Directory of Open Access Journals (Sweden)
Татьяна Борисовна Шатовская
2015-03-01
Full Text Available In this work results of modified Chameleon algorithm are discussed. Hierarchical multilevel algorithms consist of several stages: building the graph, coarsening, partitioning, recovering. Exploring of clustering quality for different data sets with different combinations of algorithms on different stages of the algorithm is the main aim of the article. And also aim is improving the construction phase through the optimization algorithm of choice k in the building the graph k-nearest neighbors
Scalable web services for the PSIPRED Protein Analysis Workbench.
Buchan, Daniel W A; Minneci, Federico; Nugent, Tim C O; Bryson, Kevin; Jones, David T
2013-07-01
Here, we present the new UCL Bioinformatics Group's PSIPRED Protein Analysis Workbench. The Workbench unites all of our previously available analysis methods into a single web-based framework. The new web portal provides a greatly streamlined user interface with a number of new features to allow users to better explore their results. We offer a number of additional services to enable computationally scalable execution of our prediction methods; these include SOAP and XML-RPC web server access and new HADOOP packages. All software and services are available via the UCL Bioinformatics Group website at http://bioinf.cs.ucl.ac.uk/.
Chameleon sequences in neurodegenerative diseases
International Nuclear Information System (INIS)
Bahramali, Golnaz; Goliaei, Bahram; Minuchehr, Zarrin; Salari, Ali
2016-01-01
Chameleon sequences can adopt either alpha helix sheet or a coil conformation. Defining chameleon sequences in PDB (Protein Data Bank) may yield to an insight on defining peptides and proteins responsible in neurodegeneration. In this research, we benefitted from the large PDB and performed a sequence analysis on Chameleons, where we developed an algorithm to extract peptide segments with identical sequences, but different structures. In order to find new chameleon sequences, we extracted a set of 8315 non-redundant protein sequences from the PDB with an identity less than 25%. Our data was classified to “helix to strand (HE)”, “helix to coil (HC)” and “strand to coil (CE)” alterations. We also analyzed the occurrence of singlet and doublet amino acids and the solvent accessibility in the chameleon sequences; we then sorted out the proteins with the most number of chameleon sequences and named them Chameleon Flexible Proteins (CFPs) in our dataset. Our data revealed that Gly, Val, Ile, Tyr and Phe, are the major amino acids in Chameleons. We also found that there are proteins such as Insulin Degrading Enzyme IDE and GTP-binding nuclear protein Ran (RAN) with the most number of chameleons (640 and 405 respectively). These proteins have known roles in neurodegenerative diseases. Therefore it can be inferred that other CFP's can serve as key proteins in neurodegeneration, and a study on them can shed light on curing and preventing neurodegenerative diseases.
Chameleon sequences in neurodegenerative diseases.
Bahramali, Golnaz; Goliaei, Bahram; Minuchehr, Zarrin; Salari, Ali
2016-03-25
Chameleon sequences can adopt either alpha helix sheet or a coil conformation. Defining chameleon sequences in PDB (Protein Data Bank) may yield to an insight on defining peptides and proteins responsible in neurodegeneration. In this research, we benefitted from the large PDB and performed a sequence analysis on Chameleons, where we developed an algorithm to extract peptide segments with identical sequences, but different structures. In order to find new chameleon sequences, we extracted a set of 8315 non-redundant protein sequences from the PDB with an identity less than 25%. Our data was classified to "helix to strand (HE)", "helix to coil (HC)" and "strand to coil (CE)" alterations. We also analyzed the occurrence of singlet and doublet amino acids and the solvent accessibility in the chameleon sequences; we then sorted out the proteins with the most number of chameleon sequences and named them Chameleon Flexible Proteins (CFPs) in our dataset. Our data revealed that Gly, Val, Ile, Tyr and Phe, are the major amino acids in Chameleons. We also found that there are proteins such as Insulin Degrading Enzyme IDE and GTP-binding nuclear protein Ran (RAN) with the most number of chameleons (640 and 405 respectively). These proteins have known roles in neurodegenerative diseases. Therefore it can be inferred that other CFP's can serve as key proteins in neurodegeneration, and a study on them can shed light on curing and preventing neurodegenerative diseases. Copyright © 2016 Elsevier Inc. All rights reserved.
Chameleon sequences in neurodegenerative diseases
Energy Technology Data Exchange (ETDEWEB)
Bahramali, Golnaz [Institute of Biochemistry and Biophysics, University of Tehran, Tehran (Iran, Islamic Republic of); Goliaei, Bahram, E-mail: goliaei@ut.ac.ir [Institute of Biochemistry and Biophysics, University of Tehran, Tehran (Iran, Islamic Republic of); Minuchehr, Zarrin, E-mail: minuchehr@nigeb.ac.ir [Department of Systems Biotechnology, National Institute of Genetic Engineering and Biotechnology, (NIGEB), Tehran (Iran, Islamic Republic of); Salari, Ali [Department of Systems Biotechnology, National Institute of Genetic Engineering and Biotechnology, (NIGEB), Tehran (Iran, Islamic Republic of)
2016-03-25
Chameleon sequences can adopt either alpha helix sheet or a coil conformation. Defining chameleon sequences in PDB (Protein Data Bank) may yield to an insight on defining peptides and proteins responsible in neurodegeneration. In this research, we benefitted from the large PDB and performed a sequence analysis on Chameleons, where we developed an algorithm to extract peptide segments with identical sequences, but different structures. In order to find new chameleon sequences, we extracted a set of 8315 non-redundant protein sequences from the PDB with an identity less than 25%. Our data was classified to “helix to strand (HE)”, “helix to coil (HC)” and “strand to coil (CE)” alterations. We also analyzed the occurrence of singlet and doublet amino acids and the solvent accessibility in the chameleon sequences; we then sorted out the proteins with the most number of chameleon sequences and named them Chameleon Flexible Proteins (CFPs) in our dataset. Our data revealed that Gly, Val, Ile, Tyr and Phe, are the major amino acids in Chameleons. We also found that there are proteins such as Insulin Degrading Enzyme IDE and GTP-binding nuclear protein Ran (RAN) with the most number of chameleons (640 and 405 respectively). These proteins have known roles in neurodegenerative diseases. Therefore it can be inferred that other CFP's can serve as key proteins in neurodegeneration, and a study on them can shed light on curing and preventing neurodegenerative diseases.
Housewright, Mary Kay
1999-01-01
Discusses an art activity that has students create pictures in which they first trace a chameleon pattern and then add camouflage to conceal the chameleon. Explains that different materials and techniques are used for students in grades k-1 and 2-5. (CMK)
International Nuclear Information System (INIS)
Noller, Johannes
2012-01-01
We consider generalized chameleon models where the conformal coupling between matter and gravitational geometries is not only a function of the chameleon field φ, but also of its derivatives via higher order co-ordinate invariants (such as ∂ μ φ∂ μ φ,□φ,...). Specifically we consider the first such non-trivial conformal factor A(φ,∂ μ φ∂ μ φ). The associated phenomenology is investigated and we show that such theories have a new generic mass-altering mechanism, potentially assisting the generation of a sufficiently large chameleon mass in dense environments. The most general effective potential is derived for such derivative chameleon setups and explicit examples are given. Interestingly this points us to the existence of a purely derivative chameleon protected by a shift symmetry for φ → φ+c. We also discuss potential ghost-like instabilities associated with mass-lifting mechanisms and find another, mass-lowering and instability-free, branch of solutions. This suggests that, barring fine-tuning, stable derivative models are in fact typically anti-chameleons that suppress the field's mass in dense environments. Furthermore we investigate modifications to the thin-shell regime and prove a no-go theorem for chameleon effects in non-conformal geometries of the disformal type
Energy Technology Data Exchange (ETDEWEB)
Noller, Johannes, E-mail: johannes.noller08@imperial.ac.uk [Theoretical Physics, Blackett Laboratory, Imperial College London, Prince Consort Road, London, SW7 2BZ (United Kingdom)
2012-07-01
We consider generalized chameleon models where the conformal coupling between matter and gravitational geometries is not only a function of the chameleon field φ, but also of its derivatives via higher order co-ordinate invariants (such as ∂{sub μ}φ∂{sup μ}φ,□φ,...). Specifically we consider the first such non-trivial conformal factor A(φ,∂{sub μ}φ∂{sup μ}φ). The associated phenomenology is investigated and we show that such theories have a new generic mass-altering mechanism, potentially assisting the generation of a sufficiently large chameleon mass in dense environments. The most general effective potential is derived for such derivative chameleon setups and explicit examples are given. Interestingly this points us to the existence of a purely derivative chameleon protected by a shift symmetry for φ → φ+c. We also discuss potential ghost-like instabilities associated with mass-lifting mechanisms and find another, mass-lowering and instability-free, branch of solutions. This suggests that, barring fine-tuning, stable derivative models are in fact typically anti-chameleons that suppress the field's mass in dense environments. Furthermore we investigate modifications to the thin-shell regime and prove a no-go theorem for chameleon effects in non-conformal geometries of the disformal type.
Energy Technology Data Exchange (ETDEWEB)
Brax, Philippe [Institut de Physique Théorique, CEA, IPhT, CNRS, URA 2306, F-91191Gif/Yvette Cedex (France); Upadhye, Amol, E-mail: philippe.brax@cea.fr, E-mail: aupadhye@anl.gov [Institute for the Early Universe, Ewha University, International Education, Building #601, 11-1, Daehyun-Dong Seodaemun-Gu, Seoul 120-750 (Korea, Republic of)
2014-02-01
A scalar field dark energy candidate could couple to ordinary matter and photons, enabling its detection in laboratory experiments. Here we study the quantum properties of the chameleon field, one such dark energy candidate, in an ''afterglow'' experiment designed to produce, trap, and detect chameleon particles. In particular, we investigate the possible fragmentation of a beam of chameleon particles into multiple particle states due to the highly non-linear interaction terms in the chameleon Lagrangian. Fragmentation could weaken the constraints of an afterglow experiment by reducing the energy of the regenerated photons, but this energy reduction also provides a unique signature which could be detected by a properly-designed experiment. We show that constraints from the CHASE experiment are essentially unaffected by fragmentation for φ{sup 4} and 1/φ potentials, but are weakened for steeper potentials, and we discuss possible future afterglow experiments.
International Nuclear Information System (INIS)
Brax, Philippe; Upadhye, Amol
2014-01-01
A scalar field dark energy candidate could couple to ordinary matter and photons, enabling its detection in laboratory experiments. Here we study the quantum properties of the chameleon field, one such dark energy candidate, in an ''afterglow'' experiment designed to produce, trap, and detect chameleon particles. In particular, we investigate the possible fragmentation of a beam of chameleon particles into multiple particle states due to the highly non-linear interaction terms in the chameleon Lagrangian. Fragmentation could weaken the constraints of an afterglow experiment by reducing the energy of the regenerated photons, but this energy reduction also provides a unique signature which could be detected by a properly-designed experiment. We show that constraints from the CHASE experiment are essentially unaffected by fragmentation for φ 4 and 1/φ potentials, but are weakened for steeper potentials, and we discuss possible future afterglow experiments
Brax, Philippe
2010-01-01
We analyse the creation of chameleons deep inside the sun and their subsequent conversion to photons near the magnetised surface of the sun. We find that the spectrum of the regenerated photons lies in the soft X-ray region, hence addressing the solar corona problem. Moreover, these back-converted photons originating from chameleons have an intrinsic difference with regenerated photons from axions: their relative polarisations are mutually orthogonal before Compton interacting with the surrounding plasma. Depending on the photon-chameleon coupling and working in the strong coupling regime of the chameleons to matter, we find that the induced photon flux, when regenerated resonantly with the surrounding plasma, coincides with the solar flux within the soft X-ray energy range. Moreover, using the soft X-ray solar flux as a prior, we find that with a strong enough photon-chameleon coupling the chameleons emitted by the sun could lead to a regenerated photon flux in the CAST pipes, which could be within the reach...
International Nuclear Information System (INIS)
Brax, Philippe; Zioutas, Konstantin
2010-01-01
We analyze the creation of chameleons deep inside the Sun (R∼0.7R sun ) and their subsequent conversion to photons near the magnetized surface of the Sun. We find that the spectrum of the regenerated photons lies in the soft x-ray region, hence addressing the solar corona problem. Moreover, these back-converted photons originating from chameleons have an intrinsic difference with regenerated photons from axions: their relative polarizations are mutually orthogonal before Compton interacting with the surrounding plasma. Depending on the photon-chameleon coupling and working in the strong coupling regime of the chameleons to matter, we find that the induced photon flux, when regenerated resonantly with the surrounding plasma, coincides with the solar flux within the soft x-ray energy range. Moreover, using the soft x-ray solar flux as a prior, we find that with a strong enough photon-chameleon coupling, the chameleons emitted by the Sun could lead to a regenerated photon flux in the CAST magnetic pipes, which could be within the reach of CAST with upgraded detector performance. Then, axion helioscopes have thus the potential to detect and identify particle candidates for the ubiquitous dark energy in the Universe.
Petersen, Hugh
2009-01-01
This article presents an art project inspired by a drawing of a chameleon the author saw in an art-supply catalog. Chameleons prove to be a good subject to highlight shape, color and texture with eigth-graders. In this project, middle- and high-school students draw a chameleon, learn how to use shapes to add to their chameleon drawing, learn how…
The Chameleon project in retrospective
Smit, Gerardus Johannes Maria; Heysters, P.M.; Molenkamp, Egbert
2004-01-01
In this paper we describe in retrospective the main results of a four year project, called Chameleon. As part of this project we developed a coarse-grained reconfigurable core for DSP algorithms in wireless devices denoted MONTIUM. After presenting the main achievements within this project we
Ellipticity Weakens Chameleon Screening
Burrage, Clare; Copeland, Edmund J.; Stevenson, James
2014-01-01
The chameleon mechanism enables a long range fifth force to be screened in dense environments when non-trivial self interactions of the field cause its mass to increase with the local density. To date, chameleon fifth forces have mainly been studied for spherically symmetric sources, however the non-linear self interactions mean that the chameleon responds to changes in the shape of the source differently to gravity. In this work we focus on ellipsoidal departures from spherical symmetry and ...
Brax, Philippe; Lindner, Axel; Zioutas, Konstantin
2011-01-01
Dark energy models, such as the chameleon, where the acceleration of the expansion of the universe results from the dynamics of a scalar field coupled to matter, suffer from the potential existence of a fifth force. Three known mechanisms have been proposed to restore General Relativity in the solar system and the laboratory, which are the symmetron/Damour-Polyakov effect, the Vainshtein property and the chameleon screening. Here, we propose to probe the existence of chameleons in the laborat...
Chameleon induced atomic afterglow
International Nuclear Information System (INIS)
Brax, Philippe; Burrage, Clare
2010-01-01
The chameleon is a scalar field whose mass depends on the density of its environment. Chameleons are necessarily coupled to matter particles and will excite transitions between atomic energy levels in an analogous manner to photons. When created inside an optical cavity by passing a laser beam through a constant magnetic field, chameleons are trapped between the cavity walls and form a standing wave. This effect will lead to an afterglow phenomenon even when the laser beam and the magnetic field have been turned off, and could be used to probe the interactions of the chameleon field with matter.
Chameleon Induced Atomic Afterglow
Brax, Philippe
2010-01-01
The chameleon is a scalar field whose mass depends on the density of its environment. Chameleons are necessarily coupled to matter particles and will excite transitions between atomic energy levels in an analogous manner to photons. When created inside an optical cavity by passing a laser beam through a constant magnetic field, chameleons are trapped between the cavity walls and form a standing wave. This effect will lead to an afterglow phenomenon even when the laser beam and the magnetic field have been turned off, and could be used to probe the interactions of the chameleon field with matter.
Chameleon induced atomic afterglow
International Nuclear Information System (INIS)
Brax, Philippe
2010-09-01
The chameleon is a scalar field whose mass depends on the density of its environment. Chameleons are necessarily coupled to matter particles and will excite transitions between atomic energy levels in an analogous manner to photons. When created inside an optical cavity by passing a laser beam through a constant magnetic field, chameleons are trapped between the cavity walls and form a standing wave. This effect will lead to an afterglow phenomenon even when the laser beam and the magnetic field have been turned off, and could be used to probe the interactions of the chameleon field with matter. (orig.)
Chameleon induced atomic afterglow
Energy Technology Data Exchange (ETDEWEB)
Brax, Philippe [CEA, IPhT, CNRS, Gif-sur-Yvette (France). Inst. de Physique Theorique; Burrage, Clare [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2010-09-15
The chameleon is a scalar field whose mass depends on the density of its environment. Chameleons are necessarily coupled to matter particles and will excite transitions between atomic energy levels in an analogous manner to photons. When created inside an optical cavity by passing a laser beam through a constant magnetic field, chameleons are trapped between the cavity walls and form a standing wave. This effect will lead to an afterglow phenomenon even when the laser beam and the magnetic field have been turned off, and could be used to probe the interactions of the chameleon field with matter. (orig.)
International Nuclear Information System (INIS)
Khoury, Justin
2013-01-01
Chameleons are light scalar fields with remarkable properties. Through the interplay of self-interactions and coupling to matter, chameleon particles have a mass that depends on the ambient matter density. The manifestation of the fifth force mediated by chameleons therefore depends sensitively on their environment, which makes for a rich phenomenology. In this paper, we review two recent results on chameleon phenomenology. The first result a pair of no-go theorems limiting the cosmological impact of chameleons and their generalizations: (i) the range of the chameleon force at cosmological density today can be at most ∼Mpc; (ii) the conformal factor relating Einstein- and Jordan-frame scale factors is essentially constant over the last Hubble time. These theorems imply that chameleons have negligible effect on the linear growth of structure, and cannot account for the observed cosmic acceleration except as some form of dark energy. The second result pertains to the quantum stability of chameleon theories. We show how requiring that quantum corrections be small, so as to allow reliable predictions of fifth forces, leads to an upper bound of m −3 ) 1/3 eV for gravitational strength coupling, whereas fifth force experiments place a lower bound of m > 0.0042 eV. An improvement of less than a factor of 2 in the range of fifth force experiments could test all classical chameleon field theories whose quantum corrections are well-controlled and couple to matter with nearly gravitational strength regardless of the specific form of the chameleon potential. (paper)
Chameleonic Theories: A Short Review
Directory of Open Access Journals (Sweden)
Andrea Zanzi
2015-12-01
Full Text Available In the chameleon mechanism, a field (typically scalar has a mass that depends on the matter density of the environment: the larger is the matter density, the larger is the mass of the chameleon. We briefly review some aspects of chameleonic theories. In particular, in a typical class of these theories, we discuss the lagrangian, the role of conformal transformations, the equation of motion and the thin-shell effect. We also discuss f ( R theories and chameleonic quantum gravity.
Dynamics of supersymmetric chameleons
International Nuclear Information System (INIS)
Brax, Philippe; Davis, Anne-Christine; Sakstein, Jeremy
2013-01-01
We investigate the cosmological dynamics of a class of supersymmetric chameleon models coupled to cold dark matter fermions. The model includes a cosmological constant in the form of a Fayet-Illiopoulos term, which emerges at late times due to the coupling of the chameleon to two charged scalars. Supergravity corrections ensure that the supersymmetric chameleons are efficiently screened in all astrophysical objects of interest, however this does not preclude the enhancement of gravity on linear cosmological scales. We solve the modified equations for the growth of cold dark matter density perturbations in closed form in the matter era. Using this, we go on to derive the modified linear power spectrum which is characterised by two scales, the horizon size at matter-radiation equality and at the redshift when the chameleon reaches the minimum of its effective potential. We analyse the deviations from the ΛCDM predictions in the linear regime. We find that there is generically a region in the model's parameter space where the model's background cosmology coincides with that of the ΛCDM model. Furthermore, we find that characteristic deviations from ΛCDM are present on the matter power spectrum providing a clear signature of supersymmetric chameleons
Dynamics of supersymmetric chameleons
Energy Technology Data Exchange (ETDEWEB)
Brax, Philippe [Institut de Physique Theorique, CEA, IPhT, CNRS, URA 2306, F-91191Gif/Yvette Cedex (France); Davis, Anne-Christine; Sakstein, Jeremy, E-mail: Philippe.Brax@cea.fr, E-mail: A.C.Davis@damtp.cam.ac.uk, E-mail: J.A.Sakstein@damtp.cam.ac.uk [DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)
2013-10-01
We investigate the cosmological dynamics of a class of supersymmetric chameleon models coupled to cold dark matter fermions. The model includes a cosmological constant in the form of a Fayet-Illiopoulos term, which emerges at late times due to the coupling of the chameleon to two charged scalars. Supergravity corrections ensure that the supersymmetric chameleons are efficiently screened in all astrophysical objects of interest, however this does not preclude the enhancement of gravity on linear cosmological scales. We solve the modified equations for the growth of cold dark matter density perturbations in closed form in the matter era. Using this, we go on to derive the modified linear power spectrum which is characterised by two scales, the horizon size at matter-radiation equality and at the redshift when the chameleon reaches the minimum of its effective potential. We analyse the deviations from the ΛCDM predictions in the linear regime. We find that there is generically a region in the model's parameter space where the model's background cosmology coincides with that of the ΛCDM model. Furthermore, we find that characteristic deviations from ΛCDM are present on the matter power spectrum providing a clear signature of supersymmetric chameleons.
On some dynamical chameleon systems
Burkin, I. M.; Kuznetsova, O. I.
2018-03-01
It is now well known that dynamical systems can be categorized into systems with self-excited attractors and systems with hidden attractors. A self-excited attractor has a basin of attraction that is associated with an unstable equilibrium, while a hidden attractor has a basin of attraction that does not intersect with small neighborhoods of any equilibrium points. Hidden attractors play the important role in engineering applications because they allow unexpected and potentially disastrous responses to perturbations in a structure like a bridge or an airplane wing. In addition, complex behaviors of chaotic systems have been applied in various areas from image watermarking, audio encryption scheme, asymmetric color pathological image encryption, chaotic masking communication to random number generator. Recently, researchers have discovered the so-called “chameleon systems”. These systems were so named because they demonstrate self-excited or hidden oscillations depending on the value of parameters. The present paper offers a simple algorithm of synthesizing one-parameter chameleon systems. The authors trace the evolution of Lyapunov exponents and the Kaplan-Yorke dimension of such systems which occur when parameters change.
International Nuclear Information System (INIS)
Nelson, Ann E.; Walsh, Jonathan
2008-01-01
We show that for a force mediated by a vector particle coupled to a conserved U(1) charge, the apparent range and strength can depend on the size and density of the source, and the proximity to other sources. This chameleon effect is due to screening from a light charged scalar. Such screening can weaken astrophysical constraints on new gauge bosons. As an example we consider the constraints on chameleonic gauged B-L. We show that although Casimir measurements greatly constrain any B-L force much stronger than gravity with range longer than 0.1 μm, there remains an experimental window for a long-range chameleonic B-L force. Such a force could be much stronger than gravity, and long or infinite range in vacuum, but have an effective range near the surface of the earth which is less than a micron.
Directory of Open Access Journals (Sweden)
Tarald Taraldsen
2007-12-01
Full Text Available We show that under certain circumstances, the Czech locative prepositions (LOC show up as directional prepositions (DIR and vice versa, (under different circumstances the Czech DIR PPs show up as LOC. We argue that such a chameleon life of the PPs is structurally dependent.
Burrage, Clare; Sakstein, Jeremy
2018-03-01
Theories of modified gravity, where light scalars with non-trivial self-interactions and non-minimal couplings to matter—chameleon and symmetron theories—dynamically suppress deviations from general relativity in the solar system. On other scales, the environmental nature of the screening means that such scalars may be relevant. The highly-nonlinear nature of screening mechanisms means that they evade classical fifth-force searches, and there has been an intense effort towards designing new and novel tests to probe them, both in the laboratory and using astrophysical objects, and by reinterpreting existing datasets. The results of these searches are often presented using different parametrizations, which can make it difficult to compare constraints coming from different probes. The purpose of this review is to summarize the present state-of-the-art searches for screened scalars coupled to matter, and to translate the current bounds into a single parametrization to survey the state of the models. Presently, commonly studied chameleon models are well-constrained but less commonly studied models have large regions of parameter space that are still viable. Symmetron models are constrained well by astrophysical and laboratory tests, but there is a desert separating the two scales where the model is unconstrained. The coupling of chameleons to photons is tightly constrained but the symmetron coupling has yet to be explored. We also summarize the current bounds on f( R) models that exhibit the chameleon mechanism (Hu and Sawicki models). The simplest of these are well constrained by astrophysical probes, but there are currently few reported bounds for theories with higher powers of R. The review ends by discussing the future prospects for constraining screened modified gravity models further using upcoming and planned experiments.
Evolution of Karyotypes in Chameleons
Directory of Open Access Journals (Sweden)
Michail Rovatsos
2017-12-01
Full Text Available The reconstruction of the evolutionary dynamics of karyotypes and sex determining systems in squamate reptiles is precluded by the lack of data in many groups including most chameleons (Squamata: Acrodonta: Chamaeleonidae. We performed cytogenetic analysis in 16 species of chameleons from 8 genera covering the phylogenetic diversity of the family and also phylogenetic reconstruction of karyotype evolution in this group. In comparison to other squamates, chameleons demonstrate rather variable karyotypes, differing in chromosome number, morphology and presence of interstitial telomeric signal (ITS. On the other hand, the location of rDNA is quite conserved among chameleon species. Phylogenetic analysis combining our new results and previously published data tentatively suggests that the ancestral chromosome number for chameleons is 2n = 36, which is the same as assumed for other lineages of the clade Iguania, i.e., agamids and iguanas. In general, we observed a tendency for the reduction of chromosome number during the evolution of chameleons, however, in Rieppeleon brevicaudatus, we uncovered a chromosome number of 2n = 62, very unusual among squamates, originating from a number of chromosome splits. Despite the presence of the highly differentiated ZZ/ZW sex chromosomes in the genus Furcifer, we did not detect any unequivocal sexual differences in the karyotypes of any other studied species of chameleons tested using differential staining and comparative genomic hybridization, suggesting that sex chromosomes in most chameleons are only poorly differentiated.
A compendium of chameleon constraints
International Nuclear Information System (INIS)
Burrage, Clare; Sakstein, Jeremy
2016-01-01
The chameleon model is a scalar field theory with a screening mechanism that explains how a cosmologically relevant light scalar can avoid the constraints of intra-solar-system searches for fifth-forces. The chameleon is a popular dark energy candidate and also arises in f ( R ) theories of gravity. Whilst the chameleon is designed to avoid historical searches for fifth-forces it is not unobservable and much effort has gone into identifying the best observables and experiments to detect it. These results are not always presented for the same models or in the same language, a particular problem when comparing astrophysical and laboratory searches making it difficult to understand what regions of parameter space remain. Here we present combined constraints on the chameleon model from astrophysical and laboratory searches for the first time and identify the remaining windows of parameter space. We discuss the implications for cosmological chameleon searches and future small-scale probes.
A compendium of chameleon constraints
Energy Technology Data Exchange (ETDEWEB)
Burrage, Clare [School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD (United Kingdom); Sakstein, Jeremy, E-mail: clare.burrage@nottingham.ac.uk, E-mail: jeremy.sakstein@port.ac.uk [Center for Particle Cosmology, Department of Physics and Astronomy, University of Pennsylvania, 209 S. 33rd St., Philadelphia, PA 19104 (United States)
2016-11-01
The chameleon model is a scalar field theory with a screening mechanism that explains how a cosmologically relevant light scalar can avoid the constraints of intra-solar-system searches for fifth-forces. The chameleon is a popular dark energy candidate and also arises in f ( R ) theories of gravity. Whilst the chameleon is designed to avoid historical searches for fifth-forces it is not unobservable and much effort has gone into identifying the best observables and experiments to detect it. These results are not always presented for the same models or in the same language, a particular problem when comparing astrophysical and laboratory searches making it difficult to understand what regions of parameter space remain. Here we present combined constraints on the chameleon model from astrophysical and laboratory searches for the first time and identify the remaining windows of parameter space. We discuss the implications for cosmological chameleon searches and future small-scale probes.
Neutron stars in screened modified gravity: Chameleon versus dilaton
Brax, Philippe; Davis, Anne-Christine; Jha, Rahul
2017-04-01
We consider the scalar field profile around relativistic compact objects such as neutron stars for a range of modified gravity models with screening mechanisms of the chameleon and Damour-Polyakov types. We focus primarily on inverse power law chameleons and the environmentally dependent dilaton as examples of both mechanisms. We discuss the modified Tolman-Oppenheimer-Volkoff equation and then implement a relaxation algorithm to solve for the scalar profiles numerically. We find that chameleons and dilatons behave in a similar manner and that there is a large degeneracy between the modified gravity parameters and the neutron star equation of state. This is exemplified by the modifications to the mass-radius relationship for a variety of model parameters.
Cosmological dynamics of extended chameleons
International Nuclear Information System (INIS)
Tamanini, Nicola; Wright, Matthew
2016-01-01
We investigate the cosmological dynamics of the recently proposed extended chameleon models at both background and linear perturbation levels. Dynamical systems techniques are employed to fully characterize the evolution of the universe at the largest distances, while structure formation is analysed at sub-horizon scales within the quasi-static approximation. The late time dynamical transition from dark matter to dark energy domination can be well described by almost all extended chameleon models considered, with no deviations from ΛCDM results at both background and perturbation levels. The results obtained in this work confirm the cosmological viability of extended chameleons as alternative dark energy models.
Cosmological dynamics of extended chameleons
Energy Technology Data Exchange (ETDEWEB)
Tamanini, Nicola [Institut de Physique Théorique, CEA-Saclay, CNRS UMR 3681, Université Paris-Saclay, F-91191 Gif-sur-Yvette (France); Wright, Matthew, E-mail: nicola.tamanini@cea.fr, E-mail: matthew.wright.13@ucl.ac.uk [Department of Mathematics, University College London, Gower Street, London, WC1E 6BT (United Kingdom)
2016-04-01
We investigate the cosmological dynamics of the recently proposed extended chameleon models at both background and linear perturbation levels. Dynamical systems techniques are employed to fully characterize the evolution of the universe at the largest distances, while structure formation is analysed at sub-horizon scales within the quasi-static approximation. The late time dynamical transition from dark matter to dark energy domination can be well described by almost all extended chameleon models considered, with no deviations from ΛCDM results at both background and perturbation levels. The results obtained in this work confirm the cosmological viability of extended chameleons as alternative dark energy models.
Spherical collapse in chameleon models
International Nuclear Information System (INIS)
Brax, Ph.; Rosenfeld, R.; Steer, D.A.
2010-01-01
We study the gravitational collapse of an overdensity of nonrelativistic matter under the action of gravity and a chameleon scalar field. We show that the spherical collapse model is modified by the presence of a chameleon field. In particular, we find that even though the chameleon effects can be potentially large at small scales, for a large enough initial size of the inhomogeneity the collapsing region possesses a thin shell that shields the modification of gravity induced by the chameleon field, recovering the standard gravity results. We analyse the behaviour of a collapsing shell in a cosmological setting in the presence of a thin shell and find that, in contrast to the usual case, the critical density for collapse in principle depends on the initial comoving size of the inhomogeneity
Search for chameleons with CAST
Directory of Open Access Journals (Sweden)
V. Anastassopoulos
2015-10-01
Full Text Available In this work we present a search for (solar chameleons with the CERN Axion Solar Telescope (CAST. This novel experimental technique, in the field of dark energy research, exploits both the chameleon coupling to matter (βm and to photons (βγ via the Primakoff effect. By reducing the X-ray detection energy threshold used for axions from 1 keV to 400 eV CAST became sensitive to the converted solar chameleon spectrum which peaks around 600 eV. Even though we have not observed any excess above background, we can provide a 95% C.L. limit for the coupling strength of chameleons to photons of βγ≲1011 for 1<βm<106.
Spherical collapse in chameleon models
Energy Technology Data Exchange (ETDEWEB)
Brax, Ph. [Institut de Physique Théorique, CEA, IPhT, CNRS, URA 2306, F-91191Gif/Yvette Cedex (France); Rosenfeld, R. [Instituto de Física Teórica, Universidade Estadual Paulista, Rua Dr. Bento T. Ferraz, 271, 01140-070, São Paulo (Brazil); Steer, D.A., E-mail: brax@spht.saclay.cea.fr, E-mail: rosenfel@ift.unesp.br, E-mail: daniele.steer@apc.univ-paris7.fr [APC, UMR 7164, CNRS, Université Paris 7, 10 rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13 (France)
2010-08-01
We study the gravitational collapse of an overdensity of nonrelativistic matter under the action of gravity and a chameleon scalar field. We show that the spherical collapse model is modified by the presence of a chameleon field. In particular, we find that even though the chameleon effects can be potentially large at small scales, for a large enough initial size of the inhomogeneity the collapsing region possesses a thin shell that shields the modification of gravity induced by the chameleon field, recovering the standard gravity results. We analyse the behaviour of a collapsing shell in a cosmological setting in the presence of a thin shell and find that, in contrast to the usual case, the critical density for collapse in principle depends on the initial comoving size of the inhomogeneity.
Spherical Collapse in Chameleon Models
Brax, Ph; Steer, D A
2010-01-01
We study the gravitational collapse of an overdensity of nonrelativistic matter under the action of gravity and a chameleon scalar field. We show that the spherical collapse model is modified by the presence of a chameleon field. In particular, we find that even though the chameleon effects can be potentially large at small scales, for a large enough initial size of the inhomogeneity the collapsing region possesses a thin shell that shields the modification of gravity induced by the chameleon field, recovering the standard gravity results. We analyse the behaviour of a collapsing shell in a cosmological setting in the presence of a thin shell and find that, in contrast to the usual case, the critical density for collapse depends on the initial comoving size of the inhomogeneity.
Search for chameleons with CAST
DEFF Research Database (Denmark)
Anastassopoulos, V.; Arik, M.; Aune, S.
2015-01-01
In this work we present a search for (solar) chameleons with the CERN Axion Solar Telescope (CAST). This novel experimental technique, in the field of dark energy research, exploits both the chameleon coupling to matter (βm) and to photons (βΥ) via the Primako eect. By reducing the X-ray detection...... energy threshold used for axions from 1 keV to 400 eV CAST became sensitive to the converted solar chameleon spectrum which peaks around 600 eV. Even though we have not observed any excess above background, we can provide a 95% C.L. limit for the coupling strength of chameleons to photons of βΥ≤1011...
Search for chameleons with CAST
Anastassopoulos, V; Aune, S; Barth, K; Belov, A; Bräuninger, H; Cantatore, G; Carmona, J M; Cetin, S A; Christensen, F; Collar, J I; Dafni, T; Davenport, M; Desch, K; Dermenev, A; Eleftheriadis, C; Fanourakis, G; Ferrer-Ribas, E; Friedrich, P; Galán, J; García, J A; Gardikiotis, A; Garza, J G; Gazis, E N; Geralis, T; Giomataris, I; Hailey, C; Haug, F; Hasinoff, M D; Hofmann, D H H; Iguaz, F J; Irastorza, I G; Jacoby, J; Jakobsen, A; Jakovčić, K; Kaminski, J; Karuza, M; Kavuk, M; Krčmar, M; Krieger, C; Krüger, A; Lakić, B; Laurent, J M; Liolios, A; Ljubičić, A; Luzón, G; Neff, S; Ortega, I; Papaevangelou, T; Pivovarov, M J; Raffelt, G; Riege, H; Rosu, M; Ruz, J; Savvidis, I; Solanki, S K; Vafeiadis, T; Villar, J A; Vogel, J K; Yildiz, S C; Zioutas, K; Brax, P; Lavrentyev, I; Upadhye, A
2015-01-01
In this work we present a search for (solar) chameleons with the CERN Axion Solar Telescope (CAST). This novel experimental technique, in the field of dark energy research, exploits both the chameleon coupling to matter ($\\beta_{\\rm m}$) and to photons ($\\beta_{\\gamma}$) via the Primakoff effect. By reducing the X-ray detection energy threshold used for axions from 1$\\,$keV to 400$\\,$eV CAST became sensitive to the converted solar chameleon spectrum which peaks around 600$\\,$eV. Even though we have not observed any excess above background, we can provide a 95% C.L. limit for the coupling strength of chameleons to photons of $\\beta_{\\gamma}\\!\\lesssim\\!10^{11}$ for $1<\\beta_{\\rm m}<10^6$.
Cosmological dynamics of a hybrid chameleon scenario
Nozari, Kourosh; Rashidi, N.
2013-01-01
We consider a hybrid scalar field which is non-minimally coupled to the matter and models a chameleon cosmology. By introducing an effective potential, we study the dependence of the effective potential's minimum and hybrid chameleon field's masses to the local matter density. In a dynamical system technique, we analyze the phase space of this two-field chameleon model, find its fixed points and study their stability. We show that the hybrid chameleon domination solution is a stable attractor...
Time-delayed chameleon: Analysis, synchronization and FPGA implementation
Rajagopal, Karthikeyan; Jafari, Sajad; Laarem, Guessas
2017-12-01
In this paper we report a time-delayed chameleon-like chaotic system which can belong to different families of chaotic attractors depending on the choices of parameters. Such a characteristic of self-excited and hidden chaotic flows in a simple 3D system with time delay has not been reported earlier. Dynamic analysis of the proposed time-delayed systems are analysed in time-delay space and parameter space. A novel adaptive modified functional projective lag synchronization algorithm is derived for synchronizing identical time-delayed chameleon systems with uncertain parameters. The proposed time-delayed systems and the synchronization algorithm with controllers and parameter estimates are then implemented in FPGA using hardware-software co-simulation and the results are presented.
Chameleon field dynamics during inflation
Saba, Nasim; Farhoudi, Mehrdad
By studying the chameleon model during inflation, we investigate whether it can be a successful inflationary model, wherein we employ the common typical potential usually used in the literature. Thus, in the context of the slow-roll approximations, we obtain the e-folding number for the model to verify the ability of resolving the problems of standard big bang cosmology. Meanwhile, we apply the constraints on the form of the chosen potential and also on the equation of state parameter coupled to the scalar field. However, the results of the present analysis show that there is not much chance of having the chameleonic inflation. Hence, we suggest that if through some mechanism the chameleon model can be reduced to the standard inflationary model, then it may cover the whole era of the universe from the inflation up to the late time.
Chameleons with Field Dependent Couplings
Brax, Philippe; Mota, David F; Nunes, Nelson J; Winther, Hans A
2010-01-01
Certain scalar-tensor theories exhibit the so-called chameleon mechanism, whereby observational signatures of scalar fields are hidden by a combination of self-interactions and interactions with ambient matter. Not all scalar-tensor theories exhibit such a chameleon mechanism, which has been originally found in models with inverse power run-away potentials and field independent couplings to matter. In this paper we investigate field-theories with field-dependent couplings and a power-law potential for the scalar field. We show that the theory indeed is a chameleon field theory. We find the thin-shell solution for a spherical body and investigate the consequences for E\\"ot-Wash experiments, fifth-force searches and Casimir force experiments. Requiring that the scalar-field evades gravitational tests, we find that the coupling is sensitive to a mass-scale which is of order of the Hubble scale today.
Dynamical analysis of tachyonic chameleon
Banijamali, Ali; Solbi, Milad
2017-08-01
In the present paper we investigate tachyonic chameleon scalar field and present the phase space analysis for four different combinations of the tachyonic potential V(φ ) and the coupling function f(φ ) of the chameleon field with matter. We find some stable solution in which accelerated expansion of the universe is satisfied. In one case where both f(φ ) and V(φ ) are exponential a scaling attractor was found that can give rise to the late-time acceleration of the universe and alleviate the coincidence problem.
Notes on chameleons III. The chameleons of southern Arabia
Hillenius, D.
1966-01-01
Three chameleons have been described from southern Arabia: Chamaeleo calyptratus Duméril & Duméril, 1851; Chamaeleo calcarifer Peters, 1871 and Chamaeleo arabicus (Matschie, 1893). Chamaeleo arabicus is clearly connected with typical Chamaeleo chamaeleon by intermediate forms: Chamaeleo chamaeleon
Detecting solar chameleons through radiation pressure
Baum, S.; Hoffmann, D.H.H.; Karuza, M.; Semertzidis, Y.K.; Upadhye, A.; Zioutas, K.
2014-10-24
Light scalar fields can drive the accelerated expansion of the universe. Hence, they are obvious dark energy candidates. To make such models compatible with tests of General Relativity in the solar system and "fifth force" searches on Earth, one needs to screen them. One possibility is the so-called "chameleon" mechanism, which renders an effective mass depending on the local matter density. If chameleon particles exist, they can be produced in the sun and detected on earth exploiting the equivalent of a radiation pressure. Since their effective mass scales with the local matter density, chameleons can be reflected by a dense medium if their effective mass becomes greater than their total energy. Thus, under appropriate conditions, a flux of solar chameleons may be sensed by detecting the total instantaneous momentum transferred to a suitable opto-mechanical force/pressure sensor. We calculate the solar chameleon spectrum and the reach in the chameleon parameter space of an experiment using the preliminary re...
Detecting chameleons through Casimir force measurements
International Nuclear Information System (INIS)
Brax, Philippe; Bruck, Carsten van de; Davis, Anne-Christine; Shaw, Douglas; Mota, David F.
2007-01-01
The best laboratory constraints on strongly coupled chameleon fields come not from tests of gravity per se but from precision measurements of the Casimir force. The chameleonic force between two nearby bodies is more akin to a Casimir-like force than a gravitational one: The chameleon force behaves as an inverse power of the distance of separation between the surfaces of two bodies, just as the Casimir force does. Additionally, experimental tests of gravity often employ a thin metallic sheet to shield electrostatic forces; however, this sheet masks any detectable signal due to the presence of a strongly coupled chameleon field. As a result of this shielding, experiments that are designed to specifically test the behavior of gravity are often unable to place any constraint on chameleon fields with a strong coupling to matter. Casimir force measurements do not employ a physical electrostatic shield and as such are able to put tighter constraints on the properties of chameleons fields with a strong matter coupling than tests of gravity. Motivated by this, we perform a full investigation on the possibility of testing chameleon models with both present and future Casimir experiments. We find that present-day measurements are not able to detect the chameleon. However, future experiments have a strong possibility of detecting or rule out a whole class of chameleon models
K-chameleon and the coincidence problem
International Nuclear Information System (INIS)
Wei Hao; Cai Ronggen
2005-01-01
In this paper we present a hybrid model of k-essence and chameleon, named as k-chameleon. In this model, due to the chameleon mechanism, the directly strong coupling between the k-chameleon field and matters (cold dark matters and baryons) is allowed. In the radiation-dominated epoch, the interaction between the k-chameleon field and background matters can be neglected; the behavior of the k-chameleon therefore is the same as that of the ordinary k-essence. After the onset of matter domination, the strong coupling between the k-chameleon and matters dramatically changes the result of the ordinary k-essence. We find that during the matter-dominated epoch, only two kinds of attractors may exist: one is the familiar K attractor and the other is a completely new, dubbed C attractor. Once the Universe is attracted into the C attractor, the fraction energy densities of the k-chameleon Ω φ and dust matter Ω m are fixed and comparable, and the Universe will undergo a power-law accelerated expansion. One can adjust the model so that the K attractor does not appear. Thus, the k-chameleon model provides a natural solution to the cosmological coincidence problem
Halo modelling in chameleon theories
Energy Technology Data Exchange (ETDEWEB)
Lombriser, Lucas; Koyama, Kazuya [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth, PO1 3FX (United Kingdom); Li, Baojiu, E-mail: lucas.lombriser@port.ac.uk, E-mail: kazuya.koyama@port.ac.uk, E-mail: baojiu.li@durham.ac.uk [Institute for Computational Cosmology, Ogden Centre for Fundamental Physics, Department of Physics, University of Durham, Science Laboratories, South Road, Durham, DH1 3LE (United Kingdom)
2014-03-01
We analyse modelling techniques for the large-scale structure formed in scalar-tensor theories of constant Brans-Dicke parameter which match the concordance model background expansion history and produce a chameleon suppression of the gravitational modification in high-density regions. Thereby, we use a mass and environment dependent chameleon spherical collapse model, the Sheth-Tormen halo mass function and linear halo bias, the Navarro-Frenk-White halo density profile, and the halo model. Furthermore, using the spherical collapse model, we extrapolate a chameleon mass-concentration scaling relation from a ΛCDM prescription calibrated to N-body simulations. We also provide constraints on the model parameters to ensure viability on local scales. We test our description of the halo mass function and nonlinear matter power spectrum against the respective observables extracted from large-volume and high-resolution N-body simulations in the limiting case of f(R) gravity, corresponding to a vanishing Brans-Dicke parameter. We find good agreement between the two; the halo model provides a good qualitative description of the shape of the relative enhancement of the f(R) matter power spectrum with respect to ΛCDM caused by the extra attractive gravitational force but fails to recover the correct amplitude. Introducing an effective linear power spectrum in the computation of the two-halo term to account for an underestimation of the chameleon suppression at intermediate scales in our approach, we accurately reproduce the measurements from the N-body simulations.
Halo modelling in chameleon theories
International Nuclear Information System (INIS)
Lombriser, Lucas; Koyama, Kazuya; Li, Baojiu
2014-01-01
We analyse modelling techniques for the large-scale structure formed in scalar-tensor theories of constant Brans-Dicke parameter which match the concordance model background expansion history and produce a chameleon suppression of the gravitational modification in high-density regions. Thereby, we use a mass and environment dependent chameleon spherical collapse model, the Sheth-Tormen halo mass function and linear halo bias, the Navarro-Frenk-White halo density profile, and the halo model. Furthermore, using the spherical collapse model, we extrapolate a chameleon mass-concentration scaling relation from a ΛCDM prescription calibrated to N-body simulations. We also provide constraints on the model parameters to ensure viability on local scales. We test our description of the halo mass function and nonlinear matter power spectrum against the respective observables extracted from large-volume and high-resolution N-body simulations in the limiting case of f(R) gravity, corresponding to a vanishing Brans-Dicke parameter. We find good agreement between the two; the halo model provides a good qualitative description of the shape of the relative enhancement of the f(R) matter power spectrum with respect to ΛCDM caused by the extra attractive gravitational force but fails to recover the correct amplitude. Introducing an effective linear power spectrum in the computation of the two-halo term to account for an underestimation of the chameleon suppression at intermediate scales in our approach, we accurately reproduce the measurements from the N-body simulations
Search for chameleon particles via photon regeneration
International Nuclear Information System (INIS)
Chou, Aaron S.; CCPP, New York U.
2008-01-01
We report the first results from the GammeV search for chameleon particles, which may be created via photon-photon interactions within a strong magnetic field. The chameleons are assumed to have matter effects sufficiently strong that they reflect from all solid surfaces of the apparatus, thus evading detection in our previous search for weakly-interacting axion-like particles. We implement a novel technique to create and trap the reflective particles within a jar and to detect them later via their afterglow as they slowly convert back into photons. These measurements provide the first experimental constraints on the couplings of chameleons to photons
Chameleon dark energy models with characteristic signatures
International Nuclear Information System (INIS)
Gannouji, Radouane; Moraes, Bruno; Polarski, David; Mota, David F.; Winther, Hans A.; Tsujikawa, Shinji
2010-01-01
In chameleon dark energy models, local gravity constraints tend to rule out parameters in which observable cosmological signatures can be found. We study viable chameleon potentials consistent with a number of recent observational and experimental bounds. A novel chameleon field potential, motivated by f(R) gravity, is constructed where observable cosmological signatures are present both at the background evolution and in the growth rate of the perturbations. We study the evolution of matter density perturbations on low redshifts for this potential and show that the growth index today γ 0 can have significant dispersion on scales relevant for large scale structures. The values of γ 0 can be even smaller than 0.2 with large variations of γ on very low redshifts for the model parameters constrained by local gravity tests. This gives a possibility to clearly distinguish these chameleon models from the Λ-cold-dark-matter (ΛCDM) model in future high-precision observations.
Chameleon Search in CAST Experiment at CERN
AUTHOR|(CDS)2200384; Cetin, Serkant
Chameleons are hypothetical particles that are proposed as a scalar field to account for the accelerated expansion of the universe, the so-called `dark energy problem'. They are proposed to be produced in the high magnetic field regions inside the Sun and they propagate through or reflect from a medium with the interaction strength depending on the ambient density. The models which characterize the interaction of the chameleons provide two interaction channels: direct coupling to matter dependent on the density and coupling to electromagnetic field by Primakoff effect. CAST Experiment probes the coupling of chameleons with matter with opto-mechanical KWISP detector which is based on Fabry-Perot and Michelson interferometers. In this thesis, starting with an overview of the experimental search efforts of the CAST experiment, theoretical background of the dark energy and the chameleon mechanism will be provided. Then, the detection mechanism based on KWISP detector will be discussed and the versions of the dete...
Detecting solar chameleons through radiation pressure
Baum, Sebastian
2014-01-01
Light scalar fields can drive accelerated expansion of the universe. Hence, scalars are obvious dark energy candidates. To make these models compatible with test of General Relativity in the solar system and fifth force searches on earth, one needs to screen them. One possibility is the chameleon mechanism, which renders an effective mass depending on the local energy density. If chameleons exist, they can be produced in the sun and detected on earth through their radiation pressure. We calculate the solar chameleon spectrum and the sensitivity of an experiment to be carried out at CAST, CERN, utilizing a radiation pressure sensor currently under development at INFN, Trieste. We show that such an experiment will be sensitive to a wide range of model parameters and signifies a pioneering effort searching for chameleons in unprobed paramterspace.
TBCS/Chameleon Utility Trial Report
National Research Council Canada - National Science Library
Matthews, Michael L; Brooks, Jeremy E; Angel, Harold A
2005-01-01
...)/Chameleon using participants representing command elements of a combat team. Seven participants role-played an advance to contact scenario developed by Joint Command Staff Training Centre (JCSTC) in 13 segments...
Supernova brightening from chameleon-photon mixing
International Nuclear Information System (INIS)
Burrage, C.
2008-01-01
Measurements of standard candles and measurements of standard rulers give an inconsistent picture of the history of the universe. This discrepancy can be explained if photon number is not conserved as computations of the luminosity distance must be modified. I show that photon number is not conserved when photons mix with chameleons in the presence of a magnetic field. The strong magnetic fields in a supernova mean that the probability of a photon converting into a chameleon in the interior of the supernova is high, this results in a large flux of chameleons at the surface of the supernova. Chameleons and photons also mix as a result of the intergalactic magnetic field. These two effects combined cause the image of the supernova to be brightened resulting in a model which fits both observations of standard candles and observations of standard rulers
Stable cosmology in chameleon bigravity
De Felice, Antonio; Mukohyama, Shinji; Oliosi, Michele; Watanabe, Yota
2018-02-01
The recently proposed chameleonic extension of bigravity theory, by including a scalar field dependence in the graviton potential, avoids several fine-tunings found to be necessary in usual massive bigravity. In particular it ensures that the Higuchi bound is satisfied at all scales, that no Vainshtein mechanism is needed to satisfy Solar System experiments, and that the strong coupling scale is always above the scale of cosmological interest all the way up to the early Universe. This paper extends the previous work by presenting a stable example of cosmology in the chameleon bigravity model. We find a set of initial conditions and parameters such that the derived stability conditions on general flat Friedmann background are satisfied at all times. The evolution goes through radiation-dominated, matter-dominated, and de Sitter eras. We argue that the parameter space allowing for such a stable evolution may be large enough to encompass an observationally viable evolution. We also argue that our model satisfies all known constraints due to gravitational wave observations so far and thus can be considered as a unique testing ground of gravitational wave phenomenologies in bimetric theories of gravity.
Moduli fields as quintessence and the chameleon
International Nuclear Information System (INIS)
Brax, Philippe; Martin, Jerome
2007-01-01
We consider models where moduli fields are not stabilized and play the role of quintessence. In order to evade gravitational tests, we investigate the possibility that moduli behave as chameleon fields. We find that, for realistic moduli superpotentials, the chameleon effect is not strong enough, implying that moduli quintessence models are gravitationally ruled out. More generally, we state a no-go theorem for quintessence in supergravity whereby models either behave like a pure cosmological constant or violate gravitational tests
Laboratory constraints on chameleon dark energy and power-law fields
Steffen, Jason H.; Upadhye, Amol; Baumbaugh, Al; Chou, Aaron S.; Mazur, Peter O.; Tomlin, Ray; Weltman, Amanda; Wester, William
2010-01-01
We report results from the GammeV Chameleon Afterglow Search---a search for chameleon particles created via photon/chameleon oscillations within a magnetic field. This experiment is sensitive to a wide class of chameleon power-law models and dark energy models not previously explored. These results exclude five orders of magnitude in the coupling of chameleons to photons covering a range of four orders of magnitude in chameleon effective mass and, for individual chameleon models, exclude betw...
Lingual structural pattern of juvenile Chameleon, Chameleo chameleon
Directory of Open Access Journals (Sweden)
Ahmed A. El Mansi
2017-06-01
Full Text Available It is belong to the order Squamata, family, Chamaeleonidae. They have characteristic features of tongue protrusion during capturing prey attracts many research works and assay its velocity during protrusion. Yet little studies touched the anatomical and histological feature of the juvenile tongue and especially the middle tongue region involved in the tongue elongation, the present study aimed to focus on the histological structure of the mid-tongue and clarify its role in projection of the tongue as well as the glandular structure, keratinization of lingual epithelium and proliferation capacity of the fore-tongue region in relation with their feeding habits during the juvenile age. Juvenile Chameleo chameleon are collected from Abu Rawash, north of Giza Governorate, Egypt during summer 2015. Three juvenile developmental stages are used in the present study and categorized according to the gross morphological criteria of head, abdomen and limb lengths. The tongue and hyoid apparatus were removed and photographed. Histological, immunohistochemistry of cytokeratin and stem cell factor and scanning electronic microscopic investigations were carried out on the fore-tongue region, meanwhile only histological studies were done for the median tongue region. Morphometric assessments of number and length of lingual papillae and grades of cytokeratin and stem cell expression were done. Histologically, the dorsal lingual mucosa of the fore-tongue possessed different pattern of lingual papillae including finger-like, club, cubical, biforked and multi-branched papillae. The finger-like papillae are more abundant compared to the other types. The lamina propria of anterior median tongue pad are more glandular and exhibited abundant distribution of PAS-positive tubular glands and moderate alcian blue staining affinity of both alveolar and branched alveolar glands. There is no detected keratinization of the lingual epithelium. Stem cell factor appeared denser on
Hillenius, D.
1978-01-01
A new, fossil chameleon is described, † Chamaeleo intermedius, found on the surface at Fort Ternan, Kenya. Most probably it eroded from a layer of fossilized lahar, close to 14 million years old. † Chamaeleo intermedius possesses characters which still occur in recent chameleons, in fact it combines
Detecting solar chameleons through radiation pressure
International Nuclear Information System (INIS)
Baum, S.; Cantatore, G.; Hoffmann, D.H.H.; Karuza, M.; Semertzidis, Y.K.; Upadhye, A.; Zioutas, K.
2014-01-01
Light scalar fields can drive the accelerated expansion of the universe. Hence, they are obvious dark energy candidates. To make such models compatible with tests of General Relativity in the solar system and “fifth force” searches on Earth, one needs to screen them. One possibility is the so-called “chameleon” mechanism, which renders an effective mass depending on the local matter density. If chameleon particles exist, they can be produced in the sun and detected on Earth exploiting the equivalent of a radiation pressure. Since their effective mass scales with the local matter density, chameleons can be reflected by a dense medium if their effective mass becomes greater than their total energy. Thus, under appropriate conditions, a flux of solar chameleons may be sensed by detecting the total instantaneous momentum transferred to a suitable opto-mechanical force/pressure sensor. We calculate the solar chameleon spectrum and the reach in the chameleon parameter space of an experiment using the preliminary results from a force/pressure sensor, currently under development at INFN Trieste, to be mounted in the focal plane of one of the X-Ray telescopes of the CAST experiment at CERN. We show, that such an experiment signifies a pioneering effort probing uncharted chameleon parameter space
The Chameleon Solid Rocket Propulsion Model
International Nuclear Information System (INIS)
Robertson, Glen A.
2010-01-01
The Khoury and Weltman (2004a and 2004b) Chameleon Model presents an addition to the gravitation force and was shown by the author (Robertson, 2009a and 2009b) to present a new means by which one can view other forces in the Universe. The Chameleon Model is basically a density-dependent model and while the idea is not new, this model is novel in that densities in the Universe to include the vacuum of space are viewed as scalar fields. Such an analogy gives the Chameleon scalar field, dark energy/dark matter like characteristics; fitting well within cosmological expansion theories. In respect to this forum, in this paper, it is shown how the Chameleon Model can be used to derive the thrust of a solid rocket motor. This presents a first step toward the development of new propulsion models using density variations verse mass ejection as the mechanism for thrust. Further, through the Chameleon Model connection, these new propulsion models can be tied to dark energy/dark matter toward new space propulsion systems utilizing the vacuum scalar field in a way understandable by engineers, the key toward the development of such systems. This paper provides corrections to the Chameleon rocket model in Robertson (2009b).
Detecting solar chameleons through radiation pressure
Energy Technology Data Exchange (ETDEWEB)
Baum, S., E-mail: sebastian.baum@cern.ch [Uppsala Universitet, Box 516, SE 75120, Uppsala (Sweden); European Organization for Nuclear Research (CERN), Gèneve (Switzerland); Cantatore, G. [Università di Trieste, Via Valerio 2, 34127 Trieste (Italy); INFN Trieste, Padriciano 99, 34149 Trieste (Italy); Hoffmann, D.H.H. [Institut für Kernphysik, TU-Darmstadt, Schlossgartenstr. 9, D-64289 Darmstadt (Germany); Karuza, M. [INFN Trieste, Padriciano 99, 34149 Trieste (Italy); Phys. Dept. and CMNST, University of Rijeka, R. Matejcic 2, Rijeka (Croatia); Semertzidis, Y.K. [Center for Axion and Precision Physics Research (IBS), Daejeon 305-701 (Korea, Republic of); Department of Physics, KAIST, Daejeon 305-701 (Korea, Republic of); Upadhye, A. [Physics Department, University of Wisconsin–Madison, 1150 University Avenue, Madison, WI 53706 (United States); Zioutas, K., E-mail: konstantin.zioutas@cern.ch [European Organization for Nuclear Research (CERN), Gèneve (Switzerland); University of Patras, GR 26504 Patras (Greece)
2014-12-12
Light scalar fields can drive the accelerated expansion of the universe. Hence, they are obvious dark energy candidates. To make such models compatible with tests of General Relativity in the solar system and “fifth force” searches on Earth, one needs to screen them. One possibility is the so-called “chameleon” mechanism, which renders an effective mass depending on the local matter density. If chameleon particles exist, they can be produced in the sun and detected on Earth exploiting the equivalent of a radiation pressure. Since their effective mass scales with the local matter density, chameleons can be reflected by a dense medium if their effective mass becomes greater than their total energy. Thus, under appropriate conditions, a flux of solar chameleons may be sensed by detecting the total instantaneous momentum transferred to a suitable opto-mechanical force/pressure sensor. We calculate the solar chameleon spectrum and the reach in the chameleon parameter space of an experiment using the preliminary results from a force/pressure sensor, currently under development at INFN Trieste, to be mounted in the focal plane of one of the X-Ray telescopes of the CAST experiment at CERN. We show, that such an experiment signifies a pioneering effort probing uncharted chameleon parameter space.
Tuning the Mass of Chameleon Fields in Casimir Force Experiments
Brax, Ph; Davis, A C; Shaw, D J; Iannuzzi, D
2010-01-01
We have calculated the chameleon pressure between two parallel plates in the presence of an intervening medium that affects the mass of the chameleon field. As intuitively expected, the gas in the gap weakens the chameleon interaction mechanism with a screening effect that increases with the plate separation and with the density of the intervening medium. This phenomenon might open up new directions in the search of chameleon particles with future long range Casimir force experiments.
High Tech Art: Chameleon Glass
1993-01-01
Dichroic Glass is a technology wherein extremely thin films of metal are vacuum deposited on a glass surface. The coated glass shields spacecraft instruments from cosmic radiation and protects human vision from unfiltered sunlight in space. Because the coating process allows some wavelengths of light and color to reflect and others to pass through, a chameleon effect is produced. Murray Schwartz, a former aerospace engineer, has based his business KROMA on this NASA optical technology. He produces dichroic stained glass windows, mobiles and jewelry. The technique involves deposition of super thin layers of metal oxides applied one layer at a time in a specific order and thickness for the desired effect. His product line is unique and has been very successful.
Chameleon fields, wave function collapse and quantum gravity
International Nuclear Information System (INIS)
Zanzi, A
2015-01-01
Chameleon fields are quantum (usually scalar) fields, with a density-dependent mass. In a high-density environment, the mass of the chameleon is large. On the contrary, in a small-density environment (e.g. on cosmological distances), the chameleon is very light. A model where the collapse of the wave function is induced by chameleon fields is presented. During this analysis, a Chameleonic Equivalence Principle (CEP) will be formulated: in this model, quantum gravitation is equivalent to a conformal anomaly. Further research efforts are necessary to verify whether this proposal is compatible with phenomeno logical constraints. (paper)
The shape dependence of chameleon screening
Burrage, Clare; Copeland, Edmund J.; Moss, Adam; Stevenson, James A.
2018-01-01
Chameleon scalar fields can screen their associated fifth forces from detection by changing their mass with the local density. These models are an archetypal example of a screening mechanism, and have become an important target for both cosmological surveys and terrestrial experiments. In particular there has been much recent interest in searching for chameleon fifth forces in the laboratory. It is known that the chameleon force is less screened around non-spherical sources, but only the field profiles around a few simple shapes are known analytically. In this work we introduce a numerical code that solves for the chameleon field around arbitrary shapes with azimuthal symmetry placed in a spherical vacuum chamber. We find that deviations from spherical symmetry can increase the chameleon acceleration experienced by a test particle, and that the least screened objects are those which minimize some internal dimension. For the shapes considered in this work, keeping the mass, density and background environment fixed, the accelerations due to the source varied by a factor of ~ 3.
The CHASE laboratory search for chameleon dark energy
International Nuclear Information System (INIS)
Steffen, Jason H.
2010-01-01
A scalar field is a favorite candidate for the particle responsible for dark energy. However, few theoretical means exist that can simultaneously explain the observed acceleration of the Universe and evade tests of gravity. The chameleon mechanism, whereby the properties of a particle depend upon the local environment, is one possible avenue. We present the results of the Chameleon Afterglow Search (CHASE) experiment, a laboratory probe for chameleon dark energy. CHASE marks a significant improvement other searches for chameleons both in terms of its sensitivity to the photon/chameleon coupling as well as its sensitivity to the classes of chameleon dark energy models and standard power-law models. Since chameleon dark energy is virtually indistinguishable from a cosmological constant, CHASE tests dark energy models in a manner not accessible to astronomical surveys.
The CHASE laboratory search for chameleon dark energy
Energy Technology Data Exchange (ETDEWEB)
Steffen, Jason [Fermi National Accelerator Laboratory - Fermilab, P.O. Box 500, Batavia, IL 60510-5011 (United States)
2010-07-01
A scalar field is a favorite candidate for the particle responsible for dark energy. However, few theoretical means exist that can simultaneously explain the observed acceleration of the Universe and evade tests of gravity. The chameleon mechanism, whereby the properties of a particle depend upon the local environment, is one possible avenue. I present the results of the Chameleon Afterglow Search (CHASE) experiment, a laboratory probe for chameleon dark energy. CHASE marks a significant improvement over other searches for chameleons both in terms of its sensitivity to the photon/chameleon coupling as well as its sensitivity to the classes of chameleon dark energy models and standard power-law models. Since chameleon dark energy is virtually indistinguishable from a cosmological constant, CHASE tests dark energy models in a manner not accessible to astronomical surveys. (author)
Chameleons with field-dependent couplings
International Nuclear Information System (INIS)
Brax, Philippe; Bruck, Carsten van de; Mota, David F.; Winther, Hans A.; Nunes, Nelson J.
2010-01-01
Certain scalar-tensor theories exhibit the so-called chameleon mechanism, whereby observational signatures of scalar fields are hidden by a combination of self-interactions and interactions with ambient matter. Not all scalar-tensor theories exhibit such a chameleon mechanism, which has been originally found in models with inverse power runaway potentials and field-independent couplings to matter. In this paper we investigate field theories with field-dependent couplings and a power-law potential for the scalar field. We show that the theory indeed is a chameleon field theory. We find the thin-shell solution for a spherical body and investigate the consequences for Eoet-Wash experiments, fifth-force searches and Casimir-force experiments. Requiring that the scalar field evades gravitational tests, we find that the coupling is sensitive to a mass scale which is of order of the Hubble scale today.
Laboratory Constraints on Chameleon Dark Energy and Power-Law Fields
International Nuclear Information System (INIS)
Steffen, J. H.; Baumbaugh, A.; Chou, A. S.; Mazur, P. O.; Tomlin, R.; Wester, W.; Upadhye, A.; Weltman, A.
2010-01-01
We report results from a search for chameleon particles created via photon-chameleon oscillations within a magnetic field. This experiment is sensitive to a wide class of unexplored chameleon power-law and dark energy models. These results exclude 5 orders of magnitude in the coupling of chameleons to photons covering a range of 4 orders of magnitude in chameleon effective mass and, for individual models, exclude between 4 and 12 orders of magnitude in chameleon couplings to matter.
A natural cosmological constant from chameleons
International Nuclear Information System (INIS)
Nastase, Horatiu; Weltman, Amanda
2015-01-01
We present a simple model where the effective cosmological constant appears from chameleon scalar fields. For a Kachru–Kallosh–Linde–Trivedi (KKLT)-inspired form of the potential and a particular chameleon coupling to the local density, patches of approximately constant scalar field potential cluster around regions of matter with density above a certain value, generating the effect of a cosmological constant on large scales. This construction addresses both the cosmological constant problem (why Λ is so small, yet nonzero) and the coincidence problem (why Λ is comparable to the matter density now)
A natural cosmological constant from chameleons
Directory of Open Access Journals (Sweden)
Horatiu Nastase
2015-07-01
Full Text Available We present a simple model where the effective cosmological constant appears from chameleon scalar fields. For a Kachru–Kallosh–Linde–Trivedi (KKLT-inspired form of the potential and a particular chameleon coupling to the local density, patches of approximately constant scalar field potential cluster around regions of matter with density above a certain value, generating the effect of a cosmological constant on large scales. This construction addresses both the cosmological constant problem (why Λ is so small, yet nonzero and the coincidence problem (why Λ is comparable to the matter density now.
A natural cosmological constant from chameleons
Energy Technology Data Exchange (ETDEWEB)
Nastase, Horatiu, E-mail: nastase@ift.unesp.br [Instituto de Física Teórica, UNESP-Universidade Estadual Paulista, R. Dr. Bento T. Ferraz 271, Bl. II, Sao Paulo 01140-070, SP (Brazil); Weltman, Amanda, E-mail: amanda.weltman@uct.ac.za [Astrophysics, Cosmology & Gravity Center, Department of Mathematics and Applied Mathematics, University of Cape Town, Private Bag, Rondebosch 7700 (South Africa)
2015-07-30
We present a simple model where the effective cosmological constant appears from chameleon scalar fields. For a Kachru–Kallosh–Linde–Trivedi (KKLT)-inspired form of the potential and a particular chameleon coupling to the local density, patches of approximately constant scalar field potential cluster around regions of matter with density above a certain value, generating the effect of a cosmological constant on large scales. This construction addresses both the cosmological constant problem (why Λ is so small, yet nonzero) and the coincidence problem (why Λ is comparable to the matter density now)
Laboratory constraints on chameleon dark energy and power-law fields
International Nuclear Information System (INIS)
Steffen, Jason H.; Upadhye, Amol; Baumbaugh, Al; Chou, Aaron S.; Mazur, Peter O.; Tomlin, Ray; Weltman, Amanda; Wester, William
2010-01-01
We report results from the GammeV Chameleon Afterglow Search - a search for chameleon particles created via photon/chameleon oscillations within a magnetic field. This experiment is sensitive to a wide class of chameleon power-law models and dark energy models not previously explored. These results exclude five orders of magnitude in the coupling of chameleons to photons covering a range of four orders of magnitude in chameleon effective mass and, for individual chameleon models, exclude between 4 and 12 orders of magnitude in chameleon couplings to matter.
Speed, Acceleration, Chameleons and Cherry Pit Projectiles
Planinsic, Gorazd; Likar, Andrej
2012-01-01
The paper describes the mechanics of cherry pit projectiles and ends with showing the similarity between cherry pit launching and chameleon tongue projecting mechanisms. The whole story is written as an investigation, following steps that resemble those typically taken by scientists and can therefore serve as an illustration of scientific…
The human chameleon: Hybrid Jews in cinema
Vudka, A.
2016-01-01
This research explores the seditious potential of hybrid Jewish figures in cinema, based on certain thinkers of post WWII French philosophy, feminist and postcolonial theories, and traditional Jewish texts, which in different ways point to a reevaluation of the "chameleon Jew" in positive terms.
Higgs production as a probe of chameleon dark energy
International Nuclear Information System (INIS)
Brax, Philippe; Burrage, Clare; Davis, Anne-Christine; Seery, David; Weltman, Amanda
2010-01-01
In this paper we study various particle physics effects of a light, scalar dark energy field with chameleonlike couplings to matter. We show that a chameleon model with only matter couplings will induce a coupling to photons. In doing so, we derive the first microphysical realization of a chameleonic dark energy model coupled to the electromagnetic field strength. This analysis provides additional motivation for current and near-future tests of axionlike and chameleon particles. We find a new bound on the coupling strength of chameleons in uniformly coupled models. We also study the effect of chameleon fields on Higgs production, which is relevant for hadron colliders. These are expected to manufacture Higgs particles through weak boson fusion, or associated production with a Z or W ± . We show that, like the Tevatron, the LHC will not be able to rule out or observe chameleons through this mechanism, because gauge invariance of the low energy Lagrangian suppresses the corrections that may arise.
Testing chameleon gravity with the Coma cluster
International Nuclear Information System (INIS)
Terukina, Ayumu; Yamamoto, Kazuhiro; Lombriser, Lucas; Bacon, David; Koyama, Kazuya; Nichol, Robert C.
2014-01-01
We propose a novel method to test the gravitational interactions in the outskirts of galaxy clusters. When gravity is modified, this is typically accompanied by the introduction of an additional scalar degree of freedom, which mediates an attractive fifth force. The presence of an extra gravitational coupling, however, is tightly constrained by local measurements. In chameleon modifications of gravity, local tests can be evaded by employing a screening mechanism that suppresses the fifth force in dense environments. While the chameleon field may be screened in the interior of the cluster, its outer region can still be affected by the extra force, introducing a deviation between the hydrostatic and lensing mass of the cluster. Thus, the chameleon modification can be tested by combining the gas and lensing measurements of the cluster. We demonstrate the operability of our method with the Coma cluster, for which both a lensing measurement and gas observations from the X-ray surface brightness, the X-ray temperature, and the Sunyaev-Zel'dovich effect are available. Using the joint observational data set, we perform a Markov chain Monte Carlo analysis of the parameter space describing the different profiles in both the Newtonian and chameleon scenarios. We report competitive constraints on the chameleon field amplitude and its coupling strength to matter. In the case of f(R) gravity, corresponding to a specific choice of the coupling, we find an upper bound on the background field amplitude of |f R0 | < 6 × 10 −5 , which is currently the tightest constraint on cosmological scales
Odontogenesis in the Veiled Chameleon (Chamaeleo calyptratus).
Buchtová, Marcela; Zahradníček, Oldřich; Balková, Simona; Tucker, Abigail S
2013-02-01
Replacement teeth in reptiles and mammals develop from a successional dental lamina. In monophyodont (single generation) species such as the mouse, no successional lamina develops. We have selected a reptilian monophyodont species - the Veiled Chameleon (Chamaeleo calyptratus) - to investigate whether this is a common characteristic of species that do not have replacement teeth. Furthermore, we focus on the sequence of tooth initiation along the jaw, and tooth attachment to the bones. Embryos of the Veiled Chameleon were collected during the first 6 months of incubation (from the 5th to 24th week) at 7-day intervals. After five weeks of incubation, an epithelial thickening was present as a shallow protrusion into the mesenchyme. A week later, the epithelium elongated more deeply into the mesenchyme to form the dental lamina. The formation of all tooth germs along the jaw was initiated from the tip of the dental lamina. Development of a successional dental lamina was initiated during the pre-hatching period but this structure became markedly reduced during juvenile stages. MicroCT analysis showed the presence of a heterodont dentition in young chameleons with multicuspid teeth in the caudal jaw area and simpler monocuspid teeth rostrally. Unlike the pleurodont teeth of most reptilian species, chameleon teeth are acrodontly ankylosed to the bones of the jaw. Odontoblasts produced a layer of predentine that connected the dentine to the supporting bone, with both tooth and bone protruding out of the oral cavity and acting as a functional unit. Chameleons may provide new and useful information to study the molecular interaction at the tooth-bone interface in physiological as well as pathological conditions. Copyright © 2012 Elsevier Ltd. All rights reserved.
Testing chameleon gravity with the Coma cluster
Energy Technology Data Exchange (ETDEWEB)
Terukina, Ayumu; Yamamoto, Kazuhiro [Department of Physical Science, Hiroshima University, Higashi-Hiroshima, Kagamiyama 1-3-1, 739-8526 (Japan); Lombriser, Lucas; Bacon, David; Koyama, Kazuya; Nichol, Robert C., E-mail: telkina@theo.phys.sci.hiroshima-u.ac.jp, E-mail: lucas.lombriser@port.ac.uk, E-mail: kazuhiro@hiroshima-u.ac.jp, E-mail: david.bacon@port.ac.uk, E-mail: kazuya.koyama@port.ac.uk, E-mail: bob.nichol@port.ac.uk [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Portsmouth, PO1 3FX (United Kingdom)
2014-04-01
We propose a novel method to test the gravitational interactions in the outskirts of galaxy clusters. When gravity is modified, this is typically accompanied by the introduction of an additional scalar degree of freedom, which mediates an attractive fifth force. The presence of an extra gravitational coupling, however, is tightly constrained by local measurements. In chameleon modifications of gravity, local tests can be evaded by employing a screening mechanism that suppresses the fifth force in dense environments. While the chameleon field may be screened in the interior of the cluster, its outer region can still be affected by the extra force, introducing a deviation between the hydrostatic and lensing mass of the cluster. Thus, the chameleon modification can be tested by combining the gas and lensing measurements of the cluster. We demonstrate the operability of our method with the Coma cluster, for which both a lensing measurement and gas observations from the X-ray surface brightness, the X-ray temperature, and the Sunyaev-Zel'dovich effect are available. Using the joint observational data set, we perform a Markov chain Monte Carlo analysis of the parameter space describing the different profiles in both the Newtonian and chameleon scenarios. We report competitive constraints on the chameleon field amplitude and its coupling strength to matter. In the case of f(R) gravity, corresponding to a specific choice of the coupling, we find an upper bound on the background field amplitude of |f{sub R0}| < 6 × 10{sup −5}, which is currently the tightest constraint on cosmological scales.
Propulsion Physics Using the Chameleon Density Model
Robertson, Glen A.
2011-01-01
To grow as a space faring race, future spaceflight systems will require a new theory of propulsion. Specifically one that does not require mass ejection without limiting the high thrust necessary to accelerate within or beyond our solar system and return within a normal work period or lifetime. The Chameleon Density Model (CDM) is one such model that could provide new paths in propulsion toward this end. The CDM is based on Chameleon Cosmology a dark matter theory; introduced by Khrouy and Weltman in 2004. Chameleon as it is hidden within known physics, where the Chameleon field represents a scalar field within and about an object; even in the vacuum. The CDM relates to density changes in the Chameleon field, where the density changes are related to matter accelerations within and about an object. These density changes in turn change how an object couples to its environment. Whereby, thrust is achieved by causing a differential in the environmental coupling about an object. As a demonstration to show that the CDM fits within known propulsion physics, this paper uses the model to estimate the thrust from a solid rocket motor. Under the CDM, a solid rocket constitutes a two body system, i.e., the changing density of the rocket and the changing density in the nozzle arising from the accelerated mass. Whereby, the interactions between these systems cause a differential coupling to the local gravity environment of the earth. It is shown that the resulting differential in coupling produces a calculated value for the thrust near equivalent to the conventional thrust model used in Sutton and Ross, Rocket Propulsion Elements. Even though imbedded in the equations are the Universe energy scale factor, the reduced Planck mass and the Planck length, which relates the large Universe scale to the subatomic scale.
Testing Chameleon Theories with Light Propagating through a Magnetic Field
Brax, P.; van de Bruck, C.; Davis, A. C.; Mota, D. F.; Shaw, D. J.
2007-01-01
It was recently argued that the observed PVLAS anomaly can be explained by chameleon field theories in which large deviations from Newton's law can be avoided. Here we present the predictions for the dichroism and the birefringence induced in the vacuum by a magnetic field in these models. We show that chameleon particles behave very differently from standard axion-like particles (ALPs). We find that, unlike ALPs, the chameleon particles are confined within the experimental set-up. As a conse...
Alpenglow: A signature for chameleons in axionlike particle search experiments
International Nuclear Information System (INIS)
Ahlers, M.; Lindner, A.; Ringwald, A.; Schrempp, L.; Weniger, C.
2008-01-01
We point out that chameleon field theories might reveal themselves as an afterglow effect in axionlike particle search experiments due to chameleon-photon conversion in a magnetic field. We estimate the parameter space which is accessible by currently available technology and find that afterglow experiments could constrain this parameter space in a way complementary to gravitational and Casimir force experiments. In addition, one could reach photon-chameleon couplings which are beyond the sensitivity of common laser polarization experiments. We also sketch the idea of a Fabry-Perot cavity with chameleons which could increase the experimental sensitivity significantly
Threat perception in the chameleon (Chamaeleo chameleon): evidence for lateralized eye use.
Lustig, Avichai; Keter-Katz, Hadas; Katzir, Gadi
2012-07-01
Chameleons are arboreal lizards with highly independent, large amplitude eye movements. In response to an approaching threat, a chameleon on a vertical pole moves so as to keep itself away from the threat. In so doing, it shifts between monocular and binocular scanning of the threat and of the environment. We analyzed eye movements in the Common chameleon, Chamaeleo chameleon, during avoidance response for lateralization, that is, asymmetry at the functional/behavioral levels. The chameleons were exposed to a threat, approaching horizontally from clockwise or anti-clockwise directions, and that could be viewed monocularly or binocularly. Our results show three broad patterns of eye use, as determined by durations spent viewing the threat and by frequency of eye shifts. Under binocular viewing, two of the patterns were found to be both side dependent, that is, lateralized and role dependent ("leading" or "following"). However, under monocular viewing, no such lateralization was detected. We discuss these findings in light of the situation not uncommon in vertebrates, of independent eye movements and a high degree of optic nerve decussation and that lateralization may well occur in organisms that are regularly exposed to critical stimuli from all spatial directions. We point to the need of further investigating lateralization at fine behavioral levels.
Small scale structure formation in chameleon cosmology
International Nuclear Information System (INIS)
Brax, Ph.; Bruck, C. van de; Davis, A.C.; Green, A.M.
2006-01-01
Chameleon fields are scalar fields whose mass depends on the ambient matter density. We investigate the effects of these fields on the growth of density perturbations on sub-galactic scales and the formation of the first dark matter halos. Density perturbations on comoving scales R<1 pc go non-linear and collapse to form structure much earlier than in standard ΛCDM cosmology. The resulting mini-halos are hence more dense and resilient to disruption. We therefore expect (provided that the density perturbations on these scales have not been erased by damping processes) that the dark matter distribution on small scales would be more clumpy in chameleon cosmology than in the ΛCDM model
Stability analysis in tachyonic potential chameleon cosmology
International Nuclear Information System (INIS)
Farajollahi, H.; Salehi, A.; Tayebi, F.; Ravanpak, A.
2011-01-01
We study general properties of attractors for tachyonic potential chameleon scalar-field model which possess cosmological scaling solutions. An analytic formulation is given to obtain fixed points with a discussion on their stability. The model predicts a dynamical equation of state parameter with phantom crossing behavior for an accelerating universe. We constrain the parameters of the model by best fitting with the recent data-sets from supernovae and simulated data points for redshift drift experiment generated by Monte Carlo simulations
Stability analysis in tachyonic potential chameleon cosmology
Energy Technology Data Exchange (ETDEWEB)
Farajollahi, H.; Salehi, A.; Tayebi, F.; Ravanpak, A., E-mail: hosseinf@guilan.ac.ir, E-mail: a.salehi@guilan.ac.ir, E-mail: ftayebi@guilan.ac.ir, E-mail: aravanpak@guilan.ac.ir [Department of Physics, University of Guilan, Rasht (Iran, Islamic Republic of)
2011-05-01
We study general properties of attractors for tachyonic potential chameleon scalar-field model which possess cosmological scaling solutions. An analytic formulation is given to obtain fixed points with a discussion on their stability. The model predicts a dynamical equation of state parameter with phantom crossing behavior for an accelerating universe. We constrain the parameters of the model by best fitting with the recent data-sets from supernovae and simulated data points for redshift drift experiment generated by Monte Carlo simulations.
Evidence for an elastic projection mechanism in the chameleon tongue
Groot, de J.H.; Leeuwen, van J.L.
2004-01-01
To capture prey, chameleons ballistically project their tongues as far as 1.5 body lengths with accelerations of up to 500 m s-2. At the core of a chameleon's tongue is a cylindrical tongue skeleton surrounded by the accelerator muscle. Previously, the cylindrical accelerator muscle was assumed to
Systematic simulations of modified gravity: chameleon models
International Nuclear Information System (INIS)
Brax, Philippe; Davis, Anne-Christine; Li, Baojiu; Winther, Hans A.; Zhao, Gong-Bo
2013-01-01
In this work we systematically study the linear and nonlinear structure formation in chameleon theories of modified gravity, using a generic parameterisation which describes a large class of models using only 4 parameters. For this we have modified the N-body simulation code ecosmog to perform a total of 65 simulations for different models and parameter values, including the default ΛCDM. These simulations enable us to explore a significant portion of the parameter space. We have studied the effects of modified gravity on the matter power spectrum and mass function, and found a rich and interesting phenomenology where the difference with the ΛCDM paradigm cannot be reproduced by a linear analysis even on scales as large as k ∼ 0.05 hMpc −1 , since the latter incorrectly assumes that the modification of gravity depends only on the background matter density. Our results show that the chameleon screening mechanism is significantly more efficient than other mechanisms such as the dilaton and symmetron, especially in high-density regions and at early times, and can serve as a guidance to determine the parts of the chameleon parameter space which are cosmologically interesting and thus merit further studies in the future
Systematic simulations of modified gravity: chameleon models
Energy Technology Data Exchange (ETDEWEB)
Brax, Philippe [Institut de Physique Theorique, CEA, IPhT, CNRS, URA 2306, F-91191Gif/Yvette Cedex (France); Davis, Anne-Christine [DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Li, Baojiu [Institute for Computational Cosmology, Department of Physics, Durham University, Durham DH1 3LE (United Kingdom); Winther, Hans A. [Institute of Theoretical Astrophysics, University of Oslo, 0315 Oslo (Norway); Zhao, Gong-Bo, E-mail: philippe.brax@cea.fr, E-mail: a.c.davis@damtp.cam.ac.uk, E-mail: baojiu.li@durham.ac.uk, E-mail: h.a.winther@astro.uio.no, E-mail: gong-bo.zhao@port.ac.uk [Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth PO1 3FX (United Kingdom)
2013-04-01
In this work we systematically study the linear and nonlinear structure formation in chameleon theories of modified gravity, using a generic parameterisation which describes a large class of models using only 4 parameters. For this we have modified the N-body simulation code ecosmog to perform a total of 65 simulations for different models and parameter values, including the default ΛCDM. These simulations enable us to explore a significant portion of the parameter space. We have studied the effects of modified gravity on the matter power spectrum and mass function, and found a rich and interesting phenomenology where the difference with the ΛCDM paradigm cannot be reproduced by a linear analysis even on scales as large as k ∼ 0.05 hMpc{sup −1}, since the latter incorrectly assumes that the modification of gravity depends only on the background matter density. Our results show that the chameleon screening mechanism is significantly more efficient than other mechanisms such as the dilaton and symmetron, especially in high-density regions and at early times, and can serve as a guidance to determine the parts of the chameleon parameter space which are cosmologically interesting and thus merit further studies in the future.
Detecting dark energy in orbit: The cosmological chameleon
International Nuclear Information System (INIS)
Brax, Philippe; Bruck, Carsten van de; Davis, Anne-Christine; Khoury, Justin; Weltman, Amanda
2004-01-01
We show that the chameleon scalar field can drive the current phase of cosmic acceleration for a large class of scalar potentials that are also consistent with local tests of gravity. These provide explicit realizations of a quintessence model where the quintessence scalar field couples directly to baryons and dark matter with gravitational strength. We analyze the cosmological evolution of the chameleon field and show the existence of an attractor solution with the chameleon following the minimum of its effective potential. For a wide range of initial conditions, spanning many orders of magnitude in initial chameleon energy density, the attractor is reached before nucleosynthesis. Surprisingly, the range of allowed initial conditions leading to a successful cosmology is wider than in normal quintessence. We discuss applications to the cyclic model of the universe and show how the chameleon mechanism weakens some of the constraints on cyclic potentials
Lustig, Avichai; Ketter-Katz, Hadas; Katzir, Gadi
2012-01-01
The common chameleon, Chamaeleo chameleon, is an arboreal lizard with highly independent, large-amplitude eye movements. In response to a moving threat, a chameleon on a perch responds with distinct avoidance movements that are expressed in its continuous positioning on the side of the perch distal to the threat. We analyzed body-exposure patterns during threat avoidance for evidence of lateralization, that is, asymmetry at the functional/behavioral levels. Chameleons were exposed to a threat approaching horizontally from the left or right, as they held onto a vertical pole that was either wider or narrower than the width of their head, providing, respectively, monocular or binocular viewing of the threat. We found two equal-sized sub-groups, each displaying lateralization of motor responses to a given direction of stimulus approach. Such an anti-symmetrical distribution of lateralization in a population may be indicative of situations in which organisms are regularly exposed to crucial stimuli from all spatial directions. This is because a bimodal distribution of responses to threat in a natural population will reduce the spatial advantage of predators.
Directory of Open Access Journals (Sweden)
Avichai Lustig
Full Text Available The common chameleon, Chamaeleo chameleon, is an arboreal lizard with highly independent, large-amplitude eye movements. In response to a moving threat, a chameleon on a perch responds with distinct avoidance movements that are expressed in its continuous positioning on the side of the perch distal to the threat. We analyzed body-exposure patterns during threat avoidance for evidence of lateralization, that is, asymmetry at the functional/behavioral levels. Chameleons were exposed to a threat approaching horizontally from the left or right, as they held onto a vertical pole that was either wider or narrower than the width of their head, providing, respectively, monocular or binocular viewing of the threat. We found two equal-sized sub-groups, each displaying lateralization of motor responses to a given direction of stimulus approach. Such an anti-symmetrical distribution of lateralization in a population may be indicative of situations in which organisms are regularly exposed to crucial stimuli from all spatial directions. This is because a bimodal distribution of responses to threat in a natural population will reduce the spatial advantage of predators.
Multiloop atom interferometer measurements of chameleon dark energy in microgravity
Chiow, Sheng-wey; Yu, Nan
2018-02-01
Chameleon field is one of the promising candidates of dark energy scalar fields. As in all viable candidate field theories, a screening mechanism is implemented to be consistent with all existing tests of general relativity. The screening effect in the chameleon theory manifests its influence limited only to the thin outer layer of a bulk object, thus producing extra forces orders of magnitude weaker than that of the gravitational force of the bulk. For pointlike particles such as atoms, the depth of screening is larger than the size of the particle, such that the screening mechanism is ineffective and the chameleon force is fully expressed on the atomic test particles. Extra force measurements using atom interferometry are thus much more sensitive than bulk mass based measurements, and indeed have placed the most stringent constraints on the parameters characterizing chameleon field. In this paper, we present a conceptual measurement approach for chameleon force detection using atom interferometry in microgravity, in which multiloop atom interferometers exploit specially designed periodic modulation of chameleon fields. We show that major systematics of the dark energy force measurements, i.e., effects of gravitational forces and their gradients, can be suppressed below all hypothetical chameleon signals in the parameter space of interest.
Search for Chameleon Particles Using a Photon-Regeneration Technique
International Nuclear Information System (INIS)
Chou, A. S.; Wester, W.; Baumbaugh, A.; Irizarry-Valle, Y.; Mazur, P. O.; Steffen, J. H.; Tomlin, R.; Yang, X.; Yoo, J.; Gustafson, H. R.; Upadhye, A.; Weltman, A.
2009-01-01
We report the first results from the GammeV search for chameleon particles, which may be created via photon-photon interactions within a strong magnetic field. Chameleons are hypothesized scalar fields that could explain the dark energy problem. We implement a novel technique to create and trap the reflective particles within a jar and to detect them later via their afterglow as they slowly convert back into photons. These measurements provide the first experimental constraints on the couplings of chameleons to photons
Testing chameleon theories with light propagating through a magnetic field
International Nuclear Information System (INIS)
Brax, Philippe; Bruck, Carsten van de; Davis, Anne-Christine; Mota, David F.; Shaw, Douglas
2007-01-01
It was recently argued that the observed PVLAS anomaly can be explained by chameleon field theories in which large deviations from Newton's law can be avoided. Here we present the predictions for the dichroism and the birefringence induced in the vacuum by a magnetic field in these models. We show that chameleon particles behave very differently from standard axionlike particles (ALPs). We find that, unlike ALPs, the chameleon particles are confined within the experimental setup. As a consequence, the birefringence is always bigger than the dichroism in PVLAS-type experiments
Longevity in Calumma parsonii, the World's largest chameleon.
Tessa, Giulia; Glaw, Frank; Andreone, Franco
2017-03-01
Large body size of ectothermic species can be correlated with high life expectancy. We assessed the longevity of the World's largest chameleon, the Parson's chameleon Calumma parsonii from Madagascar by using skeletochronology of phalanges taken from preserved specimens held in European natural history museums. Due to the high bone resorption we can provide only the minimum age of each specimen. The highest minimum age detected was nine years for a male and eight years for a female, confirming that this species is considerably long living among chameleons. Our data also show a strong correlation between snout-vent length and estimated age. Copyright © 2017 Elsevier Inc. All rights reserved.
Nanocomposite tribological coatings with 'chameleon' surface adaptation
International Nuclear Information System (INIS)
Voevodin, A.A.; Fitz, T.A.; Hu, J.J.; Zabinski, J.S.
2002-01-01
Nanocomposite tribological coatings were designed to respond to changing environmental conditions by self-adjustment of their surface properties to maintain good tribological performance in any environment. These smart coatings have been dubbed 'chameleon' because, analogous to a chameleon changing its skin color to avoid predators, the coating changes its 'skin' chemistry and structure to avoid wear. The concept was originally developed using WC, diamondlike carbon, and WS 2 material combination for adaptation to a humid/dry environment cycling. In order to address temperature variation, nanocomposite coatings made of yttria-stabilized zirconia (YSZ) in a gold matrix were developed with encapsulated nanosized reservoirs of MoS 2 and diamondlike carbon (DLC). Coatings were produced using a combination of laser ablation and magnetron sputtering. They were characterized by x-ray photoelectron spectroscopy, x-ray diffraction, transmission electron microscopy, x-ray energy dispersive spectroscopy, and micro-Raman spectroscopy. Results were correlated with mechanical and tribological characterization. Coating hardness was evaluated using nanoindentation, while coating adhesion and toughness were estimated using scratch and Vickers indentation tests. Friction and wear endurance measurements of YSZ/Au/MoS 2 /DLC coatings against steel and Si 3 N 4 balls were performed at room temperature in controlled humidity air, dry nitrogen, and vacuum environments, as well as at 500 deg. C in air. Depending on the environment, coating friction surface changed its chemistry and structure between (i) graphitic carbon for sliding in humid air [coating friction coefficients (c.o.f. 0.10-0.15)], (ii) hexagonal MoS 2 for sliding in dry N 2 and vacuum (c.o.f. 0.02-0.05), and (iii) metallic Au for sliding in air at 500 deg. C (c.o.f. 0.10-0.20). The unique coating skin adaptation realized with YSZ/Au/MoS 2 /DLC and WC/DLC/WS composites proves a universal applicability of the chameleon design
COSMOLOGY OF CHAMELEONS WITH POWER-LAW COUPLINGS
International Nuclear Information System (INIS)
Mota, David F.; Winther, Hans A.
2011-01-01
In chameleon field theories, a scalar field can couple to matter with gravitational strength and still evade local gravity constraints due to a combination of self-interactions and the couplings to matter. Originally, these theories were proposed with a constant coupling to matter; however, the chameleon mechanism also extends to the case where the coupling becomes field dependent. We study the cosmology of chameleon models with power-law couplings and power-law potentials. It is found that these generalized chameleons, when viable, have a background expansion very close to ΛCDM, but can in some special cases enhance the growth of the linear perturbations at low redshifts. For the models we consider, it is found that this region of the parameter space is ruled out by local gravity constraints. Imposing a coupling to dark matter only, the local constraints are avoided, and it is possible to have observable signatures on the linear matter perturbations.
Chameleon halo modeling in f(R) gravity
International Nuclear Information System (INIS)
Li Yin; Hu, Wayne
2011-01-01
We model the chameleon effect on cosmological statistics for the modified gravity f(R) model of cosmic acceleration. The chameleon effect, required to make the model compatible with local tests of gravity, reduces force enhancement as a function of the depth of the gravitational potential wells of collapsed structure and so is readily incorporated into a halo model by including parameters for the chameleon mass threshold and rapidity of transition. We show that the abundance of halos around the chameleon mass threshold is enhanced by both the merging from below and the lack of merging to larger masses. This property also controls the power spectrum in the nonlinear regime and we provide a description of the transition to the linear regime that is valid for a wide range of f(R) models.
Photonic crystals cause active colour change in chameleons
Teyssier, Jérémie; Saenko, Suzanne V.; van der Marel, Dirk; Milinkovitch, Michel C.
2015-03-01
Many chameleons, and panther chameleons in particular, have the remarkable ability to exhibit complex and rapid colour changes during social interactions such as male contests or courtship. It is generally interpreted that these changes are due to dispersion/aggregation of pigment-containing organelles within dermal chromatophores. Here, combining microscopy, photometric videography and photonic band-gap modelling, we show that chameleons shift colour through active tuning of a lattice of guanine nanocrystals within a superficial thick layer of dermal iridophores. In addition, we show that a deeper population of iridophores with larger crystals reflects a substantial proportion of sunlight especially in the near-infrared range. The organization of iridophores into two superposed layers constitutes an evolutionary novelty for chameleons, which allows some species to combine efficient camouflage with spectacular display, while potentially providing passive thermal protection.
Chameleon scalar fields in relativistic gravitational backgrounds
International Nuclear Information System (INIS)
Tsujikawa, Shinji; Tamaki, Takashi; Tavakol, Reza
2009-01-01
We study the field profile of a scalar field φ that couples to a matter fluid (dubbed a chameleon field) in the relativistic gravitational background of a spherically symmetric spacetime. Employing a linear expansion in terms of the gravitational potential Φ c at the surface of a compact object with a constant density, we derive the thin-shell field profile both inside and outside the object, as well as the resulting effective coupling with matter, analytically. We also carry out numerical simulations for the class of inverse power-law potentials V(φ) = M 4+n φ −n by employing the information provided by our analytical solutions to set the boundary conditions around the centre of the object and show that thin-shell solutions in fact exist if the gravitational potential Φ c is smaller than 0.3, which marginally covers the case of neutron stars. Thus the chameleon mechanism is present in the relativistic gravitational backgrounds, capable of reducing the effective coupling. Since thin-shell solutions are sensitive to the choice of boundary conditions, our analytic field profile is very helpful to provide appropriate boundary conditions for Φ c ∼< O(0.1)
Chameleon scalar fields in relativistic gravitational backgrounds
Energy Technology Data Exchange (ETDEWEB)
Tsujikawa, Shinji [Department of Physics, Faculty of Science, Tokyo University of Science, 1-3, Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan); Tamaki, Takashi [Department of Physics, Waseda University, Okubo 3-4-1, Tokyo 169-8555 (Japan); Tavakol, Reza, E-mail: shinji@rs.kagu.tus.ac.jp, E-mail: tamaki@gravity.phys.waseda.ac.jp, E-mail: r.tavakol@qmul.ac.uk [Astronomy Unit, School of Mathematical Sciences, Queen Mary University of London, London E1 4NS (United Kingdom)
2009-05-15
We study the field profile of a scalar field {phi} that couples to a matter fluid (dubbed a chameleon field) in the relativistic gravitational background of a spherically symmetric spacetime. Employing a linear expansion in terms of the gravitational potential {Phi}{sub c} at the surface of a compact object with a constant density, we derive the thin-shell field profile both inside and outside the object, as well as the resulting effective coupling with matter, analytically. We also carry out numerical simulations for the class of inverse power-law potentials V({phi}) = M{sup 4+n}{phi}{sup -n} by employing the information provided by our analytical solutions to set the boundary conditions around the centre of the object and show that thin-shell solutions in fact exist if the gravitational potential {Phi}{sub c} is smaller than 0.3, which marginally covers the case of neutron stars. Thus the chameleon mechanism is present in the relativistic gravitational backgrounds, capable of reducing the effective coupling. Since thin-shell solutions are sensitive to the choice of boundary conditions, our analytic field profile is very helpful to provide appropriate boundary conditions for {Phi}{sub c}{approx}
Cosmic history of chameleonic dark matter in F (R ) gravity
Katsuragawa, Taishi; Matsuzaki, Shinya
2018-03-01
We study the cosmic history of the scalaron in F (R ) gravity with constructing the time evolution of the cosmic environment and discuss the chameleonic dark matter based on the chameleon mechanism in the early and current Universe. We then find that the scalaron can be a dark matter. We also propose an interesting possibility that the F (R ) gravity can address the coincidence problem.
Constraining chameleon field theories using the GammeV afterglow experiments
International Nuclear Information System (INIS)
Upadhye, A.; Steffen, J. H.; Weltman, A.
2010-01-01
The GammeV experiment has constrained the couplings of chameleon scalar fields to matter and photons. Here, we present a detailed calculation of the chameleon afterglow rate underlying these constraints. The dependence of GammeV constraints on various assumptions in the calculation is studied. We discuss the GammeV-CHameleon Afterglow SEarch, a second-generation GammeV experiment, which will improve upon GammeV in several major ways. Using our calculation of the chameleon afterglow rate, we forecast model-independent constraints achievable by GammeV-CHameleon Afterglow SEarch. We then apply these constraints to a variety of chameleon models, including quartic chameleons and chameleon dark energy models. The new experiment will be able to probe a large region of parameter space that is beyond the reach of current tests, such as fifth force searches, constraints on the dimming of distant astrophysical objects, and bounds on the variation of the fine structure constant.
How to avoid a swift kick in the chameleons
International Nuclear Information System (INIS)
Padilla, Antonio; Stefanyszyn, David; Wilson, Toby; Platts, Emma; Walters, Anthony; Weltman, Amanda
2016-01-01
Recently, it was argued that the conformal coupling of the chameleon to matter fields created an issue for early universe cosmology. As standard model degrees of freedom become non-relativistic in the early universe, the chameleon is attracted towards a ''surfing'' solution, so that it arrives at the potential minimum with too large a velocity. This leads to rapid variations in the chameleon's mass and excitation of high energy modes, casting doubts on the classical treatment at Big Bang Nucleosynthesis. Here we present the DBI chameleon, a consistent high energy modification of the chameleon theory that dynamically renders it weakly coupled to matter during the early universe thereby eliminating the adverse effects of the 'kicks'. This is done without any fine tuning of the coupling between the chameleon and matter fields, and retains its screening ability in the solar system. We demonstrate this explicitly with a combination of analytic and numerical results
How to avoid a swift kick in the chameleons
Energy Technology Data Exchange (ETDEWEB)
Padilla, Antonio; Stefanyszyn, David; Wilson, Toby [School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Platts, Emma; Walters, Anthony; Weltman, Amanda, E-mail: antonio.padilla@nottingham.ac.uk, E-mail: pltemm002@myuct.ac.za, E-mail: ppxds1@nottingham.ac.uk, E-mail: tony.walters@uct.ac.za, E-mail: amanda.weltman@uct.ac.za, E-mail: toby.wilson@nottingham.ac.uk [Astrophysics, Cosmology and Gravity Centre, Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch 7701, Cape Town (South Africa)
2016-03-01
Recently, it was argued that the conformal coupling of the chameleon to matter fields created an issue for early universe cosmology. As standard model degrees of freedom become non-relativistic in the early universe, the chameleon is attracted towards a ''surfing'' solution, so that it arrives at the potential minimum with too large a velocity. This leads to rapid variations in the chameleon's mass and excitation of high energy modes, casting doubts on the classical treatment at Big Bang Nucleosynthesis. Here we present the DBI chameleon, a consistent high energy modification of the chameleon theory that dynamically renders it weakly coupled to matter during the early universe thereby eliminating the adverse effects of the 'kicks'. This is done without any fine tuning of the coupling between the chameleon and matter fields, and retains its screening ability in the solar system. We demonstrate this explicitly with a combination of analytic and numerical results.
Gonome, Hiroki; Nakamura, Masashi; Okajima, Junnosuke; Maruyama, Shigenao
2018-01-19
Chameleons have a diagnostic thermal protection that enables them to live under various conditions. Our developed special radiative control therefore is inspired by the chameleon thermal protection ability by imitating its two superposed layers as two pigment particles in one coating layer. One particle imitates a chameleon superficial surface for color control (visible light), and another particle imitates a deep surface to reflect solar irradiation, especially in the near-infrared region. Optical modeling allows us to optimally design the particle size and volume fraction. Experimental evaluation shows that the desired spectral reflectance, i.e., low in the VIS region and high in NIR region, can be achieved. Comparison between the measured and calculated reflectances shows that control of the particle size and dispersion/aggregation of particle cloud is important in improving the thermal-protection performance of the coating. Using our developed coating, the interior temperature decreases and the cooling load is reduced while keeping the dark tone of the object.
Lustig, Avichai; Ketter-Katz, Hadas; Katzir, Gadi
2013-11-01
Chameleons (Chamaeleonidae, reptilia), in common with most ectotherms, show full optic nerve decussation and sparse inter-hemispheric commissures. Chameleons are unique in their capacity for highly independent, large-amplitude eye movements. We address the question: Do common chameleons, Chamaeleo chameleon, during detour, show patterns of lateralization of motion and of eye use that differ from those shown by other ectotherms? To reach a target (prey) in passing an obstacle in a Y-maze, chameleons were required to make a left or a right detour. We analyzed the direction of detours and eye use and found that: (i) individuals differed in their preferred detour direction, (ii) eye use was lateralized at the group level, with significantly longer durations of viewing the target with the right eye, compared with the left eye, (iii) during left side, but not during right side, detours the durations of viewing the target with the right eye were significantly longer than the durations with the left eye. Thus, despite the uniqueness of chameleons' visual system, they display patterns of lateralization of motion and of eye use, typical of other ectotherms. These findings are discussed in relation to hemispheric functions. Copyright © 2013 Elsevier B.V. All rights reserved.
Nanocomposite tribological coatings with "chameleon" surface adaptation
Voevodin, A. A.; Fitz, T. A.; Hu, J. J.; Zabinski, J. S.
2002-07-01
Nanocomposite tribological coatings were designed to respond to changing environmental conditions by self-adjustment of their surface properties to maintain good tribological performance in any environment. These smart coatings have been dubbed "chameleon" because, analogous to a chameleon changing its skin color to avoid predators, the coating changes its "skin" chemistry and structure to avoid wear. The concept was originally developed using WC, diamondlike carbon, and WS2 material combination for adaptation to a humid/dry environment cycling. In order to address temperature variation, nanocomposite coatings made of yttria-stabilized zirconia (YSZ) in a gold matrix were developed with encapsulated nanosized reservoirs of MoS2 and diamondlike carbon (DLC). Coatings were produced using a combination of laser ablation and magnetron sputtering. They were characterized by x-ray photoelectron spectroscopy, x-ray diffraction, transmission electron microscopy, x-ray energy dispersive spectroscopy, and micro-Raman spectroscopy. Results were correlated with mechanical and tribological characterization. Coating hardness was evaluated using nanoindentation, while coating adhesion and toughness were estimated using scratch and Vickers indentation tests. Friction and wear endurance measurements of YSZ/Au/MoS2/DLC coatings against steel and Si3N4 balls were performed at room temperature in controlled humidity air, dry nitrogen, and vacuum environments, as well as at 500 degC in air. Depending on the environment, coating friction surface changed its chemistry and structure between (i) graphitic carbon for sliding in humid air [coating friction coefficients (c.o.f. 0.10-0.15)], (ii) hexagonal MoS2 for sliding in dry N2 and vacuum (c.o.f. 0.02-0.05), and (iii) metallic Au for sliding in air at 500 degC (c.o.f. 0.10-0.20). The unique coating skin adaptation realized with YSZ/Au/MoS2/DLC and WC/DLC/WS composites proves a universal applicability of the chameleon design concept
Indian Academy of Sciences (India)
polynomial) division have been found in Vedic Mathematics which are dated much before Euclid's algorithm. A programming language Is used to describe an algorithm for execution on a computer. An algorithm expressed using a programming.
Bahramali, Golnaz; Goliaei, Bahram; Minuchehr, Zarrin; Marashi, Sayed-Amir
2017-02-01
Chameleon proteins are proteins which include sequences that can adopt α-helix-β-strand (HE-chameleon) or α-helix-coil (HC-chameleon) or β-strand-coil (CE-chameleon) structures to operate their crucial biological functions. In this study, using a network-based approach, we examined the chameleon proteins to give a better knowledge on these proteins. We focused on proteins with identical chameleon sequences with more than or equal to seven residues long in different PDB entries, which adopt HE-chameleon, HC-chameleon, and CE-chameleon structures in the same protein. One hundred and ninety-one human chameleon proteins were identified via our in-house program. Then, protein-protein interaction (PPI) networks, Gene ontology (GO) enrichment, disease network, and pathway enrichment analyses were performed for our derived data set. We discovered that there are chameleon sequences which reside in protein-protein interaction regions between two proteins critical for their dual function. Analysis of the PPI networks for chameleon proteins introduced five hub proteins, namely TP53, EGFR, HSP90AA1, PPARA, and HIF1A, which were presented in four PPI clusters. The outcomes demonstrate that the chameleon regions are in critical domains of these proteins and are important in the development and treatment of human cancers. The present report is the first network-based functional study of chameleon proteins using computational approaches and might provide a new perspective for understanding the mechanisms of diseases helping us in developing new medical therapies along with discovering new proteins with chameleon properties which are highly important in cancer.
Search for Chameleon Scalar Fields with the Axion Dark Matter Experiment
International Nuclear Information System (INIS)
Rybka, G.; Hotz, M.; Rosenberg, L. J; Asztalos, S. J.; Carosi, G.; Hagmann, C.; Kinion, D.; van Bibber, K.; Hoskins, J.; Martin, C.; Sikivie, P.; Tanner, D. B.; Bradley, R.; Clarke, J.
2010-01-01
Scalar fields with a 'chameleon' property, in which the effective particle mass is a function of its local environment, are common to many theories beyond the standard model and could be responsible for dark energy. If these fields couple weakly to the photon, they could be detectable through the afterglow effect of photon-chameleon-photon transitions. The ADMX experiment was used in the first chameleon search with a microwave cavity to set a new limit on scalar chameleon-photon coupling β γ excluding values between 2x10 9 and 5x10 14 for effective chameleon masses between 1.9510 and 1.9525 μeV.
Cosmic web and environmental dependence of screening: Vainshtein vs. chameleon
Energy Technology Data Exchange (ETDEWEB)
Falck, Bridget; Koyama, Kazuya; Zhao, Gong-Bo, E-mail: bridget.falck@port.ac.uk, E-mail: kazuya.koyama@port.ac.uk, E-mail: gong-bo.zhao@port.ac.uk [Institute of Cosmology and Gravitation, University of Portsmouth, Burnaby Road, Portsmouth (United Kingdom)
2015-07-01
Theories which modify general relativity to explain the accelerated expansion of the Universe often use screening mechanisms to satisfy constraints on Solar System scales. We investigate the effects of the cosmic web and the local environmental density of dark matter halos on the screening properties of the Vainshtein and chameleon screening mechanisms. We compare the cosmic web morphology of dark matter particles, mass functions of dark matter halos, mass and radial dependence of screening, velocity dispersions and peculiar velocities, and environmental dependence of screening mechanisms in f(R) and nDGP models. Using the ORIGAMI cosmic web identification routine we find that the Vainshtein mechanism depends on the cosmic web morphology of dark matter particles, since these are defined according to the dimensionality of their collapse, while the chameleon mechanism shows no morphology dependence. The chameleon screening of halos and their velocity dispersions depend on halo mass, and small halos and subhalos can be environmentally screened in the chameleon mechanism. On the other hand, the screening of halos in the Vainshtein mechanism does not depend on mass nor environment, and their velocity dispersions are suppressed. The peculiar velocities of halos in the Vainshtein mechanism are enhanced because screened objects can still feel the fifth force generated by external fields, while peculiar velocities of chameleon halos are suppressed when the halo centers are screened.
Cosmic web and environmental dependence of screening: Vainshtein vs. chameleon
International Nuclear Information System (INIS)
Falck, Bridget; Koyama, Kazuya; Zhao, Gong-Bo
2015-01-01
Theories which modify general relativity to explain the accelerated expansion of the Universe often use screening mechanisms to satisfy constraints on Solar System scales. We investigate the effects of the cosmic web and the local environmental density of dark matter halos on the screening properties of the Vainshtein and chameleon screening mechanisms. We compare the cosmic web morphology of dark matter particles, mass functions of dark matter halos, mass and radial dependence of screening, velocity dispersions and peculiar velocities, and environmental dependence of screening mechanisms in f(R) and nDGP models. Using the ORIGAMI cosmic web identification routine we find that the Vainshtein mechanism depends on the cosmic web morphology of dark matter particles, since these are defined according to the dimensionality of their collapse, while the chameleon mechanism shows no morphology dependence. The chameleon screening of halos and their velocity dispersions depend on halo mass, and small halos and subhalos can be environmentally screened in the chameleon mechanism. On the other hand, the screening of halos in the Vainshtein mechanism does not depend on mass nor environment, and their velocity dispersions are suppressed. The peculiar velocities of halos in the Vainshtein mechanism are enhanced because screened objects can still feel the fifth force generated by external fields, while peculiar velocities of chameleon halos are suppressed when the halo centers are screened
Strongly Coupled Chameleons and the Neutronic Quantum Bouncer
International Nuclear Information System (INIS)
Brax, Philippe; Pignol, Guillaume
2011-01-01
We consider the potential detection of chameleons using bouncing ultracold neutrons. We show that the presence of a chameleon field over a planar plate would alter the energy levels of ultracold neutrons in the terrestrial gravitational field. When chameleons are strongly coupled to nuclear matter, β > or approx. 10 8 , we find that the shift in energy levels would be detectable with the forthcoming GRANIT experiment, where a sensitivity of the order of 1% of a peV is expected. We also find that an extremely large coupling β > or approx. 10 11 would lead to new bound states at a distance of order 2 μm, which is already ruled out by previous Grenoble experiments. The resulting bound, β 11 , is already 3 orders of magnitude better than the upper bound, β 14 , from precision tests of atomic spectra.
Detecting chameleons: The astronomical polarization produced by chameleonlike scalar fields
International Nuclear Information System (INIS)
Burrage, Clare; Davis, Anne-Christine; Shaw, Douglas J.
2009-01-01
We show that a coupling between chameleonlike scalar fields and photons induces linear and circular polarization in the light from astrophysical sources. In this context chameleonlike scalar fields include those of the Olive-Pospelov (OP) model, which describes a varying fine structure constant. We determine the form of this polarization numerically and give analytic expressions in two useful limits. By comparing the predicted signal with current observations we are able to improve the constraints on the chameleon-photon coupling and the coupling in the OP model by over 2 orders of magnitude. It is argued that, if observed, the distinctive form of the chameleon induced circular polarization would represent a smoking gun for the presence of a chameleon. We also report a tentative statistical detection of a chameleonlike scalar field from observations of starlight polarization in our galaxy.
A proposed experimental search for chameleons using asymmetric parallel plates
International Nuclear Information System (INIS)
Burrage, Clare; Copeland, Edmund J.; Stevenson, James A.
2016-01-01
Light scalar fields coupled to matter are a common consequence of theories of dark energy and attempts to solve the cosmological constant problem. The chameleon screening mechanism is commonly invoked in order to suppress the fifth forces mediated by these scalars, sufficiently to avoid current experimental constraints, without fine tuning. The force is suppressed dynamically by allowing the mass of the scalar to vary with the local density. Recently it has been shown that near future cold atoms experiments using atom-interferometry have the ability to access a large proportion of the chameleon parameter space. In this work we demonstrate how experiments utilising asymmetric parallel plates can push deeper into the remaining parameter space available to the chameleon.
A proposed experimental search for chameleons using asymmetric parallel plates
Energy Technology Data Exchange (ETDEWEB)
Burrage, Clare; Copeland, Edmund J.; Stevenson, James A., E-mail: Clare.Burrage@nottingham.ac.uk, E-mail: ed.copeland@nottingham.ac.uk, E-mail: james.stevenson@nottingham.ac.uk [School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD (United Kingdom)
2016-08-01
Light scalar fields coupled to matter are a common consequence of theories of dark energy and attempts to solve the cosmological constant problem. The chameleon screening mechanism is commonly invoked in order to suppress the fifth forces mediated by these scalars, sufficiently to avoid current experimental constraints, without fine tuning. The force is suppressed dynamically by allowing the mass of the scalar to vary with the local density. Recently it has been shown that near future cold atoms experiments using atom-interferometry have the ability to access a large proportion of the chameleon parameter space. In this work we demonstrate how experiments utilising asymmetric parallel plates can push deeper into the remaining parameter space available to the chameleon.
Indian Academy of Sciences (India)
to as 'divide-and-conquer'. Although there has been a large effort in realizing efficient algorithms, there are not many universally accepted algorithm design paradigms. In this article, we illustrate algorithm design techniques such as balancing, greedy strategy, dynamic programming strategy, and backtracking or traversal of ...
f(R) gravity and chameleon theories
International Nuclear Information System (INIS)
Brax, Philippe; Bruck, Carsten van de; Davis, Anne-Christine; Shaw, Douglas J.
2008-01-01
We analyze f(R) modifications of Einstein's gravity as dark energy models in the light of their connection with chameleon theories. Formulated as scalar-tensor theories, the f(R) theories imply the existence of a strong coupling of the scalar field to matter. This would violate all experimental gravitational tests on deviations from Newton's law. Fortunately, the existence of a matter dependent mass and a thin-shell effect allows one to alleviate these constraints. The thin-shell condition also implies strong restrictions on the cosmological dynamics of the f(R) theories. As a consequence, we find that the equation of state of dark energy is constrained to be extremely close to -1 in the recent past. We also examine the potential effects of f(R) theories in the context of the Eoet-wash experiments. We show that the requirement of a thin shell for the test bodies is not enough to guarantee a null result on deviations from Newton's law. As long as dark energy accounts for a sizeable fraction of the total energy density of the Universe, the constraints that we deduce also forbid any measurable deviation of the dark energy equation of state from -1. All in all, we find that both cosmological and laboratory tests imply that f(R) models are almost coincident with a ΛCDM model at the background level.
Accurate modeling of complete functional RF blocks: CHAMELEON RF
Janssen, H.H.J.M.; Niehof, J.; Schilders, W.H.A.; Ciuprina, G.; Ioan, D.
2007-01-01
Next-generation nano-scale RF-IC designs have an unprecedented complexity and performance that will inevitably lead to costly re-spins and loss of market opportunities. In order to cope with this, the aim of the European Framework 6 CHAMELEON RF project is to develop methodologies and prototype
Chameleon field and the late time acceleration of the Universe
Indian Academy of Sciences (India)
Chameleon field and the late time acceleration of the Universe. NARAYAN BANERJEE1,∗, SUDIPTA DAS2 and KOYEL GANGULY3. 1IISER-Kolkata, Mohanpur Campus, P.O. BCKV Main Office, District Nadia 741 252,. India. 2Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211 019, India.
Constraining chameleon field theories using the GammeV afterglow experiments
International Nuclear Information System (INIS)
Upadhye, A.; Steffen, J.H.; Weltman, A.
2009-01-01
The GammeV experiment has constrained the couplings of chameleon scalar fields to matter and photons. Here we present a detailed calculation of the chameleon afterglow rate underlying these constraints. The dependence of GammeV constraints on various assumptions in the calculation is studied. We discuss GammeV-CHASE, a second-generation GammeV experiment, which will improve upon GammeV in several major ways. Using our calculation of the chameleon afterglow rate, we forecast model-independent constraints achievable by GammeV-CHASE. We then apply these constraints to a variety of chameleon models, including quartic chameleons and chameleon dark energy models. The new experiment will be able to probe a large region of parameter space that is beyond the reach of current tests, such as fifth force searches, constraints on the dimming of distant astrophysical objects, and bounds on the variation of the fine structure constant.
Towards a UV completion of chameleons in string theory
International Nuclear Information System (INIS)
Hinterbichler, Kurt; Khoury, Justin; Nastase, Horatiu
2011-01-01
Full text: Chameleons are scalar fields that couple directly to ordinary matter with gravitational strength, thus effectively modifying the gravitational interaction, but which nevertheless evade the stringent constraints on tests of gravity because of properties they acquire in the presence of high ambient matter density. In the original formulation, one could simply describe the modification as the scalar mass depending on the matter density, but in the general set-up one can have a more complicated description. In any case, chameleon theories were originally constructed in a bottom-up, phenomenological fashion, with potentials and matter couplings designed to hide the scalar from experiments. We now show that it is in general possible for chameleons to arise in string and supergravity theories, as the volume modulus (for extra dimensions). We consider as a general chameleon set-up a potential for the volume modulus with a minimum, i.e. stabilized, and an exponentially increasing form on the side of large volume. We show that in fact the scenario proposed within string theory by Kachru, Kallosh, Linde and Trivedi (KKLT) is of this type, provided we change the sign of the exponent a in the superpotential W = W 0 + Ae iap (such a change has been considered before even within the KKLT scenario, and also in general compactifications). We show that these chameleon models satisfy Earth and astrophysical constraints, thus finding experimental constraints on the parameters of the potential, both for the general case, and for KKLT. For the KKLT potential, the constraints imply a KK scale (for the extra dimensions) of about 10 11 GeV , and the constant term in the superpotential of about 10 -30 M P 3 . (author)
Towards a UV completion of chameleons in string theory
Energy Technology Data Exchange (ETDEWEB)
Hinterbichler, Kurt; Khoury, Justin [University of Pennsylvania, PA (United States); Nastase, Horatiu [Instituto de Fisica Teorica (IFT/UNESP), SP (Brazil)
2011-07-01
Full text: Chameleons are scalar fields that couple directly to ordinary matter with gravitational strength, thus effectively modifying the gravitational interaction, but which nevertheless evade the stringent constraints on tests of gravity because of properties they acquire in the presence of high ambient matter density. In the original formulation, one could simply describe the modification as the scalar mass depending on the matter density, but in the general set-up one can have a more complicated description. In any case, chameleon theories were originally constructed in a bottom-up, phenomenological fashion, with potentials and matter couplings designed to hide the scalar from experiments. We now show that it is in general possible for chameleons to arise in string and supergravity theories, as the volume modulus (for extra dimensions). We consider as a general chameleon set-up a potential for the volume modulus with a minimum, i.e. stabilized, and an exponentially increasing form on the side of large volume. We show that in fact the scenario proposed within string theory by Kachru, Kallosh, Linde and Trivedi (KKLT) is of this type, provided we change the sign of the exponent a in the superpotential W = W{sub 0} + Ae{sup iap} (such a change has been considered before even within the KKLT scenario, and also in general compactifications). We show that these chameleon models satisfy Earth and astrophysical constraints, thus finding experimental constraints on the parameters of the potential, both for the general case, and for KKLT. For the KKLT potential, the constraints imply a KK scale (for the extra dimensions) of about 10{sup 11}GeV , and the constant term in the superpotential of about 10{sup -30}M{sub P}{sup 3}. (author)
Strongly coupled chameleon fields: Possible test with a neutron Lloyd's mirror interferometer
International Nuclear Information System (INIS)
Pokotilovski, Yu.N.
2013-01-01
The consideration of possible neutron Lloyd's mirror interferometer experiment to search for strongly coupled chameleon fields is presented. The chameleon scalar fields were proposed to explain the acceleration of expansion of the Universe. The presence of a chameleon field results in a change of a particle's potential energy in vicinity of a massive body. This interaction causes a phase shift of neutron waves in the interferometer. The sensitivity of the method is estimated
Strongly coupled chameleon fields: Possible test with a neutron Lloyd's mirror interferometer
Energy Technology Data Exchange (ETDEWEB)
Pokotilovski, Yu.N., E-mail: pokot@nf.jinr.ru [Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region (Russian Federation)
2013-02-26
The consideration of possible neutron Lloyd's mirror interferometer experiment to search for strongly coupled chameleon fields is presented. The chameleon scalar fields were proposed to explain the acceleration of expansion of the Universe. The presence of a chameleon field results in a change of a particle's potential energy in vicinity of a massive body. This interaction causes a phase shift of neutron waves in the interferometer. The sensitivity of the method is estimated.
Hillenius, D.
1978-01-01
The regional variation of Chamaeleo chamaeleon is conspicuous, as might be expected, considering the wide distribution. This paper mainly deals with the chameleons of the Mediterranean populations. Though the range of variation per region is rather large, some clear clines can be discerned. In
Indian Academy of Sciences (India)
ticians but also forms the foundation of computer science. Two ... with methods of developing algorithms for solving a variety of problems but ... applications of computers in science and engineer- ... numerical calculus are as important. We will ...
Alpenglow. A signature for chameleons in axion-like particle search experiments
International Nuclear Information System (INIS)
Ahlers, M.; Lindner, A.; Ringwald, A.; Schrempp, L.; Weniger, C.
2007-10-01
We point out that chameleon field theories might reveal themselves as an ''afterglow'' effect in axion-like particle search experiments due to chameleon-photon conversion in a magnetic field. We estimate the parameter space which is accessible by currently available technology and find that afterglow experiments could constrain this parameter space in a way complementary to gravitational and Casimir force experiments.In addition, one could reach photon-chameleon couplings which are beyond the sensitivity of common laser polarization experiments. We also sketch the idea of a Fabry-Perot cavity with chameleons which could increase the experimental sensitivity significantly. (orig.)
Alpenglow. A signature for chameleons in axion-like particle search experiments
Energy Technology Data Exchange (ETDEWEB)
Ahlers, M.; Lindner, A.; Ringwald, A.; Schrempp, L.; Weniger, C.
2007-10-15
We point out that chameleon field theories might reveal themselves as an ''afterglow'' effect in axion-like particle search experiments due to chameleon-photon conversion in a magnetic field. We estimate the parameter space which is accessible by currently available technology and find that afterglow experiments could constrain this parameter space in a way complementary to gravitational and Casimir force experiments.In addition, one could reach photon-chameleon couplings which are beyond the sensitivity of common laser polarization experiments. We also sketch the idea of a Fabry-Perot cavity with chameleons which could increase the experimental sensitivity significantly. (orig.)
Directory of Open Access Journals (Sweden)
Sebastian Gim
2012-11-01
Full Text Available Continued device scaling into the nanometer region and high frequencies of operation well into the multi-GHz region has given rise to new effects that previously had negligible impact but now present greater challenges and unprecedented complexity to designing successful mixed-signal silicon. The Chameleon-RF project was conceived to address these challenges. Creative use of domain decomposition, multi grid techniques or reduced order modeling techniques (ROM can be selectively applied at all levels of the process to efficiently prune down degrees of freedom (DoFs. However, the simulation of complex systems within a reasonable amount of time remains a computational challenge. This paper presents work done in the incorporation of GPGPU technology to accelerate Krylov based algorithms used for compact modeling of on-chip passive integrated structures within the workflow of the Chameleon-RF project. Based upon insight gained from work done above, a novel GPGPU accelerated algorithm was developed for the Krylov ROM (kROM methods and is described here for the benefit of the wider community.
Indian Academy of Sciences (India)
algorithm design technique called 'divide-and-conquer'. One of ... Turtle graphics, September. 1996. 5. ... whole list named 'PO' is a pointer to the first element of the list; ..... Program for computing matrices X and Y and placing the result in C *).
Indian Academy of Sciences (India)
algorithm that it is implicitly understood that we know how to generate the next natural ..... Explicit comparisons are made in line (1) where maximum and minimum is ... It can be shown that the function T(n) = 3/2n -2 is the solution to the above ...
Lustig, Avichai; Ketter-Katz, Hadas; Katzir, Gadi
2013-01-01
Lateralization is mostly analyzed for single traits, but seldom for two or more traits while performing a given task (e.g. object manipulation). We examined lateralization in eye use and in body motion that co-occur during avoidance behaviour of the common chameleon, Chamaeleo chameleon. A chameleon facing a moving threat smoothly repositions its body on the side of its perch distal to the threat, to minimize its visual exposure. We previously demonstrated that during the response (i) eye use and body motion were, each, lateralized at the tested group level (N = 26), (ii) in body motion, we observed two similar-sized sub-groups, one exhibiting a greater reduction in body exposure to threat approaching from the left and one--to threat approaching from the right (left- and right-biased subgroups), (iii) the left-biased sub-group exhibited weak lateralization of body exposure under binocular threat viewing and none under monocular viewing while the right-biased sub-group exhibited strong lateralization under both monocular and binocular threat viewing. In avoidance, how is eye use related to body motion at the entire group and at the sub-group levels? We demonstrate that (i) in the left-biased sub-group, eye use is not lateralized, (ii) in the right-biased sub-group, eye use is lateralized under binocular, but not monocular viewing of the threat, (iii) the dominance of the right-biased sub-group determines the lateralization of the entire group tested. We conclude that in chameleons, patterns of lateralization of visual function and body motion are inter-related at a subtle level. Presently, the patterns cannot be compared with humans' or related to the unique visual system of chameleons, with highly independent eye movements, complete optic nerve decussation and relatively few inter-hemispheric commissures. We present a model to explain the possible inter-hemispheric differences in dominance in chameleons' visual control of body motion during avoidance.
Directory of Open Access Journals (Sweden)
Avichai Lustig
Full Text Available Lateralization is mostly analyzed for single traits, but seldom for two or more traits while performing a given task (e.g. object manipulation. We examined lateralization in eye use and in body motion that co-occur during avoidance behaviour of the common chameleon, Chamaeleo chameleon. A chameleon facing a moving threat smoothly repositions its body on the side of its perch distal to the threat, to minimize its visual exposure. We previously demonstrated that during the response (i eye use and body motion were, each, lateralized at the tested group level (N = 26, (ii in body motion, we observed two similar-sized sub-groups, one exhibiting a greater reduction in body exposure to threat approaching from the left and one--to threat approaching from the right (left- and right-biased subgroups, (iii the left-biased sub-group exhibited weak lateralization of body exposure under binocular threat viewing and none under monocular viewing while the right-biased sub-group exhibited strong lateralization under both monocular and binocular threat viewing. In avoidance, how is eye use related to body motion at the entire group and at the sub-group levels? We demonstrate that (i in the left-biased sub-group, eye use is not lateralized, (ii in the right-biased sub-group, eye use is lateralized under binocular, but not monocular viewing of the threat, (iii the dominance of the right-biased sub-group determines the lateralization of the entire group tested. We conclude that in chameleons, patterns of lateralization of visual function and body motion are inter-related at a subtle level. Presently, the patterns cannot be compared with humans' or related to the unique visual system of chameleons, with highly independent eye movements, complete optic nerve decussation and relatively few inter-hemispheric commissures. We present a model to explain the possible inter-hemispheric differences in dominance in chameleons' visual control of body motion during avoidance.
Indian Academy of Sciences (India)
will become clear in the next article when we discuss a simple logo like programming language. ... Rod B may be used as an auxiliary store. The problem is to find an algorithm which performs this task. ... No disks are moved from A to Busing C as auxiliary rod. • move _disk (A, C);. (No + l)th disk is moved from A to C directly ...
Manipulators inspired by the tongue of the chameleon
International Nuclear Information System (INIS)
Debray, Alexis
2011-01-01
Chameleons have developed a specialized ballistic tongue which elongates more than six times its rest length at speeds higher than 3.5 m s -1 and accelerations 350 m s -2 , with a highly flexible mobile part, and which applies no continuous force during forward motion. These characteristics are possible because this tongue consists of two highly specialized systems, an ejection system for the forward motion and an accordion-like system for the retraction. Four manipulators inspired by the tongue of the chameleon and based on this design have been developed, resulting in three characteristics similar to the tongue of the chameleon: extensibility of the manipulator, flexibility of the mobile part, and absence of continuous force during the forward motion. The first manipulator mimics the basic mechanism of the tongue of the chameleon and reproduced its basic performances. A second manipulator performs a catching function at a speed of 3.5 m s -1 with an acceleration of 573 m s -2 while elongating seven times its rest length. The design of this manipulator is such that the dc motor used for retraction applies a torque 25 times its rated torque. Moreover, during the retraction, the mobile part of the manipulator moves due to its own inertia, allowing the dc motor to rotate at full velocity. In another manipulator, the addition of an elastomer in the mobile part allows for control of the retraction velocity. A model for these two manipulators compares well with the experimental data. Finally, the addition of wings on the mobile part allows us to take the advantage of aerodynamic effects, which is unusual for manipulators.
Manipulators inspired by the tongue of the chameleon.
Debray, Alexis
2011-06-01
Chameleons have developed a specialized ballistic tongue which elongates more than six times its rest length at speeds higher than 3.5 m s(-1) and accelerations 350 m s(-2), with a highly flexible mobile part, and which applies no continuous force during forward motion. These characteristics are possible because this tongue consists of two highly specialized systems, an ejection system for the forward motion and an accordion-like system for the retraction. Four manipulators inspired by the tongue of the chameleon and based on this design have been developed, resulting in three characteristics similar to the tongue of the chameleon: extensibility of the manipulator, flexibility of the mobile part, and absence of continuous force during the forward motion. The first manipulator mimics the basic mechanism of the tongue of the chameleon and reproduced its basic performances. A second manipulator performs a catching function at a speed of 3.5 m s(-1) with an acceleration of 573 m s(-2) while elongating seven times its rest length. The design of this manipulator is such that the dc motor used for retraction applies a torque 25 times its rated torque. Moreover, during the retraction, the mobile part of the manipulator moves due to its own inertia, allowing the dc motor to rotate at full velocity. In another manipulator, the addition of an elastomer in the mobile part allows for control of the retraction velocity. A model for these two manipulators compares well with the experimental data. Finally, the addition of wings on the mobile part allows us to take the advantage of aerodynamic effects, which is unusual for manipulators.
Manipulators inspired by the tongue of the chameleon
Energy Technology Data Exchange (ETDEWEB)
Debray, Alexis, E-mail: debray.alexis@canon.co.jp [Canon Incorporation, 3-30-2, Shimomaruko, Ohta-ku, Tokyo 146-8501 (Japan)
2011-06-15
Chameleons have developed a specialized ballistic tongue which elongates more than six times its rest length at speeds higher than 3.5 m s{sup -1} and accelerations 350 m s{sup -2}, with a highly flexible mobile part, and which applies no continuous force during forward motion. These characteristics are possible because this tongue consists of two highly specialized systems, an ejection system for the forward motion and an accordion-like system for the retraction. Four manipulators inspired by the tongue of the chameleon and based on this design have been developed, resulting in three characteristics similar to the tongue of the chameleon: extensibility of the manipulator, flexibility of the mobile part, and absence of continuous force during the forward motion. The first manipulator mimics the basic mechanism of the tongue of the chameleon and reproduced its basic performances. A second manipulator performs a catching function at a speed of 3.5 m s{sup -1} with an acceleration of 573 m s{sup -2} while elongating seven times its rest length. The design of this manipulator is such that the dc motor used for retraction applies a torque 25 times its rated torque. Moreover, during the retraction, the mobile part of the manipulator moves due to its own inertia, allowing the dc motor to rotate at full velocity. In another manipulator, the addition of an elastomer in the mobile part allows for control of the retraction velocity. A model for these two manipulators compares well with the experimental data. Finally, the addition of wings on the mobile part allows us to take the advantage of aerodynamic effects, which is unusual for manipulators.
Smart Nanocomposite Coatings with Chameleon Surface Adaptation in Tribological Applications
Voevodin, A. A.; Zabinski, J. S.
Smart nanocomposite tribological coatings were designed to respond to changing environmental conditions by self-adjustment of their surface properties to maintain good tribological performance in any environment. These coatings have been dubbed "chameleon" because of their ability to change their surface chemistry and structure to avoid wear. The first "chameleon" coatings were made of WC, WS2, and DLC; these coatings provided superior mechanical toughness and performance in dry/humid environmental cycling. In order to address temperature variation, the second generation of "chameleon" coatings were made of yttria stabilized zirconia (YSZ) in a gold matrix with encapsulated nano-sized reservoirs of MoS2 and DLC. High temperature lubrication with low melting point glassy ceramic phases was also explored. All coatings were produced using a combination of laser ablation and magnetron sputtering. They were thoroughly characterized by various analytical, mechanical, and tribological methods. Coating toughness was remarkably enhanced by activation of a grain boundary sliding mechanism. Friction and wear endurance measurements were performed in controlled humidity air, dry nitrogen, and vacuum environments, as well as at 500-600 °C in air. Unique friction and wear performance in environmental cycling was demonstrated.
Riedel, Jendrian; Böhme, Wolfgang; Bleckmann, Horst; Spinner, Marlene
2015-02-01
Chameleons (Chamaeleonidae) feature many adaptations to their arboreal lifestyle, including zygodactylous feet, a prehensile tail, and epidermal microstructures. In arboreal tree chameleons, the substrate-contacting site of the feet and tail is covered by microscopic hair-like structures (setae) of 6-20 µm length. Their friction enhancing function has been shown in recent studies. Leaf chameleons and one representative of the tree chameleons (Chamaeleo namaquensis) secondarily have become ground-dwelling. Because leaf chameleons are paraphyletic, one could expect that in the three leaf chameleon genera Brookesia, Rhampholeon, and Rieppeleon and the tree chameleon Ch. namaquensis, epidermis has adapted independently to terrestrial locomotion. Using scanning electron microscopy, we investigated the substrate-contacting surfaces of the feet (subdigital) of 17 leaf chameleon species and five tree chameleon species that have not yet been examined. Additionally, surfaces not involved in locomotion, the flanks (dorsolateral), and scale interstices, were examined. Although the subdigital microstructures in leaf chameleons are more diverse than in tree chameleons, we found some features across the genera. The subdigital microornamentation of Rhampholeon spinosus consists of long thin setae and spines, comparable to those of tree chameleons. All other Rhampholeon species have spines or short but broad setae. Rh. spectrum had tooth-like structures instead of setae. Subdigital scales of Brookesia have either thorns or conical scale-tops in the center and feature honeycomb microstructures. In Rieppeleon, subdigital scales have a thorn. Scale surfaces are covered by honeycombs and short hair-like structures (spines). As subdigital scales with a thorn in the center and honeycomb microstructures were also found in the terrestrial tree chameleon Ch. namaquensis, one can assume that this geometry is a convergent adaptation to terrestrial locomotion. Despite the great number of
On the anomalous afterglow seen in a chameleon afterglow search
International Nuclear Information System (INIS)
Steffen, Jason H.; Baumbaugh, Alan; Chou, Aaron S.; Tomlin, Ray; Upadhye, Amol
2012-01-01
We present data from our investigation of the anomalous orange-colored afterglow that was seen in the GammeV Chameleon Afterglow Search (CHASE). These data include information about the broadband color of the observed glow, the relationship between the glow and the temperature of the apparatus, and other data taken prior to, and during the science operations of CHASE. While differing in several details, the generic properties of the afterglow from CHASE are similar to luminescence seen in some vacuum compounds. Contamination from this, or similar, luminescent signatures will likely impact the design of implementation of future experiments involving single photon detectors and high intensity light sources in a cryogenic environment.
Interacting HDE and NADE in Brans-Dicke chameleon cosmology
International Nuclear Information System (INIS)
Sheykhi, Ahmad; Jamil, Mubasher
2011-01-01
Motivated by the recent work of one of us Setare and Jamil (2010) , we generalize this work to the case where the pressureless dark matter and the holographic dark energy do not conserve separately but interact with each other. We investigate the cosmological applications of interacting holographic dark energy in Brans-Dicke theory with chameleon scalar field which is non-minimally coupled to the matter field. We find out that in this model the phantom crossing can be constructed if the model parameters are chosen suitably. We also perform the study for the new agegraphic dark energy model and calculate some relevant cosmological parameters and their evolution.
Effect of the chameleon scalar field on brane cosmological evolution
Bisabr, Y.; Ahmadi, F.
2017-11-01
We have investigated a brane world model in which the gravitational field in the bulk is described both by a metric tensor and a minimally coupled scalar field. This scalar field is taken to be a chameleon with an appropriate potential function. The scalar field interacts with matter and there is an energy transfer between the two components. We find a late-time asymptotic solution which exhibits late-time accelerating expansion. We also show that the Universe recently crosses the phantom barrier without recourse to any exotic matter. We provide some thermodynamic arguments which constrain both the direction of energy transfer and dynamics of the extra dimension.
Observational constraints on tachyonic chameleon dark energy model
Banijamali, A.; Bellucci, S.; Fazlpour, B.; Solbi, M.
2018-03-01
It has been recently shown that tachyonic chameleon model of dark energy in which tachyon scalar field non-minimally coupled to the matter admits stable scaling attractor solution that could give rise to the late-time accelerated expansion of the universe and hence alleviate the coincidence problem. In the present work, we use data from Type Ia supernova (SN Ia) and Baryon Acoustic oscillations to place constraints on the model parameters. In our analysis we consider in general exponential and non-exponential forms for the non-minimal coupling function and tachyonic potential and show that the scenario is compatible with observations.
Interacting HDE and NADE in Brans-Dicke chameleon cosmology
Energy Technology Data Exchange (ETDEWEB)
Sheykhi, Ahmad, E-mail: sheykhi@mail.uk.ac.i [Department of Physics, Shahid Bahonar University, P.O. Box 76175, Kerman (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha (Iran, Islamic Republic of); Jamil, Mubasher, E-mail: mjamil@camp.nust.edu.p [Center for Advanced Mathematics and Physics, National University of Sciences and Technology, H-12, Islamabad (Pakistan)
2011-01-03
Motivated by the recent work of one of us Setare and Jamil (2010) , we generalize this work to the case where the pressureless dark matter and the holographic dark energy do not conserve separately but interact with each other. We investigate the cosmological applications of interacting holographic dark energy in Brans-Dicke theory with chameleon scalar field which is non-minimally coupled to the matter field. We find out that in this model the phantom crossing can be constructed if the model parameters are chosen suitably. We also perform the study for the new agegraphic dark energy model and calculate some relevant cosmological parameters and their evolution.
Effect of the chameleon scalar field on brane cosmological evolution
Directory of Open Access Journals (Sweden)
Y. Bisabr
2017-11-01
Full Text Available We have investigated a brane world model in which the gravitational field in the bulk is described both by a metric tensor and a minimally coupled scalar field. This scalar field is taken to be a chameleon with an appropriate potential function. The scalar field interacts with matter and there is an energy transfer between the two components. We find a late-time asymptotic solution which exhibits late-time accelerating expansion. We also show that the Universe recently crosses the phantom barrier without recourse to any exotic matter. We provide some thermodynamic arguments which constrain both the direction of energy transfer and dynamics of the extra dimension.
Schmidt, Volker; Klasen, Linus; Schneider, Juliane; Hübel, Jens; Pees, Michael
2017-03-01
Metarhizium viride has been associated with fatal systemic mycoses in chameleons, but subsequent data on mycoses caused by this fungus in reptiles are lacking. The aim of this investigation was therefore to obtain information on the presence of M. viride in reptiles kept as pets in captivity and its association with clinical signs and pathological findings as well as improvement of diagnostic procedures. Beside 18S ribosomal DNA (rDNA) (small subunit [SSU]) and internal transcribed spacer region 1 (ITS-1), a fragment of the large subunit (LSU) of 28S rDNA, including domain 1 (D1) and D2, was sequenced for the identification of the fungus and phylogenetic analysis. Cultural isolation and histopathological examinations as well as the pattern of antifungal drug resistance, determined by using agar diffusion testing, were additionally used for comparison of the isolates. In total, 20 isolates from eight inland bearded dragons ( Pogona vitticeps ), six veiled chameleons ( Chamaeleo calyptratus ), and six panther chameleons ( Furcifer pardalis ) were examined. Most of the lizards suffered from fungal glossitis, stomatitis, and pharyngitis or died due to visceral mycosis. Treatment with different antifungal drugs according to resistance patterns in all three different lizard species was unsuccessful. Sequence analysis resulted in four different genotypes of M. viride based on differences in the LSU fragment, whereas the SSU and ITS-1 were identical in all isolates. Sequence analysis of the SSU fragment revealed the first presentation of a valid large fragment of the SSU of M. viride According to statistical analysis, genotypes did not correlate with differences in pathogenicity, antifungal susceptibility, or species specificity. Copyright © 2017 American Society for Microbiology.
Hidden in the light: Magnetically induced afterglow from trapped chameleon fields
International Nuclear Information System (INIS)
Gies, Holger; Mota, David F.; Shaw, Douglas J.
2008-01-01
We propose an afterglow phenomenon as a unique trace of chameleon fields in optical experiments. The vacuum interaction of a laser pulse with a magnetic field can lead to a production and subsequent trapping of chameleons in the vacuum chamber, owing to their mass dependence on the ambient matter density. Magnetically induced reconversion of the trapped chameleons into photons creates an afterglow over macroscopic timescales that can conveniently be searched for by current optical experiments. We show that the chameleon parameter range accessible to available laboratory technology is comparable to scales familiar from astrophysical stellar energy-loss arguments. We analyze quantitatively the afterglow properties for various experimental scenarios and discuss the role of potential background and systematic effects. We conclude that afterglow searches represent an ideal tool to aim at the production and detection of cosmologically relevant scalar fields in the laboratory
The Chameleon Syndrome: A Social Psychological Dimension of the Female Sex Role
Rosen, Bernard C.; Aneshensel, Carol S.
1976-01-01
This study assesses the incidence and social correlates of the female form of the Chameleon Syndrome--an accommodative response to an environment perceived as hostile to inappropriate sex role behavior--among a sample of 3200 American adolescents. (Author)
Chameleon gravity, electrostatics, and kinematics in the outer galaxy
International Nuclear Information System (INIS)
Pourhasan, R.; Mann, R.B.; Afshordi, N.; Davis, A.C.
2011-01-01
Light scalar fields are expected to arise in theories of high energy physics (such as string theory), and find phenomenological motivations in dark energy, dark matter, or neutrino physics. However, the coupling of light scalar fields to ordinary (or dark) matter is strongly constrained from laboratory, solar system, and astrophysical tests of the fifth force. One way to evade these constraints in dense environments is through the chameleon mechanism, where the field's mass steeply increases with ambient density. Consequently, the chameleonic force is only sourced by a thin shell near the surface of dense objects, which significantly reduces its magnitude. In this paper, we argue that thin-shell conditions are equivalent to ''conducting'' boundary conditions in electrostatics. As an application, we use the analogue of the method of images to calculate the back-reaction (or self-force) of an object around a spherical gravitational source. Using this method, we can explicitly compute the violation of the equivalence principle in the outskirts of galactic haloes (assuming an NFW dark matter profile): Intermediate mass satellites can be slower than their larger/smaller counterparts by as much as 10% close to a thin shell
Chameleon gravity, electrostatics, and kinematics in the outer galaxy
Energy Technology Data Exchange (ETDEWEB)
Pourhasan, R.; Mann, R.B. [Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Afshordi, N. [Perimeter Institute for Theoretical Physics, 31 Caroline St. N., Waterloo, ON, N2L 2Y5 (Canada); Davis, A.C., E-mail: r2pourhasan@uwaterloo.ca, E-mail: nafshordi@perimeterinstitute.ca, E-mail: rbmann@sciborg.uwaterloo.ca, E-mail: A.C.Davis@damtp.cam.ac.uk [Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, Cambridge CB3 0WA (United Kingdom)
2011-12-01
Light scalar fields are expected to arise in theories of high energy physics (such as string theory), and find phenomenological motivations in dark energy, dark matter, or neutrino physics. However, the coupling of light scalar fields to ordinary (or dark) matter is strongly constrained from laboratory, solar system, and astrophysical tests of the fifth force. One way to evade these constraints in dense environments is through the chameleon mechanism, where the field's mass steeply increases with ambient density. Consequently, the chameleonic force is only sourced by a thin shell near the surface of dense objects, which significantly reduces its magnitude. In this paper, we argue that thin-shell conditions are equivalent to ''conducting'' boundary conditions in electrostatics. As an application, we use the analogue of the method of images to calculate the back-reaction (or self-force) of an object around a spherical gravitational source. Using this method, we can explicitly compute the violation of the equivalence principle in the outskirts of galactic haloes (assuming an NFW dark matter profile): Intermediate mass satellites can be slower than their larger/smaller counterparts by as much as 10% close to a thin shell.
International Nuclear Information System (INIS)
Brax, Philippe; Bruck, Carsten van de; Davis, Anne-Christine
2007-01-01
We analyze the PVLAS results using a chameleon field whose properties depend on the environment. We find that, assuming a runaway bare potential V(φ) and a universal coupling to matter, the chameleon potential is such that the scalar field can act as dark energy. Moreover, the chameleon-field model is compatible with the CERN Axion Solar Telescope results, fifth-force experiments, and cosmology
Directory of Open Access Journals (Sweden)
Marco Ceccarelli
2015-03-01
Full Text Available In this paper a conceptual kinematic design of a chameleon-like robot with proper mobility capacity is presented for service applications in space stations as result of design considerations with biomimetic inspiration by looking at chameleons. Requirements and characteristics are discussed with the aim to identify design problems and operation features. A study of feasibility is described through performance evaluation by using simulations for a basic operation characterization.
DEFF Research Database (Denmark)
Sigler, Lynne; Gibas, Connie Fe C.; Kokotovic, Branko
2010-01-01
An outbreak of disseminated granulomatous disease occurred in a group of veiled chameleons (Chamaeleo calyptratus) in a zoo collection. An adult female and six offspring developed large granulomas in multiple organs and were euthanized. At necropsy, roughly spherical yellow-to-white nodules 1 to 3...... of morphology results to represent Paecilomyces viridis, a species known only from one outbreak of fatal mycosis in carpet chameleons (Furcifer lateralis). Data obtained from morphological studies and from phylogenetic analyses of nuclear ribosomal rRNA (rDNA) sequence data revealed the Danish chameleon....... Chamaeleomyces species appear to be rare but aggressive pathogens of chameleons....
Sankhyan, Anek R; Čerňanský, Andrej
2016-12-01
Miocene rare fossils from India, tentatively attributed to chameleons, are described for the first time. The material consists of a fragment of the left squamosal and an element interpreted as a posterodorsal process of the parietal. The specimens come from a late Miocene site of the Nagri Formation (Middle Siwaliks, ~ 9 Mya) at Haritalyangar, North India. This material presents a possible evidence for a chameleon dispersal to Asia. Based on molecular data, the dispersion of an Asian chamaeleonid lineage from Africa to Arabia/Asia is dated at approximately 13 Mya and its diversification in situ at around 6-8 Mya. However, till now, no Miocene-age fossil record has been described to support crown chamaeleonid presence in this area. The material described herein is very fragmented. If correctly allocated, the Haritalyangar chameleons show the oldest known occurrence of this clade in India, at least approximately 9 Mya ago.
Gauss-Bonnet chameleon mechanism of dark energy
International Nuclear Information System (INIS)
Ito, Yusaku; Nojiri, Shin'ichi
2009-01-01
As a model of the current accelerated expansion of the Universe, we consider a model of the scalar-Einstein-Gauss-Bonnet gravity. This model includes the propagating scalar modes, which might give a large correction to the Newton law. In order to avoid this problem, we propose an extension of the chameleon mechanism where the scalar mode becomes massive due to the coupling with the Gauss-Bonnet term. Since the Gauss-Bonnet invariant does not vanish near the Earth or in the Solar System, even in the vacuum, the scalar mode is massive even in the vacuum and the correction to the Newton law could be small. We also discuss the possibility that the model could describe simultaneously the inflation in the early Universe, in addition to the current accelerated expansion.
Chameleon's behavior of modulable nonlinear electrical transmission line
Togueu Motcheyo, A. B.; Tchinang Tchameu, J. D.; Fewo, S. I.; Tchawoua, C.; Kofane, T. C.
2017-12-01
We show that modulable discrete nonlinear transmission line can adopt Chameleon's behavior due to the fact that, without changing its appearance structure, it can become alternatively purely right or left handed line which is different to the composite one. Using a quasidiscrete approximation, we derive a nonlinear Schrödinger equation, that predicts accurately the carrier frequency threshold from the linear analysis. It appears that the increasing of the linear capacitor in parallel in the series branch induced the selectivity of the filter in the right-handed region while it increases band pass filter in the left-handed region. Numerical simulations of the nonlinear model confirm the forward wave in the right handed line and the backward wave in the left handed one.
Sexual Dimorphism in Bite Performance Drives Morphological Variation in Chameleons
da Silva, Jessica M.; Herrel, Anthony; Measey, G. John; Tolley, Krystal A.
2014-01-01
Phenotypic performance in different environments is central to understanding the evolutionary and ecological processes that drive adaptive divergence and, ultimately, speciation. Because habitat structure can affect an animal’s foraging behaviour, anti-predator defences, and communication behaviour, it can influence both natural and sexual selection pressures. These selective pressures, in turn, act upon morphological traits to maximize an animal’s performance. For performance traits involved in both social and ecological activities, such as bite force, natural and sexual selection often interact in complex ways, providing an opportunity to understand the adaptive significance of morphological variation with respect to habitat. Dwarf chameleons within the Bradypodion melanocephalum-Bradypodion thamnobates species complex have multiple phenotypic forms, each with a specific head morphology that could reflect its use of either open- or closed-canopy habitats. To determine whether these morphological differences represent adaptations to their habitats, we tested for differences in both absolute and relative bite performance. Only absolute differences were found between forms, with the closed-canopy forms biting harder than their open-canopy counterparts. In contrast, sexual dimorphism was found for both absolute and relative bite force, but the relative differences were limited to the closed-canopy forms. These results indicate that both natural and sexual selection are acting within both habitat types, but to varying degrees. Sexual selection seems to be the predominant force within the closed-canopy habitats, which are more protected from aerial predators, enabling chameleons to invest more in ornamentation for communication. In contrast, natural selection is likely to be the predominant force in the open-canopy habitats, inhibiting the development of conspicuous secondary sexual characteristics and, ultimately, enforcing their overall diminutive body size and
Sexual dimorphism in bite performance drives morphological variation in chameleons.
Directory of Open Access Journals (Sweden)
Jessica M da Silva
Full Text Available Phenotypic performance in different environments is central to understanding the evolutionary and ecological processes that drive adaptive divergence and, ultimately, speciation. Because habitat structure can affect an animal's foraging behaviour, anti-predator defences, and communication behaviour, it can influence both natural and sexual selection pressures. These selective pressures, in turn, act upon morphological traits to maximize an animal's performance. For performance traits involved in both social and ecological activities, such as bite force, natural and sexual selection often interact in complex ways, providing an opportunity to understand the adaptive significance of morphological variation with respect to habitat. Dwarf chameleons within the Bradypodion melanocephalum-Bradypodion thamnobates species complex have multiple phenotypic forms, each with a specific head morphology that could reflect its use of either open- or closed-canopy habitats. To determine whether these morphological differences represent adaptations to their habitats, we tested for differences in both absolute and relative bite performance. Only absolute differences were found between forms, with the closed-canopy forms biting harder than their open-canopy counterparts. In contrast, sexual dimorphism was found for both absolute and relative bite force, but the relative differences were limited to the closed-canopy forms. These results indicate that both natural and sexual selection are acting within both habitat types, but to varying degrees. Sexual selection seems to be the predominant force within the closed-canopy habitats, which are more protected from aerial predators, enabling chameleons to invest more in ornamentation for communication. In contrast, natural selection is likely to be the predominant force in the open-canopy habitats, inhibiting the development of conspicuous secondary sexual characteristics and, ultimately, enforcing their overall diminutive
Sexual dimorphism in bite performance drives morphological variation in chameleons.
da Silva, Jessica M; Herrel, Anthony; Measey, G John; Tolley, Krystal A
2014-01-01
Phenotypic performance in different environments is central to understanding the evolutionary and ecological processes that drive adaptive divergence and, ultimately, speciation. Because habitat structure can affect an animal's foraging behaviour, anti-predator defences, and communication behaviour, it can influence both natural and sexual selection pressures. These selective pressures, in turn, act upon morphological traits to maximize an animal's performance. For performance traits involved in both social and ecological activities, such as bite force, natural and sexual selection often interact in complex ways, providing an opportunity to understand the adaptive significance of morphological variation with respect to habitat. Dwarf chameleons within the Bradypodion melanocephalum-Bradypodion thamnobates species complex have multiple phenotypic forms, each with a specific head morphology that could reflect its use of either open- or closed-canopy habitats. To determine whether these morphological differences represent adaptations to their habitats, we tested for differences in both absolute and relative bite performance. Only absolute differences were found between forms, with the closed-canopy forms biting harder than their open-canopy counterparts. In contrast, sexual dimorphism was found for both absolute and relative bite force, but the relative differences were limited to the closed-canopy forms. These results indicate that both natural and sexual selection are acting within both habitat types, but to varying degrees. Sexual selection seems to be the predominant force within the closed-canopy habitats, which are more protected from aerial predators, enabling chameleons to invest more in ornamentation for communication. In contrast, natural selection is likely to be the predominant force in the open-canopy habitats, inhibiting the development of conspicuous secondary sexual characteristics and, ultimately, enforcing their overall diminutive body size and
Molnar, Julia L; Diaz, Raul E; Skorka, Tautis; Dagliyan, Grant; Diogo, Rui
2017-09-01
Chameleon species have recently been adopted as models for evo-devo and macroevolutionary processes. However, most anatomical and developmental studies of chameleons focus on the skeleton, and information about their soft tissues is scarce. Here, we provide a detailed morphological description based on contrast enhanced micro-CT scans and dissections of the adult phenotype of all the forelimb and hindlimb muscles of the Veiled Chameleon (Chamaeleo calyptratus) and compare these muscles with those of other chameleons and lizards. We found the appendicular muscle anatomy of chameleons to be surprisingly conservative considering the remarkable structural and functional modifications of the limb skeleton, particularly the distal limb regions. For instance, the zygodactyl autopodia of chameleons are unique among tetrapods, and the carpals and tarsals are highly modified in shape and number. However, most of the muscles usually present in the manus and pes of other lizards are present in the same configuration in chameleons. The most obvious muscular features related to the peculiar opposable autopodia of chameleons are: (1) presence of broad, V-shaped plantar and palmar aponeuroses, and absence of intermetacarpales and intermetatarsales, between the digits separated by the cleft in each autopod; (2) oblique orientation of the superficial short flexors originating from these aponeuroses, which may allow these muscles to act as powerful adductors of the "super-digits"; and (3) well-developed abductor digiti minimi muscles and abductor pollicis/hallucis brevis muscles, which may act as powerful abductors of the "super-digits." © 2017 Wiley Periodicals, Inc.
Rovatsos, Michail; Pokorná, Martina Johnson; Altmanová, Marie; Kratochvíl, Lukáš
2015-01-01
Amniotes possess variability in sex determining mechanisms, however, this diversity is still only partially known throughout the clade and sex determining systems still remain unknown even in such a popular and distinctive lineage as chameleons (Squamata: Acrodonta: Chamaeleonidae). Here, we present evidence for female heterogamety in this group. The Malagasy giant chameleon (Furcifer oustaleti) (chromosome number 2n = 22) possesses heteromorphic Z and W sex chromosomes with heterochromatic W. The panther chameleon (Furcifer pardalis) (2n = 22 in males, 21 in females), the second most popular chameleon species in the world pet trade, exhibits a rather rare Z1Z1Z2Z2/Z1Z2W system of multiple sex chromosomes, which most likely evolved from W-autosome fusion. Notably, its neo-W chromosome is partially heterochromatic and its female-specific genetic content has expanded into the previously autosomal region. Showing clear evidence for genotypic sex determination in the panther chameleon, we resolve the long-standing question of whether or not environmental sex determination exists in this species. Together with recent findings in other reptile lineages, our work demonstrates that female heterogamety is widespread among amniotes, adding another important piece to the mosaic of knowledge on sex determination in amniotes needed to understand the evolution of this important trait. PMID:26286647
Spinner, Marlene; Westhoff, Guido; Gorb, Stanislav N
2014-06-27
Hairy adhesive systems of microscopic setae with triangular flattened tips have evolved convergently in spiders, insects and arboreal lizards. The ventral sides of the feet and tails in chameleons are also covered with setae. However, chameleon setae feature strongly elongated narrow spatulae or fibrous tips. The friction enhancing function of these microstructures has so far only been demonstrated in contact with glass spheres. In the present study, the frictional properties of subdigital setae of Chamaeleo calyptratus were measured under normal forces in the physical range on plane substrates having different roughness. We showed that chameleon setae maximize friction on a wide range of substrate roughness. The highest friction was measured on asperities of 1 μm. However, our observations of the climbing ability of Ch. calyptratus on rods of different diameters revealed that also claws and grasping feet are additionally responsible for the force generation on various substrates during locomotion.
The Santiago-Harvard-Edinburgh-Durham void comparison - I. SHEDding light on chameleon gravity tests
Cautun, Marius; Paillas, Enrique; Cai, Yan-Chuan; Bose, Sownak; Armijo, Joaquin; Li, Baojiu; Padilla, Nelson
2018-05-01
We present a systematic comparison of several existing and new void-finding algorithms, focusing on their potential power to test a particular class of modified gravity models - chameleon f(R) gravity. These models deviate from standard general relativity (GR) more strongly in low-density regions and thus voids are a promising venue to test them. We use halo occupation distribution (HOD) prescriptions to populate haloes with galaxies, and tune the HOD parameters such that the galaxy two-point correlation functions are the same in both f(R) and GR models. We identify both three-dimensional (3D) voids and two-dimensional (2D) underdensities in the plane of the sky to find the same void abundance and void galaxy number density profiles across all models, which suggests that they do not contain much information beyond galaxy clustering. However, the underlying void dark matter density profiles are significantly different, with f(R) voids being more underdense than GR ones, which leads to f(R) voids having a larger tangential shear signal than their GR analogues. We investigate the potential of each void finder to test f(R) models with near-future lensing surveys such as EUCLID and LSST. The 2D voids have the largest power to probe f(R) gravity, with an LSST analysis of tunnel (which is a new type of 2D underdensity introduced here) lensing distinguishing at 80 and 11σ (statistical error) f(R) models with parameters, |fR0| = 10-5 and 10-6, from GR.
The scaling of tongue projection in the veiled chameleon, Chamaeleo calyptratus.
Herrel, Anthony; Redding, Chrystal L; Meyers, J Jay; Nishikawa, Kiisa C
2014-08-01
Within a year of hatching, chameleons can grow by up to two orders of magnitude in body mass. Rapid growth of the feeding mechanism means that bones, muscles, and movements change as chameleons grow while needing to maintain function. A previous morphological study showed that the musculoskeletal components of the feeding apparatus grow with negative allometry relative to snout-vent length (SVL) in chameleons. Here, we investigate the scaling of prey capture kinematics and muscle physiological cross-sectional area in the veiled chameleon, Chamaeleo calyptratus. The chameleons used in this study varied in size from approximately 3 to 18 cm SVL (1-200 g). Feeding sequences of 12 chameleons of different sizes were filmed and the timing of movements and the displacements and velocities of the jaws, tongue, and the hyolingual apparatus were quantified. Our results show that most muscle cross-sectional areas as well as tongue and hyoid mass scaled with isometry relative to mandible length, yet with negative allometry relative to SVL. Durations of movement also scaled with negative allometry relative to SVL and mandible length. Distances and angles generally scaled as predicted under geometric similarity (slopes of 1 and 0, respectively), while velocities generally scaled with slopes greater than 0 relative to SVL and mandible length. These data indicate that the velocity of jaw and tongue movements is generally greater in adults compared to juveniles. The discrepancy between the scaling of cross-sectional areas versus movements suggests changes in the energy storage and release mechanisms implicated in tongue projection. Copyright © 2014 Elsevier GmbH. All rights reserved.
Attractors, statefinders and observational measurement for chameleonic Brans-Dicke cosmology
International Nuclear Information System (INIS)
Farajollahi, Hossein; Salehi, Amin
2010-01-01
We investigate chameleonic Brans-Dicke model applied to the FRW universes. A framework to study stability and attractor solutions in the phase space is developed for the model. We show that depending on the matter field and stability conditions, it is possible to realize phantom-like behavior without introducing phantom filed in the model while the stability is fulfilled and phantom crossing occurs. The statefinder parameters to the model for different kinds of matter interacting with the chameleon scalar field are studied. We also compare our model with present day observations
Mechanisms of spectral tuning in the RH2 pigments of Tokay gecko and American chameleon
Takenaka, Naomi; Yokoyama, Shozo
2007-01-01
At present, molecular bases of spectral tuning in rhodopsin-like (RH2) pigments are not well understood. Here, we have constructed the RH2 pigments of nocturnal Tokay gecko (Gekko gekko) and diurnal American chameleon (Anolis carolinensis) as well as chimeras between them. The RH2 pigments of the gecko and chameleon reconstituted with 11-cis-retinal had the wavelengths of maximal absorption (λmax’s) of 467 and 496 nm, respectively. Chimeric pigment analyses indicated that 76–86%, 14–24%, and ...
Attractors, statefinders and observational measurement for chameleonic Brans-Dicke cosmology
Energy Technology Data Exchange (ETDEWEB)
Farajollahi, Hossein; Salehi, Amin, E-mail: hosseinf@guilan.ac.ir, E-mail: a.salehi@guilan.ac.ir [Department of Physics, University of Guilan, Rasht (Iran, Islamic Republic of)
2010-11-01
We investigate chameleonic Brans-Dicke model applied to the FRW universes. A framework to study stability and attractor solutions in the phase space is developed for the model. We show that depending on the matter field and stability conditions, it is possible to realize phantom-like behavior without introducing phantom filed in the model while the stability is fulfilled and phantom crossing occurs. The statefinder parameters to the model for different kinds of matter interacting with the chameleon scalar field are studied. We also compare our model with present day observations.
γ parameter and Solar System constraint in chameleon-Brans-Dicke theory
International Nuclear Information System (INIS)
Saaidi, Kh.; Mohammadi, A.; Sheikhahmadi, H.
2011-01-01
The post Newtonian parameter is considered in the chameleon-Brans-Dicke model. In the first step, the general form of this parameter and also effective gravitational constant is obtained. An arbitrary function for f(Φ), which indicates the coupling between matter and scalar field, is introduced to investigate validity of solar system constraint. It is shown that the chameleon-Brans-Dicke model can satisfy the solar system constraint and gives us an ω parameter of order 10 4 , which is in comparable to the constraint which has been indicated in [19].
Madeleine de Scudéry’s animal sublime, or of chameleons
Duggan, Anne E.
2016-01-01
Drawing from Erica Harth’s work, animal studies, and ecofeminism, I explore the ways in which Scudéry engages in the important seventeenth-century debates over animal reason. Her engagement in these debates is significant: it foregrounds the fact that René Descartes’s conception of the animal-as-machine was immediately challenged by his contemporaries. In her “Story of Two Chameleons,” Scudéry challenges early modern moral and especially scientific representations of the chameleon, which l...
Dollion, Alexis Y; Cornette, Raphaël; Tolley, Krystal A; Boistel, Renaud; Euriat, Adelaïde; Boller, Elodie; Fernandez, Vincent; Stynder, Deano; Herrel, Anthony
2015-02-01
The evolutionary history of chameleons has been predominantly studied through phylogenetic approaches as the fossil register of chameleons is limited and fragmented. The poor state of preservation of these fossils has moreover led to the origin of numerous nomen dubia, and the identification of many chameleon fossils remains uncertain. We here examine chameleon fossil fragments from the Early Pliocene Varswater formation, exposed at the locality of Langebaanweg "E" Quarry along the southwestern coast of South Africa. Our aim was to explore whether these fossil fragments could be assigned to extant genera. To do so, we used geometric morphometric approaches based on microtomographic imaging of extant chameleons as well as the fossil fragments themselves. Our study suggests that the fossils from this deposit most likely represent at least two different forms that may belong to different genera. Most fragments are phenotypically dissimilar from the South African endemic genus Bradypodion and are more similar to other chameleon genera such as Trioceros or Kinyongia. However, close phenetic similarities between some of the fragments and the Seychelles endemic Archaius or the Madagascan genus Furcifer suggest that some of these fragments may not contain enough genus-specific information to allow correct identification. Other fragments such as the parietal fragments appear to contain more genus-specific information, however. Although our data suggest that the fossil diversity of chameleons in South Africa was potentially greater than it is today, this remains to be verified based on other and more complete fragments.
Haakensen, Erik Edward
1998-01-01
The desire for low-cost reliable computing is increasing. Most current fault tolerant computing solutions are not very flexible, i.e., they cannot adapt to reliability requirements of newly emerging applications in business, commerce, and manufacturing. It is important that users have a flexible, reliable platform to support both critical and noncritical applications. Chameleon, under development at the Center for Reliable and High-Performance Computing at the University of Illinois, is a software framework. for supporting cost-effective adaptable networked fault tolerant service. This thesis details a simulation of fault injection, detection, and recovery in Chameleon. The simulation was written in C++ using the DEPEND simulation library. The results obtained from the simulation included the amount of overhead incurred by the fault detection and recovery mechanisms supported by Chameleon. In addition, information about fault scenarios from which Chameleon cannot recover was gained. The results of the simulation showed that both critical and noncritical applications can be executed in the Chameleon environment with a fairly small amount of overhead. No single point of failure from which Chameleon could not recover was found. Chameleon was also found to be capable of recovering from several multiple failure scenarios.
Constructing a graph of connections in clustering algorithm of complex objects
Directory of Open Access Journals (Sweden)
Татьяна Шатовская
2015-05-01
Full Text Available The article describes the results of modifying the algorithm Chameleon. Hierarchical multi-level algorithm consists of several phases: the construction of the count, coarsening, the separation and recovery. Each phase can be used various approaches and algorithms. The main aim of the work is to study the quality of the clustering of different sets of data using a set of algorithms combinations at different stages of the algorithm and improve the stage of construction by the optimization algorithm of k choice in the graph construction of k of nearest neighbors
Force sensor for chameleon and Casimir force experiments with parallel-plate configuration
Almasi, A.; Brax, P.; Iannuzzi, D.; Sedmik, R.
2015-01-01
The search for non-Newtonian forces has been pursued following many different paths. Recently it was suggested that hypothetical chameleon interactions, which might explain the mechanisms behind dark energy, could be detected in a high-precision force measurement. In such an experiment, interactions
Effect of a chameleon scalar field on the cosmic microwave background
International Nuclear Information System (INIS)
Davis, Anne-Christine; Schelpe, Camilla A. O.; Shaw, Douglas J.
2009-01-01
We show that a direct coupling between a chameleonlike scalar field and photons can give rise to a modified Sunyaev-Zel'dovich (SZ) effect in the cosmic microwave background (CMB). The coupling induces a mixing between chameleon particles and the CMB photons when they pass through the magnetic field of a galaxy cluster. Both the intensity and the polarization of the radiation are modified. The degree of modification depends strongly on the properties of the galaxy cluster such as magnetic field strength and electron number density. Existing SZ measurements of the Coma cluster enable us to place constraints on the photon-chameleon coupling. The constrained conversion probability in the cluster is P Coma (204 GHz) -5 at 95% confidence, corresponding to an upper bound on the coupling strength of g eff (cell) -8 GeV -1 or g eff (Kolmo) -10 GeV -1 , depending on the model that is assumed for the cluster magnetic field structure. We predict the radial profile of the chameleonic CMB intensity decrement. We find that the chameleon effect extends farther toward the edges of the cluster than the thermal SZ effect. Thus we might see a discrepancy between the x-ray emission data and the observed SZ intensity decrement. We further predict the expected change to the CMB polarization arising from the existence of a chameleonlike scalar field. These predictions could be verified or constrained by future CMB experiments.
Niehof, J.; Janssen, H.H.J.M.; Schilders, W.H.A.
2006-01-01
Next-generation nano-scale RFIC designs have an unprecedented complexity and performance that will inevitably lead to costly re-spins and loss of market opportunities. In order to cope with this, the aim of the European Framework 6 CHAMELEON RF project is to develop methodologies and prototype tools
Lee, Michael J.
2006-01-01
This essay argues that a sustained form can be located in the complicated history of populist rhetoric. Despite its chameleonic qualities, the advancement of populism is constituted by alterations in the focus and content, not the structure, of populist activism. This structure, or what I term its argumentative frame, positions a virtuous people…
Selection for Social Signalling Drives the Evolution of Chameleon Colour Change
Stuart-Fox, Devi; Moussalli, Adnan
2008-01-01
Rapid colour change is a remarkable natural phenomenon that has evolved in several vertebrate and invertebrate lineages. The two principal explanations for the evolution of this adaptive strategy are (1) natural selection for crypsis (camouflage) against a range of different backgrounds and (2) selection for conspicuous social signals that maximise detectability to conspecifics, yet minimise exposure to predators because they are only briefly displayed. Here we show that evolutionary shifts in capacity for colour change in southern African dwarf chameleons (Bradypodion spp.) are associated with increasingly conspicuous signals used in male contests and courtship. To the chameleon visual system, species showing the most dramatic colour change display social signals that contrast most against the environmental background and amongst adjacent body regions. We found no evidence for the crypsis hypothesis, a finding reinforced by visual models of how both chameleons and their avian predators perceive chameleon colour variation. Instead, our results suggest that selection for conspicuous social signals drives the evolution of colour change in this system, supporting the view that transitory display traits should be under strong selection for signal detectability. PMID:18232740
Lifelong Learning as a Chameleonic Concept and Versatile Practice: Y2K Perspectives and Trends
Grace, Andre P.
2004-01-01
This essay focuses on contemporary lifelong-learning discourse as it was reflected in deliberations during three events held in Australia, Canada and the UK during 2000-01. Through the dialogical lenses of these Y2K events that brought together an array of international participants, it examines lifelong learning as a chameleonic concept and…
Selection for social signalling drives the evolution of chameleon colour change.
Directory of Open Access Journals (Sweden)
Devi Stuart-Fox
2008-01-01
Full Text Available Rapid colour change is a remarkable natural phenomenon that has evolved in several vertebrate and invertebrate lineages. The two principal explanations for the evolution of this adaptive strategy are (1 natural selection for crypsis (camouflage against a range of different backgrounds and (2 selection for conspicuous social signals that maximise detectability to conspecifics, yet minimise exposure to predators because they are only briefly displayed. Here we show that evolutionary shifts in capacity for colour change in southern African dwarf chameleons (Bradypodion spp. are associated with increasingly conspicuous signals used in male contests and courtship. To the chameleon visual system, species showing the most dramatic colour change display social signals that contrast most against the environmental background and amongst adjacent body regions. We found no evidence for the crypsis hypothesis, a finding reinforced by visual models of how both chameleons and their avian predators perceive chameleon colour variation. Instead, our results suggest that selection for conspicuous social signals drives the evolution of colour change in this system, supporting the view that transitory display traits should be under strong selection for signal detectability.
Czech Academy of Sciences Publication Activity Database
Nečas, P.; Sindaco, R.; Kořený, L.; Kopečná, J.; Malonza, P. K.; Modrý, David
-, č. 2028 (2009), s. 41-50 ISSN 1175-5326 R&D Projects: GA ČR GA524/03/1548; GA ČR GA206/03/1544 Institutional research plan: CEZ:AV0Z60220518 Keywords : Kinyongia asheorum sp n, * new montane chameleon * Kenya Subject RIV: EG - Zoology Impact factor: 0.891, year: 2009
Chameleon-photon mixing in a primordial magnetic field
International Nuclear Information System (INIS)
Schelpe, Camilla A. O.
2010-01-01
The existence of a sizable, O(10 -10 -10 -9 G), cosmological magnetic field in the early Universe has been postulated as a necessary step in certain formation scenarios for the large-scale O(μG) magnetic fields found in galaxies and galaxy clusters. If this field exists then it may induce significant mixing between photons and axion-like particles (ALPs) in the early Universe. The resonant conversion of photons into ALPs in a primordial magnetic field has been studied elsewhere by Mirizzi, Redondo and Sigl (2009). Here we consider the nonresonant mixing between photons and scalar ALPs with masses much less than the plasma frequency along the path, with specific reference to the chameleon scalar field model. The mixing would alter the intensity and polarization state of the cosmic microwave background (CMB) radiation. We find that the average modification to the CMB polarization modes is negligible. However the average modification to the CMB intensity spectrum is more significant and we compare this to high-precision measurements of the CMB monopole made by the far infrared absolute spectrophotometer on board the COBE satellite. The resulting 95% confidence limit on the scalar-photon conversion probability in the primordial field (at 100 GHz) is P γ↔φ -2 . This corresponds to a degenerate constraint on the photon-scalar coupling strength, g eff , and the magnitude of the primordial magnetic field. Taking the upper bound on the strength of the primordial magnetic field derived from the CMB power spectra, B λ ≤5.0x10 -9 G, this would imply an upper bound on the photon-scalar coupling strength in the range g eff -13 GeV -1 to g eff -14 GeV -1 , depending on the power spectrum of the primordial magnetic field.
A unique life history among tetrapods: an annual chameleon living mostly as an egg.
Karsten, Kristopher B; Andriamandimbiarisoa, Laza N; Fox, Stanley F; Raxworthy, Christopher J
2008-07-01
The approximately 28,300 species of tetrapods (four-limbed vertebrates) almost exclusively have perennial life spans. Here, we report the discovery of a remarkable annual tetrapod from the arid southwest of Madagascar: the chameleon Furcifer labordi, with a posthatching life span of just 4-5 months. At the start of the active season (November), an age cohort of hatchlings emerges; larger juveniles or adults are not present. These hatchlings grow rapidly, reach sexual maturity in less than 2 months, and reproduce in January-February. After reproduction, senescence appears, and the active season concludes with population-wide adult death. Consequently, during the dry season, the entire population is represented by developing eggs that incubate for 8-9 months before synchronously hatching at the onset of the following rainy season. Remarkably, this chameleon spends more of its short annual life cycle inside the egg than outside of it. Our review of tetrapod longevity (>1,700 species) finds no others with such a short life span. These findings suggest that the notorious rapid death of chameleons in captivity may, for some species, actually represent the natural adult life span. Consequently, a new appraisal may be warranted concerning the viability of chameleon breeding programs, which could have special significance for species of conservation concern. Additionally, because F. labordi is closely related to other perennial species, this chameleon group may prove also to be especially well suited for comparative studies that focus on life history evolution and the ecological, genetic, and/or hormonal determinants of aging, longevity, and senescence.
Johnson, James G; Naples, Lisa M; Chu, Caroline; Kinsel, Michael J; Flower, Jennifer E; Van Bonn, William G
2016-09-01
A 3-yr-old male panther chameleon (Furcifer pardalis) presented with bilateral raised crusted skin lesions along the lateral body wall that were found to be carcinoma in situ and squamous cell carcinoma. Similar lesions later developed on the caudal body wall and tail. A subcutaneous implantable carboplatin bead was placed in the first squamous cell carcinoma lesion identified. Additional new lesions sampled were also found to be squamous cell carcinomas, and viral polymerase chain reaction was negative for papillomaviruses and herpesviruses. Significant skin loss would have resulted from excision of all the lesions, so treatment with only carboplatin beads was used. No adverse effects were observed. Lesions not excised that were treated with beads decreased in size. This is the first description of cutaneous squamous cell carcinoma and treatment with carboplatin implantable beads in a panther chameleon.
A signature for chameleons in axion-like particle search experiments
Energy Technology Data Exchange (ETDEWEB)
Weniger, Christoph [DESY Hamburg (Germany)
2008-07-01
Scalar-Tensor theories are well known and viable generalizations of General Relativity. In recent publications, it was shown that these theories can satisfy all astronomical bounds even if the scalar field couples to matter much stronger than gravity. This is due to the fact that the effective mass of the scalar field strongly depends on the density of the ambient matter. We point out that these strongly coupled fields, which were dubbed chameleons, might reveal themselves as an aefterglow'' effect in axion-like particle search experiments due to chameleon photon conversion in a magnetic field. We estimate the parameter space which is accessible by currently available technology and find that afterglow experiments could constrain this parameter space in a way complementary to gravitational and Casimir force experiments.
Evolution of the Brans—Dicke Parameter in Generalized Chameleon Cosmology
International Nuclear Information System (INIS)
Jamil, Mubasher; Momeni, D.
2011-01-01
Motivated by an earlier study of Sahoo and Singh [Mod. Phys. Lett. A 17 (2002) 2409], we investigate the time dependence of the Brans-Dicke parameter ω(t) for an expanding Universe in the generalized Brans-Dicke Chameleon cosmology, and obtain an explicit dependence of ω(t) in different expansion phases of the Universe. Also, we discuss how the observed accelerated expansion of the observable Universe can be accommodated in the present formalism. (geophysics, astronomy, and astrophysics)
Stability analysis and observational measurement in chameleonic generalised Brans-Dicke cosmology
International Nuclear Information System (INIS)
Farajollahi, Hossein; Salehi, Amin
2011-01-01
We investigate the dynamics of the chameleonic Generalised Brans-Dicke model in flat FRW cosmology. In a new approach, a framework to study stability and attractor solutions in the phase space for the model is developed by simultaneously best fitting the stability and model parameters with the observational data. The results show that for an accelerating universe the phantom crossing does not occur in the past and near future
Directory of Open Access Journals (Sweden)
Silvia Barazorda Romero
2015-01-01
Full Text Available Salmonella can be present in the intestinal flora of captive reptiles without clinical disease or it can cause life threatening morbidity. The presence of certain species of Salmonella in reptiles is consistent with them being the source of contamination in some cases of human disease. Thus, Salmonella positive animals can be a potential public health concern even more when strains acquire resistance to antibiotics. The nature and extent of Salmonella harboured by different species of reptiles commonly kept in captivity are not known. The aims of this study were to analyse the incidence of Salmonella species in cloacae as an indicator of the intestinal flora in a cohort of healthy captive bred female veiled chameleons. A cloacal sample was taken from each of fifteen healthy captive bred, adult female veiled chameleons that were housed at a teaching and research clinic. Salmonella isolates were confirmed by matrix-assisted laser desorption ionization time-of-flight mass spectrometry and positive cases were serotyped by slide agglutination test. Salmonella organisms were detected in 12 chameleons. Eighty percent of chameleons harboured 1 of 4 subspecies and serovars of Salmonella. All strains belonged to the species enterica, predominantly subspecies enterica (91.7 % and were distributed among 4 different serovars: S. Ago (58.3 %, S. Blijdorp (16.7 %, S. Tennessee (16.7 % and S. IV 45:g,z51:- (8.3 %. Antibiotic resistance to streptomycin was detected in one of 12 Salmonella strains: S. IV 45:g,z51:-. Our study extended the list of Salmonella found in healthy captive animals and included serovars S. Tennessee and S. IV 45:g,z51:- that have been associated with morbidity in humans.
How CMB and large-scale structure constrain chameleon interacting dark energy
International Nuclear Information System (INIS)
Boriero, Daniel; Das, Subinoy; Wong, Yvonne Y.Y.
2015-01-01
We explore a chameleon type of interacting dark matter-dark energy scenario in which a scalar field adiabatically traces the minimum of an effective potential sourced by the dark matter density. We discuss extensively the effect of this coupling on cosmological observables, especially the parameter degeneracies expected to arise between the model parameters and other cosmological parameters, and then test the model against observations of the cosmic microwave background (CMB) anisotropies and other cosmological probes. We find that the chameleon parameters α and β, which determine respectively the slope of the scalar field potential and the dark matter-dark energy coupling strength, can be constrained to α < 0.17 and β < 0.19 using CMB data and measurements of baryon acoustic oscillations. The latter parameter in particular is constrained only by the late Integrated Sachs-Wolfe effect. Adding measurements of the local Hubble expansion rate H 0 tightens the bound on α by a factor of two, although this apparent improvement is arguably an artefact of the tension between the local measurement and the H 0 value inferred from Planck data in the minimal ΛCDM model. The same argument also precludes chameleon models from mimicking a dark radiation component, despite a passing similarity between the two scenarios in that they both delay the epoch of matter-radiation equality. Based on the derived parameter constraints, we discuss possible signatures of the model for ongoing and future large-scale structure surveys
Mechanisms of spectral tuning in the RH2 pigments of Tokay gecko and American chameleon.
Takenaka, Naomi; Yokoyama, Shozo
2007-09-01
At present, molecular bases of spectral tuning in rhodopsin-like (RH2) pigments are not well understood. Here, we have constructed the RH2 pigments of nocturnal Tokay gecko (Gekko gekko) and diurnal American chameleon (Anolis carolinensis) as well as chimeras between them. The RH2 pigments of the gecko and chameleon reconstituted with 11-cis-retinal had the wavelengths of maximal absorption (lambda(max)'s) of 467 and 496 nm, respectively. Chimeric pigment analyses indicated that 76-86%, 14-24%, and 10% of the spectral difference between them could be explained by amino acid differences in transmembrane (TM) helices I-IV, V-VII, and amino acid interactions between the two segments, respectively. Evolutionary and mutagenesis analyses revealed that the lambda(max)'s of the gecko and chameleon pigments diverged from each other not only by S49A (serine to alanine replacement at residue 49), S49F (serine to phenylalanine), L52M (leucine to methionine), D83N (aspartic acid to asparagine), M86T (methionine to threonine), and T97A (threonine to alanine) but also by other amino acid replacements that cause minor lambda(max)-shifts individually.
PREPARING OF THE CHAMELEON COATING BY THE ION JET DEPOSITION METHOD
Directory of Open Access Journals (Sweden)
Jakub Skocdopole
2017-07-01
Full Text Available Preparation of chameleon coatings using an Ionized Jet Deposition (IJD technique is reported in the present paper. IJD is a new flexible method for thin film deposition developed by Noivion, Srl. The chameleon coatings are thin films characterised by a distinct change of their tribological properties according to the external conditions. The deposited films of SiC and TiN materials were examined by the Raman spectroscopy, SEM and XPS. The results of the Raman spectroscopy have proved an amorphous structure of SiC films. The data from XPS on TiN films have shown that the films are heavily oxidized, but also prove that the films are composed of TiN and pure Ti. The SEM provided information about the size of grains and particles constituting the deposited films, which is important for tribological properties of the films. Deposition of the chameleon coating is very complex problem and IJD could be ideal method for preparation of this coating.
Mechanisms of spectral tuning in the RH2 pigments of Tokay gecko and American chameleon
Takenaka, Naomi; Yokoyama, Shozo
2009-01-01
At present, molecular bases of spectral tuning in rhodopsin-like (RH2) pigments are not well understood. Here, we have constructed the RH2 pigments of nocturnal Tokay gecko (Gekko gekko) and diurnal American chameleon (Anolis carolinensis) as well as chimeras between them. The RH2 pigments of the gecko and chameleon reconstituted with 11-cis-retinal had the wavelengths of maximal absorption (λmax’s) of 467 and 496 nm, respectively. Chimeric pigment analyses indicated that 76–86%, 14–24%, and 10% of the spectral difference between them could be explained by amino acid differences in transmembrane (TM) helices I~IV, V~VII, and amino acid interactions between the two segments, respectively. Evolutionary and mutagenesis analyses revealed that the λmax’s of the gecko and chameleon pigments diverged from each other not only by S49A (serine to alanine replacement at residue 49), S49F (serine to phenylalanine), L52M (leucine to methionine), D83N (aspartic acid to asparagine), M86T (methionine to thereonine), and T97A (threonine to alanine) but also by other amino acid replacements that cause minor λmax-shifts individually. PMID:17590287
Kraus, Fred; Medeiros, Arthur; Preston, David; Jarnevich, Catherine S.; Rodda, Gordon H.
2012-01-01
We summarize information on current distribution of the invasive lizard Chamaeleo jacksonii and predict its potential distribution in the Hawaiian Islands. Potential distribution maps are based on climate models developed from known localities in its native range and its Hawaiian range. We also present results of analysis of stomach contents of a sample of 34 chameleons collected from native, predominantly dryland, forest on Maui. These data are the first summarizing prey range of this non-native species in an invaded native-forest setting. Potential distribution models predict that the species can occur throughout most of Hawaii from sea level to >2,100 m elevation. Important features of this data set are that approximately one-third of the diet of these lizards is native insects, and the lizards are consuming large numbers of arthropods each day. Prey sizes span virtually the entire gamut of native Hawaiian arthropod diversity, thereby placing a large number of native species at risk of predation. Our dietary results contrast with expectations for most iguanian lizards and support suggestions that chameleons comprise a third distinct foraging-mode category among saurians. The combination of expanding distribution, large potential range size, broad diet, high predation rates, and high densities of these chameleons imply that they may well become a serious threat to some of the Hawaiian fauna.
Chameleon-Inspired Mechanochromic Photonic Films Composed of Non-Close-Packed Colloidal Arrays.
Lee, Gun Ho; Choi, Tae Min; Kim, Bomi; Han, Sang Hoon; Lee, Jung Min; Kim, Shin-Hyun
2017-11-28
Chameleons use a non-close-packed array of guanine nanocrystals in iridophores to develop and tune skin colors in the full visible range. Inspired by the biological process uncovered in panther chameleons, we designed photonic films containing a non-close-packed face-centered-cubic array of silica particles embedded in an elastomer. The non-close-packed array is formed by interparticle repulsion exerted by solvation layers on the particle surface, which is rapidly captured in the elastomer by photocuring of the dispersion medium. The artificial skin exhibits a structural color that shifts from red to blue under stretching or compression. The separation between inelastic particles enables tuning without experiencing significant rearrangement of particles, providing elastic deformation and reversible color change, as chameleons do. The simple fabrication procedure consists of film casting and UV irradiation, potentially enabling the continuous high-throughput production. The mechanochromic property of the photonic films enables the visualization of deformation or stress with colors, which is potentially beneficial for various applications, including mechanical sensors, sound-vision transformers, and color display.
Directory of Open Access Journals (Sweden)
Antonia M Florio
Full Text Available The Malagasy giant chameleons (Furcifer oustaleti and Furcifer verrucosus are sister species that are both broadly distributed in Madagascar, and also endemic to the island. These species are also morphologically similar and, because of this, have been frequently misidentified in the field. Previous studies have suggested that cryptic species are nested within this chameleon group, and two subspecies have been described in F. verrucosus. In this study, we utilized a phylogeographic approach to assess genetic diversification within these chameleons. This was accomplished by (1 identifying clades within each species supported by both mitochondrial and nuclear DNA, (2 assessing divergence times between clades, and (3 testing for niche divergence or conservatism. We found that both F. oustaleti and F. verrucosus could be readily identified based on genetic data, and within each species, there are two well-supported clades. However, divergence times are not contemporary and spatial patterns are not congruent. Diversification within F. verrucosus occurred during the Plio-Pleistocene, and there is evidence for niche divergence between a southwestern and southeastern clade, in a region of Madagascar that shows no obvious landscape barriers to dispersal. Diversification in F. oustaleti occurred earlier in the Pliocene or Miocene, and niche conservatism is supported with two genetically distinct clades separated at the Sofia River in northwestern Madagascar. Divergence within F. verrucosus is most consistent with patterns expected from ecologically mediated speciation, whereas divergence in F. oustaleti most strongly matches the patterns expected from the riverine barrier hypothesis.
International Nuclear Information System (INIS)
Chattopadhyay, Surajit; Pasqua, Antonio; Khurshudyan, Martiros
2014-01-01
Motivated by the work of Yang et al. (Mod. Phys. Lett. A 26:191, 2011), we report on a study of the new holographic dark energy (NHDE) model with energy density given by ρ D = (3φ 2 )/(4ω)(μH 2 + νH) in the framework of chameleon Brans-Dicke cosmology. We have studied the correspondence between the quintessence, the DBI-essence, and the tachyon scalar-field models with the NHDE model in the framework of chameleon Brans-Dicke cosmology. Deriving an expression of the Hubble parameter H and, accordingly, ρ D in the context of chameleon Brans-Dicke chameleon cosmology, we have reconstructed the potentials and dynamics for these scalar-field models. Furthermore, we have examined the stability for the obtained solutions of the crossing of the phantom divide under a quantum correction of massless conformally invariant fields, and we have seen that the quantum correction could be small when the phantom crossing occurs and the obtained solutions of the phantom crossing could be stable under the quantum correction. It has also been noted that the potential increases as the matter. chameleon coupling gets stronger with the evolution of the universe. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Chattopadhyay, Surajit [Pailan College of Management and Technology, Kolkata (India); Pasqua, Antonio [University of Trieste, Department of Physics, Trieste (Italy); Khurshudyan, Martiros [Yerevan State University, Department of Theoretical Physics, Yerevan (Armenia); Potsdam-Golm Science Park, Max Planck Institute of Colloids and Interfaces, Potsdam (Germany)
2014-09-15
Motivated by the work of Yang et al. (Mod. Phys. Lett. A 26:191, 2011), we report on a study of the new holographic dark energy (NHDE) model with energy density given by ρ{sub D} = (3φ{sup 2})/(4ω)(μH{sup 2} + νH) in the framework of chameleon Brans-Dicke cosmology. We have studied the correspondence between the quintessence, the DBI-essence, and the tachyon scalar-field models with the NHDE model in the framework of chameleon Brans-Dicke cosmology. Deriving an expression of the Hubble parameter H and, accordingly, ρ{sub D} in the context of chameleon Brans-Dicke chameleon cosmology, we have reconstructed the potentials and dynamics for these scalar-field models. Furthermore, we have examined the stability for the obtained solutions of the crossing of the phantom divide under a quantum correction of massless conformally invariant fields, and we have seen that the quantum correction could be small when the phantom crossing occurs and the obtained solutions of the phantom crossing could be stable under the quantum correction. It has also been noted that the potential increases as the matter. chameleon coupling gets stronger with the evolution of the universe. (orig.)
How CMB and large-scale structure constrain chameleon interacting dark energy
Energy Technology Data Exchange (ETDEWEB)
Boriero, Daniel [Fakultät für Physik, Universität Bielefeld, Universitätstr. 25, Bielefeld (Germany); Das, Subinoy [Indian Institute of Astrophisics, Bangalore, 560034 (India); Wong, Yvonne Y.Y., E-mail: boriero@physik.uni-bielefeld.de, E-mail: subinoy@iiap.res.in, E-mail: yvonne.y.wong@unsw.edu.au [School of Physics, The University of New South Wales, Sydney NSW 2052 (Australia)
2015-07-01
We explore a chameleon type of interacting dark matter-dark energy scenario in which a scalar field adiabatically traces the minimum of an effective potential sourced by the dark matter density. We discuss extensively the effect of this coupling on cosmological observables, especially the parameter degeneracies expected to arise between the model parameters and other cosmological parameters, and then test the model against observations of the cosmic microwave background (CMB) anisotropies and other cosmological probes. We find that the chameleon parameters α and β, which determine respectively the slope of the scalar field potential and the dark matter-dark energy coupling strength, can be constrained to α < 0.17 and β < 0.19 using CMB data and measurements of baryon acoustic oscillations. The latter parameter in particular is constrained only by the late Integrated Sachs-Wolfe effect. Adding measurements of the local Hubble expansion rate H{sub 0} tightens the bound on α by a factor of two, although this apparent improvement is arguably an artefact of the tension between the local measurement and the H{sub 0} value inferred from Planck data in the minimal ΛCDM model. The same argument also precludes chameleon models from mimicking a dark radiation component, despite a passing similarity between the two scenarios in that they both delay the epoch of matter-radiation equality. Based on the derived parameter constraints, we discuss possible signatures of the model for ongoing and future large-scale structure surveys.
Chameleon Effect, the Range of Values Hypothesis and Reproducing the EPR-Bohm Correlations
Accardi, Luigi; Khrennikov, Andrei
2007-02-01
We present a detailed analysis of assumptions that J. Bell used to show that local realism contradicts QM. We find that Bell's viewpoint on realism is nonphysical, because it implicitly assume that observed physical variables coincides with ontic variables (i.e., these variables before measurement). The real physical process of measurement is a process of dynamical interaction between a system and a measurement device. Therefore one should check the adequacy of QM not to "Bell's realism," but to adaptive realism (chameleon realism). Dropping Bell's assumption we are able to construct a natural representation of the EPR-Bohm correlations in the local (adaptive) realistic approach.
Expanding horizons with Chameleon: team Missouri's innovative home automation system
Energy Technology Data Exchange (ETDEWEB)
Glass, B. [Department of Computer Engineering, Missouri University of Science and Technology, 1401 Pine Street, Rolla, MO 65409 (United States); Brannon, B. [Department of Electrical Engineering, Missouri University of Science and Technology, 1401 Pine Street, Rolla, MO 65409 (United States); Grantham, K. [Department of Engineering Management, Missouri University of Science and Technology, 1401 Pine Street, Rolla, MO 65409 (United States); Baur, S. [Department of Civil, Architectural and Environmental Engineering, Missouri University of Science and Technology, 1401 Pine Street, Rolla, MO 65409 (United States)
2010-06-15
Team Missouri's 2009 Solar Decathlon entry featured a revolutionary home automation system, Chameleon, promoting both convenience and energy savings. This was accomplished using the typical controls of a convenience based automation system, while maintaining user set points, such as a home's ambient temperature, in the most energy efficient manner. Environmental features of the system include controls for space heating, ventilation and air conditioning, lighting, windows, shades, appliances, indoor air quality, as well as indoor and outdoor irrigation. Further analysis and refinement to the prototype system displayed at the competition is also presented in this paper. (authors)
Expanding Horizons with Chameleon: Team Missouri’s Innovative Home Automation System
Directory of Open Access Journals (Sweden)
Bryan Glass
2010-06-01
Full Text Available Team Missouri’s 2009 Solar Decathlon entry featured a revolutionary home automation system, Chameleon, promoting both convenience and energy savings. This was accomplished using the typical controls of a convenience based automation system, while maintaining user set points, such as a home’s ambient temperature, in the most energy efficient manner. Environmental features of the system include controls for home heating, ventilation and air conditioning, lighting, windows, shades, appliances, indoor air quality, as well as indoor and outdoor irrigation. Further analysis and refinement to the prototype system displayed at the competition is also presented in this paper.
Lev-Ari, Tidhar; Lustig, Avichai; Ketter-Katz, Hadas; Baydach, Yossi; Katzir, Gadi
2016-08-01
A chameleon (Chamaeleo chamaeleon) on a perch responds to a nearby threat by moving to the side of the perch opposite the threat, while bilaterally compressing its abdomen, thus minimizing its exposure to the threat. If the threat moves, the chameleon pivots around the perch to maintain its hidden position. How precise is the body rotation and what are the patterns of eye movement during avoidance? Just-hatched chameleons, placed on a vertical perch, on the side roughly opposite to a visual threat, adjusted their position to precisely opposite the threat. If the threat were moved on a horizontal arc at angular velocities of up to 85°/s, the chameleons co-rotated smoothly so that (1) the angle of the sagittal plane of the head relative to the threat and (2) the direction of monocular gaze, were positively and significantly correlated with threat angular position. Eye movements were role-dependent: the eye toward which the threat moved maintained a stable gaze on it, while the contralateral eye scanned the surroundings. This is the first description, to our knowledge, of such a response in a non-flying terrestrial vertebrate, and it is discussed in terms of possible underlying control systems.
Murakami-Ramalho, Elizabeth; Piert, Joyce; Militello, Matthew
2008-01-01
In this article, the authors use their personal narratives and collaborative portraits as methods to shed light on the complexities of developing a research identity while journeying through a doctoral program. Using the metaphors of a wanderer, a chameleon, and a warrior, their narratives represent portraits of experiences faced by doctoral…
Age-related changes in the tooth-bone interface area of acrodont dentition in the chameleon
Czech Academy of Sciences Publication Activity Database
Dosedělová, Hana; Štěpánková, K.; Zikmund, T.; Lesot, H.; Kaiser, J.; Novotný, K.; Štembírek, Jan; Knotek, Z.; Zahradníček, Oldřich; Buchtová, Marcela
2016-01-01
Roč. 229, č. 3 (2016), s. 356-368 ISSN 0021-8782 R&D Projects: GA ČR GB14-37368G; GA ČR(CZ) GP14-29273P Institutional support: RVO:67985904 ; RVO:68378041 Keywords : Chamaeleo-cylyptratus * tongue projection * veiled chameleon Subject RIV: EA - Cell Biology Impact factor: 2.182, year: 2016
Age-related changes in the tooth-bone interface area of acrodont dentition in the chameleon.
Dosedělová, Hana; Štěpánková, Kateřina; Zikmund, Tomáš; Lesot, Herve; Kaiser, Jozef; Novotný, Karel; Štembírek, Jan; Knotek, Zdeněk; Zahradníček, Oldřich; Buchtová, Marcela
2016-09-01
Chameleon teeth develop as individual structures at a distance from the developing jaw bone during the pre-hatching period and also partially during the post-hatching period. However, in the adult, all teeth are fused together and tightly attached to the jaw bone by mineralized attachment tissue to form one functional unit. Tooth to bone as well as tooth to tooth attachments are so firm that if injury to the oral cavity occurs, several neighbouring teeth and pieces of jaw can be broken off. We analysed age-related changes in chameleon acrodont dentition, where ankylosis represents a physiological condition, whereas in mammals, ankylosis only occurs in a pathological context. The changes in hard-tissue morphology and mineral composition leading to this fusion were analysed. For this purpose, the lower jaws of chameleons were investigated using X-ray micro-computed tomography, laser-induced breakdown spectroscopy and microprobe analysis. For a long time, the dental pulp cavity remained connected with neighbouring teeth and also to the underlying bone marrow cavity. Then, a progressive filling of the dental pulp cavity by a mineralized matrix occurred, and a complex network of non-mineralized channels remained. The size of these unmineralized channels progressively decreased until they completely disappeared, and the dental pulp cavity was filled by a mineralized matrix over time. Moreover, the distribution of calcium, phosphorus and magnesium showed distinct patterns in the different regions of the tooth-bone interface, with a significant progression of mineralization in dentin as well as in the supporting bone. In conclusion, tooth-bone fusion in chameleons results from an enhanced production of mineralized tissue during post-hatching development. Uncovering the developmental processes underlying these outcomes and performing comparative studies is necessary to better understand physiological ankylosis; for that purpose, the chameleon can serve as a useful model
Eastward from Africa: palaeocurrent-mediated chameleon dispersal to the Seychelles islands.
Townsend, Ted M; Tolley, Krystal A; Glaw, Frank; Böhme, Wolfgang; Vences, Miguel
2011-04-23
Madagascar and the Seychelles are Gondwanan remnants currently isolated in the Indian Ocean. In the Late Cretaceous, these islands were joined with India to form the Indigascar landmass, which itself then split into its three component parts around the start of the Tertiary. This history is reflected in the biota of the Seychelles, which appears to contain examples of both vicariance- and dispersal-mediated divergence from Malagasy or Indian sister taxa. One lineage for which this has been assumed but never thoroughly tested is the Seychellean tiger chameleon, a species assigned to the otherwise Madagascar-endemic genus Calumma. We present a multi-locus phylogenetic study of chameleons, and find that the Seychellean species is actually the sister taxon of a southern African clade and requires accomodation in its own genus as Archaius tigris. Divergence dating and biogeographic analyses indicate an origin by transoceanic dispersal from Africa to the Seychelles in the Eocene-Oligocene, providing, to our knowledge, the first such well-documented example and supporting novel palaeocurrent reconstructions.
International Nuclear Information System (INIS)
Zanzi, Andrea
2010-01-01
The chameleonic behavior of the string theory dilaton is suggested. Some of the possible consequences of the chameleonic string dilaton are analyzed in detail. In particular, (1) we suggest a new stringy solution to the cosmological constant problem and (2) we point out the nonequivalence of different conformal frames at the quantum level. In order to obtain these results, we start taking into account the (strong coupling) string loop expansion in the string frame (S-frame), therefore the so-called form factors are present in the effective action. The correct dark energy scale is recovered in the Einstein frame (E-frame) without unnatural fine-tunings and this result is robust against all quantum corrections, granted that we assume a proper structure of the S-frame form factors in the strong coupling regime. At this stage, the possibility still exists that a certain amount of fine-tuning may be required to satisfy some phenomenological constraints. Moreover in the E-frame, in our proposal, all the interactions are switched off on cosmological length scales (i.e., the theory is IR-free), while higher derivative gravitational terms might be present locally (on short distances) and it remains to be seen whether these facts clash with phenomenology. A detailed phenomenological analysis is definitely necessary to clarify these points.
Using an InGrid Detector to Search for Solar Chameleons with CAST
Desch, Klaus; Krieger, Christoph; Lupberger, Michael
2015-01-01
We report on the construction, operation experience, and preliminary background measurements of an InGrid detector, i.e. a MicroMegas detector with CMOS pixel readout. The detector was mounted in the focal plane of the Abrixas X-Ray telescope at the CAST experiment at CERN. The detector is sensitive to soft X-Rays in a broad energy range (0.3--10 keV) and thus enables the search for solar chameleons. Smooth detector operation during CAST data taking in autumn 2014 has been achieved. Preliminary analysis of background data indicates a background rate of $1-5\\times 10^{-5}\\,\\mathrm{keV}^{-1}\\mathrm{cm}^{-2}\\mathrm{s}^{-1}$ above 2 keV and $\\sim 3\\times 10^{-4}\\,\\mathrm{keV}^{-1}\\mathrm{cm}^{-2}\\mathrm{s}^{-1}$ around 1 keV. An expected limit of $\\beta_\\gamma \\lesssim 5\\times 10^{10}$ on the chameleon photon coupling is estimated in case of absence of an excess in solar tracking data. We also discuss the prospects for future operation of the detector.
Ligon, Russell A; McGraw, Kevin J
2013-01-01
Many animals display static coloration (e.g. of feathers or fur) that can serve as a reliable sexual or social signal, but the communication function of rapidly changing colours (as in chameleons and cephalopods) is poorly understood. We used recently developed photographic and mathematical modelling tools to examine how rapid colour changes of veiled chameleons Chamaeleo calyptratus predict aggressive behaviour during male-male competitions. Males that achieved brighter stripe coloration were more likely to approach their opponent, and those that attained brighter head coloration were more likely to win fights; speed of head colour change was also an important predictor of contest outcome. This correlative study represents the first quantification of rapid colour change using organism-specific visual models and provides evidence that the rate of colour change, in addition to maximum display coloration, can be an important component of communication. Interestingly, the body and head locations of the relevant colour signals map onto the behavioural displays given during specific contest stages, with lateral displays from a distance followed by directed, head-on approaches prior to combat, suggesting that different colour change signals may evolve to communicate different information (motivation and fighting ability, respectively).
Directory of Open Access Journals (Sweden)
Michael W Butler
Full Text Available Stressors frequently increase oxidative damage--unless organisms simultaneously mount effective antioxidant responses. One putative mitigative mechanism is the use of biliverdin, an antioxidant produced in the spleen during erythrocyte degradation. We hypothesized that both wild and captive-bred male veiled chameleons (Chamaeleo calyptratus, which are highly aggressive to conspecifics, would respond to agonistic displays with increased levels of oxidative damage, but that increased levels of biliverdin would limit this increase. We found that even just visual exposure to a potential combatant resulted in decreased body mass during the subsequent 48-hour period, but that hematocrit, biliverdin concentration in the bile, relative spleen size, and oxidative damage in plasma, liver, and spleen were unaffected. Contrary to our predictions, we found that individuals with smaller spleens exhibited greater decreases in hematocrit and higher bile biliverdin concentrations, suggesting a revision to the idea of spleen-dependent erythrocyte processing. Interestingly, individuals with larger spleens had reduced oxidative damage in both the liver and spleen, demonstrating the spleen's importance in modulating oxidative damage. We also uncovered differences in spleen size and oxidative damage between wild and captive-bred chameleons, highlighting environmentally dependent differences in oxidative physiology. Lastly, we found no relationship between oxidative damage and biliverdin concentration, calling into question biliverdin's antioxidant role in this species.
Skin pattern structure and function of juvenile ages of Chameleo chameleon
Directory of Open Access Journals (Sweden)
Yosra A. Fouda
2017-03-01
Full Text Available Little is known about the skin structure of juvenile chameleon especially its sensory function of their integumentary structure. Fifteen juvenile Chameleo chameleon are collected from Abu Rawash, Northern area of Giza, Egypt during Summer of 2015. It is belong to the order Squamata, family, Chamaeleonidae. Three ages are used in the present study and categorized according to the morphological criteria of head, abdomen and limb lengths. Dorsal abdominal surfaces are covered with abdominal scales of varying sizes either conical or elliptical-structures, regularly arranged in rows and imbricated with each other. Each scale possessed one cylindrical lenticular epidermal sense organ containing heavy sensillia. Histologically, the scales are characterized by wider conical surfaces and intermingled with another one by hinge region. The epidermal layer of outer scale surface is composed of five-layered stratified squamous epithelium including the stratum germinativum, intermediate zone of stratum spinosum and granulosum, α-keratin layer, β-keratin layer and outer superficial Oberhaütchen. Melanosomes are abundant in the intermediate zone as well as in the peripheral dermal layer underneath stratum germinativum layer. The melanosomes possessed long cellular processes with their content of melanin granules underneath the epidermis. The dermis is composed of upper collagenous and inner compact layer. Semithin sections revealed the presence of fibroblast cells, collagenous fibrils, nerve axons, melanosomes and mast cells in the connective tissue core. Increased immunoreaction of cytokeratin is observed in the epidermal layers of G3; meanwhile, an increased proliferation of epidermal and dermal cells was detected in G1. Transmission electron microscopy exhibited striking formation of dermal sense organs containing neuronal cells of both oligodendrocytes and Schwann cells with myelinated and unmyelinated nerve axons ensheathed externally by thin
A sensitive search for dark energy through chameleon scalar fields using neutron interferometry
International Nuclear Information System (INIS)
Snow, W M; Li, K; Skavysh, V; Arif, M; Huber, M; Heacock, B; Young, A R; Pushin, D
2015-01-01
The physical origin of the dark energy, which is postulated to cause the accelerated expansion rate of the universe, is one of the major open questions of cosmology. A large subset of theories postulate the existence of a scalar field with a nonlinear coupling to matter chosen so that the effective range and/or strength of the field is greatly suppressed unless the source is placed in vacuum. We describe a measurement using neutron interferometry which can place a stringent upper bound on chameleon fields proposed as a solution to the problem of the origin of dark energy of the universe in the regime with a strongly-nolinear coupling term. In combination with other experiments searching for exotic short-range forces and laser-based measurements, slow neutron experiments are capable of eliminating this and many similar types of scalar-field-based dark energy models by laboratory experiments
Holographic dark energy in Brans-Dicke cosmology with chameleon scalar field
International Nuclear Information System (INIS)
Setare, M.R.; Jamil, Mubasher
2010-01-01
We study a cosmological implication of holographic dark energy in the Brans-Dicke gravity. We employ the holographic model of dark energy to obtain the equation of state for the holographic energy density in non-flat (closed) universe enclosed by the event horizon measured from the sphere of horizon named L. Our analysis shows that one can obtain the phantom crossing scenario if the model parameter α (of order unity) is tuned accordingly. Moreover, this behavior is achieved by treating the Brans-Dicke scalar field as a Chameleon scalar field and taking a non-minimal coupling of the scalar field with matter. Hence one can generate phantom-like equation of state from a holographic dark energy model in non-flat universe in the Brans-Dicke cosmology framework.
Chameleonic contribution to the Sunyaev-Zel'dovich radial profile of the Coma cluster
International Nuclear Information System (INIS)
Davis, Anne-Christine; Schelpe, Camilla A. O.; Shaw, Douglas J.
2011-01-01
We constrain the chameleonic Sunyaev-Zel'dovich (CSZ) effect in the Coma cluster from measurements of the Coma radial profile presented in the WMAP 7-year results. The CSZ effect arises from the interaction of a scalar (or pseudoscalar) particle with the cosmic microwave background in the magnetic field of galaxy clusters. We combine this radial profile data with SZ measurements towards the center of the Coma cluster in different frequency bands, to find ΔT SZ,RJ (0)=-410±50 μK and ΔT CSZ 204 GHz (0) > or approx. -50 μK (at 95% confidence) for the thermal SZ and CSZ effects in the cluster, respectively. This leads to an estimated bound on the photon to scalar (or pseudoscalar) coupling strength of g eff -10 GeV -1 .
International Nuclear Information System (INIS)
Jawad, A.; Chattopadhyay, S.; Bhattacharya, S.; Pasqua, A.
2015-01-01
The objective of this paper is to discuss the Chameleon Brans–Dicke gravity with non-minimally matter coupling of scalar field. We take modified Holographic Ricci dark energy model in this gravity with its energy density in interaction with energy density of cold dark matter. We assume power-law ansatz for scale factor and scalar field to discuss potential as well as coupling functions in the evolving universe. These reconstructed functions are plotted versus scalar field and time for different values of power component of scale factor n. We observe that potential and coupling functions represent increasing behavior, in particular, consistent results for a specific value of n. Finally, we have examined validity of the generalized second law of thermodynamics and we have observed its validity for all values of n. (paper)
Holographic dark energy in Brans-Dicke cosmology with chameleon scalar field
Energy Technology Data Exchange (ETDEWEB)
Setare, M.R., E-mail: rezakord@ipm.i [Department of Science of Bijar, University of Kurdistan, Bijar (Iran, Islamic Republic of); Jamil, Mubasher, E-mail: mjamil@camp.edu.p [Center for Advanced Mathematics and Physics, National University of Sciences and Technology, Rawalpindi 46000 (Pakistan)
2010-06-07
We study a cosmological implication of holographic dark energy in the Brans-Dicke gravity. We employ the holographic model of dark energy to obtain the equation of state for the holographic energy density in non-flat (closed) universe enclosed by the event horizon measured from the sphere of horizon named L. Our analysis shows that one can obtain the phantom crossing scenario if the model parameter {alpha} (of order unity) is tuned accordingly. Moreover, this behavior is achieved by treating the Brans-Dicke scalar field as a Chameleon scalar field and taking a non-minimal coupling of the scalar field with matter. Hence one can generate phantom-like equation of state from a holographic dark energy model in non-flat universe in the Brans-Dicke cosmology framework.
Jawad, A.; Chattopadhyay, S.; Bhattacharya, S.; Pasqua, A.
2015-04-01
The objective of this paper is to discuss the Chameleon Brans-Dicke gravity with non-minimally matter coupling of scalar field. We take modified Holographic Ricci dark energy model in this gravity with its energy density in interaction with energy density of cold dark matter. We assume power-law ansatz for scale factor and scalar field to discuss potential as well as coupling functions in the evolving universe. These reconstructed functions are plotted versus scalar field and time for different values of power component of scale factor n. We observe that potential and coupling functions represent increasing behavior, in particular, consistent results for a specific value of n. Finally, we have examined validity of the generalized second law of thermodynamics and we have observed its validity for all values of n. The financial Supported from Department of Science and Technology, Govt. of India under Project Grant No. SR/FTP/PS-167/2011 is thankfully acknowledged by SC
Khannoon, Eraqi R.; Endlein, Thomas; Russell, Anthony P.; Autumn, Kellar
2014-01-01
The striking morphological convergence of hair-like integumentary derivatives of lizards and arthropods (spiders and insects) demonstrates the importance of such features for enhancing purchase on the locomotor substrate. These pilose structures are responsible for the unique tractive abilities of these groups of animals, enabling them to move with seeming ease on overhanging and inverted surfaces, and to traverse inclined smooth substrates. Three groups of lizards are well known for bearing adhesion-promoting setae on their digits: geckos, anoles and skinks. Similar features are also found on the ventral subdigital and distal caudal skin of chameleons. These have only recently been described in any detail, and structurally and functionally are much less well understood than are the setae of geckos and anoles. The seta-like structures of chameleons are not branched (a characteristic of many geckos), nor do they terminate in spatulate tips (which is characteristic of geckos, anoles and skinks). They are densely packed and have attenuated blunt, globose tips or broad, blade-like shafts that are flattened for much of their length. Using a force transducer, we tested the hypothesis that these structures enhance friction and demonstrate that the pilose skin has a greater frictional coefficient than does the smooth skin of these animals. Our results are consistent with friction being generated as a result of side contact of the integumentary filaments. We discuss the evolutionary and functional implications of these seta-like structures in comparison with those typical of other lizard groups and with the properties of seta-mimicking synthetic structures. PMID:24285195
Directory of Open Access Journals (Sweden)
G John Measey
Full Text Available The Eastern Arc Mountains (EAM is an example of naturally fragmented tropical forests, which contain one of the highest known concentrations of endemic plants and vertebrates. Numerous paleo-climatic studies have not provided direct evidence for ancient presence of Pleistocene forests, particularly in the regions in which savannah presently occurs. Knowledge of the last period when forests connected EAM would provide a sound basis for hypothesis testing of vicariance and dispersal models of speciation. Dated phylogenies have revealed complex patterns throughout EAM, so we investigated divergence times of forest fauna on four montane isolates in close proximity to determine whether forest break-up was most likely to have been simultaneous or sequential, using population genetics of a forest restricted arboreal chameleon, Kinyongia boehmei.We used mitochondrial and nuclear genetic sequence data and mutation rates from a fossil-calibrated phylogeny to estimate divergence times between montane isolates using a coalescent approach. We found that chameleons on all mountains are most likely to have diverged sequentially within the Pleistocene from 0.93-0.59 Ma (95% HPD 0.22-1.84 Ma. In addition, post-hoc tests on chameleons on the largest montane isolate suggest a population expansion ∼182 Ka.Sequential divergence is most likely to have occurred after the last of three wet periods within the arid Plio-Pleistocene era, but was not correlated with inter-montane distance. We speculate that forest connection persisted due to riparian corridors regardless of proximity, highlighting their importance in the region's historic dispersal events. The population expansion coincides with nearby volcanic activity, which may also explain the relative paucity of the Taita's endemic fauna. Our study shows that forest chameleons are an apposite group to track forest fragmentation, with the inference that forest extended between some EAM during the Pleistocene 1
Directory of Open Access Journals (Sweden)
Zdeněk Knotek
2011-01-01
Full Text Available A two-year old male warty chameleon (Furcifer verrucosus weighing 160 g was presented for veterinary examination following 4 weeks of decreased ability to catch insects with the tongue and difficulty in swallowing the prey. Non-invasive endoscopy did not reveal any macroscopic changes of the oral cavity mucosa or the cranial part of the esophagus. Dorsoventral and laterolateral plain and contrast radiographs revealed enlargement of the medial part of the liver without any visible abnormalities in the regions of the esophagus, stomach or small intestine. Abnormalities in the plasma chemistry profile included transient hyperglycaemia (52.68–57.18 mmol/l and hyperuricaemia (452.70–622.20 μmol/l. The chameleon was examined at 7, 20 and 22 weeks after initial examination. Its body weight decreased to 120 g. A blood profile revealed normoglycaemia (16.37–10.22 mmol/l and hyperphosphataemia (2.92–3.06 mmol/l at the last three examinations. The chameleon died suddenly 33 days after the final examination. Necropsy revealed the presence of a large liver cyst, filled with fluid. The liver had lost all of its normal structure. The kidneys showed a large area with fibrosis and multiple uric acid tophi. The post mortem findings were defined as liver with fatty degeneration and moderate fibrotic changes with large cyst, subchronic nephritis with uric acid tophi, and mineralization in the myocardium. This paper describes the first documented case of transient hyperglycaemia in a warty chameleon (Furcifer verrucosus associated with chronic liver disease and subchronic nephritis.
Akani, G. C.; Ogbalu, O. K.; Luiselli, L.
2001-01-01
Five species of chameleons were observed in the continuous forest zone of southern Nigeria: Chamaeleo gracilis gracilis Hallowell, 1842, Chamaeleo owenii Gray, 1831, Chamaeleo cristatus Stutchbury, 1837, Chamaeleo wiedersheimi Nieden, 1910, and Rhampholeon spectrum (Bucholz 1874). Many original locality records are presented for each species. One species is apparently rare and confined to montane habitats (C. wiedersheimi), another species is relatively common and its habitat is generalist (C...
Bar-Yaacov, Dan; Bouskila, Amos; Mishmar, Dan
2013-01-01
Recently, we found dramatic mitochondrial DNA divergence of Israeli Chamaeleo chamaeleon populations into two geographically distinct groups. We aimed to examine whether the same pattern of divergence could be found in nuclear genes. However, no genomic resource is available for any chameleon species. Here we present the first chameleon transcriptome, obtained using deep sequencing (SOLiD). Our analysis identified 164,000 sequence contigs of which 19,000 yielded unique BlastX hits. To test the efficacy of our sequencing effort, we examined whether the chameleon and other available reptilian transcriptomes harbored complete sets of genes comprising known biochemical pathways, focusing on the nDNA-encoded oxidative phosphorylation (OXPHOS) genes as a model. As a reference for the screen, we used the human 86 (including isoforms) known structural nDNA-encoded OXPHOS subunits. Analysis of 34 publicly available vertebrate transcriptomes revealed orthologs for most human OXPHOS genes. However, OXPHOS subunit COX8 (Cytochrome C oxidase subunit 8), including all its known isoforms, was consistently absent in transcriptomes of iguanian lizards, implying loss of this subunit during the radiation of this suborder. The lack of COX8 in the suborder Iguania is intriguing, since it is important for cellular respiration and ATP production. Our sequencing effort added a new resource for comparative genomic studies, and shed new light on the evolutionary dynamics of the OXPHOS system.
Search for chameleons with an InGrid based X-ray detector at the CAST experiment
Energy Technology Data Exchange (ETDEWEB)
Desch, Klaus; Kaminski, Jochen; Krieger, Christoph; Schmidt, Sebastian [Physikalisches Institut, Universitaet Bonn, Nussallee 12, 53115 Bonn (Germany)
2016-07-01
The CERN Axion Solar Telescope (CAST) searches for axions and also other exotic particles emerging from the Sun. Chameleons, for example, are part of Dark Energy theories. Like Axions they can be converted into soft X-ray photons in a high magnetic field and should result in an X-ray spectrum peaking below 1 keV. Because of their low energy and weak coupling, detectors with low energy threshold and low background rates are mandatory. Both requirements are met by an X-ray detector based on the combination of a Micromegas gas amplification stage with a highly integrated pixel chip which allows to make full use of the Micromegas structure's granularity. It has been demonstrated that these devices can detect even single electrons. Thus, allowing for a topological background suppression as well as for detection of low energy X-ray photons creating only very few primary electrons. After the detection threshold had been evaluated to be low enough to allow for the detection of the carbon K{sub α} line at 277 eV, the detector was mounted at one of CAST's X-ray telescopes and installed along with its infrastructure in 2014. During data taking until end of 2015 background rates of less than 10{sup -4} keV/(cm{sup 2}.s) have been achieved below 2 keV. First preliminary results of the ongoing chameleon analysis and possibly an improved limit for solar chameleons are presented.
Directory of Open Access Journals (Sweden)
Akani, G. C.
2001-12-01
Full Text Available Five species of chameleons were observed in the continuous forest zone of southern Nigeria: Chamaeleo gracilis gracilis Hallowell, 1842, Chamaeleo owenii Gray, 1831, Chamaeleo cristatus Stutchbury, 1837, Chamaeleo wiedersheimi Nieden, 1910, and Rhampholeon spectrum (Bucholz 1874. Many original locality records are presented for each species. One species is apparently rare and confined to montane habitats (C. wiedersheimi, another species is relatively common and its habitat is generalist (C. gracilis, and the other three species are vulnerable and limited to specific micro-habitats. Female R. spectrum had clutch sizes of two eggs each and exhibited a prolonged reproductive season with oviposition likely occurring during the late phase of the dry season. Females of both C. cristatus (clutch sizes: 11-14 eggs and C. owenii (clutch sizes: 15-19 eggs have a shorter reproductive season with oviposition occurring most probably at the interphase between the end of the wet season and the onset of the dry season, and female C. gracilis (clutch sizes: 14-23 eggs appeared to exhibit two distinct oviposition periods (one at the interphase between the end of the wet season and the onset of the dry season, and one at the peak phase of the dry season. Diets of four sympatric species of chameleons consisted almost exclusively of arthropods. There were significant inter-group differences at either intra-specific level (with the females of the two best studied species, i.e. R. spectrum and C. gracilis, having a wider food niche breadth than males or inter-specific level (with a continuum of dietary specialization from the less generalist (C. cristatus to the more generalist (C. gracilis. However, ‘thread-trailing’ experiments indicated that activity patterns of Nigerian chameleons were relatively similar among species. The overall abundance of chameleons (as estimated from the number of specimens observed in the time unit of field effort was relatively
Solar system and equivalence principle constraints on f(R) gravity by the chameleon approach
International Nuclear Information System (INIS)
Capozziello, Salvatore; Tsujikawa, Shinji
2008-01-01
We study constraints on f(R) dark energy models from solar system experiments combined with experiments on the violation of the equivalence principle. When the mass of an equivalent scalar field degree of freedom is heavy in a region with high density, a spherically symmetric body has a thin shell so that an effective coupling of the fifth force is suppressed through a chameleon mechanism. We place experimental bounds on the cosmologically viable models recently proposed in the literature that have an asymptotic form f(R)=R-λR c [1-(R c /R) 2n ] in the regime R>>R c . From the solar system constraints on the post-Newtonian parameter γ, we derive the bound n>0.5, whereas the constraints from the violations of the weak and strong equivalence principles give the bound n>0.9. This allows a possibility to find the deviation from the Λ-cold dark matter (ΛCDM) cosmological model. For the model f(R)=R-λR c (R/R c ) p with 0 -10 , which shows that this model is hardly distinguishable from the ΛCDM cosmology
Revisiting chameleon gravity: Thin-shell and no-shell fields with appropriate boundary conditions
International Nuclear Information System (INIS)
Tamaki, Takashi; Tsujikawa, Shinji
2008-01-01
We derive analytic solutions of a chameleon scalar field φ that couples to a nonrelativistic matter in the weak gravitational background of a spherically symmetric body, paying particular attention to a field mass m A inside of the body. The standard thin-shell field profile is recovered by taking the limit m A r c →∞, where r c is a radius of the body. We show the existence of ''no-shell'' solutions where the field is nearly frozen in the whole interior of the body, which does not necessarily correspond to the 'zero-shell' limit of thin-shell solutions. In the no-shell case, under the condition m A r c >>1, the effective coupling of φ with matter takes the same asymptotic form as that in the thin-shell case. We study experimental bounds coming from the violation of equivalence principle as well as solar-system tests for a number of models including f(R) gravity and find that the field is in either the thin-shell or the no-shell regime under such constraints, depending on the shape of scalar-field potentials. We also show that, for the consistency with local gravity constraints, the field at the center of the body needs to be extremely close to the value φ A at the extremum of an effective potential induced by the matter coupling.
Andrews, Robin M
2008-10-01
I evaluated the effect of incubation temperature on phenotypes of the veiled chameleon, Chamaeleo calyptratus. I chose this species for study because its large clutch size (30-40 eggs or more) allows replication within clutches both within and among experimental treatments. The major research objectives were (1) to assess the effect of constant low, moderate, and high temperatures on embryonic development, (2) to determine whether the best incubation temperature for embryonic development also produced the "best" hatchlings, and (3) to determine how a change in incubation temperature during mid-development would affect phenotype. To meet these objectives, I established five experimental temperature regimes and determined egg survival and incubation length and measured body size and shape, selected body temperatures, and locomotory performance of lizards at regular intervals from hatching to 90 d, or just before sexual maturity. Incubation temperature affected the length of incubation, egg survival, and body mass, but did not affect sprint speed or selected body temperature although selected body temperature affected growth in mass independently of treatment and clutch. Incubation at moderate temperatures provided the best conditions for both embryonic and post-hatching development. The highest incubation temperatures were disruptive to development; eggs had high mortality, developmental rate was low, and hatchlings grew slowly. Changes in temperature during incubation increased the among-clutch variance in incubation length relative to that of constant temperature treatments. Copyright 2008 Wiley-Liss, Inc.
McAllister, Chris T
2012-10-01
A captive specimen of Meller's chameleon, Trioceros melleri (Gray), originally from Tanzania and housed at the Oklahoma City Zoological Park Herpetarium, Oklahoma County, Oklahoma, was found to be passing an undescribed species of Choleoeimeria in its feces. Oocysts of Choleoeimeria steveuptoni n. sp. were cylindroidal, 38.5 × 17.8 (36-42 × 17-19) µm with a bilayered wall and a shape index (length/width) of 2.2. A micropyle and oocyst residuum were absent, but a fragmented polar granule was often present. Ovoidal sporocysts were composed of 2 valves joined by a suture and measured 11.3 × 9.1 (11-12 × 9-10) µm; shape index of 1.3. Stieda, sub-Stieda, and para-Stieda bodies were absent. The sporocyst residuum consists of multiple globules dispersed along the perimeter of the sporocyst and between sporozoites. Sporozoites were elongate, 13.1 × 2.9 (12-15 × 2.6-3.2) µm with an elongate posterior refractile body. The new species represents the second coccidian documented from this lizard.
McAllister, Chris T
2012-02-01
One of three (33%) captive specimens of Oustalet's chameleon, Furcifer oustaleti (Mocquard) originally from Madagascar and housed at the Oklahoma City Zoological Park Herpetarium, Oklahoma County, Oklahoma, USA, was found to be passing an undescribed species of Choleoeimeria in its faeces. Oocysts of Choleoeimeria fischeri sp. n. were cylindroidal, 30.3 x 16.8 (28-34 x 15-18) microm, with a smooth, bilayered wall and a length/width ratio (L/W) of 1.8. A micropyle and oocyst residuum was absent but a fragmented polar granule was often present. Sporocysts were ovoidal, 9.6 x 8.0 (9-10 x 7-9) jm, with an L/W of 1.2. Stieda, sub-Stieda, and para-Stieda bodies were absent. The sporocyst residuum consists of large globules dispersed between sporozoites. Sporozoites were elongate, 8.6 x 2.9 (8-10 x 2-3) microm, with an elongate posterior refractile body. The new species represents the second coccidian described from this lizard.
An Access Control Protocol for Wireless Sensor Network Using Double Trapdoor Chameleon Hash Function
Directory of Open Access Journals (Sweden)
Tejeshwari Thakur
2016-01-01
Full Text Available Wireless sensor network (WSN, a type of communication system, is normally deployed into the unattended environment where the intended user can get access to the network. The sensor nodes collect data from this environment. If the data are valuable and confidential, then security measures are needed to protect them from the unauthorized access. This situation requires an access control protocol (ACP in the design of sensor network because of sensor nodes which are vulnerable to various malicious attacks during the authentication and key establishment and the new node addition phase. In this paper, we propose a secured ACP for such WSN. This protocol is based on Elliptic Curve Discrete Log Problem (ECDLP and double trapdoor chameleon hash function which secures the WSN from malicious attacks such as node masquerading attack, replay attack, man-in-the-middle attack, and forgery attacks. Proposed ACP has a special feature known as session key security. Also, the proposed ACP is more efficient as it requires only one modular multiplication during the initialization phase.
Cluster abundance in chameleon f ( R ) gravity I: toward an accurate halo mass function prediction
Energy Technology Data Exchange (ETDEWEB)
Cataneo, Matteo; Rapetti, David [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, 2100 Copenhagen (Denmark); Lombriser, Lucas [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ (United Kingdom); Li, Baojiu, E-mail: matteoc@dark-cosmology.dk, E-mail: drapetti@dark-cosmology.dk, E-mail: llo@roe.ac.uk, E-mail: baojiu.li@durham.ac.uk [Institute for Computational Cosmology, Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom)
2016-12-01
We refine the mass and environment dependent spherical collapse model of chameleon f ( R ) gravity by calibrating a phenomenological correction inspired by the parameterized post-Friedmann framework against high-resolution N -body simulations. We employ our method to predict the corresponding modified halo mass function, and provide fitting formulas to calculate the enhancement of the f ( R ) halo abundance with respect to that of General Relativity (GR) within a precision of ∼< 5% from the results obtained in the simulations. Similar accuracy can be achieved for the full f ( R ) mass function on the condition that the modeling of the reference GR abundance of halos is accurate at the percent level. We use our fits to forecast constraints on the additional scalar degree of freedom of the theory, finding that upper bounds competitive with current Solar System tests are within reach of cluster number count analyses from ongoing and upcoming surveys at much larger scales. Importantly, the flexibility of our method allows also for this to be applied to other scalar-tensor theories characterized by a mass and environment dependent spherical collapse.
Stroke Chameleons Manifesting as Distinct Radial Neuropathies: Expertise Can Hasten the Diagnosis
Directory of Open Access Journals (Sweden)
Fabrício Diniz de Lima
2017-12-01
Full Text Available Objective: Stroke chameleons encompass an atypical group of syndromes that do not initially appear to be cerebrovascular accidents. The objective of this study was to report patients with different lesions of central origin clinically presenting as wrist drop and with a semiology similar to that produced by peripheral lesions of the radial nerve at different topographical levels. Methods: This is a case series study of patients presenting with wrist drop during the acute phase of stroke who were assessed by clinical examination and CT and MRI brain scans. Results: Three cases presenting as monoparesis were evaluated. In all patients, the MRI revealed restricted diffusion in the pre- and post-central gyrus. Electromyography showed that the functionality of the radial, median, and ulnar nerves were intact in all three cases. The monoparesis resolved completely within 1 month of rehabilitation therapy, and no evidence of recurrent or new events was reported during the 6-month follow-up after stenting. Conclusion: The central message of this study is that when acute onset symptoms are present in a relatively old patient with vascular risk factors, stroke should be considered as the possible aetiology until proven otherwise, and the appropriate steps should be taken to avoid a delay in the treatment and to improve outcomes.
Directory of Open Access Journals (Sweden)
Ange-Marie Risterucci
2012-09-01
Full Text Available A set of polymorphic loci was characterised using an enrichment library for the Australian alpine specialist, the chameleon grasshopper (Kosciuscola tristis, an atypical grasshopper known for its remarkable temperature-controlled colour change. The number of alleles per locus ranged from three to 20 and observed heterozygosity from 0.16 to 0.76. These are the first microsatellite markers for a non-endangered Australian alpine animal and will inform questions of gene flow across the sky islands of this unique and threatened region.
DEFF Research Database (Denmark)
Mahnke, Martina; Uprichard, Emma
2014-01-01
Imagine sailing across the ocean. The sun is shining, vastness all around you. And suddenly [BOOM] you’ve hit an invisible wall. Welcome to the Truman Show! Ever since Eli Pariser published his thoughts on a potential filter bubble, this movie scenario seems to have become reality, just with slight...... changes: it’s not the ocean, it’s the internet we’re talking about, and it’s not a TV show producer, but algorithms that constitute a sort of invisible wall. Building on this assumption, most research is trying to ‘tame the algorithmic tiger’. While this is a valuable and often inspiring approach, we...
Directory of Open Access Journals (Sweden)
Lhermitte-Vallarino N.
2008-12-01
Full Text Available The lung nematodes of the genus Rhabdias parasitic in chameleons were previously only known from east Africa and Madagascar. Two new species are described from Cameroon: i Rhabdias okuensis n. sp., type-host Chamaeleo (Trioceros quadricornis gracilior, from Mont Oku, is frequent; it resembles R. jarki from Burundi, with a short buccal capsule and a long, thin oesophagus, and is distinguished by its large cervical vesicle and cephalic characters (mouth aperture, papillae. The female parasites are hermaphroditic (spermatozoa identified and they pierce the lung wall and induce lesions, as R. jarki. In the same locality, another chameleon, C. (T. w. wiedersheimi also harbours R. okuensis, as demonstrated with the 12S rDNA and coxI gene sequences. ii R. cristati n. sp., type-host C. (T. cristatus, from Mount Cameroon, is described from one heavily infected specimen; it resembles R. chamaeleonis from East Africa, and is distinguished by the large buccal capsule and the thick apex of the intestine. The free-living phase, studied in R. okuensis, presents characters of other Rhabdias from chameleons: heterogony, development of larvae through matricidal endotoky, infective larval stages with a thick, rounded caudal extremity, exuvium transformed into a thick cuticular sheeth. Each free-living female produces one larva, as in other African Rhabdias, whereas the female of R. gemellipara, a parasite of a Malagasy chameleon, produces two larvae.
Czech Academy of Sciences Publication Activity Database
Barej, M. F.; Ineich, I.; Gvoždík, Václav; Lhermitte-Vallarino, N.; Gonwouo, N.L.; Le Breton, M.; Bott, U.; Schmitz, A.
2010-01-01
Roč. 57, č. 2 (2010), s. 211-229 ISSN 2190-7307 R&D Projects: GA MŠk LC06073 Institutional research plan: CEZ:AV0Z50450515 Keywords : Chameleon serratus * Cameroon * insights Subject RIV: EG - Zoology
Florio, A M; Ingram, C M; Rakotondravony, H A; Louis, E E; Raxworthy, C J
2012-07-01
Species delimitation within recently evolved groups can be challenging because species may be difficult to distinguish morphologically. Following the General Lineage Concept, we apply a multiple evidence approach to assess species limits within the carpet chameleon Furcifer lateralis, which is endemic to Madagascar and exported in large numbers for the pet trade. Cryptic speciation within F. lateralis was considered likely because this species (1) has a vast distribution, (2) occupies exceptionally diverse habitats and (3) exhibits subtle regional differences in morphology. Phylogenetic trees reconstructed using nuclear and mitochondrial genes recovered three well-supported clades corresponding with geography. Morphological results based on canonical variates analysis show that these clades exhibit subtle differences in head casque morphology. Ecological niche modelling results found that these phylogenetic groups also occupy unique environmental space and exhibit patterns of regional endemism typical of other endemic reptiles. Combined, our findings provide diverse yet consistent evidence for the existence of three species. Consequently, we elevate the subspecies F. lateralis major to species rank and name a new species distributed in northern and western Madagascar. Initial ecological divergence, associated with speciation of F. lateralis in humid eastern habitat, fits the Ecographic Constraint model for species diversification in Madagascar. By contrast, the second speciation event provides some support for the Riverine Barrier model, with the Mangoky River possibly causing initial isolation between species. These findings thus support two contrasting models of speciation within closely related species and demonstrate the utility of applying a combined-evidence approach for detecting cryptic speciation. © 2012 The Authors. Journal of Evolutionary Biology © 2012 European Society For Evolutionary Biology.
Kirova, T.; Cinins, A.; Efimov, D. K.; Bruvelis, M.; Miculis, K.; Bezuglov, N. N.; Auzinsh, M.; Ryabtsev, I. I.; Ekers, A.
2017-10-01
This paper is devoted to clarifying the implications of hyperfine (HF) interaction in the formation of adiabatic (i.e., "laser-dressed") states and their expression in the Autler-Townes (AT) spectra. We first use the Morris-Shore model [J. R. Morris and B. W. Shore, Phys. Rev. A 27, 906 (1983), 10.1103/PhysRevA.27.906] to illustrate how bright and dark states are formed in a simple reference system where closely spaced energy levels are coupled to a single state with a strong laser field with the respective Rabi frequency ΩS. We then expand the simulations to realistic hyperfine level systems in Na atoms for a more general case when non-negligible HF interaction can be treated as a perturbation in the total system Hamiltonian. A numerical analysis of the adiabatic states that are formed by coupling of the 3 p3 /2 and 4 d5 /2 states by the strong laser field and probed by a weak laser field on the 3 s1 /2-3 p3 /2 transition yielded two important conclusions. Firstly, the perturbation introduced by the HF interaction leads to the observation of what we term "chameleon" states—states that change their appearance in the AT spectrum, behaving as bright states at small to moderate ΩS, and fading from the spectrum similarly to dark states when ΩS is much larger than the HF splitting of the 3 p3 /2 state. Secondly, excitation by the probe field from two different HF levels of the ground state allows one to address orthogonal sets of adiabatic states; this enables, with appropriate choice of ΩS and the involved quantum states, a selective excitation of otherwise unresolved hyperfine levels in excited electronic states.
Static structure of chameleon dark matter as an explanation of dwarf spheroidal galaxy cores
Chanda, Prolay Krishna; Das, Subinoy
2017-04-01
We propose a novel mechanism that explains the cored dark matter density profile in recently observed dark matter rich dwarf spheroidal galaxies. In our scenario, dark matter particle mass decreases gradually as a function of distance towards the center of a dwarf galaxy due to its interaction with a chameleon scalar. At closer distance towards the Galactic center the strength of attractive scalar fifth force becomes much stronger than gravity and is balanced by the Fermi pressure of the dark matter cloud; thus, an equilibrium static configuration of the dark matter halo is obtained. Like the case of soliton star or fermion Q-star, the stability of the dark matter halo is obtained as the scalar achieves a static profile and reaches an asymptotic value away from the Galactic center. For simple scalar-dark matter interaction and quadratic scalar self-interaction potential, we show that dark matter behaves exactly like cold dark matter (CDM) beyond a few kpc away from the Galactic center but at closer distance it becomes lighter and Fermi pressure cannot be ignored anymore. Using Thomas-Fermi approximation, we numerically solve the radial static profile of the scalar field, fermion mass and dark matter energy density as a function of distance. We find that for fifth force mediated by an ultralight scalar, it is possible to obtain a flattened dark matter density profile towards the Galactic center. In our scenario, the fifth force can be neglected at distance r ≥1 kpc from the Galactic center and dark matter can be simply treated as heavy nonrelativistic particles beyond this distance, thus reproducing the success of CDM at large scales.
Segall, Marion; Tolley, Krystal A; Vanhooydonck, Bieke; Measey, G John; Herrel, Anthony
2013-10-15
Temperature is an extrinsic factor that influences reptile behavior because of its impact on reptile physiology. Understanding the impact of temperature on performance traits is important as it may affect the ecology and fitness of ectothermic animals such as reptiles. Here, we examined the temperature dependence of performance in two species of South African dwarf chameleon (Bradypodion): one adapted to a semi-arid environment and one to a mesic environment. Ecologically relevant performance traits were tested at different temperatures to evaluate their thermal dependence, and temperature-performance breadths for 80% and 90% of each performance trait were calculated. Our results show distinct differences in the thermal dependence of speed- versus force-related performance traits. Moreover, our results show that the semi-arid species is better adapted to higher temperatures and as such has a better chance of coping with the predicted increases in environmental temperature. The mesic area-adapted species seems to be more sensitive to an increase in temperature and could therefore potentially be threatened by the predicted future climate change. However, further studies investigating the potential for acclimation in chameleons are needed to better understand how animals may respond to future climate change.
Directory of Open Access Journals (Sweden)
Lhermitte-Vallarino N.
2009-06-01
Full Text Available To date Rhabdias gemellipara is the only species described from Malagasy chameleons, but heterogeneity of the material had been suspected. 11 samples of Rhabdias parasites present in the Paris Natural History Museum collection were examined. The size and shape of the buccal capsule, shape and length of the oesophagus, shape of the apical region of the intestine, extent of the genital tract and structure of the cuticular vesicle led to the distinction of five species. Rhabdias rabetafikae n. sp. parasitises Calumma cucullatum in the northeastern region (Cap Machoual. In the eastern region, R. nasutum n. sp. is parasitic in C. nasutum, and R. brevicorne n. sp. in C. brevicorne. All three species are similar in size to the African species parasitic in chameleons from which they can be distinguished by several characters. The small species, R. gemellipara, type host C. parsonii from the eastern region, was also found in C. brevicorne from the same geographic region. In the central region, Rhabdias sp., equally collected from C. brevicorne, is distinguished from R. gemellipara by a laterally flattened buccal capsule. All Malagasy species are hermaphrodites. Throughout the worm’s life spermatozoids are formed intermittently in a band of cells situated at 1-2 mm from the extremity of the ovaries; they migrate in the ovaries and accumulate in the oviducts.
De Götzen , Amalia; Mion , Luca; Tache , Olivier
2007-01-01
International audience; We call sound algorithms the categories of algorithms that deal with digital sound signal. Sound algorithms appeared in the very infancy of computer. Sound algorithms present strong specificities that are the consequence of two dual considerations: the properties of the digital sound signal itself and its uses, and the properties of auditory perception.
Wang, Lui; Bayer, Steven E.
1991-01-01
Genetic algorithms are mathematical, highly parallel, adaptive search procedures (i.e., problem solving methods) based loosely on the processes of natural genetics and Darwinian survival of the fittest. Basic genetic algorithms concepts are introduced, genetic algorithm applications are introduced, and results are presented from a project to develop a software tool that will enable the widespread use of genetic algorithm technology.
Urns and Chameleons: two metaphors for two different types of measurements
International Nuclear Information System (INIS)
Accardi, Luigi
2013-01-01
-existent properties' (urn metaphor) and measurements consisting in reading 'a response to an interaction' (chameleon metaphor). The non-trivial point is that one can prove that, while the urn scheme cannot lead to empirical data outside of classic probability, response based measurements can give rise to non classical statistics. The talk will include entirely classical examples of non classical statistics and potential applications to economic, sociological or biomedical phenomena
Joux, Antoine
2009-01-01
Illustrating the power of algorithms, Algorithmic Cryptanalysis describes algorithmic methods with cryptographically relevant examples. Focusing on both private- and public-key cryptographic algorithms, it presents each algorithm either as a textual description, in pseudo-code, or in a C code program.Divided into three parts, the book begins with a short introduction to cryptography and a background chapter on elementary number theory and algebra. It then moves on to algorithms, with each chapter in this section dedicated to a single topic and often illustrated with simple cryptographic applic
Mahler, D Luke; Lambert, Shea M; Geneva, Anthony J; Ng, Julienne; Hedges, S Blair; Losos, Jonathan B; Glor, Richard E
2016-09-01
We report a new chameleon-like Anolis species from Hispaniola that is ecomorphologically similar to congeners found only on Cuba. Lizards from both clades possess short limbs and a short tail and utilize relatively narrow perches, leading us to recognize a novel example of ecomorphological matching among islands in the well-known Greater Antillean anole radiation. This discovery supports the hypothesis that the assembly of island faunas can be substantially deterministic and highlights the continued potential for basic discovery to reveal new insights in well-studied groups. Restricted to a threatened band of midelevation transitional forest near the border of the Dominican Republic and Haiti, this new species appears to be highly endangered.
Hougardy, Stefan
2016-01-01
Algorithms play an increasingly important role in nearly all fields of mathematics. This book allows readers to develop basic mathematical abilities, in particular those concerning the design and analysis of algorithms as well as their implementation. It presents not only fundamental algorithms like the sieve of Eratosthenes, the Euclidean algorithm, sorting algorithms, algorithms on graphs, and Gaussian elimination, but also discusses elementary data structures, basic graph theory, and numerical questions. In addition, it provides an introduction to programming and demonstrates in detail how to implement algorithms in C++. This textbook is suitable for students who are new to the subject and covers a basic mathematical lecture course, complementing traditional courses on analysis and linear algebra. Both authors have given this "Algorithmic Mathematics" course at the University of Bonn several times in recent years.
Glaw, Frank; Köhler, Jörn; Townsend, Ted M.; Vences, Miguel
2012-01-01
Background One clade of Malagasy leaf chameleons, the Brookesia minima group, is known to contain species that rank among the smallest amniotes in the world. We report on a previously unrecognized radiation of these miniaturized lizards comprising four new species described herein. Methodology/Principal Findings The newly discovered species appear to be restricted to single, mostly karstic, localities in extreme northern Madagascar: Brookesia confidens sp. n. from Ankarana, B. desperata sp. n. from Forêt d'Ambre, B. micra sp. n. from the islet Nosy Hara, and B. tristis sp. n. from Montagne des Français. Molecular phylogenetic analyses based on one mitochondrial and two nuclear genes of all nominal species in the B. minima group congruently support that the four new species, together with B. tuberculata from Montagne d'Ambre in northern Madagascar, form a strongly supported clade. This suggests that these species have diversified in geographical proximity in this small area. All species of the B. minima group, including the four newly described ones, are characterized by very deep genetic divergences of 18–32% in the ND2 gene and >6% in the 16S rRNA gene. Despite superficial similarities among all species of this group, their status as separate evolutionary lineages is also supported by moderate to strong differences in external morphology, and by clear differences in hemipenis structure. Conclusion/Significance The newly discovered dwarf chameleon species represent striking cases of miniaturization and microendemism and suggest the possibility of a range size-body size relationship in Malagasy reptiles. The newly described Brookesia micra reaches a maximum snout-vent length in males of 16 mm, and its total length in both sexes is less than 30 mm, ranking it among the smallest amniote vertebrates in the world. With a distribution limited to a very small islet, this species may represent an extreme case of island dwarfism. PMID:22348069
Directory of Open Access Journals (Sweden)
Frank Glaw
Full Text Available BACKGROUND: One clade of Malagasy leaf chameleons, the Brookesia minima group, is known to contain species that rank among the smallest amniotes in the world. We report on a previously unrecognized radiation of these miniaturized lizards comprising four new species described herein. METHODOLOGY/PRINCIPAL FINDINGS: The newly discovered species appear to be restricted to single, mostly karstic, localities in extreme northern Madagascar: Brookesia confidens sp. n. from Ankarana, B. desperata sp. n. from Forêt d'Ambre, B. micra sp. n. from the islet Nosy Hara, and B. tristis sp. n. from Montagne des Français. Molecular phylogenetic analyses based on one mitochondrial and two nuclear genes of all nominal species in the B. minima group congruently support that the four new species, together with B. tuberculata from Montagne d'Ambre in northern Madagascar, form a strongly supported clade. This suggests that these species have diversified in geographical proximity in this small area. All species of the B. minima group, including the four newly described ones, are characterized by very deep genetic divergences of 18-32% in the ND2 gene and >6% in the 16S rRNA gene. Despite superficial similarities among all species of this group, their status as separate evolutionary lineages is also supported by moderate to strong differences in external morphology, and by clear differences in hemipenis structure. CONCLUSION/SIGNIFICANCE: The newly discovered dwarf chameleon species represent striking cases of miniaturization and microendemism and suggest the possibility of a range size-body size relationship in Malagasy reptiles. The newly described Brookesia micra reaches a maximum snout-vent length in males of 16 mm, and its total length in both sexes is less than 30 mm, ranking it among the smallest amniote vertebrates in the world. With a distribution limited to a very small islet, this species may represent an extreme case of island dwarfism.
Directory of Open Access Journals (Sweden)
Dan Bar Yaacov
Full Text Available The Levant is an important migration bridge, harboring border-zones between Afrotropical and palearctic species. Accordingly, Chameleo chameleon, a common species throughout the Mediterranean basin, is morphologically divided in the southern Levant (Israel into two subspecies, Chamaeleo chamaeleon recticrista (CCR and C. c. musae (CCM. CCR mostly inhabits the Mediterranean climate (northern Israel, while CCM inhabits the sands of the north-western Negev Desert (southern Israel. AFLP analysis of 94 geographically well dispersed specimens indicated moderate genetic differentiation (PhiPT = 0.097, consistent with the classical division into the two subspecies, CCR and CCM. In contrast, sequence analysis of a 637 bp coding mitochondrial DNA (mtDNA fragment revealed two distinct phylogenetic clusters which were not consistent with the morphological division: one mtDNA cluster consisted of CCR specimens collected in regions northern of the Jezreel Valley and another mtDNA cluster harboring specimens pertaining to both the CCR and CCM subspecies but collected southern of the Jezreel Valley. AMOVA indicated clear mtDNA differentiation between specimens collected northern and southern to the Jezreel Valley (PhiPT = 0.79, which was further supported by a very low coalescent-based estimate of effective migration rates. Whole chameleon mtDNA sequencing (∼17,400 bp generated from 11 well dispersed geographic locations revealed 325 mutations sharply differentiating the two mtDNA clusters, suggesting a long allopatric history further supported by BEAST. This separation correlated temporally with the existence of an at least 1 million year old marine barrier at the Jezreel Valley exactly where the mtDNA clusters meet. We discuss possible involvement of gender-dependent life history differences in maintaining such mtDNA genetic differentiation and suggest that it reflects (ancient local adaptation to mitochondrial-related traits.
Tel, G.
We define the notion of total algorithms for networks of processes. A total algorithm enforces that a "decision" is taken by a subset of the processes, and that participation of all processes is required to reach this decision. Total algorithms are an important building block in the design of
Matthee, Conrad A; Tilbury, Colin R; Townsend, Ted
2004-09-22
The phylogenetic associations among 13 currently recognized African leaf chameleon species were investigated by making use of mitochondrial and nuclear DNA sequence data (44 taxa and 4145 characters). The gene tree indicates two divergent clades within Rhampholeon; this finding is congruent with previous morphological suggestions. The first clade (I) comprises three taxa (R. kerstenii, R. brevicaudatus and R. brachyurus) and is widely distributed in lowland forest and or non-forest biomes. The second clade (II) comprises the remaining Rhampholeon species and can be subdivided into three subclades. By contrast, most taxa belonging to clade II are confined to relict montane forest biotopes. Based on geographical, morphological and molecular evidence, it is suggested that the taxonomy of Rhampholeon be revised to include two genera (Rieppeleon and Rhampholeon) and three subgenera (Rhampholeon, Bicuspis and Rhinodigitum). There is a close correlation between geographical distribution and phylogenetic relatedness among Rhampholeon taxa, indicating that vicariance and climate change were possibly the most influential factors driving speciation in the group. A relaxed Bayesian clock suggests that speciation times coincided both with the northern movement of Africa, which caused the constriction of the pan African forest, and to rifting in east Africa ca. 20 Myr ago. Subsequent speciation among taxa was probably the result of gradual desiccation of forests between 20 and 5 Myr ago.
The evolutionary strata of DARPP-32 tail implicates hierarchical ...
Indian Academy of Sciences (India)
2014-05-01
May 1, 2014 ... serotonin, glutamate, GABA, as well as antipsychotic drugs and drugs of abuse, .... feeding it to the PSI-Pred secondary structure prediction algorithm (Jones 1999). ..... chemistry 47 12346–12356. Egloff MP, Johnson DF, ...
International Nuclear Information System (INIS)
Creutz, M.
1987-11-01
A large variety of Monte Carlo algorithms are being used for lattice gauge simulations. For purely bosonic theories, present approaches are generally adequate; nevertheless, overrelaxation techniques promise savings by a factor of about three in computer time. For fermionic fields the situation is more difficult and less clear. Algorithms which involve an extrapolation to a vanishing step size are all quite closely related. Methods which do not require such an approximation tend to require computer time which grows as the square of the volume of the system. Recent developments combining global accept/reject stages with Langevin or microcanonical updatings promise to reduce this growth to V/sup 4/3/
Hu, T C
2002-01-01
Newly enlarged, updated second edition of a valuable text presents algorithms for shortest paths, maximum flows, dynamic programming and backtracking. Also discusses binary trees, heuristic and near optimums, matrix multiplication, and NP-complete problems. 153 black-and-white illus. 23 tables.Newly enlarged, updated second edition of a valuable, widely used text presents algorithms for shortest paths, maximum flows, dynamic programming and backtracking. Also discussed are binary trees, heuristic and near optimums, matrix multiplication, and NP-complete problems. New to this edition: Chapter 9
Directory of Open Access Journals (Sweden)
Anna Bourmistrova
2011-02-01
Full Text Available The autodriver algorithm is an intelligent method to eliminate the need of steering by a driver on a well-defined road. The proposed method performs best on a four-wheel steering (4WS vehicle, though it is also applicable to two-wheel-steering (TWS vehicles. The algorithm is based on coinciding the actual vehicle center of rotation and road center of curvature, by adjusting the kinematic center of rotation. The road center of curvature is assumed prior information for a given road, while the dynamic center of rotation is the output of dynamic equations of motion of the vehicle using steering angle and velocity measurements as inputs. We use kinematic condition of steering to set the steering angles in such a way that the kinematic center of rotation of the vehicle sits at a desired point. At low speeds the ideal and actual paths of the vehicle are very close. With increase of forward speed the road and tire characteristics, along with the motion dynamics of the vehicle cause the vehicle to turn about time-varying points. By adjusting the steering angles, our algorithm controls the dynamic turning center of the vehicle so that it coincides with the road curvature center, hence keeping the vehicle on a given road autonomously. The position and orientation errors are used as feedback signals in a closed loop control to adjust the steering angles. The application of the presented autodriver algorithm demonstrates reliable performance under different driving conditions.
Directory of Open Access Journals (Sweden)
Lhermitte-Vallarino N.
2004-03-01
Full Text Available Lung-dwelling females of Rhabdias (Rhabdiasidae, and possible migrating ceolomic young females were searched for in 46 chameleons, belonging to seven species. Rhabdias chamaeleonis, the single species identified to date in Africa, was found in Chamaeleo (Trioceros johnstoni and C. (T. hoehnelii, and redescribed ; the sizes of the buccal capsule and oesophagus were stable compared to the length of the female parasites, which varied from 6 mm to 22 mm in length. A second species, R. jarki n, sp., was identified from one C. (T. johnstoni ; it differed from R. chamaeleonis in the shape of anterior region, the longer and slender oesophagus (ratio bulb diameter-body diameter at that level about 1/5 instead of 1/2, the arrangement of the head papillae, the shape of the buccal capsule, and the anatomy of the genital apparatus : one of the ovaries (the anterior or posterior one according to the specimen had a band of small cells, among larger ovocytes of the synapsis zone, which were likely to generate the spermatozoa present in the oviducts, whereas these two elements were absent from R. chamaeleonis. The parasitic females of R. jarki thus appeared to be hermaphroditic, whereas those of R. chamaeleonis appeared to be parthenogenetic. The free living phase of these Rhabdias species was heterogonic. The infective larva of R. chamaeleonis was 360-590 µm long, unmotile and at third stage inside the maternal cuticle. The free-living male of R. jarki was described. The numerous infective larvae recovered from cultures of unidentified Rhabdias were all in maternal cuticle (one larva/female instead of two as in R. gemellipara from Calumma parsonii, from Madagascar and two kinds of larvae were identified, R. chamaeleonis and larvae 700-900 µm long provisionally identified to R. jarki. The behaviour of infective larvae and a few successful infections of insects suggest that, in the field, insect transport hosts are involved in transmission and in preventing
Diaz, Raul E; Anderson, Christopher V; Baumann, Diana P; Kupronis, Richard; Jewell, David; Piraquive, Christina; Kupronis, Jill; Winter, Kristy; Bertocchini, Federica; Trainor, Paul A
2015-08-26
Vertebrate model organisms have facilitated the discovery and exploration of morphogenetic events and developmental pathways that underpin normal and pathological embryological events. In contrast to amniotes such as Mus musculus (Mammalia) and Gallus gallus (Aves), our understanding of early patterning and developmental events in reptiles (particularly nonavians) remains weak. Squamate reptiles (lizards, snakes, and amphisbaenians) comprise approximately one-third of all living amniotes. But studies of early squamate development have been limited because, in most members of this lineage, embryo development at the time of oviposition is very advanced (limb bud stages and older). In many cases, squamates give birth to fully developed offspring. However, in the veiled chameleon (Chamaeleo calyptratus), embryos have progressed only to a primitive pregastrula stage at the time of oviposition. Furthermore, the body plan of the veiled chameleon is highly specialized for climbing in an arboreal environment. It possesses an entire suite of skeletal and soft anatomical modifications, including cranioskeletal ornamentation, lingual anatomy and biomechanics for projection, autopodial clefting for grasping, adaptations for rapid integumental color changes, a prehensile tail with a lack of caudal autotomy, the loss of the tympanum in the middle ear, and the acquisition of turreted eyes. Thus, C. calyptratus is an important model organism for studying the role of ecological niche specialization, as well as genetic and morphological evolution within an adaptive framework. More importantly, this species is easily bred in captivity, with only a small colony (<10 individuals) needed to obtain hundreds of embryos every year. © 2015 Cold Spring Harbor Laboratory Press.
Keren-Rotem, Tammy; Levy, Noga; Wolf, Lior; Bouskila, Amos; Geffen, Eli
2016-01-01
Alternative mating tactics in males of various taxa are associated with body color, body size, and social status. Chameleons are known for their ability to change body color following immediate environmental or social stimuli. In this study, we examined whether the differential appearance of male common chameleon during the breeding season is indeed an expression of alternative mating tactics. We documented body color of males and used computer vision techniques to classify images of individuals into discrete color patterns associated with seasons, individual characteristics, and social contexts. Our findings revealed no differences in body color and color patterns among males during the non-breeding season. However, during the breeding season males appeared in several color displays, which reflected body size, social status, and behavioral patterns. Furthermore, smaller and younger males resembled the appearance of small females. Consequently, we suggest that long-term color change in males during the breeding season reflects male alternative mating tactics. Upon encounter with a receptive female, males rapidly alter their appearance to that of a specific brief courtship display, which reflects their social status. The females, however, copulated indiscriminately in respect to male color patterns. Thus, we suggest that the differential color patterns displayed by males during the breeding season are largely aimed at inter-male signaling. PMID:27409771
Directory of Open Access Journals (Sweden)
Tammy Keren-Rotem
Full Text Available Alternative mating tactics in males of various taxa are associated with body color, body size, and social status. Chameleons are known for their ability to change body color following immediate environmental or social stimuli. In this study, we examined whether the differential appearance of male common chameleon during the breeding season is indeed an expression of alternative mating tactics. We documented body color of males and used computer vision techniques to classify images of individuals into discrete color patterns associated with seasons, individual characteristics, and social contexts. Our findings revealed no differences in body color and color patterns among males during the non-breeding season. However, during the breeding season males appeared in several color displays, which reflected body size, social status, and behavioral patterns. Furthermore, smaller and younger males resembled the appearance of small females. Consequently, we suggest that long-term color change in males during the breeding season reflects male alternative mating tactics. Upon encounter with a receptive female, males rapidly alter their appearance to that of a specific brief courtship display, which reflects their social status. The females, however, copulated indiscriminately in respect to male color patterns. Thus, we suggest that the differential color patterns displayed by males during the breeding season are largely aimed at inter-male signaling.
DEFF Research Database (Denmark)
Markham, Annette
This paper takes an actor network theory approach to explore some of the ways that algorithms co-construct identity and relational meaning in contemporary use of social media. Based on intensive interviews with participants as well as activity logging and data tracking, the author presents a richly...... layered set of accounts to help build our understanding of how individuals relate to their devices, search systems, and social network sites. This work extends critical analyses of the power of algorithms in implicating the social self by offering narrative accounts from multiple perspectives. It also...... contributes an innovative method for blending actor network theory with symbolic interaction to grapple with the complexity of everyday sensemaking practices within networked global information flows....
Casanova, Henri; Robert, Yves
2008-01-01
""…The authors of the present book, who have extensive credentials in both research and instruction in the area of parallelism, present a sound, principled treatment of parallel algorithms. … This book is very well written and extremely well designed from an instructional point of view. … The authors have created an instructive and fascinating text. The book will serve researchers as well as instructors who need a solid, readable text for a course on parallelism in computing. Indeed, for anyone who wants an understandable text from which to acquire a current, rigorous, and broad vi
DEFF Research Database (Denmark)
Gustavson, Fred G.; Reid, John K.; Wasniewski, Jerzy
2007-01-01
We present subroutines for the Cholesky factorization of a positive-definite symmetric matrix and for solving corresponding sets of linear equations. They exploit cache memory by using the block hybrid format proposed by the authors in a companion article. The matrix is packed into n(n + 1)/2 real...... variables, and the speed is usually better than that of the LAPACK algorithm that uses full storage (n2 variables). Included are subroutines for rearranging a matrix whose upper or lower-triangular part is packed by columns to this format and for the inverse rearrangement. Also included is a kernel...
Speeding up N -body simulations of modified gravity: chameleon screening models
Energy Technology Data Exchange (ETDEWEB)
Bose, Sownak; Li, Baojiu; He, Jian-hua; Llinares, Claudio [Institute for Computational Cosmology, Department of Physics, Durham University, Durham DH1 3LE (United Kingdom); Barreira, Alexandre [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85741 Garching (Germany); Hellwing, Wojciech A.; Koyama, Kazuya [Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth PO1 3FX (United Kingdom); Zhao, Gong-Bo, E-mail: sownak.bose@durham.ac.uk, E-mail: baojiu.li@durham.ac.uk, E-mail: barreira@mpa-garching.mpg.de, E-mail: jianhua.he@durham.ac.uk, E-mail: wojciech.hellwing@port.ac.uk, E-mail: kazuya.koyama@port.ac.uk, E-mail: claudio.llinares@durham.ac.uk, E-mail: gbzhao@nao.cas.cn [National Astronomy Observatories, Chinese Academy of Science, Beijing, 100012 (China)
2017-02-01
We describe and demonstrate the potential of a new and very efficient method for simulating certain classes of modified gravity theories, such as the widely studied f ( R ) gravity models. High resolution simulations for such models are currently very slow due to the highly nonlinear partial differential equation that needs to be solved exactly to predict the modified gravitational force. This nonlinearity is partly inherent, but is also exacerbated by the specific numerical algorithm used, which employs a variable redefinition to prevent numerical instabilities. The standard Newton-Gauss-Seidel iterative method used to tackle this problem has a poor convergence rate. Our new method not only avoids this, but also allows the discretised equation to be written in a form that is analytically solvable. We show that this new method greatly improves the performance and efficiency of f ( R ) simulations. For example, a test simulation with 512{sup 3} particles in a box of size 512 Mpc/ h is now 5 times faster than before, while a Millennium-resolution simulation for f ( R ) gravity is estimated to be more than 20 times faster than with the old method. Our new implementation will be particularly useful for running very high resolution, large-sized simulations which, to date, are only possible for the standard model, and also makes it feasible to run large numbers of lower resolution simulations for covariance analyses. We hope that the method will bring us to a new era for precision cosmological tests of gravity.
Speeding up N-body simulations of modified gravity: chameleon screening models
Bose, Sownak; Li, Baojiu; Barreira, Alexandre; He, Jian-hua; Hellwing, Wojciech A.; Koyama, Kazuya; Llinares, Claudio; Zhao, Gong-Bo
2017-02-01
We describe and demonstrate the potential of a new and very efficient method for simulating certain classes of modified gravity theories, such as the widely studied f(R) gravity models. High resolution simulations for such models are currently very slow due to the highly nonlinear partial differential equation that needs to be solved exactly to predict the modified gravitational force. This nonlinearity is partly inherent, but is also exacerbated by the specific numerical algorithm used, which employs a variable redefinition to prevent numerical instabilities. The standard Newton-Gauss-Seidel iterative method used to tackle this problem has a poor convergence rate. Our new method not only avoids this, but also allows the discretised equation to be written in a form that is analytically solvable. We show that this new method greatly improves the performance and efficiency of f(R) simulations. For example, a test simulation with 5123 particles in a box of size 512 Mpc/h is now 5 times faster than before, while a Millennium-resolution simulation for f(R) gravity is estimated to be more than 20 times faster than with the old method. Our new implementation will be particularly useful for running very high resolution, large-sized simulations which, to date, are only possible for the standard model, and also makes it feasible to run large numbers of lower resolution simulations for covariance analyses. We hope that the method will bring us to a new era for precision cosmological tests of gravity.
Speeding up N -body simulations of modified gravity: chameleon screening models
International Nuclear Information System (INIS)
Bose, Sownak; Li, Baojiu; He, Jian-hua; Llinares, Claudio; Barreira, Alexandre; Hellwing, Wojciech A.; Koyama, Kazuya; Zhao, Gong-Bo
2017-01-01
We describe and demonstrate the potential of a new and very efficient method for simulating certain classes of modified gravity theories, such as the widely studied f ( R ) gravity models. High resolution simulations for such models are currently very slow due to the highly nonlinear partial differential equation that needs to be solved exactly to predict the modified gravitational force. This nonlinearity is partly inherent, but is also exacerbated by the specific numerical algorithm used, which employs a variable redefinition to prevent numerical instabilities. The standard Newton-Gauss-Seidel iterative method used to tackle this problem has a poor convergence rate. Our new method not only avoids this, but also allows the discretised equation to be written in a form that is analytically solvable. We show that this new method greatly improves the performance and efficiency of f ( R ) simulations. For example, a test simulation with 512 3 particles in a box of size 512 Mpc/ h is now 5 times faster than before, while a Millennium-resolution simulation for f ( R ) gravity is estimated to be more than 20 times faster than with the old method. Our new implementation will be particularly useful for running very high resolution, large-sized simulations which, to date, are only possible for the standard model, and also makes it feasible to run large numbers of lower resolution simulations for covariance analyses. We hope that the method will bring us to a new era for precision cosmological tests of gravity.
Directory of Open Access Journals (Sweden)
Mark Exworthy
2014-06-01
Full Text Available Health policy has been termed a ‘chameleon concept’, referring to its ability to take on different forms of disciplinarity as well as different roles and functions. This paper extends Paton’s analysis by exploring the paradox of health policy as a field of academic inquiry—sitting across many of the boundaries of social science but also marginalised by them. It situates contemporary approaches within disciplinary traditions, explaining its inter- and multi-disciplinary character. It also presents a ‘way of seeing’ health policy in terms of three axes: central/local, profession/management, and health/healthcare. The paper concludes with a call for a new research agenda which recognises health policy’s pedigree but also one which carves a distinctive future of relevance and rigour.
Energy Technology Data Exchange (ETDEWEB)
Fontana, W.
1990-12-13
In this paper complex adaptive systems are defined by a self- referential loop in which objects encode functions that act back on these objects. A model for this loop is presented. It uses a simple recursive formal language, derived from the lambda-calculus, to provide a semantics that maps character strings into functions that manipulate symbols on strings. The interaction between two functions, or algorithms, is defined naturally within the language through function composition, and results in the production of a new function. An iterated map acting on sets of functions and a corresponding graph representation are defined. Their properties are useful to discuss the behavior of a fixed size ensemble of randomly interacting functions. This function gas'', or Turning gas'', is studied under various conditions, and evolves cooperative interaction patterns of considerable intricacy. These patterns adapt under the influence of perturbations consisting in the addition of new random functions to the system. Different organizations emerge depending on the availability of self-replicators.
Tilbury, Colin R; Tolley, Krystal A
2015-01-13
Two new species of chameleons from the genera Rhampholeon and Kinyongia are described from an isolated montane forest remnant situated toward the southern end of the Albertine Rift bordering Lake Tanganyika. The closest known localities of species from these genera are 200km and 400km to the north respectively, separated by large intervening tracts of lowland savannah and Brachystegia (Miombo) woodland - habitats not normally inhabited by species of these genera. Rhampholeon hattinghi sp. nov. and Kinyongia mulyai sp. nov. bear superficial resemblances to previously described species (Rh. boulengeri Steindachner and K. adolfifriderici (Sternfeld)). Rhampholeon hattinghi sp. nov. has a relatively smooth supra-orbital ridge, deep axillary but absent inguinal mite pockets, prominent white spots on the base of the tail and a uniquely derived hemipenal morphology with billowing parasulcal evaginations. Like K. adolfifriderici, Kinyongia mulyai sp. nov. is devoid of a rostral appendage but differs in having a longer and narrower head, a higher upper labial scale count and by the absence of a dorsal crest in the male. To place these new chameleons within the context of their respective genera, Bayesian and maximum likelihood phylogenetic analyses were carried out utilising two mitochondrial (ND2 and 16S) and one nuclear marker (RAG1). Both chameleons were found to have morphological features that distinguish them from other congeners. Based on phylogenetic analysis they are clearly separate evolutionary lineages and are described as new species.
Pseudo-deterministic Algorithms
Goldwasser , Shafi
2012-01-01
International audience; In this talk we describe a new type of probabilistic algorithm which we call Bellagio Algorithms: a randomized algorithm which is guaranteed to run in expected polynomial time, and to produce a correct and unique solution with high probability. These algorithms are pseudo-deterministic: they can not be distinguished from deterministic algorithms in polynomial time by a probabilistic polynomial time observer with black box access to the algorithm. We show a necessary an...
Tarone, Elaine
1979-01-01
Explores the validity of Labov's (1969) "Observer Paradox," and the five axioms describing the problems involved in linguistic research, for interlanguage research. Methodological remedies are suggested. (AM)
University Presidents: Academic Chameleons
Buxton, Thomas H.; And Others
1976-01-01
Sampling the opinions of at least one college or university president in each state and at schools of all sizes, the authors measure the degree of job satisfaction experienced by presidents. (Editor/LBH)
Haydon, Caroline
1978-01-01
Home visiting is clearly here to stay. More and more authorities are trying it out as a way of bringing home and school closer together. Yet it's an idea that embraces a wide variety of approaches, styles and attitudes. Reports on three of the early pioneering projects in Birmingham, Liverpool and Leicester. (Editor)
HYBRIDIZATION AND CHAMELEONIC JOURNALISM
Directory of Open Access Journals (Sweden)
Adriana Schryver Kurtz
2016-12-01
Full Text Available O texto aborda a crescente hibridização entre o Jornalismo e demais formatos midiáticos como resultado natural de um processo que já está na própria raiz da comunicação enquanto atividade histórica. A lógica interna e as potencialidades estéticas e discursivas do fenômeno são analisadas a partir das convergências entre jornalismo e cinema. Para tanto, utiliza o falso documentário Zelig (1983, texto fílmico de Woody Allen, híbrido por natureza, postulado como um microcosmo rico em pistas e sugestões para refletir sobre a fusão entre conteúdos informativos e não informativos. PALAVRAS-CHAVE: Hibridização; Jornalismo; Cinema; Zelig. ABSTRACT The text discusses the growing hybridization between journalism and other media formats as a natural result of a process that is already in the very root of communication while historical activity. The internal logic and the aesthetic and discursive potential of the phenomenon are analyzed through the convergences between journalism and cinema. Therefore, uses the mockumentary Zelig (1983, filmic text of Woody Allen, hybrid by nature, postulated as a microcosm rich in clues and suggestions to reflect about the merger between informative and uninformative content. KEYWORDS: Hybridization; Journalism; Cinema; Zelig. RESUMEN El texto aborda la creciente hibridación entre el periodismo y otros formatos de medios como um resultado natural de un proceso que ya está en la raíz misma de la comunicación mientras actividad histórica. Se analizan la lógica interna y el potencial estético y discursivo del fenómeno a través de las convergencias entre el periodismo y el cine. Para ello, utiliza el falso documental Zelig (1983, texto fílmico de Woody Allen, híbrido en su naturaleza, postulado como un microcosmos rico en pistas y sugerencias para reflexionar sobre la fusión entre contenidos informativos y no informativos. PALABRAS CLAVE: Hibridación; Periodismo; Cine; Zelig. Arquivamento e preservação de longo prazo do arquivo em: OpenDepot / Edina (The University of Edinburgh: em processo de inclusão/indexação SSOAR-GESIS – Leibniz-Institut (Alemanha: HAL (França: em processo de inclusão/indexação
DEFF Research Database (Denmark)
Gundersen, Eline Busck
2011-01-01
Response-dependence theses are usually formulated in terms of a priori true biconditionals of roughly the form ‘something, x, falls under the concept ‘F’ « x would elicit response R from subjects S under conditions C’. Such formulations are vulnerable to conditional fallacy problems; counterexamp...
Calixarenes, chemical chameleons
van Dienst, E.S.; van Dienst, Erik; Iwema bakker, W.I.; Iwema Bakker, Wouter I.; Engbersen, Johannes F.J.; Verboom, Willem; Reinhoudt, David
1993-01-01
Methods for the synthesis of selectivety functionalized calix[4]arenes have been developed. These functionalized calix[4]arenes have been coupled to cavitands and cyclodextrins. A number of practical applications of calix[4]arenes are described.
DEFF Research Database (Denmark)
Marfelt, Mikkel Mouritz
, cultural, professional, etc.). This PhD dissertation studies this phenomenon, ‘a diverse workforce’, in a large Scandinavian pharmaceutical company. The dissertation follows the Diverse and Global Workforce (DGW) project, a ‘headquarter centric’ and strategic corporate initiative to address the rapid......Due to advancements in technology and the expansion of companies onto a global level, organizations have become increasingly aware of the need to understand and manage diverse workforces; that is, the need to understand and manage differences among employees across borders (such as geographical...... global expansion of the company workforce....
Hamiltonian Algorithm Sound Synthesis
大矢, 健一
2013-01-01
Hamiltonian Algorithm (HA) is an algorithm for searching solutions is optimization problems. This paper introduces a sound synthesis technique using Hamiltonian Algorithm and shows a simple example. "Hamiltonian Algorithm Sound Synthesis" uses phase transition effect in HA. Because of this transition effect, totally new waveforms are produced.
Progressive geometric algorithms
Alewijnse, S.P.A.; Bagautdinov, T.M.; de Berg, M.T.; Bouts, Q.W.; ten Brink, Alex P.; Buchin, K.A.; Westenberg, M.A.
2015-01-01
Progressive algorithms are algorithms that, on the way to computing a complete solution to the problem at hand, output intermediate solutions that approximate the complete solution increasingly well. We present a framework for analyzing such algorithms, and develop efficient progressive algorithms
Progressive geometric algorithms
Alewijnse, S.P.A.; Bagautdinov, T.M.; Berg, de M.T.; Bouts, Q.W.; Brink, ten A.P.; Buchin, K.; Westenberg, M.A.
2014-01-01
Progressive algorithms are algorithms that, on the way to computing a complete solution to the problem at hand, output intermediate solutions that approximate the complete solution increasingly well. We present a framework for analyzing such algorithms, and develop efficient progressive algorithms
DEFF Research Database (Denmark)
Bucher, Taina
2017-01-01
the notion of the algorithmic imaginary. It is argued that the algorithmic imaginary – ways of thinking about what algorithms are, what they should be and how they function – is not just productive of different moods and sensations but plays a generative role in moulding the Facebook algorithm itself...... of algorithms affect people's use of these platforms, if at all? To help answer these questions, this article examines people's personal stories about the Facebook algorithm through tweets and interviews with 25 ordinary users. To understand the spaces where people and algorithms meet, this article develops...
Energy Technology Data Exchange (ETDEWEB)
Geist, G.A. [Oak Ridge National Lab., TN (United States). Computer Science and Mathematics Div.; Howell, G.W. [Florida Inst. of Tech., Melbourne, FL (United States). Dept. of Applied Mathematics; Watkins, D.S. [Washington State Univ., Pullman, WA (United States). Dept. of Pure and Applied Mathematics
1997-11-01
The BR algorithm, a new method for calculating the eigenvalues of an upper Hessenberg matrix, is introduced. It is a bulge-chasing algorithm like the QR algorithm, but, unlike the QR algorithm, it is well adapted to computing the eigenvalues of the narrowband, nearly tridiagonal matrices generated by the look-ahead Lanczos process. This paper describes the BR algorithm and gives numerical evidence that it works well in conjunction with the Lanczos process. On the biggest problems run so far, the BR algorithm beats the QR algorithm by a factor of 30--60 in computing time and a factor of over 100 in matrix storage space.
Algorithmically specialized parallel computers
Snyder, Lawrence; Gannon, Dennis B
1985-01-01
Algorithmically Specialized Parallel Computers focuses on the concept and characteristics of an algorithmically specialized computer.This book discusses the algorithmically specialized computers, algorithmic specialization using VLSI, and innovative architectures. The architectures and algorithms for digital signal, speech, and image processing and specialized architectures for numerical computations are also elaborated. Other topics include the model for analyzing generalized inter-processor, pipelined architecture for search tree maintenance, and specialized computer organization for raster
Directory of Open Access Journals (Sweden)
Michele Menegon
2015-12-01
Full Text Available A new species of chameleon is described from the Livingstone and Udzungwa Mountains of Tanzania. The new species is morphologically most similar to Kinyongia vanheygeni. Furthermore, a single, short rostral appendage shows the species similarity to other Eastern Arc endemic Kinyongia species (e.g. K. uthmoelleri, K. oxyrhina, K. magomberae and K. tenuis. Females of all these species lack any rostral ornamentation and are all very similar morphologically. Males of the new species, on which the morphological diagnosis is based, can be distinguished from other Kinyongia by a shorter rostral appendage that bifurcates at the tip. They are easily distinguished from K. vanheygeni, otherwise the most similar species, by differences in head scalation and the length and shape of the rostral appendage. The new species is associated with montane rainforest and is known from only four forest fragments of which two are in the Udzungwa and two in the Livingstone Mountains. Phylogenetically, the new species is sister to K. tenuis and K. magomberae, which together, form a clade that also contains K. oxyrhina. The disjunct distribution of the new species, in the Livingstone and Udzungwa mountains, stretches across the ‘Makambako Gap’ which is a putative biogeographical barrier separating the distinct faunas of the Southern highlands and Eastern Arc Mountains. Evidence from this species however, points to potentially closer biological affinities between the Livingstone and Udzungwa mountains.
Quantum Computation and Algorithms
International Nuclear Information System (INIS)
Biham, O.; Biron, D.; Biham, E.; Grassi, M.; Lidar, D.A.
1999-01-01
It is now firmly established that quantum algorithms provide a substantial speedup over classical algorithms for a variety of problems, including the factorization of large numbers and the search for a marked element in an unsorted database. In this talk I will review the principles of quantum algorithms, the basic quantum gates and their operation. The combination of superposition and interference, that makes these algorithms efficient, will be discussed. In particular, Grover's search algorithm will be presented as an example. I will show that the time evolution of the amplitudes in Grover's algorithm can be found exactly using recursion equations, for any initial amplitude distribution
International Nuclear Information System (INIS)
Chandrasekharan, Shailesh
2000-01-01
Cluster algorithms have been recently used to eliminate sign problems that plague Monte-Carlo methods in a variety of systems. In particular such algorithms can also be used to solve sign problems associated with the permutation of fermion world lines. This solution leads to the possibility of designing fermion cluster algorithms in certain cases. Using the example of free non-relativistic fermions we discuss the ideas underlying the algorithm
Autonomous Star Tracker Algorithms
DEFF Research Database (Denmark)
Betto, Maurizio; Jørgensen, John Leif; Kilsgaard, Søren
1998-01-01
Proposal, in response to an ESA R.f.P., to design algorithms for autonomous star tracker operations.The proposal also included the development of a star tracker breadboard to test the algorithms performances.......Proposal, in response to an ESA R.f.P., to design algorithms for autonomous star tracker operations.The proposal also included the development of a star tracker breadboard to test the algorithms performances....
Divasón, Jose; Joosten, Sebastiaan; Thiemann, René; Yamada, Akihisa
2018-01-01
The Lenstra-Lenstra-Lovász basis reduction algorithm, also known as LLL algorithm, is an algorithm to find a basis with short, nearly orthogonal vectors of an integer lattice. Thereby, it can also be seen as an approximation to solve the shortest vector problem (SVP), which is an NP-hard problem,
Nature-inspired optimization algorithms
Yang, Xin-She
2014-01-01
Nature-Inspired Optimization Algorithms provides a systematic introduction to all major nature-inspired algorithms for optimization. The book's unified approach, balancing algorithm introduction, theoretical background and practical implementation, complements extensive literature with well-chosen case studies to illustrate how these algorithms work. Topics include particle swarm optimization, ant and bee algorithms, simulated annealing, cuckoo search, firefly algorithm, bat algorithm, flower algorithm, harmony search, algorithm analysis, constraint handling, hybrid methods, parameter tuning
VISUALIZATION OF PAGERANK ALGORITHM
Perhaj, Ervin
2013-01-01
The goal of the thesis is to develop a web application that help users understand the functioning of the PageRank algorithm. The thesis consists of two parts. First we develop an algorithm to calculate PageRank values of web pages. The input of algorithm is a list of web pages and links between them. The user enters the list through the web interface. From the data the algorithm calculates PageRank value for each page. The algorithm repeats the process, until the difference of PageRank va...
Akl, Selim G
1985-01-01
Parallel Sorting Algorithms explains how to use parallel algorithms to sort a sequence of items on a variety of parallel computers. The book reviews the sorting problem, the parallel models of computation, parallel algorithms, and the lower bounds on the parallel sorting problems. The text also presents twenty different algorithms, such as linear arrays, mesh-connected computers, cube-connected computers. Another example where algorithm can be applied is on the shared-memory SIMD (single instruction stream multiple data stream) computers in which the whole sequence to be sorted can fit in the
Modified Clipped LMS Algorithm
Directory of Open Access Journals (Sweden)
Lotfizad Mojtaba
2005-01-01
Full Text Available Abstract A new algorithm is proposed for updating the weights of an adaptive filter. The proposed algorithm is a modification of an existing method, namely, the clipped LMS, and uses a three-level quantization ( scheme that involves the threshold clipping of the input signals in the filter weight update formula. Mathematical analysis shows the convergence of the filter weights to the optimum Wiener filter weights. Also, it can be proved that the proposed modified clipped LMS (MCLMS algorithm has better tracking than the LMS algorithm. In addition, this algorithm has reduced computational complexity relative to the unmodified one. By using a suitable threshold, it is possible to increase the tracking capability of the MCLMS algorithm compared to the LMS algorithm, but this causes slower convergence. Computer simulations confirm the mathematical analysis presented.
McAllister, Chris T
2012-09-01
Two new species of Isospora Schneider, 1881 from flap-necked chameleons Chamaeleo dilepis Leach are described from the faeces of specimens collected in the Republic of Namibia. Oöcysts of Isospora freedi n. sp. from one of four (25%) C. dilepis collected in the East Caprivi District are spherical to subspherical, with a smooth, colourless, bilayered wall, measure 23.7 × 21.2 μm and have a length/width (L/W) ratio of 1.1. The micropyle and the oöcyst residuum are absent but a polar granule is sometimes present. Sporocysts are ovoidal to ellipsoidal and 13.9 × 10.3 μm in size with prominent Stieda and sub-Stieda bodies; and the sporocyst residuum is composed of a compact mass of large globules. The sporozoites contain anterior and posterior refractile bodies with a nucleus between them. Oöcysts of Isopora mandelai n. sp. from three of seven (43%) C. dilepis collected in the Outjo District are ellipsoidal to cylindroidal, with a smooth, colourless, bilayered wall, measure 36.9 × 31.0 μm and have an L/W ratio of 1.2. The micropyle, oöcyst residuum and polar granule are absent. Sporocysts are ovoidal to ellipsoidal, 15.3 × 11.1 μm in size and contain Stieda and sub-Stieda bodies; and the non-membranous sporocyst residuum is composed of granules of various sizes. The sporozoites contain anterior and posterior refractile bodies with a nucleus between them. These two new taxa represent the third and fourth coccidian species reported from C. dilepis.
Kamali, Tahereh; Stashuk, Daniel
2016-10-01
Robust and accurate segmentation of brain white matter (WM) fiber bundles assists in diagnosing and assessing progression or remission of neuropsychiatric diseases such as schizophrenia, autism and depression. Supervised segmentation methods are infeasible in most applications since generating gold standards is too costly. Hence, there is a growing interest in designing unsupervised methods. However, most conventional unsupervised methods require the number of clusters be known in advance which is not possible in most applications. The purpose of this study is to design an unsupervised segmentation algorithm for brain white matter fiber bundles which can automatically segment fiber bundles using intrinsic diffusion tensor imaging data information without considering any prior information or assumption about data distributions. Here, a new density based clustering algorithm called neighborhood distance entropy consistency (NDEC), is proposed which discovers natural clusters within data by simultaneously utilizing both local and global density information. The performance of NDEC is compared with other state of the art clustering algorithms including chameleon, spectral clustering, DBSCAN and k-means using Johns Hopkins University publicly available diffusion tensor imaging data. The performance of NDEC and other employed clustering algorithms were evaluated using dice ratio as an external evaluation criteria and density based clustering validation (DBCV) index as an internal evaluation metric. Across all employed clustering algorithms, NDEC obtained the highest average dice ratio (0.94) and DBCV value (0.71). NDEC can find clusters with arbitrary shapes and densities and consequently can be used for WM fiber bundle segmentation where there is no distinct boundary between various bundles. NDEC may also be used as an effective tool in other pattern recognition and medical diagnostic systems in which discovering natural clusters within data is a necessity. Copyright
Semioptimal practicable algorithmic cooling
International Nuclear Information System (INIS)
Elias, Yuval; Mor, Tal; Weinstein, Yossi
2011-01-01
Algorithmic cooling (AC) of spins applies entropy manipulation algorithms in open spin systems in order to cool spins far beyond Shannon's entropy bound. Algorithmic cooling of nuclear spins was demonstrated experimentally and may contribute to nuclear magnetic resonance spectroscopy. Several cooling algorithms were suggested in recent years, including practicable algorithmic cooling (PAC) and exhaustive AC. Practicable algorithms have simple implementations, yet their level of cooling is far from optimal; exhaustive algorithms, on the other hand, cool much better, and some even reach (asymptotically) an optimal level of cooling, but they are not practicable. We introduce here semioptimal practicable AC (SOPAC), wherein a few cycles (typically two to six) are performed at each recursive level. Two classes of SOPAC algorithms are proposed and analyzed. Both attain cooling levels significantly better than PAC and are much more efficient than the exhaustive algorithms. These algorithms are shown to bridge the gap between PAC and exhaustive AC. In addition, we calculated the number of spins required by SOPAC in order to purify qubits for quantum computation. As few as 12 and 7 spins are required (in an ideal scenario) to yield a mildly pure spin (60% polarized) from initial polarizations of 1% and 10%, respectively. In the latter case, about five more spins are sufficient to produce a highly pure spin (99.99% polarized), which could be relevant for fault-tolerant quantum computing.
Introduction to Evolutionary Algorithms
Yu, Xinjie
2010-01-01
Evolutionary algorithms (EAs) are becoming increasingly attractive for researchers from various disciplines, such as operations research, computer science, industrial engineering, electrical engineering, social science, economics, etc. This book presents an insightful, comprehensive, and up-to-date treatment of EAs, such as genetic algorithms, differential evolution, evolution strategy, constraint optimization, multimodal optimization, multiobjective optimization, combinatorial optimization, evolvable hardware, estimation of distribution algorithms, ant colony optimization, particle swarm opti
Recursive forgetting algorithms
DEFF Research Database (Denmark)
Parkum, Jens; Poulsen, Niels Kjølstad; Holst, Jan
1992-01-01
In the first part of the paper, a general forgetting algorithm is formulated and analysed. It contains most existing forgetting schemes as special cases. Conditions are given ensuring that the basic convergence properties will hold. In the second part of the paper, the results are applied...... to a specific algorithm with selective forgetting. Here, the forgetting is non-uniform in time and space. The theoretical analysis is supported by a simulation example demonstrating the practical performance of this algorithm...
Explaining algorithms using metaphors
Forišek, Michal
2013-01-01
There is a significant difference between designing a new algorithm, proving its correctness, and teaching it to an audience. When teaching algorithms, the teacher's main goal should be to convey the underlying ideas and to help the students form correct mental models related to the algorithm. This process can often be facilitated by using suitable metaphors. This work provides a set of novel metaphors identified and developed as suitable tools for teaching many of the 'classic textbook' algorithms taught in undergraduate courses worldwide. Each chapter provides exercises and didactic notes fo
Algorithms in Algebraic Geometry
Dickenstein, Alicia; Sommese, Andrew J
2008-01-01
In the last decade, there has been a burgeoning of activity in the design and implementation of algorithms for algebraic geometric computation. Some of these algorithms were originally designed for abstract algebraic geometry, but now are of interest for use in applications and some of these algorithms were originally designed for applications, but now are of interest for use in abstract algebraic geometry. The workshop on Algorithms in Algebraic Geometry that was held in the framework of the IMA Annual Program Year in Applications of Algebraic Geometry by the Institute for Mathematics and Its
Woo, Andrew
2012-01-01
Digital shadow generation continues to be an important aspect of visualization and visual effects in film, games, simulations, and scientific applications. This resource offers a thorough picture of the motivations, complexities, and categorized algorithms available to generate digital shadows. From general fundamentals to specific applications, it addresses shadow algorithms and how to manage huge data sets from a shadow perspective. The book also examines the use of shadow algorithms in industrial applications, in terms of what algorithms are used and what software is applicable.
Spectral Decomposition Algorithm (SDA)
National Aeronautics and Space Administration — Spectral Decomposition Algorithm (SDA) is an unsupervised feature extraction technique similar to PCA that was developed to better distinguish spectral features in...
Quick fuzzy backpropagation algorithm.
Nikov, A; Stoeva, S
2001-03-01
A modification of the fuzzy backpropagation (FBP) algorithm called QuickFBP algorithm is proposed, where the computation of the net function is significantly quicker. It is proved that the FBP algorithm is of exponential time complexity, while the QuickFBP algorithm is of polynomial time complexity. Convergence conditions of the QuickFBP, resp. the FBP algorithm are defined and proved for: (1) single output neural networks in case of training patterns with different targets; and (2) multiple output neural networks in case of training patterns with equivalued target vector. They support the automation of the weights training process (quasi-unsupervised learning) establishing the target value(s) depending on the network's input values. In these cases the simulation results confirm the convergence of both algorithms. An example with a large-sized neural network illustrates the significantly greater training speed of the QuickFBP rather than the FBP algorithm. The adaptation of an interactive web system to users on the basis of the QuickFBP algorithm is presented. Since the QuickFBP algorithm ensures quasi-unsupervised learning, this implies its broad applicability in areas of adaptive and adaptable interactive systems, data mining, etc. applications.
Portfolios of quantum algorithms.
Maurer, S M; Hogg, T; Huberman, B A
2001-12-17
Quantum computation holds promise for the solution of many intractable problems. However, since many quantum algorithms are stochastic in nature they can find the solution of hard problems only probabilistically. Thus the efficiency of the algorithms has to be characterized by both the expected time to completion and the associated variance. In order to minimize both the running time and its uncertainty, we show that portfolios of quantum algorithms analogous to those of finance can outperform single algorithms when applied to the NP-complete problems such as 3-satisfiability.
Algorithm 426 : Merge sort algorithm [M1
Bron, C.
1972-01-01
Sorting by means of a two-way merge has a reputation of requiring a clerically complicated and cumbersome program. This ALGOL 60 procedure demonstrates that, using recursion, an elegant and efficient algorithm can be designed, the correctness of which is easily proved [2]. Sorting n objects gives
Composite Differential Search Algorithm
Directory of Open Access Journals (Sweden)
Bo Liu
2014-01-01
Full Text Available Differential search algorithm (DS is a relatively new evolutionary algorithm inspired by the Brownian-like random-walk movement which is used by an organism to migrate. It has been verified to be more effective than ABC, JDE, JADE, SADE, EPSDE, GSA, PSO2011, and CMA-ES. In this paper, we propose four improved solution search algorithms, namely “DS/rand/1,” “DS/rand/2,” “DS/current to rand/1,” and “DS/current to rand/2” to search the new space and enhance the convergence rate for the global optimization problem. In order to verify the performance of different solution search methods, 23 benchmark functions are employed. Experimental results indicate that the proposed algorithm performs better than, or at least comparable to, the original algorithm when considering the quality of the solution obtained. However, these schemes cannot still achieve the best solution for all functions. In order to further enhance the convergence rate and the diversity of the algorithm, a composite differential search algorithm (CDS is proposed in this paper. This new algorithm combines three new proposed search schemes including “DS/rand/1,” “DS/rand/2,” and “DS/current to rand/1” with three control parameters using a random method to generate the offspring. Experiment results show that CDS has a faster convergence rate and better search ability based on the 23 benchmark functions.
Algorithms and Their Explanations
Benini, M.; Gobbo, F.; Beckmann, A.; Csuhaj-Varjú, E.; Meer, K.
2014-01-01
By analysing the explanation of the classical heapsort algorithm via the method of levels of abstraction mainly due to Floridi, we give a concrete and precise example of how to deal with algorithmic knowledge. To do so, we introduce a concept already implicit in the method, the ‘gradient of
Finite lattice extrapolation algorithms
International Nuclear Information System (INIS)
Henkel, M.; Schuetz, G.
1987-08-01
Two algorithms for sequence extrapolation, due to von den Broeck and Schwartz and Bulirsch and Stoer are reviewed and critically compared. Applications to three states and six states quantum chains and to the (2+1)D Ising model show that the algorithm of Bulirsch and Stoer is superior, in particular if only very few finite lattice data are available. (orig.)
Recursive automatic classification algorithms
Energy Technology Data Exchange (ETDEWEB)
Bauman, E V; Dorofeyuk, A A
1982-03-01
A variational statement of the automatic classification problem is given. The dependence of the form of the optimal partition surface on the form of the classification objective functional is investigated. A recursive algorithm is proposed for maximising a functional of reasonably general form. The convergence problem is analysed in connection with the proposed algorithm. 8 references.
DEFF Research Database (Denmark)
Husfeldt, Thore
2015-01-01
This chapter presents an introduction to graph colouring algorithms. The focus is on vertex-colouring algorithms that work for general classes of graphs with worst-case performance guarantees in a sequential model of computation. The presentation aims to demonstrate the breadth of available...
8. Algorithm Design Techniques
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 8. Algorithms - Algorithm Design Techniques. R K Shyamasundar. Series Article Volume 2 ... Author Affiliations. R K Shyamasundar1. Computer Science Group, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India ...
Geometric approximation algorithms
Har-Peled, Sariel
2011-01-01
Exact algorithms for dealing with geometric objects are complicated, hard to implement in practice, and slow. Over the last 20 years a theory of geometric approximation algorithms has emerged. These algorithms tend to be simple, fast, and more robust than their exact counterparts. This book is the first to cover geometric approximation algorithms in detail. In addition, more traditional computational geometry techniques that are widely used in developing such algorithms, like sampling, linear programming, etc., are also surveyed. Other topics covered include approximate nearest-neighbor search, shape approximation, coresets, dimension reduction, and embeddings. The topics covered are relatively independent and are supplemented by exercises. Close to 200 color figures are included in the text to illustrate proofs and ideas.
Group leaders optimization algorithm
Daskin, Anmer; Kais, Sabre
2011-03-01
We present a new global optimization algorithm in which the influence of the leaders in social groups is used as an inspiration for the evolutionary technique which is designed into a group architecture. To demonstrate the efficiency of the method, a standard suite of single and multi-dimensional optimization functions along with the energies and the geometric structures of Lennard-Jones clusters are given as well as the application of the algorithm on quantum circuit design problems. We show that as an improvement over previous methods, the algorithm scales as N 2.5 for the Lennard-Jones clusters of N-particles. In addition, an efficient circuit design is shown for a two-qubit Grover search algorithm which is a quantum algorithm providing quadratic speedup over the classical counterpart.
International Nuclear Information System (INIS)
Noga, M.T.
1984-01-01
This thesis addresses a number of important problems that fall within the framework of the new discipline of Computational Geometry. The list of topics covered includes sorting and selection, convex hull algorithms, the L 1 hull, determination of the minimum encasing rectangle of a set of points, the Euclidean and L 1 diameter of a set of points, the metric traveling salesman problem, and finding the superrange of star-shaped and monotype polygons. The main theme of all the work was to develop a set of very fast state-of-the-art algorithms that supersede any rivals in terms of speed and ease of implementation. In some cases existing algorithms were refined; for others new techniques were developed that add to the present database of fast adaptive geometric algorithms. What emerges is a collection of techniques that is successful at merging modern tools developed in analysis of algorithms with those of classical geometry
Totally parallel multilevel algorithms
Frederickson, Paul O.
1988-01-01
Four totally parallel algorithms for the solution of a sparse linear system have common characteristics which become quite apparent when they are implemented on a highly parallel hypercube such as the CM2. These four algorithms are Parallel Superconvergent Multigrid (PSMG) of Frederickson and McBryan, Robust Multigrid (RMG) of Hackbusch, the FFT based Spectral Algorithm, and Parallel Cyclic Reduction. In fact, all four can be formulated as particular cases of the same totally parallel multilevel algorithm, which are referred to as TPMA. In certain cases the spectral radius of TPMA is zero, and it is recognized to be a direct algorithm. In many other cases the spectral radius, although not zero, is small enough that a single iteration per timestep keeps the local error within the required tolerance.
Directory of Open Access Journals (Sweden)
Francesca Musiani
2013-08-01
Full Text Available Algorithms are increasingly often cited as one of the fundamental shaping devices of our daily, immersed-in-information existence. Their importance is acknowledged, their performance scrutinised in numerous contexts. Yet, a lot of what constitutes 'algorithms' beyond their broad definition as “encoded procedures for transforming input data into a desired output, based on specified calculations” (Gillespie, 2013 is often taken for granted. This article seeks to contribute to the discussion about 'what algorithms do' and in which ways they are artefacts of governance, providing two examples drawing from the internet and ICT realm: search engine queries and e-commerce websites’ recommendations to customers. The question of the relationship between algorithms and rules is likely to occupy an increasingly central role in the study and the practice of internet governance, in terms of both institutions’ regulation of algorithms, and algorithms’ regulation of our society.
Where genetic algorithms excel.
Baum, E B; Boneh, D; Garrett, C
2001-01-01
We analyze the performance of a genetic algorithm (GA) we call Culling, and a variety of other algorithms, on a problem we refer to as the Additive Search Problem (ASP). We show that the problem of learning the Ising perceptron is reducible to a noisy version of ASP. Noisy ASP is the first problem we are aware of where a genetic-type algorithm bests all known competitors. We generalize ASP to k-ASP to study whether GAs will achieve "implicit parallelism" in a problem with many more schemata. GAs fail to achieve this implicit parallelism, but we describe an algorithm we call Explicitly Parallel Search that succeeds. We also compute the optimal culling point for selective breeding, which turns out to be independent of the fitness function or the population distribution. We also analyze a mean field theoretic algorithm performing similarly to Culling on many problems. These results provide insight into when and how GAs can beat competing methods.
DEFF Research Database (Denmark)
Bilardi, Gianfranco; Pietracaprina, Andrea; Pucci, Geppino
2016-01-01
A framework is proposed for the design and analysis of network-oblivious algorithms, namely algorithms that can run unchanged, yet efficiently, on a variety of machines characterized by different degrees of parallelism and communication capabilities. The framework prescribes that a network......-oblivious algorithm be specified on a parallel model of computation where the only parameter is the problem’s input size, and then evaluated on a model with two parameters, capturing parallelism granularity and communication latency. It is shown that for a wide class of network-oblivious algorithms, optimality...... of cache hierarchies, to the realm of parallel computation. Its effectiveness is illustrated by providing optimal network-oblivious algorithms for a number of key problems. Some limitations of the oblivious approach are also discussed....
Directory of Open Access Journals (Sweden)
Hans Schonemann
1996-12-01
Full Text Available Some algorithms for singularity theory and algebraic geometry The use of Grobner basis computations for treating systems of polynomial equations has become an important tool in many areas. This paper introduces of the concept of standard bases (a generalization of Grobner bases and the application to some problems from algebraic geometry. The examples are presented as SINGULAR commands. A general introduction to Grobner bases can be found in the textbook [CLO], an introduction to syzygies in [E] and [St1]. SINGULAR is a computer algebra system for computing information about singularities, for use in algebraic geometry. The basic algorithms in SINGULAR are several variants of a general standard basis algorithm for general monomial orderings (see [GG]. This includes wellorderings (Buchberger algorithm ([B1], [B2] and tangent cone orderings (Mora algorithm ([M1], [MPT] as special cases: It is able to work with non-homogeneous and homogeneous input and also to compute in the localization of the polynomial ring in 0. Recent versions include algorithms to factorize polynomials and a factorizing Grobner basis algorithm. For a complete description of SINGULAR see [Si].
A New Modified Firefly Algorithm
Directory of Open Access Journals (Sweden)
Medha Gupta
2016-07-01
Full Text Available Nature inspired meta-heuristic algorithms studies the emergent collective intelligence of groups of simple agents. Firefly Algorithm is one of the new such swarm-based metaheuristic algorithm inspired by the flashing behavior of fireflies. The algorithm was first proposed in 2008 and since then has been successfully used for solving various optimization problems. In this work, we intend to propose a new modified version of Firefly algorithm (MoFA and later its performance is compared with the standard firefly algorithm along with various other meta-heuristic algorithms. Numerical studies and results demonstrate that the proposed algorithm is superior to existing algorithms.
International Nuclear Information System (INIS)
Dinev, D.
1996-01-01
Several new algorithms for sorting of dipole and/or quadrupole magnets in synchrotrons and storage rings are described. The algorithms make use of a combinatorial approach to the problem and belong to the class of random search algorithms. They use an appropriate metrization of the state space. The phase-space distortion (smear) is used as a goal function. Computational experiments for the case of the JINR-Dubna superconducting heavy ion synchrotron NUCLOTRON have shown a significant reduction of the phase-space distortion after the magnet sorting. (orig.)
International Nuclear Information System (INIS)
Coskun, E.
1995-09-01
Time-dependent Ginzburg-Landau (TDGL) equations are considered for modeling a thin-film finite size superconductor placed under magnetic field. The problem then leads to the use of so-called natural boundary conditions. Computational domain is partitioned into subdomains and bond variables are used in obtaining the corresponding discrete system of equations. An efficient time-differencing method based on the Forward Euler method is developed. Finally, a variable strength magnetic field resulting in a vortex motion in Type II High T c superconducting films is introduced. The authors tackled the problem using two different state-of-the-art parallel computing tools: BlockComm/Chameleon and PCN. They had access to two high-performance distributed memory supercomputers: the Intel iPSC/860 and IBM SP1. They also tested the codes using, as a parallel computing environment, a cluster of Sun Sparc workstations
Algorithms for parallel computers
International Nuclear Information System (INIS)
Churchhouse, R.F.
1985-01-01
Until relatively recently almost all the algorithms for use on computers had been designed on the (usually unstated) assumption that they were to be run on single processor, serial machines. With the introduction of vector processors, array processors and interconnected systems of mainframes, minis and micros, however, various forms of parallelism have become available. The advantage of parallelism is that it offers increased overall processing speed but it also raises some fundamental questions, including: (i) which, if any, of the existing 'serial' algorithms can be adapted for use in the parallel mode. (ii) How close to optimal can such adapted algorithms be and, where relevant, what are the convergence criteria. (iii) How can we design new algorithms specifically for parallel systems. (iv) For multi-processor systems how can we handle the software aspects of the interprocessor communications. Aspects of these questions illustrated by examples are considered in these lectures. (orig.)
Fluid structure coupling algorithm
International Nuclear Information System (INIS)
McMaster, W.H.; Gong, E.Y.; Landram, C.S.; Quinones, D.F.
1980-01-01
A fluid-structure-interaction algorithm has been developed and incorporated into the two-dimensional code PELE-IC. This code combines an Eulerian incompressible fluid algorithm with a Lagrangian finite element shell algorithm and incorporates the treatment of complex free surfaces. The fluid structure and coupling algorithms have been verified by the calculation of solved problems from the literature and from air and steam blowdown experiments. The code has been used to calculate loads and structural response from air blowdown and the oscillatory condensation of steam bubbles in water suppression pools typical of boiling water reactors. The techniques developed have been extended to three dimensions and implemented in the computer code PELE-3D
Hockney, Roger
1987-01-01
Algorithmic phase diagrams are a neat and compact representation of the results of comparing the execution time of several algorithms for the solution of the same problem. As an example, the recent results are shown of Gannon and Van Rosendale on the solution of multiple tridiagonal systems of equations in the form of such diagrams. The act of preparing these diagrams has revealed an unexpectedly complex relationship between the best algorithm and the number and size of the tridiagonal systems, which was not evident from the algebraic formulae in the original paper. Even so, for a particular computer, one diagram suffices to predict the best algorithm for all problems that are likely to be encountered the prediction being read directly from the diagram without complex calculation.
Diagnostic Algorithm Benchmarking
Poll, Scott
2011-01-01
A poster for the NASA Aviation Safety Program Annual Technical Meeting. It describes empirical benchmarking on diagnostic algorithms using data from the ADAPT Electrical Power System testbed and a diagnostic software framework.
Inclusive Flavour Tagging Algorithm
International Nuclear Information System (INIS)
Likhomanenko, Tatiana; Derkach, Denis; Rogozhnikov, Alex
2016-01-01
Identifying the flavour of neutral B mesons production is one of the most important components needed in the study of time-dependent CP violation. The harsh environment of the Large Hadron Collider makes it particularly hard to succeed in this task. We present an inclusive flavour-tagging algorithm as an upgrade of the algorithms currently used by the LHCb experiment. Specifically, a probabilistic model which efficiently combines information from reconstructed vertices and tracks using machine learning is proposed. The algorithm does not use information about underlying physics process. It reduces the dependence on the performance of lower level identification capacities and thus increases the overall performance. The proposed inclusive flavour-tagging algorithm is applicable to tag the flavour of B mesons in any proton-proton experiment. (paper)
Unsupervised learning algorithms
Aydin, Kemal
2016-01-01
This book summarizes the state-of-the-art in unsupervised learning. The contributors discuss how with the proliferation of massive amounts of unlabeled data, unsupervised learning algorithms, which can automatically discover interesting and useful patterns in such data, have gained popularity among researchers and practitioners. The authors outline how these algorithms have found numerous applications including pattern recognition, market basket analysis, web mining, social network analysis, information retrieval, recommender systems, market research, intrusion detection, and fraud detection. They present how the difficulty of developing theoretically sound approaches that are amenable to objective evaluation have resulted in the proposal of numerous unsupervised learning algorithms over the past half-century. The intended audience includes researchers and practitioners who are increasingly using unsupervised learning algorithms to analyze their data. Topics of interest include anomaly detection, clustering,...
Vector Network Coding Algorithms
Ebrahimi, Javad; Fragouli, Christina
2010-01-01
We develop new algebraic algorithms for scalar and vector network coding. In vector network coding, the source multicasts information by transmitting vectors of length L, while intermediate nodes process and combine their incoming packets by multiplying them with L x L coding matrices that play a similar role as coding c in scalar coding. Our algorithms for scalar network jointly optimize the employed field size while selecting the coding coefficients. Similarly, for vector coding, our algori...
Optimization algorithms and applications
Arora, Rajesh Kumar
2015-01-01
Choose the Correct Solution Method for Your Optimization ProblemOptimization: Algorithms and Applications presents a variety of solution techniques for optimization problems, emphasizing concepts rather than rigorous mathematical details and proofs. The book covers both gradient and stochastic methods as solution techniques for unconstrained and constrained optimization problems. It discusses the conjugate gradient method, Broyden-Fletcher-Goldfarb-Shanno algorithm, Powell method, penalty function, augmented Lagrange multiplier method, sequential quadratic programming, method of feasible direc
From Genetics to Genetic Algorithms
Indian Academy of Sciences (India)
Genetic algorithms (GAs) are computational optimisation schemes with an ... The algorithms solve optimisation problems ..... Genetic Algorithms in Search, Optimisation and Machine. Learning, Addison-Wesley Publishing Company, Inc. 1989.
Algorithmic Principles of Mathematical Programming
Faigle, Ulrich; Kern, Walter; Still, Georg
2002-01-01
Algorithmic Principles of Mathematical Programming investigates the mathematical structures and principles underlying the design of efficient algorithms for optimization problems. Recent advances in algorithmic theory have shown that the traditionally separate areas of discrete optimization, linear
Directory of Open Access Journals (Sweden)
Wang Zi Min
2016-01-01
Full Text Available With the development of social services, people’s living standards improve further requirements, there is an urgent need for a way to adapt to the complex situation of the new positioning technology. In recent years, RFID technology have a wide range of applications in all aspects of life and production, such as logistics tracking, car alarm, security and other items. The use of RFID technology to locate, it is a new direction in the eyes of the various research institutions and scholars. RFID positioning technology system stability, the error is small and low-cost advantages of its location algorithm is the focus of this study.This article analyzes the layers of RFID technology targeting methods and algorithms. First, RFID common several basic methods are introduced; Secondly, higher accuracy to political network location method; Finally, LANDMARC algorithm will be described. Through this it can be seen that advanced and efficient algorithms play an important role in increasing RFID positioning accuracy aspects.Finally, the algorithm of RFID location technology are summarized, pointing out the deficiencies in the algorithm, and put forward a follow-up study of the requirements, the vision of a better future RFID positioning technology.
Directory of Open Access Journals (Sweden)
Surafel Luleseged Tilahun
2012-01-01
Full Text Available Firefly algorithm is one of the new metaheuristic algorithms for optimization problems. The algorithm is inspired by the flashing behavior of fireflies. In the algorithm, randomly generated solutions will be considered as fireflies, and brightness is assigned depending on their performance on the objective function. One of the rules used to construct the algorithm is, a firefly will be attracted to a brighter firefly, and if there is no brighter firefly, it will move randomly. In this paper we modify this random movement of the brighter firefly by generating random directions in order to determine the best direction in which the brightness increases. If such a direction is not generated, it will remain in its current position. Furthermore the assignment of attractiveness is modified in such a way that the effect of the objective function is magnified. From the simulation result it is shown that the modified firefly algorithm performs better than the standard one in finding the best solution with smaller CPU time.
Improved multivariate polynomial factoring algorithm
International Nuclear Information System (INIS)
Wang, P.S.
1978-01-01
A new algorithm for factoring multivariate polynomials over the integers based on an algorithm by Wang and Rothschild is described. The new algorithm has improved strategies for dealing with the known problems of the original algorithm, namely, the leading coefficient problem, the bad-zero problem and the occurrence of extraneous factors. It has an algorithm for correctly predetermining leading coefficients of the factors. A new and efficient p-adic algorithm named EEZ is described. Bascially it is a linearly convergent variable-by-variable parallel construction. The improved algorithm is generally faster and requires less store then the original algorithm. Machine examples with comparative timing are included
A Parallel Butterfly Algorithm
Poulson, Jack; Demanet, Laurent; Maxwell, Nicholas; Ying, Lexing
2014-01-01
The butterfly algorithm is a fast algorithm which approximately evaluates a discrete analogue of the integral transform (Equation Presented.) at large numbers of target points when the kernel, K(x, y), is approximately low-rank when restricted to subdomains satisfying a certain simple geometric condition. In d dimensions with O(Nd) quasi-uniformly distributed source and target points, when each appropriate submatrix of K is approximately rank-r, the running time of the algorithm is at most O(r2Nd logN). A parallelization of the butterfly algorithm is introduced which, assuming a message latency of α and per-process inverse bandwidth of β, executes in at most (Equation Presented.) time using p processes. This parallel algorithm was then instantiated in the form of the open-source DistButterfly library for the special case where K(x, y) = exp(iΦ(x, y)), where Φ(x, y) is a black-box, sufficiently smooth, real-valued phase function. Experiments on Blue Gene/Q demonstrate impressive strong-scaling results for important classes of phase functions. Using quasi-uniform sources, hyperbolic Radon transforms, and an analogue of a three-dimensional generalized Radon transform were, respectively, observed to strong-scale from 1-node/16-cores up to 1024-nodes/16,384-cores with greater than 90% and 82% efficiency, respectively. © 2014 Society for Industrial and Applied Mathematics.
A Parallel Butterfly Algorithm
Poulson, Jack
2014-02-04
The butterfly algorithm is a fast algorithm which approximately evaluates a discrete analogue of the integral transform (Equation Presented.) at large numbers of target points when the kernel, K(x, y), is approximately low-rank when restricted to subdomains satisfying a certain simple geometric condition. In d dimensions with O(Nd) quasi-uniformly distributed source and target points, when each appropriate submatrix of K is approximately rank-r, the running time of the algorithm is at most O(r2Nd logN). A parallelization of the butterfly algorithm is introduced which, assuming a message latency of α and per-process inverse bandwidth of β, executes in at most (Equation Presented.) time using p processes. This parallel algorithm was then instantiated in the form of the open-source DistButterfly library for the special case where K(x, y) = exp(iΦ(x, y)), where Φ(x, y) is a black-box, sufficiently smooth, real-valued phase function. Experiments on Blue Gene/Q demonstrate impressive strong-scaling results for important classes of phase functions. Using quasi-uniform sources, hyperbolic Radon transforms, and an analogue of a three-dimensional generalized Radon transform were, respectively, observed to strong-scale from 1-node/16-cores up to 1024-nodes/16,384-cores with greater than 90% and 82% efficiency, respectively. © 2014 Society for Industrial and Applied Mathematics.
Directory of Open Access Journals (Sweden)
Hanns Holger Rutz
2016-11-01
Full Text Available Although the concept of algorithms has been established a long time ago, their current topicality indicates a shift in the discourse. Classical definitions based on logic seem to be inadequate to describe their aesthetic capabilities. New approaches stress their involvement in material practices as well as their incompleteness. Algorithmic aesthetics can no longer be tied to the static analysis of programs, but must take into account the dynamic and experimental nature of coding practices. It is suggested that the aesthetic objects thus produced articulate something that could be called algorithmicity or the space of algorithmic agency. This is the space or the medium – following Luhmann’s form/medium distinction – where human and machine undergo mutual incursions. In the resulting coupled “extimate” writing process, human initiative and algorithmic speculation cannot be clearly divided out any longer. An observation is attempted of defining aspects of such a medium by drawing a trajectory across a number of sound pieces. The operation of exchange between form and medium I call reconfiguration and it is indicated by this trajectory.
Institute of Scientific and Technical Information of China (English)
WANG ShunJin; ZHANG Hua
2007-01-01
Based on the exact analytical solution of ordinary differential equations,a truncation of the Taylor series of the exact solution to the Nth order leads to the Nth order algebraic dynamics algorithm.A detailed numerical comparison is presented with Runge-Kutta algorithm and symplectic geometric algorithm for 12 test models.The results show that the algebraic dynamics algorithm can better preserve both geometrical and dynamical fidelity of a dynamical system at a controllable precision,and it can solve the problem of algorithm-induced dissipation for the Runge-Kutta algorithm and the problem of algorithm-induced phase shift for the symplectic geometric algorithm.
Institute of Scientific and Technical Information of China (English)
2007-01-01
Based on the exact analytical solution of ordinary differential equations, a truncation of the Taylor series of the exact solution to the Nth order leads to the Nth order algebraic dynamics algorithm. A detailed numerical comparison is presented with Runge-Kutta algorithm and symplectic geometric algorithm for 12 test models. The results show that the algebraic dynamics algorithm can better preserve both geometrical and dynamical fidelity of a dynamical system at a controllable precision, and it can solve the problem of algorithm-induced dissipation for the Runge-Kutta algorithm and the problem of algorithm-induced phase shift for the symplectic geometric algorithm.
Detection of algorithmic trading
Bogoev, Dimitar; Karam, Arzé
2017-10-01
We develop a new approach to reflect the behavior of algorithmic traders. Specifically, we provide an analytical and tractable way to infer patterns of quote volatility and price momentum consistent with different types of strategies employed by algorithmic traders, and we propose two ratios to quantify these patterns. Quote volatility ratio is based on the rate of oscillation of the best ask and best bid quotes over an extremely short period of time; whereas price momentum ratio is based on identifying patterns of rapid upward or downward movement in prices. The two ratios are evaluated across several asset classes. We further run a two-stage Artificial Neural Network experiment on the quote volatility ratio; the first stage is used to detect the quote volatility patterns resulting from algorithmic activity, while the second is used to validate the quality of signal detection provided by our measure.
Handbook of Memetic Algorithms
Cotta, Carlos; Moscato, Pablo
2012-01-01
Memetic Algorithms (MAs) are computational intelligence structures combining multiple and various operators in order to address optimization problems. The combination and interaction amongst operators evolves and promotes the diffusion of the most successful units and generates an algorithmic behavior which can handle complex objective functions and hard fitness landscapes. “Handbook of Memetic Algorithms” organizes, in a structured way, all the the most important results in the field of MAs since their earliest definition until now. A broad review including various algorithmic solutions as well as successful applications is included in this book. Each class of optimization problems, such as constrained optimization, multi-objective optimization, continuous vs combinatorial problems, uncertainties, are analysed separately and, for each problem, memetic recipes for tackling the difficulties are given with some successful examples. Although this book contains chapters written by multiple authors, ...
Algorithms in invariant theory
Sturmfels, Bernd
2008-01-01
J. Kung and G.-C. Rota, in their 1984 paper, write: "Like the Arabian phoenix rising out of its ashes, the theory of invariants, pronounced dead at the turn of the century, is once again at the forefront of mathematics". The book of Sturmfels is both an easy-to-read textbook for invariant theory and a challenging research monograph that introduces a new approach to the algorithmic side of invariant theory. The Groebner bases method is the main tool by which the central problems in invariant theory become amenable to algorithmic solutions. Students will find the book an easy introduction to this "classical and new" area of mathematics. Researchers in mathematics, symbolic computation, and computer science will get access to a wealth of research ideas, hints for applications, outlines and details of algorithms, worked out examples, and research problems.
CERN. Geneva; PUNZI, Giovanni
2015-01-01
Charge particle reconstruction is one of the most demanding computational tasks found in HEP, and it becomes increasingly important to perform it in real time. We envision that HEP would greatly benefit from achieving a long-term goal of making track reconstruction happen transparently as part of the detector readout ("detector-embedded tracking"). We describe here a track-reconstruction approach based on a massively parallel pattern-recognition algorithm, inspired by studies of the processing of visual images by the brain as it happens in nature ('RETINA algorithm'). It turns out that high-quality tracking in large HEP detectors is possible with very small latencies, when this algorithm is implemented in specialized processors, based on current state-of-the-art, high-speed/high-bandwidth digital devices.
Named Entity Linking Algorithm
Directory of Open Access Journals (Sweden)
M. F. Panteleev
2017-01-01
Full Text Available In the tasks of processing text in natural language, Named Entity Linking (NEL represents the task to define and link some entity, which is found in the text, with some entity in the knowledge base (for example, Dbpedia. Currently, there is a diversity of approaches to solve this problem, but two main classes can be identified: graph-based approaches and machine learning-based ones. Graph and Machine Learning approaches-based algorithm is proposed accordingly to the stated assumptions about the interrelations of named entities in a sentence and in general.In the case of graph-based approaches, it is necessary to solve the problem of identifying an optimal set of the related entities according to some metric that characterizes the distance between these entities in a graph built on some knowledge base. Due to limitations in processing power, to solve this task directly is impossible. Therefore, its modification is proposed. Based on the algorithms of machine learning, an independent solution cannot be built due to small volumes of training datasets relevant to NEL task. However, their use can contribute to improving the quality of the algorithm. The adaptation of the Latent Dirichlet Allocation model is proposed in order to obtain a measure of the compatibility of attributes of various entities encountered in one context.The efficiency of the proposed algorithm was experimentally tested. A test dataset was independently generated. On its basis the performance of the model was compared using the proposed algorithm with the open source product DBpedia Spotlight, which solves the NEL problem.The mockup, based on the proposed algorithm, showed a low speed as compared to DBpedia Spotlight. However, the fact that it has shown higher accuracy, stipulates the prospects for work in this direction.The main directions of development were proposed in order to increase the accuracy of the system and its productivity.
Fokkinga, M.M.
1992-01-01
An algorithm is the input-output effect of a computer program; mathematically, the notion of algorithm comes close to the notion of function. Just as arithmetic is the theory and practice of calculating with numbers, so is ALGORITHMICS the theory and practice of calculating with algorithms. Just as
A cluster algorithm for graphs
S. van Dongen
2000-01-01
textabstractA cluster algorithm for graphs called the emph{Markov Cluster algorithm (MCL~algorithm) is introduced. The algorithm provides basically an interface to an algebraic process defined on stochastic matrices, called the MCL~process. The graphs may be both weighted (with nonnegative weight)
Algorithms for Reinforcement Learning
Szepesvari, Csaba
2010-01-01
Reinforcement learning is a learning paradigm concerned with learning to control a system so as to maximize a numerical performance measure that expresses a long-term objective. What distinguishes reinforcement learning from supervised learning is that only partial feedback is given to the learner about the learner's predictions. Further, the predictions may have long term effects through influencing the future state of the controlled system. Thus, time plays a special role. The goal in reinforcement learning is to develop efficient learning algorithms, as well as to understand the algorithms'
Animation of planning algorithms
Sun, Fan
2014-01-01
Planning is the process of creating a sequence of steps/actions that will satisfy a goal of a problem. The partial order planning (POP) algorithm is one of Artificial Intelligence approach for problem planning. By learning G52PAS module, I find that it is difficult for students to understand this planning algorithm by just reading its pseudo code and doing some exercise in writing. Students cannot know how each actual step works clearly and might miss some steps because of their confusion. ...
Secondary Vertex Finder Algorithm
Heer, Sebastian; The ATLAS collaboration
2017-01-01
If a jet originates from a b-quark, a b-hadron is formed during the fragmentation process. In its dominant decay modes, the b-hadron decays into a c-hadron via the electroweak interaction. Both b- and c-hadrons have lifetimes long enough, to travel a few millimetres before decaying. Thus displaced vertices from b- and subsequent c-hadron decays provide a strong signature for a b-jet. Reconstructing these secondary vertices (SV) and their properties is the aim of this algorithm. The performance of this algorithm is studied with tt̄ events, requiring at least one lepton, simulated at 13 TeV.
Parallel Algorithms and Patterns
Energy Technology Data Exchange (ETDEWEB)
Robey, Robert W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-06-16
This is a powerpoint presentation on parallel algorithms and patterns. A parallel algorithm is a well-defined, step-by-step computational procedure that emphasizes concurrency to solve a problem. Examples of problems include: Sorting, searching, optimization, matrix operations. A parallel pattern is a computational step in a sequence of independent, potentially concurrent operations that occurs in diverse scenarios with some frequency. Examples are: Reductions, prefix scans, ghost cell updates. We only touch on parallel patterns in this presentation. It really deserves its own detailed discussion which Gabe Rockefeller would like to develop.
Randomized Filtering Algorithms
DEFF Research Database (Denmark)
Katriel, Irit; Van Hentenryck, Pascal
2008-01-01
of AllDifferent and is generalization, the Global Cardinality Constraint. The first delayed filtering scheme is a Monte Carlo algorithm: its running time is superior, in the worst case, to that of enforcing are consistency after every domain event, while its filtering effectiveness is analyzed...... in the expected sense. The second scheme is a Las Vegas algorithm using filtering triggers: Its effectiveness is the same as enforcing are consistency after every domain event, while in the expected case it is faster by a factor of m/n, where n and m are, respectively, the number of nodes and edges...
An Ordering Linear Unification Algorithm
Institute of Scientific and Technical Information of China (English)
胡运发
1989-01-01
In this paper,we present an ordering linear unification algorithm(OLU).A new idea on substituteion of the binding terms is introduced to the algorithm,which is able to overcome some drawbacks of other algorithms,e.g.,MM algorithm[1],RG1 and RG2 algorithms[2],Particularly,if we use the directed eyclie graphs,the algoritm needs not check the binding order,then the OLU algorithm can also be aplied to the infinite tree data struceture,and a higher efficiency can be expected.The paper focuses upon the discussion of OLU algorithm and a partial order structure with respect to the unification algorithm.This algorithm has been implemented in the GKD-PROLOG/VAX 780 interpreting system.Experimental results have shown that the algorithm is very simple and efficient.
New Optimization Algorithms in Physics
Hartmann, Alexander K
2004-01-01
Many physicists are not aware of the fact that they can solve their problems by applying optimization algorithms. Since the number of such algorithms is steadily increasing, many new algorithms have not been presented comprehensively until now. This presentation of recently developed algorithms applied in physics, including demonstrations of how they work and related results, aims to encourage their application, and as such the algorithms selected cover concepts and methods from statistical physics to optimization problems emerging in theoretical computer science.
A propositional CONEstrip algorithm
E. Quaeghebeur (Erik); A. Laurent; O. Strauss; B. Bouchon-Meunier; R.R. Yager (Ronald)
2014-01-01
textabstractWe present a variant of the CONEstrip algorithm for checking whether the origin lies in a finitely generated convex cone that can be open, closed, or neither. This variant is designed to deal efficiently with problems where the rays defining the cone are specified as linear combinations
Modular Regularization Algorithms
DEFF Research Database (Denmark)
Jacobsen, Michael
2004-01-01
The class of linear ill-posed problems is introduced along with a range of standard numerical tools and basic concepts from linear algebra, statistics and optimization. Known algorithms for solving linear inverse ill-posed problems are analyzed to determine how they can be decomposed into indepen...
Indian Academy of Sciences (India)
Shortest path problems. Road network on cities and we want to navigate between cities. . – p.8/30 ..... The rest of the talk... Computing connectivities between all pairs of vertices good algorithm wrt both space and time to compute the exact solution. . – p.15/30 ...
The Copenhagen Triage Algorithm
DEFF Research Database (Denmark)
Hasselbalch, Rasmus Bo; Plesner, Louis Lind; Pries-Heje, Mia
2016-01-01
is non-inferior to an existing triage model in a prospective randomized trial. METHODS: The Copenhagen Triage Algorithm (CTA) study is a prospective two-center, cluster-randomized, cross-over, non-inferiority trial comparing CTA to the Danish Emergency Process Triage (DEPT). We include patients ≥16 years...
de Casteljau's Algorithm Revisited
DEFF Research Database (Denmark)
Gravesen, Jens
1998-01-01
It is demonstrated how all the basic properties of Bezier curves can be derived swiftly and efficiently without any reference to the Bernstein polynomials and essentially with only geometric arguments. This is achieved by viewing one step in de Casteljau's algorithm as an operator (the de Casteljau...
Algorithms in ambient intelligence
Aarts, E.H.L.; Korst, J.H.M.; Verhaegh, W.F.J.; Weber, W.; Rabaey, J.M.; Aarts, E.
2005-01-01
We briefly review the concept of ambient intelligence and discuss its relation with the domain of intelligent algorithms. By means of four examples of ambient intelligent systems, we argue that new computing methods and quantification measures are needed to bridge the gap between the class of
General Algorithm (High level)
Indian Academy of Sciences (India)
First page Back Continue Last page Overview Graphics. General Algorithm (High level). Iteratively. Use Tightness Property to remove points of P1,..,Pi. Use random sampling to get a Random Sample (of enough points) from the next largest cluster, Pi+1. Use the Random Sampling Procedure to approximate ci+1 using the ...
Comprehensive eye evaluation algorithm
Agurto, C.; Nemeth, S.; Zamora, G.; Vahtel, M.; Soliz, P.; Barriga, S.
2016-03-01
In recent years, several research groups have developed automatic algorithms to detect diabetic retinopathy (DR) in individuals with diabetes (DM), using digital retinal images. Studies have indicated that diabetics have 1.5 times the annual risk of developing primary open angle glaucoma (POAG) as do people without DM. Moreover, DM patients have 1.8 times the risk for age-related macular degeneration (AMD). Although numerous investigators are developing automatic DR detection algorithms, there have been few successful efforts to create an automatic algorithm that can detect other ocular diseases, such as POAG and AMD. Consequently, our aim in the current study was to develop a comprehensive eye evaluation algorithm that not only detects DR in retinal images, but also automatically identifies glaucoma suspects and AMD by integrating other personal medical information with the retinal features. The proposed system is fully automatic and provides the likelihood of each of the three eye disease. The system was evaluated in two datasets of 104 and 88 diabetic cases. For each eye, we used two non-mydriatic digital color fundus photographs (macula and optic disc centered) and, when available, information about age, duration of diabetes, cataracts, hypertension, gender, and laboratory data. Our results show that the combination of multimodal features can increase the AUC by up to 5%, 7%, and 8% in the detection of AMD, DR, and glaucoma respectively. Marked improvement was achieved when laboratory results were combined with retinal image features.
Mitsutake, Ayori; Mori, Yoshiharu; Okamoto, Yuko
2013-01-01
In biomolecular systems (especially all-atom models) with many degrees of freedom such as proteins and nucleic acids, there exist an astronomically large number of local-minimum-energy states. Conventional simulations in the canonical ensemble are of little use, because they tend to get trapped in states of these energy local minima. Enhanced conformational sampling techniques are thus in great demand. A simulation in generalized ensemble performs a random walk in potential energy space and can overcome this difficulty. From only one simulation run, one can obtain canonical-ensemble averages of physical quantities as functions of temperature by the single-histogram and/or multiple-histogram reweighting techniques. In this article we review uses of the generalized-ensemble algorithms in biomolecular systems. Three well-known methods, namely, multicanonical algorithm, simulated tempering, and replica-exchange method, are described first. Both Monte Carlo and molecular dynamics versions of the algorithms are given. We then present various extensions of these three generalized-ensemble algorithms. The effectiveness of the methods is tested with short peptide and protein systems.
DEFF Research Database (Denmark)
This book constitutes the refereed proceedings of the 10th Scandinavian Workshop on Algorithm Theory, SWAT 2006, held in Riga, Latvia, in July 2006. The 36 revised full papers presented together with 3 invited papers were carefully reviewed and selected from 154 submissions. The papers address all...
Optimal Quadratic Programming Algorithms
Dostal, Zdenek
2009-01-01
Quadratic programming (QP) is one technique that allows for the optimization of a quadratic function in several variables in the presence of linear constraints. This title presents various algorithms for solving large QP problems. It is suitable as an introductory text on quadratic programming for graduate students and researchers
Benchmarking monthly homogenization algorithms
Venema, V. K. C.; Mestre, O.; Aguilar, E.; Auer, I.; Guijarro, J. A.; Domonkos, P.; Vertacnik, G.; Szentimrey, T.; Stepanek, P.; Zahradnicek, P.; Viarre, J.; Müller-Westermeier, G.; Lakatos, M.; Williams, C. N.; Menne, M.; Lindau, R.; Rasol, D.; Rustemeier, E.; Kolokythas, K.; Marinova, T.; Andresen, L.; Acquaotta, F.; Fratianni, S.; Cheval, S.; Klancar, M.; Brunetti, M.; Gruber, C.; Prohom Duran, M.; Likso, T.; Esteban, P.; Brandsma, T.
2011-08-01
The COST (European Cooperation in Science and Technology) Action ES0601: Advances in homogenization methods of climate series: an integrated approach (HOME) has executed a blind intercomparison and validation study for monthly homogenization algorithms. Time series of monthly temperature and precipitation were evaluated because of their importance for climate studies and because they represent two important types of statistics (additive and multiplicative). The algorithms were validated against a realistic benchmark dataset. The benchmark contains real inhomogeneous data as well as simulated data with inserted inhomogeneities. Random break-type inhomogeneities were added to the simulated datasets modeled as a Poisson process with normally distributed breakpoint sizes. To approximate real world conditions, breaks were introduced that occur simultaneously in multiple station series within a simulated network of station data. The simulated time series also contained outliers, missing data periods and local station trends. Further, a stochastic nonlinear global (network-wide) trend was added. Participants provided 25 separate homogenized contributions as part of the blind study as well as 22 additional solutions submitted after the details of the imposed inhomogeneities were revealed. These homogenized datasets were assessed by a number of performance metrics including (i) the centered root mean square error relative to the true homogeneous value at various averaging scales, (ii) the error in linear trend estimates and (iii) traditional contingency skill scores. The metrics were computed both using the individual station series as well as the network average regional series. The performance of the contributions depends significantly on the error metric considered. Contingency scores by themselves are not very informative. Although relative homogenization algorithms typically improve the homogeneity of temperature data, only the best ones improve precipitation data
Python algorithms mastering basic algorithms in the Python language
Hetland, Magnus Lie
2014-01-01
Python Algorithms, Second Edition explains the Python approach to algorithm analysis and design. Written by Magnus Lie Hetland, author of Beginning Python, this book is sharply focused on classical algorithms, but it also gives a solid understanding of fundamental algorithmic problem-solving techniques. The book deals with some of the most important and challenging areas of programming and computer science in a highly readable manner. It covers both algorithmic theory and programming practice, demonstrating how theory is reflected in real Python programs. Well-known algorithms and data struc
Directory of Open Access Journals (Sweden)
Dazhi Jiang
2015-01-01
Full Text Available At present there is a wide range of evolutionary algorithms available to researchers and practitioners. Despite the great diversity of these algorithms, virtually all of the algorithms share one feature: they have been manually designed. A fundamental question is “are there any algorithms that can design evolutionary algorithms automatically?” A more complete definition of the question is “can computer construct an algorithm which will generate algorithms according to the requirement of a problem?” In this paper, a novel evolutionary algorithm based on automatic designing of genetic operators is presented to address these questions. The resulting algorithm not only explores solutions in the problem space like most traditional evolutionary algorithms do, but also automatically generates genetic operators in the operator space. In order to verify the performance of the proposed algorithm, comprehensive experiments on 23 well-known benchmark optimization problems are conducted. The results show that the proposed algorithm can outperform standard differential evolution algorithm in terms of convergence speed and solution accuracy which shows that the algorithm designed automatically by computers can compete with the algorithms designed by human beings.
Reactive Collision Avoidance Algorithm
Scharf, Daniel; Acikmese, Behcet; Ploen, Scott; Hadaegh, Fred
2010-01-01
The reactive collision avoidance (RCA) algorithm allows a spacecraft to find a fuel-optimal trajectory for avoiding an arbitrary number of colliding spacecraft in real time while accounting for acceleration limits. In addition to spacecraft, the technology can be used for vehicles that can accelerate in any direction, such as helicopters and submersibles. In contrast to existing, passive algorithms that simultaneously design trajectories for a cluster of vehicles working to achieve a common goal, RCA is implemented onboard spacecraft only when an imminent collision is detected, and then plans a collision avoidance maneuver for only that host vehicle, thus preventing a collision in an off-nominal situation for which passive algorithms cannot. An example scenario for such a situation might be when a spacecraft in the cluster is approaching another one, but enters safe mode and begins to drift. Functionally, the RCA detects colliding spacecraft, plans an evasion trajectory by solving the Evasion Trajectory Problem (ETP), and then recovers after the collision is avoided. A direct optimization approach was used to develop the algorithm so it can run in real time. In this innovation, a parameterized class of avoidance trajectories is specified, and then the optimal trajectory is found by searching over the parameters. The class of trajectories is selected as bang-off-bang as motivated by optimal control theory. That is, an avoiding spacecraft first applies full acceleration in a constant direction, then coasts, and finally applies full acceleration to stop. The parameter optimization problem can be solved offline and stored as a look-up table of values. Using a look-up table allows the algorithm to run in real time. Given a colliding spacecraft, the properties of the collision geometry serve as indices of the look-up table that gives the optimal trajectory. For multiple colliding spacecraft, the set of trajectories that avoid all spacecraft is rapidly searched on
[Chameleon spondylodiscitis : Challenge for geriatricians].
Hofmann, Werner
2018-06-01
The incidence of spondylodiscitis is increasing and attributable to an aging population with multimorbidities. Spondylodiscitis represents a life-threatening disease. Typical clinical manifestations often involve nonspecific symptoms with back pain; however, due to the frequent absence of fever the disease is often overlooked. Pathogen detection and spinal imaging with magnetic resonance imaging (MRI) are essential for the diagnosis. Identification of the causative pathogen is particularly important for initiating targeted antibiotic treatment. Debridement and stabilization are the mainstays of surgical management, even though foreign material must be implanted into the focus of inflammation.
The Action Researcher as Chameleon.
Hadfield, Mark; Bennett, Steve
1995-01-01
Describes a project that trained institutional policymakers in action research regarding problems in developing training policies about young people's needs, examining attempts to collaborate and dialog with stakeholders and discussing how project members became enmeshed in complex sets of relationships calling for construction of dialog in…
Chameleon Chasing II: A Replication.
Newsom, Doug A.; And Others
1993-01-01
Replicates a 1972 survey of students, educators, and Public Relations Society of America members regarding who the public relations counselor really serves. Finds that, in 1992, most respondents thought primary responsibility was to the client, then to the client's relevant publics, then to self, then to society, and finally to media. Compares…
Evolution of Karyotypes in Chameleons
Czech Academy of Sciences Publication Activity Database
Rovatsos, M.; Altmanová, M.; Johnson Pokorná, Martina; Velenský, P.; Baca, A. S.; Kratochvíl, L.
2017-01-01
Roč. 8, č. 12 (2017), č. článku 382. ISSN 2073-4425 Institutional support: RVO:67985904 Keywords : karyotype evolution * ITS * rDNA Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Genetics and heredity (medical genetics to be 3) Impact factor: 3.600, year: 2016
Partitional clustering algorithms
2015-01-01
This book summarizes the state-of-the-art in partitional clustering. Clustering, the unsupervised classification of patterns into groups, is one of the most important tasks in exploratory data analysis. Primary goals of clustering include gaining insight into, classifying, and compressing data. Clustering has a long and rich history that spans a variety of scientific disciplines including anthropology, biology, medicine, psychology, statistics, mathematics, engineering, and computer science. As a result, numerous clustering algorithms have been proposed since the early 1950s. Among these algorithms, partitional (nonhierarchical) ones have found many applications, especially in engineering and computer science. This book provides coverage of consensus clustering, constrained clustering, large scale and/or high dimensional clustering, cluster validity, cluster visualization, and applications of clustering. Examines clustering as it applies to large and/or high-dimensional data sets commonly encountered in reali...
Treatment Algorithm for Ameloblastoma
Directory of Open Access Journals (Sweden)
Madhumati Singh
2014-01-01
Full Text Available Ameloblastoma is the second most common benign odontogenic tumour (Shafer et al. 2006 which constitutes 1–3% of all cysts and tumours of jaw, with locally aggressive behaviour, high recurrence rate, and a malignant potential (Chaine et al. 2009. Various treatment algorithms for ameloblastoma have been reported; however, a universally accepted approach remains unsettled and controversial (Chaine et al. 2009. The treatment algorithm to be chosen depends on size (Escande et al. 2009 and Sampson and Pogrel 1999, anatomical location (Feinberg and Steinberg 1996, histologic variant (Philipsen and Reichart 1998, and anatomical involvement (Jackson et al. 1996. In this paper various such treatment modalities which include enucleation and peripheral osteotomy, partial maxillectomy, segmental resection and reconstruction done with fibula graft, and radical resection and reconstruction done with rib graft and their recurrence rate are reviewed with study of five cases.
An Algorithmic Diversity Diet?
DEFF Research Database (Denmark)
Sørensen, Jannick Kirk; Schmidt, Jan-Hinrik
2016-01-01
With the growing influence of personalized algorithmic recommender systems on the exposure of media content to users, the relevance of discussing the diversity of recommendations increases, particularly as far as public service media (PSM) is concerned. An imagined implementation of a diversity...... diet system however triggers not only the classic discussion of the reach – distinctiveness balance for PSM, but also shows that ‘diversity’ is understood very differently in algorithmic recommender system communities than it is editorially and politically in the context of PSM. The design...... of a diversity diet system generates questions not just about editorial power, personal freedom and techno-paternalism, but also about the embedded politics of recommender systems as well as the human skills affiliated with PSM editorial work and the nature of PSM content....
Aydemir, Bahar
2017-01-01
The Trigger and Data Acquisition (TDAQ) system of the ATLAS detector at the Large Hadron Collider (LHC) at CERN is composed of a large number of distributed hardware and software components. TDAQ system consists of about 3000 computers and more than 25000 applications which, in a coordinated manner, provide the data-taking functionality of the overall system. There is a number of online services required to configure, monitor and control the ATLAS data taking. In particular, the configuration service is used to provide configuration of above components. The configuration of the ATLAS data acquisition system is stored in XML-based object database named OKS. DAL (Data Access Library) allowing to access it's information by C++, Java and Python clients in a distributed environment. Some information has quite complicated structure, so it's extraction requires writing special algorithms. Algorithms available on C++ programming language and partially reimplemented on Java programming language. The goal of the projec...
Kramer, Oliver
2017-01-01
This book introduces readers to genetic algorithms (GAs) with an emphasis on making the concepts, algorithms, and applications discussed as easy to understand as possible. Further, it avoids a great deal of formalisms and thus opens the subject to a broader audience in comparison to manuscripts overloaded by notations and equations. The book is divided into three parts, the first of which provides an introduction to GAs, starting with basic concepts like evolutionary operators and continuing with an overview of strategies for tuning and controlling parameters. In turn, the second part focuses on solution space variants like multimodal, constrained, and multi-objective solution spaces. Lastly, the third part briefly introduces theoretical tools for GAs, the intersections and hybridizations with machine learning, and highlights selected promising applications.
Boosting foundations and algorithms
Schapire, Robert E
2012-01-01
Boosting is an approach to machine learning based on the idea of creating a highly accurate predictor by combining many weak and inaccurate "rules of thumb." A remarkably rich theory has evolved around boosting, with connections to a range of topics, including statistics, game theory, convex optimization, and information geometry. Boosting algorithms have also enjoyed practical success in such fields as biology, vision, and speech processing. At various times in its history, boosting has been perceived as mysterious, controversial, even paradoxical.
Stochastic split determinant algorithms
International Nuclear Information System (INIS)
Horvatha, Ivan
2000-01-01
I propose a large class of stochastic Markov processes associated with probability distributions analogous to that of lattice gauge theory with dynamical fermions. The construction incorporates the idea of approximate spectral split of the determinant through local loop action, and the idea of treating the infrared part of the split through explicit diagonalizations. I suggest that exact algorithms of practical relevance might be based on Markov processes so constructed
Quantum gate decomposition algorithms.
Energy Technology Data Exchange (ETDEWEB)
Slepoy, Alexander
2006-07-01
Quantum computing algorithms can be conveniently expressed in a format of a quantum logical circuits. Such circuits consist of sequential coupled operations, termed ''quantum gates'', or quantum analogs of bits called qubits. We review a recently proposed method [1] for constructing general ''quantum gates'' operating on an qubits, as composed of a sequence of generic elementary ''gates''.
KAM Tori Construction Algorithms
Wiesel, W.
In this paper we evaluate and compare two algorithms for the calculation of KAM tori in Hamiltonian systems. The direct fitting of a torus Fourier series to a numerically integrated trajectory is the first method, while an accelerated finite Fourier transform is the second method. The finite Fourier transform, with Hanning window functions, is by far superior in both computational loading and numerical accuracy. Some thoughts on applications of KAM tori are offered.
Irregular Applications: Architectures & Algorithms
Energy Technology Data Exchange (ETDEWEB)
Feo, John T.; Villa, Oreste; Tumeo, Antonino; Secchi, Simone
2012-02-06
Irregular applications are characterized by irregular data structures, control and communication patterns. Novel irregular high performance applications which deal with large data sets and require have recently appeared. Unfortunately, current high performance systems and software infrastructures executes irregular algorithms poorly. Only coordinated efforts by end user, area specialists and computer scientists that consider both the architecture and the software stack may be able to provide solutions to the challenges of modern irregular applications.
Large scale tracking algorithms
Energy Technology Data Exchange (ETDEWEB)
Hansen, Ross L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Love, Joshua Alan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Melgaard, David Kennett [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Karelitz, David B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pitts, Todd Alan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Zollweg, Joshua David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Anderson, Dylan Z. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Nandy, Prabal [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Whitlow, Gary L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bender, Daniel A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Byrne, Raymond Harry [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-01-01
Low signal-to-noise data processing algorithms for improved detection, tracking, discrimination and situational threat assessment are a key research challenge. As sensor technologies progress, the number of pixels will increase signi cantly. This will result in increased resolution, which could improve object discrimination, but unfortunately, will also result in a significant increase in the number of potential targets to track. Many tracking techniques, like multi-hypothesis trackers, suffer from a combinatorial explosion as the number of potential targets increase. As the resolution increases, the phenomenology applied towards detection algorithms also changes. For low resolution sensors, "blob" tracking is the norm. For higher resolution data, additional information may be employed in the detection and classfication steps. The most challenging scenarios are those where the targets cannot be fully resolved, yet must be tracked and distinguished for neighboring closely spaced objects. Tracking vehicles in an urban environment is an example of such a challenging scenario. This report evaluates several potential tracking algorithms for large-scale tracking in an urban environment.
NEUTRON ALGORITHM VERIFICATION TESTING
International Nuclear Information System (INIS)
COWGILL, M.; MOSBY, W.; ARGONNE NATIONAL LABORATORY-WEST
2000-01-01
Active well coincidence counter assays have been performed on uranium metal highly enriched in 235 U. The data obtained in the present program, together with highly enriched uranium (HEU) metal data obtained in other programs, have been analyzed using two approaches, the standard approach and an alternative approach developed at BNL. Analysis of the data with the standard approach revealed that the form of the relationship between the measured reals and the 235 U mass varied, being sometimes linear and sometimes a second-order polynomial. In contrast, application of the BNL algorithm, which takes into consideration the totals, consistently yielded linear relationships between the totals-corrected reals and the 235 U mass. The constants in these linear relationships varied with geometric configuration and level of enrichment. This indicates that, when the BNL algorithm is used, calibration curves can be established with fewer data points and with more certainty than if a standard algorithm is used. However, this potential advantage has only been established for assays of HEU metal. In addition, the method is sensitive to the stability of natural background in the measurement facility
Convex hull ranking algorithm for multi-objective evolutionary algorithms
Davoodi Monfrared, M.; Mohades, A.; Rezaei, J.
2012-01-01
Due to many applications of multi-objective evolutionary algorithms in real world optimization problems, several studies have been done to improve these algorithms in recent years. Since most multi-objective evolutionary algorithms are based on the non-dominated principle, and their complexity
Foundations of genetic algorithms 1991
1991-01-01
Foundations of Genetic Algorithms 1991 (FOGA 1) discusses the theoretical foundations of genetic algorithms (GA) and classifier systems.This book compiles research papers on selection and convergence, coding and representation, problem hardness, deception, classifier system design, variation and recombination, parallelization, and population divergence. Other topics include the non-uniform Walsh-schema transform; spurious correlations and premature convergence in genetic algorithms; and variable default hierarchy separation in a classifier system. The grammar-based genetic algorithm; condition
THE APPROACHING TRAIN DETECTION ALGORITHM
S. V. Bibikov
2015-01-01
The paper deals with detection algorithm for rail vibroacoustic waves caused by approaching train on the background of increased noise. The urgency of algorithm development for train detection in view of increased rail noise, when railway lines are close to roads or road intersections is justified. The algorithm is based on the method of weak signals detection in a noisy environment. The information statistics ultimate expression is adjusted. We present the results of algorithm research and t...
Combinatorial optimization algorithms and complexity
Papadimitriou, Christos H
1998-01-01
This clearly written, mathematically rigorous text includes a novel algorithmic exposition of the simplex method and also discusses the Soviet ellipsoid algorithm for linear programming; efficient algorithms for network flow, matching, spanning trees, and matroids; the theory of NP-complete problems; approximation algorithms, local search heuristics for NP-complete problems, more. All chapters are supplemented by thought-provoking problems. A useful work for graduate-level students with backgrounds in computer science, operations research, and electrical engineering.
Essential algorithms a practical approach to computer algorithms
Stephens, Rod
2013-01-01
A friendly and accessible introduction to the most useful algorithms Computer algorithms are the basic recipes for programming. Professional programmers need to know how to use algorithms to solve difficult programming problems. Written in simple, intuitive English, this book describes how and when to use the most practical classic algorithms, and even how to create new algorithms to meet future needs. The book also includes a collection of questions that can help readers prepare for a programming job interview. Reveals methods for manipulating common data structures s
Efficient GPS Position Determination Algorithms
National Research Council Canada - National Science Library
Nguyen, Thao Q
2007-01-01
... differential GPS algorithm for a network of users. The stand-alone user GPS algorithm is a direct, closed-form, and efficient new position determination algorithm that exploits the closed-form solution of the GPS trilateration equations and works...
Algorithmic approach to diagram techniques
International Nuclear Information System (INIS)
Ponticopoulos, L.
1980-10-01
An algorithmic approach to diagram techniques of elementary particles is proposed. The definition and axiomatics of the theory of algorithms are presented, followed by the list of instructions of an algorithm formalizing the construction of graphs and the assignment of mathematical objects to them. (T.A.)
Selfish Gene Algorithm Vs Genetic Algorithm: A Review
Ariff, Norharyati Md; Khalid, Noor Elaiza Abdul; Hashim, Rathiah; Noor, Noorhayati Mohamed
2016-11-01
Evolutionary algorithm is one of the algorithms inspired by the nature. Within little more than a decade hundreds of papers have reported successful applications of EAs. In this paper, the Selfish Gene Algorithms (SFGA), as one of the latest evolutionary algorithms (EAs) inspired from the Selfish Gene Theory which is an interpretation of Darwinian Theory ideas from the biologist Richards Dawkins on 1989. In this paper, following a brief introduction to the Selfish Gene Algorithm (SFGA), the chronology of its evolution is presented. It is the purpose of this paper is to present an overview of the concepts of Selfish Gene Algorithm (SFGA) as well as its opportunities and challenges. Accordingly, the history, step involves in the algorithm are discussed and its different applications together with an analysis of these applications are evaluated.
Honing process optimization algorithms
Kadyrov, Ramil R.; Charikov, Pavel N.; Pryanichnikova, Valeria V.
2018-03-01
This article considers the relevance of honing processes for creating high-quality mechanical engineering products. The features of the honing process are revealed and such important concepts as the task for optimization of honing operations, the optimal structure of the honing working cycles, stepped and stepless honing cycles, simulation of processing and its purpose are emphasized. It is noted that the reliability of the mathematical model determines the quality parameters of the honing process control. An algorithm for continuous control of the honing process is proposed. The process model reliably describes the machining of a workpiece in a sufficiently wide area and can be used to operate the CNC machine CC743.
Opposite Degree Algorithm and Its Applications
Directory of Open Access Journals (Sweden)
Xiao-Guang Yue
2015-12-01
Full Text Available The opposite (Opposite Degree, referred to as OD algorithm is an intelligent algorithm proposed by Yue Xiaoguang et al. Opposite degree algorithm is mainly based on the concept of opposite degree, combined with the idea of design of neural network and genetic algorithm and clustering analysis algorithm. The OD algorithm is divided into two sub algorithms, namely: opposite degree - numerical computation (OD-NC algorithm and opposite degree - Classification computation (OD-CC algorithm.
Fast algorithm for Morphological Filters
International Nuclear Information System (INIS)
Lou Shan; Jiang Xiangqian; Scott, Paul J
2011-01-01
In surface metrology, morphological filters, which evolved from the envelope filtering system (E-system) work well for functional prediction of surface finish in the analysis of surfaces in contact. The naive algorithms are time consuming, especially for areal data, and not generally adopted in real practice. A fast algorithm is proposed based on the alpha shape. The hull obtained by rolling the alpha ball is equivalent to the morphological opening/closing in theory. The algorithm depends on Delaunay triangulation with time complexity O(nlogn). In comparison to the naive algorithms it generates the opening and closing envelope without combining dilation and erosion. Edge distortion is corrected by reflective padding for open profiles/surfaces. Spikes in the sample data are detected and points interpolated to prevent singularities. The proposed algorithm works well both for morphological profile and area filters. Examples are presented to demonstrate the validity and superiority on efficiency of this algorithm over the naive algorithm.
Recognition algorithms in knot theory
International Nuclear Information System (INIS)
Dynnikov, I A
2003-01-01
In this paper the problem of constructing algorithms for comparing knots and links is discussed. A survey of existing approaches and basic results in this area is given. In particular, diverse combinatorial methods for representing links are discussed, the Haken algorithm for recognizing a trivial knot (the unknot) and a scheme for constructing a general algorithm (using Haken's ideas) for comparing links are presented, an approach based on representing links by closed braids is described, the known algorithms for solving the word problem and the conjugacy problem for braid groups are described, and the complexity of the algorithms under consideration is discussed. A new method of combinatorial description of knots is given together with a new algorithm (based on this description) for recognizing the unknot by using a procedure for monotone simplification. In the conclusion of the paper several problems are formulated whose solution could help to advance towards the 'algorithmization' of knot theory
Hybrid Cryptosystem Using Tiny Encryption Algorithm and LUC Algorithm
Rachmawati, Dian; Sharif, Amer; Jaysilen; Andri Budiman, Mohammad
2018-01-01
Security becomes a very important issue in data transmission and there are so many methods to make files more secure. One of that method is cryptography. Cryptography is a method to secure file by writing the hidden code to cover the original file. Therefore, if the people do not involve in cryptography, they cannot decrypt the hidden code to read the original file. There are many methods are used in cryptography, one of that method is hybrid cryptosystem. A hybrid cryptosystem is a method that uses a symmetric algorithm to secure the file and use an asymmetric algorithm to secure the symmetric algorithm key. In this research, TEA algorithm is used as symmetric algorithm and LUC algorithm is used as an asymmetric algorithm. The system is tested by encrypting and decrypting the file by using TEA algorithm and using LUC algorithm to encrypt and decrypt the TEA key. The result of this research is by using TEA Algorithm to encrypt the file, the cipher text form is the character from ASCII (American Standard for Information Interchange) table in the form of hexadecimal numbers and the cipher text size increase by sixteen bytes as the plaintext length is increased by eight characters.
Rabideau, Gregg R.; Chien, Steve A.
2010-01-01
AVA v2 software selects goals for execution from a set of goals that oversubscribe shared resources. The term goal refers to a science or engineering request to execute a possibly complex command sequence, such as image targets or ground-station downlinks. Developed as an extension to the Virtual Machine Language (VML) execution system, the software enables onboard and remote goal triggering through the use of an embedded, dynamic goal set that can oversubscribe resources. From the set of conflicting goals, a subset must be chosen that maximizes a given quality metric, which in this case is strict priority selection. A goal can never be pre-empted by a lower priority goal, and high-level goals can be added, removed, or updated at any time, and the "best" goals will be selected for execution. The software addresses the issue of re-planning that must be performed in a short time frame by the embedded system where computational resources are constrained. In particular, the algorithm addresses problems with well-defined goal requests without temporal flexibility that oversubscribes available resources. By using a fast, incremental algorithm, goal selection can be postponed in a "just-in-time" fashion allowing requests to be changed or added at the last minute. Thereby enabling shorter response times and greater autonomy for the system under control.
Algorithmic Relative Complexity
Directory of Open Access Journals (Sweden)
Daniele Cerra
2011-04-01
Full Text Available Information content and compression are tightly related concepts that can be addressed through both classical and algorithmic information theories, on the basis of Shannon entropy and Kolmogorov complexity, respectively. The definition of several entities in Kolmogorov’s framework relies upon ideas from classical information theory, and these two approaches share many common traits. In this work, we expand the relations between these two frameworks by introducing algorithmic cross-complexity and relative complexity, counterparts of the cross-entropy and relative entropy (or Kullback-Leibler divergence found in Shannon’s framework. We define the cross-complexity of an object x with respect to another object y as the amount of computational resources needed to specify x in terms of y, and the complexity of x related to y as the compression power which is lost when adopting such a description for x, compared to the shortest representation of x. Properties of analogous quantities in classical information theory hold for these new concepts. As these notions are incomputable, a suitable approximation based upon data compression is derived to enable the application to real data, yielding a divergence measure applicable to any pair of strings. Example applications are outlined, involving authorship attribution and satellite image classification, as well as a comparison to similar established techniques.
Fatigue evaluation algorithms: Review
Energy Technology Data Exchange (ETDEWEB)
Passipoularidis, V.A.; Broendsted, P.
2009-11-15
A progressive damage fatigue simulator for variable amplitude loads named FADAS is discussed in this work. FADAS (Fatigue Damage Simulator) performs ply by ply stress analysis using classical lamination theory and implements adequate stiffness discount tactics based on the failure criterion of Puck, to model the degradation caused by failure events in ply level. Residual strength is incorporated as fatigue damage accumulation metric. Once the typical fatigue and static properties of the constitutive ply are determined,the performance of an arbitrary lay-up under uniaxial and/or multiaxial load time series can be simulated. The predictions are validated against fatigue life data both from repeated block tests at a single stress ratio as well as against spectral fatigue using the WISPER, WISPERX and NEW WISPER load sequences on a Glass/Epoxy multidirectional laminate typical of a wind turbine rotor blade construction. Two versions of the algorithm, the one using single-step and the other using incremental application of each load cycle (in case of ply failure) are implemented and compared. Simulation results confirm the ability of the algorithm to take into account load sequence effects. In general, FADAS performs well in predicting life under both spectral and block loading fatigue. (author)
Optimal Fungal Space Searching Algorithms.
Asenova, Elitsa; Lin, Hsin-Yu; Fu, Eileen; Nicolau, Dan V; Nicolau, Dan V
2016-10-01
Previous experiments have shown that fungi use an efficient natural algorithm for searching the space available for their growth in micro-confined networks, e.g., mazes. This natural "master" algorithm, which comprises two "slave" sub-algorithms, i.e., collision-induced branching and directional memory, has been shown to be more efficient than alternatives, with one, or the other, or both sub-algorithms turned off. In contrast, the present contribution compares the performance of the fungal natural algorithm against several standard artificial homologues. It was found that the space-searching fungal algorithm consistently outperforms uninformed algorithms, such as Depth-First-Search (DFS). Furthermore, while the natural algorithm is inferior to informed ones, such as A*, this under-performance does not importantly increase with the increase of the size of the maze. These findings suggest that a systematic effort of harvesting the natural space searching algorithms used by microorganisms is warranted and possibly overdue. These natural algorithms, if efficient, can be reverse-engineered for graph and tree search strategies.
STAR Algorithm Integration Team - Facilitating operational algorithm development
Mikles, V. J.
2015-12-01
The NOAA/NESDIS Center for Satellite Research and Applications (STAR) provides technical support of the Joint Polar Satellite System (JPSS) algorithm development and integration tasks. Utilizing data from the S-NPP satellite, JPSS generates over thirty Environmental Data Records (EDRs) and Intermediate Products (IPs) spanning atmospheric, ocean, cryosphere, and land weather disciplines. The Algorithm Integration Team (AIT) brings technical expertise and support to product algorithms, specifically in testing and validating science algorithms in a pre-operational environment. The AIT verifies that new and updated algorithms function in the development environment, enforces established software development standards, and ensures that delivered packages are functional and complete. AIT facilitates the development of new JPSS-1 algorithms by implementing a review approach based on the Enterprise Product Lifecycle (EPL) process. Building on relationships established during the S-NPP algorithm development process and coordinating directly with science algorithm developers, the AIT has implemented structured reviews with self-contained document suites. The process has supported algorithm improvements for products such as ozone, active fire, vegetation index, and temperature and moisture profiles.
Algorithm aversion: people erroneously avoid algorithms after seeing them err.
Dietvorst, Berkeley J; Simmons, Joseph P; Massey, Cade
2015-02-01
Research shows that evidence-based algorithms more accurately predict the future than do human forecasters. Yet when forecasters are deciding whether to use a human forecaster or a statistical algorithm, they often choose the human forecaster. This phenomenon, which we call algorithm aversion, is costly, and it is important to understand its causes. We show that people are especially averse to algorithmic forecasters after seeing them perform, even when they see them outperform a human forecaster. This is because people more quickly lose confidence in algorithmic than human forecasters after seeing them make the same mistake. In 5 studies, participants either saw an algorithm make forecasts, a human make forecasts, both, or neither. They then decided whether to tie their incentives to the future predictions of the algorithm or the human. Participants who saw the algorithm perform were less confident in it, and less likely to choose it over an inferior human forecaster. This was true even among those who saw the algorithm outperform the human.
The Texas Medication Algorithm Project (TMAP) schizophrenia algorithms.
Miller, A L; Chiles, J A; Chiles, J K; Crismon, M L; Rush, A J; Shon, S P
1999-10-01
In the Texas Medication Algorithm Project (TMAP), detailed guidelines for medication management of schizophrenia and related disorders, bipolar disorders, and major depressive disorders have been developed and implemented. This article describes the algorithms developed for medication treatment of schizophrenia and related disorders. The guidelines recommend a sequence of medications and discuss dosing, duration, and switch-over tactics. They also specify response criteria at each stage of the algorithm for both positive and negative symptoms. The rationale and evidence for each aspect of the algorithms are presented.
Algorithmic Reflections on Choreography
Directory of Open Access Journals (Sweden)
Pablo Ventura
2016-11-01
Full Text Available In 1996, Pablo Ventura turned his attention to the choreography software Life Forms to find out whether the then-revolutionary new tool could lead to new possibilities of expression in contemporary dance. During the next 2 decades, he devised choreographic techniques and custom software to create dance works that highlight the operational logic of computers, accompanied by computer-generated dance and media elements. This article provides a firsthand account of how Ventura’s engagement with algorithmic concepts guided and transformed his choreographic practice. The text describes the methods that were developed to create computer-aided dance choreographies. Furthermore, the text illustrates how choreography techniques can be applied to correlate formal and aesthetic aspects of movement, music, and video. Finally, the text emphasizes how Ventura’s interest in the wider conceptual context has led him to explore with choreographic means fundamental issues concerning the characteristics of humans and machines and their increasingly profound interdependencies.
Multisensor data fusion algorithm development
Energy Technology Data Exchange (ETDEWEB)
Yocky, D.A.; Chadwick, M.D.; Goudy, S.P.; Johnson, D.K.
1995-12-01
This report presents a two-year LDRD research effort into multisensor data fusion. We approached the problem by addressing the available types of data, preprocessing that data, and developing fusion algorithms using that data. The report reflects these three distinct areas. First, the possible data sets for fusion are identified. Second, automated registration techniques for imagery data are analyzed. Third, two fusion techniques are presented. The first fusion algorithm is based on the two-dimensional discrete wavelet transform. Using test images, the wavelet algorithm is compared against intensity modulation and intensity-hue-saturation image fusion algorithms that are available in commercial software. The wavelet approach outperforms the other two fusion techniques by preserving spectral/spatial information more precisely. The wavelet fusion algorithm was also applied to Landsat Thematic Mapper and SPOT panchromatic imagery data. The second algorithm is based on a linear-regression technique. We analyzed the technique using the same Landsat and SPOT data.
Mao-Gilles Stabilization Algorithm
Jérôme Gilles
2013-01-01
Originally, the Mao-Gilles stabilization algorithm was designed to compensate the non-rigid deformations due to atmospheric turbulence. Given a sequence of frames affected by atmospheric turbulence, the algorithm uses a variational model combining optical flow and regularization to characterize the static observed scene. The optimization problem is solved by Bregman Iteration and the operator splitting method. The algorithm is simple, efficient, and can be easily generalized for different sce...
Mao-Gilles Stabilization Algorithm
Directory of Open Access Journals (Sweden)
Jérôme Gilles
2013-07-01
Full Text Available Originally, the Mao-Gilles stabilization algorithm was designed to compensate the non-rigid deformations due to atmospheric turbulence. Given a sequence of frames affected by atmospheric turbulence, the algorithm uses a variational model combining optical flow and regularization to characterize the static observed scene. The optimization problem is solved by Bregman Iteration and the operator splitting method. The algorithm is simple, efficient, and can be easily generalized for different scenarios involving non-rigid deformations.
One improved LSB steganography algorithm
Song, Bing; Zhang, Zhi-hong
2013-03-01
It is easy to be detected by X2 and RS steganalysis with high accuracy that using LSB algorithm to hide information in digital image. We started by selecting information embedded location and modifying the information embedded method, combined with sub-affine transformation and matrix coding method, improved the LSB algorithm and a new LSB algorithm was proposed. Experimental results show that the improved one can resist the X2 and RS steganalysis effectively.
Unsupervised Classification Using Immune Algorithm
Al-Muallim, M. T.; El-Kouatly, R.
2012-01-01
Unsupervised classification algorithm based on clonal selection principle named Unsupervised Clonal Selection Classification (UCSC) is proposed in this paper. The new proposed algorithm is data driven and self-adaptive, it adjusts its parameters to the data to make the classification operation as fast as possible. The performance of UCSC is evaluated by comparing it with the well known K-means algorithm using several artificial and real-life data sets. The experiments show that the proposed U...
Graph Algorithm Animation with Grrr
Rodgers, Peter; Vidal, Natalia
2000-01-01
We discuss geometric positioning, highlighting of visited nodes and user defined highlighting that form the algorithm animation facilities in the Grrr graph rewriting programming language. The main purpose of animation was initially for the debugging and profiling of Grrr code, but recently it has been extended for the purpose of teaching algorithms to undergraduate students. The animation is restricted to graph based algorithms such as graph drawing, list manipulation or more traditional gra...
Algorithms over partially ordered sets
DEFF Research Database (Denmark)
Baer, Robert M.; Østerby, Ole
1969-01-01
in partially ordered sets, answer the combinatorial question of how many maximal chains might exist in a partially ordered set withn elements, and we give an algorithm for enumerating all maximal chains. We give (in § 3) algorithms which decide whether a partially ordered set is a (lower or upper) semi......-lattice, and whether a lattice has distributive, modular, and Boolean properties. Finally (in § 4) we give Algol realizations of the various algorithms....
An overview of smart grid routing algorithms
Wang, Junsheng; OU, Qinghai; Shen, Haijuan
2017-08-01
This paper summarizes the typical routing algorithm in smart grid by analyzing the communication business and communication requirements of intelligent grid. Mainly from the two kinds of routing algorithm is analyzed, namely clustering routing algorithm and routing algorithm, analyzed the advantages and disadvantages of two kinds of typical routing algorithm in routing algorithm and applicability.
Algorithmic complexity of quantum capacity
Oskouei, Samad Khabbazi; Mancini, Stefano
2018-04-01
We analyze the notion of quantum capacity from the perspective of algorithmic (descriptive) complexity. To this end, we resort to the concept of semi-computability in order to describe quantum states and quantum channel maps. We introduce algorithmic entropies (like algorithmic quantum coherent information) and derive relevant properties for them. Then we show that quantum capacity based on semi-computable concept equals the entropy rate of algorithmic coherent information, which in turn equals the standard quantum capacity. Thanks to this, we finally prove that the quantum capacity, for a given semi-computable channel, is limit computable.
Machine Learning an algorithmic perspective
Marsland, Stephen
2009-01-01
Traditional books on machine learning can be divided into two groups - those aimed at advanced undergraduates or early postgraduates with reasonable mathematical knowledge and those that are primers on how to code algorithms. The field is ready for a text that not only demonstrates how to use the algorithms that make up machine learning methods, but also provides the background needed to understand how and why these algorithms work. Machine Learning: An Algorithmic Perspective is that text.Theory Backed up by Practical ExamplesThe book covers neural networks, graphical models, reinforcement le
DNABIT Compress - Genome compression algorithm.
Rajarajeswari, Pothuraju; Apparao, Allam
2011-01-22
Data compression is concerned with how information is organized in data. Efficient storage means removal of redundancy from the data being stored in the DNA molecule. Data compression algorithms remove redundancy and are used to understand biologically important molecules. We present a compression algorithm, "DNABIT Compress" for DNA sequences based on a novel algorithm of assigning binary bits for smaller segments of DNA bases to compress both repetitive and non repetitive DNA sequence. Our proposed algorithm achieves the best compression ratio for DNA sequences for larger genome. Significantly better compression results show that "DNABIT Compress" algorithm is the best among the remaining compression algorithms. While achieving the best compression ratios for DNA sequences (Genomes),our new DNABIT Compress algorithm significantly improves the running time of all previous DNA compression programs. Assigning binary bits (Unique BIT CODE) for (Exact Repeats, Reverse Repeats) fragments of DNA sequence is also a unique concept introduced in this algorithm for the first time in DNA compression. This proposed new algorithm could achieve the best compression ratio as much as 1.58 bits/bases where the existing best methods could not achieve a ratio less than 1.72 bits/bases.
Diversity-Guided Evolutionary Algorithms
DEFF Research Database (Denmark)
Ursem, Rasmus Kjær
2002-01-01
Population diversity is undoubtably a key issue in the performance of evolutionary algorithms. A common hypothesis is that high diversity is important to avoid premature convergence and to escape local optima. Various diversity measures have been used to analyze algorithms, but so far few...... algorithms have used a measure to guide the search. The diversity-guided evolutionary algorithm (DGEA) uses the wellknown distance-to-average-point measure to alternate between phases of exploration (mutation) and phases of exploitation (recombination and selection). The DGEA showed remarkable results...
FRAMEWORK FOR COMPARING SEGMENTATION ALGORITHMS
Directory of Open Access Journals (Sweden)
G. Sithole
2015-05-01
Full Text Available The notion of a ‘Best’ segmentation does not exist. A segmentation algorithm is chosen based on the features it yields, the properties of the segments (point sets it generates, and the complexity of its algorithm. The segmentation is then assessed based on a variety of metrics such as homogeneity, heterogeneity, fragmentation, etc. Even after an algorithm is chosen its performance is still uncertain because the landscape/scenarios represented in a point cloud have a strong influence on the eventual segmentation. Thus selecting an appropriate segmentation algorithm is a process of trial and error. Automating the selection of segmentation algorithms and their parameters first requires methods to evaluate segmentations. Three common approaches for evaluating segmentation algorithms are ‘goodness methods’, ‘discrepancy methods’ and ‘benchmarks’. Benchmarks are considered the most comprehensive method of evaluation. This paper shortcomings in current benchmark methods are identified and a framework is proposed that permits both a visual and numerical evaluation of segmentations for different algorithms, algorithm parameters and evaluation metrics. The concept of the framework is demonstrated on a real point cloud. Current results are promising and suggest that it can be used to predict the performance of segmentation algorithms.
International Nuclear Information System (INIS)
Grady, M.
1986-01-01
I describe a fast fermion algorithm which utilizes pseudofermion fields but appears to have little or no systematic error. Test simulations on two-dimensional gauge theories are described. A possible justification for the algorithm being exact is discussed. 8 refs
Quantum algorithms and learning theory
Arunachalam, S.
2018-01-01
This thesis studies strengths and weaknesses of quantum computers. In the first part we present three contributions to quantum algorithms. 1) consider a search space of N elements. One of these elements is "marked" and our goal is to find this. We describe a quantum algorithm to solve this problem
Online co-regularized algorithms
Ruijter, T. de; Tsivtsivadze, E.; Heskes, T.
2012-01-01
We propose an online co-regularized learning algorithm for classification and regression tasks. We demonstrate that by sequentially co-regularizing prediction functions on unlabeled data points, our algorithm provides improved performance in comparison to supervised methods on several UCI benchmarks
A fast fractional difference algorithm
DEFF Research Database (Denmark)
Jensen, Andreas Noack; Nielsen, Morten Ørregaard
2014-01-01
We provide a fast algorithm for calculating the fractional difference of a time series. In standard implementations, the calculation speed (number of arithmetic operations) is of order T 2, where T is the length of the time series. Our algorithm allows calculation speed of order T log...
A Fast Fractional Difference Algorithm
DEFF Research Database (Denmark)
Jensen, Andreas Noack; Nielsen, Morten Ørregaard
We provide a fast algorithm for calculating the fractional difference of a time series. In standard implementations, the calculation speed (number of arithmetic operations) is of order T 2, where T is the length of the time series. Our algorithm allows calculation speed of order T log...
A Distributed Spanning Tree Algorithm
DEFF Research Database (Denmark)
Johansen, Karl Erik; Jørgensen, Ulla Lundin; Nielsen, Sven Hauge
We present a distributed algorithm for constructing a spanning tree for connected undirected graphs. Nodes correspond to processors and edges correspond to two-way channels. Each processor has initially a distinct identity and all processors perform the same algorithm. Computation as well...
Algorithms in combinatorial design theory
Colbourn, CJ
1985-01-01
The scope of the volume includes all algorithmic and computational aspects of research on combinatorial designs. Algorithmic aspects include generation, isomorphism and analysis techniques - both heuristic methods used in practice, and the computational complexity of these operations. The scope within design theory includes all aspects of block designs, Latin squares and their variants, pairwise balanced designs and projective planes and related geometries.
Tau reconstruction and identification algorithm
Indian Academy of Sciences (India)
CMS has developed sophisticated tau identification algorithms for tau hadronic decay modes. Production of tau lepton decaying to hadrons are studied at 7 TeV centre-of-mass energy with 2011 collision data collected by CMS detector and has been used to measure the performance of tau identification algorithms by ...
Executable Pseudocode for Graph Algorithms
B. Ó Nualláin (Breanndán)
2015-01-01
textabstract Algorithms are written in pseudocode. However the implementation of an algorithm in a conventional, imperative programming language can often be scattered over hundreds of lines of code thus obscuring its essence. This can lead to difficulties in understanding or verifying the
Where are the parallel algorithms?
Voigt, R. G.
1985-01-01
Four paradigms that can be useful in developing parallel algorithms are discussed. These include computational complexity analysis, changing the order of computation, asynchronous computation, and divide and conquer. Each is illustrated with an example from scientific computation, and it is shown that computational complexity must be used with great care or an inefficient algorithm may be selected.
Algorithms for Decision Tree Construction
Chikalov, Igor
2011-01-01
The study of algorithms for decision tree construction was initiated in 1960s. The first algorithms are based on the separation heuristic [13, 31] that at each step tries dividing the set of objects as evenly as possible. Later Garey and Graham [28
A distributed spanning tree algorithm
DEFF Research Database (Denmark)
Johansen, Karl Erik; Jørgensen, Ulla Lundin; Nielsen, Svend Hauge
1988-01-01
We present a distributed algorithm for constructing a spanning tree for connected undirected graphs. Nodes correspond to processors and edges correspond to two way channels. Each processor has initially a distinct identity and all processors perform the same algorithm. Computation as well as comm...
Global alignment algorithms implementations | Fatumo ...
African Journals Online (AJOL)
In this paper, we implemented the two routes for sequence comparison, that is; the dotplot and Needleman-wunsch algorithm for global sequence alignment. Our algorithms were implemented in python programming language and were tested on Linux platform 1.60GHz, 512 MB of RAM SUSE 9.2 and 10.1 versions.
Cascade Error Projection Learning Algorithm
Duong, T. A.; Stubberud, A. R.; Daud, T.
1995-01-01
A detailed mathematical analysis is presented for a new learning algorithm termed cascade error projection (CEP) and a general learning frame work. This frame work can be used to obtain the cascade correlation learning algorithm by choosing a particular set of parameters.
Novel medical image enhancement algorithms
Agaian, Sos; McClendon, Stephen A.
2010-01-01
In this paper, we present two novel medical image enhancement algorithms. The first, a global image enhancement algorithm, utilizes an alpha-trimmed mean filter as its backbone to sharpen images. The second algorithm uses a cascaded unsharp masking technique to separate the high frequency components of an image in order for them to be enhanced using a modified adaptive contrast enhancement algorithm. Experimental results from enhancing electron microscopy, radiological, CT scan and MRI scan images, using the MATLAB environment, are then compared to the original images as well as other enhancement methods, such as histogram equalization and two forms of adaptive contrast enhancement. An image processing scheme for electron microscopy images of Purkinje cells will also be implemented and utilized as a comparison tool to evaluate the performance of our algorithm.
Elementary functions algorithms and implementation
Muller, Jean-Michel
2016-01-01
This textbook presents the concepts and tools necessary to understand, build, and implement algorithms for computing elementary functions (e.g., logarithms, exponentials, and the trigonometric functions). Both hardware- and software-oriented algorithms are included, along with issues related to accurate floating-point implementation. This third edition has been updated and expanded to incorporate the most recent advances in the field, new elementary function algorithms, and function software. After a preliminary chapter that briefly introduces some fundamental concepts of computer arithmetic, such as floating-point arithmetic and redundant number systems, the text is divided into three main parts. Part I considers the computation of elementary functions using algorithms based on polynomial or rational approximations and using table-based methods; the final chapter in this section deals with basic principles of multiple-precision arithmetic. Part II is devoted to a presentation of “shift-and-add” algorithm...
Streaming Algorithms for Line Simplification
DEFF Research Database (Denmark)
Abam, Mohammad; de Berg, Mark; Hachenberger, Peter
2010-01-01
this problem in a streaming setting, where we only have a limited amount of storage, so that we cannot store all the points. We analyze the competitive ratio of our algorithms, allowing resource augmentation: we let our algorithm maintain a simplification with 2k (internal) points and compare the error of our...... simplification to the error of the optimal simplification with k points. We obtain the algorithms with O(1) competitive ratio for three cases: convex paths, where the error is measured using the Hausdorff distance (or Fréchet distance), xy-monotone paths, where the error is measured using the Hausdorff distance...... (or Fréchet distance), and general paths, where the error is measured using the Fréchet distance. In the first case the algorithm needs O(k) additional storage, and in the latter two cases the algorithm needs O(k 2) additional storage....
Linear feature detection algorithm for astronomical surveys - I. Algorithm description
Bektešević, Dino; Vinković, Dejan
2017-11-01
Computer vision algorithms are powerful tools in astronomical image analyses, especially when automation of object detection and extraction is required. Modern object detection algorithms in astronomy are oriented towards detection of stars and galaxies, ignoring completely the detection of existing linear features. With the emergence of wide-field sky surveys, linear features attract scientific interest as possible trails of fast flybys of near-Earth asteroids and meteors. In this work, we describe a new linear feature detection algorithm designed specifically for implementation in big data astronomy. The algorithm combines a series of algorithmic steps that first remove other objects (stars and galaxies) from the image and then enhance the line to enable more efficient line detection with the Hough algorithm. The rate of false positives is greatly reduced thanks to a step that replaces possible line segments with rectangles and then compares lines fitted to the rectangles with the lines obtained directly from the image. The speed of the algorithm and its applicability in astronomical surveys are also discussed.
The Dropout Learning Algorithm
Baldi, Pierre; Sadowski, Peter
2014-01-01
Dropout is a recently introduced algorithm for training neural network by randomly dropping units during training to prevent their co-adaptation. A mathematical analysis of some of the static and dynamic properties of dropout is provided using Bernoulli gating variables, general enough to accommodate dropout on units or connections, and with variable rates. The framework allows a complete analysis of the ensemble averaging properties of dropout in linear networks, which is useful to understand the non-linear case. The ensemble averaging properties of dropout in non-linear logistic networks result from three fundamental equations: (1) the approximation of the expectations of logistic functions by normalized geometric means, for which bounds and estimates are derived; (2) the algebraic equality between normalized geometric means of logistic functions with the logistic of the means, which mathematically characterizes logistic functions; and (3) the linearity of the means with respect to sums, as well as products of independent variables. The results are also extended to other classes of transfer functions, including rectified linear functions. Approximation errors tend to cancel each other and do not accumulate. Dropout can also be connected to stochastic neurons and used to predict firing rates, and to backpropagation by viewing the backward propagation as ensemble averaging in a dropout linear network. Moreover, the convergence properties of dropout can be understood in terms of stochastic gradient descent. Finally, for the regularization properties of dropout, the expectation of the dropout gradient is the gradient of the corresponding approximation ensemble, regularized by an adaptive weight decay term with a propensity for self-consistent variance minimization and sparse representations. PMID:24771879
Improved autonomous star identification algorithm
International Nuclear Information System (INIS)
Luo Li-Yan; Xu Lu-Ping; Zhang Hua; Sun Jing-Rong
2015-01-01
The log–polar transform (LPT) is introduced into the star identification because of its rotation invariance. An improved autonomous star identification algorithm is proposed in this paper to avoid the circular shift of the feature vector and to reduce the time consumed in the star identification algorithm using LPT. In the proposed algorithm, the star pattern of the same navigation star remains unchanged when the stellar image is rotated, which makes it able to reduce the star identification time. The logarithmic values of the plane distances between the navigation and its neighbor stars are adopted to structure the feature vector of the navigation star, which enhances the robustness of star identification. In addition, some efforts are made to make it able to find the identification result with fewer comparisons, instead of searching the whole feature database. The simulation results demonstrate that the proposed algorithm can effectively accelerate the star identification. Moreover, the recognition rate and robustness by the proposed algorithm are better than those by the LPT algorithm and the modified grid algorithm. (paper)
Portable Health Algorithms Test System
Melcher, Kevin J.; Wong, Edmond; Fulton, Christopher E.; Sowers, Thomas S.; Maul, William A.
2010-01-01
A document discusses the Portable Health Algorithms Test (PHALT) System, which has been designed as a means for evolving the maturity and credibility of algorithms developed to assess the health of aerospace systems. Comprising an integrated hardware-software environment, the PHALT system allows systems health management algorithms to be developed in a graphical programming environment, to be tested and refined using system simulation or test data playback, and to be evaluated in a real-time hardware-in-the-loop mode with a live test article. The integrated hardware and software development environment provides a seamless transition from algorithm development to real-time implementation. The portability of the hardware makes it quick and easy to transport between test facilities. This hard ware/software architecture is flexible enough to support a variety of diagnostic applications and test hardware, and the GUI-based rapid prototyping capability is sufficient to support development execution, and testing of custom diagnostic algorithms. The PHALT operating system supports execution of diagnostic algorithms under real-time constraints. PHALT can perform real-time capture and playback of test rig data with the ability to augment/ modify the data stream (e.g. inject simulated faults). It performs algorithm testing using a variety of data input sources, including real-time data acquisition, test data playback, and system simulations, and also provides system feedback to evaluate closed-loop diagnostic response and mitigation control.
Quantum algorithm for linear regression
Wang, Guoming
2017-07-01
We present a quantum algorithm for fitting a linear regression model to a given data set using the least-squares approach. Differently from previous algorithms which yield a quantum state encoding the optimal parameters, our algorithm outputs these numbers in the classical form. So by running it once, one completely determines the fitted model and then can use it to make predictions on new data at little cost. Moreover, our algorithm works in the standard oracle model, and can handle data sets with nonsparse design matrices. It runs in time poly( log2(N ) ,d ,κ ,1 /ɛ ) , where N is the size of the data set, d is the number of adjustable parameters, κ is the condition number of the design matrix, and ɛ is the desired precision in the output. We also show that the polynomial dependence on d and κ is necessary. Thus, our algorithm cannot be significantly improved. Furthermore, we also give a quantum algorithm that estimates the quality of the least-squares fit (without computing its parameters explicitly). This algorithm runs faster than the one for finding this fit, and can be used to check whether the given data set qualifies for linear regression in the first place.
Array architectures for iterative algorithms
Jagadish, Hosagrahar V.; Rao, Sailesh K.; Kailath, Thomas
1987-01-01
Regular mesh-connected arrays are shown to be isomorphic to a class of so-called regular iterative algorithms. For a wide variety of problems it is shown how to obtain appropriate iterative algorithms and then how to translate these algorithms into arrays in a systematic fashion. Several 'systolic' arrays presented in the literature are shown to be specific cases of the variety of architectures that can be derived by the techniques presented here. These include arrays for Fourier Transform, Matrix Multiplication, and Sorting.
An investigation of genetic algorithms
International Nuclear Information System (INIS)
Douglas, S.R.
1995-04-01
Genetic algorithms mimic biological evolution by natural selection in their search for better individuals within a changing population. they can be used as efficient optimizers. This report discusses the developing field of genetic algorithms. It gives a simple example of the search process and introduces the concept of schema. It also discusses modifications to the basic genetic algorithm that result in species and niche formation, in machine learning and artificial evolution of computer programs, and in the streamlining of human-computer interaction. (author). 3 refs., 1 tab., 2 figs
Instance-specific algorithm configuration
Malitsky, Yuri
2014-01-01
This book presents a modular and expandable technique in the rapidly emerging research area of automatic configuration and selection of the best algorithm for the instance at hand. The author presents the basic model behind ISAC and then details a number of modifications and practical applications. In particular, he addresses automated feature generation, offline algorithm configuration for portfolio generation, algorithm selection, adaptive solvers, online tuning, and parallelization. The author's related thesis was honorably mentioned (runner-up) for the ACP Dissertation Award in 2014,
Subcubic Control Flow Analysis Algorithms
DEFF Research Database (Denmark)
Midtgaard, Jan; Van Horn, David
We give the first direct subcubic algorithm for performing control flow analysis of higher-order functional programs. Despite the long held belief that inclusion-based flow analysis could not surpass the ``cubic bottleneck, '' we apply known set compression techniques to obtain an algorithm...... that runs in time O(n^3/log n) on a unit cost random-access memory model machine. Moreover, we refine the initial flow analysis into two more precise analyses incorporating notions of reachability. We give subcubic algorithms for these more precise analyses and relate them to an existing analysis from...
Quantum Computations: Fundamentals and Algorithms
International Nuclear Information System (INIS)
Duplij, S.A.; Shapoval, I.I.
2007-01-01
Basic concepts of quantum information theory, principles of quantum calculations and the possibility of creation on this basis unique on calculation power and functioning principle device, named quantum computer, are concerned. The main blocks of quantum logic, schemes of quantum calculations implementation, as well as some known today effective quantum algorithms, called to realize advantages of quantum calculations upon classical, are presented here. Among them special place is taken by Shor's algorithm of number factorization and Grover's algorithm of unsorted database search. Phenomena of decoherence, its influence on quantum computer stability and methods of quantum errors correction are described
Planar graphs theory and algorithms
Nishizeki, T
1988-01-01
Collected in this volume are most of the important theorems and algorithms currently known for planar graphs, together with constructive proofs for the theorems. Many of the algorithms are written in Pidgin PASCAL, and are the best-known ones; the complexities are linear or 0(nlogn). The first two chapters provide the foundations of graph theoretic notions and algorithmic techniques. The remaining chapters discuss the topics of planarity testing, embedding, drawing, vertex- or edge-coloring, maximum independence set, subgraph listing, planar separator theorem, Hamiltonian cycles, and single- or multicommodity flows. Suitable for a course on algorithms, graph theory, or planar graphs, the volume will also be useful for computer scientists and graph theorists at the research level. An extensive reference section is included.
Optimally stopped variational quantum algorithms
Vinci, Walter; Shabani, Alireza
2018-04-01
Quantum processors promise a paradigm shift in high-performance computing which needs to be assessed by accurate benchmarking measures. In this article, we introduce a benchmark for the variational quantum algorithm (VQA), recently proposed as a heuristic algorithm for small-scale quantum processors. In VQA, a classical optimization algorithm guides the processor's quantum dynamics to yield the best solution for a given problem. A complete assessment of the scalability and competitiveness of VQA should take into account both the quality and the time of dynamics optimization. The method of optimal stopping, employed here, provides such an assessment by explicitly including time as a cost factor. Here, we showcase this measure for benchmarking VQA as a solver for some quadratic unconstrained binary optimization. Moreover, we show that a better choice for the cost function of the classical routine can significantly improve the performance of the VQA algorithm and even improve its scaling properties.
Fluid-structure-coupling algorithm
International Nuclear Information System (INIS)
McMaster, W.H.; Gong, E.Y.; Landram, C.S.; Quinones, D.F.
1980-01-01
A fluid-structure-interaction algorithm has been developed and incorporated into the two dimensional code PELE-IC. This code combines an Eulerian incompressible fluid algorithm with a Lagrangian finite element shell algorithm and incorporates the treatment of complex free surfaces. The fluid structure, and coupling algorithms have been verified by the calculation of solved problems from the literature and from air and steam blowdown experiments. The code has been used to calculate loads and structural response from air blowdown and the oscillatory condensation of steam bubbles in water suppression pools typical of boiling water reactors. The techniques developed here have been extended to three dimensions and implemented in the computer code PELE-3D
Recursive Algorithm For Linear Regression
Varanasi, S. V.
1988-01-01
Order of model determined easily. Linear-regression algorithhm includes recursive equations for coefficients of model of increased order. Algorithm eliminates duplicative calculations, facilitates search for minimum order of linear-regression model fitting set of data satisfactory.
A quantum causal discovery algorithm
Giarmatzi, Christina; Costa, Fabio
2018-03-01
Finding a causal model for a set of classical variables is now a well-established task—but what about the quantum equivalent? Even the notion of a quantum causal model is controversial. Here, we present a causal discovery algorithm for quantum systems. The input to the algorithm is a process matrix describing correlations between quantum events. Its output consists of different levels of information about the underlying causal model. Our algorithm determines whether the process is causally ordered by grouping the events into causally ordered non-signaling sets. It detects if all relevant common causes are included in the process, which we label Markovian, or alternatively if some causal relations are mediated through some external memory. For a Markovian process, it outputs a causal model, namely the causal relations and the corresponding mechanisms, represented as quantum states and channels. Our algorithm opens the route to more general quantum causal discovery methods.
Multiagent scheduling models and algorithms
Agnetis, Alessandro; Gawiejnowicz, Stanisław; Pacciarelli, Dario; Soukhal, Ameur
2014-01-01
This book presents multi-agent scheduling models in which subsets of jobs sharing the same resources are evaluated by different criteria. It discusses complexity results, approximation schemes, heuristics and exact algorithms.
Aggregation Algorithms in Heterogeneous Tables
Directory of Open Access Journals (Sweden)
Titus Felix FURTUNA
2006-01-01
Full Text Available The heterogeneous tables are most used in the problem of aggregation. A solution for this problem is to standardize these tables of figures. In this paper, we proposed some methods of aggregation based on the hierarchical algorithms.
Designing algorithms using CAD technologies
Directory of Open Access Journals (Sweden)
Alin IORDACHE
2008-01-01
Full Text Available A representative example of eLearning-platform modular application, Ã¢Â€Â˜Logical diagramsÃ¢Â€Â™, is intended to be a useful learning and testing tool for the beginner programmer, but also for the more experienced one. The problem this application is trying to solve concerns young programmers who forget about the fundamentals of this domain, algorithmic. Logical diagrams are a graphic representation of an algorithm, which uses different geometrical figures (parallelograms, rectangles, rhombuses, circles with particular meaning that are called blocks and connected between them to reveal the flow of the algorithm. The role of this application is to help the user build the diagram for the algorithm and then automatically generate the C code and test it.
A filtered backprojection algorithm with characteristics of the iterative landweber algorithm
L. Zeng, Gengsheng
2012-01-01
Purpose: In order to eventually develop an analytical algorithm with noise characteristics of an iterative algorithm, this technical note develops a window function for the filtered backprojection (FBP) algorithm in tomography that behaves as an iterative Landweber algorithm.
A retrodictive stochastic simulation algorithm
International Nuclear Information System (INIS)
Vaughan, T.G.; Drummond, P.D.; Drummond, A.J.
2010-01-01
In this paper we describe a simple method for inferring the initial states of systems evolving stochastically according to master equations, given knowledge of the final states. This is achieved through the use of a retrodictive stochastic simulation algorithm which complements the usual predictive stochastic simulation approach. We demonstrate the utility of this new algorithm by applying it to example problems, including the derivation of likely ancestral states of a gene sequence given a Markovian model of genetic mutation.
Autonomous algorithms for image restoration
Griniasty , Meir
1994-01-01
We describe a general theoretical framework for algorithms that adaptively tune all their parameters during the restoration of a noisy image. The adaptation procedure is based on a mean field approach which is known as ``Deterministic Annealing'', and is reminiscent of the ``Deterministic Bolzmann Machiné'. The algorithm is less time consuming in comparison with its simulated annealing alternative. We apply the theory to several architectures and compare their performances.
Algorithms and Public Service Media
Sørensen, Jannick Kirk; Hutchinson, Jonathon
2018-01-01
When Public Service Media (PSM) organisations introduce algorithmic recommender systems to suggest media content to users, fundamental values of PSM are challenged. Beyond being confronted with ubiquitous computer ethics problems of causality and transparency, also the identity of PSM as curator and agenda-setter is challenged. The algorithms represents rules for which content to present to whom, and in this sense they may discriminate and bias the exposure of diversity. Furthermore, on a pra...
New algorithms for parallel MRI
International Nuclear Information System (INIS)
Anzengruber, S; Ramlau, R; Bauer, F; Leitao, A
2008-01-01
Magnetic Resonance Imaging with parallel data acquisition requires algorithms for reconstructing the patient's image from a small number of measured lines of the Fourier domain (k-space). In contrast to well-known algorithms like SENSE and GRAPPA and its flavors we consider the problem as a non-linear inverse problem. However, in order to avoid cost intensive derivatives we will use Landweber-Kaczmarz iteration and in order to improve the overall results some additional sparsity constraints.
Algorithm for programming function generators
International Nuclear Information System (INIS)
Bozoki, E.
1981-01-01
The present paper deals with a mathematical problem, encountered when driving a fully programmable μ-processor controlled function generator. An algorithm is presented to approximate a desired function by a set of straight segments in such a way that additional restrictions (hardware imposed) are also satisfied. A computer program which incorporates this algorithm and automatically generates the necessary input for the function generator for a broad class of desired functions is also described
Neutronic rebalance algorithms for SIMMER
International Nuclear Information System (INIS)
Soran, P.D.
1976-05-01
Four algorithms to solve the two-dimensional neutronic rebalance equations in SIMMER are investigated. Results of the study are presented and indicate that a matrix decomposition technique with a variable convergence criterion is the best solution algorithm in terms of accuracy and calculational speed. Rebalance numerical stability problems are examined. The results of the study can be applied to other neutron transport codes which use discrete ordinates techniques
Euclidean shortest paths exact or approximate algorithms
Li, Fajie
2014-01-01
This book reviews algorithms for the exact or approximate solution of shortest-path problems, with a specific focus on a class of algorithms called rubberband algorithms. The coverage includes mathematical proofs for many of the given statements.
A Global algorithm for linear radiosity
Sbert Cassasayas, Mateu; Pueyo Sánchez, Xavier
1993-01-01
A linear algorithm for radiosity is presented, linear both in time and storage. The new algorithm is based on previous work by the authors and on the well known algorithms for progressive radiosity and Monte Carlo particle transport.
Cascade Error Projection: A New Learning Algorithm
Duong, T. A.; Stubberud, A. R.; Daud, T.; Thakoor, A. P.
1995-01-01
A new neural network architecture and a hardware implementable learning algorithm is proposed. The algorithm, called cascade error projection (CEP), handles lack of precision and circuit noise better than existing algorithms.
Multimodal Estimation of Distribution Algorithms.
Yang, Qiang; Chen, Wei-Neng; Li, Yun; Chen, C L Philip; Xu, Xiang-Min; Zhang, Jun
2016-02-15
Taking the advantage of estimation of distribution algorithms (EDAs) in preserving high diversity, this paper proposes a multimodal EDA. Integrated with clustering strategies for crowding and speciation, two versions of this algorithm are developed, which operate at the niche level. Then these two algorithms are equipped with three distinctive techniques: 1) a dynamic cluster sizing strategy; 2) an alternative utilization of Gaussian and Cauchy distributions to generate offspring; and 3) an adaptive local search. The dynamic cluster sizing affords a potential balance between exploration and exploitation and reduces the sensitivity to the cluster size in the niching methods. Taking advantages of Gaussian and Cauchy distributions, we generate the offspring at the niche level through alternatively using these two distributions. Such utilization can also potentially offer a balance between exploration and exploitation. Further, solution accuracy is enhanced through a new local search scheme probabilistically conducted around seeds of niches with probabilities determined self-adaptively according to fitness values of these seeds. Extensive experiments conducted on 20 benchmark multimodal problems confirm that both algorithms can achieve competitive performance compared with several state-of-the-art multimodal algorithms, which is supported by nonparametric tests. Especially, the proposed algorithms are very promising for complex problems with many local optima.
Efficient RNA structure comparison algorithms.
Arslan, Abdullah N; Anandan, Jithendar; Fry, Eric; Monschke, Keith; Ganneboina, Nitin; Bowerman, Jason
2017-12-01
Recently proposed relative addressing-based ([Formula: see text]) RNA secondary structure representation has important features by which an RNA structure database can be stored into a suffix array. A fast substructure search algorithm has been proposed based on binary search on this suffix array. Using this substructure search algorithm, we present a fast algorithm that finds the largest common substructure of given multiple RNA structures in [Formula: see text] format. The multiple RNA structure comparison problem is NP-hard in its general formulation. We introduced a new problem for comparing multiple RNA structures. This problem has more strict similarity definition and objective, and we propose an algorithm that solves this problem efficiently. We also develop another comparison algorithm that iteratively calls this algorithm to locate nonoverlapping large common substructures in compared RNAs. With the new resulting tools, we improved the RNASSAC website (linked from http://faculty.tamuc.edu/aarslan ). This website now also includes two drawing tools: one specialized for preparing RNA substructures that can be used as input by the search tool, and another one for automatically drawing the entire RNA structure from a given structure sequence.
Golden Sine Algorithm: A Novel Math-Inspired Algorithm
Directory of Open Access Journals (Sweden)
TANYILDIZI, E.
2017-05-01
Full Text Available In this study, Golden Sine Algorithm (Gold-SA is presented as a new metaheuristic method for solving optimization problems. Gold-SA has been developed as a new search algorithm based on population. This math-based algorithm is inspired by sine that is a trigonometric function. In the algorithm, random individuals are created as many as the number of search agents with uniform distribution for each dimension. The Gold-SA operator searches to achieve a better solution in each iteration by trying to bring the current situation closer to the target value. The solution space is narrowed by the golden section so that the areas that are supposed to give only good results are scanned instead of the whole solution space scan. In the tests performed, it is seen that Gold-SA has better results than other population based methods. In addition, Gold-SA has fewer algorithm-dependent parameters and operators than other metaheuristic methods, increasing the importance of this method by providing faster convergence of this new method.
Algorithms as fetish: Faith and possibility in algorithmic work
Directory of Open Access Journals (Sweden)
Suzanne L Thomas
2018-01-01
Full Text Available Algorithms are powerful because we invest in them the power to do things. With such promise, they can transform the ordinary, say snapshots along a robotic vacuum cleaner’s route, into something much more, such as a clean home. Echoing David Graeber’s revision of fetishism, we argue that this easy slip from technical capabilities to broader claims betrays not the “magic” of algorithms but rather the dynamics of their exchange. Fetishes are not indicators of false thinking, but social contracts in material form. They mediate emerging distributions of power often too nascent, too slippery or too disconcerting to directly acknowledge. Drawing primarily on 2016 ethnographic research with computer vision professionals, we show how faith in what algorithms can do shapes the social encounters and exchanges of their production. By analyzing algorithms through the lens of fetishism, we can see the social and economic investment in some people’s labor over others. We also see everyday opportunities for social creativity and change. We conclude that what is problematic about algorithms is not their fetishization but instead their stabilization into full-fledged gods and demons – the more deserving objects of critique.
Algebraic Algorithm Design and Local Search
National Research Council Canada - National Science Library
Graham, Robert
1996-01-01
.... Algebraic techniques have been applied successfully to algorithm synthesis by the use of algorithm theories and design tactics, an approach pioneered in the Kestrel Interactive Development System (KIDS...
Algorithmic randomness and physical entropy
International Nuclear Information System (INIS)
Zurek, W.H.
1989-01-01
Algorithmic randomness provides a rigorous, entropylike measure of disorder of an individual, microscopic, definite state of a physical system. It is defined by the size (in binary digits) of the shortest message specifying the microstate uniquely up to the assumed resolution. Equivalently, algorithmic randomness can be expressed as the number of bits in the smallest program for a universal computer that can reproduce the state in question (for instance, by plotting it with the assumed accuracy). In contrast to the traditional definitions of entropy, algorithmic randomness can be used to measure disorder without any recourse to probabilities. Algorithmic randomness is typically very difficult to calculate exactly but relatively easy to estimate. In large systems, probabilistic ensemble definitions of entropy (e.g., coarse-grained entropy of Gibbs and Boltzmann's entropy H=lnW, as well as Shannon's information-theoretic entropy) provide accurate estimates of the algorithmic entropy of an individual system or its average value for an ensemble. One is thus able to rederive much of thermodynamics and statistical mechanics in a setting very different from the usual. Physical entropy, I suggest, is a sum of (i) the missing information measured by Shannon's formula and (ii) of the algorithmic information content---algorithmic randomness---present in the available data about the system. This definition of entropy is essential in describing the operation of thermodynamic engines from the viewpoint of information gathering and using systems. These Maxwell demon-type entities are capable of acquiring and processing information and therefore can ''decide'' on the basis of the results of their measurements and computations the best strategy for extracting energy from their surroundings. From their internal point of view the outcome of each measurement is definite
Contact-impact algorithms on parallel computers
International Nuclear Information System (INIS)
Zhong Zhihua; Nilsson, Larsgunnar
1994-01-01
Contact-impact algorithms on parallel computers are discussed within the context of explicit finite element analysis. The algorithms concerned include a contact searching algorithm and an algorithm for contact force calculations. The contact searching algorithm is based on the territory concept of the general HITA algorithm. However, no distinction is made between different contact bodies, or between different contact surfaces. All contact segments from contact boundaries are taken as a single set. Hierarchy territories and contact territories are expanded. A three-dimensional bucket sort algorithm is used to sort contact nodes. The defence node algorithm is used in the calculation of contact forces. Both the contact searching algorithm and the defence node algorithm are implemented on the connection machine CM-200. The performance of the algorithms is examined under different circumstances, and numerical results are presented. ((orig.))
A review on quantum search algorithms
Giri, Pulak Ranjan; Korepin, Vladimir E.
2017-12-01
The use of superposition of states in quantum computation, known as quantum parallelism, has significant advantage in terms of speed over the classical computation. It is evident from the early invented quantum algorithms such as Deutsch's algorithm, Deutsch-Jozsa algorithm and its variation as Bernstein-Vazirani algorithm, Simon algorithm, Shor's algorithms, etc. Quantum parallelism also significantly speeds up the database search algorithm, which is important in computer science because it comes as a subroutine in many important algorithms. Quantum database search of Grover achieves the task of finding the target element in an unsorted database in a time quadratically faster than the classical computer. We review Grover's quantum search algorithms for a singe and multiple target elements in a database. The partial search algorithm of Grover and Radhakrishnan and its optimization by Korepin called GRK algorithm are also discussed.
Computational geometry algorithms and applications
de Berg, Mark; Overmars, Mark; Schwarzkopf, Otfried
1997-01-01
Computational geometry emerged from the field of algorithms design and anal ysis in the late 1970s. It has grown into a recognized discipline with its own journals, conferences, and a large community of active researchers. The suc cess of the field as a research discipline can on the one hand be explained from the beauty of the problems studied and the solutions obtained, and, on the other hand, by the many application domains--computer graphics, geographic in formation systems (GIS), robotics, and others-in which geometric algorithms play a fundamental role. For many geometric problems the early algorithmic solutions were either slow or difficult to understand and implement. In recent years a number of new algorithmic techniques have been developed that improved and simplified many of the previous approaches. In this textbook we have tried to make these modem algorithmic solutions accessible to a large audience. The book has been written as a textbook for a course in computational geometry, but it can ...
The Chandra Source Catalog: Algorithms
McDowell, Jonathan; Evans, I. N.; Primini, F. A.; Glotfelty, K. J.; McCollough, M. L.; Houck, J. C.; Nowak, M. A.; Karovska, M.; Davis, J. E.; Rots, A. H.; Siemiginowska, A. L.; Hain, R.; Evans, J. D.; Anderson, C. S.; Bonaventura, N. R.; Chen, J. C.; Doe, S. M.; Fabbiano, G.; Galle, E. C.; Gibbs, D. G., II; Grier, J. D.; Hall, D. M.; Harbo, P. N.; He, X.; Lauer, J.; Miller, J. B.; Mitschang, A. W.; Morgan, D. L.; Nichols, J. S.; Plummer, D. A.; Refsdal, B. L.; Sundheim, B. A.; Tibbetts, M. S.; van Stone, D. W.; Winkelman, S. L.; Zografou, P.
2009-09-01
Creation of the Chandra Source Catalog (CSC) required adjustment of existing pipeline processing, adaptation of existing interactive analysis software for automated use, and development of entirely new algorithms. Data calibration was based on the existing pipeline, but more rigorous data cleaning was applied and the latest calibration data products were used. For source detection, a local background map was created including the effects of ACIS source readout streaks. The existing wavelet source detection algorithm was modified and a set of post-processing scripts used to correct the results. To analyse the source properties we ran the SAO Traceray trace code for each source to generate a model point spread function, allowing us to find encircled energy correction factors and estimate source extent. Further algorithms were developed to characterize the spectral, spatial and temporal properties of the sources and to estimate the confidence intervals on count rates and fluxes. Finally, sources detected in multiple observations were matched, and best estimates of their merged properties derived. In this paper we present an overview of the algorithms used, with more detailed treatment of some of the newly developed algorithms presented in companion papers.
Quantum walks and search algorithms
Portugal, Renato
2013-01-01
This book addresses an interesting area of quantum computation called quantum walks, which play an important role in building quantum algorithms, in particular search algorithms. Quantum walks are the quantum analogue of classical random walks. It is known that quantum computers have great power for searching unsorted databases. This power extends to many kinds of searches, particularly to the problem of finding a specific location in a spatial layout, which can be modeled by a graph. The goal is to find a specific node knowing that the particle uses the edges to jump from one node to the next. This book is self-contained with main topics that include: Grover's algorithm, describing its geometrical interpretation and evolution by means of the spectral decomposition of the evolution operater Analytical solutions of quantum walks on important graphs like line, cycles, two-dimensional lattices, and hypercubes using Fourier transforms Quantum walks on generic graphs, describing methods to calculate the limiting d...
Gossip algorithms in quantum networks
International Nuclear Information System (INIS)
Siomau, Michael
2017-01-01
Gossip algorithms is a common term to describe protocols for unreliable information dissemination in natural networks, which are not optimally designed for efficient communication between network entities. We consider application of gossip algorithms to quantum networks and show that any quantum network can be updated to optimal configuration with local operations and classical communication. This allows to speed-up – in the best case exponentially – the quantum information dissemination. Irrespective of the initial configuration of the quantum network, the update requiters at most polynomial number of local operations and classical communication. - Highlights: • We analyze the performance of gossip algorithms in quantum networks. • Local operations and classical communication (LOCC) can speed the performance up. • The speed-up is exponential in the best case; the number of LOCC is polynomial.
Universal algorithm of time sharing
International Nuclear Information System (INIS)
Silin, I.N.; Fedyun'kin, E.D.
1979-01-01
Timesharing system algorithm is proposed for the wide class of one- and multiprocessor computer configurations. Dynamical priority is the piece constant function of the channel characteristic and system time quantum. The interactive job quantum has variable length. Characteristic recurrent formula is received. The concept of the background job is introduced. Background job loads processor if high priority jobs are inactive. Background quality function is given on the base of the statistical data received in the timesharing process. Algorithm includes optimal trashing off procedure for the jobs replacements in the memory. Sharing of the system time in proportion to the external priorities is guaranteed for the all active enough computing channels (back-ground too). The fast answer is guaranteed for the interactive jobs, which use small time and memory. The external priority control is saved for the high level scheduler. The experience of the algorithm realization on the BESM-6 computer in JINR is discussed
Algorithms for Decision Tree Construction
Chikalov, Igor
2011-01-01
The study of algorithms for decision tree construction was initiated in 1960s. The first algorithms are based on the separation heuristic [13, 31] that at each step tries dividing the set of objects as evenly as possible. Later Garey and Graham [28] showed that such algorithm may construct decision trees whose average depth is arbitrarily far from the minimum. Hyafil and Rivest in [35] proved NP-hardness of DT problem that is constructing a tree with the minimum average depth for a diagnostic problem over 2-valued information system and uniform probability distribution. Cox et al. in [22] showed that for a two-class problem over information system, even finding the root node attribute for an optimal tree is an NP-hard problem. © Springer-Verlag Berlin Heidelberg 2011.
Scalable algorithms for contact problems
Dostál, Zdeněk; Sadowská, Marie; Vondrák, Vít
2016-01-01
This book presents a comprehensive and self-contained treatment of the authors’ newly developed scalable algorithms for the solutions of multibody contact problems of linear elasticity. The brand new feature of these algorithms is theoretically supported numerical scalability and parallel scalability demonstrated on problems discretized by billions of degrees of freedom. The theory supports solving multibody frictionless contact problems, contact problems with possibly orthotropic Tresca’s friction, and transient contact problems. It covers BEM discretization, jumping coefficients, floating bodies, mortar non-penetration conditions, etc. The exposition is divided into four parts, the first of which reviews appropriate facets of linear algebra, optimization, and analysis. The most important algorithms and optimality results are presented in the third part of the volume. The presentation is complete, including continuous formulation, discretization, decomposition, optimality results, and numerical experimen...
Fault Tolerant External Memory Algorithms
DEFF Research Database (Denmark)
Jørgensen, Allan Grønlund; Brodal, Gerth Stølting; Mølhave, Thomas
2009-01-01
Algorithms dealing with massive data sets are usually designed for I/O-efficiency, often captured by the I/O model by Aggarwal and Vitter. Another aspect of dealing with massive data is how to deal with memory faults, e.g. captured by the adversary based faulty memory RAM by Finocchi and Italiano....... However, current fault tolerant algorithms do not scale beyond the internal memory. In this paper we investigate for the first time the connection between I/O-efficiency in the I/O model and fault tolerance in the faulty memory RAM, and we assume that both memory and disk are unreliable. We show a lower...... bound on the number of I/Os required for any deterministic dictionary that is resilient to memory faults. We design a static and a dynamic deterministic dictionary with optimal query performance as well as an optimal sorting algorithm and an optimal priority queue. Finally, we consider scenarios where...
Gossip algorithms in quantum networks
Energy Technology Data Exchange (ETDEWEB)
Siomau, Michael, E-mail: siomau@nld.ds.mpg.de [Physics Department, Jazan University, P.O. Box 114, 45142 Jazan (Saudi Arabia); Network Dynamics, Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen (Germany)
2017-01-23
Gossip algorithms is a common term to describe protocols for unreliable information dissemination in natural networks, which are not optimally designed for efficient communication between network entities. We consider application of gossip algorithms to quantum networks and show that any quantum network can be updated to optimal configuration with local operations and classical communication. This allows to speed-up – in the best case exponentially – the quantum information dissemination. Irrespective of the initial configuration of the quantum network, the update requiters at most polynomial number of local operations and classical communication. - Highlights: • We analyze the performance of gossip algorithms in quantum networks. • Local operations and classical communication (LOCC) can speed the performance up. • The speed-up is exponential in the best case; the number of LOCC is polynomial.
Next Generation Suspension Dynamics Algorithms
Energy Technology Data Exchange (ETDEWEB)
Schunk, Peter Randall [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Higdon, Jonathon [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Chen, Steven [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2014-12-01
This research project has the objective to extend the range of application, improve the efficiency and conduct simulations with the Fast Lubrication Dynamics (FLD) algorithm for concentrated particle suspensions in a Newtonian fluid solvent. The research involves a combination of mathematical development, new computational algorithms, and application to processing flows of relevance in materials processing. The mathematical developments clarify the underlying theory, facilitate verification against classic monographs in the field and provide the framework for a novel parallel implementation optimized for an OpenMP shared memory environment. The project considered application to consolidation flows of major interest in high throughput materials processing and identified hitherto unforeseen challenges in the use of FLD in these applications. Extensions to the algorithm have been developed to improve its accuracy in these applications.
Algorithms for Protein Structure Prediction
DEFF Research Database (Denmark)
Paluszewski, Martin
-trace. Here we present three different approaches for reconstruction of C-traces from predictable measures. In our first approach [63, 62], the C-trace is positioned on a lattice and a tabu-search algorithm is applied to find minimum energy structures. The energy function is based on half-sphere-exposure (HSE......) is more robust than standard Monte Carlo search. In the second approach for reconstruction of C-traces, an exact branch and bound algorithm has been developed [67, 65]. The model is discrete and makes use of secondary structure predictions, HSE, CN and radius of gyration. We show how to compute good lower...... bounds for partial structures very fast. Using these lower bounds, we are able to find global minimum structures in a huge conformational space in reasonable time. We show that many of these global minimum structures are of good quality compared to the native structure. Our branch and bound algorithm...
Some nonlinear space decomposition algorithms
Energy Technology Data Exchange (ETDEWEB)
Tai, Xue-Cheng; Espedal, M. [Univ. of Bergen (Norway)
1996-12-31
Convergence of a space decomposition method is proved for a general convex programming problem. The space decomposition refers to methods that decompose a space into sums of subspaces, which could be a domain decomposition or a multigrid method for partial differential equations. Two algorithms are proposed. Both can be used for linear as well as nonlinear elliptic problems and they reduce to the standard additive and multiplicative Schwarz methods for linear elliptic problems. Two {open_quotes}hybrid{close_quotes} algorithms are also presented. They converge faster than the additive one and have better parallelism than the multiplicative method. Numerical tests with a two level domain decomposition for linear, nonlinear and interface elliptic problems are presented for the proposed algorithms.
A generalization of Takane's algorithm for DEDICOM
Kiers, Henk A.L.; ten Berge, Jos M.F.; Takane, Yoshio; de Leeuw, Jan
An algorithm is described for fitting the DEDICOM model for the analysis of asymmetric data matrices. This algorithm generalizes an algorithm suggested by Takane in that it uses a damping parameter in the iterative process. Takane's algorithm does not always converge monotonically. Based on the
Seamless Merging of Hypertext and Algorithm Animation
Karavirta, Ville
2009-01-01
Online learning material that students use by themselves is one of the typical usages of algorithm animation (AA). Thus, the integration of algorithm animations into hypertext is seen as an important topic today to promote the usage of algorithm animation in teaching. This article presents an algorithm animation viewer implemented purely using…
Empirical tests of the Gradual Learning Algorithm
Boersma, P.; Hayes, B.
1999-01-01
The Gradual Learning Algorithm (Boersma 1997) is a constraint ranking algorithm for learning Optimality-theoretic grammars. The purpose of this article is to assess the capabilities of the Gradual Learning Algorithm, particularly in comparison with the Constraint Demotion algorithm of Tesar and
Empirical tests of the Gradual Learning Algorithm
Boersma, P.; Hayes, B.
2001-01-01
The Gradual Learning Algorithm (Boersma 1997) is a constraint-ranking algorithm for learning optimality-theoretic grammars. The purpose of this article is to assess the capabilities of the Gradual Learning Algorithm, particularly in comparison with the Constraint Demotion algorithm of Tesar and
A new cluster algorithm for graphs
S. van Dongen
1998-01-01
textabstractA new cluster algorithm for graphs called the emph{Markov Cluster algorithm ($MCL$ algorithm) is introduced. The graphs may be both weighted (with nonnegative weight) and directed. Let~$G$~be such a graph. The $MCL$ algorithm simulates flow in $G$ by first identifying $G$ in a
A Hybrid Chaotic Quantum Evolutionary Algorithm
DEFF Research Database (Denmark)
Cai, Y.; Zhang, M.; Cai, H.
2010-01-01
A hybrid chaotic quantum evolutionary algorithm is proposed to reduce amount of computation, speed up convergence and restrain premature phenomena of quantum evolutionary algorithm. The proposed algorithm adopts the chaotic initialization method to generate initial population which will form a pe...... tests. The presented algorithm is applied to urban traffic signal timing optimization and the effect is satisfied....
Using Alternative Multiplication Algorithms to "Offload" Cognition
Jazby, Dan; Pearn, Cath
2015-01-01
When viewed through a lens of embedded cognition, algorithms may enable aspects of the cognitive work of multi-digit multiplication to be "offloaded" to the environmental structure created by an algorithm. This study analyses four multiplication algorithms by viewing different algorithms as enabling cognitive work to be distributed…
Gossip algorithms in quantum networks
Siomau, Michael
2017-01-01
Gossip algorithms is a common term to describe protocols for unreliable information dissemination in natural networks, which are not optimally designed for efficient communication between network entities. We consider application of gossip algorithms to quantum networks and show that any quantum network can be updated to optimal configuration with local operations and classical communication. This allows to speed-up - in the best case exponentially - the quantum information dissemination. Irrespective of the initial configuration of the quantum network, the update requiters at most polynomial number of local operations and classical communication.
Industrial Applications of Evolutionary Algorithms
Sanchez, Ernesto; Tonda, Alberto
2012-01-01
This book is intended as a reference both for experienced users of evolutionary algorithms and for researchers that are beginning to approach these fascinating optimization techniques. Experienced users will find interesting details of real-world problems, and advice on solving issues related to fitness computation, modeling and setting appropriate parameters to reach optimal solutions. Beginners will find a thorough introduction to evolutionary computation, and a complete presentation of all evolutionary algorithms exploited to solve different problems. The book could fill the gap between the
Parallel algorithms and cluster computing
Hoffmann, Karl Heinz
2007-01-01
This book presents major advances in high performance computing as well as major advances due to high performance computing. It contains a collection of papers in which results achieved in the collaboration of scientists from computer science, mathematics, physics, and mechanical engineering are presented. From the science problems to the mathematical algorithms and on to the effective implementation of these algorithms on massively parallel and cluster computers we present state-of-the-art methods and technology as well as exemplary results in these fields. This book shows that problems which seem superficially distinct become intimately connected on a computational level.
Optimisation combinatoire Theorie et algorithmes
Korte, Bernhard; Fonlupt, Jean
2010-01-01
Ce livre est la traduction fran aise de la quatri me et derni re dition de Combinatorial Optimization: Theory and Algorithms crit par deux minents sp cialistes du domaine: Bernhard Korte et Jens Vygen de l'universit de Bonn en Allemagne. Il met l accent sur les aspects th oriques de l'optimisation combinatoire ainsi que sur les algorithmes efficaces et exacts de r solution de probl mes. Il se distingue en cela des approches heuristiques plus simples et souvent d crites par ailleurs. L ouvrage contient de nombreuses d monstrations, concises et l gantes, de r sultats difficiles. Destin aux tudia