WorldWideScience

Sample records for pspp 102cs plant

  1. Components/factors of the Czech version of the Physical Self Perception Profile (PSPP-CZ among high school students [Komponenty/faktory české verze dotazníku tělesného sebepojetí (PSPP-CZ u středoškolských studentů

    Directory of Open Access Journals (Sweden)

    Vlastimil Kudláček

    2010-12-01

    Full Text Available BACKGROUND: The physical self has been widely investigated as a determinant of exercise behaviors as well as a contributor to mental health and well being (Fox, 1997. Self esteem has been generally accepted as an important mediator of exercise and self esteem (Fox, 2000; Sonstroem, 1997. Understanding self development processes has increased in importance as self esteem and self perception components have become increasingly valued in educational, clinical and community health programs (Ferreira & Fox, 2008. In order to examine the relationships between various levels of physical activities and self perception we need to use standardized instruments to measure physical self perception among Czech teenagers. OBJECTIVE: The purpose of this study was to analyse the structure of the translated PSPP-CZ questionnaire among the population of high school students by finding components of PSPP-CZ using principal component analysis. The Physical Self Perception Profile (PSPP has never been used in the CZ population before. METHODS: Participants were high school students from five schools representing three kinds of high schools in the Czech Republic. Of these participants, 666 were boys and 403 were girls. The average age of the participants was 17.00 (± 1.34 in boys and 16.63 (± 1.39 in girls. Participants received a test battery containing a Czech version of PSPP (Fox, 1990. PSPP has four subscales: (a sports competence – SPORT; (b attractiveness of the figure – BODY; (c physical strength and musculature – STRENGTH; and (d physical conditioning and exercise – CONDITION (Fox, 1990. RESULTS: Data were analyzed using SPSS PC 11.0. Cronbach Alpha, representing the internal consistency measure consisted of: (a sport subscale (males = .86, females = .86; (b physical condition subscales (males = .82, females = .85; (c attractiveness of figure subscales (males = .78, females = .88; and (d strength subscale (males = .87, females = .85. Initially we

  2. PSPP: a protein structure prediction pipeline for computing clusters.

    Directory of Open Access Journals (Sweden)

    Michael S Lee

    Full Text Available BACKGROUND: Protein structures are critical for understanding the mechanisms of biological systems and, subsequently, for drug and vaccine design. Unfortunately, protein sequence data exceed structural data by a factor of more than 200 to 1. This gap can be partially filled by using computational protein structure prediction. While structure prediction Web servers are a notable option, they often restrict the number of sequence queries and/or provide a limited set of prediction methodologies. Therefore, we present a standalone protein structure prediction software package suitable for high-throughput structural genomic applications that performs all three classes of prediction methodologies: comparative modeling, fold recognition, and ab initio. This software can be deployed on a user's own high-performance computing cluster. METHODOLOGY/PRINCIPAL FINDINGS: The pipeline consists of a Perl core that integrates more than 20 individual software packages and databases, most of which are freely available from other research laboratories. The query protein sequences are first divided into domains either by domain boundary recognition or Bayesian statistics. The structures of the individual domains are then predicted using template-based modeling or ab initio modeling. The predicted models are scored with a statistical potential and an all-atom force field. The top-scoring ab initio models are annotated by structural comparison against the Structural Classification of Proteins (SCOP fold database. Furthermore, secondary structure, solvent accessibility, transmembrane helices, and structural disorder are predicted. The results are generated in text, tab-delimited, and hypertext markup language (HTML formats. So far, the pipeline has been used to study viral and bacterial proteomes. CONCLUSIONS: The standalone pipeline that we introduce here, unlike protein structure prediction Web servers, allows users to devote their own computing assets to process a potentially unlimited number of queries as well as perform resource-intensive ab initio structure prediction.

  3. Coalmines as Underground Pumped Storage Power Plants (UPP) - A Contribution to a Sustainable Energy Supply?

    Science.gov (United States)

    Luick, H.; Niemann, A.; Perau, E.; Schreiber, U.

    2012-04-01

    In Europe, electrical power generation from renewable energy sources rose by about 50% in the last 20 years. In Germany, renewable electricity is mainly provided by wind power and photovoltaic. Energy output depends on weather conditions like wind speed or solar radiation and may therefore vary considerably. Rapid fluctuations in power generation already require regulation of conventional power plants by the distribution network operators to stabilize and ensure grid frequency and overall system stability. In order to avoid future blackouts caused by intermittent energy sources, it is necessary to increase the storage capacity for electric power. Theoretically, there are many technologies for storing energy, like accumulators, hydrogen storage systems, biomethane facilities (hydrocarbon synthesis) or compressed air storage. Only a few technologies combine sufficient capacity, fast response, high efficiency, low storage loss and long-term application experience. A pumped storage power plant (PSPP) is a state of the art technology which combines all of these aspects. Energy is stored in form of potential energy by pumping water to an upper reservoir in times of energy surplus or low energy costs. In times of insufficient power supply or high energy costs, the water is released through turbines to produce electric energy. The efficiency of state-of-the-art systems is about 70-80%. The total head (geodetic height between upper and lower reservoirs) and the storage capacity of the reservoirs as given in a mountainous terrain, determine the energy storage capacity of a PSPP. An alternative is the use of man-made geodetic height differences as given in ore, coal or open cast lignite mines. In these cases, the lower reservoir of the plant is located in the drifts or at the bottom of the mine. Energieforschungszentrum Niedersachsen (EFZN) has already explored the installation of a PSPP in abandoned ore mines in the Harz-region/Germany (Beck 2011). In 2011/2012 a basic

  4. Plant planting

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report summarizes planting activities on Neal Smith National Wildlife Refuge (formerly Walnut Creek National Wildlife Refuge) between 1995 and 2009.

  5. Considering Plants.

    Science.gov (United States)

    Flannery, Maura C.

    1991-01-01

    Examples from research that incorporate plants to illustrate biological principles are presented. Topics include dried pea shape, homeotic genes, gene transcription in plants that are touched or wounded, production of grasslands, seaweed defenses, migrating plants, camouflage, and family rivalry. (KR)

  6. Plant Cytokinesis

    NARCIS (Netherlands)

    Smertenko, Andrei; Assaad, Farhah; Baluška, František; Bezanilla, Magdalena; Buschmann, Henrik; Drakakaki, Georgia; Hauser, Marie Theres; Janson, Marcel; Mineyuki, Yoshinobu; Moore, Ian; Müller, Sabine; Murata, Takashi; Otegui, Marisa S.; Panteris, Emmanuel; Rasmussen, Carolyn; Schmit, Anne Catherine; Šamaj, Jozef; Samuels, Lacey; Staehelin, L.A.; Damme, Van Daniel; Wasteneys, Geoffrey; Žárský, Viktor

    2017-01-01

    Plant cytokinesis is orchestrated by a specialized structure, the phragmoplast. The phragmoplast first occurred in representatives of Charophyte algae and then became the main division apparatus in land plants. Major cellular activities, including cytoskeletal dynamics, vesicle trafficking,

  7. Poisonous Plants

    Science.gov (United States)

    ... Publications and Products Programs Contact NIOSH NIOSH POISONOUS PLANTS Recommend on Facebook Tweet Share Compartir Photo courtesy ... U.S. Department of Agriculture Many native and exotic plants are poisonous to humans when ingested or if ...

  8. Aquatic plants

    DEFF Research Database (Denmark)

    Madsen, T. V.; Sand-Jensen, K.

    2006-01-01

    Aquatic fl owering plants form a relatively young plant group on an evolutionary timescale. The group has developed over the past 80 million years from terrestrial fl owering plants that re-colonised the aquatic environment after 60-100 million years on land. The exchange of species between...... terrestrial and aquatic environments continues today and is very intensive along stream banks. In this chapter we describe the physical and chemical barriers to the exchange of plants between land and water....

  9. Medicinal Plants.

    Science.gov (United States)

    Phillipson, J. David

    1997-01-01

    Highlights the demand for medicinal plants as pharmaceuticals and the demand for health care treatments worldwide and the issues that arise from this. Discusses new drugs from plants, anticancer drugs, antiviral drugs, antimalarial drugs, herbal remedies, quality, safety, efficacy, and conservation of plants. Contains 30 references. (JRH)

  10. Poisonous plants.

    Science.gov (United States)

    Poppenga, Robert H

    2010-01-01

    A large number of plants can cause adverse effects when ingested by animals or people. Plant toxicity is due to a wide diversity of chemical toxins that include alkaloids, glycosides, proteins and amino acids. There are several notable toxic plants for which a specific chemical responsible for toxicity has not been determined. There are many examples of species differences in terms of their sensitivity to intoxication from plants. Pets, such as dogs and cats, and people, especially children, are frequently exposed to the same toxic plants due to their shared environments. On the other hand, livestock are exposed to toxic plants that are rarely involved in human intoxications due to the unique environments in which they are kept. Fortunately, adverse effects often do not occur or are generally mild following most toxic plant ingestions and no therapeutic intervention is necessary. However, some plants are extremely toxic and ingestion of small amounts can cause rapid death. The diagnosis of plant intoxication can be challenging, especially in veterinary medicine where a history of exposure to a toxic plant is often lacking. Analytical tests are available to detect some plant toxins, although their diagnostic utility is often limited by test availability and timeliness of results. With a few notable exceptions, antidotes for plant toxins are not available. However, general supportive and symptomatic care often is sufficient to successfully treat a symptomatic patient.

  11. 76 FR 28064 - Notice of Availability of the Final Environmental Impact Statement for Palen Solar I, LLC's Palen...

    Science.gov (United States)

    2011-05-13

    ... Solar I, LLC's Palen Solar Power Plant (PSPP) and Proposed California Desert Conservation Area Plan... (EIS) for the Palen Solar Power Plant project and by this notice is announcing its availability. DATES.../palmsprings/Solar_Projects/Palen_Solar_Power_Project.html . All protests must be in writing and mailed to one...

  12. Autoluminescent plants.

    Directory of Open Access Journals (Sweden)

    Alexander Krichevsky

    Full Text Available Prospects of obtaining plants glowing in the dark have captivated the imagination of scientists and layman alike. While light emission has been developed into a useful marker of gene expression, bioluminescence in plants remained dependent on externally supplied substrate. Evolutionary conservation of the prokaryotic gene expression machinery enabled expression of the six genes of the lux operon in chloroplasts yielding plants that are capable of autonomous light emission. This work demonstrates that complex metabolic pathways of prokaryotes can be reconstructed and function in plant chloroplasts and that transplastomic plants can emit light that is visible by naked eye.

  13. Autoluminescent plants.

    Science.gov (United States)

    Krichevsky, Alexander; Meyers, Benjamin; Vainstein, Alexander; Maliga, Pal; Citovsky, Vitaly

    2010-11-12

    Prospects of obtaining plants glowing in the dark have captivated the imagination of scientists and layman alike. While light emission has been developed into a useful marker of gene expression, bioluminescence in plants remained dependent on externally supplied substrate. Evolutionary conservation of the prokaryotic gene expression machinery enabled expression of the six genes of the lux operon in chloroplasts yielding plants that are capable of autonomous light emission. This work demonstrates that complex metabolic pathways of prokaryotes can be reconstructed and function in plant chloroplasts and that transplastomic plants can emit light that is visible by naked eye.

  14. Electronic plants.

    Science.gov (United States)

    Stavrinidou, Eleni; Gabrielsson, Roger; Gomez, Eliot; Crispin, Xavier; Nilsson, Ove; Simon, Daniel T; Berggren, Magnus

    2015-11-01

    The roots, stems, leaves, and vascular circuitry of higher plants are responsible for conveying the chemical signals that regulate growth and functions. From a certain perspective, these features are analogous to the contacts, interconnections, devices, and wires of discrete and integrated electronic circuits. Although many attempts have been made to augment plant function with electroactive materials, plants' "circuitry" has never been directly merged with electronics. We report analog and digital organic electronic circuits and devices manufactured in living plants. The four key components of a circuit have been achieved using the xylem, leaves, veins, and signals of the plant as the template and integral part of the circuit elements and functions. With integrated and distributed electronics in plants, one can envisage a range of applications including precision recording and regulation of physiology, energy harvesting from photosynthesis, and alternatives to genetic modification for plant optimization.

  15. [Plant hormones, plant growth regulators].

    Science.gov (United States)

    Végvári, György; Vidéki, Edina

    2014-06-29

    Plants seem to be rather defenceless, they are unable to do motion, have no nervous system or immune system unlike animals. Besides this, plants do have hormones, though these substances are produced not in glands. In view of their complexity they lagged behind animals, however, plant organisms show large scale integration in their structure and function. In higher plants, such as in animals, the intercellular communication is fulfilled through chemical messengers. These specific compounds in plants are called phytohormones, or in a wide sense, bioregulators. Even a small quantity of these endogenous organic compounds are able to regulate the operation, growth and development of higher plants, and keep the connection between cells, tissues and synergy between organs. Since they do not have nervous and immume systems, phytohormones play essential role in plants' life.

  16. Autoluminescent Plants

    OpenAIRE

    Krichevsky, Alexander; Meyers, Benjamin; Vainstein, Alexander; Maliga, Pal; Citovsky, Vitaly

    2010-01-01

    Prospects of obtaining plants glowing in the dark have captivated the imagination of scientists and layman alike. While light emission has been developed into a useful marker of gene expression, bioluminescence in plants remained dependent on externally supplied substrate. Evolutionary conservation of the prokaryotic gene expression machinery enabled expression of the six genes of the lux operon in chloroplasts yielding plants that are capable of autonomous light emission. This work demonstra...

  17. Plant Behavior

    Science.gov (United States)

    Liu, Dennis W. C.

    2014-01-01

    Plants are a huge and diverse group of organisms, ranging from microscopic marine phytoplankton to enormous terrestrial trees epitomized by the giant sequoia: 300 feet tall, living 3000 years, and weighing as much as 3000 tons. For this plant issue of "CBE-Life Sciences Education," the author focuses on a botanical topic that most…

  18. Plant Macrofossils

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Records of past vegetation and environmental change derived from plant remains large enough to be seen without a microscope (macrofossils), such as leaves, needles,...

  19. T Plant

    Data.gov (United States)

    Federal Laboratory Consortium — Arguably the second most historic building at Hanford is the T Plant.This facility is historic in that it's the oldest remaining nuclear facility in the country that...

  20. Plant Allergies

    OpenAIRE

    Predny, Mary Lorraine

    2009-01-01

    Allergic reactions are caused by an overactive immune system response to a foreign substance such as pollen, dust, or molds. This publication goes over the common plants that cause allergies and ways to prevent allergies while gardening.

  1. transgenic plants

    African Journals Online (AJOL)

    been initiated in this area by the Global Pest. Resistance Management Programme located at. MSU. Through effective resistance management training, pesticide use patterns change, and the effective lift: span of pesticides and host plant resistance technology increases. Effective resistance management can mean reduced.

  2. Poisonous plants

    African Journals Online (AJOL)

    decontamination using activated charcoal within the first 2 hours of ingestion and with supportive measures (see Table 1). Antidotes are only of potential value in the treatment of plants containing cardiac glycosides and those that present with cholinergic and anticholinergic toxidromes. The authors of this article identified ...

  3. Stress tolerant plants

    OpenAIRE

    Rubio, Vicente; Iniesto Sánchez, Elisa; Irigoyen Miguel, María Luisa

    2014-01-01

    [EN] The invention relates to transgenic plants and methods for modulating abscisic acid (ABA) perception and signal transduction in plants. The plants find use in increasing yield in plants, particularly under abiotic stress.

  4. Plant fertilizer poisoning

    Science.gov (United States)

    Plant fertilizers and household plant foods are used to improve plant growth. Poisoning can occur if someone swallows these products. Plant fertilizers are mildly poisonous if small amounts are swallowed. ...

  5. Plant host finding by parasitic plants: A new perspective on plant to plant communication

    Science.gov (United States)

    Mark C. Mescher; Justin B. Runyon; Consuelo M. De Moraes

    2006-01-01

    Plants release airborne chemicals that can convey ecologically relevant information to other organisms. These plant volatiles are known to mediate a large array of, often complex, interactions between plants and insects. It has been suggested that plant volatiles may have similar importance in mediating interactions among plant species, but there are few well-...

  6. Engineering the plant rhizosphere

    NARCIS (Netherlands)

    Zhang, Y.; Ruyter-Spira, C.P.; Bouwmeester, H.J.

    2015-01-01

    Plant natural products are low molecular weight compounds playing important roles in plant survival under biotic and abiotic stresses. In the rhizosphere, several groups of plant natural products function as semiochemicals that mediate the interactions of plants with other plants, animals and

  7. Poinsettia plant exposure

    Science.gov (United States)

    Christmas flower poisoning; Lobster plant poisoning; Painted leaf poisoning ... Leaves, stem, sap of the poinsettia plant ... Poinsettia plant exposure can affect many parts of the body. EYES (IF DIRECT CONTACT OCCURS) Burning Redness STOMACH AND ...

  8. Kansas Power Plants

    Data.gov (United States)

    Kansas Data Access and Support Center — The Kansas Power Plants database depicts, as point features, the locations of the various types of power plant locations in Kansas. The locations of the power plants...

  9. Students' Ideas about Plants and Plant Growth

    Science.gov (United States)

    Barman, Charles R.; Stein, Mary; McNair, Shannan; Barman, Natalie S.

    2006-01-01

    Because the National Science Education Standards (1996) outline specific things K-8 students should know about plants, and previous data indicated that elementary students had difficulty understanding some major ideas about plants and plant growth, the authors of this article thought it appropriate to initiate an investigation to determine the…

  10. Polyhydroxyalkanoate synthesis in plants

    Energy Technology Data Exchange (ETDEWEB)

    Srienc, Friedrich (Lake Elmo, MN); Somers, David A. (Roseville, MN); Hahn, J. J. (New Brighton, MN); Eschenlauer, Arthur C. (Circle Pines, MN)

    2000-01-01

    Novel transgenic plants and plant cells are capable of biosynthesis of polyhydroxyalkanoate (PHA). Heterologous enzymes involved in PHA biosynthesis, particularly PHA polymerase, are targeted to the peroxisome of a transgenic plant. Transgenic plant materials that biosynthesize short chain length monomer PHAs in the absence of heterologous .beta.-ketothiolase and acetoacetyl-CoA reductase are also disclosed.

  11. Plant Growth Regulators.

    Science.gov (United States)

    Nickell, Louis G.

    1978-01-01

    Describes the effect of "plant growth regulators" on plants, such as controlling the flowering, fruit development, plant size, and increasing crop yields. Provides a list of plant growth regulators which includes their chemical, common, and trade names, as well as their different use(s). (GA)

  12. Plant extraction process

    DEFF Research Database (Denmark)

    2006-01-01

    A method for producing a plant extract comprises incubating a plant material with an enzyme composition comprising a lipolytic enzyme.......A method for producing a plant extract comprises incubating a plant material with an enzyme composition comprising a lipolytic enzyme....

  13. Plant Biology Science Projects.

    Science.gov (United States)

    Hershey, David R.

    This book contains science projects about seed plants that deal with plant physiology, plant ecology, and plant agriculture. Each of the projects includes a step-by-step experiment followed by suggestions for further investigations. Chapters include: (1) "Bean Seed Imbibition"; (2) "Germination Percentages of Different Types of Seeds"; (3)…

  14. Plant dermatitis: Asian perspective

    Directory of Open Access Journals (Sweden)

    Anthony Teik Jin Goon

    2011-01-01

    Full Text Available Occupational and recreational plant exposure on the skin is fairly common. Plant products and extracts are commonly used and found extensively in the environment. Adverse reactions to plants and their products are also fairly common. However, making the diagnosis of contact dermatitis from plants and plant extracts is not always simple and straightforward. Phytodermatitis refers to inflammation of the skin caused by a plant. The clinical patterns may be allergic phytodermatitis, photophytodermatitis, irritant contact dermatitis, pharmacological injury, and mechanical injury. In this article, we will focus mainly on allergy contact dermatitis from plants or allergic phytodermatitis occurring in Asia.

  15. Plant Research '75

    Energy Technology Data Exchange (ETDEWEB)

    1975-01-01

    Research is reported on stomatal regulation of the gas exchanges between plant and environment; inhibitory effects in flower formation; plant growth and development through hormones; hormone action; development and nitrogen fixation in algae; primary cell wall glycoprotein ectensin; enzymic mechanisms and control of polysaccharide and glycoprotein synthesis; molecular studies of membrane studies; sensory transduction in plants; regulation of formation of protein complexes and enzymes in higher plant cell and mechanism of sulfur dioxide toxicity in plants. (PCS)

  16. PLANT BIOPRINTING: NOVEL PERSPECTIVE FOR PLANT BIOTECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Adhityo WICAKSONO

    2015-12-01

    Full Text Available Bioprinting is a technical innovation that has revolutionized tissue engineering. Using conventional printer cartridges filled with cells as well as a suitable scaffold, major advances have been made in the biomedical field, and it is now possible to print skin, bones, blood vessels, and even organs. Unlike animal systems, the application of bioprinting in simple plant tissue cells is still in a nascent phase and has yet to be studied. One major advantage of plants is that all living parts are reprogrammable in the form of totipotent cells. Plant bioprinting may improve scientists’understanding of plant shape and morphogenesis, and could serve for the mass production of desired tissues or plants, or even the production of plant-based biomaterial for industrial uses. This perspectives paper explores these possibilities using knowledge on what is known about bioprinting in other biosystems.

  17. Plant Phenotype Characterization System

    Energy Technology Data Exchange (ETDEWEB)

    Daniel W McDonald; Ronald B Michaels

    2005-09-09

    This report is the final scientific report for the DOE Inventions and Innovations Project: Plant Phenotype Characterization System, DE-FG36-04GO14334. The period of performance was September 30, 2004 through July 15, 2005. The project objective is to demonstrate the viability of a new scientific instrument concept for the study of plant root systems. The root systems of plants are thought to be important in plant yield and thus important to DOE goals in renewable energy sources. The scientific study and understanding of plant root systems is hampered by the difficulty in observing root activity and the inadequacy of existing root study instrumentation options. We have demonstrated a high throughput, non-invasive, high resolution technique for visualizing plant root systems in-situ. Our approach is based upon low-energy x-ray radiography and the use of containers and substrates (artificial soil) which are virtually transparent to x-rays. The system allows us to germinate and grow plant specimens in our containers and substrates and to generate x-ray images of the developing root system over time. The same plant can be imaged at different times in its development. The system can be used for root studies in plant physiology, plant morphology, plant breeding, plant functional genomics and plant genotype screening.

  18. Plant proton pumps

    DEFF Research Database (Denmark)

    Gaxiola, Roberto A.; Palmgren, Michael Gjedde; Schumacher, Karin

    2007-01-01

    Chemiosmotic circuits of plant cells are driven by proton (H+) gradients that mediate secondary active transport of compounds across plasma and endosomal membranes. Furthermore, regulation of endosomal acidification is critical for endocytic and secretory pathways. For plants to react...

  19. Classification of cultivated plants.

    NARCIS (Netherlands)

    Brandenburg, W.A.

    1986-01-01

    Agricultural practice demands principles for classification, starting from the basal entity in cultivated plants: the cultivar. In establishing biosystematic relationships between wild, weedy and cultivated plants, the species concept needs re-examination. Combining of botanic classification, based

  20. Plant tissue culture techniques

    Directory of Open Access Journals (Sweden)

    Rolf Dieter Illg

    1991-01-01

    Full Text Available Plant cell and tissue culture in a simple fashion refers to techniques which utilize either single plant cells, groups of unorganized cells (callus or organized tissues or organs put in culture, under controlled sterile conditions.

  1. Plant growth and cultivation.

    Science.gov (United States)

    Podar, Dorina

    2013-01-01

    There is a variety of methods used for growing plants indoor for laboratory research. In most cases plant research requires germination and growth of plants. Often, people have adapted plant cultivation protocols to the conditions and materials at hand in their own laboratory and growth facilities. Here I will provide a guide for growing some of the most frequently used plant species for research, i.e., Arabidopsis thaliana, barley (Hordeum vulgare) and rice (Oryza sativa). However, the methods presented can be used for other plant species as well, especially if they are related to the above-mentioned species. The presented methods include growing plants in soil, hydroponics, and in vitro on plates. This guide is intended as a starting point for those who are just beginning to work on any of the above-mentioned plant species. Methods presented are to be taken as suggestive and modification can be made according to the conditions existing in the host laboratory.

  2. Plant Pathogenic Fungi.

    Science.gov (United States)

    Doehlemann, Gunther; Ökmen, Bilal; Zhu, Wenjun; Sharon, Amir

    2017-01-01

    Fungi are among the dominant causal agents of plant diseases. To colonize plants and cause disease, pathogenic fungi use diverse strategies. Some fungi kill their hosts and feed on dead material (necrotrophs), while others colonize the living tissue (biotrophs). For successful invasion of plant organs, pathogenic development is tightly regulated and specialized infection structures are formed. To further colonize hosts and establish disease, fungal pathogens deploy a plethora of virulence factors. Depending on the infection strategy, virulence factors perform different functions. While basically all pathogens interfere with primary plant defense, necrotrophs secrete toxins to kill plant tissue. In contrast, biotrophs utilize effector molecules to suppress plant cell death and manipulate plant metabolism in favor of the pathogen. This article provides an overview of plant pathogenic fungal species and the strategies they use to cause disease.

  3. Manganese deficiency in plants

    DEFF Research Database (Denmark)

    Schmidt, Sidsel Birkelund; Jensen, Poul Erik; Husted, Søren

    2016-01-01

    restricting crop productivity in many places of the world. Hence, timely alleviation of latent Mn deficiency is a challenge in promoting plant growth and quality. We describe here the key mechanisms of Mn deficiency in plants by focusing on the impact of Mn on PSII stability and functionality. We also address...... the mechanisms underlying the differential tolerance towards Mn deficiency observed among plant genotypes, which enable Mn-efficient plants to grow on marginal land with poor Mn availability....

  4. Power Plant Systems Analysis

    Science.gov (United States)

    Williams, J. R.; Yang, Y. Y.

    1973-01-01

    Three basic thermodynamic cycles of advanced nuclear MHD power plant systems are studied. The effect of reactor exit temperature and space radiator temperature on the overall thermal efficiency of a regenerative turbine compressor power plant system is shown. The effect of MHD pressure ratio on plant efficiency is also described, along with the dependence of MHD power output, compressor power requirement, turbine power output, mass flow rate of H2, and overall plant efficiency on the reactor exit temperature for a specific configuration.

  5. Plant aquaporins: roles in plant physiology.

    Science.gov (United States)

    Li, Guowei; Santoni, Véronique; Maurel, Christophe

    2014-05-01

    Aquaporins are membrane channels that facilitate the transport of water and small neutral molecules across biological membranes of most living organisms. Here, we present comprehensive insights made on plant aquaporins in recent years, pointing to their molecular and physiological specificities with respect to animal or microbial counterparts. In plants, aquaporins occur as multiple isoforms reflecting a high diversity of cellular localizations and various physiological substrates in addition to water. Of particular relevance for plants is the transport by aquaporins of dissolved gases such as carbon dioxide or metalloids such as boric or silicic acid. The mechanisms that determine the gating and subcellular localization of plant aquaporins are extensively studied. They allow aquaporin regulation in response to multiple environmental and hormonal stimuli. Thus, aquaporins play key roles in hydraulic regulation and nutrient transport in roots and leaves. They contribute to several plant growth and developmental processes such as seed germination or emergence of lateral roots. Plants with genetically altered aquaporin functions are now tested for their ability to improve plant resistance to stresses. This article is part of a Special Issue entitled Aquaporins. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Statistically Valid Planting Trials

    Science.gov (United States)

    C. B. Briscoe

    1961-01-01

    More than 100 million tree seedlings are planted each year in Latin America, and at least ten time'that many should be planted Rational control and development of a program of such magnitude require establishing and interpreting carefully planned trial plantings which will yield statistically valid answers to real and important questions. Unfortunately, many...

  7. Growing Plants and Minds

    Science.gov (United States)

    Presser, Ashley Lewis; Kamdar, Danae; Vidiksis, Regan; Goldstein, Marion; Dominguez, Ximena; Orr, Jillian

    2017-01-01

    Many preschool classrooms explore plant growth. However, because many plants take a long time to grow, it is often hard to facilitate engagement in some practices (i.e., since change is typically not observable from one day to another, children often forget their prior predictions or cannot recall what plants looked like days or weeks earlier).…

  8. Plant Breeding Goes Microbial

    NARCIS (Netherlands)

    Wei, Zhong; Jousset, Alexandre|info:eu-repo/dai/nl/370632656

    Plant breeding has traditionally improved traits encoded in the plant genome. Here we propose an alternative framework reaching novel phenotypes by modifying together genomic information and plant-associated microbiota. This concept is made possible by a novel technology that enables the

  9. Advanced Plant Habitat (APH)

    Science.gov (United States)

    Richards, Stephanie E. (Compiler); Levine, Howard G.; Reed, David W.

    2016-01-01

    The Advanced Plant Habitat (APH) hardware will be a large growth volume plant habitat, capable of hosting multigenerational studies, in which environmental variables (e.g., temperature, relative humidity, carbon dioxide level light intensity and spectral quality) can be tracked and controlled in support of whole plant physiological testing and Bio-regenerative Life Support System investigations.

  10. Diagnosing plant problems

    Science.gov (United States)

    Cheryl A. Smith

    2008-01-01

    Diagnosing Christmas tree problems can be a challenge, requiring a basic knowledge of plant culture and physiology, the effect of environmental influences on plant health, and the ability to identify the possible causes of plant problems. Developing a solution or remedy to the problem depends on a proper diagnosis, a process that requires recognition of a problem and...

  11. Insect-plant Biology

    NARCIS (Netherlands)

    Schoonhoven, L.M.; Loon, van J.J.A.; Dicke, M.

    2005-01-01

    Half of all insect species are dependent on living plant tissues, consuming about 10% of plant annual production in natural habitats and an even greater percentage in agricultural systems, despite sophisticated control measures. Plants are generally remarkably well-protected against insect attack,

  12. Plants under dual attack

    NARCIS (Netherlands)

    Ponzio, C.A.M.

    2016-01-01

    Though immobile, plants are members of complex environments, and are under constant threat from a wide range of attackers, which includes organisms such as insect herbivores or plant pathogens. Plants have developed sophisticated defenses against these attackers, and include chemical responses such

  13. Plants and people

    Science.gov (United States)

    Kathryn Lynch

    2012-01-01

    Salal! Salmonberries! Sword ferns! The Northwest is home to a great number of native plant species that humans have used for centuries. Sadly, many local children are unaware of the history and culture connecting people and plants. Yet, from the beginning of time, plants have provided us food, medicine, and material for clothing, shelter, transportation, decoration,...

  14. Power Plant Cycling Costs

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, N.; Besuner, P.; Lefton, S.; Agan, D.; Hilleman, D.

    2012-07-01

    This report provides a detailed review of the most up to date data available on power plant cycling costs. The primary objective of this report is to increase awareness of power plant cycling cost, the use of these costs in renewable integration studies and to stimulate debate between policymakers, system dispatchers, plant personnel and power utilities.

  15. Plant Systems Biology (editorial)

    Science.gov (United States)

    In June 2003, Plant Physiology published an Arabidopsis special issue devoted to plant systems biology. The intention of Natasha Raikhel and Gloria Coruzzi, the two editors of this first-of-its-kind issue, was ‘‘to help nucleate this new effort within the plant community’’ as they considered that ‘‘...

  16. Plant Tissue Culture

    Indian Academy of Sciences (India)

    Admin

    closely linked with the discovery and characterization of plant hormones, and has facilitated our understanding of plant growth and development. Furthermore, the ability to grow plant cells and tissues in culture and to control their development forms the basis of many practical applications in agriculture, horticulture indus-.

  17. Gender in Plants

    Indian Academy of Sciences (India)

    Do plant hedge mating bets using sex change? This article addresses these and other evolutionary questions about plant gender. The Modular Nature of Plants. Johann Wolfgang von Goethe, the German literary genius immortalised for such triumphs as The Tragedy of Doctor Faust, was also a natural scientist. He believed ...

  18. Plant ozone injury symptoms

    Energy Technology Data Exchange (ETDEWEB)

    Nouchi, I.; Odaira, T.; Sawada, T.; Oguchi, K.; Komeiji, T.

    1973-01-01

    A study of the phytotoxicity of ozone to plants was conducted in controlled-atmosphere greenhouses to determine if the symptoms of such exposure would be similar to symptoms exhibited by plants exposed to photochemical smog (which contains ozone) in the Tokyo area. Test plants used were herbaceous plants and woody plants, which were fumigated to 20 pphm ozone. Plants used as controls for the oxone exposure experiments were placed in a carbon filtered greenhouse. Herbaceous plants were generally sensitive to injury, especially Brassica rapa, Brassica pekinensis and others were extremely responsive species. In comparison with herbaceous plants, woody plants were rather resistant except for poplar. Depending on plant species and severity of injury, ozone-injury symptoms of herbaceous plants were bleaching, chlorosis, necrosis, and red-dish-brown flecks. Leaves of woody plants developed discrete, punctate spots, reddish-brown pigment on the upper surfaces and lastly defoliation. Ozone injury was typically confined to the upper leaf surfaces and notably greater mature leaves. Microscopic examination showed that pallisade cells were much more prone to ozone injury than other tissues.

  19. Stress in plants

    Energy Technology Data Exchange (ETDEWEB)

    Tietz, D.; Tietz, A.

    1982-08-01

    Originally, the stress theory has been developed for humans. However, it can be generalised and also applied to plants. A variety of natural and environmental stress factors may affect the development and growth of plants. In the field of plant breeding, stress research is also of economic significance. In green-house plant cultivation for instance, the breeding of new species requiring less cultivation work will contribute to saving some of the today so precious energy. In developing countries, crop increase and the cultivation of plants on hitherto non-arable land is an invaluable contribution to safeguarding the food for the growing world population.

  20. Protein carbonylation in plants

    DEFF Research Database (Denmark)

    Møller, Ian Max; Havelund, Jesper; Rogowska-Wrzesinska, Adelina

    2017-01-01

    This chapter provides an overview of the current knowledge on protein carbonylation in plants and its role in plant physiology. It starts with a brief outline of the turnover and production sites of reactive oxygen species (ROS) in plants and the causes of protein carbonylation. This is followed...... by a description of the methods used to study protein carbonylation in plants, which is also very brief as the methods are similar to those used in studies on animals. The chapter also focuses on protein carbonylation in plants in general and in mitochondria and in seeds in particular, as case stories where...

  1. Epigenetic performers in plants.

    Science.gov (United States)

    Chen, Ming; Lv, Shaolei; Meng, Yijun

    2010-08-01

    Epigenetic research is at the forefront of plant biology and molecular genetics. Studies on higher plants underscore the significant role played by epigenetics in both plant development and stress response. Relatively recent advances in analytical methodology have allowed for a significant expansion of what is known about genome-wide mapping of DNA methylation and histone modifications. In this review, we explore the different modification patterns in plant epigenetics, and the key factors involved in the epigenetic process, in order to illustrate various putative mechanisms. Experimental technology to exploit these modifications, and proposed focus areas for future plant epigenetic research, are also presented.

  2. Plants that attack plants: molecular elucidation of plant parasitism.

    Science.gov (United States)

    Yoshida, Satoko; Shirasu, Ken

    2012-12-01

    Obligate parasitic plants in the family Orobanchaceae, such as Striga and Orobanche (including Phelipanche) spp., parasitize important crops and cause severe agricultural damage. Recent molecular studies have begun to reveal how these parasites have adapted to hosts in a parasitic lifecycle. The parasites detect nearby host roots and germinate by a mechanism that seems to have evolved from a conserved germination system found in non-parasites. The development of a specialized infecting organ called a haustorium is a unique feature of plant parasites and is triggered by host compounds and redox signals. Newly developed genomic and genetic resources will facilitate more rapid progress toward a molecular understanding of plant parasitism. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Plant perceptions of plant growth-promoting Pseudomonas.

    OpenAIRE

    Preston, Gail M

    2004-01-01

    Plant-associated Pseudomonas live as saprophytes and parasites on plant surfaces and inside plant tissues. Many plant-associated Pseudomonas promote plant growth by suppressing pathogenic micro-organisms, synthesizing growth-stimulating plant hormones and promoting increased plant disease resistance. Others inhibit plant growth and cause disease symptoms ranging from rot and necrosis through to developmental dystrophies such as galls. It is not easy to draw a clear distinction between pathoge...

  4. Multinationals and plant survival

    DEFF Research Database (Denmark)

    Bandick, Roger

    2010-01-01

    The aim of this paper is twofold: first, to investigate how different ownership structures affect plant survival, and second, to analyze how the presence of foreign multinational enterprises (MNEs) affects domestic plants’ survival. Using a unique and detailed data set on the Swedish manufacturing...... sector, I am able to separate plants into those owned by foreign MNEs, domestic MNEs, exporting non-MNEs, and purely domestic firms. In line with previous findings, the result, when conditioned on other factors affecting survival, shows that foreign MNE plants have lower survival rates than non......-MNE plants. However, separating the non-MNEs into exporters and non-exporters, the result shows that foreign MNE plants have higher survival rates than non-exporting non-MNEs, while the survival rates of foreign MNE plants and exporting non-MNE plants do not seem to differ. Moreover, the simple non...

  5. Reassessing apoptosis in plants.

    Science.gov (United States)

    Dickman, Martin; Williams, Brett; Li, Yurong; de Figueiredo, Paul; Wolpert, Thomas

    2017-10-01

    Cell death can be driven by a genetically programmed signalling pathway known as programmed cell death (PCD). In plants, PCD occurs during development as well as in response to environmental and biotic stimuli. Our understanding of PCD regulation in plants has advanced significantly over the past two decades; however, the molecular machinery responsible for driving the system remains elusive. Thus, whether conserved PCD regulatory mechanisms include plant apoptosis remains enigmatic. Animal apoptotic regulators, including Bcl-2 family members, have not been identified in plants but expression of such regulators can trigger or suppress plant PCD. Moreover, plants exhibit nearly all of the biochemical and morphological features of apoptosis. One difference between plant and animal PCD is the absence of phagocytosis in plants. Evidence is emerging that the vacuole may be key to removal of unwanted plant cells, and may carry out functions that are analogous to animal phagocytosis. Here, we provide context for the argument that apoptotic-like cell death occurs in plants.

  6. Toxic proteins in plants.

    Science.gov (United States)

    Dang, Liuyi; Van Damme, Els J M

    2015-09-01

    Plants have evolved to synthesize a variety of noxious compounds to cope with unfavorable circumstances, among which a large group of toxic proteins that play a critical role in plant defense against predators and microbes. Up to now, a wide range of harmful proteins have been discovered in different plants, including lectins, ribosome-inactivating proteins, protease inhibitors, ureases, arcelins, antimicrobial peptides and pore-forming toxins. To fulfill their role in plant defense, these proteins exhibit various degrees of toxicity towards animals, insects, bacteria or fungi. Numerous studies have been carried out to investigate the toxic effects and mode of action of these plant proteins in order to explore their possible applications. Indeed, because of their biological activities, toxic plant proteins are also considered as potentially useful tools in crop protection and in biomedical applications, such as cancer treatment. Genes encoding toxic plant proteins have been introduced into crop genomes using genetic engineering technology in order to increase the plant's resistance against pathogens and diseases. Despite the availability of ample information on toxic plant proteins, very few publications have attempted to summarize the research progress made during the last decades. This review focuses on the diversity of toxic plant proteins in view of their toxicity as well as their mode of action. Furthermore, an outlook towards the biological role(s) of these proteins and their potential applications is discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Safe genetically engineered plants

    Science.gov (United States)

    Rosellini, D.; Veronesi, F.

    2007-10-01

    The application of genetic engineering to plants has provided genetically modified plants (GMPs, or transgenic plants) that are cultivated worldwide on increasing areas. The most widespread GMPs are herbicide-resistant soybean and canola and insect-resistant corn and cotton. New GMPs that produce vaccines, pharmaceutical or industrial proteins, and fortified food are approaching the market. The techniques employed to introduce foreign genes into plants allow a quite good degree of predictability of the results, and their genome is minimally modified. However, some aspects of GMPs have raised concern: (a) control of the insertion site of the introduced DNA sequences into the plant genome and of its mutagenic effect; (b) presence of selectable marker genes conferring resistance to an antibiotic or an herbicide, linked to the useful gene; (c) insertion of undesired bacterial plasmid sequences; and (d) gene flow from transgenic plants to non-transgenic crops or wild plants. In response to public concerns, genetic engineering techniques are continuously being improved. Techniques to direct foreign gene integration into chosen genomic sites, to avoid the use of selectable genes or to remove them from the cultivated plants, to reduce the transfer of undesired bacterial sequences, and make use of alternative, safer selectable genes, are all fields of active research. In our laboratory, some of these new techniques are applied to alfalfa, an important forage plant. These emerging methods for plant genetic engineering are briefly reviewed in this work.

  8. Plant Communities of Rough Rock.

    Science.gov (United States)

    Jacobs, Linda

    A unit of study on plants grown in the Navajo community of Rough Rock, Arizona, is presented in sketches providing the common Navajo name for the plant, a literal English translation, the English name of the plant, and the Latin name. A brief description of each plant includes where the plant grows, how the Navajos use the plant, and the color and…

  9. 76 FR 31171 - Importation of Plants for Planting; Establishing a Category of Plants for Planting Not Authorized...

    Science.gov (United States)

    2011-05-27

    ... May 27, 2011 Part III Department of Agriculture Animal and Plant Health Inspection Service 7 CFR Part 319 Importation of Plants for Planting; Establishing a Category of Plants for Planting Not Authorized... / Friday, May 27, 2011 / Rules and Regulations#0;#0; ] DEPARTMENT OF AGRICULTURE Animal and Plant Health...

  10. Hormesis and plant biology

    Energy Technology Data Exchange (ETDEWEB)

    Calabrese, Edward J. [Department of Public Health, Environmental Health Sciences Division, Pleasant Street, Morrill I, N344, University of Massachusetts, Amherst, MA 01003 (United States)], E-mail: edwardc@schoolph.umass.edu; Blain, Robyn B. [Department of Public Health, Environmental Health Sciences Division, Pleasant Street, Morrill I, N344, University of Massachusetts, Amherst, MA 01003 (United States)

    2009-01-15

    A database has been developed that demonstrates experimental evidence of hormesis. It includes information from a broad range of biological models, including plants, and information on study design, dose-response features, and physical/chemical properties of the agents. An assessment of plant hormetic dose responses is presented based on greater than 3000 plant endpoints. Plant hormetic dose responses were observed for numerous endpoints including disease incidence, reproductive indices, mutagenic endpoints, various metabolic parameters, developmental processes, and a range of growth indicators. Quantitative features of these dose responses typically display a maximum stimulatory response less than two-fold greater than controls and a width of the stimulatory response usually less than 10-fold in dose range. The database establishes that hormetic dose responses commonly occur in plants, are broadly generalizable, and have quantitative features similar to hormetic dose responses found for animals. - Hormesis commonly occurs within plant species.

  11. Plant synthetic biology.

    Science.gov (United States)

    Liu, Wusheng; Stewart, C Neal

    2015-05-01

    Plant synthetic biology is an emerging field that combines engineering principles with plant biology toward the design and production of new devices. This emerging field should play an important role in future agriculture for traditional crop improvement, but also in enabling novel bioproduction in plants. In this review we discuss the design cycles of synthetic biology as well as key engineering principles, genetic parts, and computational tools that can be utilized in plant synthetic biology. Some pioneering examples are offered as a demonstration of how synthetic biology can be used to modify plants for specific purposes. These include synthetic sensors, synthetic metabolic pathways, and synthetic genomes. We also speculate about the future of synthetic biology of plants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Conditional sterility in plants

    Science.gov (United States)

    Meagher, Richard B.; McKinney, Elizabeth; Kim, Tehryung

    2010-02-23

    The present disclosure provides methods, recombinant DNA molecules, recombinant host cells containing the DNA molecules, and transgenic plant cells, plant tissue and plants which contain and express at least one antisense or interference RNA specific for a thiamine biosynthetic coding sequence or a thiamine binding protein or a thiamine-degrading protein, wherein the RNA or thiamine binding protein is expressed under the regulatory control of a transcription regulatory sequence which directs expression in male and/or female reproductive tissue. These transgenic plants are conditionally sterile; i.e., they are fertile only in the presence of exogenous thiamine. Such plants are especially appropriate for use in the seed industry or in the environment, for example, for use in revegetation of contaminated soils or phytoremediation, especially when those transgenic plants also contain and express one or more chimeric genes which confer resistance to contaminants.

  13. Annual Plant Reviews

    DEFF Research Database (Denmark)

    , three dimensional structures and functions of each protein in a biological system. In plant science, the number of proteome studies is rapidly expanding after the completion of the Arabidopsis thaliana genome sequence, and proteome analyses of other important or emerging model systems and crop plants...... are in progress or are being initiated. Proteome analysis in plants is subject to the same obstacles and limitations as in other organisms, but the nature of plant tissues, with their rigid cell walls and complex variety of secondary metabolites, means that extra challenges are involved that may not be faced when...... analysing other organisms. This volume aims to highlight the ways in which proteome analysis has been used to probe the complexities of plant biochemistry and physiology. It is aimed at researchers in plant biochemistry, genomics, transcriptomics and metabolomics who wish to gain an up-to-date insight...

  14. Annual Plant Reviews

    DEFF Research Database (Denmark)

    analysing other organisms. This volume aims to highlight the ways in which proteome analysis has been used to probe the complexities of plant biochemistry and physiology. It is aimed at researchers in plant biochemistry, genomics, transcriptomics and metabolomics who wish to gain an up-to-date insight......, three dimensional structures and functions of each protein in a biological system. In plant science, the number of proteome studies is rapidly expanding after the completion of the Arabidopsis thaliana genome sequence, and proteome analyses of other important or emerging model systems and crop plants...... are in progress or are being initiated. Proteome analysis in plants is subject to the same obstacles and limitations as in other organisms, but the nature of plant tissues, with their rigid cell walls and complex variety of secondary metabolites, means that extra challenges are involved that may not be faced when...

  15. [Genetic engineering in plants].

    Science.gov (United States)

    Demarly, Y

    1992-11-01

    Until recent years, plant genetic was involved in heredity studies through the analysis of segregations in progenies after crossing. New potentiality arose as genetic tools with the use of dissociated plant elements, transforming and cultivating them in vitro. When plants are regenerated from manipulated tissues, new structures of varieties (clones) new genotypes (transgenic plants) and new regulations of genes expression (vitrovariants) open new ways for plant genetic engineering. Progressively these technological tools are integrated in the methods of plant breeding. Yet all possible consequences of these new types of heredity and of these new genetic structures must be evaluated. As first priority the analysis of possible incidences in the field of food, nutrition and health gives the basis for diagnostics and organisations aiming to avoid the release of genotypes which could have unwanted effects.

  16. Annual Plant Reviews

    DEFF Research Database (Denmark)

    are in progress or are being initiated. Proteome analysis in plants is subject to the same obstacles and limitations as in other organisms, but the nature of plant tissues, with their rigid cell walls and complex variety of secondary metabolites, means that extra challenges are involved that may not be faced when...... analysing other organisms. This volume aims to highlight the ways in which proteome analysis has been used to probe the complexities of plant biochemistry and physiology. It is aimed at researchers in plant biochemistry, genomics, transcriptomics and metabolomics who wish to gain an up-to-date insight......, three dimensional structures and functions of each protein in a biological system. In plant science, the number of proteome studies is rapidly expanding after the completion of the Arabidopsis thaliana genome sequence, and proteome analyses of other important or emerging model systems and crop plants...

  17. Ecology of plant volatiles: taking a plant community perspective.

    Science.gov (United States)

    Pierik, Ronald; Ballaré, Carlos L; Dicke, Marcel

    2014-08-01

    Although plants are sessile organisms, they can modulate their phenotype so as to cope with environmental stresses such as herbivore attack and competition with neighbouring plants. Plant-produced volatile compounds mediate various aspects of plant defence. The emission of volatiles has costs and benefits. Research on the role of plant volatiles in defence has focused primarily on the responses of individual plants. However, in nature, plants rarely occur as isolated individuals but are members of plant communities where they compete for resources and exchange information with other plants. In this review, we address the effects of neighbouring plants on plant volatile-mediated defences. We will outline the various roles of volatile compounds in the interactions between plants and other organisms, address the mechanisms of plant neighbour perception in plant communities, and discuss how neighbour detection and volatile signalling are interconnected. Finally, we will outline the most urgent questions to be addressed in the future. © 2014 John Wiley & Sons Ltd.

  18. Antidiabetic Plants of Iran

    OpenAIRE

    Ashrafeddin Goushegir; Fataneh Hashem Dabaghian; Asie Shojaii; Mehri Abdollahi Fard

    2011-01-01

    To identify the antidiabetic plants of Iran, a systematic review of the published literature on the efficacy of Iranian medicinal plant for glucose control in patients with type 2 diabetes mellitus was conducted. We performed an electronic literature search of MEDLINE, Science Direct, Scopus, Proquest, Ebsco, Googlescholar, SID, Cochrane Library Database, from 1966 up to June 2010. The search terms were complementary and alternative medicine (CAM), diabetes mellitus, plant (herb), Iran, patie...

  19. Plant Protection Research Institute

    OpenAIRE

    Allsopp, N.; W. D. Stock

    1993-01-01

    A survey of the mycorrhizal status of plants growing in the Cape Floristic Region of South Africa was undertaken to assess the range of mycorrhizal types and their dominance in species characteristic of this region. Records were obtained by ex­amining the root systems of plants growing in three Cape lowland vegetation types, viz. West Coast Strandveld, West Coast Renosterveld and Sand Plain Lowland Fynbos for mycorrhizas, as well as by collating literature records of mycorrhizas on plants gro...

  20. Bioassay of Plant Growth Regulator Activity on Aquatic Plants

    Science.gov (United States)

    1990-07-01

    I COPY AQUATIC PLANT CONTROL RESEARCH PROGRAM .q TECHNICAL REPORT A-90-7 >AD-A226 125 BIOASSAY OF PLANT GROWTH REGULATOR ACTIVITY ON AQUATIC PLANTS... Plant Growth Regulator Activity on Aquatic Plants 12. PERSONAL AUTHOR(S) Lembi, Carole A.; Netherland, Michael D. 13a. TYPE OF REPORT 13b. TIME COVERED 14...OF THIS PAGE 18. SUBJECT TERMS (Continued). Aquatic plants Hydrilla Bensulfuron methyl Paclobutrazol Bioassay Plant growth regulator Eurasian

  1. SPACE VEHICLE POWER PLANTS,

    Science.gov (United States)

    SPACECRAFT, POWER SUPPLIES), (*POWER SUPPLIES, SPACECRAFT), ENERGY CONVERSION, BATTERY COMPONENTS, ELECTRIC BATTERIES, SOLAR CELLS, NUCLEAR POWER PLANTS , SPACEBORNE, MAGNETOHYDRODYNAMICS, ELECTROSTATICS, SPACE ENVIRONMENTS

  2. MBS Native Plant Communities

    Data.gov (United States)

    Minnesota Department of Natural Resources — This data layer contains results of the Minnesota County Biological Survey (MCBS). It includes polygons representing the highest quality native plant communities...

  3. Plant Habitat (PH)

    Science.gov (United States)

    Onate, Bryan

    2016-01-01

    The International Space Station (ISS) will soon have a platform for conducting fundamental research of Large Plants. Plant Habitat (PH) is designed to be a fully controllable environment for high-quality plant physiological research. PH will control light quality, level, and timing, temperature, CO2, relative humidity, and irrigation, while scrubbing ethylene. Additional capabilities include leaf temperature and root zone moisture and oxygen sensing. The light cap will have red (630 nm), blue (450 nm), green (525 nm), far red (730 nm) and broad spectrum white LEDs. There will be several internal cameras (visible and IR) to monitor and record plant growth and operations.

  4. Plant Transporter Identification

    DEFF Research Database (Denmark)

    Larsen, Bo

    Membrane transport proteins (transporters) play a critical role for numerous biological processes, by controlling the movements of ions and molecules in and out of cells. In plants, transporters thus function as gatekeepers between the plant and its surrounding environment and between organs......, tissues, cells and intracellular compartments. Since plants are highly compartmentalized organisms with complex transportation infrastructures, they consequently have many transporters. However, the vast majority of predicted transporters have not yet been experimentally verified to have transport...... activity. This project contains a review of the implemented methods, which have led to plant transporter identification, and present our progress on creating a high-throughput functional genomics transporter identification platform....

  5. Epigenetic regulation in plants.

    Science.gov (United States)

    Pikaard, Craig S; Mittelsten Scheid, Ortrun

    2014-12-01

    The study of epigenetics in plants has a long and rich history, from initial descriptions of non-Mendelian gene behaviors to seminal discoveries of chromatin-modifying proteins and RNAs that mediate gene silencing in most eukaryotes, including humans. Genetic screens in the model plant Arabidopsis have been particularly rewarding, identifying more than 130 epigenetic regulators thus far. The diversity of epigenetic pathways in plants is remarkable, presumably contributing to the phenotypic plasticity of plant postembryonic development and the ability to survive and reproduce in unpredictable environments. Copyright © 2014 Cold Spring Harbor Laboratory Press; all rights reserved.

  6. The Kuroshio power plant

    CERN Document Server

    Chen, Falin

    2013-01-01

    By outlining a new design or the Kuroshio power plant, new approaches to turbine design, anchorage system planning, deep sea marine engineering and power plant operations and maintenance are explored and suggested. The impact on the local environment, particularly in the face of natural disasters, is also considered to provide a well rounded introduction to plan and build a 30MW pilot power plant. Following a literature review, the six chapters of this book propose a conceptual design by focusing on the plant's core technologies and establish the separate analysis logics for turbine design and

  7. Explosive Formulation Pilot Plant

    Data.gov (United States)

    Federal Laboratory Consortium — The Pilot Plant for Explosive Formulation supports the development of new explosives that are comprised of several components. This system is particularly beneficial...

  8. Epigenetic Regulation in Plants

    Science.gov (United States)

    Pikaard, Craig S.; Mittelsten Scheid, Ortrun

    2014-01-01

    The study of epigenetics in plants has a long and rich history, from initial descriptions of non-Mendelian gene behaviors to seminal discoveries of chromatin-modifying proteins and RNAs that mediate gene silencing in most eukaryotes, including humans. Genetic screens in the model plant Arabidopsis have been particularly rewarding, identifying more than 130 epigenetic regulators thus far. The diversity of epigenetic pathways in plants is remarkable, presumably contributing to the phenotypic plasticity of plant postembryonic development and the ability to survive and reproduce in unpredictable environments. PMID:25452385

  9. Antimicrobial Peptides from Plants

    Directory of Open Access Journals (Sweden)

    James P. Tam

    2015-11-01

    Full Text Available Plant antimicrobial peptides (AMPs have evolved differently from AMPs from other life forms. They are generally rich in cysteine residues which form multiple disulfides. In turn, the disulfides cross-braced plant AMPs as cystine-rich peptides to confer them with extraordinary high chemical, thermal and proteolytic stability. The cystine-rich or commonly known as cysteine-rich peptides (CRPs of plant AMPs are classified into families based on their sequence similarity, cysteine motifs that determine their distinctive disulfide bond patterns and tertiary structure fold. Cystine-rich plant AMP families include thionins, defensins, hevein-like peptides, knottin-type peptides (linear and cyclic, lipid transfer proteins, α-hairpinin and snakins family. In addition, there are AMPs which are rich in other amino acids. The ability of plant AMPs to organize into specific families with conserved structural folds that enable sequence variation of non-Cys residues encased in the same scaffold within a particular family to play multiple functions. Furthermore, the ability of plant AMPs to tolerate hypervariable sequences using a conserved scaffold provides diversity to recognize different targets by varying the sequence of the non-cysteine residues. These properties bode well for developing plant AMPs as potential therapeutics and for protection of crops through transgenic methods. This review provides an overview of the major families of plant AMPs, including their structures, functions, and putative mechanisms.

  10. Power plant chemical technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    17 contributions covering topies of fossil fuel combustion, flue gas cleaning, power plant materials, corrosion, water/steam cycle chemistry, monitoring and control were presented at the annual meeting devoted to Power Plant Chemical Technology 1996 at Kolding (Denmark) 4-6 September 1996. (EG)

  11. Invertebrates and Plants

    Science.gov (United States)

    Wendell R. Haag; Robert J. Distefano; Siobhan Fennessy; Brett D.. Marshall

    2013-01-01

    Invertebrates and plants are among the most ubiquitous and abundant macroscopic organisms in aquatic ecosystems; they dominate most habitats in both diversity and biomass and play central roles in aquatic food webs. Plants regulate and create habitats for a wide array of organisms (Cooke et al. 2005). Snail grazing and bivalve filtering profoundly alter habitats and...

  12. Plants as green phones

    NARCIS (Netherlands)

    Soler, R.; Harvey, J.A.; Bezemer, T.M.; Stuefer, J.F.

    2008-01-01

    Plants can act as vertical communication channels or `green phones¿ linking soil-dwelling insects and insects in the aboveground ecosystem. When root-feeding insects attack a plant, the direct defense system of the shoot is activated, leading to an accumulation of phytotoxins in the leaves. The

  13. Exotic invasive plants

    Science.gov (United States)

    Carolyn Hull Sieg; Barbara G. Phillips; Laura P. Moser

    2003-01-01

    Ecosystems worldwide are threatened by nonnative plant invasions that can cause undesirable, irreversible changes. They can displace native plants and animals, out-cross with native flora, alter nutrient cycling and other ecosystem functions, and even change an ecosystem's flammability (Walker and Smith 1997). After habitat loss, the spread of exotic species is...

  14. Plant Growth Promoting Rhizobacteria

    Indian Academy of Sciences (India)

    IAS Admin

    Crop parameters. Rhizobium leguminosarum. Direct growth promotion of canola and lettuce. Pseudomonas putida. Early developments of canola seedlings, growth stimulation of tomato plant. Azospirillum brasilense andA. irakense. Growth of wheat and maize plants. P. flurescens. Growth of pearl millet, increase in growth, ...

  15. [Neotropical plant morphology].

    Science.gov (United States)

    Pérez-García, Blanca; Mendoza, Aniceto

    2002-01-01

    An analysis on plant morphology and the sources that are important to the morphologic interpretations is done. An additional analysis is presented on all published papers in this subject by the Revista de Biología Tropical since its foundation, as well as its contribution to the plant morphology development in the neotropics.

  16. Slavery in plants

    NARCIS (Netherlands)

    Kabiri, S.; Rodenburg, J.; Ast, van A.; Bastiaans, L.

    2017-01-01

    The rain-fed lowland rice weed Rhamphicarpa fistulosa (Rice Vampireweed) is a facultative root parasitic plant. Growth and reproduction of R. fistulosa benefit considerably from parasitism, but how this affects the host plant is not well established. We determined accumulation and partitioning of

  17. Modulating lignin in plants

    Science.gov (United States)

    Apuya, Nestor; Bobzin, Steven Craig; Okamuro, Jack; Zhang, Ke

    2013-01-29

    Materials and methods for modulating (e.g., increasing or decreasing) lignin content in plants are disclosed. For example, nucleic acids encoding lignin-modulating polypeptides are disclosed as well as methods for using such nucleic acids to generate transgenic plants having a modulated lignin content.

  18. Better Plants Program Overview

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-09-30

    The U.S. Department of Energy’s (DOE’s) Better Buildings, Better Plants Program is a voluntary partnership initiative to drive significant energy efficiency improvement across energy intensive companies and organizations. 157 leading manufacturers and public water and wastewater treatment utilities are partnering with DOE through Better Plants to improve energy efficiency, slash carbon emissions, and cut energy costs.

  19. Plantings for wildlife

    Science.gov (United States)

    Samuel B. Kirby; Claude L. Ponder; Donald J. Smith

    1989-01-01

    Grains, forages, and other vegetation can be planted to provide critical habitat for desired wildlife species or to increase habitat diversity. Plantings may be in openings created in the forest (see Note 9.11 Wildlife Openings) or along the forest edge in cultivated or pastured fields if protected from domestic livestock. The first step in determining if and what type...

  20. Cognition in plants

    NARCIS (Netherlands)

    Calvo, P.; Keijzer, F.A.

    2009-01-01

    To what extent can plants be considered cognitive from the perspective of embodied cognition? Cognition is interpreted very broadly within embodied cognition, and the current evidence for plant intelligence might find an important theoretical background here. However, embodied cognition does stress

  1. Drought Signaling in Plants

    Indian Academy of Sciences (India)

    economy. However, plants have evolved an inherent mechanism to overcome the effect of drought to a certain extent. This is accomplished by reducing the .... MINERAL. NUTRIENTS. Figure 2. Schematic representation of the entry of water into the plant roots from the soil, transportation through the conducting system of the ...

  2. Plant growth promoting rhizobacterium

    Science.gov (United States)

    Doktycz, Mitchel John; Pelletier, Dale A.; Schadt, Christopher Warren; Tuskan, Gerald A.; Weston, David

    2015-08-11

    The present invention is directed to the Pseudomonas fluorescens strain GM30 deposited under ATCC Accession No. PTA-13340, compositions containing the GM30 strain, and methods of using the GM30 strain to enhance plant growth and/or enhance plant resistance to pathogens.

  3. Plant pathogen resistance

    Science.gov (United States)

    Greenberg, Jean T; Jung, Ho Won; Tschaplinski, Timothy

    2012-11-27

    Azelaic acid or its derivatives or analogs induce a robust and a speedier defense response against pathogens in plants. Azelaic acid treatment alone does not induce many of the known defense-related genes but activates a plant's defense signaling upon pathogen exposure.

  4. NMR, water and plants

    NARCIS (Netherlands)

    As, van H.

    1982-01-01

    This Thesis describes the application of a non-destructive pulsed proton NMR method mainly to measure water transport in the xylem vessels of plant stems and in some model systems. The results are equally well applicable to liquid flow in other biological objects than plants, e.g. flow of blood and

  5. Nuclear Power Plants. Revised.

    Science.gov (United States)

    Lyerly, Ray L.; Mitchell, Walter, III

    This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. Among the topics discussed are: Why Use Nuclear Power?; From Atoms to Electricity; Reactor Types; Typical Plant Design Features; The Cost of Nuclear Power; Plants in the United States; Developments in Foreign…

  6. Induced plant resistance

    Directory of Open Access Journals (Sweden)

    Gašić Katarina

    2012-01-01

    Full Text Available Plants have evolved different strategies to protect themselves against pathogen infections. These strategies are classified as either passive or active, depending on whether they are constitutive barriers or triggered upon pathogen attack. Induced plant resistance is a type of active resistance and is defined as a state of enhanced defensive capacity developed by a plant when appropriately stimulated by biological agents or environmental stress. Different types of induced resistance have been defined based on differences in signaling pathways and spectra of effectiveness. First type is Systemic Acquired Resistance (SAR which occurs in plants following activation of defense mechanisms triggered by contact with a plant pathogenic or feeding agent. SAR requires accumulation of signal molecule salicylic acid and is associated with the induction of pathogenesis-related (PR proteins. In contrast, second type - Induced Systemic Resistance (ISR is induced by selected strains of non-pathogenic plant growth promoting bacteria (PGPR and regulated by jasmonic acid and ethylene. Both SAR and ISR require the function of the regulatory protein NPR1. In addition to biological agents, some chemical compounds can induce resistance of plants as well. Great progress has been made in recent years in understanding the physiological and biochemical basis of SAR and ISR, which led to their commercial use in plant protection.

  7. Carotenoid metabolism in plants

    Science.gov (United States)

    Carotenoids are mostly C40 terpenoids, a class of hydrocarbons that participate in various biological processes in plants, such as photosynthesis, photomorphogenesis, photoprotection, and development. Carotenoids also serve as precursors for two plant hormones and a diverse set of apocarotenoids. Th...

  8. Gender in Plants

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 11. Gender in Plants - More About Why and How Plants Change Sex. Renee M Borges. General Article Volume 3 Issue 11 November 1998 pp 30-39. Fulltext. Click here to view fulltext PDF. Permanent link:

  9. Fertilization in Flowering Plants

    Indian Academy of Sciences (India)

    IAS Admin

    In reality all pre-fertilization events involved in screening and selection of the partners, so ... In reality, flowering plants also perform all essential pre-fertilization events to screen and ..... adequate in the habitat. It increases pollination efficiency since the pollinator and the plant species have evolved to optimize pollen transfer.

  10. Plants without arbuscular mycorrhizae

    Science.gov (United States)

    P is second to N as the most limiting element for plant growth. Plants have evolved a number of effective strategies to acquire P and grow in a P-limited environment. Physiological, biochemical, and molecular studies of P-deficiency adaptations that occur in non-mycorrhizal species have provided str...

  11. Plant Growth Analysis

    OpenAIRE

    長嶋, 寿江

    2009-01-01

    Because photosynthetic products are used to produce new assimilating organs, plant growth is influenced by biomass allocation as well as photosynthetic rate of individual leaves. A traditional method for analysising plant growth, including the experimental design and measurement methods, is outlined.

  12. Poultry Plant Noise Control

    Science.gov (United States)

    1982-01-01

    A demonstration conducted last winter at the Tip Top Poultry Plant intended to show poultry plant managers from all over the U.S. potential solutions to the problem of plant noise. Plastic covers used over sound absorbing materials need to meet cleanability requirements, high- pressure water cleaning and other harsh maintenance procedures peculiar to the poultry processing industry. For the demonstration, Fiber Flex, Inc. manufactured and donated 750 noise panels; Owens-Corning Fiberglas Corporation donated the fiberglas cores; and the cover material was purchased from Howe and Bainbridge. The Engineering Experiment Station (EES) conducted before and after noise surveys and is evaluating the effect of noise reduction on turnover and productivity in the demonstration plant. EES plans to conduct a noise abatement workshop and update a handbook to help poultry processors with noise problems. EES study and demonstration may be applicable to other food processing plants where similar sanitary constraints exist.

  13. Terrestrial plant methane production

    DEFF Research Database (Denmark)

    Mikkelsen, Teis Nørgaard; Bruhn, Dan; Møller, Ian M.

    We evaluate all experimental work published on the phenomenon of aerobic methane (CH4) generation in terrestrial plants. We conclude that the phenomenon is true. Four stimulating factors have been observed to induce aerobic plant CH4 production, i.e. cutting injuries, increasing temperature......, ultraviolet radiation and reactive oxygen species. Further, we analyze rates of measured emission of aerobically produced CH4 in pectin and in plant tissues from different studies and argue that pectin is very far from the sole contributing precursor. Hence, scaling up of aerobic CH4 emission needs to take...... the aerobic methane emission in plants. Future work is needed for establishing the relative contribution of several proven potential CH4 precursors in plant material....

  14. Plant performance enhancement program

    Energy Technology Data Exchange (ETDEWEB)

    Munchausen, J.H. [EPRI Plant Support Engineering, Charlotte, NC (United States)

    1995-09-01

    The Plant Performance Enhancement Program (P{sup 2}EP), an initiative of the Electric Power Research Institute (EPRI), responds to strong industry incentives to improve nuclear plant thermal efficiency and electrical output. Launched by EPRI`s Nuclear Power Division, P{sup 2}EP operates within the purview of the Plant Support Engineering (PSE) Program, with day-to-day activities conducted out of the P{sup 2}EP office headquartered at EPRI`s facility in Charlotte, North Carolina. This alignment is consistent with EPFU`s strategic targets in support of industry goals, keeping P{sup 2}EP`s mission in clear focus: Helping utility thermal performance engineers improve the heat rate of nuclear power plants, thereby increasing unit average capacity and reducing plant operations and maintenance costs per kilowatt-hour.

  15. Encapsulation plant at Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Nystroem, Anders

    2007-08-15

    SKB has already carried out a preliminary study of an encapsulation plant detached from Clab (Central interim storage for spent fuels). This stand-alone encapsulation plant was named FRINK and its assumed siting was the above-ground portion of the final repository, irrespective of the repository's location. The report previously presented was produced in cooperation with BNFL Engineering Ltd in Manchester and the fuel reception technical solution was examined by Gesellschaft fuer Nuklear-Service mbH (GNS) in Hannover and by Societe Generale pour les Techniques Nouvelles (SGN) in Paris. This report is an update of the earlier preliminary study report and is based on the assumption that the encapsulation plant and also the final repository will be sited in the Forsmark area. SKB's main alternative for siting the encapsulation plant is next to Clab. Planning of this facility is ongoing and technical solutions from the planning work have been incorporated in this report. An encapsulation plant placed in proximity to any final repository in Forsmark forms part of the alternative presentation in the application for permission to construct and operate an installation at Clab. The main technical difference between the planned encapsulation plant at Clab and an encapsulation plant at a final repository at Forsmark is how the fuel is managed and prepared before actual encapsulation. Fuel reception at the encapsulation plant in Forsmark would be dry, i.e. there would be no water-filled pools at the facility. Clab is used for verificatory fuel measurements, sorting and drying of the fuel before transport to Forsmark. This means that Clab will require a measure of rebuilding and supplementary equipment. In purely technical terms, the prospects for building an encapsulation plant sited at Forsmark are good. A description of the advantages and drawbacks of siting the encapsulation plant at Clab as opposed to any final repository at Forsmark is presented in a separate

  16. Aquaporins in Plants.

    Science.gov (United States)

    Maurel, Christophe; Boursiac, Yann; Luu, Doan-Trung; Santoni, Véronique; Shahzad, Zaigham; Verdoucq, Lionel

    2015-10-01

    Aquaporins are membrane channels that facilitate the transport of water and small neutral molecules across biological membranes of most living organisms. In plants, aquaporins occur as multiple isoforms reflecting a high diversity of cellular localizations, transport selectivity, and regulation properties. Plant aquaporins are localized in the plasma membrane, endoplasmic reticulum, vacuoles, plastids and, in some species, in membrane compartments interacting with symbiotic organisms. Plant aquaporins can transport various physiological substrates in addition to water. Of particular relevance for plants is the transport of dissolved gases such as carbon dioxide and ammonia or metalloids such as boron and silicon. Structure-function studies are developed to address the molecular and cellular mechanisms of plant aquaporin gating and subcellular trafficking. Phosphorylation plays a central role in these two processes. These mechanisms allow aquaporin regulation in response to signaling intermediates such as cytosolic pH and calcium, and reactive oxygen species. Combined genetic and physiological approaches are now integrating this knowledge, showing that aquaporins play key roles in hydraulic regulation in roots and leaves, during drought but also in response to stimuli as diverse as flooding, nutrient availability, temperature, or light. A general hydraulic control of plant tissue expansion by aquaporins is emerging, and their role in key developmental processes (seed germination, emergence of lateral roots) has been established. Plants with genetically altered aquaporin functions are now tested for their ability to improve plant tolerance to stresses. In conclusion, research on aquaporins delineates ever expanding fields in plant integrative biology thereby establishing their crucial role in plants. Copyright © 2015 the American Physiological Society.

  17. Global Activities and Plant Survival

    DEFF Research Database (Denmark)

    Bandick, Roger

    2014-01-01

    This chapter provides an extensive review of the empirical evidence found for Sweden concerning plant survival. The result reveals that foreign MNE plants and exporting non-MNE plants have the lowest exit rates, followed by purely domestic-oriented plants, and that domestic MNE plants have...... the highest exit rates. Moreover, the exit rates of globally engaged plants seem to be unaffected by increased foreign presence, whereas there appears to be a negative impact on the survival rates of non-exporting non-MNE plants. Finally, the result reveals that the survival ratio of plants of acquired...... exporters, but not other types of plants, improves post acquisition....

  18. The Development of Plant Biotechnology.

    Science.gov (United States)

    Torrey, John G.

    1985-01-01

    Examines major lines of thought leading to what is meant by plant biotechnology, namely, the application of existing techniques of plant organ, tissue, and cell culture, plant molecular biology, and genetic engineering to the improvement of plants and of plant productivity for the benefit of man. (JN)

  19. FRIB Cryogenic Plant Status

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, Kelly D. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Ganni, Venkatarao [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Knudsen, Peter N. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Casagranda, Fabio [Michigan State Univ., East Lansing, MI (United States)

    2015-12-01

    After practical changes were approved to the initial conceptual design of the cryogenic system for MSU FRIB and an agreement was made with JLab in 2012 to lead the design effort of the cryogenic plant, many activities are in place leading toward a cool-down of the linacs prior to 2018. This is mostly due to using similar equipment used at CHLII for the 12 GeV upgrade at JLab and an aggressive schedule maintained by the MSU Conventional Facilities department. Reported here is an updated status of the cryogenic plant, including the equipment procurement status, plant layout, facility equipment and project schedule.

  20. Selenium accumulation by plants.

    Science.gov (United States)

    White, Philip J

    2016-02-01

    Selenium (Se) is an essential mineral element for animals and humans, which they acquire largely from plants. The Se concentration in edible plants is determined by the Se phytoavailability in soils. Selenium is not an essential element for plants, but excessive Se can be toxic. Thus, soil Se phytoavailability determines the ecology of plants. Most plants cannot grow on seleniferous soils. Most plants that grow on seleniferous soils accumulate plant species have evolved tolerance to Se, and commonly accumulate tissue Se concentrations >100 mg Se kg(-1) dry matter. These plants are considered to be Se accumulators. Some species can even accumulate Se concentrations of 1000-15 000 mg Se kg(-1 )dry matter and are called Se hyperaccumulators. This article provides an overview of Se uptake, translocation and metabolism in plants and highlights the possible genetic basis of differences in these between and within plant species. The review focuses initially on adaptations allowing plants to tolerate large Se concentrations in their tissues and the evolutionary origin of species that hyperaccumulate Se. It then describes the variation in tissue Se concentrations between and within angiosperm species and identifies genes encoding enzymes limiting the rates of incorporation of Se into organic compounds and chromosomal loci that might enable the development of crops with greater Se concentrations in their edible portions. Finally, it discusses transgenic approaches enabling plants to tolerate greater Se concentrations in the rhizosphere and in their tissues. The trait of Se hyperaccumulation has evolved several times in separate angiosperm clades. The ability to tolerate large tissue Se concentrations is primarily related to the ability to divert Se away from the accumulation of selenocysteine and selenomethionine, which might be incorporated into non-functional proteins, through the synthesis of less toxic Se metabilites. There is potential to breed or select crops

  1. Radiation hormesis in plant

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Sung; Song, Hi Sup; Lee, Young Keun; Lee, Byung Hun; Shin, In Chul; Lim, Young Taek

    2000-04-01

    This research was performed to investigate the effects of low dose {gamma}-ray radiation on the seed germination and the following physiological responses in vegetable crops. Special attention was focused on whether the resistance of vegetables against the unfavorable conditions of environment such as subsequent high doses of radiation or Phytophthora blight of pepper could be enhanced as an aspect of radiation hormesis. Analysis and characterization of antioxidant enzyme from plant culture cells and radiation tolerant of transformed plants from antioxidant (POD) were accomplished in the plant irradiated with different dose of {gamma}-ray. (author)

  2. Lead toxicity in plants

    OpenAIRE

    Sharma, Pallavi; Dubey, Rama Shanker

    2005-01-01

    Contamination of soils by heavy metals is of widespread occurrence as a result of human, agricultural and industrial activities. Among heavy metals, lead is a potential pollutant that readily accumulates in soils and sediments. Although lead is not an essential element for plants, it gets easily absorbed and accumulated in different plant parts. Uptake of Pb in plants is regulated by pH, particle size and cation exchange capacity of the soils as well as by root exudation and other physico-che...

  3. Radiation hormesis in plant

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Sung; Song, Hi Sup; Lee, Young Keun; Cun, Ki Jung; Shin, In Chul; Lim, Young Taek

    1999-04-01

    This research was performed to investigate the effects of low dose {gamma}-ray radiation on the seed germination and the following physiological responses in vegetable crops. Special attention was focused on whether the resistance of vegetables against the unfavorable conditions of environment such as acid rain or soil types could be enhanced as an aspect of radiation hormesis. Analysis and characterization of antioxidant enzyme from plant culture cells and radiation tolerant of transformed plants from antioxidant enzyme (POD) were accomplished in the plant irradiated with difference dosage of {gamma}-ray.

  4. Plant-soil feedbacks: role of plant functional group and plant traits

    NARCIS (Netherlands)

    Cortois, R.; Schröder-Georgi, T.; Weigelt, A.; van der Putten, W.H.; De Deyn, G.B.

    2016-01-01

    Plant-soil feedback (PSF), plant trait and functional group concepts advanced our understanding of plant community dynamics, but how they are interlinked is poorly known. To test how plant functional groups (FGs: graminoids, small herbs, tall herbs, legumes) and plant traits relate to PSF, we grew

  5. Wetland plants: biology and ecology

    National Research Council Canada - National Science Library

    Cronk, Julie K; Fennessy, M. Siobhan

    2001-01-01

    Providing a detailed account of the biology and ecology of wetland plants as well as applications of wetland plant science, this book presents a synthesis of studies and reviews from biology, plant...

  6. Tropical Plant Collections

    DEFF Research Database (Denmark)

    ’ collections for modern drug discovery. Bakker gave an account of the tantalising possibilities for molecular systematics and other research in the use of herbarium collections, which have opened up for a plethora of additional data to be extracted from dried plant collections. The final talk was Blackmore......The symposium Tropical Plant Collections: Legacies from the past? Essential tools for the future? was held on 19th–21st May 2015 with botanists from eighteen countries. Balslev and Friis introduced the themes and voiced their concern about negligence of tropical plant collections in many European......-colonial and early colonial periods. With the presentation by Cribb on the botany of the British Empire we were fully into the colonial period, focussing on the Royal Botanic Gardens at Kew. The situation in North America was treated by Funk, who illustrated the development of collections of tropical plants...

  7. Plant Growth Promoting Rhizobacteria

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 18; Issue 3. Plant Growth Promoting Rhizobacteria - Potential Microbes for Sustainable Agriculture. Jay Shankar Singh. General Article Volume 18 Issue 3 March 2013 pp 275-281 ...

  8. PHDs govern plant development.

    Science.gov (United States)

    Mouriz, Alfonso; López-González, Leticia; Jarillo, Jose A; Piñeiro, Manuel

    2015-01-01

    Posttranslational modifications present in the amino-terminal tails of histones play a pivotal role in the chromatin-mediated regulation of gene expression patterns that control plant developmental transitions. Therefore, the function of protein domains that specifically recognize these histone covalent modifications and recruit chromatin remodeling complexes and the transcriptional machinery to modulate gene expression is essential for a proper control of plant development. Plant HomeoDomain (PHD) motifs act as effectors that can specifically bind a number of histone modifications and mediate the activation or repression of underlying genes. In this review we summarize recent findings that emphasize the crucial role of this versatile family of chromatin "reader" domains in the transcriptional regulation of plant developmental processes such as meiosis and postmeiotic events during pollen maturation, embryo meristem initiation and root development, germination as well as flowering time.

  9. Plant Vascular Biology 2010

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Biao

    2014-11-17

    This grant supported the Second International Conference on Plant Vascular Biology (PVB 2010) held July 24-28, 2010 on the campus of Ohio State University, Columbus, Ohio. Biao Ding (Ohio State University; OSU) and David Hannapel (Iowa State University; ISU) served as co-chairs of this conference. Biao Ding served as the local organizer. PVB is defined broadly here to include studies on the biogenesis, structure and function of transport systems in plants, under conditions of normal plant growth and development as well as of plant interactions with pathogens. The transport systems cover broadly the xylem, phloem, plasmodesmata and vascular cell membranes. The PVB concept has emerged in recent years to emphasize the integrative nature of the transport systems and approaches to investigate them.

  10. Plant Growth Facility (PGF)

    Science.gov (United States)

    1998-01-01

    In a microgravity environment aboard the Space Shuttle Columbia Life and Microgravity Mission STS-78, compression wood formation and hence altered lignin deposition and cell wall structure, was induced upon mechanically bending the stems of the woody gymnosperms, Douglas fir (Pseudotsuga menziesii) and loblolly pine (Pinus taeda). Although there was significant degradation of many of the plant specimens in space-flight due to unusually high temperatures experienced during the mission, it seems evident that gravity had little or no effect on compression wood formation upon bending even in microgravity. Instead, it apparently results from alterations in the stress gradient experienced by the plant itself during bending under these conditions. This preliminary study now sets the stage for long-term plant growth experiments to determine whether compression wood formation can be induced in microgravity during phototropic-guided realignment of growing woody plant specimens, in the absence of any externally provided stress and strain.

  11. Plant Functional Genomics

    National Research Council Canada - National Science Library

    Chris Somerville; Shauna Somerville

    1999-01-01

    Nucleotide sequencing of the Arabidopsis genome is nearing completion, sequencing of the rice genome has begun, and large amounts of expressed sequence tag information are being obtained for many other plants...

  12. Tropical Plant Collections

    DEFF Research Database (Denmark)

    is of importance to global change studies. Queenborough showed how herbarium collections can be used to study plant functional traits, and Antonelli documented the importance of herbarium voucher specimens for molecular phylogenetic studies and in comparative biogeography. Soberón gave a sobering account of ‘big......The symposium Tropical Plant Collections: Legacies from the past? Essential tools for the future? was held on 19th–21st May 2015 with botanists from eighteen countries. Balslev and Friis introduced the themes and voiced their concern about negligence of tropical plant collections in many European......-colonial and early colonial periods. With the presentation by Cribb on the botany of the British Empire we were fully into the colonial period, focussing on the Royal Botanic Gardens at Kew. The situation in North America was treated by Funk, who illustrated the development of collections of tropical plants...

  13. Tropical Plant Collections

    DEFF Research Database (Denmark)

    The symposium Tropical Plant Collections: Legacies from the past? Essential tools for the future? was held on 19th–21st May 2015 with botanists from eighteen countries. Balslev and Friis introduced the themes and voiced their concern about negligence of tropical plant collections in many European......-colonial and early colonial periods. With the presentation by Cribb on the botany of the British Empire we were fully into the colonial period, focussing on the Royal Botanic Gardens at Kew. The situation in North America was treated by Funk, who illustrated the development of collections of tropical plants...... in the USA over the past two hundred years. Sebsebe Demissew taked about the situation in sub-Saharan Africa, particularly problems related to building and maintaining plant collections in new and poor nations. Onana outlined the history of botanical collections in Cameroon, covering a colonial period...

  14. Plutonium Finishing Plant

    Data.gov (United States)

    Federal Laboratory Consortium — The Plutonium Finishing Plant, also known as PFP, represented the end of the line (the final procedure) associated with plutonium production at Hanford.PFP was also...

  15. Epigenetic regulation in plants

    National Research Council Canada - National Science Library

    Pikaard, Craig S; Mittelsten Scheid, Ortrun

    2014-01-01

    The study of epigenetics in plants has a long and rich history, from initial descriptions of non-Mendelian gene behaviors to seminal discoveries of chromatin-modifying proteins and RNAs that mediate...

  16. Epigenetics and Plant Evolution

    National Research Council Canada - National Science Library

    Ryan A. Rapp; Jonathan F. Wendel

    2005-01-01

    .... Here, we provide an introduction to epigenetic mechanisms in plants, and highlight some of the empirical studies illustrative of the possible connections between evolution and epigenetically mediated alterations in gene expression and morphology.

  17. Nuclear power plant maintainability.

    Science.gov (United States)

    Seminara, J L; Parsons, S O

    1982-09-01

    In the mid-1970s a general awareness of human factors engineering deficiencies associated with power plant control rooms took shape and the Electric Power Research Institute (EPRI) awarded the Lockheed Corporation a contract to review the human factors aspects of five representative operational control rooms and their associated simulators. This investigation revealed a host of major and minor deficiencies that assumed unforeseen dimensions in the post- Three Mile Island accident period. In the course of examining operational problems (Seminara et al, 1976) and subsequently the methods for overcoming such problems (Seminara et al, 1979, 1980) indications surfaced that power plants were far from ideal in meeting the needs of maintenance personnel. Accordingly, EPRI sponsored an investigation of the human factors aspects of power plant maintainability (Seminara, 1981). This paper provides an overview of the maintainability problems and issues encountered in the course of reviewing five nuclear power plants.

  18. Nonferrous Metal Processing Plants

    Data.gov (United States)

    Department of Homeland Security — This map layer includes nonferrous metal processing plants in the United States. The data represent commodities covered by the Minerals Information Team (MIT) of the...

  19. Photomorphogenesis in plants

    National Research Council Canada - National Science Library

    Kendrick, Richard E; Kronenberg, G. H. M

    1994-01-01

    ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ... VII VIII XXXI Part 1 Introduction 1. Introduction by Lars Olof Bjorn 1.1 1.2 1.3 1.4 1.5 1.6 A developing research field ... Plant vision...

  20. Plant stem cell niches.

    Science.gov (United States)

    Aichinger, Ernst; Kornet, Noortje; Friedrich, Thomas; Laux, Thomas

    2012-01-01

    Multicellular organisms possess pluripotent stem cells to form new organs, replenish the daily loss of cells, or regenerate organs after injury. Stem cells are maintained in specific environments, the stem cell niches, that provide signals to block differentiation. In plants, stem cell niches are situated in the shoot, root, and vascular meristems-self-perpetuating units of organ formation. Plants' lifelong activity-which, as in the case of trees, can extend over more than a thousand years-requires that a robust regulatory network keep the balance between pluripotent stem cells and differentiating descendants. In this review, we focus on current models in plant stem cell research elaborated during the past two decades, mainly in the model plant Arabidopsis thaliana. We address the roles of mobile signals on transcriptional modules involved in balancing cell fates. In addition, we discuss shared features of and differences between the distinct stem cell niches of Arabidopsis.

  1. Chitosan in Plant Protection

    Directory of Open Access Journals (Sweden)

    Abdelbasset El Hadrami

    2010-03-01

    Full Text Available Chitin and chitosan are naturally-occurring compounds that have potential in agriculture with regard to controlling plant diseases. These molecules were shown to display toxicity and inhibit fungal growth and development. They were reported to be active against viruses, bacteria and other pests. Fragments from chitin and chitosan are known to have eliciting activities leading to a variety of defense responses in host plants in response to microbial infections, including the accumulation of phytoalexins, pathogen-related (PR proteins and proteinase inhibitors, lignin synthesis, and callose formation. Based on these and other proprieties that help strengthen host plant defenses, interest has been growing in using them in agricultural systems to reduce the negative impact of diseases on yield and quality of crops. This review recapitulates the properties and uses of chitin, chitosan, and their derivatives, and will focus on their applications and mechanisms of action during plant-pathogen interactions.

  2. DNA methylation in plants.

    Science.gov (United States)

    Vanyushin, B F

    2006-01-01

    DNA in plants is highly methylated, containing 5-methylcytosine (m5C) and N6-methyladenine (m6A); m5C is located mainly in symmetrical CG and CNG sequences but it may occur also in other non-symmetrical contexts. m6A but not m5C was found in plant mitochondrial DNA. DNA methylation in plants is species-, tissue-, organelle- and age-specific. It is controlled by phytohormones and changes on seed germination, flowering and under the influence of various pathogens (viral, bacterial, fungal). DNA methylation controls plant growth and development, with particular involvement in regulation of gene expression and DNA replication. DNA replication is accompanied by the appearance of under-methylated, newly formed DNA strands including Okazaki fragments; asymmetry of strand DNA methylation disappears until the end of the cell cycle. A model for regulation of DNA replication by methylation is suggested. Cytosine DNA methylation in plants is more rich and diverse compared with animals. It is carried out by the families of specific enzymes that belong to at least three classes of DNA methyltransferases. Open reading frames (ORF) for adenine DNA methyltransferases are found in plant and animal genomes, and a first eukaryotic (plant) adenine DNA methyltransferase (wadmtase) is described; the enzyme seems to be involved in regulation of the mitochondria replication. Like in animals, DNA methylation in plants is closely associated with histone modifications and it affects binding of specific proteins to DNA and formation of respective transcription complexes in chromatin. The same gene (DRM2) in Arabidopsis thaliana is methylated both at cytosine and adenine residues; thus, at least two different, and probably interdependent, systems of DNA modification are present in plants. Plants seem to have a restriction-modification (R-M) system. RNA-directed DNA methylation has been observed in plants; it involves de novo methylation of almost all cytosine residues in a region of si

  3. Plant Formate Dehydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    John Markwell

    2005-01-10

    The research in this study identified formate dehydrogenase, an enzyme that plays a metabolic role on the periphery of one-carbon metabolism, has an unusual localization in Arabidopsis thaliana and that the enzyme has an unusual kinetic plasticity. These properties make it possible that this enzyme could be engineered to attempt to engineer plants with an improved photosynthetic efficiency. We have produced transgenic Arabidopsis and tobacco plants with increased expression of the formate dehydrogenase enzyme to initiate further studies.

  4. The plant mitochondrial proteome

    DEFF Research Database (Denmark)

    Millar, A.H.; Heazlewood, J.L.; Kristensen, B.K.

    2005-01-01

    The plant mitochondrial proteome might contain as many as 2000-3000 different gene products, each of which might undergo post-translational modification. Recent studies using analytical methods, such as one-, two- and three-dimensional gel electrophoresis and one- and two-dimensional liquid...... context to be defined for them. There are indications that some of these proteins add novel activities to mitochondrial protein complexes in plants....

  5. HYDROXYANTHRAQUINONE DYES FROM PLANTS

    OpenAIRE

    Caro, Yanis; Petit, Thomas; Grondin, Isabelle; Fouillaud, Mireille; Dufossé, Laurent

    2017-01-01

    International audience; In the plant kingdom, numerous pigments have already been identified, but only a minority of them is allowed by legal regulations for textile dyeing, food coloring or cosmetic and pharmaceutics’ manufacturing. Anthraquinones, produced as secondary metabolites in plants, constitute a large structural variety of compounds among the quinone family. Derivatives that contain hydroxyl groups, namely hydroxy-anthraquinones, are colored. They have attracted the attention of ma...

  6. Synthetic Plant Defense Elicitors

    Directory of Open Access Journals (Sweden)

    Yasemin eBektas

    2015-01-01

    Full Text Available To defend themselves against invading pathogens plants utilize a complex regulatory network that coordinates extensive transcriptional and metabolic reprogramming. Although many of the key players of this immunity-associated network are known, the details of its topology and dynamics are still poorly understood. As an alternative to forward and reverse genetic studies, chemical genetics-related approaches based on bioactive small molecules have gained substantial popularity in the analysis of biological pathways and networks. Use of such molecular probes can allow researchers to access biological space that was previously inaccessible to genetic analyses due to gene redundancy or lethality of mutations. Synthetic elicitors are small drug like molecules that induce plant defense responses, but are distinct from known natural elicitors of plant immunity. While the discovery of the some synthetic elicitors had already been reported in the 1970s, recent breakthroughs in combinatorial chemical synthesis now allow for inexpensive high-throughput screens for bioactive plant defense-inducing compounds. Along with powerful reverse genetics tools and resources available for model plants and crop systems, comprehensive collections of new synthetic elicitors will likely allow plant scientists to study the intricacies of plant defense signaling pathways and networks in an unparalleled fashion. As synthetic elicitors can protect crops from diseases, without the need to be directly toxic for pathogenic organisms, they may also serve as promising alternatives to conventional biocidal pesticides, which often are harmful for the environment, farmers and consumers. Here we are discussing various types of synthetic elicitors that have been used for studies on the plant immune system, their modes-of-action as well as their application in crop protection.

  7. Pellet plant energy simulator

    Science.gov (United States)

    Bordeasu, D.; Vasquez Pulido, T.; Nielsen, C.

    2016-02-01

    The Pellet Plant energy simulator is a software based on advanced algorithms which has the main purpose to see the response of a pellet plant regarding certain location conditions. It combines energy provided by a combined heat and power, and/or by a combustion chamber with the energy consumption of the pellet factory and information regarding weather conditions in order to predict the biomass consumption of the pellet factory together with the combined heat and power, and/or with the biomass consumption of the combustion chamber. The user of the software will not only be able to plan smart the biomass acquisition and estimate its cost, but also to plan smart the preventive maintenance (charcoal cleaning in case of a gasification plant) and use the pellet plant at the maximum output regarding weather conditions and biomass moisture. The software can also be used in order to execute a more precise feasibility study for a pellet plant in a certain location. The paper outlines the algorithm that supports the Pellet Plant Energy Simulator idea and presents preliminary tests results that supports the discussion and implementation of the system

  8. Plant nuclear photorelocation movement.

    Science.gov (United States)

    Higa, Takeshi; Suetsugu, Noriyuki; Wada, Masamitsu

    2014-06-01

    Organelle movement and positioning are essential for proper cellular function. A nucleus moves dynamically during cell division and differentiation and in response to environmental changes in animal, fungal, and plant cells. Nuclear movement is well-studied and the mechanisms have been mostly elucidated in animal and fungal cells, but not in plant cells. In prothallial cells of the fern Adiantum capillus-veneris and leaf cells of the flowering plant Arabidopsis thaliana, light induces nuclear movement and nuclei change their position according to wavelength, intensity, and direction of light. This nuclear photorelocation movement shows some common features with the photorelocation movement of chloroplasts, which is one of the best-characterized plant organelle movements. This review summarizes nuclear movement and positioning in plant cells, especially plant-specific nuclear photorelocation movement and discusses the relationship between nuclear photorelocation movement and chloroplast photorelocation movement. © The Author 2013. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. Landscaping plant epigenetics.

    Science.gov (United States)

    McKeown, Peter C; Spillane, Charles

    2014-01-01

    The understanding of epigenetic mechanisms is necessary for assessing the potential impacts of epigenetics on plant growth, development and reproduction, and ultimately for the response of these factors to evolutionary pressures and crop breeding programs. This volume highlights the latest in laboratory and bioinformatic techniques used for the investigation of epigenetic phenomena in plants. Such techniques now allow genome-wide analyses of epigenetic regulation and help to advance our understanding of how epigenetic regulatory mechanisms affect cellular and genome function. To set the scene, we begin with a short background of how the field of epigenetics has evolved, with a particular focus on plant epigenetics. We consider what has historically been understood by the term "epigenetics" before turning to the advances in biochemistry, molecular biology, and genetics which have led to current-day definitions of the term. Following this, we pay attention to key discoveries in the field of epigenetics that have emerged from the study of unusual and enigmatic phenomena in plants. Many of these phenomena have involved cases of non-Mendelian inheritance and have often been dismissed as mere curiosities prior to the elucidation of their molecular mechanisms. In the penultimate section, consideration is given to how advances in molecular techniques are opening the doors to a more comprehensive understanding of epigenetic phenomena in plants. We conclude by assessing some opportunities, challenges, and techniques for epigenetic research in both model and non-model plants, in particular for advancing understanding of the regulation of genome function by epigenetic mechanisms.

  10. Uranium speciation in plants

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, A.; Bernhard, G.; Geipel, G.; Reich, T.; Rossberg, A. [Forschungszentrum Rossendorf e.V., Inst. of Radiochemistry, Dresden (Germany); Nitsche, H. [Univ. of California at Berkeley and Lawrence Berkeley National Lab., Nuclear Sciences Div., Berkeley, CA (United States)

    2003-07-01

    Detailed knowledge of the nature of uranium complexes formed after the uptake by plants is an essential prerequisite to describe the migration behavior of uranium in the environment. This study focuses on the determination of uranium speciation after uptake of uranium by lupine plants. For the first time, time-resolved laser-induced fluorescence spectroscopy and X-ray absorption spectroscopy were used to determine the chemical speciation of uranium in plants. Differences were detected between the uranium speciation in the initial solution (hydroponic solution and pore water of soil) and inside the lupine plants. The oxidation state of uranium did not change and remained hexavalent after it was taken up by the lupine plants. The chemical speciation of uranium was identical in the roots, shoot axis, and leaves and was independent of the uranium speciation in the uptake solution. The results indicate that the uranium is predominantly bound as uranyl(VI) phosphate to the phosphoryl groups. Dandelions and lamb's lettuce showed uranium speciation identical to lupine plants. (orig.)

  11. Firmly Planted, Always Moving.

    Science.gov (United States)

    Raikhel, Natasha V

    2017-04-28

    I was a budding pianist immersed in music in Leningrad, in the Soviet Union (now Saint Petersburg, Russia), when I started over, giving up sheet music for the study of ciliates. In a second starting-over story, I emigrated to the United States, where I switched to studying carbohydrate-binding plant lectin proteins, dissecting plant vesicular trafficking, and isolating novel glycosyltransferases responsible for making cell wall polysaccharides. I track my journey as a plant biologist from student to principal investigator to founding director of the Center for Plant Cell Biology and then director of the Institute for Integrative Genome Biology at the University of California, Riverside. I discuss implementing a new vision as the first and (so far) only female editor in chief of Plant Physiology, as well as how my laboratory helped develop chemical genomics tools to study the functions of essential plant proteins. Always wanting to give back what I received, I discuss my present efforts to develop female scientist leadership in Chinese universities and a constant theme throughout my life: a love of art and travel.

  12. Power plant siting

    Energy Technology Data Exchange (ETDEWEB)

    Winter, J.V.; Conner, D.A.

    1978-01-01

    Just to keep up with expected demand, the US will need over 500 new power generation units by 1985. Where these power plants will be located is the subject of heated debate among utility officials, government leaders, conservationists, concerned citizens and a multitude of special interest groups. This book offers a balanced review of all of the salient factors that must be taken into consideration in selecting power plant locations. To deal with this enormously complex subject, the authors (1) offer a general overview of the history and reasoning behind present legislation on the state and national levels; (2) describe the many different agencies that have jurisdiction in power plant location, from local water authorities and city councils to state conservation boards and the Nuclear Regulatory Commission; and (3) include a state-by-state breakdown of siting laws, regulations and present licensing procedures. Architects, engineers, contractors, and others involved in plant construction and site evaluation will learn of the trade-offs that must be made in balancing the engineering, economic, and environmental impacts of plant location. The book covers such areas as availability of water supplies for generation or cooling; geology, typography, and demography of the proposed site; and even the selection of the fuel best suited for the area. Finally, the authors examine the numerous environmental aspects of power plant siting.

  13. Plant cytokinin signalling.

    Science.gov (United States)

    Keshishian, Erika A; Rashotte, Aaron M

    2015-01-01

    Cytokinin is an essential plant hormone that is involved in a wide range of plant growth and developmental processes which are controlled through its signalling pathway. Cytokinins are a class of molecules that are N(6)-substituted adenine derivatives, such as isopentenyl adenine, and trans- and cis-zeatin, which are common in most plants. The ability to perceive and respond to cytokinin occurs through a modified bacterial two-component pathway that functions via a multi-step phosphorelay. This cytokinin signalling process is a crucial part of almost all stages of plant life, from embryo patterning to apical meristem regulation, organ development and eventually senescence. The cytokinin signalling pathway involves the co-ordination of three types of proteins: histidine kinase receptors to perceive the signal, histidine phosphotransfer proteins to relay the signal, and response regulators to provide signal output. This pathway contains both positive and negative elements that function in a complex co-ordinated manner to control cytokinin-regulated plant responses. Although much is known about how this cytokinin signal is perceived and initially regulated, there are still many avenues that need to be explored before the role of cytokinin in the control of plant processes is fully understood. © 2015 Authors; published by Portland Press Limited.

  14. Promoting Interest in Plant Biology with Biographies of Plant Hunters.

    Science.gov (United States)

    Daisey, Peggy

    1996-01-01

    Describes the use of biographical stories to promote student interest in plant biology. Discusses plant hunters of various time periods, including ancient, middle ages, renaissance, colonial Americas, and 18th and 19th centuries; women plant hunters of the 1800s and early 1900s; and modern plant hunters. Discusses classroom strategies for the…

  15. Plant toxicity, adaptive herbivory, and plant community dynamics

    Science.gov (United States)

    Zhilan Feng; Rongsong Liu; Donald L. DeAngelis; John P. Bryant; Knut Kielland; F. Stuart Chapin; Robert K. Swihart

    2009-01-01

    We model effects of interspecific plant competition, herbivory, and a plant's toxic defenses against herbivores on vegetation dynamics. The model predicts that, when a generalist herbivore feeds in the absence of plant toxins, adaptive foraging generally increases the probability of coexistence of plant species populations, because the herbivore switches more of...

  16. Designing the Perfect Plant: Activities to Investigate Plant Ecology

    Science.gov (United States)

    Lehnhoff, Erik; Woolbaugh, Walt; Rew, Lisa

    2008-01-01

    Plant ecology is an important subject that often receives little attention in middle school, as more time during science classes is devoted to plant biology. Therefore, the authors have developed a series of activities, including a card game--Designing the Perfect Plant--to introduce student's to plant ecology and the ecological trade offs…

  17. Ecology of plant volatiles: taking a plant community perspective

    NARCIS (Netherlands)

    Pierik, Ronald; Ballaré, C.L.; Dicke, M.

    Although plants are sessile organisms, they can modulate their phenotype so as to cope with environmental stresses such as herbivore attack and competition with neighbouring plants. Plant-produced volatile compounds mediate various aspects of plant defence. The emission of volatiles has costs and

  18. Ecology of plant volatiles: taking a plant community perspective

    NARCIS (Netherlands)

    Pierik, R.; Ballaré, C.L.; Dicke, M.

    2014-01-01

    Although plants are sessile organisms, they can modulate their phenotype so as to cope with environmental stresses such as herbivore attack and competition with neighbouring plants. Plant-produced volatile compounds mediate various aspects of plant defence. The emission of volatiles has costs and

  19. Plant-mediated insect interactions on a perennial plant

    NARCIS (Netherlands)

    Stam, J.M.

    2016-01-01

    Plants interact with many organisms around them, and one of the most important groups that a plant has to deal with, are the herbivores. Insects represent the most diverse group of herbivores and have many different ways of using the plant as a food source. Plants can, however, defend themselves

  20. Electroanalysis of Plant Thiols

    Directory of Open Access Journals (Sweden)

    Rene Kizek

    2007-06-01

    Full Text Available Due to unique physico-chemical properties of –SH moiety thiols comprise widegroup of biologically important compounds. A review devoted to biological functions ofglutathione and phytochelatins with literature survey of methods used to analysis of thesecompounds and their interactions with cadmium(II ions and Murashige-Skoog medium ispresented. For these purposes electrochemical techniques are used. Moreover, we revealedthe effect of three different cadmium concentrations (0, 10 and 100 μM on cadmiumuptake and thiols content in maize plants during 192 hours long experiments usingdifferential pulse anodic stripping voltammetry to detect cadmium(II ions and highperformance liquid chromatography with electrochemical detection to determineglutathione. Cadmium concentration determined in tissues of the plants cultivated innutrient solution containing 10 μM Cd was very low up to 96 hours long exposition andthen the concentration of Cd markedly increased. On the contrary, the addition of 100 μMCd caused an immediate sharp increase in all maize plant parts to 96 hours Cd expositionbut subsequently the Cd concentration increased more slowly. A high performance liquidchromatography with electrochemical detection was used for glutathione determination intreated maize plants after 96 and 192 hours of treatment. The highest total content of glutathione per one plant was 6 μg (96 h, 10 μM Cd in comparison with non-treated plant (control where glutathione content was 1.5 μg. It can be concluded that electrochemical techniques have proved to be useful to analyse plant thiols.

  1. Plants in alpine environments

    Science.gov (United States)

    Germino, Matthew J.

    2014-01-01

    Alpine and subalpine plant species are of special interest in ecology and ecophysiology because they represent life at the climate limit and changes in their relative abundances can be a bellwether for climate-change impacts. Perennial life forms dominate alpine plant communities, and their form and function reflect various avoidance, tolerance, or resistance strategies to interactions of cold temperature, radiation, wind, and desiccation stresses that prevail in the short growing seasons common (but not ubiquitous) in alpine areas. Plant microclimate is typically uncoupled from the harsh climate of the alpine, often leading to substantially warmer plant temperatures than air temperatures recorded by weather stations. Low atmospheric pressure is the most pervasive, fundamental, and unifying factor for alpine environments, but the resulting decrease in partial pressure of CO2 does not significantly limit carbon gain by alpine plants. Factors such as tree islands and topographic features create strong heterogeneous mosaics of microclimate and snow cover that are reflected in plant community composition. Factors affecting tree establishment and growth and formation of treeline are key to understanding alpine ecology. Carbohydrate and other carbon storage, rapid development in a short growing season, and physiological function at low temperature are prevailing attributes of alpine plants. A major contemporary research theme asks whether chilling at alpine-treeline affects the ability of trees to assimilate the growth resources and particularly carbon needed for growth or whether the growth itself is limited by the alpine environment. Alpine areas tend to be among the best conserved, globally, yet they are increasingly showing response to a range of anthropogenic impacts, such as atmospheric deposition.

  2. Aquatic Plants and their Control.

    Science.gov (United States)

    Michigan State Dept. of Natural Resources, Lansing.

    Aquatic plants can be divided into two types: algae and macrophytes. The goal of aquatic plant management is to maintain a proper balance of plants within a lake and still retain the lake's recreational and economic importance. Aquatic plant management programs have two phases: long-term management (nutrient control), and short-term management…

  3. Challenges of Participatory Plant Breeding

    OpenAIRE

    Messmer, Monika

    2012-01-01

    FiBL Plant breeding strategies - Why participatory plant breeding ? - Level of participation - Principles of participatory research - Challenges of participatory plant breeding - Who to get started - Communication / Common language - Definition of common goals - Long term engagement & Gender aspect - Implementation of PPB & Struggle with on farm trials - Data assessment & sample handling - Legal aspects and financing - Impact of participative plant breeding

  4. Plant ID. Agricultural Lesson Plans.

    Science.gov (United States)

    Southern Illinois Univ., Carbondale. Dept. of Agricultural Education and Mechanization.

    This lesson plan is intended for use in conducting classes on plant identification. Presented first are a series of questions and answers designed to convey general information about the scientific classification of plants. The following topics are among those discussed: main types of plants; categories of vascular plants; gymnosperms and…

  5. Tidal power plants in Russia

    Energy Technology Data Exchange (ETDEWEB)

    Bernshtein, L.B. (Hydroproject Assoc., Moscow (Russian Federation))

    1994-01-01

    This article examines the performance of tidal power plants in Russia and the expansion of tidal plant to new sites. The topics of the article include remote construction and transport techniques, pilot plant performance, economics and payback, and a review of global tidal power plant designs that are on hold due to economic problems relating to the global economy.

  6. Plants, diet, and health.

    Science.gov (United States)

    Martin, Cathie; Zhang, Yang; Tonelli, Chiara; Petroni, Katia

    2013-01-01

    Chronic disease is a major social challenge of the twenty-first century. In this review, we examine the evidence for discordance between modern diets and those on which humankind evolved as the cause of the increasing incidence of chronic diseases, and the evidence supporting consumption of plant foods as a way to reduce the risk of chronic disease. We also examine the evidence for avoiding certain components of plant-based foods that are enriched in Western diets, and review the mechanisms by which different phytonutrients are thought to reduce the risk of chronic disease. This body of evidence strongly suggests that consuming more fruits and vegetables could contribute both to medical nutrition therapies, as part of a package of treatments for conditions like type 2 diabetes, heart disease, cancer, and obesity, and to the prevention of these diseases. Plant science should be directed toward improving the quality of plant-based foods by building on our improved understanding of the complex relationships between plants, our diet, and our health.

  7. Repowering existing plants

    Energy Technology Data Exchange (ETDEWEB)

    Steazel, W.C.; Sopocy, D.M.; Pace, S.E.

    1998-07-01

    Increased competition among power generation companies, changes in generating system load requirements, lower allowable plant emissions, and changes in fuel availability and cost accentuate the need to closely assess the economics and performances of older electric generation units. Generally, decisions must be made as to whether these units should be retired and replaced with new generation capacity, whether capacity should be purchased from other generation companies, or if these existing units should be repowered. These decisions usually require the evaluation of many factors including; environmental discharge limits, permitting requirements, generating load demand increases, options for increasing the benefits of using existing facilities (e.g.; increasing efficiency and output), fuel cost increases, transmission requirements and access, optional plant designs. Many of these factors need to be used in the analysis based on a range rather than one specific value to test for changes in the selection of the best option because of future uncertainties. Usually complicated analysis results because of all the factors involved. Computer products that integrate performance and financial analysis can provide substantial value by enabling the user to evaluate the applicable plant options and range of input. The SOAPP (State-of-the-Art Power Plant) family of software products provides easy to use tools for rapid, thorough and economical evaluation of plant option. Repowering evaluation methodology typically used in the US, technology options, and available SOAPP repowering software are reviewed in this paper.

  8. Transgenic plants for phytoremediation.

    Science.gov (United States)

    Maestri, Elena; Marmiroli, Nelson

    2011-01-01

    Phytoremediation is a green, sustainable and promising solution to problems of environmental contamination. It entails the use of plants for uptake, sequestration, detoxification or volatilization of inorganic and organic pollutants from soils, water, sediments and possibly air. Phytoremediation was born from the observation that plants possessed physiological properties useful for environmental remediation. This was shortly followed by the application of breeding techniques and artificial selection to genetically improve some of the more promising and interesting species. Now, after nearly 20 years of research, transgenic plants for phytoremediation have been produced, but none have reached commercial existence. Three main approaches have been developed: (1) transformation with genes from other organisms (mammals, bacteria, etc.); (2) transformation with genes from other plant species; and (3) overexpression of genes from the same plant species. Many encouraging results have been reported, even though in some instances results have been contrary to expectations. This review will illustrate the main examples with a critical discussion of what we have learnt from them.

  9. Antidiabetic Plants of Iran

    Directory of Open Access Journals (Sweden)

    Ashrafeddin Goushegir

    2011-10-01

    Full Text Available To identify the antidiabetic plants of Iran, a systematic review of the published literature on the efficacy of Iranian medicinal plant for glucose control in patients with type 2 diabetes mellitus was conducted. We performed an electronic literature search of MEDLINE, Science Direct, Scopus, Proquest, Ebsco, Googlescholar, SID, Cochrane Library Database, from 1966 up to June 2010. The search terms were complementary and alternative medicine (CAM, diabetes mellitus, plant (herb, Iran, patient, glycemic control, clinical trial, RCT, natural or herbal medicine, hypoglycemic plants, and individual herb names from popular sources, or combination of these key words. Available Randomized Controlled Trials (RCT published in English or Persian language examined effects of an herb (limited to Iran on glycemic indexes in type 2 diabetic patients were included. Among all of the articles identified in the initial database search, 23 trials were RCT, examining herbs as potential therapy for type 2 diabetes mellitus. The key outcome for antidiabetic effect was changes in blood glucose or HbA1 c, as well as improves in insulin sensitivity or resistance. Available data suggest that several antidiabetic plants of Iran need further study. Among the RCT studies, the best evidence in glycemic control was found in Citrullus colocynthus, Ipomoea betatas, Silybum marianum and Trigonella foenum graecum.

  10. Ornamental Plant Breeding

    Directory of Open Access Journals (Sweden)

    Flávia Barbosa Silva Botelho

    2015-04-01

    Full Text Available World’s ornamental plant market, including domestic market of several countries and its exports, is currently evaluated in 107 billion dollars yearly. Such estimate highlights the importance of the sector in the economy of the countries, as well as its important social role, as it represents one of the main activities, which contributes to income and employment. Therefore a well-structured plant breeding program, which is connected with consumers’ demands, is required in order to fulfill these market needs globally. Activities related to pre-breeding, conventional breeding, and breeding by biotechnological techniques constitute the basis for the successful development of new ornamental plant cultivars. Techniques that involve tissue culture, protoplast fusion and genetic engineering greatly aid conventional breeding (germplasm introduction, plant selection and hybridization, aiming the obtention of superior genotypes. Therefore it makes evident, in the literature, the successful employment of genetic breeding, since it aims to develop plants with commercial value that are also competitive with the ones available in the market.

  11. Cadmium uptake by plants

    Energy Technology Data Exchange (ETDEWEB)

    Haghiri, F.

    1973-01-01

    Absorption of /sup 115m/Cd by soybean (Gylcine max l.) plants via foliar and root systems and translocation into the seed was determined. The uptake of /sup 115m/Cd by soybeans via the root system was more efficient than that of the foliar placement. Growth and Cd concentrations of soybean and wheat (Triticum aestivum l.) tops were influenced by soil-applied Cd. In both crops, the Cd concentration of plant tops increased while yield decreased with increasing levels of applied Cd. Cadmium toxicitiy began to occur in both crops at the lowest level of soil applied Cd (2.5 ppM). With soybean plants, Cd toxicity symptoms resembled fe chlorosis. For wheat plants there were no visual symptoms other than the studied growth. The relative concentration of Cd found in several vegetable crops varied depending on the plant species. The relative Cd concentration in descending order for various vegetables was lettuce (Lactuca sativa l.) > radish top (Raphanus sativus l.) > celery stalk (Apium graveolens l.) > celery leaves greater than or equal to green pepper (Capsicum frutescens l.) > radish roots.

  12. Geothermal Power Generation Plant

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Tonya [Oregon Inst. of Technology, Klamath Falls, OR (United States). Geo-Heat Center

    2013-12-01

    Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196°F resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OIT’s Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Cooling water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the “waste” water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the “waste” water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.

  13. Geothermal Plant Capacity Factors

    Energy Technology Data Exchange (ETDEWEB)

    Greg Mines; Jay Nathwani; Christopher Richard; Hillary Hanson; Rachel Wood

    2015-01-01

    The capacity factors recently provided by the Energy Information Administration (EIA) indicated this plant performance metric had declined for geothermal power plants since 2008. Though capacity factor is a term commonly used by geothermal stakeholders to express the ability of a plant to produce power, it is a term frequently misunderstood and in some instances incorrectly used. In this paper we discuss how this capacity factor is defined and utilized by the EIA, including discussion on the information that the EIA requests from operations in their 923 and 860 forms that are submitted both monthly and annually by geothermal operators. A discussion is also provided regarding the entities utilizing the information in the EIA reports, and how those entities can misinterpret the data being supplied by the operators. The intent of the paper is to inform the facility operators as the importance of the accuracy of the data that they provide, and the implications of not providing the correct information.

  14. Willow plant name 'Preble'

    Science.gov (United States)

    Abrahamson, Lawrence P.; Kopp, Richard F.; Smart, Lawrence B.; Volk, Timothy A.

    2014-06-10

    A distinct female cultivar of Salix viminalis.times.(Salix sachalinensis.times.Salix miyabeana) named `Preble`, characterized by rapid stem growth producing 29% more woody biomass than the average of three current production cultivars (Salix.times.dasyclados `SV1` (unpatented), Salix sachalinensis `SX61` (unpatented), and Salix miyabeana `SX64` (unpatented)) when grown in the same field for the same length of time (three growing seasons after coppice) in two different trials in Constableville, N.Y. and Middlebury, Vt. `Preble` can be planted from dormant stem cuttings, produces multiple stems after coppice and the stem biomass can be harvested when the plant is dormant. In the spring following harvest, the plant will re-sprout very vigorously, producing new stems that can be harvested repeatedly after two to four years of growth. `Preble` displays a low incidence of rust disease and is not damaged by potato leafhoppers.

  15. Plant redox proteomics

    DEFF Research Database (Denmark)

    Navrot, Nicolas; Finnie, Christine; Svensson, Birte

    2011-01-01

    In common with other aerobic organisms, plants are exposed to reactive oxygen species resulting in formation of post-translational modifications related to protein oxidoreduction (redox PTMs) that may inflict oxidative protein damage. Accumulating evidence also underscores the importance of redox...... PTMs in regulating enzymatic activities and controlling biological processes in plants. Notably, proteins controlling the cellular redox state, e.g. thioredoxin and glutaredoxin, appear to play dual roles to maintain oxidative stress resistance and regulate signal transduction pathways via redox PTMs....... To get a comprehensive overview of these types of redox-regulated pathways there is therefore an emerging interest to monitor changes in redox PTMs on a proteome scale. Compared to some other PTMs, e.g. protein phosphorylation, redox PTMs have received less attention in plant proteome analysis, possibly...

  16. Tropical Plant Collections

    DEFF Research Database (Denmark)

    course which he helped initiating in Manaus Brazil in the 1970s, and which still train researchers in that country. In a section on tropical plant collections and ‘big data’ Feeley demonstrated how dated herbarium records made it possible to trace elevational changes of species distributions, which...... is of importance to global change studies. Queenborough showed how herbarium collections can be used to study plant functional traits, and Antonelli documented the importance of herbarium voucher specimens for molecular phylogenetic studies and in comparative biogeography. Soberón gave a sobering account of ‘big......’ collections for modern drug discovery. Bakker gave an account of the tantalising possibilities for molecular systematics and other research in the use of herbarium collections, which have opened up for a plethora of additional data to be extracted from dried plant collections. The final talk was Blackmore...

  17. Tropical Plant Collections

    DEFF Research Database (Denmark)

    -colonial and early colonial periods. With the presentation by Cribb on the botany of the British Empire we were fully into the colonial period, focussing on the Royal Botanic Gardens at Kew. The situation in North America was treated by Funk, who illustrated the development of collections of tropical plants......The symposium Tropical Plant Collections: Legacies from the past? Essential tools for the future? was held on 19th–21st May 2015 with botanists from eighteen countries. Balslev and Friis introduced the themes and voiced their concern about negligence of tropical plant collections in many European...... and American institutions and the dire conditions of funding and staffing in many tropical herbaria and botanical gardens. This happens at the same time as the collections become increasingly important for a series of modern approaches to evolutionary and biodiversity research and the needs of the biodiversity...

  18. Plant antibodies for immunotherapy.

    Science.gov (United States)

    Ma, J K; Hein, M B

    1995-01-01

    The original report of Hiatt (1989) initiated a wave of excitement at the realization that a complex mammalian protein such as immunoglobulin could be assembled within a plant cell. The general reaction was one of amazement, but interest in exploiting the possibilities arising from the discovery, for example to make antibodies of therapeutic value, has taken a considerable time to develop. In the meantime, other recombinant expression systems and traditional cell culture techniques have advanced and overcome some of their problems, particularly those associated with yields. Plants, however, still offer unique advantages, especially in their ability to match the protein assembly capabilities of mammalian cells (as demonstrated by the assembly of SIgA molecules), as well as to provide antibodies in bulk at low cost. In addition, the area of "immunization" of plants holds great promise and will surely be a field of enormous growth for the future. PMID:7480334

  19. Urea metabolism in plants.

    Science.gov (United States)

    Witte, Claus-Peter

    2011-03-01

    Urea is a plant metabolite derived either from root uptake or from catabolism of arginine by arginase. In agriculture, urea is intensively used as a nitrogen fertilizer. Urea nitrogen enters the plant either directly, or in the form of ammonium or nitrate after urea degradation by soil microbes. In recent years various molecular players of plant urea metabolism have been investigated: active and passive urea transporters, the nickel metalloenzyme urease catalyzing the hydrolysis of urea, and three urease accessory proteins involved in the complex activation of urease. The degradation of ureides derived from purine breakdown has long been discussed as a possible additional metabolic source for urea, but an enzymatic route for the complete hydrolysis of ureides without a urea intermediate has recently been described for Arabidopsis thaliana. This review focuses on the proteins involved in plant urea metabolism and the metabolic sources of urea but also addresses open questions regarding plant urea metabolism in a physiological and agricultural context. The contribution of plant urea uptake and metabolism to fertilizer urea usage in crop production is still not investigated although globally more than half of all nitrogen fertilizer is applied to crops in the form of urea. Nitrogen use efficiency in crop production is generally well below 50% resulting in economical losses and creating ecological problems like groundwater pollution and emission of nitric oxides that can damage the ozone layer and function as greenhouse gasses. Biotechnological approaches to improve fertilizer urea usage bear the potential to increase crop nitrogen use efficiency. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  20. Integrated Gasification SOFC Plant with a Steam Plant

    DEFF Research Database (Denmark)

    Rokni, Masoud; Pierobon, Leonardo

    2011-01-01

    A hybrid Solid Oxide Fuel Cell (SOFC) and Steam Turbine (ST) plant is integrated with a gasification plant. Wood chips are fed to the gasification plant to produce biogas and then this gas is fed into the anode side of a SOFC cycle to produce electricity and heat. The gases from the SOFC stacks...... enter into a burner to burn the rest of the fuel. The offgases after the burner are now used to generate steam in a Heat Recovery Steam Generator (HRSG). The generated steam is expanded in a ST to produce additional power. Thus a triple hybrid plant based on a gasification plant, a SOFC plant...... and a steam plant is presented and studied. The plant is called as IGSS (Integrated Gasification SOFC Steam plant). Different systems layouts are presented and investigated. Electrical efficiencies up to 56% are achieved which is considerably higher than the conventional integrated gasification combined...

  1. PLANTS, SOURCE FOR BIOFUELS

    Directory of Open Access Journals (Sweden)

    Irina Ramona PECINGINĂ

    2016-12-01

    Full Text Available The most affordable alternative energy sources to fossil plants with hydropower are some oils that accumulate in different organs other accumulating carbohydrates with high energy value. They are known worldwide and cultivated a number of plant species entering the oilseeds, which provides significant production of edible oil (soybean, sunflower, etc. Vegetable oils or their product derived biodiesel fuels are potential diesel engines, representing an alternative to fuels. The most promising suitable for the production of oil crops "with short circuit "or biodiesel are fruits and seeds, both herbaceous and tree.

  2. Plant biotechnology: transgenic crops.

    Science.gov (United States)

    Shewry, Peter R; Jones, Huw D; Halford, Nigel G

    2008-01-01

    Transgenesis is an important adjunct to classical plant breeding, in that it allows the targeted manipulation of specific characters using genes from a range of sources. The current status of crop transformation is reviewed, including methods of gene transfer, the selection of transformed plants and control of transgene expression. The application of genetic modification technology to specific traits is then discussed, including input traits relating to crop production (herbicide tolerance and resistance to insects, pathogens and abiotic stresses) and output traits relating to the composition and quality of the harvested organs. The latter include improving the nutritional quality for consumers as well as the improvement of functional properties for food processing.

  3. Multiplex tokamak power plant

    Energy Technology Data Exchange (ETDEWEB)

    Dabiri, A.E.

    1986-07-01

    The concept of multiplexing for a fusion power core as an option for producing power is explored. Superconducting, as well as normal magnet, coils in either first or second stability regimes are considered. The results show that multiplex plants with superconducting magnets operating in the second stability regime could be competitive with the single-unit plants in some unit sizes. The key issues that impact the expected benefits of multiplexing must be investigated further. These are factory fabrication, economy of scale, the extent of equipment sharing, inherent safety, maintainability, and utility load management.

  4. Conceptualizing Pharmaceutical Plants

    DEFF Research Database (Denmark)

    Larsen, Bent Dalgaard; Jensen, Klaes Ladeby; Gjøl, Mikkel

    2006-01-01

    In the conceptual design phase of pharmaceutical plants as much as 80%-90% of the total cost of a project is committed. It is therefore essential that the chosen concept is viable. In this design process configuration and 3D models can help validate the decisions made. Designing 3D models...... is a complex task and requires skilled users. We demonstrate that a simple 2D/3D configuration tool can support conceptualizing of pharmaceutical plants. Present paper reports on preliminary results from a full scale implementation project at a Danish engineering company....

  5. Quantitative plant ecology

    DEFF Research Database (Denmark)

    Damgaard, Christian

    2014-01-01

    This e-book is written in the Wolfram' CDF format (download free CDF player from Wolfram.com) The objective of this e-book is to introduce the population ecological concepts for measuring and predicting the ecological success of plant species. This will be done by focusing on the measurement...... and statistical modelling of plant species abundance and the relevant ecological processes that control species abundance. The focus on statistical modelling and likelihood function based methods also means that more algorithm based methods, e.g. ordination techniques and boosted regression tress...

  6. Apoplastic interactions between plants and plant root intruders.

    Science.gov (United States)

    Mitsumasu, Kanako; Seto, Yoshiya; Yoshida, Satoko

    2015-01-01

    Numerous pathogenic or parasitic organisms attack plant roots to obtain nutrients, and the apoplast including the plant cell wall is where the plant cell meets such organisms. Root parasitic angiosperms and nematodes are two distinct types of plant root parasites but share some common features in their strategies for breaking into plant roots. Striga and Orobanche are obligate root parasitic angiosperms that cause devastating agricultural problems worldwide. Parasitic plants form an invasion organ called a haustorium, where plant cell wall degrading enzymes (PCWDEs) are highly expressed. Plant-parasitic nematodes are another type of agriculturally important plant root parasite. These nematodes breach the plant cell walls by protruding a sclerotized stylet from which PCWDEs are secreted. Responding to such parasitic invasion, host plants activate their own defense responses against parasites. Endoparasitic nematodes secrete apoplastic effectors to modulate host immune responses and to facilitate the formation of a feeding site. Apoplastic communication between hosts and parasitic plants also contributes to their interaction. Parasitic plant germination stimulants, strigolactones, are recently identified apoplastic signals that are transmitted over long distances from biosynthetic sites to functioning sites. Here, we discuss recent advances in understanding the importance of apoplastic signals and cell walls for plant-parasite interactions.

  7. Apoplastic interactions between plants and plant root intruders

    Directory of Open Access Journals (Sweden)

    Kanako eMitsumasu

    2015-08-01

    Full Text Available Numerous pathogenic or parasitic organisms attack plant roots to obtain nutrients, and the apoplast including the plant cell wall is where the plant cell meets such organisms. Root-parasitic angiosperms and nematodes are two distinct types of plant root parasites but share some common features in their strategies for breaking into plant roots. Striga and Orobanche are obligate root parasitic angiosperms that cause devastating agricultural problems worldwide. Parasitic plants form an invasion organ called a haustorium, where plant cell wall degrading enzymes (PCWDEs are highly expressed. Plant-parasitic nematodes are another type of agriculturally important plant root parasite. These nematodes breach the plant cell walls by protruding a sclerotized stylet from which PCWDEs are secreted. Responding to such parasitic invasion, host plants activate their own defense responses against parasites. Endoparasitic nematodes secrete apoplastic effectors to modulate host immune responses and to facilitate the formation of a feeding site. Apoplastic communication between hosts and parasitic plants also contributes to their interaction. Parasitic plant germination stimulants, strigolactones (SLs, are recently identified apoplastic signals that are transmitted over long distances from biosynthetic sites to functioning sites. Here, we discuss recent advances in understanding the importance of apoplastic signals and cell walls for plant-parasite interactions.

  8. Plant neurobiology: from sensory biology, via plant communication, to social plant behavior.

    Science.gov (United States)

    Baluska, Frantisek; Mancuso, Stefano

    2009-02-01

    In plants, numerous parameters of both biotic and abiotic environments are continuously monitored. Specialized cells are evolutionary-optimized for effective translation of sensory input into developmental and motoric output. Importantly, diverse physical forces, influences, and insults induce immediate electric responses in plants. Recent advances in plant cell biology, molecular biology, and sensory ecology will be discussed in the framework of recently initiated new discipline of plant sciences, namely plant neurobiology.

  9. Plant Tissue Culture Studies.

    Science.gov (United States)

    Smith, Robert Alan

    Plant tissue culture has developed into a valid botanical discipline and is considered a key area of biotechnology, but it has not been a key component of the science curriculum because of the expensive and technical nature of research in this area. This manual presents a number of activities that are relatively easy to prepare and perform. The…

  10. Plant Biotech Lab Manual.

    Science.gov (United States)

    Tant, Carl

    This book provides laboratory experiments to enhance any food science/botany curriculum. Chapter 1, "Introduction," presents a survey of the techniques used in plant biotechnology laboratory procedures. Chapter 2, "Micronutrition," discusses media and nutritional requirements for tissue culture studies. Chapter 3, "Sterile Seeds," focuses on the…

  11. Pinellas Plant facts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-11-01

    The Pinellas Plant, near St. Petersburg, Florida, is wholly owned by the United States Government. It is operated for the Department of Energy (DOE) by GE Aerospace, Neutron Devices (GEND). This plant was built in 1956 to manufacture neutron generators, a principal component in nuclear weapons. The neutron generators built at Neutron Devices consist of a miniaturized linear ion accelerator assembled with the pulsed electrical power supplies required for its operation. Production of these devices has necessitated the development of several uniquely specialized areas of competence and supporting facilities. The ion accelerator, or neutron tube, requires ultra clean, high vacuum technology; hermetic seals between glass, ceramic, glass-ceramic, and metal materials; plus high voltage generation and measurement technology. The existence of these capabilities at Neutron Devices has led directly to the assignment of other weapon application products: the lightning arrester connector, specialty capacitor, vacuum switch, and crystal resonator. Other product assignments such as active and reserve batteries and the radioisotopically-powered thermoelectric generator evolved from the plant`s materials measurement and controls technologies which are required to ensure neutron generator life.

  12. Power plants to go

    Energy Technology Data Exchange (ETDEWEB)

    Valenti, M.

    1996-05-01

    Simple-cycle portable power stations have been used to increase the electrical capacity in developing countries and in emergency situations. This article describes the first power barge using combined-cycle technology which has began operation in the Dominican Republic. The construction of a new mobile power plant in Puerto Plata, the Dominican Republic, marks the first time a power barge has been coupled with the efficiency of combined-cycle generation. The 185-megawatt plant, which became fully operational in January, provides 25% of the power required by the Dominican state-owned utility, the Corporacion Dominicana de Electricidad (CDE). The new plant is designed to end the power shortages and blackouts that have traditionally plagued the Caribbean nation. The Puerto Plata plant consists of two barges that were built in the US, transported to the Dominican Republic, installed, and backfilled into place. One barge, delivered in May 1994, contains a 76-megawatt gas turbine. The second barge, installed in April 1995, contains a 45-megawatt heat-recovery steam generator to recover heat energy from the turbine exhaust, two auxiliary boilers to produce additional steam, and a 118-megawatt steam-turbine generator.

  13. Gender in Plants

    Indian Academy of Sciences (India)

    answers to the same evolutionary problem of maximising an individual's fitness? Darwinian fitness is the measure of an individual's survival and reproductive success in terms of the number of offspring produced. Reproductive success in plants can be achieved either through male or female functions via pollen or ovules.

  14. Nuclear Power Plant Technician

    Science.gov (United States)

    Randall, George A.

    1975-01-01

    The author recognizes a body of basic knowledge in nuclear power plant technoogy that can be taught in school programs, and lists the various courses, aiming to fill the anticipated need for nuclear-trained manpower--persons holding an associate degree in engineering technology. (Author/BP)

  15. Drought Signaling in Plants

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 6. Drought Signaling in Plants. G Sivakumar Swamy. General Article Volume 4 Issue 6 June 1999 pp 34-44. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/004/06/0034-0044. Author Affiliations.

  16. Fertilization in Flowering Plants

    Indian Academy of Sciences (India)

    After the pollen grain reaches the stigma through outsourcedagents (pollinators), the next step before fertilization is to selectthe right type of pollen. Similar to a marriage in humanbeings, flowering plants also have evolved elaborate screeningprocess to select the right pollen grains and to reject thewrong ones. Even after ...

  17. Plant-Fungus Marriages

    Indian Academy of Sciences (India)

    (photosyn- thesize). Some species lack not only leaves but also roots; their underground part is undifferentiated (proto corm) and is mycor- rhizal. The mycorrhizal hyphae in protocorm extend outwardly and link up with the roots of surrounding photosynthetic plants and litter, drawing nutrition. In one experiment, orchid seeds.

  18. Plant Glandular Trichomes

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 3. Plant Glandular Trichomes Chemical ... Peter1 Thomas G Shanower2. Scientist, Nagarjuna Agricultural Research and Development Institute 28, P & T colony Secunderabad 500 009, India; Senior Scientist at ICRISAT Asia Center, Hyderabad.

  19. Quality maintenance Tropical Plants

    Directory of Open Access Journals (Sweden)

    Gláucia Moraes Dias

    2016-11-01

    Full Text Available The climatic characteristics of the country favor the cultivation of tropical flowers. The continued expansion of this market is due the beauty, exoticit nature and postharvest longevity of flower. However, little is known about the postharvest of tropical plants. Therefore, this paper provides information on harvest, handling and storage of cut tropical plantspostharvest, storage temperature, conditioning solution.

  20. Microgravity Plant Growth Demonstration

    Science.gov (United States)

    2000-01-01

    Two visitors watch a TV monitor showing plant growth inside a growth chamber designed for operation aboard the Space Shuttle as part of NASA's Space Product Development program. The exhibit, featuring work by the Wisconsin Center for Space Automation and Robotics, was at AirVenture 2000 sponsored by the Experimental Aircraft Association in Oshkosh, WI.

  1. Radiosensitivity in plants

    Energy Technology Data Exchange (ETDEWEB)

    Nauman, A F

    1979-01-01

    The report presents a compilation of available data on the sensitivity of plants to ionizing radiation, and provides basic information on methods of determining such sensitivities, or of estimating radiosensitivities by calcuation of the nuclear factors upon which they depend. The scope of the data presented here is necessarily limited to the most generally useful radiobiological end points and to the most commonly-used types of radiation. Many of the factors which influence radiosensitivity, particularly nuclear factors, will be discussed. Emphasis will be upon whole-plant studies done at Brookhaven National Laboratory by A.H. Sparrow and his associates, since these studies are the source of most of the available radiosensitivity data and of all the sensitivity predictions listed here. Data presented here include summaries of experimentally-determined radiosensitivities at various end points for both herbaceous and woody higher plants, and for a few species of ferns and lower plants. The algae and fungi have not been considered here due to space limitations.

  2. Pacific plant areas. Introduction

    NARCIS (Netherlands)

    Steenis, van C.G.G.J.

    1963-01-01

    Pacific Plant Areas was first suggested by Prof. Dr. H. J. Lam, Director of the Rijksherbarium, Leyden, during the 6th Pacific Science Congress held at Berkeley, California, in 1939.² In the 7th Pacific Science Congress held in Auckland and Christchurch, New Zealand, in 1949, Doctor Lam made a

  3. Chromatin dynamics in plants

    NARCIS (Netherlands)

    Fransz, P.F.; Jong, de J.H.

    2002-01-01

    Recent studies in yeast, animals and plants have provided major breakthroughs in unraveling the molecular mechanism of higher-order gene regulation. In conjunction with the DNA code, proteins that are involved in chromatin remodeling, histone modification and epigenetic imprinting form a large

  4. Plants flex their skeletons

    DEFF Research Database (Denmark)

    Foster, Randy; Mattsson, Ole; Mundy, John

    2003-01-01

    Recent work on the fragile fiber mutants of Arabidopsis has identified microtubule-associated proteins that affect the orientation of cellulose microfibrils in cell walls, a major determinant of plant elongation growth. These same proteins are implicated in responses to gibberellin, provoking fresh...

  5. Tetrapyrrole Signaling in Plants

    Directory of Open Access Journals (Sweden)

    Robert M. Larkin

    2016-10-01

    Full Text Available Tetrapyrroles make critical contributions to a number of important processes in diverse organisms. In plants, tetrapyrroles are essential for light signaling, the detoxification of reactive oxygen species, the assimilation of nitrate and sulfate, respiration, photosynthesis, and programed cell death. Thus, it is not surprising that tetrapyrrole metabolism is strictly regulated and that tetrapyrrole metabolism affects signaling mechanisms that regulate gene expression. In plants and algae, tetrapyrroles are synthesized in plastids and were some of the first plastid signals demonstrated to regulate nuclear gene expression. In plants, the mechanism of tetrapyrrole-dependent plastid-to-nucleus signaling remains poorly understood. Additionally, some of experiments that tested ideas for possible signaling mechanisms appeared to produce conflicting data. In some instances, these conflicts are potentially explained by different experimental conditions. Although the biological function of tetrapyrrole signaling is poorly understood, there is compelling evidence that this signaling is significant. Specifically, this signaling appears to affect the accumulation of starch and may promote abiotic stress tolerance. Tetrapyrrole-dependent plastid-to-nucleus signaling interacts with a distinct plastid-to-nucleus signaling mechanism that depends on GENOMES UNCUOPLED1 (GUN1. GUN1 contributes to a variety of processes, such as chloroplast biogenesis, the circadian rhythm, abiotic stress tolerance, and development. Thus, the contribution of tetrapyrrole signaling to plant function is potentially broader than we currently appreciate. In this review, I discuss these aspects of tetrapyrrole signaling.

  6. Engineered minichromosomes in plants.

    Science.gov (United States)

    Birchler, James A

    2015-02-01

    Engineered minichromosomes have been produced in several plant species via telomere-mediated chromosomal truncation. This approach bypasses the complications of the epigenetic nature of centromere function in plants, which has to date precluded the production of minichromosomes by the re-introduction of centromere sequences to a plant cell. Genes to be added to a cleaved chromosome are joined together with telomere repeats on one side. When these constructs are introduced into plant cells, the genes are ligated to the broken chromosomes but the telomere repeats will catalyze the formation of a telomere on the other end cutting the chromosome at that point. Telomere-mediated chromosomal truncation is sufficiently efficient that very small chromosomes can be generated consisting of basically the endogenous centromere and the added transgenes. The added transgenes provide a platform onto which it should be possible to assemble a synthetic chromosome to specification. Combining engineered minichromosomes with doubled haploid breeding should greatly expedite the transfer of transgenes to new lines and to test the interaction of transgenes in new background genotypes. Potential basic and applied applications of synthetic chromosomes are discussed.

  7. Phenolics and plant allelopathy.

    Science.gov (United States)

    Li, Zhao-Hui; Wang, Qiang; Ruan, Xiao; Pan, Cun-De; Jiang, De-An

    2010-12-07

    Phenolic compounds arise from the shikimic and acetic acid (polyketide) metabolic pathways in plants. They are but one category of the many secondary metabolites implicated in plant allelopathy. Phenolic allelochemicals have been observed in both natural and managed ecosystems, where they cause a number of ecological and economic problems, such as declines in crop yield due to soil sickness, regeneration failure of natural forests, and replanting problems in orchards. Phenolic allelochemical structures and modes of action are diverse and may offer potential lead compounds for the development of future herbicides or pesticides. This article reviews allelopathic effects, analysis methods, and allelopathic mechanisms underlying the activity of plant phenolic compounds. Additionally, the currently debated topic in plant allelopathy of whether catechin and 8-hydroxyquinoline play an important role in Centaurea maculata and Centaurea diffusa invasion success is discussed. Overall, the main purpose of this review is to highlight the allelopacthic potential of phenolic compounds to provide us with methods to solve various ecology problems, especially in regard to the sustainable development of agriculture, forestry, nature resources and environment conservation.

  8. Plant Tissue Culture

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 17; Issue 8. Plant Tissue Culture - Historical Developments and Applied Aspects. H R Dagla. General Article Volume 17 Issue 8 August 2012 pp 759-767. Fulltext. Click here to view fulltext PDF. Permanent link:

  9. Plant cell culture initiation

    NARCIS (Netherlands)

    Hall, R.D.

    2000-01-01

    The use of cultured plant cells in either organized or unorganized form has increased vey considerably in the last 10-15 yr. Many new technologies have been developed and applications in both fundamental and applied research have led to the development of some powerful tools for improving our

  10. Plant-Fungus Marriages

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 4. Plant-Fungus Marriages. Ramesh Maheshwari. General Article Volume 11 Issue 4 April 2006 pp 33-44. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/011/04/0033-0044. Keywords. Fungi ...

  11. Chromosome painting in plants.

    NARCIS (Netherlands)

    Schubert, I.; Fransz, P.F.; Fuchs, J.; Jong, de J.H.

    2001-01-01

    The current 'state-of-art' as to chromosome painting in plants is reviewed. We define different situations described as painting so far: i) Genomic in situ hybridisation (GISH) with total genomic DNA to distinguish alien chromosomes on the basis of divergent dispersed repeats, ii) 'Chromosomal in

  12. Plants and Medicinal Chemistry

    Science.gov (United States)

    Bailey, D.

    1977-01-01

    This is the first of two articles showing how plants that have been used in folk medicine for many centuries are guiding scientists in the design and preparation of new and potent drugs. Opium and its chemical derivatives are examined at length in this article. (Author/MA)

  13. Plant research '76

    Energy Technology Data Exchange (ETDEWEB)

    1976-01-01

    Overall objective remains unchanged: to contribute to the knowledge, with strong emphasis on fundamental problems, of how plants function, the roles they play in the environment and energy relations of the world, and how these roles may be optimized for the benefit of mankind. (PCS)

  14. Mechanisms in Plant Development

    Energy Technology Data Exchange (ETDEWEB)

    Hake, Sarah [USDA ARS Plant Gene Expression Center

    2013-08-21

    This meeting has been held every other year for the past twenty-two years and is the only regularly held meeting focused specifically on plant development. Topics covered included: patterning in developing tissues; short and long distance signaling; differentiation of cell types; the role of epigenetics in development; evolution; growth.

  15. Phenolics and Plant Allelopathy

    Directory of Open Access Journals (Sweden)

    De-An Jiang

    2010-12-01

    Full Text Available Phenolic compounds arise from the shikimic and acetic acid (polyketide metabolic pathways in plants. They are but one category of the many secondary metabolites implicated in plant allelopathy. Phenolic allelochemicals have been observed in both natural and managed ecosystems, where they cause a number of ecological and economic problems, such as declines in crop yield due to soil sickness, regeneration failure of natural forests, and replanting problems in orchards. Phenolic allelochemical structures and modes of action are diverse and may offer potential lead compounds for the development of future herbicides or pesticides. This article reviews allelopathic effects, analysis methods, and allelopathic mechanisms underlying the activity of plant phenolic compounds. Additionally, the currently debated topic in plant allelopathy of whether catechin and 8-hydroxyquinoline play an important role in Centaurea maculata and Centaurea diffusa invasion success is discussed. Overall, the main purpose of this review is to highlight the allelopacthic potential of phenolic compounds to provide us with methods to solve various ecology problems, especially in regard to the sustainable development of agriculture, forestry, nature resources and environment conservation.

  16. Plants and Oxygen

    NARCIS (Netherlands)

    Bailey-Serres, J.N.

    2009-01-01

    In this oratie I will first consider the fundamental nature of oxygen and its role within the plant cell and then will summarize studies on the cellular low-oxygen response that are interwoven with international efforts to provide farmers with rice that endures prolonged periods of complete

  17. Plant breeding and genetics

    Science.gov (United States)

    The ultimate goal of plant breeding is to develop improved crops. Improvements can be made in crop productivity, crop processing and marketing, and/or consumer quality. The process of developing an improved cultivar begins with intercrossing lines with high performance for the traits of interest, th...

  18. Plant Protection Research Institute

    Directory of Open Access Journals (Sweden)

    N. Allsopp

    1993-12-01

    Full Text Available A survey of the mycorrhizal status of plants growing in the Cape Floristic Region of South Africa was undertaken to assess the range of mycorrhizal types and their dominance in species characteristic of this region. Records were obtained by ex­amining the root systems of plants growing in three Cape lowland vegetation types, viz. West Coast Strandveld, West Coast Renosterveld and Sand Plain Lowland Fynbos for mycorrhizas, as well as by collating literature records of mycorrhizas on plants growing in the region. The mycorrhizal status of 332 species is listed, of which 251 species are new records. Members of all the important families in this region have been examined. Mycorrhizal status appears to be associated mainly with taxonomic position of the species. Extrapolating from these results, we conclude that 62% of the flora of the Cape Floristic Region form vesicular-arbuscular mycorrhizas, 23% have no mycorrhizas, 8% are ericoid mycorrhizal, 2% form orchid mycorrhizas, whereas the mycorrhizal status of 4% of the flora is unknown. There were no indigenous ectomycor- rhizal species. The proportion of non-mycorrhizal species is high compared to other ecosystems. In particular, the lack of mycorrhizas in several important perennial families in the Cape Floristic Region is unusual. The diversity of nutrient acquir­ing adaptations, including the range of mycorrhizas and cluster roots in some non-mycorrhizal families, may promote co­existence of plants in this species-rich region.

  19. Parasites as plant taxonomists

    NARCIS (Netherlands)

    Steenis, van C.G.G.J.

    1971-01-01

    Prof. J.A. Nannfeldt gave in a lecture (publ. in Acta Univ. Skrifter rörande Uppsala Univ. 17, 1970) an interesting summary of Fungi as plant taxonomists, distinguishing 4 cases: 1) isolated fungus restricted to one species, not on other related species, 2) an isolated single fungus on a

  20. Remediation Using Plants and Plant Enzymes: A Progress Report

    National Research Council Canada - National Science Library

    1995-01-01

    .... In every case, the sources are plants growing near the sediment. The use of plants for remediation of hazardous materials such as TNT or other munitions like RDX and HMX has led to a new approach to remediation-- phytoremediation...

  1. Plant responses to plant growth-promoting rhizobacteria

    OpenAIRE

    van Loon, L. C.

    2007-01-01

    Non-pathogenic soilborne microorganisms can promote plant growth, as well as suppress diseases. Plant growth promotion is taken to result from improved nutrient acquisition or hormonal stimulation. Disease suppression can occur through microbial antagonism or induction of resistance in the plant. Several rhizobacterial strains have been shown to act as plant growth-promoting bacteria through both stimulation of growth and induced systemic resistance (ISR), but it is not clear in how far both ...

  2. Fungal plant pathogens and the plant immune system

    OpenAIRE

    Wit, de, J.C.M.

    2014-01-01

    Fungi are notorious plant pathogens and continuously threat global food production. In the last decades we have obtained a better understanding of infection strategies of fungi and the plant immune system. This has facilitated more efficient introduction of disease resistance genes in crop plants by plant breeders. A brief overview of progress in research and applications will be provided as well as a glimpse into the future.

  3. Atmospheric transformation of plant volatiles disrupts host plant finding

    OpenAIRE

    Tao Li; James D. Blande; Holopainen, Jarmo K.

    2016-01-01

    Plant-emitted volatile organic compounds (VOCs) play important roles in plant-insect interactions. Atmospheric pollutants such as ozone (O3) can react with VOCs and affect the dynamics and fidelity of these interactions. However, the effects of atmospheric degradation of plant VOCs on plant-insect interactions remains understudied. We used a system comprising Brassica oleracea subsp. capitata (cabbage) and the specialist herbivore Plutella xylostella to test whether O3-triggered VOC degradati...

  4. Plant neurobiology and green plant intelligence : science, metaphors and nonsense

    NARCIS (Netherlands)

    Struik, P.C.; Yin, X.; Meinke, H.B.

    2008-01-01

    This paper analyses the recent debates on the emerging science of plant neurobiology, which claims that the individual green plant should be considered as an intelligent organism. Plant neurobiology tries to use elements from animal physiology as elegant metaphors to trigger the imagination in

  5. Plant blindness and the implications for plant conservation.

    Science.gov (United States)

    Balding, Mung; Williams, Kathryn J H

    2016-12-01

    Plant conservation initiatives lag behind and receive considerably less funding than animal conservation projects. We explored a potential reason for this bias: a tendency among humans to neither notice nor value plants in the environment. Experimental research and surveys have demonstrated higher preference for, superior recall of, and better visual detection of animals compared with plants. This bias has been attributed to perceptual factors such as lack of motion by plants and the tendency of plants to visually blend together but also to cultural factors such as a greater focus on animals in formal biological education. In contrast, ethnographic research reveals that many social groups have strong bonds with plants, including nonhierarchical kinship relationships. We argue that plant blindness is common, but not inevitable. If immersed in a plant-affiliated culture, the individual will experience language and practices that enhance capacity to detect, recall, and value plants, something less likely to occur in zoocentric societies. Therefore, conservation programs can contribute to reducing this bias. We considered strategies that might reduce this bias and encourage plant conservation behavior. Psychological research demonstrates that people are more likely to support conservation of species that have human-like characteristics and that support for conservation can be increased by encouraging people to practice empathy and anthropomorphism of nonhuman species. We argue that support for plant conservation may be garnered through strategies that promote identification and empathy with plants. © 2016 Society for Conservation Biology.

  6. Effect of plant-growth-promoting rhizobacteria inoculation on plant ...

    African Journals Online (AJOL)

    Effect of plant-growth-promoting rhizobacteria inoculation on plant growth, productivity and economics of Basmati rice. ... Egyptian Journal of Biology ... Abstract. A field experiment was conducted in a wet season (Kharif) to study the effects of plant growth-promoting rhizobacteria(PGPR) inoculation on agronomic traits and ...

  7. Plant responses to plant growth-promoting rhizobacteria

    NARCIS (Netherlands)

    Loon, L.C. van

    2007-01-01

    Non-pathogenic soilborne microorganisms can promote plant growth, as well as suppress diseases. Plant growth promotion is taken to result from improved nutrient acquisition or hormonal stimulation. Disease suppression can occur through microbial antagonism or induction of resistance in the plant.

  8. Woody plants and woody plant management: ecology, safety, environmental impact

    Science.gov (United States)

    James H. Miller

    2001-01-01

    Wise and effective woody plant management is an increasing necessity for many land uses and conservation practices, especially on forests and rangelands where native or exotic plants are affecting productivity, access, or critical habitat. Tools and approaches for managing woody plants have been under concerted development for the past 50 years, integrating mechanical...

  9. Dipping Strawberry Plants in Fungicides before Planting to Control Anthracnose

    Directory of Open Access Journals (Sweden)

    Myeong Hyeon Nam

    2014-03-01

    Full Text Available Anthracnose crown rot (ACR, caused by Colletotrichum fructicola, is a serious disease of strawberry in Korea. The primary inoculums of ACR were symptomless strawberry plants, plant debris, and other host plants. To effectively control anthracnose in symptomless transplanted strawberries, it is necessary to use diseasefree plants, detect the disease early, and apply a fungicide. Therefore, in 2010 and 2011, we evaluated the efficacy of pre-plant fungicide dips by using strawberry transplants infected by C. fructicola for the control of anthracnose. Dipping plants in prochloraz-Mn for 10 min before planting was most effective for controlling anthracnose in symptomless strawberry plants and resulted in more than 76% control efficacy. Azoxystrobin showed a control efficacy of over 40%, but plants treated with pyraclostrobin, mancozeb and iminoctadine tris showed high disease severity. The control efficacy of the dip treatment with prochloraz-Mn did not differ with temperature and time. Treatment with prochloraz-Mn for more than an hour caused growth suppression in strawberry plants. Therefore, the development of anthracnose can be effectively reduced by dipping strawberry plants for 10 min in prochloraz-Mn before planting.

  10. PlantRGDB: A Database of Plant Retrocopied Genes.

    Science.gov (United States)

    Wang, Yi

    2017-01-01

    RNA-based gene duplication, known as retrocopy, plays important roles in gene origination and genome evolution. The genomes of many plants have been sequenced, offering an opportunity to annotate and mine the retrocopies in plant genomes. However, comprehensive and unified annotation of retrocopies in these plants is still lacking. In this study I constructed the PlantRGDB (Plant Retrocopied Gene DataBase), the first database of plant retrocopies, to provide a putatively complete centralized list of retrocopies in plant genomes. The database is freely accessible at http://probes.pw.usda.gov/plantrgdb or http://aegilops.wheat.ucdavis.edu/plantrgdb. It currently integrates 49 plant species and 38,997 retrocopies along with characterization information. PlantRGDB provides a user-friendly web interface for searching, browsing and downloading the retrocopies in the database. PlantRGDB also offers graphical viewer-integrated sequence information for displaying the structure of each retrocopy. The attributes of the retrocopies of each species are reported using a browse function. In addition, useful tools, such as an advanced search and BLAST, are available to search the database more conveniently. In conclusion, the database will provide a web platform for obtaining valuable insight into the generation of retrocopies and will supplement research on gene duplication and genome evolution in plants. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  11. Fungal plant pathogens and the plant immune system

    NARCIS (Netherlands)

    Wit, de P.J.G.M.

    2014-01-01

    Fungi are notorious plant pathogens and continuously threat global food production. In the last decades we have obtained a better understanding of infection strategies of fungi and the plant immune system. This has facilitated more efficient introduction of disease resistance genes in crop plants by

  12. 7 CFR 1033.7 - Pool plant.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Pool plant. 1033.7 Section 1033.7 Agriculture... Handling Definitions § 1033.7 Pool plant. Pool plant means a plant, unit of plants, or system of plants as specified in paragraphs (a) through (f) of this section, or a plant specified in paragraph (j) of this...

  13. 7 CFR 1030.7 - Pool plant.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Pool plant. 1030.7 Section 1030.7 Agriculture... Handling Definitions § 1030.7 Pool plant. Pool plant means a plant, unit of plants, or system of plants as specified in paragraphs (a) through (f) of this section, but excluding a plant specified in paragraph (h) of...

  14. 7 CFR 1032.7 - Pool plant.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Pool plant. 1032.7 Section 1032.7 Agriculture... Handling Definitions § 1032.7 Pool plant. Pool plant means a plant, unit of plants, or system of plants as specified in paragraphs (a) through (f) of this section, or a plant specified in paragraph (i) of this...

  15. 7 CFR 1124.7 - Pool plant.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Pool plant. 1124.7 Section 1124.7 Agriculture... Regulating Handling Definitions § 1124.7 Pool plant. Pool plant means a plant, unit of plants, or a system of plants as specified in paragraphs (a) through (f) of this section, but excluding a plant specified in...

  16. 7 CFR 1001.7 - Pool plant.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Pool plant. 1001.7 Section 1001.7 Agriculture... Handling Definitions § 1001.7 Pool plant. Pool plant means a plant, unit of plants, or system of plants as specified in paragraphs (a) through (f) of this section, but excluding a plant described in paragraph (h) of...

  17. Nonstructural carbon in woody plants.

    Science.gov (United States)

    Dietze, Michael C; Sala, Anna; Carbone, Mariah S; Czimczik, Claudia I; Mantooth, Joshua A; Richardson, Andrew D; Vargas, Rodrigo

    2014-01-01

    Nonstructural carbon (NSC) provides the carbon and energy for plant growth and survival. In woody plants, fundamental questions about NSC remain unresolved: Is NSC storage an active or passive process? Do older NSC reserves remain accessible to the plant? How is NSC depletion related to mortality risk? Herein we review conceptual and mathematical models of NSC dynamics, recent observations and experiments at the organismal scale, and advances in plant physiology that have provided a better understanding of the dynamics of woody plant NSC. Plants preferentially use new carbon but can access decade-old carbon when the plant is stressed or physically damaged. In addition to serving as a carbon and energy source, NSC plays important roles in phloem transport, osmoregulation, and cold tolerance, but how plants regulate these competing roles and NSC depletion remains elusive. Moving forward requires greater synthesis of models and data and integration across scales from -omics to ecology.

  18. Genetic transformation of moss plant

    African Journals Online (AJOL)

    akpobome uruemuesiri

    Bryophytes are among the simplest and oldest of the terrestrial plants. Due to the special living ... processes in plants. Mosses grow rapidly when cultured on simple ..... indole-3-acetic acid in gametophytes of the moss, Physcomitrella patens.

  19. Aquatic Plant Control Research Program

    National Research Council Canada - National Science Library

    Cofrancesco, Alfred

    1998-01-01

    .... This search for natural plant enemies (insects and fungal pathogens) has led researchers to the native ranges of noxious aquatic plants, located throughout the continents of Africa, Asia, Europe, and Australia...

  20. Protecting Yourself from Poisonous Plants

    Science.gov (United States)

    ... NIOSH NIOSH Fast Facts: Protecting Yourself from Poisonous Plants Language: English Español (Spanish) Kreyol Haitien (Hatian Creole) ... outdoors is at risk of exposure to poisonous plants, such as poison ivy, poison oak, and poison ...

  1. Emission Facilities - Air Emission Plants

    Data.gov (United States)

    NSGIC Education | GIS Inventory — Represents the Primary Facility type Air Emission Plant (AEP) point features. Air Emissions Plant is a DEP primary facility type related to the Air Quality Program....

  2. Hormonal modulation of plant immunity

    NARCIS (Netherlands)

    Pieterse, C.M.J.; Does, D. van der; Zamioudis, C.; Leon-Reyes, A.; Wees, A.C.M. van

    2012-01-01

    Plant hormones have pivotal roles in the regulation of plant growth, development, and reproduction. Additionally, they emerged as cellular signal molecules with key functions in the regulation of immune responses to microbial pathogens, insect herbivores, and beneficial microbes. Their signaling

  3. Tropical Plant Collections

    DEFF Research Database (Denmark)

    that involved Germany, Britain and France, until independence, which was brightened by exemplary collaboration. Muasya focussed on South Africa, which is the most developed country in sub-Saharan Africa with a well-functioning network of herbaria that covers widely different biota. Sanjappa outlined the history...... course which he helped initiating in Manaus Brazil in the 1970s, and which still train researchers in that country. In a section on tropical plant collections and ‘big data’ Feeley demonstrated how dated herbarium records made it possible to trace elevational changes of species distributions, which...... is of importance to global change studies. Queenborough showed how herbarium collections can be used to study plant functional traits, and Antonelli documented the importance of herbarium voucher specimens for molecular phylogenetic studies and in comparative biogeography. Soberón gave a sobering account of ‘big...

  4. Integrated turbomachine oxygen plant

    Science.gov (United States)

    Anand, Ashok Kumar; DePuy, Richard Anthony; Muthaiah, Veerappan

    2014-06-17

    An integrated turbomachine oxygen plant includes a turbomachine and an air separation unit. One or more compressor pathways flow compressed air from a compressor through one or more of a combustor and a turbine expander to cool the combustor and/or the turbine expander. An air separation unit is operably connected to the one or more compressor pathways and is configured to separate the compressed air into oxygen and oxygen-depleted air. A method of air separation in an integrated turbomachine oxygen plant includes compressing a flow of air in a compressor of a turbomachine. The compressed flow of air is flowed through one or more of a combustor and a turbine expander of the turbomachine to cool the combustor and/or the turbine expander. The compressed flow of air is directed to an air separation unit and is separated into oxygen and oxygen-depleted air.

  5. Tropical Plant Collections

    DEFF Research Database (Denmark)

    course which he helped initiating in Manaus Brazil in the 1970s, and which still train researchers in that country. In a section on tropical plant collections and ‘big data’ Feeley demonstrated how dated herbarium records made it possible to trace elevational changes of species distributions, which...... in the USA over the past two hundred years. Sebsebe Demissew taked about the situation in sub-Saharan Africa, particularly problems related to building and maintaining plant collections in new and poor nations. Onana outlined the history of botanical collections in Cameroon, covering a colonial period...... and colleagues described how Norway has had programs to train botanists from a number of African countries. Balslev and colleagues present a successful capacity building project in Ecuador, which has resulted in a world-class herbarium and a cadre of well-trained taxonomists. Prance described a successful MSc...

  6. Plants with antiviral activity

    Directory of Open Access Journals (Sweden)

    Eduardo Orrego Escobar

    2013-11-01

    Full Text Available Introduction. Antiviral drugs are the only medicines currently in use in viral conditions in spite of the described risk of adverse health effects such as phlebitis, hematuria, hypocalcaemia, increased creatinine and, in the worst cases, mutagenicity and teratogenicity. Aim. The purpose of this article is to provide a descriptive overview of global research on the antiviral properties of complementary medicinal plants to treat diseases such as hepatitis, HIV, human papilloma virus, among others. Discussion. Plants continue to provide answers to current public health problems, such as microbial resistance to antibiotics and antifungal agents, or recalcitrant conditions present in Latin America such as malaria and tuberculosis. However, research in this area is still incipient. More studies are needed on pharmacological properties, identification of active ingredients, characterization of therapeutic spectrum and toxicological risks.

  7. Plant hydrocarbon recovery process

    Energy Technology Data Exchange (ETDEWEB)

    Dzadzic, P.M.; Price, M.C.; Shih, C.J.; Weil, T.A.

    1982-01-26

    A process for production and recovery of hydrocarbons from hydrocarbon-containing whole plants in a form suitable for use as chemical feedstocks or as hydrocarbon energy sources which process comprises: (A) pulverizing by grinding or chopping hydrocarbon-containing whole plants selected from the group consisting of euphorbiaceae, apocynaceae, asclepiadaceae, compositae, cactaceae and pinaceae families to a suitable particle size, (B) drying and preheating said particles in a reducing atmosphere under positive pressure (C) passing said particles through a thermal conversion zone containing a reducing atmosphere and with a residence time of 1 second to about 30 minutes at a temperature within the range of from about 200* C. To about 1000* C., (D) separately recovering the condensable vapors as liquids and the noncondensable gases in a condition suitable for use as chemical feedstocks or as hydrocarbon fuels.

  8. Tropical Plant Collections

    DEFF Research Database (Denmark)

    ’ collections for modern drug discovery. Bakker gave an account of the tantalising possibilities for molecular systematics and other research in the use of herbarium collections, which have opened up for a plethora of additional data to be extracted from dried plant collections. The final talk was Blackmore...... crisis. Friis gave a broad overview of the history of herbaria and botanical gardens and the changing conceptual frameworks behind their existence. Baldini talked about early Italian botanical collectors and the fate of their collections. Baas accounted for the Golden Age of Dutch botany during pre...... in the USA over the past two hundred years. Sebsebe Demissew taked about the situation in sub-Saharan Africa, particularly problems related to building and maintaining plant collections in new and poor nations. Onana outlined the history of botanical collections in Cameroon, covering a colonial period...

  9. Parasites, Plants, and People.

    Science.gov (United States)

    Johnson, Marion; Moore, Tony

    2016-06-01

    Anthelminthic resistance is acknowledged worldwide and is a major problem in Aotearoa New Zealand, thus alternative parasite management strategies are imperative. One Health is an initiative linking animal, human, and environmental health. Parasites, plants, and people illustrate the possibilities of providing diverse diets for stock thereby lowering parasite burdens, improving the cultural wellbeing of a local community, and protecting the environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Nuclear Plant Inspection

    Science.gov (United States)

    1983-01-01

    Engineers from the Power Authority of the State of New York use a Crack Growth Analysis Program supplied by COSMIC (Computer Software Management and Information Center) in one stage of nuclear plant inspection. Welds of the nuclear steam supply system are checked for cracks; radiographs, dye penetration and visual inspections are performed to locate cracks in the metal structure and welds. The software package includes three separate crack growth analysis models and enables necessary repairs to be planned before serious problems develop.

  11. Spin Glass Patch Planting

    Science.gov (United States)

    Wang, Wenlong; Mandra, Salvatore; Katzgraber, Helmut G.

    2016-01-01

    In this paper, we propose a patch planting method for creating arbitrarily large spin glass instances with known ground states. The scaling of the computational complexity of these instances with various block numbers and sizes is investigated and compared with random instances using population annealing Monte Carlo and the quantum annealing DW2X machine. The method can be useful for benchmarking tests for future generation quantum annealing machines, classical and quantum mechanical optimization algorithms.

  12. Power plant emissions reduction

    Science.gov (United States)

    Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy

    2015-10-20

    A system for improved emissions performance of a power plant generally includes an exhaust gas recirculation system having an exhaust gas compressor disposed downstream from the combustor, a condensation collection system at least partially disposed upstream from the exhaust gas compressor, and a mixing chamber in fluid communication with the exhaust gas compressor and the condensation collection system, where the mixing chamber is in fluid communication with the combustor.

  13. Third generation nuclear plants

    Science.gov (United States)

    Barré, Bertrand

    2012-05-01

    After the Chernobyl accident, a new generation of Light Water Reactors has been designed and is being built. Third generation nuclear plants are equipped with dedicated systems to insure that if the worst accident were to occur, i.e. total core meltdown, no matter how low the probability of such occurrence, radioactive releases in the environment would be minimal. This article describes the EPR, representative of this "Generation III" and a few of its competitors on the world market.

  14. Phytochemistry of Medicinal Plants

    OpenAIRE

    Dharmendra Singh; Jyoti Saxena; Mamta Saxena; Rajeev Nema

    2013-01-01

    Medicinal plants are a rich source of bioactive phytochemicals or bionutrients. Studies carried out during the past 2–3 decades have shown that these phytochemicals have an important role in preventing chronic diseases like cancer, diabetes and coronary heart disease. The major classes of phytochemicals with disease-preventing functions are dietary fibre, antioxidants, anticancer, detoxifying agents, immunity-potentiating agents and neuropharmacological agents. Each class of these functional ...

  15. Biodiversity Effects on Plant Stoichiometry

    OpenAIRE

    Maike Abbas; Anne Ebeling; Yvonne Oelmann; Robert Ptacnik; Christiane Roscher; Alexandra Weigelt; Wolfgang W Weisser; Wolfgang Wilcke; Helmut Hillebrand

    2013-01-01

    In the course of the biodiversity-ecosystem functioning debate, the issue of multifunctionality of species communities has recently become a major focus. Elemental stoichiometry is related to a variety of processes reflecting multiple plant responses to the biotic and abiotic environment. It can thus be expected that the diversity of a plant assemblage alters community level plant tissue chemistry. We explored elemental stoichiometry in aboveground plant tissue (ratios of carbon, nitrogen, ph...

  16. Plant biology in the future

    OpenAIRE

    Bazzaz, F. A.

    2001-01-01

    In the beginning of modern plant biology, plant biologists followed a simple model for their science. This model included important branches of plant biology known then. Of course, plants had to be identified and classified first. Thus, there was much work on taxonomy, genetics, and physiology. Ecology and evolution were approached implicitly, rather than explicitly, through paleobotany, taxonomy, morphology, and historical geography. However, the burgeoning explos...

  17. Reference commercial fusion power plants

    Energy Technology Data Exchange (ETDEWEB)

    Young, J.R.; Gore, B.F.

    1976-09-01

    Currently available conceptual designs for commercial fusion power plants are for first generation plants using deuterium-tritium (D-T) fuel, and are all functionally similar. This similarity has been used as a basis for defining an envelope of D-T fusion power plant characteristics which encompasses the characteristics of the available designs. A description of this envelope, including general process descriptions, proposed materials uses and a tabulation of numerical ranges of plant parameters is presented in this document.

  18. Beloyarsk Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-08-01

    The Beloyarsk Nuclear Power Plant (BNPP) is located in Zarechny, approximately 60 km east of Ekaterinberg along the Trans-Siberian Highway. Zarechny, a small city of approximately 30,000 residents, was built to support BNPP operations. It is a closed city to unescorted visitors. Residents must show identification for entry. BNPP is one of the first and oldest commercial nuclear power plants in Russia and began operations in 1964. As for most nuclear power plants in the Russian Federation, BNPP is operated by Rosenergoatom, which is subordinated to the Ministry of Atomic Energy of the Russian Federation (Minatom). BNPP is the site of three nuclear reactors, Units 1, 2, and 3. Units 1 and 2, which have been shut-down and defueled, were graphite moderated reactors. The units were shut-down in 1981 and 1989. Unit 3, a BN-600 reactor, is a 600 MW(electric) sodium-cooled fast breeder reactor. Unit 3 went on-line in April 1980 and produces electric power which is fed into a distribution grid and thermal power which provides heat to Zarechny. The paper also discusses the SF NIKIET, the Sverdiovsk Branch of NIKIET, Moscow, which is the research and development branch of the parent NIKEIT and is primarily a design institute responsible for reactor design. Central to its operations is a 15 megawatt IVV research reactor. The paper discusses general security and fissile material control and accountability at these two facilities.

  19. Paramutation phenomena in plants.

    Science.gov (United States)

    Pilu, Roberto

    2015-08-01

    Paramutation is a particular epigenetic phenomenon discovered in Zea mays by Alexander Brink in the 1950s, and then also found in other plants and animals. Brink coined the term paramutation (from the Greek syllable "para" meaning beside, near, beyond, aside) in 1958, with the aim to differentiate paramutation from mutation. The peculiarity of paramutation with respect to other gene silencing phenomena consists in the ability of the silenced allele (named paramutagenic) to silence the other allele (paramutable) present in trans. The newly silenced (paramutated) allele remains stable in the next generations even after segregation from the paramutagenic allele and acquires paramutagenic ability itself. The inheritance behaviour of these epialleles permits a fast diffusion of a particular gene expression level/phenotype in a population even in the absence of other evolutionary influences, thus breaking the Hardy-Weinberg law. As with other gene silencing phenomena such as quelling in the fungus Neurospora crassa, transvection in Drosophila, co-suppression and virus-induced gene silencing (VIGS) described in transgenic plants and RNA interference (RNAi) in the nematode Caenorhabditis elegans, paramutation occurs without changes in the DNA sequence. So far the molecular basis of paramutation remains not fully understood, although many studies point to the involvement of RNA causing changes in DNA methylation and chromatin structure of the silenced genes. In this review I summarize all paramutation phenomena described in plants, focusing on the similarities and differences between them. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Optimal plant water economy.

    Science.gov (United States)

    Buckley, Thomas N; Sack, Lawren; Farquhar, Graham D

    2017-06-01

    It was shown over 40 years ago that plants maximize carbon gain for a given rate of water loss if stomatal conductance, gs , varies in response to external and internal conditions such that the marginal carbon revenue of water, ∂A/∂E, remains constant over time. This theory has long held promise for understanding the physiological ecology of water use and for informing models of plant-atmosphere interactions. Full realization of this potential hinges on three questions: (i) Are analytical approximations adequate for applying the theory at diurnal time scales? (ii) At what time scale is it realistic and appropriate to apply the theory? (iii) How should gs vary to maximize growth over long time scales? We review the current state of understanding for each of these questions and describe future research frontiers. In particular, we show that analytical solutions represent the theory quite poorly, especially when boundary layer or mesophyll resistances are significant; that diurnal variations in hydraulic conductance may help or hinder maintenance of ∂A/∂E, and the matter requires further study; and that optimal diurnal responses are distinct from optimal long-term variations in gs , which emerge from optimal shifts in carbon partitioning at the whole-plant scale. © 2016 John Wiley & Sons Ltd.

  1. Genetics and plant development.

    Science.gov (United States)

    Prunet, Nathanaël; Meyerowitz, Elliot M

    2016-01-01

    There are only three grand theories in biology: the theory of the cell, the theory of the gene, and the theory of evolution. Two of these, the cell and gene theories, originated in the study of plants, with the third resulting in part from botanical considerations as well. Mendel's elucidation of the rules of inheritance was a result of his experiments on peas. The rediscovery of Mendel's work in 1900 was by the botanists de Vries, Correns, and Tschermak. It was only in subsequent years that animals were also shown to have segregation of genetic elements in the exact same manner as had been shown in plants. The story of developmental biology is different - while the development of plants has long been studied, the experimental and genetic approaches to developmental mechanism were developed via experiments on animals, and the importance of genes in development (e.g., Waddington, 1940) and their use for understanding developmental mechanisms came to botanical science much later - as late as the 1980s. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  2. Plant intentionality and the phenomenological framework of plant intelligence.

    Science.gov (United States)

    Marder, Michael

    2012-11-01

    This article aims to bridge phenomenology and the study of plant intelligence with the view to enriching both disciplines. Besides considering the world from the perspective of sessile organisms, it would be necessary, in keeping with the phenomenological framework, to rethink (1) the meaning of being-sessile and being-in-a-place; (2) the concepts of sentience and attention; (3) how aboveground and underground environments appear to plants; (4) the significance of modular development for our understanding of intelligence; and (5) the concept of communication within and between plants and plant tissues. What emerges from these discussions is the image of a mind embodied in plant life.

  3. Plant intentionality and the phenomenological framework of plant intelligence

    Science.gov (United States)

    Marder, Michael

    2012-01-01

    This article aims to bridge phenomenology and the study of plant intelligence with the view to enriching both disciplines. Besides considering the world from the perspective of sessile organisms, it would be necessary, in keeping with the phenomenological framework, to rethink (1) the meaning of being-sessile and being-in-a-place; (2) the concepts of sentience and attention; (3) how aboveground and underground environments appear to plants; (4) the significance of modular development for our understanding of intelligence; and (5) the concept of communication within and between plants and plant tissues. What emerges from these discussions is the image of a mind embodied in plant life. PMID:22951403

  4. Immersion freezing by plant nanocelloluse and plant phytolith particles

    Science.gov (United States)

    Rudich, Yinon; Reicher, Naama

    2017-04-01

    Using a new microfluidics setup (WISDOM), we examined the immersion freezing abilities of two types of airborne particles from biogenic sources: Plant nano crystalline cellulose particles and plant phytoliths. Plant opal phytoliths (POP) form in tissues of living plants during their growth, and can be found in soils following plants decay and in biomass burning plumes. Several measurements have identified these micro-sized particles in the atmosphere, but their ice nucleation properties have not yet been studied. We will present the new WISDOM device and first results on the efficiency of these biogenic particles to act as ice nuclei in the atmosphere under mixed clouds conditions.

  5. Mannitol in Plants, Fungi, and Plant-Fungal Interactions.

    Science.gov (United States)

    Patel, Takshay K; Williamson, John D

    2016-06-01

    Although the presence of mannitol in organisms as diverse as plants and fungi clearly suggests that this compound has important roles, our understanding of fungal mannitol metabolism and its interaction with mannitol metabolism in plants is far from complete. Despite recent inroads into understanding the importance of mannitol and its metabolic roles in salt, osmotic, and oxidative stress tolerance in plants and fungi, our current understanding of exactly how mannitol protects against reactive oxygen is also still incomplete. In this opinion, we propose a new model of the interface between mannitol metabolism in plants and fungi and how it impacts plant-pathogen interactions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Hormonal crosstalk in plant immunity

    NARCIS (Netherlands)

    van der Does, A.

    2012-01-01

    The plant hormones salicylic acid (SA), also known as plant aspirin, and jasmonic acid (JA) play major roles in the regulation of the plant immune system. In general, SA is important for defense against pathogens with a biotrophic lifestyle, whereas JA is essential for defense against insect

  7. Adaptation of thermal power plants

    NARCIS (Netherlands)

    Bogmans, Christian W.J.; Dijkema, Gerard P.J.; Vliet, van Michelle T.H.

    2017-01-01

    When does climate change information lead to adaptation? We analyze thermal power plant adaptation by means of investing in water-saving (cooling) technology to prevent a decrease in plant efficiency and load reduction. A comprehensive power plant investment model, forced with downscaled climate

  8. Try This: Plant Leaf Exploration

    Science.gov (United States)

    Preston, Christine

    2017-01-01

    Plants are often overlooked in favour of animals when teaching about living things. Focusing on familiar animals that share human characteristics helps young children learn about similar features. Examining plants for their differences, though, helps foster wonder. In the author's experience, children find it intriguing that plants need…

  9. Fertigation management of potted plants

    NARCIS (Netherlands)

    Sonneveld, C.; Voogt, W.

    2009-01-01

    The horticultural crops considered in this chapter are characterised by the fact that the plants are grown in a restricted volume, like pots, containers, plastic trays or compressed peat blocks. In the market these crops are recognized as potted plants, bedding plants and container grown nursery

  10. Project Lifescape-:-11 Hunter Plants

    Indian Academy of Sciences (India)

    Hunter plants are among the curiosities of nature, being very different from normal plants in their mode of nutrition. They, however, never prey upon humans or large animals as often dep- icted in fiction or fables. They are specialised in trapping insects and are popularly known as insectivorous plants. Way back in. 1875 ...

  11. Regulating nutrient allocation in plants

    Energy Technology Data Exchange (ETDEWEB)

    Udvardi, Michael; Yang, Jiading; Worley, Eric

    2014-12-09

    The invention provides coding and promoter sequences for a VS-1 and AP-2 gene, which affects the developmental process of senescence in plants. Vectors, transgenic plants, seeds, and host cells comprising heterologous VS-1 and AP-2 genes are also provided. Additionally provided are methods of altering nutrient allocation and composition in a plant using the VS-1 and AP-2 genes.

  12. Plant Pathogenic Fungi and Oomycetes

    NARCIS (Netherlands)

    Wit, de P.J.G.M.

    2015-01-01

    Fungi and Oomycetes are notorious plant pathogens and use similar strategies to infect plants. The majority of plants, however, is not infected by pathogens as they recognize pathogen-associated molecular patterns (PAMPs) by pattern recognition receptors that mediate PAMP-triggered immunity (PTI) ,

  13. Classical mutagenesis in higher plants

    NARCIS (Netherlands)

    Koornneef, M.

    2002-01-01

    For a long time, mutagenesis research in plants focused on crop improvement and, especially for crop plants, opimised protocols were developed with barley being one of the favourite species. However, the interest in mutagenesis has shifted to basic plant research in the last 20 years, when the power

  14. Arabinogalactan proteins in plants

    Directory of Open Access Journals (Sweden)

    Ewa Szczuka

    2013-04-01

    Full Text Available AGPs (arabinogalactan-proteins are the major constituent of arabic gum and have been used as emulsifiers and stabilizing agents. They are also one of the most abundant and heterogeneous class forming a large family of proteoglycans that sculpt the surface not only of plant but also of all eukaryotic cells. Undoubtedly, AGPs appear in numerous biological processes, playing diverse functions. Despite their abundance in nature and industrial utility, the in vivofunction(s of AGPs still remains unclear or even unknown. AGPs are commonly distributed in different plant organs and probably participate in all aspects of plant growth and development including reproduction (e.g. they are present in the stigma including stigma exudates, and in transmitting tissues in styles, pollen grains, and pollen tubes. The functions and evident involvement of AGPs in sexual plant reproduction in a few plant species as Actinidia deliciosa (A.Chev. C.F.Liang & A.R.Ferguson, Amaranthus hypochondriacus L., Catharanthus roseus (L. G.Don, Lolium perenneL. and Larix deciduaMill. are known from literature. The localization of two kinds of AGP epitopes, recognized by the JIM8 and JIM13 mAbs, in anatomically different ovules revealed some differences in spatial localization of these epitopes in ovules of monocots Galanthus nivalis L. and Galtonia candicans (Baker Decne. and dicots like Oenothera species and Sinapis albaL. A detailed study of the localization of AGPs in egg cells, zygotes, including the zygote division stage, and in two-celled proembryos in Nicotiana tabacumL. prompts consideration of the necessity of their presence in the very early steps of ontogenesis. The selective labeling obtained with AGP mAbs JIM8, JIM13, MAC207, and LM2 during Arabidopsis thaliana(L. Heynh. development suggests that some AGPs can be regarded as molecular markers for gametophytic cell differentiation. Moreover, the results show evident differences in the distribution of specific AGP

  15. Plantas Tintureiras Dye Plants

    Directory of Open Access Journals (Sweden)

    Maria do Carmo Serrano

    2008-12-01

    Full Text Available Existe uma vasta bibliografia, até ao séc. XVIII, sobre plantas produtoras de corantes naturais, sendo que apenas um número limitado foi utilizado no tingimento de têxteis antigos, devido à capacidade de resistência à lavagem e ao desvanecimento. O cultivo de plantas ou a sua existência no mundo silvestre tiveram uma enorme importância sócio-económica para muitas comunidades espalhadas pelo mundo e pelas intensas trocas comerciais que geraram. A extracção dos corantes era feita a partir de diferentes partes de plantas ou árvores. Nalgumas plantas eram utilizadas as folhas, enquanto noutras se aproveitavam as flores, as raízes, os frutos, troncos ou sementes. Os corantes podiam ser extraídos através de processos complexos que envolviam diversas operações como maceração, destilação, fermentação, decantação, precipitação, filtração, etc. Neste âmbito, são apresentadas algumas das plantas cultivadas em Portugal e em muitos outros países europeus e que foram usadas em tinturaria. Este trabalho pretende ser um contributo para obstar à perda de conhecimentos das condições de cultivo e da forma como se maximizava a produção de corantes.A vast bibliography exists, until the 18th cen-tury, on natural dyes obtained from plants, but only one limited number was used in the dyeing of old textiles, due to capacity of resistance to wash and light fading. The culture of plants or its existence in the wild world had an enormous economical importance for many communities spread for the world, and the intense commercial exchanges that had generated. The extraction of dyes was done from different parts of plants or trees. In some plants was used the leaves, others, only the roots, the fruits, trunks or seeds. The dyes could be extracted through complex processes that involved various operations as maceration, distillation, fermentation, decantation, precipitation, filtration, etc. In this scope, some of the plants cultivated in

  16. Plant ecdysteroids: plant sterols with intriguing distributions, biological effects and relations to plant hormones.

    Science.gov (United States)

    Tarkowská, Danuše; Strnad, Miroslav

    2016-09-01

    The present review summarises current knowledge of phytoecdysteroids' biosynthesis, distribution within plants, biological importance and relations to plant hormones. Plant ecdysteroids (phytoecdysteroids) are natural polyhydroxylated compounds that have a four-ringed skeleton, usually composed of either 27 carbon atoms or 28-29 carbon atoms (biosynthetically derived from cholesterol or other plant sterols, respectively). Their physiological roles in plants have not yet been confirmed and their occurrence is not universal. Nevertheless, they are present at high concentrations in various plant species, including commonly consumed vegetables, and have a broad spectrum of pharmacological and medicinal properties in mammals, including hepatoprotective and hypoglycaemic effects, and anabolic effects on skeletal muscle, without androgenic side-effects. Furthermore, phytoecdysteroids can enhance stress resistance by promoting vitality and enhancing physical performance; thus, they are considered adaptogens. This review summarises current knowledge of phytoecdysteroids' biosynthesis, distribution within plants, biological importance and relations to plant hormones.

  17. Dynamic Plant-Plant-Herbivore Interactions Govern Plant Growth-Defence Integration.

    Science.gov (United States)

    de Vries, Jorad; Evers, Jochem B; Poelman, Erik H

    2017-04-01

    Plants downregulate their defences against insect herbivores upon impending competition for light. This has long been considered a resource trade-off, but recent advances in plant physiology and ecology suggest this mechanism is more complex. Here we propose that to understand why plants regulate and balance growth and defence, the complex dynamics in plant-plant competition and plant-herbivore interactions needs to be considered. Induced growth-defence responses affect plant competition and herbivore colonisation in space and time, which has consequences for the adaptive value of these responses. Assessing these complex interactions strongly benefits from advanced modelling tools that can model multitrophic interactions in space and time. Such an exercise will allow a critical re-evaluation why and how plants integrate defence and competition for light. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. The plants in the Florilegia

    DEFF Research Database (Denmark)

    Arnklit, Folmer; Frederiksen, Signe; Hansen, Hans Vilhelm

    2013-01-01

    The Gottorfer Codex and The Green Florilegium contain a total of more than 1,500 pictures of plants. In this article the botanists who recently identified the plants in the two albums take a look at the works as seen through the eyes of a botanist. Based on their knowledge of the plants behind...... the pictures the authors shed light on a range of different aspects, e.g. the relationship between figures and real plants and the horticultural background of the plants. They also offer botanical explanations for peculiarities such as double and proliferous flowers....

  19. B plant mission analysis report

    Energy Technology Data Exchange (ETDEWEB)

    Lund, D.P.

    1995-05-24

    This report further develops the mission for B Plant originally defined in WHC-EP-0722, ``System Engineering Functions and Requirements for the Hanford Cleanup Mission: First Issue.`` The B Plant mission analysis will be the basis for a functional analysis that breaks down the B Plant mission statement into the necessary activities to accomplish the mission. These activities are the product of the functional analysis and will then be used in subsequent steps of the systems engineering process, such as identifying requirements and allocating those requirements to B Plant functions. The information in this mission analysis and the functional and requirements analysis are a part of the B Plant technical baseline.

  20. Autophagy in plant pathogenic fungi.

    Science.gov (United States)

    Liu, Xiao-Hong; Xu, Fei; Snyder, John Hugh; Shi, Huan-Bin; Lu, Jian-Ping; Lin, Fu-Cheng

    2016-09-01

    Autophagy is a conserved cellular process that degrades cytoplasmic constituents in vacuoles. Plant pathogenic fungi develop special infection structures and/or secrete a range of enzymes to invade their plant hosts. It has been demonstrated that monitoring autophagy processes can be extremely useful in visualizing the sequence of events leading to pathogenicity of plant pathogenic fungi. In this review, we introduce the molecular mechanisms involved in autophagy. In addition, we explore the relationship between autophagy and pathogenicity in plant pathogenic fungi. Finally, we discuss the various experimental strategies available for use in the study of autophagy in plant pathogenic fungi. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Dynamic Plant-Plant-Herbivore Interactions Govern Plant Growth-Defence Integration

    NARCIS (Netherlands)

    Vries, de Jorad; Evers, Jochem B.; Poelman, Erik H.

    2017-01-01

    Plants downregulate their defences against insect herbivores upon impending competition for light. This has long been considered a resource trade-off, but recent advances in plant physiology and ecology suggest this mechanism is more complex. Here we propose that to understand why plants regulate

  2. A widespread plant-fungal-bacterial symbiosis promotes plant biodiversity, plant nutrition and seedling recruitment

    NARCIS (Netherlands)

    Van Der Heijden, Marcel G A|info:eu-repo/dai/nl/240923901; Bruin, Susanne De; Luckerhoff, Ludo; Van Logtestijn, Richard S P; Schlaeppi, Klaus

    2016-01-01

    Highly diverse microbial assemblages colonize plant roots. It is still poorly understood whether different members of this root microbiome act synergistically by supplying different services (for example, different limiting nutrients) to plants and plant communities. In order to test this, we

  3. A widespread plant-fungal-bacterial symbiosis promotes plant biodiversity, plant nutrition and seedling recruitment

    NARCIS (Netherlands)

    van der Heijden, M.G.A.; de Bruin, S.; Luckerhoff, L.; van Logtestijn, R.S.P; Schlaeppi, K.

    2015-01-01

    Highly diverse microbial assemblages colonize plant roots. It is still poorly understood whether different members of this root microbiome act synergistically by supplying different services (for example, different limiting nutrients) to plants and plant communities. In order to test this, we

  4. Phytochrome, plant growth and flowering

    Energy Technology Data Exchange (ETDEWEB)

    King, R.W.; Bagnall, D.J. [CSIRO, Canberra (Australia)

    1994-12-31

    Attempts to use artificially lit cabinets to grow plants identical to those growing in sunlight have provided compelling evidence of the importance of light quality for plant growth. Changing the balance of red (R) to far-red (FR) radiation, but with a fixed photosynthetic input can shift the phytochrome photoequilibrium in a plant and generate large differences in plant growth. With FR enrichment the plants elongate, and may produce more leaf area and dry matter. Similar morphogenic responses are also obtained when light quality is altered only briefly (15-30 min) at the end-of-the-day. Conversely, for plants grown in natural conditions the response of plant form to selective spectral filtering has again shown that red and far-red wavebands are important as found by Kasperbauer and coworkers. Also, where photosynthetic photon flux densities (PPFD) of sunlight have been held constant, the removal of far-red alone alters plant growth. As shown for chrysanthemum, with FR depletion plants grown in sunlight are small, more branched and darker green. We examine the implications for plant growth and flowering when the far-red composition of incident radiation in plant growth chambers is manipulated.

  5. Phytochrome, plant growth and flowering

    Science.gov (United States)

    King, R. W.; Bagnall, D. J.

    1994-01-01

    Attempts to use artificially lit cabinets to grow plants identical to those growing in sunlight have provided compelling evidence of the importance of light quality for plant growth. Changing the balance of red (R) to far-red (FR) radiation, but with a fixed photosynthetic input can shift the phytochrome photoequilibrium in a plant and generate large differences in plant growth. With FR enrichment the plants elongate, and may produce more leaf area and dry matter. Similar morphogenic responses are also obtained when light quality is altered only briefly (15-30 min) at the end-of-the-day. Conversely, for plants grown in natural conditions the response of plant form to selective spectral filtering has again shown that red and far-red wavebands are important as found by Kasperbauer and coworkers. Also, where photosynthetic photon flux densities (PPFD) of sunlight have been held constant, the removal of far-red alone alters plant growth. With FR depletion plants grown in sunlight are small, more branched and darker green. Here we examine the implications for plant growth and flowering when the far-red composition of incident radiation in plant growth chambers is manipulated.

  6. Towards Multi Fuel SOFC Plant

    DEFF Research Database (Denmark)

    Rokni, Masoud; Clausen, Lasse Røngaard; Bang-Møller, Christian

    2011-01-01

    Complete Solid Oxide Fuel Cell (SOFC) plants fed by several different fuels are suggested and analyzed. The plants sizes are about 10 kW which is suitable for single family house with needs for both electricity and heat. Alternative fuels such as, methanol, DME (Di-Methyl Ether) and ethanol...... are also considered and the results will be compared with the base plant fed by Natural Gas (NG). A single plant design will be suggested that can be fed with methanol, DME and ethanol whenever these fuels are available. It will be shown that the plant fed by ethanol will have slightly higher electrical...... efficiency compared with other fuels. A methanator will be suggested to be included into the plants design in order to produce methane from the fuel before entering the anode side of the SOFC stacks. Increasing methane content will decrease the needed compressor effect and thereby increase the plant power....

  7. Silicon in plant disease control

    Directory of Open Access Journals (Sweden)

    Edson Ampélio Pozza

    2015-06-01

    Full Text Available All essential nutrients can affect the incidence and severity of plant diseases. Although silicon (Si is not considered as an essential nutrient for plants, it stands out for its potential to decrease disease intensity in many crops. The mechanism of Si action in plant resistance is still unclear. Si deposition in plant cell walls raised the hypothesis of a possible physical barrier to pathogen penetration. However, the increased activity of phenolic compounds, polyphenol oxidases and peroxidases in plants treated with Si demonstrates the involvement of this element in the induction of plant defense responses. The studies examined in this review address the role of Si in disease control and the possible mechanisms involved in the mode of Si action in disease resistance in plants.

  8. Plant biomass degradation by fungi.

    Science.gov (United States)

    Mäkelä, Miia R; Donofrio, Nicole; de Vries, Ronald P

    2014-11-01

    Plant biomass degradation by fungi has implications for several fields of science. The enzyme systems employed by fungi for this are broadly used in various industrial sectors such as food & feed, pulp & paper, detergents, textile, wine, and more recently biofuels and biochemicals. In addition, the topic is highly relevant in the field of plant pathogenic fungi as they degrade plant biomass to either gain access to the plant or as carbon source, resulting in significant crop losses. Finally, fungi are the main degraders of plant biomass in nature and as such have an essential role in the global carbon cycle and ecology in general. In this review we provide a global view on the development of this research topic in saprobic ascomycetes and basidiomycetes and in plant pathogenic fungi and link this to the other papers of this special issue on plant biomass degradation by fungi. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Pinellas Plant Environmental Baseline Report

    Energy Technology Data Exchange (ETDEWEB)

    1997-06-01

    The Pinellas Plant has been part of the Department of Energy`s (DOE) nuclear weapons complex since the plant opened in 1957. In March 1995, the DOE sold the Pinellas Plant to the Pinellas County Industry Council (PCIC). DOE has leased back a large portion of the plant site to facilitate transition to alternate use and safe shutdown. The current mission is to achieve a safe transition of the facility from defense production and prepare the site for alternative uses as a community resource for economic development. Toward that effort, the Pinellas Plant Environmental Baseline Report (EBR) discusses the current and past environmental conditions of the plant site. Information for the EBR is obtained from plant records. Historical process and chemical usage information for each area is reviewed during area characterizations.

  10. The iPlant Collaborative: Cyberinfrastructure for Plant Biology

    Science.gov (United States)

    Goff, Stephen A.; Vaughn, Matthew; McKay, Sheldon; Lyons, Eric; Stapleton, Ann E.; Gessler, Damian; Matasci, Naim; Wang, Liya; Hanlon, Matthew; Lenards, Andrew; Muir, Andy; Merchant, Nirav; Lowry, Sonya; Mock, Stephen; Helmke, Matthew; Kubach, Adam; Narro, Martha; Hopkins, Nicole; Micklos, David; Hilgert, Uwe; Gonzales, Michael; Jordan, Chris; Skidmore, Edwin; Dooley, Rion; Cazes, John; McLay, Robert; Lu, Zhenyuan; Pasternak, Shiran; Koesterke, Lars; Piel, William H.; Grene, Ruth; Noutsos, Christos; Gendler, Karla; Feng, Xin; Tang, Chunlao; Lent, Monica; Kim, Seung-Jin; Kvilekval, Kristian; Manjunath, B. S.; Tannen, Val; Stamatakis, Alexandros; Sanderson, Michael; Welch, Stephen M.; Cranston, Karen A.; Soltis, Pamela; Soltis, Doug; O'Meara, Brian; Ane, Cecile; Brutnell, Tom; Kleibenstein, Daniel J.; White, Jeffery W.; Leebens-Mack, James; Donoghue, Michael J.; Spalding, Edgar P.; Vision, Todd J.; Myers, Christopher R.; Lowenthal, David; Enquist, Brian J.; Boyle, Brad; Akoglu, Ali; Andrews, Greg; Ram, Sudha; Ware, Doreen; Stein, Lincoln; Stanzione, Dan

    2011-01-01

    The iPlant Collaborative (iPlant) is a United States National Science Foundation (NSF) funded project that aims to create an innovative, comprehensive, and foundational cyberinfrastructure in support of plant biology research (PSCIC, 2006). iPlant is developing cyberinfrastructure that uniquely enables scientists throughout the diverse fields that comprise plant biology to address Grand Challenges in new ways, to stimulate and facilitate cross-disciplinary research, to promote biology and computer science research interactions, and to train the next generation of scientists on the use of cyberinfrastructure in research and education. Meeting humanity's projected demands for agricultural and forest products and the expectation that natural ecosystems be managed sustainably will require synergies from the application of information technologies. The iPlant cyberinfrastructure design is based on an unprecedented period of research community input, and leverages developments in high-performance computing, data storage, and cyberinfrastructure for the physical sciences. iPlant is an open-source project with application programming interfaces that allow the community to extend the infrastructure to meet its needs. iPlant is sponsoring community-driven workshops addressing specific scientific questions via analysis tool integration and hypothesis testing. These workshops teach researchers how to add bioinformatics tools and/or datasets into the iPlant cyberinfrastructure enabling plant scientists to perform complex analyses on large datasets without the need to master the command-line or high-performance computational services. PMID:22645531

  11. [Development of Plant Metabolomics and Medicinal Plant Genomics].

    Science.gov (United States)

    Saito, Kazuki

    2018-01-01

     A variety of chemicals produced by plants, often referred to as 'phytochemicals', have been used as medicines, food, fuels and industrial raw materials. Recent advances in the study of genomics and metabolomics in plant science have accelerated our understanding of the mechanisms, regulation and evolution of the biosynthesis of specialized plant products. We can now address such questions as how the metabolomic diversity of plants is originated at the levels of genome, and how we should apply this knowledge to drug discovery, industry and agriculture. Our research group has focused on metabolomics-based functional genomics over the last 15 years and we have developed a new research area called 'Phytochemical Genomics'. In this review, the development of a research platform for plant metabolomics is discussed first, to provide a better understanding of the chemical diversity of plants. Then, representative applications of metabolomics to functional genomics in a model plant, Arabidopsis thaliana, are described. The extension of integrated multi-omics analyses to non-model specialized plants, e.g., medicinal plants, is presented, including the identification of novel genes, metabolites and networks for the biosynthesis of flavonoids, alkaloids, sulfur-containing metabolites and terpenoids. Further, functional genomics studies on a variety of medicinal plants is presented. I also discuss future trends in pharmacognosy and related sciences.

  12. The iPlant Collaborative: Cyberinfrastructure for Plant Biology

    Directory of Open Access Journals (Sweden)

    Stephen A Goff

    2011-07-01

    Full Text Available The iPlant Collaborative (iPlant is a United States National Science Foundation (NSF funded project that aims to create an innovative, comprehensive, and foundational cyberinfrastructure in support of plant biology research (PSCIC, 2006. iPlant is developing cyberinfrastructure that uniquely enables scientists throughout the diverse fields that comprise plant biology to address Grand Challenges in new ways, to stimulate and facilitate cross-disciplinary research, to promote biology and computer science research interactions, and to train the next generation of scientists on the use of cyberinfrastructure in research and education. Meeting humanity's projected demands for agricultural and forest products and the expectation that natural ecosystems be managed sustainably will require synergies from the application of information technologies. The iPlant cyberinfrastructure design is based on an unprecedented period of research community input, and leverages developments in high-performance computing, data storage, and cyberinfrastructure for the physical sciences. iPlant is an open-source project with application programming interfaces that allow the community to extend the infrastructure to meet its needs. iPlant is sponsoring community-driven workshops addressing specific scientific questions via analysis tool integration and hypothesis testing. These workshops teach researchers how to add bioinformatics tools and/or datasets into the iPlant cyberinfrastructure enabling plant scientists to perform complex analyses on large datasets without the need to master the command-line or high-performance computational services.

  13. Virtual power plant auctions

    Energy Technology Data Exchange (ETDEWEB)

    Ausubel, Lawrence M.; Cramton, Peter [Department of Economics, University of Maryland, College Park, MD 20742 (United States)

    2010-12-15

    Since their advent in 2001, virtual power plant (VPP) auctions have been implemented widely. In this paper, we describe the simultaneous ascending-clock auction format that has been used for virtually all VPP auctions to date, elaborating on other design choices that most VPP auctions have had in common as well as discussing a few aspects that have varied significantly among VPP auctions. We then evaluate the various objectives of regulators in requiring VPP auctions, concluding that the auctions have been effective devices for facilitating new entry into electricity markets and for developing wholesale power markets. (author)

  14. Robots and plant safety

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, P.

    1996-02-01

    The application of robots in the harsh environments in which TELEMAN equipment will have to operate has large benefits, but also some drawbacks. The main benefit is the ability gained to perform tasks where people cannot go, while there is a possibility of inflicting damage to the equipment handled by the robot, and the plant when mobile robots are involved. The paper describes the types of possible damage and the precautions to be taken in order to reduce the frequency of the damaging events. A literature study for the topic only gave some insight into examples, but no means for a systematic treatment of the topic. (au) 16 refs.

  15. Plants with useful traits and related methods

    Energy Technology Data Exchange (ETDEWEB)

    Mackenzie, Sally Ann; De la Rosa Santamaria, Roberto

    2016-10-25

    The present invention provides methods for obtaining plants that exhibit useful traits by transient suppression of the MSH1 gene of the plants. Methods for identifying genetic loci that provide for useful traits in plants and plants produced with those loci are also provided. In addition, plants that exhibit the useful traits, parts of the plants including seeds, and products of the plants are provided as well as methods of using the plants.

  16. Plants with useful traits and related methods

    Energy Technology Data Exchange (ETDEWEB)

    Mackenzie, Sally Ann; De la Rosa Santamaria, Roberto

    2017-07-18

    The present invention provides methods for obtaining plants that exhibit useful traits by transient suppression of the MSH1 gene of the plants. Methods for identifying genetic loci that provide for useful traits in plants and plants produced with those loci are also provided. In addition, plants that exhibit the useful traits, parts of the plants including seeds, and products of the plants are provided as well as methods of using the plants.

  17. Power Plant Replacement Study

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Gary

    2010-09-30

    This report represents the final report for the Eastern Illinois University power plant replacement study. It contains all related documentation from consideration of possible solutions to the final recommended option. Included are the economic justifications associated with the chosen solution along with application for environmental permitting for the selected project for construction. This final report will summarize the results of execution of an EPC (energy performance contract) investment grade audit (IGA) which lead to an energy services agreement (ESA). The project includes scope of work to design and install energy conservation measures which are guaranteed by the contractor to be self-funding over its twenty year contract duration. The cost recovery is derived from systems performance improvements leading to energy savings. The prime focus of this EPC effort is to provide a replacement solution for Eastern Illinois University's aging and failing circa 1925 central steam production plant. Twenty-three ECMs were considered viable whose net impact will provide sufficient savings to successfully support the overall project objectives.

  18. Power Plant Replacement Study

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Gary

    2010-09-30

    This report represents the final report for the Eastern Illinois University power plant replacement study. It contains all related documentation from consideration of possible solutions to the final recommended option. Included are the economic justifications associated with the chosen solution along with application for environmental permitting for the selected project for construction. This final report will summarize the results of execution of an EPC (energy performance contract) investment grade audit (IGA) which lead to an energy services agreement (ESA). The project includes scope of work to design and install energy conservation measures which are guaranteed by the contractor to be self-funding over its twenty year contract duration. The cost recovery is derived from systems performance improvements leading to energy savings. The prime focus of this EPC effort is to provide a replacement solution for Eastern Illinois University’s aging and failing circa 1925 central steam production plant. Twenty-three ECMs were considered viable whose net impact will provide sufficient savings to successfully support the overall project objectives.

  19. Nuclear Power Plant

    Directory of Open Access Journals (Sweden)

    Analia Bonelli

    2012-01-01

    Full Text Available A description of the results for a Station Black-Out analysis for Atucha 2 Nuclear Power Plant is presented here. Calculations were performed with MELCOR 1.8.6 YV3165 Code. Atucha 2 is a pressurized heavy water reactor, cooled and moderated with heavy water, by two separate systems, presently under final construction in Argentina. The initiating event is loss of power, accompanied by the failure of four out of four diesel generators. All remaining plant safety systems are supposed to be available. It is assumed that during the Station Black-Out sequence the first pressurizer safety valve fails stuck open after 3 cycles of water release, respectively, 17 cycles in total. During the transient, the water in the fuel channels evaporates first while the moderator tank is still partially full. The moderator tank inventory acts as a temporary heat sink for the decay heat, which is evacuated through conduction and radiation heat transfer, delaying core degradation. This feature, together with the large volume of the steel filler pieces in the lower plenum and a high primary system volume to thermal power ratio, derives in a very slow transient in which RPV failure time is four to five times larger than that of other German PWRs.

  20. Simulating solar power plant variability :

    Energy Technology Data Exchange (ETDEWEB)

    Lave, Matthew Samuel; Ellis, Abraham; Stein, Joshua.

    2013-06-01

    It is important to be able to accurately simulate the variability of solar PV power plants for grid integration studies. We aim to inform integration studies of the ease of implementation and application-specific accuracy of current PV power plant output simulation methods. This report reviews methods for producing simulated high-resolution (sub-hour or even sub-minute) PV power plant output profiles for variability studies and describes their implementation. Two steps are involved in the simulations: estimation of average irradiance over the footprint of a PV plant and conversion of average irradiance to plant power output. Six models are described for simulating plant-average irradiance based on inputs of ground-measured irradiance, satellite-derived irradiance, or proxy plant measurements. The steps for converting plant-average irradiance to plant power output are detailed to understand the contributions to plant variability. A forthcoming report will quantify the accuracy of each method using application-specific validation metrics.

  1. [Plant hydroponics and its application prospect in medicinal plants study].

    Science.gov (United States)

    Zeng, Yan; Guo, Lan-Ping; Huang, Lu-Qi; Sun, Yu-Zhang

    2007-03-01

    This article introduced the theorem and method of hydroponics. Some examples of studies in agriculture and forestry were presented, the effects of elements, environmental stress and hormones on physiology of medicinal plants by using hydroponics were analyzed. It also introduced the feasibility and advantage of hydroponics in intermediate propagation and allelopathy of medicinal plant. And finally it made the conclusion that the way of hydroponics would be widely used in medicinal plant study.

  2. Attention "Blinks" Differently for Plants and Animals

    Science.gov (United States)

    Balas, Benjamin; Momsen, Jennifer L.

    2014-01-01

    Plants, to many, are simply not as interesting as animals. Students typically prefer to study animals rather than plants and recall plants more poorly, and plants are underrepresented in the classroom. The observed paucity of interest for plants has been described as "plant blindness," a term that is meant to encapsulate both the…

  3. 7 CFR 1007.7 - Pool plant.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Pool plant. 1007.7 Section 1007.7 Agriculture... Handling Definitions § 1007.7 Pool plant. Pool plant means a plant specified in paragraphs (a) through (d) of this section, a unit of plants as specified in paragraph (e) of this section, or a plant specified...

  4. 7 CFR 1131.7 - Pool plant.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Pool plant. 1131.7 Section 1131.7 Agriculture... Handling Definitions § 1131.7 Pool plant. Pool Plant means a plant or unit of plants specified in paragraphs (a) through (e) of this section, but excluding a plant specified in paragraph (g) of this section...

  5. 7 CFR 1126.7 - Pool plant.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Pool plant. 1126.7 Section 1126.7 Agriculture... Handling Definitions § 1126.7 Pool plant. Pool plant means a plant specified in paragraphs (a) through (d) of this section, a unit of plants as specified in paragraph (e) of this section, or a plant specified...

  6. 7 CFR 1005.7 - Pool plant.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Pool plant. 1005.7 Section 1005.7 Agriculture... Handling Definitions § 1005.7 Pool plant. Pool plant means a plant specified in paragraphs (a) through (d) of this section, a unit of plants as specified in paragraph (e) of this section, or a plant specified...

  7. 7 CFR 1006.7 - Pool plant.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Pool plant. 1006.7 Section 1006.7 Agriculture... Handling Definitions § 1006.7 Pool plant. Pool plant means a plant specified in paragraphs (a) through (d) of this section, a unit of plants as specified in paragraph (e) of this section, or a plant specified...

  8. plantsUPS: a database of plants' Ubiquitin Proteasome System

    Directory of Open Access Journals (Sweden)

    Su Zhen

    2009-05-01

    Full Text Available Abstract Background The ubiquitin 26S/proteasome system (UPS, a serial cascade process of protein ubiquitination and degradation, is the last step for most cellular proteins. There are many genes involved in this system, but are not identified in many species. The accumulating availability of genomic sequence data is generating more demands in data management and analysis. Genomics data of plants such as Populus trichocarpa, Medicago truncatula, Glycine max and others are now publicly accessible. It is time to integrate information on classes of genes for complex protein systems such as UPS. Results We developed a database of higher plants' UPS, named 'plantsUPS'. Both automated search and manual curation were performed in identifying candidate genes. Extensive annotations referring to each gene were generated, including basic gene characterization, protein features, GO (gene ontology assignment, microarray probe set annotation and expression data, as well as cross-links among different organisms. A chromosome distribution map, multi-sequence alignment, and phylogenetic trees for each species or gene family were also created. A user-friendly web interface and regular updates make plantsUPS valuable to researchers in related fields. Conclusion The plantsUPS enables the exploration and comparative analysis of UPS in higher plants. It now archives > 8000 genes from seven plant species distributed in 11 UPS-involved gene families. The plantsUPS is freely available now to all users at http://bioinformatics.cau.edu.cn/plantsUPS.

  9. Contrasting effects of invasive plants in plant-pollinator networks.

    Science.gov (United States)

    Bartomeus, Ignasi; Vilà, Montserrat; Santamaría, Luís

    2008-04-01

    The structural organization of mutualism networks, typified by interspecific positive interactions, is important to maintain community diversity. However, there is little information available about the effect of introduced species on the structure of such networks. We compared uninvaded and invaded ecological communities, to examine how two species of invasive plants with large and showy flowers (Carpobrotus affine acinaciformis and Opuntia stricta) affect the structure of Mediterranean plant-pollinator networks. To attribute differences in pollination to the direct presence of the invasive species, areas were surveyed that contained similar native plant species cover, diversity and floral composition, with or without the invaders. Both invasive plant species received significantly more pollinator visits than any native species and invaders interacted strongly with pollinators. Overall, the pollinator community richness was similar in invaded and uninvaded plots, and only a few generalist pollinators visited invasive species exclusively. Invasive plants acted as pollination super generalists. The two species studied were visited by 43% and 31% of the total insect taxa in the community, respectively, suggesting they play a central role in the plant-pollinator networks. Carpobrotus and Opuntia had contrasting effects on pollinator visitation rates to native plants: Carpobrotus facilitated the visit of pollinators to native species, whereas Opuntia competed for pollinators with native species, increasing the nestedness of the plant-pollinator network. These results indicate that the introduction of a new species to a community can have important consequences for the structure of the plant-pollinator network.

  10. Plant-microbe interactions: chemical diversity in plant defense.

    Science.gov (United States)

    Bednarek, Pawel; Osbourn, Anne

    2009-05-08

    The chemical diversity within the plant kingdom is likely to be a consequence of niche colonization and adaptive evolution. Plant-derived natural products have important functions in defense. They also have broader ecological roles and may in addition participate in plant growth and development. Recent data suggest that some antimicrobial phytochemicals may not serve simply as chemical barriers but could also have functions in defense-related signaling processes. It is important, therefore, that we should not to be too reductionist in our thinking when endeavoring to understand the forces and mechanisms that drive chemical diversification in plants.

  11. Temperate and Tropical Plant Collections

    DEFF Research Database (Denmark)

    Friis, Ib

    2015-01-01

    increased that trend, requiring more specimens to allow the study of variation both within and between species. During the 19th and the 20th centuries larger botanical gardens and large public herbaria with tropical plants developed in European countries, particularly in countries with tropical colonies......The first botanical gardens and collections of preserved plants in the 16th century served didactic purposes and should ensure correct identification of medicinal, ornamental and other useful plants. Collections of preserved plants were nearly all book-herbaria, emulating illustrated books...... by easier travelling and growing interest in exploring the World’s biodiversity. New trends in the 21st century included a wider focus than the study of taxonomy and plant geography: for example conservation and climate change. Many factors may influence the future of tropical plant collections...

  12. Plant peroxisomes: biogenesis and function.

    Science.gov (United States)

    Hu, Jianping; Baker, Alison; Bartel, Bonnie; Linka, Nicole; Mullen, Robert T; Reumann, Sigrun; Zolman, Bethany K

    2012-06-01

    Peroxisomes are eukaryotic organelles that are highly dynamic both in morphology and metabolism. Plant peroxisomes are involved in numerous processes, including primary and secondary metabolism, development, and responses to abiotic and biotic stresses. Considerable progress has been made in the identification of factors involved in peroxisomal biogenesis, revealing mechanisms that are both shared with and diverged from non-plant systems. Furthermore, recent advances have begun to reveal an unexpectedly large plant peroxisomal proteome and have increased our understanding of metabolic pathways in peroxisomes. Coordination of the biosynthesis, import, biochemical activity, and degradation of peroxisomal proteins allows for highly dynamic responses of peroxisomal metabolism to meet the needs of a plant. Knowledge gained from plant peroxisomal research will be instrumental to fully understanding the organelle's dynamic behavior and defining peroxisomal metabolic networks, thus allowing the development of molecular strategies for rational engineering of plant metabolism, biomass production, stress tolerance, and pathogen defense.

  13. Plant photomorphogenesis and canopy growth

    Energy Technology Data Exchange (ETDEWEB)

    Ballare, C.L.; Scopel, A.L. [Universidad de Buenos Aires (Argentina)

    1994-12-31

    An important motivation for studying photomorphogenesis is to understand the relationships among plant photophysiology in canopies, canopy productivity, and agronomic yield. This understanding is essential to optimize lighting systems used for plant farming in controlled environments (CE) and for the design of genetically engineered crop strains with altered photoresponses. This article provides an overview of some basic principles of plant photomorphogenesis in canopies and discusses their implications for (1) scaling up information on plant photophysiology from individual plants in CE to whole canopies in the field, and (2), designing lighting conditions to increase plant productivity in CE used for agronomic purposes [e.g. space farming in CE Life-Support-Systems]. We concentrate on the visible ({lambda} between 400 and 700 nm) and far red (FR; {lambda} > 700 nm) spectral regions, since the ultraviolet (UV; 280 to 400 nm) is covered by other authors in this volume.

  14. The endocytic network in plants.

    Science.gov (United States)

    Samaj, Jozef; Read, Nick D; Volkmann, Dieter; Menzel, Diedrik; Baluska, Frantisek

    2005-08-01

    Endocytosis and vesicle recycling via secretory endosomes are essential for many processes in multicellular organisms. Recently, higher plants have provided useful experimental model systems to study these processes. Endocytosis and secretory endosomes in plants play crucial roles in polar tip growth, a process in which secretory and endocytic pathways are integrated closely. Plant endocytosis and endosomes are important for auxin-mediated cell-cell communication, gravitropic responses, stomatal movements, cytokinesis and cell wall morphogenesis. There is also evidence that F-actin is essential for endocytosis and that plant-specific myosin VIII is an endocytic motor in plants. Last, recent results indicate that the trans Golgi network in plants should be considered an integral part of the endocytic network.

  15. Carbohydrate microarrays in plant science.

    Science.gov (United States)

    Fangel, Jonatan U; Pedersen, Henriette L; Vidal-Melgosa, Silvia; Ahl, Louise I; Salmean, Armando Asuncion; Egelund, Jack; Rydahl, Maja Gro; Clausen, Mads H; Willats, William G T

    2012-01-01

    Almost all plant cells are surrounded by glycan-rich cell walls, which form much of the plant body and collectively are the largest source of biomass on earth. Plants use polysaccharides for support, defense, signaling, cell adhesion, and as energy storage, and many plant glycans are also important industrially and nutritionally. Understanding the biological roles of plant glycans and the effective exploitation of their useful properties requires a detailed understanding of their structures, occurrence, and molecular interactions. Microarray technology has revolutionized the massively high-throughput analysis of nucleotides, proteins, and increasingly carbohydrates. Using microarrays, the abundance of and interactions between hundreds and thousands of molecules can be assessed simultaneously using very small amounts of analytes. Here we show that carbohydrate microarrays are multifunctional tools for plant research and can be used to map glycan populations across large numbers of samples to screen antibodies, carbohydrate binding proteins, and carbohydrate binding modules and to investigate enzyme activities.

  16. Plant Condition Remote Monitoring Technique

    Science.gov (United States)

    Fotedar, L. K.; Krishen, K.

    1996-01-01

    This paper summarizes the results of a radiation transfer study conducted on houseplants using controlled environmental conditions. These conditions included: (1) air and soil temperature; (2) incident and reflected radiation; and (3) soil moisture. The reflectance, transmittance, and emittance measurements were conducted in six spectral bands: microwave, red, yellow, green, violet and infrared, over a period of three years. Measurements were taken on both healthy and diseased plants. The data was collected on plants under various conditions which included: variation in plant bio-mass, diurnal variation, changes in plant pathological conditions (including changes in water content), different plant types, various disease types, and incident light wavelength or color. Analysis of this data was performed to yield an algorithm for plant disease from the remotely sensed data.

  17. Ethnomedicinal Plant DIversity in Thailand

    DEFF Research Database (Denmark)

    Phumthum, Methee; Srithi, Kamonnate; Inta, Angkhana

    2018-01-01

    Ethnopharmacological relevance: Plants have provided medicine to humans for thousands of years, and in most parts of the world people still use traditional plant-derived medicine. Knowledge related to traditional use provides an important alternative to unavailable or expensive western medicine...... in many rural communities. At the same time, ethnomedicinal discoveries are valuable for the development of modern medicine. Unfortunately, globalization and urbanization causes the disappearance of much traditional medicinal plant knowledge. Aim of the study: To review available ethnobotanical knowledge...... names following The Plant List website and the species were assigned to family following the Angiosperm Phylogeny Website. Use Values (UV) were calculated to estimate the importance of medicinal plant species (UVs) and families (UVf). Medicinal use categories, plant parts used, preparations...

  18. Carbohydrate Microarrays in Plant Science

    DEFF Research Database (Denmark)

    Fangel, Jonatan Ulrik; Pedersen, H.L.; Vidal-Melgosa, S.

    2012-01-01

    industrially and nutritionally. Understanding the biological roles of plant glycans and the effective exploitation of their useful properties requires a detailed understanding of their structures, occurrence, and molecular interactions. Microarray technology has revolutionized the massively high......Almost all plant cells are surrounded by glycan-rich cell walls, which form much of the plant body and collectively are the largest source of biomass on earth. Plants use polysaccharides for support, defense, signaling, cell adhesion, and as energy storage, and many plant glycans are also important...... for plant research and can be used to map glycan populations across large numbers of samples to screen antibodies, carbohydrate binding proteins, and carbohydrate binding modules and to investigate enzyme activities....

  19. MEDICINAL PLANTS AGAINST LIVER DISEASES

    OpenAIRE

    Pandey Govind

    2011-01-01

    India is the largest producer of medicinal plants and is rightly called the “Botanical Garden of the World”. The medicinal plants have very important place in the health and vitality of human beings as well as animals. As per the WHO estimates, about three quarters of the world’s population currently use herbs and other traditional medicines to cure various diseases, including liver disorders. Hence, several phytomedicines (medicinal plants or herbal drugs) are now used for the prevention and...

  20. Ten Medicinal Plants from Burma

    OpenAIRE

    Sesoltani, Alireza

    2011-01-01

    ABSTRACT In this Master thesis, there is an emphasis on scientific studies carried out to find information about the pharmacological effects and phytochemical constituents in 10 selected medicinal plants from Burma. These plants are taken from Burma collection compiled by Arnold Nordal during the period 1957-1961. Information was obtained about ethnomedicinal use, phytochemistry and biological activities of the 10 chosen plants. After a thorough search in different databases, there were...

  1. Tetranychus evansi evades plant defence

    OpenAIRE

    Ataíde, Lívia Maria Silva

    2013-01-01

    Spider mites are known to induce or suppress plant defences. For instance, most strains of Tetranychus urticae induce plant defences regulated by jasmonic acid (JA) and salicylic acid (SA) pathways and this response has been correlated with a reduction in their reproductive performance on tomato plants. In contrast, the red spider mite Tetranychus evansi suppresses the JA and SA defences and both spider mite species were found to perform much better on tomato leaves that were previously attac...

  2. Classical mutagenesis in higher plants

    OpenAIRE

    Koornneef, M.

    2002-01-01

    For a long time, mutagenesis research in plants focused on crop improvement and, especially for crop plants, opimised protocols were developed with barley being one of the favourite species. However, the interest in mutagenesis has shifted to basic plant research in the last 20 years, when the power of mutant approaches in combination with molecular techniques to investigate the molecular nature of the genes became fully appreciated

  3. Molecular Analyses of Transgenic Plants.

    Science.gov (United States)

    Trijatmiko, Kurniawan Rudi; Arines, Felichi Mae; Oliva, Norman; Slamet-Loedin, Inez Hortense; Kohli, Ajay

    2016-01-01

    One of the major challenges in plant molecular biology is to generate transgenic plants that express transgenes stably over generations. Here, we describe some routine methods to study transgene locus structure and to analyze transgene expression in plants: Southern hybridization using DIG chemiluminescent technology for characterization of transgenic locus, SYBR Green-based real-time RT-PCR to measure transgene transcript level, and protein immunoblot analysis to evaluate accumulation and stability of transgenic protein product in the target tissue.

  4. (Photosynthesis in intact plants)

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    Progress in the two years since the last renewal application has been excellent. We have made substantial contributions on both main fronts of the projects, and are particularly happy with the progress of our research on intact plants. The approach of basing our field work on a sound foundation of laboratory studies has enabled is to use methods which provide unambiguous assays of well characterized reactions. We have also made excellent progress in several laboratory studies which will have direct applications in future field work, and have introduced to the laboratory a range of molecular genetics techniques which will allow us to explore new options in the attempt to understand function at the level of molecular structure.

  5. Plant influence on nitrification.

    Science.gov (United States)

    Skiba, Marcin W; George, Timothy S; Baggs, Elizabeth M; Daniell, Tim J

    2011-01-01

    Modern agriculture has promoted the development of high-nitrification systems that are susceptible to major losses of nitrogen through leaching of nitrate and gaseous emissions of nitrogen oxide (NO and N2O), contributing to global warming and depletion of the ozone layer. Leakage of nitrogen from agricultural systems forces increased use of nitrogen fertilizers and causes water pollution and elevated costs of food production. Possible strategies for prevention of these processes involve various agricultural management approaches and use of synthetic inhibitors. Growing plants capable of producing nitrification suppressors could become a potentially superior method of controlling nitrification in the soil. There is a need to investigate the phenomenon of biological nitrification inhibition in arable crop species.

  6. Accelerating plant breeding.

    Science.gov (United States)

    De La Fuente, Gerald N; Frei, Ursula K; Lübberstedt, Thomas

    2013-12-01

    The growing demand for food with limited arable land available necessitates that the yield of major food crops continues to increase over time. Advances in marker technology, predictive statistics, and breeding methodology have allowed for continued increases in crop performance through genetic improvement. However, one major bottleneck is the generation time of plants, which is biologically limited and has not been improved since the introduction of doubled haploid technology. In this opinion article, we propose to implement in vitro nurseries, which could substantially shorten generation time through rapid cycles of meiosis and mitosis. This could prove a useful tool for speeding up future breeding programs with the aim of sustainable food production. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. SALT TOLERANCE OF CROP PLANTS

    Directory of Open Access Journals (Sweden)

    Hamdia, M. A

    2010-09-01

    Full Text Available Several environmental factors adversely affect plant growth and development and final yield performance of a crop. Drought, salinity, nutrient imbalances (including mineral toxicities and deficiencies and extremes of temperature are among the major environmental constraints to crop productivity worldwide. Development of crop plants with stress tolerance, however, requires, among others, knowledge of the physiological mechanisms and genetic controls of the contributing traits at different plant developmental stages. In the past 2 decades, biotechnology research has provided considerable insights into the mechanism of biotic stress tolerance in plants at the molecular level. Furthermore, different abiotic stress factors may provoke osmotic stress, oxidative stress and protein denaturation in plants, which lead to similar cellular adaptive responses such as accumulation of compatible solutes, induction of stress proteins, and acceleration of reactive oxygen species scavenging systems. Recently, the authores try to improve plant tolerance to salinity injury through either chemical treatments (plant hormones, minerals, amino acids, quaternary ammonium compounds, polyamines and vitamins or biofertilizers treatments (Asymbiotic nitrogen-fixing bacteria, symbiotic nitrogen-fixing bacteria and mycorrhiza or enhanced a process used naturally by plants to minimise the movement of Na+ to the shoot, using genetic modification to amplify the process, helping plants to do what they already do - but to do it much better."

  8. Of Plants, and Other Secrets

    Directory of Open Access Journals (Sweden)

    Michael Marder

    2012-12-01

    Full Text Available In this article, I inquire into the reasons for the all-too-frequent association of plants and secrets. Among various hypotheses explaining this connection from the standpoint of plant morphology and physiology, the one that stands out is the idea that plants are not only objects in the natural environment, but also subjects with a peculiar mode of accessing the world. The core of the “plant enigma” is, therefore, onto-phenomenological. Positively understood, the secret of their subjectivity leaves just enough space for the self-expression and the self-interpretation of vegetal life.

  9. Waste Treatment & Immobilization Plant Project

    Data.gov (United States)

    Federal Laboratory Consortium — In southeastern Washington State, Bechtel National, Inc. is designing, constructing and commissioning the world's largest radioactive waste treatment plant for the...

  10. The foundations of plant intelligence.

    Science.gov (United States)

    Trewavas, Anthony

    2017-06-06

    Intelligence is defined for wild plants and its role in fitness identified. Intelligent behaviour exhibited by single cells and systems similarity between the interactome and connectome indicates neural systems are not necessary for intelligent capabilities. Plants sense and respond to many environmental signals that are assessed to competitively optimize acquisition of patchily distributed resources. Situations of choice engender motivational states in goal-directed plant behaviour; consequent intelligent decisions enable efficient gain of energy over expenditure. Comparison of swarm intelligence and plant behaviour indicates the origins of plant intelligence lie in complex communication and is exemplified by cambial control of branch function. Error correction in behaviours indicates both awareness and intention as does the ability to count to five. Volatile organic compounds are used as signals in numerous plant interactions. Being complex in composition and often species and individual specific, they may represent the plant language and account for self and alien recognition between individual plants. Game theory has been used to understand competitive and cooperative interactions between plants and microbes. Some unexpected cooperative behaviour between individuals and potential aliens has emerged. Behaviour profiting from experience, another simple definition of intelligence, requires both learning and memory and is indicated in the priming of herbivory, disease and abiotic stresses.

  11. Interspecific Hybridization within Ornamental Plants

    DEFF Research Database (Denmark)

    Kuligowska, Katarzyna

    The economic importance of the ornamental plant industry requires constant development of novel and high quality varieties. Traits attractive for production of new ornamental plants may not be available within the commercial cultivars, but broad genetic variation is present within the plant genera...... commercially important genera of ornamental plants: Kalanchoë and Hibiscus. The nature of hybridization barriers hampering hybrid production was investigated during pre- and post-fertilization stages. For each genus the interspecific crosses of Kalanchoë species and Hibiscus species, abnormal germination...

  12. Plant biotechnology for crop improvement.

    Science.gov (United States)

    Pauls, K P

    1995-01-01

    The typical crop improvement cycle takes 10-15 years to complete and includes germplasm manipulations, genotype selection and stabilization, variety testing, variety increase, proprietary protection and crop production stages. Plant tissue culture and genetic engineering procedures that form the basis of plant biotechnology can contribute to most of these crop improvement stages. This review provides an overview of the opportunities presented by the integration of plant biotechnology into plant improvement efforts and raises some of the societal issues that need to be considered in their application.

  13. Uptake of nuclides by plants

    Energy Technology Data Exchange (ETDEWEB)

    Greger, Maria [Stockholm Univ. (Sweden). Dept. of Botany

    2004-04-01

    This review on plant uptake of elements has been prepared to demonstrate how plants take up different elements. The work discusses the nutrient elements, as well as the general uptake and translocation in plants, both via roots and by foliar absorption. Knowledge of the uptake by the various elements within the periodic system is then reviewed. The work also discusses transfer factors (TF) as well as difficulties using TF to understand the uptake by plants. The review also focuses on species differences. Knowledge necessary to understand and calculate plant influence on radionuclide recirculation in the environment is discussed, in which the plant uptake of a specific nuclide and the fate of that nuclide in the plant must be understood. Plants themselves determine the uptake, the soil/sediment determines the availability of the nuclides and the nuclides themselves can interact with each other, which also influences the uptake. Consequently, it is not possible to predict the nuclide uptake in plants by only analysing the nuclide concentration of the soil/substrate.

  14. Hormone Profiling in Plant Tissues.

    Science.gov (United States)

    Müller, Maren; Munné-Bosch, Sergi

    2017-01-01

    Plant hormones are for a long time known to act as chemical messengers in the regulation of physiological processes during a plant's life cycle, from germination to senescence. Furthermore, plant hormones simultaneously coordinate physiological responses to biotic and abiotic stresses. To study the hormonal regulation of physiological processes, three main approaches have been used (1) exogenous application of hormones, (2) correlative studies through measurements of endogenous hormone levels, and (3) use of transgenic and/or mutant plants altered in hormone metabolism or signaling. A plant hormone profiling method is useful to unravel cross talk between hormones and help unravel the hormonal regulation of physiological processes in studies using any of the aforementioned approaches. However, hormone profiling is still particularly challenging due to their very low abundance in plant tissues. In this chapter, a sensitive, rapid, and accurate method to quantify all the five "classic" classes of plant hormones plus other plant growth regulators, such as jasmonates, salicylic acid, melatonin, and brassinosteroids is described. The method includes a fast and simple extraction procedure without time consuming steps as purification or derivatization, followed by optimized ultrahigh-performance liquid chromatography coupled to electrospray ionization-tandem mass spectrometry (UHPLC-MS/MS) analysis. This protocol facilitates the high-throughput analysis of hormone profiling and is applicable to different plant tissues.

  15. Key instrumentation in BWR plants

    Energy Technology Data Exchange (ETDEWEB)

    Laendner, Alexander; Stellwag, Bernhard; Fandrich, Joerg [AREVA NP GmbH, Erlangen (Germany)

    2011-01-15

    This paper describes water chemistry surveillance practices at boiling water reactor (BWR) power plants. The key instrumentation in BWR plants consists of on-line as well as off-line instrumentation. The chemistry monitoring and control parameters are predominantly based on two guidelines, namely the VGB Water Chemistry Guidelines and the EPRI Water Chemistry Guidelines. Control parameters and action levels specified in the VGB guideline are described. Typical sampling locations in BWR plants, chemistry analysis methods and water chemistry data of European BWR plants are summarized. Measurement data confirm the high quality of reactor water of the BWRs in Europe. (orig.)

  16. Phytozome Comparative Plant Genomics Portal

    Energy Technology Data Exchange (ETDEWEB)

    Goodstein, David; Batra, Sajeev; Carlson, Joseph; Hayes, Richard; Phillips, Jeremy; Shu, Shengqiang; Schmutz, Jeremy; Rokhsar, Daniel

    2014-09-09

    The Dept. of Energy Joint Genome Institute is a genomics user facility supporting DOE mission science in the areas of Bioenergy, Carbon Cycling, and Biogeochemistry. The Plant Program at the JGI applies genomic, analytical, computational and informatics platforms and methods to: 1. Understand and accelerate the improvement (domestication) of bioenergy crops 2. Characterize and moderate plant response to climate change 3. Use comparative genomics to identify constrained elements and infer gene function 4. Build high quality genomic resource platforms of JGI Plant Flagship genomes for functional and experimental work 5. Expand functional genomic resources for Plant Flagship genomes

  17. Calcium in plant cells

    Directory of Open Access Journals (Sweden)

    V. V. Schwartau

    2014-04-01

    Full Text Available The paper gives the review on the role of calcium in many physiological processes of plant organisms, including growth and development, protection from pathogenic influences, response to changing environmental factors, and many other aspects of plant physiology. Initial intake of calcium ions is carried out by Ca2+-channels of plasma membrane and they are further transported by the xylem owing to auxins’ attractive ability. The level of intake and selectivity of calcium transport to ove-ground parts of the plant is controlled by a symplast. Ca2+enters to the cytoplasm of endoderm cells through calcium channels on the cortical side of Kaspary bands, and is redistributed inside the stele by the symplast, with the use of Ca2+-АТPases and Ca2+/Н+-antiports. Owing to regulated expression and activity of these calcium transporters, calclum can be selectively delivered to the xylem. Important role in supporting calcium homeostasis is given to the vacuole which is the largest depo of calcium. Regulated quantity of calcium movement through the tonoplast is provided by a number of potential-, ligand-gated active transporters and channels, like Ca2+-ATPase and Ca2+/H+ exchanger. They are actively involved in the inactivation of the calcium signal by pumping Ca2+ to the depo of cells. Calcium ATPases are high affinity pumps that efficiently transfer calcium ions against the concentration gradient in their presence in the solution in nanomolar concentrations. Calcium exchangers are low affinity, high capacity Ca2+ transporters that are effectively transporting calcium after raising its concentration in the cell cytosol through the use of protons gradients. Maintaining constant concentration and participation in the response to stimuli of different types also involves EPR, plastids, mitochondria, and cell wall. Calcium binding proteins contain several conserved sequences that provide sensitivity to changes in the concentration of Ca2+ and when you

  18. Defense Signaling in Plants-Plants Cry for Help

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 8. Defense Signaling in Plants - Plants Cry for Help. G Sivakumar Swamy. General Article Volume 5 Issue 8 August 2000 pp 43-53. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/005/08/0043-0053 ...

  19. current issues in plant disease control: biotechnology and plant

    African Journals Online (AJOL)

    DR. AMINU

    26nt) are the key components for systemic silencing signal (Brain and Beathle, 2003)). Methods of Inducing RNAi in Plants: One of the biggest challenges ... epidermal cells of maize, barley and wheat by particle bombardment (Broglie et al.,1991), introducing a. Tabacco rattle virus (TRV) based vector into tomato plants by ...

  20. Gender in Plants Why Do Plants Change Sex?

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 4. Gender in Plants Why Do Plants Change Sex? Renee M Borges. General Article Volume 3 Issue 4 April 1998 pp 64-71. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/003/04/0064-0071 ...

  1. Plant Metabolomics: An Indispensable System Biology Tool for Plant Science

    Directory of Open Access Journals (Sweden)

    Jun Hong

    2016-06-01

    Full Text Available As genomes of many plant species have been sequenced, demand for functional genomics has dramatically accelerated the improvement of other omics including metabolomics. Despite a large amount of metabolites still remaining to be identified, metabolomics has contributed significantly not only to the understanding of plant physiology and biology from the view of small chemical molecules that reflect the end point of biological activities, but also in past decades to the attempts to improve plant behavior under both normal and stressed conditions. Hereby, we summarize the current knowledge on the genetic and biochemical mechanisms underlying plant growth, development, and stress responses, focusing further on the contributions of metabolomics to practical applications in crop quality improvement and food safety assessment, as well as plant metabolic engineering. We also highlight the current challenges and future perspectives in this inspiring area, with the aim to stimulate further studies leading to better crop improvement of yield and quality.

  2. Plant DNA sequencing for phylogenetic analyses: from plants to sequences.

    Science.gov (United States)

    Neves, Susana S; Forrest, Laura L

    2011-01-01

    DNA sequences are important sources of data for phylogenetic analysis. Nowadays, DNA sequencing is a routine technique in molecular biology laboratories. However, there are specific questions associated with project design and sequencing of plant samples for phylogenetic analysis, which may not be familiar to researchers starting in the field. This chapter gives an overview of methods and protocols involved in the sequencing of plant samples, including general recommendations on the selection of species/taxa and DNA regions to be sequenced, and field collection of plant samples. Protocols of plant sample preparation, DNA extraction, PCR and cloning, which are critical to the success of molecular phylogenetic projects, are described in detail. Common problems of sequencing (using the Sanger method) are also addressed. Possible applications of second-generation sequencing techniques in plant phylogenetics are briefly discussed. Finally, orientation on the preparation of sequence data for phylogenetic analyses and submission to public databases is also given.

  3. Plant Metabolomics: An Indispensable System Biology Tool for Plant Science.

    Science.gov (United States)

    Hong, Jun; Yang, Litao; Zhang, Dabing; Shi, Jianxin

    2016-06-01

    As genomes of many plant species have been sequenced, demand for functional genomics has dramatically accelerated the improvement of other omics including metabolomics. Despite a large amount of metabolites still remaining to be identified, metabolomics has contributed significantly not only to the understanding of plant physiology and biology from the view of small chemical molecules that reflect the end point of biological activities, but also in past decades to the attempts to improve plant behavior under both normal and stressed conditions. Hereby, we summarize the current knowledge on the genetic and biochemical mechanisms underlying plant growth, development, and stress responses, focusing further on the contributions of metabolomics to practical applications in crop quality improvement and food safety assessment, as well as plant metabolic engineering. We also highlight the current challenges and future perspectives in this inspiring area, with the aim to stimulate further studies leading to better crop improvement of yield and quality.

  4. Dispatchable Solar Power Plant Project

    Energy Technology Data Exchange (ETDEWEB)

    Price, Henry [Solar Dynamics LLC, Broomfield, CO (United States)

    2018-01-31

    As penetration of intermittent renewable power increases, grid operators must manage greater variability in the supply and demand on the grid. One result is that utilities are planning to build many new natural gas peaking power plants that provide added flexibility needed for grid management. This report discusses the development of a dispatchable solar power (DSP) plant that can be used in place of natural gas peakers. Specifically, a new molten-salt tower (MST) plant has been developed that is designed to allow much more flexible operation than typically considered in concentrating solar power plants. As a result, this plant can provide most of the capacity and ancillary benefits of a conventional natural gas peaker plant but without the carbon emissions. The DSP system presented was designed to meet the specific needs of the Arizona Public Service (APS) utility 2017 peaking capacity request for proposals (RFP). The goal of the effort was to design a MST peaker plant that had the operational capabilities required to meet the peaking requirements of the utility and be cost competitive with the natural gas alternative. The effort also addresses many perceived barriers facing the commercial deployment of MST technology in the US today. These include MST project development issues such as permitting, avian impacts, visual impacts of tower CSP projects, project schedule, and water consumption. The DSP plant design is based on considerable analyses using sophisticated solar system design tools and in-depth preliminary engineering design. The resulting DSP plant design uses a 250 MW steam power cycle, with solar field designed to fit on a square mile plot of land that has a design point thermal rating of 400 MWt. The DSP plant has an annual capacity factor of about 16% tailored to deliver greater than 90% capacity during the critical Arizona summer afternoon peak. The table below compares the All-In energy cost and capacity payment of conventional combustion turbines

  5. Genomics and the intrinsic value of plants

    OpenAIRE

    Gremmen, Bart

    2005-01-01

    In discussions on genetic engineering and plant breeding, the intrinsic value of plants and crops is used as an argument against this technology. This paper focuses on the new field of plant genomics, which, according to some, is almost the same as genetic engineering. This raises the question whether the intrinsic value of plants could also be used as an argument against plant genomics. We will discuss three reasons why plant genomics could violate the intrinsic value of plants: 1. genomics ...

  6. Medicinal plant recipes from Kırklareli

    OpenAIRE

    KÜLTÜR, Şükran

    2014-01-01

    Abstract: In this study, have been reported different medicinal plant recipesin the Kırklareli region. 15 medicinal plant recipes belonging to 20 families (20wild plant species, 7 cultivated plant species) which were used for different medicinalpurposes by local people have been recorded totally 27 plant species in thearea. Traditional medicinal plant recipes have been mostly used for the traetmentof cough, cold and influenza.Key words: Ethnobotany, Kırklareli, Turkey, medicinal plant.

  7. Arbuscular Mycorrhizal Fungal Mediation of Plant-Plant Interactions in a Marshland Plant Community

    Directory of Open Access Journals (Sweden)

    Qian Zhang

    2014-01-01

    Full Text Available Obligate aerobic AMF taxa have high species richness under waterlogged conditions, but their ecological role remains unclear. Here we focused on AM fungal mediation of plant interactions in a marshland plant community. Five cooccurring plant species were chosen for a neighbor removal experiment in which benomyl was used to suppress AMF colonization. A Phragmites australis removal experiment was also performed to study its role in promoting AMF colonization by increasing rhizosphere oxygen concentration. Mycorrhizal fungal effects on plant interactions were different for dominant and subdominant plant species. AMF colonization has driven positive neighbor effects for three subdominant plant species including Kummerowia striata, Leonurus artemisia, and Ixeris polycephala. In contrast, AMF colonization enhanced the negative effects of neighbors on the dominant Conyza canadensis and had no significant impact on the neighbor interaction to the dominant Polygonum pubescens. AM colonization was positively related to oxygen concentration. P. australis increased oxygen concentration, enhanced AMF colonization, and was thus indirectly capable of influencing plant interactions. Aerobic AM fungi appear to be ecologically relevant in this wetland ecosystem. They drive positive neighbor interactions for subdominant plant species, effectively increasing plant diversity. We suggest, therefore, that AM fungi may be ecologically important even under waterlogged conditions.

  8. Plant responses to tropospheric ozone

    Science.gov (United States)

    Tropospheric ozone is the second most abundant air pollutant and an important component of the global climate change. Over five decades of research on the phytotoxicity of ozone in model plants systems, crop plants and forest trees have provided some insight into the physiological, biochemical and m...

  9. Bean Plants: A Growth Experience

    Science.gov (United States)

    West, Donna

    2004-01-01

    Teaching plant growth to seventh-grade life science students has been interesting for the author because she grew up in a rural area and always had to help in the garden. She made many assumptions about what her rural and suburban students knew. One year she decided to have them grow plants to observe the roots, stems, leaves, flowers, and fruit…

  10. The intriguing plant nuclear lamina.

    Science.gov (United States)

    Ciska, Malgorzata; Moreno Díaz de la Espina, Susana

    2014-01-01

    The nuclear lamina is a complex protein mesh attached to the inner nuclear membrane (INM), which is also associated with nuclear pore complexes. It provides mechanical support to the nucleus and nuclear envelope, and as well as facilitating the connection of the nucleoskeleton to the cytoskeleton, it is also involved in chromatin organization, gene regulation, and signaling. In metazoans, the nuclear lamina consists of a polymeric layer of lamins and other interacting proteins responsible for its association with the INM and chromatin. In plants, field emission scanning electron microscopy of nuclei, and thin section transmission electron microscopy of isolated nucleoskeletons, reveals the lamina to have a similar structure to that of metazoans. Moreover, although plants lack lamin genes and the genes encoding most lamin-binding proteins, the main functions of the lamina are fulfilled in plants. Hence, it would appear that the plant lamina is not based on lamins and that other proteins substitute for lamins in plant cells. The nuclear matrix constituent proteins are the best characterized structural proteins in the plant lamina. Although these proteins do not display strong sequence similarity to lamins, their predicted secondary structure and sub-nuclear distribution, as well as their influence on nuclear size and shape, and on heterochromatin organization, suggest they could be functional lamin analogs. In this review we shall summarize what is currently known about the organization and composition of the plant nuclear lamina and its interacting complexes, and we will discuss the activity of this structure in the plant cell and its nucleus.

  11. Antifertility activity of medicinal plants

    Directory of Open Access Journals (Sweden)

    Muhammad Daniyal

    2015-07-01

    Full Text Available The aim of this review was to provide a comprehensive summary of medicinal plants used as antifertility agents in females throughout the world by various tribes and ethnic groups. We undertook an extensive bibliographic review by analyzing classical text books and peer reviewed papers, and further consulting well accepted worldwide scientific databases. We performed CENTRAL, Embase, and PubMed searches using terms such as “antifertility”, “anti-implantation”, “antiovulation”, and “antispermatogenic” activity of plants. Plants, including their parts and extracts, that have traditionally been used to facilitate antifertility have been considered as antifertility agents. In this paper, various medicinal plants have been reviewed for thorough studies such as Polygonum hydropiper Linn, Citrus limonum, Piper nigrum Linn, Juniperis communis, Achyanthes aspera, Azadirachta indica, Tinospora cordifolia, and Barleria prionitis. Many of these medicinal plants appear to act through an antizygotic mechanism. This review clearly demonstrates that it is time to expand upon experimental studies to source new potential chemical constituents from medicinal plants; plant extracts and their active constituents should be further investigated for their mechanisms. This review creates a solid foundation upon which to further study the efficacy of plants that are both currently used by women as traditional antifertility medicines, but also could be efficacious as an antifertility agent with additional research and study.

  12. DIMO, a plant dispersal model

    NARCIS (Netherlands)

    Wamelink, G.W.W.; Jochem, R.; Greft, van der J.G.M.; Franke, J.; Malinowska, A.H.; Geertsema, W.; Prins, A.H.; Ozinga, W.A.; Hoek, van der D.C.J.; Grashof-Bokdam, C.J.

    2014-01-01

    Due to human activities many natural habitats have become isolated. As a result the dispersal of many plant species is hampered. Isolated populations may become extinct and have a lower probability to become reestablished in a natural way. Moreover, plant species may be forced to migrate to new

  13. Leaf segmentation in plant phenotyping

    NARCIS (Netherlands)

    Scharr, Hanno; Minervini, Massimo; French, Andrew P.; Klukas, Christian; Kramer, David M.; Liu, Xiaoming; Luengo, Imanol; Pape, Jean Michel; Polder, Gerrit; Vukadinovic, Danijela; Yin, Xi; Tsaftaris, Sotirios A.

    2016-01-01

    Image-based plant phenotyping is a growing application area of computer vision in agriculture. A key task is the segmentation of all individual leaves in images. Here we focus on the most common rosette model plants, Arabidopsis and young tobacco. Although leaves do share appearance and shape

  14. Making Plant Biology Curricula Relevant.

    Science.gov (United States)

    Hershey, David R.

    1992-01-01

    Reviews rationale, purposes, challenges, and relevance of hands-on, plant biology curricula that have been developed in response to the limited use of plants in biology education. Discusses methods to maintain both instructional rigor and student interest in the following topics: cut flowers, container-growing media, fertilizers, hydroponics,…

  15. Herbicide practices in hardwood plantings

    Science.gov (United States)

    Brian D. Beheler; Charles H. Michler

    2013-01-01

    Control of competing vegetation is an important early cultural practice that can improve survival and vigor in hardwood tree plantings. The type of program used depends on landowner objectives, species of weeds present, equipment available, and types of herbicides available. Pre-planting planning can greatly increase effectiveness of an herbicide program for the first...

  16. Exploring interactions of plant microbiomes

    Directory of Open Access Journals (Sweden)

    Fernando Dini Andreote

    2014-12-01

    Full Text Available A plethora of microbial cells is present in every gram of soil, and microbes are found extensively in plant and animal tissues. The mechanisms governed by microorganisms in the regulation of physiological processes of their hosts have been extensively studied in the light of recent findings on microbiomes. In plants, the components of these microbiomes may form distinct communities, such as those inhabiting the plant rhizosphere, the endosphere and the phyllosphere. In each of these niches, the "microbial tissue" is established by, and responds to, specific selective pressures. Although there is no clear picture of the overall role of the plant microbiome, there is substantial evidence that these communities are involved in disease control, enhance nutrient acquisition, and affect stress tolerance. In this review, we first summarize features of microbial communities that compose the plant microbiome and further present a series of studies describing the underpinning factors that shape the phylogenetic and functional plant-associated communities. We advocate the idea that understanding the mechanisms by which plants select and interact with their microbiomes may have a direct effect on plant development and health, and further lead to the establishment of novel microbiome-driven strategies, that can cope with the development of a more sustainable agriculture.

  17. Ethylene and plant neighbour detection

    NARCIS (Netherlands)

    Pierik, Ronald

    2003-01-01

    This thesis aims to elucidate the putative role of ethylene in plant responses to neighbours during competition for light. For this purpose, shade avoidance responses to neighbours of ethylene-insensitive tobacco plants are repeatedly compared with their wild-type counterparts. The thesis consists

  18. Antifertility activity of medicinal plants.

    Science.gov (United States)

    Daniyal, Muhammad; Akram, Muhammad

    2015-07-01

    The aim of this review was to provide a comprehensive summary of medicinal plants used as antifertility agents in females throughout the world by various tribes and ethnic groups. We undertook an extensive bibliographic review by analyzing classical text books and peer reviewed papers, and further consulting well accepted worldwide scientific databases. We performed CENTRAL, Embase, and PubMed searches using terms such as "antifertility", "anti-implantation", "antiovulation", and "antispermatogenic" activity of plants. Plants, including their parts and extracts, that have traditionally been used to facilitate antifertility have been considered as antifertility agents. In this paper, various medicinal plants have been reviewed for thorough studies such as Polygonum hydropiper Linn, Citrus limonum, Piper nigrum Linn, Juniperis communis, Achyanthes aspera, Azadirachta indica, Tinospora cordifolia, and Barleria prionitis. Many of these medicinal plants appear to act through an antizygotic mechanism. This review clearly demonstrates that it is time to expand upon experimental studies to source new potential chemical constituents from medicinal plants; plant extracts and their active constituents should be further investigated for their mechanisms. This review creates a solid foundation upon which to further study the efficacy of plants that are both currently used by women as traditional antifertility medicines, but also could be efficacious as an antifertility agent with additional research and study. Copyright © 2015. Published by Elsevier Taiwan.

  19. MRI of plants and foods

    NARCIS (Netherlands)

    As, van H.; Duynhoven, van J.P.M.

    2013-01-01

    The importance and prospects for MRI as applied to intact plants and to foods are presented in view of one of humanity's most pressing concerns, the sustainable and healthy feeding of a worldwide increasing population. Intact plants and foods have in common that their functionality is determined by

  20. The Intelligent Behavior of Plants

    NARCIS (Netherlands)

    van Loon, Leendert C

    Plants are as adept as animals and humans in reacting effectively to their ever-changing environment. Of necessity, their sessile nature requires specific adaptations, but their cells possess a network-type communication system with emerging properties at the level of the organ or entire plant. The

  1. Seeding and planting upland oaks

    Science.gov (United States)

    T. E. Russell

    1971-01-01

    Upland oaks can be established by seeding or planting, but additional experience is needed before these methods become economical alternatives to natural regeneration. Recently forested sites are generally more favorable than abandoned fields. Lack of repellents to protect acorns from animals severely limits direct seeding, but oaks can be planted readily by...

  2. Chemical Control of Plant Growth.

    Science.gov (United States)

    Agricultural Research Center (USDA), Beltsville, MD.

    Seven experiments are presented in this Science Study Aid to help students investigate the control of plant growth with chemicals. Plant growth regulators, weed control, and chemical pruning are the topics studied in the experiments which are based on investigations that have been and are being conducted at the U. S. Agricultural Research Center,…

  3. Dominant resistance against plant viruses

    NARCIS (Netherlands)

    Ronde, de D.; Butterbach, P.B.E.; Kormelink, R.J.M.

    2014-01-01

    To establish a successful infection plant viruses have to overcome a defense system composed of several layers. This review will overview the various strategies plants employ to combat viral infections with main emphasis on the current status of single dominant resistance (R) genes identified

  4. Epigenetics in plant tissue culture

    NARCIS (Netherlands)

    Smulders, M.J.M.; Klerk, de G.J.M.

    2011-01-01

    Plants produced vegetatively in tissue culture may differ from the plants from which they have been derived. Two major classes of off-types occur: genetic ones and epigenetic ones. This review is about epigenetic aberrations. We discuss recent studies that have uncovered epigenetic modifications at

  5. Table showing nutritional plant list

    African Journals Online (AJOL)

    USER

    2013-04-02

    Apr 2, 2013 ... The wild food plant species were rich sources of nutrient element for example the highest concentration of calcium was found in copper leaves 867.59 ... conservation of wild food plants is not taking place among the communities in the ..... Regional Land Management Unit [RELMA], SIDA, Technical.

  6. Plant mutation breeding and biotechnology

    National Research Council Canada - National Science Library

    Shu, Q. Y; Forster, Brian P; Nakagawa, H

    2012-01-01

    ... (FAO / IAEA) Division of Nuclear Techniques in Food and Agriculture, with its global coordinating and synergistic roles, that plant mutation breeding became a common tool available to plant breeders worldwide. Since these early days the Joint Division continues to play a considerable role in fostering the use of mutation techni...

  7. SOME MEDICINAL PLANTS USED IN

    African Journals Online (AJOL)

    VHADA

    knowledge of traditional healers on commonly used medicinal plants in Jimma. METHODS: An ethnobotanical survey was ... plants used for treatment of common diseases. The study was conducted during 20. January to 30 ... Department of Biology, Faculty of Education, Jimma University, P.O. Box 378, Jimma, Ethiopia.

  8. Genetic variation in plant chemistry

    NARCIS (Netherlands)

    Geem, van Moniek

    2016-01-01

    Plants form the basis of many food webs and are consumed by a wide variety of organisms, including herbivorous insects. Over the course of evolution, plants have evolved mechanisms to defend themselves against herbivory, whereas herbivorous insects have evolved counter-mechanisms to overcome these

  9. Light regulates ascorbate in plants

    NARCIS (Netherlands)

    Ntagkas, Nikolaos; Woltering, Ernst J.; Marcelis, Leo F.M.

    2017-01-01

    l-ascorbate (vitamin. C, ASC) is an antioxidant that is essential for the proper function not only of plants but also animals. Light is a major regulatory factor for ASC levels in plants. In this paper, we review the regulation of ASC by light and the involved biochemical and physiological

  10. and spider plant (Cleome gynandra)

    African Journals Online (AJOL)

    User

    2016-02-17

    Feb 17, 2016 ... Vitamin C is an important micronutrient because of its antioxidant and health promoting properties. With the introduction and commercialization of improved African indigenous plants, few studies have examined the impact of leaf age or the nutrient status of the plants by fertilizer. This study sought to.

  11. Plant Physiological Aspects of Silicon

    Energy Technology Data Exchange (ETDEWEB)

    Epstein, E.; Fan, T.W-M.; Higashi, R.M.; Silk, W.K.

    2002-07-10

    The element silicon, Si, represents an anomaly in plant physiology (Epstein, 1994, 1999b). Plants contain the element in amounts comparable to those of such macronutrient elements as phosphorus, calcium, magnesium, viz. at tissue concentrations (dry weight basis) of about 0.1-10%, although both lower and higher values may be encountered. In some plants, such as rice and sugarcane, Si may be the mineral element present in largest amount. In much of plant physiological research, however, Si is considered a nonentity. Thus, not a single formulation of the widely used nutrient solutions includes Si. Experimental plants grown in these solutions are therefore abnormally low in their content of the element, being able to obtain only what Si is present as an unavoidable contaminant of the nutrient salts used, and from the experimental environment and their own seeds. The reason for the astonishing discrepancy between the prominence of Si in plants and its neglect in much of the enterprise of plant physiological research is that Si does not qualify as an ''essential'' element. Ever since the introduction of the solution culture method in the middle of the last century (Epstein, 1999a, b) it has been found that higher plants can grow in nutrient solutions in the formulation of which Si is not included. The only exceptions are the Equisitaceae (horsetails or scouring rushes), for which Si is a quantitatively major essential element.

  12. Molecular diagnostics in plant health

    NARCIS (Netherlands)

    Bonants, P.J.M.; Witt, te René

    2017-01-01

    In several crops, their quality and condition is very important. The products are relatively expensive and plant diseases can destroy valuable harvests in a very short time. The presence or absence of plant pathogens and pests, therefore, needs to be accurately tested. For decades, identification

  13. Cottonseed and cotton plant biomass

    Science.gov (United States)

    The cotton plant generates several marketable products as a result of the ginning process. The product that garners the most attention in regards to value and research efforts, is lint with cottonseed being secondary. In addition to lint and cottonseed, the plant material itself has a value that...

  14. Hormonal signaling in plant immunity

    NARCIS (Netherlands)

    Caarls, L.

    2016-01-01

    Insect hervivores and pathogens are a major problem in agriculture and therefore, control of these pests and diseases is essential. For this, understanding the plant immune response can be instrumental. The plant hormones salicylic acid (SA) and jasmonic acid (JA) play an essential role in defense

  15. Extraction of plant secondary metabolites.

    Science.gov (United States)

    Jones, William P; Kinghorn, A Douglas

    2012-01-01

    This chapter presents an overview of the preparation of extracts from plants using organic solvents, with emphasis on common problems encountered and methods for their reduction or elimination. In addition to generally applicable extraction protocols, methods are suggested for selectively extracting specific classes of plant-derived compounds, and phytochemical procedures are presented for the detection of classes of compounds encountered commonly during extraction, including selected groups of secondary metabolites and interfering compounds. Successful extraction begins with careful selection and preparation of plant samples and thorough review of the appropriate literature for suitable protocols for a particular class of compounds or plant species. During the extraction of plant material, it is important to minimize interference from compounds that may co-extract with the target compounds, and to avoid contamination of the extract, as well as to prevent decomposition of important metabolites or artifact formation as a result of extraction conditions or solvent impurities.

  16. Bioprospecting plant-associated microbiomes.

    Science.gov (United States)

    Müller, Christina A; Obermeier, Melanie M; Berg, Gabriele

    2016-10-10

    There is growing demand for new bioactive compounds and biologicals for the pharmaceutical, agro- and food industries. Plant-associated microbes present an attractive and promising source to this end, but are nearly unexploited. Therefore, bioprospecting of plant microbiomes is gaining more and more attention. Due to their highly specialized and co-evolved genetic pool, plant microbiomes host a rich secondary metabolism. This article highlights the potential detection and use of secondary metabolites and enzymes derived from plant-associated microorganisms in biotechnology. As an example we summarize the findings from the moss microbiome with special focus on the genus Sphagnum and its biotechnological potential for the discovery of novel microorganisms and bioactive molecules. The selected examples illustrate unique and yet untapped properties of plant-associated microbiomes, which are an immense treasure box for future research. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Approaches to translational plant science

    DEFF Research Database (Denmark)

    Dresbøll, Dorte Bodin; Christensen, Brian; Thorup-Kristensen, Kristian

    2015-01-01

    Translational science deals with the dilemma between basic research and the practical application of scientific results. In translational plant science, focus is on the relationship between agricultural crop production and basic science in various research fields, but primarily in the basic plant...... science. Scientific and technological developments have allowed great progress in our understanding of plant genetics and molecular physiology, with potentials for improving agricultural production. However, this development has led to a separation of the laboratory-based research from the crop production...... is lessened. In our opinion, implementation of translational plant science is a necessity in order to solve the agricultural challenges of producing food and materials in the future. We suggest an approach to translational plant science forcing scientists to think beyond their own area and to consider higher...

  18. Oxidative stress tolerance in plants

    Science.gov (United States)

    Krishnamurthy, Aparna; Rathinasabapathi, Bala

    2013-01-01

    Biotic and abiotic stress conditions produce reactive oxygen species (ROS) in plants causing oxidative stress damage. At the same time, ROS have additional signaling roles in plant adaptation to the stress. It is not known how the two seemingly contrasting functional roles of ROS between oxidative damage to the cell and signaling for stress protection are balanced. Research suggests that the plant growth regulator auxin may be the connecting link regulating the level of ROS and directing its role in oxidative damage or signaling in plants under stress. The objective of this review is to highlight some of the recent research on how auxin’s role is intertwined to that of ROS, more specifically H2O2, in plant adaptation to oxidative stress conditions. PMID:23887492

  19. Plant response to polluted air

    Energy Technology Data Exchange (ETDEWEB)

    Kendrick, J.B. Jr.; Darley, E.F.; Middleton, J.T.; Paulus, A.O.

    1956-08-01

    Field observations and controlled fumigation experiments have shown that plants differ in their response to atmospheric contamination by ethylene, herbicides, fluorides, sulfur dioxide, and smog, or oxidized hydrocarbons. Controlled experiments have also shown that plant response to air pollution varies with species and variety of plant, age of plant tissue, soil fertility levels, soil moisture, air temperatures during the prefumigation growth period, and presence of certain agricultural chemicals on leaves. The leaves of many plants; such as tomato, African marigold, fuchsia, pepper, and potato, become curved and malformed in the presence of ethylene, while those of cantaloupe, China aster, gardenia, Cattleya orchid, and snapdragon do not. Ethylene may cause serious damage to the sepals of orchids without injury to the petals or leaves.

  20. Plant modification needs more discussion

    DEFF Research Database (Denmark)

    Porter, J. R.

    1997-01-01

    AB In response to a letter by D. R. Ort (Nature (London) (1997) 385, 290) it is suggested that the claim that foods from genetically engineered plants are essentially the same as those from conventionally bred plants (from a biosafety perspective) is not easily reconciled with the emphasis on the...... protection within society. The issue of labelling of genetically engineered soyabeans has highlighted the importance of ethical considerations. The patentability of DNA from individual humans, of human embryos, and of animal and plant materials is questioned.......AB In response to a letter by D. R. Ort (Nature (London) (1997) 385, 290) it is suggested that the claim that foods from genetically engineered plants are essentially the same as those from conventionally bred plants (from a biosafety perspective) is not easily reconciled with the emphasis...

  1. Aluminium Toxicity Targets in Plants

    Directory of Open Access Journals (Sweden)

    Sónia Silva

    2012-01-01

    Full Text Available Aluminium (Al is the third most abundant metallic element in soil but becomes available to plants only when the soil pH drops below 5.5. At those conditions, plants present several signals of Al toxicity. As reported by literature, major consequences of Al exposure are the decrease of plant production and the inhibition of root growth. The root growth inhibition may be directly/indirectly responsible for the loss of plant production. In this paper the most remarkable symptoms of Al toxicity in plants and the latest findings in this area are addressed. Root growth inhibition, ROS production, alterations on root cell wall and plasma membrane, nutrient unbalances, callose accumulation, and disturbance of cytoplasmic Ca2+ homeostasis, among other signals of Al toxicity are discussed, and, when possible, the behavior of Al-tolerant versus Al-sensitive genotypes under Al is compared.

  2. Innate immune memory in plants.

    Science.gov (United States)

    Reimer-Michalski, Eva-Maria; Conrath, Uwe

    2016-08-01

    The plant innate immune system comprises local and systemic immune responses. Systemic plant immunity develops after foliar infection by microbial pathogens, upon root colonization by certain microbes, or in response to physical injury. The systemic plant immune response to localized foliar infection is associated with elevated levels of pattern-recognition receptors, accumulation of dormant signaling enzymes, and alterations in chromatin state. Together, these systemic responses provide a memory to the initial infection by priming the remote leaves for enhanced defense and immunity to reinfection. The plant innate immune system thus builds immunological memory by utilizing mechanisms and components that are similar to those employed in the trained innate immune response of jawed vertebrates. Therefore, there seems to be conservation, or convergence, in the evolution of innate immune memory in plants and vertebrates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Linking plant nutritional status to plant-microbe interactions.

    Directory of Open Access Journals (Sweden)

    Lilia C Carvalhais

    Full Text Available Plants have developed a wide-range of adaptations to overcome nutrient limitation, including changes to the quantity and composition of carbon-containing compounds released by roots. Root-associated bacteria are largely influenced by these compounds which can be perceived as signals or substrates. Here, we evaluate the effect of root exudates collected from maize plants grown under nitrogen (N, phosphate (P, iron (Fe and potassium (K deficiencies on the transcriptome of the plant growth promoting rhizobacterium (PGPR Bacillus amyloliquefaciens FZB42. The largest shifts in gene expression patterns were observed in cells exposed to exudates from N-, followed by P-deficient plants. Exudates from N-deprived maize triggered a general stress response in FZB42 in the exponential growth phase, which was evidenced by the suppression of numerous genes involved in protein synthesis. Exudates from P-deficient plants induced bacterial genes involved in chemotaxis and motility whilst exudates released by Fe and K deficient plants did not cause dramatic changes in the bacterial transcriptome during exponential growth phase. Global transcriptional changes in bacteria elicited by nutrient deficient maize exudates were significantly correlated with concentrations of the amino acids aspartate, valine and glutamate in root exudates suggesting that transcriptional profiling of FZB42 associated with metabolomics of N, P, Fe and K-deficient maize root exudates is a powerful approach to better understand plant-microbe interactions under conditions of nutritional stress.

  4. Linking plant nutritional status to plant-microbe interactions.

    Science.gov (United States)

    Carvalhais, Lilia C; Dennis, Paul G; Fan, Ben; Fedoseyenko, Dmitri; Kierul, Kinga; Becker, Anke; von Wiren, Nicolaus; Borriss, Rainer

    2013-01-01

    Plants have developed a wide-range of adaptations to overcome nutrient limitation, including changes to the quantity and composition of carbon-containing compounds released by roots. Root-associated bacteria are largely influenced by these compounds which can be perceived as signals or substrates. Here, we evaluate the effect of root exudates collected from maize plants grown under nitrogen (N), phosphate (P), iron (Fe) and potassium (K) deficiencies on the transcriptome of the plant growth promoting rhizobacterium (PGPR) Bacillus amyloliquefaciens FZB42. The largest shifts in gene expression patterns were observed in cells exposed to exudates from N-, followed by P-deficient plants. Exudates from N-deprived maize triggered a general stress response in FZB42 in the exponential growth phase, which was evidenced by the suppression of numerous genes involved in protein synthesis. Exudates from P-deficient plants induced bacterial genes involved in chemotaxis and motility whilst exudates released by Fe and K deficient plants did not cause dramatic changes in the bacterial transcriptome during exponential growth phase. Global transcriptional changes in bacteria elicited by nutrient deficient maize exudates were significantly correlated with concentrations of the amino acids aspartate, valine and glutamate in root exudates suggesting that transcriptional profiling of FZB42 associated with metabolomics of N, P, Fe and K-deficient maize root exudates is a powerful approach to better understand plant-microbe interactions under conditions of nutritional stress.

  5. Lactoferrin-derived resistance against plant pathogens in transgenic plants.

    Science.gov (United States)

    Lakshman, Dilip K; Natarajan, Savithiry; Mandal, Sudhamoy; Mitra, Amitava

    2013-12-04

    Lactoferrin (LF) is a ubiquitous cationic iron-binding milk glycoprotein that contributes to nutrition and exerts a broad-spectrum primary defense against bacteria, fungi, protozoa, and viruses in mammals. These qualities make lactoferrin protein and its antimicrobial motifs highly desirable candidates to be incorporated in plants to impart broad-based resistance against plant pathogens or to economically produce them in bulk quantities for pharmaceutical and nutritional purposes. This study introduced bovine LF (BLF) gene into tobacco ( Nicotiana tabacum var. Xanthi), Arabidopsis ( A. thaliana ) and wheat ( Triticum aestivum ) via Agrobacterium -mediated plant transformation. Transgenic plants or detached leaves exhibited high levels of resistance against the damping-off causing fungal pathogen Rhizoctonia solani and the head blight causing fungal pathogen Fusarium graminearum . LF also imparted resistance to tomato plants against a bacterial pathogen, Ralstonia solanacearum . Similarly, other researchers demonstrated expression of LF and LF-mediated high-quality resistance to several other aggressive fungal and bacterial plant pathogens in transgenic plants and against viral pathogens by foliar applications of LF or its derivatives. Taken together, these studies demonstrated the effectiveness of LF for improving crop quality and its biopharming potentials for pharmaceautical and nutritional applications.

  6. Microtubules in plants.

    Science.gov (United States)

    Hashimoto, Takashi

    2015-01-01

    Microtubules (MTs) are highly conserved polar polymers that are key elements of the eukaryotic cytoskeleton and are essential for various cell functions. αβ-tubulin, a heterodimer containing one structural GTP and one hydrolysable and exchangeable GTP, is the building block of MTs and is formed by the sequential action of several molecular chaperones. GTP hydrolysis in the MT lattice is mechanistically coupled with MT growth, thus giving MTs a metastable and dynamic nature. MTs adopt several distinct higher-order organizations that function in cell division and cell morphogenesis. Small molecular weight compounds that bind tubulin are used as herbicides and as research tools to investigate MT functions in plant cells. The de novo formation of MTs in cells requires conserved γ-tubulin-containing complexes and targeting/activating regulatory proteins that contribute to the geometry of MT arrays. Various MT regulators and tubulin modifications control the dynamics and organization of MTs throughout the cell cycle and in response to developmental and environmental cues. Signaling pathways that converge on the regulation of versatile MT functions are being characterized.

  7. EARLY ENTRANCE COPRODUCTION PLANT

    Energy Technology Data Exchange (ETDEWEB)

    Mushtaq Ahmed; John H. Anderson; Charles Benham; Earl R. Berry; Fred Brent; Ming He; Troy Raybold; Lalit S. Shah; Kenneth A. Yackly

    2003-09-09

    The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produces at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals. The objective is to have these products produced by technologies capable of using synthesis gas derived from coal and/or other carbonaceous feedstocks. The objectives of Phase I were to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan for implementation in Phase II; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology that produces high-value products, particularly those that are critical to our domestic fuel and power requirements. The project will resolve critical knowledge and technology gaps on the integration of gasification and downstream processing to coproduce some combination of power, fuels, and chemicals from coal and/or other carbonaceous feedstocks. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation.

  8. Aquatic plant control research

    Energy Technology Data Exchange (ETDEWEB)

    Pryfogle, P.A.; Rinehart, B.N. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Ghio, E.G. [Pacific Gas & Electric Company, San Francisco, CA (United States). Hydro Generation Engineering

    1997-05-01

    The Northwest region of the United States contains extensive canal systems that transport water for hydropower generation. Nuisance plants, including algae, that grow in these systems reduce their hydraulic capacity through water displacement and increased surface friction. Most control methods are applied in an ad hoc fashion. The goal of this work is to develop cost-effective, environmentally sound, long-term management strategies to prevent and control nuisance algal growth. This paper reports on a multi-year study, performed in collaboration with the Pacific Gas & Electric Company, to investigate algal growth in their canal systems, and to evaluate various control methodologies. Three types of controls, including mechanical, biological and chemical treatment, were selected for testing and evaluation. As part of this study, water quality data were collected and algal communities were sampled from numerous stations throughout the distribution system at regular intervals. This study resulted in a more comprehensive understanding of conditions leading to the development of nuisance algal growth, a better informed selection of treatment plans, and improved evaluation of the effectiveness for the control strategies selected for testing.

  9. Polyamines in plant physiology

    Science.gov (United States)

    Galston, A. W.; Sawhney, R. K.

    1990-01-01

    The diamine putrescine, the triamine spermidine, and the tetramine spermine are ubiquitous in plant cells, while other polyamines are of more limited occurrence. Their chemistry and pathways of biosynthesis and metabolism are well characterized. They occur in the free form as cations, but are often conjugated to small molecules like phenolic acids and also to various macromolecules. Their titer varies from approximately micromolar to more than millimolar, and depends greatly on environmental conditions, especially stress. In cereals, the activity of one of the major polyamine biosynthetic enzymes, arginine decarboxylase, is rapidly and dramatically increased by almost every studied external stress, leading to 50-fold or greater increases in putrescine titer within a few hours. The physiological significance of this increase is not yet clear, although most recent work suggests an adaptive, protective role. Polyamines produced through the action of ornithine decarboxylase, by contrast, seem essential for DNA replication and cell division. The application of exogenous polyamines produces effects on patterns of senescence and morphogenesis, suggesting but not proving a regulatory role for polyamines in these processes. The evidence for such a regulatory role is growing.

  10. Distinguishing succulent plants from crop and woody plants

    Science.gov (United States)

    Gausman, H. W.; Escobar, D. E.; Everitt, J. H.; Richardson, A. J.; Rodriguez, R. R.

    1978-01-01

    We compared laboratory spectrophotometrically measured leaf reflectances of six succulents (peperomia, possum-grape, prickly pear, spiderwort, Texas tuberose, wolfberry) with those of four nonsucculents (cenizo, honey mesquite, cotton, sugarcane) for plant species discrimination. Succulents (average leaf water content of 92.2 percent) could be distinguished from nonsucculents (average leaf water content of 71.2 percent) within the near-infrared water absorption waveband (1.35 to 2.5 microns). This was substantiated by field spectrophotometric reflectances of plant canopies. Sensor bands encompassing either the 1.6- or 2.2-wavelengths may be useful to distinguish succulent from nonsucculent plant species.

  11. 7 CFR 52.81 - Plant survey.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Plant survey. 52.81 Section 52.81 Agriculture... Contract In-Plant Inspection Services 1 § 52.81 Plant survey. Prior to a plant being approved, or the..., the Administrator will make, or cause to be made, a survey and inspection of the plant where such...

  12. A widespread plant-fungal-bacterial symbiosis promotes plant biodiversity, plant nutrition and seedling recruitment.

    Science.gov (United States)

    van der Heijden, Marcel G A; de Bruin, Susanne; Luckerhoff, Ludo; van Logtestijn, Richard S P; Schlaeppi, Klaus

    2016-02-01

    Highly diverse microbial assemblages colonize plant roots. It is still poorly understood whether different members of this root microbiome act synergistically by supplying different services (for example, different limiting nutrients) to plants and plant communities. In order to test this, we manipulated the presence of two widespread plant root symbionts, arbuscular mycorrhizal fungi and nitrogen-fixing rhizobia bacteria in model grassland communities established in axenic microcosms. Here, we demonstrate that both symbionts complement each other resulting in increased plant diversity, enhanced seedling recruitment and improved nutrient acquisition compared with a single symbiont situation. Legume seedlings obtained up to 15-fold higher productivity if they formed an association with both symbionts, opposed to productivity they reached with only one symbiont. Our results reveal the importance of functional diversity of symbionts and demonstrate that different members of the root microbiome can complement each other in acquiring different limiting nutrients and in driving important ecosystem functions.

  13. Plant Watering Autonomous Mobile Robot

    Directory of Open Access Journals (Sweden)

    Hema Nagaraja

    2012-07-01

    Full Text Available Now days, due to busy routine life, people forget to water their plants. In this paper, we present a completely autonomous and a cost-effective system for watering indoor potted plants placed on an even surface. The system comprises of a mobile robot and a temperature-humidity sensing module. The system is fully adaptive to any environment and takes into account the watering needs of the plants using the temperature-humidity sensing module. The paper describes the hardware architecture of the fully automated watering system, which uses wireless communication to communicate between the mobile robot and the sensing module. This gardening robot is completely portable and is equipped with a Radio Frequency Identification (RFID module, a microcontroller, an on-board water reservoir and an attached water pump. It is capable of sensing the watering needs of the plants, locating them and finally watering them autonomously without any human intervention. Mobilization of the robot to the potted plant is achieved by using a predefined path. For identification, an RFID tag is attached to each potted plant. The paper also discusses the detailed implementation of the system supported with complete circuitry. Finally, the paper concludes with system performance including the analysis of the water carrying capacity and time requirements to water a set of plants.

  14. Plant Defense against Insect Herbivores

    Science.gov (United States)

    Fürstenberg-Hägg, Joel; Zagrobelny, Mika; Bak, Søren

    2013-01-01

    Plants have been interacting with insects for several hundred million years, leading to complex defense approaches against various insect feeding strategies. Some defenses are constitutive while others are induced, although the insecticidal defense compound or protein classes are often similar. Insect herbivory induce several internal signals from the wounded tissues, including calcium ion fluxes, phosphorylation cascades and systemic- and jasmonate signaling. These are perceived in undamaged tissues, which thereafter reinforce their defense by producing different, mostly low molecular weight, defense compounds. These bioactive specialized plant defense compounds may repel or intoxicate insects, while defense proteins often interfere with their digestion. Volatiles are released upon herbivory to repel herbivores, attract predators or for communication between leaves or plants, and to induce defense responses. Plants also apply morphological features like waxes, trichomes and latices to make the feeding more difficult for the insects. Extrafloral nectar, food bodies and nesting or refuge sites are produced to accommodate and feed the predators of the herbivores. Meanwhile, herbivorous insects have adapted to resist plant defenses, and in some cases even sequester the compounds and reuse them in their own defense. Both plant defense and insect adaptation involve metabolic costs, so most plant-insect interactions reach a stand-off, where both host and herbivore survive although their development is suboptimal. PMID:23681010

  15. Evaluating Tilt for Wind Plants

    Energy Technology Data Exchange (ETDEWEB)

    Annoni, Jennifer [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Scholbrock, Andrew K. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Churchfield, Matthew J. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Fleming, Paul A. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-07-03

    The objective of this work is to demonstrate the feasibility of tilt in a wind plant. Tilt control, much like other wind plant control strategies, has the potential to improve the performance of a wind plant. Tilt control uses the tilt angle of the turbine to direct the wake above or below the downstream turbines. This paper presents a study of tilt in two- and three-turbine arrays. Specifically, the authors show that the power production of a two-turbine array can be increased by tilting turbines in a specific orientation. When adding more turbines, as is shown with the three-turbine array, the overall percentage of power gain increases. This outcome deviates from some of the results seen in typical wind plant control strategies. Finally, we discuss the impact this type of control strategy has on the aerodynamics in a wind plant. This analysis demonstrates that a good understanding of wake characteristics is necessary to improve the plant's performance. A tilt strategy such as the one presented in this paper may have implications for future control/optimization studies including optimization of hub heights in a wind plant and analysis of deep array effects.

  16. AND THERMAL POWER PLANTS

    Directory of Open Access Journals (Sweden)

    Alduhov Oleg Aleksandrovich

    2012-10-01

    Full Text Available Investigation of the atmospheric dispersion as part of the process of selection of sites to accommodate nuclear and thermal power plants is performed to identify concentration fields of emissions and to assess the anthropogenic impact produced on the landscape components and human beings. Scattering properties of the atmospheric boundary layer are mainly determined by the turbulence intensity and the wind field. In its turn, the turbulence intensity is associated with the thermal stratification of the boundary layer. Therefore, research of the atmospheric dispersion is reduced to the study of temperature and wind patterns of the boundary layer. Statistical processing and analysis of the upper-air data involves the input of the data collected by upper-air stations. Until recently, the upper-air data covering the standard period between 1961 and 1970 were applied for these purposes, although these data cannot assure sufficient reliability of assessments in terms of the properties of the atmospheric dispersion. However, recent scientific and technological developments make it possible to substantially increase the data coverage by adding the upper-air data collected within the period between 1964 and 2010. The article has a brief overview of BL_PROGS, a specialized software package designated for the processing of the above data. The software package analyzes the principal properties of the atmospheric dispersion. The use of the proposed software package requires preliminary development of a database that has the information collected by an upper-air station. The software package is noteworthy for the absence of any substantial limitations imposed onto the amount of the input data that may go up in proportion to the amount of the upper-air data collected by upper-air stations.

  17. Early Entrance Coproduction Plant

    Energy Technology Data Exchange (ETDEWEB)

    Mushtaq Ahmed; John H. Anderson; Earl R. Berry; Troy Raybold; Lalit S. Shah; Kenneth A. Yackly

    2004-01-26

    The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals. The objective is to have these products produced by technologies capable of using synthesis gas derived from coal and/or other carbonaceous feedstocks. The objectives of Phase I were to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan for implementation in Phase II; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology that produces high-value products, particularly those that are critical to our domestic fuel and power requirements. The work performed under Phase II will resolve critical knowledge and technology gaps on the integration of gasification and downstream processing to coproduce some combination of power, fuels, and chemicals from coal and/or other carbonaceous feedstocks. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation.

  18. EARLY ENTRANCE COPRODUCTION PLANT

    Energy Technology Data Exchange (ETDEWEB)

    Mushtaq Ahmed; John H. Anderson; Earl R. Berry; Troy Raybold; Lalit S. Shah; Kenneth A. Yackly

    2003-12-16

    The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals. The objective is to have these products produced by technologies capable of using synthesis gas derived from coal and/or other carbonaceous feedstocks. The objectives of Phase I were to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan for implementation in Phase II; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology that produces high-value products, particularly those that are critical to our domestic fuel and power requirements. The work performed under Phase II will resolve critical knowledge and technology gaps on the integration of gasification and downstream processing to coproduce some combination of power, fuels, and chemicals from coal and/or other carbonaceous feedstocks. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation.

  19. Antibodies from plants for bionanomaterials.

    Science.gov (United States)

    Edgue, Gueven; Twyman, Richard M; Beiss, Veronique; Fischer, Rainer; Sack, Markus

    2017-11-01

    Antibodies are produced as part of the vertebrate adaptive immune response and are not naturally made by plants. However, antibody DNA sequences can be introduced into plants, and together with laboratory technologies that allow the design of antibodies recognizing any conceivable molecular structure, plants can be used as 'green factories' to produce any antibody at all. The advent of plant-based transient expression systems in particular allows the rapid, convenient, and safe production of antibodies, ranging from laboratory-scale expression to industrial-scale manufacturing. The key features of plant-based production include safety, speed, low cost, and convenience, allowing newcomers to rapidly master the technology and use it to its full advantage. Manufacturing in plants has recently achieved significant milestones and offers more than just an alternative to established microbial and mammalian cell platforms. The use of plants for product development in particular offers the power and flexibility to easily coexpress many different genes, allowing the plug-and-play construction of novel bionanomaterials, perfectly complementing existing approaches based on plant virus-like particles. As well as producing single antibodies for applications in medicine, agriculture, and industry, plants can be used to produce antibody-based supramolecular structures and scaffolds as a new generation of green bionanomaterials that promise a bright future based on clean and renewable nanotechnology applications. WIREs Nanomed Nanobiotechnol 2017, 9:e1462. doi: 10.1002/wnan.1462 For further resources related to this article, please visit the WIREs website. © 2017 The Authors. WIREs Nanomedicine and Nanobiotechnology published by Wiley Periodicals, Inc.

  20. Rhizosphere of rice plants harbor bacteria with multiple plant growth ...

    African Journals Online (AJOL)

    Jane

    2011-08-08

    Aug 8, 2011 ... Abbreviations: PGP, Plant growth promoting; IAA, indole-3- acetic acid; ARDRA, amplified ribosomal DNA restriction analysis; DGGE, denaturating gradient gel electrophresis; FISH, fluorescence in situ hybridization; SSCP, single strand conformation polymorphism. Pseudomonas, Azospirillum, Azotobacter ...

  1. Fuel Gas Demonstration Plant Program. Volume I. Demonstration plant

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    The objective of this project is for Babcock Contractors Inc. (BCI) to provide process designs, and gasifier retort design for a fuel gas demonstration plant for Erie Mining Company at Hoyt Lake, Minnesota. The fuel gas produced will be used to supplement natural gas and fuel oil for iron ore pellet induration. The fuel gas demonstration plant will consist of five stirred, two-stage fixed-bed gasifier retorts capable of handling caking and non-caking coals, and provisions for the installation of a sixth retort. The process and unit design has been based on operation with caking coals; however, the retorts have been designed for easy conversion to handle non-caking coals. The demonstration unit has been designed to provide for expansion to a commercial plant (described in Commercial Plant Package) in an economical manner.

  2. Plant-plant interactions in the restoration of Mediterranean drylands

    Science.gov (United States)

    Valdecantos, Alejandro; Fuentes, David; Smanis, Athanasios

    2014-05-01

    Plant-plant interactions are complex and dependent of both local abiotic features of the ecosystem and biotic relationships with other plants and animals. The net result of these interactions may be positive, negative or neutral resulting in facilitation, competition or neutralism, respectively (role of phylogeny). It has been proposed that competition is stronger between those individuals that share functional traits than between unrelated ones. The relative interaction effect of one plant on a neighbour may change in relation to resource availability - especially water in drylands. In addition, plants develop above and belowground biomass with time increasing the level and, eventually, changing the intensity and/or the direction of the interaction. In the framework of the restoration of degraded drylands, many studies have focused on the positive (nurse) effects of adult trees, shrubs and even grasses on artificially planted seedlings by improving the microclimate or providing protection against herbivores, but little is known about the interactions between seedlings of different life traits planted together under natural field conditions. In 2010 we established planting plots in two contrasted sites under semiarid Mediterranean climate and introduced one year old seedlings in different combinations of three species, two shrubs (Olea europaea and Pistacia lentiscus) and one grass (Stipa tenacissima). Half of the planting holes in each site were implemented with low-cost ecotechnological inputs to increase water availability by forcing runoff production and promoting deep infiltration (small plastic fabric + dry well). This resulted in four levels of abiotic stress. Biotic interactions were assessed by monitoring seedling survival and growth for three years after planting. The Relative Interaction Index (RII) of S. tenacissima on O. europaea was almost flat and close to 0 along the stress gradient since the beginning of the study suggesting limited interaction

  3. Contact dermatitis from compositae plants

    Directory of Open Access Journals (Sweden)

    S C Sharma

    1990-01-01

    Full Text Available Eighty patients (58 males and 22 females suspected of compositae contact dermatitis and 22 controls were investigated using ethanolic plants extracts., Fifty four (68% patients and none of the controls had positive patch tests. Forty five (56% of these patients showed positive reactions with, extracts of only a single Compositae plant. Parthenium hysterophorus produced positive reactions in 51%, Chrysanthemum morifolium in 23%, Dahlia pinnata in 9% and Tagetes indica in 4% patients. The highest number (84% of patients with positive patch tests were exposed to these plants during their occupation.

  4. Melvin Calvin: Fuels from Plants

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, S.E.; Otvos, J.W.

    1998-11-24

    A logical extension of his early work on the path of carbon during photosynthesis, Calvin's studies on the production of hydrocarbons by plants introduced many in the scientific and agricultural worlds to the potential of renewable fuel and chemical feedstocks. He and his co-workers identified numerous candidate compounds from plants found in tropical and temperate climates from around the world. His travels and lectures concerning the development of alternative fuel supplies inspired laboratories worldwide to take up the investigation of plant-derived energy sources as an alternative to fossil fuels.

  5. Opportunities in plant synthetic biology.

    Science.gov (United States)

    Cook, Charis; Martin, Lisa; Bastow, Ruth

    2014-05-01

    Synthetic biology is an emerging field uniting scientists from all disciplines with the aim of designing or re-designing biological processes. Initially, synthetic biology breakthroughs came from microbiology, chemistry, physics, computer science, materials science, mathematics, and engineering disciplines. A transition to multicellular systems is the next logical step for synthetic biologists and plants will provide an ideal platform for this new phase of research. This meeting report highlights some of the exciting plant synthetic biology projects, and tools and resources, presented and discussed at the 2013 GARNet workshop on plant synthetic biology.

  6. Historical Overview on Plant Neurobiology

    OpenAIRE

    Stahlberg, Rainer

    2006-01-01

    The review tracks the history of electrical long-distance signals from the first recordings of action potentials (APs) in sensitive Dionea and Mimosa plants at the end of the 19th century to their re-discovery in common plants in the 1950's, from the first intracellular recordings of APs in giant algal cells to the identification of the ionic mechanisms by voltage-clamp experiments. An important aspect is the comparison of plant and animal signals and the resulting theoretical implications th...

  7. Temperate and Tropical Plant Collections

    DEFF Research Database (Denmark)

    Friis, Ib

    2015-01-01

    The first botanical gardens and collections of preserved plants in the 16th century served didactic purposes and should ensure correct identification of medicinal, ornamental and other useful plants. Collections of preserved plants were nearly all book-herbaria, emulating illustrated books...... and owned by individual botanists. Curiosity cabinets of nobles and prominent scholars were larger collections, in which all kinds of objects of natural history from remote regions could be incorporated. The Linnaean revolution favoured loose-leaf herbaria over the old book-herbaria: herbaria with loose...

  8. Plant senescence and crop productivity

    DEFF Research Database (Denmark)

    Gregersen, Per L.; Culetic, Andrea; Boschian, Luca

    2013-01-01

    Senescence is a developmental process which in annual crop plants overlaps with the reproductive phase. Senescence might reduce crop yield when it is induced prematurely under adverse environmental conditions. This review covers the role of senescence for the productivity of crop plants...... plants, the expression of the IPT gene under control of senescence-associated promoters has been the most successful. The promoters employed for senescence-regulated expression contain cis-elements for binding of WRKY transcription factors and factors controlled by abscisic acid. In most crops...

  9. Esau's Plant anatomy: meristems, cells, and tissues of the plant body : their structure, function, and development

    National Research Council Canada - National Science Library

    Evert, Ray Franklin; Esau, Katherine; Eichhorn, Susan E

    2006-01-01

    ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix Chapter 1 Structure and Development of the Plant Body- An Overview . . . . . . . . . . . . . . . . . . . . . . . . 1 Internal Organization of the Plant Body...

  10. Recent trends in medicinal plants research

    National Research Council Canada - National Science Library

    Shyur, Lie-fen; Lau, Allan S.Y

    2012-01-01

    .... One type of research explores the value of medicinal plants as traditionally used and studies of these plants have the potential to determine which plants are most potent, optimize dosages and dose...

  11. How-To-Do-It: Plant Regeneration.

    Science.gov (United States)

    Pietraface, William J.

    1988-01-01

    Describes a procedure for the growth of tobacco plants in flasks. Demonstrates plant tissue culture manipulation, totipotency, and plant regeneration in approximately 12 weeks. Discusses methods, materials, and expected results. (CW)

  12. Responses of plants to air pollution

    National Research Council Canada - National Science Library

    Mudd, J. Brian; Kozlowski, T. T

    1975-01-01

    .... KOZLOWSKI Pollution, 1975 ELROY L. RICE. Allelopathy, (Eds.). Fire and Ecosystems, 1974 (Eds.). Responses of Plants to Air Responses of Plants to Air PollutionRESPONSES OF PLANTS TO AIR POLLUTION E...

  13. How plants recognize pathogens and defend themselves

    NARCIS (Netherlands)

    Wit, de P.J.G.M.

    2007-01-01

    Plants have an innate immunity system to defend themselves against pathogens. With the primary immune system, plants recognize microbe-associated molecular patterns (MAMPs) of potential pathogens through pattern recognition receptors (PRRs) that mediate a basal defense response. Plant pathogens

  14. Aseptic Plant Culture System (APCS) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aseptic plant culture plays a significant role in biotechnology and plant physiology research and in vegetative propagation of many plant species. The development of...

  15. Aseptic Plant Culture System (APCS) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aseptic plant culture plays a significant role in biotechnology and plant physiology research, and in vegetative propagation of many plant species. The development...

  16. Native Plants and Seeds, Oh My! Fifth Graders Explore an Unfamiliar Subject While Learning Plant Basics

    Science.gov (United States)

    Pauley, Lauren; Weege, Kendra; Koomen, Michele Hollingsworth

    2016-01-01

    Native plants are not typically the kinds of plants that are used in elementary classroom studies of plant biology. More commonly, students sprout beans or investigate with fast plants. At the time the authors started their plant unit (November), the school-yard garden had an abundance of native plants that had just started seeding, including…

  17. 78 FR 41866 - Restructuring of Regulations on the Importation of Plants for Planting

    Science.gov (United States)

    2013-07-12

    ... Animal and Plant Health Inspection Service 7 CFR Parts 319 and 340 RIN 0579-AD75 Restructuring of Regulations on the Importation of Plants for Planting AGENCY: Animal and Plant Health Inspection Service, USDA... importation of plants for planting. This action will allow interested persons additional time to prepare and...

  18. Antioxidant Potential of Different Medicinal Plants

    OpenAIRE

    Vasanthi P; Parameswari CS

    2015-01-01

    Medicinal plants are the resource of new drug. Most of the modern medicines are produced indirectly from medicinal plants. Plants are directly used as medicines by a majority of cultures around the world. Studying medicinal plants helps to understand plant toxicity and protect human and animals from natural poisons. Medicinal plants are the important sources for pharmaceutical manufacturing. In developing countries, herbal medicines are considered to be readily available, accessible, affordab...

  19. EARLY ENTRANCE COPRODUCTION PLANT

    Energy Technology Data Exchange (ETDEWEB)

    David Storm; Govanon Nongbri; Steve Decanio; Ming He; Lalit Shah; Charles Schrader; Earl Berry; Peter Ricci; Belma Demirel; Charles Benham; Mark Bohn

    2004-01-12

    The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC or TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, Inc., GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. During Phase I, a design basis for the Fischer-Tropsch Synthesis section was developed based on limited experience with the specified feed gas and operating conditions. The objective of this Task in Phase II RD&T work was to confirm the performance of the F-T reactor at the set design conditions. Although much of the research, development, and testing work were done by TES outside of this project, several

  20. On biomass of parasitic plants

    Science.gov (United States)

    He, J. H.; Mo, L.-F.

    2008-02-01

    An extremely simple and elementary but rigorous derivation of maximal biomass of parasitic plants is given using an assumption that metabolic rate of the parasite should not be larger than that of its host organ

  1. Ancient DNA extraction from plants.

    Science.gov (United States)

    Kistler, Logan

    2012-01-01

    A variety of protocols for DNA extraction from archaeological and paleobotanical plant specimens have been proposed. This is not surprising given the range of taxa and tissue types that may be preserved and the variety of conditions in which that preservation may take place. Commercially available DNA extraction kits can be used to recover ancient plant DNA, but modifications to standard approaches are often necessary to improve yield. In this chapter, I describe two protocols for extracting DNA from small amounts of ancient plant tissue. The CTAB protocol, which I recommend for use with single seeds, utilizes an incubation period in extraction buffer and subsequent chloroform extraction followed by DNA purification and suspension. The PTB protocol, which I recommend for use with gourd rind and similar tissues, utilizes an overnight incubation of pulverized tissue in extraction buffer, removal of the tissue by centrifugation, and DNA extraction from the buffer using commercial plant DNA extraction kits.

  2. Indoor plants as air cleaners

    DEFF Research Database (Denmark)

    Dela Cruz, Majbrit; Christensen, Jan H.; Müller, Renate

    2015-01-01

    Plants have been used decoratively indoors for centuries. For the last 25-30 years, their beneficial abilities to reduce the levels of harmful volatile organic compounds (VOCs) from the indoor air have also been investigated. Previous studies have shown that VOCs are removed by the plant itself......, but also by microorganisms in the soil. Furthermore, the rate of removal is dependent on the plant species and can be influenced by exogenous factors such as light intensity and VOC concentration. The research within this field is, however, limited by the fact that the knowledge gained from laboratory...... be an underestimation of the plants' real potential. The next step will be to use the new system to investigate the effects of the exogenous factors temperature, light intensity and CO2 concentration on VOC removal rates....

  3. Waste Isolation Pilot Plant Overview

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, Douglas James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-27

    The mission of Waste Isolation Pilot Plant (WIPP) is to demonstrate the safe, environmentally sound, cost effective, permanent disposal of Transuranic (TRU) waste left from production of nuclear weapons.

  4. The biology of marine plants

    National Research Council Canada - National Science Library

    Dring, M.J

    1982-01-01

    Since over 90% of the species of marine plants are algae, most of the book is devoted to the marine representatives of this group, with examples from all oceans and coasts of the world where detailed work has been done...

  5. Plant-based remediation processes

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Dharmendra Kumar (ed.) [Belgian Nuclear Research Centre (SCK.CEN), Mol (Belgium). Radiological Impact and Performance Assessment Division

    2013-11-01

    A valuable source of information for scientists in the field of environmental pollution and remediation. Describes the latest biotechnological methods for the treatment of contaminated soils. Includes case studies and protocols. Phytoremediation is an emerging technology that employs higher plants for the clean-up of contaminated environments. Basic and applied research have unequivocally demonstrated that selected plant species possess the genetic potential to accumulate, degrade, metabolize and immobilize a wide range of contaminants. The main focus of this volume is on the recent advances of technologies using green plants for remediation of various metals and metalloids. Topics include biomonitoring of heavy metal pollution, amendments of higher uptake of toxic metals, transport of heavy metals in plants, and toxicity mechanisms. Further chapters discuss agro-technological methods for minimizing pollution while improving soil quality, transgenic approaches to heavy metal remediation and present protocols for metal remediation via in vitro root cultures.

  6. Modeling of solar polygeneration plant

    Science.gov (United States)

    Leiva, Roberto; Escobar, Rodrigo; Cardemil, José

    2017-06-01

    In this work, a exergoeconomic analysis of the joint production of electricity, fresh water, cooling and process heat for a simulated concentrated solar power (CSP) based on parabolic trough collector (PTC) with thermal energy storage (TES) and backup energy system (BS), a multi-effect distillation (MED) module, a refrigeration absorption module, and process heat module is carried out. Polygeneration plant is simulated in northern Chile in Crucero with a yearly total DNI of 3,389 kWh/m2/year. The methodology includes designing and modeling a polygeneration plant and applying exergoeconomic evaluations and calculating levelized cost. Solar polygeneration plant is simulated hourly, in a typical meteorological year, for different solar multiple and hour of storage. This study reveals that the total exergy cost rate of products (sum of exergy cost rate of electricity, water, cooling and heat process) is an alternative method to optimize a solar polygeneration plant.

  7. Validation of Plant Virus Detection

    NARCIS (Netherlands)

    Schadewijk, van A.R.; Meekes, E.T.M.; Verbeek, M.; Verhoeven, J.Th.J.

    2011-01-01

    Validation of test methods is required for laboratories seeking ISO 17025 accreditation. Recently developed manuals help choosing relevant performance characteristics to be studied for qualitative tests common in plant virus detection. For routine testing in certification schemes additional

  8. Seafood quality control: processing plants

    National Research Council Canada - National Science Library

    Nickelson, R

    .... Maintaining high quality in the product is vital to the management for two basic reasons. First, the plant must produce high quality seafood with maximum shelf-life in order to compete for its fair share of the market...

  9. Nuclear Power Plant Simulation Game.

    Science.gov (United States)

    Weiss, Fran

    1979-01-01

    Presents a nuclear power plant simulation game which is designed to involve a class of 30 junior or senior high school students. Scientific, ecological, and social issues covered in the game are also presented. (HM)

  10. Antiartherosclerotic effects of plant flavonoids

    National Research Council Canada - National Science Library

    Salvamani, Shamala; Gunasekaran, Baskaran; Shaharuddin, Noor Azmi; Ahmad, Siti Aqlima; Shukor, Mohd Yunus

    2014-01-01

    .... Since the usage of the synthetic drug, statins, leads to various side effects, the plants flavonoids with antiartherosclerotic activity gained much attention and were proven to reduce the risk...

  11. The drivers of plant diversity

    DEFF Research Database (Denmark)

    Jensen, Kristine Engemann

    In this thesis we use a “big data” approach to describe and explain large-scale patterns of plant diversity. The botanical data used for the six papers come from three different databases covering the New World, North America, and Europe respectively. The data on plant distributions were combined...... and beta diversity over time for woody forest communities in North America, using a 20 year forest plot dataset from the United States Department of Agriculture Forest Inventory and Analysis program. To assess functional diversity, we combined the plot data with data on four functional traits. Over time...... with environmental data on climate, soil, topography, and disturbance to identify the drivers of macroecological plant diversity patterns. Unless otherwise stated, the botanical data used in the papers come from the Botanical Information and Ecology Network. Paper I describes how we compiled a new plant growth form...

  12. Wetland plants: biology and ecology

    National Research Council Canada - National Science Library

    Cronk, Julie K; Fennessy, M. Siobhan

    2001-01-01

    .... You get a thorough discussion of the range of wetland plant adaptations to life in water or saturated soils, high salt or high sulfur, low light and low carbon dioxide levels, as well as a detailed...

  13. Wind power plant system services

    DEFF Research Database (Denmark)

    Basit, Abdul; Altin, Müfit

    Traditionally, conventional power plants have the task to support the power system, by supplying power balancing services. These services are required by the power system operators in order to secure a safe and reliable operation of the power system. However, as in the future the wind power...... is going more and more to replace conventional power plants, the sources of conventional reserve available to the system will be reduced and fewer conventional plants will be available on-line to share the regulation burden. The reliable operation of highly wind power integrated power system might...... then beat risk unless the wind power plants (WPPs) are able to support and participate in power balancing services. The objective of this PhD project is to develop and analyse control strategies which can increase the WPPs capability to provide system services, such as active power balancing control...

  14. Crestridge Plant Surveys [ds210

    Data.gov (United States)

    California Department of Resources — Sensitive plant surveys were conducted in 2000 for development of a Habitat Management and Monitoring Plan by Patricia Gordon-Reedy of the Conservation Biology...

  15. Plants and Medicinal Chemistry--2

    Science.gov (United States)

    Bailey, D.

    1977-01-01

    Second of a two part article on the influence of plants on medicinal chemistry. This part considers how drugs work, the attempts to develop anaesthetics safer than cocaine, and useful poisons. (Author/SL)

  16. Phytochromes in photosynthetically competent plants

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, L.H.

    1990-07-01

    Plants utilize light as a source of information in photomorphogenesis and of free energy in photosynthesis, two processes that are interrelated in that the former serves to increase the efficiency with which plants can perform the latter. Only one pigment involved in photomorphogenesis has been identified unequivocally, namely phytochrome. The thrust of this proposal is to investigate this pigment and its mode(s) of action in photosynthetically competent plants. Our long term objective is to characterize phytochrome and its functions in photosynthetically competent plants from molecular, biochemical and cellular perspectives. It is anticipated that others will continue to contribute indirectly to these efforts at the physiological level. The ultimate goal will be to develop this information from a comparative perspective in order to learn whether the different phytochromes have significantly different physicochemical properties, whether they fulfill independent functions and if so what these different functions are, and how each of the different phytochromes acts at primary molecular and cellular levels.

  17. The biology of plant metabolomics

    NARCIS (Netherlands)

    Hall, R.D.

    2011-01-01

    Following a general introduction, this book includes details of metabolomics of model species including Arabidopsis and tomato. Further chapters provide in-depth coverage of abiotic stress, data integration, systems biology, genetics, genomics, chemometrics and biostatisitcs. Applications of plant

  18. How plants sense low oxygen.

    Science.gov (United States)

    Pucciariello, Chiara; Perata, Pierdomenico

    2012-07-01

    The recent identification of the oxygen-sensing mechanism in plants is a breakthrough in plant physiology. The presence of a conserved N-terminal motif on some ethylene responsive factors (ERFs), targets the protein for post-translational modifications finally leading to degradation under normoxia and thus providing a mechanism for sensing the presence of oxygen. The stabilization of the N-terminus under low oxygen activates these ERFs, which regulate low oxygen core genes that enable plants to tolerate abiotic stress such as flooding. Additional mechanisms that signal low-oxygen probably also exist, and the production of reactive oxygen species (ROS) has been observed under low oxygen, suggesting that ROS might be part of the network involved in plant acclimation. Here, we review the most recent findings related to oxygen sensing.

  19. Macroevolution of plant defense strategies.

    Science.gov (United States)

    Agrawal, Anurag A

    2007-02-01

    Theories of plant defense expression are typically based on the concepts of tradeoffs among traits and of phylogenetic conservatism within clades. Here, I review recent developments in phylogenetic approaches to understanding the evolution of plant defense strategies and plant-herbivore coevolutionary interactions. I focus particularly on multivariate defense against insect herbivores, which is the simultaneous deployment of multiple traits, often arranged as convergently evolved defense syndromes. Answering many of the outstanding questions in the biology of plant defense will require generating broad hypotheses that can be explicitly tested by using comparative approaches and interpreting phylogenetic patterns. The comparative approach has wide-spread potential to reinvigorate tests of classic hypotheses about the evolution of interspecific interactions.

  20. TERMITES ENDANGERED TRADITIONAL MEDICAL PLANTS

    Directory of Open Access Journals (Sweden)

    Syaukani Syaukani

    2014-04-01

    Full Text Available Surveys on traditional medical plants affected by termites have been conducted since June to August 2010 at Ketambe, northern Aceh. Traditional medical plants and their natural habitats were obtained through interviewing local people. Termites were collected by adopted a Standardized Sampling Protocol and final. taxonomic confirmation was done with the help of Termite Research Group (the Natural History Museum, London. About 20 species of medical plants were attacked by termites with various levels. Nine genera and 20 species were collected from various habitats throughout Ketambe, Simpur as well as Gunung Setan villages. Coffe (Coffea arabica, hazelnut (Aleurites moluccana , and areca (Area catechu were among the worse of traditional medical  plant that had been attached by the termites.

  1. Reprogramming plant cells for endosymbiosis.

    Science.gov (United States)

    Oldroyd, Giles E D; Harrison, Maria J; Paszkowski, Uta

    2009-05-08

    The establishment of arbuscular mycorrhizal (AM) symbioses, formed by most flowering plants in association with glomeromycotan fungi, and the root-nodule (RN) symbiosis, formed by legume plants and rhizobial bacteria, requires an ongoing molecular dialogue that underpins the reprogramming of root cells for compatibility. In both endosymbioses, there are distinct phases to the interaction, including a presymbiotic anticipation phase and, subsequently, an intraradical accommodation of the microsymbiont. Maintenance of the endosymbiosis then depends on reciprocal nutrient exchange with the microsymbiont-obtaining plant photosynthates in exchange for mineral nutrients: enhanced phosphate and nitrogen uptake from AM fungi and fixed nitrogen from rhizobia. Despite the taxonomically distinct groups of symbionts, commonalities are observed in the signaling components and the modulation of host cell responses in both AM and RN symbioses, reflecting common mechanisms for plant cell reprogramming during endosymbiosis.

  2. Field Guide to Plant Model Systems

    Science.gov (United States)

    Chang, Caren; Bowman, John L.; Meyerowitz, Elliot M.

    2016-01-01

    For the past several decades, advances in plant development, physiology, cell biology, and genetics have relied heavily on the model (or reference) plant Arabidopsis thaliana. Arabidopsis resembles other plants, including crop plants, in many but by no means all respects. Study of Arabidopsis alone provides little information on the evolutionary history of plants, evolutionary differences between species, plants that survive in different environments, or plants that access nutrients and photosynthesize differently. Empowered by the availability of large-scale sequencing and new technologies for investigating gene function, many new plant models are being proposed and studied. PMID:27716506

  3. Symposia on Plant (Protein) Phosphorylation.

    OpenAIRE

    Vries, de, S.C.

    2012-01-01

    From September 14-16, 2011 the twelfth symposium on Plant Protein Phosphorylation was held in Tübingen, Germany. The topic is as broad as the name suggests and covers all aspects of this important means of protein modification in plants. I have had the pleasure of attending the 2007 and the 2011 symposia. The interesting concept behind these meetings is to hear about the same biochemical mechanism operative in a multitude of experimental systems. The meetings are quite informal and prese...

  4. Aquatic Plants Aid Sewage Filter

    Science.gov (United States)

    Wolverton, B. C.

    1985-01-01

    Method of wastewater treatment combines micro-organisms and aquatic plant roots in filter bed. Treatment occurs as liquid flows up through system. Micro-organisms, attached themselves to rocky base material of filter, act in several steps to decompose organic matter in wastewater. Vascular aquatic plants (typically, reeds, rushes, cattails, or water hyacinths) absorb nitrogen, phosphorus, other nutrients, and heavy metals from water through finely divided roots.

  5. Plant biology in the future.

    Science.gov (United States)

    Bazzaz, F A

    2001-05-08

    In the beginning of modern plant biology, plant biologists followed a simple model for their science. This model included important branches of plant biology known then. Of course, plants had to be identified and classified first. Thus, there was much work on taxonomy, genetics, and physiology. Ecology and evolution were approached implicitly, rather than explicitly, through paleobotany, taxonomy, morphology, and historical geography. However, the burgeoning explosion of knowledge and great advances in molecular biology, e.g., to the extent that genes for specific traits can be added (or deleted) at will, have created a revolution in the study of plants. Genomics in agriculture has made it possible to address many important issues in crop production by the identification and manipulation of genes in crop plants. The current model of plant study differs from the previous one in that it places greater emphasis on developmental controls and on evolution by differential fitness. In a rapidly changing environment, the current model also explicitly considers the phenotypic variation among individuals on which selection operates. These are calls for the unity of science. In fact, the proponents of "Complexity Theory" think there are common algorithms describing all levels of organization, from atoms all the way to the structure of the universe, and that when these are discovered, the issue of scaling will be greatly simplified! Plant biology must seriously contribute to, among other things, meeting the nutritional needs of the human population. This challenge constitutes a key part of the backdrop against which future evolution will occur. Genetic engineering technologies are and will continue to be an important component of agriculture; however, we must consider the evolutionary implications of these new technologies. Meeting these demands requires drastic changes in the undergraduate curriculum. Students of biology should be trained in molecular, cellular, organismal

  6. Picturing pathogen infection in plants.

    Science.gov (United States)

    Barón, Matilde; Pineda, Mónica; Pérez-Bueno, María Luisa

    2016-09-01

    Several imaging techniques have provided valuable tools to evaluate the impact of biotic stress on host plants. The use of these techniques enables the study of plant-pathogen interactions by analysing the spatial and temporal heterogeneity of foliar metabolism during pathogenesis. In this work we review the use of imaging techniques based on chlorophyll fluorescence, multicolour fluorescence and thermography for the study of virus, bacteria and fungi-infected plants. These studies have revealed the impact of pathogen challenge on photosynthetic performance, secondary metabolism, as well as leaf transpiration as a promising tool for field and greenhouse management of diseases. Images of standard chlorophyll fluorescence (Chl-F) parameters obtained during Chl-F induction kinetics related to photochemical processes and those involved in energy dissipation, could be good stress indicators to monitor pathogenesis. Changes on UV-induced blue (F440) and green fluorescence (F520) measured by multicolour fluorescence imaging in pathogen-challenged plants seem to be related with the up-regulation of the plant secondary metabolism and with an increase in phenolic compounds involved in plant defence, such as scopoletin, chlorogenic or ferulic acids. Thermal imaging visualizes the leaf transpiration map during pathogenesis and emphasizes the key role of stomata on innate plant immunity. Using several imaging techniques in parallel could allow obtaining disease signatures for a specific pathogen. These techniques have also turned out to be very useful for presymptomatic pathogen detection, and powerful non-destructive tools for precision agriculture. Their applicability at lab-scale, in the field by remote sensing, and in high-throughput plant phenotyping, makes them particularly useful. Thermal sensors are widely used in crop fields to detect early changes in leaf transpiration induced by both air-borne and soil-borne pathogens. The limitations of measuring photosynthesis by

  7. MRI of plants and foods

    Science.gov (United States)

    Van As, Henk; van Duynhoven, John

    2013-04-01

    The importance and prospects for MRI as applied to intact plants and to foods are presented in view of one of humanity's most pressing concerns, the sustainable and healthy feeding of a worldwide increasing population. Intact plants and foods have in common that their functionality is determined by complex multiple length scale architectures. Intact plants have an additional level of complexity since they are living systems which critically depend on transport and signalling processes between and within tissues and organs. The combination of recent cutting-edge technical advances and integration of MRI accessible parameters has the perspective to contribute to breakthroughs in understanding complex regulatory plant performance mechanisms. In food science and technology MRI allows for quantitative multi-length scale structural assessment of food systems, non-invasive monitoring of heat and mass transport during shelf-life and processing, and for a unique view on food properties under shear. These MRI applications are powerful enablers of rationally (re)designed food formulations and processes. Limitations and bottlenecks of the present plant and food MRI methods are mainly related to short T2 values and susceptibility artefacts originating from small air spaces in tissues/materials. We envisage cross-fertilisation of solutions to overcome these hurdles in MRI applications in plants and foods. For both application areas we witness a development where MRI is moving from highly specialised equipment to mobile and downscaled versions to be used by a broad user base in the field, greenhouse, food laboratory or factory.

  8. Game theory and plant ecology.

    Science.gov (United States)

    McNickle, Gordon G; Dybzinski, Ray

    2013-04-01

    The fixed and plastic traits possessed by a plant, which may be collectively thought of as its strategy, are commonly modelled as density-independent adaptations to its environment. However, plant strategies may also represent density- or frequency-dependent adaptations to the strategies used by neighbours. Game theory provides the tools to characterise such density- and frequency-dependent interactions. Here, we review the contributions of game theory to plant ecology. After briefly reviewing game theory from the perspective of plant ecology, we divide our review into three sections. First, game theoretical models of allocation to shoots and roots often predict investment in those organs beyond what would be optimal in the absence of competition. Second, game theoretical models of enemy defence suggest that an individual's investment in defence is not only a means of reducing its own tissue damage but also a means of deflecting enemies onto competitors. Finally, game theoretical models of trade with mutualistic partners suggest that the optimal trade may reflect competition for access to mutualistic partners among plants. In short, our review provides an accessible entrance to game theory that will help plant ecologists enrich their research with its worldview and existing predictions. © 2013 Blackwell Publishing Ltd/CNRS.

  9. SYMPOSIUM ON PLANT PROTEIN PHOSPHORYLATION

    Energy Technology Data Exchange (ETDEWEB)

    JOHN C WALKER

    2011-11-01

    Protein phosphorylation and dephosphorylation play key roles in many aspects of plant biology, including control of cell division, pathways of carbon and nitrogen metabolism, pattern formation, hormonal responses, and abiotic and biotic responses to environmental signals. A Symposium on Plant Protein Phosphorylation was hosted on the Columbia campus of the University of Missouri from May 26-28, 2010. The symposium provided an interdisciplinary venue at which scholars studying protein modification, as it relates to a broad range of biological questions and using a variety of plant species, presented their research. It also provided a forum where current international challenges in studies related to protein phosphorylation could be examined. The symposium also stimulated research collaborations through interactions and networking among those in the research community and engaged students and early career investigators in studying issues in plant biology from an interdisciplinary perspective. The proposed symposium, which drew 165 researchers from 13 countries and 21 States, facilitated a rapid dissemination of acquired knowledge and technical expertise regarding protein phosphorylation in plants to a broad range of plant biologists worldwide.

  10. Evolution, plant breeding and biodiversity

    Directory of Open Access Journals (Sweden)

    Salvatore Ceccarelli

    2011-11-01

    Full Text Available This paper deals with changes in biodiversity during the course of evolution, plant domestication and plant breeding. It shows than man has had a strong influence on the progressive decrease of biodiversity, unconscious at first and deliberate in modern times. The decrease in biodiversity in the agricultures of the North causes a severe threat to food security and is in contrasts with the conservation of biodiversity which is part of the culture of several populations in the South. The concluding section of the paper shows that man could have guided evolution in a different way and shows an example of participatory plant breeding, a type of breeding which is done in collaboration with farmers and is based on selection for specific adaptation. Even though participatory plant breeding has been practiced for only about 20 years and by relatively few groups, the effects on both biodiversity and crop production are impressive. Eventually the paper shows how participatory plant breeding can be developed into ‘evolutionary plant breeding’ to cope in a dynamic way with climate changes.

  11. Extracellular nucleotide signaling in plants

    Energy Technology Data Exchange (ETDEWEB)

    Stacey, Gary [Univ. of Missouri, Columbia, MO (United States)

    2016-09-08

    Over the life of this funded project, our research group identified and characterized two key receptor proteins in plants; one mediating the innate immunity response to chitin and the other elucidating the key receptor for extracellular ATP. In the case of chitin recognition, we recently described the quaternary structure of this receptor, shedding light on how the receptor functions. Perhaps more importantly, we demonstrated that all plants have the ability to recognize both chitin oligomers and lipochitooligosacchardes, fundamentally changing how the community views the evolution of these systems and strategies that might be used, for example, to extend symbiotic nitrogen fixation to non-legumes. Our discovery of DORN1 opens a new chapter in plant physiology documenting conclusively that eATP is an important extracellular signal in plants, as it is in animals. At this point, we cannot predict just how far reaching this discovery may prove to be but we are convinced that eATP signaling is fundamental to plant growth and development and, hence, we believe that the future will be very exciting for the study of DORN1 and its overall function in plants.

  12. Thermal Power Plant Performance Analysis

    CERN Document Server

    2012-01-01

    The analysis of the reliability and availability of power plants is frequently based on simple indexes that do not take into account the criticality of some failures used for availability analysis. This criticality should be evaluated based on concepts of reliability which consider the effect of a component failure on the performance of the entire plant. System reliability analysis tools provide a root-cause analysis leading to the improvement of the plant maintenance plan.   Taking in view that the power plant performance can be evaluated not only based on  thermodynamic related indexes, such as heat-rate, Thermal Power Plant Performance Analysis focuses on the presentation of reliability-based tools used to define performance of complex systems and introduces the basic concepts of reliability, maintainability and risk analysis aiming at their application as tools for power plant performance improvement, including: ·         selection of critical equipment and components, ·         defini...

  13. EARLY ENTRANCE COPRODUCTION PLANT

    Energy Technology Data Exchange (ETDEWEB)

    John Anderson; Mark Anselmo; Earl Berry; Mark Bohn; Ming He; Charles H. Schrader; Lalit Shah; Donald Todd; Robert Schavey

    2004-01-12

    The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to its detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC (TES) (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR). The work was under cooperative agreements with the U.S. Department of Energy (DOE). TES is providing the gasification technology and the Fischer-Tropsch (F-T) technology developed by Rentech Inc., GE is providing the combustion turbine technology, Praxair is providing the air separation technology, and KBR is providing overall engineering. Each of the EECP's subsystems was assessed for technical risks and barriers in Phase I. A plan was identified to mitigate the identified risks (Phase II RD&T Plan, October 2000). The RD&T Plan identified catalyst/wax separation as a potential technical and economic risk. To mitigate risks to the proposed EECP concept, Phase II RD&T included

  14. EARLY ENTRANCE COPRODUCTION PLANT

    Energy Technology Data Exchange (ETDEWEB)

    Fred D. Brent; Lalit Shah; Earl Berry; Charles H. Schrader; John Anderson; Ming He; James F. Stevens; Centha A. Davis; Michael Henley; Jerome Mayer; Harry Tsang; Jimell Erwin; Jennifer Adams; Michael Tillman; Chris Taylor; Marjan J. Roos; Robert F. Earhart

    2004-01-27

    The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC or TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. Each of the EECP subsystems was assessed for technical risks and barriers. A plan was developed to mitigate the identified risks (Phase II RD&T Plan, October 2000). The potential technical and economic risks to the EECP from Task 2.5 can be mitigated by demonstrating that the end-use products derived from the upgrading of the F-T synthesis total liquid product can meet or exceed current specifications for the

  15. Plant Reactome: a resource for plant pathways and comparative analysis.

    Science.gov (United States)

    Naithani, Sushma; Preece, Justin; D'Eustachio, Peter; Gupta, Parul; Amarasinghe, Vindhya; Dharmawardhana, Palitha D; Wu, Guanming; Fabregat, Antonio; Elser, Justin L; Weiser, Joel; Keays, Maria; Fuentes, Alfonso Munoz-Pomer; Petryszak, Robert; Stein, Lincoln D; Ware, Doreen; Jaiswal, Pankaj

    2017-01-04

    Plant Reactome (http://plantreactome.gramene.org/) is a free, open-source, curated plant pathway database portal, provided as part of the Gramene project. The database provides intuitive bioinformatics tools for the visualization, analysis and interpretation of pathway knowledge to support genome annotation, genome analysis, modeling, systems biology, basic research and education. Plant Reactome employs the structural framework of a plant cell to show metabolic, transport, genetic, developmental and signaling pathways. We manually curate molecular details of pathways in these domains for reference species Oryza sativa (rice) supported by published literature and annotation of well-characterized genes. Two hundred twenty-two rice pathways, 1025 reactions associated with 1173 proteins, 907 small molecules and 256 literature references have been curated to date. These reference annotations were used to project pathways for 62 model, crop and evolutionarily significant plant species based on gene homology. Database users can search and browse various components of the database, visualize curated baseline expression of pathway-associated genes provided by the Expression Atlas and upload and analyze their Omics datasets. The database also offers data access via Application Programming Interfaces (APIs) and in various standardized pathway formats, such as SBML and BioPAX. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Interannual variability of plant phenology in tussock tundra: modelling interactions of plant productivity, plant phenology, snowmelt and soil thaw

    NARCIS (Netherlands)

    Wijk, van M.T.; Williams, M.; Laundre, J.A.; Shaver, G.R.

    2003-01-01

    We present a linked model of plant productivity, plant phenology, snowmelt and soil thaw in order to estimate interannual variability of arctic plant phenology and its effects on plant productivity. The model is tested using 8 years of soil temperature data, and three years of bud break data of

  17. Biosensors for plant pathogen detection.

    Science.gov (United States)

    Khater, Mohga; de la Escosura-Muñiz, Alfredo; Merkoçi, Arben

    2017-07-15

    Infectious plant diseases are caused by pathogenic microorganisms such as fungi, bacteria, viruses, viroids, phytoplasma and nematodes. Worldwide, plant pathogen infections are among main factors limiting crop productivity and increasing economic losses. Plant pathogen detection is important as first step to manage a plant disease in greenhouses, field conditions and at the country boarders. Current immunological techniques used to detect pathogens in plant include enzyme-linked immunosorbent assays (ELISA) and direct tissue blot immunoassays (DTBIA). DNA-based techniques such as polymerase chain reaction (PCR), real time PCR (RT-PCR) and dot blot hybridization have also been proposed for pathogen identification and detection. However these methodologies are time-consuming and require complex instruments, being not suitable for in-situ analysis. Consequently, there is strong interest for developing new biosensing systems for early detection of plant diseases with high sensitivity and specificity at the point-of-care. In this context, we revise here the recent advancement in the development of advantageous biosensing systems for plant pathogen detection based on both antibody and DNA receptors. The use of different nanomaterials such as nanochannels and metallic nanoparticles for the development of innovative and sensitive biosensing systems for the detection of pathogens (i.e. bacteria and viruses) at the point-of-care is also shown. Plastic and paper-based platforms have been used for this purpose, offering cheap and easy-to-use really integrated sensing systems for rapid on-site detection. Beside devices developed at research and development level a brief revision of commercially available kits is also included in this review. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Spectral filtering for plant production

    Science.gov (United States)

    Young, Roy E.; Mcmahon, Margaret J.; Rajapakse, Nihal C.; Decoteau, Dennis R.

    1994-01-01

    Both plants and animals have one general commonality in their perception of light. They both are sensitive primarily to the 400 to 700 nm wavelength portion of the electromagnetic spectrum. This is referred to as the visible spectrum for animals and as the photosynthetically active radiation (PAR) spectrum for plants. Within this portion of the spectrum, animals perceive colors. Relatively recently it has been learned that within this same spectral range plants also demonstrate varying responses at different wavelengths, somewhat analogous to the definition of various colors at specific wavelengths. Although invisible to the human eye, portions of the electromagnetic spectrum on either side of the visible range are relatively inactive photosynthetically but have been found to influence important biological functions. These portions include the ultraviolet (UV approximately equal to 280-400 nm) and the far-red (FR approximately equal to 700-800 nm). The basic photoreceptor of plants for photosynthesis is chlorophyll. It serves to capture radiant energy which combined with carbon dioxide and water produces oxygen and assimulated carbon, used for the synthesis of cell wall polysaccarides, proteins, membrane lipids and other cellular constituents. The energy and carbon building blocks of photosynthesis sustain growth of plants. On the other hand, however, there are other photoreceptors, or pigments, that function as signal transducers to provide information that controls many physiological and morphological responses of how a plant grows. Known photomorphogenic receptors include phytochrome (the red/far-red sensor in the narrow bands of 655-665 nm and 725-735 nm ranges, respectively) and 'cryptochrome' (the hypothetical UV-B sensor in the 280-320 nm range). Since the USDA team of W. L. Butler, S. B. Hendricks, H. A. Borthwick, H. A. Siegleman and K. Norris in Beltsville, MD detected by spectroscopy, extracted and identified phytochrome as a protein in the 1950's, many

  19. 3D modelling of branching in plants

    NARCIS (Netherlands)

    Evers, J.B.

    2011-01-01

    Shoot branching is a key determinant of overall aboveground plant form. During plant development, the number of branches formed strongly influences the amount of light absorbed by the plant, and thus the plant’s competitive strength in terms of light capture in relation to neighbouring plants.

  20. Plant Evolution: A Manufacturing Network Perspective

    DEFF Research Database (Denmark)

    Yang, Cheng; Johansen, John; Boer, Harry

    2009-01-01

    Viewing them as portfolios of products and processes, we aim to address how plants evolve in the context of a manufacturing network and how the evolution of one plant impacts other plants in the same manufacturing network. Based on discussions of ten plants from three Danish companies, we identif...

  1. The rhizosphere microbiome and plant health

    NARCIS (Netherlands)

    Berendsen, R.L.; Pieterse, C.M.J.; Bakker, P.A.H.M.

    2012-01-01

    The diversity of microbes associated with plant roots is enormous, in the order of tens of thousands of species. This complex plant-associated microbial community, also referred to as the second genome of the plant, is crucial for plant health. Recent advances in plant–microbe interactions research

  2. Modeling and dynamic behaviour of hydropower plants

    CERN Document Server

    Kishor, Nand

    2017-01-01

    This book presents a systematic approach to mathematical modeling of different configurations of hydropower plants over four sections - modeling and simulation approaches; control of hydropower plants; operation and scheduling of hydropower plants, including pumped storage; and special features of small hydropower plants.

  3. 25 CFR 140.26 - Infectious plants.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Infectious plants. 140.26 Section 140.26 Indians BUREAU... Infectious plants. Traders shall not introduce into, sell, or spread within Indian reservations any plant, plant product, seed, or any type of vegetation, which is infested, or infected or which might act as a...

  4. 27 CFR 19.915 - Large plants.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Large plants. 19.915... OF THE TREASURY LIQUORS DISTILLED SPIRITS PLANTS Distilled Spirits For Fuel Use Permits § 19.915 Large plants. Any person wishing to establish a large plant shall make application for and obtain an...

  5. 27 CFR 19.912 - Small plants.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Small plants. 19.912... OF THE TREASURY LIQUORS DISTILLED SPIRITS PLANTS Distilled Spirits For Fuel Use Permits § 19.912 Small plants. Persons wishing to establish a small plant shall apply for a permit as provided in this...

  6. 27 CFR 19.914 - Medium plants.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Medium plants. 19.914... OF THE TREASURY LIQUORS DISTILLED SPIRITS PLANTS Distilled Spirits For Fuel Use Permits § 19.914 Medium plants. Any person wishing to establish a medium plant shall make application for and obtain in...

  7. Fungal Plant Pathogenesis Mediated by Effectors

    NARCIS (Netherlands)

    Wit, de P.J.G.M.; Testa, A.; Oliver, R.

    2016-01-01

    The interactions between fungi and plants encompass a spectrum of ecologies ranging from saprotrophy (growth on dead plant material) through pathogenesis (growth of the fungus accompanied by disease on the plant) to symbiosis (growth of the fungus with growth enhancement of the plant). We consider

  8. 47 CFR 32.2006 - Nonoperating plant.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Nonoperating plant. 32.2006 Section 32.2006... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2006 Nonoperating plant... in the plant accounts as operating telecommunications plant. It shall include the company's...

  9. 7 CFR 1001.4 - Plant.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Plant. 1001.4 Section 1001.4 Agriculture Regulations of... Definitions § 1001.4 Plant. (a) Except as provided in paragraph (b) of this section, plant means the land...) of this section if the facility receives the milk of more than one dairy farmer. (b) Plant shall not...

  10. The Marstal Central Solar Heating Plant

    DEFF Research Database (Denmark)

    Heller, Alfred; Jochen, Dahm

    1999-01-01

    The central solar heating plant in Marstal is running since 1996 and has been monitored since. The resulting data from the plant is analysed and the plant performance evaluated. A TRNSYS-model (computersimulation) id prepared and validated based on the measured data from the plant. Acceptable good...

  11. Survey of Medicinal Plants Used to Treat

    African Journals Online (AJOL)

    Survey of Medicinal Plants Used to Treat Human Diseases Mesfin T. at el 89. ORIGINAL ARTICLE. SURVEY OF ... knowledge traditional medicinal plants are key resources. This involves the use of plants to treat ... WORDS: Traditional medicine, ethnomedicine, medicinal plant, ethnobotany treat what type of als investigated ...

  12. Language of plants: where is the word?

    OpenAIRE

    Simpraga, Maja; Takabayashi, Junji; Holopainen, Jarmo K.

    2016-01-01

    Plants emit biogenic volatile organic compounds (BVOCs) causing transcriptomic, metabolomic and behavioral responses in receiver organisms. Volatiles involved in such responses are often called plant language. Arthropods having sensitive chemoreceptors can recognize language released by plants. Insect herbivores, pollinators and natural enemies respond to composition of volatiles from plants with specialized receptors responding to different types of compounds. In contrast, the mechanism of h...

  13. The Target Plant Concept [Chapter 2

    Science.gov (United States)

    Thomas D. Landis

    2009-01-01

    The first native plant nurseries in North America were gardens of plants transplanted from the wild by indigenous people. Specific plants were irrigated and otherwise cultured in these gardens to produce seeds, leaves, roots, or other desirable products. As native people collected seeds from the largest or most productive plants, they were making the first genetic...

  14. Prototype tidal power plant achieves 99% availability

    Energy Technology Data Exchange (ETDEWEB)

    De Lory, R.P.

    1987-01-01

    The Annapolis Royal (Canada) tidal power plant officially came on line in 1984. In its first year it achieved 99% availability. It is the first tidal power plant in North America and the first plant in the world to employ a large diameter Straflo turbine. The performance of the prototype plant is discussed.

  15. LAW CAPACITY WASTEWATER TREATMENT PLANTS

    Directory of Open Access Journals (Sweden)

    Nicoleta Luminiţa Jurj

    2012-01-01

    Full Text Available The question of small water users having no centralized wastewater collecting, cleaning and discharging system is of maximal actuality in Romania. Therefor economically efficient solutions are looked for. For disperse mountain villages, farms, or detached households traditional systems, with high maintenance expences because of long networks for small flows, can be economicaly not advantageos. Very small capacity treatement plants are a solution for such cases. The aim of the experimental part of the present work is to simulate situations, damages which can occur during running of a low capacity wastewater treatement plant. Low capacity hosehold wastewater treatement plants are economic alternatives which remove the disadvantages of emptyable basins namely the high costs, the frequvent empying operations, with unpleasant smelling, continous danger of groundwater infection, need for massive and expensive concrete buildings. The proposed plants are based on a classical treatement technology and need emptying of the exess mud only once or twice a year. In opposition with the case of classical plants, the mixture extracted from the proposed low cost systems does not smell and has a relatively low content of solid matter.

  16. History of plant tissue culture.

    Science.gov (United States)

    Thorpe, Trevor

    2012-01-01

    Plant tissue culture, or the aseptic culture of cells, tissues, organs, and their components under defined physical and chemical conditions in vitro, is an important tool in both basic and applied studies as well as in commercial application. It owes its origin to the ideas of the German scientist, Haberlandt, at the beginning of the twentieth century. The early studies led to root cultures, embryo cultures, and the first true callus/tissue cultures. The period between the 1940s and the 1960s was marked by the development of new techniques and the improvement of those that were already in use. It was the availability of these techniques that led to the application of tissue culture to five broad areas, namely, cell behavior (including cytology, nutrition, metabolism, morphogenesis, embryogenesis, and pathology), plant modification and improvement, pathogen-free plants and germplasm storage, clonal propagation, and product (mainly secondary metabolite) formation, starting in the mid-1960s. The 1990s saw continued expansion in the application of the in vitro technologies to an increasing number of plant species. Cell cultures have remained an important tool in the study of basic areas of plant biology and biochemistry and have assumed major significance in studies in molecular biology and agricultural biotechnology in the twenty-first century. The historical development of these in vitro technologies and their applications is the focus of this chapter.

  17. Spectral filtering for plant production

    Energy Technology Data Exchange (ETDEWEB)

    Young, R.E.; McMahon, M.J.; Rajapakse, N.C.; Becoteau, D.R.

    1994-12-31

    Research to date suggests that spectral filtering can be an effective alternative to chemical growth regulators for altering plant development. If properly implemented, it can be nonchemical and environmentally friendly. The aqueous CuSO{sub 4}, and CuCl{sub 2} solutions in channelled plastic panels have been shown to be effective filters, but they can be highly toxic if the solutions contact plants. Some studies suggest that spectral filtration limited to short EOD intervals can also alter plant development. Future research should be directed toward confirmation of the influence of spectral filters and exposure times on a broader range of plant species and cultivars. Efforts should also be made to identify non-noxious alternatives to aqueous copper solutions and/or to incorporate these chemicals permanently into plastic films and panels that can be used in greenhouse construction. It would also be informative to study the impacts of spectral filters on insect and microbal populations in plant growth facilities. The economic impacts of spectral filtering techniques should be assessed for each delivery methodology.

  18. Chromatin remodeling in plant development.

    Science.gov (United States)

    Jarillo, José A; Piñeiro, Manuel; Cubas, Pilar; Martínez-Zapater, José M

    2009-01-01

    Plant development results from specific patterns of gene expression that are tightly regulated in a spatio-temporal manner. Chromatin remodeling plays a central role in establishing these expression patterns and maintaining epigenetic transcriptional states through successive rounds of mitosis that take place within a cell lineage. Plant epigenetic switches occur not only at the embryo stage, but also during postembryonic developmental transitions, suggesting that chromatin remodeling activities in plants can provide a higher degree of regulatory flexibility which probably underlies their developmental plasticity. Here, we highlight recent progress in the understanding of plant chromatin dynamic organization, facilitating the activation or repression of specific sets of genes involved in different developmental programs and integrating them with the response to environmental signals. Chromatin conformation controls gene expression both in actively dividing undifferentiated cells and in those already fate-determined. In this context, we first describe chromatin reorganization activities required to maintain meristem function stable through DNA replication and cell division. Organ initiation at the apex, with emphasis on reproductive development, is next discussed to uncover the chromatin events involved in the establishment and maintenance of expression patterns associated with differentiating cells; this is illustrated with the complex epigenetic regulation of the Arabidopsis floral repressor FLOWERING LOCUS C (FLC). Finally, we discuss the involvement of chromatin remodeling in plant responses to environmental cues and to different types of stress conditions.

  19. Possible phthalates transport into plants

    Directory of Open Access Journals (Sweden)

    Alžbeta Jarošová

    2010-01-01

    Full Text Available Soils can be contaminated by high concentrations of phthalic acid esters (PAE resulting from industrial and intensive agricultural activities. A plant receives water and substances (including pollutants from soil by means of rootage. Water solution received by the roots is distributed in particular by means of xylem. Reception by means of floem is not very considerable. Pollutants (including phthalates can be absorbed by roots either by diffusion by means of soil gas phase or soil liquid phase. Another possible way of pollutant entering into the plant is diffusion from atmosphere. Way of substance entering into the plant is decided by so called Henry constant as well as octanol-water partition coefficient. In case of phthalates, big differences between di-n-butyl phthalate (DBP reception and dioctyl phthalate reception were detected. For example, DBP can enter into the plant by means of gas as well as liquid phase while dioctyl phthalate only by gas phase.This publication summarizes fundamental knowledge on possible phthalates transport into plants.

  20. Soil conditions and plant growth'

    Science.gov (United States)

    Passioura, J. B.

    2002-02-01

    Plants can respond to soil conditions in ways that can not readily be explained in terms of the ability of the roots to take up water and nutrients. Roots may sense difficult conditions in the soil and thence send inhibitory signals to the shoots which harden the plants against the consequences of a deteriorating or restrictive environment, especially if the plants' water supply is at risk. Generally, this behaviour can be interpreted as feedforward responses to the soil becoming too dry or too hard, or to the available soil volume being very small as with bonsai plants, or to roots' becoming infected with pathogens. However, soil that is too soft or in which the roots are forced to grow in very large pores can also induce large conservative responses, the significance of which is unclear. The inhibitory signals may affect stomatal conductance, cell expansion, cell division and the rate of leaf appearance. Their nature is still under debate, and the debate is becoming increasingly complex, which probably signifies that a network of hormonal and other responses is involved in attuning the growth and development of a plant to its environment.

  1. Medicinal Plants with Antiplatelet Activity.

    Science.gov (United States)

    El Haouari, Mohammed; Rosado, Juan A

    2016-07-01

    Blood platelets play an essential role in the hemostasis and wound-healing processes. However, platelet hyperactivity is associated to the development and the complications of several cardiovascular diseases. In this sense, the search for potent and safer antiplatelet agents is of great interest. This article provides an overview of experimental studies performed on medicinal plants with antiplatelet activity available through literature with particular emphasis on the bioactive constituents, the parts used, and the various platelet signaling pathways modulated by medicinal plants. From this review, it was suggested that medicinal plants with antiplatelet activity mainly belong to the family of Asteraceae, Rutaceae, Fabaceae, Lamiaceae, Zygophyllaceae, Rhamnaceae, Liliaceae, and Zingiberaceae. The antiplatelet effect is attributed to the presence of bioactive compounds such as polyphenols, flavonoids, coumarins, terpenoids, and other substances which correct platelet abnormalities by interfering with different platelet signalization pathways including inhibition of the ADP pathway, suppression of TXA2 formation, reduction of intracellular Ca(2+) mobilization, and phosphoinositide breakdown, among others. The identification and/or structure modification of the plant constituents and the understanding of their action mechanisms will be helpful in the development of new antiplatelet agents based on medicinal plants which could contribute to the prevention of thromboembolic-related disorders by inhibiting platelet aggregation. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Phosphorylation site prediction in plants.

    Science.gov (United States)

    Yao, Qiuming; Schulze, Waltraud X; Xu, Dong

    2015-01-01

    Protein phosphorylation events on serine, threonine, and tyrosine residues are the most pervasive protein covalent bond modifications in plant signaling. Both low and high throughput studies reveal the importance of phosphorylation in plant molecular biology. Although becoming more and more common, the proteome-wide screening on phosphorylation by experiments remains time consuming and costly. Therefore, in silico prediction methods are proposed as a complementary analysis tool to enhance the phosphorylation site identification, develop biological hypothesis, or help experimental design. These methods build statistical models based on the experimental data, and they do not have some of the technical-specific bias, which may have advantage in proteome-wide analysis. More importantly computational methods are very fast and cheap to run, which makes large-scale phosphorylation identifications very practical for any types of biological study. Thus, the phosphorylation prediction tools become more and more popular. In this chapter, we will focus on plant specific phosphorylation site prediction tools, with essential illustration of technical details and application guidelines. We will use Musite, PhosPhAt and PlantPhos as the representative tools. We will present the results on the prediction of the Arabidopsis protein phosphorylation events to give users a general idea of the performance range of the three tools, together with their strengths and limitations. We believe these prediction tools will contribute more and more to the plant phosphorylation research community.

  3. Silicon alleviates the deleterious salt effect on tomato plant growth by improving plant water status.

    Science.gov (United States)

    Romero-Aranda, Mercedes R; Jurado, Oliva; Cuartero, Jesús

    2006-07-01

    In order to investigate the role of Si in alleviating the deleterious effects of salinity on tomato plant growth, the tomato cultivar Moneymaker was grown with 0 or 80mM NaCl combined with 0 and 2.5mM Si. Plant growth parameters, salt accumulation in plant tissues and plant water relations were analysed. Si treatment did not alter salt input into the plant or salt distribution between plant organs. There were non-significant differences in plant water uptake, but plant water content in salinised plants supplied with Si was 40% higher than in salinised plants that were not supplied with Si. Plants treated with NaCl alone showed a reduction in plant dry weight and total plant leaf area of 55% and 58%, respectively, while the reduction in plants treated with NaCl plus Si was only 31% and 22%, respectively. Leaf turgor potential and net photosynthesis rates were 42% and 20% higher in salinised plants supplied with Si than in salinised plants that were not supplied with Si. Water use efficiency calculated from instantaneous gas exchange parameters and as the ratio between plant dry matter and plant water uptake were, respectively, 17% and 16% higher in salinised plants supplied with Si. It can be concluded that Si improves the water storage within plant tissues, which allows a higher growth rate that, in turn, contributes to salt dilution into the plant, mitigating salt toxicity effects.

  4. Plant growth-promoting bacterial endophytes.

    Science.gov (United States)

    Santoyo, Gustavo; Moreno-Hagelsieb, Gabriel; Orozco-Mosqueda, Ma del Carmen; Glick, Bernard R

    2016-02-01

    Bacterial endophytes ubiquitously colonize the internal tissues of plants, being found in nearly every plant worldwide. Some endophytes are able to promote the growth of plants. For those strains the mechanisms of plant growth-promotion known to be employed by bacterial endophytes are similar to the mechanisms used by rhizospheric bacteria, e.g., the acquisition of resources needed for plant growth and modulation of plant growth and development. Similar to rhizospheric plant growth-promoting bacteria, endophytic plant growth-promoting bacteria can act to facilitate plant growth in agriculture, horticulture and silviculture as well as in strategies for environmental cleanup (i.e., phytoremediation). Genome comparisons between bacterial endophytes and the genomes of rhizospheric plant growth-promoting bacteria are starting to unveil potential genetic factors involved in an endophytic lifestyle, which should facilitate a better understanding of the functioning of bacterial endophytes. Copyright © 2015 Elsevier GmbH. All rights reserved.

  5. Reliability Characteristics of Power Plants

    Directory of Open Access Journals (Sweden)

    Zbynek Martinek

    2017-01-01

    Full Text Available This paper describes the phenomenon of reliability of power plants. It gives an explanation of the terms connected with this topic as their proper understanding is important for understanding the relations and equations which model the possible real situations. The reliability phenomenon is analysed using both the exponential distribution and the Weibull distribution. The results of our analysis are specific equations giving information about the characteristics of the power plants, the mean time of operations and the probability of failure-free operation. Equations solved for the Weibull distribution respect the failures as well as the actual operating hours. Thanks to our results, we are able to create a model of dynamic reliability for prediction of future states. It can be useful for improving the current situation of the unit as well as for creating the optimal plan of maintenance and thus have an impact on the overall economics of the operation of these power plants.

  6. Modeling of Wind Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Spacil, D.; Santarius, P. [VSB - Technical University of Ostrava, Department of Electrical Measurement, FEECS, 17. listopadu 15, 708 33 Ostrava- Poruba (Czech Republic); Dobrucky, B. [University of Zilina, Department of Mechatronics and Electronics, FEE, Univerzitna 1, 010 26 Zilina (Slovakia)

    2006-07-01

    The electrical power produced by the wind power plant has increased in the last years in the world and probably will increase further in the future. Therefore, wind power plants have a significant influence on the power production. In this article the connection of the wind turbine to a grid is described in order to determine the impact of the existing wind turbines as well as planned wind turbines on the grid and ensure the proper functioning of the wind turbine. The purpose of the presented work is to find an analytical generator model for the simulation of the wind power plant and determine the influence on the grid by programming with Matlab/Simulink.

  7. Plant nutrition from teachers thinking

    Directory of Open Access Journals (Sweden)

    González Rodríguez, Concepción;

    2012-01-01

    Full Text Available In this work, it´s analyzed which contents related to plant nutrition are considered important by a group of secondary education teachers. Its objective is also to determine the existence of any correlations among teachers, depending on the selected and most valued contents in the evaluation activities and questions.The analysis of the obtained results has shown that the contents in which teachers are more focused are those describing the differences between autotrophic and heterotrophic nutrition, the photosynthesis process and the structures involved on it (plant and cellular organs. On the other hand, the less considered contents are related to the nutrition general concept, breathing concept and those associated to the ecological dimension of plant nutrition. The existence of certain trends among the teachers taking part in this study has been confirmed; a prevailing correlation has also been found. The majority trend is the physiogical.

  8. Medicines and Drugs from Plants

    Science.gov (United States)

    Agosta, William C.

    1997-07-01

    Natural preparations have been used for thousands of ages for a variety of purposes including as medicines, poisons, and psychotropic drugs. The largest grouped of preparations from living organisms are medicines, and historically these have come from plants. Quinine and aspirin are two examples of medicines which were extracted originally from plants. Mind-altering, or psychotropic, drugs come mostly from plants or fungi. In many traditional cultures, sickness and death are attributed to maligned spirits so that medicine and religion become inseparable. Uses of cohohba, snakeplant, coca, and peyote are discussed. The process by which new pharmaceuticals are discovered from natural products is described. The implications of an agreement between a major pharmaceutical company and a country in the tropics are discussed.

  9. Plant systems biology: network matters.

    Science.gov (United States)

    Lucas, Mikaël; Laplaze, Laurent; Bennett, Malcolm J

    2011-04-01

    Systems biology is all about networks. A recent trend has been to associate systems biology exclusively with the study of gene regulatory or protein-interaction networks. However, systems biology approaches can be applied at many other scales, from the subatomic to the ecosystem scales. In this review, we describe studies at the sub-cellular, tissue, whole plant and crop scales and highlight how these studies can be related to systems biology. We discuss the properties of system approaches at each scale as well as their current limits, and pinpoint in each case advances unique to the considered scale but representing potential for the other scales. We conclude by examining plant models bridging different scales and considering the future prospects of plant systems biology. © 2011 Blackwell Publishing Ltd.

  10. Neurobiology of plant parasitic nematodes.

    Science.gov (United States)

    Holden-Dye, Lindy; Walker, R J

    2011-06-01

    The regulatory constraints imposed on use of chemical control agents in agriculture are rendering crops increasingly vulnerable to plant parasitic nematodes. Thus, it is important that new control strategies which meet requirements for low toxicity to non-target species, vertebrates and the environment are pursued. This would be greatly facilitated by an improved understanding of the physiology and pharmacology of these nematodes, but to date, these microscopic species of the Phylum Nematoda have attracted little attention in this regard. In this review, the current information available for neurotransmitters and neuromodulator in the plant parasitic nematodes is discussed in the context of the more extensive literature for other species in the phylum, most notably Caenorhabditis elegans and Ascaris suum. Areas of commonality and distinctiveness in terms of neurotransmitter profile and function between these species are highlighted with a view to improving understanding of to what extent, and with what level of confidence, this information may be extrapolated to the plant parasitic nematodes.

  11. Open chromatin in plant genomes.

    Science.gov (United States)

    Zhang, Wenli; Zhang, Tao; Wu, Yufeng; Jiang, Jiming

    2014-01-01

    Sensitivity to DNase I digestion is an indicator of the accessibility and configuration of chromatin in eukaryotic genomes. Open chromatin exhibits high sensitivity to DNase I cleavage. DNase I hypersensitive sites (DHSs) in eukaryotic genomes can be identified through DNase I treatment followed by sequencing (DNase-seq). DHSs are most frequently associated with various cis-regulatory DNA elements, including promoters, enhancers, and silencers in both animal and plant genomes. Genome-wide identification of DHSs provides an efficient method to interpret previously un-annotated regulatory DNA sequences. In this review, we provide an overview of the historical perspective of DHS research in eukaryotes. We summarize the main achievements of DHS research in model animal species and review the recent progress of DHS research in plants. We finally discuss possible future directions of using DHS as a tool in plant genomics research. © 2014 S. Karger AG, Basel.

  12. Polyspermy barriers: a plant perspective.

    Science.gov (United States)

    Tekleyohans, Dawit G; Mao, Yanbo; Kägi, Christina; Stierhof, York-Dieter; Groß-Hardt, Rita

    2017-02-01

    A common denominator of sexual reproduction in many eukaryotic species is the exposure of an egg to excess sperm to maximize the chances of reproductive success. To avoid potential harmful or deleterious consequences of supernumerary sperm fusion to a single female gamete (polyspermy), many eukaryotes, including plants, have evolved barriers preventing polyspermy. Typically, these checkpoints are implemented at different stages in the reproduction process. The virtual absence of unambiguous reports of naturally occurring egg cell polyspermy in flowering plants is likely reflecting the success of this multiphasic strategy and highlights the difficulty to trace this presumably rare event. We here focus on potential polyspermy avoidance mechanisms in plants and discuss them in light of analogous processes in animals. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Steam generators in cogeneration plants

    Energy Technology Data Exchange (ETDEWEB)

    Ganapathy, V. [Abco Industries, Inc., Abilene, TX (United States)

    1994-12-31

    This paper addresses the performance aspects of packaged steam generators and small to medium sized single pressure gas turbine heat recovery steam generators (HRSGs) used in cogeneration plants. HRSGs in combined cycle plants are not addressed here as they usually involve multiple steam pressure operation and comparison with steam generators, which operate at single pressure, would be difficult. Also,the paper deals with simple Brayton cycles with heat recovery for cogeneration only and hence discussions on steam turbines is avoided. The paper addresses the behavior of the steam generators with respect to load with emphasis on fuel utilization, efficiency and performance. The information, it is hoped, would be of interest to plant engineers who would like to operate the steam generators at their best efficiency points.

  14. Systemic signaling during plant defense.

    Science.gov (United States)

    Kachroo, Aardra; Robin, Guillaume P

    2013-08-01

    Systemic acquired resistance (SAR) is a type of pathogen-induced broad-spectrum resistance in plants. During SAR, primary infection-induced rapid generation and transportation of mobile signal(s) 'prepare' the rest of the plant for subsequent infections. Several, seemingly unrelated, mobile chemical inducers of SAR have been identified, at least two of which function in a feed-back regulatory loop with a lipid transfer-like protein. Signal(s) perception in the systemic tissues relies on the presence of an intact cuticle, the waxy layer covering all aerial parts of the plant. SAR results in chromatin modifications, which prime systemic tissues for enhanced and rapid signaling derived from salicylic acid, which along with its signaling components is key for SAR induction. This review summarizes recent findings related to SAR signal generation, movement, and perception. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Crenarchaeota colonize terrestrial plant roots.

    Science.gov (United States)

    Simon, H M; Dodsworth, J A; Goodman, R M

    2000-10-01

    Microorganisms that colonize plant roots are recruited from, and in turn contribute substantially to, the vast and virtually uncharacterized phylogenetic diversity of soil microbiota. The diverse, but poorly understood, microorganisms that colonize plant roots mediate mineral transformations and nutrient cycles that are central to biosphere functioning. Here, we report the results of epifluorescence microscopy and culture-independent recovery of small subunit (SSU) ribosomal RNA (rRNA) gene sequences showing that members of a previously reported clade of soil Crenarchaeota colonize both young and senescent plant roots at an unexpectedly high frequency, and are particularly abundant on the latter. Our results indicate that non-thermophilic members of the Archaea inhabit an important terrestrial niche on earth and direct attention to the need for studies that will determine their possible roles in mediating root biology.

  16. Water-Conserving Plant-Growth System

    Science.gov (United States)

    Dreschel, Thomas W.; Brown, Christopher S.

    1993-01-01

    Report presents further information about plant-growth apparatus described in "Tubular Membrane Plant-Growth Unit" (KSC-11375). Apparatus provides nutrient solution to roots of seedlings without flooding. Conserves water by helping to prevent evaporation from plant bed. Solution supplied only as utilized by seedlings. Device developed for supporting plant growth in space, also has applications for growing plants with minimum of water, such as in arid environments.

  17. Animal plant warfare and secondary metabolite evolution

    OpenAIRE

    Wöll, Steffen; Kim, Sun Hee; Greten, Henry Johannes; Efferth, Thomas

    2013-01-01

    Abstract The long-lasting discussion, why plants produce secondary metabolites, which are pharmacologically and toxicologically active towards mammals traces back to the eminent role of medicinal plants in the millennia-old history of manhood. In recent years, the concept of an animal plant warfare emerged, which focused on the co-evolution between plants and herbivores. As a reaction to herbivory, plants developed mechanical defenses such as thorns and hard shells, which paved the way for ad...

  18. [Poisonous plants: An ongoing problem].

    Science.gov (United States)

    Martínez Monseny, A; Martínez Sánchez, L; Margarit Soler, A; Trenchs Sainz de la Maza, V; Luaces Cubells, C

    2015-05-01

    A medical visit for plant ingestion is rare in the pediatric emergency services but may involve a high toxicity. The botanical toxicology training of health staff is often very limited, and it can be difficult to make a diagnosis or decide on the appropriate treatment. To study the epidemiological and clinical characteristics of poisoning due to plant ingestion in order to increase the knowledge of the health professional. A descriptive retrospective study was conducted on patients seen in a pediatric emergency department after the ingestion of plant substances from January 2008 to December 2012. During the period of study, 18 patients had ingested possible toxic plants. In 14 cases, it was considered to be potentially toxic: broom, oleander, mistletoe, butcher's-broom, and vulgar bean (2), Jerusalem tomato, castor (2), Jimson weed, potus, marijuana, and mushrooms with digestive toxicity (2). Among the potentially toxic cases, the ingestion was accidental in 10 patients, 2 cases were classed as infantile mistreatment, 1 case had recreational intention, and another one suicidal intentions. The ingestion of oleander, castor and Jimson weed had major toxicity. The potential gravity of the ingestion of plant substances and the variety of the exposure mechanism requires the pediatrician to bear in mind this possibility, and to be prepared for its diagnosis and management. Specific preventive information measures need to be designed for the families and for the regulation of toxic plants in playgrounds. Copyright © 2014 Asociación Española de Pediatría. Published by Elsevier España, S.L.U. All rights reserved.

  19. Balance of Plant Requirements for a Nuclear Hydrogen Plant

    Energy Technology Data Exchange (ETDEWEB)

    Bradley Ward

    2006-04-01

    This document describes the requirements for the components and systems that support the hydrogen production portion of a 600 megawatt thermal (MWt) Next Generation Nuclear Plant (NGNP). These systems, defined as the "balance-of-plant" (BOP), are essential to operate an effective hydrogen production plant. Examples of BOP items are: heat recovery and heat rejection equipment, process material transport systems (pumps, valves, piping, etc.), control systems, safety systems, waste collection and disposal systems, maintenance and repair equipment, heating, ventilation, and air conditioning (HVAC), electrical supply and distribution, and others. The requirements in this document are applicable to the two hydrogen production processes currently under consideration in the DOE Nuclear Hydrogen Initiative. These processes are the sulfur iodide (S-I) process and the high temperature electrolysis (HTE) process. At present, the other two hydrogen production process - the hybrid sulfur-iodide electrolytic process (SE) and the calcium-bromide process (Ca-Br) -are under flow sheet development and not included in this report. While some features of the balance-of-plant requirements are common to all hydrogen production processes, some details will apply only to the specific needs of individual processes.

  20. Negative plant soil feedback explaining ring formation in clonal plants

    NARCIS (Netherlands)

    Carteni, F.; Marasco, A.; Bonanomi, G.; Mazzoleni, S.; Rietkerk, M.G.; Giannino, F.

    2012-01-01

    Ring shaped patches of clonal plants have been reported in different environments, but the mechanisms underlying such pattern formation are still poorly explained. Water depletion in the inner tussocks zone has been proposed as a possible cause, although ring patterns have been also observed in