (United States)

    Babudri, N; Monti-Bragadin, C

    1977-10-24

    N and I group plasmids, which increase methylmethane sulfonate (MMS) mutagenesis in lexA+ strains of E. coli WP2 may be divided into two classes: those restoring part of the mutability of lexA- stains (class I) and those leaving lexA- strains non-mutable (class II). Almost complete restoration of MMS mutability is obtained by class I plasmids in a partially suppressed lexA rnm strain, while clase II plasmids cause far fewer MMS revertants in this strain than in lexA+. A pair of class I and II plasmids in lexA- shows a synergistic effect on mutability. These two classes do not coincide with plasmid division into incompatibility groups.

  16. An Improved Method for Including Upper Size Range Plasmids in Metamobilomes

    DEFF Research Database (Denmark)

    Norman, Anders; Riber, Leise; Luo, Wenting

    2014-01-01

    cloning vector (pBR322), and a 56 Kbp conjugative plasmid (pKJK10), to represent lower- and upper plasmid size ranges, respectively. Subjecting a mixture of these plasmids to the overall isolation protocol revealed a 34-fold over-amplification of pBR322 after MDA. To address this bias, we propose...... the addition of an electroelution step that separates different plasmid size ranges prior to MDA in order to reduce size-dependent competition during incubation. Subsequent analyses of metamobilome data from wastewater spiked with the model plasmids showed in silica recovery of pKJK10 to be very poor...... with the established method and a 1,300-fold overrepresentation of pBR322. Conversely, complete recovery of pKJK10 was enabled with the new modified protocol although considerable care must be taken during electroelution to minimize cross-contamination between samples. For further validation, non-spiked wastewater...

  17. Prevalence of Flp pili-encoding plasmids in Cutibacterium acnes isolates obtained from prostatic tissue

    DEFF Research Database (Denmark)

    Davidsson, Sabina; Carlsson, Jesscia; Mölling, Paula

    2017-01-01

    plasmids in several genomes. The plasmids are highly similar to previously identified linear plasmids of type I C. acnes strains associated with acne vulgaris. A PCR-based analysis revealed that 28.4% (21 out of 74) of all type II strains isolated from cancerous prostates carry a plasmid. The plasmid shows......Inflammation is one of the hallmarks of prostate cancer. The origin of inflammation is unknown, but microbial infections are suspected to play a role. In previous studies, the Gram-positive, low virulent bacterium Cutibacterium (formerly Propionibacterium) acnes was frequently isolated from...... prostatic tissue. It is unclear if the presence of the bacterium represents a true infection or a contamination. Here we investigated C. acnes type II, also called subspecies defendens, which is the most prevalent type among prostatic C. acnes isolates. Genome sequencing of type II isolates identified large...

  18. Conjugation Assay for Testing CRISPR-Cas Anti-plasmid Immunity in Staphylococci.

    Science.gov (United States)

    Walker, Forrest C; Hatoum-Aslan, Asma

    2017-05-05

    CRISPR-Cas is a prokaryotic adaptive immune system that prevents uptake of mobile genetic elements such as bacteriophages and plasmids. Plasmid transfer between bacteria is of particular clinical concern due to increasing amounts of antibiotic resistant pathogens found in humans as a result of transfer of resistance plasmids within and between species. Testing the ability of CRISPR-Cas systems to block plasmid transfer in various conditions or with CRISPR-Cas mutants provides key insights into the functionality and mechanisms of CRISPR-Cas as well as how antibiotic resistance spreads within bacterial communities. Here, we describe a method for quantifying the impact of CRISPR-Cas on the efficiency of plasmid transfer by conjugation. While this method is presented in Staphylococcus species, it could be more broadly used for any conjugative prokaryote.

  19. Plasmid incidence in marine bacteria isolated from petroleum polluted sites on different petroleum hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Devereux, R. (Univ. of Houston, TX); Sizemore, R.K.

    1982-06-01

    Oil-degrading bacteria isolated from oil spills, an industrial bay, and an offshore oil field by liquid enrichment on crude oils and polynuclear aromatic hydrocarbon compounds were screened for extra-chromosomal DNA. Plasmids were detected in 21% of the strains isolated on whole crude oil and in 17% of the strains isolated on polynuclear aromatic hydrocarbons. Multiple plasmids were observed in 50% of the plasmid-containing strains. Pseudomonas was the predominant genus isolated during the study. Plasmids do not appear to be of importance to these strains during degradation of freshly introduced oil at a nonpolluted site such as might be the case in an ocean oil spill. Plasmids do appear to be significant in the adaptation of Pseudomonas species to chronic petroleum pollution.

  20. Anion complexation and transport by isophthalamide and dipicolinamide derivatives: DNA plasmid transformation in E. coli.

    Science.gov (United States)

    Atkins, Jason L; Patel, Mohit B; Daschbach, Megan M; Meisel, Joseph W; Gokel, George W

    2012-08-22

    Tris-arenes based on either isophthalic acid or 2,6-dipicolinic acid have been known for more than a decade to bind anions. Recent studies have also demonstrated their ability to transport various ions through membranes. In this report, we demonstrate two important properties of these simple diamides. First, they transport plasmid DNA into Escherichia coli about 2-fold over controls, where the ampicillin resistance gene is expressed in the bacteria. These studies were done with plasmid DNA (~2.6 kilobase (kb)) in JM109 E. coli cells. Second, known methods do not typically transport large plasmids (>15 kb). We demonstrate here that transformation of large pVIB plasmids (i.e., >20 kb) were enhanced over water controls by ~10-fold. These results are in striking contrast to the normal decrease in transformation with increasing plasmid size.

  1. Optimizing hyaluronidase dose and plasmid DNA delivery greatly improves gene electrotransfer efficiency in rat skeletal muscle

    DEFF Research Database (Denmark)

    Åkerström, Thorbjörn; Vedel, Kenneth; Needham Andersen, Josefine

    2015-01-01

    Transfection of rat skeletal muscle in vivo is a widely used research model. However, gene electrotransfer protocols have been developed for mice and yield variable results in rats. We investigated whether changes in hyaluronidase pre-treatment and plasmid DNA delivery can improve transfection...... efficiency in rat skeletal muscle. We found that pre-treating the muscle with a hyaluronidase dose suitable for rats (0.56. U/g b.w.) prior to plasmid DNA injection increased transfection efficiency by >200% whereas timing of the pre-treatment did not affect efficiency. Uniformly distributing plasmid DNA...... delivery across the muscle by increasing the number of plasmid DNA injections further enhanced transfection efficiency whereas increasing plasmid dose from 0.2 to 1.6. μg/g b.w. or vehicle volume had no effect. The optimized protocol resulted in ~80% (CI95%: 79-84%) transfected muscle fibers...

  2. Sequence comparisons of plasmids pBJS-O of Spiroplasma citri and pSKU146 of S. kunkelii: implications for plasmid evolution

    Directory of Open Access Journals (Sweden)

    Fletcher Jacqueline

    2005-12-01

    Full Text Available Abstract Background Spiroplasma citri BR3-3X and S. kunkelii CR2-3X cause serious diseases worldwide on citrus and maize species, respectively. S. citri BR3-3X harbors a plasmid, pBJS-Original (pBJS-O, that encodes the spiroplasma adhesion related protein 1 (SARP1, a protein implicated in binding of the pathogen to cells of its leafhopper vector, Circulifer tenellus. The S. kunkelii CR2-3X plasmid, pSKU146, encodes a homolog of SARP1, Sk-ARP1. Due to the close phylogenetic relationship of the two pathogens, we hypothesized that the two plasmids are closely related as well. Results The nucleotide sequence of pBJS-O was determined and compared to the sequences of a plasmid from BR3-T (pBJS-T, which is a multiply passaged leafhopper transmissible derivative of BR3-3X, and to known plasmid sequences including that of pSKU146. In addition to arp1, the 13,374 bp pBJS-O sequence putatively contains nine genes, recognized as open reading frames (ORFs. Several pBJS-O ORFs have homologs on pSKU146. However, the sequences flanking soj-like genes on both plasmids were found to be more distant from one another than sequences in any other region. Further, unlike pSKU146, pBJS-O lacks the conserved oriT region characteristic of the IncP group of bacterial plasmids. We were unable to identify a region in pBJS-O resembling a known plasmid origin of transfer. In regions where sequence was available for the plasmid from both BR3-3X and BR3-T, the pBJS-T sequence had a 0.4 kb deletion relative to its progenitor, pBJS-O. Southern blot hybridization of extrachromosomal DNA from various S. citri strains and spiroplasma species to an arp-specific probe and a probe made from the entire plasmid DNA of BR3-3X revealed limited conservation of both sequences in the genus Spiroplasma. Finally, we also report the presence on the BR3-3X chromosome of arp2, an S. citri homolog of arp1 that encodes the predicted protein SARP2. The C-terminal domain of SARP2 is homologous to that

  3. Distribution of Plasmids in Distinct Leptospira Pathogenic Species.

    Science.gov (United States)

    Wang, Yanzhuo; Zhuang, Xuran; Zhong, Yi; Zhang, Cuicai; Zhang, Yan; Zeng, Lingbing; Zhu, Yongzhang; He, Ping; Dong, Ke; Pal, Utpal; Guo, Xiaokui; Qin, Jinhong

    2015-11-01

    Leptospirosis, caused by pathogenic Leptospira, is a worldwide zoonotic infection. The genus Leptospira includes at least 21 species clustered into three groups--pathogens, non-pathogens, and intermediates--based on 16S rRNA phylogeny. Research on Leptospira is difficult due to slow growth and poor transformability of the pathogens. Recent identification of extrachromosomal elements besides the two chromosomes in L. interrogans has provided new insight into genome complexity of the genus Leptospira. The large size, low copy number, and high similarity of the sequence of these extrachromosomal elements with the chromosomes present challenges in isolating and detecting them without careful genome assembly. In this study, two extrachromosomal elements were identified in L. borgpetersenii serovar Ballum strain 56604 through whole genome assembly combined with S1 nuclease digestion following pulsed-field gel electrophoresis (S1-PFGE) analysis. Further, extrachromosomal elements in additional 15 Chinese epidemic strains of Leptospira, comprising L. borgpetersenii, L. weilii, and L. interrogans, were successfully separated and identified, independent of genome sequence data. Southern blot hybridization with extrachromosomal element-specific probes, designated as lcp1, lcp2 and lcp3-rep, further confirmed their occurrences as extrachromosomal elements. In total, 24 plasmids were detected in 13 out of 15 tested strains, among which 11 can hybridize with the lcp1-rep probe and 11 with the lcp2-rep probe, whereas two can hybridize with the lcp3-rep probe. None of them are likely to be species-specific. Blastp search of the lcp1, lcp2, and lcp3-rep genes with a nonredundant protein database of Leptospira species genomes showed that their homologous sequences are widely distributed among clades of pathogens but not non-pathogens or intermediates. These results suggest that the plasmids are widely distributed in Leptospira species, and further elucidation of their biological

  4. Characterization of cp18, a naturally truncated member of the cp32 family of Borrelia burgdorferi plasmids.

    Science.gov (United States)

    Stevenson, B; Casjens, S; van Vugt, R; Porcella, S F; Tilly, K; Bono, J L; Rosa, P

    1997-07-01

    We have mapped the genes encoding the antigenic lipoproteins OspE and OspF to an approximately 18-kb circular plasmid in Borrelia burgdorferi N40. Sequencing and restriction mapping have revealed that this plasmid, cp18, is homologous to an 18-kb region of the cp32 circular plasmids found in the Lyme disease spirochetes. Our data show that cp18 may have arisen from an ancestral cp32 plasmid by deletion of a 14-kb region of DNA, indicating that a significant portion of the cp32 plasmid is not essential in cis for plasmid maintenance. These findings suggest that a relatively small recombinant plasmid capable of being stably maintained in B. burgdorferi could be constructed from a cp32 plasmid.

  5. Safety and Pharmacokinetics of Naked Plasmid DNA in the Skin: Studies on Dissemination and Ectopic Expression1

    National Research Council Canada - National Science Library

    Ulrich R Hengge; Björn Dexling; Alireza Mirmohammadsadegh

    2001-01-01

    .... In order to assess the distribution and safety of naked plasmid DNA in a relevant animal model, we analyzed if intracutaneously injected plasmid DNA was transported to other organs and if ectopic expression occurred...

  6. The large universal Pantoea plasmid LPP-1 plays a major role in biological and ecological diversification

    Directory of Open Access Journals (Sweden)

    De Maayer Pieter

    2012-11-01

    Full Text Available Abstract Background Pantoea spp. are frequently isolated from a wide range of ecological niches and have various biological roles, as plant epi- or endophytes, biocontrol agents, plant-growth promoters or as pathogens of both plant and animal hosts. This suggests that members of this genus have undergone extensive genotypic diversification. One means by which this occurs among bacteria is through the acquisition and maintenance of plasmids. Here, we have analyzed and compared the sequences of a large plasmid common to all sequenced Pantoea spp. Results and discussion The Large PantoeaPlasmids (LPP-1 of twenty strains encompassing seven different Pantoea species, including pathogens and endo-/epiphytes of a wide range of plant hosts as well as insect-associated strains, were compared. The LPP-1 plasmid sequences range in size from ~281 to 794 kb and carry between 238 and 750 protein coding sequences (CDS. A core set of 46 proteins, encompassing 2.2% of the total pan-plasmid (2,095 CDS, conserved among all LPP-1 plasmid sequences, includes those required for thiamine and pigment biosynthesis. Phylogenetic analysis reveals that these plasmids have arisen from an ancestral plasmid, which has undergone extensive diversification. Analysis of the proteins encoded on LPP-1 also showed that these plasmids contribute to a wide range of Pantoea phenotypes, including the transport and catabolism of various substrates, inorganic ion assimilation, resistance to antibiotics and heavy metals, colonization and persistence in the host and environment, pathogenesis and antibiosis. Conclusions LPP-1 is universal to all Pantoea spp. whose genomes have been sequenced to date and is derived from an ancestral plasmid. LPP-1 encodes a large array of proteins that have played a major role in the adaptation of the different Pantoea spp. to their various ecological niches and their specialization as pathogens, biocontrol agents or benign saprophytes found in many diverse

  7. Diversity of plasmids encoding histidine decarboxylase gene in Tetragenococcus spp. isolated from Japanese fish sauce.

    Science.gov (United States)

    Satomi, Masataka; Furushita, Manabu; Oikawa, Hiroshi; Yano, Yutaka

    2011-07-15

    Nineteen isolates of histamine producing halophilic bacteria were isolated from four fish sauce mashes, each mash accumulating over 1000 ppm of histamine. The complete sequences of the plasmids encoding the pyruvoyl dependent histidine decarboxylase gene (hdcA), which is harbored in histamine producing bacteria, were determined. In conjunction, the sequence regions adjacent to hdcA were analyzed to provide information regarding its genetic origin. As reference strains, Tetragenococcus halophilus H and T. muriaticus JCM10006(T) were also studied. Phenotypic and 16S rRNA gene sequence analyses identified all isolates as T. halophilus, a predominant histamine producing bacteria present during fish sauce fermentation. Genetic analyses (PCR, Southern blot, and complete plasmid sequencing) of the histamine producing isolates confirmed that all the isolates harbored approximately 21-37 kbp plasmids encoding a single copy of the hdc cluster consisting of four genes related to histamine production. Analysis of hdc clusters, including spacer regions, indicated >99% sequence similarity among the isolates. All of the plasmids sequenced encoded traA, however genes related to plasmid conjugation, namely mob genes and oriT, were not identified. Two putative mobile genetic elements, ISLP1-like and IS200-like, respectively, were identified in the up- and downstream region of the hdc cluster of all plasmids. Most of the sequences, except hdc cluster and two adjacent IS elements, were diverse among plasmids, suggesting that each histamine producers harbored a different histamine-related plasmid. These results suggested that the hdc cluster was not spread by clonal dissemination depending on the specific plasmid and that the hdc cluster in tetragenococcal plasmid was likely encoded on transformable elements. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Elimination of the cryptic plasmid in Leuconostoc citreum by CRISPR/Cas9 system.

    Science.gov (United States)

    Jang, Ye-Ji; Seo, Seung-Oh; Kim, Seul-Ah; Li, Ling; Kim, Tae-Jip; Kim, Sun Chang; Jin, Yong-Su; Han, Nam Soo

    2017-06-10

    Leuconostoc spp. are important lactic acid bacteria for the fermentation of foods. In particular, L. citreum strains isolated from various foods have been used as host strains for genetic and metabolic engineering studies. In order to develop a food-grade genetic engineering system, L. citreum CB2567 was isolated from Kimchi. However, the isolated bacterium contained a cryptic plasmid which was difficult to eliminate. As the existence of the plasmid might hinder strain engineering, we eliminated the plasmid using an RNA-guided DNA endonuclease CRISPR/Cas9 system. We demonstrated that a plasmid-free L. citreum CB2567 host strain could be efficiently constructed through a two-step procedure: 1) transformation of the "killer" plasmid expressing Cas9 endonuclease and a guide RNA (gRNA) targeting for a specific sequence in the cryptic plasmid, and 2) serial subculture without antibiotics for curing the killer plasmid. When the crude extract of L. citreum expressing Cas9 and the guide RNA was incubated with a PCR fragment containing the specific sequence recognized by the guide RNA, the PCR fragment was cleaved. Also, the cryptic plasmid pCB42 was successfully eliminated from the host strain after transforming the plasmid harboring Cas9 and the guide RNA. The Cas9 and gRNA expression plasmid used in this study can be applied for genome engineering purposes by additionally introducing an editing DNA template to repair the double strand DNA breakage caused by Cas9 in the genome of L. citreum. This study demonstrates the feasibility of developing CRISPR/Cas9-based genetic engineering tools to develop a safe host strain and construct food-grade lactic acid bacteria without residual antibiotic markers. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. [Plasmid profile analysis in identification of epidemic strains of Salmonella enterica serovar Enteritidis].

    Science.gov (United States)

    Miljković-Selimović, Biljana; Lepsanović, Zorica; Babić, Tatjana; Kocić, Branislava; Randelović, Gordana

    2008-04-01

    As illness caused by Sallmonella enterica serovar Enteritidis (S. Enteritidis) occurs not only as sporadic cases but as outbreaks, to reveal the source and routes of spreading of infection it is necessary to identify epidemic strain by the use of some typing methods. To determine whether plasmid profile analysis, as genotyping method, could be applied for the investigation of epidemic strains, isolates of S. Enteritidis, recovered from patient's stools and food associated with outbreaks and those isolated from sporadic cases of diarrhea, were investigated. Investigation of antibiotic resistance was performed by Kirby-Bauer disc-diffusion method. Isolation of plasmid DNA was carried out by Birnboim and Dolly alkaline lysis method, modified by Ish-Horovitz. Out of 276 izolates of S. Enteritidis 94 were isolated from patient's stools and food associated with outbreaks and 182 were isolated from sporadic cases of diarrhea. The presence of 12 plasmid profiles was established. An average correlation degree of plasmid profiles between the strains was 0.84, that implies high degree of similarity of plasmid profiles of epidemic and non epidemic strains isolated at our geographic region for the given period of time. The strains of S. Enteritidis, isolated in outbreaks of enterocolitis as well as from spordic cases of diarrhea in the same period of time and at the same area, frequently exhibit the same plasmid profile characterized by a single plasmid of 38 MDa. Therefore, in most cases plasmid profile analysis is not valuable in the identification of epidemic strains of S. Enteritidis. However, for this purpose plasmid profile analysis could be used when drug-resistant strains of S. Enteritidis are isolated, as they often possess additional resistant plasmids what increases discrimination power of this method.

  10. Genome Stability of Lyme Disease Spirochetes: Comparative Genomics of Borrelia burgdorferi Plasmids

    Energy Technology Data Exchange (ETDEWEB)

    Casjens S. R.; Dunn J.; Mongodin, E. F.; Qiu, W.-G.; Luft, B. J.; Schutzer, S. E.; Gilcrease, E. B.; Huang, W. M.; Vujadinovic, M.; Aron, J. K.; Vargas, L. C.; Freeman, S.; Radune, D.; Weidman, J. F.; Dimitrov, G. I.; Khouri, H. M.; Sosa, J. E.; Halpin, R. A.; Fraser, C. M.

    2012-03-14

    Lyme disease is the most common tick-borne human illness in North America. In order to understand the molecular pathogenesis, natural diversity, population structure and epizootic spread of the North American Lyme agent, Borrelia burgdorferi sensu stricto, a much better understanding of the natural diversity of its genome will be required. Towards this end we present a comparative analysis of the nucleotide sequences of the numerous plasmids of B. burgdorferi isolates B31, N40, JD1 and 297. These strains were chosen because they include the three most commonly studied laboratory strains, and because they represent different major genetic lineages and so are informative regarding the genetic diversity and evolution of this organism. A unique feature of Borrelia genomes is that they carry a large number of linear and circular plasmids, and this work shows that strains N40, JD1, 297 and B31 carry related but non-identical sets of 16, 20, 19 and 21 plasmids, respectively, that comprise 33-40% of their genomes. We deduce that there are at least 28 plasmid compatibility types among the four strains. The B. burgdorferi {approx}900 Kbp linear chromosomes are evolutionarily exceptionally stable, except for a short {le}20 Kbp plasmid-like section at the right end. A few of the plasmids, including the linear lp54 and circular cp26, are also very stable. We show here that the other plasmids, especially the linear ones, are considerably more variable. Nearly all of the linear plasmids have undergone one or more substantial inter-plasmid rearrangements since their last common ancestor. In spite of these rearrangements and differences in plasmid contents, the overall gene complement of the different isolates has remained relatively constant.

  11. Genome Stability of Lyme Disease Spirochetes: Comparative Genomics of Borrelia burgdorferi Plasmids

    Science.gov (United States)

    Casjens, Sherwood R.; Mongodin, Emmanuel F.; Qiu, Wei-Gang; Luft, Benjamin J.; Schutzer, Steven E.; Gilcrease, Eddie B.; Huang, Wai Mun; Vujadinovic, Marija; Aron, John K.; Vargas, Levy C.; Freeman, Sam; Radune, Diana; Weidman, Janice F.; Dimitrov, George I.; Khouri, Hoda M.; Sosa, Julia E.; Halpin, Rebecca A.; Dunn, John J.; Fraser, Claire M.

    2012-01-01

    Lyme disease is the most common tick-borne human illness in North America. In order to understand the molecular pathogenesis, natural diversity, population structure and epizootic spread of the North American Lyme agent, Borrelia burgdorferi sensu stricto, a much better understanding of the natural diversity of its genome will be required. Towards this end we present a comparative analysis of the nucleotide sequences of the numerous plasmids of B. burgdorferi isolates B31, N40, JD1 and 297. These strains were chosen because they include the three most commonly studied laboratory strains, and because they represent different major genetic lineages and so are informative regarding the genetic diversity and evolution of this organism. A unique feature of Borrelia genomes is that they carry a large number of linear and circular plasmids, and this work shows that strains N40, JD1, 297 and B31 carry related but non-identical sets of 16, 20, 19 and 21 plasmids, respectively, that comprise 33–40% of their genomes. We deduce that there are at least 28 plasmid compatibility types among the four strains. The B. burgdorferi ∼900 Kbp linear chromosomes are evolutionarily exceptionally stable, except for a short ≤20 Kbp plasmid-like section at the right end. A few of the plasmids, including the linear lp54 and circular cp26, are also very stable. We show here that the other plasmids, especially the linear ones, are considerably more variable. Nearly all of the linear plasmids have undergone one or more substantial inter-plasmid rearrangements since their last common ancestor. In spite of these rearrangements and differences in plasmid contents, the overall gene complement of the different isolates has remained relatively constant. PMID:22432010

  12. Genome stability of Lyme disease spirochetes: comparative genomics of Borrelia burgdorferi plasmids.

    Directory of Open Access Journals (Sweden)

    Sherwood R Casjens

    Full Text Available Lyme disease is the most common tick-borne human illness in North America. In order to understand the molecular pathogenesis, natural diversity, population structure and epizootic spread of the North American Lyme agent, Borrelia burgdorferi sensu stricto, a much better understanding of the natural diversity of its genome will be required. Towards this end we present a comparative analysis of the nucleotide sequences of the numerous plasmids of B. burgdorferi isolates B31, N40, JD1 and 297. These strains were chosen because they include the three most commonly studied laboratory strains, and because they represent different major genetic lineages and so are informative regarding the genetic diversity and evolution of this organism. A unique feature of Borrelia genomes is that they carry a large number of linear and circular plasmids, and this work shows that strains N40, JD1, 297 and B31 carry related but non-identical sets of 16, 20, 19 and 21 plasmids, respectively, that comprise 33-40% of their genomes. We deduce that there are at least 28 plasmid compatibility types among the four strains. The B. burgdorferi ∼900 Kbp linear chromosomes are evolutionarily exceptionally stable, except for a short ≤20 Kbp plasmid-like section at the right end. A few of the plasmids, including the linear lp54 and circular cp26, are also very stable. We show here that the other plasmids, especially the linear ones, are considerably more variable. Nearly all of the linear plasmids have undergone one or more substantial inter-plasmid rearrangements since their last common ancestor. In spite of these rearrangements and differences in plasmid contents, the overall gene complement of the different isolates has remained relatively constant.

  13. Plasmid DNA Analysis of Pasteurella multocida Serotype B isolated from Haemorrhagic Septicaemia outbreaks in Malaysia

    Directory of Open Access Journals (Sweden)

    Jamal, H.

    2005-01-01

    Full Text Available A total of 150 purified isolates of Pasteurella multocida serotype B were used (Salmah, 2004 for plasmid DNA curing experiment to determine hyaluronidase activity, antibiotic resistance pattern (ARP and mice lethality test (LD50 for their role of pathogenicity. A plasmid curing experiment was carried out by using the intercalating agent; ethidium bromide and rifampicin, where it was found all the plasmids had been cured (plasmidless from Pasteurella multocida. All of these plasmidless isolates maintained their phenotypic characteristics. They showed the same antibiotic resistancepattern as before curing, produced hyaluronidase and possessed lethality activity in mice when injected intraperitoneally(i.p. Based on this observation, the antibiotic resistance, hyaluronidase activity and mice virulence could probably be chromosomal-mediated. Plasmids were detected 100% in all P. multocida isolates with identical profile of 2 plasmids size 3.0 and 5.5 kb. No large plasmids could be detected in all isolates. Since all the isolates appeared to have identicalplasmid profiles, they were subjected to restriction enzyme(RE analysis. From RE analysis results obtained, it can be concluded that the plasmid DNA in serotype B isolates are identical. Only 4 of 32 REs were found to cleave these plasmids with identical restriction fingerprints; BglII, HaeIII, RsaI and SspI. From RE analysis results, it can be concluded that the plasmid DNA isolates are identical. This plasmid might not played any role in pathogenicity of Pasteurella multocida serotype B, however this information is important for the construction of shuttle vectors in genetic studies of the pathogenicity of haemorrhagic septicaemia(HS.

  14. Plasmid profile analysis in identification of epidemic strains of Salmonella enterica serovar Enteritidis

    Directory of Open Access Journals (Sweden)

    Miljković-Selimović Biljana

    2008-01-01

    Full Text Available Background/Aim. As illness caused by Sallmonella enterica serovar Enteritidis (S. Enteritidis occurs not only as sporadic cases but as outbreaks, to reveal the source and routes of spreading of infection it is necessary to identify epidemic strain by the use of some typing methods. To determine whether plasmid profile analysis, as genotyping method, could be applied for the investigation of epidemic strains, isolates of S. Enteritidis, recovered from patient's stools and food associated with outbreaks and those isolated from sporadic cases of diarrhea, were investigated. Methods. Investigation of antibiotic resistance was performed by Kirby - Bauer disc-diffusion method. Isolation of plasmid DNA was carried out by Birnboim and Dolly alkaline lysis method, modified by Ish-Horovitz. Results. Out of 276 izolates of S. Enteritidis 94 were isolated from patient's stools and food associated with outbreaks and 182 were isolated from sporadic cases of diarrhea. The presence of 12 plasmid profiles was established. An average correlation degree of plasmid profiles between the strains was 0.84, that implies high degree of similarity of plasmid profiles of epidemic and non- epidemic strains isolated at our geographic region for the given period of time. Conclusion. The strains of S. Enteritidis, isolated in outbreaks of enterocolitis as well as from spordic cases of diarrhea in the same period of time and at the same area, frequently exhibit the same plasmid profile characterized by a single plasmid of 38 MDa. Therefore, in most cases plasmid profile analysis is not valuable in the identification of epidemic strains of S. Enteritidis. However, for this purpose plasmid profile analysis could be used when drug-resistant strains of S. Enteritidis are isolated, as they often possess additional resistant plasmids what increases discrimination power of this method.

  15. Further development of the cassette-based pYC plasmid system by incorporation of the dominant hph, nat and AUR1-C gene markers and the lacZ reporter system

    DEFF Research Database (Denmark)

    Hansen, J.; Felding, T.; Johannesen, P.F.

    2003-01-01

    Dominant selection markers encoding hygromycin B phosphotransferase (hph), nourseothricin N-acetyltransferase (nat) and a mutant inositol phosphoceramide synthase (AUR1-C) were all incorporated into the pYC yeast plasmid vector system, thus expanding this system with possible alternatives to the ...

  16. Exploiting a natural auxotrophy for genetic selection.

    Science.gov (United States)

    Ramage, Elizabeth; Gallagher, Larry; Manoil, Colin

    2012-08-01

    We exploited the natural histidine auxotrophy of Francisella species to develop hisD (encodes histidinol dehydrogenase) as a positive selection marker. A shuttle plasmid (pBR103) carrying Escherichia coli hisD and designed for cloning of PCR fragments replicated in both attenuated and highly virulent Francisella strains. During this work, we formulated a simplified defined growth medium for Francisella novicida.

  17. Plasmids with E2 epitope tags: tagging modules for N- and C-terminal PCR-based gene targeting in both budding and fission yeast, and inducible expression vectors for fission yeast.

    Science.gov (United States)

    Tamm, Tiina

    2009-01-01

    A single-step PCR-based epitope tagging enables fast and efficient gene targeting with various epitope tags. This report presents a series of plasmids for the E2 epitope tagging of proteins in Saccharomyces cerevisiae and Schizosaccharomyces pombe. E2Tags are 10-amino acids (epitope E2a: SSTSSDFRDR)- and 12 amino acids (epitope E2b: GVSSTSSDFRDR)-long peptides derived from the E2 protein of bovine papillomavirus type 1. The modules for C-terminal tagging with E2a and E2b epitopes were constructed by the modification of the pYM-series plasmid. The N-terminal E2a and E2b tagging modules were based on pOM-series plasmid. The pOM-series plasmids were selected for this study because of their use of the Cre-loxP recombination system. The latter enables a marker cassette to be removed after integration into the loci of interest and, thereafter, the tagged protein is expressed under its endogenous promoter. Specifically for fission yeast, high copy pREP plasmids containing the E2a epitope tag as an N-terminal or C-terminal tag were constructed. The properties of E2a and E2b epitopes and the sensitivity of two anti-E2 monoclonal antibodies (5E11 and 3F12) were tested using several S. cerevisiae and Sz. pombe E2-tagged strains.

  18. IDENTIFICATION AND FUNCTIONAL-ANALYSIS OF THE TRANSFER REGION OF PLASMID PMEA300 OF THE METHYLOTROPHIC ACTINOMYCETE AMYCOLATOPSIS-METHANOLICA

    NARCIS (Netherlands)

    VRIJBLOED, JW; VANDERPUT, NMJ; DIJKHUIZEN, L

    1995-01-01

    Amycolatopsis methanolica contains a 13.3-kb plasmid (pMEA300) that is present either as an integrated element or as an autonomously replicating plasmid. Conjugational transfer of pMEA300 results in pock formation, zones of growth inhibition that become apparent when plasmid-carrying donor cells

  19. Identification and Functional Analysis of the Transfer Region of Plasmid pMEA300 of the Methylotrophic Actinomycete Amycolatopsis methanolica

    NARCIS (Netherlands)

    Vrijbloed, J.W.; Put, N.M.J. van der; Dijkhuizen, L.

    1995-01-01

    Amycolatopsis methanolica contains a 13.3-kb plasmid (pMEA300) that is present either as an integrated element or as an autonomously replicating plasmid. Conjugational transfer of pMEA300 results in pock formation, zones of growth inhibition that become apparent when plasmid-carrying donor cells

  20. Transfer and Persistence of a Multi-Drug Resistance Plasmid in situ of the Infant Gut Microbiota in the Absence of Antibiotic Treatment

    Directory of Open Access Journals (Sweden)

    Heidi Gumpert

    2017-09-01

    Full Text Available The microbial ecosystem residing in the human gut is believed to play an important role in horizontal exchange of virulence and antibiotic resistance genes that threatens human health. While the diversity of gut-microorganisms and their genetic content has been studied extensively, high-resolution insight into the plasticity, and selective forces shaping individual genomes is scarce. In a longitudinal study, we followed the dynamics of co-existing Escherichia coli lineages in an infant not receiving antibiotics. Using whole genome sequencing, we observed large genomic deletions, bacteriophage infections, as well as the loss and acquisition of plasmids in these lineages during their colonization of the human gut. In particular, we captured the exchange of multidrug resistance genes, and identified a clinically relevant conjugative plasmid mediating the transfer. This resistant transconjugant lineage was maintained for months, demonstrating that antibiotic resistance genes can disseminate and persist in the gut microbiome; even in absence of antibiotic selection. Furthermore, through in vivo competition assays, we suggest that the resistant transconjugant can persist through a fitness advantage in the mouse gut in spite of a fitness cost in vitro. Our findings highlight the dynamic nature of the human gut microbiota and provide the first genomic description of antibiotic resistance gene transfer between bacteria in the unperturbed human gut. These results exemplify that conjugative plasmids, harboring resistance determinants, can transfer and persists in the gut in the absence of antibiotic treatment.

  1. Rhizobial Plasmids That Cause Impaired Symbiotic Nitrogen Fixation and Enhanced Host Invasion

    Science.gov (United States)

    Crook, Matthew B.; Lindsay, Daniel P.; Biggs, Matthew B.; Bentley, Joshua S.; Price, Jared C.; Clement, Spencer C.; Clement, Mark J.; Long, Sharon R.; Griffitts, Joel S.

    2015-01-01

    The genetic rules that dictate legume-rhizobium compatibility have been investigated for decades, but the causes of incompatibility occurring at late stages of the nodulation process are not well understood. An evaluation of naturally diverse legume (genus Medicago) and rhizobium (genus Sinorhizobium) isolates has revealed numerous instances in which Sinorhizobium strains induce and occupy nodules that are only minimally beneficial to certain Medicago hosts. Using these ineffective strain-host pairs, we identified gain-of-compatibility (GOC) rhizobial variants. We show that GOC variants arise by loss of specific large accessory plasmids, which we call HR plasmids due to their effect on symbiotic host range. Transfer of HR plasmids to a symbiotically effective rhizobium strain can convert it to incompatibility, indicating that HR plasmids can act autonomously in diverse strain backgrounds. We provide evidence that HR plasmids may encode machinery for their horizontal transfer. On hosts in which HR plasmids impair N fixation, the plasmids also enhance competitiveness for nodule occupancy, showing that naturally occurring, transferrable accessory genes can convert beneficial rhizobia to a more exploitative lifestyle. This observation raises important questions about agricultural management, the ecological stability of mutualisms, and the genetic factors that distinguish beneficial symbionts from parasites. PMID:22746823

  2. Novel Plasmid Transformation Method Mediated by Chrysotile, Sliding Friction, and Elastic Body Exposure

    Directory of Open Access Journals (Sweden)

    Naoto Yoshida

    2007-01-01

    Full Text Available Escherichia coli as a plasmid recipient cell was dispersed in a chrysotile colloidal solution, containing chrysotile adsorbed to plasmid DNA (chrysotile-plasmid cell mixture. Following this, the chrysotile-plasmid cell mixture was dropped onto the surface of an elastic body, such as agarose, and treated physically by sliding a polystyrene streak bar over the elastic body to create friction. Plasmid DNA was easily incorporated into E. coli, and antibiotic resistance was conferred by transformation. The transformation efficiency of E. coli cultured in solid medium was greater than that of E. coli cultured in broth. To obtain greater transformation efficiency, we attempted to determine optimal transformation conditions. The following conditions resulted in the greatest transformation efficiency: the recipient cell concentration within the chrysotileplasmid cell mixture had an optical density greater than or equal to 2 at 550 nm, the vertical reaction force applied to the streak bar was greater than or equal to 40 g, and the rotation speed of the elastic body was greater than or equal to 34 rpm. Under these conditions, we observed a transformation efficiency of 107 per μg plasmid DNA. The advantage of achieving bacterial transformation using the elastic body exposure method is that competent cell preparation of the recipient cell is not required. In addition to E. coli, other Gram negative bacteria are able to acquire plasmid DNA using the elastic body exposure method.

  3. Investigation of diversity of plasmids carrying the blaTEM-52 gene

    DEFF Research Database (Denmark)

    Bielak, Eliza Maria; Bergenholtz, Rikke D.; Jørgensen, Mikael Skaanning

    2011-01-01

    (RFLP), replicon typing (by PCR or replicon sequencing), susceptibility testing, assessment of plasmid ability to self-transfer by conjugation and typing of the genetic environment of the blaTEM-52 gene. Detected IncI1 plasmids underwent further plasmid multilocus sequence typing. RESULTS: RFLP profiles...... demonstrated dissemination of blaTEM-52 in Denmark (imported meat from Germany), France, Belgium and the Netherlands from 2000 to 2006 by mainly two different plasmids, one encoding blaTEM-52b (IncX1A, 45 kb) and the other blaTEM-52c (IncI1, 80 kb). In addition, blaTEM-52b was also found to be located...... on various other plasmids belonging to IncA/C and IncL/M, while blaTEM-52c was found on IncN-like as well as on IncR plasmids. In the majority of cases (n = 21) the blaTEM-52 gene was located on a Tn3 transposon. Seven out of 10 blaTEM-52 plasmids tested in conjugation experiments were shown to be capable...

  4. Characterization of Antimicrobial Resistance Dissemination across Plasmid Communities Classified by Network Analysis

    Directory of Open Access Journals (Sweden)

    Akifumi Yamashita

    2014-04-01

    Full Text Available The global clustering of gene families through network analysis has been demonstrated in whole genome, plasmid, and microbiome analyses. In this study, we carried out a plasmidome network analysis of all available complete bacterial plasmids to determine plasmid associations. A blastp clustering search at 100% aa identity cut-off and sharing at least one gene between plasmids, followed by a multilevel community network analysis revealed that a surprisingly large number of the plasmids were connected by one largest connected component (LCC, with dozens of community sub-groupings. The LCC consisted mainly of Bacilli and Gammaproteobacteria plasmids. Intriguingly, horizontal gene transfer (HGT was noted between different phyla (i.e., Staphylococcus and Pasteurellaceae, suggesting that Pasteurellaceae can acquire antimicrobial resistance (AMR genes from closely contacting Staphylococcus spp., which produce the external supplement of V-factor (NAD. Such community network analysis facilitate displaying possible recent HGTs like a class 1 integron, str and tet resistance markers between communities. Furthermore, the distribution of the Inc replicon type and AMR genes, such as the extended-spectrum ß-lactamase (ESBL CTX-M or the carbapenemases KPC NDM-1, implies that such genes generally circulate within limited communities belonging to typical bacterial genera. Thus, plasmidome network analysis provides a remarkable discriminatory power for plasmid-related HGT and evolution.

  5. Rhizobial plasmids that cause impaired symbiotic nitrogen fixation and enhanced host invasion.

    Science.gov (United States)

    Crook, Matthew B; Lindsay, Daniel P; Biggs, Matthew B; Bentley, Joshua S; Price, Jared C; Clement, Spencer C; Clement, Mark J; Long, Sharon R; Griffitts, Joel S

    2012-08-01

    The genetic rules that dictate legume-rhizobium compatibility have been investigated for decades, but the causes of incompatibility occurring at late stages of the nodulation process are not well understood. An evaluation of naturally diverse legume (genus Medicago) and rhizobium (genus Sinorhizobium) isolates has revealed numerous instances in which Sinorhizobium strains induce and occupy nodules that are only minimally beneficial to certain Medicago hosts. Using these ineffective strain-host pairs, we identified gain-of-compatibility (GOC) rhizobial variants. We show that GOC variants arise by loss of specific large accessory plasmids, which we call HR plasmids due to their effect on symbiotic host range. Transfer of HR plasmids to a symbiotically effective rhizobium strain can convert it to incompatibility, indicating that HR plasmids can act autonomously in diverse strain backgrounds. We provide evidence that HR plasmids may encode machinery for their horizontal transfer. On hosts in which HR plasmids impair N fixation, the plasmids also enhance competitiveness for nodule occupancy, showing that naturally occurring, transferrable accessory genes can convert beneficial rhizobia to a more exploitative lifestyle. This observation raises important questions about agricultural management, the ecological stability of mutualisms, and the genetic factors that distinguish beneficial symbionts from parasites.

  6. A novel nicotine catabolic plasmid pMH1 in Pseudomonas sp. strain HF-1.

    Science.gov (United States)

    Wang, Meizhen; Yang, Guiqin; Min, Hang; Lv, Zhenmei

    2009-03-01

    Attempts were made to acquire a plasmid-loss mutant via various methods (spontaneous mutation, SDS, and mitomycin C), among which the method involving mitomycin C (10 microg/mL) has been proven successful. Concomitant with the loss of the plasmid in Pseudomonas sp. strain HF-1, the cured derivative was identified as having a nicotine-negative (Nic-) phenotype, named mutant strain 6-13 (Nic-). After plasmids were transferred from strain HF-1 (named plasmid pMH1) to the mutant strain 6-13, the mutant strain acquired nicotine-degrading ability, called 6-13 transformant (Nic+). There were no differences in growth or nicotine-degrading efficiency between strain HF-1 (wild-type strain) and strain 6-13 transformant. After pMH1 was transferred to Escherichia coli strain Top10 (Nic-), a distant relative of Pseudomonas, it also gained nicotine-degrading ability, showing the highest nicotine degradation efficiency at pH 7.0, the optimal pH for growth of E. coli. The hsp gene, which encodes 6-hydroxy-3-succinoylpyridine hydroxylase, is involved in nicotine degradation in Pseudomonas putida strain S16 and was present in pMH1 but not in pAO1, the well-known nicotine degradation plasmid in Arthrobacter nicotinovorans. It was demonstrated that plasmid pMH1 is a novel nicotine-degrading plasmid.

  7. [Construction and identification of a RNA interference plasmid for rat BNIP3 gene].

    Science.gov (United States)

    Chen, Ming; Zhang, Xing-mei; Li, Bo-xing; Sun, Hong-yu; Li, Xiao-wen; Gao, Tian-ming

    2010-11-01

    To construct a RNA interfering plasmid targeting rat Bcl-2/E1B-19K-interacting protein 3 (BNIP3) and assess its effect on exogenous BNIP3 expression in HEK293 cells. The miRNA sequences were designed using Invitrogen BLOCK-iT RNAi Designer and synthesized into double-strand oligonucleotides, which were cloned into the pcDNATM6.2-GW/EmGFP-miR vector, followed by transformation of the product into competent Top10 E. coli cells. After expansion of the transformed bacteria, the plasmid was extracted and sequenced before its co-transfection with pEGFP-C3- rBNIP3 plasmid into HEK293 cells. The interference effect of the constructed plasmid on BNIP3 mRNA and protein expression were detected by real-time PCR and Western blotting. The sequencing result indicated that the interfering plasmid targeting rat BNIP3 was constructed correctly. After transfection into HEK293 cells, the interfering plasmid significantly inhibited exogenous BNIP3 mRNA and protein expressions. The RNA interfering plasmid targeting rat BNIP3 has been constructed successfully, which provides a useful tool for studying the function of BNIP3.

  8. Prevalence of extended-spectrum cephalosporin-resistant Escherichia coli in a farrowing farm: ST1121 clone harboring IncHI2 plasmid contributes to the dissemination of bla CMY-2.

    Science.gov (United States)

    Deng, Hui; Si, Hong-Bin; Zeng, Shu-Yi; Sun, Jian; Fang, Liang-Xing; Yang, Run-Shi; Liu, Ya-Hong; Liao, Xiao-Ping

    2015-01-01

    During a regular monitoring of antimicrobial resistance in a farrowing farm in Southern China, 117 Escherichia coli isolates were obtained from sows and piglets. Compared with the isolates from piglets, the isolates from sows exhibited higher resistance rates to the tested cephalosporins. Correspondingly, the total detection rate of the bla CMY-2/bla CTX-M genes in the sow isolates (34.2%) was also significantly higher than that of the piglet isolates (13.6%; p E. coli isolates. MLST and PFGE analysis revealed the clonal spread of ST1121 E. coli in most (7/13) of the bla CMY-2-positive isolates. An indistinguishable IncHI2 plasmid harboring bla CMY-2 was also identified in each of the seven ST1121 E. coli isolates. Complete sequence analysis of this IncHI2 plasmid (pEC5207) revealed that pEC5207 may have originated through recombination of an IncHI2 plasmid with a bla CMY-2-carrying IncA/C plasmid like pCFSAN007427_01. In addition to bla CMY-2, pEC5207 also carried other resistance determinants for aminoglycosides (aacA7), sulfonamides (sul1), as well as heavy metals ions, such as Cu and Ag. The susceptibility testing showed that the pEC5207 can mediate both antibiotic and heavy metal resistance. This highlights the role of pEC5207 in co-selection of bla CMY-2-positive isolates under the selective pressure of heavy metals, cephalosporins, and other antimicrobials. In conclusion, clonal spread of an ST1121 type E. coli strain harboring an IncHI2 plasmid contributed to the dissemination of bla CMY-2 in a farrowing farm in Southern China. We also have determined the first complete sequence analysis of a bla CMY-2-carrying IncHI2 plasmid.

  9. Norwegian patients and retail chicken meat share cephalosporin-resistant Escherichia coli and IncK/blaCMY-2resistance plasmids.

    Science.gov (United States)

    Berg, E S; Wester, A L; Ahrenfeldt, J; Mo, S S; Slettemeås, J S; Steinbakk, M; Samuelsen, Ø; Grude, N; Simonsen, G S; Løhr, I H; Jørgensen, S B; Tofteland, S; Lund, O; Dahle, U R; Sunde, M

    2017-06-01

    In 2012 and 2014 the Norwegian monitoring programme for antimicrobial resistance in the veterinary and food production sectors (NORM-VET) showed that 124 of a total of 406 samples (31%) of Norwegian retail chicken meat were contaminated with extended-spectrum cephalosporin-resistant Escherichia coli. The aim of this study was to compare selected cephalosporin-resistant E. coli from humans and poultry to determine their genetic relatedness based on whole genome sequencing (WGS). Escherichia coli representing three prevalent cephalosporin-resistant multi-locus sequence types (STs) isolated from poultry (n=17) were selected from the NORM-VET strain collections. All strains carried an IncK plasmid with a bla CMY-2 gene. Clinical E. coli isolates (n=284) with AmpC-mediated resistance were collected at Norwegian microbiology laboratories from 2010 to 2014. PCR screening showed that 29 of the clinical isolates harboured both IncK and bla CMY-2 . All IncK/bla CMY-2 -positive isolates were analysed with WGS-based bioinformatics tools. Analysis of single nucleotide polymorphisms (SNP) in 2.5 Mbp of shared genome sequences showed close relationship, with fewer than 15 SNP differences between five clinical isolates from urinary tract infections (UTIs) and the ST38 isolates from poultry. Furthermore, all of the 29 clinical isolates harboured IncK/bla CMY-2 plasmid variants highly similar to the IncK/bla CMY-2 plasmid present in the poultry isolates. Our results provide support for the hypothesis that clonal transfer of cephalosporin-resistant E. coli from chicken meat to humans may occur, and may cause difficult-to-treat infections. Furthermore, these E. coli can be a source of AmpC-resistance plasmids for opportunistic pathogens in the human microbiota. Copyright © 2017 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  10. Prevalence of Flp Pili-Encoding Plasmids in Cutibacterium acnes Isolates Obtained from Prostatic Tissue.

    Science.gov (United States)

    Davidsson, Sabina; Carlsson, Jessica; Mölling, Paula; Gashi, Natyra; Andrén, Ove; Andersson, Swen-Olof; Brzuszkiewicz, Elzbieta; Poehlein, Anja; Al-Zeer, Munir A; Brinkmann, Volker; Scavenius, Carsten; Nazipi, Seven; Söderquist, Bo; Brüggemann, Holger

    2017-01-01

    Inflammation is one of the hallmarks of prostate cancer. The origin of inflammation is unknown, but microbial infections are suspected to play a role. In previous studies, the Gram-positive, low virulent bacterium Cutibacterium (formerly Propionibacterium) acnes was frequently isolated from prostatic tissue. It is unclear if the presence of the bacterium represents a true infection or a contamination. Here we investigated Cutibacterium acnes type II, also called subspecies defendens, which is the most prevalent type among prostatic C. acnes isolates. Genome sequencing of type II isolates identified large plasmids in several genomes. The plasmids are highly similar to previously identified linear plasmids of type I C. acnes strains associated with acne vulgaris. A PCR-based analysis revealed that 28.4% (21 out of 74) of all type II strains isolated from cancerous prostates carry a plasmid. The plasmid shows signatures for conjugative transfer. In addition, it contains a gene locus for tight adherence (tad) that is predicted to encode adhesive Flp (fimbrial low-molecular weight protein) pili. In subsequent experiments a tad locus-encoded putative pilin subunit was identified in the surface-exposed protein fraction of plasmid-positive C. acnes type II strains by mass spectrometry, indicating that the tad locus is functional. Additional plasmid-encoded proteins were detected in the secreted protein fraction, including two signal peptide-harboring proteins; the corresponding genes are specific for type II C. acnes, thus lacking from plasmid-positive type I C. acnes strains. Further support for the presence of Flp pili in C. acnes type II was provided by electron microscopy, revealing cell appendages in tad locus-positive strains. Our study provides new insight in the most prevalent prostatic subspecies of C. acnes, subsp. defendens, and indicates the existence of Flp pili in plasmid-positive strains. Such pili may support colonization and persistent infection of human

  11. Prevalence of Flp Pili-Encoding Plasmids in Cutibacterium acnes Isolates Obtained from Prostatic Tissue

    Directory of Open Access Journals (Sweden)

    Sabina Davidsson

    2017-11-01

    Full Text Available Inflammation is one of the hallmarks of prostate cancer. The origin of inflammation is unknown, but microbial infections are suspected to play a role. In previous studies, the Gram-positive, low virulent bacterium Cutibacterium (formerly Propionibacterium acnes was frequently isolated from prostatic tissue. It is unclear if the presence of the bacterium represents a true infection or a contamination. Here we investigated Cutibacterium acnes type II, also called subspecies defendens, which is the most prevalent type among prostatic C. acnes isolates. Genome sequencing of type II isolates identified large plasmids in several genomes. The plasmids are highly similar to previously identified linear plasmids of type I C. acnes strains associated with acne vulgaris. A PCR-based analysis revealed that 28.4% (21 out of 74 of all type II strains isolated from cancerous prostates carry a plasmid. The plasmid shows signatures for conjugative transfer. In addition, it contains a gene locus for tight adherence (tad that is predicted to encode adhesive Flp (fimbrial low-molecular weight protein pili. In subsequent experiments a tad locus-encoded putative pilin subunit was identified in the surface-exposed protein fraction of plasmid-positive C. acnes type II strains by mass spectrometry, indicating that the tad locus is functional. Additional plasmid-encoded proteins were detected in the secreted protein fraction, including two signal peptide-harboring proteins; the corresponding genes are specific for type II C. acnes, thus lacking from plasmid-positive type I C. acnes strains. Further support for the presence of Flp pili in C. acnes type II was provided by electron microscopy, revealing cell appendages in tad locus-positive strains. Our study provides new insight in the most prevalent prostatic subspecies of C. acnes, subsp. defendens, and indicates the existence of Flp pili in plasmid-positive strains. Such pili may support colonization and persistent

  12. High Throughput Analyses of Budding Yeast ARSs Reveal New DNA Elements Capable of Conferring Centromere-Independent Plasmid Propagation

    Directory of Open Access Journals (Sweden)

    Timothy Hoggard

    2016-04-01

    Full Text Available The ability of plasmids to propagate in Saccharomyces cerevisiae has been instrumental in defining eukaryotic chromosomal control elements. Stable propagation demands both plasmid replication, which requires a chromosomal replication origin (i.e., an ARS, and plasmid distribution to dividing cells, which requires either a chromosomal centromere for segregation or a plasmid-partitioning element. While our knowledge of yeast ARSs and centromeres is relatively advanced, we know less about chromosomal regions that can function as plasmid partitioning elements. The Rap1 protein-binding site (RAP1 present in transcriptional silencers and telomeres of budding yeast is a known plasmid-partitioning element that functions to anchor a plasmid to the inner nuclear membrane (INM, which in turn facilitates plasmid distribution to daughter cells. This Rap1-dependent INM-anchoring also has an important chromosomal role in higher-order chromosomal structures that enhance transcriptional silencing and telomere stability. Thus, plasmid partitioning can reflect fundamental features of chromosome structure and biology, yet a systematic screen for plasmid partitioning elements has not been reported. Here, we couple deep sequencing with competitive growth experiments of a plasmid library containing thousands of short ARS fragments to identify new plasmid partitioning elements. Competitive growth experiments were performed with libraries that differed only in terms of the presence or absence of a centromere. Comparisons of the behavior of ARS fragments in the two experiments allowed us to identify sequences that were likely to drive plasmid partitioning. In addition to the silencer RAP1 site, we identified 74 new putative plasmid-partitioning motifs predicted to act as binding sites for DNA binding proteins enriched for roles in negative regulation of gene expression and G2/M-phase associated biology. These data expand our knowledge of chromosomal elements that may

  13. Conjugative transfer of R-plasmids from Streptococcus faecalis to Staphylococcus aureus.

    OpenAIRE

    Schaberg, D R; Clewell, D B; Glatzer, L

    1982-01-01

    R-plasmids originally isolated from Streptococcus pyogenes(pAC1,pAM15346), Streptococcus agalactiae(pIP501), and Streptococcus faecalis(pAM beta 1) were shown to be self-transferable on filter membranes from S. faecalis JH2-2 to Staphylococcus aureus recipients. The nonconjugative plasmid pAM alpha 1 was mobilized into S. aureus by pAM beta 1. Once in S. aureus, conjugative R-plasmids could be transferred to a second S. aureus recipient or back into S. faecalis. Determinants for chloramphenic...

  14. Susceptibility to antimicrobial agents and plasmid carrying in Aeromonas hydrophila isolated from two estuarine systems.

    Science.gov (United States)

    Montoya, R; Dominguez, M; Gonzalez, C; Mondaca, M A; Zemelman, R

    1992-01-01

    Susceptibility to various antimicrobial agents and the presence of plasmids was investigated in eleven strains of Aeromonas hydrophila isolated from samples of sea water and these strains isolated from Aulacomya ater. Transference of resistance to Escherichia coli was attempted by conjugation and transformation experiments. The strains showed multiple resistance toward beta-lactam antibiotics and susceptibility to other antimicrobial agents. Five strains harboured plasmids with molecular weights below 5.7 MD. It was not possible to relate the resistance of the strains with the presence of their plasmids.

  15. A versatile one-step CRISPR-Cas9 based approach to plasmid-curing

    DEFF Research Database (Denmark)

    Lauritsen, Ida; Porse, Andreas; Sommer, Morten Otto Alexander

    2017-01-01

    Background Plasmids are widely used and essential tools in molecular biology. However, plasmids often impose a metabolic burden and are only temporarily useful for genetic engineering, bio-sensing and characterization purposes. While numerous techniques for genetic manipulation exist, a universal...... Escherichia coli and the promising cell factory chassis Pseudomonas putida. Conclusion As a fast and freely available plasmid-curing system, targeting virtually all vectors used for cloning and expression purposes, we believe that pFREE has the potential to eliminate the need for individualized vector suicide...

  16. Isolation of plasmid from the blue-green alga Spirulina platensis

    Science.gov (United States)

    Qin, Song; Tong, Shun; Zhang, Peijun; Tseng, C. K.

    1993-09-01

    CCC plasmid was isolated from an economically important blue-green alga — Spirulina platensis (1.7×106 dalton from the S6 strain and 1.2×106 dalton from the F3 strain) using a rapid method based on ultrasonic disruption of algal cells and alkaline removal of chromosomal DNA. The difference in the molecular weight of the CCC DNAs from the two strains differing in form suggests that plasmid may be related with the differentiation of algal form. This modified method, which does not use any lysozyme, is a quick and effective method of plasmid isolation, especially for filamentous blue-green algae.

  17. Natural Transformation of Acinetobacter calcoaceticus by Plasmid DNA Adsorbed on Sand and Groundwater Aquifer Material.

    Science.gov (United States)

    Chamier, B; Lorenz, M G; Wackernagel, W

    1993-05-01

    It is known that plasmid DNA and linear duplex DNA molecules adsorb to chemically purified mineral grains of sand and to particles of several clay fractions. It seemed desirable to examine whether plasmid DNA would also adsorb to nonpurified mineral materials taken from the environment and, particularly, whether adsorbed plasmid DNA would be available for natural transformation of bacteria. Therefore, microcosms consisting of chemically pure sea sand plus buffered CaCl(2) solution were compared with microcosms consisting of material sampled directly from a groundwater aquifer (GWA) plus groundwater (GW) with respect to the natural transformation of Acinetobacter calcoaceticus by mineral-associated DNA. The GWA minerals were mostly sand with inorganic precipitates and organic material plus minor quantities of silt and clay (illite and kaolinite). The amount of plasmid DNA which adsorbed to GWA (in GW) was about 80% of the amount which adsorbed to purified sand (in buffered CaCl(2) solution). Plasmid DNA adsorbed on sand transformed A. calcoaceticus significantly less efficiently than did plasmid DNA in solution. In contrast, the transformation by sand-adsorbed chromosomal DNA was as high as that by DNA in solution. In GWA/GW microcosms, the efficiency of transformation by chromosomal DNA was similar to that in sand microcosms, whereas plasmid transformation was not detectable. However, plasmid transformants were found at a low frequency when GWA was loaded with both chromosomal and plasmid DNA. Reasons for the low transformation efficiency of plasmid DNA adsorbed to mineral surfaces are discussed. Control experiments showed that the amounts of plasmid and chromosomal DNA desorbing from sand during incubation with a cell-free filtrate of a competent cell suspension did not greatly contribute to transformation in sand microcosms, suggesting that transformation occurred by direct uptake of DNA from the mineral surfaces. Taken together, the observations suggest that

  18. Construction and evaluation of plasmid vectors optimized for constitutive and regulated gene expression in Burkholderia cepacia complex isolates.

    Science.gov (United States)

    Lefebre, Matthew D; Valvano, Miguel A

    2002-12-01

    Genetic studies with Burkholderia cepacia complex isolates are hampered by the limited availability of cloning vectors and by the inherent resistance of these isolates to the most common antibiotics used for genetic selection. Also, some of the promoters widely employed for gene expression in Escherichia coli are inefficient in B. cepacia. In this study, we have utilized the backbone of the vector pME6000, a derivative of the pBBR1 plasmid that was originally isolated from Bordetella bronchiseptica, to construct a set of vectors useful for gene expression in B. cepacia. These vectors contain either the constitutive promoter of the S7 ribosomal protein gene from Burkholderia sp. strain LB400 or the arabinose-inducible P(BAD) promoter from E. coli. Promoter sequences were placed immediately upstream of multiple cloning sites in combination with the minimal sequence of pME6000 required for plasmid maintenance and mobilization. The functionality of both vectors was assessed by cloning the enhanced green fluorescent protein gene (e-gfp) and determining the levels of enhanced green fluorescent protein expression and fluorescence emission for a variety of clinical and environmental isolates of the B. cepacia complex. We also demonstrate that B. cepacia carrying these constructs can readily be detected intracellularly by fluorescence microscopy following the infection of Acanthamoeba polyphaga.

  19. Hypersensitive Response of Plasmid-Encoded AHL Synthase Gene to Lifestyle and Nutrient by Ensifer adhaerens X097

    Directory of Open Access Journals (Sweden)

    Yanhua Zeng

    2017-06-01

    Full Text Available It is known that some bacteria, especially members of the family Rhizobiaceae, have multiple N-acyl homoserine lactones (AHL synthase genes and produce multiple AHL signals. However, how bacteria selectively utilize these multiple genes and signals to cope with changing environments is poorly understood. Ensifer adhaerens is an important microorganism in terms of biotechnology, ecology and evolutionary. In this study, we investigated the AHL-based QS system of E. adhaerens X097 and its response to different lifestyles or nutrients. Draft genome sequence data indicated that X097 harbored three distinct AHL synthase genes (ensI1, 2, 3 and seven luxR homologs, which was different from other E. adhaerens strains. In vitro expression indicated that plasmid-encoded ensI1 and ensI2 directed production of multiple AHLs, while chromosome-encoded ensI3 only directed production of C14-HSL. Predicted three dimensional structure of EnsI3 was quite different from that of EnsI1 and EnsI2. X097 produced different AHL profiles in Luria-Bertani (LB and NFB medium, under biofilm and planktonic lifestyle, respectively. Notably, expression of ensI1 and ensI2 but not ensI3 is hypersensitive to different lifestyles and nutrients. The hypersensitive response of plasmid-encoded AHL synthase genes to different culture conditions may shed a light on the phylogenetic development of AHL synthase genes in Rhizobiaceae family.

  20. A Plasmid Containing the Human Metallothionein II Gene Can Function as an Antibody-assisted Electrophoretic Biosensor for Heavy Metals

    Science.gov (United States)

    2015-01-16

    and EcoR1 restriction endonuclease sites (this resulted in a 3547-bp plasmid). This ‘new’ plasmid was re-named pUC57-MT to further clarify that the...pUC57-MT plasmid was cut into two restriction fragments with BamH1 and EcoR1 endonucleases , the anti-MTF- 1 antibody preparation was able to bind both...cloned into a pUC57 plasmid at the EcoRV restriction site within the multiple cloning site of the plasmid; thus, the MT-II gene was located between BamH1

  1. CRISPR/Cas9-Assisted Transformation-Efficient Reaction (CRATER) for Near-Perfect Selective Transformation

    Science.gov (United States)

    Rothschild, Lynn J.; Greenberg, Daniel T.; Takahashi, Jack R.; Thompson, Kirsten A.; Maheshwari, Akshay J.; Kent, Ryan E.; McCutcheon, Griffin; Shih, Joseph D.; Calvet, Charles; Devlin, Tyler D.; hide

    2015-01-01

    The CRISPR (Clustered, Regularly Interspaced, Short Palindromic Repeats)/Cas9 system has revolutionized genome editing by providing unprecedented DNA-targeting specificity. Here we demonstrate that this system can be also applied in vitro to fundamental cloning steps to facilitate efficient plasmid selection for transformation and selective gene insertion into plasmid vectors by cleaving unwanted plasmid byproducts with a single-guide RNA (sgRNA)-Cas9 nuclease complex. Using fluorescent and chromogenic proteins as reporters, we demonstrate that CRISPR/Cas9 cleavage excludes multiple plasmids as well as unwanted ligation byproducts resulting in an unprecedented increase in the transformation success rate from approximately 20% to nearly 100%. Thus, this CRISPR/Cas9-Assisted Transformation-Efficient Reaction (CRATER) protocol is a novel, inexpensive, and convenient application to conventional molecular cloning to achieve near-perfect selective transformation.

  2. Rhodamine based plasmid DNA nanoparticles for mitochondrial gene therapy.

    Science.gov (United States)

    Santos, João; Sousa, Fani; Queiroz, João; Costa, Diana

    2014-09-01

    Conventional treatments for patients suffering from mitochondrial cytopathies are, in most of the cases, inefficient and there is, until now, no effective cure. Mitochondrial gene therapy can be seen as a valuable approach to reestablish normal metabolic function, adding a new perspective of treatment for mitochondrial-related diseases. We developed novel mitochondrial-targeted plasmid DNA nanoparticles by incorporation of rhodamine 123, a fluorescent amphiphile with mitochondria affinity. These nanocarriers have suitable sizes for gene therapy purposes, are biocompatible and are able to protect the encapsulated pDNA from nucleases digestion. Furthermore, the pDNA vectors were easily internalized intodifferent cell linesand targeted delivery to mitochondria was confirmed by fluorescence confocal microscopy. In addition, p53 protein inexpression, mediated by rhodamine nanoparticles, demonstrates the ability of the proposed system to target mitochondria; due to the different genetic code in mitochondria, p53 protein cannot be expressed. Overall, the presented model pDNA constructs possess interesting properties as gene delivery systems and their mitochondrial target ability might have a profound relevance for further engineering of adequate vectors to be applied in mitochondrial gene therapy field. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. plasmid in Saccharomyces species and in Saccharomyces cerevisiae.

    Science.gov (United States)

    Strope, Pooja K; Kozmin, Stanislav G; Skelly, Daniel A; Magwene, Paul M; Dietrich, Fred S; McCusker, John H

    2015-12-01

    We determined that extrachromosomal 2μ plasmid was present in 67 of the Saccharomyces cerevisiae 100-genome strains; in addition to variation in the size and copy number of 2μ, we identified three distinct classes of 2μ. We identified 2μ presence/absence and class associations with populations, clinical origin and nuclear genotypes. We also screened genome sequences of S. paradoxus, S. kudriavzevii, S. uvarum, S. eubayanus, S. mikatae, S. arboricolus and S. bayanus strains for both integrated and extrachromosomal 2μ. Similar to S. cerevisiae, we found no integrated 2μ sequences in any S. paradoxus strains. However, we identified part of 2μ integrated into the genomes of some S. uvarum, S. kudriavzevii, S. mikatae and S. bayanus strains, which were distinct from each other and from all extrachromosomal 2μ. We identified extrachromosomal 2μ in one S. paradoxus, one S. eubayanus, two S. bayanus and 13 S. uvarum strains. The extrachromosomal 2μ in S. paradoxus, S. eubayanus and S. cerevisiae were distinct from each other. In contrast, the extrachromosomal 2μ in S. bayanus and S. uvarum strains were identical with each other and with one of the three classes of S. cerevisiae 2μ, consistent with interspecific transfer. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Atypical Enteropathogenic Escherichia coli Secretes Plasmid Encoded Toxin

    Directory of Open Access Journals (Sweden)

    Rita C. Ruiz

    2014-01-01

    Full Text Available Plasmid encoded toxin (Pet is a serine protease originally described in enteroaggregative Escherichia coli (EAEC prototype strain 042 whose entire characterization was essentially obtained from studies performed with the purified toxin. Here we show that Pet is not exclusive to EAEC. Atypical enteropathogenic Escherichia coli (aEPEC strains, isolated from diarrhea cases, express Pet and its detection in supernatants of infected HEp-2 cells coincides with the appearance of cell damage, which, in turn, were similar to those described with purified Pet. Pet secretion and the cytotoxic effects are time and culture medium dependent. In presence of DMEM supplemented with tryptone cell rounding and detachment were observed after just 5 h of incubation with the bacteria. In the absence of tryptone, the cytotoxic effects were detected only after 24 h of infection. We also show that, in addition to the prototype EAEC, other pet+ EAEC strains, also isolated from diarrhea cases, induce cellular damage in the same degree as the aEPEC. The cytotoxic effects of EAEC and aEPEC strains were significantly reduced in the presence of a serine protease inhibitor or anti-Pet IgG serum. Our results show a common aspect between the aEPEC and EAEC and provide the first evidence pointing to a role of Pet in aEPEC pathogenesis.

  5. Evaluation of Maltose-Based Cationic Liposomes with Different Hydrophobic Tails for Plasmid DNA Delivery

    Directory of Open Access Journals (Sweden)

    Bo Li

    2017-03-01

    Full Text Available In this paper, three cationic glycolipids with different hydrophobic chains Malt-DiC12MA (IX a, Malt-DiC14MA (IX b and Malt-DiC16MA (IX c were constructed by using maltose as starting material via peracetylation, selective 1-O-deacetylation, trichloroacetimidation, glycosylation, azidation, deacetylation, Staudinger reaction, tertiary amination and quaternization. Target compounds and some intermediates were characterized by 1H-NMR, 13C-NMR, 1H-1H COSY and 1H-13C HSQC. The results of gel electrophoresis assay, atomic force microscopy images (AFM and dynamic light scattering (DLS demonstrate that all the liposomes could efficiently bind and compact DNA (N/P ratio less than 2 into nanoparticles with proper size (88 nm–146 nm, PDI < 0.4 and zeta potential (+15 mV–+26 mV. The transfection efficiency and cellular uptake of glycolipids in HEK293 cell were evaluated through the enhanced green fluorescent protein (EGFP expression and Cy3-labeled pEGFP-C1 (Enhanced Green Fluorescent Protein plasmid images, respectively. Importantly, it indicated that Malt-DiC14MA exhibited high gene transfer efficiency and better uptake capability at N/P ratios of 8:1. Additionally, the result of cell viability showed glycolipids exhibited low biotoxicity and good biocompatibility by thiazolyl blue tetrazolium bromide (MTT assay.

  6. Electroporation of Alcaligenes eutrophus with (mega) plasmids and genomic DNA fragments.

    Science.gov (United States)

    Taghavi, S; van der Lelie, D; Mergeay, M

    1994-10-01

    Electroporation was used as a tool to explore the genetics of the heavy-metal-resistant strain Alcaligenes eutrophus CH34. A 12.9-kb A. eutrophus-Escherichia coli shuttle vector, pMOL850, was constructed to optimize electroporation conditions. This vector is derived from the E. coli plasmid pSUP202 and contains the replication region of the A. eutrophus megaplasmid pMOL28. Electroporation was used to transform A. eutrophus CH34 derivatives with megaplasmids (sizes up to 240 kb), and transformants were selected for resistance to heavy metals. Electroporation was also performed with endonuclease-digested genomic DNA. Transformation of markers affecting lysine biosynthesis (lysA194) and biosynthesis of the siderophore alcaligin E were observed. Transfer of the nonselected markers pheB332 and aro-333, linked to lysA194, confirmed the intervention of homologous recombination. However, during transformation of ale::Tn5-Tc, illegitimate recombination and transposition were also observed as an alternative for the inheritance of the Tn5-Tc markers.

  7. Identification of a Novel Conjugative Plasmid in Mycobacteria That Requires Both Type IV and Type VII Secretion

    KAUST Repository

    Ummels, R.

    2014-09-23

    Conjugative plasmids have been identified in a wide variety of different bacteria, ranging from proteobacteria to firmicutes, and conjugation is one of the most efficient routes for horizontal gene transfer. The most widespread mechanism of plasmid conjugation relies on different variants of the type IV secretion pathway. Here, we describe the identification of a novel type of conjugative plasmid that seems to be unique for mycobacteria. Interestingly, while this plasmid is efficiently exchanged between different species of slow-growing mycobacteria, including Mycobacterium tuberculosis, it could not be transferred to any of the fast-growing mycobacteria tested. Genetic analysis of the conjugative plasmid showed the presence of a locus containing homologues of three type IV secretion system components and a relaxase. In addition, a new type VII secretion locus was present. Using transposon insertion mutagenesis, we show that in fact both these secretion systems are essential for conjugation, indicating that this plasmid represents a new class of conjugative plasmids requiring two secretion machineries. This plasmid could form a useful new tool to exchange or introduce DNA in slow-growing mycobacteria. IMPORTANCE: Conjugative plasmids play an important role in horizontal gene transfer between different bacteria and, as such, in their adaptation and evolution. This effect is most obvious in the spread of antibiotic resistance genes. Thus far, conjugation of natural plasmids has been described only rarely for mycobacterial species. In fact, it is generally accepted that M. tuberculosis does not show any recent sign of horizontal gene transfer. In this study, we describe the identification of a new widespread conjugative plasmid that can also be efficiently transferred to M. tuberculosis. This plasmid therefore poses both a threat and an opportunity. The threat is that, through the acquisition of antibiotic resistance markers, this plasmid could start a rapid spread of

  8. Chrysotile asbestos fibers mediate transformation of Escherichia coli by exogenous plasmid DNA.

    Science.gov (United States)

    Yoshida, N; Ikeda, T; Yoshida, T; Sengoku, T; Ogawa, K

    2001-02-20

    The ability of chrysotile asbestos fibers to introduce the exogenous plasmid pUC18 into Escherichia coli JM109 cells was tested. Cells were transformed with pUC18 DNA although the frequency of transformation was quite low: 759+/-301 transformants were obtained per microgram of pUC18. Plasmids were purified from E. coli which had been transformed by mediation with chrysotile asbestos. Following this, the plasmids were confirmed to be pUC18 by Southern hybridization. This asbestos-mediated transformation was optimal within 5 min when 10 mg ml(-1) of asbestos was used. Plasmids up to 7.69 kb were introduced by this method.

  9. [Construction of eucaryotic expression plasmid carrying the BMP7 gene and expression in mesenchymal stem cells].

    Science.gov (United States)

    Hou, Shu-xun; Sun, Da-ming; Du, Gui-xin; Tong, Yi-gang; Fu, Xiao-bing

    2003-06-01

    To construct an eucaryotic expression plasmid carrying the BMP7 gene and express in MSCs. The BMP7 gene was cloned into the eucaryotic expression vector pcDNA3.1. At the same time, mesenchymal stem cells (MSCs) were isolated and cultured in vitro. The plasmid carrying the BMP7 gene was transfected into MSCs. PCR and digesting demonstrated that the eucaryotic expression plasmid -pcDNA-BMP7 was obtained. RT-PCR and immunohistochemical methods showed that the BMP7 gene was expressed in MSCs. Construction of an eucaryotic expression plasmid carrying BMP7 gene and expression in MSCs provide a sound basis for gene therapy using the BMP7 gene and the ideal seeds for tissue engineering.

  10. Second generation sequencing for elucidating the diversity of bacteria and plasmids in soil

    DEFF Research Database (Denmark)

    Holmsgaard, Peter Nikolai

    during the season. In the sixth paper, unspecific DNA amplification using multiple displacement amplification was shown to preferentially amplify DNA from some bacterial species over others. In conclusion, papers II to V use, among other things, amplicon pyrosequencing to elucidate the bacterial...... but also plasmids diversity in soil. The plasmid group in focus are the broad host range IncP-1 plasmids that were studied by amplicon pyroseqeuncing of the trfA gene encoding the replication initiation proteins. The thesis consists of an introduction spanning microbial ecology, IncP-1 plasmids...... and amplicon pyrosequencing and briefly the related bioinformatics. This is followed by six papers of which one is published and five are manuscripts. In the first paper, amplicon pyrosequencing of the 16S rRNA gene was use to investigate the bias in cell extraction from soil imposed by Nycodenz density...

  11. Hydrocarbon mineralization in sediments and plasmid incidence in sediment bacteria from the Campeche bank

    Energy Technology Data Exchange (ETDEWEB)

    Leahy, J.G.; Somerville, C.C.; Cunningham, K.A.; Adamantiades, G.A.; Byrd, J.J.; Colwell, R.R. (Univ. of Maryland, College Park (USA))

    1990-06-01

    Rates of degradation of radiolabeled hydrocarbons and incidence of bacterial plasmid DNA were investigated in sediment samples collected from the Campeche Bank, Gulf of Mexico, site of an offshore oil field containing several petroleum platforms. Overall rates of mineralization of ({sup 14}C) hexadecane and ({sup 14}C)phenanthrene measured for sediments were negligible; <1% of the substrate was converted to CO{sub 2} in all cases. Low mineralization rates are ascribed to nutrient limitations and to lack of adaptation by microbial communities to hydrocarbon contaminants. Plasmid frequency data for sediment bacteria similarly showed no correlation with proximity to the oil field, but, instead, showed correlation with water column depth at each sampling site. Significant differences between sites were observed for proportion of isolates carrying single or multiple plasmids and mean number of plasmids per isolate, each of which increased as a function of depth.

  12. Hydrocarbon mineralization in sediments and plasmid incidence in sediment bacteria from the campeche bank.

    Science.gov (United States)

    Leahy, J G; Somerville, C C; Cunningham, K A; Adamantiades, G A; Byrd, J J; Colwell, R R

    1990-06-01

    Rates of degradation of radiolabeled hydrocarbons and incidence of bacterial plasmid DNA were investigated in sediment samples collected from the Campeche Bank, Gulf of Mexico, site of an offshore oil field containing several petroleum platforms. Overall rates of mineralization of [C]hexadecane and [C]phenanthrene measured for sediments were negligible; <1% of the substrate was converted to CO(2) in all cases. Low mineralization rates are ascribed to nutrient limitations and to lack of adaptation by microbial communities to hydrocarbon contaminants. Plasmid frequency data for sediment bacteria similarly showed no correlation with proximity to the oil field, but, instead, showed correlation with water column depth at each sampling site. Significant differences between sites were observed for proportion of isolates carrying single or multiple plasmids and mean number of plasmids per isolate, each of which increased as a function of depth.

  13. Emerging patterns of plasmid-host coevolution that stabilize antibiotic resistance

    National Research Council Canada - National Science Library

    Thibault Stalder; Linda M Rogers; Chris Renfrow; Hirokazu Yano; Zachary Smith; Eva M Top

    2017-01-01

    Multidrug resistant bacterial pathogens have become a serious global human health threat, and conjugative plasmids are important drivers of the rapid spread of resistance to last-resort antibiotics...

  14. Comparative investigations of Klebsiella species of clinical origin: plasmid patterns, biochemical reactions, antibiotic resistances and serotypes.

    Science.gov (United States)

    Podschun, R; Heineken, P; Ullmann, U; Sonntag, H G

    1986-09-01

    A total of 124 K. pneumoniae and 52 K. oxytoca isolates obtained from clinical specimens was investigated for plasmid patterns, biochemical reactions, antibiotic resistances and serotypes regarding to the distribution and relationships of these characters. A great diversity of plasmid patterns, bio/serotypes and resistance patterns was revealed. About 90% of strains contained plasmid DNA and up to seven plasmid bands per isolate could be shown. For K. pneumoniae, serotype 7 and for K. oxytoca, type 55 were most common. In general, little difference between both species was found and characters were similarly distributed. With respect to the site of isolation, serotype 7 was predominating in K. pneumoniae strains from the respiratory tract. Highly multiple-resistant organism were found in the largest number in specimens from the urogenital tract, in the lowest in specimens from wounds. Extensive statistical analyses did not detect any relationship among the characters investigated.

  15. Plasmid-Mediated Resistance in Enterobacteriaceae Changing Landscape and Implications for Therapy

    NARCIS (Netherlands)

    Schultsz, Constance; Geerlings, Suzanne

    2012-01-01

    Antimicrobial resistance is increasing worldwide, and pathogenic microorganism's that are resistant to all available antimicrobial agents are increasingly reported. Emerging plasmid-encoded extended-spectrum beta-lactamases (ESBLs) and carbapenemases are increasingly reported worldwide.

  16. Plasmid-Mediated Bioaugmentation of Wastewater Microbial Communities in a Laboratory-Scale Bioreactor

    Science.gov (United States)

    Bathe, Stephan; Hausner, Martina

    Xenobiotic degradation during biological wastewater treatment can be established or enhanced by bioaugmentation - the addition of biological agents carrying biodegradation genes required to perform the task. Whereas the addition of microbial cells carrying chromosomally encoded catabolic genes can be impaired by limited survival of the added microorganisms, the addition of donor organisms carrying a transmissible catabolic plasmid is a promising alternative. This plasmid can spread within the indigenous microbial community of the system, circumventing the need for extended survival of the introduced bacterial strain. Here we discuss how the catabolic plasmid pNB2 can be evaluated towards its potential to facilitate the degradation of a xenobiotic compound, 3-chloroaniline, and demonstrate the applicability of this plasmid to accomplish 3-chloroaniline degradation in a bioreactor setting after in situ transfer to suitable recipient strains.

  17. PLASMID DNA DAMAGE CAUSED BY METHYLATED ARSENICALS, ASCORBIC ACID AND HUMAN LIVER FERRITIN

    Science.gov (United States)

    PLASMID DNA DAMAGE CAOUSED BY METHYLATED ARSENICALS, ASCORBIC ACID AND HUMAN LIVER FERRITINABSTRACT Both dimethylarsinic acid (DMA(V)) and dimethylarsinous acid (DMA(III)) release iron from human liver ferritin (HLF) with or without the presence of ascorbic acid. ...

  18. Characterization of bovine Haemophilus somnus by biotyping, plasmid profiling, REA-patterns and ribotyping

    DEFF Research Database (Denmark)

    Fussing, V.; Wegener, Henrik Caspar

    1993-01-01

    A total of 105 strains of H. somnus isolated from cattle in Denmark and other countries during 1982-1951 were compared with regard to biotypes (fermentation of 8 different sugars), plasmid profiles, Taq1 restriction endonuclease analysis of chromosomal DNA (REA-typing) and EcoRI-generated DNA...... restriction fragment length polymorphisms of rRNA genes (ribotyping). Eighty-four strains originating from cases of pneumonia, and 21 originating from the genitals of bulls were included in this study. Biotyping yielded 21 different types. Twenty-two of the isolates contained plasmids, and these were divided...... into 12 distinct plasmid profiles. Analysis of chromosomal DNA restriction patterns, resulted in 33 different REA patterns and 16 different ribopatterns in the investigated strains. Biotypes, REA-types, and ribotypes generally showed good correlation, whereas plasmid profiles did not correlate with any...

  19. Construction of three new Gateway® expression plasmids for Trypanosoma cruzi.

    Science.gov (United States)

    Alonso, Victoria L; Ritagliati, Carla; Cribb, Pamela; Serra, Esteban C

    2014-12-01

    We present here three expression plasmids for Trypanosoma cruzi adapted to the Gateway® recombination cloning system. Two of these plasmids were designed to express trypanosomal proteins fused to a double tag for tandem affinity purification (TAPtag). The TAPtag and Gateway® cassette were introduced into an episomal (pTEX) and an integrative (pTREX) plasmid. Both plasmids were assayed by introducing green fluorescent protein (GFP) by recombination and the integrity of the double-tagged protein was determined by western blotting and immunofluorescence microscopy. The third Gateway adapted vector assayed was the inducible pTcINDEX. When tested with GFP, pTcINDEX-GW showed a good response to tetracycline, being less leaky than its precursor (pTcINDEX).

  20. Complete nucleotide sequence of the self-transmissible TOL plasmid pD2RT provides new insight into arrangement of toluene catabolic plasmids

    DEFF Research Database (Denmark)

    Jutkina, Jekaterina; Hansen, Lars H.; Li, Lili

    2013-01-01

    In the present study we report the complete nucleotide sequence of the toluene catabolic plasmid pD2RT of Pseudomonas migulae strain D2RT isolated from Baltic Sea water. The pD2RT is 129,894 base pairs in size with an average G+ C content of 53.75%. A total of 135 open reading frames (ORFs) were...... predicted to encode proteins, among them genes for catabolism of toluene, plasmid replication, maintenance and conjugative transfer. ORFs encoding proteins with putative functions in stress response, transposition and site- ...

  1. NetF-producing Clostridium perfringens: Clonality and plasmid pathogenicity loci analysis.

    Science.gov (United States)

    Mehdizadeh Gohari, Iman; Kropinski, Andrew M; Weese, Scott J; Whitehead, Ashley E; Parreira, Valeria R; Boerlin, Patrick; Prescott, John F

    2017-04-01

    Clostridium perfringens is an important cause of foal necrotizing enteritis and canine acute hemorrhagic diarrhea. A major virulence determinant of the strains associated with these diseases appears to be a beta-sheet pore-forming toxin, NetF, encoded within a pathogenicity locus (NetF locus) on a large tcp-conjugative plasmid. Strains producing NetF also produce the putative toxin NetE, encoded within the same pathogenicity locus, as well as CPE enterotoxin and CPB2 on a second plasmid, and sometimes the putative toxin NetG within a pathogenicity locus (NetG locus) on another separate large conjugative plasmid. Previous genome sequences of two netF-positive C. perfringens showed that they both shared three similar plasmids, including the NetF/NetE and CPE/CPB2 toxins-encoding plasmids mentioned above and a putative bacteriocin-encoding plasmid. The main purpose of this study was to determine whether all NetF-producing strains share this common plasmid profile and whether their distinct NetF and CPE pathogenicity loci are conserved. To answer this question, 15 equine and 15 canine netF-positive isolates of C. perfringens were sequenced using Illumina Hiseq2000 technology. In addition, the clonal relationships among the NetF-producing strains were evaluated by core genome multilocus sequence typing (cgMLST). The data obtained showed that all NetF-producing strains have a common plasmid profile and that the defined pathogenicity loci on the plasmids are conserved in all these strains. cgMLST analysis showed that the NetF-producing C. perfringens strains belong to two distinct clonal complexes. The pNetG plasmid was absent from isolates of one of the clonal complexes, and there were minor but consistent differences in the NetF/NetE and CPE/CPB2 plasmids between the two clonal complexes. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Comparative metagenomic analysis of plasmid encoded functions in the human gut microbiome

    Directory of Open Access Journals (Sweden)

    Marchesi Julian R

    2010-01-01

    Full Text Available Abstract Background Little is known regarding the pool of mobile genetic elements associated with the human gut microbiome. In this study we employed the culture independent TRACA system to isolate novel plasmids from the human gut microbiota, and a comparative metagenomic analysis to investigate the distribution and relative abundance of functions encoded by these plasmids in the human gut microbiome. Results Novel plasmids were acquired from the human gut microbiome, and homologous nucleotide sequences with high identity (>90% to two plasmids (pTRACA10 and pTRACA22 were identified in the multiple human gut microbiomes analysed here. However, no homologous nucleotide sequences to these plasmids were identified in the murine gut or environmental metagenomes. Functions encoded by the plasmids pTRACA10 and pTRACA22 were found to be more prevalent in the human gut microbiome when compared to microbial communities from other environments. Among the most prevalent functions identified was a putative RelBE toxin-antitoxin (TA addiction module, and subsequent analysis revealed that this was most closely related to putative TA modules from gut associated bacteria belonging to the Firmicutes. A broad phylogenetic distribution of RelE toxin genes was observed in gut associated bacterial species (Firmicutes, Bacteroidetes, Actinobacteria and Proteobacteria, but no RelE homologues were identified in gut associated archaeal species. We also provide indirect evidence for the horizontal transfer of these genes between bacterial species belonging to disparate phylogenetic divisions, namely Gram negative Proteobacteria and Gram positive species from the Firmicutes division. Conclusions The application of a culture independent system to capture novel plasmids from the human gut mobile metagenome, coupled with subsequent comparative metagenomic analysis, highlighted the unexpected prevalence of plasmid encoded functions in the gut microbial ecosystem. In

  3. Centromere pairing by a plasmid-encoded type I ParB protein

    DEFF Research Database (Denmark)

    Ringgaard, Simon; Löwe, Jan; Gerdes, Kenn

    2007-01-01

    The par2 locus of Escherichia coli plasmid pB171 encodes two trans-acting proteins, ParA and ParB, and two cis-acting sites, parC1 and parC2, to which ParB binds cooperatively. ParA is related to MinD and oscillates in helical structures and thereby positions ParB/parC-carrying plasmids regularly...

  4. Reverse Genetics Plasmid for Cloning Unstable Influenza A Virus Gene Segments

    OpenAIRE

    Zhou, Bin; Jerzak, Greta; Scholes, Derek T.; Donnelly, Matthew E.; Li, Yan; Wentworth, David E.

    2011-01-01

    Reverse genetics approaches that enable the generation of recombinant influenza A viruses entirely from plasmids are invaluable for studies on virus replication, morphogenesis, pathogenesis, or transmission. Furthermore, influenza virus reverse genetics is now critical for the development of new vaccines for this human and animal pathogen. Periodically, influenza gene segments are unstable within plasmids in bacteria. The PB2 gene segment of a highly pathogenic avian H5 influenza virus A/Turk...

  5. Exploring antibiotic resistance genes and metal resistance genes in plasmid metagenomes from wastewater treatment plants

    OpenAIRE

    Li, An-Dong; Li, Li-Guan; Zhang, Tong

    2015-01-01

    Plasmids operate as independent genetic elements in microorganism communities. Through horizontal gene transfer, they can provide their host microorganisms with important functions such as antibiotic resistance and heavy metal resistance. In this study, six metagenomic libraries were constructed with plasmid DNA extracted from influent, activated sludge and digested sludge of two wastewater treatment plants. Compared with the metagenomes of the total DNA extracted from the same sectors of the...

  6. The plasmid pattern as an epidemiologic tool for Salmonella typhimurium epidemics: comparison with the lysotype.

    Science.gov (United States)

    Brunner, F; Margadant, A; Peduzzi, R; Piffaretti, J C

    1983-07-01

    In the study of a limited epidemic of Salmonella typhimurium infections, the plasmid content (pattern) of bacteria was used as an epidemiologic tool outside the hospital environment. Comparisons were made with lysotyping, resistance pattern determination (14 antibiotics), and biotyping. Plasmid pattern determination was found to be as useful and accurate as lysotyping, whereas resistance pattern determination was of more limited interest. However, in this report biotyping was of no use.

  7. Broad-Host-Range IncP-1 plasmids and their resistance potential

    Directory of Open Access Journals (Sweden)

    Magdalena ePopowska

    2013-03-01

    Full Text Available The plasmids of the incompatibility group IncP-1, also called IncP, as extrachromosomal genetic elements can transfer and replicate virtually in all Gram-negative bacteria. They are composed of backbone genes that encode a variety of essential functions and accessory genes that have implications for human health and environmental bioremediation. Broad-host-range IncP plasmids are known to spread genes between distinct phylogenetic groups of bacteria. These genes often code for resistances to a broad spectrum of antibiotics, heavy metals and quaternary ammonium compounds used as disinfectants. The backbone of these plasmids carries modules that enable them to effectively replicate, move to a new host via conjugative transfer and to be stably maintained in bacterial cells. The adaptive, resistance and virulence genes are mainly located on mobile genetic elements integrated between the functional plasmid backbone modules. Environmental studies have demonstrated the wide distribution of IncP-like replicons in manure, soils and wastewater treatment plants. They also are present in strains of pathogenic or opportunistic bacteria, which can be a cause for concern, because they may encode multiresistance. Their broad distribution suggests that IncP plasmids play a crucial role in bacterial adaptation by utilizing horizontal gene transfer. This review summarizes the variety of genetic information and physiological functions carried by IncP plasmids, which can contribute to the spread of antibiotic and heavy metal resistance while also mediating the process of bioremediation of pollutants. Due to the location of the resistance genes on plasmids with a broad host range and the presence of transposons carrying these genes it seems that the spread of these genes would be possible and quite hazardous in infection control. Future studies are required to determine the level of risk of the spread of resistance genes located on these plasmids.

  8. Diversification of broad host range plasmids correlates with the presence of antibiotic resistance genes.

    Science.gov (United States)

    Li, Xiaobin; Wang, Yafei; Brown, Celeste J; Yao, Fei; Jiang, Yong; Top, Eva M; Li, Hui

    2016-01-01

    The IncP-1ε subgroup is a recently identified phylogenetic clade within IncP-1 plasmids, which plays an important role in the spread of antibiotic resistance and degradation of xenobiotic pollutants. Here, four IncP-1ε plasmids were exogenously captured from a petroleum-contaminated habitat in China and compared phylogenetically and genomically with previously reported IncP-1ε and other IncP-1 plasmids. The IncP-1ε plasmids can be clearly subdivided into two subclades, designated as ε-I and ε-II, based on phylogenetic analysis of backbone proteins TraI and TrfA. This was further supported by comparison of concatenated backbone genes. Moreover, the two subclades differed in the transposon types, phenotypes and insertion locations of the accessory elements. The accessory genes on ε-I plasmids were inserted between parA and traC, and harbored ISPa17 and Tn402-like transposon modules, typically carrying antibiotic resistance genes. In contrast, the accessory elements on ε-II plasmids were typically located between trfA and oriV, and contained IS1071, which was commonly inserted within the Tn501-like transposon, typically harboring a cluster of genes encoding mercury resistance and/or catabolic pathways. Our study is one of the first to compare IncP-1 plasmid genomes from China, expands the available collection of IncP-1ε plasmids and enhances our understanding of their diversity, biogeography and evolutionary history. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Characterization of plasmids in a human clinical strain of Lactococcus garvieae.

    Directory of Open Access Journals (Sweden)

    Mónica Aguado-Urda

    Full Text Available The present work describes the molecular characterization of five circular plasmids found in the human clinical strain Lactococcus garvieae 21881. The plasmids were designated pGL1-pGL5, with molecular sizes of 4,536 bp, 4,572 bp, 12,948 bp, 14,006 bp and 68,798 bp, respectively. Based on detailed sequence analysis, some of these plasmids appear to be mosaics composed of DNA obtained by modular exchange between different species of lactic acid bacteria. Based on sequence data and the derived presence of certain genes and proteins, the plasmid pGL2 appears to replicate via a rolling-circle mechanism, while the other four plasmids appear to belong to the group of lactococcal theta-type replicons. The plasmids pGL1, pGL2 and pGL5 encode putative proteins related with bacteriocin synthesis and bacteriocin secretion and immunity. The plasmid pGL5 harbors genes (txn, orf5 and orf25 encoding proteins that could be considered putative virulence factors. The gene txn encodes a protein with an enzymatic domain corresponding to the family actin-ADP-ribosyltransferases toxins, which are known to play a key role in pathogenesis of a variety of bacterial pathogens. The genes orf5 and orf25 encode two putative surface proteins containing the cell wall-sorting motif LPXTG, with mucin-binding and collagen-binding protein domains, respectively. These proteins could be involved in the adherence of L. garvieae to mucus from the intestine, facilitating further interaction with intestinal epithelial cells and to collagenous tissues such as the collagen-rich heart valves. To our knowledge, this is the first report on the characterization of plasmids in a human clinical strain of this pathogen.

  10. Complete sequence of two KPC-harbouring plasmids from Pseudomonas aeruginosa.

    Science.gov (United States)

    Naas, Thierry; Bonnin, Rémy A; Cuzon, Gaëlle; Villegas, Maria-Virginia; Nordmann, Patrice

    2013-08-01

    KPC-producing Pseudomonas aeruginosa are increasingly isolated in the Americas and in the Caribbean islands. Here, we determined the whole-plasmid sequence of two plasmids carrying the blaKPC-2 gene from multidrug-resistant P. aeruginosa clinical isolates from Colombia. The two plasmids, pCOL-1 and pPA-2, were transferred to Escherichia coli recipient strain TOP10 and completely sequenced using high-throughput pyrosequencing for pCOL-1 and classical Sanger sequencing for pPA-2. Both plasmids could be transferred to E. coli by transformation and displayed no other resistance marker besides KPC. Plasmid pCOL-1 was 31 529 bp in size, contained 31 open reading frames (ORFs) and belonged to the IncP-6 replicon group. It exhibited genes involved in replication, mobilization and partitioning, but none involved in conjugation. Plasmid pPA-2 was 7995 bp in size and contained seven ORFs. It exhibited a replicase gene of IncU, but was lacking genes involved in mobilization, partitioning and conjugation. Only 2072 bp matched Tn4401, including the blaKPC-2 gene, part of ISKpn6 and a 73 bp segment located upstream of the blaKPC-2 gene, containing the P1 promoter. Sequence identity was interrupted by a Tn3 transposon, itself interrupted by an IS26 element inserted within the β-lactamase blaTEM-1 gene. Here we present the genetic features of the very first plasmids carrying the blaKPC-2 gene from P. aeruginosa. The emergence of the blaKPC-2 gene on unrelated plasmids, differing in size and in incompatibility group, and harbouring different genetic structures containing the blaKPC-2 genes in P. aeruginosa isolates suggests that this resistance trait may follow a dissemination scheme in P. aeruginosa similar to that seen in Enterobacteriaceae.

  11. Small, Enigmatic Plasmids of the Nosocomial Pathogen, Acinetobacter baumannii: Good, Bad, Who Knows?

    Directory of Open Access Journals (Sweden)

    Soo Sum Lean

    2017-08-01

    Full Text Available Acinetobacter baumannii is a Gram-negative nosocomial pathogen that has become a serious healthcare concern within a span of two decades due to its ability to rapidly acquire resistance to all classes of antimicrobial compounds. One of the key features of the A. baumannii genome is an open pan genome with a plethora of plasmids, transposons, integrons, and genomic islands, all of which play important roles in the evolution and success of this clinical pathogen, particularly in the acquisition of multidrug resistance determinants. An interesting genetic feature seen in majority of A. baumannii genomes analyzed is the presence of small plasmids that usually ranged from 2 to 10 kb in size, some of which harbor antibiotic resistance genes and homologs of plasmid mobilization genes. These plasmids are often overlooked when compared to their larger, conjugative counterparts that harbor multiple antibiotic resistance genes and transposable elements. In this mini-review, we will examine our current knowledge of these small A. baumannii plasmids and look into their genetic diversity and phylogenetic relationships. Some of these plasmids, such as the Rep-3 superfamily group and the pRAY-type, which has no recognizable replicase genes, are quite widespread among diverse A. baumannii clinical isolates worldwide, hinting at their usefulness to the lifestyle of this pathogen. Other small plasmids especially those from the Rep-1 superfamily are truly enigmatic, encoding only hypothetical proteins of unknown function, leading to the question of whether these small plasmids are “good” or “bad” to their host A. baumannii.

  12. Molecular Analysis of Antibiotic Resistance Determinants and Plasmids in Malaysian Isolates of Multidrug Resistant Klebsiella pneumoniae.

    Directory of Open Access Journals (Sweden)

    Farah Al-Marzooq

    Full Text Available Infections caused by multidrug resistant Klebsiella pneumoniae have been increasingly reported in many parts of the world. A total of 93 Malaysian multidrug resistant K. pneumoniae isolated from patients attending to University of Malaya Medical Center, Kuala Lumpur, Malaysia from 2010-2012 were investigated for antibiotic resistance determinants including extended-spectrum beta-lactamases (ESBLs, aminoglycoside and trimethoprim/sulfamethoxazole resistance genes and plasmid replicons. CTX-M-15 (91.3% was the predominant ESBL gene detected in this study. aacC2 gene (67.7% was the most common gene detected in aminoglycoside-resistant isolates. Trimethoprim/sulfamethoxazole resistance (90.3% was attributed to the presence of sul1 (53.8% and dfrA (59.1% genes in the isolates. Multiple plasmid replicons (1-4 were detected in 95.7% of the isolates. FIIK was the dominant replicon detected together with 13 other types of plasmid replicons. Conjugative plasmids (1-3 plasmids of ~3-100 kb were obtained from 27 of 43 K. pneumoniae isolates. An ESBL gene (either CTX-M-15, CTX-M-3 or SHV-12 was detected from each transconjugant. Co-detection with at least one of other antibiotic resistance determinants [sul1, dfrA, aacC2, aac(6'-Ib, aac(6'-Ib-cr and qnrB] was noted in most conjugative plasmids. The transconjugants were resistant to multiple antibiotics including β-lactams, gentamicin and cotrimoxazole, but not ciprofloxacin. This is the first study describing the characterization of plasmids circulating in Malaysian multidrug resistant K. pneumoniae isolates. The results of this study suggest the diffusion of highly diverse plasmids with multiple antibiotic resistance determinants among the Malaysian isolates. Effective infection control measures and antibiotic stewardship programs should be adopted to limit the spread of the multidrug resistant bacteria in healthcare settings.

  13. Complete DNA Sequence, Comparative Genomics, and Prevalence of an IncHI2 Plasmid Occurring among Extraintestinal Pathogenic Escherichia coli Isolates ▿†

    OpenAIRE

    Johnson, Timothy J.; Wannemeuhler, Yvonne M.; Scaccianoce, Jennifer A.; Johnson, Sara J.; Nolan, Lisa K.

    2006-01-01

    We have sequenced a large plasmid that occurs among avian pathogenic Escherichia coli isolates. This plasmid, pAPEC-O1-R, is a 241,387-bp IncHI2 plasmid which is cotransmissible via bacterial conjugation with a ColBM virulence plasmid, encodes resistance to eight antimicrobial agents, and appears to occur at low rates among extraintestinal E. coli isolates.

  14. An easy and versatile 2-step protocol for targeted modification and subcloning of DNA from bacterial artificial chromosomes using non-commercial plasmids

    Directory of Open Access Journals (Sweden)

    Hartwich Heiner

    2012-03-01

    Full Text Available Abstract Background Promoter-specific expression of foreign DNA in transgenic organisms often relies on bacterial artificial chromosomes (BACs. This approach requires modification and subcloning of BAC-DNA by recombineering technologies in Escherichia coli. Most current protocols rely on commercial kits or isolation of BACs, their transfer between different host strains, and their restriction. Findings In this report we present a 2-step protocol for efficient modification and subcloning of DNA from bacterial artificial chromosomes using the non-commercial plasmids pKM208 and pTP223, distributed from addgene.com. A targeting cassette was successfully integrated into a BAC and 42 kb of this construct were subcloned. Both a plasmid-derived substrate with longer homology arms and a PCR-generated substrate with short homology arms (50 bp were used for recombination. pKM208 and pTP223 contain all required genes for recombineering, but differ in their antibiotic resistance genes. This makes the system independent of the selection markers on the DNA molecules targeted for recombination. Conclusions The time and cost saving protocol presented here compares favorably to currently used systems. Using non-commercial plasmids, it allows targeted modification and cloning of large DNA (> 40 kb fragments in vivo without restriction and ligation. Furthermore, both steps are performed in the same host eliminating the need to isolate BAC DNA and to use different bacterial strains.

  15. An easy and versatile 2-step protocol for targeted modification and subcloning of DNA from bacterial artificial chromosomes using non-commercial plasmids.

    Science.gov (United States)

    Hartwich, Heiner; Nothwang, Hans Gerd

    2012-03-20

    Promoter-specific expression of foreign DNA in transgenic organisms often relies on bacterial artificial chromosomes (BACs). This approach requires modification and subcloning of BAC-DNA by recombineering technologies in Escherichia coli. Most current protocols rely on commercial kits or isolation of BACs, their transfer between different host strains, and their restriction. In this report we present a 2-step protocol for efficient modification and subcloning of DNA from bacterial artificial chromosomes using the non-commercial plasmids pKM208 and pTP223, distributed from addgene.com. A targeting cassette was successfully integrated into a BAC and 42 kb of this construct were subcloned. Both a plasmid-derived substrate with longer homology arms and a PCR-generated substrate with short homology arms (50 bp) were used for recombination. pKM208 and pTP223 contain all required genes for recombineering, but differ in their antibiotic resistance genes. This makes the system independent of the selection markers on the DNA molecules targeted for recombination. The time and cost saving protocol presented here compares favorably to currently used systems. Using non-commercial plasmids, it allows targeted modification and cloning of large DNA (> 40 kb) fragments in vivo without restriction and ligation. Furthermore, both steps are performed in the same host eliminating the need to isolate BAC DNA and to use different bacterial strains. © 2011 Hartwich et al; licensee BioMed Central Ltd.

  16. Gram-scale production of plasmid pUDK-HGF with current good manufacturing practices for gene therapy of critical limb ischemia.

    Science.gov (United States)

    Hu, ChunSheng; Cheng, XiaoChen; Lu, YuXin; Wu, ZuZe; Zhang, QingLin

    2016-11-16

    The demand of a plasmid encoding human hepatocyte growth factor gene (pUDK-HGF) in large quantities at high purity and concentration has increased for gene therapy of critical limb ischemia (CLI) in clinical trials. In this article, we produced pUDK-HGF in compliance with current good manufacturing practices at gram scale. The process included a 50-L batch fermentation, continuous alkaline lysis, and integrated three-step chromatography on Sepharose 6 Fast Flow, PlasmidSelect Xtra, and Source 15Q. The production process has been scaled up to yield 4.24 ± 0.41 g of pharmaceutical pUDK-HGF from 1.0 kg bacterial cell paste and the overall yield reached range from 58.37 to 66.70%. The final pUDK-HGF product exhibited high purity with supercoiled percentage of > 95.8% and undetectable residual RNA, contaminated protein, and bacterial endotoxin. The phase I clinical study indicates that intramuscular injection of pUDK-HGF is safe, well tolerated, and may provide symptomatic relief to CLI patients. These results show that our manufacturing process of pUDK-HGF is efficient in producing pharmaceutical-grade plasmid DNA and is safe for clinical applications.

  17. Chromosomal context and replication properties of ARS plasmids in ...

    Indian Academy of Sciences (India)

    2015-11-28

    Nov 28, 2015 ... Saccharomyces cerevisiae ARS elements are small (~100 to 150 bp) in size ... variability in their activity as compared to S. cerevisiaeorigins and majority of them ..... was determined by growing three transformants on selective medium, plating equal number of cells onto selective and non selective plates.

  18. Complete sequence of a plasmid from a bovine methicillin-resistant Staphylococcus aureus harbouring a novel ica-like gene cluster in addition to antimicrobial and heavy metal resistance genes.

    Science.gov (United States)

    Feßler, Andrea T; Zhao, Qin; Schoenfelder, Sonja; Kadlec, Kristina; Brenner Michael, Geovana; Wang, Yang; Ziebuhr, Wilma; Shen, Jianzhong; Schwarz, Stefan

    2017-02-01

    The multiresistance plasmid pAFS11, obtained from a bovine methicillin-resistant Staphylococcus aureus (MRSA) isolate, was completely sequenced and analysed for its structure and organisation. Moreover, the susceptibility to the heavy metals cadmium and copper was determined by broth macrodilution. The 49,189-bp plasmid harboured the apramycin resistance gene apmA, two copies of the macrolide/lincosamide/streptogramin B resistance gene erm(B) (both located on remnants of a truncated transposon Tn917), the kanamycin/neomycin resistance gene aadD, the tetracycline resistance gene tet(L) and the trimethoprim resistance gene dfrK. The latter three genes were part of a 7,284-bp segment which was bracketed by two copies of IS431. In addition, the cadmium resistance operon cadDX as well as the copper resistance genes copA and mco were located on the plasmid and mediated a reduced susceptibility to cadmium and copper. Moreover, a complete novel ica-like gene cluster of so far unknown genetic origin was detected on this plasmid. The ica-like gene cluster comprised four different genes whose products showed 64.4-76.9% homology to the Ica proteins known to be involved in biofilm formation of the S. aureus strains Mu50, Mu3 and N315. However, 96.2-99.4% homology was seen to proteins from S. sciuri NS1 indicating an S. sciuri origin. The finding of five different antibiotic resistance genes co-located on a plasmid with heavy metal resistance genes and an ica-like gene cluster is alarming. With the acquisition of this plasmid, antimicrobial multiresistance, heavy metal resistances and potential virulence properties may be co-selected and spread via a single horizontal gene transfer event. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Cell division responsive peptides for optimized plasmid DNA delivery: the mitotic window of opportunity?

    Science.gov (United States)

    Remaut, K; Symens, N; Lucas, B; Demeester, J; De Smedt, S C

    2014-04-10

    The delivery of plasmid DNA remains hard to achieve, especially due to the presence of the nuclear membrane barrier. During cell division, however, the nuclear membrane is temporarily disassembled. We evaluated two different strategies to optimize plasmid DNA delivery in dividing cells: 1) phosphorylation responsive peptides that release plasmid DNA preferentially during mitosis and 2) chromatin targeting peptides to anchor plasmid DNA in newly formed nuclei upon cell division. Peptide/DNA particles alone were not efficient in penetrating cells. Upon co-delivery with lipid-based carriers, however, transfection efficiency drastically improved when compared to controls. For the phosphorylation responsive peptides, the presence of the phosphorylation sequence slightly increased transfection efficiency. For the chromatin targeting peptides, however, the chromatin targeting sequence did not seem to be the main reason for the improvement of transfection efficiency when applied in living cells. In conclusion, the pre-condensation of plasmid DNA with peptides improves lipid based delivery, but the nature of the peptides (cell responsive or not) does not seem to be the main reason for the improvement. It seems that the nuclear entry of foreign plasmid DNA is still under tight control, even during the mitotic window of opportunity. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Molecular characterization of Syrian date palm cultivars using plasmid-like DNA markers.

    Science.gov (United States)

    Haider, N; Nabulsi, I

    2012-02-01

    Date palm (Phoenix dactylifera L.) is one of the most important domesticated fruit trees in the Near East and North African countries. This tree has been, for several decades, in serious threat of being completely destroyed by the "Bayoud" disease caused by Fusarium oxysporum f. sp. albedinis. In this study, 18 Syrian date palm cultivars and four male trees were analyzed according to the identity of mitochondrial plasmid-like DNAs. A PCR strategy that employs plasmid-like DNAs-specific primer pair was used. These primers amplify a product of either 373-bp or 265-bp that corresponds to the S-(Bayoud-susceptible) or the R-plasmid (Bayoud-resistant), respectively. Generated data revealed that only six cultivars ('Medjool', 'Ashrasi', 'Gish Rabi', 'Khineze', and yellow- and red-'Kabkab') have the S-plasmid, suggesting their susceptibility to the fusariosis, while the remaining 12 cultivars and the four male trees contain the R-plasmid, suggesting their resistance to the fusariosis. The PCR process applied here has been proved efficient for the rapid screening for the presence of the S and R DNAs in Syrian date palm. PCR markers developed in this study could be useful for the screening of date palm lines growing in the field. The availability of such diagnostic tool for plasmid characterization in date palm would also be of great importance in establishing propagation and breeding programs of date palm in Syria.