WorldWideScience

Sample records for psp-producing dinoflagellate alexandrium

  1. GROWTH RATES, PHYSIOLOGICAL INDICATORS AND ELEMENTAL COMPOSITION OF THE RED-TIDE DINOFLAGELLATE, ALEXANDRIUM MONILATUM

    Science.gov (United States)

    Alexandrium monilatum is a thecate, autotrophic, bioluminescent and chain-forming dinoflagellate. Although it has been known to be associated with red tides and fish kills along the US Gulf of Mexico coast for almost 50 years, little basic physiological information is available f...

  2. THE RED-TIDE DINOFLAGELLATE, ALEXANDRIUM MONILATUM, SUPPRESSES GROWTH OF MIXED NATURAL PHYTOPLANKTON

    Science.gov (United States)

    Alexandrium monilatum is a large, chain-forming, autotrophic dinoflagellate associated with red-tides and fish kills along the US Gulf of Mexico coast. When cultured inocula of A. monilatum were added to nutrient-amended seawater samples, growth rates and biomass yields of the na...

  3. First record of potentially toxic dinoflagellate, Alexandrium minutum Halim 1960, from Peruvian coastal

    Directory of Open Access Journals (Sweden)

    Maribel Baylón

    2015-04-01

    Full Text Available Herein, we report the first record of the potentially toxic dinoflagellate Alexandrium minutum Halim 1960 from the Peruvian littoral. Alexandrium minutum produced the algae bloom in March 2006 and February 2009, in the Callao bay. Its identification was carried out by a morpho-taxonomic examination, detailing their plates with light and epifluorescence microscopy, moreover its quantification was realized in sedimentation chambers. This is the first report of A. minutum for Southeast Pacific. The characteristics in size, shape and thecal morphology were similarly to original descriptions of this species.

  4. Global transcriptional profiling of the toxic dinoflagellate Alexandrium fundyense using Massively Parallel Signature Sequencing

    Directory of Open Access Journals (Sweden)

    Anderson Donald M

    2006-04-01

    Full Text Available Abstract Background Dinoflagellates are one of the most important classes of marine and freshwater algae, notable both for their functional diversity and ecological significance. They occur naturally as free-living cells, as endosymbionts of marine invertebrates and are well known for their involvement in "red tides". Dinoflagellates are also notable for their unusual genome content and structure, which suggests that the organization and regulation of dinoflagellate genes may be very different from that of most eukaryotes. To investigate the content and regulation of the dinoflagellate genome, we performed a global analysis of the transcriptome of the toxic dinoflagellate Alexandrium fundyense under nitrate- and phosphate-limited conditions using Massively Parallel Signature Sequencing (MPSS. Results Data from the two MPSS libraries showed that the number of unique signatures found in A. fundyense cells is similar to that of humans and Arabidopsis thaliana, two eukaryotes that have been extensively analyzed using this method. The general distribution, abundance and expression patterns of the A. fundyense signatures were also quite similar to other eukaryotes, and at least 10% of the A. fundyense signatures were differentially expressed between the two conditions. RACE amplification and sequencing of a subset of signatures showed that multiple signatures arose from sequence variants of a single gene. Single signatures also mapped to different sequence variants of the same gene. Conclusion The MPSS data presented here provide a quantitative view of the transcriptome and its regulation in these unusual single-celled eukaryotes. The observed signature abundance and distribution in Alexandrium is similar to that of other eukaryotes that have been analyzed using MPSS. Results of signature mapping via RACE indicate that many signatures result from sequence variants of individual genes. These data add to the growing body of evidence for widespread gene

  5. The Hidden Sexuality of Alexandrium Minutum: An Example of Overlooked Sex in Dinoflagellates.

    Directory of Open Access Journals (Sweden)

    Rosa I Figueroa

    Full Text Available Dinoflagellates are haploid eukaryotic microalgae in which rapid proliferation causes dense blooms, with harmful health and economic effects to humans. The proliferation mode is mainly asexual, as the sexual cycle is believed to be rare and restricted to stressful environmental conditions. However, sexuality is key to explaining the recurrence of many dinoflagellate blooms because in many species the fate of the planktonic zygotes (planozygotes is the formation of resistant cysts in the seabed (encystment. Nevertheless, recent research has shown that individually isolated planozygotes in the lab can enter other routes besides encystment, a behavior of which the relevance has not been explored at the population level. In this study, using imaging flow cytometry, cell sorting, and Fluorescence In Situ Hybridization (FISH, we followed DNA content and nuclear changes in a population of the toxic dinoflagellate Alexandrium minutum that was induced to encystment. Our results first show that planozygotes behave like a population with an "encystment-independent" division cycle, which is light-controlled and follows the same Light:Dark (L:D pattern as the cycle governing the haploid mitosis. Resting cyst formation was the fate of just a small fraction of the planozygotes formed and was restricted to a period of strongly limited nutrient conditions. The diploid-haploid turnover between L:D cycles was consistent with two-step meiosis. However, the diel and morphological division pattern of the planozygote division also suggests mitosis, which would imply that this species is not haplontic, as previously considered, but biphasic, because individuals could undergo mitotic divisions in both the sexual (diploid and the asexual (haploid phases. We also report incomplete genome duplication processes. Our work calls for a reconsideration of the dogma of rare sex in dinoflagellates.

  6. Short-term and long-term effects of the toxic dinoflagellate Alexandrium minutum on the copepod Acartia clausi

    OpenAIRE

    Frangópulos, M.; Guisande, C.; Maneiro, I.; Riveiro, Isabel; José M. Franco

    2000-01-01

    Several experiments were performed to determine the effects of cell toxin concentration, composition and toxicity of Alexandrium minutum on ingestion rate, egg production, hatching success and naupliar fitness of the copepod Acartia clausi. A combination of A. minutum and nontoxic algae (Prorocentrum micans, Tetraselmis suecica and Isochrysis galbana) was used as food. Copepods ingested a higher amount of A. minutum cells as the concentration of these toxic dinoflagellates increased, and a...

  7. Autofluorescent bodies in the toxic dinoflagellate Alexandrium tamarense: A potential indicator of the physiological condition of the species

    OpenAIRE

    Kaga, Shinnosuke; Koike, Kazuhiko; Sekiguchi, Katsushi; Shinohara, Natsumi; Kobiyama, Atsushi; Yamada, Yuichiro; Ogata, Takehiko

    2012-01-01

    Autofluorescent bodies were examined in cultured and natural cells of Alexandrium tamarense (Lebour) Balech collected from Ofunato Bay, Japan. Three different autofluorescent bodies (pale blue, light blue, and white) and the autofluoresced chloroplast were observed under ultraviolet light excitation. We suggest that the pale-blue and light-blue bodies represent a novel type in dinoflagellates based on their fluorescent properties. We also found that cells with pale-blue and light-blue bodies ...

  8. Novel insights into the algicidal bacterium DH77-1 killing the toxic dinoflagellate Alexandrium tamarense.

    Science.gov (United States)

    Yang, Xiaoru; Li, Xinyi; Zhou, Yanyan; Zheng, Wei; Yu, Changping; Zheng, Tianling

    2014-06-01

    Algicidal bacteria may play a major role in controlling harmful algal blooms (HABs) dynamics. Bacterium DH77-1 was isolated with high algicidal activity against the toxic dinoflagellate Alexandrium tamarense and identified as Joostella sp. DH77-1. The results showed that DH77-1 exhibited algicidal activity through indirect attack, which excreted active substance into the filtrate. It had a relatively wide host range and the active substance of DH77-1 was relatively stable since temperature, pH and storage condition had no obvious effect on the algicidal activity. The algicidal compound from bacterium DH77-1 was isolated based on activity-guided bioassay and the molecular weight was determined to be 125.88 by MALDI-TOF mass spectrometer, however further identification via nuclear magnetic resonance (NMR) spectra is ongoing. The physiological responses of algal cells after exposure to the DH77-1 algicidal substances were as follows: the antioxidant system of A. tamarense responded positively in self-defense; total protein content decreased significantly as did the photosynthetic pigment content; superoxide dismutase, peroxidase enzyme and malondialdehyde content increased extraordinarily and algal cell nucleic acid leaked seriously ultimately inducing cell death. Furthermore, DH77-1 is the first record of a Joostella sp. bacterium being algicidal to the harmful dinoflagellate A. tamarense, and the bacterial culture and the active compounds might be potentially used as a bio-agent for controlling harmful algal blooms. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Diversity and dynamics of a widespread bloom of the toxic dinoflagellate Alexandrium fundyense.

    Directory of Open Access Journals (Sweden)

    Deana L Erdner

    Full Text Available Historically, cosmopolitan phytoplankton species were presumed to represent largely unstructured populations. However, the recent development of molecular tools to examine genetic diversity have revealed differences in phytoplankton taxa across geographic scales and provided insight into the physiology and ecology of blooms. Here we describe the genetic analysis of an extensive bloom of the toxic dinoflagellate Alexandrium fundyense that occurred in the Gulf of Maine in 2005. This bloom was notable for its intensity and duration, covering hundreds of kilometers and persisting for almost two months. Genotypic analyses based on microsatellite marker data indicate that the open waters of the northeastern U.S. harbor a single regional population of A. fundyense comprising two genetically distinct sub-populations. These subpopulations were characteristic of early- and late-bloom samples and were derived from the northern and southern areas of the bloom, respectively. The temporal changes observed during this study provide clear evidence of succession during a continuous bloom and show that selection can act on the timescale of weeks to significantly alter the representation of genotypes within a population. The effects of selection on population composition and turnover would be magnified if sexual reproduction were likewise influenced by environmental conditions. We hypothesize that the combined effects of differential growth and reproduction rates serves to reduce gene flow between the sub-populations, reinforcing population structure while maintaining the diversity of the overall regional population.

  10. Toxic dinoflagellate Alexandrium tamarense induces oxidative stress and apoptosis in hepatopancreas of shrimp ( Fenneropenaeus chinensis)

    Science.gov (United States)

    Liang, Zhongxiu; Li, Jian; Li, Jitao; Tan, Zhijun; Ren, Hai; Zhao, Fazhen

    2014-12-01

    This study investigated the inductive effect of Alexandrium tamarense, a toxic dinoflagellate producing paralytic shellfish poison, on oxidative stress and apoptosis in hepatopancreas of Chinese shrimp, Fenneropenaeus chinensis. The individuals of F. chinensis were exposed to 200 and 1000 cells mL-1 of A. tamarense with their superoxide dismutase (SOD), glutathione S-transferase (GST) activities, malonyldialdehyde (MDA) concentration, and caspase gene ( FcCasp) expression in hepatopancreas determined at 12, 24, 48, 72 and 96 h. In addition, apoptosis in hepatopancreas of F. chinensis at 96 h after exposure was determined through terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay. The hepatopancreatic SOD and GST activities of F. chinensis exposed to 1000 cells mL-1 of A. tamarense showed a bell-shaped response to exposure time. The hepatopancreatic MDA concentration of F. chinensis exposed to 1000 cells mL-1 of A. tamarense increased gradually from 48 to 96 h, and such a trend corresponded to the decrease of GST activity. The hepatopancreatic FcCasp transcript abundance of F. chinensis exposed to 1000 cells mL-1 of A. tamarense was positively and linearly correlated to MDA concentration. Results of TUNEL assay showed that exposure to 1000 cells mL-1 of A. tamarense induced apoptosis in the hepatopancreas of F. chinensis. Our study revealed that A. tamarense exposure influenced the antioxidative status of F. chinensis and caused lipid peroxidation and apoptosis in the hepatopancreas of shrimp.

  11. CO2-dependent carbon isotope fractionation in the dinoflagellate Alexandrium tamarense

    Science.gov (United States)

    Wilkes, Elise B.; Carter, Susan J.; Pearson, Ann

    2017-09-01

    The carbon isotopic composition of marine sedimentary organic matter is used to resolve long-term histories of pCO2 based on studies indicating a CO2-dependence of photosynthetic carbon isotope fractionation (εP). It recently was proposed that the δ13C values of dinoflagellates, as recorded in fossil dinocysts, might be used as a proxy for pCO2. However, significant questions remain regarding carbon isotope fractionation in dinoflagellates and how such fractionation may impact sedimentary records throughout the Phanerozoic. Here we investigate εP as a function of CO2 concentration and growth rate in the dinoflagellate Alexandrium tamarense. Experiments were conducted in nitrate-limited chemostat cultures. Values of εP were measured on cells having growth rates (μ) of 0.14-0.35 d-1 and aqueous carbon dioxide concentrations of 10.2-63 μmol kg-1 and were found to correlate linearly with μ/[CO2(aq)] (r2 = 0.94) in accord with prior, analogous chemostat investigations with eukaryotic phytoplankton. A maximum fractionation (εf) value of 27‰ was characterized from the intercept of the experiments, representing the first value of εf determined for an algal species employing Form II RubisCO-a structurally and catalytically distinct form of the carbon-fixing enzyme. This value is larger than theoretical predictions for Form II RubisCO and not significantly different from the ∼25‰ εf values observed for taxa employing Form ID RubisCO. We also measured the carbon isotope contents of dinosterol, hexadecanoic acid, and phytol from each experiment, finding that each class of biomarker exhibits different isotopic behavior. The apparent CO2-dependence of εP values in our experiments strengthens the proposal to use dinocyst δ13C values as a pCO2 proxy. Moreover, the similarity between the εf value for A. tamarense and the consensus value of ∼25‰ indicates that the CO2-sensitivity of carbon isotope fractionation saturates at similar CO2 levels across all three

  12. The effects of elevated CO2 on the growth and toxicity of field populations and cultures of the saxitoxin-producing dinoflagellate, Alexandrium fundyense.

    Science.gov (United States)

    Hattenrath-Lehmann, Theresa K; Smith, Juliette L; Wallace, Ryan B; Merlo, Lucas; Koch, Florian; Mittelsdorf, Heidi; Goleski, Jennifer A; Anderson, Donald M; Gobler, Christopher J

    2015-01-01

    The effects of coastal acidification on the growth and toxicity of the saxitoxin-producing dinoflagellate Alexandrium fundyense were examined in culture and ecosystem studies. In culture experiments, Alexandrium strains isolated from Northport Bay NY, USA, and the Bay of Fundy, Canada, grew significantly faster (16 -190%; pchanges in toxicity were detected in the Bay of Fundy strain. The positive relationship between pCO2 enhancement and elevated growth was reproducible using natural populations from Northport; Alexandrium densities were significantly and consistently enhanced when natural populations were incubated at 1500 μatm pCO2, a value at the upper range of those recorded in Northport Bay, 390 - 1500 µatm. During natural Alexandrium blooms in Northport Bay, pCO2 concentrations increased over the course of a bloom to more than 1700μatm and were highest in regions with the greatest Alexandrium abundances, suggesting Alexandrium may be further exacerbating acidification or be especially adapted to these extreme, acidified conditions. The co-occurrence of Alexandrium blooms and elevated pCO2 represents a previously unrecognized, compounding environmental threat to coastal ecosystems. The ability of elevated pCO2 to enhance the growth and toxicity of Alexandrium indicates that acidification promoted by eutrophication or climate change can intensify these, and perhaps other, harmful algal blooms.

  13. Control of ichthyotoxic Cochlodinium polykrikoides using the mixotrophic dinoflagellate Alexandrium pohangense: A potential effective sustainable method.

    Science.gov (United States)

    Lim, An Suk; Jeong, Hae Jin; Kim, Ji Hye; Lee, Sung Yeon

    2017-03-01

    Red tides dominated by Cochlodinium polykrikoides often lead to great economic losses and some methods of controlling these red tides have been developed. However, due to possible adverse effects and the short persistence of their control actions, safer and more effective sustainable methods should be developed. The non-toxic dinoflagellate Alexandrium pohangense is known to grow well mixotrophically feeding on C. polykrikoides, and populations are also maintained by photosynthesis. Thus, compared with other methods, the use of mass-cultured A. pohangense is safer and the effects can be maintained in the long term. To develop an effective method, the concentrations of A. pohangense cells and culture filtrate resulting in the death of C. polykrikoides cells were determined by adding the cells or filtrates to cultured and natural populations of C. polykrikoides. Cultures containing 800 A. pohangense cells ml(-1) eliminated almost all cultured C. polykrikoides cells at a concentration of 1000 cells ml(-1) within 24h. Furthermore, the addition of A. pohangense cultures at a concentration of 800 cells ml(-1) to C. polykrikoides populations from a red-tide patch resulted in the death of most C. polykrikoides cells (99.8%) within 24h. This addition of A. pohangense cells also lowered the abundances of total phototrophic dinoflagellates excluding C. polykrikoides, but did not lower the abundance of total diatoms. Filtrate from 800cellsml(-1)A. pohangense cultures reduced the population of cultured C. polykrikoides by 80% within 48h. This suggests that A. pohangense cells eliminate C. polykrikoides by feeding and releasing extracellular compounds. Over time, A. pohangense concentrations gradually increased when incubated with C. polykrikoides. Thus, an increase in the concentration of A. pohangense by feeding may lead to A. pohangense cells eliminating more C. polykrikoides cells in larger volumes. Based on the results of this study, a 1m(3) stock culture of A. pohangense

  14. Distinctly different behavioral responses of a copepod, Temora longicornis, to different strains of toxic dinoflagellates, Alexandrium spp

    DEFF Research Database (Denmark)

    Xu, Jiayi; Hansen, Per Juel; Nielsen, Lasse Tor

    2017-01-01

    Zooplankton responses to toxic algae are highly variable, even towards taxonomically closely related species or different strains of the same species. Here, the individual level feeding behavior of a copepod, Temora longicornis, was examined which offered 4 similarly sized strains of toxic...... dinoflagellate Alexandrium spp. and a non-toxic control strain of the dinoflagellate Protoceratium reticulatum. The strains varied in their cellular toxin concentration and composition and in lytic activity. High-speed video observations revealed four distinctly different strain-specific feeding responses...... of the copepod during 4 h incubations: (i) the ‘normal’ feeding behavior, in which the feeding appendages were beating almost constantly to produce a feeding current and most (90%) of the captured algae were ingested; (ii) the beating activity of the feeding appendages was reduced by ca. 80% during the initial...

  15. In situ Occurrence, Prevalence and Dynamics of Parvilucifera Parasitoids during Recurrent Blooms of the Toxic Dinoflagellate Alexandrium minutum

    Directory of Open Access Journals (Sweden)

    Elisabet Alacid

    2017-08-01

    Full Text Available Dinoflagellate blooms are natural phenomena that often occur in coastal areas, which in addition to their large number of nutrient-rich sites are characterized by highly restricted hydrodynamics within bays, marinas, enclosed beaches, and harbors. In these areas, massive proliferations of dinoflagellates have harmful effects on humans and the ecosystem. However, the high cell density reached during blooms make them vulnerable to parasitic infections. Under laboratory conditions parasitoids are able to exterminate an entire host population. In nature, Parvilucifera parasitoids infect the toxic dinoflagellate Alexandrium minutum during bloom conditions but their prevalence and impact remain unexplored. In this study, we evaluated the in situ occurrence, prevalence, and dynamics of Parvilucifera parasitoids during recurrent blooms of A. minutum in a confined site in the NW Mediterranean Sea as well as the contribution of parasitism to bloom termination. Parvilucifera parasitoids were recurrently detected from 2009 to 2013, during seasonal outbreaks of A. minutum. Parasitic infections in surface waters occurred after the abundance of A. minutum reached 104–105 cells L−1, suggesting a density threshold beyond which Parvilucifera transmission is enhanced and the number of infected cells increases. Moreover, host and parasitoid abundances were not in phase. Instead, there was a lag between maximum A. minutum and Parvilucifera densities, indicative of a delayed density-dependent response of the parasitoid to host abundances, similar to the temporal dynamics of predator-prey interactions. The highest parasitoid prevalence was reached after a peak in host abundance and coincided with the decay phase of the bloom, when a maximum of 38% of the A. minutum population was infected. According to our estimates, Parvilucifera infections accounted for 5–18% of the total observed A. minutum mortality, which suggested that the contribution of parasitism to

  16. On an extremely dense bloom of the dinoflagellate Alexandrium tamarense in lagoons of the PO river delta: Impact on the environment

    Science.gov (United States)

    Sorokin, Yu. I.; Sorokin, P. Yu.; Ravagnan, G.

    1996-06-01

    An extremely dense bloom of the potentially toxic dinoflagellate Alexandrium tamarense was observed in the lagoons of Cà Pisani (Veneto, Italy) in summer 1993. The lagoons were experiencing a significant eutrophication impact, receiving waste waters from intensive fish culture plants. During their bloom dinoflagellates in the lagoons reached densities of 2 to 4 × 10 6 cells·dm -3 and a biomass of over 100 g·m -3. The bloom produced drastic ecological changes in the lagoons. It caused nocturnal anoxia, mortality of macrophytes and the build-up of labile organic matter in the water column. Grazing by the tintinnid Favella sp. contributed to the termination of the bloom of the flagellates. The results show that coastal aqua culture probably stimulates dinoflagellate blooms in shallow brackish lagoons.

  17. CHARACTERIZATION OF 17 NEW MICROSATELLITE MARKERS FOR THE DINOFLAGELLATE ALEXANDRIUM FUNDYENSE (DINOPHYCEAE), A HARMFUL ALGAL BLOOM SPECIES.

    Science.gov (United States)

    Sehein, Taylor; Richlen, Mindy L; Nagai, Satoshi; Yasuike, Motoshige; Nakamura, Yoji; Anderson, Donald M

    2016-06-01

    Alexandrium fundyense is the toxic marine dinoflagellate responsible for "red tide" events in temperate and sub-arctic waters worldwide. In the Gulf of Maine (GOM) and Bay of Fundy in the Northwest Atlantic, blooms of A. fundyense recur annually, and are associated with major health and ecosystem impacts. In this region, microsatellite markers have been used to investigate genetic structure and gene flow; however, the loci currently available for this species were isolated from populations from Japan and the North Sea, and only a subset are suitable for the analysis of A. fundyense populations in the Northwest Atlantic. To facilitate future studies of A. fundyense blooms, both in this region and globally, we isolated and characterized 17 polymorphic microsatellite loci from 31 isolates collected from the GOM and from the Nauset Marsh System, an estuary on Cape Cod, MA, USA. These loci yielded between two and 15 alleles per locus, with an average of 7.1. Gene diversities ranged from 0.297 to 0.952. We then analyzed these same 31 isolates using previously published markers for comparison. We determined the new markers are sufficiently variable and better suited for the investigation of genetic structure, bloom dynamics, and diversity in the Northwest Atlantic.

  18. Population genetic structure and connectivity of the harmful dinoflagellate Alexandrium minutum in the Mediterranean Sea.

    Science.gov (United States)

    Casabianca, Silvia; Penna, Antonella; Pecchioli, Elena; Jordi, Antoni; Basterretxea, Gotzon; Vernesi, Cristiano

    2012-01-07

    The toxin-producing microbial species Alexandrium minutum has a wide distribution in the Mediterranean Sea and causes high biomass blooms with consequences on the environment, human health and coastal-related economic activities. Comprehension of algal genetic differences and associated connectivity is fundamental to understand the geographical scale of adaptation and dispersal pathways of harmful microalgal species. In the present study, we combine A. minutum population genetic analyses based on microsatellites with indirect connectivity (C(i)) estimations derived from a general circulation model of the Mediterranean sea. Our results show that four major clusters of genetically homogeneous groups can be identified, loosely corresponding to four regional seas: Adriatic, Ionian, Tyrrhenian and Catalan. Each of the four clusters included a small fraction of mixed and allochthonous genotypes from other Mediterranean areas, but the assignment to one of the four clusters was sufficiently robust as proved by the high ancestry coefficient values displayed by most of the individuals (>84%). The population structure of A. minutum on this scale can be explained by microalgal dispersion following the main regional circulation patterns over successive generations. We hypothesize that limited connectivity among the A. minutum populations results in low gene flow but not in the erosion of variability within the population, as indicated by the high gene diversity values. This study represents a first and new integrated approach, combining both genetic and numerical methods, to characterize and interpret the population structure of a toxic microalgal species. This approach of characterizing genetic population structure and connectivity at a regional scale holds promise for the control and management of the harmful algal bloom events in the Mediterranean Sea.

  19. Quantity of the dinoflagellate sxtA4 gene and cell density correlates with paralytic shellfish toxin production in Alexandrium ostenfeldii blooms.

    Science.gov (United States)

    Savela, Henna; Harju, Kirsi; Spoof, Lisa; Lindehoff, Elin; Meriluoto, Jussi; Vehniäinen, Markus; Kremp, Anke

    2016-02-01

    Many marine dinoflagellates, including several species of the genus Alexandrium, Gymnodinium catenatum, and Pyrodinium bahamense are known for their capability to produce paralytic shellfish toxins (PST), which can cause severe, most often food-related poisoning. The recent discovery of the first PST biosynthesis genes has laid the foundation for the development of molecular detection methods for monitoring and study of PST-producing dinoflagellates. In this study, a probe-based qPCR method for the detection and quantification of the sxtA4 gene present in Alexandrium spp. and Gymnodinium catenatum was designed. The focus was on Alexandrium ostenfeldii, a species which recurrently forms dense toxic blooms in areas within the Baltic Sea. A consistent, positive correlation between the presence of sxtA4 and PST biosynthesis was observed, and the species was found to maintain PST production with an average of 6 genomic copies of sxtA4. In August 2014, A. ostenfeldii populations were studied for cell densities, PST production, as well as sxtA4 and species-specific LSU copy numbers in Föglö, Åland, Finland, where an exceptionally dense bloom, consisting of 6.3×106cellsL-1, was observed. Cell concentrations, and copy numbers of both of the target genes were positively correlated with total STX, GTX2, and GTX3 concentrations in the environment, the cell density predicting toxin concentrations with the best accuracy (Spearman's ρ=0.93, p<0.01). The results indicated that all A. ostenfeldii cells in the blooms harbored the genetic capability of PST production, making the detection of sxtA4 a good indicator of toxicity. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. No evidence for induction or selection of mutant sodium channel expression in the copepod Acartia husdsonica challenged with the toxic dinoflagellate Alexandrium fundyense.

    Science.gov (United States)

    Finiguerra, Michael; Avery, David E; Dam, Hans G

    2014-09-01

    Some species in the dinoflagellate genus Alexandrium spp. produce a suite of neurotoxins that block sodium channels, known as paralytic shellfish toxins (PST), which have deleterious effects on grazers. Populations of the ubiquitous copepod grazer Acartia hudsonica that have co-occurred with toxic Alexandrium spp. are better adapted than naïve populations. The mechanism of adaptation is currently unknown. We hypothesized that a mutation in the sodium channel could account for the grazer adaptation. We tested two hypotheses: (1) Expression of the mutant sodium channel could be induced by exposure to toxic Alexandrium fundyense; (2) in the absence of induction, selection exerted by toxic A. fundyense would favor copepods that predominantly express the mutant isoform. In the copepod A. hudsonica, both isoforms are expressed in all individuals in varying proportions. Thus, in addition to comparing expression ratios of wild-type to mutant isoforms for individual copepods, we also partitioned copepods into three groups: those that predominantly express the mutant (PMI) isoform, the wild-type (PWI) isoform, or both isoforms approximately equally (EI). There were no differences in isoform expression between individuals that were fed toxic and nontoxic food after three and 6 days; induction of mutant isoform expression did not occur. Furthermore, the hypothesis that mutant isoform expression responds to toxic food was also rejected. That is, no consistent evidence showed that the wild-type to mutant isoform ratios decreased, or that the relative proportion of PMI individuals increased, due to the consumption of toxic food over four generations. However, in the selected line that was continuously exposed to toxic food sources, egg production rate increased, which suggested that adaptation occurred but was unrelated to sodium channel isoform expression.

  1. Water discoloration events caused by the harmful dinoflagellate Alexandrium taylorii Balech in a new beach of the Western Mediterranean Sea (Platamona beach, North Sardinia

    Directory of Open Access Journals (Sweden)

    Cecilia Teodora Satta

    2010-12-01

    Full Text Available Alexandrium taylorii is a harmful dinoflagellate species that is able to produce high-biomass blooms accompanied by water discoloration. These harmful events were reported in the Mediterranean basin, in selected small and sheltered beaches along the Catalan coasts and in the Balearic Islands and Sicily. In recent years the organism has been spreading over new Mediterranean areas. In 2007 the presence of A. taylorii was detected in a new beach in the northern coast of Sardinia (Italy. The bloom species caused ephemeral green–brown discoloration of the waters at Platamona beach in the summer months of 2007, 2008 and 2009, with maximum cell densities reaching 7 × 106 cells L−1 in July 2007. During bloom conditions the temperature ranged between 25 and 29°C and the chlorophyll a concentration reached very high values, ranging from 18.2 to 87.3 mg m−3. Reactive phosphorus and inorganic dissolved nitrogen were respectively between 0.04–2.21 µM P and 0.12–2.32 µM N. Our results confirmed the expansion phase of the species in the Mediterranean basin and the possibility of massive proliferation in other open beaches.

  2. Identification of microRNAs in the Toxigenic Dinoflagellate Alexandrium catenella by High-Throughput Illumina Sequencing and Bioinformatic Analysis.

    Directory of Open Access Journals (Sweden)

    Huili Geng

    Full Text Available Micro-ribonucleic acids (miRNAs are a large group of endogenous, tiny, non-coding RNAs consisting of 19-25 nucleotides that regulate gene expression at either the transcriptional or post-transcriptional level by mediating gene silencing in eukaryotes. They are considered to be important regulators that affect growth, development, and response to various stresses in plants. Alexandrium catenella is an important marine toxic phytoplankton species that can cause harmful algal blooms (HABs. To date, identification and function analysis of miRNAs in A. catenella remain largely unexamined. In this study, high-throughput sequencing was performed on A. catenella to identify and quantitatively profile the repertoire of small RNAs from two different growth phases. A total of 38,092,056 and 32,969,156 raw reads were obtained from the two small RNA libraries, respectively. In total, 88 mature miRNAs belonging to 32 miRNA families were identified. Significant differences were found in the member number, expression level of various families, and expression abundance of each member within a family. A total of 15 potentially novel miRNAs were identified. Comparative profiling showed that 12 known miRNAs exhibited differential expression between the lag phase and the logarithmic phase. Real-time quantitative RT-PCR (qPCR was performed to confirm the expression of two differentially expressed miRNAs that were one up-regulated novel miRNA (aca-miR-3p-456915, and one down-regulated conserved miRNA (tae-miR159a. The expression trend of the qPCR assay was generally consistent with the deep sequencing result. Target predictions of the 12 differentially expressed miRNAs resulted in 1813 target genes. Gene ontology (GO analysis and the Kyoto Encyclopedia of Genes and Genomes pathway database (KEGG annotations revealed that some miRNAs were associated with growth and developmental processes of the alga. These results provide insights into the roles that miRNAs play in

  3. Geographic structure evidenced in the toxic dinoflagellate Alexandrium pacificum Litaker (A. catenella - group IV (Whedon & Kofoid) Balech) along Japanese and Chinese coastal waters.

    Science.gov (United States)

    Genovesi, Benjamin; Berrebi, Patrick; Nagai, Satoshi; Reynaud, Nathalie; Wang, Jinhui; Masseret, Estelle

    2015-09-15

    The intra-specific diversity and genetic structure within the Alexandrium pacificum Litaker (A. catenella - Group IV) populations along the Temperate Asian coasts, were studied among individuals isolated from Japan to China. The UPGMA dendrogram and FCA revealed the existence of 3 clusters. Assignment analysis suggested the occurrence of gene flows between the Japanese Pacific coast (cluster-1) and the Chinese Zhejiang coast (cluster-2). Human transportations are suspected to explain the lack of genetic difference between several pairs of distant Japanese samples, hardly explained by a natural dispersal mechanism. The genetic isolation of the population established in the Sea of Japan (cluster-3) suggested the existence of a strong ecological and geographical barrier. Along the Pacific coasts, the South-North current allows limited exchanges between Chinese and Japanese populations. The relationships between Temperate Asian and Mediterranean individuals suggested different scenario of large-scale dispersal mechanisms. Copyright © 2015. Published by Elsevier Ltd.

  4. Isolation of an algicide from a marine bacterium and its effects against the toxic dinoflagellate Alexandrium catenella and other harmful algal bloom species.

    Science.gov (United States)

    Kim, Yun Sook; Son, Hong-Joo; Jeong, Seong-Yun

    2015-08-01

    The aim of this study was to isolate and identify bacteria demonstrating an algicidal effect against Alexandrium catenella and to determine the activity and range of any algicide discovered. The morphological and biochemical attributes of an algicidal bacterium, isolate YS-3, and analysis of its 16S rRNA gene sequence revealed it to be a member of the genus Brachybacterium. This organism, designated Brachybacterium sp. YS-3, showed the greatest effect against A. catenella cells of all bacteria isolated, and is assumed to produce secondary metabolites. When 10% solutions of culture filtrates from this strain were applied to A. catenella cultures, over 90% of cells were killed within 9 h. Bioassay-guided isolation of the algicide involved led to the purification and identification of an active compound. Based on physicochemical and spectroscopic data, including nuclear magnetic resonance and mass analyses, this compound was identified as 1-acetyl-β-carboline. This algicide showed significant activity against A. catenella and a wide range of harmful algal bloom (HAB)-forming species. Taken together, our results suggest that Brachybacterium sp. YS-3 and its algicide represent promising candidates for use in HAB control.

  5. Fight and flight in dinoflagellates?

    DEFF Research Database (Denmark)

    Selander, Erik; Fagerberg, Tony; Wohlrab, Sylke

    2012-01-01

    We monitored the kinetics of grazer-induced responses in the marine dinoflagellate Alexandrium tamarense. Chemical cues from each of three calanoid copepods (Calanus sp., Centropages typicus, and Acartia tonsa) induced increased toxicity and suppressed chain formation in A. tamarense. Both chemic...

  6. Susceptibilidad a la radiación ultravioleta_B del dinoflagelado Alexandrium catenella Kofoid Balech y de la diatomea Phaeodactylum tricornutum Bohlin Susceptibility to ultraviolet-B radiation of the dinoflagellate Alexandrium catenella Kofoid Balech, and the diatom Phaeodactylum tricornutum Bohlin

    Directory of Open Access Journals (Sweden)

    GINGER MARTINEZ

    2000-06-01

    Full Text Available La susceptibilidad diferencial de microalgas a la radiación UV-B (RUV-B, 280 - 320 nm genera patrones de predominio numérico dentro de los ensambles del fitoplancton. Sin embargo, a pesar que algunos eventos de floraciones algales nocivas (FAN del dinoflagelado Alexandrium catenella han sido coincidentes con episodios de alta RUV-B en el extremo sur de Chile, se desconoce alguna relación de causalidad entre estos procesos. A través de los parámetros poblacionales tasa intrínseca de crecimiento (µ y capacidad de carga (K, se determinó el efecto de la RUV-B sobre la dinámica poblacional de cultivos de A. catenella, la que fue comparada con la respuesta demográfica de cultivos de una diatomea susceptible a la RUV-B, Phaeodactylum tricornutum. Los resultados mostraron que ambas especies presentaron una disminución significativa de µ frente a un incremento de RUV-B. Sin embargo, mientras que la respuesta de A. catenella mostró una dosis umbral para el crecimiento, bajo la cual se obtuvo una disminución de µ hasta 0,03 d-1, P. tricornutum presentó un decrecimiento proporcional, hasta un mínimo de 0,34 d-1. A pesar que el parámetro K en ambas especies presentó un decrecimiento similar frente a un gradiente de RUV-B, A. catenella mostró una significativa inhibición a partir de 2,9 KJ m-2 d-1, a diferencia de P. tricornutum, donde K se afectó a dosis iguales o mayores a 4,1 KJ m-2 d-1. Contrario a la predicción, los resultados indican una mayor susceptibilidad en A. catenella que en P. tricornutum al aumento de dosis de RUV-B, lo cual otorga una débil causalidad a este factor en la determinación del patrón de predominio numérico presentado por A. catenella durante los eventos de FANDifferential susceptibility to ultraviolet B (UV-B, 280 - 320 nm radiation among microalgae generates patterns of dominance in phytoplankton assemblages. However, despite some events of harmful algal blooms (HAB's of the dinoflagellate Alexandrium

  7. Termination of a toxic Alexandrium bloom with hydrogen peroxide

    NARCIS (Netherlands)

    Burson, A.; Matthijs, H.C.P.; Bruijne, de W.; Talens, R.; Hoogenboom, L.A.P.; Gerssen, A.; Visser, P.M.; Stomp, M.; Steur, K.; Scheppingen, van Y.; Huisman, J.

    2014-01-01

    The dinoflagellate Alexandrium ostenfeldii is a well-known harmful algal species that can potentially cause paralytic shellfish poisoning (PSP). Usually A. ostenfeldii occurs in low background concentrations only, but in August of 2012 an exceptionally dense bloom of more than 1 million cells L-1

  8. Mixotrophy in the phototrophic dinoflagellate Takayama helix (family Kareniaceae): Predator of diverse toxic and harmful dinoflagellates.

    Science.gov (United States)

    Jeong, Hae Jin; Ok, Jin Hee; Lim, An Suk; Kwon, Ji Eun; Kim, So Jin; Lee, Sung Yeon

    2016-12-01

    Takayama spp. are phototrophic dinoflagellates belonging to the family Kareniaceae and have caused fish kills in several countries. Understanding their trophic mode and interactions with co-occurring phytoplankton species are critical steps in comprehending their ecological roles in marine ecosystems, bloom dynamics, and dinoflagellate evolution. To investigate the trophic mode and interactions of Takayama spp., the ability of Takayama helix to feed on diverse algal species was examined, and the mechanisms of prey ingestion were determined. Furthermore, growth and ingestion rates of T. helix feeding on the dinoflagellates Alexandrium lusitanicum and Alexandrium tamarense, which are two optimal prey items, were determined as a function of prey concentration. T. helix ingested large dinoflagellates ≥15μm in size, except for the dinoflagellates Karenia mikimotoi, Akashiwo sanguinea, and Prorocentrum micans (i.e., it fed on Alexandrium minutum, A. lusitanicum, A. tamarense, A. pacificum, A. insuetum, Cochlodinium polykrikoides, Coolia canariensis, Coolia malayensis, Gambierdiscus caribaeus, Gymnodinium aureolum, Gymnodinium catenatum, Gymnodinium instriatum, Heterocapsa triquetra, Lingulodinium polyedrum, and Scrippsiella trochoidea). All these edible prey items are dinoflagellates that have diverse eco-physiology such as toxic and non-toxic, single and chain forming, and planktonic and benthic forms. However, T. helix did not feed on small flagellates and dinoflagellates toxic species and, thus, its mixotrophic ability should be considered when studying red tide dynamics, food webs, and dinoflagellate evolution. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Alexandrium minutum growth controlled by phosphorus . An applied model

    Science.gov (United States)

    Chapelle, A.; Labry, C.; Sourisseau, M.; Lebreton, C.; Youenou, A.; Crassous, M. P.

    2010-11-01

    Toxic algae are a worldwide problem threatening aquaculture, public health and tourism. Alexandrium, a toxic dinoflagellate proliferates in Northwest France estuaries (i.e. the Penzé estuary) causing Paralytic Shellfish Poisoning events. Vegetative growth, and in particular the role of nutrient uptake and growth rate, are crucial parameters to understand toxic blooms. With the goal of modelling in situ Alexandrium blooms related to environmental parameters, we first try to calibrate a zero-dimensional box model of Alexandrium growth. This work focuses on phosphorus nutrition. Our objective is to calibrate Alexandrium minutum as well as Heterocapsa triquetra (a non-toxic dinoflagellate) growth under different rates of phosphorus supply, other factors being optimal and constant. Laboratory experiments are used to calibrate two growth models and three uptake models for each species. Models are then used to simulate monospecific batch and semi-continuous experiments as well as competition between the two algae (mixed cultures). Results show that the Droop growth model together with linear uptake versus quota can represent most of our observations, although a power law uptake function can more accurately simulate our phosphorus uptake data. We note that such models have limitations in non steady-state situations and cell quotas can depend on a variety of factors, so care must be taken in extrapolating these results beyond the specific conditions studied.

  10. Morphological, molecular, and toxin analysis of field populations of Alexandrium genus from the Argentine Sea.

    Science.gov (United States)

    Fabro, Elena; Almandoz, Gastón O; Ferrario, Martha; John, Uwe; Tillmann, Urban; Toebe, Kerstin; Krock, Bernd; Cembella, Allan

    2017-12-01

    In the Argentine Sea, blooms of toxigenic dinoflagellates of the Alexandrium tamarense species complex have led to fish and bird mortalities and human deaths as a consequence of paralytic shellfish poisoning (PSP). Yet little is known about the occurrence of other toxigenic species of the genus Alexandrium, or of their toxin composition beyond coastal waters. The distribution of Alexandrium species and related toxins in the Argentine Sea was determined by sampling surface waters on an oceanographic expedition during austral spring from ~39°S to 48°S. Light microscope and SEM analysis for species identification and enumeration was supplemented by confirmatory PCR analysis from field samples. The most frequent Alexandrium taxon identified by microscopy corresponded to the classical description of A. tamarense. Only weak signals of Group I from the A. tamarense species complex were detected by PCR of bulk field samples, but phylogenetic reconstruction of rDNA sequences from single cells from one station assigned them to ribotype Group I (Alexandrium catenella). PCR probes for Alexandrium minutum and Alexandrium ostenfeldii yielded a positive signal, although A. minutum morphology did not completely match the classical description. Analysis of PSP toxin composition of plankton samples revealed toxin profiles dominated by gonyautoxins (GTX1/4). The main toxic cyclic imine detected was 13-desMe-spirolide C and this supported the association with A. ostenfeldii in the field. This study represents the first integrated molecular, morphological and toxinological analysis of field populations of the genus Alexandrium in the Argentine Sea. © 2017 Phycological Society of America.

  11. Combined physical, chemical and biological factors shape Alexandrium ostenfeldii blooms in the Netherlands

    OpenAIRE

    Brandenburg, Karen M.; de Senerpont Domis, Lisette N.; Wohlrab, Sylke; Krock, Bernd; John, Uwe; van Scheppingen, Yvonne; van Donk, Ellen; Dedmer B. Van de Waal

    2017-01-01

    Harmful algal blooms (HABs) are globally expanding, compromising water quality worldwide. HAB dynamics are determined by a complex interplay of abiotic and biotic factors, and their emergence has often been linked to eutrophication, and more recently to climate change. The dinoflagellate Alexandrium is one of the most widespread HAB genera and its success is based on key functional traits like allelopathy, mixotrophy, cyst formation and nutrient retrieval migrations. Since 2012, dense Alexand...

  12. Investigations into the role of bacteria/dinoflagellate interactions in Paralytic Shellfish Poisoning

    OpenAIRE

    Töbe, Kerstin

    2003-01-01

    The interactions of purportedly toxic bacteria with dinoflagellates in the occurrence of Paralytic Shellfish Poisoning (PSP) were investigated. Dinoflagellates of the genus Alexandrium were examined to determine their bacterial population by the use of fluorescently labelled probes. Extracellular associated bacteria were shown to be associated with A. andersonii, A. tamarense and A. lusitanicum. Intracellulae bacteria were found in A. tamarense. Cyanoditolyltetrazolium chloride was used to de...

  13. CO2-dependent carbon isotope fractionation in dinoflagellates relates to their inorganic carbon fluxes

    NARCIS (Netherlands)

    Hoins, Mirja; Eberlein, Tim; Van de Waal, Dedmer B.; Sluijs, Appy; Reichart, Gert-Jan; Rost, Björn

    Carbon isotope fractionation (εp) between the inorganic carbon source and organic matter has been proposed to be a function of pCO2. To understand the CO2-dependency of εp and species-specific differences therein, inorganic carbon fluxes in the four dinoflagellate species Alexandrium fundyense,

  14. Effects of temperature and salinity on the growth of Alexandrium (Dinophyceae) isolates from the Salish Sea.

    Science.gov (United States)

    Bill, Brian D; Moore, Stephanie K; Hay, Levi R; Anderson, Donald M; Trainer, Vera L

    2016-04-01

    Toxin-producing blooms of dinoflagellates in the genus Alexandrium have plagued the inhabitants of the Salish Sea for centuries. Yet the environmental conditions that promote accelerated growth of this organism, a producer of paralytic shellfish toxins, is lacking. This study quantitatively determined the growth response of two Alexandrium isolates to a range of temperatures and salinities, factors that will strongly respond to future climate change scenarios. An empirical equation, derived from observed growth rates describing the temperature and salinity dependence of growth, was used to hindcast bloom risk. Hindcasting was achieved by comparing predicted growth rates, calculated from in situ temperature and salinity data from Quartermaster Harbor, with corresponding Alexandrium cell counts and shellfish toxin data. The greatest bloom risk, defined at μ >0.25 d(-1) , generally occurred from April through November annually; however, growth rates rarely fell below 0.10 d(-1) . Except for a few occasions, Alexandrium cells were only observed during the periods of highest bloom risk and paralytic shellfish toxins above the regulatory limit always fell within the periods of predicted bloom occurrence. While acknowledging that Alexandrium growth rates are affected by other abiotic and biotic factors, such as grazing pressure and nutrient availability, the use of this empirical growth function to predict higher risk time frames for blooms and toxic shellfish within the Salish Sea provides the groundwork for a more comprehensive biological model of Alexandrium bloom dynamics in the region and will enhance our ability to forecast blooms in the Salish Sea under future climate change scenarios. © 2016 Phycological Society of America This article has been contributed to by US Government employees and their work is in the public domain in the USA.

  15. Exposure to the Paralytic Shellfish Toxin Producer Alexandrium catenella Increases the Susceptibility of the Oyster Crassostrea gigas to Pathogenic Vibrios

    Directory of Open Access Journals (Sweden)

    Celina Abi-Khalil

    2016-01-01

    Full Text Available The multifactorial etiology of massive Crassostrea gigas summer mortalities results from complex interactions between oysters, opportunistic pathogens and environmental factors. In a field survey conducted in 2014 in the Mediterranean Thau Lagoon (France, we evidenced that the development of the toxic dinoflagellate Alexandrium catenella, which produces paralytic shellfish toxins (PSTs, was concomitant with the accumulation of PSTs in oyster flesh and the occurrence of C. gigas mortalities. In order to investigate the possible role of toxic algae in this complex disease, we experimentally infected C. gigas oyster juveniles with Vibrio tasmaniensis strain LGP32, a strain associated with oyster summer mortalities, after oysters were exposed to Alexandrium catenella. Exposure of oysters to A. catenella significantly increased the susceptibility of oysters to V. tasmaniensis LGP32. On the contrary, exposure to the non-toxic dinoflagellate Alexandrium tamarense or to the haptophyte Tisochrysis lutea used as a foraging alga did not increase susceptibility to V. tasmaniensis LGP32. This study shows for the first time that A. catenella increases the susceptibility of Crassostrea gigas to pathogenic vibrios. Therefore, in addition to complex environmental factors explaining the mass mortalities of bivalve mollusks, feeding on neurotoxic dinoflagellates should now be considered as an environmental factor that potentially increases the severity of oyster mortality events.

  16. Exposure to the Paralytic Shellfish Toxin Producer Alexandrium catenella Increases the Susceptibility of the Oyster Crassostrea gigas to Pathogenic Vibrios.

    Science.gov (United States)

    Abi-Khalil, Celina; Lopez-Joven, Carmen; Abadie, Eric; Savar, Veronique; Amzil, Zouher; Laabir, Mohamed; Rolland, Jean-Luc

    2016-01-15

    The multifactorial etiology of massive Crassostrea gigas summer mortalities results from complex interactions between oysters, opportunistic pathogens and environmental factors. In a field survey conducted in 2014 in the Mediterranean Thau Lagoon (France), we evidenced that the development of the toxic dinoflagellate Alexandrium catenella, which produces paralytic shellfish toxins (PSTs), was concomitant with the accumulation of PSTs in oyster flesh and the occurrence of C. gigas mortalities. In order to investigate the possible role of toxic algae in this complex disease, we experimentally infected C. gigas oyster juveniles with Vibrio tasmaniensis strain LGP32, a strain associated with oyster summer mortalities, after oysters were exposed to Alexandrium catenella. Exposure of oysters to A. catenella significantly increased the susceptibility of oysters to V. tasmaniensis LGP32. On the contrary, exposure to the non-toxic dinoflagellate Alexandrium tamarense or to the haptophyte Tisochrysis lutea used as a foraging alga did not increase susceptibility to V. tasmaniensis LGP32. This study shows for the first time that A. catenella increases the susceptibility of Crassostrea gigas to pathogenic vibrios. Therefore, in addition to complex environmental factors explaining the mass mortalities of bivalve mollusks, feeding on neurotoxic dinoflagellates should now be considered as an environmental factor that potentially increases the severity of oyster mortality events.

  17. New insights on the species-specific allelopathic interactions between macrophytes and marine HAB dinoflagellates.

    Science.gov (United States)

    Ben Gharbia, Hela; Kéfi-Daly Yahia, Ons; Cecchi, Philippe; Masseret, Estelle; Amzil, Zouher; Herve, Fabienne; Rovillon, Georges; Nouri, Habiba; M'Rabet, Charaf; Couet, Douglas; Zmerli Triki, Habiba; Laabir, Mohamed

    2017-01-01

    Macrophytes are known to release allelochemicals that have the ability to inhibit the proliferation of their competitors. Here, we investigated the effects of the fresh leaves of two magnoliophytes (Zostera noltei and Cymodocea nodosa) and thalli of the macroalgae Ulva rigida on three HAB-forming benthic dinoflagellates (Ostreopsis cf. ovata, Prorocentrum lima, and Coolia monotis). The effects of C. nodosa and U. rigida were also tested against the neurotoxic planktonic dinoflagellate Alexandrium pacificum Litaker sp. nov (former Alexandrium catenella). Co-culture experiments were conducted under controlled laboratory conditions and potential allelopathic effects of the macrophytes on the growth, photosynthesis and toxin production of the targeted dinoflagellates were evaluated. Results showed that U. rigida had the strongest algicidal effect and that the planktonic A. pacificum was the most vulnerable species. Benthic dinoflagellates seemed more tolerant to potential allelochemicals produced by macrophytes. Depending on the dinoflagellate/macrophyte pairs and the weight of leaves/thalli tested, the studied physiological processes were moderately to heavily altered. Our results suggest that the allelopathic activity of the macrophytes could influence the development of HAB species.

  18. New insights on the species-specific allelopathic interactions between macrophytes and marine HAB dinoflagellates.

    Directory of Open Access Journals (Sweden)

    Hela Ben Gharbia

    Full Text Available Macrophytes are known to release allelochemicals that have the ability to inhibit the proliferation of their competitors. Here, we investigated the effects of the fresh leaves of two magnoliophytes (Zostera noltei and Cymodocea nodosa and thalli of the macroalgae Ulva rigida on three HAB-forming benthic dinoflagellates (Ostreopsis cf. ovata, Prorocentrum lima, and Coolia monotis. The effects of C. nodosa and U. rigida were also tested against the neurotoxic planktonic dinoflagellate Alexandrium pacificum Litaker sp. nov (former Alexandrium catenella. Co-culture experiments were conducted under controlled laboratory conditions and potential allelopathic effects of the macrophytes on the growth, photosynthesis and toxin production of the targeted dinoflagellates were evaluated. Results showed that U. rigida had the strongest algicidal effect and that the planktonic A. pacificum was the most vulnerable species. Benthic dinoflagellates seemed more tolerant to potential allelochemicals produced by macrophytes. Depending on the dinoflagellate/macrophyte pairs and the weight of leaves/thalli tested, the studied physiological processes were moderately to heavily altered. Our results suggest that the allelopathic activity of the macrophytes could influence the development of HAB species.

  19. Putative monofunctional type I polyketide synthase units: a dinoflagellate-specific feature?

    Directory of Open Access Journals (Sweden)

    Karsten Eichholz

    Full Text Available Marine dinoflagellates (alveolata are microalgae of which some cause harmful algal blooms and produce a broad variety of most likely polyketide synthesis derived phycotoxins. Recently, novel polyketide synthesase (PKS transcripts have been described from the Florida red tide dinoflagellate Karenia brevis (gymnodiniales which are evolutionarily related to Type I PKS but were apparently expressed as monofunctional proteins, a feature typical of Type II PKS. Here, we investigated expression units of PKS I-like sequences in Alexandrium ostenfeldii (gonyaulacales and Heterocapsa triquetra (peridiniales at the transcript and protein level. The five full length transcripts we obtained were all characterized by polyadenylation, a 3' UTR and the dinoflagellate specific spliced leader sequence at the 5'end. Each of the five transcripts encoded a single ketoacylsynthase (KS domain showing high similarity to K. brevis KS sequences. The monofunctional structure was also confirmed using dinoflagellate specific KS antibodies in Western Blots. In a maximum likelihood phylogenetic analysis of KS domains from diverse PKSs, dinoflagellate KSs formed a clade placed well within the protist Type I PKS clade between apicomplexa, haptophytes and chlorophytes. These findings indicate that the atypical PKS I structure, i.e., expression as putative monofunctional units, might be a dinoflagellate specific feature. In addition, the sequenced transcripts harbored a previously unknown, apparently dinoflagellate specific conserved N-terminal domain. We discuss the implications of this novel region with regard to the putative monofunctional organization of Type I PKS in dinoflagellates.

  20. Allelopathic effects of Alexandrium spp. on Prorocentrum donghaiense

    NARCIS (Netherlands)

    Yang, Wei-Dong; Xie, Jin; van Rijssel, Marion; Li, Hong-Ye; Liu, Jie-Sheng

    2010-01-01

    Effects of toxic Alexandrium species on Prorocentrum donghaiense were studied in co-cultures and filtrates in order to shed some light on the competition between the co-occurring harmful algae. The three live cultures of Alexandrium tamarense and Alexandrium minutum negatively affected the growth of

  1. Environmental barcoding reveals massive dinoflagellate diversity in marine environments.

    Directory of Open Access Journals (Sweden)

    Rowena F Stern

    Full Text Available BACKGROUND: Dinoflagellates are an ecologically important group of protists with important functions as primary producers, coral symbionts and in toxic red tides. Although widely studied, the natural diversity of dinoflagellates is not well known. DNA barcoding has been utilized successfully for many protist groups. We used this approach to systematically sample known "species", as a reference to measure the natural diversity in three marine environments. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we assembled a large cytochrome c oxidase 1 (COI barcode database from 8 public algal culture collections plus 3 private collections worldwide resulting in 336 individual barcodes linked to specific cultures. We demonstrate that COI can identify to the species level in 15 dinoflagellate genera, generally in agreement with existing species names. Exceptions were found in species belonging to genera that were generally already known to be taxonomically challenging, such as Alexandrium or Symbiodinium. Using this barcode database as a baseline for cultured dinoflagellate diversity, we investigated the natural diversity in three diverse marine environments (Northeast Pacific, Northwest Atlantic, and Caribbean, including an evaluation of single-cell barcoding to identify uncultivated groups. From all three environments, the great majority of barcodes were not represented by any known cultured dinoflagellate, and we also observed an explosion in the diversity of genera that previously contained a modest number of known species, belonging to Kareniaceae. In total, 91.5% of non-identical environmental barcodes represent distinct species, but only 51 out of 603 unique environmental barcodes could be linked to cultured species using a conservative cut-off based on distances between cultured species. CONCLUSIONS/SIGNIFICANCE: COI barcoding was successful in identifying species from 70% of cultured genera. When applied to environmental samples, it revealed a

  2. Rapid detection and quantification of the marine toxic algae, Alexandrium minutum, using a super-paramagnetic immunochromatographic strip test.

    Science.gov (United States)

    Gas, Fabienne; Baus, Béatrice; Queré, Julien; Chapelle, Annie; Dreanno, Catherine

    2016-01-15

    The dinoflagellates of Alexandrium genus are known to be producers of paralytic shellfish toxins that regularly impact the shellfish aquaculture industry and fisheries. Accurate detection of Alexandrium including Alexandrium minutum is crucial for environmental monitoring and sanitary issues. In this study, we firstly developed a quantitative lateral flow immunoassay (LFIA) using super-paramagnetic nanobeads for A. minutum whole cells. This dipstick assay relies on two distinct monoclonal antibodies used in a sandwich format and directed against surface antigens of this organism. No sample preparation is required. Either frozen or live cells can be detected and quantified. The specificity and sensitivity are assessed by using phytoplankton culture and field samples spiked with a known amount of cultured A. minutum cells. This LFIA is shown to be highly specific for A. minutum and able to detect reproducibly 10(5)cells/L within 30min. The test is applied to environmental samples already characterized by light microscopy counting. No significant difference is observed between the cell densities obtained by these two methods. This handy super-paramagnetic lateral flow immnunoassay biosensor can greatly assist water quality monitoring programs as well as ecological research. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Combined physical, chemical and biological factors shape Alexandrium ostenfeldii blooms in The Netherlands.

    Science.gov (United States)

    Brandenburg, Karen M; Domis, Lisette N de Senerpont; Wohlrab, Sylke; Krock, Bernd; John, Uwe; van Scheppingen, Yvonne; van Donk, Ellen; Van de Waal, Dedmer B

    2017-03-01

    Harmful algal blooms (HABs) are globally expanding, compromising water quality worldwide. HAB dynamics are determined by a complex interplay of abiotic and biotic factors, and their emergence has often been linked to eutrophication, and more recently to climate change. The dinoflagellate Alexandrium is one of the most widespread HAB genera and its success is based on key functional traits like allelopathy, mixotrophy, cyst formation and nutrient retrieval migrations. Since 2012, dense Alexandrium ostenfeldii blooms (up to 4500cellsmL(-1)) have recurred annually in a creek located in the southwest of the Netherlands, an area characterized by intense agriculture and aquaculture. We investigated how physical, chemical and biological factors influenced A. ostenfeldii bloom dynamics over three consecutive years (2013-2015). Overall, we found a decrease in the magnitude of the bloom over the years that could largely be linked to changing weather conditions during summer. More specifically, low salinities due to excessive rainfall and increased wind speed corresponded to a delayed A. ostenfeldii bloom with reduced population densities in 2015. Within each year, highest population densities generally corresponded to high temperatures, low DIN:DIP ratios and low grazer densities. Together, our results demonstrate an important role of nutrient availability, absence of grazing, and particularly of the physical environment on the magnitude and duration of A. ostenfeldii blooms. Our results suggest that predicted changes in the physical environment may enhance bloom development in future coastal waters and embayments. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Insights into a dinoflagellate genome through expressed sequence tag analysis

    Directory of Open Access Journals (Sweden)

    Bonaldo Maria F

    2005-05-01

    Full Text Available Abstract Background Dinoflagellates are important marine primary producers and grazers and cause toxic "red tides". These taxa are characterized by many unique features such as immense genomes, the absence of nucleosomes, and photosynthetic organelles (plastids that have been gained and lost multiple times. We generated EST sequences from non-normalized and normalized cDNA libraries from a culture of the toxic species Alexandrium tamarense to elucidate dinoflagellate evolution. Previous analyses of these data have clarified plastid origin and here we study the gene content, annotate the ESTs, and analyze the genes that are putatively involved in DNA packaging. Results Approximately 20% of the 6,723 unique (11,171 total 3'-reads ESTs data could be annotated using Blast searches against GenBank. Several putative dinoflagellate-specific mRNAs were identified, including one novel plastid protein. Dinoflagellate genes, similar to other eukaryotes, have a high GC-content that is reflected in the amino acid codon usage. Highly represented transcripts include histone-like (HLP and luciferin binding proteins and several genes occur in families that encode nearly identical proteins. We also identified rare transcripts encoding a predicted protein highly similar to histone H2A.X. We speculate this histone may be retained for its role in DNA double-strand break repair. Conclusion This is the most extensive collection to date of ESTs from a toxic dinoflagellate. These data will be instrumental to future research to understand the unique and complex cell biology of these organisms and for potentially identifying the genes involved in toxin production.

  5. Bioluminescent response of individual dinoflagellate cells to hydrodynamic stress measured with millisecond resolution in a microfluidic device.

    Science.gov (United States)

    Latz, Michael I; Bovard, Michelle; VanDelinder, Virginia; Segre, Enrico; Rohr, Jim; Groisman, Alex

    2008-09-01

    Dinoflagellate bioluminescence serves as a model system for examining mechanosensing by suspended motile unicellular organisms. The response latency, i.e. the delay time between the mechanical stimulus and luminescent response, provides information about the mechanotransduction and signaling process, and must be accurately known for dinoflagellate bioluminescence to be used as a flow visualization tool. This study used a novel microfluidic device to measure the response latency of a large number of individual dinoflagellates with a resolution of a few milliseconds. Suspended cells of several dinoflagellate species approximately 35 microm in diameter were directed through a 200 microm deep channel to a barrier with a 15 microm clearance impassable to the cells. Bioluminescence was stimulated when cells encountered the barrier and experienced an abrupt increase in hydrodynamic drag, and was imaged using high numerical aperture optics and a high-speed low-light video system. The average response latency for Lingulodinium polyedrum strain HJ was 15 ms (N>300 cells) at the three highest flow rates tested, with a minimum latency of 12 ms. Cells produced multiple flashes with an interval as short as 5 ms between individual flashes, suggesting that repeat stimulation involved a subset of the entire intracellular signaling pathway. The mean response latency for the dinoflagellates Pyrodinium bahamense, Alexandrium monilatum and older and newer isolates of L. polyedrum ranged from 15 to 22 ms, similar to the latencies previously determined for larger dinoflagellates with different morphologies, possibly reflecting optimization of dinoflagellate bioluminescence as a rapid anti-predation behavior.

  6. Horizontal gene transfer is a significant driver of gene innovation in dinoflagellates.

    Science.gov (United States)

    Wisecaver, Jennifer H; Brosnahan, Michael L; Hackett, Jeremiah D

    2013-01-01

    The dinoflagellates are an evolutionarily and ecologically important group of microbial eukaryotes. Previous work suggests that horizontal gene transfer (HGT) is an important source of gene innovation in these organisms. However, dinoflagellate genomes are notoriously large and complex, making genomic investigation of this phenomenon impractical with currently available sequencing technology. Fortunately, de novo transcriptome sequencing and assembly provides an alternative approach for investigating HGT. We sequenced the transcriptome of the dinoflagellate Alexandrium tamarense Group IV to investigate how HGT has contributed to gene innovation in this group. Our comprehensive A. tamarense Group IV gene set was compared with those of 16 other eukaryotic genomes. Ancestral gene content reconstruction of ortholog groups shows that A. tamarense Group IV has the largest number of gene families gained (314-1,563 depending on inference method) relative to all other organisms in the analysis (0-782). Phylogenomic analysis indicates that genes horizontally acquired from bacteria are a significant proportion of this gene influx, as are genes transferred from other eukaryotes either through HGT or endosymbiosis. The dinoflagellates also display curious cases of gene loss associated with mitochondrial metabolism including the entire Complex I of oxidative phosphorylation. Some of these missing genes have been functionally replaced by bacterial and eukaryotic xenologs. The transcriptome of A. tamarense Group IV lends strong support to a growing body of evidence that dinoflagellate genomes are extraordinarily impacted by HGT.

  7. Decadal-scale variations of sedimentary dinoflagellate cyst records from the Yellow Sea over the last 400 years

    Science.gov (United States)

    Kim, So-Young; Roh, Youn Ho; Shin, Hyeon Ho; Huh, Sik; Kang, Sung-Ho; Lim, Dhongil

    2018-01-01

    In recent decades, the Yellow Sea has experienced severe environmental deterioration due to increasing input of anthropogenic pollutants and consequently accelerated eutrophication. Whilst there have been significant advances in documenting historical records of metal pollution in the Yellow Sea region, changes in phytoplankton community structures affected by eutrophication remain understudied. Here, we present a new record of dinoflagellate cyst-based signals in age-dated sediment cores from the Yellow Sea mud deposits to provide better insight into eutrophication history and identification of associated responses of the regional phytoplankton community. It is worthy of note that there were significant variations in abundances and community structures of dinoflagellate cysts in three historical stages in association with increasing anthropogenic activity over the last 400 years. Pervasive effects of human interference altering the Yellow Sea environments are recognized by: 1) an abrupt increase of organic matter, including the diatom-produced biogenic opal concentrations (∼1850); 2) a distinct shift in phytoplankton composition towards dinoflagellate dominance (∼1940), and 3) recent acceleration of dinoflagellate cyst accumulation (∼1990). Particularly in the central Yellow Sea shelf, the anomalously high deposition of dinoflagellate cysts (especially Alexandrium species) is suggested to be a potentially important source of inoculum cells serving as a seed population for localized and recurrent blooms in coastal areas around the Yellow Sea.

  8. A red tide of Alexandrium fundyense in the Gulf of Maine.

    Science.gov (United States)

    McGillicuddy, D J; Brosnahan, M L; Couture, D A; He, R; Keafer, B A; Manning, J P; Martin, J L; Pilskaln, C H; Townsend, D W; Anderson, D M

    2014-05-01

    In early July 2009, an unusually high concentration of the toxic dinoflagellate Alexandrium fundyense occurred in the western Gulf of Maine, causing surface waters to appear reddish brown to the human eye. The discolored water appeared to be the southern terminus of a large-scale event that caused shellfish toxicity along the entire coast of Maine to the Canadian border. Rapid-response shipboard sampling efforts together with satellite data suggest the water discoloration in the western Gulf of Maine was a highly ephemeral feature of less than two weeks in duration. Flow cytometric analysis of surface samples from the red water indicated the population was undergoing sexual reproduction. Cyst fluxes downstream of the discolored water were the highest ever measured in the Gulf of Maine, and a large deposit of new cysts was observed that fall. Although the mechanisms causing this event remain unknown, its timing coincided with an anomalous period of downwelling-favorable winds that could have played a role in aggregating upward-swimming cells. Regardless of the underlying causes, this event highlights the importance of short-term episodic phenomena on regional population dynamics of A. fundyense.

  9. Cell death in a harmful algal bloom causing species Alexandrium tamarense upon an algicidal bacterium induction.

    Science.gov (United States)

    Zhang, Huajun; Lv, Jinglin; Peng, Yun; Zhang, Su; An, Xinli; Xu, Hong; Zhang, Jun; Tian, Yun; Zheng, Wei; Zheng, Tianling

    2014-09-01

    Harmful algal blooms occur throughout the world, destroying aquatic ecosystems and threatening human health. The culture supernatant of the marine algicidal bacteria DHQ25 was able to lysis dinoflagellate Alexandrium tamarense. Loss of photosynthetic pigments, accompanied by a decline in Photosystem II (PSII) photochemical efficiency (Fv/Fm), in A. tamarense was detected under bacterial supernatant stress. Transmission electron microscope analysis showed obvious morphological modifications of chloroplast dismantling as a part of the algicidal process. The PSII electron transport chain was seriously blocked, with its reaction center damaged. This damage was detected in a relative transcriptional level of psbA and psbD genes, which encode the D1 and D2 proteins in the PSII reaction center. And the block in the electron transport chain of PSII might generate excessive reactive oxygen species (ROS) which could destroy the membrane system and pigment synthesis and activated enzymic antioxidant systems including superoxide dismutase (SOD) and catalase (CAT). This study indicated that marine bacteria with indirect algicidal activity played an important role in the changes of photosynthetic process in a harmful algal bloom species.

  10. Driving factors of dinoflagellate cyst distribution in surface sediments of a Mediterranean lagoon with limited access to the sea.

    Science.gov (United States)

    Dhib, Amel; Fertouna-Bellakhal, Mouna; Turki, Souad; Aleya, Lotfi

    2016-11-15

    Seasonal distribution of dinoflagellate cysts were studied at five surface sediment study stations in Ghar El Melh Lagoon (GML) (Tunisia) in relation to physicochemical parameters and phytoplankton abundance in the water column. At least sixteen dinocyst types were identified, dominated mainly by Protoperidinium spp., Scrippsiella trochoidea complex, Lingulodinum machaerophorum, Alexandrium spp. and Gymnodinium spp., along with many round brown cysts. Cyst abundance ranged from 0 to 229g-1 dry sediment. No significant differences in cyst distribution were found among stations, though a significant variation was observed among seasons with cyst dominance in autumn. No significant variation was found between cyst abundance and the different abiotic factors monitored, neither in the water column (physicochemical parameters) nor in the sediment (% H2O). Low dinocyst abundance was consistent with the dominance of non-cyst-forming dinoflagellates in the GML water column. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Spatial distribution of dinoflagellates from the tropical coastal waters of the South Andaman, India: Implications for coastal pollution monitoring.

    Science.gov (United States)

    Narale, Dhiraj Dhondiram; Anil, Arga Chandrashekar

    2017-02-15

    Dinoflagellate community structure from two semi-enclosed areas along the South Andaman region, India, was investigated to assess the anthropogenic impact on coastal water quality. At the densely inhabited Port Blair Bay, the dominance of mixotrophs in water and Protoperidinoids in sediments was attributed to anthropogenic nutrient enrichment and prey availability. A significant decrease in dinoflagellate abundance from inner to outer bay emphasize the variation in nutrient availability. The dominance of autotrophs and Gonyaulacoid cysts at the North Bay highlight low nutrient conditions with less anthropogenic pressure. The occurrence of oceanic Ornithocercus steinii and Diplopsalis sp. could evince the oceanic water intrusion into the North Bay. Nine potentially harmful and red-tide-forming species including Alexandrium tamarense complex, A. minutum were identified in this study. Although there are no harmful algal bloom (HABs) incidences in this region so far, increasing coastal pollution could support their candidature towards the future HABs initiation and development. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Isolation, purification and spectrometric analysis of PSP toxins from moraxella sp., a bacterium associated with a toxic dinoflagellate

    Energy Technology Data Exchange (ETDEWEB)

    Boyce, S.D.; Doucette, G.J.

    1994-12-31

    Paralytic shellfish poisoning (PSP) is a seafood intoxication syndrome caused by the injestion of shellfish contaminated with toxins produced by algae known as dinoflagellates. The PSP toxins, saxitoxin and its derivatives, act to block voltage-dependent sodium channels and can cause paralysis and even death at higher doses. It is well documented that bacteria coexist with many harmful or toxic algal species, though the exact nature of the association in relation to toxin production is unknown. Recently, the bacterium Moraxella sp. was isolated from the PSP toxin producing dinoflagellate Alexandrium tamarense. Through HPLC analysis and saxitoxin receptor binding assays performed on crude bacterial extracts, it appears that Moraxella sp. is capable of producing saxitoxin and several of its derivatives. However, physical confirmation (e.g. mass spectrometry) of these results is still needed.

  13. Phytoplankton invasions: comments on the validity of categorizing the non-indigenous dinoflagellates and diatoms in European seas.

    Science.gov (United States)

    Gómez, Fernando

    2008-04-01

    The validity of categorizing the diatoms and dinoflagellates reported in the literature as non-indigenous phytoplankton in the European Seas was investigated. Species that are synonymous are often included as separate species (Gessnerium mochimaensis=Alexandrium monilatum, Gymnodinium nagasakiense=Karenia mikimotoi, Pleurosigma simonsenii=P. planctonicum), while other species names are synonyms of cosmopolitan taxa (Prorocentrum redfieldii=P. triestinum, Pseliodinium vaubanii=Gyrodinium falcatum, Gonyaulax grindleyi=Protoceratium reticulatum, Asterionella japonica=Asterionellopsis glacialis). Epithets of an exotic etymology (i.e. japonica, sinensis, indica) imply that a cosmopolitan species may be non-indigenous, and several taxa are even considered as non-indigenous in their type locality (Alexandrium tamarense and A. pseudogoniaulax). The records of Alexandrium monilatum, A. leei and Corethron criophilum are doubtful. Cold or warm-water species expand their geographical ranges or increase their abundances to detectable levels during cooling (Coscinodiscus wailesii) or warming periods (Chaetoceros coarctatus, Proboscia indica, Pyrodinium bahamense). These are a few examples of marginal dispersal associated with climatic events instead of species introductions from remote areas. The number of non-indigenous phytoplankton species in European Seas has thus been excessively inflated.

  14. Studies on woloszynskioid dinoflagellates III:

    DEFF Research Database (Denmark)

    Moestrup, Øjvind; Hansen, Gert; Daugbjerg, Niels

    2008-01-01

    Using ultrastructure and nuclear-encoded large subunit (LSU) rDNA sequences, the woloszynskioid dinoflagellates have been shown recently to form a polyphyletic assemblage. The first group comprises the family Tovelliaceae, with the genera Tovellia and Jadwigia. The present manuscript describes...... the second group, comprising Borghiella dodgei gen. et sp. nov. from the Italian Alps. The new genus differs in a number of ultrastructural features, of which the most important are the structure of the eyespot (type B sensu Moestrup & Daugbjerg) and the structure of the apical part of the cell. The resting...... Parvilucifera but apparently not observed in any other dinoflagellates. Woloszynskia tenuissima, a well-known cold-water dinoflagellate, has been re-examined using material isolated from Greenland. Based on partial LSU rDNA sequencing it is shown to be related to R dodgei (sequence divergence only 1...

  15. A quantitative assessment of the role of the parasite Amoebophrya in the termination of Alexandrium fundyense blooms within a small coastal embayment.

    Directory of Open Access Journals (Sweden)

    Lourdes Velo-Suárez

    Full Text Available Parasitic dinoflagellates of the genus Amoebophrya infect free-living dinoflagellates, some of which can cause harmful algal blooms (HABs. High prevalence of Amoebophrya spp. has been linked to the decline of some HABs in marine systems. The objective of this study was to evaluate the impact of Amoebophrya spp. on the dynamics of dinoflagellate blooms in Salt Pond (MA, USA, particularly the harmful species Alexandrium fundyense. The abundance of Amoebophrya life stages was estimated 3-7 days per week through the full duration of an annual A. fundyense bloom using fluorescence in situ hybridization coupled with tyramide signal amplification (FISH-TSA. More than 20 potential hosts were recorded including Dinophysis spp., Protoperidinium spp. and Gonyaulax spp., but the only dinoflagellate cells infected by Amoebophrya spp. during the sampling period were A. fundyense. Maximum A. fundyense concentration co-occurred with an increase of infected hosts, followed by a massive release of Amoebophrya dinospores in the water column. On average, Amoebophrya spp. infected and killed ∼30% of the A. fundyense population per day in the end phase of the bloom. The decline of the host A. fundyense population coincided with a dramatic life-cycle transition from vegetative division to sexual fusion. This transition occurred after maximum infected host concentrations and before peak infection percentages were observed, suggesting that most A. fundyense escaped parasite infection through sexual fusion. The results of this work highlight the importance of high frequency sampling of both parasite and host populations to accurately assess the impact of parasites on natural plankton assemblages.

  16. Comprehensive insights into the response of Alexandrium tamarense to algicidal component secreted by a marine bacterium

    Directory of Open Access Journals (Sweden)

    Xueqian eLei

    2015-01-01

    Full Text Available Harmful algal blooms occur throughout the world, threatening human health and destroying marine ecosystems. Alexandrium tamarense is a globally distributed and notoriously toxic dinoflagellate that is responsible for most paralytic shellfish poisoning incidents. The culture supernatant of the marine algicidal bacterium BS02 showed potent algicidal effects on A. tamarense ATGD98-006. In this study, we investigated the effects of this supernatant on A. tamarense at physiological and biochemical levels to elucidate the mechanism involved in the inhibition of algal growth by the supernatant of the strain BS02. Reactive oxygen species (ROS levels increased following exposure to the BS02 supernatant, indicating that the algal cells had suffered from oxidative damage. The levels of cellular pigments, including chlorophyll a and carotenoids, were significantly decreased, which indicated that the accumulation of ROS destroyed pigment synthesis. The decline of the maximum photochemical quantum yield (Fv/Fm and relative electron transport rate (rETR suggested that the photosynthesis systems of algal cells were attacked by the BS02 supernatant. To eliminate the ROS, the activities of antioxidant enzymes, including superoxide dismutase (SOD and catalase (CAT, increased significantly within a short period of time. Real-time PCR revealed changes in the transcript abundances of two target photosynthesis-related genes (psbA and psbD and two target respiration-related genes (cob and cox. The transcription of the respiration-related genes was significantly inhibited by the treatments, which indicated that the respiratory system was disturbed. Our results demonstrate that the BS02 supernatant can affect the photosynthesis process and might block the PS II electron transport chain, leading to the production of excessive ROS. The increased ROS can further destroy membrane integrity and pigments, ultimately inducing algal cell death.

  17. Cellular and biochemical responses of the oyster Crassostrea gigas to controlled exposures to metals and Alexandrium minutum

    Energy Technology Data Exchange (ETDEWEB)

    Haberkorn, Hansy; Lambert, Christophe; Le Goïc, Nelly [Laboratoire des Sciences de l‘Environnement Marin, UMR 6539, Institut Universitaire Européen de la Mer, Université de Bretagne Occidentale, Place Copernic, Technopôle Brest-Iroise, 29280 Plouzané (France); Quéré, Claudie [IFREMER Centre de Brest, Laboratoire de Physiologie des Invertébrés, Unité Physiologie Fonctionnelle des Organismes Marins, BP 70, 29280 Plouzané (France); Bruneau, Audrey; Riso, Ricardo; Auffret, Michel [Laboratoire des Sciences de l‘Environnement Marin, UMR 6539, Institut Universitaire Européen de la Mer, Université de Bretagne Occidentale, Place Copernic, Technopôle Brest-Iroise, 29280 Plouzané (France); Soudant, Philippe, E-mail: Philippe.Soudant@univ-brest.fr [Laboratoire des Sciences de l‘Environnement Marin, UMR 6539, Institut Universitaire Européen de la Mer, Université de Bretagne Occidentale, Place Copernic, Technopôle Brest-Iroise, 29280 Plouzané (France)

    2014-02-15

    Highlights: •Oysters, C. gigas, were exposed to both metals and PST-producer A. minutum. •Oysters exposed to metals accumulated about thirty-six times less PSTs. •Exposure to both metals and A. minutum induced antagonistic or synergetic effects. -- Abstract: Effects of simultaneous exposure of Pacific oyster, Crassostrea gigas, to both a harmful dinoflagellate that produces Paralytic Shellfish Toxins (PST), Alexandrium minutum, and cadmium (Cd) and copper (Cu), were assessed. Oysters were exposed to a mix of Cd–Cu with two different diets (i.e. A. minutum or Tisochrysis lutea) and compared to control oysters fed A. minutum or T. lutea, respectively, without metal addition. Metals and PST accumulations, digestive gland lipid composition, and cellular and biochemical hemolymph variables were measured after 4 days of exposure. Oysters exposed to Cd–Cu accumulated about thirty-six times less PSTs than oysters exposed to A. minutum alone. Exposure to Cd–Cu induced significant changes in neutral lipids (increase in diacylglycerol – DAG – and decrease in sterols) and phospholipids (decreases in phosphatidylcholine, phosphatidylethanolamine, cardiolipin and ceramide aminoethylphosphonate) of digestive gland suggesting that lipid metabolism disruptions and/or lipid peroxidation have occurred. Simultaneously, concentrations, percentages of dead cells and phenoloxidase activity of hemocytes increased in oysters exposed to metals while reactive oxygen species production of hemocytes decreased. Feeding on the harmful dinoflagellate A. minutum resulted in significant decreases in monoacylglycerol (MAG) and DAG and ether glycerides (EG), as well as significant increases in hemocyte concentration and phagocytic activity as compared to oysters fed T. lutea. Finally, the present study revealed that short-term, simultaneous exposure to Cd–Cu and A. minutum may induce antagonistic (i.e. hemocyte concentration and phagocytosis) or synergic (i.e. DAG content in

  18. Physiological responses of Manila clams Venerupis (=Ruditapes) philippinarum with varying parasite Perkinsus olseni burden to toxic algal Alexandrium ostenfeldii exposure.

    Science.gov (United States)

    Lassudrie, Malwenn; Soudant, Philippe; Richard, Gaëlle; Henry, Nicolas; Medhioub, Walid; da Silva, Patricia Mirella; Donval, Anne; Bunel, Mélanie; Le Goïc, Nelly; Lambert, Christophe; de Montaudouin, Xavier; Fabioux, Caroline; Hégaret, Hélène

    2014-09-01

    Manila clam stock from Arcachon Bay, France, is declining, as is commercial harvest. To understand the role of environmental biotic interactions in this decrease, effects of a toxic dinoflagellate, Alexandrium ostenfeldii, which blooms regularly in Arcachon bay, and the interaction with perkinsosis on clam physiology were investigated. Manila clams from Arcachon Bay, with variable natural levels of perkinsosis, were exposed for seven days to a mix of the nutritious microalga T-Iso and the toxic dinoflagellate A. ostenfeldii, a producer of spirolides, followed by seven days of depuration fed only T-Iso. Following sacrifice and quantification of protozoan parasite Perkinsus olseni burden, clams were divided into two groups according to intensity of the infection ("Light-Moderate" and "Moderate-Heavy"). Hemocyte and plasma responses, digestive enzyme activities, antioxidant enzyme activities in gills, and histopathological responses were analyzed. Reactive oxygen species (ROS) production in hemocytes and catalase (CAT) activity in gills increased with P. olseni intensity of infection in control clams fed T-Iso, but did not vary among A. ostenfeldii-exposed clams. Exposure to A. ostenfeldii caused tissue alterations associated with an inflammatory response and modifications in hemocyte morphology. In the gills, superoxide dismutase (SOD) activity decreased, and an increase in brown cell occurrence was seen, suggesting oxidative stress. Observations of hemocytes and brown cells in tissues during exposure and depuration suggest involvement of both cell types in detoxication processes. Results suggest that exposure to A. ostenfeldii disrupted the pro-/anti-oxidant response of clams to heavy P. olseni intensity. In addition, depressed mitochondrial membrane potential (MMP) in hemocytes of clams exposed to A. ostenfeldii suggests that mitochondrial functions are regulated to maintain homeostasis of digestive enzyme activity and condition index. Copyright © 2014 Elsevier B

  19. Cellular and biochemical responses of the oyster Crassostrea gigas to controlled exposures to metals and Alexandrium minutum.

    Science.gov (United States)

    Haberkorn, Hansy; Lambert, Christophe; Le Goïc, Nelly; Quéré, Claudie; Bruneau, Audrey; Riso, Ricardo; Auffret, Michel; Soudant, Philippe

    2014-02-01

    Effects of simultaneous exposure of Pacific oyster, Crassostrea gigas, to both a harmful dinoflagellate that produces Paralytic Shellfish Toxins (PST), Alexandrium minutum, and cadmium (Cd) and copper (Cu), were assessed. Oysters were exposed to a mix of Cd-Cu with two different diets (i.e. A. minutum or Tisochrysis lutea) and compared to control oysters fed A. minutum or T. lutea, respectively, without metal addition. Metals and PST accumulations, digestive gland lipid composition, and cellular and biochemical hemolymph variables were measured after 4 days of exposure. Oysters exposed to Cd-Cu accumulated about thirty-six times less PSTs than oysters exposed to A. minutum alone. Exposure to Cd-Cu induced significant changes in neutral lipids (increase in diacylglycerol - DAG - and decrease in sterols) and phospholipids (decreases in phosphatidylcholine, phosphatidylethanolamine, cardiolipin and ceramide aminoethylphosphonate) of digestive gland suggesting that lipid metabolism disruptions and/or lipid peroxidation have occurred. Simultaneously, concentrations, percentages of dead cells and phenoloxidase activity of hemocytes increased in oysters exposed to metals while reactive oxygen species production of hemocytes decreased. Feeding on the harmful dinoflagellate A. minutum resulted in significant decreases in monoacylglycerol (MAG) and DAG and ether glycerides (EG), as well as significant increases in hemocyte concentration and phagocytic activity as compared to oysters fed T. lutea. Finally, the present study revealed that short-term, simultaneous exposure to Cd-Cu and A. minutum may induce antagonistic (i.e. hemocyte concentration and phagocytosis) or synergic (i.e. DAG content in digestive gland) effects upon cellular and tissular functions in oysters. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Alexandrium in the Black Sea — identity, ecology and PSP toxicity ...

    African Journals Online (AJOL)

    Alexandrium cf. tamarense was recorded for the first time along the north-eastern coast of the Black Sea in July 2001. Since then, it has been observed annually between May and October. A maximum density of Alexandrium spp. of 9 000 cells l–1 was recorded during August 2004. Examination of the Black Sea ...

  1. SxtA and sxtG Gene Expression and Toxin Production in the Mediterranean Alexandrium minutum (Dinophyceae

    Directory of Open Access Journals (Sweden)

    Federico Perini

    2014-10-01

    Full Text Available The dinoflagellate Alexandrium minutum is known for the production of potent neurotoxins affecting the health of human seafood consumers via paralytic shellfish poisoning (PSP. The aim of this study was to investigate the relationship between the toxin content and the expression level of the genes involved in paralytic shellfish toxin (PST production. The algal cultures were grown both in standard f/2 medium and in phosphorus/nitrogen limitation. In our study, LC-HRMS analyses of PST profile and content in different Mediterranean A. minutum strains confirmed that this species was able to synthesize mainly the saxitoxin analogues Gonyautoxin-1 (GTX1 and Gonyautoxin-4 (GTX4. The average cellular toxin content varied among different strains, and between growth phases, highlighting a decreasing trend from exponential to stationary phase in all culture conditions tested. The absolute quantities of intracellular sxtA1 and sxtG mRNA were not correlated with the amount of intracellular toxins in the analysed A. minutum suggesting that the production of toxins may be regulated by post-transcriptional mechanisms and/or by the concerted actions of alternative genes belonging to the PST biosynthesis gene cluster. Therefore, it is likely that the sxtA1 and sxtG gene expression could not reflect the PST accumulation in the Mediterranean A. minutum populations under the examined standard and nutrient limiting conditions.

  2. The death mechanism of the harmful algal bloom species Alexandrium tamarense induced by algicidal bacterium Deinococcus sp. Y35

    Directory of Open Access Journals (Sweden)

    Yi eLi

    2015-09-01

    Full Text Available Abstract: Harmful algal blooms (HABs cause a variety of deleterious effects on aquatic ecosystems, especially the toxic dinoflagellate Alexandrium tamarense, which poses a serious threat to marine economic and human health based on releasing paralytic shellfish poison into the environment. The algicidal bacterium Deinococcus sp. Y35 which can induce growth inhibition on A. tamarense was used to investigate the functional mechanism. The growth status, reactive oxygen species (ROS content, photosynthetic system and the nuclear system of algal cells were determined under algicidal activity. A culture of strain Y35 not only induced overproduction of ROS in algal cells within only 0.5 h of treatment, also decrease the total protein content as well as the response of the antioxidant enzyme. Meanwhile, lipid peroxidation was induced and cell membrane integrity was lost. Photosynthetic pigments including chlorophyll a and carotenoid decreased along with the photosynthetic efficiency being significantly inhibited. At the same time, photosynthesis-related gene expression showed down-regulation. More than, the destruction of cell nuclear structure and inhibition of proliferating cell nuclear antigen related gene expression were confirmed. The potential functional mechanism of the algicidal bacterium on A. tamarense was investigated and provided a novel viewpoint which could be used in HABs control.

  3. The death mechanism of the harmful algal bloom species Alexandrium tamarense induced by algicidal bacterium Deinococcus sp. Y35.

    Science.gov (United States)

    Li, Yi; Zhu, Hong; Lei, Xueqian; Zhang, Huajun; Cai, Guanjing; Chen, Zhangran; Fu, Lijun; Xu, Hong; Zheng, Tianling

    2015-01-01

    Harmful algal blooms (HABs) cause a variety of deleterious effects on aquatic ecosystems, especially the toxic dinoflagellate Alexandrium tamarense, which poses a serious threat to marine economic and human health based on releasing paralytic shellfish poison into the environment. The algicidal bacterium Deinococcus sp. Y35 which can induce growth inhibition on A. tamarense was used to investigate the functional mechanism. The growth status, reactive oxygen species (ROS) content, photosynthetic system and the nuclear system of algal cells were determined under algicidal activity. A culture of strain Y35 not only induced overproduction of ROS in algal cells within only 0.5 h of treatment, also decrease the total protein content as well as the response of the antioxidant enzyme. Meanwhile, lipid peroxidation was induced and cell membrane integrity was lost. Photosynthetic pigments including chlorophyll a and carotenoid decreased along with the photosynthetic efficiency being significantly inhibited. At the same time, photosynthesis-related gene expression showed down-regulation. More than, the destruction of cell nuclear structure and inhibition of proliferating cell nuclear antigen (PCNA) related gene expression were confirmed. The potential functional mechanism of the algicidal bacterium on A. tamarense was investigated and provided a novel viewpoint which could be used in HABs control.

  4. RNA Sequencing Revealed Numerous Polyketide Synthase Genes in the Harmful Dinoflagellate Karenia mikimotoi.

    Directory of Open Access Journals (Sweden)

    Kei Kimura

    Full Text Available The dinoflagellate Karenia mikimotoi forms blooms in the coastal waters of temperate regions and occasionally causes massive fish and invertebrate mortality. This study aimed to elucidate the toxic effect of K. mikimotoi on marine organisms by using the genomics approach; RNA-sequence libraries were constructed, and data were analyzed to identify toxin-related genes. Next-generation sequencing produced 153,406 transcript contigs from the axenic culture of K. mikimotoi. BLASTX analysis against all assembled contigs revealed that 208 contigs were polyketide synthase (PKS sequences. Thus, K. mikimotoi was thought to have several genes encoding PKS metabolites and to likely produce toxin-like polyketide molecules. Of all the sequences, approximately 30 encoded eight PKS genes, which were remarkably similar to those of Karenia brevis. Our phylogenetic analyses showed that these genes belonged to a new group of PKS type-I genes. Phylogenetic and active domain analyses showed that the amino acid sequence of four among eight Karenia PKS genes was not similar to any of the reported PKS genes. These PKS genes might possibly be associated with the synthesis of polyketide toxins produced by Karenia species. Further, a homology search revealed 10 contigs that were similar to a toxin gene responsible for the synthesis of saxitoxin (sxtA in the toxic dinoflagellate Alexandrium fundyense. These contigs encoded A1-A3 domains of sxtA genes. Thus, this study identified some transcripts in K. mikimotoi that might be associated with several putative toxin-related genes. The findings of this study might help understand the mechanism of toxicity of K. mikimotoi and other dinoflagellates.

  5. Zooplankton Community Grazing Impact on a Toxic Bloom of Alexandrium fundyense in the Nauset Marsh System, Cape Cod, Massachusetts, USA

    Science.gov (United States)

    Petitpas, Christian M.; Turner, Jefferson T.; Keafer, Bruce A.; McGillicuddy, Dennis J.; Anderson, Donald M.

    2016-01-01

    Embayments and salt ponds along the coast of Massachusetts can host localized blooms of the toxic dinoflagellate Alexandrium fundyense. One such system, exhibiting a long history of toxicity and annual closures of shellfish beds, is the Nauset Marsh System (NMS) on Cape Cod. In order measure net growth rates of natural A. fundyense populations in the NMS during spring 2012, incubation experiments were conducted on seawater samples from two salt ponds within the NMS (Salt Pond and Mill Pond). Seawater samples containing natural populations of grazers and A. fundyense were incubated at ambient temperatures. Concentrations of A. fundyense after incubations were compared to initial abundances to determine net increases from population growth, or decreases presumed to be primarily due to grazing losses. Abundances of both microzooplankton (ciliates, rotifers, copepod nauplii and heterotrophic dinoflagellates) and mesozooplankton (copepodites and adult copepods, marine cladocerans, and meroplankton) grazers were also determined. This study documented net growth rates that were highly variable throughout the bloom, calculated from weekly bloom cell counts from the start of sampling to bloom peak in both ponds (Mill Pond range = 0.12 – 0.46 d−1; Salt Pond range = −0.02 – 0.44 d−1). Microzooplankton grazers that were observed with ingested A. fundyense cells included polychaete larvae, rotifers, tintinnids, and heterotrophic dinoflagellates of the genera Polykrikos and Gymnodinium. Significant A. fundyense net growth was observed in two incubation experiments, and only a single experiment exhibited significant population losses. For the majority of experiments, due to high variability in data, net changes in A. fundyense abundance were not significant after the 24-hr incubations. However, experimental net growth rates through bloom peak were not statistically distinguishable from estimated long-term average net growth rates of natural populations in each pond

  6. Putting the N in dinoflagellates

    Directory of Open Access Journals (Sweden)

    Steve eDagenais-Bellefeuille

    2013-12-01

    Full Text Available The cosmopolitan presence of dinoflagellates in aquatic habitats is now believed to be a direct consequence of the different trophic modes they have developed through evolution. While heterotrophs ingest food and photoautotrophs photosynthesize, mixotrophic species are able to use both strategies to harvest energy and nutrients. These different trophic modes are of particular importance when nitrogen nutrition is considered. Nitrogen is required for the synthesis of amino acids, nucleic acids, chlorophylls, and toxins, and thus changes in the concentrations of various nitrogenous compounds can strongly affect both primary and secondary metabolism. For example, high nitrogen concentration is correlated with rampant cell division resulting in the formation of the algal blooms commonly called red tides. Conversely, nitrogen starvation results in cell cycle arrest and induces a series of physiological, behavioral and transcriptomic modifications to ensure survival. This review will combine physiological, biochemical and transcriptomic data to assess the mechanism and impact of nitrogen metabolism in dinoflagellates and to compare the dinoflagellate responses with those of diatoms.

  7. Short-Term Behavioural Responses of the Great Scallop Pecten maximus Exposed to the Toxic Alga Alexandrium minutum Measured by Accelerometry and Passive Acoustics.

    Science.gov (United States)

    Coquereau, Laura; Jolivet, Aurélie; Hégaret, Hélène; Chauvaud, Laurent

    2016-01-01

    Harmful algal blooms produced by toxic dinoflagellates have increased worldwide, impacting human health, the environment, and fisheries. Due to their potential sensitivity (e.g., environmental changes), bivalves through their valve movements can be monitored to detect harmful algal blooms. Methods that measure valve activity require bivalve-attached sensors and usually connected cables to data transfers, leading to stress animals and limit the use to sessile species. As a non-intrusive and continuously deployable tool, passive acoustics could be an effective approach to detecting harmful algal blooms in real time based on animal sound production. This study aimed to detect reaction changes in the valve movements of adult Pecten maximus exposed to the toxic dinoflagellate Alexandrium minutum using both accelerometry and passive acoustic methods. Scallops were experimentally exposed to three ecologically relevant concentrations of A. minutum for 2 hours. The number of each type of valve movement and their sound intensity, opening duration, and valve-opening amplitude were measured. Four behaviours were identified: closures, expulsion, displacement, and swimming. The response of P. maximus to A. minutum occurred rapidly at a high concentration. The valve activity of P. maximus was different when exposed to high concentrations (500 000 cells L-1) of A. minutum compared to the non-toxic dinoflagellate Heterocapsa triquetra; the number of valve movements increased, especially closure and expulsion, which were detected acoustically. Thus, this study demonstrates the potential for acoustics and sound production changes in the detection of harmful algal blooms. However, field trials and longer duration experiments are required to provide further evidence for the use of acoustics as a monitoring tool in the natural environment where several factors may interfere with valve behaviours.

  8. Short-Term Behavioural Responses of the Great Scallop Pecten maximus Exposed to the Toxic Alga Alexandrium minutum Measured by Accelerometry and Passive Acoustics.

    Directory of Open Access Journals (Sweden)

    Laura Coquereau

    Full Text Available Harmful algal blooms produced by toxic dinoflagellates have increased worldwide, impacting human health, the environment, and fisheries. Due to their potential sensitivity (e.g., environmental changes, bivalves through their valve movements can be monitored to detect harmful algal blooms. Methods that measure valve activity require bivalve-attached sensors and usually connected cables to data transfers, leading to stress animals and limit the use to sessile species. As a non-intrusive and continuously deployable tool, passive acoustics could be an effective approach to detecting harmful algal blooms in real time based on animal sound production. This study aimed to detect reaction changes in the valve movements of adult Pecten maximus exposed to the toxic dinoflagellate Alexandrium minutum using both accelerometry and passive acoustic methods. Scallops were experimentally exposed to three ecologically relevant concentrations of A. minutum for 2 hours. The number of each type of valve movement and their sound intensity, opening duration, and valve-opening amplitude were measured. Four behaviours were identified: closures, expulsion, displacement, and swimming. The response of P. maximus to A. minutum occurred rapidly at a high concentration. The valve activity of P. maximus was different when exposed to high concentrations (500 000 cells L-1 of A. minutum compared to the non-toxic dinoflagellate Heterocapsa triquetra; the number of valve movements increased, especially closure and expulsion, which were detected acoustically. Thus, this study demonstrates the potential for acoustics and sound production changes in the detection of harmful algal blooms. However, field trials and longer duration experiments are required to provide further evidence for the use of acoustics as a monitoring tool in the natural environment where several factors may interfere with valve behaviours.

  9. Impacts of metal contamination and eutrophication on dinoflagellate cyst assemblages along the Guangdong coast of southern China.

    Science.gov (United States)

    Lu, Xinxin; Wang, Zhaohui; Guo, Xin; Gu, Yangguang; Liang, Weibiao; Liu, Lei

    2017-07-15

    Fifty-one surface sediment samples were collected from eleven sea areas along the Guangdong coast in southern China. Biogenic elements, metals and dinoflagellate cysts were analyzed. Twenty-one cyst taxa in 12 genera were identified. The cyst concentrations ranged between 14 and 250 cysts/g, with an average of 69 cysts/g. The low cyst production was caused by coarse sediments, high sedimentation rates, and high anthropogenic disturbances. Biogenic elements were comparable with those reported. However, the metal concentrations were far lower than the sediment quality guidelines. Both biogenic elements and metals were higher in the Mid Coast and lower in the Western Coast. Eutrophication slightly enhanced the productivity of autotrophic dinocysts, and cysts of Scrippsiella indicated eutrophication. Cd had inhibitory effects on cyst production. Alexandrium and Diplopsalis cysts were sensitive to metal contamination; however, Gyrodinium, Pheopolykrikos, and Lingulodinium cysts had high resistance to metal contamination. Copyright © 2017. Published by Elsevier Ltd.

  10. The influence of extracellular compounds produced by selected Baltic cyanobacteria, diatoms and dinoflagellates on growth of green algae Chlorella vulgaris

    Science.gov (United States)

    Żak, Adam; Kosakowska, Alicja

    2015-12-01

    Secondary metabolites produced by bacteria, fungi, algae and plants could affect the growth and development of biological and agricultural systems. This natural process that occurs worldwide is known as allelopathy. The main goal of this work was to investigate the influence of metabolites obtained from phytoplankton monocultures on the growth of green algae Chlorella vulgaris. We selected 6 species occurring in the Baltic Sea from 3 different taxonomic groups: cyanobacteria (Aphanizomenon flos-aquae; Planktothrix agardhii), diatoms (Thalassiosira pseudonana; Chaetoceros wighamii) and dinoflagellates (Alexandrium ostenfeldii; Prorocentrum minimum). In this study we have demonstrated that some of selected organisms caused allelopathic effects against microalgae. Both the negative and positive effects of collected cell-free filtrates on C. vulgaris growth, chlorophyll a concentration and fluorescence parameters (OJIP, QY, NPQ) have been observed. No evidence has been found for the impact on morphology and viability of C. vulgaris cells.

  11. Morphological identification of Alexandrium species (Dinophyceae) from Jinhae-Masan Bay, Korea

    Science.gov (United States)

    Kim, Eun Song; Li, Zhun; Oh, Seok Jin; Yoon, Yang Ho; Shin, Hyeon Ho

    2017-09-01

    Outbreaks of paralytic shellfish poisoning (PSP) and dense blooms caused by Alexandrium species in Jinhae-Masan Bay, Korea have been nearly annual events for many years. However, excluding some Alexandrium species responsible for PSP, there are no critical reports on the morphology of Alexandrium species in this bay. To identify the Alexandrium species based on detailed morphological features, vegetative cells collected water samples and established by the incubation of resting cysts isolated from sediment trap samples were analyzed. Four species of Alexandrium were identified: Alexandrium affine, A. fundyense, A. catenella, and A. insuetum. Morphological features of these species were basically consistent with those outlined in previous studies. However, the ventral pore and the connecting pore on the sulcal plate, which have been accepted as diagnostic characteristics for the identification of A. fundyense and A. catenella, need to be reevaluated, indicating that useful morphological features for identifying these two species should be recommended to avoid confusion in the classification of species in genus Alexandrium.

  12. Evidence of increased toxic Alexandrium tamarense dinoflagellate blooms in the eastern Bering Sea in the summers of 2004 and 2005.

    Directory of Open Access Journals (Sweden)

    Masafumi Natsuike

    Full Text Available The eastern Bering Sea has a vast continental shelf, which contains various endangered marine mammals and large fishery resources. Recently, high numbers of toxic A. tamarense resting cysts were found in the bottom sediment surface of the eastern Bering Sea shelf, suggesting that the blooms have recently occurred. However, little is known about the presence of A. tamarense vegetative cells in the eastern Bering Sea. This study's goals were to detect the occurrence of A. tamarense vegetative cells on the eastern Bering Sea shelf and to find a relationship between environmental factors and their presence. Inter-annual field surveys were conducted to detect A. tamarense cells and environmental factors, such as nutrients, salinity, chlorophyll a, and water temperature, along a transect line on the eastern Bering Sea shelf during the summers of 2004, 2005, 2006, 2009, 2012, and 2013. A. tamarense vegetative cells were detected during every sampling year, and their quantities varied greatly from year to year. The maximum cell densities of A. tamarense observed during the summers of 2004 and 2005 were much higher than the Paralytic shellfish poisoning warning levels, which are greater than 100-1,000 cells L-1, in other subarctic areas. Lower quantities of the species occurred during the summers of 2009, 2012, and 2013. A significant positive correlation between A. tamarense quantity and water temperature and significant negative correlations between A. tamarense quantity and nutrient concentrations (of phosphate, silicate, and nitrite and nitrate were detected in every sampling period. The surface- and bottom-water temperatures varied significantly from year to year, suggesting that water temperatures, which have been known to affect the cell growth and cyst germination of A. tamarense, might have affected the cells' quantities in the eastern Bering Sea each summer. Thus, an increase in the Bering Sea shelf's water temperature during the summer will increase the frequency and scale of toxic blooms and the toxin contamination of plankton feeders. This poses serious threats to humans and the marine ecosystem.

  13. Blooms of the Toxic Dinoflagellate Alexandrium fundyense in the Gulf of Maine: Investigations Using a Physical-Biological Model

    Science.gov (United States)

    2005-02-01

    M. R., 1983. 25 years of algal growth kinetic, a personal view. Botanica Marina 26, 99-112. Eppley, R. W., Rogers, J. N., McCarthy, J. J., 1969. Half...kinetic, a personal view. Botanica Marina 26, 99-112. Eppley, R. W., Rogers, J. N., McCarthy, J. J., 1969. Half-saturation constants for uptake of

  14. Diversity and Divergence of Dinoflagellate Histone Proteins.

    Science.gov (United States)

    Marinov, Georgi K; Lynch, Michael

    2015-12-08

    Histone proteins and the nucleosomal organization of chromatin are near-universal eukaroytic features, with the exception of dinoflagellates. Previous studies have suggested that histones do not play a major role in the packaging of dinoflagellate genomes, although several genomic and transcriptomic surveys have detected a full set of core histone genes. Here, transcriptomic and genomic sequence data from multiple dinoflagellate lineages are analyzed, and the diversity of histone proteins and their variants characterized, with particular focus on their potential post-translational modifications and the conservation of the histone code. In addition, the set of putative epigenetic mark readers and writers, chromatin remodelers and histone chaperones are examined. Dinoflagellates clearly express the most derived set of histones among all autonomous eukaryote nuclei, consistent with a combination of relaxation of sequence constraints imposed by the histone code and the presence of numerous specialized histone variants. The histone code itself appears to have diverged significantly in some of its components, yet others are conserved, implying conservation of the associated biochemical processes. Specifically, and with major implications for the function of histones in dinoflagellates, the results presented here strongly suggest that transcription through nucleosomal arrays happens in dinoflagellates. Finally, the plausible roles of histones in dinoflagellate nuclei are discussed. Copyright © 2016 Marinov and Lynch.

  15. Diversity and Divergence of Dinoflagellate Histone Proteins

    Directory of Open Access Journals (Sweden)

    Georgi K. Marinov

    2016-02-01

    Full Text Available Histone proteins and the nucleosomal organization of chromatin are near-universal eukaroytic features, with the exception of dinoflagellates. Previous studies have suggested that histones do not play a major role in the packaging of dinoflagellate genomes, although several genomic and transcriptomic surveys have detected a full set of core histone genes. Here, transcriptomic and genomic sequence data from multiple dinoflagellate lineages are analyzed, and the diversity of histone proteins and their variants characterized, with particular focus on their potential post-translational modifications and the conservation of the histone code. In addition, the set of putative epigenetic mark readers and writers, chromatin remodelers and histone chaperones are examined. Dinoflagellates clearly express the most derived set of histones among all autonomous eukaryote nuclei, consistent with a combination of relaxation of sequence constraints imposed by the histone code and the presence of numerous specialized histone variants. The histone code itself appears to have diverged significantly in some of its components, yet others are conserved, implying conservation of the associated biochemical processes. Specifically, and with major implications for the function of histones in dinoflagellates, the results presented here strongly suggest that transcription through nucleosomal arrays happens in dinoflagellates. Finally, the plausible roles of histones in dinoflagellate nuclei are discussed.

  16. A quantitative real-time PCR assay for the identification and enumeration of Alexandrium cysts in marine sediments

    Science.gov (United States)

    Erdner, D. L.; Percy, L.; Keafer, B.; Lewis, J.; Anderson, D. M.

    2010-02-01

    Harmful algal blooms (HABs) are a global problem that affects both human and ecosystem health. One of the most serious and widespread HAB poisoning syndromes is paralytic shellfish poisoning, commonly caused by Alexandrium spp. dinoflagellates. Like many toxic dinoflagellates, Alexandrium produces resistant resting cysts as part of its life cycle. These cysts play a key role in bloom initiation and decline, as well as dispersal and colonization of new areas. Information on cyst numbers and identity is essential for understanding and predicting blooms, yet comprehensive cyst surveys are extremely time- and labor-intensive. Here we describe the development and validation of a quantitative real-time PCR (qPCR) technique for the enumeration of cysts of A. tamarense of the toxic North American/Group I ribotype. The method uses a cloned fragment of the large subunit ribosomal RNA gene as a standard for cyst quantification, with an experimentally determined conversion factor of 28,402±6152 LSU ribosomal gene copies per cyst. Tests of DNA extraction and PCR efficiency show that mechanical breakage is required for adequate cyst lysis, and that it was necessary to dilute our DNA extracts 50-fold in order to abolish PCR inhibition from compounds co-extracted from the sediment. The resulting assay shows a linear response over 6 orders of magnitude and can reliably quantify ≥10 cysts/cm 3 sediment. For method validation, 129 natural sediment samples were split and analyzed in parallel, using both the qPCR and primulin-staining techniques. Overall, there is a significant correlation ( p<0.001) between the cyst abundances determined by the two methods, although the qPCR counts tend to be lower than the primulin values. This underestimation is less pronounced in those samples collected from the top 1 cm of sediment, and more pronounced in those derived from the next 1-3 cm of the core. These differences may be due to the condition of the cysts in the different layers, as the

  17. Effect of Alexandrium tamarense on three bloom-forming algae

    Science.gov (United States)

    Yin, Juan; Xie, Jin; Yang, Weidong; Li, Hongye; Liu, Jiesheng

    2010-07-01

    We investigated the allelopathic properties of Alexandrium tamarense (Laboar) Balech on the growth of Prorocentrum donghaiense Lu, Chattonella marina (Subrahmanyan) Hara et Chihara and Heterosigma akashiwo (Hada) Hada in a laboratory experiment. We examined the growth of A. tamarense, C. marina, P. donghaiense and H. Akashiwo in co-cultures and the effect of filtrates from A. tamarense cultures in various growth phases, on the three harmful algal bloom (HAB)-forming algae. In co-cultures with A. tamarense, both C. marina and H. akashiwo were dramatically suppressed at high cell densities; in contrast, the growth of P. donghaiense varied in different inoculative ratios of A. tamarense and P. donghaiense. When the ratio was 1:1 ( P. donghaiense: A. tamarense), growth of P. donghaiense was inhibited considerably, while the growth of P. donghaiense was almost the same as that of the control when the ratio was 9:1. The growth difference of P. donghaiense, C. marina and H. akashiwo when co-cultured with A. tamarense indicated that the allelopathic effect may be one of the important factors in algal competition and phytoplankton succession involving A. tamarense. In addition, the filtrate from A. tamarense culture had negative impacts on these three HAB algae, and such inhibition varied with different growth phases of A. tamarense in parallel with reported values of PSP toxin content in Alexandrium cells. This implied that PSP toxin was possibly involved in allelopathy of A. tamarense. However, the rapid decomposition and inactivation of PSP toxin above pH 7 weakened this possibility. Further studies on the allelochemicals responsible for the allelopathy of A. tamarense need to be carried out in future.

  18. Combined Effects of Ocean Acidification and Light or Nitrogen Availabilities on 13C Fractionation in Marine Dinoflagellates.

    Directory of Open Access Journals (Sweden)

    Mirja Hoins

    Full Text Available Along with increasing oceanic CO2 concentrations, enhanced stratification constrains phytoplankton to shallower upper mixed layers with altered light regimes and nutrient concentrations. Here, we investigate the effects of elevated pCO2 in combination with light or nitrogen-limitation on 13C fractionation (εp in four dinoflagellate species. We cultured Gonyaulax spinifera and Protoceratium reticulatum in dilute batches under low-light ('LL' and high-light ('HL' conditions, and grew Alexandrium fundyense and Scrippsiella trochoidea in nitrogen-limited continuous cultures ('LN' and nitrogen-replete batches ('HN'. The observed CO2-dependency of εp remained unaffected by the availability of light for both G. spinifera and P. reticulatum, though at HL εp was consistently lower by about 2.7‰ over the tested CO2 range for P. reticulatum. This may reflect increased uptake of (13C-enriched bicarbonate fueled by increased ATP production under HL conditions. The observed CO2-dependency of εp disappeared under LN conditions in both A. fundyense and S. trochoidea. The generally higher εp under LN may be associated with lower organic carbon production rates and/or higher ATP:NADPH ratios. CO2-dependent εp under non-limiting conditions has been observed in several dinoflagellate species, showing potential for a new CO2-proxy. Our results however demonstrate that light- and nitrogen-limitation also affect εp, thereby illustrating the need to carefully consider prevailing environmental conditions.

  19. Dinoflagellate cyst abundance is positively correlated to sediment organic carbon in Sydney Harbour and Botany Bay, NSW, Australia.

    Science.gov (United States)

    Tian, Chang; Doblin, Martina A; Dafforn, Katherine A; Johnston, Emma L; Pei, Haiyan; Hu, Wenrong

    2018-02-01

    There is growing public concern about the global expansion of harmful algal bloom species (HABs), with dinoflagellate microalgae comprising the major portion of the harmful taxa. These motile, unicellular organisms have a lifecycle involving sexual reproduction and resting cyst formation whereby cysts can germinate from sediments and 'seed' planktonic populations. Thus, investigation of dinoflagellate cyst (dinocyst) distribution in sediments can provide significant insights into HAB dynamics and contribute to indices of habitat quality. Species composition and abundance of dinocysts in relation to sediment characteristics were studied at 18 stations in two densely populated temperate Australian estuaries, Sydney Harbour (Parramatta River/Port Jackson; PS) and Botany Bay (including Georges River; GB). Eighteen dinocyst taxa were identified, dominated by Protoceratium reticulatum and Gonyaulax sp.1 in the PS estuary, together with Archaeperidinium minutum and Gonyaulax sp.1 in the GB estuary. Cysts of Alexandrium catenella, which is one of the causative species of paralytic shellfish poisoning (PSP), were also detected in both estuaries. Out of the measured sediment characteristics (TOC, Cd, Cr, Cu, Fe, Pb, Mn, Ni, Zn and polycyclic aromatic hydrocarbons), TOC was the parameter explaining most of the variation in dinocyst assemblages and was positively correlated to most of the heavy metals. Given the significant relationship between sediment TOC and dinocyst abundance and heavy metal concentrations, this study suggests that sediment TOC could be broadly used in risk management for potential development of algal blooms and sediment contamination in these estuaries.

  20. Germination fluctuation of toxic Alexandrium fundyense and A. pacificum cysts and the relationship with bloom occurrences in Kesennuma Bay, Japan.

    Science.gov (United States)

    Natsuike, Masafumi; Yokoyama, Katsuhide; Nishitani, Goh; Yamada, Yuichiro; Yoshinaga, Ikuo; Ishikawa, Akira

    2017-02-01

    While cyst germination may be an important factor for the initiation of harmful/toxic blooms, assessments of the fluctuation in phytoplankton cyst germination, from bottom sediments to water columns, are rare in situ due to lack of technology that can detect germinated cells in natural bottom sediments. This study introduces a simple mesocosm method, modeled after previous in situ methods, to measure the germination of plankton resting stage cells. Using this method, seasonal changes in germination fluxes of toxic dinoflagellates resting cysts, specifically Alexandrium fundyense (A. tamarense species complex Group I) and A. pacificum (A. tamarense species complex Group IV), were investigated at a fixed station in Kesennuma Bay, northeast Japan, from April 2014 to April 2015. This investigation was conducted in addition to the typical samplings of seawater and bottom sediments to detect the dinoflagellates vegetative cells and resting cysts. Bloom occurrences of A. fundyense were observed June 2014 and February 2015 with maximum cell densities reaching 3.6×106 cells m-2 and 1.4×107 cells m-2, respectively. The maximum germination fluxes of A. fundyense cysts occurred in April 2014 and December 2014 and were 9.3×103 cells m-2day-1 and 1.4×104 cells m-2day-1, respectively. For A. pacificum, the highest cell density was 7.3×107 cells m-2 during the month of August, and the maximum germination fluxes occurred in July and August, reaching 5.8×102 cells m-2day-1. Thus, this study revealed the seasonal dynamics of A. fundyense and A. pacificum cyst germination and their bloom occurrences in the water column. Blooms occurred one to two months after peak germination, which strongly suggests that both the formation of the initial population by cyst germination and its continuous growth in the water column most likely contributed to toxic bloom occurrences of A. fundyense and A. pacificum in the bay. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Patterns of paralytic shellfish toxicity in the St. Lawrence region in relationship with the abundance and distribution of Alexandrium tamarense

    Directory of Open Access Journals (Sweden)

    Dolors Blasco

    2003-09-01

    Full Text Available Shellfish toxin data from 11 years and Alexandrium tamarense abundance during 6 of those years are analysed. Comparison of PSP toxicity in Mytilus edulis with PSP toxicity in Mya arenaria shows a significant correlation (r2=0.61, with M. edulis being five times more toxic. The results support using M. edulis as a sentinel species for shellfish toxicity in the St. Lawrence region. High interannual variability was found in the PSP and A. tamarense data, but no trends were manifest. Correlation analysis revealed clearly defined geographical station groups. These groups were characterised by seasonal distributions and outbreak times, and were associated with the surface seawater circulation. The results indicate blooms spreading from the open Gulf, upstream toward the Estuary. Since the spring bloom also spreads upstream, we hypothesise that the A. tamarense bloom is just one of the steps in the traditional phytoplankton succession diatoms-dinoflagellates-small flagellates, which is controlled by the classic oceanographic processes of nutrient depletion and water column stratification. A. tamarense distribution over the entire sampled area was similar to the PSP toxicity in M. edulis. In 1993, 59% of PSP variability was explained by A. tamarense. Furthermore, mussel toxin rises with increasing A. tamarense concentration. Shellfish contamination starts as soon as A. tamarense is present in the water. In addition, detoxification starts when A. tamarense decreases below the level of detection. However, the most important finding of this study is that only 1000 A. tamarense cells per litre are sufficient to raise the toxin in the mussels to the level (80 µg STX eq/100 g tissue at which the closure of shellfish harvesting activities is obligatory.

  2. Functional Genomics of a Non-Toxic Alexandrium Lusitanicum Culture

    Science.gov (United States)

    2007-02-01

    analysis of dinoflagellate cultures maintained in the Laboratorio de Microbiologia Experimental (Portugal) culture collection revealed that a culture...Hole Oceanographic Institution, Woods Hole, MA 02543, USA řLaboratc;rio de Microbiologia e Ecotoxicologia-CQH. Instituto Nacional de Sadde Dr Ricardo...maintained be true for other toxic marine algae, although there are a at the Laborat6rio de Microbiologia e Ecotoxicologia in few exceptions. There are, for

  3. Newly discovered role of the heterotrophic nanoflagellate Katablepharis japonica, a predator of toxic or harmful dinoflagellates and raphidophytes.

    Science.gov (United States)

    Kwon, Ji Eun; Jeong, Hae Jin; Kim, So Jin; Jang, Se Hyeon; Lee, Kyung Ha; Seong, Kyeong Ah

    2017-09-01

    Heterotrophic nanoflagellates are ubiquitous and known to be major predators of bacteria. The feeding of free-living heterotrophic nanoflagellates on phytoplankton is poorly understood, although these two components usually co-exist. To investigate the feeding and ecological roles of major heterotrophic nanoflagellates Katablepharis spp., the feeding ability of Katablepharis japonica on bacteria and phytoplankton species and the type of the prey that K. japonica can feed on were explored. Furthermore, the growth and ingestion rates of K. japonica on the dinoflagellate Akashiwo sanguinea-a suitable algal prey item-heterotrophic bacteria, and the cyanobacteria Synechococcus sp., as a function of prey concentration were determined. Among the prey tested, K. japonica ingested heterotrophic bacteria, Synechococcus sp., the prasinophyte Pyramimonas sp., the cryptophytes Rhodomonas salina and Teleaulax sp., the raphidophytes Heterosigma akashiwo and Chattonella ovata, the dinoflagellates Heterocapsa rotundata, Amphidinium carterae, Prorocentrum donghaiense, Alexandrium minutum, Cochlodinium polykrikoides, Gymnodinium catenatum, A. sanguinea, Coolia malayensis, and the ciliate Mesodinium rubrum, however, it did not feed on the dinoflagellates Alexandrium catenella, Gambierdiscus caribaeus, Heterocapsa triquetra, Lingulodinium polyedra, Prorocentrum cordatum, P. micans, and Scrippsiella acuminata and the diatom Skeletonema costatum. Many K. japonica cells attacked and ingested a prey cell together after pecking and rupturing the surface of the prey cell and then uptaking the materials that emerged from the ruptured cell surface. Cells of A. sanguinea supported positive growth of K. japonica, but neither heterotrophic bacteria nor Synechococcus sp. supported growth. The maximum specific growth rate of K. japonica on A. sanguinea was 1.01 d(-1). In addition, the maximum ingestion rate of K. japonica for A. sanguinea was 0.13ngC predator(-1)d(-1) (0.06 cells predator(-1)d(-1

  4. Discovery of an algicidal compound from Brevibacterium sp. BS01 and its effect on a harmful algal bloom-causing species, Alexandrium tamarense.

    Science.gov (United States)

    An, Xinli; Zhang, Bangzhou; Zhang, Huajun; Li, Yi; Zheng, Wei; Yu, Zhiming; Fu, Lijun; Zheng, Tianling

    2015-01-01

    Blooms of the dinoflagellate Alexandrium tamarense have become worldwide phenomena and have detrimental impacts on aquatic ecosystems and human health. In this study, a culture supernatant of the marine actinomycete BS01 exerted a strong algicidal effect on A. tamarense (ATGD98-006). The target algicide from BS01 was separated by adsorption chromatography and identified by MALDI-TOF-MS and NMR analysis. The results suggested that the purified algicidal component corresponded to a hydrophobic compound (2-isobutoxyphenyl)amine (C10H15NO) with a molecular weight of 165 Da, which exhibited a significant algicidal effect (64.5%) on A. tamarense. After incubation in 5 μg/mL of (2-isobutoxyphenyl)amine for 24 h, the algae lost mobility and sank to the bottom of the flasks, and 56.5% of the algae cells lost vitality at a concentration of 20 μg/mL (p algal nucleus was also severely damaged and eventually degraded due to exposure to the algicidal compound. All of the results indicate that (2-isobutoxyphenyl)amine from the actinomycete might be a candidate for the control of bloom-forming A. tamarense.

  5. Dinoflagellates in a mesotrophic, tropical environment influenced by monsoon

    Digital Repository Service at National Institute of Oceanography (India)

    DeCosta, P.M.; Anil, A.C.; Patil, J.S.; Hegde, S.; DeSilva, M.S.; Chourasia, M.

    . Heterotrophic dinoflagellates were abundant in the water column as well as sediment. A seasonal cycling between vegetative and resting cysts of autotrophic and heterotrophic dinoflagellates governed by the environmental characteristics of the study area...

  6. Cell Biology of Cnidarian-Dinoflagellate Symbiosis

    Science.gov (United States)

    Allemand, Denis; Weis, Virginia M.

    2012-01-01

    Summary: The symbiosis between cnidarians (e.g., corals or sea anemones) and intracellular dinoflagellate algae of the genus Symbiodinium is of immense ecological importance. In particular, this symbiosis promotes the growth and survival of reef corals in nutrient-poor tropical waters; indeed, coral reefs could not exist without this symbiosis. However, our fundamental understanding of the cnidarian-dinoflagellate symbiosis and of its links to coral calcification remains poor. Here we review what we currently know about the cell biology of cnidarian-dinoflagellate symbiosis. In doing so, we aim to refocus attention on fundamental cellular aspects that have been somewhat neglected since the early to mid-1980s, when a more ecological approach began to dominate. We review the four major processes that we believe underlie the various phases of establishment and persistence in the cnidarian/coral-dinoflagellate symbiosis: (i) recognition and phagocytosis, (ii) regulation of host-symbiont biomass, (iii) metabolic exchange and nutrient trafficking, and (iv) calcification. Where appropriate, we draw upon examples from a range of cnidarian-alga symbioses, including the symbiosis between green Hydra and its intracellular chlorophyte symbiont, which has considerable potential to inform our understanding of the cnidarian-dinoflagellate symbiosis. Ultimately, we provide a comprehensive overview of the history of the field, its current status, and where it should be going in the future. PMID:22688813

  7. Kleptoplast Regulation by an Antarctic Dinoflagellate

    Science.gov (United States)

    Gast, R. J.; Hehenberger, E.; Keeling, P.

    2016-02-01

    We are studying the evolutionary history and expression of plastid- targeted genes in an Antarctic dinoflagellate that steals chloroplasts from the haptophyte, Phaeocystis. Our project seeks to determine whether the kleptoplastidic dinoflagellate utilizes ancestral plastid proteins to regulate its stolen plastid, and how their transcription is related to environmental factors that are relevant to the Southern Ocean environment (temperature and light). To accomplish our goals, we have utilized high throughput transciptome analysis and RNA-Seq experiments of the dinoflagellate and Phaeocystis. Analysis of the dinoflagellate transcriptome has revealed complete mevalonic acid-independent and heme plastid-associated pathways as well as petF and petH transcripts with peridinin-plastid targeting sequences. In contrast, the proteins psaE, petJ, petC show similarity to non-Phaeocystis haptophyte homologs in their respective trees, and potentially carry haptophyte transit peptides. Anaylsis of RNA-Seq temperature and light experiments for the dinoflagellate indicate that there are significant differences in gene expression under the different environmental conditions, and we are in the process of identifying the genes associated with these changes. This work will help us to understand the environmental success of this alternative nutritional strategy.

  8. Bioluminescence in Dinoflagellates: Evidence that the Adaptive Value of Bioluminescence in Dinoflagellates is Concentration Dependent.

    Science.gov (United States)

    Hanley, Karen A; Widder, Edith A

    2017-03-01

    Three major hypotheses have been proposed to explain why dinoflagellate bioluminescence deters copepod grazing: startle response, aposematic warning, and burglar alarm. These hypotheses propose dinoflagellate bioluminescence (A) startles predatory copepods, (B) warns potential predators of toxicity, and (C) draws the attention of higher order visual predators to the copepod's location. While the burglar alarm is the most commonly accepted hypothesis, it requires a high concentration of bioluminescent dinoflagellates to be effective, meaning the bioluminescence selective advantage at lower, more commonly observed, dinoflagellate concentrations may result from another function (e.g. startle response or aposematic warning). Therefore, a series of experiments was conducted to evaluate copepod grazing (Acartia tonsa) on bioluminescent dinoflagellates (during bioluminescent and nonbioluminescent phases, corresponding to night and day, respectively) at different concentrations (10, 1000, and 3000 cells mL-1 ), on toxic (Pyrodinium bahamense var. bahamense) and nontoxic (Lingulodinium polyedrum) bioluminescent dinoflagellates, and in the presence of nonluminescent diatoms (Thalassiosira eccentrica). Changes in copepod ingestion rates, clearance rates, and feeding preferences as a result of these experimental factors, particularly during the mixed trails with nonluminescent diatoms, indicate there is a concentration threshold at which the burglar alarm becomes effective and below which dinoflagellate bioluminescence functions as an aposematic warning. © 2017 The American Society of Photobiology.

  9. The Dinoflagellate Toxin 20-Methyl Spirolide-G Potently Blocks Skeletal Muscle and Neuronal Nicotinic Acetylcholine Receptors

    Directory of Open Access Journals (Sweden)

    Aurélie Couesnon

    2016-08-01

    Full Text Available The cyclic imine toxin 20-methyl spirolide G (20-meSPX-G, produced by the toxigenic dinoflagellate Alexandrium ostenfeldii/Alexandrium peruvianum, has been previously reported to contaminate shellfish in various European coastal locations, as revealed by mouse toxicity bioassay. The aim of the present study was to determine its toxicological profile and its molecular target selectivity. 20-meSPX-G blocked nerve-evoked isometric contractions in isolated mouse neuromuscular preparations, while it had no action on contractions elicited by direct electrical stimulation, and reduced reversibly nerve-evoked compound muscle action potential amplitudes in anesthetized mice. Voltage-clamp recordings in Xenopus oocytes revealed that 20-meSPX-G potently inhibited currents evoked by ACh on Torpedo muscle-type and human α7 nicotinic acetylcholine receptors (nAChR, whereas lower potency was observed in human α4β2 nAChR. Competition-binding assays showed that 20-meSPX-G fully displaced [3H]epibatidine binding to HEK-293 cells expressing the human α3β2 (Ki = 0.040 nM, whereas a 90-fold lower affinity was detected in human α4β2 nAChR. The spirolide displaced [125I]α-bungarotoxin binding to Torpedo membranes (Ki = 0.028 nM and in HEK-293 cells expressing chick chimeric α7-5HT3 nAChR (Ki = 0.11 nM. In conclusion, this is the first study to demonstrate that 20-meSPX-G is a potent antagonist of nAChRs, and its subtype selectivity is discussed on the basis of molecular docking models.

  10. Evolution and Distribution of Saxitoxin Biosynthesis in Dinoflagellates

    Directory of Open Access Journals (Sweden)

    Kjetill S. Jakobsen

    2013-08-01

    Full Text Available Numerous species of marine dinoflagellates synthesize the potent environmental neurotoxic alkaloid, saxitoxin, the agent of the human illness, paralytic shellfish poisoning. In addition, certain freshwater species of cyanobacteria also synthesize the same toxic compound, with the biosynthetic pathway and genes responsible being recently reported. Three theories have been postulated to explain the origin of saxitoxin in dinoflagellates: The production of saxitoxin by co-cultured bacteria rather than the dinoflagellates themselves, convergent evolution within both dinoflagellates and bacteria and horizontal gene transfer between dinoflagellates and bacteria. The discovery of cyanobacterial saxitoxin homologs in dinoflagellates has enabled us for the first time to evaluate these theories. Here, we review the distribution of saxitoxin within the dinoflagellates and our knowledge of its genetic basis to determine the likely evolutionary origins of this potent neurotoxin.

  11. Salinity effects on growth and toxin production in an Alexandrium ostenfeldii (Dinophyceae) isolate from The Netherlands

    NARCIS (Netherlands)

    Martens, Helge; Van de Waal, D.B.; Brandenburg, Karen M.; Krock, Bernd; Tillmann, U.

    2016-01-01

    Alexandrium ostenfeldii is among the most intensely studied marine planktonic dinophytes and in the last few years blooms have become a recurrent phenomenon mainly in brackish coastal waters. Since 2012, A. ostenfeldii recurs annually in the Ouwerkerkse Kreek, a Dutch brackish water creek

  12. Characterization of multiple isolates from an Alexandrium ostenfeldii bloom in The Netherlands

    NARCIS (Netherlands)

    Van de Waal, Dedmer B.; Tillmann, Urban; Martens, Helge; Krock, Bernd; van Scheppingen, Yvonne; John, Uwe

    2015-01-01

    Alexandrium ostenfeldii is an emerging harmful algal bloom species forming a global threat to coastal marine ecosystems, with consequences for fisheries and shellfish production. The Oosterschelde estuary is a shallow, macrotidal and mesotrophic estuary in the southwest of The Netherlands with large

  13. LIPID BIOMARKER ANALYSIS OF MARINE DINOFLAGELLATES

    Science.gov (United States)

    Many marine eukaryotic algae have been shown to possess characteristic chemotaxonomic lipid biomarkers. Dinoflagellates in particular are often characterized by the presence of sterols and pigments that are rarely found in other classes of algae. To evaluate the utility of chemic...

  14. Outbreeding lethality between toxic Group I and nontoxic Group III Alexandrium tamarense spp. isolates: Predominance of heterotypic encystment and implications for mating interactions and biogeography

    Science.gov (United States)

    Brosnahan, Michael L.; Kulis, David M.; Solow, Andrew R.; Erdner, Deana L.; Percy, Linda; Lewis, Jane; Anderson, Donald M.

    2010-02-01

    We report the zygotic encystment of geographically dispersed isolates in the dinoflagellate species complex Alexandrium tamarense, in particular, successful mating of toxic Group I and nontoxic Group III isolates. However, hypnozygotes produced in Group I/III co-cultures complete no more than three divisions after germinating. Previous reports have suggested a mate recognition mechanism whereby hypnozygotes produced in co-cultures could arise from either homotypic (inbred) or heterotypic (outbred) gamete pairs. To determine the extent to which each occurs, a nested PCR assay was developed to determine parentage of individual hypnozygotes. The vast majority of hypnozygotes from pairwise Group I/III co-cultures were outbred, so that inviability was a result of hybridization, not inbreeding. These findings support the assertion that complete speciation underlies the phylogenetic structure of the Alexandrium tamarense species complex. Additionally, the ribosomal DNA (rDNA) copy numbers of both hybrid and single ribotype hypnozygotes were reduced substantially from those of haploid motile cells. The destruction of rDNA loci may be crucial for the successful mating of genetically distant conjugants and appears integral to the process of encystment. The inviability of Group I/III hybrids is important for public health because the presence of hybrid cysts may indicate ongoing displacement of a nontoxic population by a toxic one (or vice versa). Hybrid inviability also suggests a bloom control strategy whereby persistent, toxic Group I blooms could be mitigated by introduction of nontoxic Group III cells. The potential for hybridization in nature was investigated by applying the nested PCR assay to hypnozygotes from Belfast Lough, Northern Ireland, a region where Group I and III populations co-occur. Two hybrid cysts were identified in 14 successful assays, demonstrating that Group I and III populations do interbreed in that region. However, an analysis of mating data

  15. Biogeography of dinoflagellate cysts in northwest Atlantic ...

    Science.gov (United States)

    Few biogeographic studies of dinoflagellate cysts include the near-shore estuarine environment. We determine the effect of estuary type, biogeography, and water quality on the spatial distribution of organic-walled dinoflagellate cysts from the Northeast USA (Maine to Delaware) and Canada (Prince Edward Island). A total of 69 surface sediment samples were collected from 27 estuaries, from sites with surface salinities >20. Dinoflagellate cysts were examined microscopically and compared to environmental parameters using multivariate ordination techniques. The spatial distribution of cyst taxa reflects biogeographic provinces established by other marine organisms, with Cape Cod separating the northern Acadian Province from the southern Virginian Province. Species such as Lingulodinium machaerophorum and Polysphaeridinium zoharyi were found almost exclusively in the Virginian Province, while others such as Dubridinium spp. and Islandinium? cezare were more abundant in the Acadian Province. Tidal range, sea surface temperature (SST), and sea surface salinity (SSS) are statistically significant parameters influencing cyst assemblages. Samples from the same type of estuary cluster together in canonical correspondence analysis when the estuaries are within the same biogeographic province. The large geographic extent of this study, encompassing four main estuary types (riverine, lagoon, coastal embayment, and fjord), allowed us to determine that the type of estuary has

  16. Neurotoxins from Marine Dinoflagellates: A Brief Review

    Directory of Open Access Journals (Sweden)

    Da-Zhi Wang

    2008-06-01

    Full Text Available Dinoflagellates are not only important marine primary producers and grazers, but also the major causative agents of harmful algal blooms. It has been reported that many dinoflagellate species can produce various natural toxins. These toxins can be extremely toxic and many of them are effective at far lower dosages than conventional chemical agents. Consumption of seafood contaminated by algal toxins results in various seafood poisoning syndromes: paralytic shellfish poisoning (PSP, neurotoxic shellfish poisoning (NSP, amnesic shellfish poisoning (ASP, diarrheic shellfish poisoning (DSP, ciguatera fish poisoning (CFP and azaspiracid shellfish poisoning (ASP. Most of these poisonings are caused by neurotoxins which present themselves with highly specific effects on the nervous system of animals, including humans, by interfering with nerve impulse transmission. Neurotoxins are a varied group of compounds, both chemically and pharmacologically. They vary in both chemical structure and mechanism of action, and produce very distinct biological effects, which provides a potential application of these toxins in pharmacology and toxicology. This review summarizes the origin, structure and clinical symptoms of PSP, NSP, CFP, AZP, yessotoxin and palytoxin produced by marine dinoflagellates, as well as their molecular mechanisms of action on voltage-gated ion channels.

  17. Molecular insights into a dinoflagellate bloom.

    Science.gov (United States)

    Gong, Weida; Browne, Jamie; Hall, Nathan; Schruth, David; Paerl, Hans; Marchetti, Adrian

    2017-02-01

    In coastal waters worldwide, an increase in frequency and intensity of algal blooms has been attributed to eutrophication, with further increases predicted because of climate change. Yet, the cellular-level changes that occur in blooming algae remain largely unknown. Comparative metatranscriptomics was used to investigate the underlying molecular mechanisms associated with a dinoflagellate bloom in a eutrophied estuary. Here we show that under bloom conditions, there is increased expression of metabolic pathways indicative of rapidly growing cells, including energy production, carbon metabolism, transporters and synthesis of cellular membrane components. In addition, there is a prominence of highly expressed genes involved in the synthesis of membrane-associated molecules, including those for the production of glycosaminoglycans (GAGs), which may serve roles in nutrient acquisition and/or cell surface adhesion. Biotin and thiamine synthesis genes also increased expression along with several cobalamin biosynthesis-associated genes, suggesting processing of B12 intermediates by dinoflagellates. The patterns in gene expression observed are consistent with bloom-forming dinoflagellates eliciting a cellular response to elevated nutrient demands and to promote interactions with their surrounding bacterial consortia, possibly in an effort to cultivate for enhancement of vitamin and nutrient exchanges and/or direct consumption. Our findings provide potential molecular targets for bloom characterization and management efforts.

  18. Control of toxic marine dinoflagellate blooms by serial parasitic killers.

    Science.gov (United States)

    Chambouvet, Aurelie; Morin, Pascal; Marie, Dominique; Guillou, Laure

    2008-11-21

    The marine dinoflagellates commonly responsible for toxic red tides are parasitized by other dinoflagellate species. Using culture-independent environmental ribosomal RNA sequences and fluorescence markers, we identified host-specific infections among several species. Each parasitoid produces 60 to 400 offspring, leading to extraordinarily rapid control of the host's population. During 3 consecutive years of observation in a natural estuary, all dinoflagellates observed were chronically infected, and a given host species was infected by a single genetically distinct parasite year after year. Our observations in natural ecosystems suggest that although bloom-forming dinoflagellates may escape control by grazing organisms, they eventually succumb to parasite attack.

  19. Cell wall ultrastructure and intracytoplasmic bacteria in hypnocysts of toxic Alexandrium tamarense (Dinophyceae)

    OpenAIRE

    Schweikert, Michael

    2003-01-01

    Hypnocysts of toxic Alexandrium tamarense (Lebour) Balech collected during a bloom in the North Sea near Scotland (UK) have been investigated ultrastructurally. Details of cell wall morphology and a cell wall covering, not mentioned previously in the literature, are given. The presence of intracellular bacteria has been shown by means of transmission electron microscopy. These bacteria were present in early and mature hypnocysts, but absent in flagellated vegetative cells found in the same re...

  20. The Genetic Basis of Specificity in Dinoflagellate-Invertebrate Symbiosis

    Science.gov (United States)

    1989-06-21

    invertebrates can distinguish between certain dinoflagellates with which they form symbioses , and others with which they appear incompatible, and...expressed specificity in dinoflagellate-invertebrate symbioses . From the mass of evidence available, it is apparent that specificity is an ultimate

  1. Biogeography of dinoflagellate cysts in northwest Atlantic estuaries

    Science.gov (United States)

    Few biogeographic studies of dinoflagellate cysts include the near-shore estuarine environment. We determine the effect of estuary type, biogeography, and water quality on the spatial distribution of organic-walled dinoflagellate cysts from the Northeast USA (Maine to Delaware) a...

  2. Bubble stimulation efficiency of dinoflagellate bioluminescence.

    Science.gov (United States)

    Deane, Grant B; Stokes, M Dale; Latz, Michael I

    2016-02-01

    Dinoflagellate bioluminescence, a common source of bioluminescence in coastal waters, is stimulated by flow agitation. Although bubbles are anecdotally known to be stimulatory, the process has never been experimentally investigated. This study quantified the flash response of the bioluminescent dinoflagellate Lingulodinium polyedrum to stimulation by bubbles rising through still seawater. Cells were stimulated by isolated bubbles of 0.3-3 mm radii rising at their terminal velocity, and also by bubble clouds containing bubbles of 0.06-10 mm radii for different air flow rates. Stimulation efficiency, the proportion of cells producing a flash within the volume of water swept out by a rising bubble, decreased with decreasing bubble radius for radii less than approximately 1 mm. Bubbles smaller than a critical radius in the range 0.275-0.325 mm did not stimulate a flash response. The fraction of cells stimulated by bubble clouds was proportional to the volume of air in the bubble cloud, with lower stimulation levels observed for clouds with smaller bubbles. An empirical model for bubble cloud stimulation based on the isolated bubble observations successfully reproduced the observed stimulation by bubble clouds for low air flow rates. High air flow rates stimulated more light emission than expected, presumably because of additional fluid shear stress associated with collective buoyancy effects generated by the high air fraction bubble cloud. These results are relevant to bioluminescence stimulation by bubbles in two-phase flows, such as in ship wakes, breaking waves, and sparged bioreactors. Copyright © 2015 John Wiley & Sons, Ltd.

  3. Dinoflagellates, a new proxy for evidencing (paleo)tsunamis

    Science.gov (United States)

    Popescu, S.; Do Couto, D.; Suc, J.; Gorini, C.

    2012-12-01

    As a preliminary investigation, dinoflagellates have been searched in the Sri Lanka tsunami deposits (2004, Sumatra earthquake). The goals of this analysis were (1) to establish if dinoflagellate cysts (marine algae) are preserved in such types of deposits, and (2) to delimit the inland flooded surface. This work was performed on only 1-2 grams of sands, which had been sterilized at 121°C to prevent any microbial activity. The analysis points out the presence of several marine dinoflagellate cysts with a poor to moderate preservation, allowing to estimate the extent of the flooded area. In addition, a sample provided two dinoflagellate thecae, an exceptional occurrence because the cellulosic form of a dinoflagellate (i.e. the theca) is generally considered as unable to be preserved within sediments. In laboratory experiments, thecae are known to persist between 2 and 72 hours, depending of the species. If we accept a possible preservation of thecae in "peculiar" conditions, their presence in a tsunami sedimentary sequence may sign a precise instant of a tsunami event. Dinoflagellates have been searched in sedimentary basins affected by intense seismic activity: the Black Sea (Quaternary) and Alboran Sea (Messinian - Zanclean), two areas marked by important environmental changes. Marine dinoflagellate cysts are recorded in the Black Sea before its Holocene connection with Mediterranean through the Bosphorus Strait. Their occurrence constitutes a robust support for tsunamis already described in the region. In Late Messinian and Early Pliocene deposits from the Sorbas and Malaga basins (Alboran Sea region), cysts and thecae of marine dinoflagellates have been evidenced for the first time, maybe in relation with possible tsunamis. This new approach is to be developed on other recent tsunami deposits in order to contribute to identify past tsunami events. One must mention that dinoflagellates may help in reconstruction of past sea-surface physical parameters (salinity

  4. Photoregulation in a Kleptochloroplastidic Dinoflagellate, Dinophysis acuta

    DEFF Research Database (Denmark)

    Hansen, Per J.; Ojamae, Karin; Berge, Terje

    2016-01-01

    Some phagotrophic organisms can retain chloroplasts of their photosynthetic prey as so-called kleptochloroplasts and maintain their function for shorter or longer periods of time. Here we show for the first time that the dinoflagellate Dinophysis acute takes control over "third-hand" chloroplasts...... obtained from its ciliate prey Mesodinium spp. that originally ingested the cryptophyte chloroplasts. With its kleptochloroplasts, D. acuta can synthesize photosynthetic as well as photoprotective pigments under long-term starvation in the light. Variable chlorophyll fluorescence measurements showed...... that the kleptochloroplasts were fully functional during 1 month of prey starvation, while the chlorophyll a-specific inorganic carbon uptake decreased within days of prey starvation under an irradiance of 100 mu mol photons m(-2) s(-1). While a acute cells can regulate their pigmentation and function of kleptochloroplasts...

  5. Inorganic carbon acquisition in red tide dinoflagellates.

    Science.gov (United States)

    Rost, Björn; Richter, Klaus-Uwe; Riebesell, Ulf; Hansen, Per Juel

    2006-05-01

    Carbon acquisition was investigated in three marine bloom-forming dinollagellates-Prorocentrum minimum, Heterocapsa triquetra and Ceratium lineatum. In vivo activities of extracellular and intracellular carbonic anhydrase (CA), photosynthetic O2 evolution, CO2 and HCO3- uptake rates were measured by membrane inlet mass spectrometry (MIMS) in cells acclimated to low pH (8.0) and high pH (8.5 or 9.1). A second approach used short-term 14C-disequilibrium incubations to estimate the carbon source utilized by the cells. All three species showed negligible extracellular CA (eCA) activity in cells acclimated to low pH and only slightly higher activity when acclimated to high pH. Intracellular CA (iCA) activity was present in all three species, but it increased only in P. minimum with increasing pH. Half-saturation concentrations (K1/2) for photosynthetic O2 evolution were low compared to ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) kinetics. Moreover, apparent affinities for inorganic carbon (Ci) increased with increasing pH in the acclimation, indicating the operation of an efficient CO2 concentration mechanism (CCM) in these dinoflagellates. Rates of CO2 uptake were comparably low and could not support the observed rates of photosynthesis. Consequently, rates of HCO3- uptake were high in the investigated species, contributing more than 80% of the photosynthetic carbon fixation. The affinity for HCO3- and maximum uptake rates increased under higher pH. The strong preference for HCO3- was also confirmed by the 14C-disequilibrium technique. Modes of carbon acquisition were consistent with the 13C-fractionation pattern observed and indicated a strong species-specific difference in leakage. These results suggest that photosynthesis in marine dinoflagellates is not limited by Ci even at high pH, which may occur during red tides in coastal waters.

  6. Paleogene dinoflagellate cysts and thermal maturity from Pabdeh ...

    African Journals Online (AJOL)

    MICHAEL HORSFALL

    SVGInternational Congress and Exhibition, A18. Gradstein, F.M., Kristiansen, I.L., Loemo, L., Kaminski,. M.A.(1992). Cenozoic foraminiferal and dinoflagellate biostratigraphy of the Central North Sea. Micropaleontology. 38, 101-137. Heilmann-Clausen,. C.

  7. Current Knowledge and Recent Advances in Marine Dinoflagellate Transcriptomic Research

    Directory of Open Access Journals (Sweden)

    Muhamad Afiq Akbar

    2018-02-01

    Full Text Available Dinoflagellates are essential components in marine ecosystems, and they possess two dissimilar flagella to facilitate movement. Dinoflagellates are major components of marine food webs and of extreme importance in balancing the ecosystem energy flux in oceans. They have been reported to be the primary cause of harmful algae bloom (HABs events around the world, causing seafood poisoning and therefore having a direct impact on human health. Interestingly, dinoflagellates in the genus Symbiodinium are major components of coral reef foundations. Knowledge regarding their genes and genome organization is currently limited due to their large genome size and other genetic and cytological characteristics that hinder whole genome sequencing of dinoflagellates. Transcriptomic approaches and genetic analyses have been employed to unravel the physiological and metabolic characteristics of dinoflagellates and their complexity. In this review, we summarize the current knowledge and findings from transcriptomic studies to understand the cell growth, effects on environmental stress, toxin biosynthesis, dynamic of HABs, phylogeny and endosymbiosis of dinoflagellates. With the advancement of high throughput sequencing technologies and lower cost of sequencing, transcriptomic approaches will likely deepen our understanding in other aspects of dinoflagellates’ molecular biology such as gene functional analysis, systems biology and development of model organisms.

  8. The structure and mode of action of the dinoflagellate toxins

    Directory of Open Access Journals (Sweden)

    Akram Najafi

    2016-07-01

    Full Text Available Background: Dinoflagellates are the major causative agents of harmful algal blooms. In different studies, it has been shown that many dinoflagellate species produce various natural toxins. Saxitoxin, brevetoxin, yessotoxin, etc can be considered as the most important neurotoxins. The most important dinoflagellate toxins structures, their origin, structure and mechanisms of action were evaluated in a systematic review. Materials & Methods: Marine dinoflagellates, marine toxins, and their mechanisms of action and structure were keywords for a comprehensive search in online databases including Pubmed, Science Direct, Google Scholar and Scirus. A total of 95 papers were evaluated, however, by omitting similar reports, 68 papers were included in the study. Results: Dinoflagellates toxins are usually polycyclic ether and polyketaide compounds that have distinct mechanisms of action including alteration in different ion channels and/or pumps at cell membrane, effect on the normal functioning of neuronal and other excitable tissues, inhibition of serine/threonine phosphoprotein phosphatases, disrupting major mechanisms of controlling cellular functions, and alteration in cellular cytoskeleton. However, the precise mechanisms of action of few toxins are not determined yet. Conclusion: The clarification of the dinoflagellate toxins structures and their mechanisms of action may be helpful for novel drug design, therapeutic measures and to overcome against marine toxicity. 

  9. Combined physical, chemical and biological factors shape Alexandrium ostenfeldii blooms in the Netherlands

    NARCIS (Netherlands)

    Brandenburg, Karen M.; Senerpont Domis, de Lisette N.; Wohlrab, Sylke; Krock, Bernd; John, Uwe; Scheppingen, van Yvonne; Donk, van Ellen; Waal, van de Dedmer B.

    2017-01-01

    Harmful algal blooms (HABs) are globally expanding, compromising water quality worldwide. HAB dynamics are determined by a complex interplay of abiotic and biotic factors, and their emergence has often been linked to eutrophication, and more recently to climate change. The dinoflagellate

  10. Combined physical, chemical and biological factors shape Alexandrium ostenfeldii blooms in the Netherlands

    NARCIS (Netherlands)

    Brandenburg, Karen M.; de Senerpont Domis, Lisette N.; Wohlrab, Sylke; Krock, Bernd; John, Uwe; van Scheppingen, Yvonne; van Donk, Ellen; Van de Waal, Dedmer B.

    Abstract Harmful algal blooms (HABs) are globally expanding, compromising water quality worldwide. HAB dynamics are determined by a complex interplay of abiotic and biotic factors, and their emergence has often been linked to eutrophication, and more recently to climate change. The dinoflagellate

  11. Relationship Between Light Intensity and Abundance of Dinoflagellate in Samalona Island, Makassar (Keterkaitan Intensitas Cahaya dan Kelimpahan Dinoflagellate di Pulau Samalona, Makassar

    Directory of Open Access Journals (Sweden)

    Albida Rante Tasak

    2015-06-01

    Full Text Available Cahaya merupakan salah satu faktor penting dalam proses fotosintesis dinoflagellate dan pertumbuhan variabilitas harian. Intensitas cahaya memengaruhi aktivitas fotosintesis dan kelimpahan dinoflagellate. Studi ini bertujuan untuk menunjukkan pola kecenderungan kelimpahan dinoflagellate dan klorofil serta lama penyinaran terhadap kelimpahan dinoflagellate di Perairan Pulau Samalona. Penelitian dilakukan dengan menginkubasi sampel dinoflagellate kedalam botol sejak pagi-sore hari dengan inkubasi waktu pengamatan setiap 2 jam dengan ulangan sebanyak 3 kali. Pengambilan mencakup kelimpahan dinoflagellate, nutrient dan intensitas cahaya dalam perairan. Analisis data menggunakan regresi linear sederhana. Hasil penelitian menunjukkan bahwa nilai intensitas cahaya berkisar antara 50–3000 lux; kelimpahan dinoflagellate berkisar antara 9–1105 sel.L-1, dan kandungan klorofil a lebih dominan dengan kisaran  0.00069–0.50321 µg.L-1. Intensitas cahaya mempengaruhi kelimpahan dinoflagellate, namun pengaruh kandungan nutrient sangat kecil terhadap kelimpahan dinoflagellate. Pola kelimpahan dinoflagellate bervariasi dari pagi hingga sore hari yang dipengaruhi oleh intensitas cahaya dalam melakukan proses fotosintesis serta kondisi lingkungan lain seperti klorofil a dan nutrient. Hasil penelitian ini memberikan informasi variasi temporal harian kelimpahan dinoflagellate di Pulau Samalona, Makassar.

  12. Toxic dinoflagellates (Dinophyceae) from Rarotonga, Cook Islands.

    Science.gov (United States)

    Rhodes, Lesley L; Smith, Kirsty F; Munday, Rex; Selwood, Andy I; McNabb, Paul S; Holland, Patrick T; Bottein, Marie-Yasmine

    2010-10-01

    Dinoflagellate species isolated from the green calcareous seaweed, Halimeda sp. J.V. Lamouroux, growing in Rarotongan lagoons, included Gambierdiscus australes Faust & Chinain, Coolia monotis Meunier, Amphidinium carterae Hulburth, Prorocentrum lima (Ehrenberg) Dodge, P. cf. maculosum Faust and species in the genus Ostreopsis Schmidt. Isolates were identified to species level by scanning electron microscopy and/or DNA sequence analysis. Culture extracts of G. australes isolate CAWD149 gave a response of 0.04 pg P-CTX-1 equiv. per cell by an N2A cytotoxicity assay (equivalent to ca 0.4 pg CTX-3C cell(-1)). However, ciguatoxins were not detected by LC-MS/MS. Partitioned fractions of the cell extracts potentially containing maitotoxin were found to be very toxic to mice after intraperitoneal (i.p.) injection. A. carterae was also of interest as extracts of mass cultures caused respiratory paralysis in mice at high doses, both by i.p. injection and by oral administration. The Rarotongan isolate fell into a different clade to New Zealand A. carterae isolates, based on DNA sequence analysis, and also had a different toxin profile. As A. carterae co-occurred with G. australes, it may contribute to human poisonings attributed to CTX and warrants further investigation. A crude extract of C. monotis was of low toxicity to mice by i.p. injection, and an extract of Ostreopsis sp. was negative in the palytoxin haemolysis neutralisation assay. Copyright 2009 Elsevier Ltd. All rights reserved.

  13. A data mining approach to dinoflagellate clustering according to sterol composition: Correlations with evolutionary history.

    Science.gov (United States)

    This study examined the sterol compositions of 102 dinoflagellates (including several previously unexamined species) using clustering techniques as a means of determining the relatedness of the organisms. In addition, dinoflagellate sterol-based relationships were compared statistically to dinoflag...

  14. Effect of nutrient pollution on dinoflagellate cyst assemblages ...

    Science.gov (United States)

    We analyzed surface sediments from 23 northeast USA estuaries, from Maine to Delaware, and nine estuaries from Prince Edward Island (PEI, Canada), to determine how dinoflagellate cyst assemblages varied with nutrient loading. Overall the abundance of cysts of heterotrophic dinoflagellates correlates with modeled nitrogen loading, but there were also regional signals. On PEI cysts of Gymnodinium microreticulatum characterized estuaries with high nitrogen loading while the sediments of eutrophic Boston Harbor were characterized by high abundances of Spiniferites spp. In Delaware Bay and the Delaware Inland Bays Polysphaeridium zoharyi correlated with higher temperatures and nutrient loading. This is the first study to document the dinoflagellate cyst eutrophication signal at such a large geographic scale in estuaries, thus confirming their value as indicators of water quality change and anthropogenic impact. Estuarine and coastal waters are important resources for US and Canadian citizens. This paper summarizes the use of biological indicators that provide information on the eutrophication status and impacts for estuaries along the NW Atlantic coast. These relatively new biological indicators, dinoflagellate cysts, have the potential to provide environmental managers information on recent and historical environmental conditions in estuaries. Together with information on drivers and pressures, dinoflagellate cysts can be used to develop driver-pressure-state-imp

  15. Integration of plastids with their hosts: Lessons learned from dinoflagellates

    Science.gov (United States)

    Dorrell, Richard G.; Howe, Christopher J.

    2015-01-01

    After their endosymbiotic acquisition, plastids become intimately connected with the biology of their host. For example, genes essential for plastid function may be relocated from the genomes of plastids to the host nucleus, and pathways may evolve within the host to support the plastid. In this review, we consider the different degrees of integration observed in dinoflagellates and their associated plastids, which have been acquired through multiple different endosymbiotic events. Most dinoflagellate species possess plastids that contain the pigment peridinin and show extreme reduction and integration with the host biology. In some species, these plastids have been replaced through serial endosymbiosis with plastids derived from a different phylogenetic derivation, of which some have become intimately connected with the biology of the host whereas others have not. We discuss in particular the evolution of the fucoxanthin-containing dinoflagellates, which have adapted pathways retained from the ancestral peridinin plastid symbiosis for transcript processing in their current, serially acquired plastids. Finally, we consider why such a diversity of different degrees of integration between host and plastid is observed in different dinoflagellates and how dinoflagellates may thus inform our broader understanding of plastid evolution and function. PMID:25995366

  16. A Parasite of Marine Rotifers: A New Lineage of Dinokaryotic Dinoflagellates (Dinophyceae

    Directory of Open Access Journals (Sweden)

    Fernando Gómez

    2015-01-01

    Full Text Available Dinoflagellate infections have been reported for different protistan and animal hosts. We report, for the first time, the association between a dinoflagellate parasite and a rotifer host, tentatively Synchaeta sp. (Rotifera, collected from the port of Valencia, NW Mediterranean Sea. The rotifer contained a sporangium with 100–200 thecate dinospores that develop synchronically through palintomic sporogenesis. This undescribed dinoflagellate forms a new and divergent fast-evolved lineage that branches among the dinokaryotic dinoflagellates.

  17. Remodeling of the cycling transcriptome of the oyster Crassostrea gigas by the harmful algae Alexandrium minutum.

    Science.gov (United States)

    Payton, Laura; Perrigault, Mickael; Hoede, Claire; Massabuau, Jean-Charles; Sow, Mohamedou; Huvet, Arnaud; Boullot, Floriane; Fabioux, Caroline; Hegaret, Hélène; Tran, Damien

    2017-06-14

    As a marine organism, the oyster Crassostrea gigas inhabits a complex biotope governed by interactions between the moon and the sun cycles. We used next-generation sequencing to investigate temporal regulation of oysters under light/dark entrainment and the impact of harmful algal exposure. We found that ≈6% of the gills' transcriptome exhibits circadian expression, characterized by a nocturnal and bimodal pattern. Surprisingly, a higher number of ultradian transcripts were also detected under solely circadian entrainment. The results showed that a bloom of Alexandrium minutum generated a remodeling of the bivalve's temporal structure, characterized by a loss of oscillations, a genesis of de novo oscillating transcripts, and a switch in the period of oscillations. These findings provide unprecedented insights into the diurnal landscape of the oyster's transcriptome and pleiotropic remodeling due to toxic algae exposure, revealing the intrinsic plasticity of the cycling transcriptome in oysters.

  18. Patrones de distribución espacial y temporal de floraciones de Alexandrium catenella (Whedon & Kofoid Balech 1985, en aguas interiores de la Patagonia noroccidental de Chile Spatial and temporal distribution patterns of blooms of Alexandrium catenella (Whedon & Kofoid Balech 1985, on inland seas of northwest Patagonia, Chile

    Directory of Open Access Journals (Sweden)

    CARLOS MOLINET

    2003-12-01

    agua (e.g., temperatura, favorecerían o inhibirían el inicio de floraciones de A. catenella. El aumento de la distribución espacial de las floraciones de esta especie parece estar fuertemente influenciada por la deriva de aguas superficiales, originada principalmente por vientos y por las características de circulación de las aguas interiores.The presence of the toxic dinoflagellate Alexandrium catenella was first recorded during the early 1990s in the fjords and inland seas of the Chilean Northwest Patagonia. In 1995 regular phytoplankton monitoring programs were initiated with the financial support of different national institutions with the purpose of detecting these toxic dinoflagellates and assessing their effects on shellfish. During this period, an important but incomplete database was obtained, due mainly to the different work objectives of each monitoring program. In this paper we review the available data, searching for patterns that help us to gain insights into the temporal and spatial distribution of A catenella in this region. During the early years (1995 to 1998 the sampling was undertaken monthly and since later 2000 onwards, samples were taken every week but in fewer sampling stations. Phytoplankton and shellfish samples were collected in the same stations but these varied in number every year. From late 1995 to 2002 four toxic algae blooms of A. catenella were recorded with different intensity and distribution patterns. However, a pattern became apparent when the distribution was expanding northwards (from 45° 47' S in 1996 to 42° S, Chiloé in 2002. All four algae blooms recorded were highly seasonal (spanning from January to March and were correlated with the highest paralytic shellfish poisoning (PSP records. We suggest that benthic cyst beds are a very important factor in initiating toxic dinoflagellate blooms of A. catenella in the fjords and inland seas of southern Chile, whose life cycle shows a biannual occurrence, possibly due to

  19. Ocean acidification reduces growth and calcification in a marine dinoflagellate

    NARCIS (Netherlands)

    Van de Waal, D.B.; John, U.; Ziveri, P.; Reichart, G.J.; Hoins, M.; Sluijs, A.; Rost, B.

    2013-01-01

    Ocean acidification is considered a major threat to marine ecosystems and may particularly affect calcifying organisms such as corals, foraminifera and coccolithophores. Here we investigate the impact of elevated pCO2 and lowered pH on growth and calcification in the common calcareous dinoflagellate

  20. Recent blooms of the dinoflagellate Ceratium in Albert Falls Dam ...

    African Journals Online (AJOL)

    Recent blooms of the dinoflagellate Ceratium in Albert Falls Dam (KZN): History, causes, spatial features and impacts on a reservoir ecosystem and its zooplankton. ... Ceratium totally dominated the phytoplankton assemblage, accounting almost completely for coincident chlorophyll levels, which generally increased with ...

  1. Impact of tropical storms and drought on the dinoflagellates ...

    African Journals Online (AJOL)

    North Carolina experienced three hurricanes during autumn 1999, an ongoing drought from October 2001 to October 2002, one hurricane during autumn 2003, and remnants from seven tropical systems during August–September 2004. These weather events impacted the abundance patterns of both dinoflagellates. In the ...

  2. Paleogene dinoflagellate cysts and thermal maturity from Pabdeh ...

    African Journals Online (AJOL)

    Palynological investigation on 132 samples from the 428m thick outcrop section of Late Paleocene to Early Oligocene of the Pabdeh Formation in southwestern Iran yielded 55 species of dinoflagellate cysts and allowed establishment of seven biozones. Quantity of marine palynomorph elements indicate an open marine ...

  3. Lysis of red blood cells by extracts from benthic dinoflagellates.

    Science.gov (United States)

    Escalona de Motta, G; Rodríguez-Costas, I; Tosteson, T R; Ballantine, D L; Durst, H D

    1986-12-01

    Samples of the cultured benthic dinoflagellates Gambierdiscus toxicus and Ostreopsis lenticularis, both isolated from a shallow back reef habitat in southwestern Puerto Rico, were extracted in methanol, dried and resuspended in distilled water. After centrifugation, aliquots of the supernatant, or dilutions thereof, were added to suspensions of washed human and mouse red blood cells and incubated at different temperatures for different time periods. Further spectrophotometrical examinations of the samples showed a hemolytic activity against mouse and human red blood cells. The hemolytic activity of G. toxicus extract was 3 to 4 times greater than that of O. lenticularis and was less temperature-dependent. Such findings suggest that these two dinoflagellates produce chemically different hemolysins.

  4. Thecate dinoflagellates (Dinophyceae) from Bahía Fosforescente, Puerto Rico

    OpenAIRE

    Hernández-Becerril, David U.; Navarro R., Nelson

    2015-01-01

    Bahía Fosforescente, Puerto Rico, is well-known because of biolurniniscence caused by high concentrations of dinoflagellates. However, the specific cornposition of dinoflagellates has not been studied in detail. Several samples taken during 1975-1987 with net were analysed to study the dinoflagellates in the bayo Twenty-six taxa were identified, including 19 species, ti varieties, and one form, together with three species not fully identified, all of thern thecate. The valid, currentIy recogn...

  5. The Distribution of Toxic Dinoflagellates on Sea Grass Enhalus Acoroides at Pari Island, Seribu Islands

    OpenAIRE

    Widiarti, Riani; Anggraini, Fitrian

    2012-01-01

    Benthic dinoflagellates causing Ciguatera Fish Poisoning (CFP), could be found attached either on macroalgae or sea grasses. Research on density and distribution of benthic dinoflagellates on sea grass leaves was conducted in Pari Island waters, Seribu Islands, in April 2012. Research was carried out by collecting Enhalus acoroides leaves from each site, and put inside the plastic jars containing seawater. In order to separate the dinoflagellates species from the leaves, the plastic jars were...

  6. Molecular Insights Into a Dinoflagellate Bloom Imply Bacterial Cultivation

    Science.gov (United States)

    Gong, W.; Hall, N.; Schruth, D.; Paerl, H. W.; Marchetti, A.

    2016-02-01

    In coastal waters, an increase in frequency and intensity of algal blooms worldwide has recently been observed primarily due to eutrophication, with further increases predicted as a consequence of climate change. In many marine habitats most impacted by human activities, efforts have been made to prevent conditions that promote harmful algal blooms, or HABs, although progress is limited, due in part to our current lack of understanding of the environmental and cellular processes that promote and propagate these blooms. Comparative metatranscriptomics was used to investigate the underlying molecular mechanisms associated with a dinoflagellate bloom in a highly eutrophied estuarine system. Here we show that under bloom conditions, there is increased expression of metabolic pathways indicative of rapidly growing cells, including energy production, carbon metabolism, transporters and synthesis of nucleic acids and cellular membrane components. In addition, there is a prominence of highly expressed genes involved in synthesis of membrane-associated molecules, including those for the production of glycosaminoglycans (GAGs), which may serve roles in nutrient acquisition and/or cell surface adhesion. Biotin and thiamine synthesis genes also increased expression along with several cobalamin biosynthesis-associated genes that suggests processing of B12 intermediates by dinoflagellates. The patterns in gene expression observed are consistent with bloom-forming dinoflagellates eliciting a cellular response to facilitate interactions with their surrounding bacterial consortium, possibly in an effort to cultivate for enhancement of vitamin and nutrient exchanges and/or direct consumption. Our findings provide potential molecular targets for HAB detection and remediation efforts.

  7. Characterization of Intracellular and Extracellular Saxitoxin Levels in Both Field and Cultured Alexandrium spp. Samples from Sequim Bay, Washington

    Directory of Open Access Journals (Sweden)

    Vera L. Trainer

    2008-05-01

    Full Text Available Traditionally, harmful algal bloom studies have primarily focused on quantifying toxin levels contained within the phytoplankton cells of interest. In the case of paralytic shellfish poisoning toxins (PSTs, intracellular toxin levels and the effects of dietary consumption of toxic cells by planktivores have been well documented. However, little information is available regarding the levels of extracellular PSTs that may leak or be released into seawater from toxic cells during blooms. In order to fully evaluate the risks of harmful algal bloom toxins in the marine food web, it is necessary to understand all potential routes of exposure. In the present study, extracellular and intracellular PST levels were measured in field seawater samples (collected weekly from June to October 2004- 2007 and in Alexandrium spp. culture samples isolated from Sequim Bay, Washington. Measurable levels of intra- and extra-cellular toxins were detected in both field and culture samples via receptor binding assay (RBA and an enzyme-linked immunosorbent assay (ELISA. Characterization of the PST toxin profile in the Sequim Bay isolates by preMar. column oxidation and HPLC-fluorescence detection revealed that gonyautoxin 1 and 4 made up 65 ± 9.7 % of the total PSTs present. Collectively, these data confirm that extracellular PSTs are present during blooms of Alexandrium spp. in the Sequim Bay region.

  8.  Serial replacement of diatom endosymbiont in two freshwater dinoflagellates, Peridiniopsis spp., (Peridiniales, Dinophyceae)

    DEFF Research Database (Denmark)

    Takano, Y.; Hansen, Gert; Fujita, D.

    2008-01-01

    structure and possessed an endosymbiotic diatom. The diatom endosymbiont, which contained a eukaryotic nucleus, chloroplasts and mitochondria, was separated from the dinoflagellate cytoplasm by a single unit membrane. The dinoflagellate cytoplasm contained a triple-membrane-bound eyespot, in addition......Two freshwater armoured dinoflagellates, Peridiniopsis cf. kevei from Japan and Peridiniopsis penardii from Japan and Italy, were examined by means of light, scanning and transmission electron microscopy. Morphological studies indicated that the two dinoflagellates had similar type of cellular...

  9. Palynological investigation of the sediment cores from the Arabian Sea 2: Dinoflagellate cysts and acritarchs

    Digital Repository Service at National Institute of Oceanography (India)

    Saxena, R.K.; Chandra, A.; Setty, M.G.A.P.

    are of dinoflagellate cysts and 8 species belonging to 4 genera are of acritarchs, besides two types which could not be referred to any taxa One acritarch genus, viz., @iOrnatasphaera@@ and 3 species are new Among dinoflagellate cysts, @iHystrichosphaeridium@@ (3 spp...

  10. Diversity and distribution of heterotrophic dinoflagellates from the coastal waters of Port Blair, South Andaman.

    Science.gov (United States)

    Sai Elangovan, S; Padmavati, G

    2017-11-06

    The interaction between the environment and heterotrophic dinoflagellates inhabiting coastal waters of South Andaman was studied based on year round collections made during September 2012-August 2013 in the bay, eastern, and western region of South Andaman. The distribution pattern of microzooplankton in South Andaman showed high abundance in eutrophic waters (bay region) and gradually decreased towards the off shore region. Microzooplankton community comprised of six different taxa, viz. tintinnids, heterotrophic dinoflagellates, non-loricate ciliates, Foraminifera, Rotifera, and Copepoda (nauplii). Tintinnids were the major component of the microzooplankton (43.8 ± 7%) followed by heterotrophic dinoflagellates (34 ± 12%) and copepod nauplii (18.8 ± 4.0%). This study focused on heterotrophic dinoflagellates which ranked next to tintinnids in overall abundance and contributed 38-42% in the bay, 22-37% in the eastern, and 15-29% in the western region to the microzooplankton community. Dinoflagellates showed a positive correlation with salinity and a negative correlation with dissolved oxygen and chlorophyll a (r = - 0.3). Abundance of heterotrophic dinoflagellates in this area may be due to their diverse and advantageous mode of nutrition. A total of 35 species belonging to 8 genera of heterotrophic dinoflagellates were recorded during the study period. Heterotrophic dinoflagellates showed a great potential to thrive in low oxygenated and low productive area (p population was found in the bay region (avg. H' = 3.46).

  11. A Transcriptome-based Perspective of Cell Cycle Regulation in Dinoflagellates.

    Science.gov (United States)

    Morse, David; Daoust, Philip; Benribague, Siham

    2016-12-01

    Dinoflagellates are a group of unicellular and generally marine protists, of interest to many because of their ability to form the large algal blooms commonly called "red tides". The large algal concentrations in these blooms require sustained cell replication, yet to date little is known about cell cycle regulation in these organisms. To address this issue, we have screened the transcriptomes of two dinoflagellates, Lingulodinium polyedrum and Symbiodinium sp., with budding yeast cell cycle pathway components. We find most yeast cell cycle regulators have homologs in these dinoflagellates, suggesting that the yeast model is appropriate for understanding regulation of the dinoflagellate cell cycle. The dinoflagellates are lacking several components essential in yeast, but a comparison with a broader phylogenetic range of protists reveals these components are usually also missing in other organisms. Lastly, phylogenetic analyses show that the dinoflagellates contain at least three cyclin-dependent kinase (CDK) homologs (belonging to the CDK1, CDK5 and CDK8 families), and that the dinoflagellate cyclins belong exclusively to the A/B type. This suggests that dinoflagellate CDKs likely play a limited role outside regulation of the cell cycle. Copyright © 2016 Elsevier GmbH. All rights reserved.

  12. RNA-Seq as an Emerging Tool for Marine Dinoflagellate Transcriptome Analysis: Process and Challenges

    Directory of Open Access Journals (Sweden)

    Muhamad Afiq Akbar

    2018-01-01

    Full Text Available Dinoflagellates are the large group of marine phytoplankton with primary studies interest regarding their symbiosis with coral reef and the abilities to form harmful algae blooms (HABs. Toxin produced by dinoflagellates during events of HABs cause severe negative impact both in the economy and health sector. However, attempts to understand the dinoflagellates genomic features are hindered by their complex genome organization. Transcriptomics have been employed to understand dinoflagellates genome structure, profile genes and gene expression. RNA-seq is one of the latest methods for transcriptomics study. This method is capable of profiling the dinoflagellates transcriptomes and has several advantages, including highly sensitive, cost effective and deeper sequence coverage. Thus, in this review paper, the current workflow of dinoflagellates RNA-seq starts with the extraction of high quality RNA and is followed by cDNA sequencing using the next-generation sequencing platform, dinoflagellates transcriptome assembly and computational analysis will be discussed. Certain consideration needs will be highlighted such as difficulty in dinoflagellates sequence annotation, post-transcriptional activity and the effect of RNA pooling when using RNA-seq.

  13. Viable cell sorting of dinoflagellates by multi-parametric flow cytometry.

    Science.gov (United States)

    Electronic cell sorting for isolation and culture of dinoflagellates and other marine eukaryotic phytoplankton was compared to the traditional method of manually picking of cells using a micropipette. Trauma to electronically sorted cells was not a limiting factor as fragile dinoflagellates, such a...

  14. Preparation of single-celled marine dinoflagellates for electron microscopy.

    Science.gov (United States)

    Truby, E W

    1997-02-15

    Electron microscopy has been used successfully to study and identify single-celled marine dinoflagellates including parasitic ones and others, such as those that cause red tide. Delicate cells can be preserved for scanning electron microscopy with a combined glutaraldehydeosmium tetroxide mixture that is adjusted for the osmolality of the medium. The protocol allows resolution of fine morphological features. Preservation for transmission electron microscopy can be accomplished with a standard glutaraldehyde fixation and osmium-tetroxide post-fixation in a suitable buffer, but again, the osmolality of the mixture must be adjusted. The protocol allows ultrastructural resolution of vesiculated cells and has been modified for small sample sizes.

  15. Temperature, salinity, chlorophyll pigments, nutrients and other parameters as part of the ECOHAB-GOM: The Ecology and Oceanography of Toxic Alexandrium Blooms in the Gulf of Maine project (NODC Accession 0064309)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The subproject described here is one of several components of ECOHAB-GOM: The Ecology and Oceanography of Toxic Alexandrium Blooms in the Gulf of Maine, a multi-PI,...

  16. Spliced leader-based metatranscriptomic analyses lead to recognition of hidden genomic features in dinoflagellates.

    Science.gov (United States)

    Lin, Senjie; Zhang, Huan; Zhuang, Yunyun; Tran, Bao; Gill, John

    2010-11-16

    Environmental transcriptomics (metatranscriptomics) for a specific lineage of eukaryotic microbes (e.g., Dinoflagellata) would be instrumental for unraveling the genetic mechanisms by which these microbes respond to the natural environment, but it has not been exploited because of technical difficulties. Using the recently discovered dinoflagellate mRNA-specific spliced leader as a selective primer, we constructed cDNA libraries (e-cDNAs) from one marine and two freshwater plankton assemblages. Small-scale sequencing of the e-cDNAs revealed functionally diverse transcriptomes proven to be of dinoflagellate origin. A set of dinoflagellate common genes and transcripts of dominant dinoflagellate species were identified. Further analyses of the dataset prompted us to delve into the existing, largely unannotated dinoflagellate EST datasets (DinoEST). Consequently, all four nucleosome core histones, two histone modification proteins, and a nucleosome assembly protein were detected, clearly indicating the presence of nucleosome-like machinery long thought not to exist in dinoflagellates. The isolation of rhodopsin from taxonomically and ecotypically diverse dinoflagellates and its structural similarity and phylogenetic affinity to xanthorhodopsin suggest a common genetic potential in dinoflagellates to use solar energy nonphotosynthetically. Furthermore, we found 55 cytoplasmic ribosomal proteins (RPs) from the e-cDNAs and 24 more from DinoEST, showing that the dinoflagellate phylum possesses all 79 eukaryotic RPs. Our results suggest that a sophisticated eukaryotic molecular machine operates in dinoflagellates that likely encodes many more unsuspected physiological capabilities and, meanwhile, demonstrate that unique spliced leaders are useful for profiling lineage-specific microbial transcriptomes in situ.

  17. NanoSIMS study of trophic interactions in the coral-dinoflagellate endosymbiosis

    Science.gov (United States)

    Kopp, Christophe; Mathieu, Pernice; Domart-Coulon, Isabelle; Djediat, Chakib; Spangenberg, Jorge; Alexander, Duncan; Hignette, Michel; Meziane, Tarik; Meibom, Anders

    2013-04-01

    Tropical and subtropical reef-building corals generally form a stable endosymbiotic association with autotrophic single-celled dinoflagellate algae, commonly known as "zooxanthellae", which is crucial for the development of coral reef ecosystems. In the present work, the spatial and temporal dynamics of trophic interactions between corals and their dinoflagellates was investigated in situ and at a subcellular level in the reef-building coral Pocillopora damicornis. Transmission electron microscopy (TEM) and quantitative NanoSIMS isotopic imaging of tissue ultra-thin sections (70 nm) were combined to precisely track the assimilation and the fate of 15N-labeled compounds (ammonium, nitrate and aspartic acid) within each symbiotic partner of the coral-dinoflagellate association. Among our main results, we found that (i) both dinoflagellate algae and coral tissue rapidly assimilate ammonium and aspartic acid from the environment, (ii) however only the dinoflagellates assimilate nitrate, (ii) nitrogen is rapidly and temporary stored within the dinoflagellate cells into uric acid crystals, and (iii) the dinoflagellate endosymbionts translocate nitrogenous compounds to their coral host. This study paves the way for exploring in details the wide range of metabolic interactions between partners of any symbiosis in the biosphere.

  18. Symbiotic Dinoflagellate Functional Diversity Mediates Coral Survival under Ecological Crisis.

    Science.gov (United States)

    Suggett, David J; Warner, Mark E; Leggat, William

    2017-10-01

    Coral reefs have entered an era of 'ecological crisis' as climate change drives catastrophic reef loss worldwide. Coral growth and stress susceptibility are regulated by their endosymbiotic dinoflagellates (genus Symbiodinium). The phylogenetic diversity of Symbiodinium frequently corresponds to patterns of coral health and survival, but knowledge of functional diversity is ultimately necessary to reconcile broader ecological success over space and time. We explore here functional traits underpinning the complex biology of Symbiodinium that spans free-living algae to coral endosymbionts. In doing so we propose a mechanistic framework integrating the primary traits of resource acquisition and utilisation as a means to explain Symbiodinium functional diversity and to resolve the role of Symbiodinium in driving the stability of coral reefs under an uncertain future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Dinoflagellate bioluminescence in response to mechanical stimuli in water flows

    Directory of Open Access Journals (Sweden)

    A. S. Cussatlegras

    2005-01-01

    Full Text Available Bioluminescence of plankton organisms induced by water movements has long been observed and is still under investigations because of its great complexity. In particular, the exact mechanism occurring at the level of the cell has not been yet fully understood. This work is devoted to the study of the bioluminescence of the dinoflagellates plankton species Pyrocystis noctiluca in response to mechanical stimuli generated by water flows. Several experiments were performed with different types of flows in a Couette shearing apparatus. All of them converge to the conclusion that stationary homogeneous laminar shear does not trigger massive bioluminescence, but that acceleration and shear are both necessary to stimulate together an intense bioluminescence response. The distribution of the experimental bioluminescence thresholds is finally calculated from the light emission response for the Pyrocystis noctiluca species.

  20. Mycosporine-like amino acids from coral dinoflagellates.

    Science.gov (United States)

    Rosic, Nedeljka N; Dove, Sophie

    2011-12-01

    Coral reefs are one of the most important marine ecosystems, providing habitat for approximately a quarter of all marine organisms. Within the foundation of this ecosystem, reef-building corals form mutualistic symbioses with unicellular photosynthetic dinoflagellates of the genus Symbiodinium. Exposure to UV radiation (UVR) (280 to 400 nm) especially when combined with thermal stress has been recognized as an important abiotic factor leading to the loss of algal symbionts from coral tissue and/or a reduction in their pigment concentration and coral bleaching. UVR may damage biological macromolecules, increase the level of mutagenesis in cells, and destabilize the symbiosis between the coral host and their dinoflagellate symbionts. In nature, corals and other marine organisms are protected from harmful UVR through several important photoprotective mechanisms that include the synthesis of UV-absorbing compounds such as mycosporine-like amino acids (MAAs). MAAs are small (sunscreens characterized by a maximum absorbance in the UVA and UVB ranges of 310 to 362 nm. In addition to their photoprotective role, MAAs act as antioxidants scavenging reactive oxygen species (ROS) and suppressing singlet oxygen-induced damage. It has been proposed that MAAs are synthesized during the first part of the shikimate pathway, and recently, it has been suggested that they are synthesized in the pentose phosphate pathway. The shikimate pathway is not found in animals, but in plants and microbes, it connects the metabolism of carbohydrates to the biosynthesis of aromatic compounds. However, both the complete enzymatic pathway of MAA synthesis and the extent of their regulation by environmental conditions are not known. This minireview discusses the current knowledge of MAA synthesis, illustrates the diversity of MAA functions, and opens new perspectives for future applications of MAAs in biotechnology.

  1. Iron uptake and storage in the HAB dinoflagellate Lingulodinium polyedrum.

    Science.gov (United States)

    Yarimizu, Kyoko; Cruz-López, Ricardo; Auerbach, Hendrik; Heimann, Larissa; Schünemann, Volker; Carrano, Carl J

    2017-12-01

    The iron uptake and storage systems of terrestrial/higher plants are now reasonably well understood with two basic strategies being distinguished: Strategy I involves the induction of an Fe(III)-chelate reductase (ferrireductase) along with Fe(II) or Fe(III) transporter proteins while strategy II plants have evolved sophisticated systems based on high-affinity, iron specific, binding compounds called phytosiderophores. In contrast, there is little knowledge about the corresponding systems in marine, plant-like lineages. Herein we report a study of the iron uptake and storage mechanisms in the harmful algal bloom dinoflagellate Lingulodinium polyedrum. L. polyedrum is an armored dinoflagellate with a mixotrophic lifestyle and one of the most common bloom species on Southern California coast widely noted for its bioluminescent properties and as a producer of yessotoxins. Short term radio-iron uptake studies indicate that iron is taken up by L. polyedrum in a time dependent manner consistent with an active transport process. Based on inhibitor and other studies it appears that a reductive-oxidative pathway such as that found in yeast and the green alga Chlamydomonas reinhardtii is likely. Of the various iron sources tested vibrioferrin, a photoactive and relatively weak siderophore produced by potentially mutualistic Marinobacter bacterial species, was the most efficient. Other more stable and non-photoactive siderophores such as ferrioxamine E were ineffective. Several pieces of data including long term exposure to 57Fe using Mössbauer spectroscopy suggest that L. polyedrum does not possess an iron storage system but rather presumably relies on an efficient iron uptake system, perhaps mediated by mutualistic interactions with bacteria.

  2. Role of associated bacteria in growth and toxicity of cultured benthic dinoflagellates.

    Science.gov (United States)

    Gonzalez, I; Tosteson, C G; Hensley, V; Tosteson, T R

    1992-01-01

    Clonal cultures of the toxic benthic dinoflagellate Ostreopsis lenticularis isolated from the coastal waters of southwest of Puerto Rico show peak toxicities during the stationary phase of growth, correlated with significant increases in bacteria directly associated with these cells. The specific toxicity (MU/mg) of dinoflagellate extracts in control cultures increased 340% during the static phase of culture growth, while those cultures treated with antibiotics that inhibit prokaryote protein synthesis showed no significant increase in toxicity during this phase of culture growth. There was a significant decrease in the diversity of dinoflagellate associated bacterial strains in antibiotic treated cultures. These data indicate that associated bacteria play a role in toxin production by dinoflagellate-bacteria consortia when grown in laboratory culture.

  3. Flagellar apparatus and nuclear chambers of the green dinoflagellate Gymnodinium chlorophorum

    DEFF Research Database (Denmark)

    Hansen, Gert; Moestrup, Øjvind

    2005-01-01

    The green dinoflagellate Gymnodinium chlorophorum (BAH ME 100, the type culture) was reexamined with emphasis on the structure of the flagellar apparatus and nuclear envelope. Like other Gymnodinium species, G. chlorophorum possessed a nuclear fibrous connective linking the flagellar apparatus...

  4. Atlas of modern dinoflagellate cyst distribution based on 2405 data points

    NARCIS (Netherlands)

    Zonneveld, K.A.F.; Marret, F.; Versteegh, G.J.M.; Bogus, K.; Bonnet, S.; Bouimetarhan, I.; Crouch, E.; de Vernal, A.; Elshanawany, R.; Edwards, L.; Esper, O.; Forke, S.; Grøsfjeld, K.; Henry, M.; Holzwarth, U.; Kielt, J.-F.; Kim, S.-Y.; Ladouceur, S.; Ledu, D.; Chen, L.; Limoges, A.; Londeix, L.; Lu, S.-H.; Mahmoud, M.S.; Marino, G.; Matsouka, K.; Matthiessen, J.; Mildenhal, D.C.; Mudie, P.; Neil, H.L.; Pospelova, V.; Qi, Y.; Radi, T.; Richerol, T.; Rochon, A.; Sangiorgi, F.; Solignac, S.; Turon, J.-L.; Verleye, T.; Wang, Y.; Young, M.

    2013-01-01

    Dinoflagellate cysts are useful for reconstructing upper water conditions. For adequate reconstructions detailed information is required about the relationship between modern day environmental conditions and the geographic distribution of cysts in sediments. This Atlas summarises the modern global

  5. Effect of nutrient pollution on dinoflagellate cyst assemblages across estuaries of the NW Atlantic

    Science.gov (United States)

    We analyzed surface sediments from 23 northeast USA estuaries, from Maine to Delaware, and nine estuaries from Prince Edward Island (PEI, Canada), to determine how dinoflagellate cyst assemblages varied with nutrient loading. Overall the abundance of cysts of heterotrophic dinofl...

  6. Spatial distribution of symbiont-bearing dinoflagellates in the Indian Ocean in relation to oceanographic regimes

    DEFF Research Database (Denmark)

    Tarangkoon, Woraporn; Hansen, Gert; Hansen, Per Juel

    2010-01-01

    The spatial distribution of symbiont-bearing dinoflagellates was investigated during a cruise from Cape Town, South Africa to Broome, Australia. Endo- and ectosymbionts were only found in the order Dinophysiales. The genera Ornithocercus, Histioneis, Parahistioneis and Citharistes had cyanobacteria...... as ectosymbionts, while the genera Amphisolenia and Triposolenia contained both intact cyanobacterial and eukaryotic endosymbionts. The symbiont-bearing dinoflagellates were mainly found in the upper 100 m of the water column. Their distribution was restricted to water temperatures exceeding 16.5°C......, and the highest species diversity and cell concentrations were found at temperatures around 20 to 30°C. The symbiont-bearing dinoflagellates were always associated with water masses with low nutrient (N-limited) and chl a concentrations. Special attention was given to the ectosymbiont-bearing dinoflagellates...

  7. A phylogeographical study of the toxic benthic dinoflagellate genus Ostreopsis Schmidt

    OpenAIRE

    Penna, Antonella; Fraga, Santiago; Battocchi, Cecilia; Casabianca, Silvia; Giacobbe, Maria Grazia; Riobó, Pilar; Vernesi, Cristiano

    2010-01-01

    Aim Ostreopsis is a benthic and epiphytic dinoflagellate producing potent toxins widespread in tropical and warm temperate coastal areas world-wide. We tested the hypothesis that as it is benthic, it would show distinct biogeographical patterns in comparison with planktonic species. Here, we analyse sequence variability in ribosomal DNA markers to provide the first phylogeographical study of this toxic benthic dinoflagellate. Location Mediterranean Sea, Atlantic Ocean, Pacific Ocean. ...

  8. Genomes of coral dinoflagellate symbionts highlight evolutionary adaptations conducive to a symbiotic lifestyle

    KAUST Repository

    Aranda, Manuel

    2016-12-22

    Despite half a century of research, the biology of dinoflagellates remains enigmatic: they defy many functional and genetic traits attributed to typical eukaryotic cells. Genomic approaches to study dinoflagellates are often stymied due to their large, multi-gigabase genomes. Members of the genus Symbiodinium are photosynthetic endosymbionts of stony corals that provide the foundation of coral reef ecosystems. Their smaller genome sizes provide an opportunity to interrogate evolution and functionality of dinoflagellate genomes and endosymbiosis. We sequenced the genome of the ancestral Symbiodinium microadriaticum and compared it to the genomes of the more derived Symbiodinium minutum and Symbiodinium kawagutii and eukaryote model systems as well as transcriptomes from other dinoflagellates. Comparative analyses of genome and transcriptome protein sets show that all dinoflagellates, not only Symbiodinium, possess significantly more transmembrane transporters involved in the exchange of amino acids, lipids, and glycerol than other eukaryotes. Importantly, we find that only Symbiodinium harbor an extensive transporter repertoire associated with the provisioning of carbon and nitrogen. Analyses of these transporters show species-specific expansions, which provides a genomic basis to explain differential compatibilities to an array of hosts and environments, and highlights the putative importance of gene duplications as an evolutionary mechanism in dinoflagellates and Symbiodinium.

  9. PHYLOGENETIC SIGNIFICANCE OF THE LIMITED DISTRIBUTION OF OCTADECAPENTAENOIC ACID IN PRYMNESIOPHYTES AND PHOTOSYNTHETIC DINOFLAGELLATES (14th Symposium on Polar Biology)

    OpenAIRE

    オクヤマ, ヒデトシ; コガメ, カズヒロ; タケダ, シゲノブ; Hidetoshi, Okuyama; Kazuhiro, KOGAME; Shigenobu, Takeda

    1993-01-01

    Fatty acid composition of lipids from two strains of prymnesiophytes, seven strains of photosynthetic dinoflagellates, one strain of non-photosynthetic dinoflagellates and two strains of cryptomonads was examined with special emphasis on the presence or the absence of an octadecapentaenoic acid [18:5(n-3)]. Prymnesiophytes (Emiliania huxleyi and Gephyrocapsa oceanicd) and photosynthetic dinoflagellates [Amphidinium carterae, Prorocentrum micans, Protoceratiwn reticulatum, Pyrocystis lunula, S...

  10. New insights into shear-sensitivity in dinoflagellate microalgae.

    Science.gov (United States)

    Gallardo-Rodríguez, J J; López-Rosales, L; Sánchez-Mirón, A; García-Camacho, F; Molina-Grima, E; Chalmers, J J

    2016-01-01

    A modification of a flow contraction device was used to subject shear-sensitive microalgae to well-defined hydrodynamic forces. The aim of the study was to elucidate if the inhibition of shear-induced growth commonly observed in dinoflagellate microalgae is in effect due to cell fragility that results in cell breakage even at low levels of turbulence. The microalgae assayed did not show any cell breakage even at energy dissipation rates (EDR) around 10(12)Wm(-3), implausible in culture devices. Conversely, animal cells, tested for comparison purposes, showed high physical cell damage at average EDR levels of 10(7)Wm(-3). Besides, very short exposures to high levels of EDR promoted variations in the membrane fluidity of the microalgae assayed, which might trigger mechanosensory cellular mechanisms. Average EDR values of only about 4·10(5)Wm(-3) increased cell membrane fluidity in microalgae whereas, in animal cells, they did not. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Sedimentary Records of Harmful Bloom-Producing Dinoflagellates from Alvarado Lagoon (Southwestern Gulf of Mexico)

    Science.gov (United States)

    Limoges, A.; Mertens, K. N.; ruiz-Fernandez, A. C.; Sánchez Cabeza, J. A.; de Vernal, A.

    2014-12-01

    Organic-walled dinoflagellate cyst assemblages were studied from a sediment core collected in Alvarado Lagoon (southwestern Gulf of Mexico) in order to evaluate their use as tracers of toxic algal blooms. The sedimentary record spans the last ~560 years (CE) and shows high abundances of Polysphaeridium zoharyi, the cyst of the dinoflagellate Pyrodinium bahamense, which is known to cause toxic blooms. Cyst fluxes in the sediment of the Alvarado lagoon suggest frequent blooms of Pyrodinium bahamense in the past hundreds of years. Moreover, the high concentrations of the cysts (~ 4000 cysts g-1) in the "modern" surface sediment reveal that the area is susceptible to be affected by future blooms, especially during seasons of heavy rain and wind, when cysts are resuspended in the water column. The dinoflagellate cyst bank in sediment deserves special attention as it may constitute a source for the export of cells in adjacent regions. The cyst of other harmful dinoflagellates have been recovered in the sediment. They notably include those of the benthic dinoflagellate Bysmatrum subsalsum, which is here reported for the first time.

  12. Factor driving heterotrophic dinoflagellate in relation to environment conditions in Kerkennah Islands (eastern coast of Tunisa

    Directory of Open Access Journals (Sweden)

    Mounir Ben Brahim

    2015-09-01

    Full Text Available Objective: To study the seasonal variability of heterotrophic dinoflagellate in the station of Cercina (southern coast of Tunisia. Methods: Sampling was done in 2007 in Cercina station located in the western coast of Kerkennah (34°41'27'' N; 11°07'45'' E (Southern Tunisia. Three replicates of water samples were taken during 10 days of each month. Environmental variables and nutrients were measured in situ. Results: A significant seasonal difference was observed for temperature and water salinity. The highest values were observed in spring and summer. No significant seasonal difference was, however, detected for nitrite, nitrate, ammonia, silica and phosphate. Sixty-five species of dinoflagellate were identified in the station of Cercina. Abundance of dinoflagellates fluctuated between seasons with values showing a significant seasonal and monthly difference. The highest mean abundance was recorded in spring in April, while the lowest abundance was detected in December in winter. Protoperidinium granii was the main species contributing to the dissimilarity between spring and winter with 13.98% followed by Peridinium sp. with 12.5% of dissimilarity and by Polykrikos sp. with 10.58%. Conclusions: Heterotrophic dinoflagellates proliferate in spring and summer. This increase was justified by the nutrient availability. Protoperidinium granii and Polykrikos kofoidii were the main heterotrophic dinoflagellate making difference between seasons and their densities were positively correlated with both temperature and salinity.

  13. Dinoflagellate cysts and hydrographical change in Gullmar Fjord, west coast of Sweden.

    Science.gov (United States)

    Harland, Rex; Nordberg, Kjell; Filipsson, Helena L

    2006-02-15

    This high-resolution study of the latest Holocene dinoflagellate cyst record from Gullmar Fjord, on the west coast of Sweden, provides evidence for the recognition of two major dinoflagellate communities within the fjord over the last 85 years. These communities may have their origins with the history of cultural eutrophication within the region, but are more likely to be associated with the wider phenomenon of the North Atlantic Oscillation and/or the complex hydrographical response of the fjord to various changing climatic environments between 1915 and 1999. The changing dinoflagellate cyst populations are compared in detail with the many hydrographical parameters available from this well studied fjord with its long instrumental records. Indeed the dinoflagellate cysts fail to demonstrate a convincing ongoing eutrophication record for the fjord but do show a major change in the cyst assemblages at about 1969/1970 at a time when the NAO was changing from a negative phase to the present-day positive phase. Gullmar Fjord is important in the history of dinoflagellate cyst studies, being the site of the 1954 study by Erdtman in which viable cysts, produced within the phytoplankton, were first documented within the water column.

  14. THE "HYSTRICHOSPHAERID" RESTING SPORE OF THE DINOFLAGELLATE PYRODINIUM BAHAMENSE, PLATF, 1906(2).

    Science.gov (United States)

    Wall, D; Dale, B

    1969-06-01

    Germination experiments demonstrate that the "hystrichosphere" called Hemicystodinium zoharyi, which previously has been found only as a microfossil organism, is the resting spore stage in the life history of Pyrodinium bahamense, a modern bioluminescent, thecate dinoflagellate. The morphology of this spore, together with new details of the thecal structure and ontogeny of P. bahamense, is described, and it is concluded that Pyrodinium is closely related to Gonyaulax but worthy of retention as a discrete genus. The geological history of P. bahamense is traceable to the Eocene through fossil occurrences of its spore, and it is suggested that additional pyrodinioid dinoflagellates which now are extinct were represented in Lower Tertiary seas by another hystrichosphere genus, called Homotryblium. Selected aspects of the physiology and ecology of modern dinoflagellate resting spores are discussed briefly with special reference to Pyrodinium.

  15. The Prevalence of Benthic Dinoflagellates Associated with Ciguatera in the Central Red Sea

    KAUST Repository

    Catania, Daniela

    2012-12-01

    This study confirms the presence of Gambierdiscus sp., Ostreopsis sp. as well as other epiphytic benthic dinoflagellates associated with Ciguatera Fish Poisoning (CFP) in the Central Red Sea, highlighting the potential occurrence of CFP in this region. These species are reported for the first time in Saudi Arabian coastal waters. A total of 80 Turbinaria and Halimeda macroalgae samples were collected from coral reefs off the Saudi Arabian coast. Sample analyses indicated low average cell abundances (< 40 cells g-1 wet weight algae) of Gambierdiscus sp. and Ostreopsis sp. Subsequent statistical analyses indicated a significant difference in the cell abundances of both genera between sampling sites, between species and between inshore and offshore reefs. The presence of several potentially toxigenic dinoflagellate species in the Red Sea and the statistical differences in abundances between different sampling sites merits future study on possible impacts of these dinoflagellates on marine food webs and human health.

  16. Lipid biomarkers in Symbiodinium dinoflagellates: new indicators of thermal stress

    KAUST Repository

    Kneeland, J.

    2013-08-30

    Lipid content and fatty acid profiles of corals and their dinoflagellate endosymbionts are known to vary in response to high-temperature stress. To better understand the heat-stress response in these symbionts, we investigated cultures of Symbiodinium goreauii type C1 and Symbiodinium sp. clade subtype D1 grown under a range of temperatures and durations. The predominant lipids produced by Symbiodinium are palmitic (C16) and stearic (C18) saturated fatty acids and their unsaturated analogs, the polyunsaturated fatty acid docosahexaenoic acid (C22:6, n-3; DHA), and a variety of sterols. Prolonged exposure to high temperature causes the relative amount of unsaturated acids within the C18 fatty acids in Symbiodinium tissue to decrease. Thermal stress also causes a decrease in abundance of fatty acids relative to sterols, as well as the more specific ratio of DHA to an algal 4-methyl sterol. These shifts in fatty acid unsaturation and fatty acid-to-sterol ratios are common to both types C1 and D1, but the apparent thermal threshold of lipid changes is lower for type C1. This work indicates that ratios among free fatty acids and sterols in Symbiodinium can be used as sensitive indicators of thermal stress. If the Symbiodinium lipid stress response is unchanged in hospite, the algal heat-stress biomarkers we have identified could be measured to detect thermal stress within the coral holobiont. These results provide new insights into the potential role of lipids in the overall Symbiodinium thermal stress response. © 2013 Springer-Verlag Berlin Heidelberg.

  17. Symbiodinium transcriptomes: genome insights into the dinoflagellate symbionts of reef-building corals.

    KAUST Repository

    Bayer, Till

    2012-04-18

    Dinoflagellates are unicellular algae that are ubiquitously abundant in aquatic environments. Species of the genus Symbiodinium form symbiotic relationships with reef-building corals and other marine invertebrates. Despite their ecologic importance, little is known about the genetics of dinoflagellates in general and Symbiodinium in particular. Here, we used 454 sequencing to generate transcriptome data from two Symbiodinium species from different clades (clade A and clade B). With more than 56,000 assembled sequences per species, these data represent the largest transcriptomic resource for dinoflagellates to date. Our results corroborate previous observations that dinoflagellates possess the complete nucleosome machinery. We found a complete set of core histones as well as several H3 variants and H2A.Z in one species. Furthermore, transcriptome analysis points toward a low number of transcription factors in Symbiodinium spp. that also differ in the distribution of DNA-binding domains relative to other eukaryotes. In particular the cold shock domain was predominant among transcription factors. Additionally, we found a high number of antioxidative genes in comparison to non-symbiotic but evolutionary related organisms. These findings might be of relevance in the context of the role that Symbiodinium spp. play as coral symbionts.Our data represent the most comprehensive dinoflagellate EST data set to date. This study provides a comprehensive resource to further analyze the genetic makeup, metabolic capacities, and gene repertoire of Symbiodinium and dinoflagellates. Overall, our findings indicate that Symbiodinium possesses some unique characteristics, in particular the transcriptional regulation in Symbiodinium may differ from the currently known mechanisms of eukaryotic gene regulation.

  18. Symbiodinium transcriptomes: genome insights into the dinoflagellate symbionts of reef-building corals.

    Directory of Open Access Journals (Sweden)

    Till Bayer

    Full Text Available Dinoflagellates are unicellular algae that are ubiquitously abundant in aquatic environments. Species of the genus Symbiodinium form symbiotic relationships with reef-building corals and other marine invertebrates. Despite their ecologic importance, little is known about the genetics of dinoflagellates in general and Symbiodinium in particular. Here, we used 454 sequencing to generate transcriptome data from two Symbiodinium species from different clades (clade A and clade B. With more than 56,000 assembled sequences per species, these data represent the largest transcriptomic resource for dinoflagellates to date. Our results corroborate previous observations that dinoflagellates possess the complete nucleosome machinery. We found a complete set of core histones as well as several H3 variants and H2A.Z in one species. Furthermore, transcriptome analysis points toward a low number of transcription factors in Symbiodinium spp. that also differ in the distribution of DNA-binding domains relative to other eukaryotes. In particular the cold shock domain was predominant among transcription factors. Additionally, we found a high number of antioxidative genes in comparison to non-symbiotic but evolutionary related organisms. These findings might be of relevance in the context of the role that Symbiodinium spp. play as coral symbionts.Our data represent the most comprehensive dinoflagellate EST data set to date. This study provides a comprehensive resource to further analyze the genetic makeup, metabolic capacities, and gene repertoire of Symbiodinium and dinoflagellates. Overall, our findings indicate that Symbiodinium possesses some unique characteristics, in particular the transcriptional regulation in Symbiodinium may differ from the currently known mechanisms of eukaryotic gene regulation.

  19. Toxicity of benthic dinoflagellates on grazing, behavior and survival of the brine shrimp Artemia salina

    Science.gov (United States)

    Neves, Raquel A. F.; Fernandes, Tainá; dos Santos, Luciano Neves; Nascimento, Silvia M.

    2017-01-01

    Harmful algae may differently affect their primary grazers, causing sub-lethal effects and/or leading to their death. The present study aim to compare the effects of three toxic benthic dinoflagellates on clearance and grazing rates, behavioral changes, and survival of Artemia salina. Feeding assays consisted in 1-h incubations of brine shrimps with the toxic Prorocentrum lima, Gambierdiscus excentricus and Ostreopsis cf. ovata and the non-toxic Tetraselmis sp. Brine shrimps fed unselectively on all toxic and non-toxic algal preys, without significant differences in clearance and ingestion rates. Acute toxicity assays were performed with dinoflagellate cells in two growth phases during 7-h to assess differences in cell toxicity to A. salina. Additionally, exposure to cell-free medium was performed to evaluate its effects on A. salina survival. The behavior of brine shrimps significantly changed during exposure to the toxic dinoflagellates, becoming immobile at the bottom by the end of the trials. Dinoflagellates significantly affected A. salina survival with 100% mortality after 7-h exposure to cells in exponential phase (all treatments) and to P. lima in stationary phase. Mortality rates of brine shrimps exposed to O. cf. ovata and G. excentricus in stationary phase were 91% and 75%, respectively. However, incubations of the brine shrimps with cell-free medium did not affect A. salina survivorship. Significant differences in toxic effects between cell growth phases were only found in the survival rates of A. salina exposed to G. excentricus. Acute exposure to benthic toxic dinoflagellates induced harmful effects on behavior and survival of A. salina. Negative effects related to the toxicity of benthic dinoflagellates are thus expected on their primary grazers making them more vulnerable to predation and vectors of toxins through the marine food webs. PMID:28388672

  20. Toxicity of benthic dinoflagellates on grazing, behavior and survival of the brine shrimp Artemia salina.

    Directory of Open Access Journals (Sweden)

    Raquel A F Neves

    Full Text Available Harmful algae may differently affect their primary grazers, causing sub-lethal effects and/or leading to their death. The present study aim to compare the effects of three toxic benthic dinoflagellates on clearance and grazing rates, behavioral changes, and survival of Artemia salina. Feeding assays consisted in 1-h incubations of brine shrimps with the toxic Prorocentrum lima, Gambierdiscus excentricus and Ostreopsis cf. ovata and the non-toxic Tetraselmis sp. Brine shrimps fed unselectively on all toxic and non-toxic algal preys, without significant differences in clearance and ingestion rates. Acute toxicity assays were performed with dinoflagellate cells in two growth phases during 7-h to assess differences in cell toxicity to A. salina. Additionally, exposure to cell-free medium was performed to evaluate its effects on A. salina survival. The behavior of brine shrimps significantly changed during exposure to the toxic dinoflagellates, becoming immobile at the bottom by the end of the trials. Dinoflagellates significantly affected A. salina survival with 100% mortality after 7-h exposure to cells in exponential phase (all treatments and to P. lima in stationary phase. Mortality rates of brine shrimps exposed to O. cf. ovata and G. excentricus in stationary phase were 91% and 75%, respectively. However, incubations of the brine shrimps with cell-free medium did not affect A. salina survivorship. Significant differences in toxic effects between cell growth phases were only found in the survival rates of A. salina exposed to G. excentricus. Acute exposure to benthic toxic dinoflagellates induced harmful effects on behavior and survival of A. salina. Negative effects related to the toxicity of benthic dinoflagellates are thus expected on their primary grazers making them more vulnerable to predation and vectors of toxins through the marine food webs.

  1. Decadal variations in diatoms and dinoflagellates on the inner shelf of the East China Sea, China

    Science.gov (United States)

    Abate, Rediat; Gao, Yahui; Chen, Changping; Liang, Junrong; Mu, Wenhua; Kifile, Demeke; Chen, Yanghang

    2017-11-01

    Diatoms and dinoflagellates are two major groups of phytoplankton that flourish in the oceans, particularly in coastal zone and upwelling systems, and their contrasting production have been reported in several world seas. However, this information is not available in the coastal East China Sea (ECS). Thus, to investigate and compare the decadal trends in diatoms and dinoflagellates, a sediment core, 47 cm long, was collected from the coastal zone of the ECS. Sediment chlorophyll- a (Chl- a), phytoplankton-group specific pigment signatures of diatoms and dinoflagellates, and diatom valve concentrations were determined. The sediment core covered the period from 1961 to 2011 AD. The chlorophyll- a contents ranged from 2.32 to 73 µg/g dry sediment (dw) and averaged 9.81 µg/g dw. Diatom absolute abundance ranged from 29152 to 177501 valve/gram (v/g) dw and averaged 72137 v/g dw. Diatom valve and diatom specific pigment marker concentrations were not significantly correlated. Peridinin increased after the 1980s in line with intensified use of fertilizer and related increases in nutrient inputs into the marine environment. The increased occurrence of dinoflagellate dominance after the 1980s can be mostly explained by the increase in nutrients. However, the contribution of dinoflagellates to total phytoplankton production (Chl- a) decreased during the final decade of this study, probably because of the overwhelming increase in diatom production that corresponded with the construction of the Three Gorges Dam (TGD) and related light availability. Similarly, the mean ratio of fucoxanthin/peridinin for the period from 1982 to 2001 was 6% less than for 1961 to 1982, while the ratio for 2001 to 2011 was 45.3% greater than for 1982 to 2001. The decadal variation in the fucoxanthin/peridinin ratio implies that dinoflagellate production had been gradually increasing until 2001. We suggest that the observed changes can be explained by anthropogenic impacts, such as nutrient

  2. Still acting green: continued expression of photosynthetic genes in the heterotrophic Dinoflagellate Pfiesteria piscicida (Peridiniales, Alveolata.

    Directory of Open Access Journals (Sweden)

    Gwang Hoon Kim

    Full Text Available The loss of photosynthetic function should lead to the cessation of expression and finally loss of photosynthetic genes in the new heterotroph. Dinoflagellates are known to have lost their photosynthetic ability several times. Dinoflagellates have also acquired photosynthesis from other organisms, either on a long-term basis or as "kleptoplastids" multiple times. The fate of photosynthetic gene expression in heterotrophs can be informative into evolution of gene expression patterns after functional loss, and the dinoflagellates ability to acquire new photosynthetic function through additional endosymbiosis. To explore this we analyzed a large-scale EST database consisting of 151,091 unique sequences (29,170 contigs, 120,921 singletons obtained from 454 pyrosequencing of the heterotrophic dinoflagellate Pfiesteria piscicida. About 597 contigs from P. piscicida showed significant homology (E-value dinoflagellates, while the light-harvesting genes are derived from diatoms, or diatoms that are tertiary plastids in other dinoflagellates. The continued expression of many genes involved in photosynthetic pathways indicates that the loss of transcriptional regulation may occur well after plastid loss and could explain the organism's ability to "capture" new plastids (i.e. different secondary endosymbiosis or tertiary symbioses to renew photosynthetic function.

  3. Improving the Analysis of Dinoflagellate Phylogeny based on rDNA

    DEFF Research Database (Denmark)

    Murray, Shauna; Jørgensen, Mårten Flø; Ho, Simon Y.W.

    2005-01-01

    Phylogenetic studies of dinoflagellates are often conducted using rDNA sequences. In analyses to date, the monophyly of some of the major lineages of dinoflagellates remain to be demonstrated. There are several reasons for this uncertainty, one of which may be the use of models of evolution...... that may not closely fit the data. We constructed and examined alignments of SSU and partial LSU rRNA along with a concatenated alignment of the two molecules. The alignments showed several characteristics that may confound phylogeny reconstruction: paired helix (stem) regions that contain non...

  4. Growth and grazing responses of two chloroplast-retaining dinoflagellates: effect of irradiance and prey species

    DEFF Research Database (Denmark)

    Jakobsen, Hans Henrik; Hansen, P.J.; Larsen, J.

    2000-01-01

    The effect of irradiance on growth and grazing responses of 2 phagotrophic dinoflagellates, Gymnodinium gracilentum Campbell 1973 and Amphidinium poecilochroum Larsen 1985, was studied. While G. gracilentum belongs to the plankton, A. poecilochroum is a benthic species that primarily feeds on prey......, However, the growth rate of A. poecilochroum is saturated at a lower irradiance (similar to 6 mu mol photons m(-2) s(-1)) than to G. gracilentum (similar to 60 to 80 mu mol photons m(-2) s(-1)). Also, the irradiance required for saturation of growth for both dinoflagellates matched that found for the prey...

  5. Feeding of the tintinnid ciliate Favella taraikaensis on the toxic ...

    African Journals Online (AJOL)

    To establish the fate of paralytic shellfish poisoning (PSP) toxins in planktonic foodwebs, feeding activities of the planktonic ciliate Favella taraikaensis on the PSP-producing alga Alexandrium tamarense were examined in laboratory experiments and the toxin content in the ciliates was quantified by fluorometric ...

  6. La marea roja causada por el dinoflagelado Alexandrium tamarense en la costa Pacífica colombiana (2001

    Directory of Open Access Journals (Sweden)

    Ingrid García-Hansen

    2004-09-01

    Full Text Available El 26 de marzo de 2001 se registró por primera vez en las aguas del Pacífico colombiano, en el área de la Ensenada de Tumaco, la aparición de una marea roja producida por la especie Alexandrium tamarense con valores que superaron las 7.5 x 10(6 céls l-1 , la marea se mantuvo hacia la región oceánica, derivando en sentido sur-norte por efecto de las corrientes, hasta ser vista por ultima vez cerca a la Isla Gorgona, casi tres semanas después. Un año mas tarde, en marzo de 2002, una segunda proliferación, conformada por la misma especie, se reportó cerca de Cabo Corrientes con una concentración de 1.6 x 10(6 céls l -1 . Ambos casos estuvieron relacionados con la presencia de bajas temperaturas en la superficie del mar y no estuvieron asociadas con fenómenos de intoxicación y mortalidadFrom April 26th to May 15th 2001, a large algae bloom was observed off Tumaco Bay on the Pacific coast of Colombia. This was the first harmful algae bloom (HAB reported in the region, and reached Gorgona Island, about 120 km north. Ayear later, starting March 2002, an offshore HAB developed from Cabo Corrientes North to Solano Bay. The typical abundance during the blooms reached 7.5 x 10(6 cells l-1 for the 2001 event and 1.6 x 10(6 cells l-1 for the 2002 event. During both events, low temperature and high salinity were recorded. Typical measurements in the area are 27-27.5°C and 30-31.5 psu. Values observed during the two events were 24-24.6°C and 33-34 psu; 3°C below normal and more than 2.5 psu above average values. These conditions are indicative of local upwelling processes at the time of the events. On both occasions, cells corresponding to the Alexandrium catenella/fundeyense/tamarense complex represented 99-100% of the biomass. It was difficult to differentiate the cells from A. catenella, but the presence of short chains of only 4 cells (single cells represented most of the biomass was suggestive of A. tamarense. Shape, dimensions, and

  7. Effect of oxidative stress induced by Brevibacterium sp. BS01 on a HAB causing species--Alexandrium tamarense.

    Directory of Open Access Journals (Sweden)

    Huajun Zhang

    Full Text Available Harmful algal blooms occur all over the world, destroying aquatic ecosystems and threatening other organisms. The culture supernatant of the marine algicidal actinomycete BS01 was able to lysis dinoflagellate Alexandrium tamarense ATGD98-006. Physiological and biochemical responses to oxidative stress in A. tamarense were investigated to elucidate the mechanism involved in BS01 inhibition of algal growth. Transmission electron microscope analysis revealed that there were some chloroplast abnormalities in response to BS01 supernatant. The decrease in cellular-soluble protein content suggested that cell growth was greatly inhibited at high concentration of BS01 supernatant. The increase in the levels of reactive oxygen species (ROS and malondialdehyde contents following exposure to BS01 supernatant indicated that algal cells suffered from oxidative damage. The content of pigment was significantly decreased after 12 h treatment, which indicated that the accumulation of ROS destroyed pigment synthesis. Moreover, the decrease of Fv/Fm ratio suggested that in the photosynthetic system, the dominant sites producing ROS were destroyed by the supernatant of the BS01 culture. The activities of the antioxidant enzymes including superoxide dismutase and peroxidase increased in a short time and decreased slightly with increasing exposure time. A real-time PCR assay showed changes in the transcript abundances of two photosynthetic genes, psbA and psbD. The results showed that BS01 supernatant reduced the expression of the psbA gene after 2 h exposure, but the expression of the psbD gene was increased at concentrations of 1.0 and 1.5%. Our results demonstrated that the expression of the psbA gene was inhibited by the BS01 supernatant, which might block the electron transport chain, significantly enhancing ROS level and excess activity of the antioxidant system. The accumulation of ROS destoryed pigment synthesis and membrane integrity, and inhibited or

  8. Effect of oxidative stress induced by Brevibacterium sp. BS01 on a HAB causing species--Alexandrium tamarense.

    Science.gov (United States)

    Zhang, Huajun; An, Xinli; Zhou, Yanyan; Zhang, Bangzhou; Zhang, Su; Li, Dong; Chen, Zhangran; Li, Yi; Bai, Shijie; Lv, Jinglin; Zheng, Wei; Tian, Yun; Zheng, Tianling

    2013-01-01

    Harmful algal blooms occur all over the world, destroying aquatic ecosystems and threatening other organisms. The culture supernatant of the marine algicidal actinomycete BS01 was able to lysis dinoflagellate Alexandrium tamarense ATGD98-006. Physiological and biochemical responses to oxidative stress in A. tamarense were investigated to elucidate the mechanism involved in BS01 inhibition of algal growth. Transmission electron microscope analysis revealed that there were some chloroplast abnormalities in response to BS01 supernatant. The decrease in cellular-soluble protein content suggested that cell growth was greatly inhibited at high concentration of BS01 supernatant. The increase in the levels of reactive oxygen species (ROS) and malondialdehyde contents following exposure to BS01 supernatant indicated that algal cells suffered from oxidative damage. The content of pigment was significantly decreased after 12 h treatment, which indicated that the accumulation of ROS destroyed pigment synthesis. Moreover, the decrease of Fv/Fm ratio suggested that in the photosynthetic system, the dominant sites producing ROS were destroyed by the supernatant of the BS01 culture. The activities of the antioxidant enzymes including superoxide dismutase and peroxidase increased in a short time and decreased slightly with increasing exposure time. A real-time PCR assay showed changes in the transcript abundances of two photosynthetic genes, psbA and psbD. The results showed that BS01 supernatant reduced the expression of the psbA gene after 2 h exposure, but the expression of the psbD gene was increased at concentrations of 1.0 and 1.5%. Our results demonstrated that the expression of the psbA gene was inhibited by the BS01 supernatant, which might block the electron transport chain, significantly enhancing ROS level and excess activity of the antioxidant system. The accumulation of ROS destoryed pigment synthesis and membrane integrity, and inhibited or ultimately killed the

  9. Temperature and residence time controls on an estuarine harmful algal bloom: Modeling hydrodynamics and Alexandrium fundyense in Nauset estuary.

    Science.gov (United States)

    Ralston, David K; Brosnahan, Michael L; Fox, Sophia E; Lee, Krista; Anderson, Donald M

    2015-11-01

    A highly resolved, 3-d model of hydrodynamics and Alexandrium fundyense in an estuarine embayment has been developed to investigate the physical and biological controls on a recurrent harmful algal bloom. Nauset estuary on Cape Cod (MA, USA) consists of three salt ponds connected to the ocean through a shallow marsh and network of tidal channels. The model is evaluated using quantitative skill metrics against observations of physical and biological conditions during three spring blooms. The A. fundyense model is based on prior model applications for the nearby Gulf of Maine, but notable modifications were made to be consistent with the Nauset observations. The dominant factors controlling the A. fundyense bloom in Nauset were the water temperature, which regulates organism growth rates, and the efficient retention of cells due to bathymetric constraints, stratification, and cell behavior (diel vertical migration). Spring-neap variability in exchange altered residence times, but for cell retention to be substantially longer than the cell doubling time required both active vertical migration and stratification that inhibits mixing of cells into the surface layer by wind and tidal currents. Unlike in the Gulf of Maine, the model results were relatively insensitive to cyst distributions or germination rates. Instead, in Nauset, high apparent rates of vegetative cell division by retained populations dictated bloom development. Cyst germination occurred earlier in the year than in the Gulf of Maine, suggesting that Nauset cysts have different controls on germination timing. The model results were relatively insensitive to nutrient concentrations, due to eutrophic conditions in the highly impacted estuary or due to limitations in the spatial and temporal resolution of nutrient sampling. Cell loss rates were inferred to be extremely low during the growth phase of the bloom, but increased rapidly during the final phase due to processes that remain uncertain. The validated

  10. Significance of Plankton Community Structure and Nutrient Availability for the Control of Dinoflagellate Blooms by Parasites: A Modeling Approach

    Science.gov (United States)

    Alves-de-Souza, Catharina; Pecqueur, David; Le Floc’h, Emilie; Mas, Sébastien; Roques, Cécile; Mostajir, Behzad; Vidussi, Franscesca; Velo-Suárez, Lourdes; Sourisseau, Marc; Fouilland, Eric; Guillou, Laure

    2015-01-01

    Dinoflagellate blooms are frequently observed under temporary eutrophication of coastal waters after heavy rains. Growth of these opportunistic microalgae is believed to be promoted by sudden input of nutrients and the absence or inefficiency of their natural enemies, such as grazers and parasites. Here, numerical simulations indicate that increasing nutrient availability not only promotes the formation of dinoflagellate blooms but can also stimulate their control by protozoan parasites. Moreover, high abundance of phytoplankton other than dinoflagellate hosts might have a significant dilution effect on the control of dinoflagellate blooms by parasites, either by resource competition with dinoflagellates (thus limiting the number of hosts available for infection) or by affecting numerical-functional responses of grazers that consume free-living parasite stages. These outcomes indicate that although both dinoflagellates and their protozoan parasites are directly affected by nutrient availability, the efficacy of the parasitic control of dinoflagellate blooms under temporary eutrophication depends strongly on the structure of the plankton community as a whole. PMID:26030411

  11. The Symbiodinium kawagutii genome illuminates dinoflagellate gene expression and coral symbiosis

    DEFF Research Database (Denmark)

    Lin, Senjie; Cheng, Shifeng; Song, Bo

    2015-01-01

    Dinoflagellates are important components of marine ecosystems and essential coral symbionts, yet little is known about their genomes. We report here on the analysis of a high-quality assembly from the 1180-megabase genome of Symbiodinium kawagutii. We annotated protein-coding genes and identified...

  12. Long Term Dinoflagellate Bioluminescence, Chlorophyll, And Their Environmental Correlates In Southern California Coastal Waters

    Science.gov (United States)

    2012-02-01

    Buchanan, R.J., Seliger, H.H. (1969). Stimulable and spontaneous bioluminescence in the marine dinoflagellates, Pyrodinium bahamense , Gonyaulax...1961). Relative iron requirement of some coastal and off-shore plankton algae. Ecology 42: 444-446. Schwing, F.B., O’Farrell, M., Steger, J

  13. The toxic dinoflagellate Dinophysis acuminata harbors permanent chloroplasts of cryptomomad prigin, not kleptochloroplasts

    DEFF Research Database (Denmark)

    Garcia, Lydia; Moestrup, Øjvind; Hansen, Per Juel

    2010-01-01

    Most species belonging to the toxigenic genus Dinophysis have chloroplasts of cryptophyte origin. Whether these chloroplasts are temporarily sequestered from the prey, or permanently established under the control of the dinoflagellate is currently disputed. To investigate this, a culture of Dinop...

  14. Systematics of a kleptoplastidal dinoflagellate, Gymnodinium eucyaneum Hu (Dinophyceae), and its cryptomonad endosymbiont.

    Science.gov (United States)

    Xia, Shuang; Zhang, Qi; Zhu, Huan; Cheng, Yingyin; Liu, Guoxiang; Hu, Zhengyu

    2013-01-01

    New specimens of the kleptoplastidal dinoflagellate Gymnodinium eucyaneum Hu were collected in China. We investigated the systematics of the dinoflagellate and the origin of its endosymbiont based on light morphology and phylogenetic analyses using multiple DNA sequences. Cells were dorsoventrally flattened with a sharply acute hypocone and a hemispherical epicone. The confusion between G. eucyaneum and G. acidotum Nygaard still needs to be resolved. We found that the hypocone was conspicuously larger than the epicone in most G. eucyaneum cells, which differed from G. acidotum, but there were a few cells whose hypocone and epicone were of nearly the same size. In addition, there was only one site difference in the partial nuclear LSU rDNA sequences of a sample from Japan given the name G. acidotum and G. eucyaneum in the present study, which suggest that G. eucyaneum may be a synonym of G. acidotum. Spectroscopic analyses and phylogenetic analyses based on nucleomorph SSU rDNA sequences and chloroplast 23 s rDNA sequences suggested that the endosymbiont of G. eucyaneum was derived from Chroomonas (Cryptophyta), and that it was most closely related to C. coerulea Skuja. Moreover, the newly reported kleptoplastidal dinoflagellates G. myriopyrenoides and G. eucyaneum in our study were very similar, and the taxonomy of kleptoplastidal dinoflagellates was discussed.

  15. PhnW-PhnX pathway in dinoflagellates not functional to utilize extracellular phosphonates

    Directory of Open Access Journals (Sweden)

    Yudong eCui

    2016-01-01

    Full Text Available Phosphorus (P is an essential nutrient for marine phytoplankton but its preferred form, dissolved inorganic phosphorus (DIP, is often limited in the euphotic zone of the ocean. Many phytoplankton species have developed the ability to utilize dissolved organic phosphorus (DOP such as phosphoesters or phosphonates. Phosphonates are characterized by the stable C-P bond and its utilization is known to rely on either a C-P lyase pathway or C–P hydrolase pathways in bacteria. In this study by transcriptomic analysis we detected the genes encoding the C-P hydrolase pathway enzymes PhnW and PhnX in Karlodinium veneficum and other dinoflagellates. However, we found that these dinoflagellates are unable to utilize the presumably dominant type of phosphonate in the ocean, 2-aminoethylphosphonic acid (2-AEP, under the antibiotic-treated condition. In accordance, our RT-qPCR and proteomic analyses of K. veneficum grown on 2-AEP showed no up-regulation of PhnW and PhnX at both transcriptional and translational levels. Nevertheless, the genes related to phosphonate biosynthesis and utilization were widely found in dinoflagellates. Taken together our results suggest that the PhnW-PhnX pathway in dinoflagellates may serve for intracellular phosphonate metabolism instead of scavenging environmental phosphonates.

  16. Active prey selection in two pelagic copepods feeding on potentially toxic and non-toxic dinoflagellates

    DEFF Research Database (Denmark)

    Schultz, Mette; Kiørboe, Thomas

    2009-01-01

    Grazing on two red tide dinoflagellates, the potentially toxic Karenia mikimotoi and the non-toxic Gyrodinium instriatum, was examined in two species of marine copepods, Pseudocalanus elongatus and Temora longicornis. Both copepods cleared K. mikimotoi at rates that were a little lower...

  17. Studies on woloszynskioid dinoflagellates IV: the genus Biecheleria gen. nov

    DEFF Research Database (Denmark)

    Moestrup, Øjvind; Lindberg, Karin; Daugbjerg, Niels

    2009-01-01

    The well known freshwater dinoflagellate Woloszynskia pseudopalustris is transferred to the new genus Biecheleria, based on the very unusual structure of the eyespot (comprising a stack of cisternae), the apical apparatus of a single elongate amphiesma vesicle, the structure of the resting cyst, ...

  18. Amphidinolides B4 and B5, Potent Cytotoxic 26-Membered Macrolides from Dinoflagellate Amphidinium Species

    Directory of Open Access Journals (Sweden)

    Jun’ichi Kobayashi

    2005-03-01

    Full Text Available Abstract: Two new cytotoxic 26-membered macrolides, amphidinolides B4 (1 and B5 (2, have been isolated from a marine dinoflagellate Amphidinium sp. (strain Y-100, and the structures were elucidated on the basis of detailed analyses of 2D NMR data including 13C−13C correlations.

  19. Sea surface conditions in the southern Nordic Seas during the Holocene based on dinoflagellate cyst assemblages

    DEFF Research Database (Denmark)

    Van Nieuwenhove, Nicolas; Baumann, Astrid; Matthiessen, Jens

    2016-01-01

    Dinoflagellate cyst (dinocyst) records from the southern Nordic Seas were compiled in order to evaluate the evolution of upper ocean conditions, on a millennial timescale and supported by a highly resolved record from the Vøring Plateau. After the transitional phase from the last deglaciation...

  20. A single-cell view of ammonium assimilation in coral–dinoflagellate symbiosis

    Science.gov (United States)

    Pernice, Mathieu; Meibom, Anders; Van Den Heuvel, Annamieke; Kopp, Christophe; Domart-Coulon, Isabelle; Hoegh-Guldberg, Ove; Dove, Sophie

    2012-01-01

    Assimilation of inorganic nitrogen from nutrient-poor tropical seas is an essential challenge for the endosymbiosis between reef-building corals and dinoflagellates. Despite the clear evidence that reef-building corals can use ammonium as inorganic nitrogen source, the dynamics and precise roles of host and symbionts in this fundamental process remain unclear. Here, we combine high spatial resolution ion microprobe imaging (NanoSIMS) and pulse-chase isotopic labeling in order to track the dynamics of ammonium incorporation within the intact symbiosis between the reef-building coral Acropora aspera and its dinoflagellate symbionts. We demonstrate that both dinoflagellate and animal cells have the capacity to rapidly fix nitrogen from seawater enriched in ammonium (in less than one hour). Further, by establishing the relative strengths of the capability to assimilate nitrogen for each cell compartment, we infer that dinoflagellate symbionts can fix 14 to 23 times more nitrogen than their coral host cells in response to a sudden pulse of ammonium-enriched seawater. Given the importance of nitrogen in cell maintenance, growth and functioning, the capability to fix ammonium from seawater into the symbiotic system may be a key component of coral nutrition. Interestingly, this metabolic response appears to be triggered rapidly by episodic nitrogen availability. The methods and results presented in this study open up for the exploration of dynamics and spatial patterns associated with metabolic activities and nutritional interactions in a multitude of organisms that live in symbiotic relationships. PMID:22222466

  1. Transport and degradation of a dinoflagellate bloom in permeable sublittoral sediment

    NARCIS (Netherlands)

    Huettel, M.; Cook, P.; Janssen, F.; Lavik, G.; Middelburg, J.J.

    2007-01-01

    Filtration of planktonic algal cells from the water column into permeable sublittoral sediment and the fate of the cells in the shallow sands were studied during a red tide produced by the dinoflagellate Peridinella catenata at Hel Peninsula/Baltic in May 2004. Advective porewater flows associated

  2. Biology of the Marine Heterotrophic Dinoflagellate Oxyrrhis marina: Current Status and Future Directions

    Directory of Open Access Journals (Sweden)

    Sheng Liu

    2013-10-01

    Full Text Available Heterotrophic dinoflagellates are prevalent protists in marine environments, which play an important role in the carbon cycling and energy flow in the marine planktonic community. Oxyrrhis marina (Dinophyceae, a widespread heterotrophic dinoflagellate, is a model species used for a broad range of ecological, biogeographic, and evolutionary studies. Despite the increasing research effort on this species, there lacks a synthesis of the existing data and a coherent picture of this organism. Here we reviewed the literature to provide an overview of what is known regarding the biology of O. marina, and identify areas where further studies are needed. As an early branch of the dinoflagellate lineage, O. marina shares similarity with typical dinoflagellates in permanent condensed chromosomes, less abundant nucleosome proteins compared to other eukaryotes, multiple gene copies, the occurrence of trans-splicing in nucleus-encoded mRNAs, highly fragmented mitochondrial genome, and disuse of ATG as a start codon for mitochondrial genes. On the other hand, O. marina also exhibits some distinct cytological features (e.g., different flagellar structure, absence of girdle and sulcus or pustules, use of intranuclear spindle in mitosis, presence of nuclear plaque, and absence of birefringent periodic banded chromosomal structure and genetic features (e.g., a single histone-like DNA-associated protein, cob-cox3 gene fusion, 5′ oligo-U cap in the mitochondrial transcripts of protein-coding genes, the absence of mRNA editing, the presence of stop codon in the fused cob-cox3 mRNA produced by post-transcriptional oligoadenylation, and vestigial plastid genes. The best-studied biology of this dinoflagellate is probably the prey and predators types, which include a wide range of organisms. On the other hand, the abundance of this species in the natural waters and its controlling factors, genome organization and gene expression regulation that underlie the unusual

  3. Evaluating the Addition of a Dinoflagellate Phytoplankton Functional Type Using Radiance Anomalies for Monterey Bay, CA

    Science.gov (United States)

    Houskeeper, H. F.; Kudela, R. M.

    2016-12-01

    Ocean color sensors have enabled daily, global monitoring of phytoplankton productivity in the world's oceans. However, to observe key structures such as food webs, or to identify regime shifts of dominant species, tools capable of distinguishing between phytoplankton functional types using satellite remote sensing reflectance are necessary. One such tool developed by Alvain et al. (2005), PHYSAT, successfully linked four phytoplankton functional types to chlorophyll-normalized remote sensing spectra, or radiance anomalies, in case-1 waters. Yet this tool was unable to characterize dinoflagellates because of their ubiquitous background presence in the open ocean. We employ a radiance anomaly technique based on PHYSAT to target phytoplankton functional types in Monterey Bay, a region where dinoflagellate populations are larger and more variable than in open ocean waters, and thus where they may be viable targets for satellite remote sensing characterization. We compare with an existing Santa Cruz Wharf photo-pigment time series spanning from 2006 to the present to regionally ground-truth the method's predictions, and we assess its accuracy in characterizing dinoflagellates, a phytoplankton group that impacts the region's fish stocks and water quality. For example, an increase in dinoflagellate abundance beginning in 2005 led to declines in commercially important fish stocks that persisted throughout the following year. Certain species of dinoflagellates in Monterey Bay are also responsible for some of the harmful algal bloom events that negatively impact the shellfish industry. Moving toward better tools to characterize phytoplankton blooms is important for understanding ecosystem shifts, as well as protecting human health in the surrounding areas.

  4. Loktanella spp. Gb03 as an algicidal bacterium, isolated from the culture of Dinoflagellate Gambierdiscus belizeanus

    Science.gov (United States)

    Bloh, Anmar Hameed; Usup, Gires; Ahmad, Asmat

    2016-01-01

    Aim: Bacteria associated with harmful algal blooms can play a crucial role in regulating algal blooms in the environment. This study aimed at isolating and identifying algicidal bacteria in Dinoflagellate culture and to determine the optimum growth requirement of the algicidal bacteria, Loktanella sp. Gb-03. Materials and Methods: The Dinoflagellate culture used in this study was supplied by Professor Gires Usup's Laboratory, School of Environmental and Natural Resources Sciences, Faculty of Science and Technology, University Kebangsaan Malaysia, Malaysia. The culture was used for the isolation of Loktanella sp., using biochemical tests, API 20 ONE kits. The fatty acid content of the isolates and the algicidal activity were further evaluated, and the phenotype was determined through the phylogenetic tree. Results: Gram-negative, non-motile, non-spore-forming, short rod-shaped, aerobic bacteria (Gb01, Gb02, Gb03, Gb04, Gb05, and Gb06) were isolated from the Dinoflagellate culture. The colonies were pink in color, convex with a smooth surface and entire edge. The optimum growth temperature for the Loktanella sp. Gb03 isolate was determined to be 30°C, in 1% of NaCl and pH7. Phylogenetic analysis based on 16S rRNA gene sequences showed that the bacterium belonged to the genus Loktanella of the class Alphaproteobacteria and formed a tight cluster with the type strain of Loktanella pyoseonensis (97.0% sequence similarity). Conclusion: On the basis of phenotypic, phylogenetic data and genetic distinctiveness, strain Gb-03, were placed in the genus Loktanella as the type strain of species. Moreover, it has algicidal activity against seven toxic Dinoflagellate. The algicidal property of the isolated Loktanella is vital, especially where biological control is needed to mitigate algal bloom or targeted Dinoflagellates. PMID:27051199

  5. Loktanella spp. Gb03 as an algicidal bacterium, isolated from the culture of Dinoflagellate Gambierdiscus belizeanus

    Directory of Open Access Journals (Sweden)

    Anmar Hameed Bloh

    2016-02-01

    Full Text Available Aim: Bacteria associated with harmful algal blooms can play a crucial role in regulating algal blooms in the environment. This study aimed at isolating and identifying algicidal bacteria in Dinoflagellate culture and to determine the optimum growth requirement of the algicidal bacteria, Loktanella sp. Gb-03. Materials and Methods: The Dinoflagellate culture used in this study was supplied by Professor Gires Usup’s Laboratory, School of Environmental and Natural Resources Sciences, Faculty of Science and Technology, University Kebangsaan Malaysia, Malaysia. The culture was used for the isolation of Loktanella sp., using biochemical tests, API 20 ONE kits. The fatty acid content of the isolates and the algicidal activity were further evaluated, and the phenotype was determined through the phylogenetic tree. Results: Gram-negative, non-motile, non-spore-forming, short rod-shaped, aerobic bacteria (Gb01, Gb02, Gb03, Gb04, Gb05, and Gb06 were isolated from the Dinoflagellate culture. The colonies were pink in color, convex with a smooth surface and entire edge. The optimum growth temperature for the Loktanella sp. Gb03 isolate was determined to be 30°C, in 1% of NaCl and pH7. Phylogenetic analysis based on 16S rRNA gene sequences showed that the bacterium belonged to the genus Loktanella of the class Alphaproteobacteria and formed a tight cluster with the type strain of Loktanella pyoseonensis (97.0% sequence similarity. Conclusion: On the basis of phenotypic, phylogenetic data and genetic distinctiveness, strain Gb-03, were placed in the genus Loktanella as the type strain of species. Moreover, it has algicidal activity against seven toxic Dinoflagellate. The algicidal property of the isolated Loktanella is vital, especially where biological control is needed to mitigate algal bloom or targeted Dinoflagellates.

  6. Dynamics of Alexandrium fundyense blooms and shellfish toxicity in the Nauset Marsh System of Cape Cod (Massachusetts, USA).

    Science.gov (United States)

    Crespo, Bibiana G; Keafer, Bruce A; Ralston, David K; Lind, Henry; Farber, Dawson; Anderson, Donald M

    2011-12-01

    Paralytic Shellfish Poisoning (PSP) toxins are annually recurrent along the Massachusetts coastline (USA), which includes many small embayments and salt ponds. Among these is the Nauset Marsh System (NMS), which has a long history of PSP toxicity. Little is known, however, about the bloom dynamics of the causative organism Alexandrium fundyense within that economically and socially important system. The overall goal of this work was to characterize the distribution and dynamics of A. fundyense blooms within the NMS and adjacent coastal waters by documenting the distribution and abundance of resting cysts and vegetative cells. Cysts were found predominantly in three drowned kettle holes or salt ponds at the distal ends of the NMS - Salt Pond, Mill Pond, and Town Cove. The central region of the NMS had a much lower concentration of cysts. Two types of A. fundyense blooms were observed. One originated entirely within the estuary, seeded by cysts in the three seedbeds. These blooms developed independently of each other and of the A. fundyense population observed in adjacent coastal waters outside the NMS. The temporal development of the blooms was different in the three salt ponds, with initiation differing by as much as 30 days. These differences do not appear to reflect the initial cyst abundances in these locations, and may simply result from higher cell retention and higher nutrient concentrations in Mill Pond, the first site to bloom. Germination of cysts accounted for a small percentage of the peak cell densities in the ponds, so population size was influenced more by the factors affecting growth than by cyst abundance. Subsurface cell aggregation (surface avoidance) limited advection of the vegetative A. fundyense cells out of the salt ponds through the shallow inlet channels. Thus, the upper reaches of the NMS are at the greatest risk for PSP since the highest cyst abundances and cell concentrations were found there. After these localized blooms in the salt

  7. Rhodopsin gene expression regulated by the light dark cycle, light spectrum and light intensity in the dinoflagellate Prorocentrum

    National Research Council Canada - National Science Library

    Shi, Xinguo; Li, Ling; Guo, Chentao; Lin, Xin; Li, Meizhen; Lin, Senjie

    2015-01-01

    .... While found in several lineages of dinoflagellates, this gene has not been studied in Prorocentrales species and whether it functionally tunes to light spectra and intensities as in bacteria remains unclear...

  8. Can Vertical Migrations of Dinoflagellates Explain Observed Bioluminescence Patterns During an Upwelling Event in Monterey Bay, California?

    Science.gov (United States)

    2012-01-25

    of actual dinoflagellates swimming during the 2003 upwelling event represents a very challenging task and requires knowledge of their initial...Solid vertical lines indicate location of the Ml mooring. profiles derived from the Modular Ocean Data Assimilation System ( MODAS ) [Fox et al, 2002...to avoid strong advection by southward flow along the entrance to the Bay. [28] We want to stress here that the actual dinoflagellates swimming

  9. Feeding, prey selection and prey encounter mechanisms in the heterotrophic dinoflagellate Noctiluca scintillans

    DEFF Research Database (Denmark)

    Kiørboe, Thomas; Titelman, J.

    1998-01-01

    by modeling N.scintillans both as a spherical and as a cylindrical collector. The latter model assumes that prey particles are collected on the string of mucus that may form at the tip of the tentacle. Feeding, growth and prey selection experiments all demonstrated that diatoms are cleared at substantially...... higher rates than latex beads and other phytoplankters, particularly dinoflagellates. We propose that diatoms stick more efficiently than latex beads to the mucus of N.scintillans and that dinoflagellates reduce fatal contact behaviorally. We conclude that N.scintillans is an interception feeder.......scintillans is consistent with its spatial and seasonal distribution, which is characterized by persistence in the plankton, blooms in association with high concentrations of diatoms, and surface accumulation during quiescent periods or exponential decline in abundance with depth during periods of turbulent mixing....

  10. The variability in DMSP content and DMSP lyase activity in marine dinoflagellates

    Science.gov (United States)

    Caruana, Amandine M. N.; Malin, Gill

    2014-01-01

    More than 20 years ago Maureen Keller and co-workers published a study that identified dinoflagellates as an important marine phytoplankton group with respect to the production of dimethylsulphoniopropionate (DMSP). Here, we present a synthesis and analysis of all the DMSP and DMSP lyase activity (DLA) measurements currently available for dinoflagellates. The data cover 110 species and strains and reveal over 6 orders of magnitude variability in intracellular DMSP concentrations and substantial variations in DLA in 23 strains. Inter-specific variability was explored with reference to a range of biological characteristics. The presence of a theca did not appear to be related to DMSP concentration but there was a potential relationship with toxicity (P = 0.06) and bioluminescent species produced significantly lower concentrations (P knowledge.

  11. Resting cysts of freshwater dinoflagellates in southeastern Georgian Bay (Lake Huron) as proxies of cultural eutrophication

    DEFF Research Database (Denmark)

    McCarthy, Francine M.G.; Mertens, Kenneth Neil; Ellegaard, Marianne

    2011-01-01

    in the relative abundances of these two cyst morphotypes were attributed primarily to cultural eutrophication related to land-use changes around Severn Sound over the last six centuries. Cysts of Peridinium willei, a cosmopolitan dinoflagellate species that occurs in a broad range of temperature, pH and nutrient...... conditions, comprise 60–74% of the cysts identified in Ambrosia (ragweed)-rich sediments in the upper 20 cm of a gravity core taken from Honey Harbour. Euro-Canadian settlement and land-clearing that began in the Midland-Penetanguishene region around A.D. 1840 are evident in the increase in Ambrosia (ragweed...... (~ 700 to ~ 150 yBP) is attributed to earlier land-clearing by the Wendat (“Huron”), who practiced agriculture in the Penetanguishene peninsula between ~ A.D. 1450–1650. The cysts of these freshwater dinoflagellates thus appear to be sensitive to cultural eutrophication....

  12. The role of photosynthesis and food uptake for the growth of marine mixotrophic dinoflagellates

    DEFF Research Database (Denmark)

    Hansen, Per Juel

    2011-01-01

    phototrophic species, and food uptake marginally increased their growth rates at low irradiances. In the remaining species, food uptake increases to a large degree their growth rate when light is limiting and in some cases even when irradiance is not limiting growth. Some of these species grow relatively fast......Mixotrophy (i.e. combined use of photosynthesis and food uptake for growth) is widespread among marine dinoflagellates. Species with permanent chloroplasts generally display a growth response towards irradiance like an ordinary autotrophic alga. However, some species cannot grow in the light...... at high irradiances without food, while other species only grow slowly or cannot even maintain themselves at high irradiances without food. Dinoflagellates, which form symbioses with endo- and ectosymbionts are a very heterogeneous group, which have been studied only sporadically. Some species are clearly...

  13. Diel Bioluminescence in Heterotrophic and Photosynthetic Marine Dinoflagellates in an Arctic Fjord

    Science.gov (United States)

    1992-01-01

    bioluminescence in the marine dinoflagellates, Pyrodinium bahamense , Gonyaulax palyedra, and SPyrocystis tun ula. Journal of General Physiology, 54, 96-122...Observations ’Ind mcasurements of planktonic bioluminescence in and around a milkv sea. Journal of I xpjerimental Marine’ Biology and Ecology , 119, 55-RI1...parameters fiini a Norwegian fjord Marine Ecology Progress Series, 55, 217-227. I~apta, . & ose , JJ 1984. Observations of bioluminescence in manne

  14. Parameters for Predicting Red Tides of Bioluminescent Dinoflagellates: Meterological Events and Frontal Water Circulation Patterns.

    Science.gov (United States)

    1992-01-01

    consistent with sequence Ilb, and in Ria de Ares y Betanzos, on the north coast, with IIIb. c. Pyrodinium bahamense var. compressum (NW Borneo). The...dinoflagellate species, Pyrodinium bahamense Plate, (recently re-named P. bahamense var. bahamense to differentiate it from the bioluminescent, toxic...Indo-Pacific species P. bahamense var. compressum ), is dominant ill]. Red tides with surface concentrations > 107 cells L-1 are produced by reverse

  15. Epiphytic dinoflagellates associated with ciguatera in the northwestern coast of Cuba

    OpenAIRE

    Gilma Delgado; Lechuga-Devéze, Carlos H.; Genoveva Popowski; Luis Troccoli; Cesar A Salinas

    2014-01-01

    The spatial and temporal abundance of epiphytic dinoflagellates associated with ciguatera was studied over two annual cycles (March 1999 to March 2000 and March 2001 to March 2002) in the northwestern coast of Cuba. From 14 species of macroalgae (Phaeophyta, Chlorophyta, and Rhodophyta), 1340 samples were obtained identifying seven species as potentially noxious; five of them are new reports for Cuba’s phytobenthos: Prorocentrum belizeanum Faust, P. concavum Fukuyo, P. mexicanum Tafall, Cooli...

  16. Associated bacterial flora, growth, and toxicity of cultured benthic dinoflagellates Ostreopsis lenticularis and Gambierdiscus toxicus.

    OpenAIRE

    Tosteson, T. R.; Ballantine, D.L.; Tosteson, C G; Hensley, V; Bardales, A T

    1989-01-01

    The growth, toxicity, and associated bacterial flora of 10 clonal cultures of the toxic benthic dinoflagellates Ostreopsis lenticularis and Gambierdiscus toxicus isolated from the coastal waters of southwest Puerto Rico have been examined. Clonal cultures of O. lenticularis grew more rapidly and at broader temperature ranges than those of G. toxicus. All five Ostreopsis clones were toxic, while only one of the five Gambierdiscus clones was poisonous. The degree of toxicity among poisonous clo...

  17. Associated bacterial flora, growth, and toxicity of cultured benthic dinoflagellates Ostreopsis lenticularis and Gambierdiscus toxicus.

    Science.gov (United States)

    Tosteson, T R; Ballantine, D L; Tosteson, C G; Hensley, V; Bardales, A T

    1989-01-01

    The growth, toxicity, and associated bacterial flora of 10 clonal cultures of the toxic benthic dinoflagellates Ostreopsis lenticularis and Gambierdiscus toxicus isolated from the coastal waters of southwest Puerto Rico have been examined. Clonal cultures of O. lenticularis grew more rapidly and at broader temperature ranges than those of G. toxicus. All five Ostreopsis clones were toxic, while only one of the five Gambierdiscus clones was poisonous. The degree of toxicity among poisonous clones was highly variable. The number of associated bacterial genera and their frequency of occurrence were quite variable among clones of both dinoflagellate genera. Bacterial isolates represented six genera (Nocardia, Pseudomonas, Vibrio, Aeromonas, Flavobacterium, and Moraxella) in addition to coryneform bacteria. Extracts of dinoflagellate-associated bacteria grown in pure culture were not toxic. Gambierdiscus clones were characterized by the frequent presence of Pseudomonas spp. (four of five clones) and the absence of coryneforms. In O. lenticularis, only one of five clones showed the presence of Pseudomonas spp., and Moraxella sp. was absent altogether. Detailed analyses of toxicity and associated microflora in a selected Ostreopsis clone, repeatedly cultivated (four times) over a period of 160 days, showed that peak cell toxicities developed in the late static and early negative culture growth phases. Peak Ostreopsis cell toxicities in the stationary phase of culture growth were correlated with significant increases in the percent total bacteria directly associated with these cells. Changes in the quantity of bacteria directly associated with microalgal cell surfaces and extracellular matrices during culture growth may be related to variability and degree of toxicity in these laboratory-cultured benthic dinoflagellates.

  18. The effect of elevated temperature on the toxicity of the laboratory cultured dinoflagellate Ostreopsis lenticularis (Dinophyceae)

    OpenAIRE

    Ashton, Mayra; Tosteson, Thomas; Tosteson, Carmen

    2016-01-01

    Ostreopsis lenticularis Fukuyo 1981, is the major benthic dinoflagellate vector implicated in ciguatera fish poisoning in finfish on the southwest coast of Puerto Rico. Clonal laboratory cultures of O. lenticularis (clone 301) exposed to elevated temperatures (30-31°C) for 33 and 54 days showed significant increases in the quantity of ex-tractable toxin they produced as compared to their toxicities versus cells grown at temperatures of 25-26°C. O. lenticularis samples collected directly from ...

  19. Cell-specific extracellular phosphatase activity of dinoflagellate populations in acidified mountain lakes

    Czech Academy of Sciences Publication Activity Database

    Novotná, J.; Nedbalová, Linda; Kopáček, Jiří; Vrba, Jaroslav

    2010-01-01

    Roč. 46, č. 4 (2010), s. 635-644 ISSN 0022-3646 R&D Projects: GA AV ČR IAA600170602; GA ČR GA206/07/1200 Institutional research plan: CEZ:AV0Z60050516; CEZ:AV0Z60170517 Keywords : extracellular phosphatases * acidified lakes * dinoflagellates Subject RIV: EF - Botanics Impact factor: 2.239, year: 2010

  20. The dinoflagellates Durinskia baltica and Kryptoperidinium foliaceum retain functionally overlapping mitochondria from two evolutionarily distinct lineages

    Directory of Open Access Journals (Sweden)

    Keeling Patrick J

    2007-09-01

    Full Text Available Abtract Background The dinoflagellates Durinskia baltica and Kryptoperidinium foliaceum are distinguished by the presence of a tertiary plastid derived from a diatom endosymbiont. The diatom is fully integrated with the host cell cycle and is so altered in structure as to be difficult to recognize it as a diatom, and yet it retains a number of features normally lost in tertiary and secondary endosymbionts, most notably mitochondria. The dinoflagellate host is also reported to retain mitochondrion-like structures, making these cells unique in retaining two evolutionarily distinct mitochondria. This redundancy raises the question of whether the organelles share any functions in common or have distributed functions between them. Results We show that both host and endosymbiont mitochondrial genomes encode genes for electron transport proteins. We have characterized cytochrome c oxidase 1 (cox1, cytochrome oxidase 2 (cox2, cytochrome oxidase 3 (cox3, cytochrome b (cob, and large subunit of ribosomal RNA (LSUrRNA of endosymbiont mitochondrial ancestry, and cox1 and cob of host mitochondrial ancestry. We show that all genes are transcribed and that those ascribed to the host mitochondrial genome are extensively edited at the RNA level, as expected for a dinoflagellate mitochondrion-encoded gene. We also found evidence for extensive recombination in the host mitochondrial genes and that recombination products are also transcribed, as expected for a dinoflagellate. Conclusion Durinskia baltica and K. foliaceum retain two mitochondria from evolutionarily distinct lineages, and the functions of these organelles are at least partially overlapping, since both express genes for proteins in electron transport.

  1. Distribution of diatom Pseudo-nitzschia and dinoflagellates of Dinophysis spp along coast off Goa

    Digital Repository Service at National Institute of Oceanography (India)

    Alkawri, A.A.S.; Ramaiah, N.

    , 32 (1) 65-70 (2011) © Triveni Enterprises, Lucknow (India) For personal use only Free paper downloaded from: www. jeb. co. in commercial distribution of this copy is illegal Journal of Environmental Biology circleshadowdwnJanuary 2011circleshadowdwn... attain high cell numbers. It is reasonable for us to therefore caution that the toxic species do prevail in these waters. Key words Toxic phytoplankton, Diatom, Dinoflagellates, West coast of India Publication Data Paper received: 07 December 2009...

  2. Latest Quaternary palaeoceanographic change in the eastern North Atlantic based upon a dinoflagellate cyst event ecostratigraphy

    Directory of Open Access Journals (Sweden)

    Rex Harland

    2016-05-01

    Full Text Available The analyses of dinoflagellate cyst records, from the latest Quaternary sediments recovered from DSDP Core 610A taken on the Feni Ridge in the southern Rockall Trough, and part of core MD01-2461 on the continental margin of the Porcupine Seabight in the eastern North Atlantic Ocean, has provided evidence for significant oceanographic change encompassing the Last Glacial Maximum (LGM and part of the Holocene. This together with other published records has led to a regional evaluation of oceanographic change in the eastern North Atlantic over the past 68 ka, based upon a distinctive dinoflagellate event ecostratigraphy. These changes reflect changes in the surface waters of the North Atlantic Current (NAC, and perhaps the deeper thermohaline Atlantic Meridional Overturning Circulation (AMOC, driving fundamental regime changes within the phytoplanktonic communities. Three distinctive dinoflagellate cyst associations based upon both factor and cluster analyses have been recognised. Associations characterised by Bitectatodinium tepikiense (between 61.1 ± 6.2 to 13.4 ± 1.1 ka BP, Nematosphaeropsis labyrinthus (between 10.5 ± 0.3 and 11.45 ± 0.8 ka. BP, and the cyst of Protoceratium reticulatum (between 8.5 ± 0.9 and 5.2 ± 1.3 ka. BP indicate major change within the eastern North Atlantic oceanography. The transitions between these changes occur over a relatively short time span (c.1.5 ka, given our sampling resolution, and have the potential to be incorporated into an event stratigraphy through the latest Quaternary as recommended by the INTIMATE (INTegrating Ice core, MArine and TErrestrial records group. The inclusion of a dinoflagellate cyst event stratigraphy would highlight changes within the phytoplankton of the North Atlantic Ocean as a fully glacial world changed to our present interglacial.

  3. The sedimentary record of dinoflagellate cysts: looking back into the future of phytoplankton blooms

    Directory of Open Access Journals (Sweden)

    Barrie Dale

    2001-12-01

    Full Text Available Marine systems are not as well understood as terrestrial systems, and there is still a great need for more primary observations, in the tradition of the old-time naturalists, before newer methods such as molecular genetics and modeling can be fully utilized. The scientific process whereby the smaller, detailed building blocks of observation are ultimately linked towards better understanding natural systems is illustrated from my own career experience, especially with regard to the dinoflagellates and plankton blooms. Some dinoflagellates produce a fossilizable resting stage (cyst in their life cycle, and dinoflagellate cysts have become one of the most important groups of microfossils used in geological exploration (e.g. oil and gas. This has stimulated both paleontological and biological research producing detailed building blocks of information, currently scattered throughout the respective literature. Here, I attempt to bring together the present day perspective, from biology, with the past, from paleontology, as the most comprehensive basis for future work on the group. This shows the cysts to be the critical link needed for focusing future molecular genetics studies towards a more verifiable view of evolutionary pathways, and it also suggests new integrated methods for studying past, present, and future blooms. The large, rapidly growing field of harmful algal bloom studies is producing many different building blocks, but plankton blooms as episodic phenomena are still poorly understood. This is largely due to the general lack of long-term datasets allowing identification of the changing environmental factors that permit certain species to bloom at unpredictable intervals of time. Cysts in sediments are useful environmental indicators today, e.g. reflecting aspects of climate and pollution, and provide information directly relevant to some dinoflagellate blooms. They therefore may be used for obtaining retrospective information from the

  4. Evidence for miRNA-mediated modulation of the host transcriptome in cnidarian-dinoflagellate symbiosis

    KAUST Repository

    Baumgarten, Sebastian

    2017-12-08

    Reef-building corals and other cnidarians living in symbiotic relationships with intracellular, photosynthetic dinoflagellates in the genus Symbiodinium undergo transcriptomic changes during infection with the algae and maintenance of the endosymbiont population. However, the precise regulatory mechanisms modulating the host transcriptome are unknown. Here we report apparent post-transcriptional gene regulation by miRNAs in the sea anemone Aiptasia, a model system for cnidarian-dinoflagellate endosymbiosis. Aiptasia encodes mainly species-specific miRNAs, and there appears to have been recent differentiation within the Aiptasia genome of miRNAs that are commonly conserved among anthozoan cnidarians. Analysis of miRNA expression showed that both conserved and species-specific miRNAs are differentially expressed in response to endosymbiont infection. Using cross-linking immunoprecipitation of Argonaute, the central protein of the miRNA-induced silencing complex, we identified miRNA binding sites on a transcriptome-wide scale and found that the targets of the miRNAs regulated in response to symbiosis include genes previously implicated in biological processes related to Symbiodinium infection. Our study shows that cnidarian miRNAs recognize their mRNA targets via high-complementarity target binding and suggests that miRNA-mediated modulations of genes and pathways are important during the onset and maintenance of cnidarian-dinoflagellate endosymbiosis. This article is protected by copyright. All rights reserved.

  5. Epiphytic dinoflagellates associated with ciguatera in the northwestern coast of Cuba.

    Science.gov (United States)

    Delgado, Gilma; Lechuga-Devéze, Carlos H; Popowski, Genoveva; Troccoli, Luis; Salinas, Cesar A

    2006-06-01

    The spatial and temporal abundance of epiphytic dinoflagellates associated with ciguatera was studied over two annual cycles (March 1999 to March 2000 and March 2001 to March 2002) in the northwestern coast of Cuba. From 14 species of macroalgae (Phaeophyta, Chlorophyta, and Rhodophyta), 1340 samples were obtained identifying seven species as potentially noxious; five of them are new reports for Cuba's phytobenthos: Prorocentrum belizeanum Faust, P. concavum Fukuyo, P. mexicanum Tafall, Coolia monotis Meunier, and Ostreopsis lenticularis Fukuyo. ANOVA/MANOVA analysis showed significant spatial differences: lower cell abundance near the shoreline adjacent to a river inlet and higher cell abundance in the deepest area. Prorocentrum lima (Ehrenberg) Dodge 1975 was found mainly on Phaeophyta followed by Chlorophyta and Rhodophyta. Gambierdiscus toxicus was found mainly on Phaeophyta followed by Rhodophyta and Chlorophyta. All the species reported in the study area were mainly on Padina spp. (Phaeophyta). Acanthophora spicifera (Rhodophyta) did not host dinoflagellate species. Environmental conditions in summer (higher temperature, more nutrients, greater water transparency, and low wind intensity) are suitable for macroalgae development, which serves as a substrate for potentially harmful dinoflagellates, and possibly the main vector for spreading ciguatera along the coast of Cuba.

  6. Culturable and nonculturable bacterial symbionts in the toxic benthic dinoflagellate Ostreopsis lenticularis.

    Science.gov (United States)

    Ashton, Mayra; Rosado, William; Govind, Nadathur S; Tosteson, Thomas R

    2003-09-15

    The toxic benthic dinoflagellate Ostreopsis lenticularis hosts a variety of symbiont bacterial flora. Laboratory cultured Ostreopsis clones require the presence of symbiotic Pseudomonas/Alteromonas bacterial strains for growth and toxicity development. Three culturable bacterial strains associated with Ostreopsis were identified as Pseudomonas/Alteromonas strain 1, Pseudomonas/Alteromonas strain 2 and Acinetobacter. Denaturing gradient gel electrophoresis (DGGE) analyses of extracted Ostreopsis associated bacterial DNAs indicated that there were three culturable and four non-culturable associated bacterial strains. The results presented here are the first report of the presence of unculturable bacterial symbionts in a toxic benthic dinoflagellate. Ostreopsis lost toxicity when exposed to elevated temperatures in the field and laboratory culture and subsequently recovered toxicity at reduced temperatures. Ostreopsis associated culturable Pseudomonas/Alteromonas bacterial strains were significantly reduced in dinoflagellate cultures exposed to elevated temperatures. The decreased toxicity of O. lenticularis exposed to elevated temperatures and their subsequent recovery of toxicity in periods of reduced thermal stress may have resulted from the effects of elevated temperature on the spectrum of culturable and unculturable bacterial species interacting with their Ostreopsis host.

  7. Polyuridylylation and processing of transcripts from multiple gene minicircles in chloroplasts of the dinoflagellate Amphidinium carterae

    KAUST Repository

    Barbrook, Adrian C.

    2012-05-05

    Although transcription and transcript processing in the chloroplasts of plants have been extensively characterised, the RNA metabolism of other chloroplast lineages across the eukaryotes remains poorly understood. In this paper, we use RT-PCR to study transcription and transcript processing in the chloroplasts of Amphidinium carterae, a model peridinin-containing dinoflagellate. These organisms have a highly unusual chloroplast genome, with genes located on multiple small \\'minicircle\\' elements, and a number of idiosyncratic features of RNA metabolism including transcription via a rolling circle mechanism, and 3′ terminal polyuridylylation of transcripts. We demonstrate that transcription occurs in A. carterae via a rolling circle mechanism, as previously shown in the dinoflagellate Heterocapsa, and present evidence for the production of both polycistronic and monocistronic transcripts from A. carterae minicircles, including several regions containing ORFs previously not known to be expressed. We demonstrate the presence of both polyuridylylated and non-polyuridylylated transcripts in A. carterae, and show that polycistronic transcripts can be terminally polyuridylylated. We present a model for RNA metabolism in dinoflagellate chloroplasts where long polycistronic precursors are processed to form mature transcripts. Terminal polyuridylylation may mark transcripts with the correct 3′ end. © 2012 Springer Science+Business Media B.V.

  8. Dinoflagellate origin for sedimentary 4α-methylsteroids and 5α(H)-stanols

    Science.gov (United States)

    Robinson, N.; Eglinton, G.; Brassell, S. C.

    1984-03-01

    Biological marker compounds provide useful tools for evaluating the depositional environments of Recent and ancient sediments and petroleums1, largely through established relationships between the organic matter of sediments and source organisms1,2. Such relationships are best tested and explored by investigating the lipid components of natural populations of autochthonous biota that can be clearly recognized as contributors to underlying bottom sediments. In this context we have studied the lipids of the freshwater dinoflagellate Peridinlum lomnickii Woloszynska (order Peridiniales, class Dinophyceae) collected from the waters of Priest Pot3, a eutrophic lake in the English Lake District. Its distributions of both 4α-methylsterols and 4α-methylstanones closely resemble those of the underlying bottom sediments, demonstrating that dinoflagellates are important contributors of these sedimentary compounds. The 4-methylsteroidal hydrocarbons found in ancient sediments and petroleums4-6 are presumably diagenetic products of such 4α-methylsteroids and therefore reflect dino flagellate inputs to the original depositional environments. Furthermore, the prominence of 5α(H)-cholestan-3β-ol in P. lomnickii suggests that dinoflagellates may be the long sought, direct biological source of sedimentary 5α(H)-stanols.

  9. From Protist to Proxy: Dinoflagellates as signal carriers for past climate and carbon cycling

    Science.gov (United States)

    Sluijs, A.; Reichart, G. J.; Hoins, M.; Waal, D. V. D.; Rost, B.; Roij, L. V.

    2016-12-01

    The (paleo)ecology of dinoflagellates and their organic dinocysts that preserve in sediments are often employed as tracers of past ocean conditions, such as temperature, productivity, ocean circulation, salinity, and sea ice, for the late Triassic to the Modern. Over the past decade, such reconstructions, which are based on empirical information as well as extensive studies of modern systems, have made dinocyst paleoecology a pivotal tool that is complementary to other microfossil groups and (in)organic geochemical techniques. Building on this work, we have carried out culturing experiments to quantify and physiologically underpin CO2-dependent carbon isotope fractionation of several species of dinoflagellates. This work indicates potential for a new CO2 proxy based on fossil dinoflagellate cysts. Moreover, we developed a laser ablation nano combustion gas chromatography isotope ratio mass spectrometry (LA-nC-GC-IRMS) setup capable of measuring δ13C of organic particles of only 40 nanograms of carbon, with accuracy and precision of at most 0.4‰. This allows for the analyses of single to a few dinocyst specimens, setting the stage for a whole new research field investigating variability within populations of dinocysts, but also of pollen and other small scale carbon particles in geology, biology and other research fields. We present the first dinocyst δ13C results of the new method from modern systems and in the paleo-domain, particularly related to marine carbon cycling and CO2.

  10. Metabolic pathway redundancy within the apicomplexan-dinoflagellate radiation argues against an ancient chromalveolate plastid

    KAUST Repository

    Waller, Ross F.

    2015-12-08

    The chromalveolate hypothesis presents an attractively simple explanation for the presence of red algal-derived secondary plastids in 5 major eukaryotic lineages: “chromista” phyla, cryptophytes, haptophytes and ochrophytes; and alveolate phyla, dinoflagellates and apicomplexans. It posits that a single secondary endosymbiotic event occurred in a common ancestor of these diverse groups, and that this ancient plastid has since been maintained by vertical inheritance only. Substantial testing of this hypothesis by molecular phylogenies has, however, consistently failed to provide support for the predicted monophyly of the host organisms that harbour these plastids—the “chromalveolates.” This lack of support does not disprove the chromalveolate hypothesis per se, but rather drives the proposed endosymbiosis deeper into the eukaryotic tree, and requires multiple plastid losses to have occurred within intervening aplastidic lineages. An alternative perspective on plastid evolution is offered by considering the metabolic partnership between the endosymbiont and its host cell. A recent analysis of metabolic pathways in a deep-branching dinoflagellate indicates a high level of pathway redundancy in the common ancestor of apicomplexans and dinoflagellates, and differential losses of these pathways soon after radiation of the major extant lineages. This suggests that vertical inheritance of an ancient plastid in alveolates is highly unlikely as it would necessitate maintenance of redundant pathways over very long evolutionary timescales.

  11. Dinoflagellate cyst distribution in recent sediments along the south-east coast of India

    Directory of Open Access Journals (Sweden)

    Dhiraj Dhondiram Narale

    2013-11-01

    Full Text Available The spatial variation in the dinoflagellate cyst assemblage from the south-eastcoast of India is presented along with a comparison of the cyst abundance from other regions of the world. Samples from 8 stations revealed the presence of 24 species from the genera Protoperidinium, Zygabikodinium, Gonyaulax, Lingulodinium and Gyrodinium. Cyst abundance was comparatively high at northern stations and was well correlated with the fine-grained (silt-clay dominated sediments. In contrast, low cyst abundance was recorded in sandy sediments at southern stations. Fourteen cyst-forming dinoflagellate species previously unrecorded in planktonic samples were detected in the sediments. Thecyst abundance recorded here is low (29-331 cysts g-1 dry sediment as compared to sub-tropical and temperate regions, but it is on a par with tropical regions, including the west coast of India. Comparison of the cyst assemblage along the Indian coast revealed a smaller number of potentially harmful and red-tide-forming dinoflagellate species on the south-east coast (6 species than on the west coast (10 species. Furthermore, calcareous cysts of the genus Scrippsiella reported from the west coast were not observed in this study although their planktonic cells have been reported

  12. In situ observation of harmful dinoflagellate bloom in the eastern coast of Kyushu, Japan

    Science.gov (United States)

    Yamaguchi, Hisashi; Murakami, Hirishi; Miyamura, Kazuyoshi; Siawanto, Eko; Kobayashi, Hiroshi; Ishizaka, Joji

    2014-05-01

    Oita coast, where is in the eastern coast of Kyushu, Japan, is a richly fish aquaculture area. However, sometimes harmful algal blooms occur in this region, especially harmful dinoflagellates blooms, and cultured fish mortality occurs. Ocean color remote sensing is expected as a useful tool to reduce the financial damage of harmful algal blooms. However, ocean color data is low accuracy in the coastal region because colored dissolved organic matter and suspended solid are dominant. More optical data of harmful algal blooms are required because there are few data in harmful algal blooms. The field observation was conducted to understand the inherent optical property of harmful dinoflagellate bloom in the eastern coast of Oita prefecture on April and August 2013. Chlorophyll-a maximum (>24 mg m^-3) was observed in the subsurface layer on April 2013. The dominant phytoplankton species in this chlorophyll-a maximum layer was dinoflagellate Cochlodinium polykrikoides (>300 cells ml^-1) and early stage of the bloom was formed. Peak of the remote sensing reflectance was near 565nm due to strong phytoplankton absorption within 400 ~ 500 nm domain from the subsurface bloom layer. Moreover, high phytoplankton absorption coefficient was observed at the shorter wavelength (< 400nm). This strong absorption might be due to mycosporine-like amino acids, which absorb the UV (Kahru and Mitchell, 1998). And this subsurface C. polykrikoides bloom was detected by using dinoflagellate bloom detection algorithm, which is a simpler new satellite remote sensing-based harmful algal blooms detection method for JAXA's GCOM-C/SGLI (Siswanto et al., 2013). However, detection of the dinoflagellate Karenia mikimotoi bloom by using the algorithm on August 2013 was difficult as colored dissolved organic matter and detritus absorptions were high. Although the algorithm could detect the early stage of C. polycrikoides bloom, the algorithm improvement to detect the harmful algal blooms in the case II

  13. Yihiella yeosuensis gen. et sp. nov. (suessiaceae, dinophyceae), a novel dinoflagellate isolated from the coastal waters of Korea.

    Science.gov (United States)

    Jang, Se Hyeon; Jeong, Hae Jin; Moestrup, Øjvind; Kang, Nam Seon; Lee, Sung Yeon; Lee, Kyung Ha; Seong, Kyeong Ah

    2017-02-01

    A small (7-11 μm long) dinoflagellate with thin amphiesmal plates was isolated into culture from a water sample collected in coastal waters of Yeosu, southern Korea, and examined by LM, SEM, and TEM, and molecular analyses. The hemispheric episome was smaller than the hyposome. The nucleus was oval and situated from the central to the episomal region of the cell. A large yellowish-brown chloroplast was located at the end of the hyposome, and some small chloroplasts extended into the periphery of the episome. The dinoflagellate had a single elongated apical vesicle (EAV) and a type E eyespot, which are key characteristics of the family Suessiaceae. Unlike other genera in this family, it had two long furrow lines, one on the episome and the other on the hyposome, and encircling the dorsal, and lateral sides of the cell body. The pyrenoid lacked starch sheaths, but tubular invaginations into the pyrenoid matrix from the cytoplasm were observed. In the TEM, the dinoflagellate was observed to have cable-like structures (CLSs) near the eyespot but so far not observed in other dinoflagellates. The SSU rDNA sequences examined were 1.2%-5.1% different from those of other genera in the family Suessiaceae, whereas the LSU (D1-D3) rDNA sequences of this dinoflagellate were 15.1%-31.5% different. The dinoflagellate lacked a 51-bp fragment in domain D2 of the LSU rDNA, but it had an ~100-bp fragment in domain D2. This feature has been found previously only in the genera Leiocephalium and Polarella, two other genera of the Suessiaceae. The molecular phylogeny and sequence divergence based on SSU, and LSU rDNA indicate that the Korean dinoflagellate holds a taxonomically distinctive position and we consider it to be a new species in a new genus in the family Suessiaceae, named Yihiella yeosuensis gen. et sp. nov. © 2016 Phycological Society of America.

  14. Evidence for the presence of cell-surface-bound and intracellular bactericidal toxins in the dinoflagellate Heterocapsa circularisquama.

    Science.gov (United States)

    Cho, Kichul; Wencheng, Li; Takeshita, Satoshi; Seo, Jung-Kil; Chung, Young-Ho; Kim, Daekyung; Oda, Tatsuya

    2017-08-01

    Heterocapsa circularisquama, a harmful dinoflagellate, has multiple haemolytic toxins that are considered to be involved in the toxic mechanism against shellfish and certain species of zooplankton. To evaluate the further nature of the toxins of H. circularisquama, we investigated its effects on several species of bacteria. By colony formation assay, we found that H. circularisquama had antibacterial activity toward the marine bacterium Vibrio alginolyticus in a cell density-dependent manner. When the inoculated bacterial cells were co-cultured with H. circularisquama under dinoflagellate cell culture conditions, the bacterial growth was significantly suppressed, whereas the number of live bacterial cells increased when cultured in the medium alone. Since the cell-free culture supernatant and the ruptured dinoflagellate cell suspension showed no toxic effects on V. alginolyticus, it is speculated that direct cell-to-cell contact mediated by the live dinoflagellate cells may be the major toxic mechanism. The decrease in bactericidal activity of theca-removed dinoflagellate cells may further support this speculation. H. circularisquama also showed bactericidal activities towards Escherichia coli and Staphylococcus aureus. In the dinoflagellate/bacteria co-culture system, the number of live bacterial cells declined with increasing incubation time. Light-dependent antibacterial activity of the ruptured dinoflagellate cells against S. aureus was observed, whereas no such activity was detected against E. coli. These results suggest that intracellular photosensitising bactericidal toxins, which were previously found to be porphyrin derivatives, may have specificity towards gram-positive bacteria. Based on these results together with previous studies, it is obvious that H. circularisquama possesses antibacterial activity, which may be mediated through toxins located on its cell surface. It is likely that such toxins play a role in the defence mechanism against predators

  15. Characteristics of phytoplankton community structure during and after a bloom of the dinoflagellate Scrippsiella trochoidea by HPLC pigment analysis

    Science.gov (United States)

    Wong, Chun-Kwan; Wong, Chong-Kim

    2009-06-01

    A bloom of the dinoflagellate Scrippsiella trochoidea was detected for the first time in inner Tolo Harbor, Hong Kong in 2 000. Water samples were collected at eight stations along a transect passing through a red tide patch for microscopic analysis of phytoplankton composition and high-performance liquid chromatography (HPLC) analysis of phytoplankton pigments. During the bloom, the density of dinoflagellates was 1.1×106 cells L-1 within the patch and 8.6×105 cells L-1 outside the patch where the phytoplankton community was dominated by diatoms. After the bloom the S. trochoidea began to decrease in density and was replaced by diatoms as the dominating bloom-causing organisms at all stations, and the density of dinoflagellates at most stations was less than 1.0 × 106 cells L-1. The status of S. trochoidea as the causative species of the bloom was indicated by the presence of peridinin, the marker pigment for dinoflagellates. The shift from dinoflagellates to diatoms was marked by the decline of peridinin and the prevalence of fucoxanthin. Phytoplankton pigment markers also revealed the presence of other minor phytoplankton assemblages such as cryptomonads and blue-green algal.

  16. The Jurassic of North-East Greenland: Jurassic dinoflagellate cysts from Hochstetter Forland, North-East Greenland

    Directory of Open Access Journals (Sweden)

    Piasecki, Stefan

    2004-11-01

    Full Text Available Three sections in Hochstetter Forland, North-East Greenland, referred to the Jurassic Payer Dal and Bernbjerg Formations, have been analysed for dinoflagellate cysts. The dinoflagellate cysts,new finds of ammonites and previously recorded marine faunas form the basis for improved dating of the succession. The basal strata of the Payer Dal Formation at Kulhus is here dated as Late Callovian, Peltoceras athleta Chronozone, based on the presence of relatively abundant Limbicysta bjaerkei, Mendicodinium groenlandicum, Rhychoniopsis cladophora and Tubotuberella dangeardii in an otherwise poor Upper Callovian dinoflagellate assemblage. Ammoniteshave not been recorded from these strata. The upper Payer Dal Formation at Agnetesøelven is dated as Late Oxfordian, Amoeboceras glosense – Amoeboceras serratum Chronozones, based onthe presence of Sciniodinium crystallinum, together with Cribroperidinium granuligera and Stephanelytron sp. The age is in accordance with ammonites present in the uppermost part ofthe formation at Søndre Muslingebjerg. New ammonites in the Bernbjerg Formation at Agnetesøelven together with dinoflagellate cysts indicate an earliest Kimmeridgian age, Raseniacymodoce and Aulacostephanoides mutabilis Chronozones.The Upper Callovian dinoflagellate cysts from Hochstetter Forland belong to a local brackish to marginal marine assemblage, which only allows a fairly broad correlation to coeval assemblagesin central East Greenland. In contrast, the Oxfordian and Kimmeridgian assemblages are fully marine and can be correlated from Milne Land in central East Greenland via Hochstetter Forland to Peary Land in eastern North Greenland.

  17. Moestrupia oblonga gen. et comb. nov. (syn.: Gyrodinium oblongum), a new marine dinoflagellate genus characterized by light and electron microscopy, photosynthetic pigments and LSU rDNA sequence

    DEFF Research Database (Denmark)

    Hansen, Gert; Daugbjerg, Niels

    2011-01-01

    flange situated along the right cingular border and onto the episome. Also, the exit point of the peduncle, through a lip-like protrusion situated in a cavity on the episome, is new in dinoflagellates. The transverse flagellum appeared less coiled compared to other dinoflagellates, and its distal end...

  18. Novel insight into the role of heterotrophic dinoflagellates in the fate of crude oil in the sea

    DEFF Research Database (Denmark)

    Almeda, Rodrigo; Connelly, Tara L.; Buskey, Edward J.

    2014-01-01

    Although planktonic protozoans are likely to interact with dispersed crude oil after a spill, protozoan-mediated processes affecting crude oil pollution in the sea are still not well known. Here, we present the first evidence of ingestion and defecation of physically or chemically dispersed crude...... to 0.37 mu g-oil mg-C-dino (-1) d(-1), which could represent similar to 17% to 100% of dispersed oil in surface waters when heterotrophic dinoflagellates are abundant or bloom. Egestion of faecal pellets containing crude oil by heterotrophic dinoflagellates could contribute to the sinking and flux...... of toxic petroleum hydrocarbons in coastal waters. Our study indicates that crude oil ingestion by heterotrophic dinoflagellates is a noteworthy route by which petroleum enters marine food webs and a previously overlooked biological process influencing the fate of crude oil in the sea after spills....

  19. A winter dinoflagellate bloom drives high rates of primary production in a Patagonian fjord ecosystem

    Science.gov (United States)

    Montero, P.; Pérez-Santos, I.; Daneri, G.; Gutiérrez, M. H.; Igor, G.; Seguel, R.; Purdie, D.; Crawford, D. W.

    2017-12-01

    A dense winter bloom of the dinoflagellate Heterocapsa triquetra was observed at a fixed station (44°35.3‧S; 72°43.6‧W) in the Puyuhuapi Fjord in Chilean Patagonia during July 2015. H. triquetra dominated the phytoplankton community in the surface waters between 2 and 15 m (13-58 × 109 cell m-2), with abundances some 3 to 15 times higher than the total abundance of the diatom assemblage, which was dominated by Skeletonema spp. The high abundance of dinoflagellates was reflected in high rates of gross primary production (GPP; 0.6-1.6 g C m-2 d-1) and chlorophyll-a concentration (Chl-a; 70-199.2 mg m-2) that are comparable to levels reported in spring diatom blooms in similar Patagonian fjords. We identify the main forcing factors behind a pulse of organic matter production during the non-productive winter season, and test the hypothesis that low irradiance levels are a key factor limiting phytoplankton blooms and subsequent productivity during winter. Principal Component Analysis (PCA) indicated that GPP rates were significantly correlated (r = -0.8, p temperature and the presence of the Heterocapsa bloom. The bloom occurred under low surface irradiance levels characteristic of austral winter and was accompanied by strong northern winds, associated with the passage of a low-pressure system, and a water column dominated by double diffusive layering. To our knowledge, this is the first report of a dense dinoflagellate bloom during deep austral winter in a Patagonian fjord, and our data challenge the paradigm of light limitation as a factor controlling phytoplankton blooms in this region in winter.

  20. The prevalence of benthic dinoflagellates associated with ciguatera fish poisoning in the central Red Sea

    KAUST Repository

    Catania, Daniela

    2017-09-09

    This study confirms the presence of the toxigenic benthic dinoflagellates Gambierdiscus belizeanus and Ostreopsis spp. in the central Red Sea. To our knowledge, this is also the first report of these taxa in coastal waters of Saudi Arabia, indicating the potential occurrence of ciguatera fish poisoning (CFP) in that region. During field investigations carried out in 2012 and 2013, a total of 100 Turbinaria and Halimeda macroalgae samples were collected from coral reefs off the Saudi Arabian coast and examined for the presence of Gambierdiscus and Ostreopsis, two toxigenic dinoflagellate genera commonly observed in coral reef communities around the world. Both Gambierdiscus and Ostreopsis spp. were observed at low densities (<200 cells g−1 wet weight algae). Cell densities of Ostreopsis spp. were significantly higher than Gambierdiscus spp. at most of the sampling sites, and abundances of both genera were negatively correlated with seawater salinity. To assess the potential for ciguatoxicity in this region, several Gambierdiscus isolates were established in culture and examined for species identity and toxicity. All isolates were morphologically and molecularly identified as Gambierdiscus belizeanus. Toxicity analysis of two isolates using the mouse neuroblastoma cell-based assay for ciguatoxins (CTX) confirmed G. belizeanus as a CTX producer, with a maximum toxin content of 6.50±1.14×10−5pg P-CTX-1 eq. cell−1. Compared to Gambierdiscus isolates from other locations, these were low toxicity strains. The low Gambierdiscus densities observed along with their comparatively low toxin contents may explain why CFP is unidentified and unreported in this region. Nevertheless, the presence of these potentially toxigenic dinoflagellate species at multiple sites in the central Red Sea warrants future study on their possible effects on marine food webs and human health in this region.

  1. Identification Of Some Strains Of Dinoflagellates Based On Morphology And Molecular Analysis

    Directory of Open Access Journals (Sweden)

    Hikmah Thoha

    2008-11-01

    Full Text Available Dinoflagellates are the important primary producers in aquatic environments. In oceans, they play interesting role in ecological functions such as red tide forming organisms, symbiont of coral reef or sea anemone and DSP (Diarrhetic Shellfish Poisoning or PSP (Paralytic Shellfish Poisoning producing organisms. Morphology and molecular analysis of dinoflagellates were conducted on November 2002 to March 2003. The phylogenetic studies based on 18S rDNA analyses, sequence have begun to appear more frequently in the literature, as attention has turned to relationships within the major eukaryotic lineages, particular importance for the taxonomy of the armored and unarmored genera of dinoflagellates (Gyrodinium sp., Cachonina sp., Gymnodinium sp., Amphidinium sp., because many of the genera cause extensive plankton blooms, fish kills and other harmful events, were studied used to amplify 18S rDNA, present in the total DNA extracted from algal pellet. The amplify approximately 1400 bp of the nuclear-encoded LSU rDNA gene using terminal primeirs DIR, products were cheked by 1.0 % agarose gel electrophoresis, then cloning with TA cloning KIT. Sequencing were analyzed by the GENETIX Mac Software, Homology search by Blast and Phylogenetic analysis. Results of hylogenetic analysis of 18S rDNA are: Strain no. 10893 (un identified from the genera, it is belonging Gymnodinium or Polarella. Strain no. 10795 is closely related other species Cachonina hallii. We tentatively named strain no 11151 and 11160 similar to Gyrodinium or Gymnodinium based on morphology, but these strain indepently position in this tree and is not a real of Gymnodinium sensu stricto. It is possible, we can establish the new genera for strain no. 11151; 11160 because this not cluster any other unarmored species.

  2. Transcriptome analysis of a cnidarian – dinoflagellate mutualism reveals complex modulation of host gene expression

    Directory of Open Access Journals (Sweden)

    Phillips Wendy S

    2006-02-01

    Full Text Available Abstract Background Cnidarian – dinoflagellate intracellular symbioses are one of the most important mutualisms in the marine environment. They form the trophic and structural foundation of coral reef ecosystems, and have played a key role in the evolutionary radiation and biodiversity of cnidarian species. Despite the prevalence of these symbioses, we still know very little about the molecular modulators that initiate, regulate, and maintain the interaction between these two different biological entities. In this study, we conducted a comparative host anemone transcriptome analysis using a cDNA microarray platform to identify genes involved in cnidarian – algal symbiosis. Results We detected statistically significant differences in host gene expression profiles between sea anemones (Anthopleura elegantissima in a symbiotic and non-symbiotic state. The group of genes, whose expression is altered, is diverse, suggesting that the molecular regulation of the symbiosis is governed by changes in multiple cellular processes. In the context of cnidarian – dinoflagellate symbioses, we discuss pivotal host gene expression changes involved in lipid metabolism, cell adhesion, cell proliferation, apoptosis, and oxidative stress. Conclusion Our data do not support the existence of symbiosis-specific genes involved in controlling and regulating the symbiosis. Instead, it appears that the symbiosis is maintained by altering expression of existing genes involved in vital cellular processes. Specifically, the finding of key genes involved in cell cycle progression and apoptosis have led us to hypothesize that a suppression of apoptosis, together with a deregulation of the host cell cycle, create a platform that might be necessary for symbiont and/or symbiont-containing host cell survival. This first comprehensive molecular examination of the cnidarian – dinoflagellate associations provides critical insights into the maintenance and regulation of the

  3. A dual-species co-cultivation system to study the interactions between Roseobacters and Dinoflagellates

    Directory of Open Access Journals (Sweden)

    Hui eWang

    2014-06-01

    Full Text Available Some microalgae in nature live in symbiosis with microorganisms that can enhance or inhibit growth, thus influencing the dynamics of phytoplankton blooms. In spite of the great ecological importance of these interactions, very few defined laboratory systems are available to study them in detail. Here we present a co-cultivation system consisting of the toxic phototrophic dinoflagellate Prorocentrum minimum and the photoheterotrophic alphaproteobacterium Dinoroseobacter shibae. In a mineral medium lacking a carbon source, vitamins for the bacterium and the essential vitamin B12 for the dinoflagellate, growth dynamics reproducibly went from a mutualistic phase, where both algae and bacteria grow, to a pathogenic phase, where the algae are killed by the bacteria. The data show a Jekyll and Hyde lifestyle that had been proposed but not previously demonstrated. We used RNAseq and microarray analysis to determine which genes of D. shibae are transcribed and differentially expressed in a light dependent way at an early time-point of the co-culture when the bacterium grows very slowly. Enrichment of bacterial mRNA for transcriptome analysis was optimized, but none of the available methods proved capable of removing dinoflagellate ribosomal RNA completely. RNAseq showed that a phasin encoding gene (phaP1 which is part of the polyhydroxyalkanoate (PHA metabolism operon represented approximately 10 % of all transcripts. Five genes for aerobic anoxygenic photosynthesis were down-regulated in the light, indicating that the photosynthesis apparatus was functional. A betaine-choline-carnitine-transporter (BCCT that may be used for dimethylsulfoniopropionate (DMSP uptake was the highest up-regulated gene in the light. The data suggest that at this early mutualistic phase of the symbiosis, PHA degradation might be the main carbon and energy source of D. shibae, supplemented in the light by degradation of DMSP and aerobic anoxygenic photosynthesis.

  4. Coral larvae exhibit few measurable transcriptional changes during the onset of coral-dinoflagellate endosymbiosis.

    Science.gov (United States)

    Schnitzler, Christine E; Weis, Virginia M

    2010-06-01

    The cellular mechanisms controlling the successful establishment of a stable mutualism between cnidarians and their dinoflagellate partners are largely unknown. The planula larva of the solitary Hawaiian scleractinian coral Fungia scutaria and its dinoflagellate symbiont Symbiodinium sp. type C1f represents an ideal model for studying the onset of cnidarian-dinoflagellate endosymbiosis due to the predictable availability of gametes, the ability to raise non-symbiotic larvae and establish the symbiosis experimentally, and the ability to precisely quantify infection success. The goal of this study was to identify genes differentially expressed in F. scutaria larvae during the initiation of endosymbiosis with Symbiodinium sp. C1f. Newly symbiotic larvae were compared to non-symbiotic larvae using a custom cDNA microarray. The 5184-feature array was constructed with cDNA libraries from newly symbiotic and non-symbiotic F. scutaria larvae, including 3072 features (60%) that were enriched for either state by subtractive hybridization. Our analyses revealed very few changes in the F. scutaria transcriptome as a result of infection with Symbiodinium sp. C1f, similar to other studies focused on the early stages of this symbiotic interaction. We suggest that these results may be due, in part, to an inability to detect the transcriptional signal from the small percentage of infected cells compared to uninfected cells. We discuss several other potential explanations for this result, including suggesting that certain types of Symbiodinium sp. may have evolved mechanisms to suppress or circumvent cnidarian host responses to infection. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Vertical migration of the toxic dinoflagellate Karenia brevis and the impact on ocean optical properties

    Science.gov (United States)

    Schofield, Oscar; Kerfoot, John; Mahoney, Kevin; Moline, Mark; Oliver, Matthew; Lohrenz, Steven; Kirkpatrick, Gary

    2006-06-01

    Vertical migration behavior is found in many harmful algal blooms; however, the corresponding impact on ocean optical properties has not been quantified. A near-monospecific population of the dinoflagellate Karenia brevis was encountered off the west coast of Florida. The community was tracked for 24 hours by following a Lagrangian drifter deployed at the beginning of the experiment. A suite of inherent optical and cellular measurements was made. Over the 24 hour period, the K. brevis population increased during the day with concentrations peaking in the late afternoon (1600 local daylight time) in the upper 2 m of the water column. The increase in K. brevis in surface waters resulted in enhanced reflectance at the sea surface with distinct spectral changes. There was a 22% decrease in the relative amount of the green reflectance due to increased pigment absorption. There was enhanced red (35%) and infrared (75%) light reflectance due to the increased particle backscatter and chlorophyll a fluorescence; however, the relative impact of the fluorescence was relatively small despite high cell numbers due to the significant fluorescence quenching present in K. brevis. The relative change in the blue light reflectance was not as large as the change in green light reflectance, which is surprising given the pigment absorption in the blue wavelengths of light. The increased blue light pigment absorption was offset by a significant decrease in nonalgal particle absorption. The inverse relationship between K. brevis and nonalgal particles was robust. This relationship may reflect low grazing on K. brevis populations due to the neurotoxins associated with this dinoflagellate. The low-grazing pressure may provide the mechanism by which this slow-growing dinoflagellate can achieve high cell numbers in the ocean.

  6. A phylogenetic mosaic plastid proteome and unusual plastid-targeting signals in the green-colored dinoflagellate Lepidodinium chlorophorum

    Directory of Open Access Journals (Sweden)

    Inagaki Yuji

    2010-06-01

    Full Text Available Abstract Background Plastid replacements through secondary endosymbioses include massive transfer of genes from the endosymbiont to the host nucleus and require a new targeting system to enable transport of the plastid-targeted proteins across 3-4 plastid membranes. The dinoflagellates are the only eukaryotic lineage that has been shown to have undergone several plastid replacement events, and this group is thus highly relevant for studying the processes involved in plastid evolution. In this study, we analyzed the phylogenetic origin and N-terminal extensions of plastid-targeted proteins from Lepidodinium chlorophorum, a member of the only dinoflagellate genus that harbors a green secondary plastid rather than the red algal-derived, peridinin-containing plastid usually found in photosynthetic dinoflagellates. Results We sequenced 4,746 randomly picked clones from a L. chlorophorum cDNA library. 22 of the assembled genes were identified as genes encoding proteins functioning in plastids. Some of these were of green algal origin. This confirms that genes have been transferred from the plastid to the host nucleus of L. chlorophorum and indicates that the plastid is fully integrated as an organelle in the host. Other nuclear-encoded plastid-targeted protein genes, however, are clearly not of green algal origin, but have been derived from a number of different algal groups, including dinoflagellates, streptophytes, heterokonts, and red algae. The characteristics of N-terminal plastid-targeting peptides of all of these genes are substantially different from those found in peridinin-containing dinoflagellates and green algae. Conclusions L. chlorophorum expresses plastid-targeted proteins with a range of different origins, which probably arose through endosymbiotic gene transfer (EGT and horizontal gene transfer (HGT. The N-terminal extension of the genes is different from the extensions found in green alga and other dinoflagellates (peridinin- and

  7. Dinoflagellate species and organic facies evidence of marine transgression and regression in the atlantic coastal plain

    Science.gov (United States)

    Habib, D.; Miller, J.A.

    1989-01-01

    Palynological evidence is used to date and interpret depositional environments of sediments of Campanian, Maestrichtian and early Danian ages cored in three wells from South Carolina and Georgia. The evidence is usefil for distinguishing environments which lithofacies evidence indicates a range from nonmarine to coastal to inner neritic shallow shelf. Numerous dinoflagellate species and an organic facies defined abundant amoprphous debris (amorphous debris facies) distinguish shallow shelf sediments deposited during marine transgression. The nearshore amorphous debris facies of late Campanian age consists of heterogenous assemblages dominated by Palaeohystrichophora infusorioides Deflandre or Hystrichosphaerina varians (May). The farther offshore amorphous debris facies of late early Maestrichtian to late Maestrichtian age consists of heterogenous assemblages dominated by Glaphyrocysta retiintexta (Cookson) and/or Areoligera medusettiformis (Wetzel). The larger number of dinoflagellate species in the offshore facies represents the maximum transgression detected in the investigated interval. A multiple occurrence datum defined by the combination of first appearance, klast appearances and sole occurrence of dinoflagellate species at the base of each interval distinguished by the amorphous debris facies provides the first evidence of marine transgression. Relatively small organic residues consisting of intertinite and few or no palynomorphs define the inertinite facies in nonmarine deltaic and in coastal (lagoonal, tidal flat, interdistributary bary) sediments. Dinocyt{star, open}s are absent in the nonmarine sediments and are represented by few species and few specimens in the coastal inertinite faceis. A third organic facies (vascular tissue facies) is defined by the abundance of land plant tissue. Sporomorph species, including those of the Normapolles pollen group and of pteridophyte spores, comprise a large proportion of the total palynomorph flora in the

  8. Quantitative estimation of Holocene surface salinity variation in the Black Sea using dinoflagellate cyst process length

    DEFF Research Database (Denmark)

    Mertens, Kenneth Neil; Bradley, Lee R.; Takano, Yoshihito

    2012-01-01

    Reconstruction of salinity in the Holocene Black Sea has been an ongoing debate over the past four decades. Here we calibrate summer surface water salinity in the Black Sea, Sea of Azov and Caspian Sea with the process length of the dinoflagellate cyst Lingulodinium machaerophorum. We then apply...... this calibration to make a regional reconstruction of paleosalinity in the Black Sea, calculated by averaging out process length variation observed at four core sites from the Black Sea with high sedimentation rates and dated by multiple mollusk shell ages. Results show a very gradual change of salinity from ∼14...

  9. Implications of dinoflagellate life cycles on initiation of Gymnodinium breve red tides.

    Science.gov (United States)

    Steidinger, K A

    1975-01-01

    Florida Gymnodinium breve red tides are initiated in off-shore (approx. 18 to 74 km) coastal waters primarily in late summer-fall months. Past culture studies by W. B. Wilson suggested that this species could have a sexual cycle, inferring the possibility of an alternation of cytological and/or morphological generations. This possibility is further supported by numerous recent advances in dinoflagellate life cycle work which are reviewed in detail. If G. breve has a benthic resting stage (hypnozygote), as is suggested, then seed populations or seed "beds" can possibly be pinpointed and mapped.

  10. Karmitoxin: An amine containing polyhydroxy-polyene toxin from the marine dinoflagellate Karlodinium armiger

    DEFF Research Database (Denmark)

    Rasmussen, Silas Anselm; Binzer, Sofie Bjørnholt; Hoeck, Casper

    2017-01-01

    Marine algae from the genus Karlodinium are known to be involved in fish-killing events worldwide. Here we report for the first time the chemistry and bioactivity of a natural product from the newly described mixotrophic dinoflagellate Karlodinium armiger. Our work describes the isolation...... and karlotoxins; however it differs by containing the longest carbon–carbon backbone discovered for this class of compounds, as well as a primary amino group. Karmitoxin showed potent nanomolar cytotoxic activity in an RTgill-W1 cell assay as well as rapid immobilization and eventual mortality of the copepod...

  11.  Marine derived dinoflagellates in Antarctic saline lakes: Community composition and annual dynamics

    DEFF Research Database (Denmark)

    Rengefors, K.; Layborn-Parry, L.; Logares, R.

    2008-01-01

    The saline lakes of the Vestfold Hills in Antarctica offer a remarkable natural laboratory where the adaptation of planktonic protists to a range of evolving physiochemical conditions can be investigated. This study illustrates how an ancestral marine community has undergone radical simplification...... polar dinoflagellate community, and not freshwater species. Polarella glacialis Montresor, Procaccini et Stoecker, a bipolar marine species, was for the first time described in a lake habitat and was an important phototrophic component in the higher salinity lakes. In the brackish lakes, we found a new...

  12. An improved method for the molecular identification of single dinoflagellate cysts

    Directory of Open Access Journals (Sweden)

    Yangchun Gao

    2017-04-01

    Full Text Available Background Dinoflagellate cysts (i.e., dinocysts are biologically and ecologically important as they can help dinoflagellate species survive harsh environments, facilitate their dispersal and serve as seeds for harmful algal blooms. In addition, dinocysts derived from some species can produce more toxins than vegetative forms, largely affecting species through their food webs and even human health. Consequently, accurate identification of dinocysts represents the first crucial step in many ecological studies. As dinocysts have limited or even no available taxonomic keys, molecular methods have become the first priority for dinocyst identification. However, molecular identification of dinocysts, particularly when using single cells, poses technical challenges. The most serious is the low success rate of PCR, especially for heterotrophic species. Methods In this study, we aim to improve the success rate of single dinocyst identification for the chosen dinocyst species (Gonyaulax spinifera, Polykrikos kofoidii, Lingulodinium polyedrum, Pyrophacus steinii, Protoperidinium leonis and Protoperidinium oblongum distributed in the South China Sea. We worked on two major technical issues: cleaning possible PCR inhibitors attached on the cyst surface and designing new dinoflagellate-specific PCR primers to improve the success of PCR amplification. Results For the cleaning of single dinocysts separated from marine sediments, we used ultrasonic wave-based cleaning and optimized cleaning parameters. Our results showed that the optimized ultrasonic wave-based cleaning method largely improved the identification success rate and accuracy of both molecular and morphological identifications. For the molecular identification with the newly designed dinoflagellate-specific primers (18S634F-18S634R, the success ratio was as high as 86.7% for single dinocysts across multiple taxa when using the optimized ultrasonic wave-based cleaning method, and much higher than that

  13. Dinoflagellate cysts from surface sediments of Saldanha Bay, South Africa: an indication of the potential risk of harmful algal blooms

    CSIR Research Space (South Africa)

    Joyce, LB

    2005-02-01

    Full Text Available of South Africa (AFASA). References Anderson, D.M., Chisholm, S.W., Watras, C.J., 1983. Importance of life cycle events in the population dynamics of Gonyaulax tamarensis. Mar. Biol. 76, 179?189. Anderson, D.M., Fukuyo, Y., Matsuoka, K., 1995. Cyst methodol... dinoflagellates are known to form resting cysts as part of their life history (Head, 1996). These life history stages form an important component of the ecology and biogeography of these dinoflagellates (Wall et al., 1977; Dale, 1983; Ellegaard et al., 1994...

  14. Molecular phylogeny of the parasitic dinoflagellate Chytriodinium within the Gymnodinium clade (Gymnodiniales, Dinophyceae)

    DEFF Research Database (Denmark)

    Gómez, Fernando; Skovgaard, Alf

    2015-01-01

    The dinoflagellate genus Chytriodinium, an ectoparasite of copepod eggs, is reported for the first time in the North and South Atlantic Oceans. We provide the first large subunit rDNA (LSU rDNA) and Internal Transcribed Spacer 1 (ITS1) sequences, which were identical in both hemispheres for the A......The dinoflagellate genus Chytriodinium, an ectoparasite of copepod eggs, is reported for the first time in the North and South Atlantic Oceans. We provide the first large subunit rDNA (LSU rDNA) and Internal Transcribed Spacer 1 (ITS1) sequences, which were identical in both hemispheres...

  15. Discovery of an algicidal compound from Brevibacterium sp. BS01 and its effect on a harmful algal bloom-causing species, Alexandrium tamarense

    Directory of Open Access Journals (Sweden)

    Xinli eAn

    2015-11-01

    Full Text Available Blooms of the dinoflagellate Alexandrium tamarense have become worldwide phenomena and have detrimental impacts on aquatic ecosystems and human health. In this study, a culture supernatant of the marine actinomycete BS01 exerted a strong algicidal effect on A. tamarense (ATGD98-006. The target algicide from BS01 was separated by adsorption chromatography and identified by MALDI-TOF-MS and NMR analysis. The results suggested that the purified algicidal component corresponded to a hydrophobic compound (2-isobutoxyphenylamine (C10H15NO with a molecular weight of 165 Da, which exhibited a significant algicidal effect (64.5% on A. tamarense. After incubation in 5 μg/mL of (2-isobutoxyphenylamine for 24 h, the algae lost mobility and sank to the bottom of the flasks, and 56.5% of the algae cells lost vitality at a concentration of 20 μg/mL (p < 0.01 despite having intact cell profiles. Morphological analysis revealed that the cell structure of A. tamarense was altered by (2-isobutoxyphenylamine resulting in cytoplasm degradation and the loss of organelle integrity. The images following propidium iodide staining suggested that the algal nucleus was also severely damaged and eventually degraded due to exposure to the algicidal compound. All of the results indicate that (2-isobutoxyphenylamine from the actinomycete might be a candidate for the control of bloom-forming A. tamarense.

  16. Quantitative proteomic analysis of cell cycle of the dinoflagellate Prorocentrum donghaiense (Dinophyceae.

    Directory of Open Access Journals (Sweden)

    Da-Zhi Wang

    Full Text Available Dinoflagellates are the major causative agents of harmful algal blooms in the coastal zone, which has resulted in adverse effects on the marine ecosystem and public health, and has become a global concern. Knowledge of cell cycle regulation in proliferating cells is essential for understanding bloom dynamics, and so this study compared the protein profiles of Prorocentrum donghaiense at different cell cycle phases and identified differentially expressed proteins using 2-D fluorescence difference gel electrophoresis combined with MALDI-TOF-TOF mass spectrometry. The results showed that the synchronized cells of P. donghaiense completed a cell cycle within 24 hours and cell division was phased with the diurnal cycle. Comparison of the protein profiles at four cell cycle phases (G1, S, early and late G2/M showed that 53 protein spots altered significantly in abundance. Among them, 41 were identified to be involved in a variety of biological processes, e.g. cell cycle and division, RNA metabolism, protein and amino acid metabolism, energy and carbon metabolism, oxidation-reduction processes, and ABC transport. The periodic expression of these proteins was critical to maintain the proper order and function of the cell cycle. This study, to our knowledge, for the first time revealed the major biological processes occurring at different cell cycle phases which provided new insights into the mechanisms regulating the cell cycle and growth of dinoflagellates.

  17. The MicroRNA Repertoire of Symbiodinium, the Dinoflagellate Symbiont of Reef-Building Corals

    KAUST Repository

    Baumgarten, Sebastian

    2013-07-01

    Animal and plant genomes produce numerous small RNAs (smRNAs) that regulate gene expression post-transcriptionally affecting metabolism, development, and epigenetic inheritance. In order to characterize the repertoire of endogenous microRNAs and potential gene targets, we conducted smRNA and mRNA expression profiling over nine experimental treatments of cultures from the dinoflagellate Symbiodinium sp. A1, a photosynthetic symbiont of scleractinian corals. We identified a total of 75 novel smRNAs in Symbiodinum sp. A1 that share stringent key features with functional microRNAs from other model organisms. A subset of 38 smRNAs was predicted independently over all nine treatments and their putative gene targets were identified. We found 3,187 animal-like target sites in the 3’UTRs of 12,858 mRNAs and 53 plantlike target sites in 51,917 genes. Furthermore, we identified the core RNAi protein machinery in Symbiodinium. Integration of smRNA and mRNA expression profiling identified a variety of processes that could be under microRNA control, e.g. regulation of translation, DNA modification, and chromatin silencing. Given that Symbiodinium seems to have a paucity of transcription factors and differentially expressed genes, identification and characterization of its smRNA repertoire establishes the possibility of a range of gene regulatory mechanisms in dinoflagellates acting post-transcriptionally.

  18. Bacteria associated with toxic clonal cultures of the dinoflagellate Ostreopsis lenticularis.

    Science.gov (United States)

    Pérez-Guzmán, Lumarie; Pérez-Matos, Ana E; Rosado, William; Tosteson, Thomas R; Govind, Nadathur S

    2008-01-01

    The marine toxic dinoflagellate Ostreopsis lenticularis has been implicated as the major vector in ciguatera seafood poisoning on the southwest coast of Puerto Rico. Studies have demonstrated that associated bacteria play a role in the ciguatoxin production and that different clonal cultures of O. lenticularis harbor different culturable bacteria. In this study, more than 125 associated bacteria from two toxic clonal cultures of O. lenticularis (no. 302 and no. 303) were analyzed utilizing polymerase chain reaction amplification of the partial small subunit ribosomal DNA (rRNA), denaturing gradient gel electrophoresis, and DNA sequencing. Approximately 50% of total bacteria identified in both cultures were a single species belonging to the Cytophaga-Flavobacter-Bacteroides complex. This bacterium was also found in six new O. lenticularis clonal cultures established 10 years after the original cultures used in this study and absent from a clonal culture of a different dinoflagellate species. The data presented here indicate a persistent and apparently specific association of this bacterium with O. lenticularis, which makes it a candidate involved in ciguatoxin production.

  19. Multi-gene analysis of Symbiodinium dinoflagellates: a perspective on rarity, symbiosis, and evolution.

    Science.gov (United States)

    Pochon, Xavier; Putnam, Hollie M; Gates, Ruth D

    2014-01-01

    Symbiodinium, a large group of dinoflagellates, live in symbiosis with marine protists, invertebrate metazoans, and free-living in the environment. Symbiodinium are functionally variable and play critical energetic roles in symbiosis. Our knowledge of Symbiodinium has been historically constrained by the limited number of molecular markers available to study evolution in the genus. Here we compare six functional genes, representing three cellular compartments, in the nine known Symbiodinium lineages. Despite striking similarities among the single gene phylogenies from distinct organelles, none were evolutionarily identical. A fully concatenated reconstruction, however, yielded a well-resolved topology identical to the current benchmark nr28S gene. Evolutionary rates differed among cellular compartments and clades, a pattern largely driven by higher rates of evolution in the chloroplast genes of Symbiodinium clades D2 and I. The rapid rates of evolution observed amongst these relatively uncommon Symbiodinium lineages in the functionally critical chloroplast may translate into potential innovation for the symbiosis. The multi-gene analysis highlights the potential power of assessing genome-wide evolutionary patterns using recent advances in sequencing technology and emphasizes the importance of integrating ecological data with more comprehensive sampling of free-living and symbiotic Symbiodinium in assessing the evolutionary adaptation of this enigmatic dinoflagellate.

  20. Aiptasia as a model to study metabolic diversity and specificity in cnidarian-dinoflagellate symbioses

    KAUST Repository

    Raedecker, Nils

    2017-11-23

    The symbiosis between cnidarian hosts and microalgae of the genus Symbiodinium provides the foundation of coral reefs in oligotrophic waters. Understanding the nutrient-exchange between these partners is key to identifying the fundamental mechanisms behind this symbiosis. However, deciphering the individual role of host and algal partners in the uptake and cycling of nutrients has proven difficult, given the endosymbiotic nature of this relationship. In this study, we highlight the advantages of the emerging model system Aiptasia to investigate the metabolic diversity and specificity of cnidarian-dinoflagellate symbiosis. For this, we combined traditional measurements with nano-scale secondary ion mass spectrometry (NanoSIMS) and stable isotope labeling to investigate carbon and nitrogen cycling both at the organismal scale and the cellular scale. Our results suggest that the individual nutrient assimilation by hosts and symbionts depends on the identity of their respective symbiotic partner. Further, δ13C enrichment patterns revealed that alterations in carbon fixation rates only affected carbon assimilation in the cnidarian host but not the algal symbiont, suggesting a \\'selfish\\' character of this symbiotic association. Based on our findings, we identify new venues for future research regarding the role and regulation of nutrient exchange in the cnidarian-dinoflagellate symbiosis. In this context, the model system approach outlined in this study constitutes a powerful tool set to address these questions.

  1. Morphological transition in kleptochloroplasts after ingestion in the dinoflagellates Amphidinium poecilochroum and Gymnodinium aeruginosum (Dinophyceae).

    Science.gov (United States)

    Onuma, Ryo; Horiguchi, Takeo

    2013-09-01

    The unarmoured marine dinoflagellate Amphidinium poecilochroum and the unarmoured freshwater dinoflagellate Gymnodinium aeruginosum both belonging to the same clade, are known to possess cryptomonad-derived kleptochloroplasts. Previous studies revealed that G. aeruginosum can synchronise the division of the chloroplast with its own cell division while no simultaneous division takes place in A. poecilochroum, which is interpreted to mean that state of kleptochloroplastidy in G. aeruginosum is closer to that of the initial acquisition of the 'true chloroplast' within the lineage. Although the general ultrastructure of these two species has been reported, the changes in the kleptochloroplast with time have never been followed. We observed morphological changes in kleptochloroplasts of A. poecilochroum and G. aeruginosum following the ingestion of cryptomonad cells, using light and transmission electron microscopes. In A. poecilochroum, the cryptomonad ejectosomes, mitochondria and cytoplasm were all actively transferred into digestive vacuoles within 1h of ingestion. The chloroplasts were deformed and the cryptomonad nucleus was digested after 3h. By contrast, in G. aeruginosum, the cryptomonad cytoplasm and nucleus were retained for 24h following ingestion, and the chloroplast was substantially enlarged. These differences imply that the retention of the cryptomonad nucleus is important for the maintenance of the chloroplast. Copyright © 2013 Elsevier GmbH. All rights reserved.

  2. Cretaceous-Paleogene Dinoflagellate Biostratigraphy and the Age of the Clayton Formation, Southeastern Missouri, USA

    Directory of Open Access Journals (Sweden)

    Natalie R. Dastas

    2014-03-01

    Full Text Available Sedimentary deposits in Stoddard County, southeastern Missouri, reveal a K-Pg transition sequence represented by the uppermost Maastrichtian Owl Creek Formation and the Paleocene Clayton Formation. The Clayton Formation is characterized by a basal fossiliferous coquinite that contains reworked late Maastrichtian macrofossils. Dinoflagellate biostratigraphy is used to determine the age of the coquinite layer and specifically whether or not it is an end-K tsunamite deposit resulting from the Chicxulub impact event. Results indicate a mixed assemblage of late Maastrichtian and early Danian dinocysts within the basal coquinite of the Clayton Formation. Maastrichtian dinocyst taxa identified are Riculacysta amplexa, Pierceites pentagonus, Phelodinium tricuspe and Dinogymnium sp. and dinocysts utilized as global indicators of the basal Danian, also present in the coquinite, consist of Senoniasphaera inornata, Carpatella cornuta, Damassadinium californicum, and Lanternosphaeridium reinhardtii. A gray mud occurring above the coquinite in the middle of the Clayton Formation contains the mid-Danian dinoflagellate Senegalinium iterlaaense. Collectively, these data suggest that the coquinite was deposited well after the K-Pg event but before the middle Danian. The mixed assemblage of Late Cretaceous and Paleocene dinocysts preserved in the coquinite weakens the hypothesis that it is an end-K tsunamite deposit and suggests instead that it may result from a long-term transgressive lag. We also extend the stratigraphic range of the Paleocene Senegalinium simplex downward into the uppermost Maastrichtian.

  3. [Dinoflagellates (Dinophyta) of orders Dinophysiales and Prorocentrales of the Veracruz Reef System, Mexico].

    Science.gov (United States)

    Parra-Toriz, Dulce; Ramírez-Rodriguez, María de Lourdes Araceli; Hernández-Becerril, David Uriel

    2011-03-01

    Dinoflagellates are a major taxonomic group in marine phytoplankton communities in terms of diversity and biomass. Some species are also important because they form blooms and/or produce toxins that may cause diverse problems. The composition of planktonic dinoflagellates of the orders Prorocentrales and Dinophysiales, in the Veracruz Reef System, were obtained during the period of October 2006 to January 2007. For this, samples were taken from the surface at 10 stations with net of 30 microm mesh, and were analyzed by light and scanning electron microscopy. Each species was described and illustrated, measured and their distribution and ecological data is also given. A total of nine species were found and identified, belonging to four genera: Dinophysis was represented by three species; Prorocentrum by three, Phalacroma by two, and only one species of Ornithocercus was detected. From the samples, four potentially toxin-producer species were found: Dinophysis caudata, D. rapa, Phalacroma rotundata and Prorocentrum micans. The number of species found in this study is low, especially considering the higher numbers observed in other areas of the Gulf of Mexico, where some reports have recorded up to 53 species of the order Dinophysiales and 14 for Prorocentrales. Identification keys for orders, genera and species for the study area are provided with this study.

  4. Mitochondrial Genes of Dinoflagellates Are Transcribed by a Nuclear-Encoded Single-Subunit RNA Polymerase.

    Directory of Open Access Journals (Sweden)

    Chang Ying Teng

    Full Text Available Dinoflagellates are a large group of algae that contribute significantly to marine productivity and are essential photosynthetic symbionts of corals. Although these algae have fully-functioning mitochondria and chloroplasts, both their organelle genomes have been highly reduced and the genes fragmented and rearranged, with many aberrant transcripts. However, nothing is known about their RNA polymerases. We cloned and sequenced the gene for the nuclear-encoded mitochondrial polymerase (RpoTm of the dinoflagellate Heterocapsa triquetra and showed that the protein presequence targeted a GFP construct into yeast mitochondria. The gene belongs to a small gene family, which includes a variety of 3'-truncated copies that may have originated by retroposition. The catalytic C-terminal domain of the protein shares nine conserved sequence blocks with other single-subunit polymerases and is predicted to have the same fold as the human enzyme. However, the N-terminal (promoter binding/transcription initiation domain is not well-conserved. In conjunction with the degenerate nature of the mitochondrial genome, this suggests a requirement for novel accessory factors to ensure the accurate production of functional mRNAs.

  5. A giant cell surface protein in Synechococcus WH8102 inhibits feeding by a dinoflagellate predator.

    Science.gov (United States)

    Strom, Suzanne L; Brahamsha, Bianca; Fredrickson, Kerri A; Apple, Jude K; Rodríguez, Andres Gutiérrez

    2012-03-01

    Diverse strains of the marine planktonic cyanobacterium Synechococcus sp. show consistent differences in their susceptibility to predation. We used mutants of Sargasso Sea strain WH8102 (clade III) to test the hypothesis that cell surface proteins play a role in defence against predation by protists. Predation rates by the heterotrophic dinoflagellate Oxyrrhis marina on mutants lacking the giant SwmB protein were always higher (by 1.6 to 3.9×) than those on wild-type WH8102 cells, and equalled predation rates on a clade I strain (CC9311). In contrast, absence of the SwmA protein, which comprises the S-layer (surface layer of the cell envelope that is external to the outer membrane), had no effect on predation by O. marina. Reductions in predation rate were not due to dissolved substances in Synechococcus cultures, and could not be accounted for by variations in cell hydrophobicity. We hypothesize that SwmB defends Synechococcus WH8102 by interfering with attachment of dinoflagellate prey capture organelles or cell surface receptors. Giant proteins are predicted in the genomes of multiple Synechococcus isolates, suggesting that this defence strategy may be more general. Strategies for resisting predation will contribute to the differential competitive success of different Synechococcus groups, and to the diversity of natural picophytoplankton assemblages. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  6. Optimal nutrient exchange and immune responses operate in partner specificity in the cnidarian-dinoflagellate symbiosis.

    Science.gov (United States)

    Matthews, Jennifer L; Crowder, Camerron M; Oakley, Clinton A; Lutz, Adrian; Roessner, Ute; Meyer, Eli; Grossman, Arthur R; Weis, Virginia M; Davy, Simon K

    2017-12-12

    The relationship between corals and dinoflagellates of the genus Symbiodinium is fundamental to the functioning of coral ecosystems. It has been suggested that reef corals may adapt to climate change by changing their dominant symbiont type to a more thermally tolerant one, although the capacity for such a shift is potentially hindered by the compatibility of different host-symbiont pairings. Here we combined transcriptomic and metabolomic analyses to characterize the molecular, cellular, and physiological processes that underlie this compatibility, with a particular focus on Symbiodinium trenchii, an opportunistic, thermally tolerant symbiont that flourishes in coral tissues after bleaching events. Symbiont-free individuals of the sea anemone Exaiptasia pallida (commonly referred to as Aiptasia), an established model system for the study of the cnidarian-dinoflagellate symbiosis, were colonized with the "normal" (homologous) symbiont Symbiodinium minutum and the heterologous S. trenchii Analysis of the host gene and metabolite expression profiles revealed that heterologous symbionts induced an expression pattern intermediate between the typical symbiotic state and the aposymbiotic state. Furthermore, integrated pathway analysis revealed that increased catabolism of fixed carbon stores, metabolic signaling, and immune processes occurred in response to the heterologous symbiont type. Our data suggest that both nutritional provisioning and the immune response induced by the foreign "invader" are important factors in determining the capacity of corals to adapt to climate change through the establishment of novel symbioses.

  7. Obtaining Spheroplasts of Armored Dinoflagellates and First Single-Channel Recordings of Their Ion Channels Using Patch-Clamping

    Directory of Open Access Journals (Sweden)

    Ilya Pozdnyakov

    2014-09-01

    Full Text Available Ion channels are tightly involved in various aspects of cell physiology, including cell signaling, proliferation, motility, endo- and exo-cytosis. They may be involved in toxin production and release by marine dinoflagellates, as well as harmful algal bloom proliferation. So far, the patch-clamp technique, which is the most powerful method to study the activity of ion channels, has not been applied to dinoflagellate cells, due to their complex cellulose-containing cell coverings. In this paper, we describe a new approach to overcome this problem, based on the preparation of spheroplasts from armored bloom-forming dinoflagellate Prorocentrum minimum. We treated the cells of P. minimum with a cellulose synthesis inhibitor, 2,6-dichlorobenzonitrile (DCB, and found out that it could also induce ecdysis and arrest cell shape maintenance in these microalgae. Treatment with 100–250 µM DCB led to an acceptable 10% yield of P. minimum spheroplasts and was independent of the incubation time in the range of 1–5 days. We show that such spheroplasts are suitable for patch-clamping in the cell-attached mode and can form 1–10 GOhm patch contact with a glass micropipette, allowing recording of ion channel activity. The first single-channel recordings of dinoflagellate ion channels are presented.

  8. A diverse host thrombospondin-type-1 repeat protein repertoire promotes symbiont colonization during establishment of cnidarian-dinoflagellate symbiosis

    Science.gov (United States)

    Neubauer, Emilie-Fleur; Poole, Angela Z; Neubauer, Philipp; Detournay, Olivier; Tan, Kenneth; Davy, Simon K; Weis, Virginia M

    2017-01-01

    The mutualistic endosymbiosis between cnidarians and dinoflagellates is mediated by complex inter-partner signaling events, where the host cnidarian innate immune system plays a crucial role in recognition and regulation of symbionts. To date, little is known about the diversity of thrombospondin-type-1 repeat (TSR) domain proteins in basal metazoans or their potential role in regulation of cnidarian-dinoflagellate mutualisms. We reveal a large and diverse repertoire of TSR proteins in seven anthozoan species, and show that in the model sea anemone Aiptasia pallida the TSR domain promotes colonization of the host by the symbiotic dinoflagellate Symbiodinium minutum. Blocking TSR domains led to decreased colonization success, while adding exogenous TSRs resulted in a ‘super colonization’. Furthermore, gene expression of TSR proteins was highest at early time-points during symbiosis establishment. Our work characterizes the diversity of cnidarian TSR proteins and provides evidence that these proteins play an important role in the establishment of cnidarian-dinoflagellate symbiosis. DOI: http://dx.doi.org/10.7554/eLife.24494.001 PMID:28481198

  9. BIOCHEMISTRY OF DINOFLAGELLATE LIPIDS, WITH PARTICULAR REFERENCE TO THE FATTY ACID AND STEROL COMPOSITION OF A KARENIA BREVIS BLOOM

    Science.gov (United States)

    Leblond, Jeffrey D., Terence J. Evens and Peter J. Chapman. 2003. Biochemistry of Dinoflagellate Lipids, with Particular Reference to the Fatty Acid and Sterol Composition of a Karenia brevis Bloom. Phycologia. 42(4):324-331. (ERL,GB 1160). The harmful marine dinoflagella...

  10. Studies on woloszynskioid dinoflagellates V. Ultrastructure of Biecheleriopsis gen. nov., with description of Biecheleriopsis adriatica sp. nov

    DEFF Research Database (Denmark)

    Moestrup, Øjvind; Lindberg, Karin; Daugbjerg, Niels

    2009-01-01

    An isolate of the very small marine dinoflagellate Biecheleriopsis adriatica gen. et sp. nov. (12-15 µm long) has been examined by light, scanning and transmission electron microscopy, combined with partial sequencing of nuclear-encoded large subunit rRNA. Biecheleriopsis is a genus of thin...

  11. The transcriptome of the novel dinoflagellate Oxyrrhis marina (Alveolata: Dinophyceae: response to salinity examined by 454 sequencing

    Directory of Open Access Journals (Sweden)

    Montagnes David JS

    2011-10-01

    Full Text Available Abstract Background The heterotrophic dinoflagellate Oxyrrhis marina is increasingly studied in experimental, ecological and evolutionary contexts. Its basal phylogenetic position within the dinoflagellates make O. marina useful for understanding the origin of numerous unusual features of the dinoflagellate lineage; its broad distribution has lent O. marina to the study of protist biogeography; and nutritive flexibility and eurytopy have made it a common lab rat for the investigation of physiological responses of marine heterotrophic flagellates. Nevertheless, genome-scale resources for O. marina are scarce. Here we present a 454-based transcriptome survey for this organism. In addition, we assess sequence read abundance, as a proxy for gene expression, in response to salinity, an environmental factor potentially important in determining O. marina spatial distributions. Results Sequencing generated ~57 Mbp of data which assembled into 7, 398 contigs. Approximately 24% of contigs were nominally identified by BLAST. A further clustering of contigs (at ≥ 90% identity revealed 164 transcript variant clusters, the largest of which (Phosphoribosylaminoimidazole-succinocarboxamide synthase was composed of 28 variants displaying predominately synonymous variation. In a genomic context, a sample of 5 different genes were demonstrated to occur as tandem repeats, separated by short (~200-340 bp inter-genic regions. For HSP90 several intergenic variants were detected suggesting a potentially complex genomic arrangement. In response to salinity, analysis of 454 read abundance highlighted 9 and 20 genes over or under expressed at 50 PSU, respectively. However, 454 read abundance and subsequent qPCR validation did not correlate well - suggesting that measures of gene expression via ad hoc analysis of sequence read abundance require careful interpretation. Conclusion Here we indicate that tandem gene arrangements and the occurrence of multiple transcribed

  12. Dinoflagellate cyst production in Hudson Bay, the world's largest inland sea, based on monthly sediment trap data

    Science.gov (United States)

    Heikkilä, Maija; Pospelova, Vera; Forest, Alexandre; Stern, Gary

    2014-05-01

    Phytoplankters, microscopic primary producers of oceans are capable of responding rapidly to environmental fluctuations due to their high cell replication rates. Fast phytoplankton growth maybe balanced out by equally fast consumption by herbivorous grazers. In high-latitude marine systems, seasonal fluctuations in plankton biomass are essentially linked to light regime controlled by the waxing and waning sea-ice cover. In addition, nutrient limitation in surface waters, seasonal temperature fluctuations and changes in freshwater inputs may play important roles. In cold-water seas, many planktonic organisms cope with seasonal harshness by the production of benthic dormant stages. Dinoflagellates are a diverse group of single-celled plankton, constituting major marine primary producers, as well as herbivorous grazers of the microbial loop. Many dinoflagellate species produce highly resistant, organic-walled resting cysts that are archived in sediments and have been increasingly used to reconstruct past environmental conditions, e.g., sea-surface temperature and salinity, productivity, sea-ice cover and eutrophication. Marine sediment core sequences are characterized by slow accumulation rates and high mixing rates: the top centimeter of surface sediment from an arctic shelf may correspond to several years or decades of deposition. Consequently, sedimentary archives do not give direct information on long-term changes in seasonal bloom patterns or cues of annually recurring life-cycle events. We used two particle-intercepting sediment traps moored in eastern and western Hudson Bay, respectively, to study monthly fluctuations in dinoflagellate cyst production from October 2005 to September 2006. The traps were deployed close to the seafloor and recovered during the ArcticNet annual expeditions onboard the CCGS Amundsen in 2005 and the CCGS Pierre Radisson in 2006. We document the seasonal succession of dinoflagellate cyst taxa, together with cyst species composition

  13. Effects of the toxic benthic dinoflagellate Ostreopsis cf. ovata on fertilization and early development of the sea urchin Lytechinus variegatus.

    Science.gov (United States)

    Neves, Raquel A F; Contins, Mariana; Nascimento, Silvia M

    2018-02-02

    Blooms of the benthic dinoflagellate Ostreopsis cf. ovata have been recorded with increasing frequency, intensity and geographic distribution. This dinoflagellate produces potent toxins that may cause mortality of marine invertebrates. Adults of sea urchins are commonly affected by O. cf. ovata exposure with evidence of spines loss and high mortality during periods of high dinoflagellate abundances. Here, we report on the effects of the toxic dinoflagellate O. cf. ovata on fertilization and early development of the sea urchin Lytechinus variegatus, a key ecological herbivore. Lytechinus variegatus eggs and sperm were experimentally exposed to different concentrations of Ostreopsis cf. ovata (4, 40, 400, and 4000 cells ml -1 ) to test the hypothesis that fertilization success, embryonic and larval development of the sea urchin are negatively affected by the toxic dinoflagellate even at low abundances. Reduced fertilization, developmental failures, embryo and larval mortality, and occurrence of abnormal offspring were evident after exposure to O. cf. ovata. Fertilization decreased when gametes were exposed to high O. cf. ovata abundances (400 and 4000 cells ml -1 ), but just the exposure to the highest abundance significantly reduced fertilization success. Sea urchin early development was affected by O. cf. ovata in a dose-dependent way, high dinoflagellate abundances fully inhibited the early development of L. variegatus. Ostreopsis cf. ovata significantly increased the mortality of sea urchin eggs and embryos in the first hours of exposure (∼1-3 h), regardless of dinoflagellate abundance. Abundances of 400 and 4000 O. cf. ovata cells ml -1 induced significantly higher mortality on sea urchin initial stages in the first hours, and no egg or embryo was found in these treatments after 18 h of incubation. The early echinopluteus larva was only reached in the control and in treatments with low Ostreopsis cf. ovata abundances (4 and 40 cells ml -1 ). The

  14. Heat-stress and light-stress induce different cellular pathologies in the symbiotic dinoflagellate during coral bleaching.

    Science.gov (United States)

    Downs, C A; McDougall, Kathleen E; Woodley, Cheryl M; Fauth, John E; Richmond, Robert H; Kushmaro, Ariel; Gibb, Stuart W; Loya, Yossi; Ostrander, Gary K; Kramarsky-Winter, Esti

    2013-01-01

    Coral bleaching is a significant contributor to the worldwide degradation of coral reefs and is indicative of the termination of symbiosis between the coral host and its symbiotic algae (dinoflagellate; Symbiodinium sp. complex), usually by expulsion or xenophagy (symbiophagy) of its dinoflagellates. Herein, we provide evidence that during the earliest stages of environmentally induced bleaching, heat stress and light stress generate distinctly different pathomorphological changes in the chloroplasts, while a combined heat- and light-stress exposure induces both pathomorphologies; suggesting that these stressors act on the dinoflagellate by different mechanisms. Within the first 48 hours of a heat stress (32°C) under low-light conditions, heat stress induced decomposition of thylakoid structures before observation of extensive oxidative damage; thus it is the disorganization of the thylakoids that creates the conditions allowing photo-oxidative-stress. Conversely, during the first 48 hours of a light stress (2007 µmoles m(-2) s(-1) PAR) at 25°C, condensation or fusion of multiple thylakoid lamellae occurred coincidently with levels of oxidative damage products, implying that photo-oxidative stress causes the structural membrane damage within the chloroplasts. Exposure to combined heat- and light-stresses induced both pathomorphologies, confirming that these stressors acted on the dinoflagellate via different mechanisms. Within 72 hours of exposure to heat and/or light stresses, homeostatic processes (e.g., heat-shock protein and anti-oxidant enzyme response) were evident in the remaining intact dinoflagellates, regardless of the initiating stressor. Understanding the sequence of events during bleaching when triggered by different environmental stressors is important for predicting both severity and consequences of coral bleaching.

  15. Heat-stress and light-stress induce different cellular pathologies in the symbiotic dinoflagellate during coral bleaching.

    Directory of Open Access Journals (Sweden)

    C A Downs

    Full Text Available Coral bleaching is a significant contributor to the worldwide degradation of coral reefs and is indicative of the termination of symbiosis between the coral host and its symbiotic algae (dinoflagellate; Symbiodinium sp. complex, usually by expulsion or xenophagy (symbiophagy of its dinoflagellates. Herein, we provide evidence that during the earliest stages of environmentally induced bleaching, heat stress and light stress generate distinctly different pathomorphological changes in the chloroplasts, while a combined heat- and light-stress exposure induces both pathomorphologies; suggesting that these stressors act on the dinoflagellate by different mechanisms. Within the first 48 hours of a heat stress (32°C under low-light conditions, heat stress induced decomposition of thylakoid structures before observation of extensive oxidative damage; thus it is the disorganization of the thylakoids that creates the conditions allowing photo-oxidative-stress. Conversely, during the first 48 hours of a light stress (2007 µmoles m(-2 s(-1 PAR at 25°C, condensation or fusion of multiple thylakoid lamellae occurred coincidently with levels of oxidative damage products, implying that photo-oxidative stress causes the structural membrane damage within the chloroplasts. Exposure to combined heat- and light-stresses induced both pathomorphologies, confirming that these stressors acted on the dinoflagellate via different mechanisms. Within 72 hours of exposure to heat and/or light stresses, homeostatic processes (e.g., heat-shock protein and anti-oxidant enzyme response were evident in the remaining intact dinoflagellates, regardless of the initiating stressor. Understanding the sequence of events during bleaching when triggered by different environmental stressors is important for predicting both severity and consequences of coral bleaching.

  16. Heat-Stress and Light-Stress Induce Different Cellular Pathologies in the Symbiotic Dinoflagellate during Coral Bleaching

    Science.gov (United States)

    Downs, C. A.; McDougall, Kathleen E.; Woodley, Cheryl M.; Fauth, John E.; Richmond, Robert H.; Kushmaro, Ariel; Gibb, Stuart W.; Loya, Yossi; Ostrander, Gary K.; Kramarsky-Winter, Esti

    2013-01-01

    Coral bleaching is a significant contributor to the worldwide degradation of coral reefs and is indicative of the termination of symbiosis between the coral host and its symbiotic algae (dinoflagellate; Symbiodinium sp. complex), usually by expulsion or xenophagy (symbiophagy) of its dinoflagellates. Herein, we provide evidence that during the earliest stages of environmentally induced bleaching, heat stress and light stress generate distinctly different pathomorphological changes in the chloroplasts, while a combined heat- and light-stress exposure induces both pathomorphologies; suggesting that these stressors act on the dinoflagellate by different mechanisms. Within the first 48 hours of a heat stress (32°C) under low-light conditions, heat stress induced decomposition of thylakoid structures before observation of extensive oxidative damage; thus it is the disorganization of the thylakoids that creates the conditions allowing photo-oxidative-stress. Conversely, during the first 48 hours of a light stress (2007 µmoles m−2 s−1 PAR) at 25°C, condensation or fusion of multiple thylakoid lamellae occurred coincidently with levels of oxidative damage products, implying that photo-oxidative stress causes the structural membrane damage within the chloroplasts. Exposure to combined heat- and light-stresses induced both pathomorphologies, confirming that these stressors acted on the dinoflagellate via different mechanisms. Within 72 hours of exposure to heat and/or light stresses, homeostatic processes (e.g., heat-shock protein and anti-oxidant enzyme response) were evident in the remaining intact dinoflagellates, regardless of the initiating stressor. Understanding the sequence of events during bleaching when triggered by different environmental stressors is important for predicting both severity and consequences of coral bleaching. PMID:24324575

  17. Molybdate:sulfate ratio affects redox metabolism and viability of the dinoflagellate Lingulodinium polyedrum

    Energy Technology Data Exchange (ETDEWEB)

    Barros, M.P., E-mail: marcelo.barros@cruzeirodosul.edu.br [Postgraduate Program in Health Science (Environmental Chemistry), CBS, Universidade Cruzeiro do Sul, 08060070 São Paulo, SP (Brazil); Hollnagel, H.C. [Pós-Graduação, Faculdade Mario Schenberg, 06710500 Cotia, SP (Brazil); Glavina, A.B. [Postgraduate Program in Health Science (Environmental Chemistry), CBS, Universidade Cruzeiro do Sul, 08060070 São Paulo, SP (Brazil); Soares, C.O. [Postgraduate Program in Health Science (Environmental Chemistry), CBS, Universidade Cruzeiro do Sul, 08060070 São Paulo, SP (Brazil); Department of Biochemistry, Instituto de Química, Universidade de São Paulo (IQ-USP), São Paulo (Brazil); Ganini, D. [Postgraduate Program in Health Science (Environmental Chemistry), CBS, Universidade Cruzeiro do Sul, 08060070 São Paulo, SP (Brazil); Free Radical Metabolism Group, Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709 (United States); Dagenais-Bellefeuille, S.; Morse, D. [Departement de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, Montreal, QC H1X 2B2 (Canada); Colepicolo, P. [Department of Biochemistry, Instituto de Química, Universidade de São Paulo (IQ-USP), São Paulo (Brazil)

    2013-10-15

    Highlights: •Molybdenum (Mo) is a key micronutrient for nitrogen and redox metabolism in many microalgae. •Molybdate and (more abundant) sulfate anions compete for uptake, although proper mechanism is still obscure. •Higher concentrations of molybdate in culture medium diminish sulfur content in L. polyedrum. •Mo toxicity was monitored as a function of [Mo]:[sulfate] ratios in L. polyedrum and was linked to oxidative stress. •Induction of xanthine oxidase activity and/or depletion of thiol-dependent antioxidants are suggested as plausible mechanisms to explain Mo toxicity in dinoflagellates. -- Abstract: Molybdenum is a transition metal used primarily (90% or more) as an additive to steel and corrosion-resistant alloys in metallurgical industries and its release into the environment is a growing problem. As a catalytic center of some redox enzymes, molybdenum is an essential element for inorganic nitrogen assimilation/fixation, phytohormone synthesis, and free radical metabolism in photosynthesizing species. In oceanic and estuarine waters, microalgae absorb molybdenum as the water-soluble molybdate anion (MoO{sub 4}{sup 2−}), although MoO{sub 4}{sup 2−} uptake is thought to compete with uptake of the much more abundant sulfate anion (SO{sub 4}{sup 2−}, approximately 25 mM in seawater). Thus, those aspects of microalgal biology impacted by molybdenum would be better explained by considering both MoO{sub 4}{sup 2−} and SO{sub 4}{sup 2−} concentrations in the aquatic milieu. This work examines toxicological, physiological and redox imbalances in the dinoflagellate Lingulodinium polyedrum that have been induced by changes in the molybdate:sulfate ratios. We prepared cultures of Lingulodinium polyedrum grown in artificial seawater containing eight different MoO{sub 4}{sup 2−} concentrations (from 0 to 200 μM) and three different SO{sub 4}{sup 2−} concentrations (3.5 mM, 9.6 mM and 25 mM). We measured sulfur content in cells, the activities of

  18. Transcriptomic response of the red tide dinoflagellate, Karenia brevis, to nitrogen and phosphorus depletion and addition

    Directory of Open Access Journals (Sweden)

    Johnson Jillian G

    2011-07-01

    Full Text Available Abstract Background The role of coastal nutrient sources in the persistence of Karenia brevis red tides in coastal waters of Florida is a contentious issue that warrants investigation into the regulation of nutrient responses in this dinoflagellate. In other phytoplankton studied, nutrient status is reflected by the expression levels of N- and P-responsive gene transcripts. In dinoflagellates, however, many processes are regulated post-transcriptionally. All nuclear encoded gene transcripts studied to date possess a 5' trans-spliced leader (SL sequence suggestive, based on the trypanosome model, of post-transcriptional regulation. The current study therefore sought to determine if the transcriptome of K. brevis is responsive to nitrogen and phosphorus and is informative of nutrient status. Results Microarray analysis of N-depleted K. brevis cultures revealed an increase in the expression of transcripts involved in N-assimilation (nitrate and ammonium transporters, glutamine synthetases relative to nutrient replete cells. In contrast, a transcriptional signal of P-starvation was not apparent despite evidence of P-starvation based on their rapid growth response to P-addition. To study transcriptome responses to nutrient addition, the limiting nutrient was added to depleted cells and changes in global gene expression were assessed over the first 48 hours following nutrient addition. Both N- and P-addition resulted in significant changes in approximately 4% of genes on the microarray, using a significance cutoff of 1.7-fold and p ≤ 10-4. By far, the earliest responding genes were dominated in both nutrient treatments by pentatricopeptide repeat (PPR proteins, which increased in expression up to 3-fold by 1 h following nutrient addition. PPR proteins are nuclear encoded proteins involved in chloroplast and mitochondria RNA processing. Correspondingly, other functions enriched in response to both nutrients were photosystem and ribosomal genes

  19. Transcriptomic response of the red tide dinoflagellate, Karenia brevis, to nitrogen and phosphorus depletion and addition.

    Science.gov (United States)

    Morey, Jeanine S; Monroe, Emily A; Kinney, Amanda L; Beal, Marion; Johnson, Jillian G; Hitchcock, Gary L; Van Dolah, Frances M

    2011-07-05

    The role of coastal nutrient sources in the persistence of Karenia brevis red tides in coastal waters of Florida is a contentious issue that warrants investigation into the regulation of nutrient responses in this dinoflagellate. In other phytoplankton studied, nutrient status is reflected by the expression levels of N- and P-responsive gene transcripts. In dinoflagellates, however, many processes are regulated post-transcriptionally. All nuclear encoded gene transcripts studied to date possess a 5' trans-spliced leader (SL) sequence suggestive, based on the trypanosome model, of post-transcriptional regulation. The current study therefore sought to determine if the transcriptome of K. brevis is responsive to nitrogen and phosphorus and is informative of nutrient status. Microarray analysis of N-depleted K. brevis cultures revealed an increase in the expression of transcripts involved in N-assimilation (nitrate and ammonium transporters, glutamine synthetases) relative to nutrient replete cells. In contrast, a transcriptional signal of P-starvation was not apparent despite evidence of P-starvation based on their rapid growth response to P-addition. To study transcriptome responses to nutrient addition, the limiting nutrient was added to depleted cells and changes in global gene expression were assessed over the first 48 hours following nutrient addition. Both N- and P-addition resulted in significant changes in approximately 4% of genes on the microarray, using a significance cutoff of 1.7-fold and p ≤ 10-4. By far, the earliest responding genes were dominated in both nutrient treatments by pentatricopeptide repeat (PPR) proteins, which increased in expression up to 3-fold by 1 h following nutrient addition. PPR proteins are nuclear encoded proteins involved in chloroplast and mitochondria RNA processing. Correspondingly, other functions enriched in response to both nutrients were photosystem and ribosomal genes. Microarray analysis provided transcriptomic

  20. Dinosterane and other steroidal hydrocarbons of dinoflagellate origin in sediments and petroleum

    Science.gov (United States)

    Summons, Roger E.; Volkman, John K.; Boreham, Christopher J.

    1987-11-01

    The steroidal alkanes of a selection of sediments and oils have been examined by GC-MS with multiple metastable reaction monitoring. Specific 4-methyl sterane isomers have been identified by comparison with isomers synthesized from sterols isolated from dinoflagellates. An immature marine oil shale and two mature marine oils of Triassic to early Cretaceous age contained high concentrations of C 30 steranes comprising desmethyl, 24-ethyl-4α-methylcholestane and 4α,23,24-trimethylcholestane (dinosterane) isomers. An immature non-marine oil shale and two non-marine oils of Cretaceous to Eocene age contained stereoisomers of 24-ethyl-4α-methylcholestane as the dominant C 30 steranes. Reaction monitoring analyses in GC-MS are particularly suited to unravelling complex distributions of homologous and stereoisomeric steroids encountered in oils and their source rocks.

  1. Constraints on the vital effect in coccolithophore and dinoflagellate calcite by oxygen isotopic modification of seawater

    Science.gov (United States)

    Hermoso, Michaël; Horner, Tristan J.; Minoletti, Fabrice; Rickaby, Rosalind E. M.

    2014-09-01

    In this study, we show that there are independent controls of 18O/16O and 13C/12C fractionation in coccolithophore and dinoflagellate calcite due to the contrasting kinetics of each isotope system. We demonstrate that the direction and magnitude of the oxygen isotope fractionation with respect to equilibrium is related to the balance between calcification rate and the replenishment of the internal pool of dissolved inorganic carbon (DIC). As such, in fast growing cells, such as those of Emiliania huxleyi and Gephyrocapsa oceanica (forming the so-called ;heavy group;), calcification of the internal carbon pool occurs faster than complete isotopic re-adjustment of the internal DIC pool with H2O molecules. Hence, coccoliths reflect the heavy oxygen isotope signature of the CO2 overprinting the whole DIC pool. Conversely, in large and slow growing cells, such as Coccolithus pelagicus ssp. braarudii, complete re-equilibration is achieved due to limited influx of CO2 leading to coccoliths that are precipitated in conditions close to isotopic equilibrium (;equilibrium group;). Species exhibiting the most negative oxygen isotope composition, such as Calcidiscus leptoporus (;light group;), precipitate coccolith under increased pH in the coccolith vesicle, as previously documented by the ;carbonate ion effect;. We suggest that, for the carbon isotope system, any observed deviation from isotopic equilibrium is only ;apparent;, as the carbon isotopic composition in coccolith calcite is controlled by a Rayleigh fractionation originating from preferential incorporation of 12C into organic matter. Therefore, species with low PIC/POC ratios as E. huxleyi and G. oceanica are shifted towards positive carbon isotope values as a result of predominant carbon fixation into the organic matter. By contrast, cells with higher PIC/POC as C. braarudii and C. leptoporus maintain, to some extent, the original negative isotopic composition of the CO2. The calcareous dinoflagellate

  2. Peridinin-chlorophyll a proteins of dinoflagellate algae. [Role in photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Siegelman, H W; Kycia, J H; Haxo, F T

    1976-01-01

    The pigments which function as the energy collection systems for photosynthesis are either tetrapyrroles or carotenoids. In the oceans, which cover over 70 percent of the surface of the earth, carotenoids may be more important than chlorophylls for photosynthetic energy capture by phytoplankton. A characteristic feature of the principal marine phytoplankton is the possession of a high carotenoid content. In general each major group of phytoplankton has a specific carotenoid which accounts for a major portion of the total carotenoid content. The peridinin-chlorophyll a proteins from dinoflagellates examined were found to exist in a unique and distinctive pattern as shown by isoelectric focusing on polyacrylamide gel. These patterns may be of value for species identification and provide a biochemical marker for a particular species. To date, no similar proteins have been isolated from other phytoplankton groups.

  3. Photosensitizing hemolytic toxin in Heterocapsa circularisquama, a newly identified harmful red tide dinoflagellate.

    Science.gov (United States)

    Sato, Yoji; Oda, Tatsuya; Muramatsu, Tsuyoshi; Matsuyama, Yukihiko; Honjo, Tsuneo

    2002-02-01

    Red tides of Heterocapsa circularisquama (H. circularisquama), recently identified as a novel species of dinoflagellate, have frequently caused mass mortality of several species of bivalves in Japan, while no harmful effects of this flagellate on fish have been reported so far. We found that the cell-free ethanol extract prepared from H. circularisquama caused hemolysis of rabbit erythrocytes and demonstrated cytotoxic effects in HeLa cells and on the microzooplankton rotifer (B. plicatilis) in a dose- and time-dependent manner. Interestingly, the hemolytic activity and cytotoxic effects of the extract were completely dependent on the presence of light. When the experiments were conducted in the dark, no hemolysis was observed even at very high concentration of the extract. These results suggest that H. circularisquama has photosensitizing hemolytic toxin which can be easily extracted into ethanol. This may be the first report documenting the occurrence of photosensitizing hemolytic toxin in marine phytoplankton species.

  4. Allelopathic interactions between the red-tide causative dinoflagellate Prorocentrum donghaiense and the diatom Phaeodactylum tricornutum

    Directory of Open Access Journals (Sweden)

    Zhuoping Cai

    2014-06-01

    Full Text Available The interactions between the red-tide causing dinoflagellate Prorocentrum donghaiense and the marine diatom Phaeodactylum tricornutum were investigated using a co-culture experiment and an enriched culture filtrate experiment. The results showed that when the two microalgae were cultured together with different initial cell densities, the growth of one species was basically suppressed by the other one. In addition, the enriched culture filtrates of one species had generally inhibitory effects on the other one. Our result inferred that P. donghaiense and P. tricornutum would interfere with each other mainly by releasing allelochemicals into the culture medium, and that the degree of allelopathic effects was dependent on the initial cell densities and growth phases. The allelopathic interactions between microalgal species may contribute to the formation and succession of red tides.

  5. The Genus Neoceratium (Planktonic Dinoflagellates as a Potential Indicator of Ocean Warming

    Directory of Open Access Journals (Sweden)

    Alina Tunin-Ley

    2013-10-01

    Full Text Available Among the planktonic dinoflagellates, the species-rich genus Neoceratium has particularly remarkable features that include its easily recognizable outline and large size. This ubiquitous genus shows consistent presence in all plankton samples and has been a model for numerous studies since the end of the 19th century. It has already been described as a good candidate to monitor water masses and describe ocean circulation. We argue that the sensitivity displayed by Neoceratium to water temperature also makes it relevant as an indicator of ocean warming. The advantages and interests of using Neoceratium species to monitor climate change on a large scale are reassessed in view of recent advances in understanding their biology and ecology.

  6. Adaptations to endosymbiosis in a cnidarian-dinoflagellate association: differential gene expression and specific gene duplications.

    Directory of Open Access Journals (Sweden)

    Philippe Ganot

    2011-07-01

    Full Text Available Trophic endosymbiosis between anthozoans and photosynthetic dinoflagellates forms the key foundation of reef ecosystems. Dysfunction and collapse of symbiosis lead to bleaching (symbiont expulsion, which is responsible for the severe worldwide decline of coral reefs. Molecular signals are central to the stability of this partnership and are therefore closely related to coral health. To decipher inter-partner signaling, we developed genomic resources (cDNA library and microarrays from the symbiotic sea anemone Anemonia viridis. Here we describe differential expression between symbiotic (also called zooxanthellate anemones or aposymbiotic (also called bleached A. viridis specimens, using microarray hybridizations and qPCR experiments. We mapped, for the first time, transcript abundance separately in the epidermal cell layer and the gastrodermal cells that host photosynthetic symbionts. Transcriptomic profiles showed large inter-individual variability, indicating that aposymbiosis could be induced by different pathways. We defined a restricted subset of 39 common genes that are characteristic of the symbiotic or aposymbiotic states. We demonstrated that transcription of many genes belonging to this set is specifically enhanced in the symbiotic cells (gastroderm. A model is proposed where the aposymbiotic and therefore heterotrophic state triggers vesicular trafficking, whereas the symbiotic and therefore autotrophic state favors metabolic exchanges between host and symbiont. Several genetic pathways were investigated in more detail: i a key vitamin K-dependant process involved in the dinoflagellate-cnidarian recognition; ii two cnidarian tissue-specific carbonic anhydrases involved in the carbon transfer from the environment to the intracellular symbionts; iii host collagen synthesis, mostly supported by the symbiotic tissue. Further, we identified specific gene duplications and showed that the cnidarian-specific isoform was also up-regulated both

  7. Blooms of the dinoflagellate Glenodinium sanguineum obtained during enclosure experiments in Lake Tovel (N. Italy

    Directory of Open Access Journals (Sweden)

    Monica TOLOTTI

    2003-02-01

    Full Text Available Freshwater red tides due to dinoflagellates are less common than their marine analogues, which are usually a serious problem and can even be toxic. This was not the case for Lake Tovel in the Adamello-Brenta Natural Park (Southern Alps, Italy, where the dinoflagellate Glenodinium sanguineum Marchesoni accumulated carotenoids (astaxanthin-like compound and caused a spectacular and regular "summer reddening", which suddenly ceased in 1964. Today Lake Tovel is a temperate, meromictic (with dimictic mixolimnion, oligotrophic mountain lake, characterised by marked water level fluctuations. G. sanguineum is still present in the lake, although with markedly lower densities in comparison to the pre-1965 period. Enclosure studies were carried out to identify the main factors regulating the blooms. In 1998, by means of phosphorus enrichments, it was possible to obtain a marked increase in numbers of G. sanguineum. Phosphorus additions in similar enclosures in 1999, when weather conditions during the summer were not optimal (mostly cloudy with frequent rainfalls, did not have the same effect, since species known to thrive in spring or under icecover developed. In summer 2000, by attenuating light in one of the enclosures, it was shown that irradiance conditions strongly interacted with phosphorus availability in determining the species that dominated the phytoplankton. In summer 2001, G. sanguineum increased again in the enclosure enriched with phosphorus. Nitrogen was observed to become a limiting factor only in conditions forced by phosphorus additions. From the first four years of in situ experiments, we concluded that phosphorus and light conditions were among the key factors controlling the proliferation and the dominance of G. sanguineum.

  8. CRETACEOUS PALYNOLOGY (SPORES, POLLEN AND DINOFLAGELLATE CYSTS OF THE SIQEIFA 1-X BOREHOLE, NORTHERN EGYPT

    Directory of Open Access Journals (Sweden)

    MAGDY S. MAHMOUD

    2007-07-01

    Full Text Available Diverse and well preserved palynofloras were recognized in the Lower Cretaceous succession penetrated by well Siqeifa 1-X in northern Egypt. Dinoflagellate cysts such as Subtilisphaera senegalensis was regarded, with the spores Impardecispora apiverrucata and Aequitriradites spinulosus, as important Berriasian to Barremian species. Afropollis operculatus/zonatus pollen and spores such as Balmeisporites holodictyus, Trilobosporites laevigatus and Duplexisporites generalis are diagnostic of Aptian. The lowest occurrences of the pollen Afropollis jardinus, the spore Crybelosporites pannuceus and elaterates such as Elaterosporites klaszii, Elaterocolpites castelainii and Elateroplicites africaensis characterize the Albian/lower Cenomanian interval. The palynofloras enabled the recognition of five spore-pollen and four dinoflagellate zones, which are correlated with regional records, mainly from Egypt and Libya. The vertical distribution of terrestrial and marine palynomorphs, along with palynodebris, reflects two regressive marginal marine cycles during Berriasian-Barremian and Albian-lower Cenomanian times whereas the Aptian witnessed a transgressive open marine (inner shelf environment. A warm humid palaeoclimate was inferred during deposition of the investigated succession of the borehole, in contrast to the known warm arid to semi-arid climate, suggested for the Northern Gondwana Realm during Early Cretaceous times. This is probably due to the palaeogeographic position of Egypt during Early Cretaceous times or, to a local reason. Palynofloras from Siqeifa 1-X borehole, with Afropollis pollen and elaterates, are of North African aspect and share the broad characteristics of the "Albian-Cenomanian Elaterates Province" of Herngreen et al. (1996. Abundance of spores and araucariacean pollen are transitional features between those in North Gondwana and Southern Laurasia but, unlikely, typical transitional assemblages lack bisaccates conifers and have

  9. Effects of Lugol's iodine solution and formalin on cell volume of three bloom-forming dinoflagellates

    Science.gov (United States)

    Yang, Yang; Sun, Xiaoxia; Zhao, Yongfang

    2017-07-01

    Fixatives are traditionally used in marine ecosystem research. The bias introduced by fixatives on the dimensions of plankton cells may lead to an overestimation or underestimation of the carbon biomass. To determine the impact of traditional fixatives on dinoflagellates during short- and long-term fixation, we analyzed the degree of change in three bloom-forming dinoflagellates ( Prorocentrum micans, Scrippsiella trochoidea and Noctiluca scintillans) brought about by Lugol's iodine solution (hereafter Lugol's) and formalin. The fixation effects were species-specific. P. micans cell volume showed no significant change following long-term preservation, and S. trochoidea swelled by approximately 8.06% in Lugol's and by 20.97% in formalin as a percentage of the live cell volume, respectively. N. scintillans shrank significantly in both fixatives. The volume change due to formalin in N. scintillans was not concentration-dependent, whereas the volume shrinkage of N. scintillans cells fixed with Lugol's at a concentration of 2% was nearly six-fold that in cells fixed with Lugol's at a concentration of 0.6%-0.8%. To better estimate the volume of N. scintillans fixed in formalin at a concentration of 5%, we suggest that the conversion relationship was as follows: volume of live cell=volume of intact fixed cell/0.61. Apart from size change, damage induced by fixatives on N. scintillans was obvious. Lugol's is not a suitable fixative for N. scintillans due to high frequency of broken cells. Accurate carbon biomass estimate of N. scintillans should be performed on live samples. These findings help to improve the estimate of phytoplankton cell volume and carbon biomass in marine ecosystem.

  10. Adaptations to endosymbiosis in a cnidarian-dinoflagellate association: differential gene expression and specific gene duplications.

    Science.gov (United States)

    Ganot, Philippe; Moya, Aurélie; Magnone, Virginie; Allemand, Denis; Furla, Paola; Sabourault, Cécile

    2011-07-01

    Trophic endosymbiosis between anthozoans and photosynthetic dinoflagellates forms the key foundation of reef ecosystems. Dysfunction and collapse of symbiosis lead to bleaching (symbiont expulsion), which is responsible for the severe worldwide decline of coral reefs. Molecular signals are central to the stability of this partnership and are therefore closely related to coral health. To decipher inter-partner signaling, we developed genomic resources (cDNA library and microarrays) from the symbiotic sea anemone Anemonia viridis. Here we describe differential expression between symbiotic (also called zooxanthellate anemones) or aposymbiotic (also called bleached) A. viridis specimens, using microarray hybridizations and qPCR experiments. We mapped, for the first time, transcript abundance separately in the epidermal cell layer and the gastrodermal cells that host photosynthetic symbionts. Transcriptomic profiles showed large inter-individual variability, indicating that aposymbiosis could be induced by different pathways. We defined a restricted subset of 39 common genes that are characteristic of the symbiotic or aposymbiotic states. We demonstrated that transcription of many genes belonging to this set is specifically enhanced in the symbiotic cells (gastroderm). A model is proposed where the aposymbiotic and therefore heterotrophic state triggers vesicular trafficking, whereas the symbiotic and therefore autotrophic state favors metabolic exchanges between host and symbiont. Several genetic pathways were investigated in more detail: i) a key vitamin K-dependant process involved in the dinoflagellate-cnidarian recognition; ii) two cnidarian tissue-specific carbonic anhydrases involved in the carbon transfer from the environment to the intracellular symbionts; iii) host collagen synthesis, mostly supported by the symbiotic tissue. Further, we identified specific gene duplications and showed that the cnidarian-specific isoform was also up-regulated both in the

  11. The ability of the branchiopod, Artemia salina, to graze upon harmful algal blooms caused by Alexandrium fundyense, Aureococcus anophagefferens, and Cochlodinium polykrikoides

    Science.gov (United States)

    Marcoval, M. Alejandra; Pan, Jerónimo; Tang, Yingzhong; Gobler, Christopher J.

    2013-10-01

    We present experiments that examined the grazing and survivorship of zooplankton native (Acartia tonsa) and non-native (Artemia salina) to NY (USA) estuaries when exposed to blooms and cultures of the three harmful algae native to NY, Alexandrium fundyense, Aureococcus anophagefferens (strains CCMP 1850 and CCMP 1984) and Cochlodinium polykrikoides. During experiments with cultures of A. anophagefferens, clearance rates (CR) of A. salina were significantly greater than those of A. tonsa for both algal strains examined. A. salina fed on cultures of C. polykrikoides at higher rates than all phytoplankton species examined, including the control diet (Rhodomonas salina), and faster than rates of A. tonsa fed C. polykrikoides. During experiments with A. fundyense, A. salina actively grazed all cell concentrations (250-1500 cells ml-1) while A. tonsa did not feed at any concentration. Percent mortality of A. salina and A. tonsa fed A. fundyense for 48 h were 43 ± 7.7% and 72 ± 7.8%, respectively, percentages significantly higher than those of individuals fed all other algal diets. During 25 field experiments using natural blooms of the three HAB species performed across six NY estuaries, A. salina significantly (p < 0.05) reduced cell densities of A. anophagefferens, C. polykrikoides, and A. fundyense relative to the control treatments in all but one experiment. The sum of these findings demonstrates that a failure to graze these HABs by the indigenous copepod, A. tonsa, may permit blooms to occur. In addition, the ability of A. salina to graze these HABs at densities that were inhibitory to A. tonsa suggests that A. salina could, in some circumstances, be considered as a part of mitigation strategy for these events.

  12. Superposition of Individual Activities: Urea-Mediated Suppression of Nitrate Uptake in the Dinoflagellate Prorocentrum minimum Revealed at the Population and Single-Cell Levels

    OpenAIRE

    Olga Matantseva; Sergei Skarlato; Angela Vogts; Ilya Pozdnyakov; Iris Liskow; Hendrik Schubert; Maren Voss

    2016-01-01

    Dinoflagellates readily use diverse inorganic and organic compounds as nitrogen sources, which is advantageous in eutrophied coastal areas exposed to high loads of anthropogenic nutrients, e.g. urea, one of the most abundant organic nitrogen substrates in seawater. Cell-to-cell variability in nutritional physiology can further enhance the diversity of metabolic strategies among dinoflagellates of the same species, but it has not been studied in free-living microalgae. We applied stable isotop...

  13. Last Interglacial (Eemian) hydrographic conditions in the south-eastern Baltic Sea, NE Europe, based on dinoflagellates and pollen

    DEFF Research Database (Denmark)

    Head, Martin J.; Seidenkrantz, Marit Solveig Louise Schramm; Janczyk-Kopikowa, Zofia

    2005-01-01

    A rich organic-walled dinoflagellate cyst and pollen record from the Licze borehole in northern Poland has been used to reconstruct the hydrographic history of the southeastern Baltic Sea during the Eemian Stage (Last Interglacial) of the Upper Pleistocene. Warm and saline waters (ca. 10–15 psu...... of arctic waters. Warm and saline conditions of 15–20 psu or more, at least twice present levels, persisted throughout the early Eemian. A rise in sea level at Licze appears to correlate with a similar event in eastern Denmark, as both coincide with the increase in Corylus (ca. 750 years....... Increasing fluvial influence suggests shallowing through RPAZ E5. This study is the first to document dinoflagellate cysts from the Eemian of the southeastern Baltic Sea. Most species have not been reported previously from either Eemian or Holocene sediments of the Baltic Sea proper....

  14. Development of Regulatory Processes in the Symbiosis Between the Sea Anemone Aiptasia pallida and its Dinoflagellate Symbionts

    Science.gov (United States)

    1994-09-01

    of this research was to investigate control mechanisms in symbioses between symbiotic dinoflagellates ("zooxanthellae") and marine hosts, particularly...nitrogen utilization in zooxanthellae symbioses : (CBC) We used a variety of techniques to study how nitrogen was utilized in other symbioses with...work with 15 N, and indicate that "recycling" of nitrogen within these symbioses may not be as extensive as previously thought. REFERENCES Cook C. B. and

  15. Reef Endemism, Host Specificity and Temporal Stability in Populations of Symbiotic Dinoflagellates from Two Ecologically Dominant Caribbean Corals

    OpenAIRE

    Thornhill, Daniel J.; Yu Xiang; Fitt, William K.; Santos, Scott R.

    2009-01-01

    BACKGROUND: The dinoflagellate genus Symbiodinium forms symbioses with numerous protistan and invertebrate metazoan hosts. However, few data on symbiont genetic structure are available, hindering predictions of how these populations and their host associations will fair in the face of global climate change. METHODOLOGY/PRINCIPAL FINDINGS: Here, Symbiodinium population structure from two of the Caribbean's ecologically dominant scleractinian corals, Montastraea faveolata and M. annularis, was ...

  16. Fatty acid composition of bacteria associated with the toxic dinoflagellate Ostreopsis lenticularis and with Caribbean Palythoa species.

    Science.gov (United States)

    Carballeira, N M; Emiliano, A; Sostre, A; Restituyo, J A; González, I M; Colón, G M; Tosteson, C G; Tosteson, T R

    1998-06-01

    The fatty acid composition of a Pseudomonas sp. (Alteromonas) and its host, the dinoflagellate Ostreopsis lenticularis, vectors in ciguatera fish poisoning, has been studied. The major fatty acids in O. lenticularis were 16:0, 20:5n-3, and 22:6n-3, but 18:2n-6, 18:3n-3, and 18:n-3 were also identified. In contrast to other dinoflagellates, 1 8:5n-3 was not detected in O. lenticularis. Even-chain fatty acids such as 9-16:1, 11-18:1, and 13-20:1 predominated in the Pseudomonas sp. from O. lenticularis, but 1 6-20% of (E)-11-methyl-12-octadecenoic acid was also identified. The chirality of the latter was confirmed by total synthesis (28% overall yield) starting from oxacyclotridecan-2-one. The fatty acid compositions of two other Pseudomonas species, from the palytoxin-producing zoanthids Palythoa mamillosa and P. caribdea, were also studied and were similar to that of the Pseudomonas sp. from O. lenticularis. The possibility of using some of these fatty acids as chemotaxonomic lipids in identifying marine animals that consume toxic dinoflagellates or zoanthids is discussed.

  17. Epiphytic dinoflagellates associated with ciguatera in the northwestern coast of Cuba

    Directory of Open Access Journals (Sweden)

    Gilma Delgado

    2006-06-01

    Full Text Available The spatial and temporal abundance of epiphytic dinoflagellates associated with ciguatera was studied over two annual cycles (March 1999 to March 2000 and March 2001 to March 2002 in the northwestern coast of Cuba. From 14 species of macroalgae (Phaeophyta, Chlorophyta, and Rhodophyta, 1340 samples were obtained identifying seven species as potentially noxious; five of them are new reports for Cuba’s phytobenthos: Prorocentrum belizeanum Faust, P. concavum Fukuyo, P. mexicanum Tafall, Coolia monotis Meunier, and Ostreopsis lenticularis Fukuyo. ANOVA/MANOVA analysis showed significant spatial differences: lower cell abundance near the shoreline adjacent to a river inlet and higher cell abundance in the deepest area. Prorocentrum lima (Ehrenberg Dodge 1975 was found mainly on Phaeophyta followed by Chlorophyta and Rhodophyta. Gambierdiscus toxicus was found mainly on Phaeophyta followed by Rhodophyta and Chlorophyta. All the species reported in the study area were mainly on Padina spp. (Phaeophyta. Acanthophora spicifera (Rhodophyta did not host dinoflagellate species. Environmental conditions in summer (higher temperature, more nutrients, greater water transparency, and low wind intensity are suitable for macroalgae development, which serves as a substrate for potentially harmful dinoflagellates, and possibly the main vector for spreading ciguatera along the coast of Cuba. Rev. Biol. Trop. 54(2: 299-310. Epub 2006 Jun 01.Se estudió la abundancia espacial y temporal de dinoflagelados epífitos asociados a la ciguatera durante dos ciclos anuales (marzo 1999 a marzo 2000, y marzo 2001 a marzo 2002 en la costa del noroeste de Cuba. Recolectamos 14 especies de macroalgas (Phaeophyta, Chlorophyta y Rhodophyta y obtuvimos 1340 muestras. Identificamos siete especies de dinoflagelados potencialmente nocivas, cinco de ellas nuevos registros para el fitobentos cubano: Prorocentrum belizeanum Faust, P. concavum Fukuyo, P. mexicanum Tafall, Coolia monotis

  18. Alexandrium fundyense cysts in the Gulf of Maine: long-term time series of abundance and distribution, and linkages to past and future blooms

    Science.gov (United States)

    Anderson, Donald M.; Keafer, Bruce A.; Kleindinst, Judith L.; McGillicuddy, Dennis J.; Martin, Jennifer L.; Norton, Kerry; Pilskaln, Cynthia H.; Smith, Juliette L.; Sherwood, Christopher R.; Butman, Bradford

    2014-01-01

    Here we document Alexandrium fundyense cyst abundance and distribution patterns over nine years (1997 and 2004–2011) in the coastal waters of the Gulf of Maine (GOM) and identify linkages between those patterns and several metrics of the severity or magnitude of blooms occurring before and after each autumn cyst survey. We also explore the relative utility of two measures of cyst abundance and demonstrate that GOM cyst counts can be normalized to sediment volume, revealing meaningful patterns equivalent to those determined with dry weight normalization. Cyst concentrations were highly variable spatially. Two distinct seedbeds (defined here as accumulation zones with>300 cysts cm−3) are evident, one in the Bay of Fundy (BOF) and one in mid-coast Maine. Overall, seedbed locations remained relatively constant through time, but their area varied 3–4 fold, and total cyst abundance more than 10 fold among years. A major expansion of the mid-coast Maine seedbed occurred in 2009 following an unusually intense A. fundyense bloom with visible red-water conditions, but that feature disappeared by late 2010. The regional system thus has only two seedbeds with the bathymetry, sediment characteristics, currents, biology, and environmental conditions necessary to persist for decades or longer. Strong positive correlations were confirmed between the abundance of cysts in both the 0–1 and the 0–3 cm layers of sediments in autumn and geographic measures of the extent of the bloom that occurred the next year (i.e., cysts→blooms), such as the length of coastline closed due to shellfish toxicity or the southernmost latitude of shellfish closures. In general, these metrics of bloom geographic extent did not correlate with the number of cysts in sediments following the blooms (blooms→cysts). There are, however, significant positive correlations between 0–3 cm cyst abundances and metrics of the preceding bloom that are indicative of bloom intensity or vegetative cell

  19. Effect of CO2 on growth and toxicity of Alexandrium tamarense from the East China Sea, a major producer of paralytic shellfish toxins.

    Science.gov (United States)

    Pang, Min; Xu, Jintao; Qu, Pei; Mao, Xuewei; Wu, Zhenxing; Xin, Ming; Sun, Ping; Wang, Zongxing; Zhang, Xuelei; Chen, Hongju

    2017-09-01

    In recent decades, the frequency and intensity of harmful algal blooms (HABs), as well as a profusion of toxic phytoplankton species, have significantly increased in coastal regions of China. Researchers attribute this to environmental changes such as rising atmospheric CO2 levels. Such addition of carbon into the ocean ecosystem can lead to increased growth, enhanced metabolism, and altered toxicity of toxic phytoplankton communities resulting in serious human health concerns. In this study, the effects of elevated partial pressure of CO2 (pCO2) on the growth and toxicity of a strain of Alexandrium tamarense (ATDH) widespread in the East and South China Seas were investigated. Results of these studies showed a higher specific growth rate (0.31±0.05day-1) when exposed to 1000μatm CO2, (experimental), with a corresponding density of (2.02±0.19)×107cellsL-1, that was significantly larger than cells under 395μatm CO2(control). These data also revealed that elevated pCO2 primarily affected the photosynthetic properties of cells in the exponential growth phase. Interestingly, measurement of the total toxin content per cell was reduced by half under elevated CO2 conditions. The following individual toxins were measured in this study: C1, C2, GTX1, GTX2, GTX3, GTX4, GTX5, STX, dcGTX2, dcGTX3, and dcSTX. Cells grown in 1000μatm CO2 showed an overall decrease in the cellular concentrations of C1, C2, GTX2, GTX3, GTX5, STX, dcGTX2, dcGTX3, and dcSTX, but an increase in GTX1 and GTX4. Total cellular toxicity per cell was measured revealing an increase of nearly 60% toxicity in the presence of elevated CO2 compared to controls. This unusual result was attributed to a significant increase in the cellular concentrations of the more toxic derivatives, GTX1 and GTX4.Taken together; these findings indicate that the A. tamarense strain ATDH isolated from the East China Sea significantly increased in growth and cellular toxicity under elevated pCO2 levels. These data may

  20. Harmful Algal Bloom Monitoring Data for Puget Sound - SoundToxins: Partnership for Enhanced Monitoring and Emergency Response to Harmful Algal Blooms in Puget Sound

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Toxic outbreaks of species of the dinoflagellate Alexandrium have become pervasive in the Puget Sound region over the last two decades, escalating the threats to...

  1. Serpins in unicellular Eukarya, Archaea, and Bacteria:

    DEFF Research Database (Denmark)

    Roberts, T.H.; Hejgaard, Jørn; Saunders, N.F.W

    2004-01-01

    in unicellular eukaryotes: the green alga Chlamydomonas reinhardtii, the dinoflagellate Alexandrium tamarense, and the human pathogens Entamoeba spp., Eimera tenella, Toxoplasma gondii, and Giardia lamblia. We compare these sequences to others, particularly those in the complete genome sequences of Archaea...

  2. Acquisition of symbiotic dinoflagellates ( Symbiodinium) by juveniles of the coral Acropora longicyathus

    Science.gov (United States)

    Del C. Gómez-Cabrera, M.; Ortiz, J. C.; Loh, W. K. W.; Ward, S.; Hoegh-Guldberg, O.

    2008-03-01

    Scleractinian corals may acquire Symbiodinium from their parents (vertically) or from the environment (horizontally). In the present study, adult colonies of the coral Acropora longicyathus from One Tree Island (OTI) on the southern Great Barrier Reef (Australia) acquired two distinct varieties of symbiotic dinoflagellates ( Symbiodinium) from the environment. Adult colonies had either Symbiodinium from clade C (86.7%) or clade A (5.3%), or a mixture of both clades A and C (8.0% of all colonies). In contrast, all 10-day-old juveniles were associated with Symbiodinium from clade A, while 83-day-old colonies contained clades A, C and D even though they were growing at the same location. Symbiodinium from clade A were dominant in both 10- and 83-day-old juveniles (99 and 97% of all recruits, respectively), while clade D was also found in 31% of 83-day-old juveniles. Experimental manipulation also revealed that parental association (with clade A or C), or the location within the OTI reef, did not influence which clade of symbiont was acquired by juvenile corals. The differences between the genetic identity of populations of Symbiodinium resident in juveniles and adult A. longicyathus suggest that ontogenetic changes in the symbiosis may occur during the development of scleractinian corals. Whether or not these changes are due to host selective processes or differences in the physical environment associated with juvenile versus adult colonies remains to be determined.

  3. Phosphate deficiency promotes coral bleaching and is reflected by the ultrastructure of symbiotic dinoflagellates.

    Science.gov (United States)

    Rosset, Sabrina; Wiedenmann, Jörg; Reed, Adam J; D'Angelo, Cecilia

    2017-05-15

    Enrichment of reef environments with dissolved inorganic nutrients is considered a major threat to the survival of corals living in symbiosis with dinoflagellates (Symbiodinium sp.). We argue, however, that the direct negative effects on the symbiosis are not necessarily caused by the nutrient enrichment itself but by the phosphorus starvation of the algal symbionts that can be caused by skewed nitrogen (N) to phosphorus (P) ratios. We exposed corals to imbalanced N:P ratios in long-term experiments and found that the undersupply of phosphate severely disturbed the symbiosis, indicated by the loss of coral biomass, malfunctioning of algal photosynthesis and bleaching of the corals. In contrast, the corals tolerated an undersupply with nitrogen at high phosphate concentrations without negative effects on symbiont photosynthesis, suggesting a better adaptation to nitrogen limitation. Transmission electron microscopy analysis revealed that the signatures of ultrastructural biomarkers represent versatile tools for the classification of nutrient stress in symbiotic algae. Notably, high N:P ratios in the water were clearly identified by the accumulation of uric acid crystals. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Early Genotoxic and Cytotoxic Effects of the Toxic Dinoflagellate Prorocentrum lima in the Mussel Mytilus galloprovincialis

    Directory of Open Access Journals (Sweden)

    María Verónica Prego-Faraldo

    2016-05-01

    Full Text Available Okadaic acid (OA and dinophysistoxins (DTXs are the main toxins responsible for diarrhetic shellfish poisoning (DSP intoxications during harmful algal blooms (HABs. Although the genotoxic and cytotoxic responses to OA have been evaluated in vitro, the in vivo effects of these toxins have not yet been fully explored. The present work fills this gap by evaluating the in vivo effects of the exposure to the DSP-toxin-producing dinoflagellate Prorocentrum lima during the simulation of an early HAB episode in the mussel Mytilus galloprovincialis. The obtained results revealed that in vivo exposure to this toxic microalgae induced early genotoxicity in hemocytes, as a consequence of oxidative DNA damage. In addition, the DNA damage observed in gill cells seems to be mainly influenced by exposure time and P. lima concentration, similarly to the case of the oxidative damage found in hemocytes exposed in vitro to OA. In both cell types, the absence of DNA damage at low toxin concentrations is consistent with the notion suggesting that this level of toxicity does not disturb the antioxidant balance. Lastly, in vivo exposure to growing P. lima cell densities increased apoptosis but not necrosis, probably due to the presence of a high number of protein apoptosis inhibitors in molluscs. Overall, this work sheds light into the in vivo genotoxic and cytotoxic effects of P. lima. In doing so, it also demonstrates for the first time the potential of the modified (OGG1 comet assay for assessing oxidative DNA damage caused by marine toxins in marine invertebrates.

  5. An ephemeral dinoflagellate bloom during summer season in nearshore water of Puri, east coast of India

    Science.gov (United States)

    Baliarsingh, Sanjiba Kumar; Dwivedi, Rashmin; Lotliker, Aneesh A.; Jayashankar, Reeta; Sahu, Biraja Kumar; Srichandan, Suchismita; Samanta, Alakes; Parida, Chandanlal; Srinivasakumar, Tummala; Sahu, Kali Charan

    2017-12-01

    The present paper reports on the phenomenon of pinkish-red discoloration of the nearshore water of Puri, Odisha on 12th May 2016. Many local newspapers covered this event, as Puri city is a major tourist and pilgrimage place on the east coast of India. Field observations were carried out in order to provide a scientific basis to the event and to elicit possible causes of this discoloration. Taxonomic analysis of the phytoplankton samples revealed the dominance of red colored dinoflagellate species Gonyaulax polygramma, contributing 90% to total phytoplankton population. The localized concentration of G. polygramma was responsible for the pinkish-red discoloration of nearshore water. The exact factor that lay behind the genesis of this bloom could not be delineated due to the short period of its persistence. But two factors - upwelling and anthropogenic nutrient influx - can be viewed as the main cause for this ephemeral bloom. Non-hypoxic conditions in the coastal water following the ephemeral bloom event indicated no significant risk of ecological deterioration to the ambient medium.

  6. From greenhouse to icehouse; organic-walled dinoflagellate cysts as paleoenvironmental indicators in the Paleogene

    Science.gov (United States)

    Sluijs, Appy; Pross, Jörg; Brinkhuis, Henk

    2005-01-01

    Dinoflagellates are an important component of the extant eukaryotic plankton. Their organic-walled, hypnozygotic cysts (dinocysts) provide a rich, albeit incomplete, history of the group in ancient sediments. Building on pioneering studies of the late 1970s and 1980s, recent drilling in the Southern Ocean has provided a wealth of new dinocyst data spanning the entire Paleogene. Such multidisciplinary studies have been instrumental in refining existing and furnishing new concepts of Paleogene paleoenvironmental and paleoclimatic reconstructions by means of dinocysts. Because dinocysts notably exhibit high abundances in neritic settings, dinocyst-based environmental and paleoclimatic information is important and complementary to the data derived from typically more offshore groups as planktonic foraminifera, coccolithophorids, diatoms and radiolaria. By presenting case-studies from around the globe, this contribution provides a concise review of our present understanding of the paleoenvironmental significance of dinocysts in the Paleogene (65-25 Ma). Representing Earth's greenhouse-icehouse transition, this episode holds the key to the understanding of extreme transient climatic change. We discuss the potential of dinocysts for the reconstruction of Paleogene sea-surface productivity, temperature, salinity, stratification and paleo-oxygenation along with their application in sequence stratigraphy, oceanic circulation and general watermass reconstructions.

  7. The effect of elevated temperature on the toxicity of the laboratory cultured dinoflagellate Ostreopsis lenticularis (Dinophyceae).

    Science.gov (United States)

    Ashton, Mayra; Tosteson, Thomas; Tosteson, Carmen

    2003-06-01

    Ostreopsis lenticularis Fukuyo 1981, is the major benthic dinoflagellate vector implicated in ciguatera fish poisoning in finfish on the southwest coast of Puerto Rico. Clonal laboratory cultures of O. lenticularis (clone 301) exposed to elevated temperatures (30-31 degrees C) for 33 and 54 days showed significant increases in the quantity of extractable toxin they produced as compared to their toxicities versus cells grown at temperatures of 25-26 degrees C. O lenticularis samples collected directly from the field following exposure to elevated temperatures for comparable periods of time also showed significant increases in extractable toxin. The increased toxicity of both field sampled and laboratory grown O. lenticularis exposed to elevated temperatures may result from the effects of elevated temperatures on their metabolism and/or the bacterial symbionts found associated with these microalgae. The number of bacteria associated with cultured O. lenticularis exposed to elevated temperatures was significantly reduced. Increased toxin recovery from O. lenticularis exposed to elevated temperatures may have resulted from the direct effect of temperature on toxin production and/or the reduction of Ostreopsis associated bacterial flora that consume toxin in the process of their growth. This reduction in the quantity of associated bacterial flora in temperature treated cultures may result in increased toxin recovery from O. lenticularis due to a reduction in the consumption of toxin by these symbiont bacteria.

  8. Massive gene transfer and extensive RNA editing of a symbiotic dinoflagellate plastid genome.

    Science.gov (United States)

    Mungpakdee, Sutada; Shinzato, Chuya; Takeuchi, Takeshi; Kawashima, Takeshi; Koyanagi, Ryo; Hisata, Kanako; Tanaka, Makiko; Goto, Hiroki; Fujie, Manabu; Lin, Senjie; Satoh, Nori; Shoguchi, Eiichi

    2014-05-31

    Genome sequencing of Symbiodinium minutum revealed that 95 of 109 plastid-associated genes have been transferred to the nuclear genome and subsequently expanded by gene duplication. Only 14 genes remain in plastids and occur as DNA minicircles. Each minicircle (1.8-3.3 kb) contains one gene and a conserved noncoding region containing putative promoters and RNA-binding sites. Nine types of RNA editing, including a novel G/U type, were discovered in minicircle transcripts but not in genes transferred to the nucleus. In contrast to DNA editing sites in dinoflagellate mitochondria, which tend to be highly conserved across all taxa, editing sites employed in DNA minicircles are highly variable from species to species. Editing is crucial for core photosystem protein function. It restores evolutionarily conserved amino acids and increases peptidyl hydropathy. It also increases protein plasticity necessary to initiate photosystem complex assembly. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  9. Control of the red tide dinoflagellate Cochlodinium polykrikoides by ozone in seawater.

    Science.gov (United States)

    Shin, Minjung; Lee, Hye-Jin; Kim, Min Sik; Park, Noh-Back; Lee, Changha

    2017-02-01

    The inactivation of C. polykrikoides, a red tide dinoflagellate, by ozonation was investigated in seawater by monitoring numbers of viable and total cells. Parameters affecting the inactivation efficacy of C. polykrikoides such as the ozone dose, initial cell concentration, pH, and temperature were examined. The viable cell number rapidly decreased in the initial stage of the reaction (mostly in 1-2 min), whereas the decrease in total cell number was relatively slow and steady. Increasing ozone dose and decreasing initial cell concentration increased the inactivation efficacy of C. polykrikoides, while increasing pH and temperature decreased the cell inactivation efficacy. The addition of humic acid (a promoter for the ozone decomposition) inhibited the inactivation of C. polykrikoides, whereas bicarbonate ion (an inhibitor for the ozone decomposition) accelerated the C. polykrikoides inactivation. Observations regarding the effects of pH, temperature, humic acid, and bicarbonate ion collectively indicate that the inactivation of C. polykrikoides by ozonation is mainly attributed to oxidative cell damages by molecular ozone, rather than by hydroxyl radical, produced during the ozone decomposition. At high ozone dose (e.g., 5 mg/L), hypobromous acid formed by the reaction of bromide with ozone may partially contribute to cell inactivation. The use of ozone of less than 1 mg/L produced 0.75-2.03 μg/L bromate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Inactivation of dinoflagellate Scripsiella trochoidea in synthetic ballast water by advanced oxidation processes.

    Science.gov (United States)

    Yang, Zhishan; Jiang, Wenju; Zhang, Yi; Lim, T M

    2015-01-01

    Ship-borne ballast water contributes significantly to the transfer of non-indigenous species across aquatic environments. To reduce the risk of bio-invasion, ballast water should be treated before discharge. In this study, the efficiencies of several conventional and advanced oxidation processes were investigated for potential ballast water treatment, using a marine dinoflagellate species, Scripsiella trochoidea, as the indicator organism. A stable and consistent culture was obtained and treated by ultraviolet (UV) light, ozone (O3), hydrogen peroxide (H2O2), and their various combinations. UV apparently inactivated the cells after only 10 s of irradiation, but subsequently photo-reactivation of the cells was observed for all methods involving UV. O3 exhibited 100% inactivation efficiency after 5 min treatment, while H2O2 only achieved maximum 80% inactivation in the same duration. Combined methods, e.g. UV/O3 and UV/H2O2, were found to inhibit photo-reactivation and improve treatment efficiency to some degree, indicating the effectiveness of using combined treatment processes. The total residual oxidant (TRO) levels of the methods were determined, and the results indicated that UV and O3 generated the lowest and highest TRO, respectively. The synergic effect of combined processes on TRO generation was found to be insignificant, and thus UV/O3 was recommended as a potentially suitable treatment process for ballast water.

  11. Morphology and phylogeny of Prorocentrum caipirignum sp. nov. (Dinophyceae), a new tropical toxic benthic dinoflagellate.

    Science.gov (United States)

    Nascimento, Silvia M; Mendes, M Cristina Q; Menezes, Mariângela; Rodríguez, Francisco; Alves-de-Souza, Catharina; Branco, Suema; Riobó, Pilar; Franco, José; Nunes, José Marcos C; Huk, Mariusz; Morris, Steven; Fraga, Santiago

    2017-12-01

    A new species of toxic benthic dinoflagellate is described based on laboratory cultures isolated from two locations from Brazil, Rio de Janeiro and Bahia. The morphology was studied with SEM and LM. Cells are elliptical in right thecal view and flat. They are 37-44μm long and 29-36μm wide. The right thecal plate has a V shaped indentation where six platelets can be identified. The thecal surface of both thecal plates is smooth and has round or kidney shaped and uniformly distributed pores except in the central area of the cell, and a line of marginal pores. Some cells present an elongated depression on the central area of the apical part of the right thecal plate. Prorocentrum caipirignum is similar to Prorocentrum lima in its morphology, but can be differentiated by the general cell shape, being elliptical while P. lima is ovoid. In the phylogenetic trees based on ITS and LSU rDNA sequences, the P. caipirignum clade appears close to the clades of P. lima and Prorocentrum hoffmannianum. The Brazilian strains of P. caipirignum formed a clade with strains from Cuba, Hainan Island and Malaysia and it is therefore likely that this new species has a broad tropical distribution. Prorocentrum caipirignum is a toxic species that produces okadaic acid and the fast acting toxin prorocentrolide. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  12. Antialgal and antilarval activities of bioactive compounds extracted from the marine dinoflagellate Amphidinium carterae

    Science.gov (United States)

    Kong, Xianyu; Han, Xiurong; Gao, Min; Su, Rongguo; Wang, Ke; Li, Xuzhao; Lu, Wei

    2016-12-01

    With the global ban on the application of organotin-based marine coatings by the International Maritime Organization, the development of environmentally friendly, low-toxic and nontoxic antifouling compounds for marine industries has become an urgent need. Marine microorganisms have been considered as a potential source of natural antifoulants. In this study, the antifouling potential of marine dinoflagellate Amphidinium carterae, the toxic and red-tide microalgae, was investigated. We performed a series of operations to extract the bioactive substances from Amphidinium carterae and tested their antialgal and antilarval activities. The crude extract of Amphidinium carterae showed significant antialgal activity and the EC50 value against Skeletonema costatum was 55.4 μg mL-1. After purification, the isolated bioactive substances (the organic extract C) exhibited much higher antialgal and antilarval activities with EC50 of 12.9 μg mL-1 against Skeletonema costatum and LC50 of 15.1 μg mL-1 against Amphibalanus amphitrite larvae. Subsequently, IR, Q-TOFMS, and GC-MS were utilized for the structural elucidation of the bioactive compounds, and a series of unsaturated and saturated 16- to 22-carbon fatty acids were detected. The data suggested the bioactive compounds isolated from Amphidinium carterae exhibited a significant inhibiting effect against the diatom Skeletonema costatum and Amphibalanus amphitrite larvae, and could be substitutes for persistent, toxic antifouling compounds.

  13. Compensatory growth of the bloom-forming dinoflagellate Prorocentrum donghaiense induced by nitrogen stress

    Directory of Open Access Journals (Sweden)

    Honghui Zhu

    2013-02-01

    Full Text Available Although the phenomenon of compensatory growth has been documented in someanimals and higher plants, little information is available on its manifestation in marinemicroalgae. We have conducted the first study on the compensatory growth of the red tide causative dinoflagellate Prorocentrumdonghaiense after its recovery from different nitrogen concentrations.The results showed that NaNO3 concentrations of 0 and 7.5 mg l-1 significantly reduced thegrowth of P. donghaiense, as compared to 37.5 and 75 mg l-1. When the microalgal cells were returned to 75 mg l-1, they exhibited subsequent compensatory growth. The most significant compensatory growth was found in those cells previously experiencing 0 mg dm3, followed by 7.5 mg dm3, indicating thatcompensatory growth depended on the extent of nitrogen stress they had been subjected to. Our results suggest thatcompensatory growth can be induced in the marine microalga P. donghaiense after its recovery from nitrogen fluctuation, and that this should be taken into consideration in the prevalence of P. donghaiense blooms in coastal waters.

  14. Molecular identification of symbiotic dinoflagellates ( Symbiodinium spp.) from Palythoa spp. (Anthozoa: Hexacorallia) in Japan

    Science.gov (United States)

    Reimer, James D.; Takishita, Kiyotaka; Maruyama, Tadashi

    2006-11-01

    In Japan, zooxanthellate Palythoa tuberculosa Klunzinger and Palythoa mutuki Verrill (Anthozoa: Hexacorallia: Zoantharia) are found over a 1,000 + km latitudinal range, often in environments where most other zooxanthellate anthozoans are not found (i.e. tidal lagoon pools, around shallow water hydrothermal vents, subtropical rocky shorelines). Sequences of internal transcribed spacer of ribosomal DNA (ITS-rDNA) of the symbiotic dinoflagellate genus Symbiodinium (zooxanthellae) Freudenthal (Order Suessiales) from P. tuberculosa and P. mutuki from several locations in Japan (34°11'N-24°16'N) were analysed. Unexpectedly, despite the ability of the genus Palythoa to be flexible in association with different Symbiodinium subclades, most (35 of 36) Palythoa investigated here specifically associate with subclade C1 and closely related types. Symbiodinium subclade C1 has been characterized as a “generalist” in terms of the ability to associate with a range of hosts, but present results suggest that subclade C1 may also be a “generalist” in terms of being able to live in a variety of environments over a latitudinal range.

  15. From homothally to heterothally: Mating preferences and genetic variation within clones of the dinoflagellate Gymnodinium catenatum

    Science.gov (United States)

    Figueroa, Rosa Isabel; Rengefors, Karin; Bravo, Isabel; Bensch, Staffan

    2010-02-01

    The chain-forming dinoflagellate Gymnodinium catenatum Graham is responsible for outbreaks of paralytic shellfish poisoning (PSP), a human health threat in coastal waters. Sexuality in this species is of great importance in its bloom dynamics, and has been shown to be very complex but lacks an explanation. For this reason, we tested if unreported homothallic behavior and rapid genetic changes may clarify the sexual system of this alga. To achieve this objective, 12 clonal strains collected from the Spanish coast were analyzed for the presence of sexual reproduction. Mating affinity results, self-compatibility studies, and genetic fingerprinting (amplified fragment length polymorphism, AFLP) analysis on clonal strains, showed three facts not previously described for this species: (i) That there is a continuous mating system within G. catenatum, with either self-compatible strains (homothallic), or strains that needed to be outcrossed (heterothallic), and with a range of differences in cyst production among the crosses. (ii) There was intraclonal genetic variation, i.e. genetic variation within an asexual lineage. Moreover, the variability among homothallic clones was smaller than among the heterothallic ones. (iii) Sibling strains (the two strains established by the germination of one cyst) increased their intra- and inter-sexual compatibility with time. To summarize, we have found that G. catenatum's sexual system is much more complex than previously described, including complex homothallic/heterothallic behaviors. Additionally, high rates of genetic variability may arise in clonal strains, although explanations for the mechanisms responsible are still lacking.

  16. Endosymbiosis undone by stepwise elimination of the plastid in a parasitic dinoflagellate

    KAUST Repository

    Gornik, Sebastian G.

    2015-04-20

    Organelle gain through endosymbiosis has been integral to the origin and diversification of eukaryotes, and, once gained, plastids and mitochondria seem seldom lost. Indeed, discovery of nonphotosynthetic plastids in many eukaryotes - notably, the apicoplast in apicomplexan parasites such as the malaria pathogen Plasmodium - highlights the essential metabolic functions performed by plastids beyond photosynthesis. Once a cell becomes reliant on these ancillary functions, organelle dependence is apparently difficult to overcome. Previous examples of endosymbiotic organelle loss (either mitochondria or plastids), which have been invoked to explain the origin of eukaryotic diversity, have subsequently been recognized as organelle reduction to cryptic forms, such as mitosomes and apicoplasts. Integration of these ancient symbionts with their hosts has been too well developed to reverse. Here, we provide evidence that the dinoflagellate Hematodinium sp., a marine parasite of crustaceans, represents a rare case of endosymbiotic organelle loss by the elimination of the plastid. Extensive RNA and genomic sequencing data provide no evidence for a plastid organelle, but, rather, reveal a metabolic decoupling from known plastid functions that typically impede organelle loss. This independence has been achieved through retention of ancestral anabolic pathways, enzyme relocation from the plastid to the cytosol, and metabolic scavenging from the parasite\\'s host. Hematodinium sp. thus represents a further dimension of endosymbiosis-life after the organelle. © 2015, National Academy of Sciences. All rights reserved.

  17. Endosymbiosis undone by stepwise elimination of the plastid in a parasitic dinoflagellate.

    Science.gov (United States)

    Gornik, Sebastian G; Febrimarsa; Cassin, Andrew M; MacRae, James I; Ramaprasad, Abhinay; Rchiad, Zineb; McConville, Malcolm J; Bacic, Antony; McFadden, Geoffrey I; Pain, Arnab; Waller, Ross F

    2015-05-05

    Organelle gain through endosymbiosis has been integral to the origin and diversification of eukaryotes, and, once gained, plastids and mitochondria seem seldom lost. Indeed, discovery of nonphotosynthetic plastids in many eukaryotes--notably, the apicoplast in apicomplexan parasites such as the malaria pathogen Plasmodium--highlights the essential metabolic functions performed by plastids beyond photosynthesis. Once a cell becomes reliant on these ancillary functions, organelle dependence is apparently difficult to overcome. Previous examples of endosymbiotic organelle loss (either mitochondria or plastids), which have been invoked to explain the origin of eukaryotic diversity, have subsequently been recognized as organelle reduction to cryptic forms, such as mitosomes and apicoplasts. Integration of these ancient symbionts with their hosts has been too well developed to reverse. Here, we provide evidence that the dinoflagellate Hematodinium sp., a marine parasite of crustaceans, represents a rare case of endosymbiotic organelle loss by the elimination of the plastid. Extensive RNA and genomic sequencing data provide no evidence for a plastid organelle, but, rather, reveal a metabolic decoupling from known plastid functions that typically impede organelle loss. This independence has been achieved through retention of ancestral anabolic pathways, enzyme relocation from the plastid to the cytosol, and metabolic scavenging from the parasite's host. Hematodinium sp. thus represents a further dimension of endosymbiosis--life after the organelle.

  18. Heat Shock Protein 70 and 90 Genes in the Harmful Dinoflagellate Cochlodinium polykrikoides: Genomic Structures and Transcriptional Responses to Environmental Stresses

    Directory of Open Access Journals (Sweden)

    Ruoyu Guo

    2015-01-01

    Full Text Available The marine dinoflagellate Cochlodinium polykrikoides is responsible for harmful algal blooms in aquatic environments and has spread into the world’s oceans. As a microeukaryote, it seems to have distinct genomic characteristics, like gene structure and regulation. In the present study, we characterized heat shock protein (HSP 70/90 of C. polykrikoides and evaluated their transcriptional responses to environmental stresses. Both HSPs contained the conserved motif patterns, showing the highest homology with those of other dinoflagellates. Genomic analysis showed that the CpHSP70 had no intron but was encoded by tandem arrangement manner with separation of intergenic spacers. However, CpHSP90 had one intron in the coding genomic regions, and no intergenic region was found. Phylogenetic analyses of separate HSPs showed that CpHSP70 was closely related with the dinoflagellate Crypthecodinium cohnii and CpHSP90 with other Gymnodiniales in dinoflagellates. Gene expression analyses showed that both HSP genes were upregulated by the treatments of separate algicides CuSO4 and NaOCl; however, they displayed downregulation pattern with PCB treatment. The transcription of CpHSP90 and CpHSP70 showed similar expression patterns under the same toxicant treatment, suggesting that both genes might have cooperative functions for the toxicant induced gene regulation in the dinoflagellate.

  19. Putative N2-fixing heterotrophic bacteria associated with dinoflagellate-Cyanobacteria consortia in the low-nitrogen Indian Ocean

    DEFF Research Database (Denmark)

    Farnelid, H.; Tarangkoon, Woraporn; Hansen, Gert

    2010-01-01

    that the symbionts fix gaseous nitrogen (N2). Individual heterotrophic dinoflagellates containing cyanobacterial symbionts were isolated from the open Indian Ocean and off Western Australia, and characterized using light microscopy, transmission electron microscopy (TEM), and nitrogenase (nifH) gene amplification......, cloning, and sequencing. Cyanobacteria, heterotrophic bacteria and eukaryotic algae were recognized as symbionts of the heterotrophic dinoflagellates. nifH gene sequences were obtained from 23 of 37 (62%) specimens of dinoflagellates (Ornithocercus spp. and Amphisolenia spp.). Interestingly, only 2...... specimens contained cyanobacterial nifH sequences, while 21 specimens contained nifH genes related to heterotrophic bacteria. Of the 137 nifH sequences obtained 68% were most similar to Alpha-, Beta-, and Gammaproteobacteria, 8% clustered with anaerobic bacteria, and 5% were related to second alternative...

  20. Ratiometric imaging of gastrodermal lipid bodies in coral-dinoflagellate endosymbiosis

    Science.gov (United States)

    Luo, Y.-J.; Wang, L.-H.; Chen, W.-N. U.; Peng, S.-E.; Tzen, J. T.-C.; Hsiao, Y.-Y.; Huang, H.-J.; Fang, L.-S.; Chen, C.-S.

    2009-03-01

    Cnidaria-dinoflagellate endosymbiosis is the phenomenon of autotrophic symbionts living inside the gastrodermal cells of their animal hosts. The molecular mechanism that regulates this association remains unclear. Using quantitative microscopy, we now provide evidence that the dynamic lipid changes in gastrodermal “lipid bodies” (LBs) reflect the symbiotic status of the host cell and its symbiont in the hermatypic coral Euphyllia glabrescens. By dual-emission ratiometric imaging with a solvatochromic fluorescent probe, Nile red (9-diethylamino-5H-benzo[α]phenoxazine-5-one), we showed that the in situ distribution of polar versus neutral lipids in LBs in living gastrodermal cells and symbionts can be analyzed. The ratio of Nile red fluorescence at red (R) versus green (G) wavelength region (i.e., R/G ratio) correlated with the relative molar ratio of polar (P) versus neutral (NP) lipids (i.e., P/NP ratio). The R/G ratio in host LBs increased after bleaching, indicating a decrease in neutral lipid accumulation in gastrodermal cells. On the other hand, neutral lipid accumulation inside the symbiont LBs resulted in gradual decreases of the R/G ratio as a result of bleaching. In comparison with the bleaching event, there was no relative lipid concentration change in host LBs under continual light or dark treatments as shown by insignificant R/G ratio shift. Patterns of R/G ratio shift in symbiont LBs were also different between corals undergoing bleaching and continual light/dark treatment. In the latter, there was little lipid accumulation in symbionts, with no resulting R/G ratio decrease. These results, demonstrating that the symbiotic status positively correlated with morphological and compositional changes of lipid bodies, not only highlight the pivotal role of LBs, but also implicate an involvement of lipid trafficking in regulating the endosymbiosis.

  1. Interactive effects of climate change and eutrophication on the dinoflagellate-bearing benthic foraminifer Marginopora vertebralis

    Science.gov (United States)

    Uthicke, S.; Vogel, N.; Doyle, J.; Schmidt, C.; Humphrey, C.

    2012-06-01

    Elevated sea surface temperatures caused by global climate change and increased nutrient concentrations resulting from land runoff both are stressors for calcifying coral reef organisms. Here, we test the hypothesis that increased temperature leads to bleaching in dinoflagellate-bearing foraminifera similar to corals and that increased nutrients through runoff can exaggerate stress on the holobiont. In an experiment manipulating temperatures alone, we have shown that mortality of Marginopora vertebralis increased with temperatures. Most individuals died after 7 days at 34°C, ~5°C above current summer maxima. Survival at 37 days was >98% at 28°C. After 7 days of exposure to 31 or 32°C, photosynthesis of the endosymbionts was compromised, as indicated by several photophysiological parameters (effective quantum yield and apparent photosynthetic rate). In a flow-though experiment manipulating both temperature (three levels, 26, 29 and 31°C) and nitrate concentrations (3 levels, ~0.5, 1.0 and 1.4 μmol l-1 NO3 -), elevated temperature had a significant negative effect on most parameters measured. At 31°C, most photopigments (measured by UPLC) in the foraminifera were significantly reduced. The only pigment that increased was the photoprotective diatoxanthin. Several other parameters measured (maximum and effective quantum yield, O2 production in light, organic carbon contents) also significantly decreased with temperature. Optode-based respirometry demonstrated that the presence of symbionts at elevated temperatures represents a net carbon loss for the host. Growth rates of M. vertebralis and mortality at the end of the experiment were significantly affected by both temperature increase and nitrate addition. We conclude that these foraminifera bleach in a similar fashion to corals and that global sea surface temperature change and nitrate increases are stressors for these protists. Furthermore, this provides support for the hypothesis that management of local

  2. Growth and toxin production of the toxic dinoflagellate Pyrodinium bahamense var. compressum in laboratory cultures.

    Science.gov (United States)

    Usup, G; Kulis, D M; Anderson, D M

    1994-01-01

    Toxin production of a Malaysian isolate of the toxic red tide dinoflagellate Pyrodinium bahamense var. compressum was investigated at various stages of the batch culture growth cycle and under growth conditions affected by temperature, salinity, and light intensity variations. In all the experiments conducted, only 5 toxins were ever detected. Neosaxitoxin (NEO) and gonyautoxin V (GTX5) made up 80 mole percent or more of the cellular toxin content and saxitoxin (STX), GTX6 and decarbamoylsaxitoxin (dcSTX) made up the remainder. No gonyautoxins I-IV or C toxins were ever detected. In nutrient-replete batch cultures, toxin content rapidly peaked during early exponential phase and just as rapidly declined prior to the onset of plateau phase. Temperature had a marked effect on toxin content, which increased 3-fold as the temperature decreased from the optimum of 28 degrees C to 22 degrees C. Toxin content was constant at salinities of 24% or higher, but increased 3-fold at 20%. Toxin content decreased 2-fold and chlorophyll content increased 3-fold when light intensity was reduced from 90 to 15 microE m-2 s-1. This accompanied a 30% decrease in growth rate. Toxin composition (mole % individual toxin cell-1) remained constant throughout the course of the nutrient-replete culture and during growth at various salinities, but varied significantly with temperature and light intensity changes. At 22 degrees C, GTX5 was 25 mole % and NEO was 65 mole %, while at 34 degrees C, GTX5 increased to 55 mole % and NEO decreased proportionally to 40 mole %. When light intensity was reduced from 90 to 15 microE m-2 s-1, NEO decreased from 55 to 38 mole %, while GTX5 increased from 40 to 58 mole %. These data suggest that low light and high temperature both somehow enhance sulfo-transferase activity.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Utilization of urea and expression profiles of related genes in the dinoflagellate Prorocentrum donghaiense.

    Science.gov (United States)

    Jing, Xiaoli; Lin, Senjie; Zhang, Huan; Koerting, Claudia; Yu, Zhigang

    2017-01-01

    Urea has been shown to contribute more than half of total nitrogen (N) required by phytoplankton in some estuaries and coastal waters and to provide a substantial portion of the N demand for many harmful algal blooms (HABs) of dinoflagellates. In this study, we investigated the physiological and transcriptional responses in Prorocentrum donghaiense to changes in nitrate and urea availability. We found that this species could efficiently utilize urea as sole N source and achieve comparable growth rate and photosynthesis capability as it did under nitrate. These physiological parameters were markedly lower in cultures grown under nitrate- or urea-limited conditions. P. donghaiense N content was similarly low under nitrate- or urea-limited culture condition, but was markedly higher under urea-replete condition than under nitrate-replete condition. Carbon (C) content was consistently elevated under N-limited condition. Consequently, the C:N ratio was as high as 21:1 under nitrate- or urea-limitation, but 7:1 under urea-replete condition and 9:1 to 10:1 under nitrate-replete condition. Using quantitative reverse transcription PCR, we investigated the expression pattern for four genes involved in N transport and assimilation. The results indicated that genes encoding nitrate transport, urea hydrolysis, and nickel transporter gene were sensitive to changes in general N nutrient availability whereas the urea transporter gene responded much more strongly to changes in urea concentration. Taken together, our study shows the high bioavailability of urea, its impact on C:N stoichiometry, and the sensitivity of urea transporter gene expression to urea availability.

  4. The distribution of intra-genomically variable dinoflagellate symbionts at Lord Howe Island, Australia

    Science.gov (United States)

    Wilkinson, Shaun P.; Pontasch, Stefanie; Fisher, Paul L.; Davy, Simon K.

    2016-06-01

    The symbiotic dinoflagellates of corals and other marine invertebrates ( Symbiodinium) are essential to the development of shallow-water coral reefs. This genus contains considerable genetic diversity and a corresponding range of physiological and ecological traits. Most genetic variation arises through the accumulation of somatic mutations that arise during asexual reproduction. Yet growing evidence suggests that occasional sexual reproductive events also occur within, and perhaps between, Symbiodinium lineages, further contributing to the pool of genetic variation available for evolutionary adaptation. Intra-genomic variation can therefore arise from both sexual and asexual reproductive processes, making it difficult to discern its underlying causes and consequences. We used quantitative PCR targeting the ITS2 locus to estimate proportions of genetically homogeneous symbionts and intra-genomically variable Symbiodinium (IGV Symbiodinium) in the reef-building coral Pocillopora damicornis at Lord Howe Island, Australia. We then sampled colonies through time and at a variety of spatial scales to find out whether the distribution of these symbionts followed patterns consistent with niche partitioning. Estimated ratios of homogeneous to IGV Symbiodinium varied between colonies within sites (metres to tens of metres) and between sites separated by hundreds to thousands of metres, but remained stable within colonies through time. Symbiont ratios followed a temperature gradient, with the local thermal maximum emerging as a negative predictor for the estimated proportional abundance of IGV Symbiodinium. While this pattern may result from fine-scale spatial population structure, it is consistent with an increased susceptibility to thermal stress, suggesting that the evolutionary processes that generate IGV (such as inter-lineage recombination and the accumulation of somatic mutations at the ITS2 locus) may have important implications for the fitness of the symbiont and

  5. The life history of the toxic marine dinoflagellate Protoceratium reticulatum (Gonyaulacales) in culture.

    Science.gov (United States)

    Salgado, Pablo; Figueroa, Rosa I; Ramilo, Isabel; Bravo, Isabel

    2017-09-01

    Asexual and sexual life cycle events were studied in cultures of the toxic marine dinoflagellate Protoceratium reticulatum. Asexual division by desmoschisis was characterized morphologically and changes in DNA content were analyzed by flow cytometry. The results indicated that haploid cells with a C DNA content occurred only during the light period whereas a shift from a C to a 2C DNA content (indicative of S phase) took place only during darkness. The sexual life cycle was documented by examining the mating type as well as the morphology of the sexual stages and nuclei. Gamete fusion resulted in a planozygote with two longitudinal flagella, but longitudinally biflagellated cells arising from planozygote division were also observed, so one of the daughter cells retained two longitudinal flagella while the other daughter cell lacked them. Presumed planozygotes (identified by their longitudinally biflagellated form) followed two life-cycle routes: division and encystment (resting cyst formation). Both the division of longitudinally biflagellated cells and resting cyst formation are morphologically described herein. Resting cyst formation through sexual reproduction was observed in 6.1% of crosses and followed a complex heterothallic pattern. Clonal strains underwent sexuality (homothallism for planozygote formation and division) but without the production of resting cysts. Ornamental processes of resting cysts formed from the cyst wall under an outer balloon-shaped membrane and were fully developed in <1h. Obligatory dormancy period was of ∼4 months. Excystment resulted in a large, rounded, pigmented, longitudinally biflagellated but motionless, thecate germling that divided by desmoschisis. Like the planozygote, the first division of the germling yielded one longitudinally biflagellated daughter cell and another without longitudinal flagella. The longitudinal biflagellation state of both sexual stages and of the first division products of these cells is discussed

  6. Relationships between host and symbiont cell cycles in sea anemones and their symbiotic dinoflagellates.

    Science.gov (United States)

    Dimond, James L; Pineda, Rea R; Ramos-Ascherl, Zullaylee; Bingham, Brian L

    2013-10-01

    The processes by which cnidarians and their algal endosymbionts achieve balanced growth and biomass could include coordination of host and symbiont cell cycles. We evaluated this theory with natural populations of sea anemones hosting symbiotic dinoflagellates, focusing on the temperate sea anemone Anthopleura elegantissima symbiotic with Symbiodinium muscatinei in Washington State, USA, and the tropical anemone Stichodactyla helianthus associating with unknown Symbiodinium spp. in Belize. By extruding symbiont-containing gastrodermal cells from the relatively large tentacles of these species and using nuclear staining and flow cytometry, we selectively analyzed cell cycle distributions of the symbionts and the host gastrodermal cells that house them. We found no indications of diel synchrony in host and symbiont G2/M phases, and we observed evidence of diel periodicity only in Symbiodinium spp. associated with S. helianthus but not in the anemone itself. Seasonally, S. muscatinei showed considerable G2/M phase variability among samples collected quarterly over an annual period, while the G2/M phase of its host varied much less. Within samples taken at different times of the year, correlations between host and symbiont G2/M phases ranged from very weakly to very strongly positive, with significant correlations in only half of the samples (two of four A. elegantissima samples and one of two S. helianthus samples). Overall, the G2/M phase relationships across species and sampling periods were positive. Thus, while we found no evidence of close cell cycle coupling, our results suggest a loose, positive relationship between cell cycle processes of the symbiotic partners.

  7. Comparative lipid profiling of the cnidarian Aiptasia pallida and its dinoflagellate symbiont.

    Directory of Open Access Journals (Sweden)

    Teresa A Garrett

    Full Text Available Corals and other cnidarians house photosynthetic dinoflagellate symbionts within membrane-bound compartments inside gastrodermal cells. Nutritional interchanges between the partners produce carbohydrates and lipids for metabolism, growth, energy stores, and cellular structures. Although lipids play a central role in the both the energetics and the structural/morphological features of the symbiosis, previous research has primarily focused on the fatty acid and neutral lipid composition of the host and symbiont. In this study we conducted a mass spectrometry-based survey of the lipidomic changes associated with symbiosis in the sea anemone Aiptasia pallida, an important model system for coral symbiosis. Lipid extracts from A. pallida in and out of symbiosis with its symbiont Symbiodinium were prepared and analyzed using negative-ion electrospray ionization quadrupole time-of-flight mass spectrometry. Through this analysis we have identified, by exact mass and collision-induced dissociation mass spectrometry (MS/MS, several classes of glycerophospholipids in A. pallida. Several molecular species of di-acyl phosphatidylinositol and phosphatidylserine as well as 1-alkyl, 2-acyl phosphatidylethanolamine (PE and phosphatidycholine were identified. The 1-alkyl, 2-acyl PEs are acid sensitive suggestive that they are plasmalogen PEs possessing a double bond at the 1-position of the alkyl linked chain. In addition, we identified several molecular species of phosphonosphingolipids called ceramide aminoethylphosphonates in anemone lipid extracts by the release of a characteristic negative product ion at m/z 124.014 during MS/MS analysis. Sulfoquinovosyldiacylglycerol (SQDG, an anionic lipid often found in photosynthetic organisms, was identified as a prominent component of Symbiodinium lipid extracts. A comparison of anemone lipid profiles revealed a subset of lipids that show dramatic differences in abundance when anemones are in the symbiotic state as

  8. Molecular detection of the parasitic dinoflagellate Hematodinium perezi from blue crabs Callinectes sapidus in Louisiana, USA.

    Science.gov (United States)

    Sullivan, Timothy J; Gelpi, Carey G; Neigel, Joseph E

    2016-06-15

    The dinoflagellate Hematodinium perezi is a prolific pathogen of the blue crab Callinectes sapidus along the Atlantic and Gulf of Mexico coasts of North America. High prevalence, sometimes approaching 100%, and outbreaks with high mortality are associated with higher salinities. H. perezi has not been reported previously in blue crabs from Louisiana, USA, where salinities in coastal habitats are generally below the parasite's favorable range. However, the possibility that H. perezi infects blue crabs in higher salinity habitats offshore has not been investigated. A PCR-based test for H. perezi was used to screen blue crabs collected from both high and low salinity areas. These included juvenile and adult crabs from inshore marshes where salinities are relatively low and from higher salinity offshore shoals that are spawning sites for females. H. perezi was detected in blue crabs from offshore shoals (prevalence=5.6%) but not in juvenile or adult crabs from inshore habitats. Megalopae (post-larvae) were also collected from inshore locations. Although megalopae settle inshore where salinities are relatively low, the megalopal stage is preceded by a planktonic phase in higher salinity offshore waters. We detected H. perezi in 11.2% of settling megalopae tested. Although the prevalence of H. perezi was relatively low within our samples, if spawning females and megalopae are especially vulnerable, the impact on the population could be compounded. This is the first report of H. perezi from blue crabs in Louisiana and demonstrates the importance of examining all life stages in determining the prevalence of a harmful parasite.

  9. Lipid bodies in coral-dinoflagellate endosymbiosis: proteomic and ultrastructural studies.

    Science.gov (United States)

    Peng, Shao-En; Chen, Wan-Nan U; Chen, Hung-Kai; Lu, Chi-Yu; Mayfield, Anderson B; Fang, Lee-Shing; Chen, Chii-Shiarng

    2011-09-01

    Gastrodermal lipid bodies (LBs) are organelles involved in the regulation of the mutualistic endosymbiosis between reef-building corals and their dinoflagellate endosymbionts (genus Symbiodinium). As their molecular composition remains poorly defined, we herein describe the first gastrodermal LB proteome and examine in situ morphology of LBs in order to provide insight into their structure and function. After tissue separation of the tentacles of the stony coral Euphyllia glabrescens, buoyant LBs of the gastroderm encompassing a variety of sizes (0.5-4 μm in diameter) were isolated after two cycles of subcellular fractionation via stepwise sucrose gradient ultracentrifugation and detergent washing. The purity of the isolated LBs was demonstrated by their high degree of lipid enrichment and as well as the absence of contaminating proteins of the host cell and Symbiodinium. LB-associated proteins were then purified, subjected to SDS-PAGE, and identified by MS using an LC-nano-ESI-MS/MS. A total of 42 proteins were identified within eight functional groups, including metabolism, intracellular trafficking, the stress response/molecular modification and development. Ultrastructural analyses of LBs in situ showed that they exhibit defined morphological characteristics, including a high-electron density resulting from a distinct lipid composition from that of the lipid droplets of mammalian cells. Coral LBs were also characterized by the presence of numerous electron-transparent inclusions of unknown origin and composition. Both proteomic and ultrastructural observations seem to suggest that both Symbiodinium and host organelles, such as the ER, are involved in LB biogenesis. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Metabolite profiling of symbiont and host during thermal stress and bleaching in a model cnidarian-dinoflagellate symbiosis.

    Science.gov (United States)

    Hillyer, Katie E; Tumanov, Sergey; Villas-Bôas, Silas; Davy, Simon K

    2016-02-01

    Bleaching (dinoflagellate symbiont loss) is one of the greatest threats facing coral reefs. The functional cnidarian-dinoflagellate symbiosis, which forms coral reefs, is based on the bi-directional exchange of nutrients. During thermal stress this exchange breaks down; however, major gaps remain in our understanding of the roles of free metabolite pools in symbiosis and homeostasis. In this study we applied gas chromatography-mass spectrometry (GC-MS) to explore thermally induced changes in intracellular pools of amino and non-amino organic acids in each partner of the model sea anemone Aiptasia sp. and its dinoflagellate symbiont. Elevated temperatures (32 °C for 6 days) resulted in symbiont photoinhibition and bleaching. Thermal stress induced distinct changes in the metabolite profiles of both partners, associated with alterations to central metabolism, oxidative state, cell structure, biosynthesis and signalling. Principally, we detected elevated pools of polyunsaturated fatty acids (PUFAs) in the symbiont, indicative of modifications to lipogenesis/lysis, membrane structure and nitrogen assimilation. In contrast, reductions of multiple PUFAs were detected in host pools, indicative of increased metabolism, peroxidation and/or reduced translocation of these groups. Accumulations of glycolysis intermediates were also observed in both partners, associated with photoinhibition and downstream reductions in carbohydrate metabolism. Correspondingly, we detected accumulations of amino acids and intermediate groups in both partners, with roles in gluconeogenesis and acclimation responses to oxidative stress. These data further our understanding of cellular responses to thermal stress in the symbiosis and generate hypotheses relating to the secondary roles of a number of compounds in homeostasis and heat-stress resistance. © 2016. Published by The Company of Biologists Ltd.

  11. New details from the complete life cycle of the red-tide dinoflagellate Noctiluca scintillans (Ehrenberg) McCartney.

    Science.gov (United States)

    Fukuda, Yasuhiro; Endoh, Hiroshi

    2006-09-01

    Noctilucid protozoans are among the dinoflagellates that cause red tides. Sexual reproduction may occur in this group, as they sometimes undergo gametogenesis. However, the life cycle, in particular the developmental process after gamete fusion, has not been fully elucidated. We have been able to maintain clonal cultures of Noctiluca scintillans throughout the whole life cycle and have revealed new details of various stages. In trophont populations, a small fraction of cells spontaneously transform into gametogenic cells, which undergo two successive nuclear divisions, without cellular division, probably corresponding to meiosis. The products of nuclear division migrate to the cell surface with a small amount of cytoplasm, and there further synchronously divide 6-8 times, during which the division products are connected by thin cytoplasmic bridges. Thus, numerous gametes with a semi-spindle body shape are released from the mother cell ghost. They retain two flagella that differ in length and motion, as is typical of dinoflagellates. The presence of longitudinal and transverse grooves indicates that dinoflagellate-like characteristics are conserved in the gametes, although they are not present in the specialized trophonts. Zygotes with four flagella result from the fusion of two isogametes. The zygotes change shape from spindle to spherical, with a reduction in flagellar number. The developing cell acquires a tentacle and crust, similar to large trophonts, and begins to develop a cytoplasmic network, thus completing the transformation into a miniscule trophont. These early trophonts grow to maturity as cell size increases. Our observations of the life cycle of N. scintillans may provide clues for understanding the evolutionary origin of noctilucae.

  12. Distinct gene number-genome size relationships for eukaryotes and non-eukaryotes: gene content estimation for dinoflagellate genomes.

    Directory of Open Access Journals (Sweden)

    Yubo Hou

    Full Text Available The ability to predict gene content is highly desirable for characterization of not-yet sequenced genomes like those of dinoflagellates. Using data from completely sequenced and annotated genomes from phylogenetically diverse lineages, we investigated the relationship between gene content and genome size using regression analyses. Distinct relationships between log(10-transformed protein-coding gene number (Y' versus log(10-transformed genome size (X', genome size in kbp were found for eukaryotes and non-eukaryotes. Eukaryotes best fit a logarithmic model, Y' = ln(-46.200+22.678X', whereas non-eukaryotes a linear model, Y' = 0.045+0.977X', both with high significance (p0.91. Total gene number shows similar trends in both groups to their respective protein coding regressions. The distinct correlations reflect lower and decreasing gene-coding percentages as genome size increases in eukaryotes (82%-1% compared to higher and relatively stable percentages in prokaryotes and viruses (97%-47%. The eukaryotic regression models project that the smallest dinoflagellate genome (3x10(6 kbp contains 38,188 protein-coding (40,086 total genes and the largest (245x10(6 kbp 87,688 protein-coding (92,013 total genes, corresponding to 1.8% and 0.05% gene-coding percentages. These estimates do not likely represent extraordinarily high functional diversity of the encoded proteome but rather highly redundant genomes as evidenced by high gene copy numbers documented for various dinoflagellate species.

  13. Diversity of fatty acid composition of symbiotic dinoflagellates in corals: evidence for the transfer of host PUFAs to the symbionts.

    Science.gov (United States)

    Imbs, Andrey B; Yakovleva, Irina M; Dautova, Tatiana N; Bui, Long H; Jones, Paul

    2014-05-01

    High diversity of fatty acid (FA) composition of endosymbiotic dinoflagellates of the Symbiodinium group (zooxanthellae) isolated from different cnidarian groups has been found. To explain this diversity, FA composition of the total lipids of pure symbiont fractions (SF) and host cell tissue fractions (HF) isolated from one hydrocoral, two soft coral, and seven hard coral species inhabiting the shallow waters of the South China Sea (Vietnam) were compared. Symbiodinium phylogenetic clade designation for each SF was also determined, however, the relationship between the clade designation and FA composition of Symbiodinium was not found. The profiles of marker polyunsaturated FAs (PUFAs) of symbionts (18:4n-3, 18:5n-3, 20:5n-3) did not depend on taxonomic designation of the host and reflected only a specimen-specific diversity of the SF lipids. Several FAs such as 20:0, C24 PUFAs, 22:5n-6, and 18:2n-7 concentrated in HF lipids but were also found in SF lipids. For ten cnidarian species studied, the principal components analysis of total FAs (27 variables) of the symbiotic fractions was performed. The clear division of the symbiotic dinoflagellates according to the host systematic identity was found on a subclass level. This division was mainly caused by the FAs specific for the host lipids of each cnidarian subclasses such as hard corals, soft corals, and hydrocorals. Thus, the coral hosts affect the FA profile of their symbionts and cause the diversity of FA composition of Symbiodinium. The transfer of FAs from the coral host to their symbiotic dinoflagellates and modulation of PUFA biosynthesis in symbionts by the host are considered as possible reasons of the diversity studied. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Global Analysis of mRNA Half-Lives and de novo Transcription in a Dinoflagellate, Karenia brevis

    Science.gov (United States)

    Morey, Jeanine S.; Van Dolah, Frances M.

    2013-01-01

    Dinoflagellates possess many physiological processes that appear to be under post-transcriptional control. However, the extent to which their genes are regulated post-transcriptionally remains unresolved. To gain insight into the roles of differential mRNA stability and de novo transcription in dinoflagellates, we biosynthetically labeled RNA with 4-thiouracil to isolate newly transcribed and pre-existing RNA pools in Karenia brevis. These isolated fractions were then used for analysis of global mRNA stability and de novo transcription by hybridization to a K. brevis microarray. Global K. brevis mRNA half-lives were calculated from the ratio of newly transcribed to pre-existing RNA for 7086 array features using the online software HALO (Half-life Organizer). Overall, mRNA half-lives were substantially longer than reported in other organisms studied at the global level, ranging from 42 minutes to greater than 144 h, with a median of 33 hours. Consistent with well-documented trends observed in other organisms, housekeeping processes, including energy metabolism and transport, were significantly enriched in the most highly stable messages. Shorter-lived transcripts included a higher proportion of transcriptional regulation, stress response, and other response/regulatory processes. One such family of proteins involved in post-transcriptional regulation in chloroplasts and mitochondria, the pentatricopeptide repeat (PPR) proteins, had dramatically shorter half-lives when compared to the arrayed transcriptome. As transcript abundances for PPR proteins were previously observed to rapidly increase in response to nutrient addition, we queried the newly synthesized RNA pools at 1 and 4 h following nitrate addition to N-depleted cultures. Transcriptome-wide there was little evidence of increases in the rate of de novo transcription during the first 4 h, relative to that in N-depleted cells, and no evidence for increased PPR protein transcription. These results lend support to

  15. Effects of the toxic dinoflagellate Karlodinium sp. (cultured at different N/P ratios on micro and mesozooplankton

    Directory of Open Access Journals (Sweden)

    Dolors Vaqué

    2006-03-01

    Full Text Available An experimental study was carried out to investigate whether two potential predators such as Oxyrrhis marina (phagotrophic dinoflagellate and Acartia margalefi (Copepoda: Calanoida had different responses when feeding on toxic (Karlodinium sp.-strain CSIC1- or non-toxic (Gymnodinium sp1 dinoflagellates with a similar shape and size. Both prey were cultured at different N/P ratios (balanced N/P = 15, and P-limited N/P > 15 to test whether P-limitation conditions could lead to depressed grazing rates or have other effects on the predators. Both predators ingested the non-toxic Gymnodinium sp1, and low or non-ingestion rates were observed when incubated with Karlodinium sp. The dinoflagellate O. marina did not graze at all on Karlodinium sp. at N/P > 15 and very little at NP = 15, as its net growth rates were always negative when feeding on Karlodinium sp. cultured under P-limitation conditions. A. margalefi had lower ingestion rates when feeding on Karlodinium sp. grown at N/P = 15 than when feeding on Gymnodinium sp1, and did not graze on P-limited Karlodinium sp. Nevertheless, feeding on Karlodinium sp. grown under N/P =15 or N/P > 15 did not have any paralyzing or lethal effect on A. margalefi after 24 h. Finally, a direct effect on the viability of A. margalefi eggs was detected when healthy eggs were incubated for 5 days in the presence of Karlodinium sp. grown under N/P =15 or N/P > 15, producing a decrease in viability of 20% and 60% respectively.

  16. Tertiary endosymbiosis in two dinotoms has generated little change in the mitochondrial genomes of their dinoflagellate hosts and diatom endosymbionts.

    Science.gov (United States)

    Imanian, Behzad; Pombert, Jean-François; Dorrell, Richard G; Burki, Fabien; Keeling, Patrick J

    2012-01-01

    Mitochondria or mitochondrion-derived organelles are found in all eukaryotes with the exception of secondary or tertiary plastid endosymbionts. In these highly reduced systems, the mitochondrion has been lost in all cases except the diatom endosymbionts found in a small group of dinoflagellates, called 'dinotoms', the only cells with two evolutionarily distinct mitochondria. To investigate the persistence of this redundancy and its consequences on the content and structure of the endosymbiont and host mitochondrial genomes, we report the sequences of these genomes from two dinotoms. The endosymbiont mitochondrial genomes of Durinskia baltica and Kryptoperidinium foliaceum exhibit nearly identical gene content with other diatoms, and highly conserved gene order (nearly identical to that of the raphid pennate diatom Fragilariopsis cylindrus). These two genomes are differentiated from other diatoms' by the fission of nad11 and by an insertion within nad2, in-frame and unspliced from the mRNA. Durinskia baltica is further distinguished from K. foliaceum by two gene fusions and its lack of introns. The host mitochondrial genome in D. baltica encodes cox1 and cob plus several fragments of LSU rRNA gene in a hugely expanded genome that includes numerous pseudogenes, and a trans-spliced cox3 gene, like in other dinoflagellates. Over 100 distinct contigs were identified through 454 sequencing, but intact full-length genes for cox1, cob and the 5' exon of cox3 were present as a single contig each, suggesting most of the genome is pseudogenes. The host mitochondrial genome of K. foliaceum was difficult to identify, but fragments of all the three protein-coding genes, corresponding transcripts, and transcripts of several LSU rRNA fragments were all recovered. Overall, the endosymbiont and host mitochondrial genomes in the two dinotoms have changed surprisingly little from those of free-living diatoms and dinoflagellates, irrespective of their long coexistence side by side in

  17. Tertiary endosymbiosis in two dinotoms has generated little change in the mitochondrial genomes of their dinoflagellate hosts and diatom endosymbionts.

    Directory of Open Access Journals (Sweden)

    Behzad Imanian

    Full Text Available BACKGROUND: Mitochondria or mitochondrion-derived organelles are found in all eukaryotes with the exception of secondary or tertiary plastid endosymbionts. In these highly reduced systems, the mitochondrion has been lost in all cases except the diatom endosymbionts found in a small group of dinoflagellates, called 'dinotoms', the only cells with two evolutionarily distinct mitochondria. To investigate the persistence of this redundancy and its consequences on the content and structure of the endosymbiont and host mitochondrial genomes, we report the sequences of these genomes from two dinotoms. METHODOLOGY/PRINCIPAL FINDINGS: The endosymbiont mitochondrial genomes of Durinskia baltica and Kryptoperidinium foliaceum exhibit nearly identical gene content with other diatoms, and highly conserved gene order (nearly identical to that of the raphid pennate diatom Fragilariopsis cylindrus. These two genomes are differentiated from other diatoms' by the fission of nad11 and by an insertion within nad2, in-frame and unspliced from the mRNA. Durinskia baltica is further distinguished from K. foliaceum by two gene fusions and its lack of introns. The host mitochondrial genome in D. baltica encodes cox1 and cob plus several fragments of LSU rRNA gene in a hugely expanded genome that includes numerous pseudogenes, and a trans-spliced cox3 gene, like in other dinoflagellates. Over 100 distinct contigs were identified through 454 sequencing, but intact full-length genes for cox1, cob and the 5' exon of cox3 were present as a single contig each, suggesting most of the genome is pseudogenes. The host mitochondrial genome of K. foliaceum was difficult to identify, but fragments of all the three protein-coding genes, corresponding transcripts, and transcripts of several LSU rRNA fragments were all recovered. CONCLUSIONS/SIGNIFICANCE: Overall, the endosymbiont and host mitochondrial genomes in the two dinotoms have changed surprisingly little from those of free

  18. Baldinia anauniensis gen. et sp. nov.: a 'new' dinoflagellate from Lake Tovel, N. Italy

    DEFF Research Database (Denmark)

    Hansen, Gert; Daugbjerg, Niels; Henriksen, Peter

    2007-01-01

    . sanguineum' (now Tovellia sanguinea) and to represent a new species, Baldinia anauniensis gen. et sp. nov. It lacked thecal plates and an apical groove, and was characterised by the presence of a peculiar lamellar body similar to that described from certain dinoflagellates harbouring a diatom endosymbiont...... to the diatom-containing species, though morphological support for this relationship could only be argued by the absence of trichocyst and to some extent the intraplastidial eyespot type. A ventral fibre attached to the right side of the longitudinal basal body, an arrangement not observed in any other...

  19. Spatio-temporal variability of dinoflagellate assemblages in different salinity regimes in the west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Alkawri, A.A.S.; Ramaiah, N.

    . U.K. 78, 745–754. Margalef R., 1951. Diversidad de especies en las communidades naturals, Publicaciones Insitute Biologia Aplicada 9, 5–27. Mendon, M.R., Katti, R. J., Rajesh K.M., Gupta, T.R.C., 2002. Diversity of dinoflagellates in the sea off.... Factor controlling growth and survival of cultured spot prawn, Pandalus platyceros, in Puget sound, Washington, Fish. Bull. 78, 781- 788. Sahayak, S., Jyothibabu, R., Jayalakshmi, K.J., Habeebrehman, H., Sabu, P., Prabhakaran, M.P., Jasmine, P...

  20. PSEUDORHOMBODINIUM CINGULOINDENTATUM GEN. ET SP. N. (DINOFLAGELLATA: A NEW ORGANIC WALLED DINOFLAGELLATE CYST FROM THEUPPER EOCENE OF SICILY, ITALY

    Directory of Open Access Journals (Sweden)

    STEFANO TORRICELLI

    2010-07-01

    Full Text Available The organic walled dinoflagellate cyst Pseudorhombodinium cinguloindentatum gen. et sp. n. is formally described from the Upper Eocene of Sicily, Italy. It consists of a brown coloured, circumcavate wetzelielloid cyst with marked V-shaped cingular indentations in the pericyst. The proposed generic name refers to similarities existing in the overall morphology with the genus Rhombodinium Gocht. However, substantial differences in archeopyle styling, in the disposition of antapical horns, and in the amount of cingular indentation, advocate the erection of the new genus Pseudorhombodinium. 

  1. Accumulation, transformation and breakdown of DSP toxins from the toxic dinoflagellate Dinophysis acuta in blue mussels, Mytilus edulis

    DEFF Research Database (Denmark)

    Nielsen, Lasse Tor; Hansen, Per Juel; Krock, Bernd

    2016-01-01

    Okadaic acid (OA), dinophysistoxins (DTX) and pectenotoxins (PTX) produced by the dinoflagellates Dinophysis spp. can accumulate in shellfish and cause diarrhetic shellfish poisoning upon human consumption. Shellfish toxicity is a result of algal abundance and toxicity as well as accumulation...... with incubation time, and the net toxin accumulation was 66% and 71% for OA and DTX-1b, respectively. Large proportions (≈50%) of both these toxins were transformed to fatty acid esters. Most PTX-2 was transformed to PTX-2 seco-acid and net accumulation was initially high, but decreased progressively throughout...

  2. Red tides of the dinoflagellate Noctiluca scintillans associated with eutrophication in the Sea of Marmara (the Dardanelles, Turkey

    Directory of Open Access Journals (Sweden)

    Muhammet Turkoglu

    2013-08-01

    Full Text Available This investigation focused on weekly variations in cell density and volume of the dinoflagellateNoctiluca scintillans between March 2001 and January 2004 in the Dardanelles. March-June andOctober-December periods were excessive bloom periods. During the bloomperiods the density of N. scintillans reached 2.20 × 105 cells L-1 witha volume of 1.32 × 1012 µm3 L-1. In addition tothe high surface density, there was an increase in subsurface waters duringthe blooms. The bloom of N. scintillans, like that of diatom and otherdinoflagellate blooms, was associated not only with eutrophication, but alsowith stable temperatures and salinities.

  3. A Game of Russian Roulette for a Generalist Dinoflagellate Parasitoid: Host Susceptibility Is the Key to Success.

    Science.gov (United States)

    Alacid, Elisabet; Park, Myung G; Turon, Marta; Petrou, Katherina; Garcés, Esther

    2016-01-01

    Marine microbial interactions involving eukaryotes and their parasites play an important role in shaping the structure of phytoplankton communities. These interactions may alter population densities of the main host, which in turn may have consequences for the other concurrent species. The effect generalist parasitoids exert on a community is strongly dependent on the degree of host specificity. Parvilucifera sinerae is a generalist parasitoid able to infect a wide range of dinoflagellates, including toxic-bloom-forming species. A density-dependent chemical cue has been identified as the trigger for the activation of the infective stage. Together these traits make Parvilucifera-dinoflagellate hosts a good model to investigate the degree of specificity of a generalist parasitoid, and the potential effects that it could have at the community level. Here, we present for the first time, the strategy by which a generalist dinoflagellate parasitoid seeks out its host and determine whether it exhibits host preferences, highlighting key factors in determining infection. Our results demonstrate that in its infective stage, P. sinerae is able to sense potential hosts, but does not actively select among them. Instead, the parasitoids contact the host at random, governed by the encounter probability rate and once encountered, the chance to penetrate inside the host cell and develop the infection strongly depends on the degree of host susceptibility. As such, their strategy for persistence is more of a game of Russian roulette, where the chance of survival is dependent on the susceptibility of the host. Our study identifies P. sinerae as a potential key player in community ecology, where in mixed dinoflagellate communities consisting of hosts that are highly susceptible to infection, parasitoid preferences may mediate coexistence between host species, reducing the dominance of the superior competitor. Alternatively, it may increase competition, leading to species exclusion. If

  4. A game of Russian roulette for a generalist dinoflagellate parasitoid: host susceptibility is the key to success

    Directory of Open Access Journals (Sweden)

    Elisabet eAlacid

    2016-05-01

    Full Text Available Marine microbial interactions involving eukaryotes and their parasites play an important role in shaping the structure of phytoplankton communities. These interactions may alter population densities of the main host, which in turn may have consequences for the other concurrent species. The effect generalist parasitoids exert on a community is strongly dependent on the degree of host specificity. Parvilucifera sinerae is a generalist parasitoid able to infect a wide range of dinoflagellates, including toxic-bloom-forming species. A density-dependent chemical cue has been identified as the trigger for the activation of the infective stage. Together these traits make Parvilucifera-dinoflagellate hosts a good model to investigate the degree of specificity of a generalist parasitoid, and the potential effects that it could have at the community level. Here, we present for the first time, the strategy by which a generalist dinoflagellate parasitoid seeks out its host and determine whether it exhibits host preferences, highlighting key factors in determining infection. Our results demonstrate that in its infective stage, P. sinerae is able to sense potential hosts, but does not actively select among them. Instead, the parasitoids contact the host at random, governed by the encounter probability rate and once encountered, the chance to penetrate inside the host cell and develop the infection strongly depends on the degree of host susceptibility. As such, their strategy for persistence is more of a game of Russian roulette, where the chance of survival is dependent on the susceptibility of the host. Our study identifies P. sinerae as a potential key player in bloom community ecology, where in mixed dinoflagellate communities consisting of hosts that are highly susceptible to infection, parasitoid preferences may mediate coexistence between host species, reducing the dominance of the superior competitor. Alternatively, it may increase competition, leading

  5. Distribution patterns and biomass estimates of diatoms and autotrophic dinoflagellates in the NE Atlantic during June and July 1996

    Science.gov (United States)

    Yallop, M. L.

    Qualitative and quantitative analyses of microphytoplankton communities were determined from samples collected in the northeast Atlantic Ocean in the early summer of 1996 during the PRIME Cruise of the RRS Discovery. A combination of light microscopy and scanning electron microscopy techniques was used to determine the species composition of two of the main groups of phytoplankton: Bacillariophyceae and Dinophyta. Two series of samples were collected; the first set of samples was collected between 18 and 29 June 1996 during a Lagrangian time-series study in the vicinity of 59°N 20°W tracking a mesoscale cold-core eddy; the second set of samples was collected between 4 and 10 July 1996 during a transect along the 20°W meridian from 59 to 37°N. A total of 155 samples were analysed over various depths down to 150 m, and 78 phytoplankton species were identified. Samples taken during the Lagrangian time-series study were dominated by diatom species, including Ephemera planamembranacea and Pseudo-nitzschia species, whilst the main representative of the microphytoplankton dinoflagellates was Ceratium fusus. On the transect, several Ceratium species were common, including C. furca C. fusus, and C. lineatum, and three other autotrophic dinoflagellates were frequent including Prorocentrum minimum, Oxytoxum scolopax and Gonyaulax polygramma. A number of diatoms dominated the profiles along the transect including Leptocylindrus mediterraneus, Thalassiosira oestrupii, and representatives of the genera Haslea and Pseudo-nitzschia. Standing stocks of both groups were low and typical of post-bloom carbon levels. Diatom biomass exceeded that of dinoflagellate biomass in the eddy although the reverse situation was seen in the more southerly stations along the transect. Maximum abundances of the dinoflagellate communities were situated in the surface waters within the mixed layer, while depth maxima of certain diatoms were noted at around 40 m below the depth of the mixed layer

  6. Effects of temperature, salinity and composition of the dinoflagellate assemblage on the growth of Gambierdiscus carpenteri isolated from the Great Barrier Reef.

    Science.gov (United States)

    Sparrow, Leanne; Momigliano, Paolo; Russ, Garry R; Heimann, Kirsten

    2017-05-01

    Increases in reported incidence of ciguatera fish poisoning (hereafter ciguatera) have been linked to warmer sea temperatures that are known to trigger coral bleaching events. The drivers that trigger blooms of ciguatera-causing dinoflagellates on the Great Barrier Reef (GBR) are poorly understood. This study investigated the effects of increased temperatures and lowered salinities, often associated with environmental disturbance events, on the population growth of two strains of the potentially ciguatera-causing dinoflagellate, Gambierdiscus carpenteri (NQAIF116 and NQAIF380). Both strains were isolated from the central GBR with NQAIF116 being an inshore strain and NQAIF380 an isolate from a stable environment of a large coral reef aquarium exhibit in ReefHQ, Townsville, Australia. Species of Gambierdiscus are often found as part of a mixed assemblage of benthic toxic dinoflagellates on macroalgal substrates. The effect of assemblage structure of dinoflagellates on the growth of Gambierdiscus populations has, however, not been explored. The study, therefore investigated the growth of G. carpenteri within mixed assemblages of benthic dinoflagellates. Population growth was monitored over a period of 28days under three salinities (16, 26 and 36) and three temperature (24, 28 and 34°C) conditions in a fully crossed experimental design. Temperature and salinity had a significant effect on population growth. Strain NQAIF380 exhibited significantly higher growth at 28°C compared to strain NQAIF116, which had highest growth at 24°C. When strain NQAIF116 was co-cultured with the benthic dinoflagellates, Prorocentrum lima and Ostreopsis sp., inhibitory effects on population growth were observed at a salinity of 36. In contrast, growth stimulation of G. carpenteri (strain NQAIF116) was observed at a salinity of 26 and particularly at 16 when co-cultured with Ostreopsis-dominated assemblages. Range expansion of ciguatera-causing dinoflagellates could lead to higher

  7. SURVEY OF BENTHIC DINOFLAGELLATES ASSOCIATED TO BEDS OF Thalassia testudinum IN SAN ANDRÉS ISLAND, SEAFLOWER BIOSPHERE RESERVE, CARIBBEAN COLOMBIA

    Directory of Open Access Journals (Sweden)

    Brigitte Gavio

    2010-05-01

    Full Text Available In order to determine the occurrence of epiphytic toxic dinoflagellates in the coastal waters of San Andrés Island, Caribbean Colombia, we analyzed the seagrass beds on the northern and eastern sides of the island. We found seven species of toxicogenic dinoflagellates, belonging to the genera Prorocentrum and Ostreopsis. The cell densities were generally low if compared with previous studies in other Caribbean sites, ranging from 0 to 836 cells/dry weight. The species encountered are known to produce toxins causing the Diarrehic Shellfish Poisoning and Ciguatera, poisonings which have been documented in the island.

  8. Gene expression variation resolves species and individual strains among coral-associated dinoflagellates within the genus Symbiodinium

    KAUST Repository

    Parkinson, John Everett

    2016-02-11

    Reef-building corals depend on symbiotic mutualisms with photosynthetic dinoflagellates in the genus Symbiodinium. This large microalgal group comprises many highly divergent lineages (“Clades A-I”) and hundreds of undescribed species. Given their ecological importance, efforts have turned to genomic approaches to characterize the functional ecology of Symbiodinium. To date, investigators have only compared gene expression between representatives from separate clades—the equivalent of contrasting genera or families in other dinoflagellate groups—making it impossible to distinguish between clade-level and species-level functional differences. Here, we examined the transcriptomes of four species within one Symbiodinium clade (Clade B) at ~20,000 orthologous genes, as well as multiple isoclonal cell lines within species (i.e. cultured strains). These species span two major adaptive radiations within Clade B, each encompassing both host-specialized and ecologically cryptic taxa. Species-specific expression differences were consistently enriched for photosynthesis-related genes, likely reflecting selection pressures driving niche diversification. Transcriptional variation among strains involved fatty acid metabolism and biosynthesis pathways. Such differences among individuals are potentially a major source of physiological variation, contributing to the functional diversity of coral holobionts composed of unique host-symbiont genotype pairings. Our findings expand the genomic resources available for this important symbiont group and emphasize the power of comparative transcriptomics as a method for studying speciation processes and inter-individual variation in non-model organisms.

  9. Rapid and Accurate Identification by Real-Time PCR of Biotoxin-Producing Dinoflagellates from the Family Gymnodiniaceae

    Directory of Open Access Journals (Sweden)

    Kirsty F. Smith

    2014-03-01

    Full Text Available The identification of toxin-producing dinoflagellates for monitoring programmes and bio-compound discovery requires considerable taxonomic expertise. It can also be difficult to morphologically differentiate toxic and non-toxic species or strains. Various molecular methods have been used for dinoflagellate identification and detection, and this study describes the development of eight real-time polymerase chain reaction (PCR assays targeting the large subunit ribosomal RNA (LSU rRNA gene of species from the genera Gymnodinium, Karenia, Karlodinium, and Takayama. Assays proved to be highly specific and sensitive, and the assay for G. catenatum was further developed for quantification in response to a bloom in Manukau Harbour, New Zealand. The assay estimated cell densities from environmental samples as low as 0.07 cells per PCR reaction, which equated to three cells per litre. This assay not only enabled conclusive species identification but also detected the presence of cells below the limit of detection for light microscopy. This study demonstrates the usefulness of real-time PCR as a sensitive and rapid molecular technique for the detection and quantification of micro-algae from environmental samples.

  10. The dinoflagellate Lingulodinium polyedrum responds to N depletion by a polarized deposition of starch and lipid bodies.

    Directory of Open Access Journals (Sweden)

    Steve Dagenais Bellefeuille

    Full Text Available Dinoflagellates are important contributors to the marine phytoplankton and global carbon fixation, but are also infamous for their ability to form the spectacular harmful algal blooms called red tides. While blooms are often associated with high available nitrogen, there are instances where they are observed in oligotrophic environments. In order to maintain their massive population in conditions of nitrogen limitation, dinoflagellates must have evolved efficient adaptive mechanisms. Here we report the physiological responses to nitrogen deprivation in Lingulodinium polyedrum. We find that this species reacts to nitrogen stress, as do most plants and microalgae, by stopping cell growth and diminishing levels of internal nitrogen, in particular in the form of protein and chlorophyll. Photosynthesis is maintained at high levels for roughly a week following nitrate depletion, resulting in accumulated photosynthetic products in the form of starch. During the second week, photosynthesis rates decrease due to a reduction in the number of chloroplasts and the accumulation of neutral lipid droplets. Surprisingly, the starch granules and lipid droplets are seen to accumulate at opposite poles of the cell. Lastly, we observe that cells acclimated to nitrogen-depleted conditions resume normal growth after addition of inorganic nitrogen, but are able to maintain high cell densities far longer than cells grown continuously in nitrogen-replete conditions.

  11. Generalist dinoflagellate endosymbionts and host genotype diversity detected from mesophotic (67-100 m depths coral Leptoseris

    Directory of Open Access Journals (Sweden)

    Kahng Samuel E

    2009-09-01

    Full Text Available Abstract Background Mesophotic corals (light-dependent corals in the deepest half of the photic zone at depths of 30 - 150 m provide a unique opportunity to study the limits of the interactions between corals and endosymbiotic dinoflagellates in the genus Symbiodinium. We sampled Leptoseris spp. in Hawaii via manned submersibles across a depth range of 67 - 100 m. Both the host and Symbiodinium communities were genotyped, using a non-coding region of the mitochondrial ND5 intron (NAD5 and the nuclear ribosomal internal transcribed spacer region 2 (ITS2, respectively. Results Coral colonies harbored endosymbiotic communities dominated by previously identified shallow water Symbiodinium ITS2 types (C1_ AF333515, C1c_ AY239364, C27_ AY239379, and C1b_ AY239363 and exhibited genetic variability at mitochondrial NAD5. Conclusion This is one of the first studies to examine genetic diversity in corals and their endosymbiotic dinoflagellates sampled at the limits of the depth and light gradients for hermatypic corals. The results reveal that these corals associate with generalist endosymbiont types commonly found in shallow water corals and implies that the composition of the Symbiodinium community (based on ITS2 alone is not responsible for the dominance and broad depth distribution of Leptoseris spp. The level of genetic diversity detected in the coral NAD5 suggests that there is undescribed taxonomic diversity in the genus Leptoseris from Hawaii.

  12. Elucidating the evolutionary relationships of the Aiptasiidae, a widespread cnidarian-dinoflagellate model system (Cnidaria: Anthozoa: Actiniaria: Metridioidea).

    Science.gov (United States)

    Grajales, Alejandro; Rodríguez, Estefanía

    2016-01-01

    Sea anemones of the family Aiptasiidae sensu Grajales and Rodríguez (2014) are conspicuous members of shallow-water environments, including several species widely used as model systems for the study of cnidarian-dinoflagellate symbiosis and coral bleaching. Although previously published phylogenetic studies of sea anemones recovered Aiptasiidae as polyphyletic, they only included a sparse sample in terms of its taxonomic diversity and membership of the family had not been yet revised. This study explores the phylogenetic relationships of this family using five molecular markers and including newly collected material from the geographical distribution of most of the currently described genera and species. We find a monophyletic family Aiptasiidae. All the currently proposed genera were recovered as monophyletic units, a finding also supported by diagnostic morphological characters. Our results confirm Bellactis and Laviactis as members of Aiptasiidae, also in agreement with previous morphological studies. The monophyly of the group is congruent with the morphological homogeneity of the members of this family. The obtained results also allow discussing the evolution of morphological characters within the family. Furthermore, we find evidence for and describe a new cryptic species, Exaiptasia brasiliensis sp. nov., based on molecular data, geographical distribution, and the identity of its endosymbiotic dinoflagellate. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Spatio-temporal distribution of the dominant Diatom and Dinoflagellate species in the Bay of Tunis (SW Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    O. DALY YAHIA-KEFI

    2005-06-01

    Full Text Available Microphytoplankton composition and its relationships with hydrology and nutrient distributions were investigated over 24 months (December 1993 - November 1995 in the Bay of Tunis ( SW Mediterranean Sea. A new index, the ‘Specific Preference Index’ (SPI obtained by computing the median value of each parameter weighed by the numerical value of each species density was developed. Using this index, the relationships between each species and temperature, salinity and major nutrients were analysed. The distribution of chlorophyll a did not show a clear correlation with microplankton abundance suggesting that other factors contribute to chlorophyll concentration, such as smaller phytoplankton size fractions or detritus. The winter-spring diatom blooms did not show a regular pattern during both years. High nutrient inputs in late summer, associated with mild meteorological conditions, contributed to the development of a large diatom bloom in autumn 1995 where significant silicate depletion was witnessed. Generally, diatoms were more stenotherm than dinoflagellates in the Bay, whereas dinoflagellates were more stenohaline than diatoms. The statistical analyses showed that the two species, Bellerochea horologicalis , and Lithodesmioides polymorpha, var., tunisiense, appeared in a wide range of environmental conditions. An excess of phosphateversus nitrate appeared to be associated with red tides of, Gymnodinium spp, whereas Peridinium quinquecorne, showed the opposite. Phosphate concentrations appear to be crucial in this coastal environment, where diatom blooms are often limited by low silicate availability.

  14. Generalist dinoflagellate endosymbionts and host genotype diversity detected from mesophotic (67-100 m depths) coral Leptoseris.

    Science.gov (United States)

    Chan, Yvonne L; Pochon, Xavier; Fisher, Marla A; Wagner, Daniel; Concepcion, Gregory T; Kahng, Samuel E; Toonen, Robert J; Gates, Ruth D

    2009-09-11

    Mesophotic corals (light-dependent corals in the deepest half of the photic zone at depths of 30-150 m) provide a unique opportunity to study the limits of the interactions between corals and endosymbiotic dinoflagellates in the genus Symbiodinium. We sampled Leptoseris spp. in Hawaii via manned submersibles across a depth range of 67-100 m. Both the host and Symbiodinium communities were genotyped, using a non-coding region of the mitochondrial ND5 intron (NAD5) and the nuclear ribosomal internal transcribed spacer region 2 (ITS2), respectively. Coral colonies harbored endosymbiotic communities dominated by previously identified shallow water Symbiodinium ITS2 types (C1_ AF333515, C1c_ AY239364, C27_ AY239379, and C1b_ AY239363) and exhibited genetic variability at mitochondrial NAD5. This is one of the first studies to examine genetic diversity in corals and their endosymbiotic dinoflagellates sampled at the limits of the depth and light gradients for hermatypic corals. The results reveal that these corals associate with generalist endosymbiont types commonly found in shallow water corals and implies that the composition of the Symbiodinium community (based on ITS2) alone is not responsible for the dominance and broad depth distribution of Leptoseris spp. The level of genetic diversity detected in the coral NAD5 suggests that there is undescribed taxonomic diversity in the genus Leptoseris from Hawaii.

  15. Marine downscaling of a future climate scenario in the North Sea and possible effects on dinoflagellate harmful algal blooms.

    Science.gov (United States)

    Friocourt, Y F; Skogen, M; Stolte, W; Albretsen, J

    2012-01-01

    Two hydrodynamic and ecological models were used to investigate the effects of climate change-according to the IPCC A1b emission scenario - on the primary productivity of the North Sea and on harmful algal blooms. Both models were forced with atmospheric fields from a regional downscaling of General Circulation Models to compare two sets of 20-year simulations representative of present climate (1984-2004) conditions and of the 2040s. Both models indicated a general warming of the North Sea by up to 0.8°C and a slight freshening by the 2040s. The models suggested that the eastern North Sea would be subjected to more temperature and salinity changes than the western part. In addition, the ecological modules of the models indicated that the warming up of the sea would result in a slightly earlier spring bloom. The one model that also computes the distribution of four different phytoplankton groups suggests an increase in the abundance of dinoflagellates, whereas the abundance of diatoms, flagellates and Phaeocystis sp. remains comparable to current levels, or decrease. Assuming that Dinophysis spp. would experience a similar increase in abundance as the modelled group of dinoflagellates, it is hypothesised that blooms of Dinophysis spp. may occur more frequently in the North Sea by 2040. However, implications for shellfish toxicity remain unclear.

  16. Cytotoxicity, Fractionation and Dereplication of Extracts of the Dinoflagellate Vulcanodinium rugosum, a Producer of Pinnatoxin G

    Directory of Open Access Journals (Sweden)

    Philipp Hess

    2013-09-01

    Full Text Available Pinnatoxin G (PnTX-G is a marine toxin belonging to the class of cyclic imines and produced by the dinoflagellate Vulcanodinium rugosum. In spite of its strong toxicity to mice, leading to the classification of pinnatoxins into the class of “fast-acting toxins”, its hazard for human health has never been demonstrated. In this study, crude extracts of V. rugosum exhibited significant cytotoxicity against Neuro2A and KB cells. IC50 values of 0.38 µg mL−1 and 0.19 µg mL−1 were estimated on Neuro2A cells after only 24 h of incubation and on KB cells after 72 h of incubation, respectively. In the case of Caco-2 cells 48 h after exposure, the crude extract of V. rugosum induced cell cycle arrest accompanied by a dramatic increase in double strand DNA breaks, although only 40% cytotoxicity was observed at the highest concentration tested (5 µg mL−1. However, PnTX-G was not a potent cytotoxic compound as no reduction of the cell viability was observed on the different cell lines. Moreover, no effects on the cell cycle or DNA damage were observed following treatment of undifferentiated Caco-2 cells with PnTX-G. The crude extract of V. rugosum was thus partially purified using liquid-liquid partitioning and SPE clean-up. In vitro assays revealed strong activity of some fractions containing no PnTX-G. The crude extract and the most potent fraction were evaluated using full scan and tandem high resolution mass spectrometry. The dereplication revealed the presence of a major compound that could be putatively annotated as nakijiquinone A, N-carboxy-methyl-smenospongine or stachybotrin A, using the MarinLit™ database. Further investigations will be necessary to confirm the identity of the compounds responsible for the cytotoxicity and genotoxicity of the extracts of V. rugosum.

  17. ISOLATION AND GROWTH OF DINOFLAGELLATE, Scrippsiella sp. AND DIATOM, Melosira cf. moniliformis IN CONTROLLED CONDITIONS

    Directory of Open Access Journals (Sweden)

    Wa Iba

    2014-06-01

    Full Text Available The growth of the dinoflagellate, Scrippsiella sp. from Narragansett Bay, USA and the chain-forming benthic diatom, Melosira cf. moniliformis from Kendari Bay, Indonesia was evaluated under optimized laboratory conditions to investigate potential new candidates for shrimp aquaculture hatchery feeds. Isolation of microalgae was performed using capillary pipets in f/8-Si for Scrippsiella sp. and f/2 for M. cf. moniliformis. Isolated cells were placed in an incubator with a photoperiod of 12:12 hour (light : dark cycle, at light intensities of 62-89 μmol photons.m-2.s and at temperature of 20oC. Microalgae cells were cultured in 150-mL Erlenmeyer flasks containing 100 mL of f/2-Si medium for Scrippsiella spin triplicates and in 50-mL culture tubes containing 20 mL of f/2 medium for M. cf. moniliformis in four replicates. The cells in culture flasks were used in cell counting experiments while those in tubes were for fluorometer trials. Growth evaluation was conducted every 2-3 days. The diatom, M. cf. moniliformis was in logarithmic phase when observed at 2 to 7 days after inoculation and showed a high growth rate (μ = 0.52 day-1 and high division rate (k = 0.76 day-1, 1 division every 1.3 days. Logarithmic phase of Scrippsiella in culture flasks was started on day 7 to 30 (μ = 0.17 day-1 and k = 0.25 day-1 or 1 division every 4 days. In culture tubes, Scrippsiella sp. reached logarithmic phase at day 21 to 47 (μ = 0.12 day-1 and k = 0.18 day-1, 1 division every 5.65 days. This study indicates that M. cf. moniliformis can be used for aquaculture hatcheries feed but further study for the nutrition composition is needed. Scrippsiella sp. is potentially toxic for aquaculture at high densities, therefore they should be assessed carefully if used for aquaculture feeds.

  18. A hypocystal archeopyle in a freshwater dinoflagellate from the Peridinium umbonatum group (Dinophyceae) from Lake Nero di Cornisello, South Eastern Alps, Italy

    DEFF Research Database (Denmark)

    Tardio, Massimiliano; Ellegaard, Marianne; Lundholm, Nina

    2009-01-01

    This study presents the first record of a living dinoflagellate cyst with a hypocystal, antapical archeopyle. It is also the first detailed account of the archeopyle of a living freshwater cyst from the genus Peridinium. The cysts were isolated from sediment traps deployed in Lake Nero di...

  19. Process length variation in cysts of a dinoflagellate, Lingulodinium machaerophorum, in surface sediments: investigating its potential as salinity proxy

    DEFF Research Database (Denmark)

    Mertens, Kenneth; Ribeiro, Sofia; Ilham, Bouimetarhan

    2009-01-01

    A biometrical analysis of the dinoflagellate cyst Lingulodinium machaerophorum [Deflandre, G., Cookson, I.C., 1955. Fossil microplankton from Australia late Mesozoic and Tertiary sediments. Australian journal of Marine and Freshwater Research 6: 242–313.] Wall, 1967 in 144 globally distributed...

  20. Gyrodiniellum shiwhaense n. gen., n. sp., A New Planktonic Heterotrophic Dinoflagellate from the Coastal Waters of Western Korea 

    DEFF Research Database (Denmark)

    Kang, Nam Seon; Jeong, Hae Jin; Moestrup, O.

    2011-01-01

    .3-0.5 x cell length. Cells that were feeding on the dinoflagellate Amphidinium carterae Hulburt were 9.1-21.6 mu m long and 6.6-15.7 mu m wide. Cells of G. shiwhaense contain nematocysts, trichocysts, a peduncle, and pusule systems, but they lack chloroplasts. The SSU rDNA sequence is > 3% different from...

  1. De novo assembly and characterization of the transcriptome of the newly described dinoflagellate Ansanella granifera: Spotlight on flagellum-associated genes.

    Science.gov (United States)

    Jang, Se Hyeon; Jeong, Hae Jin; Chon, Jae Kyung; Lee, Sung Yeon

    2017-06-01

    Many dinoflagellates are known to cause red tides and often outgrow non-motile diatoms and motile small flagellates through active vertical migration between well-lit surface and eutrophic deep waters and/or by locating and ingesting prey cells. Their flagella play important roles in these two critical behaviors. However, the structural and functional genes of dinoflagellate flagella are very little known. Thus, a de novo assembly and characterization of the transcriptome of the fast-swimming dinoflagellate Ansanella granifera were conducted and its flagellum genes were compared with those of other dinoflagellates, motile small flagellates, and non-motile protist species. Based on assembled data using Trinity/CLC combined strategy, 83,652 transcripts of A. granifera were identified. The assembled consensus sequences were annotated to the NCBI non-redundant (nr), InterProScan, Gene Ontology (GO), and KEGG pathway analyses. Moreover, 71 structural and 35 functional flagellum-associated genes expressed were identified. The number of expressed flagellar structural and functional genes of A. granifera was not markedly different from those of other dinoflagellates or motile small flagellates, but much greater than those of non-motile species. Furthermore, in both phylogenetic trees based on the outer dynein arm (ODA1, ODA9, and DLC1) and inner dynein arm (IDA4, IDA7, and BOP5) flagellum genes of dinoflagellates, the problem of the long-branch attraction artifacts of Oxyrrhis marina which has been reported in the phylogenetic trees based on ribosomal DNA was removed. Moreover, in both phylogenetic trees based on the ODA and IDA flagellum genes, the species in the order Peridiniales or Gymnodiniales were revealed to belong to a big clade of each order. Therefore, the phylogenetic tree based on the flagellum genes is likely to give a clue to resolve the problem of separation in a big clade of a dinoflagellate order which has also been reported in the phylogenetic trees

  2. Generation and analysis of transcriptomic resources for a model system on the rise: the sea anemone Aiptasia pallida and its dinoflagellate endosymbiont

    Directory of Open Access Journals (Sweden)

    Sunagawa Shinichi

    2009-06-01

    Full Text Available Abstract Background The most diverse marine ecosystems, coral reefs, depend upon a functional symbiosis between cnidarian hosts and unicellular dinoflagellate algae. The molecular mechanisms underlying the establishment, maintenance, and breakdown of the symbiotic partnership are, however, not well understood. Efforts to dissect these questions have been slow, as corals are notoriously difficult to work with. In order to expedite this field of research, we generated and analyzed a collection of expressed sequence tags (ESTs from the sea anemone Aiptasia pallida and its dinoflagellate symbiont (Symbiodinium sp., a system that is gaining popularity as a model to study cellular, molecular, and genomic questions related to cnidarian-dinoflagellate symbioses. Results A set of 4,925 unique sequences (UniSeqs comprising 1,427 clusters of 2 or more ESTs (contigs and 3,498 unclustered ESTs (singletons was generated by analyzing 10,285 high-quality ESTs from a mixed host/symbiont cDNA library. Using a BLAST-based approach to predict which unique sequences derived from the host versus symbiont genomes, we found that the contribution of the symbiont genome to the transcriptome was surprisingly small (1.6–6.4%. This may reflect low levels of gene expression in the symbionts, low coverage of alveolate genes in the sequence databases, a small number of symbiont cells relative to the total cellular content of the anemones, or failure to adequately lyse symbiont cells. Furthermore, we were able to identify groups of genes that are known or likely to play a role in cnidarian-dinoflagellate symbioses, including oxidative stress pathways that emerged as a prominent biological feature of this transcriptome. All ESTs and UniSeqs along with annotation results and other tools have been made accessible through the implementation of a publicly accessible database named AiptasiaBase. Conclusion We have established the first large-scale transcriptomic resource for

  3. The Impact of the 1989 Exxon Valdez Oil Spill on Phytoplankton as Evidenced Through the Sedimentary Dinoflagellate Cyst Records in Prince William Sound (Alaska, USA).

    Science.gov (United States)

    Genest, M.; Pospelova, V.; Williams, J. R.; Dellapenna, T.; Mertens, K.; Kuehl, S. A.

    2016-12-01

    Large volumes of crude oil are extracted from marine environments and transported via the sea, putting coastal communities at a greater risk of oils spills. It is therefore crucial for these communities to properly assess the risk. The first step is to understand the effects of such events on the environment, which is limited by the lack of research on the impact of oil spills on phytoplankton. This first-of-its-kind research aims to identify how one of the major groups of phytoplankton, dinoflagellates, have been affected by the 1989 Exxon Valdez oil spill in Prince William Sound (PWS), Alaska. To do this, sedimentary records of dinoflagellate cysts, produced during dinoflagellate reproduction and preserved in the sediment, were analyzed. Two sediment cores were collected from PWS in 2012. The sediments are mainly composed of silt with a small fraction of clay. Both well-dated with 210Pb and 137Cs, the cores have high sedimentation rates, allowing for an annual to biannual resolution. Core 10 has a sedimentation rate of 1.1 cm yr-1 and provides continuous record since 1957, while Core 12 has a sedimentation rate of 1.3 cm yr-1 and spans from 1934. The cores were subsampled every centimeter for a total of 110 samples. Samples were treated using a standard palynological processing technique to extract dinoflagellate cysts and 300 cysts were counted per sample. In both cores, cysts were abundant, diverse and well preserved with the average cyst assemblage being characterized by an equal number of cysts produced by autotrophic and heterotrophic dinoflagellates. Of the 40 dinoflagellate cyst taxa, the most abundant are: Operculodinium centrocarpum and Brigantedinium spp. Other common species are: Spiniferites ramosus, cysts of Pentapharsodinium dalei, Echinidinium delicatum, E. zonneveldiae, E. transparantum, Islandinium minutum, and a thin pale brown Brigantedinium type. Changes in the sedimentary sequence of dinoflagellate cysts were analyzed by determining cyst

  4. mRNA EDITING AND SPLICED-LEADER RNA TRANS-SPLICING GROUPS OXYRRHIS, NOCTILUCA, HETEROCAPSA, AND AMPHIDINIUM AS BASAL LINEAGES OF DINOFLAGELLATES(1).

    Science.gov (United States)

    Zhang, Huan; Lin, Senjie

    2008-06-01

    Identification of novel dinoflagellate taxa through molecular analysis is hindered by lack of well-defined basal lineages. To address this issue, we attempted to reassess the phylogenetic status of Oxyrrhis marina Dujard. as well as other potentially basal taxa. The analysis was based on two newly established premises: (1) editing density of mitochondrial cob and cox1 mRNA increases from basal to later diverging lineages; (2) nuclear-encoded mRNA in dinoflagellates is trans-spliced to receive a 22 bp spliced leader (SL) at the 5'-end. We analyzed these two genetic traits in O. marina, Noctiluca scintillans (Macartney) Kof. et Swezy, Heterocapsa triquetra (Ehrenb.) F. Stein, H. rotundata (Lohmann) Ge. Hansen, Amphidinium carterae Hulburt, and A. operculatum Clap. et J. Lachm. Surprisingly, no editing was detected in cob and cox1 mRNAs in these lineages, except for a small number of editing events in Amphidinium. However, nuclear-encoded mRNAs in these species contained the SL sequence at the 5'-end, indicative of SL RNA trans-splicing. These findings, together with the recent cob-cox1-18S rRNA three-gene phylogeny, suggest the following: (1) O. marina is a basal dinoflagellate; (2) Heterocapsa, Amphidinium, and Noctiluca likely are also early diverging lineages of dinoflagellates, and the position of Heterocapsa is inconsistent with literature and needs further investigation; and (3) the presence of the 22 bp SL and mitochondrial (mt) mRNA editing can be considered a landmark of dinoflagellate splits. © 2008 Phycological Society of America.

  5. Superposition of Individual Activities: Urea-Mediated Suppression of Nitrate Uptake in the Dinoflagellate Prorocentrum minimum Revealed at the Population and Single-Cell Levels.

    Science.gov (United States)

    Matantseva, Olga; Skarlato, Sergei; Vogts, Angela; Pozdnyakov, Ilya; Liskow, Iris; Schubert, Hendrik; Voss, Maren

    2016-01-01

    Dinoflagellates readily use diverse inorganic and organic compounds as nitrogen sources, which is advantageous in eutrophied coastal areas exposed to high loads of anthropogenic nutrients, e.g., urea, one of the most abundant organic nitrogen substrates in seawater. Cell-to-cell variability in nutritional physiology can further enhance the diversity of metabolic strategies among dinoflagellates of the same species, but it has not been studied in free-living microalgae. We applied stable isotope tracers, isotope ratio mass spectrometry and nanoscale secondary ion mass spectrometry (NanoSIMS) to investigate the response of cultured nitrate-acclimated dinoflagellates Prorocentrum minimum to a sudden input of urea and the effect of urea on the concurrent nitrate uptake at the population and single-cell levels. We demonstrate that inputs of urea lead to suppression of nitrate uptake by P. minimum, and urea uptake exceeds the concurrent uptake of nitrate. Individual dinoflagellate cells within a population display significant heterogeneity in the rates of nutrient uptake and extent of the urea-mediated inhibition of the nitrate uptake, thus forming several groups characterized by different modes of nutrition. We conclude that urea originating from sporadic sources is rapidly utilized by dinoflagellates and can be used in biosynthesis or stored intracellularly depending on the nutrient status; therefore, sudden urea inputs can represent one of the factors triggering or supporting harmful algal blooms. Significant physiological heterogeneity revealed at the single-cell level is likely to play a role in alleviation of intra-population competition for resources and can affect the dynamics of phytoplankton populations and their maintenance in natural environments.

  6. Superposition of Individual Activities: Urea-mediated Suppression of Nitrate Uptake in the Dinoflagellate Prorocentrum minimum Revealed at the Population and Single-cell Levels

    Directory of Open Access Journals (Sweden)

    Olga Matantseva

    2016-08-01

    Full Text Available Dinoflagellates readily use diverse inorganic and organic compounds as nitrogen sources, which is advantageous in eutrophied coastal areas exposed to high loads of anthropogenic nutrients, e.g. urea, one of the most abundant organic nitrogen substrates in seawater. Cell-to-cell variability in nutritional physiology can further enhance the diversity of metabolic strategies among dinoflagellates of the same species, but it has not been studied in free-living microalgae. We applied stable isotope tracers, isotope ratio mass spectrometry and nanoscale secondary ion mass spectrometry (NanoSIMS to investigate the response of cultured nitrate-acclimated dinoflagellates Prorocentrum minimum to a sudden input of urea and the effect of urea on the concurrent nitrate uptake at the population and single-cell levels. We demonstrate that inputs of urea lead to suppression of nitrate uptake by P. minimum, and urea uptake exceeds the concurrent uptake of nitrate. Individual dinoflagellate cells within a population display significant heterogeneity in the rates of nutrient uptake and extent of the urea-mediated inhibition of the nitrate uptake, thus forming several groups characterized by different modes of nutrition. We conclude that urea originating from sporadic sources is rapidly utilized by dinoflagellates and can be used in biosynthesis or stored intracellularly depending on the nutrient status; therefore, sudden urea inputs can represent one of the factors triggering or supporting harmful algal blooms. Significant physiological heterogeneity revealed at the single-cell level is likely to play a role in alleviation of intra-population competition for resources and can affect the dynamics of phytoplankton populations and their maintenance in natural environments.

  7. Microbiostratigraphy of the Berriasian–Valanginian boundary in eastern Crimea: foraminifers, ostracods, organic-walled dinoflagellate cysts

    Directory of Open Access Journals (Sweden)

    Savelieva Yuliya N.

    2016-08-01

    Full Text Available Thorough study of foraminifers, ostracods and dinoflagellate remnants from the Zavodskaya Balka and Koklyuk sections helps to characterize the detailed biostratigraphic division of the Berriasian / Valanginian boundary sequence in the Feodosiya district of eastern Crimea. The foraminifer and dinocyst associations from the lower part of the sequence are clearly comparable with common Berriasian associations throughout all Mountain Crimea. On the other hand, foraminifer, ostracod and dinocyst associations from its upper part have been recorded only in eastern Crimea. The upper foraminifer level corresponds to the boreal ammonite zones from the Tauricum-Verrucosum (Upper Berriasian-Valanginian. Most of the ostracod species are endemic. The base of the uppermost dinocyst level correlates with the Lower Valanginian Paratollia zone from north-western Europe.

  8. Modelling of multi-nutrient interactions in growth of the dinoflagellate microalga Protoceratium reticulatum using artificial neural networks.

    Science.gov (United States)

    López-Rosales, L; Gallardo-Rodríguez, J J; Sánchez-Mirón, A; Contreras-Gómez, A; García-Camacho, F; Molina-Grima, E

    2013-10-01

    This study examines the use of artificial neural networks as predictive tools for the growth of the dinoflagellate microalga Protoceratium reticulatum. Feed-forward back-propagation neural networks (FBN), using Levenberg-Marquardt back-propagation or Bayesian regularization as training functions, offered the best results in terms of representing the nonlinear interactions among all nutrients in a culture medium containing 26 different components. A FBN configuration of 26-14-1 layers was selected. The FBN model was trained using more than 500 culture experiments on a shake flask scale. Garson's algorithm provided a valuable means of evaluating the relative importance of nutrients in terms of microalgal growth. Microelements and vitamins had a significant importance (approximately 70%) in relation to macronutrients (nearly 25%), despite their concentrations in the culture medium being various orders of magnitude smaller. The approach presented here may be useful for modelling multi-nutrient interactions in photobioreactors. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Cell cycle propagation is driven by light-dark stimulation in a cultured symbiotic dinoflagellate isolated from corals

    Science.gov (United States)

    Wang, L.-H.; Liu, Y.-H.; Ju, Y.-M.; Hsiao, Y.-Y.; Fang, L.-S.; Chen, C.-S.

    2008-12-01

    Endosymbiosis is an intriguing plant-animal interaction in the dinoflagellate-Cnidaria association. Throughout the life span of the majority of corals, the dinoflagellate Symbiodinium sp. is a common symbiont residing inside host gastrodermal cells. The mechanism of regulating the cell proliferation of host cells and their intracellular symbionts is critical for a stable endosymbiotic association. In the present study, the cell cycle of a cultured Symbiodinium sp. (clade B) isolated from the hermatypic coral Euphyllia glabrescens was investigated using flow cytometry. The results showed that the external light-dark (L:D) stimulation played a pivotal role in regulating the cell cycle process. The sequential light (40-100 μmol m-2 s-1 ~ 12 h) followed by dark (0 μmol m-2 s-1 ~ 12 h) treatment entrained a single cell cycle from the G1 to the S phase, and then to the G2/M phase, within 24 h. Blue light (~450 nm) alone mimicked regular white light, while lights of wavelengths in the red and infrared area of the spectrum had little or no effect in entraining the cell cycle. This diel pattern of the cell cycle was consistent with changes in cell motility, morphology, and photosynthetic efficiency ( F v / F m ). Light treatment drove cells to enter the growing/DNA synthesis stage (i.e., G1 to S to G2/M), accompanied by increasing motility and photosynthetic efficiency. Inhibition of photosynthesis by 3-(3, 4-dichlorophenyl)-1, 1-dimethyl-urea (DCMU) treatment blocked the cell proliferation process. Dark treatment was required for the mitotic division stage, where cells return from G2/M to G1. Two different pools of adenylyl cyclase (AC) activities were shown to be involved in the growing/DNA synthesis and mitotic division states, respectively.

  10. Remarkable sequence similarity between the dinoflagellate-infecting marine girus and the terrestrial pathogen African swine fever virus

    Directory of Open Access Journals (Sweden)

    Claverie Jean-Michel

    2009-10-01

    Full Text Available Abstract Heterocapsa circularisquama DNA virus (HcDNAV; previously designated as HcV is a giant virus (girus with a ~356-kbp double-stranded DNA (dsDNA genome. HcDNAV lytically infects the bivalve-killing marine dinoflagellate H. circularisquama, and currently represents the sole DNA virus isolated from dinoflagellates, one of the most abundant protists in marine ecosystems. Its morphological features, genome type, and host range previously suggested that HcDNAV might be a member of the family Phycodnaviridae of Nucleo-Cytoplasmic Large DNA Viruses (NCLDVs, though no supporting sequence data was available. NCLDVs currently include two families found in aquatic environments (Phycodnaviridae, Mimiviridae, one mostly infecting terrestrial animals (Poxviridae, another isolated from fish, amphibians and insects (Iridoviridae, and the last one (Asfarviridae exclusively represented by the animal pathogen African swine fever virus (ASFV, the agent of a fatal hemorrhagic disease in domestic swine. In this study, we determined the complete sequence of the type B DNA polymerase (PolB gene of HcDNAV. The viral PolB was transcribed at least from 6 h post inoculation (hpi, suggesting its crucial function for viral replication. Most unexpectedly, the HcDNAV PolB sequence was found to be closely related to the PolB sequence of ASFV. In addition, the amino acid sequence of HcDNAV PolB showed a rare amino acid substitution within a motif containing highly conserved motif: YSDTDS was found in HcDNAV PolB instead of YGDTDS in most dsDNA viruses. Together with the previous observation of ASFV-like sequences in the Sorcerer II Global Ocean Sampling metagenomic datasets, our results further reinforce the ideas that the terrestrial ASFV has its evolutionary origin in marine environments.

  11. Morphology and molecular characterization of the epiphytic dinoflagellate Prorocentrum cf. rhathymum in temperate waters off Jeju Island, Korea

    Science.gov (United States)

    Lim, An Suk; Jeong, Hae Jin; Jang, Tae Young; Kang, Nam Seon; Lee, Sung Yeon; Yoo, Yeong Du; Kim, Hyung Seop

    2013-03-01

    Prorocentrum spp. are planktonic and/or benthic species. Benthic Prorocentrum species are of primary concern to scientists and the public because some of them are toxic. We established clonal cultures of 3 strains of Prorocentrum species that were collected from the thalli of a macroalga in the coastal waters off Jeju Island, located at the southern end of Korea. The Korean strains of P. cf. rhathymum, which are morphologically almost identical to the Virgin Island strain of P. rhathymum, were different from P. mexicanum because the former dinoflagellate has one simple collar-like spine in the periflagellar area, while the latter dinoflagellate has a 2- or 3-horned spine. In addition, the sequences of the small subunit (SSU) rDNA of the Korean strains were identical to those of the Malaysian and Floridian strains of P. rhathymum, while the sequences of the large subunit (LSU) rDNA of the Korean strains were 0.1-0.9% different from those of the Iranian and Malaysian strains of P. rhathymum. In phylogenetic trees based on the SSU rDNA sequences, the Korean strains of P. rhathymum formed a clade with the Malaysian and Floridian strains of P. rhathymum and the Vietnamese and Polynesian strains of P. mexicanum. However, in phylogenetic trees based on the LSU rDNA sequences, the Korean strains of P. rhathymum formed a clade with the Iranian strain of P. rhathymum and the Spanish and Mexican strains of P. mexicanum. Therefore, the molecular characterization of the Korean strains does not allow us to clearly classify them as P. rhathymum, nor P. mexicanum, although their morphology has so far been reported to be closer to that of P. rhathymum than P. mexicanum and thus we designated them as P. cf. rhathymum.

  12. Ecological niche partitioning of the invasive dinoflagellate Prorocentrum minimum and its native congeners in the Baltic Sea.

    Science.gov (United States)

    Telesh, Irena V; Schubert, Hendrik; Skarlato, Sergei O

    2016-11-01

    This study analyses three decades of the peculiar bloom-formation history of the potentially toxic invasive planktonic dinoflagellates Prorocentrum minimum (Pavillard) Schiller in the SW Baltic Sea. We tested a research hypothesis that the unexpectedly long delay (nearly two decades) in population development of P. minimum prior to its first bloom was caused by competition with one or several closely related native dinoflagellate species due to ecological niche partitioning which hampered the spread and bloom-forming potential of the invader. We applied the ecological niche concept to a large, long-term phytoplankton database and analysed the invasion history and population dynamics of P. minimum in the SW Baltic Sea coastal waters using the data on phytoplankton composition, abundance and biomass. The ecological niche dimensions of P. minimum and its congener P. balticum were identified as the optimum environmental conditions for the species during the bloom events based on water temperature, salinity, pH, concentration of nutrients (PO43-; total phosphorus, TP; total nitrogen, TN; SiO44-), TN/TP-ratio and habitat type. The data on spatial distribution and ecological niche dimensions of P. minimum have contributed to the development of the "protistan species maximum concept". High microplankton diversity at critical salinities in the Baltic Sea may be considered as a possible reason for the significant niche overlap and strong competitive interactions among congeners leading to prolonged delay in population growth of P. minimum preceding its first bloom in the highly variable brackishwater environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Statistically assessing the correlation between salinity and morphology in cysts produced by the dinoflagellate Protoceratium reticulatum from surface sediments of the North Atlantic Ocean, Mediterranean-Marmara-Black Sea region, and Baltic-Kattegat-Skagerrak estuarine system

    NARCIS (Netherlands)

    Jansson, I.-M.; Mertens, K.N.; Head, M.J.; de Vernal, A.; Londeix, L.; Marret, F.; Matthiessen, J.; Sangiorgi, F.

    2014-01-01

    Recent studies have correlated dinoflagellate resting cyst morphology to salinity and density variations in the water column, suggesting that morphology can be used for paleoceanographic reconstructions. However, the univariate statistics used by these studies are appropriate only where morphology

  14. DINOFLAGELLATE CYSTS AND CALCAREOUS NANNOFOSSILS FROM THE UPPER CRETACEOUS SARACENO FORMATION (CALABRIA, ITALY: IMPLICATIONS ABOUT THE HISTORY OF THE LIGURIDE COMPLEX

    Directory of Open Access Journals (Sweden)

    STEFANO TORRICELLI

    2003-11-01

    Full Text Available Organic-walled dinoflagellate cysts and calcareous nannofossils recovered from the turbidites of the Saraceno Formation outcropping in the type area (north-eastern Calabria, Italy are presented. They provide new information about the age of the Saraceno Formation, hence a constraint to reconstruct the timing of deformations that affected the Liguride Complex. The distribution of dinoflagellate cysts and calcareous nannofossils in the succession studied is compared with biostratigraphies available for the Upper Cretaceous. Accordingly, the age of the lowermost part of the Fiumara Saraceno section is latest Albian to Turonian, whereas the upper part of the section is dated as late Campanian-?earliest Maastrichtian. A hiatus spanning che Coniacian, che Santonian and most of che Campanian is inferred between these two successions, which are also distinguished by the presence and absence of flint respectively. Consistencies and discrepancies of che present data with biostratigraphical information previously published for che Saraceno Formation, are discussed. 

  15. Integrating microRNA and mRNA expression profiling in Symbiodinium microadriaticum, a dinoflagellate symbiont of reef-building corals.

    KAUST Repository

    Baumgarten, Sebastian

    2013-10-12

    Animal and plant genomes produce numerous small RNAs (smRNAs) that regulate gene expression post-transcriptionally affecting metabolism, development, and epigenetic inheritance. In order to characterize the repertoire of endogenous smRNAs and potential gene targets in dinoflagellates, we conducted smRNA and mRNA expression profiling over 9 experimental treatments of cultures from Symbiodinium microadriaticum, a photosynthetic symbiont of scleractinian corals.

  16. Dinoflagellate Cysts in Surface Sediments of Jakarta Bay, off Ujung Pandang and Larantuka of Flores Islands, Indonesia with Special Reference of Pyrodinium bahamense

    OpenAIRE

    Matsuoka, Kazumi; Fukuyo, Yasuwo; P.Praseno, Djoko; Adnan, Quraisyin; Kodama, Masa'Aki

    1999-01-01

    The paralytic shellfish poisoning (PSP) causative dinoflagellate Pyrodinium bahamense Plate var compressum (Bohm) Steidinger, Tester et Tayler was recently reported in Ambon Bay of Ambon Island and Kao Bay of Halmahera Island in the eastern part of Indonesia where serious PSP-outbreaks have occurred. However, neither cysts nor motile cells of this variety have ever been recorded from central to western Indonesia. Intensive investigations carried out on surface sediments of Jakarta Bay reveale...

  17. Selective depolarization of the muscle membrane in frog nerve-muscle preparations by a chromatographically purified extract of the dinoflagellate Ostreopsis lenticularis

    OpenAIRE

    Meunier, Frédéric A.; Mercado, José A; Molgó, Jordi; Tosteson, Thomas R.; Escalona de Motta, Gladys

    1997-01-01

    The actions of a chromatographically identified extract of the marine dinoflagellate Ostreopsis lenticularis, named ostreotoxin-3 (OTX-3), were studied on frog isolated neuromuscular preparations.OTX-3 (1–10 μg ml−1) applied to cutaneous pectoris nerve-muscle preparations depolarized skeletal muscle fibres and caused spontaneous contractions. The depolarization was neither reversed by prolonged washing nor by (+)-tubocurarine.OTX-3 decreased the amplitude of miniature end plate potentials (m....

  18. Ultrastructure and Phylogeny of Kirithra asteri gen. et sp. nov. (Ceratoperidiniaceae, Dinophyceae) - a Free-Living, Thin-Walled Marine Photosynthetic Dinoflagellate from Argentina.

    Science.gov (United States)

    Boutrup, Pernille Vængebjerg; Moestrup, Øjvind; Tillmann, Urban; Daugbjerg, Niels

    2017-11-01

    A gymnodinioid photosynthetic dinoflagellate was isolated from Argentina and examined by light and electron microscopy and analysis of nuclear-encoded LSU rDNA. Kirithra asteri gen. et sp. nov. was proposed as morphology and molecular phylogeny separated this dinoflagellate from others within the family Ceratoperidiniaceae. Cells were surrounded by a hyaline amphiesma comprising polygonal vesicles. Each vesicle contained a honeycomb and a trilaminar structure. An anterior sulcal extension ending in a complete circle formed the apical structure complex (ASC), which characterizes Ceratoperidiniaceae. The ASC comprised three rows of vesicles. The nucleus was located in the hypocone, and several large, irregularly shaped vesicles were present in the epi- and hypocone. Chloroplasts were surrounded by three membranes, and grana-like arrangements of thylakoids were observed in one strain used for ultrastructural study. The cell centre contained 1-3 multiple-stalked pyrenoids and membrane-bound vesicles containing tile-like structures surrounded each pyrenoid. Two pusules with collecting chambers and associated vesicles branched off each of the flagellar canals. The flagellar apparatus featured a ventral connective between the amphiesma and the R1 root, and almost opposite basal bodies, rarely seen in dinoflagellates. This was the first ultrastructural study of a species within Ceratoperidiniaceae. Copyright © 2017 Elsevier GmbH. All rights reserved.

  19. Calcareous dinoflagellate cysts from the Tithonian - Valanginian Vaca Muerta Formation in the southern Mendoza area of the Neuquén Basin, Argentina

    Science.gov (United States)

    Ivanova, Daria K.; Kietzmann, Diego A.

    2017-08-01

    The Late Jurassic - Early Cretaceous marine sediments of the Andean region show an excellent record of different calcareous microfossils, among which calcareous dinoflagellate cysts stand out. Detailed micropaleontological studies of Vaca Muerta Formation (Early Tithonian - Early Valanginian) in the southern Mendoza Neuquén Basin from three sections are conducted with the aim of establishing a major presence of microfossil representatives from different microfossil groups. The analysis of several thin sections from the outcrops reveals a relatively rich micropaleontological assemblage of calcareous dinoflagellate cysts, as well as levels with poor preserved calpionellids and benthic foraminifera. Particularly, calcareous dinoflagellate cyst includes 24 known species (two of them with two subspecies). Some species with biostratigraphic value of the Tethyan region have been identified also in the Andean region: 1) Committosphaera pulla (Borza) and Parastomiosphaera malmica (Borza) are species known only from Lower Tithonian; 2) Colomisphaera tenuis (Nagy) appears in the latest Early Tithonian; 3) Colomisphaera fortis Řehánek and Stomiosphaerina proxima Řehánek are important markers for the latest Late Tithonian - middle Late Berriasian interval; 4) Stomiosphaera wanneri Borza appears in the middle Late Berriasian; 5) Colomisphaera conferta Řehánek and Colomisphaera vogleri (Borza) appear in the Late Berriasian and marked the Berriasian-Valanginian boundary interval; 6) Carpistomiosphaera valanginiana Borza is a marker for the Lower/Upper Valanginian. More detailed studies of these groups will allow their correlation with Tethyan biozones, and contribute to improve biostratigraphic schemes in the Neuquén Basin.

  20. Cadmium and phosphate variability during algal blooms of the dinoflagellate Lingulodinium polyedrum in Todos Santos Bay, Baja California, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez-Mejia, E. [Posgrado en Oceanografía Costera, Instituto de Investigaciones Oceanológicas/Facultad de Ciencias Marinas, Universidad Autónoma de Baja California, Campus Sauzal, Carretera Transpeninsular Ensenada-Tijuana No. 3917, Ensenada, Baja California CP 22860 (Mexico); Lares, M.L., E-mail: llares@cicese.mx [División de Oceanología, Departamento de Oceanografía Biológica, Centro de Investigación Científica y de Educación Superior de Ensenada, Km 107 Carretera Transpeninsular Ensenada-Tijuana, Ensenada, Baja California CP 22880 (Mexico); Huerta-Diaz, M.A.; Delgadillo-Hinojosa, F. [Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Campus Sauzal, Carretera Transpeninsular Ensenada-Tijuana No. 3917, Ensenada, Baja California CP 22860 (Mexico)

    2016-01-15

    Dinoflagellate algal blooms (DABs), with Lingulodinium polyedrum as the dominant species, have increased over the past few years in coastal areas off Baja California, Mexico. Vertical and temporal variability of particulate cadmium (Cd{sub p}), dissolved Cd (Cd{sub d}), PO{sub 4}{sup 3−} and Cd{sub d}/PO{sub 4}{sup 3−} were investigated during two intense DABs of L. polyedrum that occurred during the fall of 2011 and 2012 in Todos Santos Bay. Results were then, compared with data gathered in the absence of algal blooms during the autumn of 2013. In both algal blooms, L. polyedrum tended to be concentrated near the surface throughout the duration; however, during DAB 2011 the number of cells was twice as abundant ([10.0 ± 8.0] × 10{sup 5} cells L{sup −1}) as in DAB 2012 ([5.0 ± 4.4] × 10{sup 5} cells L{sup −1}). During DAB 2011, Cd{sub p} increased significantly (up to 1.02 ± 0.99 nmol kg{sup −1}) and was positively correlated with the cell abundance of L. polyedrum, suggesting that this dinoflagellate is able to assimilate and concentrate Cd{sub d}. Likewise, Cd{sub d} (up to 0.71 ± 0.17 nM) increased in the days of highest cell abundance, which could be attributed to uptake and subsequent regeneration of Cd{sub d} resulting from the remineralization of organic particulate matter produced during the bloom, as well as with the presence of organic ligands secreted by L. polyedrum that could keep Cd{sub d} in solution. During DAB 2011, dissolved Cd{sub d}/PO{sub 4}{sup 3−} ratios exhibited high vertical and temporal variability in the upper 5 m of the water column, but remained virtually constant near the bottom, suggesting a depth-dependent decoupling between these two dissolved components during the bloom development. Given the observed differences in the vertical and temporal variability of Cd{sub d}, Cd{sub p}, and PO{sub 4}{sup 3−} between these two intense DABs, we propose the existence of an abundance threshold of approximately 10{sup 6

  1. The Role of Complement in Cnidarian-Dinoflagellate Symbiosis and Immune Challenge in the Sea Anemone Aiptasia pallida

    Science.gov (United States)

    Poole, Angela Z.; Kitchen, Sheila A.; Weis, Virginia M.

    2016-01-01

    The complement system is an innate immune pathway that in vertebrates, is responsible for initial recognition and ultimately phagocytosis and destruction of microbes. Several complement molecules including C3, Factor B, and mannose binding lectin associated serine proteases (MASP) have been characterized in invertebrates and while most studies have focused on their conserved role in defense against pathogens, little is known about their role in managing beneficial microbes. The purpose of this study was to (1) characterize complement pathway genes in the symbiotic sea anemone Aiptasia pallida, (2) investigate the evolution of complement genes in invertebrates, and (3) examine the potential dual role of complement genes Factor B and MASP in the onset and maintenance of cnidarian-dinoflagellate symbiosis and immune challenge using qPCR based studies. The results demonstrate that A. pallida has multiple Factor B genes (Ap_Bf-1, Ap_Bf-2a, and Ap_Bf-2b) and one MASP gene (Ap_MASP). Phylogenetic analysis indicates that the evolutionary history of complement genes is complex, and there have been many gene duplications or gene loss events, even within members of the same phylum. Gene expression analyses revealed a potential role for complement in both onset and maintenance of cnidarian-dinoflagellate symbiosis and immune challenge. Specifically, Ap_Bf-1 and Ap_MASP are significantly upregulated in the light at the onset of symbiosis and in response to challenge with the pathogen Serratia marcescens suggesting that they play a role in the initial recognition of both beneficial and harmful microbes. Ap_Bf-2b in contrast, was generally downregulated during the onset and maintenance of symbiosis and in response to challenge with S. marcescens. Therefore, the exact role of Ap_Bf-2b in response to microbes remains unclear, but the results suggest that the presence of microbes leads to repressed expression. Together, these results indicate functional divergence between Ap_Bf-1

  2. The scavenger receptor repertoire in six cnidarian species and its putative role in cnidarian-dinoflagellate symbiosis

    Directory of Open Access Journals (Sweden)

    Emilie F. Neubauer

    2016-11-01

    Full Text Available Many cnidarians engage in a mutualism with endosymbiotic photosynthetic dinoflagellates that forms the basis of the coral reef ecosystem. Interpartner interaction and regulation includes involvement of the host innate immune system. Basal metazoans, including cnidarians have diverse and complex innate immune repertoires that are just beginning to be described. Scavenger receptors (SR are a diverse superfamily of innate immunity genes that recognize a broad array of microbial ligands and participate in phagocytosis of invading microbes. The superfamily includes subclades named SR-A through SR-I that are categorized based on the arrangement of sequence domains including the scavenger receptor cysteine rich (SRCR, the C-type lectin (CTLD and the CD36 domains. Previous functional and gene expression studies on cnidarian-dinoflagellate symbiosis have implicated SR-like proteins in interpartner communication and regulation. In this study, we characterized the SR repertoire from a combination of genomic and transcriptomic resources from six cnidarian species in the Class Anthozoa. We combined these bioinformatic analyses with functional experiments using the SR inhibitor fucoidan to explore a role for SRs in cnidarian symbiosis and immunity. Bioinformatic searches revealed a large diversity of SR-like genes that resembled SR-As, SR-Bs, SR-Es and SR-Is. SRCRs, CTLDs and CD36 domains were identified in multiple sequences in combinations that were highly homologous to vertebrate SRs as well as in proteins with novel domain combinations. Phylogenetic analyses of CD36 domains of the SR-B-like sequences from a diversity of metazoans grouped cnidarian with bilaterian sequences separate from other basal metazoans. All cnidarian sequences grouped together with moderate support in a subclade separately from bilaterian sequences. Functional experiments were carried out on the sea anemone Aiptasia pallida that engages in a symbiosis with Symbiodinium minutum

  3. The role of complement in cnidarian-dinoflagellate symbiosis and immune challenge in the sea anemone Aiptasia pallida

    Directory of Open Access Journals (Sweden)

    Angela ePoole

    2016-04-01

    Full Text Available The complement system is an innate immune pathway that in vertebrates, is responsible for initial recognition and ultimately phagocytosis and destruction of microbes. Several complement molecules including C3, Factor B, and mannose binding lectin associated serine proteases (MASP have been characterized in invertebrates and while most studies have focused on their conserved role in defense against pathogens, little is known about their role in managing beneficial microbes. The purpose of this study was to (1 characterize complement pathway genes in the symbiotic sea anemone A. pallida, (2 investigate the evolution of complement genes in invertebrates, and (3 examine the potential dual role of complement genes Factor B and MASP in the onset and maintenance of cnidarian-dinoflagellate symbiosis and immune challenge using qPCR based studies. The results demonstrate that A. pallida has multiple Factor B genes (Ap_Bf-1, Ap_Bf-2a, and Ap_Bf-2b and one MASP gene (Ap_MASP. Phylogenetic analysis indicates that the evolutionary history of complement genes is complex, and there have been many gene duplications or gene loss events, even within members of the same phylum. Gene expression analyses revealed a potential role for complement in both onset and maintenance of cnidarian-dinoflagellate symbiosis and immune challenge. Specifically, Ap_Bf-1 and Ap_MASP are significantly upregulated in the light at the onset of symbiosis and in response to challenge with the pathogen Serratia marcescens suggesting that they play a role in the initial recognition of both beneficial and harmful microbes. Ap_Bf-2b in contrast was generally downregulated during the onset and maintenance of symbiosis and in response to challenge with S. marcescens. Therefore the exact role of Ap_Bf-2b in response to microbes remains unclear, but the results suggests that the presence of microbes leads to repressed expression. Together these results indicate functional divergence between Ap

  4. Palaeoceanographic Variability of the Benguela Upwelling System Depending on the Northern Hemisphere Glaciation (NHG) - Indicated by Organic-Walled Dinoflagellates

    Science.gov (United States)

    Bork, M.

    2003-12-01

    The causes and effects of the intensification of growth of the northern Hemisphere ice caps at around 3.2 and 2.74 Ma BP are still unclear. Possible causes are changes in the global ocean circulation and the global carbon cycle, which might have resulted from tectonic processes, solar insolation changes, or the interaction between both processes. The Benguela upwelling area forms a key area within the global ocean system. Here, warm and saline Indian Ocean waters enter the South Atlantic Ocean and are transported to the north. Variability of this inflow may thus result in changes in deep-water production in the North Atlantic, thereby influencing the global thermohaline circulation. Furthermore, the Benguela area is characterized by extremely high bioproductivity in surface waters as a result of year-round upwelling. Variations in the upwelling intensity might lead to changes in atmospheric ¤CO2. To study the changes in the circulation and the upwelling intensity, within this region organic-walled dinoflagellate cysts from two high-resolution cores (ODP 1084 and1082) covering the time interval from 3.3 to 2.5 Ma BP were investigated. Due to their sensitiveness to ecological parameters, organic-walled dinoflagellates reflect oceanographic characteristics keenly. The analyses discover clear distribution differences of individual species, especially of those that are sensible or resistant against aerobic decay. The sensible species, (Protoperidinium and Echinidinium), have their highest abundance from 2.76 to 2.73 Ma BP, a time interval in which the resistant species show no significant changes in their abundance. This implies that during this time interval the oxygen was reduced in the deep- and porewater suggesting that the global ocean deepwater circulation was weakened. Comparing these results with the known intensification of the NHG at around 2.74 Ma BP leads to the speculation that the increasing of ice caps in the northern hemisphere is highly associated with

  5. Middle Eocene paleocirculation of the southwestern Atlantic Ocean, the anteroom to an ice-house world: evidence from dinoflagellates

    Science.gov (United States)

    Raquel Guerstein, G.; Daners, Gloria; Palma, Elbio; Ferreira, Elizabete P.; Premaor, Eduardo; Amenábar, Cecilia R.; Belgaburo, Alexandra

    2016-04-01

    Middle Eocene dinoflagellate cyst organic walled assemblages from sections located in the Antarctic Peninsula, Tierra del Fuego, Santa Cruz province and south of Chile are mainly represented by endemic taxa, which are also dominant in several circum - Antarctic sites located southern 45° S. Some members of this endemic Antarctic assemblage, including especies of Enneadocysta, Deflandrea, Vozzhennikovia, and Spinidinium, have been recognised in sites along the Southwest Atlantic Ocean Shelf at Colorado (˜38° S), Punta del Este (˜36° S) and Pelotas (˜30° S) basins. Northern 30° S, at Jequitinhonha (˜17oS) and Sergipe (˜11° S) basins, there is no evidence of the endemic Antarctic members, except for Enneadocysta dictyostila, recorded in very low proportion. Based on its positive correlation with CaCO3 percentages we assume that this species is the unique member of the endemic assemblage apparently tolerant to warm surface waters. Previous research developed in the Tasman area has related the presence of endemic taxa at mid- latitudes to a strong clockwise subpolar gyre favoured by the partial continental blockage of the Tasmanian Gateways and the Drake Passage. In this work we propose that the dinoflagellate cyst distribution along the South Atlantic Ocean Shelf can be explained by a similar dynamical mechanism induced by a cyclonic subpolar gyre on the South Atlantic Ocean. The western boundary current of this gyre, starting on the west Antarctic continental slope, would follow a similar path to the present Malvinas Current on the Patagonian slope. Modelling and observational studies at the Patagonian shelf-break have shown that a cyclonic western boundary current promotes upwelling and intrusion of cold oceanic waters to the shelf and intensifies the northward shelf transport. In a similar way we hypothesize that during the Middle Eocene the western boundary current of a proto-Weddell Gyre transported the circum-antarctic waters and the endemic components

  6. Characterization of Gambierdiscus lapillus sp. nov. (Gonyaulacales, Dinophyceae): a new toxic dinoflagellate from the Great Barrier Reef (Australia).

    Science.gov (United States)

    Kretzschmar, Anna Liza; Verma, Arjun; Harwood, Tim; Hoppenrath, Mona; Murray, Shauna

    2017-04-01

    Gambierdiscus is a genus of benthic dinoflagellates found worldwide. Some species produce neurotoxins (maitotoxins and ciguatoxins) that bioaccumulate and cause ciguatera fish poisoning (CFP), a potentially fatal food-borne illness that is common worldwide in tropical regions. The investigation of toxigenic species of Gambierdiscus in CFP endemic regions in Australia is necessary as a first step to determine which species of Gambierdiscus are related to CFP cases occurring in this region. In this study, we characterized five strains of Gambierdiscus collected from Heron Island, Australia, a region in which ciguatera is endemic. Clonal cultures were assessed using (i) light microscopy; (ii) scanning electron microscopy; (iii) DNA sequencing based on the nuclear encoded ribosomal 18S and D8-D10 28S regions; (iv) toxicity via mouse bioassay; and (v) toxin profile as determined by Liquid Chromatography-Mass Spectrometry. Both the morphological and phylogenetic data indicated that these strains represent a new species of Gambierdiscus, G. lapillus sp. nov. (plate formula Po, 3', 0a, 7″, 6c, 7-8s, 5‴, 0p, 2″″ and distinctive by size and hatchet-shaped 2' plate). Culture extracts were found to be toxic using the mouse bioassay. Using chemical analysis, it was determined that they did not contain maitotoxin (MTX1) or known algal-derived ciguatoxin analogs (CTX3B, 3C, CTX4A, 4B), but that they contained putative MTX3, and likely other unknown compounds. © 2016 Phycological Society of America.

  7. Occurrences of the toxic dinoflagellate Ostreopsis ovata in relation with environmental factors in Kerkennah Island (Southern coast of Tunisia

    Directory of Open Access Journals (Sweden)

    Mounir Ben brahim

    2015-08-01

    Full Text Available Objective: To study the seasonal and monthly variability of the toxic dinoflagellate Ostreopsis ovata (O. ovata in relation to environmental parameters in Kerkennah Island. Methods: Three water samples replicate of one-litter were taken daily for ten consecutive days on 12 months. All sampling water was kept in the dark at ambient temperature until their microscopic observation. Environmental variables such as salinity and temperature were measured in the field concomitantly as phytoplankton sampling. Nutrients (ammonium, nitrite, nitrate, phosphate and silicate were analysed in laboratory with Auto-analyser Luebbe type. Cell identification and enumeration in water samples were performed with an inverted microscope after the sedimentation. Results: The highest abundance of O. ovata was recorded in summer. Analysis of variance showed significant difference of abundance between seasons, whereas no significant difference for month was detected. Factorial analysis ordination showed a positive correlation of Ostreopsis mainly with temperature and low correlation with nitrite and nitrate whereas the second axis (with 26.30% of variance showed that Ostreopsis was correlated with temperature and salinity. Conclusions: The maximum abundance of Ostreopsis was reached in summer when temperature was high and a low relationship between O. ovata and nutrient was detected.

  8. Interactions between the Newly-Described Small and Fast-Swimming Mixotrophic Dinoflagellate Yihiella yeosuensis and Common Heterotrophic Protists.

    Science.gov (United States)

    Jeong, Hae Jin; Kang, Hee Chang; You, Ji Hyun; Jang, Se Hyeon

    2018-02-03

    The mixotroph Yihiella yeosuensis is a small and fast-swimming dinoflagellate. To investigate its protistan predators, interactions between Y. yeosuensis and 11 heterotrophic protists were explored. No potential predators were able to feed on actively-swimming Y. yeosuensis cells, which escaped via rapid jumps, whereas Aduncodinium glandula, Oxyrrhis marina and Strombidinopsis sp. (approximately 150 μm in cell length) were able to feed on weakly-swimming cells that could not jump. Furthermore, Gyrodinium dominans, Luciella masanensis and Pfiesteria piscicida were able to feed on heat-killed Yihiella cells, whereas Gyrodinium moestrupii, Noctiluca scintillans, Oblea rotunda, Polykrikos kofoidii and Strombidium sp. (20 μm) did not feed on them. Thus, the jumping behavior of Y. yeosuensis might be primarily responsible for the observed lack of predation. With increasing Yihiella concentration, the growth rate of O. marina decreased, whereas that of Strombidinopsis did not change. However, with increasing Yihiella concentration (up to 530 ng C mL -1 ), the ingestion rate of Strombidinopsis on Yihiella increased linearly. The highest ingestion rate was 24.1 ng C predator -1 d -1 . The low daily carbon acquisition from Yihiella relative to the body carbon content of Strombidinopsis might be responsible for its negligible growth. Thus, Y. yeosuensis might have an advantage over its competitors due to its low mortality rate. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  9. Seasonal phenology of the heterotrophic dinoflagellate Noctiluca scintillans (Macartney) in Jiaozhou Bay and adjacent coastal Yellow Sea, China

    Science.gov (United States)

    Wang, Weicheng; Sun, Song; Sun, Xiaoxia; Zhang, Fang; Zhang, Guangtao; Zhu, Mingliang

    2017-11-01

    Seasonal variations in numerical abundance, cell diameter and population carbon biomass of the heterotrophic dinoflagellate Noctiluca scintillans were studied for 10 years from 2004 to 2013 in Jiaozhou Bay and adjacent coastal Yellow Sea, China, and their ecological functions were evaluated. In both areas, N. scintillans occurred throughout the year and demonstrated an essentially similar seasonality; the cell abundance increased rapidly from the winter minimum to an annual peak in late spring and early summer, and decreased gradually toward the autumn-winter minimum. The peak abundance differed by years, and there was no consistent trend in long-term numerical variations. The cell diameter also showed a seasonal fluctuation, being larger in spring and early summer than the other seasons. Estimated carbon biomass of N. scintillans population reached to a peak as high as 90.3 mg C/m3, and occasionally exceed over phytoplankton and copepod biomass. Our results demonstrate that N. scintillans in northwestern Yellow Sea displays the seasonal phenology almost identical to the populations in other temperate regions, and play important trophic roles as a heterotroph to interact with sympatric phytoplankton and copepods.

  10. Aspergillus Sydowii Marine Fungal Bloom in Australian Coastal Waters, Its Metabolites and Potential Impact on Symbiodinium Dinoflagellates

    Science.gov (United States)

    Hayashi, Aiko; Crombie, Andrew; Lacey, Ernest; Richardson, Anthony J.; Vuong, Daniel; Piggott, Andrew M.; Hallegraeff, Gustaaf

    2016-01-01

    Dust has been widely recognised as an important source of nutrients in the marine environment and as a vector for transporting pathogenic microorganisms. Disturbingly, in the wake of a dust storm event along the eastern Australian coast line in 2009, the Continuous Plankton Recorder collected masses of fungal spores and mycelia (~150,000 spores/m3) forming a floating raft that covered a coastal area equivalent to 25 times the surface of England. Cultured A. sydowii strains exhibited varying metabolite profiles, but all produced sydonic acid, a chemotaxonomic marker for A. sydowii. The Australian marine fungal strains share major metabolites and display comparable metabolic diversity to Australian terrestrial strains and to strains pathogenic to Caribbean coral. Secondary colonisation of the rafts by other fungi, including strains of Cladosporium, Penicillium and other Aspergillus species with distinct secondary metabolite profiles, was also encountered. Our bioassays revealed that the dust-derived marine fungal extracts and known A. sydowii metabolites such as sydowic acid, sydowinol and sydowinin A adversely affect photophysiological performance (Fv/Fm) of the coral reef dinoflagellate endosymbiont Symbiodinium. Different Symbiodinium clades exhibited varying sensitivities, mimicking sensitivity to coral bleaching phenomena. The detection of such large amounts of A. sydowii following this dust storm event has potential implications for the health of coral environments such as the Great Barrier Reef. PMID:26999164

  11. Characterization of a New Trioxilin and a Sulfoquinovosyl Diacylglycerol with Anti-Inflammatory Properties from the Dinoflagellate Oxyrrhis marina

    Directory of Open Access Journals (Sweden)

    Eun Young Yoon

    2017-02-01

    Full Text Available Two new compounds—a trioxilin and a sulfoquinovosyl diacylglycerol (SQDG—were isolated from the methanolic extract of the heterotrophic dinoflagellate Oxyrrhis marina cultivated by feeding on dried yeasts. The trioxilin was identified as (4Z,8E,13Z,16Z,19Z -7(S,10(S,11(S-trihydroxydocosapentaenoic acid (1, and the SQDG was identified as (2S-1-O-hexadecanosy-2-O-docosahexaenoyl-3-O-(6-sulfo-α-d-quinovopyranosyl-glycerol (2 by a combination of nuclear magnetic resonance (NMR spectra, mass analyses, and chemical reactions. The two compounds were associated with docosahexaenoic acid, which is a major component of O. marina. The two isolated compounds showed significant nitric oxide inhibitory activity on lipopolysaccharide-induced RAW264.7 cells. Compound 2 showed no cytotoxicity against hepatocarcinoma (HepG2, neuroblastoma (Neuro-2a, and colon cancer (HCT-116 cells, while weak cytotoxicity was observed for compound 1 against Neuro-2a cells.

  12. Geographic structure and host specificity shape the community composition of symbiotic dinoflagellates in corals from the Northwestern Hawaiian Islands

    Science.gov (United States)

    Stat, Michael; Yost, Denise M.; Gates, Ruth D.

    2015-12-01

    How host-symbiont assemblages vary over space and time is fundamental to understanding the evolution and persistence of mutualistic symbioses. In this study, the diversity and geographic structure of coral-algal partnerships across the remote Northwestern Hawaiian Islands archipelago was investigated. The diversity of symbionts in the dinoflagellate genus Symbiodinium was characterised using the ribosomal internal transcribed spacer 2 (ITS2) gene in corals sampled at ten reef locations across the Northwestern Hawaiian Islands. Symbiodinium diversity was reported using operational taxonomic units and the distribution of Symbiodinium across the island archipelago investigated for evidence of geographic structure using permutational MANOVA. A 97 % sequence similarity of the ITS2 gene for characterising Symbiodinium diversity was supported by phylogenetic and ecological data. Four of the nine Symbiodinium evolutionary lineages (clades A, C, D, and G) were identified from 16 coral species at French Frigate Shoals, and host specificity was a dominant feature in the symbiotic assemblages at this location. Significant structure in the diversity of Symbiodinium was also found across the archipelago in the three coral species investigated. The latitudinal gradient and subsequent variation in abiotic conditions (particularly sea surface temperature dynamics) across the Northwestern Hawaiian Islands encompasses an environmental range that decouples the stability of host-symbiont assemblages across the archipelago. This suggests that local adaptation to prevailing environmental conditions by at least one partner in coral-algal mutualism occurs prior to the selection pressures associated with the maintenance of a symbiotic state.

  13. Aspergillus Sydowii Marine Fungal Bloom in Australian Coastal Waters, Its Metabolites and Potential Impact on Symbiodinium Dinoflagellates

    Directory of Open Access Journals (Sweden)

    Aiko Hayashi

    2016-03-01

    Full Text Available Dust has been widely recognised as an important source of nutrients in the marine environment and as a vector for transporting pathogenic microorganisms. Disturbingly, in the wake of a dust storm event along the eastern Australian coast line in 2009, the Continuous Plankton Recorder collected masses of fungal spores and mycelia (~150,000 spores/m3 forming a floating raft that covered a coastal area equivalent to 25 times the surface of England. Cultured A. sydowii strains exhibited varying metabolite profiles, but all produced sydonic acid, a chemotaxonomic marker for A. sydowii. The Australian marine fungal strains share major metabolites and display comparable metabolic diversity to Australian terrestrial strains and to strains pathogenic to Caribbean coral. Secondary colonisation of the rafts by other fungi, including strains of Cladosporium, Penicillium and other Aspergillus species with distinct secondary metabolite profiles, was also encountered. Our bioassays revealed that the dust-derived marine fungal extracts and known A. sydowii metabolites such as sydowic acid, sydowinol and sydowinin A adversely affect photophysiological performance (Fv/Fm of the coral reef dinoflagellate endosymbiont Symbiodinium. Different Symbiodinium clades exhibited varying sensitivities, mimicking sensitivity to coral bleaching phenomena. The detection of such large amounts of A. sydowii following this dust storm event has potential implications for the health of coral environments such as the Great Barrier Reef.

  14. Reef endemism, host specificity and temporal stability in populations of symbiotic dinoflagellates from two ecologically dominant Caribbean corals.

    Science.gov (United States)

    Thornhill, Daniel J; Xiang, Yu; Fitt, William K; Santos, Scott R

    2009-07-15

    The dinoflagellate genus Symbiodinium forms symbioses with numerous protistan and invertebrate metazoan hosts. However, few data on symbiont genetic structure are available, hindering predictions of how these populations and their host associations will fair in the face of global climate change. Here, Symbiodinium population structure from two of the Caribbean's ecologically dominant scleractinian corals, Montastraea faveolata and M. annularis, was examined. Tagged colonies on Florida Keys and Bahamian (i.e., Exuma Cays) reefs were sampled from 2003-2005 and their Symbiodinium diversity assessed via internal transcribed spacer 2 (ITS2) rDNA and three Symbiodinium Clade B-specific microsatellite loci. Generally, the majority of host individuals at a site harbored an identical Symbiodinium ITS2 "type" B1 microsatellite genotype. Notably, symbiont genotypes were largely reef endemic, suggesting a near absence of dispersal between populations. Relative to the Bahamas, sympatric M. faveolata and M. annularis in the Florida Keys harbored unique Symbiodinium populations, implying regional host specificity in these relationships. Furthermore, within-colony Symbiodinium population structure remained stable through time and environmental perturbation, including a prolonged bleaching event in 2005. Taken together, the population-level endemism, specificity and stability exhibited by Symbiodinium raises concerns about the long-term adaptive capacity and persistence of these symbioses in an uncertain future of climate change.

  15. Membrane labeling of coral gastrodermal cells by biotinylation: the proteomic identification of surface proteins involving cnidaria-dinoflagellate endosymbiosis.

    Directory of Open Access Journals (Sweden)

    Hsing-Hui Li

    Full Text Available The cellular and molecular-scale processes underlying the stability of coral-Symbiodinium endosymbioses remain unclear despite decades of investigation. As the coral gastroderm is the only tissue layer characterized by this unique symbiotic association, the membranes of these symbiotic gastrodermal cells (SGCs may play important roles in the initiation and maintenance of the endosymbiosis. In order to elucidate the interactions between the endosymbiotic dinoflagellates and their coral hosts, a thorough characterization of SGC membranes is therefore required. Cell surface proteins of isolated SGCs were biotinylated herein by a cell impermeant agent, biotin-XX sulfosuccinimidyl ester. The in situ distribution of these biotinylated proteins was uncovered by both fluorescence and transmission electron microscopic imaging of proteins bound to Alexa Fluor® 488-conjugated streptavidin. The identity of these proteins was then determined by two-dimensional gel electrophoresis followed by liquid chromatography-tandem mass spectrometry. Nineteen (19 proteins were identified, and they are known to be involved in the molecular chaperone/stress response, cytoskeletal remodeling, and energy metabolism. These results not only reveal the molecular characters of the host SGC membrane, but also provide critical insight into understanding the possible role of host membranes in this ecologically important endosymbiotic association.

  16. In vitro culture and developmental cycle of the parasitic dinoflagellate Hematodinium sp. from the blue crab Callinectes sapidus.

    Science.gov (United States)

    Li, Caiwen; Miller, Terrence L; Small, Hamish J; Shields, Jeffrey D

    2011-12-01

    Hematodinium is a genus of parasitic dinoflagellates whose species have caused significant mortalities in marine crustacean fisheries worldwide. A species of Hematodinium infects the blue crab, Callinectes sapidus on the eastern seaboard of the USA. The mode of transmission of the parasite in blue crabs is unknown. We established several continuous in vitro cultures of Hematodinium sp. isolated from the haemolymph of infected blue crabs. One isolate has been continuously maintained in our laboratory through serial subcultivation for over 12 months, and is capable of infecting new hosts when inoculated into healthy crabs. Cells of the parasite undergo characteristic developmental changes in vitro consistent with the identifiable stages of Hematodinium sp.: filamentous trophonts, amoeboid trophonts, arachnoid trophonts and sporonts, sporoblasts, prespores and dinospores (macrospores and microspores). Additionally, we describe an unusual shunt in the life cycle wherein presumptive schizonts derived from arachnoid sporonts developed into filamentous and arachnoid trophonts that can then initiate arachnoid sporonts in new cultures. This may explain the rapid proliferation of the parasite in blue crab hosts. We also found that temperature and light intensity affected the growth and development of the parasite in vitro.

  17. Long-range dispersal and high-latitude environments influence the population structure of a "stress-tolerant" dinoflagellate endosymbiont.

    Directory of Open Access Journals (Sweden)

    D Tye Pettay

    Full Text Available The migration and dispersal of stress-tolerant symbiotic dinoflagellates (genus Symbiodinium may influence the response of symbiotic reef-building corals to a warming climate. We analyzed the genetic structure of the stress-tolerant endosymbiont, Symbiodinium glynni nomen nudum (ITS2 - D1, obtained from Pocillopora colonies that dominate eastern Pacific coral communities. Eleven microsatellite loci identified genotypically diverse populations with minimal genetic subdivision throughout the Eastern Tropical Pacific, encompassing 1000's of square kilometers from mainland Mexico to the Galapagos Islands. The lack of population differentiation over these distances corresponds with extensive regional host connectivity and indicates that Pocillopora larvae, which maternally inherit their symbionts, aid in the dispersal of this symbiont. In contrast to its host, however, subtropical populations of S. glynni in the Gulf of California (Sea of Cortez were strongly differentiated from populations in tropical eastern Pacific. Selection pressures related to large seasonal fluctuations in temperature and irradiance likely explain this abrupt genetic discontinuity. We infer that S. glynni genotypes harbored by host larvae arriving from more southern locations are rapidly replaced by genotypes adapted to more temperate environments. The strong population structure of S. glynni corresponds with fluctuating environmental conditions and suggests that these genetically diverse populations have the potential to evolve rapidly to changing environments and reveals the importance of environmental extremes in driving microbial eukaryote (e.g., plankton speciation in marine ecosystems.

  18. Antioxidant response of ridgetail white prawn Exopalaemon carinicauda to harmful dinoflagellate Prorocentrum minimum exposure and its histological change

    Science.gov (United States)

    Mu, Cuimin; Ren, Xianyun; Ge, Qianqian; Wang, Jiajia; Li, Jian

    2017-04-01

    The dinoflagellate Prorocentrum minimum, one of the most widespread red tide causing species, affects marine aquaculture and ecosystems worldwide. In this study, ridgetail white prawn Exopalaemon carinicauda were exposed to P. minimum cells (5 × 104 cells mL-1) to investigate its harmful effects on the shrimp. Antioxidant activities and histological changes were used as indicators of health status of the shrimp. In 72 hours, the mortality of E. carinicauda was not affected, but its antioxidant response and histology were statistically different from those of control. Elevated superoxide dismutase (SOD) and glutathione peroxidase (GPX) activities and depressed catalase (CAT) activity were observed in gill; while increased SOD, glutathione S-transferase (GST), CAT activities and modulated GPX activity were observed in hepatopancreas. Thus, antioxidant activities in gill and hepatopancreas seem to respond differentially to harmful alga exposure. Increased malondialdehyde (MDA) content in early a few hours indicates the damage of the antioxidant defense system. Although MDA content recovered to a low level thereafter, a series of histological abnormalities including accumulation or infiltration of hemocytes, tissue lesions and necrosis were discovered in gill and hepatopancreas. Exposure to P. minimum induced sublethal effects on E. carinicauda, including temporary oxidative damage and histological injury.

  19. Identification of genetic modules mediating the Jekyll and Hyde interaction of Dinoroseobacter shibae with the dinoflagellate Prorocentrum minimum

    Directory of Open Access Journals (Sweden)

    Hui eWang

    2015-11-01

    Full Text Available The co-cultivation of the alphaproteobacterium Dinoroseobacter shibae with the dinoflagellate Prorocentrum minimum is characterized by a mutualistic phase followed by a pathogenic phase in which the bacterium kills aging algae. Thus it resembles the Jekyll-and-Hyde interaction that has been proposed for other algae and Roseobacter. Here we identified key genetic components of this interaction. Analysis of the transcriptome of D. shibae in co-culture with P. minimum revealed growth phase dependent changes in the expression of quorum sensing (QS, the CtrA phosphorelay, and flagella biosynthesis genes. Deletion of the histidine kinase gene cckA which is part of the CtrA phosphorelay or the flagella genes fliC or flgK resulted in complete lack of growth stimulation of P. minimum in co-culture with the D. shibae mutants. By contrast, pathogenicity was entirely dependent on one of the extrachromosomal elements of D. shibae, the 191 kb plasmid. The data show that flagella and the CtrA phosphorelay are required for establishing mutualism and prove a cell density dependent killing effect of D. shibae on P. minimum which is mediated by an unknown factor encoded on the 191 kb plasmid.

  20. Membrane labeling of coral gastrodermal cells by biotinylation: the proteomic identification of surface proteins involving cnidaria-dinoflagellate endosymbiosis.

    Science.gov (United States)

    Li, Hsing-Hui; Huang, Zi-Yu; Ye, Shih-Png; Lu, Chi-Yu; Cheng, Pai-Chiao; Chen, Shu-Hwa; Chen, Chii-Shiarng

    2014-01-01

    The cellular and molecular-scale processes underlying the stability of coral-Symbiodinium endosymbioses remain unclear despite decades of investigation. As the coral gastroderm is the only tissue layer characterized by this unique symbiotic association, the membranes of these symbiotic gastrodermal cells (SGCs) may play important roles in the initiation and maintenance of the endosymbiosis. In order to elucidate the interactions between the endosymbiotic dinoflagellates and their coral hosts, a thorough characterization of SGC membranes is therefore required. Cell surface proteins of isolated SGCs were biotinylated herein by a cell impermeant agent, biotin-XX sulfosuccinimidyl ester. The in situ distribution of these biotinylated proteins was uncovered by both fluorescence and transmission electron microscopic imaging of proteins bound to Alexa Fluor® 488-conjugated streptavidin. The identity of these proteins was then determined by two-dimensional gel electrophoresis followed by liquid chromatography-tandem mass spectrometry. Nineteen (19) proteins were identified, and they are known to be involved in the molecular chaperone/stress response, cytoskeletal remodeling, and energy metabolism. These results not only reveal the molecular characters of the host SGC membrane, but also provide critical insight into understanding the possible role of host membranes in this ecologically important endosymbiotic association.

  1. Dinoflagellate community structure from the stratified environment of the Bay of Bengal, with special emphasis on harmful algal bloom species.

    Science.gov (United States)

    Naik, Ravidas Krishna; Hegde, Sahana; Anil, Arga Chandrashekar

    2011-11-01

    Harmful algal blooms (HABs) have been documented along the coasts of India and the ill effects felt by society at large. Most of these reports are from the Arabian Sea, west coast of India, whereas its counterpart, the Bay of Bengal (BOB), has remained unexplored in this context. The unique characteristic features of the BOB, such as large amount of riverine fresh water discharges, monsoonal clouds, rainfall, and weak surface winds make the area strongly stratified. In this study, 19 potentially harmful species which accounted for approximately 14% of the total identified species (134) of dinoflagellates were encountered in surface waters of the BOB during November 2003 to September 2006. The variations in species abundance could be attributed to the seasonal variations in the stratification observed in the BOB. The presence of frequently occurring HAB species in low abundance (≤ 40 cell L( -1)) in stratified waters of the BOB may not be a growth issue. However, they may play a significant role in the development of pelagic seed banks, which can serve as inocula for blooms if coupled with local physical processes like eddies and cyclones. The predominance of Ceratium furca and Noctiluca scintillans, frequently occurring HAB species during cyclone-prone seasons, point out their candidature for HABs.

  2. Taxocoenosis of epibenthic dinoflagellates in the coastal waters of the northern Yucatan Peninsula before and after the harmful algal bloom event in 2011-2012.

    Science.gov (United States)

    Aguilar-Trujillo, Ana C; Okolodkov, Yuri B; Herrera-Silveira, Jorge A; Merino-Virgilio, Fany Del C; Galicia-García, Citlalli

    2017-06-15

    Eutrophication causes the major impact in the coastal waters of the state of Yucatan. In general, loss of water quality and biological communities and massive development of toxic microorganisms are some of the consequences of this phenomenon. To reveal changes in species composition and cell abundance of the taxocoenosis of epibenthic dinoflagellates before and after a harmful algal bloom event in the water column that lasted about 150days (August-December 2011) in the Dzilam - San Crisanto area (northern Yucatan Peninsula, southeastern Gulf of Mexico) were the main objectives of the present study. In August 2011 and September 2012, sampling along 20 transects perpendicular to the coastline along the entire northern Yucatan coast, starting from 20 sampling sites from El Cuyo in the east to Celestún in the west, at a distance of 50, 150 and 250m from the coast, was carried out. Physicochemical characteristics measured before and after the bloom were within the ranges previously reported in the study area. Salinity was the most stable characteristic, with mean values of 36.25 and 36.42 in 2011 and 2012, respectively. Phosphates were the only parameter that showed a wide range with higher values before the bloom (0.03-0.54μM/l). A total of 168 macrophyte (seaweeds and seagrasses), sponge and sediment samples (105 in 2011 and 63 in 2012) that included associated microphytobenthos were taken by snorkeling from 0.7 to 5m depth. Six substrate types were distinguished: Chlorophyta, Phaeophyceae, Rhodophyta, Angiospermae (seagrasses), Demospongiae (sponges) and sediment. Chlorophytes dominated the collected samples: 38 samples in 2011 and 23 in 2012. Avrainvillea longicaulis f. laxa predominated before the bloom and Udotea flabellum after it. In total, 25 epibenthic dinoflagellate species from 11 genera were found. The genus Prorocentrum was the most representative in terms of the number of species. The highest total dinoflagellate cell abundances were observed in the

  3. Host–symbiont recombination versus natural selection in the response of coral–dinoflagellate symbioses to environmental disturbance

    Science.gov (United States)

    LaJeunesse, Todd C.; Smith, Robin; Walther, Mariana; Pinzón, Jorge; Pettay, Daniel T.; McGinley, Michael; Aschaffenburg, Matthew; Medina-Rosas, Pedro; Cupul-Magaña, Amilcar L.; Pérez, Andrés López; Reyes-Bonilla, Hector; Warner, Mark E.

    2010-01-01

    Mutualisms between reef-building corals and endosymbiotic dinoflagellates are particularly sensitive to environmental stress, yet the ecosystems they construct have endured major oscillations in global climate. During the winter of 2008, an extreme cold-water event occurred in the Gulf of California that bleached corals in the genus Pocillopora harbouring a thermally ‘sensitive’ symbiont, designated Symbiodinium C1b-c, while colonies possessing Symbiodinium D1 were mostly unaffected. Certain bleached colonies recovered quickly while others suffered partial or complete mortality. In most colonies, no appreciable change was observed in the identity of the original symbiont, indicating that these partnerships are stable. During the initial phases of recovery, a third species of symbiont B1Aiptasia, genetically identical to that harboured by the invasive anemone, Aiptasia sp., grew opportunistically and was visible as light-yellow patches on the branch tips of several colonies. However, this symbiont did not persist and was displaced in all cases by C1b-c several months later. Colonies with D1 were abundant at inshore habitats along the continental eastern Pacific, where seasonal turbidity is high relative to offshore islands. Environmental conditions of the central and southern coasts of Mexico were not sufficient to explain the exclusivity of D1 Pocillopora in these regions. It is possible that mass mortalities associated with major thermal disturbances during the 1997–1998 El Niño Southern Oscillation eliminated C1b-c holobionts from these locations. The differential loss of Pocillopora holobionts in response to thermal stress suggests that natural selection on existing variation can cause rapid and significant shifts in the frequency of particular coral–algal partnerships. However, coral populations may take decades to recover following episodes of severe selection, thereby raising considerable uncertainty about the long-term viability of these communities

  4. Molecular Quantification of the Florida Red Tide Dinoflagellate and the Development of Low Cost, Volunteer-attended Handheld Sensor Networks

    Science.gov (United States)

    Nieuwkerk, D.; Ulrich, R. M.; Paul, J. H.; Hubbard, K.; Kirkpatrick, B. A.; Fanara, T. A.; Bruzek, S.; Hoeglund, A.

    2016-02-01

    Harmful algal blooms of the dinoflagellate Karenia brevis can cause massive fish-kills and marine mammal mortalities, as well as impact human health via the consumption of brevetoxin-contaminated shellfish and the inhalation of aerosolized toxins. There is a strong effort to predict human health impacts by monitoring the bloom stages of K. brevis, and to prevent health impacts by closing shellfish beds when K. brevis cell concentrations reach toxic levels. The current standard method for quantifying K. brevis is by microscopic enumeration, which requires taxonomic expertise to discern K. brevis cells from other Karenia species as well as a long turnover time to generate data, which limits the number of water samples that can be processed. This EPA-funded study compared a variety of technologies against the current standard (microscopic counts) to quantify the number of K. brevis cells per liter in the water column. Results of this study showed a strong correlation between Real Time Nucleic Acid Sequence-Based Amplification (RT-NASBA) and enumeration by microscopy performed by members of the Florida Fish and Wildlife Research Institute, who are responsible for such monitoring. We are adapting the bench-top RT-NASBA assay to the AmpliFire platform (a handheld sensor that can be used in the field), for point of need K. brevis detection. These handheld sensors will be used by a trained volunteer network and government agencies (FWC, NOAA, and Mote Marine Lab.) to quantify K. brevis cells in the water column of core Gulf of Mexico sites; the results from these sensors will be reported back to the GCOOS observation systems to provide real-time monitoring of K. brevis counts. The real-time information will allow agencies to better monitor fishery closures and predict human health impacts of harmful algal blooms, because a larger number of samples can be processed each week, as the NASBA process removes the rate-limiting step of microscope time.

  5. Evidence for strain-specific exometabolomic responses of the coccolithophore Emiliania huxleyi to grazing by the dinoflagellate Oxyrrhis marina.

    Directory of Open Access Journals (Sweden)

    Kelsey L Poulson-Ellestad

    2016-01-01

    Full Text Available The coccolithophore Emiliania huxleyi forms massive blooms and plays a critical role in global elemental cycles, sequestering significant amounts of atmospheric carbon dioxide on geological time scales via production of calcium carbonate coccoliths and emitting dimethyl sulfoniopropionate (DMSP which has the potential for increasing atmospheric albedo. Because grazing in pelagic systems is a major top-down force structuring microbial communities, the influence of grazers on E. huxleyi populations has been of interest to researchers. Roles of DMSP (and related metabolites in interactions between E. huxleyi and protist grazers have been investigated, however, little is known about the release of other metabolites that may influence, or be influenced by, such grazing interactions. We used high-resolution mass spectrometry in an untargeted approach to survey the suite of low molecular weight compounds released by four different E. huxleyi strains in response to grazing by the dinoflagellate Oxyrrhis marina. Overall, a strikingly small number of metabolites were detected from E. huxleyi and O. marina cells, but these were distinctly informative to construct metabolic footprints. At most, E. huxleyi strains shared 25% of released metabolites. Furthermore, there appeared to be no unified metabolic response in E. huxleyi strains to grazing; rather these responses were strain specific. Concentrations of several metabolites also positively correlated with grazer activities, including grazing, ingestion, and growth rates; however, no single metabolite responded uniformly across all strains of E. huxleyi tested. Regardless, grazing clearly transformed the constituents of dissolved organic matter produced by these marine microbes. This study addresses several technical challenges, and presents a platform to further study the influence of chemical cues in aquatic systems and demonstrates the impact of strain diversity and grazing on the complexity of

  6. Ultrastructure of a novel tube-forming, intracellular parasite of dinoflagellates: Parvilucifera prorocentri sp. nov. (Alveolata, Myzozoa).

    Science.gov (United States)

    Leander, Brian S; Hoppenrath, Mona

    2008-02-01

    We have characterized the intracellular development and ultrastructure of a novel parasite that infected the marine benthic dinoflagellate Prorocentrum fukuyoi. The parasite possessed a combination of features described for perkinsids and syndineans, and also possessed novel characters associated with its parasitic life cycle. Reniform zoospores, about 4 microm long, possessed a transverse flagellum, alveoli, a refractile body, a mitochondrion with tubular cristae, a syndinean-like nucleus with condensed chromatin, micronemes, bipartite trichocysts with square profiles (absent in perkinsids) and oblong microbodies. Like Parvilucifera, the zoospores also possessed a shorter posterior flagellum, a heteromorphic pair of central microtubules in the anterior axoneme and a reduced pseudoconoid positioned directly above an orthogonal pair of basal bodies. Early developmental stages consisted of a sporangium about 5-15 microm in diam that contained spherical bodies and amorphous spaces. The undifferentiated sporangium increased to about 20-25 microm in diam before being enveloped by a wall with a convoluted mid-layer. The sporangium differentiated into an unordered mass of zoospores that escaped from the cyst through a pronounced germ tube about 4-5 microm in diam and 10-15 microm long. Weakly developed germ tubes have been described in Perkinsus but are absent altogether in Parvilucifera and syndineans. Comparison of these data with other myzozoans led us to classify the parasite as Parvilucifera prorocentri sp. nov., Myzozoa. Although we were hesitant to erect a new genus name in the absence of molecular sequence data, our ultrastructural data strongly indicated that this parasite is most closely related to perkinsids and syndineans, and represents an intriguing candidate for the cellular identity of a major subclade of Group I alveolates.

  7. Comparative growth rates of cultured marine dinoflagellates in the genus Symbiodinium and the effects of temperature and light.

    Directory of Open Access Journals (Sweden)

    Anke Klueter

    Full Text Available Many dinoflagellate microalgae of the genus Symbiodinium form successful symbioses with a large group of metazoans and selected protists. Yet knowledge of growth kinetics of these endosymbionts and their ecological and evolutionary implications is limited. We used a Bayesian biphasic generalized logistic model to estimate key parameters of the growth of five strains of cultured Symbiodinium, S. microadriaticum (cp-type A194; strain 04-503, S. microadriaticum (cp-type A194; strain CassKB8, S. minutum (cp-type B184; strain Mf 1.05b.01.SCI.01, S. psygmophilum (cp-type B224; strain Mf 11.05b.01 and S. trenchii (cp-type D206; strain Mf 2.2b, grown in four different combinations of temperature and light. Growth kinetics varied among Symbiodinium strains and across treatments. Biphasic growth was especially evident for S. minutum and S. psygmophilum across all treatments. Monophasic growth was more common when final asymptotic densities were relatively low (~ 200 million cells ml-1. All species tended to grow faster and / or reached a higher asymptote at 26°C than at 18°C. The fastest growth was exhibited by S. minutum, with an approximate four-fold increase in estimated cell density after 60 days. The strongest effect of light was seen in S. trenchii, in which increasing light levels resulted in a decrease in initial growth rate, and an increase in asymptotic density, time when growth rate was at its maximum, final growth rate, and maximum growth rate. Results suggest that Symbiodinium species have different photokinetic and thermal optima, which may affect their growth-related nutritional physiology and allow them to modify their response to environmental changes.

  8. Overwintering of the parasitic dinoflagellate Hematodinium perezi in dredged blue crabs (Callinectes sapidus) from Wachapreague Creek, Virginia.

    Science.gov (United States)

    Shields, Jeffrey D; Sullivan, Shelley E; Small, Hamish J

    2015-09-01

    Parasitic dinoflagellates in the genus Hematodinium cause disease and mortality in several commercially important marine decapod crustaceans. One species, Hematodinium perezi, occurs in blue crabs, Callinectes sapidus, along the eastern seaboard and Gulf coast of the USA. The parasite infects blue crabs, other decapods, and amphipods in the high salinity waters of coastal bays. Epizootics of the parasite often reach prevalence levels of 75-80% during outbreaks with diseased crabs dying from the infection. Prevalence of the parasite is bimodal, with a minor peak in late spring or summer, and a major peak in fall, and declining rapidly to nearly zero in late November and December. The rapid decline in infections in the late fall brings up the question of whether the parasite overwinters in crabs or whether it uses an unidentified resting stage, such as a cyst. We report observations on the prevalence of the parasite from winter dredge surveys undertaken in 2011 and 2012. Crabs were examined via hemolymph smears, histology, and PCR diagnosis for the presence of H. perezi and other pathogens. Active infections were observed from January through March in 2011 and 2012, indicating the parasite can overwinter in blue crabs. However, several crabs that were positive by PCR had presumptive effete infections that were difficult to diagnose in histological slides and hemolymph smears. These infections did not appear to be active and may have been in subsidence. Dredged crabs with light and moderate active infections were held at 15°C to determine if the parasite was capable of rapid progression. In 8 cases, infections exhibited logarithmic growth progressing rapidly over 8-12days. We present evidence that overwintering of H. perezi occurs in the blue crab hosts, that infections are capable of responding rapidly to increases in temperatures, and that overwintering provides a reservoir of infected animals for transmission to occur in the spring. Copyright © 2015 Elsevier Inc

  9. Taxonomic and Environmental Variability in the Elemental Composition and Stoichiometry of Individual Dinoflagellate and Diatom Cells from the NW Mediterranean Sea.

    Directory of Open Access Journals (Sweden)

    Mariona Segura-Noguera

    Full Text Available Here we present, for the first time, the elemental concentration, including C, N and O, of single phytoplankton cells collected from the sea. Plankton elemental concentration and stoichiometry are key variables in phytoplankton ecophysiology and ocean biogeochemistry, and are used to link cells and ecosystems. However, most field studies rely on bulk techniques that overestimate carbon and nitrogen because the samples include organic matter other than plankton organisms. Here we used X-ray microanalysis (XRMA, a technique that, unlike bulk analyses, gives simultaneous quotas of C, N, O, Mg, Si, P, and S, in single-cell organisms that can be collected directly from the sea. We analysed the elemental composition of dinoflagellates and diatoms (largely Chaetoceros spp. collected from different sites of the Catalan coast (NW Mediterranean Sea. As expected, a lower C content is found in our cells compared to historical values of cultured cells. Our results indicate that, except for Si and O in diatoms, the mass of all elements is not a constant fraction of cell volume but rather decreases with increasing cell volume. Also, diatoms are significantly less dense in all the measured elements, except Si, compared to dinoflagellates. The N:P ratio of both groups is higher than the Redfield ratio, as it is the N:P nutrient ratio in deep NW Mediterranean Sea waters (N:P = 20-23. The results suggest that the P requirement is highest for bacterioplankton, followed by dinoflagellates, and lowest for diatoms, giving them a clear ecological advantage in P-limited environments like the Mediterranean Sea. Finally, the P concentration of cells of the same genera but growing under different nutrient conditions was the same, suggesting that the P quota of these cells is at a critical level. Our results indicate that XRMA is an accurate technique to determine single cell elemental quotas and derived conversion factors used to understand and model ocean biogeochemical

  10. Determining the absolute abundance of dinoflagellate cysts in recent marine sediments: The Lycopodium marker-grain method put to the test

    DEFF Research Database (Denmark)

    Mertens, K; Verhoeven; Verleye

    2009-01-01

    Absolute abundances (concentrations) of dinoflagellate cysts are often determined through the addition of Lycopodium clavatum marker-grains as a spike to a sample before palynological processing. An inter-laboratory calibration exercise was set up in order to test the comparability of results...... extracted and counted, and relative and absolute abundances were calculated. The relative abundances proved to be fairly reproducible, notwithstanding a need for taxonomic calibration. By contrast, excessive loss of Lycopodium spores during sample preparation resulted in non-reproducibility of absolute...... the proposed standard method which circumvents critical steps, adding Lycopodium tablets at the end of the preparation and using an alternative method....

  11. Stratigraphic calibration of Oligocene-Miocene organic-walled dinoflagellate cysts from offshore Wilkes Land, East Antarctica, and a zonation proposal

    Science.gov (United States)

    Bijl, Peter K.; Houben, Alexander J. P.; Bruls, Anja; Pross, Jörg; Sangiorgi, Francesca

    2018-01-01

    There is growing interest in the scientific community in reconstructing the paleoceanography of the Southern Ocean during the Oligocene-Miocene because these time intervals experienced atmospheric CO2 concentrations with relevance to our future. However, it has remained notoriously difficult to put the sedimentary archives used in these efforts into a temporal framework. This is at least partially due to the fact that the bio-events recorded in organic-walled dinoflagellate cysts (dinocysts), which often represent the only microfossil group preserved, have not yet been calibrated to the international timescale. Here we present dinocyst ranges from Oligocene-Miocene sediments drilled offshore the Wilkes Land continental margin, East Antarctica (Integrated Ocean Drilling Program (IODP) Hole U1356A). In addition, we apply statistical means to test a priori assumptions about whether the recorded taxa were deposited in situ or were reworked from older strata. Moreover, we describe two new dinocyst species, Selenopemphix brinkhuisii sp. nov. and Lejeunecysta adeliensis sp. nov., which are identified as important markers for regional stratigraphic analysis. Finally, we calibrate all identified dinocyst events to the international timescale using independent age control from calcareous nanoplankton and magnetostratigraphy from IODP Hole U1356A, and we propose a provisional dinoflagellate cyst zonation scheme for the Oligocene-Miocene of the Southern Ocean.

  12. The influence of UV radiation on number and ultrastructure of the endosymbiotic dinoflagellates in the sea anemone Cereus pedunculatus (Anthozoa: Actiniaria)

    Science.gov (United States)

    Hannack, K.; Kestler, P.; Sicken, O.; Westheide, W.

    1998-02-01

    The sea anemone Cereus pedunculatus was artificially UV-irradiated to test the effect of UV-light on the number of endosymbiotic dinoflagellates in its gastrodermis and on their ultrastructure. Anemones were kept in the laboratory in a light: dark cycle (LD 12∶12; 13 W m-2) at 18 °C and briefly (2, 5 and 9 d) exposed to UV radiation at quasisolar intensities, 0.5 or 1 W m-2. Their tentacles were then examined in the electron microscope for qualitative and quantitative changes in the zooxanthellae. There was an intensity-dependent decrease in the number of symbionts, which in some cases were lost altogether (bleaching). Irradiated anemones contained a larger proportion of symbionts with ultrastructural abnormalities, namely diminished starch, some mitochondria with altered matrix and, in particular, characteristic changes in the chloroplasts; instead of being densely stacked, the thylakoids were spread apart and swollen at the ends of their membranes to form vesicle-like structures. Relatively large vesicles also appeared in the cytoplasm. The resulting enlargement of the whole dinoflagellate cell was documented morphometrically. Another intensity-dependent effect was a significant decrease in mitosis rate, established by counting dividing symbiont cells in TEM micrographs. *** DIRECT SUPPORT *** A03B6037 00006

  13. Dinoflagellate cysts and benthic foraminifera in surface sediments from the Mar Piccolo in Taranto (Ionian Sea, Southern Italy)

    Science.gov (United States)

    Ferraro, L.; Rubino, F.; Frontalini, F.; Belmonte, M.; Di Leo, A.; Giandomenico, S.; Greco, M.; Lirer, F.; Spada, L.; Vallefuoco, M.

    2012-12-01

    Coastal areas have traditionally been places of human settlement, with the increasing development of cities, industries and other human-related activities possibly having an impact on the aquatic ecosystem. These impacts may take the form of pollution from industrial, domestic, agricultural or mining activities. For this reason, attention to marine environmental problems has recently increased and the search for new methodologies and techniques for the monitoring of coastal-marine areas become more and more active and accurate. In this context biological indicators result a useful tool to provide indication of environmental conditions including the presence or absence of contaminants; in fact biological monitoring is more directly related to the ecological health of an ecosystem than are chemical data. The increasing importance of bioindicators is also encouraged within the European Union's Water Framework Directive (WFD), which aims to achieve a good ecological status in all European water bodies (i.e., rivers, lakes and coastal waters). Among the wide range of bioindicators, 5 biological elements are listed within the WFD: phytoplankton, macroalgae, angiosperms, benthic invertebrates and fishes. Benthic invertebrates as foraminifera represent a group of protozoa widely distributed in all brackish and marine environments which are used in studies assessing the environmental quality of areas subject to intense human activity. Moreover in coastal marine environments benthic and pelagic domain present several relationships, one of these is represented by the life cycles of phytoplankton species, as Dinoflagellates, which include the production of benthic stages (cysts). These dormant stages, which accumulate in confined marine muddy areas, such as ports, lagoons or estuaries, can reach high densities, similar to the seed banks of terrestrial plants. The cysts have a high preservation potential and can rest in/on the sediments for decades. Due to this peculiar

  14. Distribution of organic-walled dinoflagellate cysts in recent marine sediments from the Gulf of Tehuantepec, South Pacific of Mexico.

    Science.gov (United States)

    Vasquez-Bedoya, L. F.; de Vernal, A.; Ruiz-Fernandez, A. C.; Machain-Castillo, M. L.; Radi, T.; Hillaire-Marcel, C.

    2007-05-01

    A qualitative and quantitative study of recent organic-walled dinoflagellate dinocysts recovered in sediments has been undertaken in the coastal zone of the Gulf of Tehuantepec, Mexico. A sediment core was collected in 2004 with a Reineck-type corer using a plastic tube (7 cm i.d); and it was subsampled at 0.3 cm intervals down to 10 cm depth and then at 1 cm intervals at further depths. The 210Pb and 137Cs-derived sedimentation and mass accumulation rates at the site were found to vary from 0.033 to 0.209 cm yr-1, and from 0.05 to 0.29 g cm-2 yr-1., respectively. The cysts concentrations ranged between 477 and 2300 cysts g-1 and the cysts fluxes between 68 a 494 cysts cm-2 yr-1. Twenty-three cyst taxa were identified: Brigantedinium spp., Polysphaeridium zoharyii, Bitectatodinium spongium, Spiniferites delicatus, Quinquecuspis concreta, Echinidinium transparantum, Operculodinium centrocarpum, Selenopemphix quanta, Type Echinidinium granulatum, Echinidinium aculeatum, Protoperidinium americanum, Echinidinium delicatum, Selenopemphix nephroides, Cyst of Protoperidinum stellatum, Lingulodinium machaerophorum, Islandinium spp., Votadinium spinosum, Polykrikos kofoidii, Pentapharsodinium dalei, Tuberculodinium vancampoe, Spiniferites mirabilis, Votadinium calvum and Nematosphaeropsis labyrinthus. The assemblages included cysts of both phototrophic and heterotrophic species, with variation of their respective abundance reflecting changes in the trophic structure of the upper water mass, especially after 1950, with a decrease from ~30% to 15% of photototrophic species, likely as a response to pollution (including cultural eutrophication) created by the industrial development of the adjacent coastal zone. Brigantedinium spp., Polysphaeridium zoharyii and Bitectatodinium spongium, were the dominant species found in the core and are most likely influenced by the seasonal upwelling that characterize the study area, as indicated by the predominance of planktonic foraminiferal

  15. Mycosporine-like amino acids and xanthophyll-cycle pigments favour a massive spring bloom development of the dinoflagellate Prorocentrum minimum in Grande Bay (Argentina), an ozone hole affected area

    Science.gov (United States)

    Carreto, José I.; Carignan, Mario O.; Montoya, Nora G.; Cozzolino, Ezequiel; Akselman, Rut

    2018-02-01

    In Grande Bay (Southern Patagonian Shelf) in a eutrophic and recirculating area slightly stratified during spring, we observed an intense (up to 1 × 107 cells L- 1) and shallow, quasi mono-specific bloom of the dinoflagellate Prorocentrum minimum. Peridinin was the most abundant carotenoid, but the relative amounts of the xanthophyll cycle carotenoids (diadinoxanthin + diatoxanthin = DT) to light-harvesting pigments were high (DT/Chl a ratio = 0.32 and DT/peridinin ratio = 0.40). Shinorine, usujirene, palythene, mycosporine-serine-glycine methyl ester and palythenic acid were the primary mycosporine-like amino acids (MAAs), followed by mycosporine-glycine, palythine, and porphyra-334. The ΣMAAs/Chl a ratios (up to 27.9 nmol/nmol) were in the upper range reported either in nutrient-replete dinoflagellate cultures or natural populations. We monitored, from space (using satellite ocean colour data), the spatial and temporal bloom variability (from September 22 to October 31, 2005) using an approach to discriminate dinoflagellate from diatom blooms. The results indicated that an intense diatom bloom started in early spring but was rapidly replaced by an intense bloom of the dinoflagellate P. minimum, although the nutrient concentrations were apparently not limiting. The most notorious change in this period was a sharp increase in the levels of solar UVB radiation (UVB index 9.0) as a consequence of the overpass of the polar vortex over this area. We postulated that the synthesis and accumulation of MAAs and xanthophyll pigments, were competitive advantages for the opportunistic red tide dinoflagellate P. minimum over the sensitive diatoms, favouring the development of their surface blooms in this seasonally solar UVB radiation (UVBR) affected area.

  16. Prevalence and intensity of pathologies induced by the toxic dinoflagellate, Heterocapsa circularisquama, in the Mediterranean mussel, Mytilus galloprovincialis.

    Science.gov (United States)

    Basti, Leila; Endo, Makoto; Segawa, Susumu; Shumway, Sandra E; Tanaka, Yuji; Nagai, Satoshi

    2015-06-01

    The harmful dinoflagellate, Heterocapsa circularisquama, has been causing mass mortalities of bivalve molluscs in Japan, at relatively low cell densities. Although several studies have been conducted to determine the toxicity mechanisms, the specific cause of death is still unclear. In a previous study, in our laboratory, it was shown that H. circularisquama (10(3) cells ml(-1)) caused extensive cytotoxicity in the gills of short-neck clams, Ruditapes philippinarum. In the present study, Mediterranean mussels, Mytilus galloprovincialis, were exposed to H. circularisquama at four cell densities (5, 50, 500, 10(3) cells ml(-1)), three temperatures (15, 20, and 25°C), and three exposure durations (3, 24, and 48 h), and the pathologies in nine organs (gills, labial palps, mantle, hepatopancreas, stomach, intestines, exhalant siphon, adductor muscles, and foot) were assessed. Foot, adductor muscles, and exhalent siphons of mussels were not affected; however, 16 inflammatory (hemocytic infiltration and aggregation, diapedesis, hyperplasia, hypertrophy, edema, melanization, and firbrosis) and degenerative (thrombus, thrombosed edema, cilia matting and exfoliation, epithelial desquamation, atrophy, and necrosis) pathologies were identified in the gills, labial palps, mantle, hepatopancreas, stomach, and intestines. The total prevalence and total intensity of pathology in each individual mussel, and the prevalence and intensity of pathology in each organ increased significantly with increased cell density, exposure duration, and temperature. The prevalence of pathology was the highest in gills, followed by the prevalence in labial palps, mantle, stomach, and intestines. Pathology was least prevalent in the hepatopancreas. The intensity of pathology was the highest in the gills, followed by the labial palps and mantle, the stomach and intestines, and the hepatopancreas. This detailed quantitative histopathological study demonstrates that exposure to H. circularisquama

  17. Quantitative PCR assay for detection and enumeration of ciguatera-causing dinoflagellate Gambierdiscus spp. (Gonyaulacales) in coastal areas of Japan.

    Science.gov (United States)

    Nishimura, Tomohiro; Hariganeya, Naohito; Tawong, Wittaya; Sakanari, Hiroshi; Yamaguchi, Haruo; Adachi, Masao

    2016-02-01

    In Japan, ciguatera fish poisoning (CFP) has been increasingly reported not only in subtropical areas but also in temperate areas in recent years, causing a serious threat to human health. Ciguatera fish poisoning is caused by the consumption of fish that have accumulated toxins produced by an epiphytic/benthic dinoflagellate, genus Gambierdiscus. Previous studies revealed the existence of five Gambierdiscus species/phylotypes in Japan: Gambierdiscus australes, Gambierdiscus scabrosus, Gambierdiscus sp. type 2, Gambierdiscus sp. type 3, and Gambierdiscus (Fukuyoa) cf. yasumotoi. Among these, G. australes, G. scabrosus, and Gambierdiscus sp. type 3 strains exhibited toxicities in mice, whereas Gambierdiscus sp. type 2 strains did not show any toxicity. Therefore, it is important to monitor the cell abundance and dynamics of these species/phylotypes to identify and characterize CFP outbreaks in Japan. Because it is difficult to differentiate these species/phylotypes by observation under a light microscope, development of a rapid and reliable detection and enumeration method is needed. In this study, a quantitative PCR assay was developed using a TaqMan probe that targets unique SSU rDNA sequences of four Japanese Gambierdiscus species/phylotypes and incorporates normalization with DNA recovery efficiency. First, we constructed standard curves with high linearity (R 2 =1.00) and high amplification efficiency (≥1.98) using linearized plasmids that contained SSU rDNA of the target species/phylotypes. The detection limits for all primer and probe sets were approximately 10 gene copies. Further, the mean number of SSU rDNA copies per cell of each species/phylotype was determined from single cells in culture and from those in environmental samples using the qPCR assay. Next, the number of cells of each species/phylotype in the mixed samples, which were spiked with cultured cells of the four species/phylotypes, was calculated by division of the total number of rDNA copies

  18. Effects of irradiance and prey deprivation on growth, cell carbon and photosynthetic activity of the freshwater kleptoplastidic dinoflagellate Nusuttodinium (= Gymnodinium) aeruginosum (Dinophyceae)

    DEFF Research Database (Denmark)

    Drumm, Kirstine; Liebst-Olsen, Mette; Daugbjerg, Niels

    2017-01-01

    not explain the observed growth rates at high irradiances. Cultures of N. aeruginosum subjected to prey starvation were able to survive for at least 27 days in the light. The sequestered chloroplasts maintained their photosynthetic activity during the entire period of starvation, during which the population......The freshwater dinoflagellate Nusuttodinium aeruginosum lacks permanent chloroplasts. Rather it sequesters chloroplasts as well as other cell organelles, like mitochondria and nuclei, from ingested cryptophyte prey. In the present study, growth rates, cell production and photosynthesis were...... measured at seven irradiances, ranging from 10 to 140 µmol photons m-2s-1, when fed the cryptophyte Chroomonas sp. Growth rates were positively influenced by irradiance and increased from 0.025 d-1 at 10 µmol photons m-2s-1 to maximum growth rates of ~0.3 d-1 at irradiances ≥ 40 µmol photons m-2s-1...

  19. Ultrastructure of the harmful unarmored dinoflagellate Cochlodinium polykrikoides (Dinophyceae) with reference to the apical groove and flagellar apparatus

    DEFF Research Database (Denmark)

    Iwataki, Mitsunori; Hansen, Gert; Moestrup, Øjvind

    2010-01-01

    The external and internal ultrastructure of the harmful unarmored dinoflagellate Cochlodinium polykrikoides Margalef has been examined with special reference to the apical groove and three-dimensional structure of the flagellar apparatus. The apical groove is U-shaped and connected to the anterior...... sulcal extension on the dorsal side of the epicone. The eyespot is located dorsally and composed of two layers of globules situated within the chloroplast. A narrow invagination of the plasma membrane is associated with the eyespot. The nuclear envelope has normal nuclear pores similar to other...... eukaryotes but different from the Gymnodinium group with diagnostic nuclear chambers. The longitudinal and transverse basal bodies are separated by approximately 0.5-1.0 µm and interconnected directly by a striated basal body connective and indirectly by microtubular and fibrous structures. Characteristic...

  20. Implication of the host TGFβ pathway in the onset of symbiosis between larvae of the coral Fungia scutaria and the dinoflagellate Symbiodinium sp. (clade C1f)

    Science.gov (United States)

    Berthelier, Jérémy; Schnitzler, Christine E.; Wood-Charlson, Elisha M.; Poole, Angela Z.; Weis, Virginia M.; Detournay, Olivier

    2017-12-01

    Dinoflagellate-cnidarian associations form both the trophic and structural foundation of coral-reef ecosystems. Previous studies have highlighted the role of host innate immunity in regulation of these partnerships. This study reveals the presence of a transforming growth factor beta (TGFβ) in the coral Fungia scutaria that clusters with TGFβ sensu stricto (ss) from other animals. In functional studies of F. scutaria larvae, we show that (1) TGFβ ss mRNA is expressed during early stages of development prior to the onset of symbiosis; (2) apparent interference of the TGFβ pathway impairs the onset of symbiosis; and (3) this effect is associated with an increase of cytotoxic nitric oxide secretion, an immune response. This work highlights the importance of the TGFβ pathway in early life-history stages of corals by suggesting that its inhibition impacts the onset of symbiosis.

  1. Spatio-temporal variations in bloom of the red-tide dinoflagellate Karenia mikimotoi in Imari Bay, Japan, in 2014: Factors controlling horizontal and vertical distribution.

    Science.gov (United States)

    Aoki, Kazuhiro; Kameda, Takahiko; Yamatogi, Toshifumi; Ishida, Naoya; Hirae, Sou; Kawaguchi, Mayumi; Syutou, Toshio

    2017-11-15

    A massive bloom of the dinoflagellate Karenia mikimotoi appeared in 2014 in Imari Bay, Japan. Bloom dynamics and hydrographical conditions were examined by field survey. The bloom initially developed in the eastern area of Imari Bay, subsequently after rainfall during the neap tides, cell density exceeded over 10,000cellsml. Vertical distribution of K. mikimotoi was primarily controlled by the light intensity and secondarily by the water quality during the daytime. Almost all cell-density maxima occurred in depths with weak daytime light intensities of <300μmolm(-2)s(-1). In some cases of weak light intensity, cell-density maxima occurred in depths with favorable hydrodynamic conditions for the growth. Spatially classified areas were identified by cluster analysis using the growth rate calculated from seawater temperature and salinity. This study quantitatively evaluated the environmental factors of the eastern area, where the bloom initially occurred, during the development of the bloom. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. EFFECTS OF HIGH PRESSURE IN THE ARMORED DINOFLAGELLATE SCRIPPSIELLA HEXAPRAECINGULA (PERIDINIALES, DINOPHYCEAE): CHANGES IN THECAL PLATE PATTERN AND MICROTUBULE ASSEMBLY(1).

    Science.gov (United States)

    Sekida, Satoko; Takahira, Masaki; Horiguchi, Takeo; Okuda, Kazuo

    2012-02-01

    The possible role of cortical microtubules in dinoflagellates was studied using high-pressure treatments applied to nonmotile cells (just after ecdysis) of Scrippsiella hexapraecingula T. Horig. et Chihara. Whereas considerable disorganization of cortical microtubules was observed when cells were exposed to high-pressure treatments of 98 MPa or more for 5-15 min, they were mostly intact in cells exposed to a pressure of pressure treatments sufficient to disorganize the cortical microtubules, they produced new motile cells with thecal plate patterns that differed considerably from the pattern known for this species. Increasing the intensity of high pressure applied to nonmotile cells resulted in an increase in the number of cells that exhibited disorganized cortical microtubules as well as a change in their thecal plate pattern, suggesting that high pressure disorganizes cortical microtubules leading to a change in the thecal plate pattern. © 2011 Phycological Society of America.

  3. The phenomenon of bloom development of the invasive potentially toxic dinoflagellate Gonyaulax polygramma in deep water areas of the Caspian Sea

    Science.gov (United States)

    Pautova, L. A.; Kravchishina, M. D.; Silkin, V. A.; Lisitzin, A. P.

    2017-06-01

    This work presents the first data on the occurrence of the invasive, potentially toxic dinoflagellate Gonyaulax polygramma in the composition of plankton phytocenoses in the Caspian Sea. It was revealed that G. polygramma plays the key role in the quantitative characteristics of summer plankton phytocenoses and its bloom during the summer seasons of 2010 and 2013 was comparable in biomass (15-16 g/m3) to a "red tide." In addition, the correlation between the G. polygramma bloom and the wind upwelling system in the eastern mid-Caspian region was established. For the first time, it is suggested that "bloom" of G. polygramma can also occur in deep-water halistatic areas (Derbent depression), remote from the upwelling system.

  4. Gene expression in Florida red tide dinoflagellate Karenia brevis: analysis of an expressed sequence tag library and development of DNA microarray.

    Science.gov (United States)

    Lidie, Kristy B; Ryan, James C; Barbier, Michele; Van Dolah, Frances M

    2005-01-01

    Karenia brevis (Davis) is the dinoflagellate responsible for nearly annual red tides in the Gulf of Mexico. Although the mechanisms regulating the growth and toxicity of this problematic organism are of considerable interest, little information is available on its molecular biology. We therefore constructed a complementary DNA library from which to gain insight into its expressed genome and to develop tools for studying its gene expression. Large-scale sequencing yielded 7001 high-quality expressed sequence tags (ESTs), which clustered into 5280 unique gene groups. The vast majority of genes expressed fell into a low-abundance class, with the highest expressed gene accounting for only 1% of the total ESTs. Approximately 29% of genes were found to have similarity to known sequences in other organisms after BLAST similarity comparisons to the GenBank public protein database using a cutoff of P < 10e(-4). We identified for the first time in a dinoflagellate a suite of conserved eukaryotic genes involved in cell cycle control, intracellular signaling, and the transcription and translation machinery. At least 40% of gene clusters displayed single nucleotide polymorphisms, suggesting the presence of multiple gene copies. The average GC content of ESTs was 51%, with a slight preference for G or C in the third codon position (53.5%). The ESTs were used to develop an oligonucleotide microarray containing 4629 unique features and 3462 replicate probes. Microarray labeling has been optimized, and the microarray has been validated for probe specificity and reproducibility. This is the first information to be developed on the expressed genome of K. brevis and provides the basis from which to begin functional genomic studies on this harmful algal bloom species.

  5. Mapping the Distribution of Cysts from the Toxic Dinoflagellate Cochlodinium polykrikoides in Bloom-Prone Estuaries by a Novel Fluorescence In Situ Hybridization Assay.

    Science.gov (United States)

    Hattenrath-Lehmann, Theresa K; Zhen, Yu; Wallace, Ryan B; Tang, Ying-Zhong; Gobler, Christopher J

    2015-12-04

    Cochlodinium polykrikoides is a cosmopolitan dinoflagellate that is notorious for causing fish-killing harmful algal blooms (HABs) across North America and Asia. While recent laboratory and ecosystem studies have definitively demonstrated that Cochlodinium forms resting cysts that may play a key role in the dynamics of its HABs, uncertainties regarding cyst morphology and detection have prohibited even a rudimentary understanding of the distribution of C. polykrikoides cysts in coastal ecosystems. Here, we report on the development of a fluorescence in situ hybridization (FISH) assay using oligonucleotide probes specific for the large subunit (LSU) ribosomal DNA (rDNA) of C. polykrikoides. The LSU rDNA-targeted FISH assay was used with epifluorescence microscopy and was iteratively refined to maximize the fluorescent reaction with C. polykrikoides and minimize cross-reactivity. The final LSU rDNA-targeted FISH assay was found to quantitatively recover cysts made by North American isolates of C. polykrikoides but not cysts formed by other common cyst-forming dinoflagellates. The method was then applied to identify and map C. polykrikoides cysts across bloom-prone estuaries. Annual cyst and vegetative cell surveys revealed that elevated densities of C. polykrikoides cysts (>100 cm(-3)) during the spring of a given year were spatially consistent with regions of dense blooms the prior summer. The identity of cysts in sediments was confirmed via independent amplification of C. polykrikoides rDNA. This study mapped C. polykrikoides cysts in a natural marine setting and indicates that the excystment of cysts formed by this harmful alga may play a key role in the development of HABs of this species. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  6. Interactions entre un dinoflagellé toxique et sa microflore bactérienne associée: rôle des bactéries dans la toxicité de Prorocentrum lima Ehrenberg (Dodge)

    OpenAIRE

    Rausch De Traubenberg, Catherine

    1993-01-01

    Une étude des interactions entre une souche toxique du dinoflagellé Prorocentrum lima produisant l'acide okadaïque (AO) et la dinophysistoxine 1 (DTX1) et de ses bactéries associées a été réalisée dans des conditions de culture. Une étude en microscopie électronique a montré que l'ultrastructure de ce dinoflagellé, bien que typique, présente des particularités, et que cette microalgue benthique est associées à une abondante microflore bactérienne. Les bactéries associées peuvent être libres, ...

  7. Variability in surface water properties of the southeastern South Atlantic Ocean related to the Miocene Cooling Events, evidence from calcareous dinoflagellate cysts.

    Science.gov (United States)

    Heinrich, S.; Zonneveld, K. A. F.; Willems, H.

    2009-04-01

    The middle- and upper Miocene represent major climatic shifts to colder global temperatures. These periods of cooling (Mi-Events) were characterized by oxygen isotopic shifts that have been related to size changes of the Antarctic and Arctic ice-sheets (e.g. Miller et al., 1991, St. John, 2008). The start and development of the Antarctic Circumpolar Current (ACC) during this time-interval is of major interest, as it changed the atmospheric and oceanic circulation pattern which led to the initiation of upwelling off the south western African coast (Paulsen et al., 2007). However, the complex interaction between the initiation and development of the upwelling in the western South Atlantic and its interaction with the evolution of the Antarctic Circumpolar Current as well as the built-up of the Antarctic ice-sheet is far from being fully understood. We want to improve the understanding of these processes by establishing a detailed palaeoceanographic reconstruction of the southeastern South Atlantic Ocean on the basis of calcareous dinoflagellate cyst associations. Within this study 53 samples were taken from sediment core ODP 175 1085A off the coast of Namibia and investigated by defining the calcareous dinoflagellate cyst assemblage. The general cooling trend during the middle- and upper Miocene is clearly reflected in the dinocyst record by the decrease of species adapted to warm water conditions (Calciodinellum albatrosianum and Thoracosphaera heimii) and the appearance and increase of Caracomia arctica after ~ 11.1 Ma. C. arctica is a cold water species which today is only present south of the polar front. The concentration of C. arctica varies with a cyclicity of about 200-400 kyrs which reflects an eccentricity signal. We assume that observed changes in association such as the appearance of C. arctica can either be related to the initiation of the upwelling activity in the region, which is suggested to occur at ~11.6 Ma (Paulsen & Bickert 2007), or might be the

  8. Environmental forcing on the flux of organic-walled dinoflagellate cysts in recent sediments from a subtropical lagoon in the Gulf of California.

    Science.gov (United States)

    Cuellar-Martinez, Tomasa; Alonso-Rodríguez, Rosalba; Ruiz-Fernández, Ana Carolina; de Vernal, Anne; Morquecho, Lourdes; Limoges, Audrey; Henry, Maryse; Sanchez-Cabeza, Joan-Albert

    2017-11-28

    To evaluate the relationship of changes in organic-walled dinoflagellate cyst (dinocyst) fluxes to sediments with environmental variables (air and sea surface temperatures, El Niño conditions, rainfall, and terrigenous index), cyst assemblages were analyzed in a 210Pb-dated sediment core (~100years) from the pristine San José Lagoon (San José Island, SW Gulf of California). The dinocyst abundance ranged from 3784 to 25,108cystsg-1 and fluxes were of the order of 103-104cystscm-2yr-1. Lingulodinium machaerophorum, Polysphaeridium zoharyi and Spiniferites taxa accounted for 96% of the total dinocyst assemblages, and the abundances of these species increased towards the core surface. P. zoharyi fluxes increased from about 1965 onwards. Redundancy analyses, showed that mean minimum air temperature and terrigenous index were the key factors governing dinocyst fluxes. In this study, dinocyst fluxes of dominant taxa had responded to changes in climate-dependent environmental variables during the past ~20years; this may also be the case in other subtropical coastal lagoons. Copyright © 2017. Published by Elsevier B.V.

  9. Parasitization of juvenile edible crabs (Cancer pagurus) by the dinoflagellate, Hematodinium sp.: pathobiology, seasonality and its potential effects on commercial fisheries.

    Science.gov (United States)

    Smith, Amanda L; Hirschle, Lucy; Vogan, Claire L; Rowley, Andrew F

    2015-03-01

    This study reports on the prevalence and severity of infections caused by the parasitic dinoflagellate, Hematodinium in juvenile edible crabs (Cancer pagurus) found in 2 intertidal survey sites (Mumbles Head and Oxwich Bay) in the Bristol Channel, UK. Crabs were assessed for the presence and severity of Hematodinium infections by the histological examination of infected tissues. Such infections were found to exhibit a seasonal trend in the 2 study areas with high numbers of animals (ca. 30%) infected in the spring to summer but with low severity. Conversely, in November only ca. 10% of crabs were infected but these animals had large numbers of parasites in their haemolymph and other tissues. At this time, the carapace and underlying tissues of infected crabs had the chalky, pinkish-orange appearance that is characteristic of this disease. Hematodinium-infected crabs ranged in size from 12 to 74 mm carapace width. Overall, it is concluded that the high prevalence of infection of juvenile crabs in this area may have implications for the sustainability of the edible crab fishery in the Bristol Channel.

  10. Dinoflagellate Ceratium symmetricum Pavillard (Gonyaulacales: Ceratiaceae: Its occurrence in the Hooghly-Matla Estuary and offshore of Indian Sundarban and its significance

    Directory of Open Access Journals (Sweden)

    A. Akhand

    2012-07-01

    Full Text Available The Sundarban is the largest mangrove ecosystem, which is presently vulnerable to climate change related impacts. The western part of it falls in the state of West Bengal between the estuaries of the Hooghly and Ichamati-Raymongal Rivers. The diversity of the genus Ceratium Schrank and the related physicochemical parameters such as Sea Surface Temperature (SST was studied in the Hooghly-Matla estuary and offshore. Five species of bio-indicator dinoflagellate, Ceratium were identified in the bloom-forming season. The species are: C. furca, C. fusus, C. symmetricum, C. trichoceros and C. tripos. C. symmetricum was not previously reported from the Indian part of the Sundarban and is now found in low abundance. The other four species are less sensitive to warming or rise in SST. A comparative study of the day time SST from the satellite images of the year 2003 to 2009 of the months of January and February reveals a rising winter SST. Compared to the previous years, the increase in temperature can be one of the causative factors to explain the lower abundance of C. symmetricum compared to the others. With further rise of the SST, there is a possibility that this species may no longer be found in abundance in the western part of adjoining Hooghly-Matla estuarine system.

  11. Docking Simulation of the Binding Interactions of Saxitoxin Analogs Produced by the Marine Dinoflagellate Gymnodinium catenatum to the Voltage-Gated Sodium Channel Nav1.4

    Directory of Open Access Journals (Sweden)

    Lorena M. Durán-Riveroll

    2016-05-01

    Full Text Available Saxitoxin (STX and its analogs are paralytic alkaloid neurotoxins that block the voltage-gated sodium channel pore (Nav, impeding passage of Na+ ions into the intracellular space, and thereby preventing the action potential in the peripheral nervous system and skeletal muscle. The marine dinoflagellate Gymnodinium catenatum produces an array of such toxins, including the recently discovered benzoyl analogs, for which the mammalian toxicities are essentially unknown. We subjected STX and its analogs to a theoretical docking simulation based upon two alternative tri-dimensional models of the Nav1.4 to find a relationship between the binding properties and the known mammalian toxicity of selected STX analogs. We inferred hypothetical toxicities for the benzoyl analogs from the modeled values. We demonstrate that these toxins exhibit different binding modes with similar free binding energies and that these alternative binding modes are equally probable. We propose that the principal binding that governs ligand recognition is mediated by electrostatic interactions. Our simulation constitutes the first in silico modeling study on benzoyl-type paralytic toxins and provides an approach towards a better understanding of the mode of action of STX and its analogs.

  12. Selective depolarization of the muscle membrane in frog nerve-muscle preparations by a chromatographically purified extract of the dinoflagellate Ostreopsis lenticularis.

    Science.gov (United States)

    Meunier, F A; Mercado, J A; Molgó, J; Tosteson, T R; Escalona de Motta, G

    1997-07-01

    1. The actions of a chromatographically identified extract of the marine dinoflagellate Ostreopsis lenticularis, named ostreotoxin-3 (OTX-3), were studied on frog isolated neuromuscular preparations. 2. OTX-3 (1-10 microg ml(-1)) applied to cutaneous pectoris nerve-muscle preparations depolarized skeletal muscle fibres and caused spontaneous contractions. The depolarization was neither reversed by prolonged washing nor by (+)-tubocurarine. 3. OTX-3 decreased the amplitude of miniature end plate potentials (m.e.p.ps) but did not affect their frequency. 4. Extracellular recording of compound action potentials revealed that OTX-3 affected neither excitability nor conduction along intramuscular nerve branches. 5. End-plate potentials (e.p.ps) elicited by nerve stimulation were reduced in amplitude by OTX-3 and even showed reversed polarity in junctions deeply depolarized by the toxin. 6. Membrane depolarization induced by OTX-3 was decreased about 70% in muscles pretreated for 30 min with 10 microM tetrodotoxin. In contrast, muscles pretreated with 5 microM mu-conotoxin GIIIA were completely insensitive to OTX-3-induced depolarization. 7. OTX-3 did not affect e.p.p. amplitude and the quantal content of e.p.ps in junctions in which muscle depolarization was abolished by mu-conotoxin GIIIA. 8. OTX-3 is a novel type of sodium-channel activating toxin that discriminates between nerve and skeletal muscle membranes.

  13. Improvement of Omega-3 Docosahexaenoic Acid Production by Marine Dinoflagellate Crypthecodinium cohnii Using Rapeseed Meal Hydrolysate and Waste Molasses as Feedstock.

    Directory of Open Access Journals (Sweden)

    Yangmin Gong

    Full Text Available Rapeseed meal and waste molasses are two important agro-industrial by-products which are produced in large quantities. In this study, solid state fermentation and fungal autolysis were performed to produce rapeseed meal hydrolysate (RMH using fungal strains of Aspergillus oryzae, Penicillium oxalicum and Neurospora crassa. The hydrolysate was used as fermentation feedstock for heterotrophic growth of microalga Crypthecodinium cohnii that produce docosahexaenoic acid (DHA. The addition of waste molasses as a supplementary carbon source greatly increased the biomass and DHA yield. In the batch fermentations using media composed of diluted RMH (7% and 1-9% waste molasses, the highest biomass concentration and DHA yield reached 3.43 g/L and 8.72 mg/L, respectively. The algal biomass produced from RMH and molasses medium also had a high percentage of DHA (22-34% in total fatty acids similar to that of commercial algal biomass. RMH was shown to be rich in nitrogen supply comparable to the commercial nitrogen feedstock like yeast extract. Using RMH as sole nitrogen source, waste molasses excelled other carbon sources and produced the highest concentration of biomass. This study suggests that DHA production of the marine dinoflagellate C. cohnii could be greatly improved by concomitantly using the cheap by-products rapeseed meal hydrolysate and molasses as alternative feedstock.

  14. Circadian rhythm of a red-tide dinoflagellate Peridinium quadridentatum in the port of Veracruz, Gulf of Mexico, its thecal morphology, nomenclature and geographical distribution.

    Science.gov (United States)

    Okolodkov, Yuri B; Campos-Bautista, Guadalupe; Gárate-Lizárraga, Ismael

    2016-07-15

    A circadian rhythm of the dinoflagellate Peridinium quadridentatum was studied at a time-series station in the southwestern Gulf of Mexico, in May 2007. Different substrates (water column, the seagrass Thalassia testudinum, macroalgae, coral rubble and sandy sediment surface) were sampled at the site at 1.5-3.5m depth. In the samples of coral rubble, P. quadridentatum was scarce. In the water column, the species showed an abundance peak at 15:00. The cell abundance of P. quadridentatum in Thalassia samples increased from 15:00 until 18:00 (1.81×10(4)cells/gsubstratewet weight), and then continuously decreased until 06:00. Changes in P. quadridentatum cell abundance on macroalgae followed the same trend as on Thalassia, with the maximal value at 18:00. The higher abundance of P. quadridentatum (up to 1.40×10(4)cells/gSWW) in macroalgae samples showed the preference for seaweeds. P. quadridentatum has a neritic tropical-boreal distribution. A new combination is proposed: Peridinium quadridentatum var. trispiniferum. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Alterations in the biochemistry and ultrastructure of the deep abdominal flexor muscle of the norway lobster Nephrops norvegicus during infection by a parasitic dinoflagellate of the genus Hematodinium.

    Science.gov (United States)

    Stentiford, G D; Neil, D M; Coombs, G H

    2000-08-31

    Changes in various biochemical and ultrastructural characteristics of the deep abdominal flexor (DAF) muscles were studied in Norway lobster Nephrops norvegicus (L.) from the Clyde estuary, Scotland, UK, at different stages of infection by a parasitic dinoflagellate of the genus Hematodinium. Abdominal DAF muscles from infected lobsters showed slight, significant increases in total water content, along with greatly depleted glycogen reserves and an altered free amino acid profile. However, protein concentration and composition remained unchanged. Ultrastructurally, parasitic infection of DAF muscle fibres caused alterations in sarcolemmal structure, and localized disruption of myofibrillar bundles around the periphery, but not throughout the centre of the fibres. Overall, the reduction in swimming performance previously reported for N. norvegicus during Hematodinium infection reflect an alteration in carbohydrate supply to the active muscle and some subtle disruption of muscle structure. The altered carbohydrate titre could reflect the Hematodinium parasites acting as a carbohydrate sink in the haemolymph, a disruption of normal tissue glycogenesis, or some alteration in the host's hormonal regulation. These changes could also adversely affect the taste, texture and marketability of infected meat.

  16. Late Pliocene/Pleistocene changes in Arctic sea-ice cover: Biomarker and dinoflagellate records from Fram Strait/Yermak Plateau (ODP Sites 911 and 912)

    Science.gov (United States)

    Stein, Ruediger; Fahl, Kirsten; Matthiessen, Jens

    2014-05-01

    Sea ice is a critical component in the (global) climate system that contributes to changes in the Earth's albedo (heat reduction) and biological processes (primary productivity), as well as deep-water formation, a driving mechanism for global thermohaline circulation. Thus, understanding the processes controlling Arctic sea ice variability is of overall interest and significance. Recently, a novel and promising biomarker proxy for reconstruction of Arctic sea-ice conditions was developed and is based on the determination of a highly-branched isoprenoid with 25 carbons (IP25; Belt et al., 2007; PIP25 when combined with open-water phytoplankton biomarkers; Müller et al., 2011). Here, we present biomarker data from Ocean Drilling Program (ODP) Sites 911 and 912, recovered from the southern Yermak Plateau and representing information of sea-ice variability, changes in primary productivity and terrigenous input during the last about 3.5 Ma. As Sites 911 and 912 are close to the modern sea-ice edge, their sedimentary records seem to be optimal for studying past variability in sea-ice coverage and testing the applicability of IP25 and PIP25 in older sedimentary sequences. In general, our biomarker records correlate quite well with other climate and sea-ice proxies (e.g., dinoflagellates, IRD, etc.). The main results can be summarized as follows: (1) The novel IP25/PIP25 biomarker approach has potential for semi-quantitative paleo-sea ice studies covering at least the last 3.5 Ma, i.e., the time interval including the onset (intensification) of major Northern Hemisphere Glaciation (NHG). (2) These data indicate that sea ice of variable extent was present in the Fram Strait/southern Yermak Plateau area during most of the time period under investigation. (3) Elevated IP25/PIP25 values indicative for an extended spring sea-ice cover, already occurred between 3.6 and 2.9 Ma, i.e., prior to the onset of major NHG. This may suggest that sea-ice and related albedo effects might

  17. Quantitative PCR method for enumeration of cells of cryptic species of the toxic marine dinoflagellate Ostreopsis spp. in coastal waters of Japan.

    Directory of Open Access Journals (Sweden)

    Naohito Hariganeya

    Full Text Available Monitoring of harmful algal bloom (HAB species in coastal waters is important for assessment of environmental impacts associated with HABs. Co-occurrence of multiple cryptic species such as toxic dinoflagellate Ostreopsis species make reliable microscopic identification difficult, so the employment of molecular tools is often necessary. Here we developed new qPCR method by which cells of cryptic species can be enumerated based on actual gene number of target species. The qPCR assay targets the LSU rDNA of Ostreopsis spp. from Japan. First, we constructed standard curves with a linearized plasmid containing the target rDNA. We then determined the number of rDNA copies per cell of target species from a single cell isolated from environmental samples using the qPCR assay. Differences in the DNA recovery efficiency was calculated by adding exogenous plasmid to a portion of the sample lysate before and after DNA extraction followed by qPCR. Then, the number of cells of each species was calculated by division of the total number of rDNA copies of each species in the samples by the number of rDNA copies per cell. To test our procedure, we determined the total number of rDNA copies using environmental samples containing no target cells but spiked with cultured cells of several species of Ostreopsis. The numbers estimated by the qPCR method closely approximated total numbers of cells added. Finally, the numbers of cells of target species in environmental samples containing cryptic species were enumerated by the qPCR method and the total numbers also closely approximated the microscopy cell counts. We developed a qPCR method that provides accurate enumeration of each cryptic species in environments. This method is expected to be a powerful tool for monitoring the various HAB species that occur as cryptic species in coastal waters.

  18. The matter of preservation: A comparison of recent organic-walled dinoflagellate cyst assemblages in sediment trap and core top sediments off Cape Blanc (NW Africa)

    Science.gov (United States)

    Rüßbült, Annegret; Zonneveld, Karin A. F.; Pospelova, Vera

    2017-04-01

    During the last decades, organic-walled dinoflagellate cysts (dinocysts) have become a valuable tool for paleoenvironmental reconstructions. It is known that the sedimentary record depends on several factors like initial cyst production and preservation. Therefore it is necessary to know, to what extent the assemblage in the sediment reflects the primary signal produced in the water column. In this study, we compare undisturbed core top sediments with sediment trap data covering the same time intervals. Both, core and trap, were retrieved at a similar location off Cape Blanc (NW Africa) where high productivity of organic material takes place due to costal upwelling. The samples of trap CBi analyzed for dinocysts were collected over 5 years (2003-2008) and compared to assemblages found in 2 mm interval sections of core GeoB 14103-7. 210Pb dating revealed an age of 2.5 years per core sample, leading to a comparison of the upper 6 mm with CBi 1-5. The dinocyst species composition in core and trap sediments is similar. Both assemblages are dominated by heterotrophic species. However, while the most common species in the trap, Brigantidinium spp., makes up over 50% of each sample, it is less abundant in the core where it forms only 13% of the assemblage. Core samples are dominated by Protoperidinium monospinum with an average of 28%. This species is underrepresented in CBi with 3% abundance. Over time the proportions of the individual species show minor variations both in core and trap samples. We therefore assume that the strong differences in association composition are due to post-depositional processes altering the assemblages in the sediments like degradation or bioturbation rather than to changes in initial cyst production or differences in source areas of trap and sediment core.

  19. Feeding by the heterotrophic dinoflagellate Oxyrrhis marina on the red-tide raphidophyte Heterosigma akashiwo: a potential biological method to control red tides using mass-cultured grazers.

    Science.gov (United States)

    Jeong, Hae Jin; Kim, Jae Seong; Yoo, Yeong Du; Kim, Seong Taek; Kim, Tae Hoon; Park, Myung Gil; Lee, Chang Hoon; Seong, Kyeong Ah; Kang, Nam Seon; Shim, Jae Hyung

    2003-01-01

    As part of the development of a method to control the outbreak and persistence of red tides using mass-cultured heterotrophic protist grazers, we measured the growth and ingestion rates of cultured Oxyrrhis marina (a heterotrophic dinoflagellate) on cultured Heterosigma akashiwo (a raphidophyte) in bottles in the laboratory and in mesocosms (ca. 60 liter) in nature, and those of the cultured grazer on natural populations of the red-tide organism in mesocosms set up in nature. In the bottle incubation, specific growth rates of O. marina increased rapidly with increasing concentration of cultured prey up to ca. 950 ng C ml(-1) (equivalent to 9,500 cells ml(-1)), but were saturated at higher concentrations. Maximum specific growth rate (mumax), KGR (prey concentration sustaining 0.5 mumax) and threshold prey concentration of O. marina on H. akashiwo were 1.43 d(-1), 104 ng C ml(-1), and 8.0 ng C ml(-1), respectively. Maximum ingestion and clearance rates of O. marina were 1.27 ng C grazer(-1) d(-1) and 0.3 microl grazer(-1) h(-1), respectively. Cultured O. marina grew well effectively reducing cultured and natural populations of H. akashiwo down to a very low concentration within 3 d in the mesocosms. The growth and ingestion rates of cultured O. marina on natural populations of H. akashiwo in the mesocosms were 39% and 40%, respectively, of those calculated based on the results from the bottle incubation in the laboratory, while growth and ingestion rates of cultured O. marina on cultured H. akashiwo in the mesocosms were 55% and 36%, respectively. Calculated grazing impact by O. marina on natural populations of H. akashiwo suggests that O. marina cultured on a large scale could be used for controlling red tides by H. akashiwo near aquaculture farms that are located in small ponds, lagoons, semi-enclosed bays, and large land-aqua tanks to which fresh seawater should be frequently supplied.

  20. The Synonymy of the Toxic Dinoflagellates Prorocentrum mexicanum and P. rhathymum and the Description of P. steidingerae sp. nov. (Prorocentrales, Dinophyceae).

    Science.gov (United States)

    Gómez, Fernando; Qiu, Dajun; Lin, Senjie

    2017-09-01

    Prorocentrum mexicanum and P. rhathymum are toxicologically important dinoflagellates, but their relationship is not well defined. We investigated strains from Puerto Rico and Brazil by light and scanning electron microscopies. We provide molecular data from a strain isolated near the type locality of P. rhathymum, and the first morphological and molecular data from the South Atlantic Ocean. The rRNA gene (rDNA) sequences of the Puerto Rican and Brazilian strains were identical, and their morphologies fit the description of P. rhathymum. In the molecular phylogenies, the globally distributed populations under the names P. mexicanum and P. rhathymum are intermixed and branched together, except for several divergent strains from Florida and Cuba. We examined the original descriptions and iconotypes of the species Prorocentrum maximum, P. brochii, P. mexicanum, and P. rhathymum. We conclude that P. maximum sensu Schiller's figure 41a corresponds to the earlier description of this species; the split of P. mexicanum and P. rhathymum was based on a misidentification because P. mexicanum sensu Cortés-Altamirano & Sierra-Beltrán corresponds to P. texanum var. cuspidatum; and P. rhathymum is a junior synonym of P. mexicanum. Several Floridian and Cuban strains correspond to a new species, which we describe as Prorocentrum steidingerae sp. nov. © 2017 The Author(s) Journal of Eukaryotic Microbiology © 2017 International Society of Protistologists.

  1. Oligocene-Miocene paleoceanographic changes offshore the Wilkes Land Margin, Antarctica: dinoflagellate cyst and TEX86 analyses of DSDP Site 269

    Science.gov (United States)

    Bijl, Peter; Boterblom, Wilrieke H.; Sangiorgi, Francesca; Hartman, Julian D.; Peterse, Francien

    2017-04-01

    Although a lot of research has been conducted to characterize the onset of Antarctic glaciation at the Eocene-Oligocene transition, little is known about the subsequent evolution and fluctuations of the size of the Antarctic Ice Sheet (AIS). The discrepancy between the conclusions of Foster and Rohling (2013) (insensitive global cryosphere between 400-650 ppmv CO2) and variations in benthic foraminiferal δ18O records (0.5-1 ‰) illustrate the uncertainty in particularly the East AIS variability during the Oligocene and Miocene. Increasing awareness of the importance of oceanographic conditions on ice sheet melt emphasize the need to directly infer ice sheet volume fluctuations from sedimentary archives close to the Antarctic margin. In this study, dinoflagellate cyst (dinocyst) assemblages, dinocyst-based biostratigraphy and TEX86 from Deep Sea Drilling Project Site 269, offshore the Wilkes Land Margin (WLM), were used to reconstruct the paleoenvironment and paleoceanographic setting during the Oligocene and Miocene. Preliminary results are indicative of open ocean conditions, Southern Ocean fronts and high productivity waters. Furthermore, biomarker species were found, which are useful for stratigraphic dating. Research conducted at the continental rise of the WLM (Site U1356), by Bijl et al. (in prep.), has allowed for the calibration of dinocysts events of the Oligocene-Miocene Southern Ocean to the international time scale. Comparing the results of Site 269 to Site U1356 can thus provide an age constraint for this record. Correlating paleoceanographic changes between sites can provide insights into the variability of the EAIS during the Oligocene and Miocene, and will contribute to improving predictions of future changes in the Antarctic ice sheet.

  2. The effect of riverine dissolved organic matter and other nitrogen forms on the growth and physiology of the dinoflagellate Prorocentrum minimum (Pavillard) Schiller

    Science.gov (United States)

    Ou, Linjian; Lundgren, Veronica; Lu, Songhui; Granéli, Edna

    2014-01-01

    The effect of various nitrogen (N) sources, including riverine dissolved organic matter (DOM), nitrate, ammonium, and urea, on the growth and physiology of the dinoflagellate Prorocentrum minimum was compared in a batch culture experiment. P. minimum grew equally well in the presence of identical amounts of nitrate, ammonium, and urea. Approximately 18 to 20% of organic N bound to the DOM was bioavailable. Although the available N added in the DOM treatment was only 1/3 of the amount of any other N sources, the cell densities of P. minimum in the DOM treatment increased to 61 ~ 65% of those in the nitrate, ammonium or urea treatment. The maximum specific growth rates did not differ significantly between the treatments with the highest in the ammonium treatment (0.55 ± 0.13 d- 1) and the lowest in the urea treatment (0.39 ± 0.04 d- 1). P. minimum assimilated the available DOM-bound N in a short period (fewer than 5 days), which was faster than utilizing urea. The increase in the cellular N:P ratios of P. minimum showed the alleviation of N stress in all the treatments after the addition of various N forms. The densities and cellular compositions of P. minimum stabilizing in all the treatments for the whole stationary phase indicated that P. minimum has adaptive physiology under sub-optimal conditions and is a competitive bloom species. We suggest that P. minimum cells utilize DOM-bound N for their growth, and the efficiency in utilizing the available DOM-bound N for growth is comparable to when P. minimum utilizes nitrate, ammonium or urea.

  3. Effects of ambient DIN:DIP ratio on the nitrogen uptake of harmful dinoflagellate Prorocentrum minimum and Prorocentrum donghaiense in turbidistat

    Science.gov (United States)

    Li, Ji; Glibert, Patricia M.; Alexander, Jeffrey A.

    2011-07-01

    The effects of varying nitrogen (N): phosphorus (P) ratios on the growth and N-uptake and assimilation of the harmful dinoflagellates Prorocentrum minimum and Prorocentrum donghaiense were examined in turbidistat culture experiments. Algal cultures were supplied with media containing PO{4/3-} in various concentrations to obtain a wide range of N:P ratios. Experiments to determine rates of N uptake and assimilation of different N sources (NO{3/-}, NH{4/+}, urea and glycine by P. minimum and NO{3/-}, NH{4/+} by P. donghaiense) were conducted using 15N tracer techniques at each N:P ratio. The growth rates suggested nutrient limitation at both high and low N:P ratios relative to the Redfield ratio. On a diel basis, the growth of both species was regulated by the light-dark cycle, which may be a result of regulation of both lightdependent growth and light-independent nutrient uptake. Maximum growth rates of both species always occurred at the beginning of light phase. In P-rich medium (low N:P ratio), both species had higher N assimilation rates, suggesting N limitation. Low assimilation coefficients at high N:P ratios suggested P limitation of N uptake and assimilation. NO{3/-} and NH{4/+} contributed more than 90% of the total N uptake of P. minimum. Reduced N sources were more quickly assimilated than NO{3/-}. Highest average daily growth rates were recorded near an N:P ratio of 12 for both species. The N uptake rates of cultures at N:P ratios near Redfield ratio were more balanced with growth rates. The linkage between growth rates and N uptake/assimilation rates were conceptually described by the variation of cell N quota. The N:P ratios affect the N uptake and growth of Prorocentrum spp., and may regulate their bloom progression in eutrophic ecosystems.

  4. A dynamic climate and ecosystem state during the Paleocene-Eocene Thermal Maximum: inferences from dinoflagellate cyst assemblages on the New Jersey Shelf

    Directory of Open Access Journals (Sweden)

    A. Sluijs

    2009-08-01

    Full Text Available Late Paleocene and Early Eocene climates and ecosystems underwent significant change during several transient global warming phases, associated with rapidly increasing atmospheric carbon concentrations, of which the Paleocene-Eocene Thermal Maximum (PETM; ~55.5 Ma is best studied. While biotic response to the PETM as a whole (~170 kyrs has been relatively well documented, variations during the PETM have been neglected. Here we present organic dinoflagellate cyst (dinocyst distribution patterns across two stratigraphically expanded PETM sections from the New Jersey Shelf, Bass River and Wilson Lake. Many previously studied sites show a uniform abundance of the thermophilic and presumably heterotrophic taxon Apectodinium that spans the entire carbon isotope excursion (CIE of the PETM. In contrast, the New Jersey sections show large variations in abundances of many taxa during the PETM, including the new species Florentinia reichartii that we formally propose. We infer paleoecological preferences of taxa that show temporal abundance peaks, both qualitative and absolute quantitative, from empirical as well as statistical information, i.e., principle (PCA and canonical correspondence analyses (CCA. In the CCAs, we combine the dinocyst data with previously published environmental proxy data from these locations, such as TEX86 paleothermometry, magnetic susceptibility and sedimentary size fraction. The combined information supports previous inferences that sea level rose during the PETM, but also indicates a (regional increase in fresh-water runoff that started ~10 kyr after the onset of the CIE, and perhaps precession-paced cycles in sea surface productivity. The highly variable dinocyst assemblages of the PETM contrast with rather stable Upper Paleocene assemblages, which suggests that carbon input caused a dynamic climate state, at least regionally.

  5. Formation of kynurenic and xanthurenic acids from kynurenine and 3-hydroxykynurenine in the dinoflagellate Lingulodinium polyedrum: role of a novel, oxidative pathway.

    Science.gov (United States)

    Zsizsik, B K; Hardeland, R

    2002-11-01

    The dinoflagellate Lingulodinium polyedrum (syn. Gonyaulax polyedra) was used as a model organism for studying the effects of high and low physiological oxidative stress on the formation of kynurenic and xanthurenic acids from kynurenine and 3-hydroxykynurenine. Cell were incubated with the precursors and exposed to light (high physiological stress due to photosynthetically formed oxidants) or kept in darkness (low stress). In cultures of less than 0.5 ml cell volume/l of medium, cells took up approximately one half of 0.1 mM extracellular kynurenine within 18 h. The amino acid was partially converted to kynurenic acid, most of which was released to the medium; however, intracellular concentrations of the product were by approximately 10-fold higher than extracellular levels. Rates of kynurenic acid release exceeded by far those explained by kynurenine and tryptophan aminotransferase activities, the latter representing an additional source of kynurenic acid formation via indole-3-pyruvic acid. Light enhanced the release of kynurenic acid by approximately 4-fold; these rates were further increased by exposure to continuous light. Diurnal rhythmicity of kynurenic acid release was clearly exogenous and did not match with the circadian pattern of kynurenine or tryptophan aminotransferase activities; no rhythm was detected in constant darkness. Similar findings were obtained on turnover of 3-hydroxykynurenine to xanthurenic acid and release of the product to the medium. However, light/dark differences were relatively smaller, and additional products were formed, according to HPLC data obtained with electrochemical detection. Results are most easily explained on the basis of a recently discovered pathway of kynurenic acid formation from kynurenine, involving either non-enzymatic oxidation by H(2)O(2) or, at higher rates, enzymatic catalysis by hemoperoxidase. A corresponding mechanism may exist for the hydroxylated analogue.

  6. The dinoflagellate Akashiwo sanguinea will benefit from future climate change: The interactive effects of ocean acidification, warming and high irradiance on photophysiology and hemolytic activity.

    Science.gov (United States)

    Ou, Guanyong; Wang, Hong; Si, Ranran; Guan, Wanchun

    2017-09-01

    Due to global climate change, marine phytoplankton will likely experience low pH (ocean acidification), high temperatures and high irradiance in the future. Here, this work report the results of a batch culture experiment conducted to study the interactive effects of elevated CO 2 , increased temperature and high irradiance on the harmful dinoflagellate Akashiwo sanguinea, isolated at Dongtou Island, Eastern China Sea. The A. sanguinea cells were acclimated in high CO 2 condition for about three months before testing the responses of cells to a full factorial matrix experimentation during a 7-day period. This study measured the variation in physiological parameters and hemolytic activity in 8 treatments, representing full factorial combinations of 2 levels each of exposure to CO 2 (400 and 1000μatm), temperature (20 and 28°C) and irradiance (50 and 200μmol photons m -2 s -1 ). Sustained growth of A. sanguinea occurred in all treatments, but high CO 2 (HC) stimulated faster growth than low CO 2 (LC). The pigments (chlorophyll a and carotenoid) decreased in all HC treatments. The quantum yield (F v /F m ) declined slightly in all high-temperature (HT) treatments. High irradiance (HL) induced the accumulation of ultraviolet-absorbing compounds (UV abc ) irrespective of temperature and CO 2 . The hemolytic activity in the LC treatments, however, declined when exposed to HT and HL, but HC alleviated the adverse effects of HT and HL on hemolytic activity. All HC and HL conditions and the combinations of high temperature*high light (HTHL) and high CO 2 *high temperature*high light (HCHTHL) positively affected the growth in comparison to the low CO 2 *low temperature*low light (LCLTLL) treatment. High temperature (HT), high light (HL) and a combination of HT*HL, however, negatively impacted hemolytic activity. CO 2 was the main factor that affected the growth and hemolytic activity. There were no significant interactive effects of CO 2 *temperature*irradiance on growth

  7. Improved real-time PCR method for quantification of the abundance of all known ribotypes of the ichthyotoxic dinoflagellate Cochlodinium polykrikoides by comparing 4 different preparation methods.

    Science.gov (United States)

    Lee, Sung Yeon; Jeong, Hae Jin; Seong, Kyeong Ah; Lim, An Suk; Kim, Ji Hye; Lee, Kyung Ha; Lee, Moo Joon; Jang, Se Hyeon

    2017-03-01

    Red tides by the ichthyotoxic dinoflagellate Cochlodinium polykrikoides have caused large scaled mortality of fish and great loss in aquaculture industry in many countries. Detecting and quantifying the abundance of this species are the most critical step in minimizing the loss. The conventional quantitative real-time PCR (qPCR) method has been used for quantifying the abundance of this species. However, when analyzing >500 samples collected during huge C. polykrikoides red tides in South Sea of Korea in 2014, this conventional method and the previously developed specific primer and probe set for C. polykrikoides did not give reasonable abundances when compared with cell counting data. Thus improved qPCR methods and a new specific primer and probe set reflecting recent discovery of 2 new ribotypes have to be developed. A new species-specific primer and probe set for detecting all 3 ribotypes of C. polykrikoides was developed and provided in this study. Furthermore, because the standard curve between cell abundance and threshold cycle value (Ct) is critical, the efficiencies of 4 different preparation methods used to determine standard curves were comparatively evaluated. The standard curves were determined by using the following 4 different preparations: (1) extraction of DNA from a dense culture of C. polykrikoides followed by serial dilution of the extracted DNA (CDD method), (2) extraction of DNA from each of the serially diluted cultures with different concentrations of C. polykrikoides cultures (CCD method), (3) extraction of DNA from a dense field sample of C. polykrikoides collected from natural seawater and then dilution of the extracted DNA in serial (FDD method), and (4) extraction of DNA from each of the serially diluted field samples having different concentrations of C. polykrikoides (FCD method). These 4 methods yielded different results. The abundances of C. polykrikoides in the samples collected from the coastal waters of South Sea, Korea, in 2014

  8. High interaction variability of the bivalve-killing dinoflagellate Heterocapsa circularisquama strains and their single-stranded RNA virus HcRNAV isolates.

    Science.gov (United States)

    Nakayama, Natsuko; Fujimoto, Akihiro; Kawami, Hisae; Tomaru, Yuji; Hata, Naotsugu; Nagasaki, Keizo

    2013-01-01

    HcRNAV is a single-stranded RNA (ssRNA) virus that specifically infects the bivalve-killing dinoflagellate, Heterocapsa circularisquama. HcRNAV strains are grouped into 2 types (UA and CY), based on intra-species host specificity and the amino acid sequence of the major capsid protein (MCP). In the present study, we report the isolation of novel HcRNAV clones (n=51) lytic to the H. circularisquama strains, HU9433-P, HCLG-1, 05HC05 and 05HC06. HcRNAV34, HcRNAV109, HcRNAV641, and HcRNAV659, which displayed lytic activity against the strains, HU9433-P, HCLG-1, 05HC05, and 05HC06, respectively, were selected as typical virus clones and were intensively examined. The infection intensity of each host-virus combination was analyzed by examining the algicidal activity, detecting the intracellular replication of the viral RNA as well as the appearance of host cells with a morphologically abnormal nucleus post-infection. Interestingly, the strains, 05HC05 and 05HC06, were markedly sensitive to HcRNAV641 and HcRNAV659, respectively. Tertiary structural modeling predicted 4 unique amino acid (aa) substitutions in HcRNAV659-MCP to be exposed to an ambient water environment, which contributed towards determining its infection specificity. Neighbor-joining analysis of MCP aa sequences from HcRNAV clones revealed 3 clades, namely, the CY type and the UA1 and UA2 subtypes. The HcRNAV clones lytic to HCLG-1 (ex. HcRNAV109), HU9433-P and 05HC05 (ex. HcRNAV34), and 05HC06 (ex. HcRNAV659) were categorized into CY type, UA1 and UA2 subtypes, respectively. The present study highlights the complexity of the H. circularisquama-HcRNAV host-virus system, i.e., clonal variation, microbial control, and ecology in a natural algal population.

  9. Gene duplication, loss and selection in the evolution of saxitoxin biosynthesis in alveolates.

    Science.gov (United States)

    Murray, Shauna A; Diwan, Rutuja; Orr, Russell J S; Kohli, Gurjeet S; John, Uwe

    2015-11-01

    A group of marine dinoflagellates (Alveolata, Eukaryota), consisting of ∼10 species of the genus Alexandrium, Gymnodinium catenatum and Pyrodinium bahamense, produce the toxin saxitoxin and its analogues (STX), which can accumulate in shellfish, leading to ecosystem and human health impacts. The genes, sxt, putatively involved in STX biosynthesis, have recently been identified, however, the evolution of these genes within dinoflagellates is not clear. There are two reasons for this: uncertainty over the phylogeny of dinoflagellates; and that the sxt genes of many species of Alexandrium and other dinoflagellate genera are not known. Here, we determined the phylogeny of STX-producing and other dinoflagellates based on a concatenated eight-gene alignment. We determined the presence, diversity and phylogeny of sxtA, domains A1 and A4 and sxtG in 52 strains of Alexandrium, and a further 43 species of dinoflagellates and thirteen other alveolates. We confirmed the presence and high sequence conservation of sxtA, domain A4, in 40 strains (35 Alexandrium, 1 Pyrodinium, 4 Gymnodinium) of 8 species of STX-producing dinoflagellates, and absence from non-producing species. We found three paralogs of sxtA, domain A1, and a widespread distribution of sxtA1 in non-STX producing dinoflagellates, indicating duplication events in the evolution of this gene. One paralog, clade 2, of sxtA1 may be particularly related to STX biosynthesis. Similarly, sxtG appears to be generally restricted to STX-producing species, while three amidinotransferase gene paralogs were found in dinoflagellates. We investigated the role of positive (diversifying) selection following duplication in sxtA1 and sxtG, and found negative selection in clades of sxtG and sxtA1, clade 2, suggesting they were functionally constrained. Significant episodic diversifying selection was found in some strains in clade 3 of sxtA1, a clade that may not be involved in STX biosynthesis, indicating pressure for diversification

  10. Isolation and characterization of pigmented algicidal bacteria from seawater

    Science.gov (United States)

    Shaima, A.; Gires, U.; Asmat, A.

    2014-09-01

    Some dinoflagellate species are toxic and widely distributed in Malaysian marines ecosystems. They can cause many problems to aquatic life due to the production of various potential and natural toxins that accumulate in filter feeding shellfish and cause food poisoning to human. In recent decades, bacteria have been widely used as a biological control against these harmful algae. In the present study, pigmented bacteria isolated from marine water of Port Dickson beach was studied for their anti-algal activity towards toxic dinoflagellate Alexandrium minutum. Four isolates were studied and only one was capable of inhibiting algal growth when treated with bacterial culture. The algilytic effect on dinoflagellate was evaluated based on direct cell count under the microscope. Results showed that only isolate Sdpd-310 with orange colour has an inhibitory effect on A. minutum growth. This study demonstrated the rapid algicidal activity of a marine pigmented bacteria against the toxic dinoflagellate A. minutum.

  11. Salmon mortalities associated with a bloom of Alexandrium ...

    African Journals Online (AJOL)

    Blue mussels Mytilus edulis analysed from areas affected by the bloom reached levels of 18 000ìg STX equivalents 100g–1 of tissue. As a result of the salmon mortalities, a project was initiated to establish a monitoring approach for harmful algal blooms to provide an early warning of potential events and to act as a tool for ...

  12. Uptake and accumulation of ammonium by Alexandrium catenella ...

    African Journals Online (AJOL)

    Following nitrogen exhaustion from the medium, ammonium pulses of varying magnitudes were induced, and measurements of extra- and intra-cellular ammonium were carried out for 24–72h along with measurements of ammonium incorporation (15N tracer) and inorganic carbon fixation (13C tracer). During vegetative ...

  13. Application of rotifer Brachionus plicatilis in detecting the toxicity of harmful algae

    Science.gov (United States)

    Yan, Tian; Wang, Yunfeng; Wang, Liping; Chen, Yang; Han, Gang; Zhou, Mingjiang

    2009-05-01

    The toxicity of seven major HAB (harmful algal bloom) species/strains, Prorocentrum donghaiense, Phaeocystis globosa, Prorocentrum micans, Alexandrium tamarense (AT-6, non-PSP producer), Alexandrium lusitanicum, Alexandrum tamarense (ATHK) and Heterosigma akashiwo were studied against rotifer Brachionus plicatilis under laboratory conditions. The results show that P. donghaiense, P. globosa, P. micans, A. tamarense (AT-6), or A. lusitanicum could maintain the individual survival and reproduction, as well as the population increase of the rotifer, but the individual reproduction would decrease when exposed to these five algae at higher densities for nine days; H. akashiwo could decrease the individual survival and reproduction, as well as population increase of the rotifer, which is similar to that of the starvation group, indicating that starvation might be its one lethal factor except for the algal toxins; A. tamarense (ATHK) has strong lethal effect on the rotifer with 48h LC50 at 800 cells/mL. The experiment on ingestion ability indicated by gut pigment change shows that P. donghaiense, P. globosa, P. micans, A. tamarense (AT-6) and A. lusitanicum can be taken by the rotifers as food, but A. tamarense (ATHK) or H. akashiwo can be ingested by the rotifers. The results indicate that all the indexes of individual survival and reproduction, population increase, gut pigment change of the rotifers are good and convenient to be used to reflect the toxicities of HAB species. Therefore, rotifer is suggested as one of the toxicity testing organisms in detecting the toxicity of harmful algae.

  14. Phylogenetic Analyses of Three Genes of Pedinomonas noctilucae, the Green Endosymbiont of the Marine Dinoflagellate Noctiluca scintillans, Reveal its Affiliation to the Order Marsupiomonadales (Chlorophyta, Pedinophyceae) under the Reinstated Name Protoeuglena noctilucae.

    Science.gov (United States)

    Wang, Lu; Lin, Xin; Goes, Joaquim I; Lin, Senjie

    2016-04-01

    In the last decade, field studies in the northern Arabian Sea showed a drastic shift from diatom-dominated phytoplankton blooms to thick and widespread blooms of the green dinoflagellate, Noctiluca scintillans. Unlike the exclusively heterotrophic red form, which occurs widely in tropical to temperate coastal waters, the green Noctiluca contains a large number of endosymbiotic algal cells that can perform photosynthesis. These symbiotic microalgae were first described under the genus Protoeuglena Subrahmanyan and further transferred to Pedinomonas as P. noctilucae Sweeney. In this study, we used the 18S rDNA, rbcL and chloroplast 16S rDNA as gene markers, in combination with the previously reported morphological features, to re-examine the phylogenetic position of this endosymbiotic algal species. Phylogenetic trees inferred from these genes consistently indicated that P. noctilucae is distantly related to the type species of Pedinomonas. The sequences formed a monophyletic clade sister to the clade of Marsupiomonas necessitating the placement of the algal symbionts as an independent genus within the family Marsupiomonadaceae. Based on the phylogenetic affiliation and ecological characteristics of this alga as well as the priority rule of nomenclature, we reinstate the genus Protoeuglena and reclassify the endosymbiont as Protoeuglena noctilucae. Copyright © 2016 Elsevier GmbH. All rights reserved.

  15. Quantitative reconstruction of sea-surface conditions over the last 150 yr in the Beaufort Sea based on dinoflagellate cyst assemblages: the role of large-scale atmospheric circulation patterns

    Directory of Open Access Journals (Sweden)

    L. Durantou

    2012-12-01

    Full Text Available Dinoflagellate cyst (dinocyst assemblages have been widely used over the Arctic Ocean to reconstruct sea-surface parameters on a quantitative basis. Such reconstructions provide insights into the role of anthropogenic vs natural forcings in the actual climatic trend. Here, we present the palynological analysis of a dated 36 cm-long core collected from the Mackenzie Trough in the Canadian Beaufort Sea. Dinocyst assemblages were used to quantitatively reconstruct the evolution of sea-surface conditions (temperature, salinity, sea ice and freshwater palynomorphs fluxes were used as local paleo-river discharge indicators over the last ~ 150 yr. Dinocyst assemblages are dominated by autotrophic taxa (68 to 96%. Cyst of Pentapharsodinium dalei is the dominant species throughout most of the core, except at the top where the assemblages are dominated by Operculodinium centrocarpum. Quantitative reconstructions of sea-surface parameters display a series of relatively warm, lower sea ice and saline episodes in surface waters, alternately with relatively cool and low salinity episodes. Variations of dinocyst fluxes and reconstructed sea-surface conditions may be closely linked to large scale atmospheric circulation patterns such as the Pacific Decadal Oscillation (PDO and to a lesser degree, the Arctic Oscillation (AO. Positive phases of the PDO correspond to increases of dinocyst fluxes, warmer and saltier surface waters, which we associate with upwelling events of warm and relatively saline water from Pacific origin. Freshwater palynomorph fluxes increased in three phases from AD 1857 until reaching maximum values in AD 1991, suggesting that the Mackenzie River discharge followed the same trend when its discharge peaked between AD 1989 and AD 1992. The PDO mode seems to dominate the climatic variations at multi-annual to decadal timescales in the western Canadian Arctic and Beaufort Sea areas.

  16. Quantitative reconstruction of sea-surface conditions over the last ~150 yr in the Beaufort Sea based on dinoflagellate cyst assemblages: the role of large-scale atmospheric circulation patterns

    Science.gov (United States)

    Durantou, L.; Rochon, A.; Ledu, D.; Massé, G.

    2012-06-01

    Dinoflagellate cyst (dinocyst) assemblages have been widely used over the Arctic Ocean to reconstruct sea-surface parameters on a quantitative basis. Such reconstructions provide insights into the role of anthropogenic vs natural forcings in the actual climatic trend. Here, we present the palynological analysis of a 36 cm-long core collected from the Mackenzie Through in the Canadian Beaufort Sea. Dinocyst assemblages were used to quantitatively reconstruct the evolution of sea surface conditions (temperature, salinity, sea ice) and freshwater palynomorphs influxes were used as local paleo-river discharge indicators over the last ~150 yr. Dinocyst assemblages are dominated by autotrophic taxa (68 to 96 %). Pentapharsodinium dalei is the dominant specie throughout most of the core, except at the top where the assemblages are dominated by Operculodinium centrocarpum. Quantitative reconstructions of sea surface parameters display a serie of relatively warm, lower sea ice and saline episodes in surface waters, alternately with relatively cool and low salinity episodes. The warm episodes are characterized with high dinocyst productivity. Variations of dinocyst influxes and reconstructed sea surface conditions are closely linked to large scale atmospheric circulation patterns such as the Pacific Decadal Oscillation (PDO) and to a lesser degree, the Arctic Oscillation (AO). Positive phases of the PDO correspond to increases of dinocyst influxes, warmer and saltier surface waters, which we associate with upwelling events of warm and relatively saline water from Pacific origin. Freshwater palynomorph influxes increased in three phases from AD 1857 until reaching maximum values in AD 1991, suggesting that the Mackenzie River discharge followed the same trend when its discharge peaked between AD 1989 and AD 1992. The PDO mode seems to dominate the climatic variations at multi-annual to decadal timescales in the Western Canadian Arctic and Beaufort Sea areas.

  17. Genetic and toxinological characterization of North Atlantic strains of the dinoflagellate Ostreopsis and allelopathic interactions with toxic and non-toxic species from the genera Prorocentrum, Coolia and Gambierdiscus.

    Science.gov (United States)

    García-Portela, María; Riobó, Pilar; Franco, José Mariano; Bañuelos, Rosa Mª; Rodríguez, Francisco

    2016-12-01

    The genus Ostreopsis includes several toxic species that can develop blooms in benthic ecosystems, with potential harmful consequences for human health and marine invertebrates. Despite of this, little is known about the allelopathic interactions between these organisms and other co-occurring microalgae that exploit similar spatial and nutrient resources in benthic ecosystems. The aim of this study was to follow these interactions in cultures of two Ostreopsis ribotypes with different toxin profiles (O. cf. ovata contained ovatoxins-a, b, c and e, while only ovatoxin-d was found in O .sp. "Lanzarote-type"), mixed with species of three benthic dinoflagellate genera (Coolia, Prorocentrum and Gambierdiscus), isolated from the same area (North East Atlantic, Canary Islands). In a first experiment, the potential allelopathic effects on growth rates were followed, in mixed cultures of Coolia monotis (a non toxic species) exposed to the clarified medium and to cells of O. sp."Lanzarote-type" and O. cf. ovata. Growth delayed in C. monotis was observed specially in clarified medium, while the O. sp. "Lanzarote-type" strain attained much lower densities in mixed cultures. In a second experiment, we examined the potential effects of clarified media from O. sp."Lanzarote-type" and O. cf. ovata on the adherence capacity in two toxic species (Prorocentrum hoffmannianum and Gambierdiscus excentricus). Contrasting effects were found: a significant increase of adherence capacity in P. hoffmannianum vs attachment decline in G. excentricus, that experienced also severe deleterious effects (cell lysis). Our results suggest the existence of weak to moderate allelopathic interactions between the studied organisms, although the outcome is dependent on the species involved. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Culture-Independent Study of the Late-Stage of a Bloom of the Toxic Dinoflagellate Ostreopsis cf. ovata: Preliminary Findings Suggest Genetic Differences at the Sub-Species Level and Allow ITS2 Structure Characterization.

    Science.gov (United States)

    Ramos, Vitor; Salvi, Daniele; Machado, João Paulo; Vale, Micaela; Azevedo, Joana; Vasconcelos, Vitor

    2015-06-30

    Available genomic data for the toxic, bloom-forming, benthic Ostreopsis spp. are traditionally obtained from isolates rather than from individuals originally present in environmental samples. Samples from the final phase of the first reported Ostreopsis bloom in European North Atlantic waters (Algarve, south coast of Portugal) were studied and characterized, using a culture-independent approach. In the first instance, a microscopy-based analysis revealed the intricate complexity of the samples. Then, we evaluated the adequacy of commonly used molecular tools (i.e., primers and nuclear ribosomal markers) for the study of Ostreopsis diversity in natural samples. A PCR-based methodology previously developed to identify/detect common Ostreopsis species was tested, including one new combination of existing PCR primers. Two sets of environmental rRNA sequences were obtained, one of them (1052 bp) with the newly tested primer set. These latter sequences encompass both the ITS1-5.8S-ITS2 region and the D1/D2 domain of the LSU rRNA gene, leading us to an accurate identification of ITS2. In turn, this allowed us to predict and show for the first time the ITS2 secondary structure of Ostreopsis. With 92 bp in length and a two-helix structure, the ITS2 of this genus revealed to be unique among the dinoflagellates. Both the PCR approach as the phylogenetic analyses allowed to place the Ostreopsis cells observed in the samples within the O. cf. ovata phylospecies' complex, discarding the presence of O. cf. siamensis. The (phylo)genetic results point out a certain level of nucleotide sequence divergence, but were inconclusive in relation to a possible geographic origin of the O. cf. ovata population from the Algarve's bloom.

  19. Dinoflagellate Toxins Responsible for Ciguatera Food Poisoning

    Science.gov (United States)

    1989-12-20

    extracted for the purpose of purifying GT-4 (MTX). Four g were expended in attempts to improve our purification procedure. We were succesful in collecting a... Plant and Microbial Toxins (9th), Page 61 11. Capra, M. F., Cameron, J., Flowers, A. E., Coombe, I. F., Blanton, C. G. and Hahn, S. T., (1988) The effects...effects of ciguatoxin on nerve conduction parameters in humans and the laboratory rat, Proceedings, Ninth World Congress on Animal, Plant and Microbial

  20. Dinoflagellate Toxins Responsible for Ciguatera Food Poisoning

    Science.gov (United States)

    1991-03-30

    and labeled for shipment. The vial is then encased ip a plastic container with absorbant material. The plastic container is then packed into a metal ...and Pesado , D., (1985) Production and toxicity of Gambierdiscus tcxicas, Adacbh and Fukuyo (Dinophyceae), Phycologia, 24, 2 17-223. 96. Durand, M

  1. Studies on phytoplankton with reference to dinoflagellates

    Digital Repository Service at National Institute of Oceanography (India)

    Naik, R.K.

    flagellum is situated in the sulcus, for e.g., Protoperidinium. The transverse flagellum allows the cell to move forward or backward by spinning in circles in order to propel it in either direction. The longitudinal flagellum acts mainly as a means...

  2. Primer informe del género Gambierdiscus (Dinophyceae y otros dinoflagelados bentónicos en el Parque Nacional Isla del Coco, Costa Rica, Pacífico Tropical Oriental First report of the genus Gambierdiscus (Dinophyceae and other benthic dinoflagellates from Isla del Coco National Park, Costa Rica, Eastern Tropical Pacific

    Directory of Open Access Journals (Sweden)

    Maribelle Vargas-Montero

    2012-11-01

    conocer la incidencia de dinoflagelados bentónicos implicados en ciguatera para el Pacífico Tropical Oriental.The Eastern Tropical Pacific is a region reported as free of ciguatera poisoning that causes serious gastrointestinal, neural and cardiovascular problems, even death. But with this study we found a high incidence of benthic microalgae involved in ciguatera poisoning in Isla del Coco National Park (PNIC, from its name in Spanish, Costa Rica. Between 2006 and 2011, during expeditions to PNIC, 420 phytoplankton samples with the interest of finding benthic dinoflagellates involved in the ciguatera poisoning were collected and analyzed. Samples were taken with phytoplankton nets, towed vertically and horizontally or carried by diving, between 5 to 30 m depth, over reef areas, and by direct extraction from benthic macroalgae. We found the dinoflagellates Gambierdiscus spp., Coolia tropicalis, Coolia cf. areolota, Prorocentrum concavum, Prorocentrum compressum, Amphidinium carterae and Ostreopsis siamensis. The quantity of dinoflagellates by macroalgae weight was high, mainly for Gambierdiscus. Ostreopsis and Prorocentrum, the most widely distributed genera throughout the collection sites. Gambierdiscus is a ciguatera producing genus. Two different sizes of Gambierdiscus were found, and comparing our samples with other studies, we conclude that they are different to any previously reported. They possibly represent two new species. Coco Island is an oceanic island and because of its protection status, it is an ideal site for studying the evolution of marine phytoplankton. Also, long-term monitoring is important due to the variety of potentially toxic dinoflagellates living in this marine ecosystem. This is the first study to report benthic dinoflagellates implicated in ciguatera poisoning in other areas of the Eastern Tropical Pacific.

  3. A search for mixotrophy and mucus trap production in Alexandrium spp. and the dynamics of mucus trap formation in Alexandrium pseudogonyaulax

    DEFF Research Database (Denmark)

    Blossom, Hannah Eva; Bædkel, Tina Dencker; Tillmann, Urban

    2017-01-01

    , such as speed and frequency of trap formation as well as what happens to the trap after the A. pseudogonyaulax cell detaches from it. The percentage of A. pseudogonyaulax cells producing a mucus trap and the number of prey cells caught increased with increasing prey concentration, whereas the physical size...... by a single A. pseudogonyaulax cell after only 24 h. The attachment of an A. pseudogonyaulax cell to the trap only ceased during, and just following, cell division. Prey cells were, to some extent, capable of escaping from the mucus trap, but the trap remained sticky and continued catching prey for up to 48 h...

  4. Allelopathic interactions between the red-tide causative dinoflagellate Prorocentrum donghaiense and the diatom Phaeodactylum tricornutum* This study was supported by the Natural Science Foundation of China-Guangdong Province Joint Key Project (U1133003 Science Technology Planning Project of Guangdong Province (2012B020307009 Open Fund from Key Laboratory of Aquatic Eutrophication Control of Harmful Algal Blooms of Guangdong Higher Education Institutes Open Fund from Key Laboratory of Microbial Resources Collection Preservation Ministry of Agriculture.

    Directory of Open Access Journals (Sweden)

    Zhuoping Cai

    2014-06-01

    Full Text Available The interactions between the red-tide causing dinoflagellate Prorocentrum donghaiense and the marine diatom Phaeodactylum tricornutum were investigated using a co-culture experiment and an enriched culture filtrate experiment. The results showed that when the two microalgae were cultured together with different initial cell densities, the growth of one species was basically suppressed by the other one. In addition, the enriched culture filtrates of one species had generally inhibitory effects on the other one. Our result inferred that P. donghaiense and P. tricornutum would interfere with each other mainly by releasing allelochemicals into the culture medium, and that the degree of allelopathic effects was dependent on the initial cell densities and growth phases. The allelopathic interactions between microalgal species may contribute to the formation and succession of red tides.

  5. The role of host sex in parasite dynamics: individual based model simulations of host-parasite interactions in a semi-enclosed embayment.

    Science.gov (United States)

    Velo Suarez, L.; Arancio, M.; Sourisseau, M.

    2016-02-01

    Parasitic dinoflagellates of the genus Amoebophrya infect free-living dinoflagellates, some of which can cause harmful algal blooms (HABs). During a field study in Salt Pond (MA, USA), we found a significant influence of Amoebophrya spp. on populations of Alexandrium fundyense. Parasitism appeared to exhibit a significant top down influence on A. fundyense populations and a dramatic life-cycle transition from vegetative division to sexual fusion was recorded. Despite our intensive sampling in Salt Pond, host-parasite interactions were undersampled owing to the very short time scales relevant to host-Amoebophrya spp. dynamics. In the present work, we explored the role of sexual reproduction and excystment/encystment processes using an Individual Based Model (IBM). The model was parameterized using published data and laboratory experiments carried out to analyze Amoebophrya spp. functional response. Observed-simulated differences in host-parasite dynamics support the hypothesis of parasite-host simultaneous dormancy, and further excystment months later to propagate both species. Results suggest that coexistence of A. fundyense and Amoebophrya spp. and their annual persistence in Salt Pond might rely on a sexual response/encystment. Understanding host-parasite interactions and coexistence strategies will improve our knowledge of Alexandrium spp. blooms and assess the impact of parasites on natural plankton assemblages in coastal systems.

  6. Analysis of Toxic and Non-Toxic Alexandrium (Dinophyceae) Species Using Ribosomal RNA Gene Sequences

    Science.gov (United States)

    1993-02-01

    77 - 129.1 Rowan, R., Powers, D. A. (1991). A molecular genetic classification of 11zooxanthellae and the evolution of animal-algal- symbioses . Science...zooxanthellae and the evolution of animal-algal symbioses . Sci. 251: 1348-1351. Saiki, R.K., Gelfand, D.H., Stoffel, S., Scharf, SJ., Higuchi, R., Horn

  7. Allelopathic effects of Alexandrium tamarense on other algae: evidence from mixed growth experiments

    DEFF Research Database (Denmark)

    Tillmann, Urban; Hansen, Per Juel

    2009-01-01

    period, even though cell concentrations of Alex5 became very high (2 × 104 cells ml-1). As both strains contained comparable amounts of PST, this confirmed previous suggestions that so far unidentified compounds are causing the negative effects on other algae. Sensitivity of the tested algae to Alex2...... differed considerably. The growth of some species was affected at very low Alex2 cell concentrations (cells ml-1), while the growth of other algae was not affected until cell concentrations exceeded 103 cells ml-1. While a complete dieoff was the ultimate fate for almost all target species when grown....... tamarense, similar in their cellular paralytic shellfish toxin (PST) content, were selected because of their fundamentally different lytic potencies. The Alex2 strain clearly affected all target algae while the Alex5 strain had no negative effect on the growth of any of the target species during the study...

  8. Nitrogen and phosphorus requirements of an Alexandrium minutum bloom in the Penze' Estuary, France

    Digital Repository Service at National Institute of Oceanography (India)

    Maguer, J.-F.; Wafar, M.V.M.; Madec, C.; Morin, P.; Denn, E.E.

    uptake rates of 43, 6, and 4.8 mu mol L sup(-1) d sup(-1). The measured ambient concentrations of NH sub(4) and PO sub(4) were far short of this peak demand, whereas those of NO sub(3) were far in excess, indicating that NO sub(3) supply is important...

  9. Progress in Understanding Algal Bloom-Mediated Fish Kills: The Role of Superoxide Radicals, Phycotoxins and Fatty Acids.

    Directory of Open Access Journals (Sweden)

    Juan José Dorantes-Aranda

    Full Text Available Quantification of the role of reactive oxygen species, phycotoxins and fatty acids in fish toxicity by harmful marine microalgae remains inconclusive. An in vitro fish gill (from rainbow trout Oncorhynchus mykiss assay was used to simultaneously assess the effect in superoxide dismutase, catalase and lactate dehydrogenase enzymatic activities caused by seven species of ichthyotoxic microalgae (Chattonella marina, Fibrocapsa japonica, Heterosigma akashiwo, Karenia mikimotoi, Alexandrium catenella, Karlodinium veneficum, Prymnesium parvum. Quantification of superoxide production by these algae was also performed. The effect of purified phycotoxins and crude extracts was compared, and the effect of fatty acids is discussed. The raphidophyte Chattonella was the most ichthyotoxic (gill cell viability down to 35% and also the major producer of superoxide radicals (14 pmol cell-1 hr-1 especially after cell lysis. The raphidophyte Heterosigma and dinoflagellate Alexandrium were the least toxic and had low superoxide production, except when A. catenella was lysed (5.6 pmol cell-1 hr-1. Catalase showed no changes in activity in all the treatments. Superoxide dismutase (SOD and lactate dehydrogenase exhibited significant activity increases of ≤23% and 51.2% TCC (total cellular content, respectively, after exposure to C. marina, but SOD showed insignificant changes with remaining algal species. A strong relationship between gill cell viability and superoxide production or superoxide dismutase was not observed. Purified brevetoxins PbTx-2 and -3 (from Karenia brevis, LC50 of 22.1 versus 35.2 μg mL-1 and karlotoxin KmTx-2 (from Karlodinium; LC50 = 380 ng mL-1 could almost entirely account for the fish killing activity by those two dinoflagellates. However, the paralytic shellfish toxins (PST GTX1&4, C1&C2, and STX did not account for Alexandrium ichthyotoxicity. Only aqueous extracts of Alexandrium were cytotoxic (≤65% decrease of viability, whereas

  10. Progress in Understanding Algal Bloom-Mediated Fish Kills: The Role of Superoxide Radicals, Phycotoxins and Fatty Acids.

    Science.gov (United States)

    Dorantes-Aranda, Juan José; Seger, Andreas; Mardones, Jorge I; Nichols, Peter D; Hallegraeff, Gustaaf M

    2015-01-01

    Quantification of the role of reactive oxygen species, phycotoxins and fatty acids in fish toxicity by harmful marine microalgae remains inconclusive. An in vitro fish gill (from rainbow trout Oncorhynchus mykiss) assay was used to simultaneously assess the effect in superoxide dismutase, catalase and lactate dehydrogenase enzymatic activities caused by seven species of ichthyotoxic microalgae (Chattonella marina, Fibrocapsa japonica, Heterosigma akashiwo, Karenia mikimotoi, Alexandrium catenella, Karlodinium veneficum, Prymnesium parvum). Quantification of superoxide production by these algae was also performed. The effect of purified phycotoxins and crude extracts was compared, and the effect of fatty acids is discussed. The raphidophyte Chattonella was the most ichthyotoxic (gill cell viability down to 35%) and also the major producer of superoxide radicals (14 pmol cell-1 hr-1) especially after cell lysis. The raphidophyte Heterosigma and dinoflagellate Alexandrium were the least toxic and had low superoxide production, except when A. catenella was lysed (5.6 pmol cell-1 hr-1). Catalase showed no changes in activity in all the treatments. Superoxide dismutase (SOD) and lactate dehydrogenase exhibited significant activity increases of ≤23% and 51.2% TCC (total cellular content), respectively, after exposure to C. marina, but SOD showed insignificant changes with remaining algal species. A strong relationship between gill cell viability and superoxide production or superoxide dismutase was not observed. Purified brevetoxins PbTx-2 and -3 (from Karenia brevis, LC50 of 22.1 versus 35.2 μg mL-1) and karlotoxin KmTx-2 (from Karlodinium; LC50 = 380 ng mL-1) could almost entirely account for the fish killing activity by those two dinoflagellates. However, the paralytic shellfish toxins (PST) GTX1&4, C1&C2, and STX did not account for Alexandrium ichthyotoxicity. Only aqueous extracts of Alexandrium were cytotoxic (≤65% decrease of viability), whereas crude

  11. occurrence of some maastrichtian dinoflagellate cysts from the ...

    African Journals Online (AJOL)

    Admin

    more understanding of the paleogeography of the Bida basin with respect to possible connection between the. Tethys and the south Atlantic in the Late Cretaceous and also may also help resolve more resolutely the precise age of the Patti sediments. 217. J. Ojo, Olusola, Department of Geology, University of Ilorin, Ilorin, ...

  12. Increased blooms of a dinoflagellate in the NW Atlantic

    OpenAIRE

    Johns, DG; Edwards, M; Richardson, AJ; Spicer, JI

    2003-01-01

    Sampling by the Continuous Plankton Recorder (CPR) over the NW Atlantic from 1960 to 2000 has enabled long-term studies of the larger components of the phytoplankton community, highlighting various changes, particularly during the 1990s. Analysis of an index of phytoplankton biomass, the Phytoplankton Colour Index (PCI) has revealed an increase over the past decade, most marked during the winter (December to February) months. Examination of the structure of the community using multiple linear...

  13. Colonization of diatom aggregates by the dinoflagellate Noctiluca scintillans

    DEFF Research Database (Denmark)

    Tiselius, P.; Kiørboe, Thomas

    1998-01-01

    . The attached N. scintillans were feeding on the diatoms in the aggregates, as revealed by food-vacuole content. In the particular environment studied, N, scintillans appeared not to depend on aggregate feeding since shipboard experiments showed that clearance rates (10-20 mu l h(-1)) on unaggregated cells were...

  14. Particulate bioluininescence in dinoflagellates: dissociation and partial reconstitution.

    Science.gov (United States)

    Fuller, C W; Kreiss, P; Seliger, H H

    1972-09-08

    With the same extraction conditions used for Gonyaulax polyedra, soluble and particulate bioluminescence can be isolated from two additional species, Pyrodinium bahamense and Pyrocystis lunula. We have been able, for all three species, to dissociate soluble luciferin and luciferase from the particulate system. Luciferin can be incorporated into both reacted and unreacted particulate systems.

  15. Occurrence of some Maastrichtian dinoflagellate cysts from the ...

    African Journals Online (AJOL)

    Lithostratigraphic and palynological studies of the shale facies of the upper Cretaceous Patti Formation, southeastern Bida Basin, Nigeria have allowed the determination of the paleoenvironment and age of the sediments. Marine dinocysts assemblage and terrestrial pollen and spores (relatively more abundant) are well ...

  16. Ocean acidification reduces growth and calcification in a marine dinoflagellate

    NARCIS (Netherlands)

    van der Waal, D.B.; John, U.; Ziveri, P.

    2013-01-01

    Ocean acidification is considered a major threat to marine ecosystems and may particularly affect calcifying organisms such as corals, foraminifera and coccolithophores. Here we investigate the impact of elevated pCO

  17. Potentiality of benthic dinoflagellate cultures and screening of their ...

    African Journals Online (AJOL)

    aghomotsegin

    2014-02-05

    Feb 5, 2014 ... tourism industries) as follows: death of fish/shellfish through toxicity, human health problems (for example, ...... Rhodes LL, Thomas AE (1997). Coolia monotis (Dinophyceae):A toxic epiphytic microalgal species found in New Zealand. New Zealand. J. Mar. Freshw. 31:139-141. Rodriguez AR, Roglero G, ...

  18. Dinoflagellate Blooms and Physical Systems in the Gulf of Maine

    Science.gov (United States)

    1990-06-01

    interests lie in studying the modes of coupling of primary production and physical systems. xi xii CHAPTER 1 INTRODUCTION " Hallo !" said Piglet, "what are...HISTORICAL DATA " Hallo , Pooh," said Rabbit. " Hallo , Rabbit. Fourteen, wasn’t it?" "What was?" "My pots of honey what I was counting." "Fourteen, that’s

  19. Competing phytoplankton undermines allelopathy of a bloom-forming dinoflagellate.

    Science.gov (United States)

    Prince, Emily K; Myers, Tracey L; Naar, Jerome; Kubanek, Julia

    2008-12-07

    Biotic interactions in the plankton can be both complex and dynamic. Competition among phytoplankton is often chemically mediated, but no studies have considered whether allelopathic compounds are modified by biotic interactions. Here, we show that compounds exuded during Karenia brevis blooms were allelopathic to the cosmopolitan diatom Skeletonema costatum, but that bloom allelopathy varied dramatically among collections and years. We investigated several possible causes of this variability and found that neither bloom density nor concentrations of water-borne brevetoxins correlated with allelopathic potency. However, when we directly tested whether the presence of competing phytoplankton influenced bloom allelopathy, we found that S. costatum reduced the growth-inhibiting effects of bloom exudates, suggesting that S. costatum has a mechanism for undermining K. brevis allelopathy. Additional laboratory experiments indicated that inducible changes to K. brevis allelopathy were restricted to two diatoms among five sensitive phytoplankton species, whereas five other species were constitutively resistant to K. brevis allelopathy. Our results suggest that competitors differ in their responses to phytoplankton allelopathy, with S. costatum exhibiting a previously undescribed method of resistance that may influence community structure and alter bloom dynamics.

  20. Productivity of dinoflagellate blooms on the west coast of South ...

    African Journals Online (AJOL)

    Productivity was estimated from natural fluorescence measurements (PNF), using photosynthesis (P) v. irradiance (E) relationships (PE) and by means of the in situ 14C-method (PC). A linear regression of PNF productivity against PC and PE productivities yielded a slope of 0.911 and an r2 of 0.83 (n = 41). Physical and ...

  1. Ocean acidification reduces growth and calcification in a marine dinoflagellate

    NARCIS (Netherlands)

    Waal, D.B. van de; John, U.; Ziveri, P.; Reichart, G.-J.; Hoins, M.; Sluijs, A.; Rost, B.

    2013-01-01

    Ocean acidification is considered a major threat to marine ecosystems and may particularly affect calcifying organisms such as corals, foraminifera and coccolithophores. Here we investigate the impact of elevated pCO2 and lowered pH on growth and calcification in the common calcareous

  2. Tracing the influence of sewage discharge on coastal bays of Southern Vancouver Island (BC, Canada) using sedimentary records of phytoplankton

    Science.gov (United States)

    Krepakevich, Alanna; Pospelova, Vera

    2010-10-01

    The impact of sewage and stormwater effluents on phytoplankton is investigated by comparing organic-walled dinoflagellate cyst abundance and diversity from 38 surface sediment samples, flanking southern Vancouver Island. Site locations include those directly adjacent to wastewater outfall at Clover and Macaulay Points and Saanich Peninsula, as well as from a variety of near-shore environments with differing tidal flow influences. Excellently preserved dinoflagellate cyst assemblages have been recovered and 36 cyst taxa were identified. Local assemblages are characterized by a high relative proportion (average 56%) of cysts produced by heterotrophic dinoflagellates, which is typical for regions of high primary production. Relative proportional increases of cysts from heterotrophic species with particular increases of Polykrikos kofoidii/schwartzii and Dubridinium species, known to reflect areas affected by eutrophication, occur directly adjacent to all three sewage outfalls, as well as in the more stagnant waters of Esquimalt and Victoria Harbours and at the mouth of Cadboro Bay. Further effects of an anthropogenic effluent can be seen in the relatively higher concentrations of organic carbon and the diatom production proxy, biogenic opal. Results from this study clearly indicate a much larger impact zone than predicted by a sewage effluent plume model or trends found in monitored benthic biota and sediment chemistry that evidence primary outfall affects <800 m eastward of Macaulay Point and about 200 m eastward of the Clover Point. Enhanced production of cysts from potentially toxic Alexandrium species is also observed near locations of sewage outfalls.

  3. Plankton resting stages in recent sediments of Haifa port, Israel (Eastern Mediterranean) - Distribution, viability and potential environmental consequences.

    Science.gov (United States)

    Rubino, Fernando; Belmonte, Manuela; Galil, Bella S

    2017-03-15

    Resting stages of plankton were sampled in the surficial sediments in the port of Haifa, Israel, on the eve of a major port enlargement project. We recorded the structure of the assemblages and examined their relationship with different environments within the port. Our findings reveal a remarkably high diversity coupled with low density and the highest number of oligotrich ciliate cyst types recorded from marine sediments. Near the eutrophic and highly polluted zone of the Kishon estuary ciliates were more abundant than elsewhere in the port, whereas dinoflagellates' abundance was reduced, and these trends held true both for full and empty cysts. Some harmful or potentially toxic species, such as Scrippsiella acuminata, were widespread in the port. The toxigenic species include Alexandrium minutum, Gymnodinium uncatenatum and Lingulodinium polyedrum. Active cells of the unarmoured, bloom-forming Akashiwo sanguinea were identified in the cultures obtained from the incubated sediments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Is Occurrence of Harmful Algal Blooms in the Exclusive Economic Zone of India on the Rise?

    Directory of Open Access Journals (Sweden)

    K. B. Padmakumar

    2012-01-01

    Full Text Available Occurrence, increase in frequency, intensity and spatial coverage of harmful algal blooms during the past decade in the EEZ of India are documented here. Eighty algal blooms were recorded during the period 1998–2010. Of the eighty algal blooms, 31 blooms were formed by dinoflagellates, 27 by cyanobacteria, and 18 by diatoms. Three raphidophyte and one haptophyte blooms were also observed. Potentially toxic microalgae recorded from the Indian waters were Alexandrium spp., Gymnodinium spp. Dinophysis spp., Coolia monotis, Prorocentrum lima, and Pseudo-nitzschia spp. Examination of available data from the literature during the last hundred years and in situ observations during 1998–2010 indicates clear-cut increase in the occurrence of HABs in the Indian EEZ.

  5. Exploring the erodibility of sediments and harmful algal blooms in the Gulf of Maine

    Science.gov (United States)

    Butman, Bradford; Dickhudt, Patrick J.; Keafer, Bruce A.

    2012-01-01

    Investigators at the U.S. Geological Survey (USGS) are cooperating with scientists at Woods Hole Oceanographic Institution (WHOI) to investigate harmful algal blooms along the New England coast in the Gulf of Maine. These blooms are caused by cysts of the dinoflagellate Alexandrium fundyense that overwinter in the bottom sediments and germinate in spring. Depending on conditions such as temperature, light, nutrient levels, and currents, these single-celled organismscan create a bloom along the coast, called ‘red tides.’Shellfish that have ingested these cells in sufficient concentration can become toxic to humans and require that the shellfisheries be closed. After the spring bloom, the organisms form cysts that sink to the sea floor and are sequestered in the bottom sediments over the winter.

  6. A shift in the dominant toxin-producing algal species in central California alters phycotoxins in food webs

    Science.gov (United States)

    Jester, R.; Lefebvre, K.; Langlois, G.; Vigilant, V.; Baugh, K.; Silver, M.W.

    2009-01-01

    In California, the toxic algal species of primary concern are the dinoflagellate Alexandrium catenella and members of the pennate diatom genus Pseudo-nitzschia, both producers of potent neurotoxins that are capable of sickening and killing marine life and humans. During the summer of 2004 in Monterey Bay, we observed a change in the taxonomic structure of the phytoplankton community-the typically diatom-dominated community shifted to a red tide, dinoflagellate-dominated community. Here we use a 6-year time series (2000-2006) to show how the abundance of the dominant harmful algal bloom (HAB) species in the Bay up to that point, Pseudo-nitzschia, significantly declined during the dinoflagellate-dominated interval, while two genera of toxic dinoflagellates, Alexandrium and Dinophysis, became the predominant toxin producers. This change represents a shift from a genus of toxin producers that typically dominates the community during a toxic bloom, to HAB taxa that are generally only minor components of the community in a toxic event. This change in the local HAB species was also reflected in the toxins present in higher trophic levels. Despite the small contribution of A. catenella to the overall phytoplankton community, the increase in the presence of this species in Monterey Bay was associated with an increase in the presence of paralytic shellfish poisoning (PSP) toxins in sentinel shellfish and clupeoid fish. This report provides the first evidence that PSP toxins are present in California's pelagic food web, as PSP toxins were detected in both northern anchovies (Engraulis mordax) and Pacific sardines (Sardinops sagax). Another interesting observation from our data is the co-occurrence of DA and PSP toxins in both planktivorous fish and sentinel shellfish. We also provide evidence, based on the statewide biotoxin monitoring program, that this increase in the frequency and abundance of PSP events related to A. catenella occurred not just in Monterey Bay, but also

  7. Effect of water stress on growth, yield and water use efficiency of berseem (Trifolium alexandrium in Tadla

    Directory of Open Access Journals (Sweden)

    B. Bouazzama

    2018-01-01

    Full Text Available The study of crop response to water deficit is important in areas where water resources are limited. This study was carried out over the period 2008-2011 in order to study the effect of water deficit on the productivity of berseem in the Tadla region. Four water regimes (100%, 80%, 60% and 40% ETc were compared under both flood and drip irrigation techniques. Observations were made on the soil, biomass at each cut and root system. The results showed that the average annual maximum yield obtained was 16.2 t/ha. Reductions in yields by applying 60% of water inputs are 40% and 42% in 2009/10 and 2010/11, respectively. The contribution of cycles without irrigation to annual biomass yield varies from 35% under 100% ETc to 52% under 40% ETc. Water use efficiency of berseem over the over the entire crop period is 3.37 kg/m3. The maximum average yield obtained under drip irrigation was 15.7 t/ha. It was obtained with a water supply of 411 mm which allowed a saving of 57% of water supply versus flood irrigation technique.

  8. Neurotoxic Alkaloids: Saxitoxin and Its Analogs

    Directory of Open Access Journals (Sweden)

    Troco K. Mihali

    2010-07-01

    Full Text Available Saxitoxin (STX and its 57 analogs are a broad group of natural neurotoxic alkaloids, commonly known as the paralytic shellfish toxins (PSTs. PSTs are the causative agents of paralytic shellfish poisoning (PSP and are mostly associated with marine dinoflagellates (eukaryotes and freshwater cyanobacteria (prokaryotes, which form extensive blooms around the world. PST producing dinoflagellates belong to the genera Alexandrium, Gymnodinium and Pyrodinium whilst production has been identified in several cyanobacterial genera including Anabaena, Cylindrospermopsis, Aphanizomenon Planktothrix and Lyngbya. STX and its analogs can be structurally classified into several classes such as non-sulfated, mono-sulfated, di-sulfated, decarbamoylated and the recently discovered hydrophobic analogs—each with varying levels of toxicity. Biotransformation of the PSTs into other PST analogs has been identified within marine invertebrates, humans and bacteria. An improved understanding of PST transformation into less toxic analogs and degradation, both chemically or enzymatically, will be important for the development of methods for the detoxification of contaminated water supplies and of shellfish destined for consumption. Some PSTs also have demonstrated pharmaceutical potential as a long-term anesthetic in the treatment of anal fissures and for chronic tension-type headache. The recent elucidation of the saxitoxin biosynthetic gene cluster in cyanobacteria and the identification of new PST analogs will present opportunities to further explore the pharmaceutical potential of these intriguing alkaloids.

  9. Quantitative determination of paralytic shellfish toxins in cultured toxic algae by LC-MS/MS.

    Science.gov (United States)

    Watanabe, Ryuichi; Matsushima, Ryoji; Harada, Tomoko; Oikawa, Hiroshi; Murata, Masakazu; Suzuki, Toshiyuki

    2013-01-01

    We developed a sample preparation and LC-MS/MS method for the determination of saxitoxins in toxic algae. Paralytic shellfish toxins (PSTs) were successfully separated by gradient elution on an amide column with the hydrophilic interaction mode and quantified with multiple reaction monitoring (MRM) detection in the positive ion mode. This method showed good performance in the summed LODs and LOQs for all 12 toxins, 25 and 84 nM, respectively. Next, extracts of cultured strains of a toxic dinoflagellate Alexandrium tamarense and a freshwater cyanobacteria Anabaena circinalis were treated in a short column of basic alumina and the toxic fractions were analysed by our LC-MS/MS method and by HPLC with fluorescence detection. Comparison of the results obtained by the two methods demonstrated that approximately equivalent results were obtained for both the dinoflagellate and the cyanobacteria. In addition, the retention time of the toxins showed acceptable shifts. Therefore, the clean-up of the toxic algal extracts by using the basic alumina column controlled unwanted chromatographic behaviour and variable ionisation efficiency during MS detection. LC-MS/MS for saxitoxins has great potential as a rapid analytical method for determining all primary saxitoxins in cultured algae.

  10. Molecular Identification of Gambierdiscus and Fukuyoa (Dinophyceae from Environmental Samples

    Directory of Open Access Journals (Sweden)

    Kirsty F. Smith

    2017-08-01

    Full Text Available Ciguatera Fish Poisoning (CFP is increasing across the Pacific and the distribution of the causative dinoflagellates appears to be expanding. Subtle differences in thecal plate morphology are used to distinguish dinoflagellate species, which are difficult to determine using light microscopy. For these reasons we sought to develop a Quantitative PCR assay that would detect all species from both Gambierdiscus and Fukuyoa genera in order to rapidly screen environmental samples for potentially toxic species. Additionally, a specific assay for F. paulensis was developed as this species is of concern in New Zealand coastal waters. Using the assays we analyzed 31 samples from three locations around New Zealand and the Kingdom of Tonga. Fourteen samples in total were positive for Gambierdiscus/Fukuyoa and two samples were also positive using the F. paulensis assay. Samples from the Kermadec Islands were further characterized using high-throughput sequencing metabarcoding. The majority of reads corresponded to Gambierdiscus species with three species identified at all sites (G. australes, G. honu and G. polynesiensis. This is the first confirmed identification of G. polynesiensis, a known ciguatoxin producer, in New Zealand waters. Other known toxin-producing genera were also detected, included Alexandrium, Amphidinium, Azadinium, Dinophysis, Ostreopsis, and Prorocentrum.

  11. Phytoplankton response to high salinity and nutrient limitation in the eastern Adriatic marine lakes

    Directory of Open Access Journals (Sweden)

    Marina Carić

    2011-04-01

    Full Text Available Phytoplankton and physical-chemical parameters were investigated for the first time in the only natural hyperhaline marine lakes (salinity > 40 along Croatia’s Adriatic coast, Mala Solina and Velika Solina. Two periods were recognized during the one-year investigation: one euhaline-mesotrophic from December to May and one hyperhaline- eutrophic from June to November. Nutrient limitation appears to have been important in defining the lakes’ seasonal phytoplankton composition. Phosphate was most likely limiting from October to December, silicate from January to April, and nitrogen from June to September when nitrate was depleted. Diatoms were most abundant in November to January, when temperature and salinity were low and nitrate and ammonium were high. They collapsed in March when silicate was depleted. Amphora, Navicula, and other naviculoid diatoms were the most frequent genera. Nitzschia longissima was the most abundant species. Dinoflagellate dominance began in June in Mala Solina and in March in Velika Solina. It continued while temperature, salinity, phosphate, and silicate were high. Oxyrrhis marina was the most abundant dinoflagellate (3.2 x 106 cells L-1. Nanophytoplankton was the dominant size fraction. Chroococoid cyanobacteria were most abundant from May to October, reaching 2.9 x 107 cells L-1 in July. Both nanophytoplankton and small microphytoplankton, such as Oxyrrhis, Scrippsiella, and Tetraselmis, were most abundant under hyperhaline, N-depleted conditions. Toxic and harmful taxa (e.g. Alexandrium, Dinophysis, expanding in Mediterranean waters, were not recorded in the lakes.

  12. Studies on woloszynskioid dinoflagellates II: On Tovellia sanguinea sp. nov., the dinoflagellate responsible for the reddening of Lake Tovel, N. Italy

    DEFF Research Database (Denmark)

    Moestrup, Øjvind; Hansen, Gert; Daugbjerg, Niels

    2006-01-01

    Abstract The organism responsible for the former annual reddening of Lake Tovel in the Italian Alps (up to 1964) has been identified and studied in detail. Considerable confusion exists regarding the identity of this organism, and the detailed description by Baldi in 1941 is now believed to be ba......Abstract The organism responsible for the former annual reddening of Lake Tovel in the Italian Alps (up to 1964) has been identified and studied in detail. Considerable confusion exists regarding the identity of this organism, and the detailed description by Baldi in 1941 is now believed...... to be based on more than one organism. Baldi's red and green forms appear to be two different organisms, both of which have now been isolated into unialgal culture and studied using light microscopy, electron microscopy, and sequencing of the large subunit of ribosomal DNA (LSU rDNA). The organism has been...... found in three lakes in the area, but only in Lake Tovel have conditions allowed for reddening of the water during summer. The name of the organism believed to be the cause of the reddening, Glenodinium sanguineum Marchesoni, used in numerous publications, is an illegitimate homonym of G. sanguineum H...

  13. NOAA NCCOS: New England Red Tide Research

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Alexandrium blooms are one of several algal bloom types often called "red tides," but more correctly referred to as Harmful Algal Blooms (HABs). Alexandrium produces...

  14. Outbreak and persistence of opportunistic symbiotic dinoflagellates during the 2005 Caribbean mass coral 'bleaching' event.

    Science.gov (United States)

    LaJeunesse, Todd C; Smith, Robin T; Finney, Jennifer; Oxenford, Hazel

    2009-12-07

    Reef corals are sentinels for the adverse effects of rapid global warming on the planet's ecosystems. Warming sea surface temperatures have led to frequent episodes of bleaching and mortality among corals that depend on endosymbiotic micro-algae (Symbiodinium) for their survival. However, our understanding of the ecological and evolutionary response of corals to episodes of thermal stress remains inadequate. For the first time, we describe how the symbioses of major reef-building species in the Caribbean respond to severe thermal stress before, during and after a severe bleaching event. Evidence suggests that background populations of Symbiodinium trenchi (D1a) increased in prevalence and abundance, especially among corals that exhibited high sensitivity to stress. Contrary to previous hypotheses, which posit that a change in symbiont occurs subsequent to bleaching, S. trenchi increased in the weeks leading up to and during the bleaching episode and disproportionately dominated colonies that did not bleach. During the bleaching event, approximately 20 per cent of colonies surveyed harboured this symbiont at high densities (calculated at less than 1.0% only months before bleaching began). However, competitive displacement by homologous symbionts significantly reduced S. trenchi's prevalence and dominance among colonies after a 2-year period following the bleaching event. While the extended duration of thermal stress in 2005 provided an ecological opportunity for a rare host-generalist symbiont, it remains unclear to what extent the rise and fall of S. trenchi was of ecological benefit or whether its increased prevalence was an indicator of weakening coral health.

  15. An overview of dinoflagellate cysts in recent sediments along the west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    DeSilva, M.S.; Anil, A.C.; DeCosta, P.M.

    (Claparède et Lachmann) Diesing complex* Spiniferites membranaceus (Rossingnol) Sarjeant, Gon.spi Spiniferites ramosus (Rossingnol) Sarjeant, Spiniferites mirabilis(Ehrenberg) Mantell Gonyaulax spp. – Gon.sp Gymnodinium cf. catenatum Graham* – Gym.cf.cat... 22 22 Gym.cf.cat* Gyr.imp 15 Lin.poly* 3 17 10 Pen.dal 4 Phae.har 4 17 Pro.ret* 11 9 31 22 32 10 34 42...

  16. Benthic dinoflagellate blooms in tropical intertidal rock pools: Elucidation of photoprotection mechanisms

    Digital Repository Service at National Institute of Oceanography (India)

    Patil, J.S.; Rodrigues, R.V.; Paul, P.; Sathish, K.; Rafi, M.; Anil, A.C.

    accumulation of photoprotective pigments in HT-RPs (due to prolong exposure to solar radiation) could be the reason for the differences. The presence of reduced de-epoxidation state and the mid-day depression in Fv/Fm coupled with elevated ?PSII confirmed...

  17. Stimulable and spontaneous bioluminescence in the marine dinoflagellates, Pyrodinium bahamense, Gonyaulax polyedra, and Pyrocystis lunula.

    Science.gov (United States)

    Biggley, W H; Swift, E; Buchanan, R J; Seliger, H H

    1969-07-01

    P. bahamense, G. polyedra, and P. lunula exhibit interspecies differences in stimulable and spontaneous bioluminescence. For each species the total number of photons that can be emitted upon mechanical stimulation is a constant, regardless of the time during scotophase at which stimulation occurs. Ratios of stimulable bioluminescence per organism during scotophase and photophase are as high as 950:1 for laboratory cultures and have been observed as high as 4000: 1 for natural populations of P. bahamense. Spontaneous emission in darkness shows flashing as well as low-level continuous emission. Natural populations of P. bahamense, placed in darkness during natural photophase, exhibit a dual character to their stimulable bioluminescence. Mechanical stimulation techniques are described for rapid and reproducible stimulation of bioluminescence.

  18. The Genome of Aiptasia and the Role of MicroRNAs in Cnidarian-Dinoflagellate Endosymbiosis

    KAUST Repository

    Baumgarten, Sebastian

    2016-02-01

    Coral reefs form marine-biodiversity hotspots of enormous ecological, economic, and aesthetic importance that rely energetically on a functional symbiosis between the coral animal and a photosynthetic alga. The ongoing decline of corals worldwide due to anthropogenic influences heightens the need for an experimentally tractable model system to elucidate the molecular and cellular biology underlying the symbiosis and its susceptibility or resilience to stress. The small sea anemone Aiptasia is such a model organism and the main aims of this dissertation were 1) to assemble and analyze its genome as a foundational resource for research in this area and 2) to investigate the role of miRNAs in modulating gene expression during the onset and maintenance of symbiosis. The genome analysis has revealed numerous features of interest in relation to the symbiotic lifestyle, including the evolution of transposable elements and taxonomically restricted genes, linkage of host and symbiont metabolism pathways, a novel family of putative pattern-recognition receptors that might function in host-microbe interactions and evidence for horizontal gene transfer within the animal-alga pair as well as with the associated prokaryotic microbiome. The new genomic resource was used to annotate the Aiptasia miRNA repertoire to illuminate the role of post-transcriptional regulatory mechanisms in regulating endosymbiosis. Aiptasia encodes a majority of species-specific miRNAs and first evidence is presented that even evolutionary conserved miRNAs are undergoing recent differentiations within the Aiptasia genome. The analysis of miRNA expression between different states of Symbiodinium infection further revealed that species-specific and conserved miRNAs are symbiotically regulated. In order to detect functional miRNA-mRNA interactions and to investigate the downstream effects of such miRNA action, a protocol for cross-linking immunoprecipitations of Argonaute, the central protein of the miRNA-induced silencing complex, was developed. This method identified binding sites of miRNAs on a transcriptome-wide scale and revealed target genes of symbiotically regulated miRNAs that were identified previously to be involved in the symbiosis. In summary, this dissertation provides novel insights into miRNA-mediated post-transcriptional modulation of the host transcriptome and by presenting a critically needed genomic resource, lays the foundation for the continued development of Aiptasia as a model for coral symbiosis.

  19. Seasonal Preservation Success of the Marine Dinoflagellate Coral Symbiont, Symbiodinium sp.

    Directory of Open Access Journals (Sweden)

    Mary Hagedorn

    Full Text Available Coral reefs are some of the most diverse and productive ecosystems on the planet, but are threatened by global and local stressors, mandating the need for incorporating ex situ conservation practices. One approach that is highly protective is the development of genome resource banks that preserve the species and its genetic diversity. A critical component of the reef are the endosymbiotic algae, Symbiodinium sp., living within most coral that transfer energy-rich sugars to their hosts. Although Symbiodinium are maintained alive in culture collections around the world, the cryopreservation of these algae to prevent loss and genetic drift is not well-defined. This study examined the quantum yield physiology and freezing protocols that resulted in survival of Symbiodinium at 24 h post-thawing. Only the ultra-rapid procedure called vitrification resulted in success whereas conventional slow freezing protocols did not. We determined that success also depended on using a thin film of agar with embedded Symbiodinium on Cryotops, a process that yielded a post-thaw viability of >50% in extracted and vitrified Symbiodinium from Fungia scutaria, Pocillopora damicornis and Porites compressa. Additionally, there also was a seasonal influence on vitrification success as the best post-thaw survival of F. scutaria occurred in winter and spring compared to summer and fall (P < 0.05. These findings lay the foundation for developing a viable genome resource bank for the world's Symbiodinium that, in turn, will not only protect this critical element of coral functionality but serve as a resource for understanding the complexities of symbiosis, support selective breeding experiments to develop more thermally resilient strains of coral, and provide a 'gold-standard' genomics collection, allowing for full genomic sequencing of unique Symbiodinium strains.

  20. The toxic benthic dinoflagellates of the genus Ostreopsis in temperate areas: a review

    Directory of Open Access Journals (Sweden)

    Stefano Accoroni

    2016-04-01

    Full Text Available The genus Ostreopsis includes species largely distributed from tropical to temperate marine areas worldwide. Among the nine species of the genus, O. siamensis, O. mascarenensis, O. lenticularis and O. cf. ovata can produce toxins of the palytoxin group. In the last decade Ostreopsis cf. ovata and O. cf. siamensis originated intense blooms in all the rocky Mediterranean Sea coastal areas, typically during summer-late summer. The correct identification of Ostreopsis species in field samples is often problematic as Ostreopsis species are morphologically plastic and hardly discriminable under light microscopy and, therefore, molecular analyses are required. Ostreopsis blooms are often associated with noxious effects on health of both humans and benthic marine organisms mainly carried by aerosol and direct contact with seawater. Environmental factors have been shown to affect toxin content of Ostreopsis which generally produces more toxins per cell when growing under suboptimal conditions. O. cf. ovata is able to produce both temporary and resting cysts. In particular, the resting cysts are able to germinate in laboratory conditions for as long as 5 months after their formation at 25°C, but not at 21°C; the presence of a temperature threshold affecting cyst germination in the laboratory suggests that temperature represents a key factor for Ostreopsis cf. ovata bloom onset in natural environments as well. Several studies conducted to assess the role of abiotic factors (mainly hydrodynamics, water temperature and nutrients on the bloom dynamics, revealed that the synergic effects of hydrodynamics, temperature and N:P ratios would lead the Ostreopsis blooms in temperate areas. Ostreopsis abundances showed a significant decrease with depth, likely related to light availability, although there are conflicting data about the relationship between light intensity and Ostreopsis growth in experimental conditions. The relationship between Ostreopsis blooms and salinity is not completely clear, complicated by the influence of high nutrient levels often associated to low salinity waters. Finally, Ostreopsis colonize a variety of substrata, although living substrata seems to allow lower concentration of epibionts than any other substrate, probably due to the production of some allelopathic compounds.