WorldWideScience

Sample records for psii protein complexes

  1. Lead induced changes in phosphorylation of PSII proteins in low light grown pea plants.

    Science.gov (United States)

    Wioleta, Wasilewska; Anna, Drożak; Ilona, Bacławska; Kamila, Kąkol; Elżbieta, Romanowska

    2015-02-01

    Light-intensity and redox-state induced thylakoid proteins phosphorylation involved in structural changes and in regulation of protein turnover. The presence of heavy metal ions triggers a wide range of cellular responses including changes in plant growth and photosynthesis. Plants have evolved a number of mechanisms to protect photosynthetic apparatus. We have characterized the effect of lead on PSII protein phosphorylation in pea (Pisum sativum L.) plants grown in low light conditions. Pb ions affected only slightly photochemical efficiency of PSII and had no effect on organization of thylakoid complexes. Lead activated strongly phosphorylation of PSII core D1 protein and dephosphorylation of this protein did not proceed in far red light. D1 protein was also not degraded in this conditions. However, phosphorylation of LHCII proteins was not affected by lead. These results indicate that Pb(2+) stimulate the phosphorylation of PSII core proteins and by disturbing the disassembly of supercomplexes play a role in PSII repair mechanism. LHCII phosphorylation could control the distribution of energy between the photosystems in low light conditions. This demonstrates that plants may respond to heavy metals by induction different pathways responsible for protein protection under stress conditions.

  2. Structure of PSI, PSII and antennae complexes from yellow-green alga Xanthonema debile.

    Science.gov (United States)

    Gardian, Zdenko; Tichý, Josef; Vácha, František

    2011-05-01

    Photosynthetic carbon fixation by Chromophytes is one of the significant components of a carbon cycle on the Earth. Their photosynthetic apparatus is different in pigment composition from that of green plants and algae. In this work we report structural maps of photosystem I, photosystem II and light harvesting antenna complexes isolated from a soil chromophytic alga Xanthonema debile (class Xanthophyceae). Electron microscopy of negatively stained preparations followed by single particle analysis revealed that the overall structure of Xanthophytes' PSI and PSII complexes is similar to that known from higher plants or algae. Averaged top-view projections of Xanthophytes' light harvesting antenna complexes (XLH) showed two groups of particles. Smaller ones that correspond to a trimeric form of XLH, bigger particles resemble higher oligomeric form of XLH.

  3. Arabidopsis plants lacking PsbQ and PsbR subunits of the oxygen-evolving complex show altered PSII super-complex organization and short-term adaptive mechanisms.

    Science.gov (United States)

    Allahverdiyeva, Yagut; Suorsa, Marjaana; Rossi, Fabio; Pavesi, Andrea; Kater, Martin M; Antonacci, Alessia; Tadini, Luca; Pribil, Mathias; Schneider, Anja; Wanner, Gerhard; Leister, Dario; Aro, Eva-Mari; Barbato, Roberto; Pesaresi, Paolo

    2013-08-01

    The oxygen-evolving complex of eukaryotic photosystem II (PSII) consists of four extrinsic subunits, PsbO (33 kDa), PsbP (23 kDa), PsbQ (17 kDa) and PsbR (10 kDa), encoded by seven nuclear genes, PsbO1 (At5g66570), PsbO2 (At3g50820), PsbP1 (At1g06680), PsbP2 (At2g30790), PsbQ1 (At4g21280), PsbQ2 (At4g05180) and PsbR (At1g79040). Using Arabidopsis insertion mutant lines, we show that PsbP1, but not PsbP2, is essential for photoautotrophic growth, whereas plants lacking both forms of PsbQ and/or PsbR show normal growth rates. Complete elimination of PsbQ has a minor effect on PSII function, but plants lacking PsbR or both PsbR and PsbQ are characterized by more pronounced defects in PSII activity. Gene expression and immunoblot analyses indicate that accumulation of each of these proteins is highly dependent on the presence of the others, and is controlled at the post-transcriptional level, whereas PsbO stability appears to be less sensitive to depletion of other subunits of the oxygen-evolving complex. In addition, comparison of levels of the PSII super-complex in wild-type and mutant leaves reveals the importance of the individual subunits of the oxygen-evolving complex for the supramolecular organization of PSII and their influence on the rate of state transitions. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  4. Merging Structural Information from X-ray Crystallography, Quantum Chemistry, and EXAFS Spectra: The Oxygen-Evolving Complex in PSII.

    Science.gov (United States)

    Chernev, Petko; Zaharieva, Ivelina; Rossini, Emanuele; Galstyan, Artur; Dau, Holger; Knapp, Ernst-Walter

    2016-10-12

    Structural data of the oxygen-evolving complex (OEC) in photosystem II (PSII) determined by X-ray crystallography, quantum chemistry (QC), and extended X-ray absorption fine structure (EXAFS) analyses are presently inconsistent. Therefore, a detailed study of what information can be gained about the OEC through a comparison of QC and crystallographic structure information combined with the information from range-extended EXAFS spectra was undertaken. An analysis for determining the precision of the atomic coordinates of the OEC by QC is carried out. OEC model structures based on crystallographic data that are obtained by QC from different research groups are compared with one another and with structures obtained by high-resolution crystallography. The theory of EXAFS spectra is summarized, and the application of EXAFS spectra to the experimental determination of the structure of the OEC is detailed. We discriminate three types of parameters entering the formula for the EXAFS spectrum: (1) model-independent, predefined, and fixed; (2) model-dependent that can be computed or adjusted; and (3) model-dependent that must be adjusted. The information content of EXAFS spectra is estimated and is related to the precision of atomic coordinates and resolution power to discriminate different atom-pair distances of the OEC. It is demonstrated how a precise adjustment of atomic coordinates can yield a nearly perfect representation of the experimental OEC EXAFS spectrum, but at the expense of overfitting and losing the knowledge of the initial OEC model structure. Introducing a novel type of penalty function, it is shown that moderate adjustment of atomic coordinates to the EXAFS spectrum limited by constraints avoids overfitting and can be used to validate different OEC model structures. This technique is used to identify the OEC model structures whose computed OEC EXAFS spectra agree best with the measured spectrum. In this way, the most likely S-state and protonation pattern

  5. C lostridium difficile surface proteins are anchored to the cell wall using CWB2 motifs that recognise the anionic polymer PSII

    Science.gov (United States)

    Willing, Stephanie E.; Candela, Thomas; Shaw, Helen Alexandra; Seager, Zoe; Mesnage, Stéphane; Fagan, Robert P.

    2015-01-01

    Summary Gram‐positive surface proteins can be covalently or non‐covalently anchored to the cell wall and can impart important properties on the bacterium in respect of cell envelope organisation and interaction with the environment. We describe here a mechanism of protein anchoring involving tandem CWB2 motifs found in a large number of cell wall proteins in the Firmicutes. In the Clostridium difficile cell wall protein family, we show the three tandem repeats of the CWB2 motif are essential for correct anchoring to the cell wall. CWB2 repeats are non‐identical and cannot substitute for each other, as shown by the secretion into the culture supernatant of proteins containing variations in the patterns of repeats. A conserved Ile Leu Leu sequence within the CWB2 repeats is essential for correct anchoring, although a preceding proline residue is dispensable. We propose a likely genetic locus encoding synthesis of the anionic polymer PSII and, using RNA knock‐down of key genes, reveal subtle effects on cell wall composition. We show that the anionic polymer PSII binds two cell wall proteins, SlpA and Cwp2, and these interactions require the CWB2 repeats, defining a new mechanism of protein anchoring in Gram‐positive bacteria. PMID:25649385

  6. Isolation of novel PSII-LHCII megacomplexes from pea plants characterized by a combination of proteomics and electron microscopy.

    Science.gov (United States)

    Albanese, Pascal; Nield, Jon; Tabares, Jose Alejandro Muñoz; Chiodoni, Angelica; Manfredi, Marcello; Gosetti, Fabio; Marengo, Emilio; Saracco, Guido; Barber, James; Pagliano, Cristina

    2016-12-01

    In higher plants, photosystem II (PSII) is a multi-subunit pigment-protein complex embedded in the thylakoid membranes of chloroplasts, where it is present mostly in dimeric form within the grana. Its light-harvesting antenna system, LHCII, is composed of trimeric and monomeric complexes, which can associate in variable number with the dimeric PSII core complex in order to form different types of PSII-LHCII supercomplexes. Moreover, PSII-LHCII supercomplexes can laterally associate within the thylakoid membrane plane, thus forming higher molecular mass complexes, termed PSII-LHCII megacomplexes (Boekema et al. 1999a, in Biochemistry 38:2233-2239; Boekema et al. 1999b, in Eur J Biochem 266:444-452). In this study, pure PSII-LHCII megacomplexes were directly isolated from stacked pea thylakoid membranes by a rapid single-step solubilization, using the detergent n-dodecyl-α-D-maltoside, followed by sucrose gradient ultracentrifugation. The megacomplexes were subjected to biochemical and structural analyses. Transmission electron microscopy on negatively stained samples, followed by single-particle analyses, revealed a novel form of PSII-LHCII megacomplexes, as compared to previous studies (Boekema et al.1999a, in Biochemistry 38:2233-2239; Boekema et al. 1999b, in Eur J Biochem 266:444-452), consisting of two PSII-LHCII supercomplexes sitting side-by-side in the membrane plane, sandwiched together with a second copy. This second copy of the megacomplex is most likely derived from the opposite membrane of a granal stack. Two predominant forms of intact sandwiched megacomplexes were observed and termed, according to (Dekker and Boekema 2005 Biochim Biophys Acta 1706:12-39), as (C2S2)4 and (C2S2 + C2S2M2)2 megacomplexes. By applying a gel-based proteomic approach, the protein composition of the isolated megacomplexes was fully characterized. In summary, the new structural forms of isolated megacomplexes and the related modeling performed provide novel insights into

  7. Pigment-protein complexes

    Energy Technology Data Exchange (ETDEWEB)

    Siegelman, H W

    1980-01-01

    The photosynthetically-active pigment protein complexes of procaryotes and eucaryotes include chlorophyll proteins, carotenochlorophyll proteins, and biliproteins. They are either integral components or attached to photosynthetic membranes. Detergents are frequently required to solubilize the pigment-protein complexes. The membrane localization and detergent solubilization strongly suggest that the pigment-protein complexes are bound to the membranes by hydrophobic interactions. Hydrophobic interactions of proteins are characterized by an increase in entropy. Their bonding energy is directly related to temperature and ionic strength. Hydrophobic-interaction chromatography, a relatively new separation procedure, can furnish an important method for the purification of pigment-protein complexes. Phycobilisome purification and properties provide an example of the need to maintain hydrophobic interactions to preserve structure and function.

  8. In vivo assessment of effect of phytotoxin tenuazonic acid on PSII reaction centers.

    Science.gov (United States)

    Chen, Shiguo; Strasser, Reto Jörg; Qiang, Sheng

    2014-11-01

    Tenuazonic acid (TeA), a phytotoxin produced by the fungus Alternaria alternata isolated from diseased croftonweed (Ageratina adenophora), exhibits a strong inhibition in photosystem II (PSII) activity. In vivo chlorophyll fluorescence transients of the host plant croftonweed, show that the dominant effect of TeA is not on the primary photochemical reaction but on the biochemical reaction after QA. The most important action site of TeA is the QB site on the PSII electron-acceptor side, blocking electron transport beyond QA(-) by occupying the QB site in the D1 protein. However, TeA does not affect the antenna pigments, the energy transfer from antenna pigment molecules to reaction centers (RCs), and the oxygen-evolving complex (OEC) at the donor side of PSII. TeA severely inactivated PSII RCs. The fraction of non-QA reducing centers and non-QB reducing centers show a time- and concentration-dependent linear increase. Conversely, the amount of active QA or QB reducing centers declined sharply in a linear way. The fraction of non-QB reducing centers calculated from data of fluorescence transients is close to the number of PSII RCs with their QB site filled by TeA. An increase of the step-J level (VJ) in the OJIP fluorescence transients attributed to QA(-) accumulation due to TeA bound to the QB site is a typical characteristic response of the plants leaf with respect to TeA penetration. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  9. Deletion of CGLD1 Impairs PSII and Increases Singlet Oxygen Tolerance of Green Alga Chlamydomonas reinhardtii

    Directory of Open Access Journals (Sweden)

    Jiale Xing

    2017-12-01

    Full Text Available The green alga Chlamydomonas reinhardtii is a key model organism for studying photosynthesis and oxidative stress in unicellular eukaryotes. Using a forward genetics approach, we have identified and characterized a mutant x32, which lacks a predicted protein named CGLD1 (Conserved in Green Lineage and Diatom 1 in GreenCut2, under normal and stress conditions. We show that loss of CGLD1 resulted in minimal photoautotrophic growth and PSII activity in the organism. We observed reduced amount of PSII complex and core subunits in the x32 mutant based on blue-native (BN/PAGE and immunoblot analysis. Moreover, x32 exhibited increased sensitivity to high-light stress and altered tolerance to different reactive oxygenic species (ROS stress treatments, i.e., decreased resistance to H2O2/or tert-Butyl hydroperoxide (t-BOOH and increased tolerance to neutral red (NR and rose bengal (RB that induce the formation of singlet oxygen, respectively. Further analysis via quantitative real-time PCR (qRT-PCR indicated that the increased singlet-oxygen tolerance of x32 was largely correlated with up-regulated gene expression of glutathione-S-transferases (GST. The phenotypical and physiological implications revealed from our experiments highlight the important roles of CGLD1 in maintaining structure and function of PSII as well as in protection of Chlamydomonas under photo-oxidative stress conditions.

  10. Proteomic characterization and three-dimensional electron microscopy study of PSII-LHCII supercomplexes from higher plants.

    Science.gov (United States)

    Pagliano, Cristina; Nield, Jon; Marsano, Francesco; Pape, Tillmann; Barera, Simone; Saracco, Guido; Barber, James

    2014-09-01

    In higher plants a variable number of peripheral LHCII trimers can strongly (S), moderately (M) or loosely (L) associate with the dimeric PSII core (C2) complex via monomeric Lhcb proteins to form PSII-LHCII supercomplexes with different structural organizations. By solubilizing isolated stacked pea thylakoid membranes either with the α or β isomeric forms of the detergent n-dodecyl-D-maltoside, followed by sucrose density ultracentrifugation, we previously showed that PSII-LHCII supercomplexes of types C2S2M2 and C2S2, respectively, can be isolated [S. Barera et al., Phil. Trans. R Soc. B 67 (2012) 3389-3399]. Here we analysed their protein composition by applying extensive bottom-up and top-down mass spectrometry on the two forms of the isolated supercomplexes. In this way, we revealed the presence of the antenna proteins Lhcb3 and Lhcb6 and of the extrinsic polypeptides PsbP, PsbQ and PsbR exclusively in the C2S2M2 supercomplex. Other proteins of the PSII core complex, common to the C2S2M2 and C2S2 supercomplexes, including the low molecular mass subunits, were also detected and characterized. To complement the proteomic study with structural information, we performed negative stain transmission electron microscopy and single particle analysis on the PSII-LHCII supercomplexes isolated from pea thylakoid membranes solubilized with n-dodecyl-α-D-maltoside. We observed the C2S2M2 supercomplex in its intact form as the largest PSII complex in our preparations. Its dataset was further analysed in silico, together with that of the second largest identified sub-population, corresponding to its C2S2 subcomplex. In this way, we calculated 3D electron density maps for the C2S2M2 and C2S2 supercomplexes, approaching respectively 30 and 28Å resolution, extended by molecular modelling towards the atomic level. This article is part of a special issue entitled: photosynthesis research for sustainability: keys to produce clean energy. Copyright © 2013. Published by

  11. Association of Psb28 and Psb27 Proteins with PSII-PSI Supercomplexes upon Exposure of Synechocystis sp PCC 6803 to High Light

    Czech Academy of Sciences Publication Activity Database

    Bečková, Martina; Gardian, Zdenko; Yu, J.F.; Koník, Peter; Nixon, P. J.; Komenda, Josef

    2017-01-01

    Roč. 10, č. 1 (2017), s. 62-72 ISSN 1674-2052 R&D Projects: GA ČR GBP501/12/G055; GA MŠk(CZ) LO1416; GA MŠk(CZ) ED2.1.00/19.0392 Institutional support: RVO:61388971 ; RVO:60077344 Keywords : Psb28 proteins * photosystem I and II * Synechocystis Subject RIV: EE - Microbiology, Virology; CE - Biochemistry (BC-A) Impact factor: 8.827, year: 2016

  12. Supercomplexes of photosystem I and antenna proteins in cyanobacteria and green plants

    NARCIS (Netherlands)

    Kouril, R.; Zygadlo, A.; Jensen, P. E.; Yeremenko, N.; Matthijs, H.C.P.; D'Haene, S.; Dekker, J.P.; Boekema, E.J.; Matthijs, H.C.P.

    2005-01-01

    Photosystem I (PSI) and Photosystem II (PSII) can form supercomplexes with various types of antenna proteins. One such protein is Light-harvesting complex II (LHCII). In plants it is bound in its trimeric form to dimeric PSII. In spinach and Arabidopsis thaliana most dimers bind 2-4 LHCII trimers.

  13. Overexpressed Superoxide Dismutase and Catalase Act Synergistically to Protect the Repair of PSII during Photoinhibition in Synechococcus elongatus PCC 7942.

    Science.gov (United States)

    Sae-Tang, Penporn; Hihara, Yukako; Yumoto, Isao; Orikasa, Yoshitake; Okuyama, Hidetoshi; Nishiyama, Yoshitaka

    2016-09-01

    The repair of PSII under strong light is particularly sensitive to reactive oxygen species (ROS), such as the superoxide radical and hydrogen peroxide, and these ROS are efficiently scavenged by superoxide dismutase (SOD) and catalase. In the present study, we generated transformants of the cyanobacterium Synechococcus elongatus PCC 7942 that overexpressed an iron superoxide dismutase (Fe-SOD) from Synechocystis sp. PCC 6803; a highly active catalase (VktA) from Vibrio rumoiensis; and both enzymes together. Then we examined the sensitivity of PSII to photoinhibition in the three strains. In cells that overexpressed either Fe-SOD or VktA, PSII was more tolerant to strong light than it was in wild-type cells. Moreover, in cells that overexpressed both Fe-SOD and VktA, PSII was even more tolerant to strong light. However, the rate of photodamage to PSII, as monitored in the presence of chloramphenicol, was similar in all three transformant strains and in wild-type cells, suggesting that the overexpression of these ROS-scavenging enzymes might not protect PSII from photodamage but might protect the repair of PSII. Under strong light, intracellular levels of ROS fell significantly, and the synthesis de novo of proteins that are required for the repair of PSII, such as the D1 protein, was enhanced. Our observations suggest that overexpressed Fe-SOD and VktA might act synergistically to alleviate the photoinhibition of PSII by reducing intracellular levels of ROS, with resultant protection of the repair of PSII from oxidative inhibition. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. The structure of photosystem II in Arabidopsis : Localization of the CP26 and CP29 antenna complexes

    NARCIS (Netherlands)

    Yakushevska, AE; Keegstra, W; Boekema, EJ; Dekker, JP; Andersson, J; Jansson, S; Ruban, AV; Horton, P; Yakushevska, Alevtyna E.; Dekker, Jan P.; Ruban, Alexander V.

    2003-01-01

    A genetic approach has been adopted to investigate the organization of the light-harvesting proteins in the photosystem II (PSII) complex in plants. PSII membrane fragments were prepared from wild-type Arabidopis thaliana and plants expressing antisense constructs to Lhcb4 and Lhcb5 genes, lacking

  15. Modeling complexes of modeled proteins.

    Science.gov (United States)

    Anishchenko, Ivan; Kundrotas, Petras J; Vakser, Ilya A

    2017-03-01

    Structural characterization of proteins is essential for understanding life processes at the molecular level. However, only a fraction of known proteins have experimentally determined structures. This fraction is even smaller for protein-protein complexes. Thus, structural modeling of protein-protein interactions (docking) primarily has to rely on modeled structures of the individual proteins, which typically are less accurate than the experimentally determined ones. Such "double" modeling is the Grand Challenge of structural reconstruction of the interactome. Yet it remains so far largely untested in a systematic way. We present a comprehensive validation of template-based and free docking on a set of 165 complexes, where each protein model has six levels of structural accuracy, from 1 to 6 Å C α RMSD. Many template-based docking predictions fall into acceptable quality category, according to the CAPRI criteria, even for highly inaccurate proteins (5-6 Å RMSD), although the number of such models (and, consequently, the docking success rate) drops significantly for models with RMSD > 4 Å. The results show that the existing docking methodologies can be successfully applied to protein models with a broad range of structural accuracy, and the template-based docking is much less sensitive to inaccuracies of protein models than the free docking. Proteins 2017; 85:470-478. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. The evolutionarily conserved protein PHOTOSYNTHESIS AFFECTED MUTANT71 is required for efficient manganese uptake at the thylakoid membrane in Arabidopsis

    DEFF Research Database (Denmark)

    Schneider, Anja; Steinberger, Iris; Herdean, Andrei

    2016-01-01

    In plants, algae, and cyanobacteria, photosystem II (PSII) catalyzes the light-driven oxidation of water. The oxygen-evolving complex of PSII is a Mn4CaO5 cluster embedded in a well-defined protein environment in the thylakoid membrane. However, transport of manganese and calcium into the thylakoid...

  17. The fifth adaptor protein complex.

    Directory of Open Access Journals (Sweden)

    Jennifer Hirst

    2011-10-01

    Full Text Available Adaptor protein (AP complexes sort cargo into vesicles for transport from one membrane compartment of the cell to another. Four distinct AP complexes have been identified, which are present in most eukaryotes. We report the existence of a fifth AP complex, AP-5. Tagged AP-5 localises to a late endosomal compartment in HeLa cells. AP-5 does not associate with clathrin and is insensitive to brefeldin A. Knocking down AP-5 subunits interferes with the trafficking of the cation-independent mannose 6-phosphate receptor and causes the cell to form swollen endosomal structures with emanating tubules. AP-5 subunits can be found in all five eukaryotic supergroups, but they have been co-ordinately lost in many organisms. Concatenated phylogenetic analysis provides robust resolution, for the first time, into the evolutionary order of emergence of the adaptor subunit families, showing AP-3 as the basal complex, followed by AP-5, AP-4, and AP-1 and AP-2. Thus, AP-5 is an evolutionarily ancient complex, which is involved in endosomal sorting, and which has links with hereditary spastic paraplegia.

  18. Designing microcapsules based on protein fibrils and protein - polysaccharide complexes

    NARCIS (Netherlands)

    Hua, K.N.P.

    2012-01-01

    Keywords: encapsulation, microcapsule, protein, fibril, protein-polysaccharide complex, controlled release, interfacial rheology, lysozyme, ovalbumin This thesis describes the design of encapsulation systems using mesostructures from proteins and polysaccharides. The approach was to first

  19. Alpha complexes in protein structure prediction

    DEFF Research Database (Denmark)

    Winter, Pawel; Fonseca, Rasmus

    2015-01-01

    Reducing the computational effort and increasing the accuracy of potential energy functions is of utmost importance in modeling biological systems, for instance in protein structure prediction, docking or design. Evaluating interactions between nonbonded atoms is the bottleneck of such computations......-complexes and kinetic a-complexes in protein related problems (e.g., protein structure prediction and protein-ligand docking) deserves furhter investigation.)......-complexes from scratch for every configuration encountered during the search for the native structure would make this approach hopelessly slow. However, it is argued that kinetic a-complexes can be used to reduce the computational effort of determining the potential energy when "moving" from one configuration...

  20. Benchmarking human protein complexes to investigate drug-related systems and evaluate predicted protein complexes.

    Directory of Open Access Journals (Sweden)

    Min Wu

    Full Text Available Protein complexes are key entities to perform cellular functions. Human diseases are also revealed to associate with some specific human protein complexes. In fact, human protein complexes are widely used for protein function annotation, inference of human protein interactome, disease gene prediction, and so on. Therefore, it is highly desired to build an up-to-date catalogue of human complexes to support the research in these applications. Protein complexes from different databases are as expected to be highly redundant. In this paper, we designed a set of concise operations to compile these redundant human complexes and built a comprehensive catalogue called CHPC2012 (Catalogue of Human Protein Complexes. CHPC2012 achieves a higher coverage for proteins and protein complexes than those individual databases. It is also verified to be a set of complexes with high quality as its co-complex protein associations have a high overlap with protein-protein interactions (PPI in various existing PPI databases. We demonstrated two distinct applications of CHPC2012, that is, investigating the relationship between protein complexes and drug-related systems and evaluating the quality of predicted protein complexes. In particular, CHPC2012 provides more insights into drug development. For instance, proteins involved in multiple complexes (the overlapping proteins are potential drug targets; the drug-complex network is utilized to investigate multi-target drugs and drug-drug interactions; and the disease-specific complex-drug networks will provide new clues for drug repositioning. With this up-to-date reference set of human protein complexes, we believe that the CHPC2012 catalogue is able to enhance the studies for protein interactions, protein functions, human diseases, drugs, and related fields of research. CHPC2012 complexes can be downloaded from http://www1.i2r.a-star.edu.sg/xlli/CHPC2012/CHPC2012.htm.

  1. A Protein Complex Map of Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Vahid H Gazestani

    2016-03-01

    Full Text Available The functions of the majority of trypanosomatid-specific proteins are unknown, hindering our understanding of the biology and pathogenesis of Trypanosomatida. While protein-protein interactions are highly informative about protein function, a global map of protein interactions and complexes is still lacking for these important human parasites. Here, benefiting from in-depth biochemical fractionation, we systematically interrogated the co-complex interactions of more than 3354 protein groups in procyclic life stage of Trypanosoma brucei, the protozoan parasite responsible for human African trypanosomiasis. Using a rigorous methodology, our analysis led to identification of 128 high-confidence complexes encompassing 716 protein groups, including 635 protein groups that lacked experimental annotation. These complexes correlate well with known pathways as well as for proteins co-expressed across the T. brucei life cycle, and provide potential functions for a large number of previously uncharacterized proteins. We validated the functions of several novel proteins associated with the RNA-editing machinery, identifying a candidate potentially involved in the mitochondrial post-transcriptional regulation of T. brucei. Our data provide an unprecedented view of the protein complex map of T. brucei, and serve as a reliable resource for further characterization of trypanosomatid proteins. The presented results in this study are available at: www.TrypsNetDB.org.

  2. Mechanism of interaction of Al3+ with the proteins composition of photosystem II.

    Directory of Open Access Journals (Sweden)

    Imed Hasni

    Full Text Available The inhibitory effect of Al3+on photosystem II (PSII electron transport was investigated using several biophysical and biochemical techniques such as oxygen evolution, chlorophyll fluorescence induction and emission, SDS-polyacrylamide and native green gel electrophoresis, and FTIR spectroscopy. In order to understand the mechanism of its inhibitory action, we have analyzed the interaction of this toxic cation with proteins subunits of PSII submembrane fractions isolated from spinach. Our results show that Al 3+, especially above 3 mM, strongly inhibits oxygen evolution and affects the advancement of the S states of the Mn4O5Ca cluster. This inhibition was due to the release of the extrinsic polypeptides and the disorganization of the Mn4O5Ca cluster associated with the oxygen evolving complex (OEC of PSII. This fact was accompanied by a significant decline of maximum quantum yield of PSII (Fv/Fm together with a strong damping of the chlorophyll a fluorescence induction. The energy transfer from light harvesting antenna to reaction centers of PSII was impaired following the alteration of the light harvesting complex of photosystem II (LHCII. The latter result was revealed by the drop of chlorophyll fluorescence emission spectra at low temperature (77 K, increase of F0 and confirmed by the native green gel electrophoresis. FTIR measurements indicated that the interaction of Al 3+ with the intrinsic and extrinsic polypeptides of PSII induces major alterations of the protein secondary structure leading to conformational changes. This was reflected by a major reduction of α-helix with an increase of β-sheet and random coil structures in Al 3+-PSII complexes. These structural changes are closely related with the functional alteration of PSII activity revealed by the inhibition of the electron transport chain of PSII.

  3. Structural entanglements in protein complexes

    Science.gov (United States)

    Zhao, Yani; Chwastyk, Mateusz; Cieplak, Marek

    2017-06-01

    We consider multi-chain protein native structures and propose a criterion that determines whether two chains in the system are entangled or not. The criterion is based on the behavior observed by pulling at both termini of each chain simultaneously in the two chains. We have identified about 900 entangled systems in the Protein Data Bank and provided a more detailed analysis for several of them. We argue that entanglement enhances the thermodynamic stability of the system but it may have other functions: burying the hydrophobic residues at the interface and increasing the DNA or RNA binding area. We also study the folding and stretching properties of the knotted dimeric proteins MJ0366, YibK, and bacteriophytochrome. These proteins have been studied theoretically in their monomeric versions so far. The dimers are seen to separate on stretching through the tensile mechanism and the characteristic unraveling force depends on the pulling direction.

  4. Eukaryotic LYR Proteins Interact with Mitochondrial Protein Complexes

    Directory of Open Access Journals (Sweden)

    Heike Angerer

    2015-02-01

    Full Text Available In eukaryotic cells, mitochondria host ancient essential bioenergetic and biosynthetic pathways. LYR (leucine/tyrosine/arginine motif proteins (LYRMs of the Complex1_LYR-like superfamily interact with protein complexes of bacterial origin. Many LYR proteins function as extra subunits (LYRM3 and LYRM6 or novel assembly factors (LYRM7, LYRM8, ACN9 and FMC1 of the oxidative phosphorylation (OXPHOS core complexes. Structural insights into complex I accessory subunits LYRM6 and LYRM3 have been provided by analyses of EM and X-ray structures of complex I from bovine and the yeast Yarrowia lipolytica, respectively. Combined structural and biochemical studies revealed that LYRM6 resides at the matrix arm close to the ubiquinone reduction site. For LYRM3, a position at the distal proton-pumping membrane arm facing the matrix space is suggested. Both LYRMs are supposed to anchor an acyl-carrier protein (ACPM independently to complex I. The function of this duplicated protein interaction of ACPM with respiratory complex I is still unknown. Analysis of protein-protein interaction screens, genetic analyses and predicted multi-domain LYRMs offer further clues on an interaction network and adaptor-like function of LYR proteins in mitochondria.

  5. [Preparation of thiamine derivative-protein complexes].

    Science.gov (United States)

    Pych, R; Moshchinskii, P

    1980-01-01

    The formation of a thiamine -- egg albumin complex through the action of thiamine propylidsulphide on native, heat denatured and iodine oxidized albumin was studied. The reaction was carried out at pH 6 to 10, temperature 20 degrees to 45 degrees C, and with varying proportions of substrates in the reaction mixture. The content of thiamine in thiamine propyldisulphide and the amount of protein -- bound thiamine were measured by the thiochromic method after the vitamin containing substance had been reduced with sodium thiosulphate or cysteine. It was found that thiamine was complexed with protein due to the reaction between thiamine propyldisulphide and oxidized albumin, pH optimum being 9. The chemical equilibrium shifted towards the complex with excessive protein used. The reaction between thiamine propyldisulphide and sulphdryl groups of proteins yielded a protein--S-propylic radical complex, pH optimum being 7.3. Calculations of kinetic parameters of the process indicated that it was endothermic.

  6. Transient complexes of haem proteins

    NARCIS (Netherlands)

    Volkov, Oleksandr Mykolayovych

    2007-01-01

    For all organisms populating the Earth, motion is synonymous with life. In the living cell, protein molecules - its most important building blocks and work horses - are constantly on the move. Traditional static models are no longer sufficient for a thorough description of interactions among these

  7. Protein complexes predictions within protein interaction networks using genetic algorithms.

    Science.gov (United States)

    Ramadan, Emad; Naef, Ahmed; Ahmed, Moataz

    2016-07-25

    Protein-protein interaction networks are receiving increased attention due to their importance in understanding life at the cellular level. A major challenge in systems biology is to understand the modular structure of such biological networks. Although clustering techniques have been proposed for clustering protein-protein interaction networks, those techniques suffer from some drawbacks. The application of earlier clustering techniques to protein-protein interaction networks in order to predict protein complexes within the networks does not yield good results due to the small-world and power-law properties of these networks. In this paper, we construct a new clustering algorithm for predicting protein complexes through the use of genetic algorithms. We design an objective function for exclusive clustering and overlapping clustering. We assess the quality of our proposed clustering algorithm using two gold-standard data sets. Our algorithm can identify protein complexes that are significantly enriched in the gold-standard data sets. Furthermore, our method surpasses three competing methods: MCL, ClusterOne, and MCODE in terms of the quality of the predicted complexes. The source code and accompanying examples are freely available at http://faculty.kfupm.edu.sa/ics/eramadan/GACluster.zip .

  8. Length, protein–protein interactions, and complexity

    NARCIS (Netherlands)

    Tan, T.; Frenkel, D.; Gupta, V.; Deem, M.W.

    2005-01-01

    The evolutionary reason for the increase in gene length from archaea to prokaryotes to eukaryotes observed in large-scale genome sequencing efforts has been unclear. We propose here that the increasing complexity of protein–protein interactions has driven the selection of longer proteins, as they

  9. A Biomimetic Manganese Model for Artificial Photosynthesis : Q-band Electron Paramagnetic Resonance Study of a Novel Mn2(II,III) Complex

    OpenAIRE

    Kiflemariam, Jordanos

    2005-01-01

    In natural oxygen-producing photosynthesis solar energy is stored as chemical energy, in carbohydrates, fats and amino acids, using water as electron source. The large transmembrane protein complex, PSII, is the key enzyme in the light-driven reactions. Water oxidation is accomplished by a triad in PSII in which the Mn-cluster plays an important role. In the artificial photosynthetic system, nature’s photosynthesis will be mimicked such that hydrogen, a sustainable energy source, can be produ...

  10. Protein Encapsulation via Polypeptide Complex Coacervation

    Energy Technology Data Exchange (ETDEWEB)

    Black, Katie A.; Priftis, Dimitrios; Perry, Sarah L.; Yip, Jeremy; Byun, William Y.; Tirrell, Matthew

    2014-10-21

    Proteins have gained increasing success as therapeutic agents; however, challenges exist in effective and efficient delivery. In this work, we present a simple and versatile method for encapsulating proteins via complex coacervation with oppositely charged polypeptides, poly(L-lysine) (PLys) and poly(D/L-glutamic acid) (PGlu). A model protein system, bovine serum albumin (BSA), was incorporated efficiently into coacervate droplets via electrostatic interaction up to a maximum loading of one BSA per PLys/PGlu pair and could be released under conditions of decreasing pH. Additionally, encapsulation within complex coacervates did not alter the secondary structure of the protein. Lastly the complex coacervate system was shown to be biocompatible and interact well with cells in vitro. A simple, modular system for encapsulation such as the one presented here may be useful in a range of drug delivery applications.

  11. Rice Photosynthetic Productivity and PSII Photochemistry under Nonflooded Irrigation

    Directory of Open Access Journals (Sweden)

    Haibing He

    2014-01-01

    Full Text Available Nonflooded irrigation is an important water-saving rice cultivation technology, but little is known on its photosynthetic mechanism. The aims of this work were to investigate photosynthetic characteristics of rice during grain filling stage under three nonflooded irrigation treatments: furrow irrigation with plastic mulching (FIM, furrow irrigation with nonmulching (FIN, and drip irrigation with plastic mulching (DI. Compared with the conventional flooding (CF treatment, those grown in the nonflooded irrigation treatments showed lower net photosynthetic rate (PN, lower maximum quantum yield (Fv/Fm, and lower effective quantum yield of PSII photochemistry (ΦPSII. And the poor photosynthetic characteristics in the nonflooded irrigation treatments were mainly attributed to the low total nitrogen content (TNC. Under non-flooded irrigation, the PN, Fv/Fm, and ΦPSII significantly decreased with a reduction in the soil water potential, but these parameters were rapidly recovered in the DI and FIM treatments when supplementary irrigation was applied. Moreover, The DI treatment always had higher photosynthetic productivity than the FIM and FIN treatments. Grain yield, matter translocation, and dry matter post-anthesis (DMPA were the highest in the CF treatment, followed by the DI, FIM, and FIN treatments in turn. In conclusion, increasing nitrogen content in leaf of rice plants could be a key factor to improve photosynthetic capacity in nonflooded irrigation.

  12. Evidence of the supercomplex organization of photosystem II and light-harvesting complexes in Nannochloropsis granulata.

    Science.gov (United States)

    Umetani, Ikumi; Kunugi, Motoshi; Yokono, Makio; Takabayashi, Atsushi; Tanaka, Ayumi

    2017-08-30

    Diverse light-harvesting complexes (LHCs) have been found in photosynthetic microalgae that originated from secondary endosymbiosis involving primary red algae. However, the associations between LHCs and photosystem I (PSI) and photosystem II (PSII) in these microalgae are not fully understood. Eustigmatophyta is a red algal lineage that appears to have a unique organization in its photosynthetic machinery, consisting of only chlorophyll a and carotenoids that are atypical compared with other closely related groups. In this study, the supramolecular organization of pigment-protein complexes in the eustigmatophyte alga, Nannochloropsis granulata was investigated using Clear Native (CN) PAGE coupled with two-dimensional (2D) SDS-PAGE. Our results showed two slowly migrating green bands that corresponded to PSII supercomplexes, which consisted of reaction centers and LHCs. These green bands were also characterized as PSII complexes by their low temperature fluorescence emission spectra. The protein subunits of the PSII-LHC resolved by 2D CN/SDS-PAGE were analyzed by mass spectrometry, and four different LHC proteins were identified. Phylogenetic analysis of the identified LHC protein sequences revealed that they belonged to four different Lhc groups; (1) stress-related Lhcx proteins, (2) fucoxanthin chlorophyll a/c-binding Lhcf proteins, (3) red-shifted Chromera light-harvesting proteins (Red-CLH), and (4) Lhcr proteins, which are commonly found in organisms possessing red algal plastids. This is the first report showing evidence of a pigment-protein supercomplex consisting of PSII and LHCs, and to identify PSII-associated LHC proteins in Nannochloropsis.

  13. Sequence and structural features of binding site residues in protein-protein complexes: comparison with protein-nucleic acid complexes

    Directory of Open Access Journals (Sweden)

    Selvaraj S

    2011-10-01

    Full Text Available Abstract Background Protein-protein interactions are important for several cellular processes. Understanding the mechanism of protein-protein recognition and predicting the binding sites in protein-protein complexes are long standing goals in molecular and computational biology. Methods We have developed an energy based approach for identifying the binding site residues in protein–protein complexes. The binding site residues have been analyzed with sequence and structure based parameters such as binding propensity, neighboring residues in the vicinity of binding sites, conservation score and conformational switching. Results We observed that the binding propensities of amino acid residues are specific for protein-protein complexes. Further, typical dipeptides and tripeptides showed high preference for binding, which is unique to protein-protein complexes. Most of the binding site residues are highly conserved among homologous sequences. Our analysis showed that 7% of residues changed their conformations upon protein-protein complex formation and it is 9.2% and 6.6% in the binding and non-binding sites, respectively. Specifically, the residues Glu, Lys, Leu and Ser changed their conformation from coil to helix/strand and from helix to coil/strand. Leu, Ser, Thr and Val prefer to change their conformation from strand to coil/helix. Conclusions The results obtained in this study will be helpful for understanding and predicting the binding sites in protein-protein complexes.

  14. On protein abundance distributions in complex mixtures.

    Science.gov (United States)

    Koziol, Ja; Griffin, Nm; Long, F; Li, Y; Latterich, M; Schnitzer, Je

    2013-01-29

    Mass spectrometry, an analytical technique that measures the mass-to-charge ratio of ionized atoms or molecules, dates back more than 100 years, and has both qualitative and quantitative uses for determining chemical and structural information. Quantitative proteomic mass spectrometry on biological samples focuses on identifying the proteins present in the samples, and establishing the relative abundances of those proteins. Such protein inventories create the opportunity to discover novel biomarkers and disease targets. We have previously introduced a normalized, label-free method for quantification of protein abundances under a shotgun proteomics platform (Griffin et al., 2010). The introduction of this method for quantifying and comparing protein levels leads naturally to the issue of modeling protein abundances in individual samples. We here report that protein abundance levels from two recent proteomics experiments conducted by the authors can be adequately represented by Sichel distributions. Mathematically, Sichel distributions are mixtures of Poisson distributions with a rather complex mixing distribution, and have been previously and successfully applied to linguistics and species abundance data. The Sichel model can provide a direct measure of the heterogeneity of protein abundances, and can reveal protein abundance differences that simpler models fail to show.

  15. Light-harvesting and structural organization of Photosystem II: From individual complexes to thylakoid membrane

    NARCIS (Netherlands)

    Croce, R.; van Amerongen, H.

    2011-01-01

    Photosystem II (PSII) is responsible for the water oxidation in photosynthesis and it consists of many proteins and pigment-protein complexes in a variable composition, depending on environmental conditions. Sunlight-induced charge separation lies at the basis of the photochemical reactions and it

  16. Light-harvesting and structuralorganization ofphotosystem II: from individual complexes to thylakoid membrane

    NARCIS (Netherlands)

    Croce, R.; Amerongen, van H.

    2011-01-01

    Photosystem II (PSII) is responsible for the water oxidation in photosynthesis and it consists of many proteins and pigment-protein complexes in a variable composition, depending on environmental conditions. Sunlight-induced charge separation lies at the basis of the photochemical reactions and it

  17. Detection of protein complex from protein-protein interaction network using Markov clustering

    Science.gov (United States)

    Ochieng, P. J.; Kusuma, W. A.; Haryanto, T.

    2017-05-01

    Detection of complexes, or groups of functionally related proteins, is an important challenge while analysing biological networks. However, existing algorithms to identify protein complexes are insufficient when applied to dense networks of experimentally derived interaction data. Therefore, we introduced a graph clustering method based on Markov clustering algorithm to identify protein complex within highly interconnected protein-protein interaction networks. Protein-protein interaction network was first constructed to develop geometrical network, the network was then partitioned using Markov clustering to detect protein complexes. The interest of the proposed method was illustrated by its application to Human Proteins associated to type II diabetes mellitus. Flow simulation of MCL algorithm was initially performed and topological properties of the resultant network were analysed for detection of the protein complex. The results indicated the proposed method successfully detect an overall of 34 complexes with 11 complexes consisting of overlapping modules and 20 non-overlapping modules. The major complex consisted of 102 proteins and 521 interactions with cluster modularity and density of 0.745 and 0.101 respectively. The comparison analysis revealed MCL out perform AP, MCODE and SCPS algorithms with high clustering coefficient (0.751) network density and modularity index (0.630). This demonstrated MCL was the most reliable and efficient graph clustering algorithm for detection of protein complexes from PPI networks.

  18. Critical assessment of protein cross-linking and molecular docking: an updated model for the interaction between photosystem II and Psb27

    Directory of Open Access Journals (Sweden)

    Kai U Cormann

    2016-02-01

    Full Text Available Photosystem II (PSII is a large membrane-protein complex composed of about 20 subunits and various cofactors, which mediates the light-driven oxidation of water and reduction of plastoquinone, and is part of the photosynthetic electron transfer chain that is localized in the thylakoid membrane of cyanobacteria, algae and plants. The stepwise assembly of PSII is guided and facilitated by numerous auxiliary proteins that play specific roles in this spatiotemporal process. Psb27, a small protein localized in the thylakoid lumen, appears to associate with an intermediate PSII complex that is involved in assembly of the Mn4CaO5 cluster. Its precise binding position on the PSII intermediate remains elusive, as previous approaches to the localization of Psb27 on PSII have yielded contradictory results. This was our motivation for a critical assessment of previously used methods and the development of an improved analysis pipeline. The combination of chemical cross-linking and mass spectrometry (CX-MS with isotope-coded cross-linkers was refined and validated with reference to the PSII crystal structure. Psb27 was localized on the PSII surface adjacent to the large lumenal domain of CP43 on the basis of a cross-link connecting Psb27-K91 to CP43-K381. Additional contacts associating Psb27 with CP47 and the C-termini of D1 and D2 were detected by surface plasmon resonance (SPR spectroscopy. This information was used to model the binding of Psb27 to the PSII surface in a region that is occupied by PsbV in the mature complex.

  19. The origin recognition complex protein family.

    Science.gov (United States)

    Duncker, Bernard P; Chesnokov, Igor N; McConkey, Brendan J

    2009-01-01

    Origin recognition complex (ORC) proteins were first discovered as a six-subunit assemblage in budding yeast that promotes the initiation of DNA replication. Orc1-5 appear to be present in all eukaryotes, and include both AAA+ and winged-helix motifs. A sixth protein, Orc6, shows no structural similarity to the other ORC proteins, and is poorly conserved between budding yeast and most other eukaryotic species. The replication factor Cdc6 has extensive sequence similarity with Orc1 and phylogenetic analysis suggests the genes that encode them may be paralogs. ORC proteins have also been found in the archaea, and the bacterial DnaA replication protein has ORC-like functional domains. In budding yeast, Orc1-6 are bound to origins of DNA replication throughout the cell cycle. Following association with Cdc6 in G1 phase, the sequential hydrolysis of Cdc6 - then ORC-bound ATP loads the Mcm2-7 helicase complex onto DNA. Localization of ORC subunits to the kinetochore and centrosome during mitosis and to the cleavage furrow during cytokinesis has been observed in metazoan cells and, along with phenotypes observed following knockdown with short interfering RNAs, point to additional roles at these cell-cycle stages. In addition, ORC proteins function in epigenetic gene silencing through interactions with heterochromatin factors such as Sir1 in budding yeast and HP1 in higher eukaryotes. Current avenues of research have identified roles for ORC proteins in the development of neuronal and muscle tissue, and are probing their relationship to genome integrity.

  20. Protein complex prediction based on k-connected subgraphs in protein interaction network

    OpenAIRE

    Habibi, Mahnaz; Eslahchi, Changiz; Wong, Limsoon

    2010-01-01

    Abstract Background Protein complexes play an important role in cellular mechanisms. Recently, several methods have been presented to predict protein complexes in a protein interaction network. In these methods, a protein complex is predicted as a dense subgraph of protein interactions. However, interactions data are incomplete and a protein complex does not have to be a complete or dense subgraph. Results We propose a more appropriate protein complex prediction method, CFA, that is based on ...

  1. Identifying protein complexes based on density and modularity in protein-protein interaction network.

    Science.gov (United States)

    Ren, Jun; Wang, Jianxin; Li, Min; Wang, Lusheng

    2013-01-01

    Identifying protein complexes is crucial to understanding principles of cellular organization and functional mechanisms. As many evidences have indicated that the subgraphs with high density or with high modularity in PPI network usually correspond to protein complexes, protein complexes detection methods based on PPI network focused on subgraph's density or its modularity in PPI network. However, dense subgraphs may have low modularity and subgraph with high modularity may have low density, which results that protein complexes may be subgraphs with low modularity or with low density in the PPI network. As the density-based methods are difficult to mine protein complexes with low density, and the modularity-based methods are difficult to mine protein complexes with low modularity, both two methods have limitation for identifying protein complexes with various density and modularity. To identify protein complexes with various density and modularity, including those have low density but high modularity and those have low modularity but high density, we define a novel subgraph's fitness, fρ, as fρ= (density)(ρ*)(modularity)(1-ρ), and propose a novel algorithm, named LF_PIN, to identify protein complexes by expanding seed edges to subgraphs with the local maximum fitness value. Experimental results of LF-PIN in S.cerevisiae show that compared with the results of fitness equal to density (ρ = 1) or equal to modularity (ρ = 0), the LF-PIN identifies known protein complexes more effectively when the fitness value is decided by both density and modularity (0modularity. By considering both the density and the modularity, LF-PIN outperforms other protein complexes detection methods that only consider density or modularity, especially in identifying known protein complexes with low density or low modularity.

  2. Fingerprinting the macro-organisation of pigment-protein complexes in plant thylakoid membranes in vivo by circular-dichroism spectroscopy.

    Science.gov (United States)

    Tóth, Tünde N; Rai, Neha; Solymosi, Katalin; Zsiros, Ottó; Schröder, Wolfgang P; Garab, Győző; van Amerongen, Herbert; Horton, Peter; Kovács, László

    2016-09-01

    Macro-organisation of the protein complexes in plant thylakoid membranes plays important roles in the regulation and fine-tuning of photosynthetic activity. These delicate structures might, however, undergo substantial changes during isolating the thylakoid membranes or during sample preparations, e.g., for electron microscopy. Circular-dichroism (CD) spectroscopy is a non-invasive technique which can thus be used on intact samples. Via excitonic and psi-type CD bands, respectively, it carries information on short-range excitonic pigment-pigment interactions and the macro-organisation (chiral macrodomains) of pigment-protein complexes (psi, polymer or salt-induced). In order to obtain more specific information on the origin of the major psi-type CD bands, at around (+)506, (-)674 and (+)690nm, we fingerprinted detached leaves and isolated thylakoid membranes of wild-type and mutant plants and also tested the effects of different environmental conditions in vivo. We show that (i) the chiral macrodomains disassemble upon mild detergent treatments, but not after crosslinking the protein complexes; (ii) in different wild-type leaves of dicotyledonous and monocotyledonous angiosperms the CD features are quite robust, displaying very similar excitonic and psi-type bands, suggesting similar protein composition and (macro-) organisation of photosystem II (PSII) supercomplexes in the grana; (iii) the main positive psi-type bands depend on light-harvesting protein II contents of the membranes; (iv) the (+)506nm band appears only in the presence of PSII-LHCII supercomplexes and does not depend on the xanthophyll composition of the membranes. Hence, CD spectroscopy can be used to detect different macro-domains in the thylakoid membranes with different outer antenna compositions in vivo. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Discover Protein Complexes in Protein-Protein Interaction Networks Using Parametric Local Modularity

    Directory of Open Access Journals (Sweden)

    Tan Kai

    2010-10-01

    Full Text Available Abstract Background Recent advances in proteomic technologies have enabled us to create detailed protein-protein interaction maps in multiple species and in both normal and diseased cells. As the size of the interaction dataset increases, powerful computational methods are required in order to effectively distil network models from large-scale interactome data. Results We present an algorithm, miPALM (Module Inference by Parametric Local Modularity, to infer protein complexes in a protein-protein interaction network. The algorithm uses a novel graph theoretic measure, parametric local modularity, to identify highly connected sub-networks as candidate protein complexes. Using gold standard sets of protein complexes and protein function and localization annotations, we show our algorithm achieved an overall improvement over previous algorithms in terms of precision, recall, and biological relevance of the predicted complexes. We applied our algorithm to predict and characterize a set of 138 novel protein complexes in S. cerevisiae. Conclusions miPALM is a novel algorithm for detecting protein complexes from large protein-protein interaction networks with improved accuracy than previous methods. The software is implemented in Matlab and is freely available at http://www.medicine.uiowa.edu/Labs/tan/software.html.

  4. Contrasting effect of dark-chilling on chloroplast structure and arrangement of chlorophyll-protein complexes in pea and tomato: plants with a different susceptibility to non-freezing temperature.

    Science.gov (United States)

    Garstka, Maciej; Venema, Jan Henk; Rumak, Izabela; Gieczewska, Katarzyna; Rosiak, Malgorzata; Koziol-Lipinska, Joanna; Kierdaszuk, Borys; Vredenberg, Wim J; Mostowska, Agnieszka

    2007-10-01

    The effect of dark-chilling and subsequent photoactivation on chloroplast structure and arrangements of chlorophyll-protein complexes in thylakoid membranes was studied in chilling-tolerant (CT) pea and in chilling-sensitive (CS) tomato. Dark-chilling did not influence chlorophyll content and Chl a/b ratio in thylakoids of both species. A decline of Chl a fluorescence intensity and an increase of the ratio of fluorescence intensities of PSI and PSII at 120 K was observed after dark-chilling in thylakoids isolated from tomato, but not from pea leaves. Chilling of pea leaves induced an increase of the relative contribution of LHCII and PSII fluorescence. A substantial decrease of the LHCII/PSII fluorescence accompanied by an increase of that from LHCI/PSI was observed in thylakoids from chilled tomato leaves; both were attenuated by photoactivation. Chlorophyll fluorescence of bright grana discs in chloroplasts from dark-chilled leaves, detected by confocal laser scanning microscopy, was more condensed in pea but significantly dispersed in tomato, compared with control samples. The chloroplast images from transmission-electron microscopy revealed that dark-chilling induced an increase of the degree of grana stacking only in pea chloroplasts. Analyses of O-J-D-I-P fluorescence induction curves in leaves of CS tomato before and after recovery from chilling indicate changes in electron transport rates at acceptor- and donor side of PS II and an increase in antenna size. In CT pea leaves these effects were absent, except for a small but irreversible effect on PSII activity and antenna size. Thus, the differences in chloroplast structure between CS and CT plants, induced by dark-chilling are a consequence of different thylakoid supercomplexes rearrangements.

  5. Supramolecular organization of thylakoid membrane proteins in green plants

    NARCIS (Netherlands)

    Dekker, Jan P.; Boekema, Egbert J.

    2005-01-01

    The light reactions of photosynthesis in green plants are mediated by four large protein complexes, embedded in the thylakoid membrane of the chloroplast. Photosystem I (PSI) and Photosystem II (PSII) are both organized into large supercomplexes with variable amounts of membrane-bound peripheral

  6. A Least Square Method Based Model for Identifying Protein Complexes in Protein-Protein Interaction Network

    Directory of Open Access Journals (Sweden)

    Qiguo Dai

    2014-01-01

    Full Text Available Protein complex formed by a group of physical interacting proteins plays a crucial role in cell activities. Great effort has been made to computationally identify protein complexes from protein-protein interaction (PPI network. However, the accuracy of the prediction is still far from being satisfactory, because the topological structures of protein complexes in the PPI network are too complicated. This paper proposes a novel optimization framework to detect complexes from PPI network, named PLSMC. The method is on the basis of the fact that if two proteins are in a common complex, they are likely to be interacting. PLSMC employs this relation to determine complexes by a penalized least squares method. PLSMC is applied to several public yeast PPI networks, and compared with several state-of-the-art methods. The results indicate that PLSMC outperforms other methods. In particular, complexes predicted by PLSMC can match known complexes with a higher accuracy than other methods. Furthermore, the predicted complexes have high functional homogeneity.

  7. How proteins get in touch: Interface prediction and docking of protein complexes

    NARCIS (Netherlands)

    de Vries, S.J.

    2009-01-01

    Proteins are the wheels and mill stones of the complex machinery that underlies human life. In carrying out their functions, proteins work in close association with other proteins, forming protein complexes. A huge network of protein-protein interactions enables the cell to respond quickly to

  8. Probing the picosecond kinetics of the photosystem II core complex in vivo

    NARCIS (Netherlands)

    Tian, L.; Farooq, S.; Amerongen, van H.

    2013-01-01

    Photosystems I (PSI) and II (PSII) are two major pigment–protein complexes of photosynthetic organisms that function in series to convert sunlight energy into chemical energy. We have studied the picosecond fluorescence behaviour of the core of both photosystems in vivo by using two Synechocystis

  9. CORUM: the comprehensive resource of mammalian protein complexes.

    Science.gov (United States)

    Ruepp, Andreas; Brauner, Barbara; Dunger-Kaltenbach, Irmtraud; Frishman, Goar; Montrone, Corinna; Stransky, Michael; Waegele, Brigitte; Schmidt, Thorsten; Doudieu, Octave Noubibou; Stümpflen, Volker; Mewes, H Werner

    2008-01-01

    Protein complexes are key molecular entities that integrate multiple gene products to perform cellular functions. The CORUM (http://mips.gsf.de/genre/proj/corum/index.html) database is a collection of experimentally verified mammalian protein complexes. Information is manually derived by critical reading of the scientific literature from expert annotators. Information about protein complexes includes protein complex names, subunits, literature references as well as the function of the complexes. For functional annotation, we use the FunCat catalogue that enables to organize the protein complex space into biologically meaningful subsets. The database contains more than 1750 protein complexes that are built from 2400 different genes, thus representing 12% of the protein-coding genes in human. A web-based system is available to query, view and download the data. CORUM provides a comprehensive dataset of protein complexes for discoveries in systems biology, analyses of protein networks and protein complex-associated diseases. Comparable to the MIPS reference dataset of protein complexes from yeast, CORUM intends to serve as a reference for mammalian protein complexes.

  10. Subunit composition of CP43-less photosystem II complexes of Synechocystis sp. PCC 6803: implications for the assembly and repair of photosystem II.

    Science.gov (United States)

    Boehm, M; Yu, J; Reisinger, V; Beckova, M; Eichacker, L A; Schlodder, E; Komenda, J; Nixon, P J

    2012-12-19

    Photosystem II (PSII) mutants are useful experimental tools to trap potential intermediates involved in the assembly of the oxygen-evolving PSII complex. Here, we focus on the subunit composition of the RC47 assembly complex that accumulates in a psbC null mutant of the cyanobacterium Synechocystis sp. PCC 6803 unable to make the CP43 apopolypeptide. By using native gel electrophoresis, we showed that RC47 is heterogeneous and mainly found as a monomer of 220 kDa. RC47 complexes co-purify with small Cab-like proteins (ScpC and/or ScpD) and with Psb28 and its homologue Psb28-2. Analysis of isolated His-tagged RC47 indicated the presence of D1, D2, the CP47 apopolypeptide, plus nine of the 13 low-molecular-mass (LMM) subunits found in the PSII holoenzyme, including PsbL, PsbM and PsbT, which lie at the interface between the two momomers in the dimeric holoenzyme. Not detected were the LMM subunits (PsbK, PsbZ, Psb30 and PsbJ) located in the vicinity of CP43 in the holoenzyme. The photochemical activity of isolated RC47-His complexes, including the rate of reduction of P680(+), was similar to that of PSII complexes lacking the Mn(4)CaO(5) cluster. The implications of our results for the assembly and repair of PSII in vivo are discussed.

  11. SCPC: a method to structurally compare protein complexes.

    Science.gov (United States)

    Koike, Ryotaro; Ota, Motonori

    2012-02-01

    Protein-protein interactions play vital functional roles in various biological phenomena. Physical contacts between proteins have been revealed using experimental approaches that have solved the structures of protein complexes at atomic resolution. To examine the huge number of protein complexes available in the Protein Data Bank, an efficient automated method that compares protein complexes is required. We have developed Structural Comparison of Protein Complexes (SCPC), a novel method to structurally compare protein complexes. SCPC compares the spatial arrangements of subunits in a complex with those in another complex using secondary structure elements. Similar substructures are detected in two protein complexes and the similarity is scored. SCPC was applied to dimers, homo-oligomers and haemoglobins. SCPC properly estimated structural similarities between the dimers examined as well as an existing method, MM-align. Conserved substructures were detected in a homo-tetramer and a homo-hexamer composed of homologous proteins. Classification of quaternary structures of haemoglobins using SCPC was consistent with the conventional classification. The results demonstrate that SCPC is a valuable tool to investigate the structures of protein complexes. SCPC is available at http://idp1.force.cs.is.nagoya-u.ac.jp/scpc/. rkoike@is.nagoya-u.ac.jp Supplementary data are available at Bioinformatics online.

  12. Detecting overlapping protein complexes by rough-fuzzy clustering in protein-protein interaction networks.

    Directory of Open Access Journals (Sweden)

    Hao Wu

    Full Text Available In this paper, we present a novel rough-fuzzy clustering (RFC method to detect overlapping protein complexes in protein-protein interaction (PPI networks. RFC focuses on fuzzy relation model rather than graph model by integrating fuzzy sets and rough sets, employs the upper and lower approximations of rough sets to deal with overlapping complexes, and calculates the number of complexes automatically. Fuzzy relation between proteins is established and then transformed into fuzzy equivalence relation. Non-overlapping complexes correspond to equivalence classes satisfying certain equivalence relation. To obtain overlapping complexes, we calculate the similarity between one protein and each complex, and then determine whether the protein belongs to one or multiple complexes by computing the ratio of each similarity to maximum similarity. To validate RFC quantitatively, we test it in Gavin, Collins, Krogan and BioGRID datasets. Experiment results show that there is a good correspondence to reference complexes in MIPS and SGD databases. Then we compare RFC with several previous methods, including ClusterONE, CMC, MCL, GCE, OSLOM and CFinder. Results show the precision, sensitivity and separation are 32.4%, 42.9% and 81.9% higher than mean of the five methods in four weighted networks, and are 0.5%, 11.2% and 66.1% higher than mean of the six methods in five unweighted networks. Our method RFC works well for protein complexes detection and provides a new insight of network division, and it can also be applied to identify overlapping community structure in social networks and LFR benchmark networks.

  13. Protein complex finding and ranking: An application to Alzheimer's ...

    Indian Academy of Sciences (India)

    Protein complexes are known to play a major role in controlling cellular activity in a living being. Identifying complexesfrom raw protein–protein interactions (PPIs) is an important area of research. Earlier work has been limited mostly to yeastand a few other model organisms. Such protein complex identification methods, ...

  14. Photoprotection Conferred by Changes in Photosynthetic Protein Levels and Organization during Dehydration of a Homoiochlorophyllous Resurrection Plant1

    Science.gov (United States)

    Charuvi, Dana; Nevo, Reinat; Shimoni, Eyal; Naveh, Leah; Zia, Ahmad; Adam, Zach; Farrant, Jill M.; Kirchhoff, Helmut; Reich, Ziv

    2015-01-01

    During desiccation, homoiochlorophyllous resurrection plants retain most of their photosynthetic apparatus, allowing them to resume photosynthetic activity quickly upon water availability. These plants rely on various mechanisms to prevent the formation of reactive oxygen species and/or protect their tissues from the damage they inflict. In this work, we addressed the issue of how homoiochlorophyllous resurrection plants deal with the problem of excessive excitation/electron pressures during dehydration using Craterostigma pumilum as a model plant. To investigate the alterations in the supramolecular organization of photosynthetic protein complexes, we examined cryoimmobilized, freeze-fractured leaf tissues using (cryo)scanning electron microscopy. These examinations revealed rearrangements of photosystem II (PSII) complexes, including a lowered density during moderate dehydration, consistent with a lower level of PSII proteins, as shown by biochemical analyses. The latter also showed a considerable decrease in the level of cytochrome f early during dehydration, suggesting that initial regulation of the inhibition of electron transport is achieved via the cytochrome b6f complex. Upon further dehydration, PSII complexes are observed to arrange into rows and semicrystalline arrays, which correlates with the significant accumulation of sucrose and the appearance of inverted hexagonal lipid phases within the membranes. As opposed to PSII and cytochrome f, the light-harvesting antenna complexes of PSII remain stable throughout the course of dehydration. Altogether, these results, along with photosynthetic activity measurements, suggest that the protection of retained photosynthetic components is achieved, at least in part, via the structural rearrangements of PSII and (likely) light-harvesting antenna complexes into a photochemically quenched state. PMID:25713340

  15. A laser ablation ICP-MS based method for multiplexed immunoblot analysis: applications to manganese-dependent protein dynamics of photosystem II in barley (Hordeum vulgare L.)

    DEFF Research Database (Denmark)

    de Bang, Thomas Christian; Petersen, Jørgen; Pedas, Pai Rosager

    2015-01-01

    Manganese (Mn) constitutes an essential co-factor in the oxygen-evolving complex of photosystem II (PSII). Consequently, Mn deficiency reduces photosynthetic efficiency and leads to changes in PSII composition. In order to study these changes, multiplexed protein assays are advantageous. Here, we...... analysed by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), which allowed selective and relative quantitative analysis via the different lanthanides. The method was evaluated against established liquid chromatography electrospray ionization tandem mass spectrometry (LC......-ESI-MS/MS) methods, based on data-dependent acquisition (DDA) and selected reaction monitoring (SRM). Manganese deficiency resulted in a general decrease in PSII protein abundances, an effect that was shown to be reversible upon Mn re-supplementation. Specifically, the extrinsic proteins PsbP and PsbQ showed Mn...

  16. Protein complex prediction via dense subgraphs and false positive analysis.

    Directory of Open Access Journals (Sweden)

    Cecilia Hernandez

    Full Text Available Many proteins work together with others in groups called complexes in order to achieve a specific function. Discovering protein complexes is important for understanding biological processes and predict protein functions in living organisms. Large-scale and throughput techniques have made possible to compile protein-protein interaction networks (PPI networks, which have been used in several computational approaches for detecting protein complexes. Those predictions might guide future biologic experimental research. Some approaches are topology-based, where highly connected proteins are predicted to be complexes; some propose different clustering algorithms using partitioning, overlaps among clusters for networks modeled with unweighted or weighted graphs; and others use density of clusters and information based on protein functionality. However, some schemes still require much processing time or the quality of their results can be improved. Furthermore, most of the results obtained with computational tools are not accompanied by an analysis of false positives. We propose an effective and efficient mining algorithm for discovering highly connected subgraphs, which is our base for defining protein complexes. Our representation is based on transforming the PPI network into a directed acyclic graph that reduces the number of represented edges and the search space for discovering subgraphs. Our approach considers weighted and unweighted PPI networks. We compare our best alternative using PPI networks from Saccharomyces cerevisiae (yeast and Homo sapiens (human with state-of-the-art approaches in terms of clustering, biological metrics and execution times, as well as three gold standards for yeast and two for human. Furthermore, we analyze false positive predicted complexes searching the PDBe (Protein Data Bank in Europe database in order to identify matching protein complexes that have been purified and structurally characterized. Our analysis shows

  17. MIPCE: An MI-based protein complex extraction technique

    Indian Academy of Sciences (India)

    2015-09-28

    Sep 28, 2015 ... or unweighted adjacency matrix with two operators called expansion and in inflation. Iterative expansion and inflation will separate the PPI network into many segments as protein complexes. MCODE: It is one of the first computational methods pro- posed by Bader et al. to detect protein complex based on.

  18. Complex coacervation of whey proteins and gum arabic

    NARCIS (Netherlands)

    Weinbreck, F.; Vries, de R.J.; Schrooyen, P.; Kruif, de C.G.

    2003-01-01

    Mixtures of gum arabic and whey protein (whey protein isolate, WP) form an electrostatic complex in a specific PH range. Three phase boundaries (PHc, pHphi(l), pHphi(2)) have been determined using an original titration method, newly applied to complex coacervation. It consists of monitoring the

  19. Protein packing quality using Delaunay complexes

    DEFF Research Database (Denmark)

    Fonseca, Rasmus; Winter, Pawel; Karplus, Kevin

    2011-01-01

    A new method for estimating the packing quality of protein structures is presented. Atoms in high quality protein crystal structures are very uniformly distributed which is difficult to reproduce using structure prediction methods. Packing quality measures can therefore be used to assess structur...

  20. The complexity of minocycline serum protein binding.

    Science.gov (United States)

    Zhou, Jian; Tran, Brian T; Tam, Vincent H

    2017-06-01

    Serum protein binding is critical for understanding the pharmacology of antimicrobial agents. Tigecycline and eravacycline were previously reported to have atypical non-linear protein binding; the percentage of free fraction decreased with increasing total concentration. In this study, we extended the investigation to other tetracyclines and examined the factors that might impact protein binding. Different minocycline concentrations (0.5-50 mg/L) and perfusion media (saline, 0.1 M HEPES buffer and 0.1 and 1 M PBS) were examined by in vitro microdialysis. After equilibration, two dialysate samples were taken from each experiment and the respective antimicrobial agent concentrations were analysed by validated LC-MS/MS methods. For comparison, the serum protein bindings of doxycycline and levofloxacin were also determined. The free fraction of minocycline decreased with increasing total concentration, and the results depended on the perfusion media used. The trends of minocycline protein binding in mouse and human sera were similar. In addition, serum protein binding of doxycycline showed the same concentration-dependent trend as minocycline, while the results of levofloxacin were concentration independent. The serum protein bindings of minocycline and doxycycline are negatively correlated with their total concentrations. It is possible that all tetracyclines share the same pharmacological property. Moreover, the specific perfusion media used could also impact the results of microdialysis. Additional studies are warranted to understand the mechanism(s) and clinical implications of serum protein binding of tetracyclines.

  1. Recording information on protein complexes in an information management system.

    Science.gov (United States)

    Savitsky, Marc; Diprose, Jonathan M; Morris, Chris; Griffiths, Susanne L; Daniel, Edward; Lin, Bill; Daenke, Susan; Bishop, Benjamin; Siebold, Christian; Wilson, Keith S; Blake, Richard; Stuart, David I; Esnouf, Robert M

    2011-08-01

    The Protein Information Management System (PiMS) is a laboratory information management system (LIMS) designed for use with the production of proteins in a research environment. The software is distributed under the CCP4 licence, and so is available free of charge to academic laboratories. Like most LIMS, the underlying PiMS data model originally had no support for protein-protein complexes. To support the SPINE2-Complexes project the developers have extended PiMS to meet these requirements. The modifications to PiMS, described here, include data model changes, additional protocols, some user interface changes and functionality to detect when an experiment may have formed a complex. Example data are shown for the production of a crystal of a protein complex. Integration with SPINE2-Complexes Target Tracker application is also described. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Principles of assembly reveal a periodic table of protein complexes.

    Science.gov (United States)

    Ahnert, Sebastian E; Marsh, Joseph A; Hernández, Helena; Robinson, Carol V; Teichmann, Sarah A

    2015-12-11

    Structural insights into protein complexes have had a broad impact on our understanding of biological function and evolution. In this work, we sought a comprehensive understanding of the general principles underlying quaternary structure organization in protein complexes. We first examined the fundamental steps by which protein complexes can assemble, using experimental and structure-based characterization of assembly pathways. Most assembly transitions can be classified into three basic types, which can then be used to exhaustively enumerate a large set of possible quaternary structure topologies. These topologies, which include the vast majority of observed protein complex structures, enable a natural organization of protein complexes into a periodic table. On the basis of this table, we can accurately predict the expected frequencies of quaternary structure topologies, including those not yet observed. These results have important implications for quaternary structure prediction, modeling, and engineering. Copyright © 2015, American Association for the Advancement of Science.

  3. Computational Modeling of Complex Protein Activity Networks

    NARCIS (Netherlands)

    Schivo, Stefano; Leijten, Jeroen; Karperien, Marcel; Post, Janine N.; Prignet, Claude

    2017-01-01

    Because of the numerous entities interacting, the complexity of the networks that regulate cell fate makes it impossible to analyze and understand them using the human brain alone. Computational modeling is a powerful method to unravel complex systems. We recently described the development of a

  4. Improving protein function prediction using domain and protein complexes in PPI networks.

    Science.gov (United States)

    Peng, Wei; Wang, Jianxin; Cai, Juan; Chen, Lu; Li, Min; Wu, Fang-Xiang

    2014-03-24

    Characterization of unknown proteins through computational approaches is one of the most challenging problems in silico biology, which has attracted world-wide interests and great efforts. There have been some computational methods proposed to address this problem, which are either based on homology mapping or in the context of protein interaction networks. In this paper, two algorithms are proposed by integrating the protein-protein interaction (PPI) network, proteins' domain information and protein complexes. The one is domain combination similarity (DCS), which combines the domain compositions of both proteins and their neighbors. The other is domain combination similarity in context of protein complexes (DSCP), which extends the protein functional similarity definition of DCS by combining the domain compositions of both proteins and the complexes including them. The new algorithms are tested on networks of the model species of Saccharomyces cerevisiae to predict functions of unknown proteins using cross validations. Comparing with other several existing algorithms, the results have demonstrated the effectiveness of our proposed methods in protein function prediction. Furthermore, the algorithm DSCP using experimental determined complex data is robust when a large percentage of the proteins in the network is unknown, and it outperforms DCS and other several existing algorithms. The accuracy of predicting protein function can be improved by integrating the protein-protein interaction (PPI) network, proteins' domain information and protein complexes.

  5. Assembly of Photosynthetic Antenna Protein Complexes from Algae for Development of Nano-biodevice and Its Fuelization

    Science.gov (United States)

    2013-05-20

    device for solar fuel production from CO2 and water. On going: Development of artificial leaf for solar fuel hydrogen or methanol production from CO2...e- e- PSII Mn Hydrogen Evolution or Carbon Dioxide Fixation Water Photolysis HCHO CH3OH Fuel Material H2 2H+ Hydrogenase(Hase) e- Water Photolysis...and the antenna complexes by modifying the pigment Cars and BChls or chlorophylls as well as the supporting peptides. These modified photosynthetic

  6. Controlled assembly of artificial protein-protein complexes via DNA duplex formation.

    Science.gov (United States)

    Płoskoń, Eliza; Wagner, Sara C; Ellington, Andrew D; Jewett, Michael C; O'Reilly, Rachel; Booth, Paula J

    2015-03-18

    DNA-protein conjugates have found a wide range of applications. This study demonstrates the formation of defined, non-native protein-protein complexes via the site specific labeling of two proteins of interest with complementary strands of single-stranded DNA in vitro. This study demonstrates that the affinity of two DNA-protein conjugates for one another may be tuned by the use of variable lengths of DNA allowing reversible control of complex formation.

  7. Resolubilization of Protein from Water-Insoluble Phlorotannin-Protein Complexes upon Acidification

    NARCIS (Netherlands)

    Vissers, Anne M.; Blok, Annelies E.; Westphal, Adrie H.; Hendriks, Wouter H.; Gruppen, Harry; Vincken, Jean Paul

    2017-01-01

    Marine phlorotannins (PhT) from Laminaria digitata might protect feed proteins from ruminal digestion by formation of insoluble non-covalent tannin-protein complexes at rumen pH (6-7). Formation and disintegration of PhT-protein complexes was studied with β-casein (random coil) and bovine serum

  8. Protein complex detection with semi-supervised learning in protein interaction networks

    Directory of Open Access Journals (Sweden)

    Zhang Aidong

    2011-10-01

    Full Text Available Abstract Background Protein-protein interactions (PPIs play fundamental roles in nearly all biological processes. The systematic analysis of PPI networks can enable a great understanding of cellular organization, processes and function. In this paper, we investigate the problem of protein complex detection from noisy protein interaction data, i.e., finding the subsets of proteins that are closely coupled via protein interactions. However, protein complexes are likely to overlap and the interaction data are very noisy. It is a great challenge to effectively analyze the massive data for biologically meaningful protein complex detection. Results Many people try to solve the problem by using the traditional unsupervised graph clustering methods. Here, we stand from a different point of view, redefining the properties and features for protein complexes and designing a “semi-supervised” method to analyze the problem. In this paper, we utilize the neural network with the “semi-supervised” mechanism to detect the protein complexes. By retraining the neural network model recursively, we could find the optimized parameters for the model, in such a way we can successfully detect the protein complexes. The comparison results show that our algorithm could identify protein complexes that are missed by other methods. We also have shown that our method achieve better precision and recall rates for the identified protein complexes than other existing methods. In addition, the framework we proposed is easy to be extended in the future. Conclusions Using a weighted network to represent the protein interaction network is more appropriate than using a traditional unweighted network. In addition, integrating biological features and topological features to represent protein complexes is more meaningful than using dense subgraphs. Last, the “semi-supervised” learning model is a promising model to detect protein complexes with more biological and topological

  9. Recording information on protein complexes in an information management system

    Science.gov (United States)

    Savitsky, Marc; Diprose, Jonathan M.; Morris, Chris; Griffiths, Susanne L.; Daniel, Edward; Lin, Bill; Daenke, Susan; Bishop, Benjamin; Siebold, Christian; Wilson, Keith S.; Blake, Richard; Stuart, David I.; Esnouf, Robert M.

    2011-01-01

    The Protein Information Management System (PiMS) is a laboratory information management system (LIMS) designed for use with the production of proteins in a research environment. The software is distributed under the CCP4 licence, and so is available free of charge to academic laboratories. Like most LIMS, the underlying PiMS data model originally had no support for protein–protein complexes. To support the SPINE2-Complexes project the developers have extended PiMS to meet these requirements. The modifications to PiMS, described here, include data model changes, additional protocols, some user interface changes and functionality to detect when an experiment may have formed a complex. Example data are shown for the production of a crystal of a protein complex. Integration with SPINE2-Complexes Target Tracker application is also described. PMID:21605682

  10. Footprinting protein-DNA complexes using the hydroxyl radical.

    Science.gov (United States)

    Jain, Swapan S; Tullius, Thomas D

    2008-01-01

    Hydroxyl radical footprinting has been widely used for studying the structure of DNA and DNA-protein complexes. The high reactivity and lack of base specificity of the hydroxyl radical makes it an excellent probe for high-resolution footprinting of DNA-protein complexes; this technique can provide structural detail that is not achievable using DNase I footprinting. Hydroxyl radical footprinting experiments can be carried out using readily available and inexpensive reagents and lab equipment. This method involves using the hydroxyl radical to cleave a nucleic acid molecule that is bound to a protein, followed by separating the cleavage products on a denaturing electrophoresis gel to identify the protein-binding sites on the nucleic acid molecule. We describe a protocol for hydroxyl radical footprinting of DNA-protein complexes, along with a troubleshooting guide, that allows researchers to obtain efficient cleavage of DNA in the presence and absence of proteins. This protocol can be completed in 2 d.

  11. Chloroplast movement provides photoprotection to plants by redistributing PSII damage within leaves.

    Science.gov (United States)

    Davis, Phillip A; Hangarter, Roger P

    2012-09-01

    Plants use light to fix carbon through the process of photosynthesis but light also causes photoinhibition, by damaging photosystem II (PSII). Plants can usually adjust their rate of PSII repair to equal the rate of damage, but under stress conditions or supersaturating light-intensities damage may exceed the rate of repair. Light-induced chloroplast movements are one of the many mechanisms plants have evolved to minimize photoinhibition. We found that chloroplast movements achieve a measure of photoprotection to PSII by altering the distribution of photoinhibition through depth in leaves. When chloroplasts are in the low-light accumulation arrangement a greater proportion of PSII damage occurs near the illuminated surface than for leaves where the chloroplasts are in the high-light avoidance arrangement. According to our findings chloroplast movements can increase the overall efficiency of leaf photosynthesis in at least two ways. The movements alter light profiles within leaves to maximize photosynthetic output and at the same time redistribute PSII damage throughout the leaf to reduce the amount of inhibition received by individual chloroplasts and prevent a decrease in photosynthetic potential.

  12. Genome reduction promotes increase in protein functional complexity in bacteria.

    Science.gov (United States)

    Kelkar, Yogeshwar D; Ochman, Howard

    2013-01-01

    Obligate pathogenic and endosymbiotic bacteria typically experience gene loss due to functional redundancy, asexuality, and genetic drift. We hypothesize that reduced genomes increase their functional complexity through protein multitasking, in which many genes adopt new roles to counteract gene loss. Comparisons of interaction networks among six bacteria that have varied genome sizes (Mycoplasma pneumoniae, Treponema pallidum, Helicobacter pylori, Campylobacter jejuni, Synechocystis sp., and Mycobacterium tuberculosis) reveal that proteins in small genomes interact with proteins from a wider range of functions than do their orthologs in larger genomes. This suggests that surviving proteins form increasingly complex functional relationships to compensate for genes that are lost.

  13. Ethylation interference footprinting of DNA-protein complexes.

    Science.gov (United States)

    Manfield, Iain W; Stockley, Peter G

    2009-01-01

    Structural studies of DNA-protein complexes reveal networks of contacts between proteins and the phosphates, sugars and bases of DNA. A range of biochemical methods, termed chemical footprinting, aim to determine the functional groups on DNA which are protected in solution by bound protein against modification or where chemical pre-modification interferes with subsequent protein binding. One of these approaches, termed ethylation interference footprinting, reveals which backbone phosphate groups are contacted by protein and the positions where the DNA-protein interface is so tight that the modification cannot be accommodated. This chapter describes the steps necessary to perform an ethylation interference experiment, including modification of DNA using ethylnitrosourea, fractionation of the products based on their affinities for a DNA-binding protein and analysis of the "bound" and "free" fractions to reveal sites critical for complex formation. This is illustrated using results from our experiments with the Escherichia coli methionine repressor, MetJ.

  14. Quantifying the energetics of cooperativity in a ternary protein complex

    DEFF Research Database (Denmark)

    Andersen, Peter S; Schuck, Peter; Sundberg, Eric J

    2002-01-01

    and mathematical modeling to describe the energetics of cooperativity in a trimolecular protein complex. As a model system for quantifying cooperativity, we studied the ternary complex formed by the simultaneous interaction of a superantigen with major histocompatibility complex and T cell receptor, for which...... a structural model is available. This system exhibits positive and negative cooperativity, as well as augmentation of the temperature dependence of binding kinetics upon the cooperative interaction of individual protein components in the complex. Our experimental and theoretical analysis may be applicable...... to other systems involving cooperativity....

  15. Protein Connectivity in Chemotaxis Receptor Complexes.

    Directory of Open Access Journals (Sweden)

    Stephan Eismann

    2015-12-01

    Full Text Available The chemotaxis sensory system allows bacteria such as Escherichia coli to swim towards nutrients and away from repellents. The underlying pathway is remarkably sensitive in detecting chemical gradients over a wide range of ambient concentrations. Interactions among receptors, which are predominantly clustered at the cell poles, are crucial to this sensitivity. Although it has been suggested that the kinase CheA and the adapter protein CheW are integral for receptor connectivity, the exact coupling mechanism remains unclear. Here, we present a statistical-mechanics approach to model the receptor linkage mechanism itself, building on nanodisc and electron cryotomography experiments. Specifically, we investigate how the sensing behavior of mixed receptor clusters is affected by variations in the expression levels of CheA and CheW at a constant receptor density in the membrane. Our model compares favorably with dose-response curves from in vivo Förster resonance energy transfer (FRET measurements, demonstrating that the receptor-methylation level has only minor effects on receptor cooperativity. Importantly, our model provides an explanation for the non-intuitive conclusion that the receptor cooperativity decreases with increasing levels of CheA, a core signaling protein associated with the receptors, whereas the receptor cooperativity increases with increasing levels of CheW, a key adapter protein. Finally, we propose an evolutionary advantage as explanation for the recently suggested CheW-only linker structures.

  16. Nanoparticle-protein complexes mimicking corona formation in ocular environment.

    Science.gov (United States)

    Jo, Dong Hyun; Kim, Jin Hyoung; Son, Jin Gyeong; Dan, Ki Soon; Song, Sang Hoon; Lee, Tae Geol; Kim, Jeong Hun

    2016-12-01

    Nanoparticles adsorb biomolecules to form corona upon entering the biological environment. In this study, tissue-specific corona formation is provided as a way of controlling protein interaction with nanoparticles in vivo. In the vitreous, the composition of the corona was determined by the electrostatic and hydrophobic properties of the associated proteins, regardless of the material (gold and silica) or size (20- and 100-nm diameter) of the nanoparticles. To control protein adsorption, we pre-incubate 20-nm gold nanoparticles with 5 selectively enriched proteins from the corona, formed in the vitreous, to produce nanoparticle-protein complexes. Compared to bare nanoparticles, nanoparticle-protein complexes demonstrate improved binding to vascular endothelial growth factor (VEGF) in the vitreous. Furthermore, nanoparticle-protein complexes retain in vitro anti-angiogenic properties of bare nanoparticles. In particular, priming the nanoparticles (gold and silica) with tissue-specific corona proteins allows nanoparticle-protein complexes to exert better in vivo therapeutic effects by higher binding to VEGF than bare nanoparticles. These results suggest that controlled corona formation that mimics in vivo processes may be useful in the therapeutic use of nanomaterials in local environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Prediction of heterodimeric protein complexes from weighted protein-protein interaction networks using novel features and kernel functions.

    Directory of Open Access Journals (Sweden)

    Peiying Ruan

    Full Text Available Since many proteins express their functional activity by interacting with other proteins and forming protein complexes, it is very useful to identify sets of proteins that form complexes. For that purpose, many prediction methods for protein complexes from protein-protein interactions have been developed such as MCL, MCODE, RNSC, PCP, RRW, and NWE. These methods have dealt with only complexes with size of more than three because the methods often are based on some density of subgraphs. However, heterodimeric protein complexes that consist of two distinct proteins occupy a large part according to several comprehensive databases of known complexes. In this paper, we propose several feature space mappings from protein-protein interaction data, in which each interaction is weighted based on reliability. Furthermore, we make use of prior knowledge on protein domains to develop feature space mappings, domain composition kernel and its combination kernel with our proposed features. We perform ten-fold cross-validation computational experiments. These results suggest that our proposed kernel considerably outperforms the naive Bayes-based method, which is the best existing method for predicting heterodimeric protein complexes.

  18. In situ detection of the protein corona in complex environments

    OpenAIRE

    Monica Carril; Daniel Padro; Pablo del Pino; Carolina Carrillo-Carrion; Marta Gallego; Wolfgang Parak

    2017-01-01

    Colloidal nanoparticles (NPs) are a versatile potential platform for in vivo nanomedicine. Inside blood circulation, NPs may undergo drastic changes, such as by formation of a protein corona. The in vivo corona cannot be completely emulated by the corona formed in blood. Thus, in situ detection in complex media, and ultimately in vivo, is required. Here we present a methodology for determining protein corona formation in complex media. NPs are labeled with 19F and their diffusion coefficient ...

  19. Light-induced dissociation of antenna complexes in the symbionts of scleractinian corals correlates with sensitivity to coral bleaching

    Science.gov (United States)

    Hill, R.; Larkum, A. W. D.; Prášil, O.; Kramer, D. M.; Szabó, M.; Kumar, V.; Ralph, P. J.

    2012-12-01

    Elevated temperatures in combination with moderate to high irradiance are known to cause bleaching events in scleractinian corals, characterised by damage to photosystem II (PSII). Photoprotective mechanisms of the symbiont can reduce the excitation pressure impinging upon PSII. In the bleaching sensitive species, Acropora millepora and Pocillopora damicornis, high light alone induced photoprotection through the xanthophyll cycle, increased content of the antioxidant carotenoid, β-carotene, as well as the dissociation of the light-harvesting chlorophyll complexes. The evidence is compatible with either the membrane-bound chlorophyll a-chlorophyll c 2-peridinin-protein (acpPC) complex or the peripheral peridinin-chlorophyll-protein complex, or both, disconnecting from PSII under high light. The acpPC complex potentially showed a state transition response with redistribution towards photosystem I to reduce PSII over-excitation. This apparent acpPC dissociation/reassociation was promoted by the addition of the xanthophyll cycle inhibitor, dithiothreitol, under high irradiance. Exposure to thermal stress as well as high light promoted xanthophyll de-epoxidation and increased β-carotene content, although it did not influence light-harvesting chlorophyll complex (LHC) dissociation, indicating light, rather than temperature, controls LHC dissociation. Photoinhibition was avoided in the bleaching tolerant species, Pavona decussata, suggesting xanthophyll cycling along with LHC dissociation may have been sufficient to prevent photodamage to PSII. Symbionts of P. decussata also displayed the greatest detachment of antenna complexes, while the more thermally sensitive species, Pocillopora damicornis and A. millepora, showed less LHC dissociation, suggesting antenna movement influences bleaching susceptibility.

  20. Using light scattering to determine the stoichiometry of protein complexes.

    Science.gov (United States)

    Mogridge, Jeremy

    2015-01-01

    The stoichiometry of a protein complex can be calculated from an accurate measurement of the complex's molecular weight. Multiangle laser light scattering in combination with size exclusion chromatography and interferometric refractometry provides a powerful means for determining the molecular weights of proteins and protein complexes. In contrast to conventional size exclusion chromatography and analytical centrifugation, measurements do not rely on the use of molecular weight standards and are not affected by the shape of the proteins. The technique is based on the direct relationship between the amount of light scattered by a protein in solution, and the product of its concentration and molecular weight. A typical experimental configuration includes a size exclusion column to fractionate the sample, a light scattering detector to measure scattered light, and an interferometric refractometer to measure protein concentration. The determination of the molecular weight of an anthrax toxin complex will be used to illustrate how multiangle laser light scattering can be used to determine the stoichiometry of protein complexes.

  1. Traveling-wave ion mobility mass spectrometry of protein complexes

    DEFF Research Database (Denmark)

    Salbo, Rune; Bush, Matthew F; Naver, Helle

    2012-01-01

    The collision cross-section (Ω) of a protein or protein complex ion can be measured using traveling-wave (T-wave) ion mobility (IM) mass spectrometry (MS) via calibration with compounds of known Ω. The T-wave Ω-values depend strongly on instrument parameters and calibrant selection. Optimization...

  2. Drosophila protein interaction map (DPiM): a paradigm for metazoan protein complex interactions.

    Science.gov (United States)

    Guruharsha, K G; Obar, Robert A; Mintseris, Julian; Aishwarya, K; Krishnan, R T; Vijayraghavan, K; Artavanis-Tsakonas, Spyros

    2012-01-01

    Proteins perform essential cellular functions as part of protein complexes, often in conjunction with RNA, DNA, metabolites and other small molecules. The genome encodes thousands of proteins but not all of them are expressed in every cell type; and expressed proteins are not active at all times. Such diversity of protein expression and function accounts for the level of biological intricacy seen in nature. Defining protein-protein interactions in protein complexes, and establishing the when, what and where of potential interactions, is therefore crucial to understanding the cellular function of any protein-especially those that have not been well studied by traditional molecular genetic approaches. We generated a large-scale resource of affinity-tagged expression-ready clones and used co-affinity purification combined with tandem mass-spectrometry to identify protein partners of nearly 5,000 Drosophila melanogaster proteins. The resulting protein complex "map" provided a blueprint of metazoan protein complex organization. Here we describe how the map has provided valuable insights into protein function in addition to generating hundreds of testable hypotheses. We also discuss recent technological advancements that will be critical in addressing the next generation of questions arising from the map.

  3. Centralities in simplicial complexes. Applications to protein interaction networks.

    Science.gov (United States)

    Estrada, Ernesto; Ross, Grant J

    2018-02-07

    Complex networks can be used to represent complex systems which originate in the real world. Here we study a transformation of these complex networks into simplicial complexes, where cliques represent the simplices of the complex. We extend the concept of node centrality to that of simplicial centrality and study several mathematical properties of degree, closeness, betweenness, eigenvector, Katz, and subgraph centrality for simplicial complexes. We study the degree distributions of these centralities at the different levels. We also compare and describe the differences between the centralities at the different levels. Using these centralities we study a method for detecting essential proteins in PPI networks of cells and explain the varying abilities of the centrality measures at the different levels in identifying these essential proteins. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Porous protein crystals as catalytic vessels for organometallic complexes.

    Science.gov (United States)

    Tabe, Hiroyasu; Abe, Satoshi; Hikage, Tatsuo; Kitagawa, Susumu; Ueno, Takafumi

    2014-05-01

    Porous protein crystals, which are protein assemblies in the solid state, have been engineered to form catalytic vessels by the incorporation of organometallic complexes. Ruthenium complexes in cross-linked porous hen egg white lysozyme (HEWL) crystals catalyzed the enantioselective hydrogen-transfer reduction of acetophenone derivatives. The crystals accelerated the catalytic reaction and gave different enantiomers based on the crystal form (tetragonal or orthorhombic). This method represents a new approach for the construction of bioinorganic catalysts from protein crystals. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Tuberous sclerosis complex proteins control axon formation.

    Science.gov (United States)

    Choi, Yong-Jin; Di Nardo, Alessia; Kramvis, Ioannis; Meikle, Lynsey; Kwiatkowski, David J; Sahin, Mustafa; He, Xi

    2008-09-15

    Axon formation is fundamental for brain development and function. TSC1 and TSC2 are two genes, mutations in which cause tuberous sclerosis complex (TSC), a disease characterized by tumor predisposition and neurological abnormalities including epilepsy, mental retardation, and autism. Here we show that Tsc1 and Tsc2 have critical functions in mammalian axon formation and growth. Overexpression of Tsc1/Tsc2 suppresses axon formation, whereas a lack of Tsc1 or Tsc2 function induces ectopic axons in vitro and in the mouse brain. Tsc2 is phosphorylated and inhibited in the axon but not dendrites. Inactivation of Tsc1/Tsc2 promotes axonal growth, at least in part, via up-regulation of neuronal polarity SAD kinase, which is also elevated in cortical tubers of a TSC patient. Our results reveal key roles of TSC1/TSC2 in neuronal polarity, suggest a common pathway regulating polarization/growth in neurons and cell size in other tissues, and have implications for the understanding of the pathogenesis of TSC and associated neurological disorders and for axonal regeneration.

  6. Mannan-binding protein forms complexes with alpha-2-macroglobulin. A protein model for the interaction

    DEFF Research Database (Denmark)

    Storgaard, P; Holm Nielsen, E; Skriver, E

    1995-01-01

    We report that alpha-2-macroglobulin (alpha 2M) can form complexes with a high molecular weight porcine mannan-binding protein (pMBP-28). The alpha 2M/pMBP-28 complexes was isolated by PEG-precipitation and affinity chromatography on mannan-Sepharose, protein A-Sepharose and anti-IgM Sepharose...

  7. Identification of Essential Proteins Based on a New Combination of Local Interaction Density and Protein Complexes.

    Directory of Open Access Journals (Sweden)

    Jiawei Luo

    Full Text Available Computational approaches aided by computer science have been used to predict essential proteins and are faster than expensive, time-consuming, laborious experimental approaches. However, the performance of such approaches is still poor, making practical applications of computational approaches difficult in some fields. Hence, the development of more suitable and efficient computing methods is necessary for identification of essential proteins.In this paper, we propose a new method for predicting essential proteins in a protein interaction network, local interaction density combined with protein complexes (LIDC, based on statistical analyses of essential proteins and protein complexes. First, we introduce a new local topological centrality, local interaction density (LID, of the yeast PPI network; second, we discuss a new integration strategy for multiple bioinformatics. The LIDC method was then developed through a combination of LID and protein complex information based on our new integration strategy. The purpose of LIDC is discovery of important features of essential proteins with their neighbors in real protein complexes, thereby improving the efficiency of identification.Experimental results based on three different PPI(protein-protein interaction networks of Saccharomyces cerevisiae and Escherichia coli showed that LIDC outperformed classical topological centrality measures and some recent combinational methods. Moreover, when predicting MIPS datasets, the better improvement of performance obtained by LIDC is over all nine reference methods (i.e., DC, BC, NC, LID, PeC, CoEWC, WDC, ION, and UC.LIDC is more effective for the prediction of essential proteins than other recently developed methods.

  8. Discovering protein complexes in protein interaction networks via exploring the weak ties effect.

    Science.gov (United States)

    Ma, Xiaoke; Gao, Lin

    2012-01-01

    Studying protein complexes is very important in biological processes since it helps reveal the structure-functionality relationships in biological networks and much attention has been paid to accurately predict protein complexes from the increasing amount of protein-protein interaction (PPI) data. Most of the available algorithms are based on the assumption that dense subgraphs correspond to complexes, failing to take into account the inherence organization within protein complex and the roles of edges. Thus, there is a critical need to investigate the possibility of discovering protein complexes using the topological information hidden in edges. To provide an investigation of the roles of edges in PPI networks, we show that the edges connecting less similar vertices in topology are more significant in maintaining the global connectivity, indicating the weak ties phenomenon in PPI networks. We further demonstrate that there is a negative relation between the weak tie strength and the topological similarity. By using the bridges, a reliable virtual network is constructed, in which each maximal clique corresponds to the core of a complex. By this notion, the detection of the protein complexes is transformed into a classic all-clique problem. A novel core-attachment based method is developed, which detects the cores and attachments, respectively. A comprehensive comparison among the existing algorithms and our algorithm has been made by comparing the predicted complexes against benchmark complexes. We proved that the weak tie effect exists in the PPI network and demonstrated that the density is insufficient to characterize the topological structure of protein complexes. Furthermore, the experimental results on the yeast PPI network show that the proposed method outperforms the state-of-the-art algorithms. The analysis of detected modules by the present algorithm suggests that most of these modules have well biological significance in context of complexes, suggesting

  9. Light dependence of quantum yields for PSII charge separation and oxygen evolution in eucaryotic algae

    NARCIS (Netherlands)

    Flameling, I.A.; Kromkamp, J.C.

    1998-01-01

    Quantum yields of photosystem II (PSII) charge separation (Phi(P)) and oxygen production (Phi(O2)) were determined by simultaneous measurements of oxygen production and variable fluorescence in four different aquatic microalgae representing three different taxonomic groups: the freshwater alga

  10. Oxyradicals and PSII activity in maize leaves in the absence of UV ...

    Indian Academy of Sciences (India)

    ... oxyradicals invoked higher activity of antioxidant enzymes like superoxide dismutase and peroxidase under ambient UV, they also imposed limitation on the photosynthetic efficiency of PSII. Exclusion of UV components (UV-B 280–315 nm; UV-A 315–400 nm) translated to enhanced photosynthesis, growth and biomass.

  11. Strategies in the crystallization of glycoproteins and protein complexes

    Science.gov (United States)

    Stura, Enrico A.; Nemerow, Glen R.; Wilson, Ian A.

    1992-08-01

    Modern biochemical and molecular biological techniques have provided new opportunities to investigate the structure of more complex biomolecules and have opened new paths for the crystallization of complexes. Desialation, deglycosylation and modification of glycoproteins are techniques being investigated as a means of making glycosylated more amenable for crystallization. A simple solubility screen based on a limited set of precipitants has been extensively used in the comparison of various protein preparations and in the crystallization of macromolecular complexes. Antibodies, or their Fabs or Fab' fragments, can also be utilized in the crystallization of glycoproteins or other proteins which have proved difficult to crystallize by themselves. Fab complexes can provide different surfaces for lattices to form and may increase the likelihood of crystallizing a given protein. This method can be extended by the addition of an epitope tag, such as a short peptide sequence, to a protein by genetic engineering methods. The same panel of anti-peptide antibodies can then be utilized in both the purification and crystallization of different expressed proteins, making this a potential general method for protein crystallization.

  12. Machine Learning Approaches for Predicting Protein Complex Similarity.

    Science.gov (United States)

    Farhoodi, Roshanak; Akbal-Delibas, Bahar; Haspel, Nurit

    2017-01-01

    Discriminating native-like structures from false positives with high accuracy is one of the biggest challenges in protein-protein docking. While there is an agreement on the existence of a relationship between various favorable intermolecular interactions (e.g., Van der Waals, electrostatic, and desolvation forces) and the similarity of a conformation to its native structure, the precise nature of this relationship is not known. Existing protein-protein docking methods typically formulate this relationship as a weighted sum of selected terms and calibrate their weights by using a training set to evaluate and rank candidate complexes. Despite improvements in the predictive power of recent docking methods, producing a large number of false positives by even state-of-the-art methods often leads to failure in predicting the correct binding of many complexes. With the aid of machine learning methods, we tested several approaches that not only rank candidate structures relative to each other but also predict how similar each candidate is to the native conformation. We trained a two-layer neural network, a multilayer neural network, and a network of Restricted Boltzmann Machines against extensive data sets of unbound complexes generated by RosettaDock and PyDock. We validated these methods with a set of refinement candidate structures. We were able to predict the root mean squared deviations (RMSDs) of protein complexes with a very small, often less than 1.5 Å, error margin when trained with structures that have RMSD values of up to 7 Å. In our most recent experiments with the protein samples having RMSD values up to 27 Å, the average prediction error was still relatively small, attesting to the potential of our approach in predicting the correct binding of protein-protein complexes.

  13. Spotlight: assembly of protein complexes by integrating graph clustering methods.

    Science.gov (United States)

    Chin, Chia-Hao; Chen, Shu-Hwa; Chen, Chun-Yu; Hsiung, Chao A; Ho, Chin-Wen; Ko, Ming-Tat; Lin, Chung-Yen

    2013-04-10

    As is generally assumed, clusters in protein-protein interaction (PPI) networks perform specific, crucial functions in biological systems. Various network community detection methods have been developed to exploit PPI networks in order to identify protein complexes and functional modules. Due to the potential role of various regulatory modes in biological networks, a single method may just apply a single graph property and neglect communities highlighted by other network properties. This work presents a novel integration method to capture protein modules/protein complexes by multiple network features detected by different algorithms. The integration method is further implemented in a web-based platform with a highly effective interactive network analyzer. Conventionally adopted methods with different perspectives on network community detection (e.g., CPM, FastGreedy, HUNTER, MCL, LE, SpinGlass, and WalkTrap) are also executed simultaneously. Analytical results indicate that the proposed method performs better than the conventional ones. The proposed approach can capture the transcription and RNA splicing machineries from the yeast protein network. Meanwhile, proteins that are highly associated with each other, yet not described in both machineries are also identified. In sum, a protein that is closely connected to components of a known module or a complex in the network view implies the functional association among them. Importantly, our method can detect these unique network features, thus facilitating efforts to discover unknown components of functional modules/protein complexes. Spotlight is freely accessible at http://hub.iis.sinica.edu.tw/spotlight. Video clips for a quick view of usage are available in the website online help page. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  14. Multifrequency EPR and ENDOR spectroscopy of the S2-state of the manganese complex in photosystem II

    OpenAIRE

    Pudollek, Susanne

    2012-01-01

    Plants, green algae and cyanobacteria alike use oxygenic photosynthesis to transform harvested light into chemical energy. The oxygen which is released from oxidised water molecules forms the basis of animal and human life. The reaction cycle of catalytic dissociation of the water molecules takes place within a large protein complex called Photosystem II (PSII). Its catalytic center is the WaterOxidizing Complex (WOC) comprising four manganese and a calcium ion. The underlying reaction mechan...

  15. Decomposition of overlapping protein complexes: A graph theoretical method for analyzing static and dynamic protein associations

    Directory of Open Access Journals (Sweden)

    Guimarães Katia S

    2006-04-01

    Full Text Available Abstract Background Most cellular processes are carried out by multi-protein complexes, groups of proteins that bind together to perform a specific task. Some proteins form stable complexes, while other proteins form transient associations and are part of several complexes at different stages of a cellular process. A better understanding of this higher-order organization of proteins into overlapping complexes is an important step towards unveiling functional and evolutionary mechanisms behind biological networks. Results We propose a new method for identifying and representing overlapping protein complexes (or larger units called functional groups within a protein interaction network. We develop a graph-theoretical framework that enables automatic construction of such representation. We illustrate the effectiveness of our method by applying it to TNFα/NF-κB and pheromone signaling pathways. Conclusion The proposed representation helps in understanding the transitions between functional groups and allows for tracking a protein's path through a cascade of functional groups. Therefore, depending on the nature of the network, our representation is capable of elucidating temporal relations between functional groups. Our results show that the proposed method opens a new avenue for the analysis of protein interaction networks.

  16. Associating genes and protein complexes with disease via network propagation.

    Directory of Open Access Journals (Sweden)

    Oron Vanunu

    2010-01-01

    Full Text Available A fundamental challenge in human health is the identification of disease-causing genes. Recently, several studies have tackled this challenge via a network-based approach, motivated by the observation that genes causing the same or similar diseases tend to lie close to one another in a network of protein-protein or functional interactions. However, most of these approaches use only local network information in the inference process and are restricted to inferring single gene associations. Here, we provide a global, network-based method for prioritizing disease genes and inferring protein complex associations, which we call PRINCE. The method is based on formulating constraints on the prioritization function that relate to its smoothness over the network and usage of prior information. We exploit this function to predict not only genes but also protein complex associations with a disease of interest. We test our method on gene-disease association data, evaluating both the prioritization achieved and the protein complexes inferred. We show that our method outperforms extant approaches in both tasks. Using data on 1,369 diseases from the OMIM knowledgebase, our method is able (in a cross validation setting to rank the true causal gene first for 34% of the diseases, and infer 139 disease-related complexes that are highly coherent in terms of the function, expression and conservation of their member proteins. Importantly, we apply our method to study three multi-factorial diseases for which some causal genes have been found already: prostate cancer, alzheimer and type 2 diabetes mellitus. PRINCE's predictions for these diseases highly match the known literature, suggesting several novel causal genes and protein complexes for further investigation.

  17. Displacement affinity chromatography of protein phosphatase one (PP1 complexes

    Directory of Open Access Journals (Sweden)

    Gourlay Robert

    2008-11-01

    Full Text Available Abstract Background Protein phosphatase one (PP1 is a ubiquitously expressed, highly conserved protein phosphatase that dephosphorylates target protein serine and threonine residues. PP1 is localized to its site of action by interacting with targeting or regulatory proteins, a majority of which contains a primary docking site referred to as the RVXF/W motif. Results We demonstrate that a peptide based on the RVXF/W motif can effectively displace PP1 bound proteins from PP1 retained on the phosphatase affinity matrix microcystin-Sepharose. Subsequent co-immunoprecipitation experiments confirmed that each identified binding protein was either a direct PP1 interactor or was in a complex that contains PP1. Our results have linked PP1 to numerous new nuclear functions and proteins, including Ki-67, Rif-1, topoisomerase IIα, several nuclear helicases, NUP153 and the TRRAP complex. Conclusion This modification of the microcystin-Sepharose technique offers an effective means of purifying novel PP1 regulatory subunits and associated proteins and provides a simple method to uncover a link between PP1 and additional cellular processes.

  18. Structural and evolutionary versatility in protein complexes with uneven stoichiometry.

    Science.gov (United States)

    Marsh, Joseph A; Rees, Holly A; Ahnert, Sebastian E; Teichmann, Sarah A

    2015-03-16

    Proteins assemble into complexes with diverse quaternary structures. Although most heteromeric complexes of known structure have even stoichiometry, a significant minority have uneven stoichiometry--that is, differing numbers of each subunit type. To adopt this uneven stoichiometry, sequence-identical subunits must be asymmetric with respect to each other, forming different interactions within the complex. Here we first investigate the occurrence of uneven stoichiometry, demonstrating that it is common in vitro and is likely to be common in vivo. Next, we elucidate the structural determinants of uneven stoichiometry, identifying six different mechanisms by which it can be achieved. Finally, we study the frequency of uneven stoichiometry across evolution, observing a significant enrichment in bacteria compared with eukaryotes. We show that this arises due to a general increased tendency for bacterial proteins to self-assemble and form homomeric interactions, even within the context of a heteromeric complex.

  19. Hydroxyl radical footprinting of protein-DNA complexes.

    Science.gov (United States)

    Jagannathan, Indu; Hayes, Jeffrey J

    2009-01-01

    This unit details the use of hydroxyl radicals to characterize protein-DNA interactions. This method may be used to assess the exact location of contacts between a protein and its cognate DNA and details of the complex structure. We describe several methods to prepare DNA templates for footprinting and ways to avoid many of the pitfalls associated with the use of hydroxyl radical footprinting. In addition, we describe in detail one example of the application of this technique.

  20. Biclustering Protein Complex Interactions with a Biclique FindingAlgorithm

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Chris; Zhang, Anne Ya; Holbrook, Stephen

    2006-12-01

    Biclustering has many applications in text mining, web clickstream mining, and bioinformatics. When data entries are binary, the tightest biclusters become bicliques. We propose a flexible and highly efficient algorithm to compute bicliques. We first generalize the Motzkin-Straus formalism for computing the maximal clique from L{sub 1} constraint to L{sub p} constraint, which enables us to provide a generalized Motzkin-Straus formalism for computing maximal-edge bicliques. By adjusting parameters, the algorithm can favor biclusters with more rows less columns, or vice verse, thus increasing the flexibility of the targeted biclusters. We then propose an algorithm to solve the generalized Motzkin-Straus optimization problem. The algorithm is provably convergent and has a computational complexity of O(|E|) where |E| is the number of edges. It relies on a matrix vector multiplication and runs efficiently on most current computer architectures. Using this algorithm, we bicluster the yeast protein complex interaction network. We find that biclustering protein complexes at the protein level does not clearly reflect the functional linkage among protein complexes in many cases, while biclustering at protein domain level can reveal many underlying linkages. We show several new biologically significant results.

  1. Protein phosphatase 1 and its complexes in carcinogenesis.

    Science.gov (United States)

    Figueiredo, Joao; da Cruz E Silva, Odete A B; Fardilha, Margarida

    2014-01-01

    Understanding the molecular mechanisms and the signaling pathways that underlie the pathology of cancer progression is crucial for the development of novel diagnostic and therapeutic tools. A major common mechanism used by cells to regulate intracellular signal transduction pathways is reversible protein phosphorylation which results in profound changes in cellular responses. This mechanism relies on the coordinated action of two families of proteins: protein kinases and protein phosphatases. Interestingly, there are 3 to 5 times fewer phosphatases than kinases, suggesting that the specificity of substrates is not only due to the variety of the catalytic subunits but also to the diversity of the regulatory subunits. This is particularly true for PhosphoProtein Phosphatase 1 (PPP1) for which more than 200 PPP1 Interacting Proteins (PIPs) have thus far been identified. PIPs can act as targeting subunits, substrates and activity regulators. Many PPP1/PIPs complexes are involved in signaling pathways that regulate cellular growth, cell cycle and apoptosis; processes known to be deregulated in cancer. This review will describe the cellular pathways, many of which involve PPP1/PIP complexes, that when deregulated lead to cancer. Furthermore, the possibility of PPP1/PIP complexes being considered novel targets to cancer diagnostic and therapy will be addressed.

  2. Heat capacity changes in carbohydrates and protein-carbohydrate complexes.

    Science.gov (United States)

    Chavelas, Eneas A; García-Hernández, Enrique

    2009-05-13

    Carbohydrates are crucial for living cells, playing myriads of functional roles that range from being structural or energy-storage devices to molecular labels that, through non-covalent interaction with proteins, impart exquisite selectivity in processes such as molecular trafficking and cellular recognition. The molecular bases that govern the recognition between carbohydrates and proteins have not been fully understood yet. In the present study, we have obtained a surface-area-based model for the formation heat capacity of protein-carbohydrate complexes, which includes separate terms for the contributions of the two molecular types. The carbohydrate model, which was calibrated using carbohydrate dissolution data, indicates that the heat capacity contribution of a given group surface depends on its position in the saccharide molecule, a picture that is consistent with previous experimental and theoretical studies showing that the high abundance of hydroxy groups in carbohydrates yields particular solvation properties. This model was used to estimate the carbohydrate's contribution in the formation of a protein-carbohydrate complex, which in turn was used to obtain the heat capacity change associated with the protein's binding site. The model is able to account for protein-carbohydrate complexes that cannot be explained using a previous model that only considered the overall contribution of polar and apolar groups, while allowing a more detailed dissection of the elementary contributions that give rise to the formation heat capacity effects of these adducts.

  3. The ER membrane protein complex is a transmembrane domain insertase

    Science.gov (United States)

    Guna, Alina; Volkmar, Norbert; Christianson, John C.; Hegde, Ramanujan S.

    2018-01-01

    Insertion of proteins into membranes is an essential cellular process. The extensive biophysical and topological diversity of membrane proteins necessitates multiple insertion pathways that remain incompletely defined. Here, we found that known membrane insertion pathways fail to effectively engage tail-anchored membrane proteins with moderately hydrophobic transmembrane domains. These proteins are instead shielded in the cytosol by calmodulin. Dynamic release from calmodulin allowed sampling of the endoplasmic reticulum (ER), where the conserved ER membrane protein complex (EMC) was shown to be essential for efficient insertion in vitro and in cells. Purified EMC in synthetic liposomes catalyzed insertion of its substrates in a reconstituted system. Thus, EMC is a transmembrane domain insertase, a function that may explain its widely pleiotropic membrane-associated phenotypes across organisms. PMID:29242231

  4. Protein corona - from molecular adsorption to physiological complexity.

    Science.gov (United States)

    Treuel, Lennart; Docter, Dominic; Maskos, Michael; Stauber, Roland H

    2015-01-01

    In biological environments, nanoparticles are enshrouded by a layer of biomolecules, predominantly proteins, mediating its subsequent interactions with cells. Detecting this protein corona, understanding its formation with regards to nanoparticle (NP) and protein properties, and elucidating its biological implications were central aims of bio-related nano-research throughout the past years. Here, we discuss the mechanistic parameters that are involved in the protein corona formation and the consequences of this corona formation for both, the particle, and the protein. We review consequences of corona formation for colloidal stability and discuss the role of functional groups and NP surface functionalities in shaping NP-protein interactions. We also elaborate the recent advances demonstrating the strong involvement of Coulomb-type interactions between NPs and charged patches on the protein surface. Moreover, we discuss novel aspects related to the complexity of the protein corona forming under physiological conditions in full serum. Specifically, we address the relation between particle size and corona composition and the latest findings that help to shed light on temporal evolution of the full serum corona for the first time. Finally, we discuss the most recent advances regarding the molecular-scale mechanistic role of the protein corona in cellular uptake of NPs.

  5. Protein corona – from molecular adsorption to physiological complexity

    Science.gov (United States)

    Docter, Dominic; Maskos, Michael

    2015-01-01

    Summary In biological environments, nanoparticles are enshrouded by a layer of biomolecules, predominantly proteins, mediating its subsequent interactions with cells. Detecting this protein corona, understanding its formation with regards to nanoparticle (NP) and protein properties, and elucidating its biological implications were central aims of bio-related nano-research throughout the past years. Here, we discuss the mechanistic parameters that are involved in the protein corona formation and the consequences of this corona formation for both, the particle, and the protein. We review consequences of corona formation for colloidal stability and discuss the role of functional groups and NP surface functionalities in shaping NP–protein interactions. We also elaborate the recent advances demonstrating the strong involvement of Coulomb-type interactions between NPs and charged patches on the protein surface. Moreover, we discuss novel aspects related to the complexity of the protein corona forming under physiological conditions in full serum. Specifically, we address the relation between particle size and corona composition and the latest findings that help to shed light on temporal evolution of the full serum corona for the first time. Finally, we discuss the most recent advances regarding the molecular-scale mechanistic role of the protein corona in cellular uptake of NPs. PMID:25977856

  6. Protein corona – from molecular adsorption to physiological complexity

    Directory of Open Access Journals (Sweden)

    Lennart Treuel

    2015-03-01

    Full Text Available In biological environments, nanoparticles are enshrouded by a layer of biomolecules, predominantly proteins, mediating its subsequent interactions with cells. Detecting this protein corona, understanding its formation with regards to nanoparticle (NP and protein properties, and elucidating its biological implications were central aims of bio-related nano-research throughout the past years. Here, we discuss the mechanistic parameters that are involved in the protein corona formation and the consequences of this corona formation for both, the particle, and the protein. We review consequences of corona formation for colloidal stability and discuss the role of functional groups and NP surface functionalities in shaping NP–protein interactions. We also elaborate the recent advances demonstrating the strong involvement of Coulomb-type interactions between NPs and charged patches on the protein surface. Moreover, we discuss novel aspects related to the complexity of the protein corona forming under physiological conditions in full serum. Specifically, we address the relation between particle size and corona composition and the latest findings that help to shed light on temporal evolution of the full serum corona for the first time. Finally, we discuss the most recent advances regarding the molecular-scale mechanistic role of the protein corona in cellular uptake of NPs.

  7. Leukemia: Derived heat shock protein gp96-peptide complex ...

    African Journals Online (AJOL)

    Jane

    2011-06-27

    Jun 27, 2011 ... complex derived from the tumor cells potentially represents an immunization therapy for the elimination of residual leukemia cells. Key words: Leukemia, heat shock protein gp96, dendritic cells, cytotoxic T lymphocytes. INTRODUCTION. Leukemia is a malignant clonal disease in hematopoietic stem cells ...

  8. Proteomics analysis of immuno-precipitated synaptic protein complexes

    NARCIS (Netherlands)

    Klemmer, P.; Smit, A.B.; Li, K.W.

    2009-01-01

    Synapses are key neuronal elements of the brain. They are responsible for transmission, integration, and storage of information between nerve cells. A synapse is considered as the most complex cellular organelle consisting of ~ 1500 of proteins that are interacting in an activity dependent manner.

  9. Analysis of Proteins, Protein Complexes, and Organellar Proteomes Using Sheathless Capillary Zone Electrophoresis - Native Mass Spectrometry

    Science.gov (United States)

    Belov, Arseniy M.; Viner, Rosa; Santos, Marcia R.; Horn, David M.; Bern, Marshall; Karger, Barry L.; Ivanov, Alexander R.

    2017-09-01

    Native mass spectrometry (MS) is a rapidly advancing field in the analysis of proteins, protein complexes, and macromolecular species of various types. The majority of native MS experiments reported to-date has been conducted using direct infusion of purified analytes into a mass spectrometer. In this study, capillary zone electrophoresis (CZE) was coupled online to Orbitrap mass spectrometers using a commercial sheathless interface to enable high-performance separation, identification, and structural characterization of limited amounts of purified proteins and protein complexes, the latter with preserved non-covalent associations under native conditions. The performance of both bare-fused silica and polyacrylamide-coated capillaries was assessed using mixtures of protein standards known to form non-covalent protein-protein and protein-ligand complexes. High-efficiency separation of native complexes is demonstrated using both capillary types, while the polyacrylamide neutral-coated capillary showed better reproducibility and higher efficiency for more complex samples. The platform was then evaluated for the determination of monoclonal antibody aggregation and for analysis of proteomes of limited complexity using a ribosomal isolate from E. coli. Native CZE-MS, using accurate single stage and tandem-MS measurements, enabled identification of proteoforms and non-covalent complexes at femtomole levels. This study demonstrates that native CZE-MS can serve as an orthogonal and complementary technique to conventional native MS methodologies with the advantages of low sample consumption, minimal sample processing and losses, and high throughput and sensitivity. This study presents a novel platform for analysis of ribosomes and other macromolecular complexes and organelles, with the potential for discovery of novel structural features defining cellular phenotypes (e.g., specialized ribosomes). [Figure not available: see fulltext.

  10. Characterization of a crosslinked nucleic acid - helix destabilizing protein complex

    Energy Technology Data Exchange (ETDEWEB)

    Karpel, R.L.; Levin, V.Y.; Haley, B.E.

    1986-05-01

    They have enzymatically synthesized /sup 3/H- and /sup 32/P-poly(A,8N/sub 3/A) from 8-N/sub 3/ADP and radiolabeled ADP, and have used this polynucleotide to photoaffinity label T4 gene 32 protein, as well as several other helix-destabilizing proteins (HDPs). Irradiation of /sup 32/P-/sup 3/H-poly(A,N/sub 3/A) mixtures for short durations produces a covalent complex, seen as a high molecular weight, radioactive band on SDS-polyacrylamide gels. Preliminary experiments on other HDPs, from prokaryotic, eukaryotic and animal viral sources, show analogous results. Several successful control experiments indicate that this system is suitable for binding site localization on /sup 32/P. Single-stranded nucleic acids competitively inhibit photolabeling. The effect of NaCl on photolabeling parallels the salt-dependence of /sup 32/P-poly(A,N/sub 3/A) binding. Photolabeling reaches a plateau after approx.1 min, and the formation of the high molecular weight complex parallels the reduction of free /sup 32/P on SDS gels. Staph. nuclease digestion of crosslinked complexes produces a diffuse, radioactive band on SDS gels, migrating just behind free /sup 32/P. When these digested complexes are subjected to reverse-phase HPLC on a C3 Ultrapore column, the nucleic acid /sup 32/P-label is seen to coelute with protein. They are currently employing RP-HPLC methods to locate the label on tryptic peptides of nuclease-digested complexes.

  11. Complex protein nanopatterns over large areas via colloidal lithography

    DEFF Research Database (Denmark)

    Kristensen, Stine H; Pedersen, Gitte Albinus; Ogaki, Ryosuke

    2013-01-01

    The patterning of biomolecules at the nanoscale provides a powerful method to investigate cellular adhesion processes. A novel method for patterning is presented that is based on colloidal monolayer templating combined with multiple and angled deposition steps. Patterns of gold and SiO2 layers...... matrix proteins (vitronectin) or cellular ligands (the extracellular domain of E-cadherin) in the nanopatterns, whereas the selective poly(l-lysine)–poly(ethylene glycol) functionalization of the SiO2 matrix renders it protein repellent. Cell studies, as a proof of principle, demonstrate the potential...... are used to generate complex protein nanopatterns over large areas. Simple circular patches or more complex ring structures are produced in addition to hierarchical patterns of smaller patches. The gold regions are modified through alkanethiol chemistry, which enables the preparation of extracellular...

  12. DOCK/PIERR: web server for structure prediction of protein-protein complexes.

    Science.gov (United States)

    Viswanath, Shruthi; Ravikant, D V S; Elber, Ron

    2014-01-01

    In protein docking we aim to find the structure of the complex formed when two proteins interact. Protein-protein interactions are crucial for cell function. Here we discuss the usage of DOCK/PIERR. In DOCK/PIERR, a uniformly discrete sampling of orientations of one protein with respect to the other, are scored, followed by clustering, refinement, and reranking of structures. The novelty of this method lies in the scoring functions used. These are obtained by examining hundreds of millions of correctly and incorrectly docked structures, using an algorithm based on mathematical programming, with provable convergence properties.

  13. Which clustering algorithm is better for predicting protein complexes?

    Directory of Open Access Journals (Sweden)

    Moschopoulos Charalampos N

    2011-12-01

    Full Text Available Abstract Background Protein-Protein interactions (PPI play a key role in determining the outcome of most cellular processes. The correct identification and characterization of protein interactions and the networks, which they comprise, is critical for understanding the molecular mechanisms within the cell. Large-scale techniques such as pull down assays and tandem affinity purification are used in order to detect protein interactions in an organism. Today, relatively new high-throughput methods like yeast two hybrid, mass spectrometry, microarrays, and phage display are also used to reveal protein interaction networks. Results In this paper we evaluated four different clustering algorithms using six different interaction datasets. We parameterized the MCL, Spectral, RNSC and Affinity Propagation algorithms and applied them to six PPI datasets produced experimentally by Yeast 2 Hybrid (Y2H and Tandem Affinity Purification (TAP methods. The predicted clusters, so called protein complexes, were then compared and benchmarked with already known complexes stored in published databases. Conclusions While results may differ upon parameterization, the MCL and RNSC algorithms seem to be more promising and more accurate at predicting PPI complexes. Moreover, they predict more complexes than other reviewed algorithms in absolute numbers. On the other hand the spectral clustering algorithm achieves the highest valid prediction rate in our experiments. However, it is nearly always outperformed by both RNSC and MCL in terms of the geometrical accuracy while it generates the fewest valid clusters than any other reviewed algorithm. This article demonstrates various metrics to evaluate the accuracy of such predictions as they are presented in the text below. Supplementary material can be found at: http://www.bioacademy.gr/bioinformatics/projects/ppireview.htm

  14. Comparative Study of Elastic Network Model and Protein Contact Network for Protein Complexes: The Hemoglobin Case

    Directory of Open Access Journals (Sweden)

    Guang Hu

    2017-01-01

    Full Text Available The overall topology and interfacial interactions play key roles in understanding structural and functional principles of protein complexes. Elastic Network Model (ENM and Protein Contact Network (PCN are two widely used methods for high throughput investigation of structures and interactions within protein complexes. In this work, the comparative analysis of ENM and PCN relative to hemoglobin (Hb was taken as case study. We examine four types of structural and dynamical paradigms, namely, conformational change between different states of Hbs, modular analysis, allosteric mechanisms studies, and interface characterization of an Hb. The comparative study shows that ENM has an advantage in studying dynamical properties and protein-protein interfaces, while PCN is better for describing protein structures quantitatively both from local and from global levels. We suggest that the integration of ENM and PCN would give a potential but powerful tool in structural systems biology.

  15. Analysis of the interface variability in NMR structure ensembles of protein-protein complexes

    NARCIS (Netherlands)

    Calvanese, Luisa; D'Auria, Gabriella; Vangone, Anna; Falcigno, Lucia; Oliva, Romina

    NMR structures consist in ensembles of conformers, all satisfying the experimental restraints, which exhibit a certain degree of structural variability. We analyzed here the interface in NMR ensembles of protein-protein heterodimeric complexes and found it to span a wide range of different

  16. Evolution of DNA replication protein complexes in eukaryotes and Archaea.

    Directory of Open Access Journals (Sweden)

    Nicholas Chia

    Full Text Available BACKGROUND: The replication of DNA in Archaea and eukaryotes requires several ancillary complexes, including proliferating cell nuclear antigen (PCNA, replication factor C (RFC, and the minichromosome maintenance (MCM complex. Bacterial DNA replication utilizes comparable proteins, but these are distantly related phylogenetically to their archaeal and eukaryotic counterparts at best. METHODOLOGY/PRINCIPAL FINDINGS: While the structures of each of the complexes do not differ significantly between the archaeal and eukaryotic versions thereof, the evolutionary dynamic in the two cases does. The number of subunits in each complex is constant across all taxa. However, they vary subtly with regard to composition. In some taxa the subunits are all identical in sequence, while in others some are homologous rather than identical. In the case of eukaryotes, there is no phylogenetic variation in the makeup of each complex-all appear to derive from a common eukaryotic ancestor. This is not the case in Archaea, where the relationship between the subunits within each complex varies taxon-to-taxon. We have performed a detailed phylogenetic analysis of these relationships in order to better understand the gene duplications and divergences that gave rise to the homologous subunits in Archaea. CONCLUSION/SIGNIFICANCE: This domain level difference in evolution suggests that different forces have driven the evolution of DNA replication proteins in each of these two domains. In addition, the phylogenies of all three gene families support the distinctiveness of the proposed archaeal phylum Thaumarchaeota.

  17. Encapsulation of Protein-Polysaccharide HIP Complex in Polymeric Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ripal Gaudana

    2011-01-01

    Full Text Available The objective of the present study is to formulate and characterize a nanoparticulate-based formulation of a macromolecule in a hydrophobic ion pairing (HIP complex form. So far, HIP complexation approach has been studied only for proteins with molecular weight of 10–20 kDa. Hence, we have selected bovine serum albumin (BSA having higher molecular weight (66.3 kDa as a model protein and dextran sulphate (DS as a complexing polymer to generate HIP complex. We have prepared and optimized the HIP complex formation process of BSA with DS. Ionic interactions between basic amino acids of BSA with sulphate groups of DS were confirmed by FTIR analysis. Further, nanoparticles were prepared and characterized with respect to size and surface morphology. We observed significant entrapment of BSA in nanoparticles prepared with minimal amounts of PLGA polymer. Finally, results of circular dichroism and intrinsic fluorescence assay have clearly indicated that HIP complexation and method of nanoparticle preparation did not alter the secondary and tertiary structures of BSA.

  18. Assessing the additive risks of PSII herbicide exposure to the Great Barrier Reef.

    Science.gov (United States)

    Lewis, Stephen E; Schaffelke, Britta; Shaw, Melanie; Bainbridge, Zoë T; Rohde, Ken W; Kennedy, Karen; Davis, Aaron M; Masters, Bronwyn L; Devlin, Michelle J; Mueller, Jochen F; Brodie, Jon E

    2012-01-01

    Herbicide residues have been measured in the Great Barrier Reef lagoon at concentrations which have the potential to harm marine plant communities. Monitoring on the Great Barrier Reef lagoon following wet season discharge show that 80% of the time when herbicides are detected, more than one are present. These herbicides have been shown to act in an additive manner with regards to photosystem-II inhibition. In this study, the area of the Great Barrier Reef considered to be at risk from herbicides is compared when exposures are considered for each herbicide individually and also for herbicide mixtures. Two normalisation indices for herbicide mixtures were calculated based on current guidelines and PSII inhibition thresholds. The results show that the area of risk for most regions is greatly increased under the proposed additive PSII inhibition threshold and that the resilience of this important ecosystem could be reduced by exposure to these herbicides. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Effects of ionizing radiations on DNA-protein complexes; Effets des radiations ionisantes sur des complexes ADN-proteine

    Energy Technology Data Exchange (ETDEWEB)

    Gillard, N

    2005-11-15

    The radio-induced destruction of DNA-protein complexes may have serious consequences for systems implicated in important cellular functions. The first system which has been studied is the lactose operon system, that regulates gene expression in Escherichia coli. First of all, the repressor-operator complex is destroyed after irradiation of the complex or of the protein alone. The damaging of the domain of repressor binding to DNA (headpiece) has been demonstrated and studied from the point of view of peptide chain integrity, conformation and amino acids damages. Secondly, dysfunctions of the in vitro induction of an irradiated repressor-unirradiated DNA complex have been observed. These perturbations, due to a decrease of the number of inducer binding sites, are correlated to the damaging of tryptophan residues. Moreover, the inducer protects the repressor when they are irradiated together, both by acting as a scavenger in the bulk, and by the masking of its binding site on the protein. The second studied system is formed by Fpg (for Formamido pyrimidine glycosylase), a DNA repair protein and a DNA with an oxidative lesion. The results show that irradiation disturbs the repair both by decreasing its efficiency of DNA lesion recognition and binding, and by altering its enzymatic activity. (author)

  20. Measurements of complex refractive indices of photoactive yellow protein

    CERN Document Server

    Lee, KyeoReh; Jung, JaeHwang; Ihee, Hyotcherl; Park, YongKeun

    2015-01-01

    A novel optical technique for measuring the complex refractive index (CRI) of photoactive proteins over the wide range of visible wavelengths is presented. Employing quantitative phase microscopy equipped with a wavelength swept source, optical fields transmitted from a solution of photoactive proteins were precisely measured, from which the CRIs of the photoactive proteins were retrieved with the Fourier light scattering technique. Using the present method, both the real and imaginary RIs of a photoactive yellow protein (PYP) solution were precisely measured over a broad wavelength range (461 - 582 nm). The internal population of the ground and excited states were switched by blue light excitation (445 nm center wavelength), and the broadband refractive index increments of each state were measured. The significant CRI deviation between in the presence and absence of the blue excitation was quantified and explained based on the Kramers-Kronig relations.

  1. Protein-DNA complexation: contact profiles in DNA grooves

    Directory of Open Access Journals (Sweden)

    M. Yu. Zhitnikova

    2017-12-01

    Full Text Available Background: Investigation of the specific protein-DNA complexation mechanisms allows to establish general principles of molecular recognition, which must be taken into account while developing artificial nanostructures based on DNA, and to improve the prediction efficiency of the protein binding sites on DNA. One of the main characteristics of the protein-DNA complexes are the number and type of contacts in the binding sites of DNA and proteins. Conformational changes in the DNA double helix can cause changes in these characteristics. Objectives: The purpose of our study is to establish the features of the interactions between nucleotides and amino acid residues in the binding sites of protein-DNA complexes and their dependence on the conformation of deoxyribose and the angle γ of the polynucleotide chain. Materials and methods: At research of protein-DNA recognition process we have analyzed the contacts between amino acids and nucleotides of the 128 protein-DNA complexes from the structural databases. Conformational parameters of DNA backbone were calculated using the 3DNA/CompDNA program. The number of contacts was determined using a geometric criterion. Two protein and DNA atoms were considered to be in contact if the distance between their centers is less than 4.5 Å. Amino acid residues were arranged according to hydrophobicity scale as hydrophobic or nonpolar and polar. Results: The analysis of contacts between polar and hydrophobic residues and nucleotides with different conformations of the sugar-phosphate backbone showed that nucleotides form more contacts with polar amino acids in both grooves than with hydrophobic ones regardless of nucleotide conformation. But the profile of such contacts differs in minor and major grooves and depends on the conformation of both deoxyribose and γ angle. The contact profiles are characterized by the sequence-specificity or the different propensity of nucleotides to form contacts with the residues in

  2. Molecular Signatures of Membrane Protein Complexes Underlying Muscular Dystrophy*

    Science.gov (United States)

    Turk, Rolf; Hsiao, Jordy J.; Smits, Melinda M.; Ng, Brandon H.; Pospisil, Tyler C.; Jones, Kayla S.; Campbell, Kevin P.; Wright, Michael E.

    2016-01-01

    Mutations in genes encoding components of the sarcolemmal dystrophin-glycoprotein complex (DGC) are responsible for a large number of muscular dystrophies. As such, molecular dissection of the DGC is expected to both reveal pathological mechanisms, and provides a biological framework for validating new DGC components. Establishment of the molecular composition of plasma-membrane protein complexes has been hampered by a lack of suitable biochemical approaches. Here we present an analytical workflow based upon the principles of protein correlation profiling that has enabled us to model the molecular composition of the DGC in mouse skeletal muscle. We also report our analysis of protein complexes in mice harboring mutations in DGC components. Bioinformatic analyses suggested that cell-adhesion pathways were under the transcriptional control of NFκB in DGC mutant mice, which is a finding that is supported by previous studies that showed NFκB-regulated pathways underlie the pathophysiology of DGC-related muscular dystrophies. Moreover, the bioinformatic analyses suggested that inflammatory and compensatory mechanisms were activated in skeletal muscle of DGC mutant mice. Additionally, this proteomic study provides a molecular framework to refine our understanding of the DGC, identification of protein biomarkers of neuromuscular disease, and pharmacological interrogation of the DGC in adult skeletal muscle https://www.mda.org/disease/congenital-muscular-dystrophy/research. PMID:27099343

  3. From nonspecific DNA-protein encounter complexes to the prediction of DNA-protein interactions.

    Directory of Open Access Journals (Sweden)

    Mu Gao

    2009-03-01

    Full Text Available DNA-protein interactions are involved in many essential biological activities. Because there is no simple mapping code between DNA base pairs and protein amino acids, the prediction of DNA-protein interactions is a challenging problem. Here, we present a novel computational approach for predicting DNA-binding protein residues and DNA-protein interaction modes without knowing its specific DNA target sequence. Given the structure of a DNA-binding protein, the method first generates an ensemble of complex structures obtained by rigid-body docking with a nonspecific canonical B-DNA. Representative models are subsequently selected through clustering and ranking by their DNA-protein interfacial energy. Analysis of these encounter complex models suggests that the recognition sites for specific DNA binding are usually favorable interaction sites for the nonspecific DNA probe and that nonspecific DNA-protein interaction modes exhibit some similarity to specific DNA-protein binding modes. Although the method requires as input the knowledge that the protein binds DNA, in benchmark tests, it achieves better performance in identifying DNA-binding sites than three previously established methods, which are based on sophisticated machine-learning techniques. We further apply our method to protein structures predicted through modeling and demonstrate that our method performs satisfactorily on protein models whose root-mean-square Calpha deviation from native is up to 5 A from their native structures. This study provides valuable structural insights into how a specific DNA-binding protein interacts with a nonspecific DNA sequence. The similarity between the specific DNA-protein interaction mode and nonspecific interaction modes may reflect an important sampling step in search of its specific DNA targets by a DNA-binding protein.

  4. Efficient prediction of co-complexed proteins based on coevolution.

    Directory of Open Access Journals (Sweden)

    Damien M de Vienne

    Full Text Available The prediction of the network of protein-protein interactions (PPI of an organism is crucial for the understanding of biological processes and for the development of new drugs. Machine learning methods have been successfully applied to the prediction of PPI in yeast by the integration of multiple direct and indirect biological data sources. However, experimental data are not available for most organisms. We propose here an ensemble machine learning approach for the prediction of PPI that depends solely on features independent from experimental data. We developed new estimators of the coevolution between proteins and combined them in an ensemble learning procedure.We applied this method to a dataset of known co-complexed proteins in Escherichia coli and compared it to previously published methods. We show that our method allows prediction of PPI with an unprecedented precision of 95.5% for the first 200 sorted pairs of proteins compared to 28.5% on the same dataset with the previous best method.A close inspection of the best predicted pairs allowed us to detect new or recently discovered interactions between chemotactic components, the flagellar apparatus and RNA polymerase complexes in E. coli.

  5. Homology modelling of protein-protein complexes: a simple method and its possibilities and limitations

    Directory of Open Access Journals (Sweden)

    Simonson Thomas

    2008-10-01

    Full Text Available Abstract Background Structure-based computational methods are needed to help identify and characterize protein-protein complexes and their function. For individual proteins, the most successful technique is homology modelling. We investigate a simple extension of this technique to protein-protein complexes. We consider a large set of complexes of known structures, involving pairs of single-domain proteins. The complexes are compared with each other to establish their sequence and structural similarities and the relation between the two. Compared to earlier studies, a simpler dataset, a simpler structural alignment procedure, and an additional energy criterion are used. Next, we compare the Xray structures to models obtained by threading the native sequence onto other, homologous complexes. An elementary requirement for a successful energy function is to rank the native structure above any threaded structure. We use the DFIREβ energy function, whose quality and complexity are typical of the models used today. Finally, we compare near-native models to distinctly non-native models. Results If weakly stable complexes are excluded (defined by a binding energy cutoff, as well as a few unusual complexes, a simple homology principle holds: complexes that share more than 35% sequence identity share similar structures and interaction modes; this principle was less clearcut in earlier studies. The energy function was then tested for its ability to identify experimental structures among sets of decoys, produced by a simple threading procedure. On average, the experimental structure is ranked above 92% of the alternate structures. Thus, discrimination of the native structure is good but not perfect. The discrimination of near-native structures is fair. Typically, a single, alternate, non-native binding mode exists that has a native-like energy. Some of the associated failures may correspond to genuine, alternate binding modes and/or native complexes that

  6. Membrane protein architects: the role of the BAM complex in outer membrane protein assembly.

    Science.gov (United States)

    Knowles, Timothy J; Scott-Tucker, Anthony; Overduin, Michael; Henderson, Ian R

    2009-03-01

    The folding of transmembrane proteins into the outer membrane presents formidable challenges to Gram-negative bacteria. These proteins must migrate from the cytoplasm, through the inner membrane and into the periplasm, before being recognized by the beta-barrel assembly machinery, which mediates efficient insertion of folded beta-barrels into the outer membrane. Recent discoveries of component structures and accessory interactions of this complex are yielding insights into how cells fold membrane proteins. Here, we discuss how these structures illuminate the mechanisms responsible for the biogenesis of outer membrane proteins.

  7. Fasciclin-calcareous corpuscle binary complex mediated protein-protein interactions in Taenia solium metacestode.

    Science.gov (United States)

    Ahn, Chun-Seob; Kim, Jeong-Geun; Bae, Young-An; Kim, Seon-Hee; Shin, Joo-Ho; Yang, Yichao; Kang, Insug; Kong, Yoon

    2017-09-20

    Neurocysticercosis (NC) caused by Taenia solium metacestode (TsM) is a serious neurological disease of global concern. Diverse bioactive molecules involved in the long-term survival of TsM might contribute to disease progression. Fasciclin (Fas) is an extracellular protein that mediates adhesion, migration and differentiation of cells by interacting with other molecules. We hypothesized that TsMFas might bind to calcareous corpuscle (CC) through its adhesive property and participate in crucial protein-protein interactions, thus contributing to the creation of a symbiotic interactome network. Two paralogous TsMFas (TsMFas1 and TsMFas2) were isolated, and their molecular properties were characterized. The co-localization pattern of TsMFas1 and TsMFas2 with CC was determined. CC-TsMFas binary complex was generated by incubating CC with recombinant proteins (rTsMFas1 and 2). In vitro binding assay of CC-rTsMFas1 or CC-rTsMFas2 binary complex with TsM cellular proteins extracted from scolex and neck was conducted. Their binding partners were identified through proteomic analysis. Integrated protein-protein interaction networks were established. TsMFas1 (6072 bp long) was composed of 15 exons (841 amino acid polypeptide) interrupted by 14 introns. TsMFas2 (5201 bp long) comprised of 11 exons (597 amino acids) and 10 intervening introns. These proteins displayed 22% amino acid sequence identity to each other, but tightly conserved Fas-related domains. Several isoforms of Fas1 and Fas2 proteins might have been expressed through post-translational modifications. They showed adhesion activity with other cells. TsMFas proteins were largely distributed in parenchymal regions of the scolex and bladder wall. These molecules were co-localized with CC, a unique organelle found in platyhelminths. Subsequent proteome analysis of CC-Fas binary complex mediated protein-protein interactions revealed seven protein ligands in the TsM cellular proteins. Their functions were mainly

  8. Immersion freezing of ice nucleation active protein complexes

    Directory of Open Access Journals (Sweden)

    S. Hartmann

    2013-06-01

    Full Text Available Utilising the Leipzig Aerosol Cloud Interaction Simulator (LACIS, the immersion freezing behaviour of droplet ensembles containing monodisperse particles, generated from a Snomax™ solution/suspension, was investigated. Thereto ice fractions were measured in the temperature range between −5 °C to −38 °C. Snomax™ is an industrial product applied for artificial snow production and contains Pseudomonas syringae} bacteria which have long been used as model organism for atmospheric relevant ice nucleation active (INA bacteria. The ice nucleation activity of such bacteria is controlled by INA protein complexes in their outer membrane. In our experiments, ice fractions increased steeply in the temperature range from about −6 °C to about −10 °C and then levelled off at ice fractions smaller than one. The plateau implies that not all examined droplets contained an INA protein complex. Assuming the INA protein complexes to be Poisson distributed over the investigated droplet populations, we developed the CHESS model (stoCHastic modEl of similar and poiSSon distributed ice nuclei which allows for the calculation of ice fractions as function of temperature and time for a given nucleation rate. Matching calculated and measured ice fractions, we determined and parameterised the nucleation rate of INA protein complexes exhibiting class III ice nucleation behaviour. Utilising the CHESS model, together with the determined nucleation rate, we compared predictions from the model to experimental data from the literature and found good agreement. We found that (a the heterogeneous ice nucleation rate expression quantifying the ice nucleation behaviour of the INA protein complex is capable of describing the ice nucleation behaviour observed in various experiments for both, Snomax™ and P. syringae bacteria, (b the ice nucleation rate, and its temperature dependence, seem to be very similar regardless of whether the INA protein complexes inducing ice

  9. Integral and peripheral association of proteins and protein complexes with Yersinia pestis inner and outer membranes

    Directory of Open Access Journals (Sweden)

    Bunai Christine L

    2009-02-01

    Full Text Available Abstract Yersinia pestis proteins were sequentially extracted from crude membranes with a high salt buffer (2.5 M NaBr, an alkaline solution (180 mM Na2CO3, pH 11.3 and membrane denaturants (8 M urea, 2 M thiourea and 1% amidosulfobetaine-14. Separation of proteins by 2D gel electrophoresis was followed by identification of more than 600 gene products by MS. Data from differential 2D gel display experiments, comparing protein abundances in cytoplasmic, periplasmic and all three membrane fractions, were used to assign proteins found in the membrane fractions to three protein categories: (i integral membrane proteins and peripheral membrane proteins with low solubility in aqueous solutions (220 entries; (ii peripheral membrane proteins with moderate to high solubility in aqueous solutions (127 entries; (iii cytoplasmic or ribosomal membrane-contaminating proteins (80 entries. Thirty-one proteins were experimentally associated with the outer membrane (OM. Circa 50 proteins thought to be part of membrane-localized, multi-subunit complexes were identified in high Mr fractions of membrane extracts via size exclusion chromatography. This data supported biologically meaningful assignments of many proteins to the membrane periphery. Since only 32 inner membrane (IM proteins with two or more predicted transmembrane domains (TMDs were profiled in 2D gels, we resorted to a proteomic analysis by 2D-LC-MS/MS. Ninety-four additional IM proteins with two or more TMDs were identified. The total number of proteins associated with Y. pestis membranes increased to 456 and included representatives of all six β-barrel OM protein families and 25 distinct IM transporter families.

  10. Stoichiometric relationship between the (Mn){sub 4}-cluster and PSII Ca{sup 2+} necessary for O{sub 2}-evolution. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    This report focuses on the following research accomplishments: Stoichiometric relationship between the (Mn){sub 4}-cluster and PSII Ca{sup 2+} necessary for O{sub 2}-evolution; Photodamage of Mn-depleted PSII membranes: Sites and mechanisms of photoinactivation of primary reactions; The photoassembly of the PSII (Mn){sub 4}cluster is modulated by Ca{sup 2+} and DCIP; The natural product sorgoleone inhibits electron transfer at the Q{sub A}/Q{sub B} site of PSII; and Photodamages of Ca{sup 2+}-depleted PSII membranes: Sites and mechanisms of inactivation of donor side reactions.

  11. Protein-protein complex structure predictions by multimeric threading and template recombination

    Science.gov (United States)

    Mukherjee, Srayanta; Zhang, Yang

    2011-01-01

    Summary The number of protein-protein complex structures is nearly 6-times smaller than that of tertiary structures in PDB which limits the power of homology-based approaches to complex structure modeling. We present a new threading-recombination approach, COTH, to boost the protein complex structure library by combining tertiary structure templates with complex alignments. The query sequences are first aligned to complex templates using a modified dynamic programming algorithm, guided by ab initio binding-site predictions. The monomer alignments are then shifted to the multimeric template framework by structural alignments. COTH was tested on 500 non-homologous dimeric proteins, which can successfully detect correct templates for half of the cases after homologous templates are excluded, which significantly outperforms conventional homology modeling algorithms. It also shows a higher accuracy in interface modeling than rigid-body docking of unbound structures from ZDOCK although with lower coverage. These data demonstrate new avenues to model complex structures from non-homologous templates. PMID:21742262

  12. Antisense reductions in the PsbO protein of photosystem II leads to decreased quantum yield but similar maximal photosynthetic rates.

    Science.gov (United States)

    Dwyer, Simon A; Chow, Wah Soon; Yamori, Wataru; Evans, John R; Kaines, Sarah; Badger, Murray R; von Caemmerer, Susanne

    2012-08-01

    Photosystem (PS) II is the multisubunit complex which uses light energy to split water, providing the reducing equivalents needed for photosynthesis. The complex is susceptible to damage from environmental stresses such as excess excitation energy and high temperature. This research investigated the in vivo photosynthetic consequences of impairments to PSII in Arabidopsis thaliana (ecotype Columbia) expressing an antisense construct to the PsbO proteins of PSII. Transgenic lines were obtained with between 25 and 60% of wild-type (WT) total PsbO protein content, with the PsbO1 isoform being more strongly reduced than PsbO2. These changes coincided with a decrease in functional PSII content. Low PsbO (less than 50% WT) plants grew more slowly and had lower chlorophyll content per leaf area. There was no change in content per unit area of cytochrome b6f, ATP synthase, or Rubisco, whereas PSI decreased in proportion to the reduction in chlorophyll content. The irradiance response of photosynthetic oxygen evolution showed that low PsbO plants had a reduced quantum yield, but matched the oxygen evolution rates of WT plants at saturating irradiance. It is suggested that these plants had a smaller pool of PSII centres, which are inefficiently connected to antenna pigments resulting in reduced photochemical efficiency.

  13. CISAPS: Complex Informational Spectrum for the Analysis of Protein Sequences

    Directory of Open Access Journals (Sweden)

    Charalambos Chrysostomou

    2015-01-01

    Full Text Available Complex informational spectrum analysis for protein sequences (CISAPS and its web-based server are developed and presented. As recent studies show, only the use of the absolute spectrum in the analysis of protein sequences using the informational spectrum analysis is proven to be insufficient. Therefore, CISAPS is developed to consider and provide results in three forms including absolute, real, and imaginary spectrum. Biologically related features to the analysis of influenza A subtypes as presented as a case study in this study can also appear individually either in the real or imaginary spectrum. As the results presented, protein classes can present similarities or differences according to the features extracted from CISAPS web server. These associations are probable to be related with the protein feature that the specific amino acid index represents. In addition, various technical issues such as zero-padding and windowing that may affect the analysis are also addressed. CISAPS uses an expanded list of 611 unique amino acid indices where each one represents a different property to perform the analysis. This web-based server enables researchers with little knowledge of signal processing methods to apply and include complex informational spectrum analysis to their work.

  14. Fuzzy complexes: a more stochastic view of protein function.

    Science.gov (United States)

    Fuxreiter, Monika; Tompa, Peter

    2012-01-01

    Intrinsically disordered proteins (IDPs) are widespread in eukaryotic proteomes and challenge the classical structure-function paradigm that equates a folded 3-D structure with protein function. However, IDPs often function by molecular recognition, in which they bind a partner molecule and undergo "induced folding" or "disorder-to-order transition" upon binding, which apparently suggests that in a functional context IDPs become ordered. Whereas this observation would restore the "prestige" of the classical structure-function paradigm, a closer inspection of the complexes of IDPs reveals that they do not always become fully ordered, but preserve functionally significant disorder in the complex with their binding partner(s). This phenomenon, which we termed "fuzziness", is the ultimate extension of structural disorder to the functional native state of proteins. In this introductory chapter, we outline the most important aspects of fuzziness, such as its structural categories, molecular mechanisms of function it mediates and the biological processes, in which it plays a distinguished role. As confirmed by all the other chapters of the book, we will show that new cases of fuzziness pop up at an accelerating pace, underscoring that this phenomenon presents a widespread novel paradigm of protein structure and function.

  15. Complex Coacervation of Soy Proteins, Isoflavones and Chitosan

    Directory of Open Access Journals (Sweden)

    Yu-Hsuan Hsiao

    2017-06-01

    Full Text Available In this study, the chitosan-induced coacervation of soy protein-isoflavone complexes in soymilk was investigated. Most of the soymilk proteins, including β-conglycinin (7S, glycinin (11S, and isoflavones, were found to coacervate into the soymilk pellet fraction (SPF following the addition of 0.5% chitosan. The total protein in the soymilk supernatant fraction (SSF decreased from 18.1 ± 0.3 mg/mL to 1.6 ± 0.1 mg/mL, and the pH values decreased slightly, from 6.6 ± 0.0 to 6.0 ± 0.0. The results of SDS-PAGE revealed that the 7S α’, 7S α, 7S β, 11S A3, and 11S acidic subunits, as well as the 11S basic proteins in the SSF, decreased to 0.7 ± 0.5%, 0.2 ± 0.1%, 0.1 ± 0.0%, 0.2 ± 0.2%, 0.2 ± 0.2% and 0.3 ± 0.2%, respectively. We also found that isoflavones in the SSF, including daidzein, glycitein, and genistein, decreased to 9.6 ± 2.3%, 5.7 ± 0.9% and 5.9 ± 1.5%, respectively. HPLC analysis indicated that isoflavones mixed with soy proteins formed soy protein-isoflavone complexes and were precipitated into the SPF by 0.5% chitosan.

  16. Mannan-binding protein forms complexes with alpha-2-macroglobulin. A protein model for the interaction

    DEFF Research Database (Denmark)

    Storgaard, P; Holm Nielsen, E; Skriver, E

    1995-01-01

    We report that alpha-2-macroglobulin (alpha 2M) can form complexes with a high molecular weight porcine mannan-binding protein (pMBP-28). The alpha 2M/pMBP-28 complexes was isolated by PEG-precipitation and affinity chromatography on mannan-Sepharose, protein A-Sepharose and anti-IgM Sepharose......-PAGE, which reacted with antibodies against alpha 2M and pMBP-28, respectively, in Western blotting. Furthermore, alpha 2M/pMBP-28 complexes were demonstrated by electron microscopy. Fractionation of pMBP-containing D-mannose eluate from mannan-Sepharose on Superose 6 showed two protein peaks which reacted...

  17. Modular broad-host-range expression vectors for single-protein and protein complex purification.

    Science.gov (United States)

    Fodor, Barna D; Kovács, Akos T; Csáki, Róbert; Hunyadi-Gulyás, Eva; Klement, Eva; Maróti, Gergely; Mészáros, Lívia S; Medzihradszky, Katalin F; Rákhely, Gábor; Kovács, Kornél L

    2004-02-01

    A set of modular broad-host-range expression vectors with various affinity tags (six-His-tag, FLAG-tag, Strep-tag II, T7-tag) was created. The complete nucleotide sequences of the vectors are known, and these small vectors can be mobilized by conjugation. They are useful in the purification of proteins and protein complexes from gram-negative bacterial species. The plasmids were easily customized for Thiocapsa roseopersicina, Rhodobacter capsulatus, and Methylococcus capsulatus by inserting an appropriate promoter. These examples demonstrate the versatility and flexibility of the vectors. The constructs harbor the T7 promoter for easy overproduction of the desired protein in an appropriate Escherichia coli host. The vectors were useful in purifying different proteins from T. roseopersicina. The FLAG-tag-Strep-tag II combination was utilized for isolation of the HynL-HypC2 protein complex involved in hydrogenase maturation. These tools should be useful for protein purification and for studying protein-protein interactions in a range of bacterial species.

  18. Improved functional overview of protein complexes using inferred epistatic relationships

    LENUS (Irish Health Repository)

    Ryan, Colm

    2011-05-23

    Abstract Background Epistatic Miniarray Profiling(E-MAP) quantifies the net effect on growth rate of disrupting pairs of genes, often producing phenotypes that may be more (negative epistasis) or less (positive epistasis) severe than the phenotype predicted based on single gene disruptions. Epistatic interactions are important for understanding cell biology because they define relationships between individual genes, and between sets of genes involved in biochemical pathways and protein complexes. Each E-MAP screen quantifies the interactions between a logically selected subset of genes (e.g. genes whose products share a common function). Interactions that occur between genes involved in different cellular processes are not as frequently measured, yet these interactions are important for providing an overview of cellular organization. Results We introduce a method for combining overlapping E-MAP screens and inferring new interactions between them. We use this method to infer with high confidence 2,240 new strongly epistatic interactions and 34,469 weakly epistatic or neutral interactions. We show that accuracy of the predicted interactions approaches that of replicate experiments and that, like measured interactions, they are enriched for features such as shared biochemical pathways and knockout phenotypes. We constructed an expanded epistasis map for yeast cell protein complexes and show that our new interactions increase the evidence for previously proposed inter-complex connections, and predict many new links. We validated a number of these in the laboratory, including new interactions linking the SWR-C chromatin modifying complex and the nuclear transport apparatus. Conclusion Overall, our data support a modular model of yeast cell protein network organization and show how prediction methods can considerably extend the information that can be extracted from overlapping E-MAP screens.

  19. Lanthanide labeling offers fast NMR approach to 3D structure determinations of protein-protein complexes.

    Science.gov (United States)

    Pintacuda, Guido; Park, Ah Young; Keniry, Max A; Dixon, Nicholas E; Otting, Gottfried

    2006-03-22

    A novel nuclear magnetic resonance (NMR) strategy based on labeling with lanthanides achieves rapid determinations of accurate three-dimensional (3D) structures of protein-protein complexes. The method employs pseudocontact shifts (PCS) induced by a site-specifically bound lanthanide ion to anchor the coordinate system of the magnetic susceptibility tensor in the molecular frames of the two molecules. Simple superposition of the tensors detected in the two protein molecules brings them together in a 3D model of the protein-protein complex. The method is demonstrated with the 30 kDa complex between two subunits of Escherichia coli polymerase III, comprising the N-terminal domain of the exonuclease subunit epsilon and the subunit theta. The 3D structures of the individual molecules were docked based on a limited number of PCS observed in 2D 15N-heteronuclear single quantum coherence spectra. Degeneracies in the mutual orientation of the protein structures were resolved by the use of two different lanthanide ions, Dy3+ and Er3+.

  20. Radiation damage to DNA in DNA-protein complexes

    Energy Technology Data Exchange (ETDEWEB)

    Spotheim-Maurizot, M. [Centre de Biophysiqe Moleculaire, CNRS, rue C. Sadron, 45071 Orleans (France); Davidkova, M., E-mail: davidkova@ujf.cas.cz [Dept. of Radiation Dosimetry, Nuclear Physics Institute AS CR, Na Truhlarce 39/64, 18086 Prague 8 (Czech Republic)

    2011-06-03

    Graphical abstract: RADACK model: studied biomolecules of known molecular structure are located in a water volume where OH{center_dot} radicals are randomly generated. The radicals diffuse and either react with the encountered target atom or escape from the box. The model allows to assess the yields and distributions of radiolytic attack. Research highlights: {yields} Radiation-induced lesions are inhomogeneously distributed along DNA. {yields} The distribution is modulated by DNA sequence and structure. {yields} DNA radiosensitivity is modified by positively charged molecules or by proteins. {yields} Our original model RADACK accounts for these observations. - Abstract: The most aggressive product of water radiolysis, the hydroxyl (OH{center_dot}) radical, is responsible for the indirect effect of ionizing radiations on DNA in solution and aerobic conditions. According to radiolytic footprinting experiments, the resulting strand breaks and base modifications are inhomogeneously distributed along the DNA molecule irradiated free or bound to ligands (polyamines, thiols, proteins). A Monte-Carlo based model of simulation of the reaction of OH{center_dot} radicals with the macromolecules, called RADACK, allows calculating the relative probability of damage of each nucleotide of DNA irradiated alone or in complexes with proteins. RADACK calculations require the knowledge of the three dimensional structure of DNA and its complexes (determined by X-ray crystallography, NMR spectroscopy or molecular modeling). The confrontation of the calculated values with the results of the radiolytic footprinting experiments together with molecular modeling calculations show that: (1) the extent and location of the lesions are strongly dependent on the structure of DNA, which in turns is modulated by the base sequence and by the binding of proteins and (2) the regions in contact with the protein can be protected against the attack by the hydroxyl radicals via masking of the binding

  1. COFECO: composite function annotation enriched by protein complex data.

    Science.gov (United States)

    Sun, Choong-Hyun; Kim, Min-Sung; Han, Youngwoong; Yi, Gwan-Su

    2009-07-01

    COFECO is a web-based tool for a composite annotation of protein complexes, KEGG pathways and Gene Ontology (GO) terms within a class of genes and their orthologs under study. Widely used functional enrichment tools using GO and KEGG pathways create large list of annotations that make it difficult to derive consolidated information and often include over-generalized terms. The interrelationship of annotation terms can be more clearly delineated by integrating the information of physically interacting proteins with biological pathways and GO terms. COFECO has the following advanced characteristics: (i) The composite annotation sets of correlated functions and cellular processes for a given gene set can be identified in a more comprehensive and specified way by the employment of protein complex data together with GO and KEGG pathways as annotation resources. (ii) Orthology based integrative annotations among different species complement the defective annotations in an individual genome and provide the information of evolutionary conserved correlations. (iii) A term filtering feature enables users to collect the specified annotations enriched with selected function terms. (iv) A cross-comparison of annotation results between two different datasets is possible. In addition, COFECO provides a web-based GO hierarchical viewer and KEGG pathway viewer where the enrichment results can be summarized and further explored. COFECO is freely accessible at http://piech.kaist.ac.kr/cofeco.

  2. Inferring drug-disease associations based on known protein complexes.

    Science.gov (United States)

    Yu, Liang; Huang, Jianbin; Ma, Zhixin; Zhang, Jing; Zou, Yapeng; Gao, Lin

    2015-01-01

    Inferring drug-disease associations is critical in unveiling disease mechanisms, as well as discovering novel functions of available drugs, or drug repositioning. Previous work is primarily based on drug-gene-disease relationship, which throws away many important information since genes execute their functions through interacting others. To overcome this issue, we propose a novel methodology that discover the drug-disease association based on protein complexes. Firstly, the integrated heterogeneous network consisting of drugs, protein complexes, and disease are constructed, where we assign weights to the drug-disease association by using probability. Then, from the tripartite network, we get the indirect weighted relationships between drugs and diseases. The larger the weight, the higher the reliability of the correlation. We apply our method to mental disorders and hypertension, and validate the result by using comparative toxicogenomics database. Our ranked results can be directly reinforced by existing biomedical literature, suggesting that our proposed method obtains higher specificity and sensitivity. The proposed method offers new insight into drug-disease discovery. Our method is publicly available at http://1.complexdrug.sinaapp.com/Drug_Complex_Disease/Data_Download.html.

  3. The Use of Contact Mode Atomic Force Microscopy in Aqueous Medium for Structural Analysis of Spinach Photosynthetic Complexes.

    Science.gov (United States)

    Phuthong, Witchukorn; Huang, Zubin; Wittkopp, Tyler M; Sznee, Kinga; Heinnickel, Mark L; Dekker, Jan P; Frese, Raoul N; Prinz, Fritz B; Grossman, Arthur R

    2015-10-01

    To investigate the dynamics of photosynthetic pigment-protein complexes in vascular plants at high resolution in an aqueous environment, membrane-protruding oxygen-evolving complexes (OECs) associated with photosystem II (PSII) on spinach (Spinacia oleracea) grana membranes were examined using contact mode atomic force microscopy. This study represents, to our knowledge, the first use of atomic force microscopy to distinguish the putative large extrinsic loop of Photosystem II CP47 reaction center protein (CP47) from the putative oxygen-evolving enhancer proteins 1, 2, and 3 (PsbO, PsbP, and PsbQ) and large extrinsic loop of Photosystem II CP43 reaction center protein (CP43) in the PSII-OEC extrinsic domains of grana membranes under conditions resulting in the disordered arrangement of PSII-OEC particles. Moreover, we observed uncharacterized membrane particles that, based on their physical characteristics and electrophoretic analysis of the polypeptides associated with the grana samples, are hypothesized to be a domain of photosystem I that protrudes from the stromal face of single thylakoid bilayers. Our results are interpreted in the context of the results of others that were obtained using cryo-electron microscopy (and single particle analysis), negative staining and freeze-fracture electron microscopy, as well as previous atomic force microscopy studies. © 2015 American Society of Plant Biologists. All Rights Reserved.

  4. The Use of Contact Mode Atomic Force Microscopy in Aqueous Medium for Structural Analysis of Spinach Photosynthetic Complexes1[OPEN

    Science.gov (United States)

    Phuthong, Witchukorn; Huang, Zubin; Wittkopp, Tyler M.; Sznee, Kinga; Heinnickel, Mark L.; Dekker, Jan P.; Frese, Raoul N.; Prinz, Fritz B.; Grossman, Arthur R.

    2015-01-01

    To investigate the dynamics of photosynthetic pigment-protein complexes in vascular plants at high resolution in an aqueous environment, membrane-protruding oxygen-evolving complexes (OECs) associated with photosystem II (PSII) on spinach (Spinacia oleracea) grana membranes were examined using contact mode atomic force microscopy. This study represents, to our knowledge, the first use of atomic force microscopy to distinguish the putative large extrinsic loop of Photosystem II CP47 reaction center protein (CP47) from the putative oxygen-evolving enhancer proteins 1, 2, and 3 (PsbO, PsbP, and PsbQ) and large extrinsic loop of Photosystem II CP43 reaction center protein (CP43) in the PSII-OEC extrinsic domains of grana membranes under conditions resulting in the disordered arrangement of PSII-OEC particles. Moreover, we observed uncharacterized membrane particles that, based on their physical characteristics and electrophoretic analysis of the polypeptides associated with the grana samples, are hypothesized to be a domain of photosystem I that protrudes from the stromal face of single thylakoid bilayers. Our results are interpreted in the context of the results of others that were obtained using cryo-electron microscopy (and single particle analysis), negative staining and freeze-fracture electron microscopy, as well as previous atomic force microscopy studies. PMID:26220954

  5. Proteomics-Based Analysis of Protein Complexes in Pluripotent Stem Cells and Cancer Biology.

    Science.gov (United States)

    Sudhir, Putty-Reddy; Chen, Chung-Hsuan

    2016-03-22

    A protein complex consists of two or more proteins that are linked together through protein-protein interactions. The proteins show stable/transient and direct/indirect interactions within the protein complex or between the protein complexes. Protein complexes are involved in regulation of most of the cellular processes and molecular functions. The delineation of protein complexes is important to expand our knowledge on proteins functional roles in physiological and pathological conditions. The genetic yeast-2-hybrid method has been extensively used to characterize protein-protein interactions. Alternatively, a biochemical-based affinity purification coupled with mass spectrometry (AP-MS) approach has been widely used to characterize the protein complexes. In the AP-MS method, a protein complex of a target protein of interest is purified using a specific antibody or an affinity tag (e.g., DYKDDDDK peptide (FLAG) and polyhistidine (His)) and is subsequently analyzed by means of MS. Tandem affinity purification, a two-step purification system, coupled with MS has been widely used mainly to reduce the contaminants. We review here a general principle for AP-MS-based characterization of protein complexes and we explore several protein complexes identified in pluripotent stem cell biology and cancer biology as examples.

  6. Isolation of Native Soluble and Membrane-Bound Protein Complexes from Yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Hansen, Tobias; Chan, Anna; Schröter, Thomas; Schwerter, Daniel; Girzalsky, Wolfgang; Erdmann, Ralf

    2017-01-01

    Immunoprecipitation is a traditional approach to isolate single proteins or native protein complexes from a complex sample mixture. The original method makes use of specific antibodies against endogenous proteins or epitope tags, which are first bound to the target protein and then isolated with protein A beads. An advancement of this method is the application of a protein A tag fused to the target protein and the affinity-purification of the tagged protein with human Immunoglobulin G chemically cross-linked to a sepharose matrix. This method will be described exemplified by the purification of protein complexes of the peroxisomal membrane from yeast Saccharomyces cerevisiae.

  7. Interaction proteomics analysis of polycomb proteins defines distinct PRC1 complexes in mammalian cells

    DEFF Research Database (Denmark)

    Vandamme, Julien; Völkel, Pamela; Rosnoblet, Claire

    2011-01-01

    Polycomb group (PcG) proteins maintain transcriptional repression of hundreds of genes involved in development, signaling or cancer using chromatin-based epigenetic mechanisms. Biochemical studies in Drosophila have revealed that PcG proteins associate in at least two classes of protein complexes...... family proteins are mutually exclusive and define distinct PRC1-like protein complexes. CBX proteins also interact with different efficiencies with the other PRC1 components. Among the novel CBX interacting partners, protein kinase 2 associates with all CBX-PRC1 protein complexes, whereas 14-3-3 proteins...

  8. Identification of proteins that form specific complexes with the highly conserved protein Translin in Schizosaccharomyces pombe.

    Science.gov (United States)

    Eliahoo, Elad; Litovco, Phyana; Ben Yosef, Ron; Bendalak, Keren; Ziv, Tamar; Manor, Haim

    2014-04-01

    Translin is a single-stranded DNA and RNA binding protein that has a high affinity for G-rich sequences. TRAX is a Translin paralog that associates with Translin. Both Translin and TRAX were highly conserved in eukaryotes. The nucleic acid binding form of Translin is a barrel-shaped homo-octamer. A Translin-TRAX hetero-octamer having a similar structure also binds nucleic acids. Previous reports suggested that Translin may be involved in chromosomal translocations, telomere metabolism and the control of mRNA transport and translation. More recent studies have indicated that Translin-TRAX hetero-octamers are involved in RNA silencing. To gain a further insight into the functions of Translin, we have undertaken to systematically search for proteins with which it forms specific complexes in living cells. Here we report the results of such a search conducted in the fission yeast Schizosaccharomyces pombe, a suitable model system. This search was carried out by affinity purification and immuno-precipitation techniques, combined with differential labeling of the intracellular proteins with the stable isotopes ¹⁵N and ¹⁴N. We identified for the first time two proteins containing an RNA Recognition Motif (RRM), which are specifically associated with the yeast Translin: (1) the pre-mRNA-splicing factor srp1 that belongs to the highly conserved SR family of proteins and (2) vip1, a protein conserved in fungi. Our data also support the presence of RNA in these intracellular complexes. Our experimental approach should be generally applicable to studies of weak intracellular protein-protein interactions and provides a clear distinction between false positive vs. truly interacting proteins. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  9. The coat protein complex II, COPII, protein Sec13 directly interacts with presenilin-1

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Anders Lade, E-mail: aln@humgen.au.dk [Department of Human Genetics, The Bartholin Building, University of Aarhus, DK-8000 Aarhus C (Denmark)

    2009-10-23

    Mutations in the human gene encoding presenilin-1, PS1, account for most cases of early-onset familial Alzheimer's disease. PS1 has nine transmembrane domains and a large loop orientated towards the cytoplasm. PS1 locates to cellular compartments as endoplasmic reticulum (ER), Golgi apparatus, vesicular structures, and plasma membrane, and is an integral member of {gamma}-secretase, a protein protease complex with specificity for intra-membranous cleavage of substrates such as {beta}-amyloid precursor protein. Here, an interaction between PS1 and the Sec13 protein is described. Sec13 takes part in coat protein complex II, COPII, vesicular trafficking, nuclear pore function, and ER directed protein sequestering and degradation control. The interaction maps to the N-terminal part of the large hydrophilic PS1 loop and the first of the six WD40-repeats present in Sec13. The identified Sec13 interaction to PS1 is a new candidate interaction for linking PS1 to secretory and protein degrading vesicular circuits.

  10. Functional properties of the oxygen evolving complex of photosystem 2

    NARCIS (Netherlands)

    Vliet, van P.H.

    1996-01-01


    This Thesis presents the results of a study by electron paramagnetic resonance (EPR) and measurements of oxygen evolution of the Oxygen Evolving Complex of Photosystem 11 (PS-II) in PS-II enriched membranes from spinach.

    The experimental part of this Thesis is preceded by a

  11. Determination of Protein Complex Stoichiometry Through Multisignal Sedimentation Velocity Experiments

    Science.gov (United States)

    Padrick, Shae B.; Deka, Ranjit K.; Chuang, Jacinta L.; Wynn, R. Max; Chuang, David T.; Norgard, Michael V.; Rosen, Michael K.; Brautigam, Chad A.

    2010-01-01

    Determination of the stoichiometry of macromolecular assemblies is fundamental to an understanding of how they function. Many different biophysical methodologies may be used to determine stoichiometry. In the past, both sedimentation equilibrium and sedimentation velocity analytical ultracentrifugation have been employed to determine component stoichiometries. Recently, a method of globally analyzing multisignal sedimentation velocity data was introduced by Schuck and colleagues. This global analysis removes some of the experimental inconveniences and inaccuracies that could occur in the previously used strategies. This method uses spectral differences between the macromolecular components to decompose the well-known c(s) distribution into component distributions ck(s); i.e. each component k has its own ck(s) distribution. Integration of these distributions allows for the calculation of the populations of each component in cosedimenting complexes, yielding their stoichiometry. In our laboratories, we have used this method extensively to determine the component stoichiometries of several protein-protein complexes involved in cytoskeletal remodeling, sugar metabolism, and host-pathogen interactions. The overall method is described in detail in this work, as well experimental examples and caveats. PMID:20667444

  12. Tegumental proteins of Schistosoma mansoni: complex biomolecules and potent antigens

    Directory of Open Access Journals (Sweden)

    Andrew J. G. Simpson

    1992-01-01

    Full Text Available The passive transfer of monoclonal antibodies, direct vaccination and in vitro assays have all shown that antigens associated with the tegumental membranes of Schistosoma mansoni are capable of mediating protective immune responses against the parasite in animal models. Furthermore, the principal antigens are highly antigenic during natural infection in man and stimulate strong humoral and cellular responses although, at present, their role in mediating protective immune responses in man remains equivocal. This presentation will review the current state of knowledge of the structure and expression of the major antigenic tegumental proteins of the schistosome and will attempt to relate the relevance of their structural features to possible function both in terms of protective immunity and parasite's ability to survive within the definitive host. A focus will be recent advances that have been made in the identification of means of anchoring of the antigenic proteins to the tegumental membrane. In addition, the implications of the structural complexity of the tegumental proteins in terms of their possible utility in vaccination and diagnosis will be considered.

  13. Distribution of adenosine deaminase complexing protein (ADCP) in human tissues.

    Science.gov (United States)

    Dinjens, W N; ten Kate, J; van der Linden, E P; Wijnen, J T; Khan, P M; Bosman, F T

    1989-12-01

    The normal distribution of adenosine deaminase complexing protein (ADCP) in the human body was investigated quantitatively by ADCP-specific radioimmunoassay (RIA) and qualitatively by immunohistochemistry. In these studies we used a specific rabbit anti-human ADCP antiserum. In all 19 investigated tissues, except erythrocytes, ADCP was found by RIA in the soluble and membrane fractions. From all tissues the membrane fractions contained more ADCP (expressed per mg protein) than the soluble fractions. High membrane ADCP concentrations were found in skin, renal cortex, gastrointestinal tract, and prostate. Immunoperoxidase staining confirmed the predominant membrane-associated localization of the protein. In serous sweat glands, convoluted tubules of renal cortex, bile canaliculi, gastrointestinal tract, lung, pancreas, prostate gland, salivary gland, gallbladder, mammary gland, and uterus, ADCP immunoreactivity was found confined to the luminal membranes of the epithelial cells. These data demonstrate that ADCP is present predominantly in exocrine glands and absorptive epithelia. The localization of ADCP at the secretory or absorptive apex of the cells suggests that the function of ADCP is related to the secretory and/or absorptive process.

  14. Structural Analysis of Protein Complexes by Cryo Electron Microscopy.

    Science.gov (United States)

    Costa, Tiago R D; Ignatiou, Athanasios; Orlova, Elena V

    2017-01-01

    Structural studies of biocomplexes using single-particle cryo-electron microscopy (cryo-EM) is now a well-established technique in structural biology and has become competitive with X-ray crystallography. The latest advances in EM enable us to determine structures of protein complexes at 3-5 Å resolution for an extremely broad range of sizes from ~200 kDa up to hundreds of megadaltons (Bartesaghi et al., Science 348(6239):1147-1151, 2051; Bai et al., Nature 525(7568):212-217, 2015; Vinothkumar et al., Nature 515(7525):80-84, 2014; Grigorieff and Harrison, Curr Opin Struct Biol 21(2):265-273, 2011). The majority of biocomplexes comprise a number of different components and are not amenable to crystallisation. Secretion systems are typical examples of such multi-protein complexes, and structural studies of them are extremely challenging. The only feasible approach to revealing their spatial organisation and functional modification is cryo-EM. The development of systems for digital registration of images and algorithms for the fast and efficient processing of recorded images and subsequent analysis facilitated the determination of structures at near-atomic resolution. In this review we will describe sample preparation for cryo-EM, how data are collected by new detectors, and the logistics of image analysis through the basic steps required for reconstructions of both small and large biological complexes and their refinement to nearly atomic resolution. The processing workflow is illustrated using examples of EM analysis of a Type IV Secretion System.

  15. The Protein Kingdom Extended: Ordered and Intrinsically Disordered Proteins, Their Folding, Supramolecular Complex Formation, and Aggregation

    Science.gov (United States)

    Turoverov, Konstantin K.; Kuznetsova, Irina M.; Uversky, Vladimir N.

    2010-01-01

    The native state of a protein is usually associated with a compact globular conformation possessing a rigid and highly ordered structure. At the turn of the last century certain studies arose which concluded that many proteins cannot, in principle, form a rigid globular structure in an aqueous environment, but they are still able to fulfill their specific functions — i.e., they are native. The existence of the disordered regions allows these proteins to interact with their numerous binding partners. Such interactions are often accompanied by the formation of complexes that possess a more ordered structure than the original components. The functional diversity of these proteins, combined with the variability of signals related to the various intra-and intercellular processes handled by these proteins and their capability to produce multi-variant and multi-directional responses allow them to form a unique regulatory net in a cell. The abundance of disordered proteins inside the cell is precisely controlled at the synthesis and clearance levels as well as via interaction with specific binding partners and posttranslational modifications. Another recently recognized biologically active state of proteins is the functional amyloid. The formation of such functional amyloids is tightly controlled and therefore differs from the uncontrolled formation of pathogenic amyloids which are associated with the pathogenesis of several conformational diseases, the development of which is likely to be determined by the failures of the cellular regulatory systems rather than by the formation of the proteinaceous deposits and/or by the protofibril toxicity. PMID:20097220

  16. An efficient protein complex mining algorithm based on Multistage Kernel Extension.

    Science.gov (United States)

    Shen, Xianjun; Zhao, Yanli; Li, Yanan; He, Tingting; Yang, Jincai; Hu, Xiaohua

    2014-01-01

    In recent years, many protein complex mining algorithms, such as classical clique percolation (CPM) method and markov clustering (MCL) algorithm, have developed for protein-protein interaction network. However, most of the available algorithms primarily concentrate on mining dense protein subgraphs as protein complexes, failing to take into account the inherent organizational structure within protein complexes. Thus, there is a critical need to study the possibility of mining protein complexes using the topological information hidden in edges. Moreover, the recent massive experimental analyses reveal that protein complexes have their own intrinsic organization. Inspired by the formation process of cliques of the complex social network and the centrality-lethality rule, we propose a new protein complex mining algorithm called Multistage Kernel Extension (MKE) algorithm, integrating the idea of critical proteins recognition in the Protein- Protein Interaction (PPI) network,. MKE first recognizes the nodes with high degree as the first level kernel of protein complex, and then adds the weighted best neighbour node of the first level kernel into the current kernel to form the second level kernel of the protein complex. This process is repeated, extending the current kernel to form protein complex. In the end, overlapped protein complexes are merged to form the final protein complex set. Here MKE has better accuracy compared with the classical clique percolation method and markov clustering algorithm. MKE also performs better than the classical clique percolation method both on Gene Ontology semantic similarity and co-localization enrichment and can effectively identify protein complexes with biological significance in the PPI network.

  17. Implications of soluble tannin-protein complexes for tannin analysis and plant defense mechanisms.

    Science.gov (United States)

    Hagerman, A E; Robbins, C T

    1987-05-01

    Factors which establish whether tannin and protein interact to form soluble complexes or precipitates were identified. The ratio of tannin to protein in the reaction mixture influenced solubility of the tannin-protein complexes. At protein-to-tannin ratios larger than the optimum ratio, or equivalence point, soluble tannin-protein complexes apparently formed instead of insoluble complexes. Several other factors influenced the amount of protein precipitated by tannin-containing plant extracts, including the length of the reaction time and the conditions of the tannin extraction. The analytical and ecological significances of soluble complexes were considered. A titration method which allows simultaneous determination of the equivalence point and assessment of the protein-precipitating capacity of any plant extract was developed. It was postulated that in vivo, tannin and protein may not only form insoluble complexes with antinutritional effects, but may also form soluble complexes which have unknown metabolic effects.

  18. Molecular recognition in complexes of TRF proteins with telomeric DNA.

    Directory of Open Access Journals (Sweden)

    Miłosz Wieczór

    Full Text Available Telomeres are specialized nucleoprotein assemblies that protect the ends of linear chromosomes. In humans and many other species, telomeres consist of tandem TTAGGG repeats bound by a protein complex known as shelterin that remodels telomeric DNA into a protective loop structure and regulates telomere homeostasis. Shelterin recognizes telomeric repeats through its two major components known as Telomere Repeat-Binding Factors, TRF1 and TRF2. These two homologous proteins are therefore essential for the formation and normal function of telomeres. Indeed, TRF1 and TRF2 are implicated in a plethora of different cellular functions and their depletion leads to telomere dysfunction with chromosomal fusions, followed by apoptotic cell death. More specifically, it was found that TRF1 acts as a negative regulator of telomere length, and TRF2 is involved in stabilizing the loop structure. Consequently, these proteins are of great interest, not only because of their key role in telomere maintenance and stability, but also as potential drug targets. In the current study, we investigated the molecular basis of telomeric sequence recognition by TRF1 and TRF2 and their DNA binding mechanism. We used molecular dynamics (MD to calculate the free energy profiles for binding of TRFs to telomeric DNA. We found that the predicted binding free energies were in good agreement with experimental data. Further, different molecular determinants of binding, such as binding enthalpies and entropies, the hydrogen bonding pattern and changes in surface area, were analyzed to decompose and examine the overall binding free energies at the structural level. With this approach, we were able to draw conclusions regarding the consecutive stages of sequence-specific association, and propose a novel aspartate-dependent mechanism of sequence recognition. Finally, our work demonstrates the applicability of computational MD-based methods to studying protein-DNA interactions.

  19. Behaviour of intrinsically disordered proteins in protein-protein complexes with an emphasis on fuzziness

    DEFF Research Database (Denmark)

    Olsen, Johan Gotthardt; Teilum, Kaare; Kragelund, Birthe Brandt

    2017-01-01

    Intrinsically disordered proteins (IDPs) do not, by themselves, fold into a compact globular structure. They are extremely dynamic and flexible, and are typically involved in signalling and transduction of information through binding to other macromolecules. The reason for their existence may lie...

  20. The Search Engine for Multi-Proteoform Complexes: An Online Tool for the Identification and Stoichiometry Determination of Protein Complexes.

    Science.gov (United States)

    Skinner, Owen S; Schachner, Luis F; Kelleher, Neil L

    2016-12-08

    Recent advances in top-down mass spectrometry using native electrospray now enable the analysis of intact protein complexes with relatively small sample amounts in an untargeted mode. Here, we describe how to characterize both homo- and heteropolymeric complexes with high molecular specificity using input data produced by tandem mass spectrometry of whole protein assemblies. The tool described is a "search engine for multi-proteoform complexes," (SEMPC) and is available for free online. The output is a list of candidate multi-proteoform complexes and scoring metrics, which are used to define a distinct set of one or more unique protein subunits, their overall stoichiometry in the intact complex, and their pre- and post-translational modifications. Thus, we present an approach for the identification and characterization of intact protein complexes from native mass spectrometry data. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  1. Solar UV-B effects on PSII performance in Betula nana are influenced by PAR level and reduced by EDU

    DEFF Research Database (Denmark)

    Albert, Kristian Rost; Mikkelsen, Teis Nørgaard; Ro-Poulsen, Helge

    2012-01-01

    The long-term and diurnal responses of photosystem II (PSII) performance to near-ambient UV-B radiation were investigated in High Arctic Betula nana. We conducted an UV exclusion experiment with five replicated blocks consisting of open control (no filter), photosynthetic active radiation and UV...... the effects of UV-B. Chlorophyll-a fluorescence induction curves were used for analysis of OJIP test parameters. Near-ambient UV-B radiation reduced across season maximum quantum yield (TRo /ABS = Fv /Fm ), approximated number of active PSII reaction center (RC/ABS) and the performance index (PIABS ), despite...... in reduced UV-B compared to near-ambient UV-B. This demonstrates current solar UV-B to reduce the PSII performance both on a daily as well as a seasonal basis in this High Arctic species....

  2. Antagonism between elevated CO2, nighttime warming, and summer drought reduces the robustness of PSII performance to freezing events

    DEFF Research Database (Denmark)

    Albert, Kristian Rost; Boesgaard, Kristine Stove; Ro-Poulsen, Helge

    2013-01-01

    out in the CLIMAITE multifactor experiment, which includes the combined impact of elevated CO2 (free air carbon enrichment; CO2), warming (passive nighttime warming; T) and summer drought (rain-excluding curtains; D) in a temperate heath ecosystem. PSII performance was probed by the effective quantum...... in the wavy hair-grass, Deschampsia flexuosa, and in the evergreen dwarf shrub common heather, Calluna vulgaris, and following freezing events the PItotal and Fv′/Fm′ were reduced even more. Contrary to expected, indirect effects of the previous summer drought reduced PSII performance before freezing events......, particularly in Calluna. In combinations with elevated CO2 interactive effects with drought, D×CO2 and warming, T×D×CO2, were negatively skewed and caused the reduction of PSII performance in both species after occurrence of freezing events. Neither passive nighttime warming nor elevated CO2 as single factors...

  3. Phosphorylation of photosystem II components, CP43 apoprotein, D1, D2, and 10 to 11 kilodalton protein in chloroplast thylakoids of higher plants

    Energy Technology Data Exchange (ETDEWEB)

    Ikeuchi, M.; Plumley, F.G.; Inoue, Y.; Schmidt, G.W.

    1987-11-01

    Phosphorylated thylakoid proteins of spinach (Spinacia oleracea L.) and pea (Pisum sativum L.) were solubilized, fractionated by sucrose density gradient centrifugation, and analyzed by gel electrophoresis and crossed immunoelectrophoresis to identify the phosphoproteins. It was found that in addition to intense phosphorylation of light-harvesting chlorophyll complex II, four photosystem II components, CP43 apoprotein, D1, D2, and a 10 to 11 kilodalton protein, are substantially phosphorylated in the light. Furthermore, the CP43 apoprotein, D1 and D2 can be resolved into two electrophoretic subspecies, only one of which is phosphorylated. This indicates that only a fraction of the PSII polypeptides is phosphorylated. Finally, analysis of detergent procedures suggests that the 10 to 11 kilodalton phosphoprotein is a peripheral component of the O/sub 2/-evolving PSII reaction center complex.

  4. Coherent population oscillations and superluminal light in a protein complex.

    Science.gov (United States)

    Yelleswarapu, Chandra S; Laoui, Samir; Philip, Reji; Rao, D V G L N

    2008-03-17

    We observed superluminal light in aqueous solution of the protein complex bacteriorhodopsin (bR) at 647.1 nm wavelength where it exhibits reverse saturable behavior, exploiting the technique of coherent population oscillations (CPO). With a modulation frequency of 10 Hz, the signal pulse through a 1 cm path cell is ahead by 3 msec relative to the reference pulse, corresponding to a group velocity of -3.3 m/sec. Following our early work on slow light in the same sample at the saturable wavelength 568.2 nm, we now explicitly observed the narrow spectral hole in the absorption band of the stable B state and further, demonstrated a close correlation between the profile of the hole and the corresponding pulse delay for various modulation frequencies. A similar behavior is observed for superluminal light versus antihole blown in the absorption band.

  5. Single Molecule Spectroscopy on Photosynthetic Pigment-Protein Complexes

    CERN Document Server

    Jelezko, F; Schuler, S; Thews, E; Tietz, C; Wechsler, A; Wrachtrup, J

    2001-01-01

    Single molecule spectroscopy was applied to unravel the energy transfer pathway in photosynthetic pigment-protein complexes. Detailed analysis of excitation and fluorescence emission spectra has been made for peripheral plant antenna LHC II and Photosystem I from cyanobacterium Synechococcus elongatus. Optical transitions of individual pigments were resolved under nonselective excitation of antenna chlorophylls. High-resolution fluorescence spectroscopy of individual plant antenna LHC II indicates that at low temperatures, the excitation energy is localized on the red-most Chl a pool absorbing at 680 nm. More than one pigment molecule is responsible for the fluorescence emission of the LHC II trimer. The spectral lines of single Chl a molecules absorbing at 675 nm are broadened because of the Foerster energy transfer towards the red-most pigments. Low-temperature spectroscopy on single PS I trimers indicates that two subgroups of pigments, which are present in the red antenna pool, differ by the strength of t...

  6. Variations in morphology and PSII photosynthetic capabilities during the early development of tetraspores of Gracilaria vermiculophylla (Ohmi) Papenfuss (Gracilariales, Rhodophyta).

    Science.gov (United States)

    Xie, Xiujun; Wang, Guangce; Pan, Guanghua; Gao, Shan; Xu, Pu; Zhu, Jianyi

    2010-04-28

    Red algae are primitive photosynthetic eukaryotes, whose spores are ideal subjects for studies of photosynthesis and development. Although the development of red alga spores has received considerable research attention, few studies have focused on the detailed morphological and photosynthetic changes that occur during the early development of tetraspores of Gracilaria vermiculophylla (Ohmi) Papenfuss (Gracilariales, Rhodophyta). Herein, we documented these changes in this species of red algae. In the tetraspores, we observed two types of division, cruciate and zonate, and both could develop into multicellular bodies (disks). During the first 84 hours, tetraspores divided several times, but the diameter of the disks changed very little; thereafter, the diameter increased significantly. Scanning electron microscopy observations and analysis of histological sections revealed that the natural shape of the disk remains tapered over time, and the erect frond grows from the central protrusion of the disk. Cultivation of tissue from excised disks demonstrated that the central protrusion of the disk is essential for initiation of the erect frond. Photosynthetic (i.e., PSII) activities were measured using chlorophyll fluorescence analysis. The results indicated that freshly released tetraspores retained limited PSII photosynthetic capabilities; when the tetraspores attached to a substrate, those capabilities increased significantly. In the disk, the PSII activity of both marginal and central cells was similar, although some degree of morphological polarity was present; the PSII photosynthetic capabilities in young germling exhibited an apico-basal gradient. Attachment of tetraspores to a substrate significantly enhanced their PSII photosynthetic capabilities, and triggered further development. The central protrusion of the disk is the growth point, may have transfer of nutritive material with the marginal cells. Within the young germling, the hetero-distribution of PSII

  7. Variations in morphology and PSII photosynthetic capabilities during the early development of tetraspores of Gracilaria vermiculophylla (Ohmi Papenfuss (Gracilariales, Rhodophyta

    Directory of Open Access Journals (Sweden)

    Gao Shan

    2010-04-01

    Full Text Available Abstract Background Red algae are primitive photosynthetic eukaryotes, whose spores are ideal subjects for studies of photosynthesis and development. Although the development of red alga spores has received considerable research attention, few studies have focused on the detailed morphological and photosynthetic changes that occur during the early development of tetraspores of Gracilaria vermiculophylla (Ohmi Papenfuss (Gracilariales, Rhodophyta. Herein, we documented these changes in this species of red algae. Results In the tetraspores, we observed two types of division, cruciate and zonate, and both could develop into multicellular bodies (disks. During the first 84 hours, tetraspores divided several times, but the diameter of the disks changed very little; thereafter, the diameter increased significantly. Scanning electron microscopy observations and analysis of histological sections revealed that the natural shape of the disk remains tapered over time, and the erect frond grows from the central protrusion of the disk. Cultivation of tissue from excised disks demonstrated that the central protrusion of the disk is essential for initiation of the erect frond. Photosynthetic (i.e., PSII activities were measured using chlorophyll fluorescence analysis. The results indicated that freshly released tetraspores retained limited PSII photosynthetic capabilities; when the tetraspores attached to a substrate, those capabilities increased significantly. In the disk, the PSII activity of both marginal and central cells was similar, although some degree of morphological polarity was present; the PSII photosynthetic capabilities in young germling exhibited an apico-basal gradient. Conclusions Attachment of tetraspores to a substrate significantly enhanced their PSII photosynthetic capabilities, and triggered further development. The central protrusion of the disk is the growth point, may have transfer of nutritive material with the marginal cells. Within

  8. Comparison of tertiary structures of proteins in protein-protein complexes with unbound forms suggests prevalence of allostery in signalling proteins

    Directory of Open Access Journals (Sweden)

    Swapna Lakshmipuram S

    2012-05-01

    Full Text Available Abstract Background Most signalling and regulatory proteins participate in transient protein-protein interactions during biological processes. They usually serve as key regulators of various cellular processes and are often stable in both protein-bound and unbound forms. Availability of high-resolution structures of their unbound and bound forms provides an opportunity to understand the molecular mechanisms involved. In this work, we have addressed the question “What is the nature, extent, location and functional significance of structural changes which are associated with formation of protein-protein complexes?” Results A database of 76 non-redundant sets of high resolution 3-D structures of protein-protein complexes, representing diverse functions, and corresponding unbound forms, has been used in this analysis. Structural changes associated with protein-protein complexation have been investigated using structural measures and Protein Blocks description. Our study highlights that significant structural rearrangement occurs on binding at the interface as well as at regions away from the interface to form a highly specific, stable and functional complex. Notably, predominantly unaltered interfaces interact mainly with interfaces undergoing substantial structural alterations, revealing the presence of at least one structural regulatory component in every complex. Interestingly, about one-half of the number of complexes, comprising largely of signalling proteins, show substantial localized structural change at surfaces away from the interface. Normal mode analysis and available information on functions on some of these complexes suggests that many of these changes are allosteric. This change is largely manifest in the proteins whose interfaces are altered upon binding, implicating structural change as the possible trigger of allosteric effect. Although large-scale studies of allostery induced by small-molecule effectors are available in

  9. Ambient UV-B radiation reduces PSII performance and net photosynthesis in high Arctic Salix arctica

    DEFF Research Database (Denmark)

    Albert, Kristian Rost; Mikkelsen, Teis Nørgaard; Ro-Poulsen, H.

    2011-01-01

    Ambient ultraviolet-B (UV-B) radiation potentially impacts the photosynthetic performance of high Arctic plants. We conducted an UV-B exclusion experiment in a dwarf shrub heath in NE Greenland (74°N), with open control, filter control, UV-B filtering and UV-AB filtering, all in combination...... was characterized by simultaneous gas exchange and chlorophyll fluorescence measurements and the PSII performance through the growing season was investigated with fluorescence measurements. Leaf harvest towards the end of the growing season was done to determine the specific leaf area and the content of carbon......, nitrogen and UV-B absorbing compounds. Compared to a 60% reduced UV-B irradiance, the ambient solar UV-B reduced net photosynthesis in Salix arctica leaves fixed in the 45° position which exposed leaves to maximum natural irradiance. Also a reduced Calvin Cycle capacity was found, i.e. the maximum rate...

  10. How proteins get in touch: interface prediction in the study of biomolecular complexes

    NARCIS (Netherlands)

    de Vries, S.J.|info:eu-repo/dai/nl/304837717; Bonvin, A.M.J.J.|info:eu-repo/dai/nl/113691238

    2008-01-01

    Protein-protein interface prediction is a booming field, with a substantial growth in the number of new methods being published the last two years. The increasing number of available three-dimensional structures of protein-protein complexes has enabled large-scale statistical analyses of protein

  11. Effect of leaf dehydration duration and dehydration degree on PSII photochemical activity of papaya leaves.

    Science.gov (United States)

    Liu, Meijun; Zhang, Zishan; Gao, Huiyuan; Yang, Cheng; Fan, Xingli; Cheng, Dandan

    2014-09-01

    Although the effect of dehydration on photosynthetic apparatus has been widely studied, the respective effect of dehydration duration and dehydration degree was neglected. This study showed that, when leaves dehydrated in air, the PSII activities of leaves decreased with the decline of leaf relative water content (RWC). Unexpectedly, when leaves dehydrated to same RWC, the decreases in Fv/Fm, Ψo and RC/CSm were lower in leaves dehydrating at 43 °C than those at 25 °C. However, to reach the same RWC, leaves dehydrating at 43 °C experienced 1/6 of the dehydration duration for leaves dehydrating at 25 °C. To distinguish the respective effect of dehydration degree and dehydration duration on photosynthetic apparatus, we studied the PSII activities of leaves treated with different concentration of PEG solutions. Increasing dehydration degree aggravated the decline of Fv/Fm, Ψo and RC/CSm in leaves with the same dehydration duration, while prolonging the dehydration duration also exacerbated the decline of Fv/Fm, Ψo and RC/CSm in leaves with identical dehydration degree. With the same dehydration degree and duration, high temperature enhanced the decrease of Fv/Fm, Ψo and RC/CSm in the leaves. When leaves dehydrated in air, the effect of high temperature was underestimated due to reduction of dehydration duration. The results demonstrated that, dehydration degree and duration both play important roles in damage to photosynthetic apparatus. We suggest that, under combined stresses, the effects of dehydration degree and duration on plants should be considered comprehensively, otherwise, partial or incorrect results may be obtained. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  12. A New Method for Identifying Essential Proteins Based on Network Topology Properties and Protein Complexes.

    Directory of Open Access Journals (Sweden)

    Chao Qin

    Full Text Available Essential proteins are indispensable to the viability and reproduction of an organism. The identification of essential proteins is necessary not only for understanding the molecular mechanisms of cellular life but also for disease diagnosis, medical treatments and drug design. Many computational methods have been proposed for discovering essential proteins, but the precision of the prediction of essential proteins remains to be improved. In this paper, we propose a new method, LBCC, which is based on the combination of local density, betweenness centrality (BC and in-degree centrality of complex (IDC. First, we introduce the common centrality measures; second, we propose the densities Den1(v and Den2(v of a node v to describe its local properties in the network; and finally, the combined strategy of Den1, Den2, BC and IDC is developed to improve the prediction precision. The experimental results demonstrate that LBCC outperforms traditional topological measures for predicting essential proteins, including degree centrality (DC, BC, subgraph centrality (SC, eigenvector centrality (EC, network centrality (NC, and the local average connectivity-based method (LAC. LBCC also improves the prediction precision by approximately 10 percent on the YMIPS and YMBD datasets compared to the most recently developed method, LIDC.

  13. A New Method for Identifying Essential Proteins Based on Network Topology Properties and Protein Complexes.

    Science.gov (United States)

    Qin, Chao; Sun, Yongqi; Dong, Yadong

    2016-01-01

    Essential proteins are indispensable to the viability and reproduction of an organism. The identification of essential proteins is necessary not only for understanding the molecular mechanisms of cellular life but also for disease diagnosis, medical treatments and drug design. Many computational methods have been proposed for discovering essential proteins, but the precision of the prediction of essential proteins remains to be improved. In this paper, we propose a new method, LBCC, which is based on the combination of local density, betweenness centrality (BC) and in-degree centrality of complex (IDC). First, we introduce the common centrality measures; second, we propose the densities Den1(v) and Den2(v) of a node v to describe its local properties in the network; and finally, the combined strategy of Den1, Den2, BC and IDC is developed to improve the prediction precision. The experimental results demonstrate that LBCC outperforms traditional topological measures for predicting essential proteins, including degree centrality (DC), BC, subgraph centrality (SC), eigenvector centrality (EC), network centrality (NC), and the local average connectivity-based method (LAC). LBCC also improves the prediction precision by approximately 10 percent on the YMIPS and YMBD datasets compared to the most recently developed method, LIDC.

  14. Protein Loop Dynamics Are Complex and Depend on the Motions of the Whole Protein

    Directory of Open Access Journals (Sweden)

    Michael T. Zimmermann

    2012-04-01

    Full Text Available We investigate the relationship between the motions of the same peptide loop segment incorporated within a protein structure and motions of free or end-constrained peptides. As a reference point we also compare against alanine chains having the same length as the loop. Both the analysis of atomic molecular dynamics trajectories and structure-based elastic network models, reveal no general dependence on loop length or on the number of solvent exposed residues. Rather, the whole structure affects the motions in complex ways that depend strongly and specifically on the tertiary structure of the whole protein. Both the Elastic Network Models and Molecular Dynamics confirm the differences in loop dynamics between the free and structured contexts; there is strong agreement between the behaviors observed from molecular dynamics and the elastic network models. There is no apparent simple relationship between loop mobility and its size, exposure, or position within a loop. Free peptides do not behave the same as the loops in the proteins. Surface loops do not behave as if they were random coils, and the tertiary structure has a critical influence upon the apparent motions. This strongly implies that entropy evaluation of protein loops requires knowledge of the motions of the entire protein structure.

  15. MOEPGA: A novel method to detect protein complexes in yeast protein-protein interaction networks based on MultiObjective Evolutionary Programming Genetic Algorithm.

    Science.gov (United States)

    Cao, Buwen; Luo, Jiawei; Liang, Cheng; Wang, Shulin; Song, Dan

    2015-10-01

    The identification of protein complexes in protein-protein interaction (PPI) networks has greatly advanced our understanding of biological organisms. Existing computational methods to detect protein complexes are usually based on specific network topological properties of PPI networks. However, due to the inherent complexity of the network structures, the identification of protein complexes may not be fully addressed by using single network topological property. In this study, we propose a novel MultiObjective Evolutionary Programming Genetic Algorithm (MOEPGA) which integrates multiple network topological features to detect biologically meaningful protein complexes. Our approach first systematically analyzes the multiobjective problem in terms of identifying protein complexes from PPI networks, and then constructs the objective function of the iterative algorithm based on three common topological properties of protein complexes from the benchmark dataset, finally we describe our algorithm, which mainly consists of three steps, population initialization, subgraph mutation and subgraph selection operation. To show the utility of our method, we compared MOEPGA with several state-of-the-art algorithms on two yeast PPI datasets. The experiment results demonstrate that the proposed method can not only find more protein complexes but also achieve higher accuracy in terms of fscore. Moreover, our approach can cover a certain number of proteins in the input PPI network in terms of the normalized clustering score. Taken together, our method can serve as a powerful framework to detect protein complexes in yeast PPI networks, thereby facilitating the identification of the underlying biological functions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. United Complex Centrality for Identification of Essential Proteins from PPI Networks.

    Science.gov (United States)

    Li, Min; Lu, Yu; Niu, Zhibei; Wu, Fang-Xiang

    2017-01-01

    Essential proteins are indispensable for the survival or reproduction of an organism. Identification of essential proteins is not only necessary for the understanding of the minimal requirements for cellular life, but also important for the disease study and drug design. With the development of high-throughput techniques, a large number of protein-protein interaction data are available, which promotes the studies of essential proteins from the network level. Up to now, though a series of computational methods have been proposed, the prediction precision still needs to be improved. In this paper, we propose a new method, United complex Centrality (UC), to identify essential proteins by integrating the protein complexes with the topological features of protein-protein interaction (PPI) networks. By analyzing the relationship between the essential proteins and the known protein complexes of S. cerevisiae and human, we find that the proteins in complexes are more likely to be essential compared with the proteins not included in any complexes and the proteins appeared in multiple complexes are more inclined to be essential compared to those only appeared in a single complex. Considering that some protein complexes generated by computational methods are inaccurate, we also provide a modified version of UC with parameter alpha, named UC-P. The experimental results show that protein complex information can help identify the essential proteins more accurate both for the PPI network of S. cerevisiae and that of human. The proposed method UC performs obviously better than the eight previously proposed methods (DC, IC, EC, SC, BC, CC, NC, and LAC) for identifying essential proteins.

  17. Complex formation, promiscuity and multi-functionality: protein interactions in disease-resistance pathways.

    Science.gov (United States)

    Shirasu, Ken; Schulze-Lefert, Paul

    2003-06-01

    Accumulating evidence indicates that plant disease-resistance (R) proteins assemble in hetero-multimeric protein complexes in the absence of pathogens. Such complexes might enable the indirect recognition of pathogen effector molecules during attempted pathogen invasion. RAR1 and SGT1 are required for the function of most known R proteins. They interact with each other and with diverse protein complexes, which might explain their multi-functionality. The promiscuous behavior of RAR1 and SGT1 might be crucial for the formation and activation of R protein-containing recognition complexes as well as for regulating downstream signaling processes.

  18. Early events in plastid protein degradation in stay-green Arabidopsis reveal differential regulation beyond the retention of LHCII and chlorophyll.

    Science.gov (United States)

    Grassl, Julia; Pružinská, Adriana; Hörtensteiner, Stefan; Taylor, Nicolas L; Millar, A Harvey

    2012-11-02

    An individually darkened leaf model was used to study protein changes in the Arabidopsis mutant stay-green1 (sgr1) to partially mimic the process of leaf covering senescence that occurs naturally in the shaded rosettes of Arabidopsis plants. Utilizing this controlled and predictable induced senescence model has allowed the direct comparison of sgr1 with Col-0 during the developmental period preceding the retention of chlorophyll and light harvesting complex II (LHCII) in sgr1 and the induction of senescence in Col-0. Quantitative proteomic analysis of soluble leaf proteins from sgr1 and Col-0 before the initiation of senescence has revealed a range of differences in plastid soluble protein abundance in sgr1 when compared to Col-0. Changes were also observed in membrane located machinery for photosystem II (PSII), in Calvin cycle components, proteins involved in redox control of the stromal compartment and ammonia assimilation that differentiated sgr1 during the early stages of the senescence process. The changes in PSII abundance were accompanied with a lower capacity of photosynthetic CO(2) assimilation in sgr1 than Col-0 after return of plants to lighted conditions following 3 and 5 days of darkness. A light-harvesting chlorophyll-a/b binding protein (LHCB2) was retained during the later stages of senescence in sgr1 but this was accompanied by an enhanced loss of oxygen evolving complex (OEC) subunits from PSII, which was confirmed by Western blotting, and an enhanced stability of PSII repair proteins in sgr1, compared to Col-0. Together these data provide insights into the significant differences in the steady-state proteome in sgr1 and its response to senescence, showing this cosmetic stay-green mutant is in fact significantly different to wild-type plants both before and during leaf senescence.

  19. Natural variation in phosphorylation of photosystem II proteins in Arabidopsis thaliana: is it caused by genetic variation in the STN kinases?

    Science.gov (United States)

    Flood, Pádraic J.; Yin, Lan; Herdean, Andrei; Harbinson, Jeremy; Aarts, Mark G. M.; Spetea, Cornelia

    2014-01-01

    Reversible phosphorylation of photosystem II (PSII) proteins is an important regulatory mechanism that can protect plants from changes in ambient light intensity and quality. We hypothesized that there is natural variation in this process in Arabidopsis (Arabidopsis thaliana), and that this results from genetic variation in the STN7 and STN8 kinase genes. To test this, Arabidopsis accessions of diverse geographical origins were exposed to two light regimes, and the levels of phospho-D1 and phospho-light harvesting complex II (LHCII) proteins were quantified by western blotting with anti-phosphothreonine antibodies. Accessions were classified as having high, moderate or low phosphorylation relative to Col-0. This variation could not be explained by the abundance of the substrates in thylakoid membranes. In genotypes with atrazine-resistant forms of the D1 protein, low D1 and LHCII protein phosphorylation was observed, which may be due to low PSII efficiency, resulting in reduced activation of the STN kinases. In the remaining genotypes, phospho-D1 levels correlated with STN8 protein abundance in high-light conditions. In growth light, D1 and LHCII phosphorylation correlated with longitude and in the case of LHCII phosphorylation also with temperature variability. This suggests a possible role of natural variation in PSII protein phosphorylation in the adaptation of Arabidopsis to diverse environments. PMID:24591726

  20. NMR structure determination of protein-ligand complexes by lanthanide labeling.

    Science.gov (United States)

    Pintacuda, Guido; John, Michael; Su, Xun-Cheng; Otting, Gottfried

    2007-03-01

    The paramagnetism of lanthanide ions offers outstanding opportunities for fast determinations of the three-dimensional (3D) structures of protein-ligand complexes by nuclear magnetic resonance (NMR) spectroscopy. It is shown how the combination of pseudocontact shifts (PCSs) induced by a site-specifically bound lanthanide ion and prior knowledge of the 3D structure of the lanthanide-labeled protein can be used to achieve (i) rapid assignments of NMR spectra, (ii) structure determinations of protein-protein complexes, and (iii) identification of the binding mode of low-molecular weight compounds in complexes with proteins. Strategies for site-specific incorporation of lanthanide ions into proteins are summarized.

  1. Methods for protein complex prediction and their contributions towards understanding the organisation, function and dynamics of complexes.

    Science.gov (United States)

    Srihari, Sriganesh; Yong, Chern Han; Patil, Ashwini; Wong, Limsoon

    2015-09-14

    Complexes of physically interacting proteins constitute fundamental functional units responsible for driving biological processes within cells. A faithful reconstruction of the entire set of complexes is therefore essential to understand the functional organisation of cells. In this review, we discuss the key contributions of computational methods developed till date (approximately between 2003 and 2015) for identifying complexes from the network of interacting proteins (PPI network). We evaluate in depth the performance of these methods on PPI datasets from yeast, and highlight their limitations and challenges, in particular at detecting sparse and small or sub-complexes and discerning overlapping complexes. We describe methods for integrating diverse information including expression profiles and 3D structures of proteins with PPI networks to understand the dynamics of complex formation, for instance, of time-based assembly of complex subunits and formation of fuzzy complexes from intrinsically disordered proteins. Finally, we discuss methods for identifying dysfunctional complexes in human diseases, an application that is proving invaluable to understand disease mechanisms and to discover novel therapeutic targets. We hope this review aptly commemorates a decade of research on computational prediction of complexes and constitutes a valuable reference for further advancements in this exciting area. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  2. INFLUENCE OF NATURAL ADDITIVES ON PROTEIN COMPLEX OF BREAD

    Directory of Open Access Journals (Sweden)

    Dana Urminská

    2010-11-01

    Full Text Available The study focuses on researching the influence of natural additives on certain technological characteristics of mixtures used for bread production, more particularly the influence of N substances in used raw material on selected qualitative parameters of bread. The blends for bread production to be analysed were prepared by mixing wheat flour with an addition of oat, buckwheat, lentil and chickpea wholegrain flour in different portions (10, 20, 30, 40 and 50 %. The experiment showed that the addition of natural additives worsened the protein complex of the blends used in bread production (worsening also qualitative parameters known as product volume. The loaves prepared with an addition of buckwheat, oat, lentil and chickpea were evaluated to be of a lesser quality from a technological viewpoint when compared with pure wheat loaves. The lower content of gluten forming proteins and the generally changed protein composition of blends due to additives caused a lower percentage of wet gluten content, its lower extensibility and swelling capacity. The sedimentation value (Zeleny index decreased proportionally with the increase of addition until the level was unsatisfactory for raw material intended for bakery purposes. The N content in experimental loaves was higher than in the reference loaves and it increased according to the selected additive and its portion in the blend (more with the addition of lentil and chickpea, less in case of buckwheat and oat which is considered as positive from a nutritional point of view. But from the technological point of view the additives did not show any positive influence and caused a lower loaf bread volume. The most significant decrease of the loaf bread volume was found with the addition of 50 % of buckwheat (- 45.6 %. Better results were obtained with a lower portion of the additive: loaf with an addition of 30 % of chickpea (volume decreased by 12.8 % > loaf with an addition of 30 % of lentil (volume

  3. Evidence for a vasopressin receptor-GTP binding protein complex

    Energy Technology Data Exchange (ETDEWEB)

    Fitzgerald, T.J.; Uhing, R.J.; Exton, J.H.

    1986-05-01

    Plasma membranes from the livers of rats were able to hydrolyze the ..gamma..-phosphate from guanosine-5'-triphosphate (GTP). The rate of GTP hydrolysis could be decreased to 10% of its initial rate by the addition of adenosine-5'-triphosphate with a concomitant decrease in the K/sub m/ for GTP from approx. 10/sup -3/ M to 10/sup -6/ M. The low K/sub m/ GTPase activity was inhibited by the addition of nonhydrolyzable analogs of GTP. In addition, the GTPase activity was stimulated from 10 to 30% over basal by the addition of vasopressin. A dose dependency curve showed that the maximum stimulation was obtained with 10/sup -8/ M vasopressin. Identical results were obtained from plasma membranes that had been solubilized with 1% digitonin. When membranes that had been solubilized in the presence of (Phenylalanyl-3,4,5-/sup 3/H(N))vasopressin were subjected to sucrose gradient centrifugation, the majority of bound (/sup 3/H)vasopressin migrated with an approximate molecular weight of 300,000. Moreover, there was a GTPase activity that migrated with the bound (/sup 3/H)vasopressin. This peak of bound (/sup 3/H)vasopressin was decreased by 90% when the sucrose gradient centrifugation was run in the presence of 10/sup -5/ M guanosine-5'-O-(3-thiotriphosphate). These results support the conclusion that liver plasma membranes contain a GTP-binding protein that can complex with the vasopressin receptor.

  4. Adenosine deaminase complexing protein (ADCP) immunoreactivity in colorectal adenocarcinoma.

    Science.gov (United States)

    ten Kate, J; van den Ingh, H F; Khan, P M; Bosman, F T

    1986-04-15

    Immunoreactive adenosine deaminase complexing protein (ADCP) was studied in 91 human colorectal adenocarcinomas. The expression of ADCP was correlated with that of secretory component (SC) and carcinoembryonic antigen (CEA), with the histological grade and the Dukes' stage of the carcinomas. The histological grade was scored semi-quantitatively according to 5 structural and 4 cytological variables. ADCP expression was observed in 3 different staining patterns, namely: (1) diffuse cytoplasmic (77% of the carcinomas); (2) granular cytoplasmic (13%); and (3) membrane-associated (66%). These patterns were observed alone or in combination. Eleven percent of the carcinomas exhibited no ADCP immunoreactivity. Linear regression analysis showed that the expression of ADCP correlates with that of SC and CEA. However, no significant correlation emerged between the histological parameters or the Dukes' stage and any of the immunohistological parameters. Comparison of the histological characteristics of carcinomas exhibiting little or no ADCP immunoreactivity with those showing extensive immunoreactivity, showed that membranous ADCP immunoreactivity occurs more frequently in well-differentiated carcinomas. Structural parameters showed a better correlation with membranous ADCP expression than the cytological variables. It is concluded that membranous expression of ADCP and CEA are indicators of a high level of differentiation as reflected primarily in the structural characteristics of the tumor.

  5. HAMLET - A protein-lipid complex with broad tumoricidal activity.

    Science.gov (United States)

    Ho, James C S; Nadeem, Aftab; Svanborg, Catharina

    2017-01-15

    HAMLET (Human Alpha-lactalbumin Made LEthal to Tumor cells) is a tumoricidal protein-lipid complex with broad effects against cancer cells of different origin. The therapeutic potential is emphasized by a high degree of specificity for tumor tissue. Here we review early studies of HAMLET, in collaboration with the Orrenius laboratory, and some key features of the subsequent development of the HAMLET project. The early studies focused on the apoptotic response that accompanies death in HAMLET treated tumor cells and the role of mitochondria in this process. In subsequent studies, we have identified a sequence of interactions that starts with the membrane integration of HAMLET and the activation of ion fluxes followed by HAMLET internalization, progressive inhibition of MAPK kinases and GTPases and sorting of HAMLET to different cellular compartments, including the nuclei. Therapeutic efficacy of HAMLET has been demonstrated in animal models of glioblastoma, bladder cancer and intestinal cancer. In clinical studies, HAMLET has been shown to target skin papillomas and bladder cancers. The findings identify HAMLET as a new drug candidate with promising selectivity for cancer cells and a strong therapeutic potential. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. PCE-FR: A Novel Method for Identifying Overlapping Protein Complexes in Weighted Protein-Protein Interaction Networks Using Pseudo-Clique Extension Based on Fuzzy Relation.

    Science.gov (United States)

    Cao, Buwen; Luo, Jiawei; Liang, Cheng; Wang, Shulin; Ding, Pingjian

    2016-10-01

    Identifying overlapping protein complexes in protein-protein interaction (PPI) networks can provide insight into cellular functional organization and thus elucidate underlying cellular mechanisms. Recently, various algorithms for protein complexes detection have been developed for PPI networks. However, majority of algorithms primarily depend on network topological feature and/or gene expression profile, failing to consider the inherent biological meanings between protein pairs. In this paper, we propose a novel method to detect protein complexes using pseudo-clique extension based on fuzzy relation (PCE-FR). Our algorithm operates in three stages: it first forms the nonoverlapping protein substructure based on fuzzy relation and then expands each substructure by adding neighbor proteins to maximize the cohesive score. Finally, highly overlapped candidate protein complexes are merged to form the final protein complex set. Particularly, our algorithm employs the biological significance hidden in protein pairs to construct edge weight for protein interaction networks. The experiment results show that our method can not only outperform classical algorithms such as CFinder, ClusterONE, CMC, RRW, HC-PIN, and ProRank +, but also achieve ideal overall performance in most of the yeast PPI datasets in terms of composite score consisting of precision, accuracy, and separation. We further apply our method to a human PPI network from the HPRD dataset and demonstrate it is very effective in detecting protein complexes compared to other algorithms.

  7. Development and implementation of an algorithm for detection of protein complexes in large interaction networks

    Directory of Open Access Journals (Sweden)

    Kanaya Shigehiko

    2006-04-01

    Full Text Available Abstract Background After complete sequencing of a number of genomes the focus has now turned to proteomics. Advanced proteomics technologies such as two-hybrid assay, mass spectrometry etc. are producing huge data sets of protein-protein interactions which can be portrayed as networks, and one of the burning issues is to find protein complexes in such networks. The enormous size of protein-protein interaction (PPI networks warrants development of efficient computational methods for extraction of significant complexes. Results This paper presents an algorithm for detection of protein complexes in large interaction networks. In a PPI network, a node represents a protein and an edge represents an interaction. The input to the algorithm is the associated matrix of an interaction network and the outputs are protein complexes. The complexes are determined by way of finding clusters, i. e. the densely connected regions in the network. We also show and analyze some protein complexes generated by the proposed algorithm from typical PPI networks of Escherichia coli and Saccharomyces cerevisiae. A comparison between a PPI and a random network is also performed in the context of the proposed algorithm. Conclusion The proposed algorithm makes it possible to detect clusters of proteins in PPI networks which mostly represent molecular biological functional units. Therefore, protein complexes determined solely based on interaction data can help us to predict the functions of proteins, and they are also useful to understand and explain certain biological processes.

  8. A laser ablation ICP-MS based method for multiplexed immunoblot analysis: applications to manganese-dependent protein dynamics of photosystem II in barley (Hordeum vulgare L.).

    Science.gov (United States)

    de Bang, Thomas Christian; Petersen, Jørgen; Pedas, Pai Rosager; Rogowska-Wrzesinska, Adelina; Jensen, Ole Noerregaard; Schjoerring, Jan Kofod; Jensen, Poul Erik; Thelen, Jay J; Husted, Søren

    2015-08-01

    Manganese (Mn) constitutes an essential co-factor in the oxygen-evolving complex of photosystem II (PSII). Consequently, Mn deficiency reduces photosynthetic efficiency and leads to changes in PSII composition. In order to study these changes, multiplexed protein assays are advantageous. Here, we developed a multiplexed antibody-based assay and analysed selected PSII subunits in barley (Hordeum vulgare L.). A selection of antibodies were labelled with specific lanthanides and immunoreacted with thylakoids exposed to Mn deficiency after western blotting. Subsequently, western blot membranes were analysed by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), which allowed selective and relative quantitative analysis via the different lanthanides. The method was evaluated against established liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) methods, based on data-dependent acquisition (DDA) and selected reaction monitoring (SRM). Manganese deficiency resulted in a general decrease in PSII protein abundances, an effect that was shown to be reversible upon Mn re-supplementation. Specifically, the extrinsic proteins PsbP and PsbQ showed Mn-dependent changes in abundances. Similar trends in the response to Mn deficiency at the protein level were observed when comparing DDA, SRM and LA-ICP-MS results. A biologically important exception to this trend was the loss of PsbO in the SRM analysis, which highlights the necessity of validating protein changes by more than one technique. The developed method enables a higher number of proteins to be multiplexed in comparison to existing immunoassays. Furthermore, multiplexed protein analysis by LA-ICP-MS provides an analytical platform with high throughput appropriate for screening large collections of plants. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  9. MicroProtein-mediated recruitment of CONSTANS into a TOPLESS trimeric complex represses flowering in Arabidopsis

    DEFF Research Database (Denmark)

    Graeff, Moritz; Straub, Daniel; Eguen, Tenai E.

    2016-01-01

    MicroProteins are short, single domain proteins that act by sequestering larger, multi-domain proteins into non-functional complexes. MicroProteins have been identified in plants and animals, where they are mostly involved in the regulation of developmental processes. Here we show that two...

  10. Protein corona - from molecular adsorption to physiological complexity

    National Research Council Canada - National Science Library

    Treuel, Lennart; Docter, Dominic; Maskos, Michael; Stauber, Roland H

    2015-01-01

    .... Detecting this protein corona, understanding its formation with regards to nanoparticle (NP) and protein properties, and elucidating its biological implications were central aims of bio-related nano-research throughout the past years...

  11. Protein corona ? from molecular adsorption to physiological complexity

    OpenAIRE

    Treuel, Lennart; Docter, Dominic; Maskos, Michael; Stauber, Roland H

    2015-01-01

    Summary In biological environments, nanoparticles are enshrouded by a layer of biomolecules, predominantly proteins, mediating its subsequent interactions with cells. Detecting this protein corona, understanding its formation with regards to nanoparticle (NP) and protein properties, and elucidating its biological implications were central aims of bio-related nano-research throughout the past years. Here, we discuss the mechanistic parameters that are involved in the protein corona formation a...

  12. Affinity proteomics to study endogenous protein complexes: Pointers, pitfalls, preferences and perspectives

    Science.gov (United States)

    LaCava, John; Molloy, Kelly R.; Taylor, Martin S.; Domanski, Michal; Chait, Brian T.; Rout, Michael P.

    2015-01-01

    Dissecting and studying cellular systems requires the ability to specifically isolate distinct proteins along with the co-assembled constituents of their associated complexes. Affinity capture techniques leverage high affinity, high specificity reagents to target and capture proteins of interest along with specifically associated proteins from cell extracts. Affinity capture coupled to mass spectrometry (MS)-based proteomic analyses has enabled the isolation and characterization of a wide range of endogenous protein complexes. Here, we outline effective procedures for the affinity capture of protein complexes, highlighting best practices and common pitfalls. PMID:25757543

  13. Isotope Coded Protein Labeling Coupled Immunoprecipitation (ICPL-IP): A Novel Approach for Quantitative Protein Complex Analysis From Native Tissue*

    Science.gov (United States)

    Vogt, Andreas; Fuerholzner, Bettina; Kinkl, Norbert; Boldt, Karsten; Ueffing, Marius

    2013-01-01

    High confidence definition of protein interactions is an important objective toward the understanding of biological systems. Isotope labeling in combination with affinity-based isolation of protein complexes has increased in accuracy and reproducibility, yet, larger organisms—including humans—are hardly accessible to metabolic labeling and thus, a major limitation has been its restriction to small animals, cell lines, and yeast. As composition as well as the stoichiometry of protein complexes can significantly differ in primary tissues, there is a great demand for methods capable to combine the selectivity of affinity-based isolation as well as the accuracy and reproducibility of isotope-based labeling with its application toward analysis of protein interactions from intact tissue. Toward this goal, we combined isotope coded protein labeling (ICPL)1 with immunoprecipitation (IP) and quantitative mass spectrometry (MS). ICPL-IP allows sensitive and accurate analysis of protein interactions from primary tissue. We applied ICPL-IP to immuno-isolate protein complexes from bovine retinal tissue. Protein complexes of immunoprecipitated β-tubulin, a highly abundant protein with known interactors as well as the lowly expressed small GTPase RhoA were analyzed. The results of both analyses demonstrate sensitive and selective identification of known as well as new protein interactions by our method. PMID:23268931

  14. Isotope coded protein labeling coupled immunoprecipitation (ICPL-IP): a novel approach for quantitative protein complex analysis from native tissue.

    Science.gov (United States)

    Vogt, Andreas; Fuerholzner, Bettina; Kinkl, Norbert; Boldt, Karsten; Ueffing, Marius

    2013-05-01

    High confidence definition of protein interactions is an important objective toward the understanding of biological systems. Isotope labeling in combination with affinity-based isolation of protein complexes has increased in accuracy and reproducibility, yet, larger organisms--including humans--are hardly accessible to metabolic labeling and thus, a major limitation has been its restriction to small animals, cell lines, and yeast. As composition as well as the stoichiometry of protein complexes can significantly differ in primary tissues, there is a great demand for methods capable to combine the selectivity of affinity-based isolation as well as the accuracy and reproducibility of isotope-based labeling with its application toward analysis of protein interactions from intact tissue. Toward this goal, we combined isotope coded protein labeling (ICPL)(1) with immunoprecipitation (IP) and quantitative mass spectrometry (MS). ICPL-IP allows sensitive and accurate analysis of protein interactions from primary tissue. We applied ICPL-IP to immuno-isolate protein complexes from bovine retinal tissue. Protein complexes of immunoprecipitated β-tubulin, a highly abundant protein with known interactors as well as the lowly expressed small GTPase RhoA were analyzed. The results of both analyses demonstrate sensitive and selective identification of known as well as new protein interactions by our method.

  15. Protein complexes are under evolutionary selection to assemble via ordered pathways.

    Science.gov (United States)

    Marsh, Joseph A; Hernández, Helena; Hall, Zoe; Ahnert, Sebastian E; Perica, Tina; Robinson, Carol V; Teichmann, Sarah A

    2013-04-11

    Is the order in which proteins assemble into complexes important for biological function? Here, we seek to address this by searching for evidence of evolutionary selection for ordered protein complex assembly. First, we experimentally characterize the assembly pathways of several heteromeric complexes and show that they can be simply predicted from their three-dimensional structures. Then, by mapping gene fusion events identified from fully sequenced genomes onto protein complex assembly pathways, we demonstrate evolutionary selection for conservation of assembly order. Furthermore, using structural and high-throughput interaction data, we show that fusion tends to optimize assembly by simplifying protein complex topologies. Finally, we observe protein structural constraints on the gene order of fusion that impact the potential for fusion to affect assembly. Together, these results reveal the intimate relationships among protein assembly, quaternary structure, and evolution and demonstrate on a genome-wide scale the biological importance of ordered assembly pathways. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Supervised maximum-likelihood weighting of composite protein networks for complex prediction

    Directory of Open Access Journals (Sweden)

    Yong Chern Han

    2012-12-01

    Full Text Available Abstract Background Protein complexes participate in many important cellular functions, so finding the set of existent complexes is essential for understanding the organization and regulation of processes in the cell. With the availability of large amounts of high-throughput protein-protein interaction (PPI data, many algorithms have been proposed to discover protein complexes from PPI networks. However, such approaches are hindered by the high rate of noise in high-throughput PPI data, including spurious and missing interactions. Furthermore, many transient interactions are detected between proteins that are not from the same complex, while not all proteins from the same complex may actually interact. As a result, predicted complexes often do not match true complexes well, and many true complexes go undetected. Results We address these challenges by integrating PPI data with other heterogeneous data sources to construct a composite protein network, and using a supervised maximum-likelihood approach to weight each edge based on its posterior probability of belonging to a complex. We then use six different clustering algorithms, and an aggregative clustering strategy, to discover complexes in the weighted network. We test our method on Saccharomyces cerevisiae and Homo sapiens, and show that complex discovery is improved: compared to previously proposed supervised and unsupervised weighting approaches, our method recalls more known complexes, achieves higher precision at all recall levels, and generates novel complexes of greater functional similarity. Furthermore, our maximum-likelihood approach allows learned parameters to be used to visualize and evaluate the evidence of novel predictions, aiding human judgment of their credibility. Conclusions Our approach integrates multiple data sources with supervised learning to create a weighted composite protein network, and uses six clustering algorithms with an aggregative clustering strategy to

  17. Identification of Protein Complexes Using Weighted PageRank-Nibble Algorithm and Core-Attachment Structure.

    Science.gov (United States)

    Peng, Wei; Wang, Jianxin; Zhao, Bihai; Wang, Lusheng

    2015-01-01

    Protein complexes play a significant role in understanding the underlying mechanism of most cellular functions. Recently, many researchers have explored computational methods to identify protein complexes from protein-protein interaction (PPI) networks. One group of researchers focus on detecting local dense subgraphs which correspond to protein complexes by considering local neighbors. The drawback of this kind of approach is that the global information of the networks is ignored. Some methods such as Markov Clustering algorithm (MCL), PageRank-Nibble are proposed to find protein complexes based on random walk technique which can exploit the global structure of networks. However, these methods ignore the inherent core-attachment structure of protein complexes and treat adjacent node equally. In this paper, we design a weighted PageRank-Nibble algorithm which assigns each adjacent node with different probability, and propose a novel method named WPNCA to detect protein complex from PPI networks by using weighted PageRank-Nibble algorithm and core-attachment structure. Firstly, WPNCA partitions the PPI networks into multiple dense clusters by using weighted PageRank-Nibble algorithm. Then the cores of these clusters are detected and the rest of proteins in the clusters will be selected as attachments to form the final predicted protein complexes. The experiments on yeast data show that WPNCA outperforms the existing methods in terms of both accuracy and p-value. The software for WPNCA is available at "http://netlab.csu.edu.cn/bioinfomatics/weipeng/WPNCA/download.html".

  18. Adenosine deaminase complexing protein (ADCP): a transformation sensitive protein with potentials of a cancer marker.

    Science.gov (United States)

    Herbschleb-Voogt, E; Ten Kate, J; Meera Khan, P

    1983-01-01

    Several observations by independent investigators in the past have indicated that adenosine deaminase complexing protein (ADCP), present in considerable quantities in certain human tissues, was absent or decreased in the cancers originated from them. During the present study, electrophoretic analysis of adenosine deaminase (ADA) isozymes and radioimmunoassay for ADCP in the primary fibroblasts and the transformed as well as certain tumor derived cell lines have demonstrated that ADCP present in large quantities in the primary cells was absent or nearly absent in the transformed or tumor-derived cell lines. Though the mechanisms involved are not yet clear, the above observations indicate that ADCP has the potentials of a useful marker in the studies on transformed cells and cancer tissues.

  19. Another role of proline: stabilization interactions in proteins and protein complexes concerning proline and tryptophane.

    Science.gov (United States)

    Biedermannova, Lada; E Riley, Kevin; Berka, Karel; Hobza, Pavel; Vondrasek, Jiri

    2008-11-14

    Proline-tryptophan complexes derived from experimental structures are investigated by quantum chemical procedures known to properly describe the London dispersion energy. We study two geometrical arrangements: the "L-shaped", stabilized by an H-bond, and the "stacked-like", where the two residues are in parallel orientation without any H-bond. Interestingly, the interaction energies in both cases are comparable and very large ( approximately 7 kcal mol(-1)). The strength of stabilization in the stacked arrangement is rather surprising considering the fact that only one partner has an aromatic character. The interaction energy decomposition using the SAPT method further demonstrates the very important role of dispersion energy in such arrangement. To elucidate the structural features responsible for this unexpectedly large stabilization we examined the role of the nitrogen heteroatom and the importance of the cyclicity of the proline residue. We show that the electrostatic interaction due to the presence of the dipole, caused by the nitrogen heteroatom, contributes largely to the strength of the interaction. Nevertheless, the cyclic arrangement of proline, which allows for the largest amount of dispersive contact with the aromatic partner, also has a notable-effect. Geometry optimizations carried out for the "stacked-like" complexes show that the arrangements derived from protein structure are close to their gas phase optimum geometry, suggesting that the environment has only a minor effect on the geometry of the interaction. We conclude that the strength of proline non-covalent interactions, combined with this residue's rigidity, might be the explanation for its prominent role in protein stabilization and recognition processes.

  20. Single-molecule fluorescence microscopy on nucleotide excision repair complexes using GFP fusion proteins

    NARCIS (Netherlands)

    Segers-Nolten, Gezina M.J.; Rademakers, Suzanne; Vermeulen, Wim; Lenferink, Aufrid T.M.; Otto, Cornelis; Hoeijmakers, Jan; Greve, Jan; Koenig, Karsten; Tanke, Hans J.; Schneckenburger, Herbert

    2000-01-01

    Scanning Confocal Fluorescence Microscopy is used for single molecule studies on DNA-protein complexes that occur in Nucleotide Excision Repair (NER). During DNA-damage elimination by the NER-pathway, complex protein structures assemble over DNA. It is our aim to resolve the architecture of these

  1. A Proteomic Strategy for Global Analysis of Plant Protein Complexes[W][OPEN

    Science.gov (United States)

    Aryal, Uma K.; Xiong, Yi; McBride, Zachary; Kihara, Daisuke; Xie, Jun; Hall, Mark C.; Szymanski, Daniel B.

    2014-01-01

    Global analyses of protein complex assembly, composition, and location are needed to fully understand how cells coordinate diverse metabolic, mechanical, and developmental activities. The most common methods for proteome-wide analysis of protein complexes rely on affinity purification-mass spectrometry or yeast two-hybrid approaches. These methods are time consuming and are not suitable for many plant species that are refractory to transformation or genome-wide cloning of open reading frames. Here, we describe the proof of concept for a method allowing simultaneous global analysis of endogenous protein complexes that begins with intact leaves and combines chromatographic separation of extracts from subcellular fractions with quantitative label-free protein abundance profiling by liquid chromatography-coupled mass spectrometry. Applying this approach to the crude cytosolic fraction of Arabidopsis thaliana leaves using size exclusion chromatography, we identified hundreds of cytosolic proteins that appeared to exist as components of stable protein complexes. The reliability of the method was validated by protein immunoblot analysis and comparisons with published size exclusion chromatography data and the masses of known complexes. The method can be implemented with appropriate instrumentation, is applicable to any biological system, and has the potential to be further developed to characterize the composition of protein complexes and measure the dynamics of protein complex localization and assembly under different conditions. PMID:25293756

  2. Complex regulation of CREB-binding protein by homeodomain-interacting protein kinase 2

    KAUST Repository

    Kovács, Krisztián A.

    2015-11-01

    CREB-binding protein (CBP) and p300 are transcriptional coactivators involved in numerous biological processes that affect cell growth, transformation, differentiation, and development. In this study, we provide evidence of the involvement of homeodomain-interacting protein kinase 2 (HIPK2) in the regulation of CBP activity. We show that HIPK2 interacts with and phosphorylates several regions of CBP. We demonstrate that serines 2361, 2363, 2371, 2376, and 2381 are responsible for the HIPK2-induced mobility shift of CBP C-terminal activation domain. Moreover, we show that HIPK2 strongly potentiates the transcriptional activity of CBP. However, our data suggest that HIPK2 activates CBP mainly by counteracting the repressive action of cell cycle regulatory domain 1 (CRD1), located between amino acids 977 and 1076, independently of CBP phosphorylation. Our findings thus highlight a complex regulation of CBP activity by HIPK2, which might be relevant for the control of specific sets of target genes involved in cellular proliferation, differentiation and apoptosis. © 2015 Elsevier Inc.

  3. Olfactory G proteins: simple and complex signal transduction.

    Science.gov (United States)

    Ebrahimi, F A; Chess, A

    1998-06-04

    In both vertebrates and invertebrates, olfactory perception is mediated by G-protein-coupled receptors. Recent work, in both mouse and Caenorhabditis elegans, sheds light on the role of specific G proteins in olfactory signal transduction, neuronal morphology and axon guidance.

  4. Characterization of the ternary Usher syndrome SANS/ush2a/whirlin protein complex.

    Science.gov (United States)

    Sorusch, Nasrin; Bauß, Katharina; Plutniok, Janet; Samanta, Ananya; Knapp, Barbara; Nagel-Wolfrum, Kerstin; Wolfrum, Uwe

    2017-03-15

    The Usher syndrome (USH) is the most common form of inherited deaf-blindness, accompanied by vestibular dysfunction. Due to the heterogeneous manifestation of the clinical symptoms, three USH types (USH1-3) and additional atypical forms are distinguished. USH1 and USH2 proteins have been shown to function together in multiprotein networks in photoreceptor cells and hair cells. Mutations in USH proteins are considered to disrupt distinct USH protein networks and finally lead to the development of USH.To get novel insights into the molecular pathomechanisms underlying USH, we further characterize the periciliary USH protein network in photoreceptor cells. We show the direct interaction between the scaffold protein SANS (USH1G) and the transmembrane adhesion protein ush2a and that both assemble into a ternary USH1/USH2 complex together with the PDZ-domain protein whirlin (USH2D) via mutual interactions. Immunohistochemistry and proximity ligation assays demonstrate co-localization of complex partners and complex formation, respectively, in the periciliary region, the inner segment and at the synapses of rodent and human photoreceptor cells. Protein-protein interaction assays and co-expression of complex partners reveal that pathogenic mutations in USH1G severely affect formation of the SANS/ush2a/whirlin complex. Translational read-through drug treatment, targeting the c.728C > A (p.S243X) nonsense mutation, restored SANS scaffold function. We conclude that USH1 and USH2 proteins function together in higher order protein complexes. The maintenance of USH1/USH2 protein complexes depends on multiple USH1/USH2 protein interactions, which are disrupted by pathogenic mutations in USH1G protein SANS. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Discovery of protein complexes with core-attachment structures from Tandem Affinity Purification (TAP) data.

    Science.gov (United States)

    Wu, Min; Li, Xiao-Li; Kwoh, Chee-Keong; Ng, See-Kiong; Wong, Limsoon

    2012-09-01

    Many cellular functions involve protein complexes that are formed by multiple interacting proteins. Tandem Affinity Purification (TAP) is a popular experimental method for detecting such multi-protein interactions. However, current computational methods that predict protein complexes from TAP data require converting the co-complex relationships in TAP data into binary interactions. The resulting pairwise protein-protein interaction (PPI) network is then mined for densely connected regions that are identified as putative protein complexes. Converting the TAP data into PPI data not only introduces errors but also loses useful information about the underlying multi-protein relationships that can be exploited to detect the internal organization (i.e., core-attachment structures) of protein complexes. In this article, we propose a method called CACHET that detects protein complexes with Core-AttaCHment structures directly from bipartitETAP data. CACHET models the TAP data as a bipartite graph in which the two vertex sets are the baits and the preys, respectively. The edges between the two vertex sets represent bait-prey relationships. CACHET first focuses on detecting high-quality protein-complex cores from the bipartite graph. To minimize the effects of false positive interactions, the bait-prey relationships are indexed with reliability scores. Only non-redundant, reliable bicliques computed from the TAP bipartite graph are regarded as protein-complex cores. CACHET constructs protein complexes by including attachment proteins into the cores. We applied CACHET on large-scale TAP datasets and found that CACHET outperformed existing methods in terms of prediction accuracy (i.e., F-measure and functional homogeneity of predicted complexes). In addition, the protein complexes predicted by CACHET are equipped with core-attachment structures that provide useful biological insights into the inherent functional organization of protein complexes. Our supplementary material can

  6. Surfactant-free purification of membrane protein complexes from bacteria: application to the staphylococcal penicillin-binding protein complex PBP2/PBP2a

    Science.gov (United States)

    Paulin, Sarah; Jamshad, Mohammed; Dafforn, Timothy R.; Garcia-Lara, Jorge; Foster, Simon J.; Galley, Nicola F.; Roper, David I.; Rosado, Helena; Taylor, Peter W.

    2014-07-01

    Surfactant-mediated removal of proteins from biomembranes invariably results in partial or complete loss of function and disassembly of multi-protein complexes. We determined the capacity of styrene-co-maleic acid (SMA) co-polymer to remove components of the cell division machinery from the membrane of drug-resistant staphylococcal cells. SMA-lipid nanoparticles solubilized FtsZ-PBP2-PBP2a complexes from intact cells, demonstrating the close physical proximity of these proteins within the lipid bilayer. Exposure of bacteria to (-)-epicatechin gallate, a polyphenolic agent that abolishes β-lactam resistance in staphylococci, disrupted the association between PBP2 and PBP2a. Thus, SMA purification provides a means to remove native integral membrane protein assemblages with minimal physical disruption and shows promise as a tool for the interrogation of molecular aspects of bacterial membrane protein structure and function.

  7. The effect of protein complexation on the mechanical stability of Im9.

    Science.gov (United States)

    Hann, Eleanore; Kirkpatrick, Nadine; Kleanthous, Colin; Smith, D Alastair; Radford, Sheena E; Brockwell, David J

    2007-05-01

    Force mode microscopy can be used to examine the effect of mechanical manipulation on the noncovalent interactions that stabilize proteins and their complexes. Here we describe the effect of complexation by the high affinity protein ligand E9 on the mechanical resistance of the simple four-helical protein, Im9. When concatenated into a construct of alternating I27 domains, Im9 unfolded below the thermal noise limit of the instrument ( approximately 20 pN). Complexation of E9 had little effect on the mechanical resistance of Im9 (unfolding force approximately 30 pN) despite the high avidity of this complex (K(d) approximately 10 fM).

  8. Protein complex finding and ranking: An application to Alzheimer's ...

    Indian Academy of Sciences (India)

    Pooja Sharma

    2017-07-07

    Jul 7, 2017 ... as cell growth (Szymanski 2005), physiology (Yi and Deng. 2005) and metabolism (Winkel 2004). For example, VGII1-. TEAD4 complex enhances ...... complex-based reconstruction of the saccharomyces cerevisiae interactome. Mol. Cell. Proteom. 8 1361–1381. Wang JZ, Du Z, Payattakool R, Philip SY ...

  9. Biophysical characterization of the complex between human papillomavirus E6 protein and synapse-associated protein 97

    DEFF Research Database (Denmark)

    Chi, Celestine Ngang; Bach, Anders; Engström, Åke

    2011-01-01

    The E6 protein of human papillomavirus exhibits complex interaction patterns with several host proteins and their roles in HPV mediated oncogenesis have proved challenging to study. Here we use several biophysical techniques to explore the binding of E6 to the three PDZ domains of the tumor...

  10. MD Simulations of Papillomavirus DNA-E2 Protein Complexes Hints at a Protein Structural Code for DNA Deformation

    OpenAIRE

    Falconi, M.; Oteri, F.; Eliseo, T.; Cicero, D. O.; Desideri, A.

    2008-01-01

    The structural dynamics of the DNA binding domains of the human papillomavirus strain 16 and the bovine papillomavirus strain 1, complexed with their DNA targets, has been investigated by modeling, molecular dynamics simulations, and nuclear magnetic resonance analysis. The simulations underline different dynamical features of the protein scaffolds and a different mechanical interaction of the two proteins with DNA. The two protein structures, although very similar, show differences in the re...

  11. Finding low-conductance sets with dense interactions (FLCD) for better protein complex prediction.

    Science.gov (United States)

    Wang, Yijie; Qian, Xiaoning

    2017-03-14

    Intuitively, proteins in the same protein complexes should highly interact with each other but rarely interact with the other proteins in protein-protein interaction (PPI) networks. Surprisingly, many existing computational algorithms do not directly detect protein complexes based on both of these topological properties. Most of them, depending on mathematical definitions of either "modularity" or "conductance", have their own limitations: Modularity has the inherent resolution problem ignoring small protein complexes; and conductance characterizes the separability of complexes but fails to capture the interaction density within complexes. In this paper, we propose a two-step algorithm FLCD (Finding Low-Conductance sets with Dense interactions) to predict overlapping protein complexes with the desired topological structure, which is densely connected inside and well separated from the rest of the networks. First, FLCD detects well-separated subnetworks based on approximating a potential low-conductance set through a personalized PageRank vector from a protein and then solving a mixed integer programming (MIP) problem to find the minimum-conductance set within the identified low-conductance set. At the second step, the densely connected parts in those subnetworks are discovered as the protein complexes by solving another MIP problem that aims to find the dense subnetwork in the minimum-conductance set. Experiments on four large-scale yeast PPI networks from different public databases demonstrate that the complexes predicted by FLCD have better correspondence with the yeast protein complex gold standards than other three state-of-the-art algorithms (ClusterONE, LinkComm, and SR-MCL). Additionally, results of FLCD show higher biological relevance with respect to Gene Ontology (GO) terms by GO enrichment analysis.

  12. Polysaccharide charge density regulating protein adsorption to air/water interfaces by protein/polysaccharide complex formation

    NARCIS (Netherlands)

    Ganzevles, R.A.; Kosters, H.; Vliet, T. van; Stuart, M.A.C.; Jongh, H.H.J. de

    2007-01-01

    Because the formation of protein/polysaccharide complexes is dominated by electrostatic interaction, polysaccharide charge density is expected to play a major role in the adsorption behavior of the complexes. In this study, pullulan (a non-charged polysaccharide) carboxylated to four different

  13. glue protein profiles in the nasuta–albomicans complex

    Indian Academy of Sciences (India)

    72. Ramesh S. R. and Kalisch W.-E. 1989b Comparative analysis of glue proteins in Drosophila nasuta subgroup. Biochem. Genet. 27, 507–519. Ranganath H. A. 2002 Evolutionary biology of Drosophila nasuta and Drosophila albomicans.

  14. Identifying protein complex by integrating characteristic of core-attachment into dynamic PPI network.

    Directory of Open Access Journals (Sweden)

    Xianjun Shen

    Full Text Available How to identify protein complex is an important and challenging task in proteomics. It would make great contribution to our knowledge of molecular mechanism in cell life activities. However, the inherent organization and dynamic characteristic of cell system have rarely been incorporated into the existing algorithms for detecting protein complexes because of the limitation of protein-protein interaction (PPI data produced by high throughput techniques. The availability of time course gene expression profile enables us to uncover the dynamics of molecular networks and improve the detection of protein complexes. In order to achieve this goal, this paper proposes a novel algorithm DCA (Dynamic Core-Attachment. It detects protein-complex core comprising of continually expressed and highly connected proteins in dynamic PPI network, and then the protein complex is formed by including the attachments with high adhesion into the core. The integration of core-attachment feature into the dynamic PPI network is responsible for the superiority of our algorithm. DCA has been applied on two different yeast dynamic PPI networks and the experimental results show that it performs significantly better than the state-of-the-art techniques in terms of prediction accuracy, hF-measure and statistical significance in biology. In addition, the identified complexes with strong biological significance provide potential candidate complexes for biologists to validate.

  15. Understanding the nanoparticle-protein corona complexes using computational and experimental methods.

    Science.gov (United States)

    Kharazian, B; Hadipour, N L; Ejtehadi, M R

    2016-06-01

    Nanoparticles (NP) have capability to adsorb proteins from biological fluids and form protein layer, which is called protein corona. As the cell sees corona coated NPs, the protein corona can dictate biological response to NPs. The composition of protein corona is varied by physicochemical properties of NPs including size, shape, surface chemistry. Processing of protein adsorption is dynamic phenomena; to that end, a protein may desorb or leave a surface vacancy that is rapidly filled by another protein and cause changes in the corona composition mainly by the Vroman effect. In this review, we discuss the interaction between NP and proteins and the available techniques for identification of NP-bound proteins. Also we review current developed computational methods for understanding the NP-protein complex interactions. Copyright © 2016. Published by Elsevier Ltd.

  16. Evidence for the robustness of protein complexes to inter-species hybridization.

    Directory of Open Access Journals (Sweden)

    Jean-Baptiste Leducq

    Full Text Available Despite the tremendous efforts devoted to the identification of genetic incompatibilities underlying hybrid sterility and inviability, little is known about the effect of inter-species hybridization at the protein interactome level. Here, we develop a screening platform for the comparison of protein-protein interactions (PPIs among closely related species and their hybrids. We examine in vivo the architecture of protein complexes in two yeast species (Saccharomyces cerevisiae and Saccharomyces kudriavzevii that diverged 5-20 million years ago and in their F1 hybrids. We focus on 24 proteins of two large complexes: the RNA polymerase II and the nuclear pore complex (NPC, which show contrasting patterns of molecular evolution. We found that, with the exception of one PPI in the NPC sub-complex, PPIs were highly conserved between species, regardless of protein divergence. Unexpectedly, we found that the architecture of the complexes in F1 hybrids could not be distinguished from that of the parental species. Our results suggest that the conservation of PPIs in hybrids likely results from the slow evolution taking place on the very few protein residues involved in the interaction or that protein complexes are inherently robust and may accommodate protein divergence up to the level that is observed among closely related species.

  17. Temperature-sensitive PSII: a novel approach for sustained photosynthetic hydrogen production.

    Science.gov (United States)

    Bayro-Kaiser, Vinzenz; Nelson, Nathan

    2016-12-01

    The need for energy and the associated burden are ever growing. It is crucial to develop new technologies for generating clean and efficient energy for society to avoid upcoming energetic and environmental crises. Sunlight is the most abundant source of energy on the planet. Consequently, it has captured our interest. Certain microalgae possess the ability to capture solar energy and transfer it to the energy carrier, H2. H2 is a valuable fuel, because its combustion produces only one by-product: water. However, the establishment of an efficient biophotolytic H2 production system is hindered by three main obstacles: (1) the hydrogen-evolving enzyme, [FeFe]-hydrogenase, is highly sensitive to oxygen; (2) energy conversion efficiencies are not economically viable; and (3) hydrogen-producing organisms are sensitive to stressful conditions in large-scale production systems. This study aimed to circumvent the oxygen sensitivity of this process with a cyclic hydrogen production system. This approach required a mutant that responded to high temperatures by reducing oxygen evolution. To that end, we randomly mutagenized the green microalgae, Chlamydomonas reinhardtii, to generate mutants that exhibited temperature-sensitive photoautotrophic growth. The selected mutants were further characterized by their ability to evolve oxygen and hydrogen at 25 and 37 °C. We identified four candidate mutants for this project. We characterized these mutants with PSII fluorescence, P700 absorbance, and immunoblotting analyses. Finally, we demonstrated that these mutants could function in a prototype hydrogen-producing bioreactor. These mutant microalgae represent a novel approach for sustained hydrogen production.

  18. Kojak: efficient analysis of chemically cross-linked protein complexes.

    Science.gov (United States)

    Hoopmann, Michael R; Zelter, Alex; Johnson, Richard S; Riffle, Michael; MacCoss, Michael J; Davis, Trisha N; Moritz, Robert L

    2015-05-01

    Protein chemical cross-linking and mass spectrometry enable the analysis of protein-protein interactions and protein topologies; however, complicated cross-linked peptide spectra require specialized algorithms to identify interacting sites. The Kojak cross-linking software application is a new, efficient approach to identify cross-linked peptides, enabling large-scale analysis of protein-protein interactions by chemical cross-linking techniques. The algorithm integrates spectral processing and scoring schemes adopted from traditional database search algorithms and can identify cross-linked peptides using many different chemical cross-linkers with or without heavy isotope labels. Kojak was used to analyze both novel and existing data sets and was compared to existing cross-linking algorithms. The algorithm provided increased cross-link identifications over existing algorithms and, equally importantly, the results in a fraction of computational time. The Kojak algorithm is open-source, cross-platform, and freely available. This software provides both existing and new cross-linking researchers alike an effective way to derive additional cross-link identifications from new or existing data sets. For new users, it provides a simple analytical resource resulting in more cross-link identifications than other methods.

  19. Low-temperature single-molecule spectroscopy on photosynthetic pigment-protein complexes from purple bacteria.

    Science.gov (United States)

    Oellerich, Silke; Köhler, Jürgen

    2009-01-01

    The primary reactions of purple bacterial photosynthesis take place within two well characterized pigment-protein complexes, the core Reaction Center-Light Harvesting 1 (RC-LH1) complex and the more peripheral Light Harvesting 2 (LH2) complex. These antenna complexes serve to absorb incident solar radiation and to transfer it to the reaction-centers, where it is used to 'power' the photosynthetic redox reaction. This review provides an overview of how the character of the electronically excited states of these pigment-protein complexes are determined by quantum mechanics and how the respective spectral signatures can be observed by single-molecule spectroscopy.

  20. Interaction of the anaphase-promoting complex/cyclosome and proteasome protein complexes with multiubiquitin chain-binding proteins

    DEFF Research Database (Denmark)

    Seeger, Michael; Hartmann-Petersen, Rasmus; Wilkinson, Caroline R M

    2003-01-01

    Fission yeast Rhp23 and Pus1 represent two families of multiubiquitin chain-binding proteins that associate with the proteasome. We show that both proteins bind to different regions of the proteasome subunit Mts4. The binding site for Pus1 was mapped to a cluster of repetitive sequences also foun...

  1. A novel approach to analyze membrane proteins by laser mass spectrometry: from protein subunits to the integral complex.

    Science.gov (United States)

    Morgner, Nina; Kleinschroth, Thomas; Barth, Hans-Dieter; Ludwig, Bernd; Brutschy, Bernhard

    2007-08-01

    A novel laser-based mass spectrometry method termed LILBID (laser-induced liquid bead ion desorption) is applied to analyze large integral membrane protein complexes and their subunits. In this method the ions are IR-laser desorbed from aqueous microdroplets containing the hydrophobic protein complexes solubilized by detergent. The method is highly sensitive, very efficient in sample handling, relatively tolerant to various buffers, and detects the ions in narrow, mainly low-charge state distributions. The crucial experimental parameter determining whether the integral complex or its subunits are observed is the laser intensity: At very low intensity level corresponding to an ultrasoft desorption, the intact complexes, together with few detergent molecules, are transferred into vacuum. Under these conditions the oligomerization state of the complex (i.e., its quaternary structure) may be analyzed. At higher laser intensity, complexes are thermolyzed into subunits, with any residual detergent being stripped off to yield the true mass of the polypeptides. The model complexes studied are derived from the respiratory chain of the soil bacterium Paracoccus denitrificans and include complexes III (cytochrome bc(1) complex) and IV (cytochrome c oxidase). These are well characterized multi-subunit membrane proteins, with the individual hydrophobic subunits being composed of up to 12 transmembrane helices.

  2. The HIR corepressor complex binds to nucleosomes generating a distinct protein/DNA complex resistant to remodeling by SWI/SNF.

    Science.gov (United States)

    Prochasson, Philippe; Florens, Laurence; Swanson, Selene K; Washburn, Michael P; Workman, Jerry L

    2005-11-01

    The histone regulatory (HIR) and histone promoter control (HPC) repressor proteins regulate three of the four histone gene loci during the Saccharomyces cerevisiae cell cycle. Here, we demonstrate that Hir1, Hir2, Hir3, and Hpc2 proteins form a stable HIR repressor complex. The HIR complex promotes histone deposition onto DNA in vitro and constitutes a novel nucleosome assembly complex. The HIR complex stably binds to DNA and nucleosomes. Furthermore, HIR complex binding to nucleosomes forms a distinct protein/DNA complex resistant to remodeling by SWI/SNF. Thus, the HIR complex is a novel nucleosome assembly complex which functions with SWI/SNF to regulate transcription.

  3. A three-hybrid system to probe in vivo protein-protein interactions: application to the essential proteins of the RD1 complex of M. tuberculosis.

    Directory of Open Access Journals (Sweden)

    Megha Tharad

    Full Text Available BACKGROUND: Protein-protein interactions play a crucial role in enabling a pathogen to survive within a host. In many cases the interactions involve a complex of proteins rather than just two given proteins. This is especially true for pathogens like M. tuberculosis that are able to successfully survive the inhospitable environment of the macrophage. Studying such interactions in detail may help in developing small molecules that either disrupt or augment the interactions. Here, we describe the development of an E. coli based bacterial three-hybrid system that can be used effectively to study ternary protein complexes. METHODOLOGY/PRINCIPAL FINDINGS: The protein-protein interactions involved in M. tuberculosis pathogenesis have been used as a model for the validation of the three-hybrid system. Using the M. tuberculosis RD1 encoded proteins CFP10, ESAT6 and Rv3871 for our proof-of-concept studies, we show that the interaction between the proteins CFP10 and Rv3871 is strengthened and stabilized in the presence of ESAT6, the known heterodimeric partner of CFP10. Isolating peptide candidates that can disrupt crucial protein-protein interactions is another application that the system offers. We demonstrate this by using CFP10 protein as a disruptor of a previously established interaction between ESAT6 and a small peptide HCL1; at the same time we also show that CFP10 is not able to disrupt the strong interaction between ESAT6 and another peptide SL3. CONCLUSIONS/SIGNIFICANCE: The validation of the three-hybrid system paves the way for finding new peptides that are stronger binders of ESAT6 compared even to its natural partner CFP10. Additionally, we believe that the system offers an opportunity to study tri-protein complexes and also perform a screening of protein/peptide binders to known interacting proteins so as to elucidate novel tri-protein complexes.

  4. Identification of a preassembled TRH receptor-G(q/11) protein complex in HEK293 cells.

    Science.gov (United States)

    Drastichova, Zdenka; Novotny, Jiri

    2012-01-01

    Protein-protein interactions define specificity in signal transduction and these interactions are central to transmembrane signaling by G-protein-coupled receptors (GPCRs). It is not quite clear, however, whether GPCRs and the regulatory trimeric G-proteins behave as freely and independently diffusible molecules in the plasma membrane or whether they form some preassociated complexes. Here we used clear-native polyacrylamide gel electrophoresis (CN-PAGE) to investigate the presumed coupling between thyrotropin-releasing hormone (TRH) receptor and its cognate G(q/11) protein in HEK293 cells expressing high levels of these proteins. Under different solubilization conditions, the TRH receptor (TRH-R) was identified to form a putative pentameric complex composed of TRH-R homodimer and G(q/11) protein. The presumed association of TRH-R with G(q/11)α or Gβ proteins in plasma membranes was verified by RNAi experiments. After 10- or 30-min hormone treatment, TRH-R signaling complexes gradually dissociated with a concomitant release of receptor homodimers. These observations support the model in which GPCRs can be coupled to trimeric G-proteins in preassembled signaling complexes, which might be dynamically regulated upon receptor activation. The precoupling of receptors with their cognate G-proteins can contribute to faster G-protein activation and subsequent signal transfer into the cell interior.

  5. On the interconnection of stable protein complexes: inter-complex hubs and their conservation in Saccharomyces cerevisiae and Homo sapiens networks.

    Science.gov (United States)

    Guerra, Concettina

    2015-01-01

    Protein complexes are key molecular entities that perform a variety of essential cellular functions. The connectivity of proteins within a complex has been widely investigated with both experimental and computational techniques. We developed a computational approach to identify and characterise proteins that play a role in interconnecting complexes. We computed a measure of inter-complex centrality, the crossroad index, based on disjoint paths connecting proteins in distinct complexes and identified inter-complex hubs as proteins with a high value of the crossroad index. We applied the approach to a set of stable complexes in Saccharomyces cerevisiae and in Homo sapiens. Just as done for hubs, we evaluated the topological and biological properties of inter-complex hubs addressing the following questions. Do inter-complex hubs tend to be evolutionary conserved? What is the relation between crossroad index and essentiality? We found a good correlation between inter-complex hubs and both evolutionary conservation and essentiality.

  6. Purification of RNA-Protein Splicing Complexes Using a Tagged Protein from In Vitro Splicing Reaction Mixture.

    Science.gov (United States)

    Kataoka, Naoyuki

    2016-01-01

    In eukaryotes, pre-mRNA splicing is an essential step for gene expression. Splicing reactions have been well investigated by using in vitro splicing reactions with extracts prepared from cultured cells. Here, we describe protocols for the preparation of splicing-competent extracts from cells expressing a tagged spliceosomal protein. The whole-cell extracts are able to splice exogenously added pre-mRNA and the RNA-protein complex formed in the in vitro splicing reaction can be purified by immunoprecipitation using antibodies against the peptide tag on the splicing protein. The method described here to prepare splicing-active extracts from whole cells is particularly useful when studying pre-mRNA splicing in various cell types, and the expression of a tagged spliceosomal protein allows one to purify and analyze the RNA-protein complexes by simple immunoprecipitation.

  7. Chaperonin Structure - The Large Multi-Subunit Protein Complex

    Directory of Open Access Journals (Sweden)

    Irena Roterman

    2009-03-01

    Full Text Available The multi sub-unit protein structure representing the chaperonins group is analyzed with respect to its hydrophobicity distribution. The proteins of this group assist protein folding supported by ATP. The specific axial symmetry GroEL structure (two rings of seven units stacked back to back - 524 aa each and the GroES (single ring of seven units - 97 aa each polypeptide chains are analyzed using the hydrophobicity distribution expressed as excess/deficiency all over the molecule to search for structure-to-function relationships. The empirically observed distribution of hydrophobic residues is confronted with the theoretical one representing the idealized hydrophobic core with hydrophilic residues exposure on the surface. The observed discrepancy between these two distributions seems to be aim-oriented, determining the structure-to-function relation. The hydrophobic force field structure generated by the chaperonin capsule is presented. Its possible influence on substrate folding is suggested.

  8. Affinity-mass spectrometry approaches for elucidating structures and interactions of protein-ligand complexes.

    Science.gov (United States)

    Petre, Brînduşa Alina

    2014-01-01

    Affinity-based approaches in combination with mass spectrometry for molecular structure identification in biological complexes such as protein-protein, and protein-carbohydrate complexes have become popular in recent years. Affinity-mass spectrometry involves immobilization of a biomolecule on a chemically activated support, affinity binding of ligand(s), dissociation of the complex, and mass spectrometric analysis of the bound fraction. In this chapter the affinity-mass spectrometric methodologies will be presented for (1) identification of the epitope structures in the Abeta amyloid peptide, (2) identification of oxidative modifications in proteins such as nitration of tyrosine, (3) determination of carbohydrate recognition domains, and as (4) development of a biosensor chip-based mass spectrometric system for concomitant quantification and identification of protein-ligand complexes.

  9. Mathematical simulation of complex formation of protein molecules allowing for their domain structure

    Science.gov (United States)

    Koshlan, T. V.; Kulikov, K. G.

    2017-04-01

    A physical model of the interactions between protein molecules has been presented and an analysis of their propensity to form complex biological complexes has been performed. The reactivities of proteins have been studied using electrostatics methods based on the example of the histone chaperone Nap1 and histones H2A and H2B. The capability of proteins to form stable biological complexes that allow for different segments of amino acid sequences has been analyzed. The ability of protein molecules to form compounds has been considered by calculating matrices of electrostatic potential energy of amino acid residues constituting the polypeptide chain. The method of block matrices has been used in the analysis of the ability of protein molecules to form complex biological compounds.

  10. Mutations of photosystem II D1 protein that empower efficient phenotypes of Chlamydomonas reinhardtii under extreme environment in space.

    Directory of Open Access Journals (Sweden)

    Maria Teresa Giardi

    Full Text Available Space missions have enabled testing how microorganisms, animals and plants respond to extra-terrestrial, complex and hazardous environment in space. Photosynthetic organisms are thought to be relatively more prone to microgravity, weak magnetic field and cosmic radiation because oxygenic photosynthesis is intimately associated with capture and conversion of light energy into chemical energy, a process that has adapted to relatively less complex and contained environment on Earth. To study the direct effect of the space environment on the fundamental process of photosynthesis, we sent into low Earth orbit space engineered and mutated strains of the unicellular green alga, Chlamydomonas reinhardtii, which has been widely used as a model of photosynthetic organisms. The algal mutants contained specific amino acid substitutions in the functionally important regions of the pivotal Photosystem II (PSII reaction centre D1 protein near the QB binding pocket and in the environment surrounding Tyr-161 (YZ electron acceptor of the oxygen-evolving complex. Using real-time measurements of PSII photochemistry, here we show that during the space flight while the control strain and two D1 mutants (A250L and V160A were inefficient in carrying out PSII activity, two other D1 mutants, I163N and A251C, performed efficient photosynthesis, and actively re-grew upon return to Earth. Mimicking the neutron irradiation component of cosmic rays on Earth yielded similar results. Experiments with I163N and A251C D1 mutants performed on ground showed that they are better able to modulate PSII excitation pressure and have higher capacity to reoxidize the QA (- state of the primary electron acceptor. These results highlight the contribution of D1 conformation in relation to photosynthesis and oxygen production in space.

  11. Mutations of photosystem II D1 protein that empower efficient phenotypes of Chlamydomonas reinhardtii under extreme environment in space.

    Science.gov (United States)

    Giardi, Maria Teresa; Rea, Giuseppina; Lambreva, Maya D; Antonacci, Amina; Pastorelli, Sandro; Bertalan, Ivo; Johanningmeier, Udo; Mattoo, Autar K

    2013-01-01

    Space missions have enabled testing how microorganisms, animals and plants respond to extra-terrestrial, complex and hazardous environment in space. Photosynthetic organisms are thought to be relatively more prone to microgravity, weak magnetic field and cosmic radiation because oxygenic photosynthesis is intimately associated with capture and conversion of light energy into chemical energy, a process that has adapted to relatively less complex and contained environment on Earth. To study the direct effect of the space environment on the fundamental process of photosynthesis, we sent into low Earth orbit space engineered and mutated strains of the unicellular green alga, Chlamydomonas reinhardtii, which has been widely used as a model of photosynthetic organisms. The algal mutants contained specific amino acid substitutions in the functionally important regions of the pivotal Photosystem II (PSII) reaction centre D1 protein near the QB binding pocket and in the environment surrounding Tyr-161 (YZ) electron acceptor of the oxygen-evolving complex. Using real-time measurements of PSII photochemistry, here we show that during the space flight while the control strain and two D1 mutants (A250L and V160A) were inefficient in carrying out PSII activity, two other D1 mutants, I163N and A251C, performed efficient photosynthesis, and actively re-grew upon return to Earth. Mimicking the neutron irradiation component of cosmic rays on Earth yielded similar results. Experiments with I163N and A251C D1 mutants performed on ground showed that they are better able to modulate PSII excitation pressure and have higher capacity to reoxidize the QA (-) state of the primary electron acceptor. These results highlight the contribution of D1 conformation in relation to photosynthesis and oxygen production in space.

  12. AMMOS2: a web server for protein-ligand-water complexes refinement via molecular mechanics.

    Science.gov (United States)

    Labbé, Céline M; Pencheva, Tania; Jereva, Dessislava; Desvillechabrol, Dimitri; Becot, Jérôme; Villoutreix, Bruno O; Pajeva, Ilza; Miteva, Maria A

    2017-05-09

    AMMOS2 is an interactive web server for efficient computational refinement of protein-small organic molecule complexes. The AMMOS2 protocol employs atomic-level energy minimization of a large number of experimental or modeled protein-ligand complexes. The web server is based on the previously developed standalone software AMMOS (Automatic Molecular Mechanics Optimization for in silico Screening). AMMOS utilizes the physics-based force field AMMP sp4 and performs optimization of protein-ligand interactions at five levels of flexibility of the protein receptor. The new version 2 of AMMOS implemented in the AMMOS2 web server allows the users to include explicit water molecules and individual metal ions in the protein-ligand complexes during minimization. The web server provides comprehensive analysis of computed energies and interactive visualization of refined protein-ligand complexes. The ligands are ranked by the minimized binding energies allowing the users to perform additional analysis for drug discovery or chemical biology projects. The web server has been extensively tested on 21 diverse protein-ligand complexes. AMMOS2 minimization shows consistent improvement over the initial complex structures in terms of minimized protein-ligand binding energies and water positions optimization. The AMMOS2 web server is freely available without any registration requirement at the URL: http://drugmod.rpbs.univ-paris-diderot.fr/ammosHome.php. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Technical tip: high-resolution isolation of nanoparticle-protein corona complexes from physiological fluids.

    Science.gov (United States)

    Di Silvio, Desirè; Rigby, Neil; Bajka, Balazs; Mayes, Andrew; Mackie, Alan; Baldelli Bombelli, Francesca

    2015-07-28

    Nanoparticles (NPs) in contact with biological fluids are generally coated with environmental proteins, forming a stronger layer of proteins around the NP surface called the hard corona. Protein corona complexes provide the biological identity of the NPs and their isolation and characterization are essential to understand their in vitro and in vivo behaviour. Here we present a one-step methodology to recover NPs from complex biological media in a stable non-aggregated form without affecting the structure or composition of the corona. This method allows NPs to be separated from complex fluids containing biological particulates and in a form suitable for use in further experiments. The study has been performed systematically comparing the new proposed methodology to standard approaches for a wide panel of NPs. NPs were first incubated in the biological fluid and successively recovered by sucrose gradient ultracentrifugation in order to separate the NPs and their protein corona from the loosely bound proteins. The isolated NP-protein complexes were characterized by size and protein composition through Dynamic Light Scattering, Nanoparticle Tracking Analysis, SDS-PAGE and LC-MS. The protocol described is versatile and can be applied to diverse nanomaterials and complex fluids. It is shown to have higher resolution in separating the multiple protein corona complexes from a biological environment with a much lower impact on their in situ structure compared to conventional centrifugal approaches.

  14. Capture of unstable protein complex on the streptavidin-coated single-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Liu Zunfeng, E-mail: liuz2@chem.leidenuniv.nl; Voskamp, Patrick [Cell Observatory, Biophysical Structural Chemistry, Leiden Institute of Chemistry (Netherlands); Zhang Yue; Chu Fuqiang [Changzhou University, School of Pharmaceutical Engineering and Life Science (China); Abrahams, Jan Pieter, E-mail: abrahams@chem.leidenuniv.nl [Cell Observatory, Biophysical Structural Chemistry, Leiden Institute of Chemistry (Netherlands)

    2013-04-15

    Purification of unstable protein complexes is a bottleneck for investigation of their 3D structure and in protein-protein interaction studies. In this paper, we demonstrate that streptavidin-coated single-walled carbon nanotubes (Strep Bullet SWNT) can be used to capture the biotinylated DNA-EcoRI complexes on a 2D surface and in solution using atomic force microscopy and electrophoresis analysis, respectively. The restriction enzyme EcoRI forms unstable complexes with DNA in the absence of Mg{sup 2+}. Capturing the EcoRI-DNA complexes on the Strep Bullet SWNT succeeded in the absence of Mg{sup 2+}, demonstrating that the Strep Bullet SWNT can be used for purifying unstable protein complexes.

  15. A high-accuracy consensus map of yeast protein complexes reveals modular nature of gene essentiality

    Directory of Open Access Journals (Sweden)

    Marcotte Edward M

    2007-07-01

    Full Text Available Abstract Background Identifying all protein complexes in an organism is a major goal of systems biology. In the past 18 months, the results of two genome-scale tandem affinity purification-mass spectrometry (TAP-MS assays in yeast have been published, along with corresponding complex maps. For most complexes, the published data sets were surprisingly uncorrelated. It is therefore useful to consider the raw data from each study and generate an accurate complex map from a high-confidence data set that integrates the results of these and earlier assays. Results Using an unsupervised probabilistic scoring scheme, we assigned a confidence score to each interaction in the matrix-model interpretation of the large-scale yeast mass-spectrometry data sets. The scoring metric proved more accurate than the filtering schemes used in the original data sets. We then took a high-confidence subset of these interactions and derived a set of complexes using MCL. The complexes show high correlation with existing annotations. Hierarchical organization of some protein complexes is evident from inter-complex interactions. Conclusion We demonstrate that our scoring method can generate an integrated high-confidence subset of observed matrix-model interactions, which we subsequently used to derive an accurate map of yeast complexes. Our results indicate that essentiality is a product of the protein complex rather than the individual protein, and that we have achieved near saturation of the yeast high-abundance, rich-media-expressed "complex-ome."

  16. Dynamics of Nanoparticle-Protein Corona Complex Formation: Analytical Results from Population Balance Equations

    Science.gov (United States)

    Darabi Sahneh, Faryad; Scoglio, Caterina; Riviere, Jim

    2013-01-01

    Background Nanoparticle-protein corona complex formation involves absorption of protein molecules onto nanoparticle surfaces in a physiological environment. Understanding the corona formation process is crucial in predicting nanoparticle behavior in biological systems, including applications of nanotoxicology and development of nano drug delivery platforms. Method This paper extends the modeling work in to derive a mathematical model describing the dynamics of nanoparticle corona complex formation from population balance equations. We apply nonlinear dynamics techniques to derive analytical results for the composition of nanoparticle-protein corona complex, and validate our results through numerical simulations. Results The model presented in this paper exhibits two phases of corona complex dynamics. In the first phase, proteins rapidly bind to the free surface of nanoparticles, leading to a metastable composition. During the second phase, continuous association and dissociation of protein molecules with nanoparticles slowly changes the composition of the corona complex. Given sufficient time, composition of the corona complex reaches an equilibrium state of stable composition. We find analytical approximate formulae for metastable and stable compositions of corona complex. Our formulae are very well-structured to clearly identify important parameters determining corona composition. Conclusion The dynamics of biocorona formation constitute vital aspect of interactions between nanoparticles and living organisms. Our results further understanding of these dynamics through quantitation of experimental conditions, modeling results for in vitro systems to better predict behavior for in vivo systems. One potential application would involve a single cell culture medium related to a complex protein medium, such as blood or tissue fluid. PMID:23741371

  17. Dynamics of nanoparticle-protein corona complex formation: analytical results from population balance equations.

    Science.gov (United States)

    Darabi Sahneh, Faryad; Scoglio, Caterina; Riviere, Jim

    2013-01-01

    Nanoparticle-protein corona complex formation involves absorption of protein molecules onto nanoparticle surfaces in a physiological environment. Understanding the corona formation process is crucial in predicting nanoparticle behavior in biological systems, including applications of nanotoxicology and development of nano drug delivery platforms. This paper extends the modeling work in to derive a mathematical model describing the dynamics of nanoparticle corona complex formation from population balance equations. We apply nonlinear dynamics techniques to derive analytical results for the composition of nanoparticle-protein corona complex, and validate our results through numerical simulations. The model presented in this paper exhibits two phases of corona complex dynamics. In the first phase, proteins rapidly bind to the free surface of nanoparticles, leading to a metastable composition. During the second phase, continuous association and dissociation of protein molecules with nanoparticles slowly changes the composition of the corona complex. Given sufficient time, composition of the corona complex reaches an equilibrium state of stable composition. We find analytical approximate formulae for metastable and stable compositions of corona complex. Our formulae are very well-structured to clearly identify important parameters determining corona composition. The dynamics of biocorona formation constitute vital aspect of interactions between nanoparticles and living organisms. Our results further understanding of these dynamics through quantitation of experimental conditions, modeling results for in vitro systems to better predict behavior for in vivo systems. One potential application would involve a single cell culture medium related to a complex protein medium, such as blood or tissue fluid.

  18. Protein/polysaccharide complexes at air/water interfaces

    NARCIS (Netherlands)

    Ganzevles, R.A.

    2007-01-01

    KEYWORDS:protein, polysaccharide,RPGR-containing protein complexes in syndromic and non ...

    Indian Academy of Sciences (India)

    2009-12-31

    Dec 31, 2009 ... of IFT, protein and membrane cargo are transported bidirec- tionally along the axoneme by coordinated action of kinesin. (anterograde; KIF family members) and dynein (retrograde) motors (Besharse et al. 2003; Follit et al. 2006). Given their near-ubiquitous presence, cilia are in- volved in diverse cellular ...

  19. Quality control of inner nuclear membrane proteins by the Asi complex.

    Science.gov (United States)

    Foresti, Ombretta; Rodriguez-Vaello, Victoria; Funaya, Charlotta; Carvalho, Pedro

    2014-11-07

    Misfolded proteins in the endoplasmic reticulum (ER) are eliminated by a quality control system called ER-associated protein degradation (ERAD). However, it is unknown how misfolded proteins in the inner nuclear membrane (INM), a specialized ER subdomain, are degraded. We used a quantitative proteomics approach to reveal an ERAD branch required for INM protein quality control in yeast. This branch involved the integral membrane proteins Asi1, Asi2, and Asi3, which assembled into an Asi complex. Besides INM misfolded proteins, the Asi complex promoted the degradation of functional regulators of sterol biosynthesis. Asi-mediated ERAD was required for ER homeostasis, which suggests that spatial segregation of protein quality control systems contributes to ER function. Copyright © 2014, American Association for the Advancement of Science.

  1. Protein-poly(amino acid) complex precipitation for high-concentration protein formulation.

    Science.gov (United States)

    Kurinomaru, Takaaki; Maruyama, Takuya; Izaki, Shunsuke; Handa, Kenji; Kimoto, Tomoaki; Shiraki, Kentaro

    2014-08-01

    A method for concentration of protein solutions is required for high-dosage protein formulation. Here, we present a precipitation-redissolution method by poly(amino acid) for proteins, including therapeutic enzymes, antibodies, and hormones. The proteins were fully precipitated by the addition of poly-L-lysine or poly-L-glutamic acid at low ionic strength, after which precipitate was dissolved at physiological ionic strength. The activities and secondary structures of redissolved proteins, especially antibodies, were almost identical to the native state. The precipitation-redissolution method is a simple and rapid technique for concentration of protein formulations. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  2. A machine learning approach for ranking clusters of docked protein-protein complexes by pairwise cluster comparison.

    Science.gov (United States)

    Pfeiffenberger, Erik; Chaleil, Raphael A G; Moal, Iain H; Bates, Paul A

    2017-03-01

    Reliable identification of near-native poses of docked protein-protein complexes is still an unsolved problem. The intrinsic heterogeneity of protein-protein interactions is challenging for traditional biophysical or knowledge based potentials and the identification of many false positive binding sites is not unusual. Often, ranking protocols are based on initial clustering of docked poses followed by the application of an energy function to rank each cluster according to its lowest energy member. Here, we present an approach of cluster ranking based not only on one molecular descriptor (e.g., an energy function) but also employing a large number of descriptors that are integrated in a machine learning model, whereby, an extremely randomized tree classifier based on 109 molecular descriptors is trained. The protocol is based on first locally enriching clusters with additional poses, the clusters are then characterized using features describing the distribution of molecular descriptors within the cluster, which are combined into a pairwise cluster comparison model to discriminate near-native from incorrect clusters. The results show that our approach is able to identify clusters containing near-native protein-protein complexes. In addition, we present an analysis of the descriptors with respect to their power to discriminate near native from incorrect clusters and how data transformations and recursive feature elimination can improve the ranking performance. Proteins 2017; 85:528-543. © 2016 Wiley Periodicals, Inc. © 2016 The Authors Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.

  3. The challenges in and importance of analysing protein structure and physical stability in complex formulations

    DEFF Research Database (Denmark)

    Jorgensen, L.; Jensen, Minna Grønning; Roest, N.

    2013-01-01

    In this review several analytical challenges that may be encountered during protein formulation development of complex formulations are discussed through recent examples. These examples show how selected advanced biophysical methods can greatly increase our understanding of the system under...

  4. Structural Biology of Proteins of the Multi-enzyme Assembly Human Pyruvate Dehydrogenase Complex

    Science.gov (United States)

    2003-01-01

    Objectives and research challenges of this effort include: 1. Need to establish Human Pyruvate Dehydrogenase Complex protein crystals; 2. Need to test value of microgravity for improving crystal quality of Human Pyruvate Dehydrogenase Complex protein crystals; 3. Need to improve flight hardware in order to control and understand the effects of microgravity on crystallization of Human Pyruvate Dehydrogenase Complex proteins; 4. Need to integrate sets of national collaborations with the restricted and specific requirements of flight experiments; 5. Need to establish a highly controlled experiment in microgravity with a rigor not yet obtained; 6. Need to communicate both the rigor of microgravity experiments and the scientific value of results obtained from microgravity experiments to the national community; and 7. Need to advance the understanding of Human Pyruvate Dehydrogenase Complex structures so that scientific and commercial advance is identified for these proteins.

  5. A protein phosphatase 2A complex spatially controls plant cell division

    National Research Council Canada - National Science Library

    Spinner, Lara; Gadeyne, Astrid; Belcram, Katia; Goussot, Magali; Moison, Michaël; Duroc, Yann; Eeckhout, Dominique; De Winne, Nancy; Schaefer, Estelle; Van De Slijke, Eveline; Persiau, Geert; Witters, Erwin; Gevaert, Kris; De Jaeger, Geert; Bouchez, David; Van Damme, Daniël; Pastuglia, Martine

    2013-01-01

    .... This complex, which comprises TONNEAU1 and a PP2A heterotrimeric holoenzyme with FASS as regulatory subunit, is recruited to the cytoskeleton via the TONNEAU1-recruiting motif family of proteins...

  6. Acute phase proteins in cattle after exposure to complex stress

    DEFF Research Database (Denmark)

    Lomborg, S. R.; Nielsen, L. R.; Heegaard, Peter M. H.

    2008-01-01

    Abstract Stressors such as weaning, mixing and transportation have been shown to lead to increased blood concentrations of acute phase proteins (APP), including serum amyloid A (SAA) and haptoglobin, in calves. This study was therefore undertaken to assess whether SAA and haptoglobin levels...... concentrations of SAA and haptoglobin increased significantly in response to the stressors (P...... in blood mirror stress in adult cattle. Six clinically healthy Holstein cows and two Holstein heifers were transported for four to six hours to a research facility, where each animal was housed in solitary tie stalls. Blood samples for evaluation of leukocyte counts and serum SAA and haptoglobin...

  7. The beginning of a beautiful friendship: cross-linking/mass spectrometry and modelling of proteins and multi-protein complexes.

    Science.gov (United States)

    Rappsilber, Juri

    2011-03-01

    After more than a decade of method development, cross-linking in combination with mass spectrometry and bioinformatics is finally coming of age. This technology now provides improved opportunities for modelling by mapping structural details of functional complexes in solution. The structure of proteins or protein complexes is ascertained by identifying amino acid pairs that are positioned in close proximity to each other. The validity of this technique has recently been benchmarked for large multi-protein complexes, by comparing cross-link data with that from a crystal structure of RNA polymerase II. Here, the specific nature of this cross-linking data will be discussed to assess the technical challenges and opportunities for model building. We believe that once remaining technological challenges of cross-linking/mass spectrometry have been addressed and cross-linking/mass spectrometry data has been incorporated into modelling algorithms it will quickly become an indispensable companion of protein and protein complex modelling and a corner-stone of integrated structural biology. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. Cold-acclimation limits low temperature induced photoinhibition by promoting a higher photochemical quantum yield and a more effective PSII restoration in darkness in the Antarctic rather than the Andean ecotype of Colobanthus quitensis Kunt Bartl (Cariophyllaceae

    Directory of Open Access Journals (Sweden)

    Bascuñán-Godoy Luisa

    2012-07-01

    kinetic and extent of recovery process under darkness in both C. quitensis ecotypes. The greater recovery of PSII at low temperature in the Antarctic ecotype was related with its ability to maintain PsaA, Cyt b6/f and D1 protein after photoinhibitory conditions. This is probably due to either a higher stability of these polypeptides or to the maintenance of their turnover upon cold acclimation. In both cases, it is associated to the maintenance of electron drainage from the intersystem pool, which maintains QA more oxidized and may allow the synthesis of ATP and NADPH necessaries for the regeneration of ribulose 1,5-bisphosphate in the Calvin Cycle. This could be a key factor for C. quitensis success under the harsh conditions and the short growing period in the Maritime Antarctic.

  9. Gel and gel-free approaches for the quantitative characterisation of complex protein mixtures

    CSIR Research Space (South Africa)

    Buthelezi, S

    2012-10-01

    Full Text Available reliable set of methods for profiling proteins in a complex mixture in order to allow for the mining of low abundant species. To achieve this, several fractionation techniques were applied to samples of bovine hepatic tissue. These included two... further separated via low pH reverse phase (RP) chromatography before being introduced for mass spectrometric analysis. MATERIALS AND METHODS Figure 1: Study design to analyse a complex mixture of proteins extracted from hepatic tissue. To determine...

  10. On the importance of polar interactions for complexes containing intrinsically disordered proteins.

    Directory of Open Access Journals (Sweden)

    Eric T C Wong

    Full Text Available There is a growing recognition for the importance of proteins with large intrinsically disordered (ID segments in cell signaling and regulation. ID segments in these proteins often harbor regions that mediate molecular recognition. Coupled folding and binding of the recognition regions has been proposed to confer high specificity to interactions involving ID segments. However, researchers recently questioned the origin of the interaction specificity of ID proteins because of the overrepresentation of hydrophobic residues in their interaction interfaces. Here, we focused on the role of polar and charged residues in interactions mediated by ID segments. Making use of the extended nature of most ID segments when in complex with globular proteins, we first identified large numbers of complexes between globular proteins and ID segments by using radius-of-gyration-based selection criteria. Consistent with previous studies, we found the interfaces of these complexes to be enriched in hydrophobic residues, and that these residues contribute significantly to the stability of the interaction interface. However, our analyses also show that polar interactions play a larger role in these complexes than in structured protein complexes. Computational alanine scanning and salt-bridge analysis indicate that interfaces in ID complexes are highly complementary with respect to electrostatics, more so than interfaces of globular proteins. Follow-up calculations of the electrostatic contributions to the free energy of binding uncovered significantly stronger Coulombic interactions in complexes harbouring ID segments than in structured protein complexes. However, they are counter-balanced by even higher polar-desolvation penalties. We propose that polar interactions are a key contributing factor to the observed high specificity of ID segment-mediated interactions.

  11. The HIR corepressor complex binds to nucleosomes generating a distinct protein/DNA complex resistant to remodeling by SWI/SNF

    OpenAIRE

    Prochasson, Philippe; Florens, Laurence; Swanson, Selene K.; Washburn, Michael P.; Workman, Jerry L.

    2005-01-01

    The histone regulatory (HIR) and histone promoter control (HPC) repressor proteins regulate three of the four histone gene loci during the Saccharomyces cerevisiae cell cycle. Here, we demonstrate that Hir1, Hir2, Hir3, and Hpc2 proteins form a stable HIR repressor complex. The HIR complex promotes histone deposition onto DNA in vitro and constitutes a novel nucleosome assembly complex. The HIR complex stably binds to DNA and nucleosomes. Furthermore, HIR complex binding to nucleosomes forms ...

  12. Conservation and Variability of Synaptonemal Complex Proteins in Phylogenesis of Eukaryotes

    Directory of Open Access Journals (Sweden)

    Tatiana M. Grishaeva

    2014-01-01

    Full Text Available The problems of the origin and evolution of meiosis include the enigmatic variability of the synaptonemal complexes (SCs which, being morphology similar, consist of different proteins in different eukaryotic phyla. Using bioinformatics methods, we monitored all available eukaryotic proteomes to find proteins similar to known SC proteins of model organisms. We found proteins similar to SC lateral element (LE proteins and possessing the HORMA domain in the majority of the eukaryotic taxa and assume them the most ancient among all SC proteins. Vertebrate LE proteins SYCP2, SYCP3, and SC65 proved to have related proteins in many invertebrate taxa. Proteins of SC central space are most evolutionarily variable. It means that different protein-protein interactions can exist to connect LEs. Proteins similar to the known SC proteins were not found in Euglenophyta, Chrysophyta, Charophyta, Xanthophyta, Dinoflagellata, and primitive Coelomata. We conclude that different proteins whose common feature is the presence of domains with a certain conformation are involved in the formation of the SC in different eukaryotic phyla. This permits a targeted search for orthologs of the SC proteins using phylogenetic trees. Here we consider example of phylogenetic trees for protozoans, fungi, algae, mosses, and flowering plants.

  13. Concordance of gene expression in human protein complexes reveals tissue specificity and pathology

    DEFF Research Database (Denmark)

    Börnigen, Daniela; Pers, Tune Hannes; Thorrez, Lieven

    2013-01-01

    Disease-causing variants in human genes usually lead to phenotypes specific to only a few tissues. Here, we present a method for predicting tissue specificity based on quantitative deregulation of protein complexes. The underlying assumption is that the degree of coordinated expression among...... proteins in a complex within a given tissue may pinpoint tissues that will be affected by a mutation in the complex and coordinated expression may reveal the complex to be active in the tissue. We identified known disease genes and their protein complex partners in a high-quality human interactome. Each...... susceptibility gene's tissue involvement was ranked based on coordinated expression with its interaction partners in a non-disease global map of human tissue-specific expression. The approach demonstrated high overall area under the curve (0.78) and was very successfully benchmarked against a random model...

  14. TORC1-regulated protein kinase Npr1 phosphorylates Orm to stimulate complex sphingolipid synthesis.

    Science.gov (United States)

    Shimobayashi, Mitsugu; Oppliger, Wolfgang; Moes, Suzette; Jenö, Paul; Hall, Michael N

    2013-03-01

    The evolutionarily conserved Orm1 and Orm2 proteins mediate sphingolipid homeostasis. However, the homologous Orm proteins and the signaling pathways modulating their phosphorylation and function are incompletely characterized. Here we demonstrate that inhibition of nutrient-sensitive target of rapamycin complex 1 (TORC1) stimulates Orm phosphorylation and synthesis of complex sphingolipids in Saccharomyces cerevisiae. TORC1 inhibition activates the kinase Npr1 that directly phosphorylates and activates the Orm proteins. Npr1-phosphorylated Orm1 and Orm2 stimulate de novo synthesis of complex sphingolipids downstream of serine palmitoyltransferase. Complex sphingolipids in turn stimulate plasma membrane localization and activity of the nutrient scavenging general amino acid permease 1. Thus activation of Orm and complex sphingolipid synthesis upon TORC1 inhibition is a physiological response to starvation.

  15. The multiBac protein complex production platform at the EMBL.

    Science.gov (United States)

    Berger, Imre; Garzoni, Frederic; Chaillet, Maxime; Haffke, Matthias; Gupta, Kapil; Aubert, Alice

    2013-07-11

    Proteomics research revealed the impressive complexity of eukaryotic proteomes in unprecedented detail. It is now a commonly accepted notion that proteins in cells mostly exist not as isolated entities but exert their biological activity in association with many other proteins, in humans ten or more, forming assembly lines in the cell for most if not all vital functions.(1,2) Knowledge of the function and architecture of these multiprotein assemblies requires their provision in superior quality and sufficient quantity for detailed analysis. The paucity of many protein complexes in cells, in particular in eukaryotes, prohibits their extraction from native sources, and necessitates recombinant production. The baculovirus expression vector system (BEVS) has proven to be particularly useful for producing eukaryotic proteins, the activity of which often relies on post-translational processing that other commonly used expression systems often cannot support.(3) BEVS use a recombinant baculovirus into which the gene of interest was inserted to infect insect cell cultures which in turn produce the protein of choice. MultiBac is a BEVS that has been particularly tailored for the production of eukaryotic protein complexes that contain many subunits.(4) A vital prerequisite for efficient production of proteins and their complexes are robust protocols for all steps involved in an expression experiment that ideally can be implemented as standard operating procedures (SOPs) and followed also by non-specialist users with comparative ease. The MultiBac platform at the European Molecular Biology Laboratory (EMBL) uses SOPs for all steps involved in a multiprotein complex expression experiment, starting from insertion of the genes into an engineered baculoviral genome optimized for heterologous protein production properties to small-scale analysis of the protein specimens produced.(5-8) The platform is installed in an open-access mode at EMBL Grenoble and has supported many

  16. Metal transfer within the Escherichia coli HypB-HypA complex of hydrogenase accessory proteins.

    Science.gov (United States)

    Douglas, Colin D; Ngu, Thanh T; Kaluarachchi, Harini; Zamble, Deborah B

    2013-09-03

    The maturation of [NiFe]-hydrogenase in Escherichia coli is a complex process involving many steps and multiple accessory proteins. The two accessory proteins HypA and HypB interact with each other and are thought to cooperate to insert nickel into the active site of the hydrogenase-3 precursor protein. Both of these accessory proteins bind metal individually, but little is known about the metal-binding activities of the proteins once they assemble together into a functional complex. In this study, we investigate how complex formation modulates metal binding to the E. coli proteins HypA and HypB. This work lead to a re-evaluation of the HypA nickel affinity, revealing a KD on the order of 10(-8) M. HypA can efficiently remove nickel, but not zinc, from the metal-binding site in the GTPase domain of HypB, a process that is less efficient when complex formation between HypA and HypB is disrupted. Furthermore, nickel release from HypB to HypA is specifically accelerated when HypB is loaded with GDP, but not GTP. These results are consistent with the HypA-HypB complex serving as a transfer step in the relay of nickel from membrane transporter to its final destination in the hydrogenase active site and suggest that this complex contributes to the metal fidelity of this pathway.

  17. BIOCHEMICAL CHARACTERIZATION OF NATIVE USHER PROTEIN COMPLEXES FROM A VESICULAR SUBFRACTION OF TRACHEAL EPITHELIAL CELLS†

    Science.gov (United States)

    Zallocchi, Marisa; Sisson, Joseph H.; Cosgrove, Dominic

    2010-01-01

    Usher syndrome is the major cause of deaf/blindness in the world. It is a genetic heterogeneous disorder, with nine genes already identified as causative for the disease. We noted expression of all known Usher proteins in bovine tracheal epithelial cells, and exploited this system for large-scale biochemical analysis of Usher protein complexes. The dissected epithelia were homogenized in non-detergent buffer, and sedimented on sucrose gradients. At least two complexes were evident after the first gradient: one formed by specific isoforms of CDH23, PCDH15 and VLGR-1, and a different one at the top of the gradient that included all the Usher proteins and rab5, a transport vesicle marker. TEM analysis of these top fractions found them enriched in 100–200 nm vesicles, confirming a vesicular association of the Usher complex(es). Immunoisolation of these vesicles confirmed some of the associations already predicted and identified novel interactions. When the vesicles are lysed in the presence of phenylbutyrate, most of the Usher proteins co-sediment into the gradient at a sedimentation coefficient of approximately 50S, correlating with a predicted molecular mass of 2 × 106 Daltons. Although it is still unclear whether there is only one complex or several independent complexes that are trafficked within distinct vesicular pools, this work shows for the first time that native Usher proteins complexes occur in vivo. This complex(es) is present primarily in transport vesicles at the apical pole of tracheal epithelial cells, predicting that Usher proteins may be directionally transported as complexes in hair cells and photoreceptors. PMID:20058854

  18. An integrated approach to identify protein complex based on best neighbour and modularity increment.

    Science.gov (United States)

    Shen, Xianjun; Zhao, Yanli; Li, Yanan; Yi, Yang; He, Tingting; Yang, Jincai

    2015-01-01

    In order to overcome the limitations of global modularity and the deficiency of local modularity, we propose a hybrid modularity measure Local-Global Quantification (LGQ) which considers global modularity and local modularity together. LGQ adopts a suitable module feature adjustable parameter to control the balance of global detecting capability and local search capability in Protein-Protein Interactions (PPI) Network. Furthermore, we develop a new protein complex mining algorithm called Best Neighbour and Local-Global Quantification (BN-LGQ) which integrates the best neighbour node and modularity increment. BN-LGQ expands the protein complex by fast searching the best neighbour node of the current cluster and by calculating the modularity increment as a metric to determine whether the best neighbour node can join the current cluster. The experimental results show BN-LGQ performs a better accuracy on predicting protein complexes and has a higher match with the reference protein complexes than MCL and MCODE algorithms. Moreover, BN-LGQ can effectively discover protein complexes with better biological significance in the PPI network.

  19. Visualization of recombinant DNA and protein complexes using atomic force microscopy.

    Science.gov (United States)

    Murphy, Patrick J M; Shannon, Morgan; Goertz, John

    2011-07-18

    Atomic force microscopy (AFM) allows for the visualizing of individual proteins, DNA molecules, protein-protein complexes, and DNA-protein complexes. On the end of the microscope's cantilever is a nano-scale probe, which traverses image areas ranging from nanometers to micrometers, measuring the elevation of macromolecules resting on the substrate surface at any given point. Electrostatic forces cause proteins, lipids, and nucleic acids to loosely attach to the substrate in random orientations and permit imaging. The generated data resemble a topographical map, where the macromolecules resolve as three-dimensional particles of discrete sizes (Figure 1). Tapping mode AFM involves the repeated oscillation of the cantilever, which permits imaging of relatively soft biomaterials such as DNA and proteins. One of the notable benefits of AFM over other nanoscale microscopy techniques is its relative adaptability to visualize individual proteins and macromolecular complexes in aqueous buffers, including near-physiologic buffered conditions, in real-time, and without staining or coating the sample to be imaged. The method presented here describes the imaging of DNA and an immunoadsorbed transcription factor (i.e. the glucocorticoid receptor, GR) in buffered solution (Figure 2). Immunoadsorbed proteins and protein complexes can be separated from the immunoadsorbing antibody-bead pellet by competition with the antibody epitope and then imaged (Figure 2A). This allows for biochemical manipulation of the biomolecules of interest prior to imaging. Once purified, DNA and proteins can be mixed and the resultant interacting complex can be imaged as well. Binding of DNA to mica requires a divalent cation, such as Ni(2+) or Mg(2+), which can be added to sample buffers yet maintain protein activity. Using a similar approach, AFM has been utilized to visualize individual enzymes, including RNA polymerase and a repair enzyme, bound to individual DNA strands. These experiments provide

  20. Novel UV assay for protein determination and the characterization of copper-protein complexes by mass spectrometry.

    Science.gov (United States)

    Drochioiu, G; Damoc, N E; Przybylski, M

    2006-05-15

    A very simple, highly selective and sensitive assay of proteins based on the biuret absorption in the ultraviolet region has been developed. The well-known biuret assay is based on the reaction of proteins with copper ions under strong alkaline conditions to form a copper-protein complex. Yet, copper ions may seriously interfere with the determination if the measurement is made in the UV range. In the present approach, proteins mobilize copper ions from insoluble salts at different pH values, and the copper-protein complexes are investigated by UV spectrophotometry and mass spectrometry. Upon using copper phosphate, free copper ions do not interfere with the determination from 540 to 240nm. Copper absorbance slowly increases from 240 to 190nm where a blank with the reagents is recommended. A maximum absorbance for the copper-protein complex was found at 226nm and high pH value. The stoichiometries of the copper-protein complexes measured directly with a mass spectrometer are pH dependent: half of the peptides without any histidine residue chelate just a single Cu(2+) ion at pH 7.4 but each such peptide mobilizes from 1 to 6 Cu(2+) ions at pH 10.3. To determine proteins, 1-1.5ml of 1.8% KOH solution with 0-20mugml(-1) protein is treated with 25mg of copper phosphate powder. The mixture is powerfully stirred, centrifuged, and the absorbance of the supernatant is measured at 226nm in 1cm quartz cuvettes against a blank of the reagents. The color system obeys Beer's law in the range 0.1-20mugml(-1) protein at this wavelength. The molar absorptivity value proved to be a characteristic of each protein being analyzed. Therefore, individual proteins should be used to plot calibration curves. This assay proved to be over 100 times more sensitive than the classical biuret procedure. The method is highly selective and the determination is little affected by the presence of other substances. All other important analytical parameters were studied and practical applicability of

  1. N-Ras induces alterations in Golgi complex architecture and in constitutive protein transport

    NARCIS (Netherlands)

    Babia, T; Ayala, [No Value; Valderrama, F; Mato, E; Bosch, M; Santaren, JF; Renau-Piqueras, J; Kok, JW; Thomsen, TM; Egea, G

    Aberrant glycosylation of proteins and lipids is a common feature of many tumor cell types, and is often accompanied by alterations in membrane traffic and an anomalous localization of Golgi-resident proteins and glycans. These observations suggest that the Golgi complex is a key organelle for at

  2. Detection of Two Isomeric Binding Configurations in a Protein-Aptamer Complex with a Biological Nanopore

    NARCIS (Netherlands)

    Van Meervelt, Veerle; Soskine, Misha; Maglia, Giovanni

    2014-01-01

    ProteinDNA interactions play critical roles in biological systems, and they often involve complex mechanisms and dynamics that are not easily measured by ensemble experiments. Recently, we showed that folded proteins can be internalized inside ClyA nanopores and studied by ionic current recordings

  3. MCT-1 protein interacts with the cap complex and modulates messenger RNA translational profiles

    DEFF Research Database (Denmark)

    Reinert, Line; Shi, B; Nandi, S

    2006-01-01

    enzymes. Here, we established that MCT-1 protein interacts with the cap complex through its PUA domain and recruits the density-regulated protein (DENR/DRP), containing the SUI1 translation initiation domain. Through the use of microarray analysis on polysome-associated mRNAs, we showed that up...

  4. A human phenome-interactome network of protein complexes implicated in genetic disorders

    DEFF Research Database (Denmark)

    Hansen, Kasper Lage; Karlberg, Erik, Olof, Linnart; Størling, Zenia, Marian

    2007-01-01

    We performed a systematic, large-scale analysis of human protein complexes comprising gene products implicated in many different categories of human disease to create a phenome-interactome network. This was done by integrating quality-controlled interactions of human proteins with a validated, co...

  5. Cryo-EM of dynamic protein complexes in eukaryotic DNA replication.

    Science.gov (United States)

    Sun, Jingchuan; Yuan, Zuanning; Bai, Lin; Li, Huilin

    2017-01-01

    DNA replication in Eukaryotes is a highly dynamic process that involves several dozens of proteins. Some of these proteins form stable complexes that are amenable to high-resolution structure determination by cryo-EM, thanks to the recent advent of the direct electron detector and powerful image analysis algorithm. But many of these proteins associate only transiently and flexibly, precluding traditional biochemical purification. We found that direct mixing of the component proteins followed by 2D and 3D image sorting can capture some very weakly interacting complexes. Even at 2D average level and at low resolution, EM images of these flexible complexes can provide important biological insights. It is often necessary to positively identify the feature-of-interest in a low resolution EM structure. We found that systematically fusing or inserting maltose binding protein (MBP) to selected proteins is highly effective in these situations. In this chapter, we describe the EM studies of several protein complexes involved in the eukaryotic DNA replication over the past decade or so. We suggest that some of the approaches used in these studies may be applicable to structural analysis of other biological systems. © 2016 The Protein Society.

  6. Mimicking Intermolecular Interactions of Tight Protein-Protein Complexes for Small-Molecule Antagonists.

    Science.gov (United States)

    Xu, David; Bum-Erdene, Khuchtumur; Si, Yubing; Zhou, Donghui; Ghozayel, Mona K; Meroueh, Samy O

    2017-11-08

    Tight protein-protein interactions (Kd 1000 Å2 ) are highly challenging to disrupt with small molecules. Historically, the design of small molecules to inhibit protein-protein interactions has focused on mimicking the position of interface protein ligand side chains. Here, we explore mimicry of the pairwise intermolecular interactions of the native protein ligand with residues of the protein receptor to enrich commercial libraries for small-molecule inhibitors of tight protein-protein interactions. We use the high-affinity interaction (Kd =1 nm) between the urokinase receptor (uPAR) and its ligand urokinase (uPA) to test our methods. We introduce three methods for rank-ordering small molecules docked to uPAR: 1) a new fingerprint approach that represents uPA's pairwise interaction energies with uPAR residues; 2) a pharmacophore approach to identify small molecules that mimic the position of uPA interface residues; and 3) a combined fingerprint and pharmacophore approach. Our work led to small molecules with novel chemotypes that inhibited a tight uPAR⋅uPA protein-protein interaction with single-digit micromolar IC50 values. We also report the extensive work that identified several of the hits as either lacking stability, thiol reactive, or redox active. This work suggests that mimicking the binding profile of the native ligand and the position of interface residues can be an effective strategy to enrich commercial libraries for small-molecule inhibitors of tight protein-protein interactions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Improved methodology for the affinity isolation of human protein complexes expressed at near endogenous levels

    Science.gov (United States)

    Domanski, Michal; Molloy, Kelly; Jiang, Hua; Chait, Brian T.; Rout, Michael P.; Jensen, Torben Heick; LaCava, John

    2013-01-01

    An efficient and reliable procedure for the capture of affinity-tagged proteins and associated complexes from human cell lines is reported. Through multiple optimizations, high yield and low background affinity-purifications are achieved from modest quantities of human cells expressing endogenous-level tagged proteins. Isolations of triple-FLAG and GFP-tagged fusion proteins involved in RNA metabolism are presented. PMID:22668517

  8. Interaction of Small Zinc Complexes with Globular Proteins and Free Tryptophan

    Directory of Open Access Journals (Sweden)

    Joann M. Butkus

    2016-01-01

    Full Text Available A series of eight water soluble anionic, cationic, and neutral zinc(II complexes were synthesized and characterized. The interaction of these complexes with bovine serum albumin (BSA, human serum albumin (HSA, lysozyme, and free tryptophan (Trp was investigated using steady-state fluorescence spectroscopy. Static and dynamic fluorescence quenching analysis based on Stern-Volmer kinetics was conducted, and the decrease in fluorescence intensity of the Trp residue(s can be ascribed predominantly to static quenching that occurs when the Zn complex binds to the protein and forms a nonfluorescent complex. The role played by the nature of the ligand, the metal, and complex charge in quenching Trp fluorescence was investigated. The binding association constants (Ka ranged from 104 to 1010 M−1 and indicate that complexes with planar aromatic features have the strongest affinity for globular proteins and free Trp. Complexes with nonaromatic features failed to interact with these proteins at or in the vicinity of the Trp residues. These interactions were studied over a range of temperatures, and binding was found to weaken with the increase in temperature and was exothermic with a negative change in entropy. The thermodynamic parameters suggest that binding of Zn complexes to the proteins is a highly spontaneous and favorable process.

  9. Three-Dimentional Structures of Autophosphorylation Complexes in Crystals of Protein Kinases

    KAUST Repository

    Dumbrack, Roland

    2016-01-26

    Protein kinase autophosphorylation is a common regulatory mechanism in cell signaling pathways. Several autophosphorylation complexes have been identified in crystals of protein kinases, with a known serine, threonine, or tyrosine autophosphorylation site of one kinase monomer sitting in the active site of another monomer of the same protein in the crystal. We utilized a structural bioinformatics method to identify all such autophosphorylation complexes in X-ray crystallographic structures in the Protein Data Bank (PDB) by generating all unique kinase/kinase interfaces within and between asymmetric units of each crystal and measuring the distance between the hydroxyl oxygen of potential autophosphorylation sites and the oxygen atoms of the active site aspartic acid residue side chain. We have identified 15 unique autophosphorylation complexes in the PDB, of which 5 complexes have not previously been described in the relevant publications on the crystal structures (N-terminal juxtamembrane regions of CSF1R and EPHA2, activation loop tyrosines of LCK and IGF1R, and a serine in a nuclear localization signal region of CLK2. Mutation of residues in the autophosphorylation complex interface of LCK either severely impaired autophosphorylation or increased it. Taking the autophosphorylation complexes as a whole and comparing them with peptide-substrate/kinase complexes, we observe a number of important features among them. The novel and previously observed autophosphorylation sites are conserved in many kinases, indicating that by homology we can extend the relevance of these complexes to many other clinically relevant drug targets.

  10. HUMAN SERUM ALBUMIN AND PROLACTIN INDUCIBLE PROTEIN COMPLEX ENHANCES SPERM CAPACITATION IN VITRO

    Directory of Open Access Journals (Sweden)

    Anil Kumar Tomar

    2016-06-01

    Full Text Available Prolactin inducible protein (PIP is a 17 kDa protein expressed in human body fluids. It interacts with several other proteins including fibrinogen, IgG, actin, CD4, ZAG, etc. and their association contributes to multifaceted molecular functions of PIP in diverse classes of biological processes. The roles of PIP are reported in immunoregulation, tumor progression, apoptosis and fertility. Recently, PIP was purified in complex with human serum albumin (HSA from human semen. Here, we have reported comparative expression analysis of this complex in human seminal plasma samples of various categories of infertility conditions (oligozoospermia, azoospermia and asthenozoospermia and fertile controls (normozoospermia. We have also evaluated sperm capacitation and acrosome reaction in presence of varying concentrations of this complex. Comparative expression analysis was performed under same experimental conditions by co-immunoprecipitation followed by western blot analysis and results highlighted that HSA-PIP complex is down-regulated in azoospermia as depicted by the intensity of protein bands on the blot. Assessment of sperm functions in presence or absence of this complex revealed that this complex acts as an inducer of in vitro sperm capacitation. It was observed that 87% sperm were capacitated after 4h incubation with HSA-PIP complex (100 µg/mL in comparison to 60.33% in +ve control. On the basis of our findings, we conclude that this complex might be a positive regulator of sperm motility and capacitation in vivo.

  11. Identification of chromatophore membrane protein complexes formed under different nitrogen availability conditions in Rhodospirillum rubrum

    DEFF Research Database (Denmark)

    Selao, Tiago Toscano; Branca, Rui; Chae, Pil Seok

    2011-01-01

    of two-dimensional Blue Native/SDS-PAGE and NSI-LC-LTQ-Orbitrap mass spectrometry. We have identified several membrane protein complexes, including components of the ATP synthase, reaction center, light harvesting, and NADH dehydrogenase complexes. Additionally, we have identified differentially...

  12. Nano Random Forests to mine protein complexes and their relationships in quantitative proteomics data.

    Science.gov (United States)

    Montaño-Gutierrez, Luis F; Ohta, Shinya; Kustatscher, Georg; Earnshaw, William C; Rappsilber, Juri

    2017-03-01

    Ever-increasing numbers of quantitative proteomics data sets constitute an underexploited resource for investigating protein function. Multiprotein complexes often follow consistent trends in these experiments, which could provide insights about their biology. Yet, as more experiments are considered, a complex's signature may become conditional and less identifiable. Previously we successfully distinguished the general proteomic signature of genuine chromosomal proteins from hitchhikers using the Random Forests (RF) machine learning algorithm. Here we test whether small protein complexes can define distinguishable signatures of their own, despite the assumption that machine learning needs large training sets. We show, with simulated and real proteomics data, that RF can detect small protein complexes and relationships between them. We identify several complexes in quantitative proteomics results of wild-type and knockout mitotic chromosomes. Other proteins covary strongly with these complexes, suggesting novel functional links for later study. Integrating the RF analysis for several complexes reveals known interdependences among kinetochore subunits and a novel dependence between the inner kinetochore and condensin. Ribosomal proteins, although identified, remained independent of kinetochore subcomplexes. Together these results show that this complex-oriented RF (NanoRF) approach can integrate proteomics data to uncover subtle protein relationships. Our NanoRF pipeline is available online. © 2017 Montaño-Gutierrez et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  13. Human-Chromatin-Related Protein Interactions Identify a Demethylase Complex Required for Chromosome Segregation

    Directory of Open Access Journals (Sweden)

    Edyta Marcon

    2014-07-01

    Full Text Available Chromatin regulation is driven by multicomponent protein complexes, which form functional modules. Deciphering the components of these modules and their interactions is central to understanding the molecular pathways these proteins are regulating, their functions, and their relation to both normal development and disease. We describe the use of affinity purifications of tagged human proteins coupled with mass spectrometry to generate a protein-protein interaction map encompassing known and predicted chromatin-related proteins. On the basis of 1,394 successful purifications of 293 proteins, we report a high-confidence (85% precision network involving 11,464 protein-protein interactions among 1,738 different human proteins, grouped into 164 often overlapping protein complexes with a particular focus on the family of JmjC-containing lysine demethylases, their partners, and their roles in chromatin remodeling. We show that RCCD1 is a partner of histone H3K36 demethylase KDM8 and demonstrate that both are important for cell-cycle-regulated transcriptional repression in centromeric regions and accurate mitotic division.

  14. Mdm35p imports Ups proteins into the mitochondrial intermembrane space by functional complex formation.

    Science.gov (United States)

    Tamura, Yasushi; Iijima, Miho; Sesaki, Hiromi

    2010-09-01

    Ups1p, Ups2p, and Ups3p are three homologous proteins that control phospholipid metabolism in the mitochondrial intermembrane space (IMS). The Ups proteins are atypical IMS proteins in that they lack the two major IMS-targeting signals, bipartite presequences and cysteine motifs. Here, we show that Ups protein import is mediated by another IMS protein, Mdm35p. In vitro import assays show that import of Ups proteins requires Mdm35p. Loss of Mdm35p led to a decrease in steady state levels of Ups proteins in mitochondria. In addition, mdm35Delta cells displayed a similar phenotype to ups1Deltaups2Deltaups3Delta cells. Interestingly, unlike typical import machineries, Mdm35p associated stably with Ups proteins at a steady state after import. Demonstrating that Mdm35p is a functional component of Ups-Mdm35p complexes, restoration of Ups protein levels in mdm35Delta mitochondria failed to restore phospholipid metabolism. These findings provide a novel mechanism in which the formation of functional protein complexes drives mitochondrial protein import.

  15. Proteomic analysis of the dysferlin protein complex unveils its importance for sarcolemmal maintenance and integrity.

    Directory of Open Access Journals (Sweden)

    Antoine de Morrée

    Full Text Available Dysferlin is critical for repair of muscle membranes after damage. Mutations in dysferlin lead to a progressive muscular dystrophy. Recent studies suggest additional roles for dysferlin. We set out to study dysferlin's protein-protein interactions to obtain comprehensive knowledge of dysferlin functionalities in a myogenic context. We developed a robust and reproducible method to isolate dysferlin protein complexes from cells and tissue. We analyzed the composition of these complexes in cultured myoblasts, myotubes and skeletal muscle tissue by mass spectrometry and subsequently inferred potential protein functions through bioinformatics analyses. Our data confirm previously reported interactions and support a function for dysferlin as a vesicle trafficking protein. In addition novel potential functionalities were uncovered, including phagocytosis and focal adhesion. Our data reveal that the dysferlin protein complex has a dynamic composition as a function of myogenic differentiation. We provide additional experimental evidence and show dysferlin localization to, and interaction with the focal adhesion protein vinculin at the sarcolemma. Finally, our studies reveal evidence for cross-talk between dysferlin and its protein family member myoferlin. Together our analyses show that dysferlin is not only a membrane repair protein but also important for muscle membrane maintenance and integrity.

  16. Rbfox family proteins make the homo- and hetero-oligomeric complexes.

    Science.gov (United States)

    Choi, Sunkyung; Kim, Yong-Eun; Kim, Jae Whan; Cho, Namjoon; Cheon, Seonghye; Kim, Kee K

    2017-11-21

    Rbfox family of proteins that consists of Rbfox1, Rbfox2, and Rbfox3 in mammals regulates alternative pre-mRNA splicing in various tissues via direct binding to their RNA binding element. Although many studies have indicated the splicing activity of each member of the Rbfox family, the interactions of Rbfox family proteins are largely unknown. Here, we have investigated interactions among Rbfox family proteins. Co-immunoprecipitation (Co-IP) and GST-pull down assays confirmed that Rbfox proteins form homo and hetero complexes. Moreover, in vivo crosslinking using disuccinimidyl suberate treatment indicated that the Rbfox proteins form a dimer which then assembles with other proteins to form a large multiprotein complex. Duolink in situ proximity ligation (PLA) assay revealed that neuron specific Rbfox3 protein interacts with other Rbfox family proteins. This study is the first to provide an evidence that Rbfox family proteins form homo- and hetero-oligomeric complexes in vivo. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Protein adsorption induced bridging flocculation: the dominant entropic pathway for nano-bio complexation

    Science.gov (United States)

    Eren, Necla Mine; Narsimhan, Ganesan; Campanella, Osvaldo H.

    2016-02-01

    Lysozyme-silica interactions and the resulting complexation were investigated through adsorption isotherms, dynamic and electrophoretic light scattering, circular dichroism (CD), and isothermal titration calorimetry (ITC). A thermodynamic analysis of ITC data revealed the existence of two binding modes during protein-nanoparticle complexation. Both binding modes are driven by the cooperation of a favorable enthalpy in the presence of a dominating entropy gain. The first binding mode has a higher binding affinity, a lower equilibrium stoichiometry and is driven by a higher entropic contribution compared to the second type. The observed favorable enthalpy gain in both modes is attributed to non-covalent complexation whereas the entropy gain is associated with the re-organization of the silica surface including not only the solvent and counter ion release, but also the protein's conformational changes. Possible mechanisms are proposed to explain non-covalent complexations for each binding mode by relating the changes in the zeta potential and hydrodynamic radius to the obtained adsorption isotherms and calorimetry profile. Based on all these findings, it is proposed that lysozyme adsorption on nano-silica is the result of protein-nanoparticle and protein-protein interactions that further leads to spontaneous, non-directional and random complexation of silica through bridging flocculation.Lysozyme-silica interactions and the resulting complexation were investigated through adsorption isotherms, dynamic and electrophoretic light scattering, circular dichroism (CD), and isothermal titration calorimetry (ITC). A thermodynamic analysis of ITC data revealed the existence of two binding modes during protein-nanoparticle complexation. Both binding modes are driven by the cooperation of a favorable enthalpy in the presence of a dominating entropy gain. The first binding mode has a higher binding affinity, a lower equilibrium stoichiometry and is driven by a higher entropic

  18. A 3D model of the membrane protein complex formed by the white spot syndrome virus structural proteins.

    Directory of Open Access Journals (Sweden)

    Yun-Shiang Chang

    Full Text Available BACKGROUND: Outbreaks of white spot disease have had a large negative economic impact on cultured shrimp worldwide. However, the pathogenesis of the causative virus, WSSV (whit spot syndrome virus, is not yet well understood. WSSV is a large enveloped virus. The WSSV virion has three structural layers surrounding its core DNA: an outer envelope, a tegument and a nucleocapsid. In this study, we investigated the protein-protein interactions of the major WSSV structural proteins, including several envelope and tegument proteins that are known to be involved in the infection process. PRINCIPAL FINDINGS: In the present report, we used coimmunoprecipitation and yeast two-hybrid assays to elucidate and/or confirm all the interactions that occur among the WSSV structural (envelope and tegument proteins VP51A, VP19, VP24, VP26 and VP28. We found that VP51A interacted directly not only with VP26 but also with VP19 and VP24. VP51A, VP19 and VP24 were also shown to have an affinity for self-interaction. Chemical cross-linking assays showed that these three self-interacting proteins could occur as dimers. CONCLUSIONS: From our present results in conjunction with other previously established interactions we construct a 3D model in which VP24 acts as a core protein that directly associates with VP26, VP28, VP38A, VP51A and WSV010 to form a membrane-associated protein complex. VP19 and VP37 are attached to this complex via association with VP51A and VP28, respectively. Through the VP26-VP51C interaction this envelope complex is anchored to the nucleocapsid, which is made of layers of rings formed by VP664. A 3D model of the nucleocapsid and the surrounding outer membrane is presented.

  19. Geometric Universality in Brain Allosteric Protein Dynamics: Complex Hydrophobic Transformation Predicts Mutual Recognition by Polypeptides and Proteins,

    Science.gov (United States)

    1986-10-01

    emf -driven RC circuits model the dynamics of ion- conductance behavior of allosteric membrane proteins very well. 50...D. 1985. Advances in the isolation of HTLV-I11 from patients with AIDS and AIDS-related complex and donors at risk. Cancer Res. 45: 45885-45915. 87

  20. S-Adenosylmethionine conformations in solution and in protein complexes: Conformational influences of the sulfonium group

    DEFF Research Database (Denmark)

    Markham, George D.; Norrby, Per-Ola; Bock, Charles W.

    2002-01-01

    calculations. Nuclear Overhauser effect measurements and computational results for AdoMet indicate a predominantly anti conformation about the glycosidic bond with a variety of conformations about the methionyl C-alpha-C-beta and C-beta-C-gamma bonds. An AdoMet conformation in which the positively charged....... In 20 reported structures of AdoMet-protein complexes, both anti and syn glycosidic torsional angles are found. The methionyl group typically adopts an extended conformation in complexes with enzymes that transfer the methyl group from the sulfonium center, but is more folded in complexes with proteins...

  1. Analysis of Native-Like Proteins and Protein Complexes Using Cation to Anion Proton Transfer Reactions (CAPTR).

    Science.gov (United States)

    Laszlo, Kenneth J; Bush, Matthew F

    2015-12-01

    Mass spectra of native-like protein complexes often exhibit narrow charge-state distributions, broad peaks, and contributions from multiple, coexisting species. These factors can make it challenging to interpret those spectra, particularly for mixtures with significant heterogeneity. Here we demonstrate the use of ion/ion proton transfer reactions to reduce the charge states of m/z-selected, native-like ions of proteins and protein complexes, a technique that we refer to as cation to anion proton transfer reactions (CAPTR). We then demonstrate that CAPTR can increase the accuracy of charge state assignments and the resolution of interfering species in native mass spectrometry. The CAPTR product ion spectra for pyruvate kinase exhibit ~30 peaks and enable unambiguous determination of the charge state of each peak, whereas the corresponding precursor spectra exhibit ~6 peaks and the assigned charge states have an uncertainty of ±3%. 15+ bovine serum albumin and 21+ yeast enolase dimer both appear near m/z 4450 and are completely unresolved in a mixture. After a single CAPTR event, the resulting product ions are baseline resolved. The separation of the product ions increases dramatically after each subsequent CAPTR event; 12 events resulted in a 3000-fold improvement in separation relative to the precursor ions. Finally, we introduce a framework for interpreting and predicting the figures of merit for CAPTR experiments. More generally, these results suggest that CAPTR strongly complements other mass spectrometry tools for analyzing proteins and protein complexes, particularly those in mixtures. Graphical Abstract ᅟ.

  2. Node sampling for protein complex estimation in bait-prey graphs.

    Science.gov (United States)

    Scholtens, Denise M; Spencer, Bruce D

    2015-08-01

    In cellular biology, node-and-edge graph or "network" data collection often uses bait-prey technologies such as co-immunoprecipitation (CoIP). Bait-prey technologies assay relationships or "interactions" between protein pairs, with CoIP specifically measuring protein complex co-membership. Analyses of CoIP data frequently focus on estimating protein complex membership. Due to budgetary and other constraints, exhaustive assay of the entire network using CoIP is not always possible. We describe a stratified sampling scheme to select baits for CoIP experiments when protein complex estimation is the main goal. Expanding upon the classic framework in which nodes represent proteins and edges represent pairwise interactions, we define generalized nodes as sets of adjacent nodes with identical adjacency outside the set and use these as strata from which to select the next set of baits. Strata are redefined at each round of sampling to incorporate accumulating data. This scheme maintains user-specified quality thresholds for protein complex estimates and, relative to simple random sampling, leads to a marked increase in the number of correctly estimated complexes at each round of sampling. The R package seqSample contains all source code and is available at http://vault.northwestern.edu/~dms877/Rpacks/.

  3. Unraveling the CHIP:Hsp70 complex as an information processor for protein quality control.

    Science.gov (United States)

    VanPelt, Jamie; Page, Richard C

    2017-02-01

    The CHIP:Hsp70 complex stands at the crossroads of the cellular protein quality control system. Hsp70 facilitates active refolding of misfolded client proteins, while CHIP directs ubiquitination of misfolded client proteins bound to Hsp70. The direct competition between CHIP and Hsp70 for the fate of misfolded proteins leads to the question: how does the CHIP:Hsp70 complex execute triage decisions that direct misfolded proteins for either refolding or degradation? The current body of literature points toward action of the CHIP:Hsp70 complex as an information processor that takes inputs in the form of client folding state, dynamics, and posttranslational modifications, then outputs either refolded or ubiquitinated client proteins. Herein we examine the CHIP:Hsp70 complex beginning with the structure and function of CHIP and Hsp70, followed by an examination of recent studies of the interactions and dynamics of the CHIP:Hsp70 complex. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. MFIB: a repository of protein complexes with mutual folding induced by binding.

    Science.gov (United States)

    Fichó, Erzsébet; Reményi, István; Simon, István; Mészáros, Bálint

    2017-11-15

    It is commonplace that intrinsically disordered proteins (IDPs) are involved in crucial interactions in the living cell. However, the study of protein complexes formed exclusively by IDPs is hindered by the lack of data and such analyses remain sporadic. Systematic studies benefited other types of protein-protein interactions paving a way from basic science to therapeutics; yet these efforts require reliable datasets that are currently lacking for synergistically folding complexes of IDPs. Here we present the Mutual Folding Induced by Binding (MFIB) database, the first systematic collection of complexes formed exclusively by IDPs. MFIB contains an order of magnitude more data than any dataset used in corresponding studies and offers a wide coverage of known IDP complexes in terms of flexibility, oligomeric composition and protein function from all domains of life. The included complexes are grouped using a hierarchical classification and are complemented with structural and functional annotations. MFIB is backed by a firm development team and infrastructure, and together with possible future community collaboration it will provide the cornerstone for structural and functional studies of IDP complexes. MFIB is freely accessible at http://mfib.enzim.ttk.mta.hu/. The MFIB application is hosted by Apache web server and was implemented in PHP. To enrich querying features and to enhance backend performance a MySQL database was also created. simon.istvan@ttk.mta.hu, meszaros.balint@ttk.mta.hu. Supplementary data are available at Bioinformatics online.

  5. Technical tip: high-resolution isolation of nanoparticle-protein corona complexes from physiological fluids

    Science.gov (United States)

    di Silvio, Desirè; Rigby, Neil; Bajka, Balazs; Mayes, Andrew; Mackie, Alan; Baldelli Bombelli, Francesca

    2015-07-01

    Nanoparticles (NPs) in contact with biological fluids are generally coated with environmental proteins, forming a stronger layer of proteins around the NP surface called the hard corona. Protein corona complexes provide the biological identity of the NPs and their isolation and characterization are essential to understand their in vitro and in vivo behaviour. Here we present a one-step methodology to recover NPs from complex biological media in a stable non-aggregated form without affecting the structure or composition of the corona. This method allows NPs to be separated from complex fluids containing biological particulates and in a form suitable for use in further experiments. The study has been performed systematically comparing the new proposed methodology to standard approaches for a wide panel of NPs. NPs were first incubated in the biological fluid and successively recovered by sucrose gradient ultracentrifugation in order to separate the NPs and their protein corona from the loosely bound proteins. The isolated NP-protein complexes were characterized by size and protein composition through Dynamic Light Scattering, Nanoparticle Tracking Analysis, SDS-PAGE and LC-MS. The protocol described is versatile and can be applied to diverse nanomaterials and complex fluids. It is shown to have higher resolution in separating the multiple protein corona complexes from a biological environment with a much lower impact on their in situ structure compared to conventional centrifugal approaches.Nanoparticles (NPs) in contact with biological fluids are generally coated with environmental proteins, forming a stronger layer of proteins around the NP surface called the hard corona. Protein corona complexes provide the biological identity of the NPs and their isolation and characterization are essential to understand their in vitro and in vivo behaviour. Here we present a one-step methodology to recover NPs from complex biological media in a stable non-aggregated form without

  6. On the Efficiency of NHS Ester Cross-Linkers for Stabilizing Integral Membrane Protein Complexes

    Science.gov (United States)

    Chen, Fan; Gerber, Sabina; Korkhov, Volodymyr M.; Mireku, Samantha; Bucher, Monika; Locher, Kaspar P.; Zenobi, Renato

    2015-03-01

    We have previously presented a straightforward approach based on high-mass matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) to study membrane proteins. In addition, the stoichiometry of integral membrane protein complexes could be determined by MALDI-MS, following chemical cross-linking via glutaraldehyde. However, glutaraldehyde polymerizes in solution and reacts nonspecifically with various functional groups of proteins, limiting its usefulness for structural studies of protein complexes. Here, we investigated the capability of N-hydroxysuccinimide (NHS) esters, which react much more specifically, to cross-link membrane protein complexes such as PglK and BtuC2D2. We present clear evidence that NHS esters are capable of stabilizing membrane protein complexes in situ, in the presence of detergents such as DDM, C12E8, and LDAO. The stabilization efficiency strongly depends on the membrane protein structure (i.e, the number of primary amine groups and the distances between primary amines). A minimum number of primary amine groups is required, and the distances between primary amines govern whether a cross-linker with a specific spacer arm length is able to bridge two amine groups.

  7. Interactions of the human MCM-BP protein with MCM complex components and Dbf4.

    Directory of Open Access Journals (Sweden)

    Tin Nguyen

    Full Text Available MCM-BP was discovered as a protein that co-purified from human cells with MCM proteins 3 through 7; results which were recapitulated in frogs, yeast and plants. Evidence in all of these organisms supports an important role for MCM-BP in DNA replication, including contributions to MCM complex unloading. However the mechanisms by which MCM-BP functions and associates with MCM complexes are not well understood. Here we show that human MCM-BP is capable of interacting with individual MCM proteins 2 through 7 when co-expressed in insect cells and can greatly increase the recovery of some recombinant MCM proteins. Glycerol gradient sedimentation analysis indicated that MCM-BP interacts most strongly with MCM4 and MCM7. Similar gradient analyses of human cell lysates showed that only a small amount of MCM-BP overlapped with the migration of MCM complexes and that MCM complexes were disrupted by exogenous MCM-BP. In addition, large complexes containing MCM-BP and MCM proteins were detected at mid to late S phase, suggesting that the formation of specific MCM-BP complexes is cell cycle regulated. We also identified an interaction between MCM-BP and the Dbf4 regulatory component of the DDK kinase in both yeast 2-hybrid and insect cell co-expression assays, and this interaction was verified by co-immunoprecipitation of endogenous proteins from human cells. In vitro kinase assays showed that MCM-BP was not a substrate for DDK but could inhibit DDK phosphorylation of MCM4,6,7 within MCM4,6,7 or MCM2-7 complexes, with little effect on DDK phosphorylation of MCM2. Since DDK is known to activate DNA replication through phosphorylation of these MCM proteins, our results suggest that MCM-BP may affect DNA replication in part by regulating MCM phosphorylation by DDK.

  8. The emergence of protein complexes: quaternary structure, dynamics and allostery. Colworth Medal Lecture.

    Science.gov (United States)

    Perica, Tina; Marsh, Joseph A; Sousa, Filipa L; Natan, Eviatar; Colwell, Lucy J; Ahnert, Sebastian E; Teichmann, Sarah A

    2012-06-01

    All proteins require physical interactions with other proteins in order to perform their functions. Most of them oligomerize into homomers, and a vast majority of these homomers interact with other proteins, at least part of the time, forming transient or obligate heteromers. In the present paper, we review the structural, biophysical and evolutionary aspects of these protein interactions. We discuss how protein function and stability benefit from oligomerization, as well as evolutionary pathways by which oligomers emerge, mostly from the perspective of homomers. Finally, we emphasize the specificities of heteromeric complexes and their structure and evolution. We also discuss two analytical approaches increasingly being used to study protein structures as well as their interactions. First, we review the use of the biological networks and graph theory for analysis of protein interactions and structure. Secondly, we discuss recent advances in techniques for detecting correlated mutations, with the emphasis on their role in identifying pathways of allosteric communication.

  9. Dynamics of nanoparticle-protein corona complex formation: analytical results from population balance equations.

    Directory of Open Access Journals (Sweden)

    Faryad Darabi Sahneh

    Full Text Available BACKGROUND: Nanoparticle-protein corona complex formation involves absorption of protein molecules onto nanoparticle surfaces in a physiological environment. Understanding the corona formation process is crucial in predicting nanoparticle behavior in biological systems, including applications of nanotoxicology and development of nano drug delivery platforms. METHOD: This paper extends the modeling work in to derive a mathematical model describing the dynamics of nanoparticle corona complex formation from population balance equations. We apply nonlinear dynamics techniques to derive analytical results for the composition of nanoparticle-protein corona complex, and validate our results through numerical simulations. RESULTS: The model presented in this paper exhibits two phases of corona complex dynamics. In the first phase, proteins rapidly bind to the free surface of nanoparticles, leading to a metastable composition. During the second phase, continuous association and dissociation of protein molecules with nanoparticles slowly changes the composition of the corona complex. Given sufficient time, composition of the corona complex reaches an equilibrium state of stable composition. We find analytical approximate formulae for metastable and stable compositions of corona complex. Our formulae are very well-structured to clearly identify important parameters determining corona composition. CONCLUSION: The dynamics of biocorona formation constitute vital aspect of interactions between nanoparticles and living organisms. Our results further understanding of these dynamics through quantitation of experimental conditions, modeling results for in vitro systems to better predict behavior for in vivo systems. One potential application would involve a single cell culture medium related to a complex protein medium, such as blood or tissue fluid.

  10. Spectral dependence of irreversible light-induced fluorescence quenching: Chlorophyll forms with maximal emission at 700-702 and 705-710nm as spectroscopic markers of conformational changes in the core complex.

    Science.gov (United States)

    Nematov, Sherzod; Casazza, Anna Paola; Remelli, William; Khuvondikov, Vakhobjon; Santabarbara, Stefano

    2017-07-01

    The spectral dependence of the irreversible non-photochemical fluorescence quenching associated with photoinhibition in vitro has been comparatively investigated in thylakoid membranes, PSII enriched particles and PSII core complexes isolated from spinach. The analysis of the fluorescence emission spectra of dark-adapted and quenched samples as a function of the detection temperature in the 280-80K interval, indicates that Chlorophyll spectral forms having maximal emission in the 700-702nm and 705-710nm ranges gain relative intensity in concomitance with the establishment of irreversible light-induced quenching, acting thereby as spectroscopic markers. The relative enhancement of the 700-702nm and 705-710nm forms emission could be due either to an increase of their stoichiometric abundance or to their intrinsically low fluorescence quantum yields. These two factors, that can also coexist, need to be promoted by light-induced alterations in chromophore-protein as well as chromophore-chromophore interactions. The bands centred at about 701 and 706nm are also observed in the PSII core complex, suggesting their, at least partial, localisation in proximity to the reaction centre, and the occurrence of light-induced conformational changes in the core subunits. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. A caged lanthanide complex as a paramagnetic shift agent for protein NMR.

    Science.gov (United States)

    Prudêncio, Miguel; Rohovec, Jan; Peters, Joop A; Tocheva, Elitza; Boulanger, Martin J; Murphy, Michael E P; Hupkes, Hermen-Jan; Kosters, Walter; Impagliazzo, Antonietta; Ubbink, Marcellus

    2004-07-05

    A lanthanide complex, named CLaNP (caged lanthanide NMR probe) has been developed for the characterisation of proteins by paramagnetic NMR spectroscopy. The probe consists of a lanthanide chelated by a derivative of DTPA (diethylenetriaminepentaacetic acid) with two thiol reactive functional groups. The CLaNP molecule is attached to a protein by two engineered, surface-exposed, Cys residues in a bidentate manner. This drastically limits the dynamics of the metal relative to the protein and enables measurements of pseudocontact shifts. NMR spectroscopy experiments on a diamagnetic control and the crystal structure of the probe-protein complex demonstrate that the protein structure is not affected by probe attachment. The probe is able to induce pseudocontact shifts to at least 40 A from the metal and causes residual dipolar couplings due to alignment at a high magnetic field. The molecule exists in several isomeric forms with different paramagnetic tensors; this provides a fast way to obtain long-range distance restraints.

  12. Synthetic strategies for efficient conjugation of organometallic complexes with pendant protein reactive markers

    KAUST Repository

    Jantke, Dominik

    2013-11-01

    Site-directed conjugation of metal centers to proteins is fundamental for biological and bioinorganic applications of transition metals. However, methods for the site-selective introduction of metal centers remain scarce. Herein, we present broadly applicable synthetic strategies for the conjugation of bioactive molecules with a range of organometallic complexes. Following three different synthetic strategies, we were able to synthesize a small library of metal conjugated protein markers featuring different types of protein reactive sites (epoxides, phenylphosphonates, fluorosulfonates and fluorophosphonate groups) as well as different late transition metals (iron, ruthenium, rhodium, palladium and platinum). The products were isolated in moderate to excellent yields and high purity. Furthermore, X-ray diffraction of the metalated protein markers corroborates structural integrity of the metal complex and the protein reactive site. © 2013 Elsevier B.V. All rights reserved.

  13. Two alternative binding mechanisms connect the protein translocation Sec71-Sec72 complex with heat shock proteins

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, Arati; Mandon, Elisabet C.; Gilmore, Reid; Rapoport, Tom A. (UMASS, MED); (Harvard-Med)

    2017-03-12

    The biosynthesis of many eukaryotic proteins requires accurate targeting to and translocation across the endoplasmic reticulum membrane. Post-translational protein translocation in yeast requires both the Sec61 translocation channel, and a complex of four additional proteins: Sec63, Sec62, Sec71, and Sec72. The structure and function of these proteins are largely unknown. This pathway also requires the cytosolic Hsp70 protein Ssa1, but whether Ssa1 associates with the translocation machinery to target protein substrates to the membrane is unclear. Here, we use a combined structural and biochemical approach to explore the role of Sec71-Sec72 subcomplex in post-translational protein translocation. To this end, we report a crystal structure of the Sec71-Sec72 complex, which revealed that Sec72 contains a tetratricopeptide repeat (TPR) domain that is anchored to the endoplasmic reticulum membrane by Sec71. We also determined the crystal structure of this TPR domain with a C-terminal peptide derived from Ssa1, which suggests how Sec72 interacts with full-length Ssa1. Surprisingly, Ssb1, a cytoplasmic Hsp70 that binds ribosome-associated nascent polypeptide chains, also binds to the TPR domain of Sec72, even though it lacks the TPR-binding C-terminal residues of Ssa1. We demonstrate that Ssb1 binds through its ATPase domain to the TPR domain, an interaction that leads to inhibition of nucleotide exchange. Taken together, our results suggest that translocation substrates can be recruited to the Sec71-Sec72 complex either post-translationally through Ssa1 or co-translationally through Ssb1.

  14. Two alternative binding mechanisms connect the protein translocation Sec71-Sec72 complex with heat shock proteins.

    Science.gov (United States)

    Tripathi, Arati; Mandon, Elisabet C; Gilmore, Reid; Rapoport, Tom A

    2017-05-12

    The biosynthesis of many eukaryotic proteins requires accurate targeting to and translocation across the endoplasmic reticulum membrane. Post-translational protein translocation in yeast requires both the Sec61 translocation channel, and a complex of four additional proteins: Sec63, Sec62, Sec71, and Sec72. The structure and function of these proteins are largely unknown. This pathway also requires the cytosolic Hsp70 protein Ssa1, but whether Ssa1 associates with the translocation machinery to target protein substrates to the membrane is unclear. Here, we use a combined structural and biochemical approach to explore the role of Sec71-Sec72 subcomplex in post-translational protein translocation. To this end, we report a crystal structure of the Sec71-Sec72 complex, which revealed that Sec72 contains a tetratricopeptide repeat (TPR) domain that is anchored to the endoplasmic reticulum membrane by Sec71. We also determined the crystal structure of this TPR domain with a C-terminal peptide derived from Ssa1, which suggests how Sec72 interacts with full-length Ssa1. Surprisingly, Ssb1, a cytoplasmic Hsp70 that binds ribosome-associated nascent polypeptide chains, also binds to the TPR domain of Sec72, even though it lacks the TPR-binding C-terminal residues of Ssa1. We demonstrate that Ssb1 binds through its ATPase domain to the TPR domain, an interaction that leads to inhibition of nucleotide exchange. Taken together, our results suggest that translocation substrates can be recruited to the Sec71-Sec72 complex either post-translationally through Ssa1 or co-translationally through Ssb1. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Influence of the light harvesting proteins Lhbc3 and Lhbc5 on photosynthesis of plants lacking Lhbc1 and Lhbc2.

    OpenAIRE

    Xia, Hanhan

    2013-01-01

    Photosynthesis is one of the most important biological processes on earth, producing carbohydrates and oxygen. The light is captured with the aid of light harvesting proteins. Light harvesting complex proteins in PSII are important both in light absorption and dynamic regulation. This study aims to confirm the individual role of Lhcb1 and Lhcb2 in the regulation of photosynthesis based on the KO lines: koLhcb3, koLhcb5 and koLhcb3koLhcb5. By the tool of western blot, phosphorylation analysis,...

  16. Altered gene expression by sedaxane increases PSII efficiency, photosynthesis and growth and improves tolerance to drought in wheat seedlings.

    Science.gov (United States)

    Ajigboye, Olubukola O; Lu, Chungui; Murchie, Erik H; Schlatter, Christian; Swart, Gina; Ray, Rumiana V

    2017-04-01

    Succinate dehydrogenase inhibitor (SDHI) fungicides have been shown to increase PSII efficiency and photosynthesis under drought stress in the absence of disease to enhance the biomass and yield of winter wheat. However, the molecular mechanism of improved photosynthetic efficiency observed in SDHI-treated wheat has not been previously elucidated. Here we used a combination of chlorophyll fluorescence, gas exchange and gene expression analysis, to aid our understanding of the basis of the physiological responses of wheat seedlings under drought conditions to sedaxane, a novel SDHI seed treatment. We show that sedaxane increased the efficiency of PSII photochemistry, reduced non-photochemical quenching and improved the photosynthesis and biomass in wheat correlating with systemic changes in the expression of genes involved in defense, chlorophyll synthesis and cell wall modification. We applied a coexpression network-based approach using differentially expressed genes of leaves, roots and pregerminated seeds from our wheat array datasets to identify the most important hub genes, with top ranked correlation (higher gene association value and z-score) involved in cell wall expansion and strengthening, wax and pigment biosynthesis and defense. The results indicate that sedaxane confers tolerant responses of wheat plants grown under drought conditions by redirecting metabolites from defense/stress responses towards growth and adaptive development. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Detection of herbicide effects on pigment composition and PSII photochemistry in Helianthus annuus by Raman spectroscopy and chlorophyll a fluorescence

    Science.gov (United States)

    Vítek, Petr; Novotná, Kateřina; Hodaňová, Petra; Rapantová, Barbora; Klem, Karel

    2017-01-01

    The effects of herbicides from three mode-of-action groups - inhibitors of protoporphyrinogen oxidase (carfentrazone-ethyl), inhibitors of carotenoid biosynthesis (mesotrione, clomazone, and diflufenican), and inhibitors of acetolactate synthase (amidosulfuron) - were studied in sunflower plants (Helianthus annuus). Raman spectroscopy, chlorophyll fluorescence (ChlF) imaging, and UV screening of ChlF were combined to evaluate changes in pigment composition, photosystem II (PSII) photochemistry, and non-photochemical quenching in plant leaves 6 d after herbicide application. The Raman signals of phenolic compounds, carotenoids, and chlorophyll were evaluated and differences in their intensity ratios were observed. Strongly augmented relative content of phenolic compounds was observed in the case of amidosulfuron-treated plants, with a simultaneous decrease in the chlorophyll/carotenoid intensity ratio. The results were confirmed by in vivo measurement of flavonols using UV screening of ChlF. Herbicides from the group of carotenoid biosynthesis inhibitors significantly decreased both the maximum quantum efficiency of PSII and non-photochemical quenching as determined by ChlF. Resonance Raman imaging (mapping) data with high resolution (150,000-200,000 spectra) are presented, showing the distribution of carotenoids in H. annuus leaves treated by two of the herbicides acting as inhibitors of carotenoid biosynthesis (clomazone or diflufenican). Clear signs were observed that the treatment induced carotenoid depletion within sunflower leaves. The depletion spatial pattern registered differed depending on the type of herbicide applied.

  18. Crystal structure of the β2 adrenergic receptor-Gs protein complex

    DEFF Research Database (Denmark)

    Rasmussen, Søren Gøgsig Faarup; DeVree, Brian T; Zou, Yaozhong

    2011-01-01

    G protein-coupled receptors (GPCRs) are responsible for the majority of cellular responses to hormones and neurotransmitters as well as the senses of sight, olfaction and taste. The paradigm of GPCR signalling is the activation of a heterotrimeric GTP binding protein (G protein) by an agonist......-occupied receptor. The β(2) adrenergic receptor (β(2)AR) activation of Gs, the stimulatory G protein for adenylyl cyclase, has long been a model system for GPCR signalling. Here we present the crystal structure of the active state ternary complex composed of agonist-occupied monomeric β(2)AR and nucleotide-free Gs...... by a GPCR....

  19. Computational Analysis of the CB1 Carboxyl-terminus in the Receptor-G Protein Complex

    OpenAIRE

    Shim, Joong-Youn; Khurana, Leepakshi; Kendall, Debra A.

    2016-01-01

    Despite the important role of the carboxyl-terminus (Ct) of the activated brain cannabinoid receptor one (CB1) in the regulation of G protein signaling, a structural understanding of interactions with G proteins is lacking. This is largely due to the highly flexible nature of the CB1 Ct that dynamically adapts its conformation to the presence of G proteins. In the present study, we explored how the CB1 Ct can interact with the G protein by building on our prior modeling of the CB1-Gi complex ...

  20. Enhanced protein steering: cooperative electrostatic and van der Waals forces in antigen-antibody complexes.

    Science.gov (United States)

    Persson, Björn A; Jönsson, Bo; Lund, Mikael

    2009-07-30

    We study the association of the cationic protein lysozyme with several almost neutral protein fragments but with highly uneven charge distributions. Using mesoscopic protein models, we show how electrostatic interactions can align or steer protein complexes into specific constellations dictated by the specific charge distributions of the interacting biomolecules. Including van der Waals forces significantly amplifies the electrostatically induced orientational steering at physiological solution conditions, demonstrating that different intermolecular interactions can work in a cooperative way in order to optimize specific biochemical mechanisms. Individually, the electrostatic and van der Waals interactions lead only to a relatively weak intermolecular alignment, but when combined, the effect increases significantly.

  1. Co-operative intra-protein structural response due to protein-protein complexation revealed through thermodynamic quantification: study of MDM2-p53 binding

    Science.gov (United States)

    Samanta, Sudipta; Mukherjee, Sanchita

    2017-09-01

    The p53 protein activation protects the organism from propagation of cells with damaged DNA having oncogenic mutations. In normal cells, activity of p53 is controlled by interaction with MDM2. The well understood p53-MDM2 interaction facilitates design of ligands that could potentially disrupt or prevent the complexation owing to its emergence as an important objective for cancer therapy. However, thermodynamic quantification of the p53-peptide induced structural changes of the MDM2-protein remains an area to be explored. This study attempts to understand the conformational free energy and entropy costs due to this complex formation from the histograms of dihedral angles generated from molecular dynamics simulations. Residue-specific quantification illustrates that, hydrophobic residues of the protein contribute maximum to the conformational thermodynamic changes. Thermodynamic quantification of structural changes of the protein unfold the fact that, p53 binding provides a source of inter-element cooperativity among the protein secondary structural elements, where the highest affected structural elements (α2 and α4) found at the binding site of the protein affects faraway structural elements (β1 and Loop1) of the protein. The communication perhaps involves water mediated hydrogen bonded network formation. Further, we infer that in inhibitory F19A mutation of P53, though Phe19 is important in the recognition process, it has less prominent contribution in the stability of the complex. Collectively, this study provides vivid microscopic understanding of the interaction within the protein complex along with exploring mutation sites, which will contribute further to engineer the protein function and binding affinity.

  2. Co-operative intra-protein structural response due to protein-protein complexation revealed through thermodynamic quantification: study of MDM2-p53 binding.

    Science.gov (United States)

    Samanta, Sudipta; Mukherjee, Sanchita

    2017-10-01

    The p53 protein activation protects the organism from propagation of cells with damaged DNA having oncogenic mutations. In normal cells, activity of p53 is controlled by interaction with MDM2. The well understood p53-MDM2 interaction facilitates design of ligands that could potentially disrupt or prevent the complexation owing to its emergence as an important objective for cancer therapy. However, thermodynamic quantification of the p53-peptide induced structural changes of the MDM2-protein remains an area to be explored. This study attempts to understand the conformational free energy and entropy costs due to this complex formation from the histograms of dihedral angles generated from molecular dynamics simulations. Residue-specific quantification illustrates that, hydrophobic residues of the protein contribute maximum to the conformational thermodynamic changes. Thermodynamic quantification of structural changes of the protein unfold the fact that, p53 binding provides a source of inter-element cooperativity among the protein secondary structural elements, where the highest affected structural elements (α2 and α4) found at the binding site of the protein affects faraway structural elements (β1 and Loop1) of the protein. The communication perhaps involves water mediated hydrogen bonded network formation. Further, we infer that in inhibitory F19A mutation of P53, though Phe19 is important in the recognition process, it has less prominent contribution in the stability of the complex. Collectively, this study provides vivid microscopic understanding of the interaction within the protein complex along with exploring mutation sites, which will contribute further to engineer the protein function and binding affinity.

  3. Co-operative intra-protein structural response due to protein-protein complexation revealed through thermodynamic quantification: study of MDM2-p53 binding

    Science.gov (United States)

    Samanta, Sudipta; Mukherjee, Sanchita

    2017-10-01

    The p53 protein activation protects the organism from propagation of cells with damaged DNA having oncogenic mutations. In normal cells, activity of p53 is controlled by interaction with MDM2. The well understood p53-MDM2 interaction facilitates design of ligands that could potentially disrupt or prevent the complexation owing to its emergence as an important objective for cancer therapy. However, thermodynamic quantification of the p53-peptide induced structural changes of the MDM2-protein remains an area to be explored. This study attempts to understand the conformational free energy and entropy costs due to this complex formation from the histograms of dihedral angles generated from molecular dynamics simulations. Residue-specific quantification illustrates that, hydrophobic residues of the protein contribute maximum to the conformational thermodynamic changes. Thermodynamic quantification of structural changes of the protein unfold the fact that, p53 binding provides a source of inter-element cooperativity among the protein secondary structural elements, where the highest affected structural elements (α2 and α4) found at the binding site of the protein affects faraway structural elements (β1 and Loop1) of the protein. The communication perhaps involves water mediated hydrogen bonded network formation. Further, we infer that in inhibitory F19A mutation of P53, though Phe19 is important in the recognition process, it has less prominent contribution in the stability of the complex. Collectively, this study provides vivid microscopic understanding of the interaction within the protein complex along with exploring mutation sites, which will contribute further to engineer the protein function and binding affinity.

  4. Effect of mitochondrial complex I inhibition on Fe-S cluster protein activity

    Energy Technology Data Exchange (ETDEWEB)

    Mena, Natalia P. [Department of Biology, Faculty of Sciences, Universidad de Chile, Las Palmeras 3425, Santiago (Chile); Millennium Institute of Cell Dynamics and Biotechnology, Santiago (Chile); Bulteau, Anne Laure [UPMC Univ Paris 06, UMRS 975 - UMR 7725, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, F-75005 Paris (France); Inserm, U 975, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, F-75005 Paris (France); CNRS, UMR 7225, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, F-75005 Paris (France); ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, Paris 75013 (France); Salazar, Julio [Millennium Institute of Cell Dynamics and Biotechnology, Santiago (Chile); Hirsch, Etienne C. [UPMC Univ Paris 06, UMRS 975 - UMR 7725, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, F-75005 Paris (France); Inserm, U 975, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, F-75005 Paris (France); CNRS, UMR 7225, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, F-75005 Paris (France); ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, Paris 75013 (France); Nunez, Marco T., E-mail: mnunez@uchile.cl [Department of Biology, Faculty of Sciences, Universidad de Chile, Las Palmeras 3425, Santiago (Chile); Millennium Institute of Cell Dynamics and Biotechnology, Santiago (Chile)

    2011-06-03

    Highlights: {yields} Mitochondrial complex I inhibition resulted in decreased activity of Fe-S containing enzymes mitochondrial aconitase and cytoplasmic aconitase and xanthine oxidase. {yields} Complex I inhibition resulted in the loss of Fe-S clusters in cytoplasmic aconitase and of glutamine phosphoribosyl pyrophosphate amidotransferase. {yields} Consistent with loss of cytoplasmic aconitase activity, an increase in iron regulatory protein 1 activity was found. {yields} Complex I inhibition resulted in an increase in the labile cytoplasmic iron pool. -- Abstract: Iron-sulfur (Fe-S) clusters are small inorganic cofactors formed by tetrahedral coordination of iron atoms with sulfur groups. Present in numerous proteins, these clusters are involved in key biological processes such as electron transfer, metabolic and regulatory processes, DNA synthesis and repair and protein structure stabilization. Fe-S clusters are synthesized mainly in the mitochondrion, where they are directly incorporated into mitochondrial Fe-S cluster-containing proteins or exported for cytoplasmic and nuclear cluster-protein assembly. In this study, we tested the hypothesis that inhibition of mitochondrial complex I by rotenone decreases Fe-S cluster synthesis and cluster content and activity of Fe-S cluster-containing enzymes. Inhibition of complex I resulted in decreased activity of three Fe-S cluster-containing enzymes: mitochondrial and cytosolic aconitases and xanthine oxidase. In addition, the Fe-S cluster content of glutamine phosphoribosyl pyrophosphate amidotransferase and mitochondrial aconitase was dramatically decreased. The reduction in cytosolic aconitase activity was associated with an increase in iron regulatory protein (IRP) mRNA binding activity and with an increase in the cytoplasmic labile iron pool. Since IRP activity post-transcriptionally regulates the expression of iron import proteins, Fe-S cluster inhibition may result in a false iron deficiency signal. Given that

  5. Reconstitution of membrane protein complexes involved in pneumococcal septal cell wall assembly.

    Directory of Open Access Journals (Sweden)

    Marjolaine Noirclerc-Savoye

    Full Text Available The synthesis of peptidoglycan, the major component of the bacterial cell wall, is essential to cell survival, yet its mechanism remains poorly understood. In the present work, we have isolated several membrane protein complexes consisting of the late division proteins of Streptococcus pneumoniae: DivIB, DivIC, FtsL, PBP2x and FtsW, or subsets thereof. We have co-expressed membrane proteins from S. pneumoniae in Escherichia coli. By combining two successive affinity chromatography steps, we obtained membrane protein complexes with a very good purity. These complexes are functional, as indicated by the retained activity of PBP2x to bind a fluorescent derivative of penicillin and to hydrolyze the substrate analogue S2d. Moreover, we have evidenced the stabilizing role of protein-protein interactions within each complex. This work paves the way for a complete reconstitution of peptidoglycan synthesis in vitro, which will be critical to the elucidation of its intricate regulation mechanisms.

  6. The Effect of Edge Definition of Complex Networks on Protein Structure Identification

    Directory of Open Access Journals (Sweden)

    Jing Sun

    2013-01-01

    Full Text Available The main objective of this study is to explore the contribution of complex network together with its different definitions of vertexes and edges to describe the structure of proteins. Protein folds into a specific conformation for its function depending on interactions between residues. Consequently, in many studies, a protein structure was treated as a complex system comprised of individual components residues, and edges were interactions between residues. What is the proper time for representing a protein structure as a network? To confirm the effect of different definitions of vertexes and edges in constructing the amino acid interaction networks, protein domains and the structural unit of proteins were described using this method. The identification performance of 2847 proteins with domain/domains proved that the structure of proteins was described well when was around 5.0–7.5 Å, and the optimal cutoff value for constructing the protein structure networks was 5.0 Å ( distances while the ideal community division method was community structure detection based on edge betweenness in this study.

  7. Complex chromatin condensation patterns and nuclear protein transitions during spermiogenesis: examples from mollusks.

    Science.gov (United States)

    Chiva, M; Saperas, N; Ribes, E

    2011-12-01

    In this paper we review and analyze the chromatin condensation pattern during spermiogenesis in several species of mollusks. Previously, we had described the nuclear protein transitions during spermiogenesis in these species. The results of our study show two types of condensation pattern: simple patterns and complex patterns, with the following general characteristics: (a) When histones (always present in the early spermatid nucleus) are directly replaced by SNBP (sperm nuclear basic proteins) of the protamine type, the spermiogenic chromatin condensation pattern is simple. However, if the replacement is not direct but through intermediate proteins, the condensation pattern is complex. (b) The intermediate proteins found in mollusks are precursor molecules that are processed during spermiogenesis to the final protamine molecules. Some of these final protamines represent proteins with the highest basic amino acid content known to date, which results in the establishment of a very strong electrostatic interaction with DNA. (c) In some instances, the presence of complex patterns of chromatin condensation clearly correlates with the acquisition of specialized forms of the mature sperm nuclei. In contrast, simple condensation patterns always lead to rounded, oval or slightly cylindrical nuclei. (d) All known cases of complex spermiogenic chromatin condensation patterns are restricted to species with specialized sperm cells (introsperm). At the time of writing, we do not know of any report on complex condensation pattern in species with external fertilization and, therefore, with sperm cells of the primitive type (ect-aquasperm). (e) Some of the mollusk an spermiogenic chromatin condensation patterns of the complex type are very similar (almost identical) to those present in other groups of animals. Interestingly, the intermediate proteins involved in these cases can be very different.In this study, we discuss the biological significance of all these features and

  8. Simplified Method for Predicting a Functional Class of Proteins in Transcription Factor Complexes

    KAUST Repository

    Piatek, Marek J.

    2013-07-12

    Background:Initiation of transcription is essential for most of the cellular responses to environmental conditions and for cell and tissue specificity. This process is regulated through numerous proteins, their ligands and mutual interactions, as well as interactions with DNA. The key such regulatory proteins are transcription factors (TFs) and transcription co-factors (TcoFs). TcoFs are important since they modulate the transcription initiation process through interaction with TFs. In eukaryotes, transcription requires that TFs form different protein complexes with various nuclear proteins. To better understand transcription regulation, it is important to know the functional class of proteins interacting with TFs during transcription initiation. Such information is not fully available, since not all proteins that act as TFs or TcoFs are yet annotated as such, due to generally partial functional annotation of proteins. In this study we have developed a method to predict, using only sequence composition of the interacting proteins, the functional class of human TF binding partners to be (i) TF, (ii) TcoF, or (iii) other nuclear protein. This allows for complementing the annotation of the currently known pool of nuclear proteins. Since only the knowledge of protein sequences is required in addition to protein interaction, the method should be easily applicable to many species.Results:Based on experimentally validated interactions between human TFs with different TFs, TcoFs and other nuclear proteins, our two classification systems (implemented as a web-based application) achieve high accuracies in distinguishing TFs and TcoFs from other nuclear proteins, and TFs from TcoFs respectively.Conclusion:As demonstrated, given the fact that two proteins are capable of forming direct physical interactions and using only information about their sequence composition, we have developed a completely new method for predicting a functional class of TF interacting protein partners

  9. Distinct Roles of Chromatin Insulator Proteins in Control of the Drosophila Bithorax Complex.

    Science.gov (United States)

    Savitsky, Mikhail; Kim, Maria; Kravchuk, Oksana; Schwartz, Yuri B

    2016-02-01

    Chromatin insulators are remarkable regulatory elements that can bring distant genomic sites together and block unscheduled enhancer-promoter communications. Insulators act via associated insulator proteins of two classes: sequence-specific DNA binding factors and "bridging" proteins. The latter are required to mediate interactions between distant insulator elements. Chromatin insulators are critical for correct expression of complex loci; however, their mode of action is poorly understood. Here, we use the Drosophila bithorax complex as a model to investigate the roles of the bridging proteins Cp190 and Mod(mdg4). The bithorax complex consists of three evolutionarily conserved homeotic genes Ubx, abd-A, and Abd-B, which specify anterior-posterior identity of the last thoracic and all abdominal segments of the fly. Looking at effects of CTCF, mod(mdg4), and Cp190 mutations on expression of the bithorax complex genes, we provide the first functional evidence that Mod(mdg4) acts in concert with the DNA binding insulator protein CTCF. We find that Mod(mdg4) and Cp190 are not redundant and may have distinct functional properties. We, for the first time, demonstrate that Cp190 is critical for correct regulation of the bithorax complex and show that Cp190 is required at an exceptionally strong Fub insulator to partition the bithorax complex into two topological domains. Copyright © 2016 by the Genetics Society of America.

  10. Distinct Roles of Chromatin Insulator Proteins in Control of the Drosophila Bithorax Complex

    Science.gov (United States)

    Savitsky, Mikhail; Kim, Maria; Kravchuk, Oksana; Schwartz, Yuri B.

    2016-01-01

    Chromatin insulators are remarkable regulatory elements that can bring distant genomic sites together and block unscheduled enhancer–promoter communications. Insulators act via associated insulator proteins of two classes: sequence-specific DNA binding factors and “bridging” proteins. The latter are required to mediate interactions between distant insulator elements. Chromatin insulators are critical for correct expression of complex loci; however, their mode of action is poorly understood. Here, we use the Drosophila bithorax complex as a model to investigate the roles of the bridging proteins Cp190 and Mod(mdg4). The bithorax complex consists of three evolutionarily conserved homeotic genes Ubx, abd-A, and Abd-B, which specify anterior–posterior identity of the last thoracic and all abdominal segments of the fly. Looking at effects of CTCF, mod(mdg4), and Cp190 mutations on expression of the bithorax complex genes, we provide the first functional evidence that Mod(mdg4) acts in concert with the DNA binding insulator protein CTCF. We find that Mod(mdg4) and Cp190 are not redundant and may have distinct functional properties. We, for the first time, demonstrate that Cp190 is critical for correct regulation of the bithorax complex and show that Cp190 is required at an exceptionally strong Fub insulator to partition the bithorax complex into two topological domains. PMID:26715665

  11. Microcephaly Proteins Wdr62 and Aspm Define a Mother Centriole Complex Regulating Centriole Biogenesis, Apical Complex, and Cell Fate.

    Science.gov (United States)

    Jayaraman, Divya; Kodani, Andrew; Gonzalez, Dilenny M; Mancias, Joseph D; Mochida, Ganeshwaran H; Vagnoni, Cristiana; Johnson, Jeffrey; Krogan, Nevan; Harper, J Wade; Reiter, Jeremy F; Yu, Timothy W; Bae, Byoung-Il; Walsh, Christopher A

    2016-11-23

    Mutations in several genes encoding centrosomal proteins dramatically decrease the size of the human brain. We show that Aspm (abnormal spindle-like, microcephaly-associated) and Wdr62 (WD repeat-containing protein 62) interact genetically to control brain size, with mice lacking Wdr62, Aspm, or both showing gene dose-related centriole duplication defects that parallel the severity of the microcephaly and increased ectopic basal progenitors, suggesting premature delamination from the ventricular zone. Wdr62 and Aspm localize to the proximal end of the mother centriole and interact physically, with Wdr62 required for Aspm localization, and both proteins, as well as microcephaly protein Cep63, required to localize CENPJ/CPAP/Sas-4, a final common target. Unexpectedly, Aspm and Wdr62 are required for normal apical complex localization and apical epithelial structure, providing a plausible unifying mechanism for the premature delamination and precocious differentiation of progenitors. Together, our results reveal links among centrioles, apical proteins, and cell fate, and illuminate how alterations in these interactions can dynamically regulate brain size. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Activated charcoal forms non-IgE binding complexes with peanut proteins.

    Science.gov (United States)

    Vadas, Peter; Perelman, Boris

    2003-07-01

    Conventional management of peanut-induced anaphylaxis is composed of administration of epinephrine, antihistamine, and steroid and stabilization of airway, ventilatory, and circulatory function. Therapies directed toward slowing or preventing further absorption of peanut protein from the gastrointestinal tract after accidental ingestion have not been a routine part of management. The purpose of this study was to determine the ability of activated charcoal to complex with peanut protein, thereby preventing its binding to either peanut-specific IgE or peanut-specific IgG. Peanut protein was coincubated with micronized activated charcoal suspension at pH 3.5 or 7.4. Peanut protein complexed with charcoal was removed by centrifugation. Binding of residual peanut protein to peanut-specific IgG was measured by a sandwich ELISA assay. Also, ability of uncomplexed peanut protein to bind to peanut-specific IgE was determined by Western blot and by skin prick testing in subjects with peanut allergy. Activated charcoal (AC) formed complexes with peanut protein, effectively competing for binding with peanut-specific IgG in a sandwich ELISA assay. AC complexed efficiently with peanut protein at both neutral and acidic pH in as little as 60 seconds. AC was also able to remove IgE-binding peanut allergens from solution as determined by Western blot and by skin prick testing in subjects with peanut allergy. A ratio of 200 mg of AC to 1 mg peanut protein was required for complete removal of peanut protein from solution. AC was able to complex with peanut protein within food matrices such as ice cream and chocolate. The data presented herein show that AC removes both IgE-binding and IgG-binding peanut proteins from solution rapidly at both neutral and acidic pH. These data suggest that administration of AC may be useful as an adjunct to slow or to prevent further absorption of peanut protein from the gastrointestinal tract after accidental ingestion by individuals with peanut

  13. Heterodimerization of the Entamoeba histolytica EhCPADH virulence complex through molecular dynamics and protein-protein docking.

    Science.gov (United States)

    Montaño, Sarita; Orozco, Esther; Correa-Basurto, José; Bello, Martiniano; Chávez-Munguía, Bibiana; Betanzos, Abigail

    2017-02-01

    EhCPADH is a protein complex involved in the virulence of Entamoeba histolytica, the protozoan responsible for human amebiasis. It is formed by the EhCP112 cysteine protease and the EhADH adhesin. To explore the molecular basis of the complex formation, three-dimensional models were built for both proteins and molecular dynamics simulations (MDS) and docking calculations were performed. Results predicted that the pEhCP112 proenzyme and the mEhCP112 mature enzyme were globular and peripheral membrane proteins. Interestingly, in pEhCP112, the propeptide appeared hiding the catalytic site (C167, H329, N348); while in mEhCP112, this site was exposed and its residues were found structurally closer than in pEhCP112. EhADH emerged as an extended peripheral membrane protein with high fluctuation in Bro1 and V shape domains. 500 ns-long MDS and protein-protein docking predictions evidenced different heterodimeric complexes with the lowest free energy. pEhCP112 interacted with EhADH by the propeptide and C-terminal regions and mEhCP112 by the C-terminal through hydrogen bonds. In contrast, EhADH bound to mEhCP112 by 442-479 residues, adjacent to the target cell-adherence region (480-600 residues), and by the Bro1 domain (9-349 residues). Calculations of the effective binding free energy and per residue free energy decomposition showed that EhADH binds to mEhCP112 with a higher binding energy than to pEhCP112, mainly through van der Waals interactions and the nonpolar part of solvation energy. The EhADH and EhCP112 structural relationship was validated in trophozoites by immunofluorescence, TEM, and immunoprecipitation assays. Experimental findings fair agreed with in silico results.

  14. Structure of the JmjC domain-containing protein NO66 complexed with ribosomal protein Rpl8

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chengliang [University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People’s Republic of (China); Chinese Academy of Sciences, Hefei, Anhui 230026, People’s Republic of (China); Zhang, Qiongdi [University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People’s Republic of (China); Hang, Tianrong [University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People’s Republic of (China); Chinese Academy of Sciences, Hefei, Anhui 230026, People’s Republic of (China); Tao, Yue [Shanghai Children’s Medical Center, 1678 Dongfang Road, Pudong, Shanghai 200120, People’s Republic of (China); Ma, Xukai [University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People’s Republic of (China); Wu, Minhao; Zhang, Xuan, E-mail: xuanzbin@ustc.edu.cn; Zang, Jianye, E-mail: xuanzbin@ustc.edu.cn [University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People’s Republic of (China); Chinese Academy of Sciences, Hefei, Anhui 230026, People’s Republic of (China)

    2015-08-28

    The structure of the complex of NO66 and Rpl8 was solved in the native state and NO66 recognizes the consensus motif NHXH . Tetramerization is required for efficient substrate binding and catalysis by NO66. The JmjC domain-containing proteins belong to a large family of oxygenases possessing distinct substrate specificities which are involved in the regulation of different biological processes, such as gene transcription, RNA processing and translation. Nucleolar protein 66 (NO66) is a JmjC domain-containing protein which has been reported to be a histone demethylase and a ribosome protein 8 (Rpl8) hydroxylase. The present biochemical study confirmed the hydroxylase activity of NO66 and showed that oligomerization is required for NO66 to efficiently catalyze the hydroxylation of Rpl8. The structures of NO66{sup 176–C} complexed with Rpl8{sup 204–224} in a tetrameric form and of the mutant protein M2 in a dimeric form were solved. Based on the results of structural and biochemical analyses, the consensus sequence motif NHXH recognized by NO66 was confirmed. Several potential substrates of NO66 were found by a BLAST search according to the consensus sequence motif. When binding to substrate, the relative positions of each subunit in the NO66 tetramer shift. Oligomerization may facilitate the motion of each subunit in the NO66 tetramer and affect the catalytic activity.

  15. A new look on protein-polyphenol complexation during honey storage: is this a random or organized event with the help of dirigent-like proteins?

    Directory of Open Access Journals (Sweden)

    Katrina Brudzynski

    Full Text Available Honey storage initiates melanoidin formation that involves a cascade of seemingly unguided redox reactions between amino acids/proteins, reducing sugars and polyphenols. In the process, high molecular weight protein-polyphenol complexes are formed, but the mechanism involved remains unknown. The objective of this study was twofold: to determine quantitative and qualitative changes in proteins in honeys stored for prolonged times and in different temperatures and to relate these changes to the formation of protein-polyphenol complexes. Six -month storage decreased the protein content by 46.7% in all tested honeys (t-test, p<0.002 with the rapid reduction occurring during the first three month. The changes in protein levels coincided with alterations in molecular size and net charge of proteins on SDS -PAGE. Electro-blotted proteins reacted with a quinone-specific nitro blue tetrazolium (NBT on nitrocellulose membranes indicating that quinones derived from oxidized polyphenols formed covalent bonds with proteins. Protein-polyphenol complexes isolated by size-exclusion chromatography differed in size and stoichiometry and fall into two categories: (a high molecular weight complexes (230-180 kDa enriched in proteins but possessing a limited reducing activity toward the NBT and (b lower molecular size complexes (110-85 kDa enriched in polyphenols but strongly reducing the dye. The variable stoichiometry suggest that the large, "protein-type" complexes were formed by protein cross-linking, while in the smaller, "polyphenol-type" complexes polyphenols were first polymerized prior to protein binding. Quinones preferentially bound a 31 kDa protein which, by the electrospray quadrupole time of flight mass spectrometry (ESI-Qtof-MS analysis, showed homology to dirigent-like proteins known for assisting in radical coupling and polymerization of phenolic compounds. These findings provide a new look on protein-polyphenol interaction in honey where the

  16. Assembly of membrane-bound protein complexes: detection and analysis by single molecule diffusion.

    Science.gov (United States)

    Ziemba, Brian P; Knight, Jefferson D; Falke, Joseph J

    2012-02-28

    Protein complexes assembled on membrane surfaces regulate a wide array of signaling pathways and cell processes. Thus, a molecular understanding of the membrane surface diffusion and regulatory events leading to the assembly of active membrane complexes is crucial to signaling biology and medicine. Here we present a novel single molecule diffusion analysis designed to detect complex formation on supported lipid bilayers. The usefulness of the method is illustrated by detection of an engineered, heterodimeric complex in which two membrane-bound pleckstrin homology (PH) domains associate stably, but reversibly, upon Ca(2+)-triggered binding of calmodulin (CaM) to a target peptide from myosin light chain kinase (MLCKp). Specifically, when a monomeric, fluorescent PH-CaM domain fusion protein diffusing on a supported bilayer binds a dark MLCKp-PH domain fusion protein, the heterodimeric complex is observed to diffuse nearly 2-fold more slowly than the monomer because both of its twin PH domains can simultaneously bind to the viscous bilayer. In a mixed population of monomers and heterodimers, the single molecule diffusion analysis resolves, identifies and quantitates the rapidly diffusing monomers and slowly diffusing heterodimers. The affinity of the CaM-MLCKp interaction is measured by titrating dark MLCKp-PH construct into the system, while monitoring the changing ratio of monomers and heterodimers, yielding a saturating binding curve. Strikingly, the apparent affinity of the CaM-MLCKp complex is ~10(2)-fold greater in the membrane system than in solution, apparently due to both faster complex association and slower complex dissociation on the membrane surface. More broadly, the present findings suggest that single molecule diffusion measurements on supported bilayers will provide an important tool for analyzing the 2D diffusion and assembly reactions governing the formation of diverse membrane-bound complexes, including key complexes from critical signaling

  17. Detection of protein thiols in mitochondrial oxidative phosphorylation complexes and associated proteins.

    Science.gov (United States)

    Andringa, Kelly K; Bailey, Shannon M

    2010-01-01

    The ability to detect and identify mitochondrial proteins that are sensitive to oxidative modification and inactivation by reactive species is important in understanding the molecular mechanisms responsible for mitochondrial dysfunction and tissue injury. In particular, cysteine residues play critical roles in maintaining the functional and structural integrity of numerous proteins in the mitochondrion and throughout the cell. To define changes in mitochondrial protein thiol status, proteomic approaches have been developed in which unmodified, reduced thiols (i.e., R-SH or thiolate species R-S(-)) are tagged with thiol-labeling reagents that can be visualized following gel electrophoresis and immunoblotting techniques. Herein, we describe the use of one thiol-labeling approach in combination with blue native gel electrophoresis (BN-PAGE) to detect reactive thiol groups within mitochondrial proteins including those of the oxidative phosphorylation (OxPhos) system. Labeling or "tagging" of protein thiol groups in combination with various gel electrophoresis and proteomics techniques is a valuable way to measure alterations in cellular or organelle thiol proteomes in response to drug treatment, disease state, or metabolic/oxidative stress. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  18. Tuning cobalt(III) Schiff base complexes as activated protein inhibitors.

    Science.gov (United States)

    Heffern, Marie C; Reichova, Viktorie; Coomes, Joseph L; Harney, Allison S; Bajema, Elizabeth A; Meade, Thomas J

    2015-09-21

    Cobalt(III) Schiff base complexes ([Co(acacen)(L)2](+), where L = NH3) inhibit histidine-containing proteins through dissociative exchange of the labile axial ligands (L). This work investigates axial ligand exchange dynamics of [Co(acacen)(L)2](+) complexes toward the development of protein inhibitors that are activated by external triggers such as light irradiation. We sought to investigate ligand exchange dynamics to design a Co(III) complex that is substitutionally inert under normal physiological conditions for selective activation. Fluorescent imidazoles (C3Im) were prepared as axial ligands in [Co(acacen)(L)2](+) to produce complexes (CoC3Im) that could report on ligand exchange and, thus, complex stability. These fluorescent imidazole reporters guided the design of a new dinuclear Co(III) Schiff base complex containing bridging diimidazole ligands, which exhibits enhanced stability to ligand exchange with competing imidazoles and to hydrolysis within a biologically relevant pH range. These studies inform the design of biocompatible Co(III) Schiff base complexes that can be selectively activated for protein inhibition with spatial and temporal specificity.

  19. Accurate refinement of docked protein complexes using evolutionary information and deep learning.

    Science.gov (United States)

    Akbal-Delibas, Bahar; Farhoodi, Roshanak; Pomplun, Marc; Haspel, Nurit

    2016-06-01

    One of the major challenges for protein docking methods is to accurately discriminate native-like structures from false positives. Docking methods are often inaccurate and the results have to be refined and re-ranked to obtain native-like complexes and remove outliers. In a previous work, we introduced AccuRefiner, a machine learning based tool for refining protein-protein complexes. Given a docked complex, the refinement tool produces a small set of refined versions of the input complex, with lower root-mean-square-deviation (RMSD) of atomic positions with respect to the native structure. The method employs a unique ranking tool that accurately predicts the RMSD of docked complexes with respect to the native structure. In this work, we use a deep learning network with a similar set of features and five layers. We show that a properly trained deep learning network can accurately predict the RMSD of a docked complex with 1.40 Å error margin on average, by approximating the complex relationship between a wide set of scoring function terms and the RMSD of a docked structure. The network was trained on 35000 unbound docking complexes generated by RosettaDock. We tested our method on 25 different putative docked complexes produced also by RosettaDock for five proteins that were not included in the training data. The results demonstrate that the high accuracy of the ranking tool enables AccuRefiner to consistently choose the refinement candidates with lower RMSD values compared to the coarsely docked input structures.

  20. Imaging and structural studies of DNA–protein complexes and membrane ion channels

    KAUST Repository

    Marini, Monica

    2017-01-17

    In bio-imaging by electron microscopy, damage of the sample and limited contrast are the two main hurdles for reaching high image quality. We extend a new preparation method based on nanofabrication and super-hydrophobicity to the imaging and structural studies of nucleic acids, nucleic acid-protein complexes (DNA/Rad51 repair protein complex) and neuronal ion channels (gap-junction, K+ and GABA(A) channels) as paradigms of biological significance and increasing complexity. The preparation method is based on the liquid phase and is compatible with physiological conditions. Only in the very last stage, samples are dried for TEM analysis. Conventional TEM and high-resolution TEM (HRTEM) were used to achieve a resolution of 3.3 and 1.5 angstrom, respectively. The EM dataset quality allows the determination of relevant structural and metrological information on the DNA structure, DNA-protein interactions and ion channels, allowing the identification of specific macromolecules and their structure.

  1. Transition metal complexes as mediator-titrants in protein redox potentiometry.

    Science.gov (United States)

    Bernhardt, Paul V; Chen, Kuan-I; Sharpe, Philip C

    2006-10-01

    A selection of nine macrocyclic Fe(III/II) and Co(III/II) transition metal complexes has been chosen to serve as a universal set of mediator-titrants in redox potentiometry of protein samples. The potential range spanned by these mediators is approximately from +300 to -700 mV vs the normal hydrogen electrode, which covers the range of most protein redox potentials accessible in aqueous solution. The complexes employed exhibit stability in both their oxidized and their reduced forms as well as pH-independent redox potentials within the range 6 < pH < 9. The mediators were also chosen on the basis of their very weak visible absorption maxima in both oxidation states, which will enable (for the first time) optical redox potentiometric titrations of proteins with relatively low extinction coefficients. This has previously been impractical with organic mediators, such as indoles, viologens and quinones, whose optical spectra interfere strongly with those of the protein.

  2. The promyelocytic leukemia gene product (PML) forms stable complexes with the retinoblastoma protein

    DEFF Research Database (Denmark)

    Alcalay, M; Tomassoni, L; Colombo, E

    1998-01-01

    by the expression of PML-RAR alpha. We report that PML colocalizes with the nonphosphorylated fraction of the retinoblastoma protein (pRB) within nuclear bodies and that pRB is delocalized by PML-RAR alpha expression. Both PML and PML-RAR alpha form complexes with the nonphosphorylated form of pRB in vivo...... activation of glucocorticoid receptor-regulated transcription by pRB, whereas PML-RAR alpha further increases it. Our results suggest that PML may be part of transcription-regulatory complexes and that the oncogenic potential of the PML-RAR alpha protein may derive from the alteration of PML......PML is a nuclear protein with growth-suppressive properties originally identified in the context of the PML-retinoic acid receptor alpha (RAR alpha) fusion protein of acute promyelocytic leukemia. PML localizes within distinct nuclear structures, called nuclear bodies, which are disrupted...

  3. Spatiotemporal dynamics of early DNA damage response proteins on complex DNA lesions.

    Directory of Open Access Journals (Sweden)

    Frank Tobias

    Full Text Available The response of cells to ionizing radiation-induced DNA double-strand breaks (DSB is determined by the activation of multiple pathways aimed at repairing the injury and maintaining genomic integrity. Densely ionizing radiation induces complex damage consisting of different types of DNA lesions in close proximity that are difficult to repair and may promote carcinogenesis. Little is known about the dynamic behavior of repair proteins on complex lesions. In this study we use live-cell imaging for the spatio-temporal characterization of early protein interactions at damage sites of increasing complexity. Beamline microscopy was used to image living cells expressing fluorescently-tagged proteins during and immediately after charged particle irradiation to reveal protein accumulation at damaged sites in real time. Information on the mobility and binding rates of the recruited proteins was obtained from fluorescence recovery after photobleaching (FRAP. Recruitment of the DNA damage sensor protein NBS1 accelerates with increasing lesion density and saturates at very high damage levels. FRAP measurements revealed two different binding modalities of NBS1 to damage sites and a direct impact of lesion complexity on the binding. Faster recruitment with increasing lesion complexity was also observed for the mediator MDC1, but mobility was limited at very high damage densities due to nuclear-wide binding. We constructed a minimal computer model of the initial response to DSB based on known protein interactions only. By fitting all measured data using the same set of parameters, we can reproduce the experimentally characterized steps of the DNA damage response over a wide range of damage densities. The model suggests that the influence of increasing lesion density accelerating NBS1 recruitment is only dependent on the different binding modes of NBS1, directly to DSB and to the surrounding chromatin via MDC1. This elucidates an impact of damage clustering on

  4. Spatiotemporal dynamics of early DNA damage response proteins on complex DNA lesions.

    Science.gov (United States)

    Tobias, Frank; Löb, Daniel; Lengert, Nicor; Durante, Marco; Drossel, Barbara; Taucher-Scholz, Gisela; Jakob, Burkhard

    2013-01-01

    The response of cells to ionizing radiation-induced DNA double-strand breaks (DSB) is determined by the activation of multiple pathways aimed at repairing the injury and maintaining genomic integrity. Densely ionizing radiation induces complex damage consisting of different types of DNA lesions in close proximity that are difficult to repair and may promote carcinogenesis. Little is known about the dynamic behavior of repair proteins on complex lesions. In this study we use live-cell imaging for the spatio-temporal characterization of early protein interactions at damage sites of increasing complexity. Beamline microscopy was used to image living cells expressing fluorescently-tagged proteins during and immediately after charged particle irradiation to reveal protein accumulation at damaged sites in real time. Information on the mobility and binding rates of the recruited proteins was obtained from fluorescence recovery after photobleaching (FRAP). Recruitment of the DNA damage sensor protein NBS1 accelerates with increasing lesion density and saturates at very high damage levels. FRAP measurements revealed two different binding modalities of NBS1 to damage sites and a direct impact of lesion complexity on the binding. Faster recruitment with increasing lesion complexity was also observed for the mediator MDC1, but mobility was limited at very high damage densities due to nuclear-wide binding. We constructed a minimal computer model of the initial response to DSB based on known protein interactions only. By fitting all measured data using the same set of parameters, we can reproduce the experimentally characterized steps of the DNA damage response over a wide range of damage densities. The model suggests that the influence of increasing lesion density accelerating NBS1 recruitment is only dependent on the different binding modes of NBS1, directly to DSB and to the surrounding chromatin via MDC1. This elucidates an impact of damage clustering on repair without the

  5. DNAzyme footprinting: detecting protein-aptamer complexation on surfaces by blocking DNAzyme cleavage activity.

    Science.gov (United States)

    Chen, Yulin; Corn, Robert M

    2013-02-13

    A novel method to quantitatively measure the binding of proteins to single-stranded DNA (ssDNA) aptamers that employs the inhibition of the DNAzyme hydrolysis of aptamer monolayers is described. A 28-base DNAzyme was designed to specifically bind to and cleave a 29-base ssDNA sequence that can fold into a G-quartet aptamer and bind the protein thrombin. The binding strength of the DNAzyme to the aptamer sequence was designed to be less than the binding strength of the thrombin to the aptamer (ΔG° = -43.1 and -51.8 kJ/mol, respectively). Formation of the thrombin-aptamer complex was found to block DNAzyme cleavage activity both in solution and in an ssDNA aptamer monolayer. We denote this method for detecting protein-aptamer complexation as "DNAzyme footprinting" in analogy to the process of DNase footprinting for the detection of protein-DNA interactions. By attaching a 40-base reporter sequence to the ssDNA aptamer monolayer, the detection of any protein-aptamer complexes remaining on the surface after DNAzyme activity can be greatly enhanced (down to one thrombin-aptamer complex per 10,000 ssDNA molecules corresponding to 100 fM thrombin in solution) by a subsequent surface RNA transcription amplification reaction followed by RNA detection with nanoparticle-enhanced SPR imaging. In addition to RNA transcription, DNAzyme footprinting can be coupled to a wide variety of other nucleic acid surface amplification schemes and thus is a powerful new route for the enzymatically amplified detection of proteins via protein-aptamer complex formation.

  6. Crystallization of the Large Membrane Protein Complex Photosystem I in a Microfluidic Channel

    Science.gov (United States)

    Abdallah, Bahige G.; Kupitz, Christopher; Fromme, Petra; Ros, Alexandra

    2014-01-01

    Traditional macroscale protein crystallization is accomplished non-trivially by exploring a range of protein concentrations and buffers in solution until a suitable combination is attained. This methodology is time consuming and resource intensive, hindering protein structure determination. Even more difficulties arise when crystallizing large membrane protein complexes such as photosystem I (PSI) due to their large unit cells dominated by solvent and complex characteristics that call for even stricter buffer requirements. Structure determination techniques tailored for these ‘difficult to crystallize’ proteins such as femtosecond nanocrystallography are being developed, yet still need specific crystal characteristics. Here, we demonstrate a simple and robust method to screen protein crystallization conditions at low ionic strength in a microfluidic device. This is realized in one microfluidic experiment using low sample amounts, unlike traditional methods where each solution condition is set up separately. Second harmonic generation microscopy via Second Order Nonlinear Imaging of Chiral Crystals (SONICC) was applied for the detection of nanometer and micrometer sized PSI crystals within microchannels. To develop a crystallization phase diagram, crystals imaged with SONICC at specific channel locations were correlated to protein and salt concentrations determined by numerical simulations of the time-dependent diffusion process along the channel. Our method demonstrated that a portion of the PSI crystallization phase diagram could be reconstructed in excellent agreement with crystallization conditions determined by traditional methods. We postulate that this approach could be utilized to efficiently study and optimize crystallization conditions for a wide range of proteins that are poorly understood to date. PMID:24191698

  7. The Mub1/Ubr2 ubiquitin ligase complex regulates the conserved Dsn1 kinetochore protein.

    Directory of Open Access Journals (Sweden)

    Bungo Akiyoshi

    Full Text Available The kinetochore is the macromolecular complex that assembles onto centromeric DNA and orchestrates the segregation of duplicated chromosomes. More than 60 components make up the budding yeast kinetochore, including inner kinetochore proteins that bind to centromeric chromatin and outer proteins that directly interact with microtubules. However, little is known about how these components assemble into a functional kinetochore and whether there are quality control mechanisms that monitor kinetochore integrity. We previously developed a method to isolate kinetochore particles via purification of the conserved Dsn1 kinetochore protein. We find that the Mub1/Ubr2 ubiquitin ligase complex associates with kinetochore particles through the CENP-C(Mif2 protein. Although Mub1/Ubr2 are not stable kinetochore components in vivo, they regulate the levels of the conserved outer kinetochore protein Dsn1 via ubiquitylation. Strikingly, a deletion of Mub1/Ubr2 restores the levels and viability of a mutant Dsn1 protein, reminiscent of quality control systems that target aberrant proteins for degradation. Consistent with this, Mub1/Ubr2 help to maintain viability when kinetochores are defective. Together, our data identify a previously unknown regulatory mechanism for the conserved Dsn1 kinetochore protein. We propose that Mub1/Ubr2 are part of a quality control system that monitors kinetochore integrity, thus ensuring genomic stability.

  8. Detecting coordinated regulation of multi-protein complexes using logic analysis of gene expression

    Directory of Open Access Journals (Sweden)

    Yeates Todd O

    2009-12-01

    Full Text Available Abstract Background Many of the functional units in cells are multi-protein complexes such as RNA polymerase, the ribosome, and the proteasome. For such units to work together, one might expect a high level of regulation to enable co-appearance or repression of sets of complexes at the required time. However, this type of coordinated regulation between whole complexes is difficult to detect by existing methods for analyzing mRNA co-expression. We propose a new methodology that is able to detect such higher order relationships. Results We detect coordinated regulation of multiple protein complexes using logic analysis of gene expression data. Specifically, we identify gene triplets composed of genes whose expression profiles are found to be related by various types of logic functions. In order to focus on complexes, we associate the members of a gene triplet with the distinct protein complexes to which they belong. In this way, we identify complexes related by specific kinds of regulatory relationships. For example, we may find that the transcription of complex C is increased only if the transcription of both complex A AND complex B is repressed. We identify hundreds of examples of coordinated regulation among complexes under various stress conditions. Many of these examples involve the ribosome. Some of our examples have been previously identified in the literature, while others are novel. One notable example is the relationship between the transcription of the ribosome, RNA polymerase and mannosyltransferase II, which is involved in N-linked glycan processing in the Golgi. Conclusions The analysis proposed here focuses on relationships among triplets of genes that are not evident when genes are examined in a pairwise fashion as in typical clustering methods. By grouping gene triplets, we are able to decipher coordinated regulation among sets of three complexes. Moreover, using all triplets that involve coordinated regulation with the ribosome

  9. Physicochemical Characterization and Potential Prebiotic Effect of Whey Protein Isolate/Inulin Nano Complex

    Science.gov (United States)

    Han, Kyoung-Sik; Yun, Sung Seob; Lee, Mee-Ryung

    2016-01-01

    The purposes of this study were to investigate the impacts of concentration levels of whey protein isolate (WPI) and inulin on the formation and physicochemical properties of WPI/inulin nano complexes and to evaluate their potential prebiotic effects. WPI/inulin nano complexes were produced using the internal gelation method. Transmission electron microscopy (TEM) and particle size analyzer were used to assess the morphological and physicochemical characterizations of nano complexes, respectively. The encapsulation efficiency of resveratrol in nano complexes was studied using HPLC while the potential prebiotic effects were investigated by measuring the viability of probiotics. In TEM micrographs, the globular forms of nano complexes in the range of 10 and 100 nm were successfully manufactured. An increase in WPI concentration level from 1 to 3% (w/v) resulted in a significant (pphysicochemical properties of WPI/inulin nano complexes and had potential prebiotic effect. PMID:27194937

  10. Complex assembly behavior during the encapsulation of green fluorescent protein analogs in virus derived protein capsules

    NARCIS (Netherlands)

    Minten, Inge J.; Nolte, Roeland J.M.; Cornelissen, Jeroen Johannes Lambertus Maria

    2010-01-01

    Enzymes encapsulated in nanocontainers are a better model of the conditions inside a living cell than free enzymes in solution. In a first step toward the encapsulation of multiple enzymes inside the cowpea chlorotic mottle virus (CCMV) capsid, enhanced green fluorescent protein (EGFP) was attached

  11. Comprehensive Characterization of Minichromosome Maintenance Complex (MCM) Protein Interactions Using Affinity and Proximity Purifications Coupled to Mass Spectrometry.

    Science.gov (United States)

    Dubois, Marie-Line; Bastin, Charlotte; Lévesque, Dominique; Boisvert, François-Michel

    2016-09-02

    The extensive identification of protein-protein interactions under different conditions is an important challenge to understand the cellular functions of proteins. Here we use and compare different approaches including affinity purification and purification by proximity coupled to mass spectrometry to identify protein complexes. We explore the complete interactome of the minichromosome maintenance (MCM) complex by using both approaches for all of the different MCM proteins. Overall, our analysis identified unique and shared interaction partners and proteins enriched for distinct biological processes including DNA replication, DNA repair, and cell cycle regulation. Furthermore, we mapped the changes in protein interactions of the MCM complex in response to DNA damage, identifying a new role for this complex in DNA repair. In summary, we demonstrate the complementarity of these approaches for the characterization of protein interactions within the MCM complex.

  12. BRCA1 Protein Complexes: Dynamic Changes and Functions Important in Breast Cancer

    Science.gov (United States)

    2007-04-01

    associated with loss of tumor suppression activity. The currently identified substrates include histone proteins, p53, Fanconi anemia protein D2, and...Hospital, 5415 Boulevard de l’Assomption, Montreal, QC, Canada H1T 2M4. ‡To whom correspondence should be addressed at: Department of Pathology...region were essential in the complex milieu of the nucleus. These results link the BRCA1- de - pendent ubiquitination of the polymerase with DNA damage

  13. A Polycomb complex remains bound through DNA replication in the absence of other eukaryotic proteins

    KAUST Repository

    Lengsfeld, Bettina M.

    2012-09-17

    Propagation of chromatin states through DNA replication is central to epigenetic regulation and can involve recruitment of chromatin proteins to replicating chromatin through interactions with replication fork components. Here we show using a fully reconstituted T7 bacteriophage system that eukaryotic proteins are not required to tether the Polycomb complex PRC1 to templates during DNA replication. Instead, DNA binding by PRC1 can withstand passage of a simple replication fork.

  14. Differential Roles for Inner Membrane Complex Proteins across Toxoplasma gondii and Sarcocystis neurona Development

    OpenAIRE

    Dubey, Rashmi; Harrison, Brooke; Dangoudoubiyam, Sriveny; Bandini, Giulia; Cheng, Katherine; Kosber, Aziz; Agop-Nersesian, Carolina; Daniel K Howe; Samuelson, John; Ferguson, David J.P.; Gubbels, Marc-Jan

    2017-01-01

    The inner membrane complex (IMC) is a defining feature of apicomplexan parasites key to both their motility and unique cell division. To provide further insights into the IMC, we analyzed the dynamics and functions of representative alveolin domain-containing IMC proteins across developmental stages. Our work shows universal but distinct roles for IMC1, -3, and -7 during Toxoplasma asexual division but more specialized functions for these proteins during gametogenesis. In addition, we find th...

  15. A Conserved Endoplasmic Reticulum Membrane Protein Complex (EMC) Facilitates Phospholipid Transfer from the ER to Mitochondria

    Science.gov (United States)

    Tavassoli, Shabnam; Wong, Andrew K. O.; Choudhary, Vineet; Young, Barry P.; Loewen, Christopher J. R.; Prinz, William A.

    2014-01-01

    Mitochondrial membrane biogenesis and lipid metabolism require phospholipid transfer from the endoplasmic reticulum (ER) to mitochondria. Transfer is thought to occur at regions of close contact of these organelles and to be nonvesicular, but the mechanism is not known. Here we used a novel genetic screen in S. cerevisiae to identify mutants with defects in lipid exchange between the ER and mitochondria. We show that a strain missing multiple components of the conserved ER membrane protein complex (EMC) has decreased phosphatidylserine (PS) transfer from the ER to mitochondria. Mitochondria from this strain have significantly reduced levels of PS and its derivative phosphatidylethanolamine (PE). Cells lacking EMC proteins and the ER–mitochondria tethering complex called ERMES (the ER–mitochondria encounter structure) are inviable, suggesting that the EMC also functions as a tether. These defects are corrected by expression of an engineered ER–mitochondrial tethering protein that artificially tethers the ER to mitochondria. EMC mutants have a significant reduction in the amount of ER tethered to mitochondria even though ERMES remained intact in these mutants, suggesting that the EMC performs an additional tethering function to ERMES. We find that all Emc proteins interact with the mitochondrial translocase of the outer membrane (TOM) complex protein Tom5 and this interaction is important for PS transfer and cell growth, suggesting that the EMC forms a tether by associating with the TOM complex. Together, our findings support that the EMC tethers ER to mitochondria, which is required for phospholipid synthesis and cell growth. PMID:25313861

  16. Isolation of a novel lutein-protein complex from Chlorella vulgaris and its functional properties.

    Science.gov (United States)

    Cai, Xixi; Huang, Qimin; Wang, Shaoyun

    2015-06-01

    A novel kind of lutein-protein complex (LPC) was extracted from heterotrophic Chlorella vulgaris through aqueous extraction. The purification procedure contained solubilization of thylakoid proteins by a zwitterionic detergent CHAPS, anion exchange chromatography and gel filtration chromatography. Both wavelength scanning and HPLC analysis confirmed that lutein was the major pigment of the protein-based complex, and the mass ratio of lutein and protein was determined to be 9.72 : 100. Besides showing lipid peroxidation inhibition activity in vitro, LPC exerted significant antioxidant effects against ABTS and DPPH radicals with IC50 of 2.90 and 97. 23 μg mL(-1), respectively. Meanwhile, in vivo antioxidant activity of the complex was evaluated using the mice hepatotoxicity model; LPC significantly suppressed the carbon tetrachloride-induced elevation of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities, and decreased hepatic malondialdehyde (MDA) levels and the hepatosomatic index. Moreover, LPC could effectively restore the activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) in the treated mice livers. Our findings further the progress in the research of natural protein-based lutein complexes, suggesting that LPC has the potential in hepatoprotection against chemical induced toxicity and in increasing the antioxidant capacity of the defense system in the human body.

  17. Understanding the GPCR biased signaling through G protein and arrestin complex structures.

    Science.gov (United States)

    Zhou, X Edward; Melcher, Karsten; Xu, H Eric

    2017-08-01

    G protein-coupled receptors (GPCRs) are the largest family of cell surface receptors and are important drug targets for many human diseases. The determination of the 3-D structure of GPCRs and their signaling complexes has promoted our understanding of GPCR biology and provided templates for structure-based drug discovery. In this review, we focus on the recent structure work on GPCR signaling complexes, the β2-adrenoreceptor-Gs and the rhodopsin-arrestin complexes in particular, and highlight the structural features of GPCR complexes involved in G protein- and arrestin-mediated signal transduction. The crystal structures reveal distinct structural mechanisms by which GPCRs recruit a G protein and an arrestin. A comparison of the two complex structures provides insight into the molecular mechanism of functionally selective GPCR signaling, and a structural basis for the discovery of G protein- and arrestin-biased treatments of human diseases related to GPCR signal transduction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Multigene expression of protein complexes by iterative modification of genomic Bacmid DNA

    Directory of Open Access Journals (Sweden)

    Celma Cristina C

    2009-09-01

    Full Text Available Abstract Background Many cellular multi-protein complexes are naturally present in cells at low abundance. Baculovirus expression offers one approach to produce milligram quantities of correctly folded and processed eukaryotic protein complexes. However, current strategies suffer from the need to produce large transfer vectors, and the use of repeated promoter sequences in baculovirus, which itself produces proteins that promote homologous recombination. One possible solution to these problems is to construct baculovirus genomes that express each protein in a complex from a separate locus within the viral DNA. However current methods for selecting such recombinant genomes are too inefficient to routinely modify the virus in this way. Results This paper reports a method which combines the lambda red and bacteriophage P1 Cre-recombinase systems to efficiently generate baculoviruses in which protein complexes are expressed from multiple, single-locus insertions of foreign genes. This method is based on an 88 fold improvement in the selection of recombinant viruses generated by red recombination techniques through use of a bipartite selection cassette. Using this system, seven new genetic loci were identified in the AcMNPV genome suitable for the high level expression of recombinant proteins. These loci were used to allow the recovery two recombinant virus-like particles with potential biotechnological applications (influenza A virus HA/M1 particles and bluetongue virus VP2/VP3/VP5/VP7 particles and the mammalian chaperone and cancer drug target CCT (16 subunits formed from 8 proteins. Conclusion 1. Use of bipartite selections can significantly improve selection of modified bacterial artificial chromosomes carrying baculovirus DNA. Furthermore this approach is sufficiently robust to allow routine modification of the virus genome. 2. In addition to the commonly used p10 and polyhedrin loci, the ctx, egt, 39k, orf51, gp37, iap2 and odv-e56 loci in Ac

  19. Cyclic electron flow may provide some protection against PSII photoinhibition in rice (Oryza sativa L.) leaves under heat stress.

    Science.gov (United States)

    Essemine, Jemaa; Xiao, Yi; Qu, Mingnan; Mi, Hualing; Zhu, Xin-Guang

    2017-04-01

    Previously we have shown that a quick down-regulation in PSI activity compares to that of PSII following short-term heat stress for two rice groups including C4023 and Q4149, studied herein. These accessions were identified to have different natural capacities in driving cyclic electron flow (CEF) around PSI; i.e., low CEF (lcef) and high CEF (hcef) for C4023 and Q4149, respectively. The aim of this study was to investigate whether these two lines have different mechanisms of protecting photosystem II from photodamage under heat stress. We observed a stepwise alteration in the shape of Chl a fluorescence induction (OJIP) with increasing temperature treatment. The effect of 44°C treatment on the damping in Chl a fluorescence was more pronounced in C4023 than in Q4149. Likewise, we noted a disruption in the I-step, a decline in the Fv due to a strong damping in the Fm, and a slight increase in the F0. Normalized data demonstrated that the I-step seems more susceptible to 44°C in C4023 than in Q4149. We also measured the redox states of plastocyanin (PC) and P700 by monitoring the transmission changes at 820nm (I820), and observed a disturbance in the oxidation/reduction kinetics of PC and P700. The decline in the amplitude of their oxidation was shown to be about 29% and 13% for C4023 and Q4149, respectively. The electropotential component (Δφ) of ms-DLE appeared more sensitive to temperature stress than the chemical component (ΔpH), and the impact of heat was more evident and drastic in C4023 than in Q4149. Under heat stress, we noticed a concomitant decline in the primary photochemistry of PSII as well as in both the membrane energization process and the lumen protonation for both accessions, and it is evident that heat affects these parameters more in C4023 than in Q4149. All these data suggest that higher CET can confer higher photoprotection to PSII in rice lines, which can be a desirable trait during rice breeding, especially in the context of a "warming

  20. The Influence of Small Monovalent Cations on Neighbouring Hydrogen Bonds of Aquo-Protein Complexes

    Science.gov (United States)

    Sagarik, Kritsana P.; Rode, Bernd M.

    1981-12-01

    The influence of small monovalent metal ions on hydrogen bonds of aquo-protein complexes is studied on Li+/HCONH2-OH2 as an example. Using results obtained from ab initio calculations with minimal GLO basis sets, the remarkable changes in the hydrogen bond energy and charge distribution, due to metal ion complex formation, are discussed. The metal ion seems to enhance strongly the donor-acceptor interaction of the O ... H-N-C=0 hydrogen-bonded system.

  1. MPP1 links the Usher protein network and the Crumbs protein complex in the retina.

    NARCIS (Netherlands)

    Gosens, I.; Wijk, E. van; Kersten, F.F.J.; Krieger, E.; Zwaag, B. van der; Marker, T.; Letteboer, S.J.F.; Dusseljee, S.; Peters, T.; Spierenburg, H.A.; Punte, I.M.; Wolfrum, U.; Cremers, F.P.M.; Kremer, H.; Roepman, R.

    2007-01-01

    The highly ordered distribution of neurons is an essential feature of a functional mammalian retina. Disruptions in the apico-basal polarity complexes at the outer limiting membrane (OLM) of the retina are associated with retinal patterning defects in vertebrates. We have analyzed the binding

  2. Measuring Force-Induced Dissociation Kinetics of Protein Complexes Using Single-Molecule Atomic Force Microscopy.

    Science.gov (United States)

    Manibog, K; Yen, C F; Sivasankar, S

    2017-01-01

    Proteins respond to mechanical force by undergoing conformational changes and altering the kinetics of their interactions. However, the biophysical relationship between mechanical force and the lifetime of protein complexes is not completely understood. In this chapter, we provide a step-by-step tutorial on characterizing the force-dependent regulation of protein interactions using in vitro and in vivo single-molecule force clamp measurements with an atomic force microscope (AFM). While we focus on the force-induced dissociation of E-cadherins, a critical cell-cell adhesion protein, the approaches described here can be readily adapted to study other protein complexes. We begin this chapter by providing a brief overview of theoretical models that describe force-dependent kinetics of biomolecular interactions. Next, we present step-by-step methods for measuring the response of single receptor-ligand bonds to tensile force in vitro. Finally, we describe methods for quantifying the mechanical response of single protein complexes on the surface of living cells. We describe general protocols for conducting such measurements, including sample preparation, AFM force clamp measurements, and data analysis. We also highlight critical limitations in current technologies and discuss solutions to these challenges. © 2017 Elsevier Inc. All rights reserved.

  3. Brownian dynamics of a protein-polymer chain complex in a solid-state nanopore

    Science.gov (United States)

    Wells, Craig C.; Melnikov, Dmitriy V.; Gracheva, Maria E.

    2017-08-01

    We study the movement of a polymer attached to a large protein inside a nanopore in a thin silicon dioxide membrane submerged in an electrolyte solution. We use Brownian dynamics to describe the motion of a negatively charged polymer chain of varying lengths attached to a neutral protein modeled as a spherical bead with a radius larger than that of the nanopore, allowing the chain to thread the nanopore but preventing it from translocating. The motion of the protein-polymer complex within the pore is also compared to that of a freely translocating polymer. Our results show that the free polymer's standard deviations in the direction normal to the pore axis is greater than that of the protein-polymer complex. We find that restrictions imposed by the protein, bias, and neighboring chain segments aid in controlling the position of the chain in the pore. Understanding the behavior of the protein-polymer chain complex may lead to methods that improve molecule identification by increasing the resolution of ionic current measurements.

  4. Taxonomic distribution and origins of the extended LHC (light-harvesting complex) antenna protein superfamily

    Science.gov (United States)

    2010-01-01

    Background The extended light-harvesting complex (LHC) protein superfamily is a centerpiece of eukaryotic photosynthesis, comprising the LHC family and several families involved in photoprotection, like the LHC-like and the photosystem II subunit S (PSBS). The evolution of this complex superfamily has long remained elusive, partially due to previously missing families. Results In this study we present a meticulous search for LHC-like sequences in public genome and expressed sequence tag databases covering twelve representative photosynthetic eukaryotes from the three primary lineages of plants (Plantae): glaucophytes, red algae and green plants (Viridiplantae). By introducing a coherent classification of the different protein families based on both, hidden Markov model analyses and structural predictions, numerous new LHC-like sequences were identified and several new families were described, including the red lineage chlorophyll a/b-binding-like protein (RedCAP) family from red algae and diatoms. The test of alternative topologies of sequences of the highly conserved chlorophyll-binding core structure of LHC and PSBS proteins significantly supports the independent origins of LHC and PSBS families via two unrelated internal gene duplication events. This result was confirmed by the application of cluster likelihood mapping. Conclusions The independent evolution of LHC and PSBS families is supported by strong phylogenetic evidence. In addition, a possible origin of LHC and PSBS families from different homologous members of the stress-enhanced protein subfamily, a diverse and anciently paralogous group of two-helix proteins, seems likely. The new hypothesis for the evolution of the extended LHC protein superfamily proposed here is in agreement with the character evolution analysis that incorporates the distribution of families and subfamilies across taxonomic lineages. Intriguingly, stress-enhanced proteins, which are universally found in the genomes of green plants

  5. Taxonomic distribution and origins of the extended LHC (light-harvesting complex) antenna protein superfamily.

    Science.gov (United States)

    Engelken, Johannes; Brinkmann, Henner; Adamska, Iwona

    2010-07-30

    The extended light-harvesting complex (LHC) protein superfamily is a centerpiece of eukaryotic photosynthesis, comprising the LHC family and several families involved in photoprotection, like the LHC-like and the photosystem II subunit S (PSBS). The evolution of this complex superfamily has long remained elusive, partially due to previously missing families. In this study we present a meticulous search for LHC-like sequences in public genome and expressed sequence tag databases covering twelve representative photosynthetic eukaryotes from the three primary lineages of plants (Plantae): glaucophytes, red algae and green plants (Viridiplantae). By introducing a coherent classification of the different protein families based on both, hidden Markov model analyses and structural predictions, numerous new LHC-like sequences were identified and several new families were described, including the red lineage chlorophyll a/b-binding-like protein (RedCAP) family from red algae and diatoms. The test of alternative topologies of sequences of the highly conserved chlorophyll-binding core structure of LHC and PSBS proteins significantly supports the independent origins of LHC and PSBS families via two unrelated internal gene duplication events. This result was confirmed by the application of cluster likelihood mapping. The independent evolution of LHC and PSBS families is supported by strong phylogenetic evidence. In addition, a possible origin of LHC and PSBS families from different homologous members of the stress-enhanced protein subfamily, a diverse and anciently paralogous group of two-helix proteins, seems likely. The new hypothesis for the evolution of the extended LHC protein superfamily proposed here is in agreement with the character evolution analysis that incorporates the distribution of families and subfamilies across taxonomic lineages. Intriguingly, stress-enhanced proteins, which are universally found in the genomes of green plants, red algae, glaucophytes and in

  6. Taxonomic distribution and origins of the extended LHC (light-harvesting complex antenna protein superfamily

    Directory of Open Access Journals (Sweden)

    Brinkmann Henner

    2010-07-01

    Full Text Available Abstract Background The extended light-harvesting complex (LHC protein superfamily is a centerpiece of eukaryotic photosynthesis, comprising the LHC family and several families involved in photoprotection, like the LHC-like and the photosystem II subunit S (PSBS. The evolution of this complex superfamily has long remained elusive, partially due to previously missing families. Results In this study we present a meticulous search for LHC-like sequences in public genome and expressed sequence tag databases covering twelve representative photosynthetic eukaryotes from the three primary lineages of plants (Plantae: glaucophytes, red algae and green plants (Viridiplantae. By introducing a coherent classification of the different protein families based on both, hidden Markov model analyses and structural predictions, numerous new LHC-like sequences were identified and several new families were described, including the red lineage chlorophyll a/b-binding-like protein (RedCAP family from red algae and diatoms. The test of alternative topologies of sequences of the highly conserved chlorophyll-binding core structure of LHC and PSBS proteins significantly supports the independent origins of LHC and PSBS families via two unrelated internal gene duplication events. This result was confirmed by the application of cluster likelihood mapping. Conclusions The independent evolution of LHC and PSBS families is supported by strong phylogenetic evidence. In addition, a possible origin of LHC and PSBS families from different homologous members of the stress-enhanced protein subfamily, a diverse and anciently paralogous group of two-helix proteins, seems likely. The new hypothesis for the evolution of the extended LHC protein superfamily proposed here is in agreement with the character evolution analysis that incorporates the distribution of families and subfamilies across taxonomic lineages. Intriguingly, stress-enhanced proteins, which are universally found in the

  7. RMI, a new OB-fold complex essential for Bloom syndrome protein to maintain genome stability.

    Science.gov (United States)

    Xu, Dongyi; Guo, Rong; Sobeck, Alexandra; Bachrati, Csanad Z; Yang, Jay; Enomoto, Takemi; Brown, Grant W; Hoatlin, Maureen E; Hickson, Ian D; Wang, Weidong

    2008-10-15

    BLM, the helicase mutated in Bloom syndrome, associates with topoisomerase 3alpha, RMI1 (RecQ-mediated genome instability), and RPA, to form a complex essential for the maintenance of genome stability. Here we report a novel component of the BLM complex, RMI2, which interacts with RMI1 through two oligonucleotide-binding (OB)-fold domains similar to those in RPA. The resulting complex, named RMI, differs from RPA in that it lacks obvious DNA-binding activity. Nevertheless, RMI stimulates the dissolution of a homologous recombination intermediate in vitro and is essential for the stability, localization, and function of the BLM complex in vivo. Notably, inactivation of RMI2 in chicken DT40 cells results in an increased level of sister chromatid exchange (SCE)--the hallmark feature of Bloom syndrome cells. Epistasis analysis revealed that RMI2 and BLM suppress SCE within the same pathway. A point mutation in the OB domain of RMI2 disrupts the association between BLM and the rest of the complex, and abrogates the ability of RMI2 to suppress elevated SCE. Our data suggest that multi-OB-fold complexes mediate two modes of BLM action: via RPA-mediated protein-DNA interaction, and via RMI-mediated protein-protein interactions.

  8. Fast Photochemical Oxidation of Proteins Coupled to Multidimensional Protein Identification Technology (MudPIT): Expanding Footprinting Strategies to Complex Systems

    Science.gov (United States)

    Rinas, Aimee; Jones, Lisa M.

    2015-04-01

    Peptides containing the oxidation products of hydroxyl radical-mediated protein footprinting experiments are typically much less abundant than their unoxidized counterparts. This is inherent to the design of the experiment as excessive oxidation may lead to undesired conformational changes or unfolding of the protein, skewing the results. Thus, as the complexity of the systems studied using this method expands, the detection and identification of these oxidized species can be increasingly difficult with the limitations of data-dependent acquisition (DDA) and one-dimensional chromatography. Here we report the application of multidimensional protein identification technology (MudPIT) in combination with hydroxyl radical footprinting as a method to increase the identification of quantifiable peptides in these experiments. Using this method led to a 37% increase in unique peptide identifications as well as a 70% increase in protein group identifications over one-dimensional data-dependent acquisition on the same samples. Furthermore, we demonstrate the combination of these methods as a means to investigate megadalton complexes.

  9. Luminescent trimethoprim-polyaminocarboxylate lanthanide complex conjugates for selective protein labeling and time-resolved bioassays

    Science.gov (United States)

    Reddy, D. Rajasekhar; Pedró Rosa, Laura E.; Miller, Lawrence W.

    2011-01-01

    Labeling proteins with long-lifetime emitting lanthanide (III) chelate reporters enables sensitive, time-resolved luminescence bioaffinity assays. Heterodimers of trimethoprim (TMP) covalently linked to various cs124-sensitized, polyaminocarboxylate chelates stably retain lanthanide ions and exhibit quantum yields of europium emission up to 20% in water. A time-resolved, luminescence resonance energy transfer (LRET) assay showed that TMP-polyaminocarboxylates bind to Escherichia coli dihydrofolate reductase (eDHFR) fusion proteins with nanomolar affinity in purified solutions and in bacterial lysates. The ability to selectively impart terbium or europium luminescence to fusion proteins in complex physiological mixtures bypasses the need for specific antibodies and simplifies sample preparation. PMID:21619068

  10. An In Vitro Assay for Outer Membrane Protein Assembly by the BAM Complex.

    Science.gov (United States)

    Roman-Hernandez, Giselle; Bernstein, Harris D

    2015-01-01

    To elucidate the mechanism of a biochemical process it is often essential to reconstitute the reaction in vitro using the minimal set of factors required to drive the reaction to completion. Here, we describe a method to reconstitute the folding and membrane integration of bacterial outer membrane (OM) proteins that have a characteristic β-barrel structure. In this method the BAM complex, a heteroligomer that catalyzes the membrane integration of β-barrel proteins, is first purified and inserted into small lipid vesicles. Denatured OM proteins are then assembled and integrated into the vesicles in the presence of a molecular chaperone called SurA.

  11. Rbfox Proteins Regulate Splicing as Part of a Large Multiprotein Complex LASR.

    Science.gov (United States)

    Damianov, Andrey; Ying, Yi; Lin, Chia-Ho; Lee, Ji-Ann; Tran, Diana; Vashisht, Ajay A; Bahrami-Samani, Emad; Xing, Yi; Martin, Kelsey C; Wohlschlegel, James A; Black, Douglas L

    2016-04-21

    Rbfox proteins control alternative splicing and posttranscriptional regulation in mammalian brain and are implicated in neurological disease. These proteins recognize the RNA sequence (U)GCAUG, but their structures and diverse roles imply a variety of protein-protein interactions. We find that nuclear Rbfox proteins are bound within a large assembly of splicing regulators (LASR), a multimeric complex containing the proteins hnRNP M, hnRNP H, hnRNP C, Matrin3, NF110/NFAR-2, NF45, and DDX5, all approximately equimolar to Rbfox. We show that splicing repression mediated by hnRNP M is stimulated by Rbfox. Virtually all the intron-bound Rbfox is associated with LASR, and hnRNP M motifs are enriched adjacent to Rbfox crosslinking sites in vivo. These findings demonstrate that Rbfox proteins bind RNA with a defined set of cofactors and affect a broader set of exons than previously recognized. The function of this multimeric LASR complex has implications for deciphering the regulatory codes controlling splicing networks. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Characterization of Protein Complexes Using Chemical Cross-Linking Coupled Electrospray Mass Spectrometry.

    Science.gov (United States)

    Cummins, Timothy D; Sapkota, Gopal P

    2017-10-25

    Identification and characterization of large protein complexes is a mainstay of biochemical toolboxes. Utilization of cross-linking chemicals can facilitate the capture and identification of transient or weak interactions of a transient nature (Huang and Kim, PloS One 8:e61430, 2013; Gao et al., J Vis Exp doi: 10.3791/51387, 2014). Here we describe a detailed methodology for a cell culture-based proteomic approach. We describe the generation of cells stably expressing green fluorescent protein (GFP)-tagged proteins under the tetracycline-inducible promoter and subsequent proteomic analysis of GFP-interacting proteins. We include a list of proteins that were identified as interactors of GFP.

  13. Proteomic identification of dysferlin-interacting protein complexes in human vascular endothelium

    Energy Technology Data Exchange (ETDEWEB)

    Leung, Cleo; Utokaparch, Soraya; Sharma, Arpeeta; Yu, Carol; Abraham, Thomas; Borchers, Christoph [UBC James Hogg Research Centre, Institute for Heart and Lung Health, Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia (Canada); University of Victoria - Genome BC Proteomics Centre, University of Victoria, Victoria, British Columbia (Canada); Bernatchez, Pascal, E-mail: pbernatc@mail.ubc.ca [UBC James Hogg Research Centre, Institute for Heart and Lung Health, Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia (Canada); University of Victoria - Genome BC Proteomics Centre, University of Victoria, Victoria, British Columbia (Canada)

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Bi-directional (inward and outward) movement of GFP-dysferlin in COS-7 cells. Black-Right-Pointing-Pointer Dysferlin interacts with key signaling proteins for transcytosis in EC. Black-Right-Pointing-Pointer Dysferlin mediates trafficking of vesicles carrying protein cargos in EC. -- Abstract: Dysferlin is a membrane-anchored protein known to facilitate membrane repair in skeletal muscles following mechanical injury. Mutations of dysferlin gene impair sarcolemma integrity, a hallmark of certain forms of muscular dystrophy in patients. Dysferlin contains seven calcium-dependent C2 binding domains, which are required to promote fusion of intracellular membrane vesicles. Emerging evidence reveal the unexpected expression of dysferlin in non-muscle, non-mechanically active tissues, such as endothelial cells, which cast doubts over the belief that ferlin proteins act exclusively as membrane repair proteins. We and others have shown that deficient trafficking of membrane bound proteins in dysferlin-deficient cells, suggesting that dysferlin might mediate trafficking of client proteins. Herein, we describe the intracellular trafficking and movement of GFP-dysferlin positive vesicles in unfixed reconstituted cells using live microscopy. By performing GST pull-down assays followed by mass spectrometry, we identified dysferlin binding protein complexes in human vascular endothelial cells. Together, our data further support the claims that dysferlin not only mediates membrane repair but also trafficking of client proteins, ultimately, help bridging dysferlinopathies to aberrant membrane signaling.

  14. A luminescent ruthenium complex for ultrasensitive detection of proteins immobilized on membrane supports.

    Science.gov (United States)

    Berggren, K; Steinberg, T H; Lauber, W M; Carroll, J A; Lopez, M F; Chernokalskaya, E; Zieske, L; Diwu, Z; Haugland, R P; Patton, W F

    1999-12-15

    SYPRO Ruby protein blot stain provides a sensitive, gentle, fluorescence-based method for detecting proteins on nitrocellulose or polyvinylidene difluoride (PVDF) membranes. SYPRO Ruby dye is a permanent stain composed of ruthenium as part of an organic complex that interacts noncovalently with proteins. Stained proteins can be excited by ultraviolet light of about 302 nm or with visible light of about 470 nm. Fluorescence emission of the dye is approximately 618 nm. The stain can be visualized using a wide range of excitation sources utilized in image analysis systems including a UV-B transilluminator, 488-nm argon-ion laser, 532-nm yttrium-aluminum-garnet (YAG) laser, blue fluorescent light bulb, or blue light-emitting diode (LED). The detection sensitivity of SYPRO Ruby protein blot stain (0.25-1 ng protein/mm(2)) is superior to that of amido black, Coomassie blue, and india ink staining and nearly matches colloidal gold staining. SYPRO Ruby protein blot stain visualizes proteins more rapidly than colloidal gold stain and the linear dynamic range is more extensive. Unlike colloidal gold stain, SYPRO Ruby protein blot stain is fully compatible with subsequent biochemical applications including colorimetric and chemiluminescent immunoblotting, Edman-based sequencing and mass spectrometry. Copyright 1999 Academic Press.

  15. Mechanistic Insights Into Catalytic RNA-Protein Complexes Involved in Translation of the Genetic Code.

    Science.gov (United States)

    Routh, Satya B; Sankaranarayanan, Rajan

    2017-01-01

    The contemporary world is an "RNA-protein world" rather than a "protein world" and tracing its evolutionary origins is of great interest and importance. The different RNAs that function in close collaboration with proteins are involved in several key physiological processes, including catalysis. Ribosome-the complex megadalton cellular machinery that translates genetic information encoded in nucleotide sequence to amino acid sequence-epitomizes such an association between RNA and protein. RNAs that can catalyze biochemical reactions are known as ribozymes. They usually employ general acid-base catalytic mechanism, often involving the 2'-OH of RNA that activates and/or stabilizes a nucleophile during the reaction pathway. The protein component of such RNA-protein complexes (RNPCs) mostly serves as a scaffold which provides an environment conducive for the RNA to function, or as a mediator for other interacting partners. In this review, we describe those RNPCs that are involved at different stages of protein biosynthesis and in which RNA performs the catalytic function; the focus of the account is on highlighting mechanistic aspects of these complexes. We also provide a perspective on such associations in the context of proofreading during translation of the genetic code. The latter aspect is not much appreciated and recent works suggest that this is an avenue worth exploring, since an understanding of the subject can provide useful insights into how RNAs collaborate with proteins to ensure fidelity during these essential cellular processes. It may also aid in comprehending evolutionary aspects of such associations. © 2017 Elsevier Inc. All rights reserved.

  16. Role of the AP-5 adaptor protein complex in late endosome-to-Golgi retrieval.

    Directory of Open Access Journals (Sweden)

    Jennifer Hirst

    2018-01-01

    Full Text Available The AP-5 adaptor protein complex is presumed to function in membrane traffic, but so far nothing is known about its pathway or its cargo. We have used CRISPR-Cas9 to knock out the AP-5 ζ subunit gene, AP5Z1, in HeLa cells, and then analysed the phenotype by subcellular fractionation profiling and quantitative mass spectrometry. The retromer complex had an altered steady-state distribution in the knockout cells, and several Golgi proteins, including GOLIM4 and GOLM1, were depleted from vesicle-enriched fractions. Immunolocalisation showed that loss of AP-5 led to impaired retrieval of the cation-independent mannose 6-phosphate receptor (CIMPR, GOLIM4, and GOLM1 from endosomes back to the Golgi region. Knocking down the retromer complex exacerbated this phenotype. Both the CIMPR and sortilin interacted with the AP-5-associated protein SPG15 in pull-down assays, and we propose that sortilin may act as a link between Golgi proteins and the AP-5/SPG11/SPG15 complex. Together, our findings suggest that AP-5 functions in a novel sorting step out of late endosomes, acting as a backup pathway for retromer. This provides a mechanistic explanation for why mutations in AP-5/SPG11/SPG15 cause cells to accumulate aberrant endolysosomes, and highlights the role of endosome/lysosome dysfunction in the pathology of hereditary spastic paraplegia and other neurodegenerative disorders.

  17. A 60-kilodalton protein component of the counting factor complex regulates group size in Dictyostelium discoideum

    NARCIS (Netherlands)

    Brock, Debra A.; van Egmond, Wouter N.; Shamoo, Yousif; Hatton, R. Diane; Gomer, Richard H.

    Much remains to be understood about how a group of cells or a tissue senses and regulates its size. Dictyostelium discoideum cells sense and regulate the size of groups and fruiting bodies using a secreted 450-kDa complex of proteins called counting factor (CF). Low levels of CF result in large

  18. Envelope protein complexes of Mycobacterium avium subsp. paratuberculosis and their antigenicity

    Science.gov (United States)

    Mycobacterium avium subsp. paratuberculosis (MAP) is the causative agent of Johne’s disease, a chronic enteric disease of ruminant animals. In the present study, blue native PAGE electrophoresis and 2D SDS-PAGE were used to separate MAP envelope protein complexes, followed by mass spectrometry (MS) ...

  19. Thermodynamic characterization of the interaction between a peptide-drug complex and serum proteins.

    Science.gov (United States)

    Sadatmousavi, Parisa; Kovalenko, Eugene; Chen, P

    2014-09-23

    The interaction between a peptide-based drug delivery system and two serum proteins, bovine serum albumin (BSA) and immunoglobulin G (IgG), is investigated using fluorescence quenching and calorimetric techniques. An ionic-complementary self/co-assembling peptide, EAR8-II, is employed to encapsulate the hydrophobic anticancer drug pirarubicin (THP) and stabilize it in protein environments. Self/co-assembling properties of the peptide-drug complex (EAR8-II-THP) are shown to be different while interacting with serum proteins compared with the properties of the isolated complex. The results from thermodynamic studies suggest that the drug delivery system has a strong binding affinity (K(SV) 1689 M(-1)), exothermic and enthalpy-driven interaction, with BSA and a relatively weak affinity with IgG (K(SV) 295.2 M(-1)). In the presence of salt ions, the enthalpy and binding affinity remain unchanged, implying other interactions such as hydrogen bonding and Van der Waals interactions are present that are not affected by reduced polarity. This work forms the basis for further studies of EAR8-II-THP complexes in the presence of important proteins and for further evaluation of the complexes' immune response and anticancer activity.

  20. Structure and flexibility adaptation in nonspecific and specific protein-DNA complexes

    NARCIS (Netherlands)

    Kalodimos, Ch.; Biris, N.; Bonvin, A.M.J.J.|info:eu-repo/dai/nl/113691238; Levandoski, M.M.; Guennuegues, M.; Boelens, R.|info:eu-repo/dai/nl/070151407; Kaptein, R.|info:eu-repo/dai/nl/074334603

    2004-01-01

    Interaction of regulatory DNA binding proteins with their target sites is usually preceded by binding to nonspecific DNA. This speeds up the search for the target site by several orders of magnitude. We report the solution structure and dynamics of the complex of a dimeric lac repressor DNA binding

  1. Improved methodology for the affinity isolation of human protein complexes expressed at near endogenous levels

    DEFF Research Database (Denmark)

    Domanski, Michal; Molloy, Kelly; Jiang, Hua

    2012-01-01

    An efficient and reliable procedure for the capture of affinity-tagged proteins and associated complexes from human cell lines is reported. Through multiple optimizations, high yield and low background affinity-purifications are achieved from modest quantities of human cells expressing endogenous...

  2. Structural Mechanism behind Distinct Efficiency of Oct4/Sox2 Proteins in Differentially Spaced DNA Complexes.

    Directory of Open Access Journals (Sweden)

    Dhanusha Yesudhas

    Full Text Available The octamer-binding transcription factor 4 (Oct4 and sex-determining region Y (SRY-box 2 (Sox2 proteins induce various transcriptional regulators to maintain cellular pluripotency. Most Oct4/Sox2 complexes have either 0 base pairs (Oct4/Sox2(0bp or 3 base pairs (Oct4/Sox2(3bp separation between their DNA-binding sites. Results from previous biochemical studies have shown that the complexes separated by 0 base pairs are associated with a higher pluripotency rate than those separated by 3 base pairs. Here, we performed molecular dynamics (MD simulations and calculations to determine the binding free energy and per-residue free energy for the Oct4/Sox2(0bp and Oct4/Sox2(3bp complexes to identify structural differences that contribute to differences in induction rate. Our MD simulation results showed substantial differences in Oct4/Sox2 domain movements, as well as secondary-structure changes in the Oct4 linker region, suggesting a potential reason underlying the distinct efficiencies of these complexes during reprogramming. Moreover, we identified key residues and hydrogen bonds that potentially facilitate protein-protein and protein-DNA interactions, in agreement with previous experimental findings. Consequently, our results confess that differential spacing of the Oct4/Sox2 DNA binding sites can determine the magnitude of transcription of the targeted genes during reprogramming.

  3. Structural Mechanism behind Distinct Efficiency of Oct4/Sox2 Proteins in Differentially Spaced DNA Complexes.

    Science.gov (United States)

    Yesudhas, Dhanusha; Anwar, Muhammad Ayaz; Panneerselvam, Suresh; Durai, Prasannavenkatesh; Shah, Masaud; Choi, Sangdun

    2016-01-01

    The octamer-binding transcription factor 4 (Oct4) and sex-determining region Y (SRY)-box 2 (Sox2) proteins induce various transcriptional regulators to maintain cellular pluripotency. Most Oct4/Sox2 complexes have either 0 base pairs (Oct4/Sox2(0bp)) or 3 base pairs (Oct4/Sox2(3bp)) separation between their DNA-binding sites. Results from previous biochemical studies have shown that the complexes separated by 0 base pairs are associated with a higher pluripotency rate than those separated by 3 base pairs. Here, we performed molecular dynamics (MD) simulations and calculations to determine the binding free energy and per-residue free energy for the Oct4/Sox2(0bp) and Oct4/Sox2(3bp) complexes to identify structural differences that contribute to differences in induction rate. Our MD simulation results showed substantial differences in Oct4/Sox2 domain movements, as well as secondary-structure changes in the Oct4 linker region, suggesting a potential reason underlying the distinct efficiencies of these complexes during reprogramming. Moreover, we identified key residues and hydrogen bonds that potentially facilitate protein-protein and protein-DNA interactions, in agreement with previous experimental findings. Consequently, our results confess that differential spacing of the Oct4/Sox2 DNA binding sites can determine the magnitude of transcription of the targeted genes during reprogramming.

  4. Oxalic acid complexes: Promising draw solutes for forward osmosis (FO) in protein enrichment

    KAUST Repository

    Ge, Qingchun

    2015-01-01

    Highly soluble oxalic acid complexes (OACs) were synthesized through a one-pot reaction. The OACs exhibit excellent performance as draw solutes in FO processes with high water fluxes and negligible reverse solute fluxes. Efficient protein enrichment was achieved. The diluted OACs can be recycled via nanofiltration and are promising as draw solutes.

  5. The transport of integral membrane proteins across the nuclear pore complex

    NARCIS (Netherlands)

    Meinema, Anne C.; Poolman, Bert; Veenhoff, Liesbeth M.

    2012-01-01

    The nuclear envelope protects and organizes the genome. The nuclear pore complexes embedded in the nuclear envelope allow selective transport of macromolecules between the cytosol and nucleoplasm, and as such help to control the flow of information from DNA to RNA to proteins. A growing list of

  6. The TIP30 protein complex, arachidonic acid and coenzyme A are required for vesicle membrane fusion.

    Directory of Open Access Journals (Sweden)

    Chengliang Zhang

    Full Text Available Efficient membrane fusion has been successfully mimicked in vitro using artificial membranes and a number of cellular proteins that are currently known to participate in membrane fusion. However, these proteins are not sufficient to promote efficient fusion between biological membranes, indicating that critical fusogenic factors remain unidentified. We have recently identified a TIP30 protein complex containing TIP30, acyl-CoA synthetase long-chain family member 4 (ACSL4 and Endophilin B1 (Endo B1 that promotes the fusion of endocytic vesicles with Rab5a vesicles, which transport endosomal acidification enzymes vacuolar (H⁺-ATPases (V-ATPases to the early endosomes in vivo. Here, we demonstrate that the TIP30 protein complex facilitates the fusion of endocytic vesicles with Rab5a vesicles in vitro. Fusion of the two vesicles also depends on arachidonic acid, coenzyme A and the synthesis of arachidonyl-CoA by ACSL4. Moreover, the TIP30 complex is able to transfer arachidonyl groups onto phosphatidic acid (PA, producing a new lipid species that is capable of inducing close contact between membranes. Together, our data suggest that the TIP30 complex facilitates biological membrane fusion through modification of PA on membranes.

  7. Dynamic spatial organization of multi-protein complexes controlling microbial polar organization, chromosome replication, and cytokinesis

    Energy Technology Data Exchange (ETDEWEB)

    McAdams, Harley; Shapiro, Lucille; Horowitz, Mark; Andersen, Gary; Downing, Kenneth; Earnest, Thomas; Ellisman, Mark; Gitai, Zemer; Larabell, Carolyn; Viollier, Patrick

    2012-06-18

    This project was a program to develop high-throughput methods to identify and characterize spatially localized multiprotein complexes in bacterial cells. We applied a multidisciplinary systems engineering approach to the detailed characterization of localized multi-protein structures in vivo a problem that has previously been approached on a fragmented, piecemeal basis.

  8. N6-methyladenosine alters RNA structure to regulate binding of a low-complexity protein.

    Science.gov (United States)

    Liu, Nian; Zhou, Katherine I; Parisien, Marc; Dai, Qing; Diatchenko, Luda; Pan, Tao

    2017-06-02

    N6-methyladenosine (m6A) is the most abundant internal modification in eukaryotic messenger RNA (mRNA), and affects almost every stage of the mRNA life cycle. The YTH-domain proteins can specifically recognize m6A modification to control mRNA maturation, translation and decay. m6A can also alter RNA structures to affect RNA-protein interactions in cells. Here, we show that m6A increases the accessibility of its surrounding RNA sequence to bind heterogeneous nuclear ribonucleoprotein G (HNRNPG). Furthermore, HNRNPG binds m6A-methylated RNAs through its C-terminal low-complexity region, which self-assembles into large particles in vitro. The Arg-Gly-Gly repeats within the low-complexity region are required for binding to the RNA motif exposed by m6A methylation. We identified 13,191 m6A sites in the transcriptome that regulate RNA-HNRNPG interaction and thereby alter the expression and alternative splicing pattern of target mRNAs. Low-complexity regions are pervasive among mRNA binding proteins. Our results show that m6A-dependent RNA structural alterations can promote direct binding of m6A-modified RNAs to low-complexity regions in RNA binding proteins. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Fluorescence quenching studies of apolipoprotein A-I in solution and in lipid-protein complexes: protein dynamics.

    Science.gov (United States)

    Mantulin, W W; Pownall, H J; Jameson, D M

    1986-12-02

    Fluorescence lifetime and intensity quenching studies of human plasma apolipoprotein A-I (apo A-I) in aqueous solution and in recombinant lipoprotein complexes with dimyristoylphosphatidylcholine (DMPC) indicate differences in conformational dynamics. In aqueous solution, the bimolecular quenching constants (k*) for lipid-free apo A-I fluorescence quenching by oxygen and acrylamide are 2.4 X 10(9) and 0.38 X 10(9) M-1 s-1, respectively. These values are independent of the oligomeric form of the protein. There is no correlation between the relatively small k* for apo A-I, which reflects rapid, low-amplitude protein fluctuations, and the labile conformational changes of apo A-I folding reactions, like denaturation, which occur on a slower time scale. In recombinant DMPC/apo A-I complexes (100:1 molar ratio) the protein increases in amphiphilic alpha-helical structure as it blankets the lipid matrix. The apparent k* for oxygen quenching of apo A-I fluorescence in the complex is large and increases in a temperature-dependent manner. We have introduced a two-compartment model, which discriminates the source of quencher molecules as aqueous or lipid, to describe oxygen quenching of DMPC/apo A-I fluorescence. The magnitude and temperature dependence of the apparent k* predominantly reflect the partitioning of oxygen between the two phases rather than being a probe of the lipid physical state. Calculations of the helical hydrophobic moment in apo A-I indicate that tryptophan residues 8 and 72 occur at the lipid-protein interface of amphiphilic alpha-helices, whereas the other two tryptophan residues (50, 108) lie on the nonpolar faces of amphiphilic helices.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Role for a novel Usher protein complex in hair cell synaptic maturation.

    Directory of Open Access Journals (Sweden)

    Marisa Zallocchi

    Full Text Available The molecular mechanisms underlying hair cell synaptic maturation are not well understood. Cadherin-23 (CDH23, protocadherin-15 (PCDH15 and the very large G-protein coupled receptor 1 (VLGR1 have been implicated in the development of cochlear hair cell stereocilia, while clarin-1 has been suggested to also play a role in synaptogenesis. Mutations in CDH23, PCDH15, VLGR1 and clarin-1 cause Usher syndrome, characterized by congenital deafness, vestibular dysfunction and retinitis pigmentosa. Here we show developmental expression of these Usher proteins in afferent spiral ganglion neurons and hair cell synapses. We identify a novel synaptic Usher complex comprised of clarin-1 and specific isoforms of CDH23, PCDH15 and VLGR1. To establish the in vivo relevance of this complex, we performed morphological and quantitative analysis of the neuronal fibers and their synapses in the Clrn1-/- mouse, which was generated by incomplete deletion of the gene. These mice showed a delay in neuronal/synaptic maturation by both immunostaining and electron microscopy. Analysis of the ribbon synapses in Ames waltzer(av3J mice also suggests a delay in hair cell synaptogenesis. Collectively, these results show that, in addition to the well documented role for Usher proteins in stereocilia development, Usher protein complexes comprised of specific protein isoforms likely function in synaptic maturation as well.

  11. Rheological and structural characterization of agar/whey proteins insoluble complexes.

    Science.gov (United States)

    Rocha, Cristina M R; Souza, Hiléia K S; Magalhães, Natália F; Andrade, Cristina T; Gonçalves, Maria Pilar

    2014-09-22

    Complex coacervation between whey proteins and carboxylated or highly sulphated polysaccharides has been widely studied. The aim of this work was to characterise a slightly sulphated polysaccharide (agar) and whey protein insoluble complexes in terms of yield, composition and physicochemical properties as well as to study their rheological behaviour for better understanding their structure. Unlike other sulphated polysaccharides, complexation of agar and whey protein at pH 3 in the absence of a buffering agent resulted in a coacervate that was a gel at 20°C with rheological properties and structure similar to those of simple agar gels, reinforced by proteins electrostatically aggregated to the agar network. The behaviour towards heat treatment was similar to that of agar alone, with a high thermal hysteresis and almost full reversibility. In the presence of citrate buffer, the result was a "flocculated solid", with low water content (75-81%), whose properties were governed by protein behaviour. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. A dual-tagging system for the affinity purification of mammalian protein complexes

    Energy Technology Data Exchange (ETDEWEB)

    Giannone, Richard J [ORNL; McDonald, W Hayes [ORNL; Hurst, Gregory {Greg} B [ORNL; Huang, Ying [ORNL; Wu, Jun [ORNL; Liu, Yie [National Institute on Aging, Baltimore; Wang, Yisong [ORNL

    2007-01-01

    One popular method to elucidate protein-protein interactions involves the native co-purification of an affinity tagged protein and its interacting partners, which are subsequently identified through mass spectrometry (MS) (1). Although straightforward, reproducible, and broadly employed, this strategy is hampered by the efficacy of protein recoveries both in terms of sensitivity and specificity. This is especially pertinent to methodologies that employ a single-step of purification, where suboptimal enrichment of the bait protein and its partners over background can lead to masking of their signals. Although improvements to MS instrumentation generally increase peptide detection sensitivities, the problem of specificity, i.e. distinguishing specific from non-specific interacting proteins, remains. Thus ultimately, the limiting factor in the identification of specific interacting proteins lies with the purification itself. An effort to resolve this specificity issue has been made with the introduction of the Tandem Affinity Purification (TAP) tag. This construct consists of an IgG-binding domain and calmodulin binding peptide domain separated by a tobacco etch virus (TEV) protease cleavage site (2). The TAP method was originally developed in yeast and has best demonstrated its utility in the systematic identification of numerous multiprotein complexes in the yeast proteome (3). Although modifications to the original TAP have been successful in examining the protein networks of mammalian cells (4-7), the strategy offers a relatively low yield of bait and specific interacting proteins (8), and the success rate are usually on case-by-case basis. In addition, problems inherent to any protein tagging strategy remain, such as variable exposure of the affinity tag, disruption of the bait protein's ability to fold properly, steric exclusion of interacting partners, and/or ectopic overexpression of the fusion protein, which can lead to complications in both the

  13. New procyanidin B3-human salivary protein complexes by mass spectrometry. Effect of salivary protein profile, tannin concentration, and time stability.

    Science.gov (United States)

    Perez-Gregorio, Maria Rosa; Mateus, Nuno; De Freitas, Victor

    2014-10-15

    Several factors could influence the tannin-protein interaction such as the human salivary protein profile, the tannin tested, and the tannin/protein ratio. The goal of this study aims to study the effect of different salivas (A, B, and C) and different tannin concentrations (0.5 and 1 mg/mL) on the interaction process as well as the complex's stability over time. This study is focused on the identification of new procyanidin B3-human salivary protein complexes. Thus, 48 major B3-human salivary protein aggregates were identified regardless of the saliva and tannin concentration tested. A higher number of aggregates was found at lower tannin concentration. Moreover, the number of protein moieties involved in the aggregation process was higher when the tannin concentration was also higher. The selectivity of the different groups of proteins to bind tannin was also confirmed. It was also verified that the B3-human salivary protein complexes formed evolved over time.

  14. Protein receptor-independent plasma membrane remodeling by HAMLET: a tumoricidal protein-lipid complex.

    Science.gov (United States)

    Nadeem, Aftab; Sanborn, Jeremy; Gettel, Douglas L; James, Ho C S; Rydström, Anna; Ngassam, Viviane N; Klausen, Thomas Kjær; Pedersen, Stine Falsig; Lam, Matti; Parikh, Atul N; Svanborg, Catharina

    2015-11-12

    A central tenet of signal transduction in eukaryotic cells is that extra-cellular ligands activate specific cell surface receptors, which orchestrate downstream responses. This ''protein-centric" view is increasingly challenged by evidence for the involvement of specialized membrane domains in signal transduction. Here, we propose that membrane perturbation may serve as an alternative mechanism to activate a conserved cell-death program in cancer cells. This view emerges from the extraordinary manner in which HAMLET (Human Alpha-lactalbumin Made LEthal to Tumor cells) kills a wide range of tumor cells in vitro and demonstrates therapeutic efficacy and selectivity in cancer models and clinical studies. We identify a ''receptor independent" transformation of vesicular motifs in model membranes, which is paralleled by gross remodeling of tumor cell membranes. Furthermore, we find that HAMLET accumulates within these de novo membrane conformations and define membrane blebs as cellular compartments for direct interactions of HAMLET with essential target proteins such as the Ras family of GTPases. Finally, we demonstrate lower sensitivity of healthy cell membranes to HAMLET challenge. These features suggest that HAMLET-induced curvature-dependent membrane conformations serve as surrogate receptors for initiating signal transduction cascades, ultimately leading to cell death.

  15. Hidden information revealed by optimal community structure from a protein-complex bipartite network improves protein function prediction.

    Science.gov (United States)

    Lee, Juyong; Lee, Jooyoung

    2013-01-01

    The task of extracting the maximal amount of information from a biological network has drawn much attention from researchers, for example, predicting the function of a protein from a protein-protein interaction (PPI) network. It is well known that biological networks consist of modules/communities, a set of nodes that are more densely inter-connected among themselves than with the rest of the network. However, practical applications of utilizing the community information have been rather limited. For protein function prediction on a network, it has been shown that none of the existing community-based protein function prediction methods outperform a simple neighbor-based method. Recently, we have shown that proper utilization of a highly optimal modularity community structure for protein function prediction can outperform neighbor-assisted methods. In this study, we propose two function prediction approaches on bipartite networks that consider the community structure information as well as the neighbor information from the network: 1) a simple screening method and 2) a random forest based method. We demonstrate that our community-assisted methods outperform neighbor-assisted methods and the random forest method yields the best performance. In addition, we show that using the optimal community structure information is essential for more accurate function prediction for the protein-complex bipartite network of Saccharomyces cerevisiae. Community detection can be carried out either using a modified modularity for dealing with the original bipartite network or first projecting the network into a single-mode network (i.e., PPI network) and then applying community detection to the reduced network. We find that the projection leads to the loss of information in a significant way. Since our prediction methods rely only on the network topology, they can be applied to various fields where an efficient network-based analysis is required.

  16. Bioinformatics Analysis of PTM-Modified Protein Interaction Networks and Complexes.

    Science.gov (United States)

    Woodsmith, Jonathan; Stelzl, Ulrich; Vinayagam, Arunachalam

    2017-01-01

    Normal cellular functioning is maintained by macromolecular machines that control both core and specialized molecular tasks. These machines are in large part multi-subunit protein complexes that undergo regulation at multiple levels, from expression of requisite components to a vast array of post-translational modifications (PTMs). PTMs such as phosphorylation, ubiquitination, and acetylation currently number more than 200,000 in the human proteome and function within all molecular pathways. Here we provide a framework for systematically studying these PTMs in the context of global protein-protein interaction networks. This analytical framework allows insight into which functions specific PTMs tend to cluster in, and furthermore which complexes either single or multiple PTM signaling pathways converge on.

  17. Analysis of residue conformations in peptides in Cambridge structural database and protein-peptide structural complexes.

    Science.gov (United States)

    Raghavender, Upadhyayula Surya

    2017-03-01

    A comprehensive statistical analysis of the geometric parameters of peptide chains in a reduced dataset of protein-peptide complexes in Protein Data Bank (PDB) is presented. The angular variables describing the backbone conformations of amino acid residues in peptide chains shed insights into the conformational preferences of peptide residues interacting with protein partners. Nonparametric statistical approaches are employed to evaluate the interrelationships and associations in structural variables. Grouping of residues based on their structure into chemical classes reveals characteristic trends in parameter relationships. A comparison of canonical amino acid residues in free peptide structures in Cambridge structural database (CSD) with identical residues in PDB complexes, suggests that the information can be integrated from both the structural repositories enabling efficient and accurate modeling of biologically active peptides. © 2016 John Wiley & Sons A/S.

  18. Systematic Discovery of Chromatin-Bound Protein Complexes from ChIP-seq Datasets.

    Science.gov (United States)

    Giannopoulou, Eugenia; Elemento, Olivier

    2017-01-01

    Chromatin immunoprecipitation followed by sequencing is an invaluable assay for identifying the genomic binding sites of transcription factors. However, transcription factors rarely bind chromatin alone but often bind together with other cofactors, forming protein complexes. Here, we describe a computational method that integrates multiple ChIP-seq and RNA-seq datasets to discover protein complexes and determine their role as activators or repressors. This chapter outlines a detailed computational pipeline for discovering and predicting binding partners from ChIP-seq data and inferring their role in regulating gene expression. This work aims at developing hypotheses about gene regulation via binding partners and deciphering the combinatorial nature of DNA-binding proteins.

  19. The hemochromatosis proteins HFE, TfR2, and HJV form a membrane-associated protein complex for hepcidin regulation.

    Science.gov (United States)

    D'Alessio, Flavia; Hentze, Matthias W; Muckenthaler, Martina U

    2012-11-01

    The hereditary hemochromatosis-associated membrane proteins HFE, TfR2, and HJV are required for adequate hepatic expression of the iron hormone hepcidin. While the genetic interactions are clear, it remains elusive how bone morphogenetic protein co-receptor HJV functions together with HFE and TfR2 to activate hepcidin transcription via the BMP-SMAD signaling pathway. Here, we investigate whether HFE, TfR2, and HJV physically interact on the surface of hepatocytes. We explore protein-protein interactions by glycerol gradient sedimentation assays and co-immunoprecipitation analyses in transfected HuH7 hepatoma-derived cells. Our data demonstrate that HFE and TfR2 bind HJV in a non-competitive manner. Co-immunoprecipitation analyses provide direct experimental evidence that HFE, TfR2, and HJV form a multi-protein membrane complex. Our experiments show that like TfR2, HJV competes with TfR1 for binding to HFE, indicating that the expression of TfR2 and HJV may be critical for iron sensing. We identify residues 120-139 of the TfR2 extra-cellular domain as the critical amino acids required for the binding of both HFE and HJV. Interestingly, RGMA, a central nervous system homolog, can substitute for HJV in the complex and promote hepcidin transcription, implicating RGMA in the local control of hepcidin in the CNS. Taken together, our findings provide a biochemical basis for hepcidin control by HFE, TfR2, and HJV. Copyright © 2012 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  20. The Drosophila EKC/KEOPS complex: roles in protein synthesis homeostasis and animal growth.

    Science.gov (United States)

    Rojas-Benítez, Diego; Ibar, Consuelo; Glavic, Álvaro

    2013-01-01

    The TOR signaling pathway is crucial in the translation of nutritional inputs into the protein synthesis machinery regulation, allowing animal growth. We recently identified the Bud32 (yeast)/PRPK (human) ortholog in Drosophila, Prpk (p53-related protein kinase), and found that it is required for TOR kinase activity. Bud32/PRPK is an ancient and atypical kinase conserved in evolution from Archeae to humans, being essential for Archeae. It has been linked with p53 stabilization in human cell culture and its absence in yeast causes a slow-growth phenotype. This protein has been associated to KEOPS (kinase, putative endopeptidase and other proteins of small size) complex together with Kae1p (ATPase), Cgi-121 and Pcc1p. This complex has been implicated in telomere maintenance, transcriptional regulation, bud site selection and chemical modification of tRNAs (tRNAs). Bud32p and Kae1p have been related with N6-threonylcarbamoyladenosine (t (6)A) synthesis, a particular chemical modification that occurs at position 37 of tRNAs that pair A-starting codons, required for proper translation in most species. Lack of this modification causes mistranslations and open reading frame shifts in yeast. The core constituents of the KEOPS complex are present in Drosophila, but their physical interaction has not been reported yet. Here, we present a review of the findings regarding the function of this complex in different organisms and new evidence that extends our recent observations of Prpk function in animal growth showing that depletion of Kae1 or Prpk, in accordance with their role in translation in yeast, is able to induce the unfolded protein response (UPR) in Drosophila. We suggest that EKC/KEOPS complex could be integrating t (6)A-modified tRNA availability with translational rates, which are ultimately reflected in animal growth.

  1. Analysis of Proteins That Rapidly Change Upon Mechanistic/Mammalian Target of Rapamycin Complex 1 (mTORC1) Repression Identifies Parkinson Protein 7 (PARK7) as a Novel Protein Aberrantly Expressed in Tuberous Sclerosis Complex (TSC).

    Science.gov (United States)

    Niere, Farr; Namjoshi, Sanjeev; Song, Ehwang; Dilly, Geoffrey A; Schoenhard, Grant; Zemelman, Boris V; Mechref, Yehia; Raab-Graham, Kimberly F

    2016-02-01

    Many biological processes involve the mechanistic/mammalian target of rapamycin complex 1 (mTORC1). Thus, the challenge of deciphering mTORC1-mediated functions during normal and pathological states in the central nervous system is challenging. Because mTORC1 is at the core of translation, we have investigated mTORC1 function in global and regional protein expression. Activation of mTORC1 has been generally regarded to promote translation. Few but recent works have shown that suppression of mTORC1 can also promote local protein synthesis. Moreover, excessive mTORC1 activation during diseased states represses basal and activity-induced protein synthesis. To determine the role of mTORC1 activation in protein expression, we have used an unbiased, large-scale proteomic approach. We provide evidence that a brief repression of mTORC1 activity in vivo by rapamycin has little effect globally, yet leads to a significant remodeling of synaptic proteins, in particular those proteins that reside in the postsynaptic density. We have also found that curtailing the activity of mTORC1 bidirectionally alters the expression of proteins associated with epilepsy, Alzheimer's disease, and autism spectrum disorder-neurological disorders that exhibit elevated mTORC1 activity. Through a protein-protein interaction network analysis, we have identified common proteins shared among these mTORC1-related diseases. One such protein is Parkinson protein 7, which has been implicated in Parkinson's disease, yet not associated with epilepsy, Alzheimers disease, or autism spectrum disorder. To verify our finding, we provide evidence that the protein expression of Parkinson protein 7, including new protein synthesis, is sensitive to mTORC1 inhibition. Using a mouse model of tuberous sclerosis complex, a disease that displays both epilepsy and autism spectrum disorder phenotypes and has overactive mTORC1 signaling, we show that Parkinson protein 7 protein is elevated in the dendrites and colocalizes

  2. X-ray structure of the mammalian GIRK2-βγ G-protein complex

    Energy Technology Data Exchange (ETDEWEB)

    Whorton, Matthew R.; MacKinnon, Roderick [Rockefeller

    2013-07-30

    G-protein-gated inward rectifier K+ (GIRK) channels allow neurotransmitters, through G-protein-coupled receptor stimulation, to control cellular electrical excitability. In cardiac and neuronal cells this control regulates heart rate and neural circuit activity, respectively. Here we present the 3.5Å resolution crystal structure of the mammalian GIRK2 channel in complex with βγ G-protein subunits, the central signalling complex that links G-protein-coupled receptor stimulation to K+ channel activity. Short-range atomic and long-range electrostatic interactions stabilize four βγ G-protein subunits at the interfaces between four K+ channel subunits, inducing a pre-open state of the channel. The pre-open state exhibits a conformation that is intermediate between the closed conformation and the open conformation of the constitutively active mutant. The resultant structural picture is compatible with ‘membrane delimited’ activation of GIRK channels by G proteins and the characteristic burst kinetics of channel gating. The structures also permit a conceptual understanding of how the signalling lipid phosphatidylinositol-4,5-bisphosphate (PIP2) and intracellular Na+ ions participate in multi-ligand regulation of GIRK channels.

  3. Proteins with complex architecture as potential targets for drug design: a case study of Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Bálint Mészáros

    2011-07-01

    Full Text Available Lengthy co-evolution of Homo sapiens and Mycobacterium tuberculosis, the main causative agent of tuberculosis, resulted in a dramatically successful pathogen species that presents considerable challenge for modern medicine. The continuous and ever increasing appearance of multi-drug resistant mycobacteria necessitates the identification of novel drug targets and drugs with new mechanisms of action. However, further insights are needed to establish automated protocols for target selection based on the available complete genome sequences. In the present study, we perform complete proteome level comparisons between M. tuberculosis, mycobacteria, other prokaryotes and available eukaryotes based on protein domains, local sequence similarities and protein disorder. We show that the enrichment of certain domains in the genome can indicate an important function specific to M. tuberculosis. We identified two families, termed pkn and PE/PPE that stand out in this respect. The common property of these two protein families is a complex domain organization that combines species-specific regions, commonly occurring domains and disordered segments. Besides highlighting promising novel drug target candidates in M. tuberculosis, the presented analysis can also be viewed as a general protocol to identify proteins involved in species-specific functions in a given organism. We conclude that target selection protocols should be extended to include proteins with complex domain architectures instead of focusing on sequentially unique and essential proteins only.

  4. An assay for clogging the ciliary pore complex distinguishes mechanisms of cytosolic and membrane protein entry.

    Science.gov (United States)

    Takao, Daisuke; Dishinger, John F; Kee, H Lynn; Pinskey, Justine M; Allen, Ben L; Verhey, Kristen J

    2014-10-06

    As a cellular organelle, the cilium contains a unique protein composition. Entry of both membrane and cytosolic components is tightly regulated by gating mechanisms at the cilium base; however, the mechanistic details of ciliary gating are largely unknown. We previously proposed that entry of cytosolic components is regulated by mechanisms similar to those of nuclear transport and is dependent on nucleoporins (NUPs), which comprise a ciliary pore complex (CPC). To investigate ciliary gating mechanisms, we developed a system to clog the pore by inhibiting NUP function via forced dimerization. We targeted NUP62, a component of the central channel of the nuclear pore complex (NPC), for forced dimerization by tagging it with the homodimerizing Fv domain. As proof of principle, we show that forced dimerization of NUP62-Fv attenuated (1) active transport of BSA into the nuclear compartment and (2) the kinesin-2 motor KIF17 into the ciliary compartment. Using the pore-clogging technique, we find that forced dimerization of NUP62 attenuated the gated entry of cytosolic proteins but did not affect entry of membrane proteins or diffusional entry of small cytosolic proteins. We propose a model in which active transport of cytosolic proteins into both nuclear and ciliary compartments requires functional NUPs of the central pore, whereas lateral entry of membrane proteins utilizes a different mechanism that is likely specific to each organelle's limiting membrane. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. CHARMM-GUI micelle builder for pure/mixed micelle and protein/micelle complex systems.

    Science.gov (United States)

    Cheng, Xi; Jo, Sunhwan; Lee, Hui Sun; Klauda, Jeffery B; Im, Wonpil

    2013-08-26

    Micelle Builder in CHARMM-GUI, http://www.charmm-gui.org/input/micelle , is a web-based graphical user interface to build pure/mixed micelle and protein/micelle complex systems for molecular dynamics (MD) simulation. The robustness of Micelle Builder is tested by simulating four detergent-only homogeneous micelles of DHPC (dihexanoylphosphatidylcholine), DPC (dodecylphosphocholine), TPC (tetradecylphosphocholine), and SDS (sodium dodecyl sulfate) and comparing the calculated micelle properties with experiments and previous simulations. As a representative protein/micelle model, Pf1 coat protein is modeled and simulated in DHPC micelles with three different numbers of DHPC molecules. While the number of DHPC molecules in direct contact with Pf1 protein converges during the simulation, distinct behavior and geometry of micelles lead to different protein conformations in comparison to that in bilayers. It is our hope that CHARMM-GUI Micelle Builder can be used for simulation studies of various protein/micelle systems to better understand the protein structure and dynamics in micelles as well as distribution of detergents and their dynamics around proteins.

  6. Extending the applicability of the O-ring theory to protein-DNA complexes.

    Science.gov (United States)

    Ramos, R M; Fernandes, L F; Moreira, I S

    2013-06-01

    Many biological processes depend on protein-based interactions, which are governed by central regions with higher binding affinities, the hot-spots. The O-ring theory or the "Water Exclusion" hypothesis states that the more deeply buried central regions are surrounded by areas, the null-spots, whose role would be to shelter the hot-spots from the bulk solvent. Although this theory is well-established for protein-protein interfaces, its applicability to other protein interfaces remains unclear. Our goal was to verify its applicability to protein-DNA interfaces. We performed Molecular Dynamics simulations in explicit solvent of several protein-DNA complexes and measured a variety of solvent accessible surface area (SASA) features, as well as, radial distribution functions of hot-spots and null-spots. Our aim was to test the influence of water in their coordination sphere. Our results show that hot-spots tend to have fewer water molecules in their neighborhood when compared to null-spots, and higher values of ΔSASA, which confirms their occlusion from solvent. This study provides evidence in support of the O-ring theory with its applicability to a new type of protein-based interface: protein-DNA. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Identification of Evening Complex Associated Proteins in Arabidopsis by Affinity Purification and Mass Spectrometry.

    Science.gov (United States)

    Huang, He; Alvarez, Sophie; Bindbeutel, Rebecca; Shen, Zhouxin; Naldrett, Michael J; Evans, Bradley S; Briggs, Steven P; Hicks, Leslie M; Kay, Steve A; Nusinow, Dmitri A

    2016-01-01

    Many species possess an endogenous circadian clock to synchronize internal physiology with an oscillating external environment. In plants, the circadian clock coordinates growth, metabolism and development over daily and seasonal time scales. Many proteins in the circadian network form oscillating complexes that temporally regulate myriad processes, including signal transduction, transcription, protein degradation and post-translational modification. In Arabidopsis thaliana, a tripartite complex composed of EARLY FLOWERING 4 (ELF4), EARLY FLOWERING 3 (ELF3), and LUX ARRHYTHMO (LUX), named the evening complex, modulates daily rhythms in gene expression and growth through transcriptional regulation. However, little is known about the physical interactions that connect the circadian system to other pathways. We used affinity purification and mass spectrometry (AP-MS) methods to identify proteins that associate with the evening complex in A. thaliana. New connections within the circadian network as well as to light signaling pathways were identified, including linkages between the evening complex, TIMING OF CAB EXPRESSION1 (TOC1), TIME FOR COFFEE (TIC), all phytochromes and TANDEM ZINC KNUCKLE/PLUS3 (TZP). Coupling genetic mutation with affinity purifications tested the roles of phytochrome B (phyB), EARLY FLOWERING 4, and EARLY FLOWERING 3 as nodes connecting the evening complex to clock and light signaling pathways. These experiments establish a hierarchical association between pathways and indicate direct and indirect interactions. Specifically, the results suggested that EARLY FLOWERING 3 and phytochrome B act as hubs connecting the clock and red light signaling pathways. Finally, we characterized a clade of associated nuclear kinases that regulate circadian rhythms, growth, and flowering in A. thaliana. Coupling mass spectrometry and genetics is a powerful method to rapidly and directly identify novel components and connections within and between complex signaling

  8. Analysis of Proteins That Rapidly Change Upon Mechanistic/Mammalian Target of Rapamycin Complex 1 (mTORC1) Repression Identifies Parkinson Protein 7 (PARK7) as a Novel Protein Aberrantly Expressed in Tuberous Sclerosis Complex (TSC)*

    Science.gov (United States)

    Niere, Farr; Namjoshi, Sanjeev; Song, Ehwang; Dilly, Geoffrey A.; Schoenhard, Grant; Zemelman, Boris V.; Mechref, Yehia; Raab-Graham, Kimberly F.

    2016-01-01

    Many biological processes involve the mechanistic/mammalian target of rapamycin complex 1 (mTORC1). Thus, the challenge of deciphering mTORC1-mediated functions during normal and pathological states in the central nervous system is challenging. Because mTORC1 is at the core of translation, we have investigated mTORC1 function in global and regional protein expression. Activation of mTORC1 has been generally regarded to promote translation. Few but recent works have shown that suppression of mTORC1 can also promote local protein synthesis. Moreover, excessive mTORC1 activation during diseased states represses basal and activity-induced protein synthesis. To determine the role of mTORC1 activation in protein expression, we have used an unbiased, large-scale proteomic approach. We provide evidence that a brief repression of mTORC1 activity in vivo by rapamycin has little effect globally, yet leads to a significant remodeling of synaptic proteins, in particular those proteins that reside in the postsynaptic density. We have also found that curtailing the activity of mTORC1 bidirectionally alters the expression of proteins associated with epilepsy, Alzheimer's disease, and autism spectrum disorder—neurological disorders that exhibit elevated mTORC1 activity. Through a protein–protein interaction network analysis, we have identified common proteins shared among these mTORC1-related diseases. One such protein is Parkinson protein 7, which has been implicated in Parkinson's disease, yet not associated with epilepsy, Alzheimers disease, or autism spectrum disorder. To verify our finding, we provide evidence that the protein expression of Parkinson protein 7, including new protein synthesis, is sensitive to mTORC1 inhibition. Using a mouse model of tuberous sclerosis complex, a disease that displays both epilepsy and autism spectrum disorder phenotypes and has overactive mTORC1 signaling, we show that Parkinson protein 7 protein is elevated in the dendrites and

  9. A new theoretical approach to analyze complex processes in cytoskeleton proteins.

    Science.gov (United States)

    Li, Xin; Kolomeisky, Anatoly B

    2014-03-20

    Cytoskeleton proteins are filament structures that support a large number of important biological processes. These dynamic biopolymers exist in nonequilibrium conditions stimulated by hydrolysis chemical reactions in their monomers. Current theoretical methods provide a comprehensive picture of biochemical and biophysical processes in cytoskeleton proteins. However, the description is only qualitative under biologically relevant conditions because utilized theoretical mean-field models neglect correlations. We develop a new theoretical method to describe dynamic processes in cytoskeleton proteins that takes into account spatial correlations in the chemical composition of these biopolymers. Our approach is based on analysis of probabilities of different clusters of subunits. It allows us to obtain exact analytical expressions for a variety of dynamic properties of cytoskeleton filaments. By comparing theoretical predictions with Monte Carlo computer simulations, it is shown that our method provides a fully quantitative description of complex dynamic phenomena in cytoskeleton proteins under all conditions.

  10. Molecular Characterization of Adenylyl Cyclase Complex Proteins Using Versatile Protein-Tagging Plasmid Systems in Cryptococcus neoformans.

    Science.gov (United States)

    So, Yee-Seul; Yang, Dong-Hoon; Jung, Kwang-Woo; Huh, Won-Ki; Bahn, Yong-Sun

    2017-02-28

    In this study, we aimed to generate a series of versatile tagging plasmids that can be used in diverse molecular biological studies of the fungal pathogen Cryptococcus neoformans. We constructed 12 plasmids that can be used to tag a protein of interest with a GFP, mCherry, 4×FLAG, or 6×HA, along with nourseothricin-, neomycin-, or hygromycin-resistant selection markers. Using this tagging plasmid set, we explored the adenylyl cyclase complex (ACC), consisting of adenylyl cyclase (Cac1) and its associated protein Aca1, in the cAMP-signaling pathway, which is critical for the pathogenicity of C. neoformans. We found that Cac1-mCherry and Aca1-GFP were mainly colocalized as punctate forms in the cell membrane and nonnuclear cellular organelles. We also demonstrated that Cac1 and Aca1 interacted in vivo by coimmunoprecipitation, using Cac1-6×HA and Aca1-4×FLAG tagging strains. Bimolecular fluorescence complementation further confirmed the in vivo interaction of Cac1 and Aca1 in live cells. Finally, protein pull-down experiments using aca1Δ::ACA1-GFP and aca1Δ::ACA1- GFP cac1Δ strains and comparative mass spectrometry analysis identified Cac1 and a number of other novel ACC-interacting proteins. Thus, this versatile tagging plasmid system will facilitate diverse mechanistic studies in C. neoformans and further our understanding of its biology.

  11. Is chloroplast import of photosynthesis proteins facilitated by an actin-TOC-TIC-VIPP1 complex?

    Science.gov (United States)

    Jouhet, Juliette; Gray, John C

    2009-10-01

    Actin filaments are major components of the cytoskeleton that interact with chloroplast envelope membranes to allow chloroplast positioning and movement, stromule mobility and gravitropism perception. We recently reported that Toc159, a component of the TOC complex of the chloroplast protein import apparatus, interacts directly with actin. The interaction of Toc159 and actin was identified by co-immunoprecipitation and co-sedimentation experiments with detergent-solubilised pea chloroplast envelope membranes. In addition, many of the components of the TOC-TIC protein import apparatus and VIPP1 (vesicle-inducing protein in plastids 1) were identified by mass spectroscopy in the material co-immunoprecipitated with antibodies to actin. Toc159 is the receptor for the import of photosynthesis proteins and VIPP1 is involved in thylakoid membrane formation by inducing vesicle formation from the chloroplast inner envelope membrane, suggesting we may have identified an actin-TOC-TIC-VIPP1 complex that may provide a means of channeling cytosolic preproteins to the thylakoid membrane. The interaction of Toc159 with actin may facilitate exchange between the putative soluble and membrane forms of Toc159 and promote the interaction of cytosolic preproteins with the TOC complex.

  12. Effect of Haemophilus influenzae polysaccharide outer membrane protein complex conjugate vaccine on macrophages.

    Science.gov (United States)

    Ambrosino, D M; Bolon, D; Collard, H; Van Etten, R; Kanchana, M V; Finberg, R W

    1992-12-15

    Haemophilus influenzae type b polysaccharide-conjugate vaccines elicit protective antibody responses in young infants. One of these conjugates, polysaccharide linked to outer membrane protein complex (PRP-OMPC), is produced by linking the capsular polysaccharide to an outer membrane protein complex derived from group B Neisseria meningitidis. The outer membrane protein complex contains T cell carrier epitopes that elicit T cell-dependent antibody responses. OMPC also has been shown to increase the antibody response to other proteins administered concurrently that are not covalently linked (i.e., acts as an adjuvant). In this study PRP-OMPC immunized mice demonstrated significant increases in spleen size as well as in splenocyte number as compared to saline controls (p MHC class II Ag. Thus PRP-OMPC vaccine resulted in T cell-independent splenomegaly with an increase number of macrophages. We propose that this unique property may confer increased immunogenicity to PRP-OMPC through macrophage activation and cytokine release. Furthermore, the effect on macrophages may explain the "adjuvant" capacity of OMPC.

  13. Subunit organization and Rab interactions of Vps-C protein complexes that control endolysosomal membrane traffic.

    Science.gov (United States)

    Plemel, Rachael L; Lobingier, Braden T; Brett, Christopher L; Angers, Cortney G; Nickerson, Daniel P; Paulsel, Andrew; Sprague, Debra; Merz, Alexey J

    2011-04-15

    Traffic through late endolysosomal compartments is regulated by sequential signaling of small G proteins of the Rab5 and Rab7 families. The Saccharomyces cerevisiae Vps-C protein complexes CORVET (class C core vacuole/endosome tethering complex) and HOPS (homotypic fusion and protein transport) interact with endolysosomal Rabs to coordinate their signaling activities. To better understand these large and intricate complexes, we performed interaction surveys to assemble domain-level interaction topologies for the eight Vps-C subunits. We identified numerous intersubunit interactions and up to six Rab-binding sites. Functional modules coordinate the major Rab interactions within CORVET and HOPS. The CORVET-specific subunits, Vps3 and Vps8, form a subcomplex and physically and genetically interact with the Rab5 orthologue Vps21. The HOPS-specific subunits, Vps39 and Vps41, also form a subcomplex. Both subunits bind the Rab7 orthologue Ypt7, but with distinct nucleotide specificities. The in vivo functions of four RING-like domains within Vps-C subunits were analyzed and shown to have distinct functions in endolysosomal transport. Finally, we show that the CORVET- and HOPS-specific subunits Vps3 and Vps39 bind the Vps-C core through a common region within the Vps11 C-terminal domain (CTD). Biochemical and genetic experiments demonstrate the importance of these regions, revealing the Vps11 CTD as a key integrator of Vps-C complex assembly, Rab signaling, and endosomal and lysosomal traffic.

  14. Characterization of biopolymers and soy protein isolate-high-methoxyl pectin complex

    Directory of Open Access Journals (Sweden)

    Mírian Luisa Faria Freitas

    Full Text Available Abstract This study aimed at characterizing the soy protein isolate and high-methoxyl pectin biopolymers individually, and the complexes formed by both at different proportions and pHs in order to find the most suitable pH and biopolymer ratios to food application as stabilizers. The biopolymers were evaluated through solubility, charges, turbidimetry, and optical microscopy analyses; the systems with the pair of biopolymers were analyzed through turbidimetry and optical microscopy. High-methoxyl pectin showed high solubility at all pHs investigated. The soy protein isolate showed low solubility at pH 4.5, which is close to its isoelectric point, and complete solubility at pH 11.0. The formation of complexes suggested an attractive interaction between the biopolymers, with high absorbance reading values and images of complexes from optical microscopy. These complexes were present in systems with pHs below the soy protein isolate's isoelectric point, with positive charges; the high-methoxyl pectin, however, had negative ones.

  15. Protein transport in organelles: The Toc complex way of preprotein import.

    Science.gov (United States)

    Agne, Birgit; Kessler, Felix

    2009-03-01

    Most of the estimated 1000 or so chloroplast proteins are synthesized as cytosolic preproteins with N-terminal cleavable targeting sequences (transit peptide). Translocon complexes at the outer (Toc) and inner chloroplast envelope membrane (Tic) concertedly facilitate post-translational import of preproteins into the chloroplast. Three components, the Toc34 and Toc159 GTPases together with the Toc75 channel, form the core of the Toc complex. The two GTPases act as GTP-dependent receptors at the chloroplast surface and promote insertion of the preprotein across the Toc75 channel. Additional factors guide preproteins to the Toc complex or support their stable ATP-dependent binding to the chloroplast. This minireview describes the components of the Toc complex and their function during the initial steps of preprotein translocation across the chloroplast envelope.

  16. Border control: selectivity of chloroplast protein import and regulation at the TOC-complex.

    Science.gov (United States)

    Demarsy, Emilie; Lakshmanan, Ashok M; Kessler, Felix

    2014-01-01

    Plants have evolved complex and sophisticated molecular mechanisms to regulate their development and adapt to their surrounding environment. Particularly the development of their specific organelles, chloroplasts and other plastid-types, is finely tuned in accordance with the metabolic needs of the cell. The normal development and functioning of plastids require import of particular subsets of nuclear encoded proteins. Most preproteins contain a cleavable sequence at their N terminal (transit peptide) serving as a signal for targeting to the organelle and recognition by the translocation machinery TOC-TIC (translocon of outer membrane complex-translocon of inner membrane complex) spanning the dual membrane envelope. The plastid proteome needs constant remodeling in response to developmental and environmental factors. Therefore selective regulation of preprotein import plays a crucial role in plant development. In this review we describe the diversity of transit peptides and TOC receptor complexes, and summarize the current knowledge and potential directions for future research concerning regulation of the different Toc isoforms.

  17. Structure solution of DNA-binding proteins and complexes with ARCIMBOLDO libraries

    Energy Technology Data Exchange (ETDEWEB)

    Pröpper, Kevin [University of Göttingen, (Germany); Instituto de Biologia Molecular de Barcelona (IBMB-CSIC), (Spain); Meindl, Kathrin; Sammito, Massimo [Instituto de Biologia Molecular de Barcelona (IBMB-CSIC), (Spain); Dittrich, Birger; Sheldrick, George M. [University of Göttingen, (Germany); Pohl, Ehmke, E-mail: ehmke.pohl@durham.ac.uk [Durham University, (United Kingdom); Usón, Isabel, E-mail: ehmke.pohl@durham.ac.uk [Instituto de Biologia Molecular de Barcelona (IBMB-CSIC), (Spain); Institucio Catalana de Recerca i Estudis Avancats (ICREA), (Spain); University of Göttingen, (Germany)

    2014-06-01

    The structure solution of DNA-binding protein structures and complexes based on the combination of location of DNA-binding protein motif fragments with density modification in a multi-solution frame is described. Protein–DNA interactions play a major role in all aspects of genetic activity within an organism, such as transcription, packaging, rearrangement, replication and repair. The molecular detail of protein–DNA interactions can be best visualized through crystallography, and structures emphasizing insight into the principles of binding and base-sequence recognition are essential to understanding the subtleties of the underlying mechanisms. An increasing number of high-quality DNA-binding protein structure determinations have been witnessed despite the fact that the crystallographic particularities of nucleic acids tend to pose specific challenges to methods primarily developed for proteins. Crystallographic structure solution of protein–DNA complexes therefore remains a challenging area that is in need of optimized experimental and computational methods. The potential of the structure-solution program ARCIMBOLDO for the solution of protein–DNA complexes has therefore been assessed. The method is based on the combination of locating small, very accurate fragments using the program Phaser and density modification with the program SHELXE. Whereas for typical proteins main-chain α-helices provide the ideal, almost ubiquitous, small fragments to start searches, in the case of DNA complexes the binding motifs and DNA double helix constitute suitable search fragments. The aim of this work is to provide an effective library of search fragments as well as to determine the optimal ARCIMBOLDO strategy for the solution of this class of structures.

  18. Stoichiometry of chromatin-associated protein complexes revealed by label-free quantitative mass spectrometry-based proteomics.

    Science.gov (United States)

    Smits, Arne H; Jansen, Pascal W T C; Poser, Ina; Hyman, Anthony A; Vermeulen, Michiel

    2013-01-07

    Many cellular proteins assemble into macromolecular protein complexes. The identification of protein-protein interactions and quantification of their stoichiometry is therefore crucial to understand the molecular function of protein complexes. Determining the stoichiometry of protein complexes is usually achieved by mass spectrometry-based methods that rely on introducing stable isotope-labeled reference peptides into the sample of interest. However, these approaches are laborious and not suitable for high-throughput screenings. Here, we describe a robust and easy to implement label-free relative quantification approach that combines the detection of high-confidence protein-protein interactions with an accurate determination of the stoichiometry of the identified protein-protein interactions in a single experiment. We applied this method to two chromatin-associated protein complexes for which the stoichiometry thus far remained elusive: the MBD3/NuRD and PRC2 complex. For each of these complexes, we accurately determined the stoichiometry of the core subunits while at the same time identifying novel interactors and their stoichiometry.

  19. Proteomics strategy for identifying candidate bioactive proteins in complex mixtures: application to the platelet releasate.

    LENUS (Irish Health Repository)

    O'Connor, Roisin

    2010-01-01

    Proteomic approaches have proven powerful at identifying large numbers of proteins, but there are fewer reports of functional characterization of proteins in biological tissues. Here, we describe an experimental approach that fractionates proteins released from human platelets, linking bioassay activity to identity. We used consecutive orthogonal separation platforms to ensure sensitive detection: (a) ion-exchange of intact proteins, (b) SDS-PAGE separation of ion-exchange fractions and (c) HPLC separation of tryptic digests coupled to electrospray tandem mass spectrometry. Migration of THP-1 monocytes in response to complete or fractionated platelet releasate was assessed and located to just one of the forty-nine ion-exchange fractions. Over 300 proteins were identified in the releasate, with a wide range of annotated biophysical and biochemical properties, in particular platelet activation, adhesion, and wound healing. The presence of PEDF and involucrin, two proteins not previously reported in platelet releasate, was confirmed by western blotting. Proteins identified within the fraction with monocyte promigratory activity and not in other inactive fractions included vimentin, PEDF, and TIMP-1. We conclude that this analytical platform is effective for the characterization of complex bioactive samples.

  20. Mutant Cockayne syndrome group B protein inhibits repair of DNA topoisomerase I-DNA covalent complex.

    Science.gov (United States)

    Horibata, Katsuyoshi; Saijo, Masafumi; Bay, Mui N; Lan, Li; Kuraoka, Isao; Brooks, Philip J; Honma, Masamitsu; Nohmi, Takehiko; Yasui, Akira; Tanaka, Kiyoji

    2011-01-01

    Two UV-sensitive syndrome patients who have mild photosensitivity without detectable somatic abnormalities lack detectable Cockayne syndrome group B (CSB) protein because of a homozygous null mutation in the CSB gene. In contrast, mutant CSB proteins are produced in CS-B patients with the severe somatic abnormalities of Cockayne syndrome and photosensitivity. It is known that the piggyBac transposable element derived 3 is integrated within the CSB intron 5, and that CSB-piggyBac transposable element derived 3 fusion (CPFP) mRNA is produced by alternative splicing. We found that CPFP or truncated CSB protein derived from CPFP mRNA was stably produced in CS-B patients, and that wild-type CSB, CPFP, and truncated CSB protein interacted with DNA topoisomerase I. We also found that CPFP inhibited repair of a camptothecin-induced topoisomerase I-DNA covalent complex. The inhibition was suppressed by the presence of wild-type CSB, consistent with the autosomal recessive inheritance of Cockayne syndrome. These results suggested that reduced repair of a DNA topoisomerase I-DNA covalent complex because of truncated CSB proteins is involved in the pathogenesis of CS-B. © 2010 The Authors. Journal compilation © 2010 by the Molecular Biology Society of Japan/Blackwell Publishing Ltd.

  1. Efficient nuclear export of p65-IkappaBalpha complexes requires 14-3-3 proteins.

    Science.gov (United States)

    Aguilera, Cristina; Fernández-Majada, Vanessa; Inglés-Esteve, Julia; Rodilla, Verónica; Bigas, Anna; Espinosa, Lluís

    2006-09-01

    IkappaB are responsible for maintaining p65 in the cytoplasm under non-stimulating conditions and promoting the active export of p65 from the nucleus following NFkappaB activation to terminate the signal. We now show that 14-3-3 proteins regulate the NFkappaB signaling pathway by physically interacting with p65 and IkappaBalpha proteins. We identify two functional 14-3-3 binding domains in the p65 protein involving residues 38-44 and 278-283, and map the interaction region of IkappaBalpha in residues 60-65. Mutation of these 14-3-3 binding domains in p65 or IkappaBalpha results in a predominantly nuclear distribution of both proteins. TNFalpha treatment promotes recruitment of 14-3-3 and IkappaBalpha to NFkappaB-dependent promoters and enhances the binding of 14-3-3 to p65. Disrupting 14-3-3 activity by transfection with a dominant-negative 14-3-3 leads to the accumulation of nuclear p65-IkappaBalpha complexes and the constitutive association of p65 with the chromatin. In this situation, NFkappaB-dependent genes become unresponsive to TNFalpha stimulation. Together our results indicate that 14-3-3 proteins facilitate the nuclear export of IkappaBalpha-p65 complexes and are required for the appropriate regulation of NFkappaB signaling.

  2. Possible role of interference, protein noise, and sink effects in nonphotochemical quenching in photosynthetic complexes.

    Science.gov (United States)

    Berman, Gennady P; Nesterov, Alexander I; Gurvitz, Shmuel; Sayre, Richard T

    2017-01-01

    We analyze theoretically a simple and consistent quantum mechanical model that reveals the possible role of quantum interference, protein noise, and sink effects in the nonphotochemical quenching (NPQ) in light-harvesting complexes (LHCs). The model consists of a network of five interconnected sites (excitonic states of light-sensitive molecules) responsible for the NPQ mechanism. The model also includes the "damaging" and the dissipative channels. The damaging channel is responsible for production of singlet oxygen and other destructive outcomes. In our model, both damaging and "dissipative" charge transfer channels are described by discrete electron energy levels attached to their sinks, that mimic the continuum part of electron energy spectrum. All five excitonic sites interact with the protein environment that is modeled using a stochastic process. Our approach allowed us to derive the exact and closed system of linear ordinary differential equations for the reduced density matrix and its first momentums. These equations are solved numerically including for strong interactions between the light-sensitive molecules and protein environment. As an example, we apply our model to demonstrate possible contributions of quantum interference, protein noise, and sink effects in the NPQ mechanism in the CP29 minor LHC. The numerical simulations show that using proper combination of quantum interference effects, properties of noise, and sinks, one can significantly suppress the damaging channel. Our findings demonstrate the possible role of interference, protein noise, and sink effects for modeling, engineering, and optimizing the performance of the NPQ processes in both natural and artificial light-harvesting complexes.

  3. Resolving protein interactions and complexes by affinity purification followed by label-based quantitative mass spectrometry.

    Science.gov (United States)

    Trinkle-Mulcahy, Laura

    2012-05-01

    Label-based quantitative mass spectrometry analysis of affinity purified complexes, with its built-in negative controls and relative ease of use, is an increasingly popular choice for defining protein-protein interactions and multiprotein complexes. This approach, which differentially labels proteins/peptides from two or more populations and combines them prior to analysis, permits direct comparison of a protein pulldown (e.g. affinity purified tagged protein) to that of a control pulldown (e.g. affinity purified tag alone) in a single mass spectrometry (MS) run, thus avoiding the variability inherent in separate runs. The use of quantitative techniques has been driven in large part by significant improvements in the resolution and sensitivity of high-end mass spectrometers. Importantly, the availability of commercial reagents and open source identification/quantification software has made these powerful techniques accessible to nonspecialists. Benefits and drawbacks of the most popular labeling-based approaches are discussed here, and key steps/strategies for the use of labeling in quantitative immunoprecipitation experiments detailed. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Protein degradation corrects for imbalanced subunit stoichiometry in OST complex assembly.

    Science.gov (United States)

    Mueller, Susanne; Wahlander, Asa; Selevsek, Nathalie; Otto, Claudia; Ngwa, Elsy Mankah; Poljak, Kristina; Frey, Alexander D; Aebi, Markus; Gauss, Robert

    2015-07-15

    Protein degradation is essential for cellular homeostasis. We developed a sensitive approach to examining protein degradation rates in Saccharomyces cerevisiae by coupling a SILAC approach to selected reaction monitoring (SRM) mass spectrometry. Combined with genetic tools, this analysis made it possible to study the assembly of the oligosaccharyl transferase complex. The ER-associated degradation machinery compensated for disturbed homeostasis of complex components by degradation of subunits in excess. On a larger scale, protein degradation in the ER was found to be a minor factor in the regulation of protein homeostasis in exponentially growing cells, but ERAD became relevant when the gene dosage was affected, as demonstrated in heterozygous diploid cells. Hence the alleviation of fitness defects due to abnormal gene copy numbers might be an important function of protein degradation. © 2015 Mueller et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  5. Identifying technical aliases in SELDI mass spectra of complex mixtures of proteins

    Science.gov (United States)

    2013-01-01

    Background Biomarker discovery datasets created using mass spectrum protein profiling of complex mixtures of proteins contain many peaks that represent the same protein with different charge states. Correlated variables such as these can confound the statistical analyses of proteomic data. Previously we developed an algorithm that clustered mass spectrum peaks that were biologically or technically correlated. Here we demonstrate an algorithm that clusters correlated technical aliases only. Results In this paper, we propose a preprocessing algorithm that can be used for grouping technical aliases in mass spectrometry protein profiling data. The stringency of the variance allowed for clustering is customizable, thereby affecting the number of peaks that are clustered. Subsequent analysis of the clusters, instead of individual peaks, helps reduce difficulties associated with technically-correlated data, and can aid more efficient biomarker identification. Conclusions This software can be used to pre-process and thereby decrease the complexity of protein profiling proteomics data, thus simplifying the subsequent analysis of biomarkers by decreasing the number of tests. The software is also a practical tool for identifying which features to investigate further by purification, identification and confirmation. PMID:24010718

  6. Survey of large protein complexes D. vulgaris reveals great structural diversity

    Energy Technology Data Exchange (ETDEWEB)

    Han, B.-G.; Dong, M.; Liu, H.; Camp, L.; Geller, J.; Singer, M.; Hazen, T. C.; Choi, M.; Witkowska, H. E.; Ball, D. A.; Typke, D.; Downing, K. H.; Shatsky, M.; Brenner, S. E.; Chandonia, J.-M.; Biggin, M. D.; Glaeser, R. M.

    2009-08-15

    An unbiased survey has been made of the stable, most abundant multi-protein complexes in Desulfovibrio vulgaris Hildenborough (DvH) that are larger than Mr {approx} 400 k. The quaternary structures for 8 of the 16 complexes purified during this work were determined by single-particle reconstruction of negatively stained specimens, a success rate {approx}10 times greater than that of previous 'proteomic' screens. In addition, the subunit compositions and stoichiometries of the remaining complexes were determined by biochemical methods. Our data show that the structures of only two of these large complexes, out of the 13 in this set that have recognizable functions, can be modeled with confidence based on the structures of known homologs. These results indicate that there is significantly greater variability in the way that homologous prokaryotic macromolecular complexes are assembled than has generally been appreciated. As a consequence, we suggest that relying solely on previously determined quaternary structures for homologous proteins may not be sufficient to properly understand their role in another cell of interest.

  7. Effects of conformational ordering on protein/polyelectrolyte electrostatic complexation: ionic binding and chain stiffening

    Science.gov (United States)

    Cao, Yiping; Fang, Yapeng; Nishinari, Katsuyoshi; Phillips, Glyn O.

    2016-03-01

    Coupling of electrostatic complexation with conformational transition is rather general in protein/polyelectrolyte interaction and has important implications in many biological processes and practical applications. This work studied the electrostatic complexation between κ-carrageenan (κ-car) and type B gelatin, and analyzed the effects of the conformational ordering of κ-car induced upon cooling in the presence of potassium chloride (KCl) or tetramethylammonium iodide (Me4NI). Experimental results showed that the effects of conformational ordering on protein/polyelectrolyte electrostatic complexation can be decomposed into ionic binding and chain stiffening. At the initial stage of conformational ordering, electrostatic complexation can be either suppressed or enhanced due to the ionic bindings of K+ and I- ions, which significantly alter the charge density of κ-car or occupy the binding sites of gelatin. Beyond a certain stage of conformational ordering, i.e., helix content θ > 0.30, the effect of chain stiffening, accompanied with a rapid increase in helix length ζ, becomes dominant and tends to dissociate the electrostatic complexation. The effect of chain stiffening can be theoretically interpreted in terms of double helix association.

  8. How to build functional thylakoid membranes: from plastid transcription to protein complex assembly.

    Science.gov (United States)

    Lyska, Dagmar; Meierhoff, Karin; Westhoff, Peter

    2013-02-01

    Chloroplasts are the endosymbiotic descendants of cyanobacterium-like prokaryotes. Present genomes of plant and green algae chloroplasts (plastomes) contain ~100 genes mainly encoding for their transcription-/translation-machinery, subunits of the thylakoid membrane complexes (photosystems II and I, cytochrome b (6) f, ATP synthase), and the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase. Nevertheless, proteomic studies have identified several thousand proteins in chloroplasts indicating that the majority of the plastid proteome is not encoded by the plastome. Indeed, plastid and host cell genomes have been massively rearranged in the course of their co-evolution, mainly through gene loss, horizontal gene transfer from the cyanobacterium/chloroplast to the nucleus of the host cell, and the emergence of new nuclear genes. Besides structural components of thylakoid membrane complexes and other (enzymatic) complexes, the nucleus provides essential factors that are involved in a variety of processes inside the chloroplast, like gene expression (transcription, RNA-maturation and translation), complex assembly, and protein import. Here, we provide an overview on regulatory factors that have been described and characterized in the past years, putting emphasis on mechanisms regulating the expression and assembly of the photosynthetic thylakoid membrane complexes.

  9. Photosystem II recovery in the presence and absence of chloroplast protein repair in the symbionts of corals exposed to bleaching conditions

    Science.gov (United States)

    Hill, R.; Takahashi, S.

    2014-12-01

    Increased seawater temperature causes photoinhibition due to accumulation of photodamaged photosystem II (PSII) in symbiotic algae (genus Symbiodinium) within corals, and it is assumed to be associated with coral bleaching. To avoid photoinhibition, photosynthetic organisms repair the photodamaged PSII through replacing the PSII proteins, primarily the D1 protein, with newly synthesised proteins. However, in experiments using cultured Symbiodinium strains, the PSII repair of Symbiodinium has been suggested not to be related to the synthesis of the D1 protein. In this study, we examined the relationship between the recovery of PSII photochemical efficiency ( F V/ F M) and the content of D1 protein after high-light and high-temperature treatments using the bleaching-sensitive coral species, Pocillopora damicornis and Acropora millepora, and the bleaching-tolerant coral species, Montipora digitata and Pavona decussata. When corals were exposed to strong light (600 µmol photons m-2 s-1) at elevated temperature (32 °C) for 8 h, significant bleaching occurred in bleaching-sensitive coral species although an almost similar extent of reduced PSII function was found across all coral species tested. During a subsequent 15-h recovery under low light (10 µmol photons m-2 s-1) at optimal temperature (22 °C), the reduced F V/ F M recovered close to initial levels in all coral species, but the reduced D1 content recovered only in one coral species ( Pavona decussata). D1 content was therefore not strongly linked to chloroplast protein synthesis-dependent PSII repair. These results demonstrate that the recovery of photodamaged PSII does not always correspond with the recovery of D1 protein content in Symbiodinium within corals, suggesting that photodamaged PSII can be repaired by a unique mechanism in Symbiodinium within corals.

  10. Clinical spectrum and diagnostic value of antibodies against the potassium channel related protein complex.

    Science.gov (United States)

    Montojo, M T; Petit-Pedrol, M; Graus, F; Dalmau, J

    2015-06-01

    Antibodies against a protein complex that includes voltage-gated potassium channels (VGKC) have been reported in patients with limbic encephalitis, peripheral nerve hyperexcitability, Morvan's syndrome, and a large variety of neurological syndromes. In this article, a review is presented of the syndromes associated with antibodies against VGKC-related proteins and the main antigens of this protein complex, the proteins LGI1 (leucine rich glioma inactivated protein 1) and Caspr2 (contactin-associated protein-like 2). The conceptual problems and clinical implications of the description of antibodies against VGKC-related proteins other than LGI1 and Caspr2 are also discussed. Although initial studies indicated the occurrence of antibodies against VGKC, recent investigations have shown that the main antigens are a neuronal secreted protein known as LGI1 which modulates synaptic excitability, and a protein called Caspr2 located on the cell surface and processes of neurons of different brain regions, and at the juxtaparanodal region of myelinated axons. While antibodies against LGI1 preferentially associate with classical limbic encephalitis, antibodies against Caspr2 associate with a wider spectrum of symptoms, including Morvan's syndrome, peripheral nerve hyperexcitability or neuromyotonia, and limbic or more extensive encephalitis. In addition there are reports of patients with antibodies against VGKC-related proteins that are different from LGI1 or Caspr2. In these cases, the identity and location of the antigens are unknown, the syndrome association is not specific, and the response to treatment uncertain. The discovery of antigens such as LGI1 and Caspr2 has resulted in a clinical and molecular definition of the broad group of diseases previously attributed to antibodies against VGKC. Considering the literature that describes the presence of antibodies against VGKC other than LGI1 and Caspr2 proteins, we propose a practical algorithm for the diagnosis and treatment

  11. Versatile annotation and publication quality visualization of protein complexes using POLYVIEW-3D

    Directory of Open Access Journals (Sweden)

    Meller Jaroslaw

    2007-08-01

    Full Text Available Abstract Background Macromolecular visualization as well as automated structural and functional annotation tools play an increasingly important role in the post-genomic era, contributing significantly towards the understanding of molecular systems and processes. For example, three dimensional (3D models help in exploring protein active sites and functional hot spots that can be targeted in drug design. Automated annotation and visualization pipelines can also reveal other functionally important attributes of macromolecules. These goals are dependent on the availability of advanced tools that integrate better the existing databases, annotation servers and other resources with state-of-the-art rendering programs. Results We present a new tool for protein structure analysis, with the focus on annotation and visualization of protein complexes, which is an extension of our previously developed POLYVIEW web server. By integrating the web technology with state-of-the-art software for macromolecular visualization, such as the PyMol program, POLYVIEW-3D enables combining versatile structural and functional annotations with a simple web-based interface for creating publication quality structure rendering, as well as animated images for Powerpoint™, web sites and other electronic resources. The service is platform independent and no plug-ins are required. Several examples of how POLYVIEW-3D can be used for structural and functional analysis in the context of protein-protein interactions are presented to illustrate the available annotation options. Conclusion POLYVIEW-3D server features the PyMol image rendering that provides detailed and high quality presentation of macromolecular structures, with an easy to use web-based interface. POLYVIEW-3D also provides a wide array of options for automated structural and functional analysis of proteins and their complexes. Thus, the POLYVIEW-3D server may become an important resource for researches and educators in

  12. Effects of radiation damage in studies of protein-DNA complexes by cryo-EM.

    Science.gov (United States)

    Mishyna, M; Volokh, O; Danilova, Ya; Gerasimova, N; Pechnikova, E; Sokolova, O S

    2017-05-01

    Nucleic acids are responsible for the storage, transfer and realization of genetic information in the cell, which provides correct development and functioning of organisms. DNA interaction with ligands ensures the safety of this information. Over the past 10 years, advances in electron microscopy and image processing allowed to obtain the structures of key DNA-protein complexes with resolution below 4Å. However, radiation damage is a limiting factor to the potentially attainable resolution in cryo-EM. The prospect and limitations of studying protein-DNA complex interactions using cryo-electron microscopy are discussed here. We reviewed the ways to minimize radiation damage in biological specimens and the possibilities of using radiation damage (so-called 'bubblegrams') to obtain additional structural information. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Emerging functions of multi-protein complex Mediator with special emphasis on plants.

    Science.gov (United States)

    Malik, Naveen; Agarwal, Pinky; Tyagi, Akhilesh

    2017-10-01

    Mediator is a multi-subunit protein complex which is involved in transcriptional regulation in yeast and other eukaryotes. As a co-activator, it connects information from transcriptional activators/repressors to transcriptional machinery including RNA polymerase II and general transcription factors. It is not only involved in transcription initiation but also has important roles to play in transcription elongation and termination. Functional attributes of different Mediator subunits have been largely defined in yeast and mammalian systems earlier, while such studies in plants have gained momentum recently. Mediator regulates various processes related to plant development and is also involved in biotic and abiotic stress response. Thus, plant Mediator, like yeast and mammalian Mediator complex, is indispensable for plant growth and survival. Interaction of its multiple subunits with other regulatory proteins and their ectopic expression or knockdown in model plant like Arabidopsis and certain crop plants are paving the way to biochemical analysis and unravel molecular mechanisms of action of Mediator in plants.

  14. Matrix proteins of Nipah and Hendra viruses interact with beta subunits of AP-3 complexes.

    Science.gov (United States)

    Sun, Weina; McCrory, Thomas S; Khaw, Wei Young; Petzing, Stephanie; Myers, Terrell; Schmitt, Anthony P

    2014-11-01

    Paramyxoviruses and other negative-strand RNA viruses encode matrix proteins that coordinate the virus assembly process. The matrix proteins link the viral glycoproteins and the viral ribonucleoproteins at virus assembly sites and often recruit host machinery that facilitates the budding process. Using a co-affinity purification strategy, we have identified the beta subunit of the AP-3 adapter protein complex, AP3B1, as a binding partner for the M proteins of the zoonotic paramyxoviruses Nipah virus and Hendra virus. Binding function was localized to the serine-rich and acidic Hinge domain of AP3B1, and a 29-amino-acid Hinge-derived polypeptide was sufficient for M protein binding in coimmunoprecipitation assays. Virus-like particle (VLP) production assays were used to assess the relationship between AP3B1 binding and M protein function. We found that for both Nipah virus and Hendra virus, M protein expression in the absence of any other viral proteins led to the efficient production of VLPs in transfected cells, and this VLP production was potently inhibited upon overexpression of short M-binding polypeptides derived from the Hinge region of AP3B1. Both human and bat (Pteropus alecto) AP3B1-derived polypeptides were highly effective at inhibiting the production of VLPs. VLP production was also impaired through small interfering RNA (siRNA)-mediated depletion of AP3B1 from cells. These findings suggest that AP-3-directed trafficking processes are important for henipavirus particle production and identify a new host protein-virus protein binding interface that could become a useful target in future efforts to develop small molecule inhibitors to combat paramyxoviral infections. Henipaviruses cause deadly infections in humans, with a mortality rate of about 40%. Hendra virus outbreaks in Australia, all involving horses and some involving transmission to humans, have been a continuing problem. Nipah virus caused a large outbreak in Malaysia in 1998, killing 109 people

  15. Tissue-engineered cells producing complex recombinant proteins inhibit ovarian cancer in vivo

    OpenAIRE

    Stephen, Antonia E.; Masiakos, Peter T.; Segev, Dorry L.; Vacanti, Joseph P.; Donahoe, Patricia K.; MacLaughlin, David T.

    2001-01-01

    Techniques of tissue engineering and cell and molecular biology were used to create a biodegradable scaffold for transfected cells to produce complex proteins. Mullerian Inhibiting Substance (MIS) causes regression of Mullerian ducts in the mammalian embryo. MIS also causes regression in vitro of ovarian tumor cell lines and primary cells from ovarian carcinomas, which derive from Mullerian structures. In a strategy to circumvent the complicated purification protoc...

  16. Improved delivery of Cas9 protein/gRNA complexes using lipofectamine CRISPRMAX

    OpenAIRE

    Yu, Xin; Liang, Xiquan; Xie, Huimin; Kumar, Shantanu; Ravinder, Namritha; Potter, Jason; Mollerat Du Jeu, Xavier De; Chesnut, Jonathan D.

    2016-01-01

    Objectives To identify the best lipid nanoparticles for delivery of purified Cas9 protein and gRNA complexes (Cas9 RNPs) into mammalian cells and to establish the optimal conditions for transfection. Results Using a systematic approach, we screened 60 transfection reagents using six commonly-used mammalian cell lines and identified a novel transfection reagent (named Lipofectamine CRISPRMAX). Based on statistical analysis, the genome modification efficiencies in Lipofectamine CRISPRMAX-transf...

  17. Proteomic Identification of Altered Cerebral Proteins in the Complex Regional Pain Syndrome Animal Model

    Directory of Open Access Journals (Sweden)

    Francis Sahngun Nahm

    2014-01-01

    Full Text Available Background. Complex regional pain syndrome (CRPS is a rare but debilitating pain disorder. Although the exact pathophysiology of CRPS is not fully understood, central and peripheral mechanisms might be involved in the development of this disorder. To reveal the central mechanism of CRPS, we conducted a proteomic analysis of rat cerebrum using the chronic postischemia pain (CPIP model, a novel experimental model of CRPS. Materials and Methods. After generating the CPIP animal model, we performed a proteomic analysis of the rat cerebrum using a multidimensional protein identification technology, and screened the proteins differentially expressed between the CPIP and control groups. Results. A total of 155 proteins were differentially expressed between the CPIP and control groups: 125 increased and 30 decreased; expressions of proteins related to cell signaling, synaptic plasticity, regulation of cell proliferation, and cytoskeletal formation were increased in the CPIP group. However, proenkephalin A, cereblon, and neuroserpin were decreased in CPIP group. Conclusion. Altered expression of cerebral proteins in the CPIP model indicates cerebral involvement in the pathogenesis of CRPS. Further study is required to elucidate the roles of these proteins in the development and maintenance of CRPS.

  18. The impact of CRISPR repeat sequence on structures of a Cas6 protein-RNA complex

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ruiying; Zheng, Han; Preamplume, Gan; Shao, Yaming; Li, Hong [FSU

    2012-03-15

    The repeat-associated mysterious proteins (RAMPs) comprise the most abundant family of proteins involved in prokaryotic immunity against invading genetic elements conferred by the clustered regularly interspaced short palindromic repeat (CRISPR) system. Cas6 is one of the first characterized RAMP proteins and is a key enzyme required for CRISPR RNA maturation. Despite a strong structural homology with other RAMP proteins that bind hairpin RNA, Cas6 distinctly recognizes single-stranded RNA. Previous structural and biochemical studies show that Cas6 captures the 5' end while cleaving the 3' end of the CRISPR RNA. Here, we describe three structures and complementary biochemical analysis of a noncatalytic Cas6 homolog from Pyrococcus horikoshii bound to CRISPR repeat RNA of different sequences. Our study confirms the specificity of the Cas6 protein for single-stranded RNA and further reveals the importance of the bases at Positions 5-7 in Cas6-RNA interactions. Substitutions of these bases result in structural changes in the protein-RNA complex including its oligomerization state.

  19. Modification of the protein corona-nanoparticle complex by physiological factors.

    Science.gov (United States)

    Braun, Nicholas J; DeBrosse, Madeleine C; Hussain, Saber M; Comfort, Kristen K

    2016-07-01

    Nanoparticle (NP) effects in a biological system are driven through the formation and structure of the protein corona-NP complex, which is dynamic by nature and dependent upon factors from both the local environment and NP physicochemical parameters. To date, considerable data has been gathered regarding the structure and behavior of the protein corona in blood, plasma, and traditional cell culture medium. However, there exists a knowledge gap pertaining to the protein corona in additional biological fluids and following incubation in a dynamic environment. Using 13nm gold NPs (AuNPs), functionalized with either polyethylene glycol or tannic acid, we demonstrated that both particle characteristics and the associated protein corona were altered when exposed to artificial physiological fluids and under dynamic flow. Furthermore, the magnitude of observed behavioral shifts were dependent upon AuNP surface chemistry. Lastly, we revealed that exposure to interstitial fluid produced protein corona modifications, reshaping of the nano-cellular interface, modified AuNP dosimetry, and induction of previously unseen cytotoxicity. This study highlights the need to elucidate both NP and protein corona behavior in biologically representative environments in an effort to increase accurate interpretation of data and transfer of this knowledge to efficacy, behavior, and safety of nano-based applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Complexity of the Ruminococcus flavefaciens FD-1 cellulosome reflects an expansion of family-related protein-protein interactions.

    Science.gov (United States)

    Israeli-Ruimy, Vered; Bule, Pedro; Jindou, Sadanari; Dassa, Bareket; Moraïs, Sarah; Borovok, Ilya; Barak, Yoav; Slutzki, Michal; Hamberg, Yuval; Cardoso, Vânia; Alves, Victor D; Najmudin, Shabir; White, Bryan A; Flint, Harry J; Gilbert, Harry J; Lamed, Raphael; Fontes, Carlos M G A; Bayer, Edward A

    2017-02-10

    Protein-protein interactions play a vital role in cellular processes as exemplified by assembly of the intricate multi-enzyme cellulosome complex. Cellulosomes are assembled by selective high-affinity binding of enzyme-borne dockerin modules to repeated cohesin modules of structural proteins termed scaffoldins. Recent sequencing of the fiber-degrading Ruminococcus flavefaciens FD-1 genome revealed a particularly elaborate cellulosome system. In total, 223 dockerin-bearing ORFs potentially involved in cellulosome assembly and a variety of multi-modular scaffoldins were identified, and the dockerins were classified into six major groups. Here, extensive screening employing three complementary medium- to high-throughput platforms was used to characterize the different cohesin-dockerin specificities. The platforms included (i) cellulose-coated microarray assay, (ii) enzyme-linked immunosorbent assay (ELISA) and (iii) in-vivo co-expression and screening in Escherichia coli. The data revealed a collection of unique cohesin-dockerin interactions and support the functional relevance of dockerin classification into groups. In contrast to observations reported previously, a dual-binding mode is involved in cellulosome cell-surface attachment, whereas single-binding interactions operate for cellulosome integration of enzymes. This sui generis cellulosome model enhances our understanding of the mechanisms governing the remarkable ability of R. flavefaciens to degrade carbohydrates in the bovine rumen and provides a basis for constructing efficient nano-machines applied to biological processes.

  1. Differential Roles for Inner Membrane Complex Proteins across Toxoplasma gondii and Sarcocystis neurona Development.

    Science.gov (United States)

    Dubey, Rashmi; Harrison, Brooke; Dangoudoubiyam, Sriveny; Bandini, Giulia; Cheng, Katherine; Kosber, Aziz; Agop-Nersesian, Carolina; Howe, Daniel K; Samuelson, John; Ferguson, David J P; Gubbels, Marc-Jan

    2017-01-01

    The inner membrane complex (IMC) of apicomplexan parasites contains a network of intermediate filament-like proteins. The 14 alveolin domain-containing IMC proteins in Toxoplasma gondii fall into different groups defined by their distinct spatiotemporal dynamics during the internal budding process of tachyzoites. Here, we analyzed representatives of different IMC protein groups across all stages of the Toxoplasma life cycle and during Sarcocystis neurona asexual development. We found that across asexually dividing Toxoplasma stages, IMC7 is present exclusively in the mother's cytoskeleton, whereas IMC1 and IMC3 are both present in mother and daughter cytoskeletons (IMC3 is strongly enriched in daughter buds). In developing macro- and microgametocytes, IMC1 and -3 are absent, whereas IMC7 is lost in early microgametocytes but retained in macrogametocytes until late in their development. We found no roles for IMC proteins during meiosis and sporoblast formation. However, we observed that IMC1 and IMC3, but not IMC7, are present in sporozoites. Although the spatiotemporal pattern of IMC15 and IMC3 suggests orthologous functions in Sarcocystis, IMC7 may have functionally diverged in Sarcocystis merozoites. To functionally characterize IMC proteins, we knocked out IMC7, -12, -14, and -15 in Toxoplasma. IMC14 and -15 appear to be involved in switching between endodyogeny and endopolygeny. In addition, IMC7, -12, and -14, which are all recruited to the cytoskeleton outside cytokinesis, are critical for the structural integrity of extracellular tachyzoites. Altogether, stage- and development-specific roles for IMC proteins can be discerned, suggesting different niches for each IMC protein across the entire life cycle. IMPORTANCE The inner membrane complex (IMC) is a defining feature of apicomplexan parasites key to both their motility and unique cell division. To provide further insights into the IMC, we analyzed the dynamics and functions of representative alveolin domain

  2. Subcritical Water Induced Complexation of Soy Protein and Rutin: Improved Interfacial Properties and Emulsion Stability.

    Science.gov (United States)

    Chen, Xiao-Wei; Wang, Jin-Mei; Yang, Xiao-Quan; Qi, Jun-Ru; Hou, Jun-Jie

    2016-09-01

    Rutin is a common dietary flavonoid with important antioxidant and pharmacological activities. However, its application in the food industry is limited mainly because of its poor water solubility. The subcritical water (SW) treatment provides an efficient technique to solubilize and achieve the enrichment of rutin in soy protein isolate (SPI) by inducing their complexation. The physicochemical, interfacial, and emulsifying properties of the complex were investigated and compared to the mixtures. SW treatment had much enhanced rutin-combined capacity of SPI than that of conventional method, ascribing to the well-contacted for higher water solubility of rutin with stronger collision-induced hydrophobic interactions. Compared to the mixtures of rutin with proteins, the complex exhibited an excellent surface activity and improved the physical and oxidative stability of its stabilized emulsions. This improving effect could be attributed to the targeted accumulation of rutin at the oil-water interface accompanied by the adsorption of SPI resulting in the thicker interfacial layer, as evidenced by higher interfacial protein and rutin concentrations. This study provides a novel strategy for the design and enrichment of nanovehicle providing water-insoluble hydrophobic polyphenols for interfacial delivery in food emulsified systems. © 2016 Institute of Food Technologists®

  3. Novel Nuclear Protein Complexes of Dystrophin 71 Isoforms in Rat Cultured Hippocampal GABAergic and Glutamatergic Neurons.

    Directory of Open Access Journals (Sweden)

    Rafael Rodríguez-Muñoz

    Full Text Available The precise functional role of the dystrophin 71 in neurons is still elusive. Previously, we reported that dystrophin 71d and dystrophin 71f are present in nuclei from cultured neurons. In the present work, we performed a detailed analysis of the intranuclear distribution of dystrophin 71 isoforms (Dp71d and Dp71f, during the temporal course of 7-day postnatal rats hippocampal neurons culture for 1h, 2, 4, 10, 15 and 21 days in vitro (DIV. By immunofluorescence assays, we detected the highest level of nuclear expression of both dystrophin Dp71 isoforms at 10 DIV, during the temporal course of primary culture. Dp71d and Dp71f were detected mainly in bipolar GABAergic (≥60% and multipolar Glutamatergic (≤40% neurons, respectively. We also characterized the existence of two nuclear dystrophin-associated protein complexes (DAPC: dystrophin 71d or dystrophin 71f bound to β-dystroglycan, α1-, β-, α2-dystrobrevins, α-syntrophin, and syntrophin-associated protein nNOS (Dp71d-DAPC or Dp71f-DAPC, respectively, in the hippocampal neurons. Furthermore, both complexes were localized in interchromatin granule cluster structures (nuclear speckles of neuronal nucleoskeleton preparations. The present study evinces that each Dp71's complexes differ slightly in dystrobrevins composition. The results demonstrated that Dp71d-DAPC was mainly localized in bipolar GABAergic and Dp71f-DAPC in multipolar Glutamatergic hippocampal neurons. Taken together, our results show that dystrophin 71d, dystrophin 71f and DAP integrate protein complexes, and both complexes were associated to nuclear speckles structures.

  4. A novel method for preparation of HAMLET-like protein complexes.

    Science.gov (United States)

    Permyakov, Sergei E; Knyazeva, Ekaterina L; Leonteva, Marina V; Fadeev, Roman S; Chekanov, Aleksei V; Zhadan, Andrei P; Håkansson, Anders P; Akatov, Vladimir S; Permyakov, Eugene A

    2011-09-01

    Some natural proteins induce tumor-selective apoptosis. α-Lactalbumin (α-LA), a milk calcium-binding protein, is converted into an antitumor form, called HAMLET/BAMLET, via partial unfolding and association with oleic acid (OA). Besides triggering multiple cell death mechanisms in tumor cells, HAMLET exhibits bactericidal activity against Streptococcus pneumoniae. The existing methods for preparation of active complexes of α-LA with OA employ neutral pH solutions, which greatly limit water solubility of OA. Therefore these methods suffer from low scalability and/or heterogeneity of the resulting α-LA - OA samples. In this study we present a novel method for preparation of α-LA - OA complexes using alkaline conditions that favor aqueous solubility of OA. The unbound OA is removed by precipitation under acidic conditions. The resulting sample, bLA-OA-45, bears 11 OA molecules and exhibits physico-chemical properties similar to those of BAMLET. Cytotoxic activities of bLA-OA-45 against human epidermoid larynx carcinoma and S. pneumoniae D39 cells are close to those of HAMLET. Treatment of S. pneumoniae with bLA-OA-45 or HAMLET induces depolarization and rupture of the membrane. The cells are markedly rescued from death upon pretreatment with an inhibitor of Ca(2+) transport. Hence, the activation mechanisms of S. pneumoniae death are analogous for these two complexes. The developed express method for preparation of active α-LA - OA complex is high-throughput and suited for development of other protein complexes with low-molecular-weight amphiphilic substances possessing valuable cytotoxic properties. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  5. Structural and optical behavior of thin films of protein (BSA)-Polyelectrolyte (PAA, PSS) complexes

    Science.gov (United States)

    Talukdar, Hrishikesh; Kundu, Sarathi

    2017-05-01

    Optical behaviors of protein (BSA) in the presence of negatively charged polyelectrolytes (PAA and PSS) in thin film confirmation are studied using UV-Vis and photoluminescence spectroscopy. The out-of-plane structures and in-plane surface morphologies of the thin films of protein-polyelectrolyte complexes (PPC) are investigated using X-ray reflectivity (XRR) and Atomic force microscopy (AFM) respectively. It is found that although the out-of-plane structure and surface morphology of PPC is nearly same as in pure polyelectrolyte but a larger red-shift of ≈ 23 nm is obtained in optical emissions from the thin films of PPC in comparison with that of the pure protein and PPC solutions. Mechanism is proposed for such larger red-shift from the thin film of PPC.

  6. Hydra meiosis reveals unexpected conservation of structural synaptonemal complex proteins across metazoans

    Science.gov (United States)

    Fraune, Johanna; Alsheimer, Manfred; Volff, Jean-Nicolas; Busch, Karoline; Fraune, Sebastian; Bosch, Thomas C. G.; Benavente, Ricardo

    2012-01-01

    The synaptonemal complex (SC) is a key structure of meiosis, mediating the stable pairing (synapsis) of homologous chromosomes during prophase I. Its remarkable tripartite structure is evolutionarily well conserved and can be found in almost all sexually reproducing organisms. However, comparison of the different SC protein components in the common meiosis model organisms Saccharomyces cerevisiae, Arabidopsis thaliana, Caenorhabditis elegans, Drosophila melanogaster, and Mus musculus revealed no sequence homology. This discrepancy challenged the hypothesis that the SC arose only once in evolution. To pursue this matter we focused on the evolution of SYCP1 and SYCP3, the two major structural SC proteins of mammals. Remarkably, our comparative bioinformatic and expression studies revealed that SYCP1 and SYCP3 are also components of the SC in the basal metazoan Hydra. In contrast to previous assumptions, we therefore conclude that SYCP1 and SYCP3 form monophyletic groups of orthologous proteins across metazoans. PMID:23012415

  7. Role of protein fluctuation correlations in electron transfer in photosynthetic complexes

    Science.gov (United States)

    Nesterov, Alexander I.; Berman, Gennady P.

    2015-04-01

    We consider the dependence of the electron transfer in photosynthetic complexes on correlation properties of random fluctuations of the protein environment. The electron subsystem is modeled by a finite network of connected electron (exciton) sites. The fluctuations of the protein environment are modeled by random telegraph processes, which act either collectively (correlated) or independently (uncorrelated) on the electron sites. We derived an exact closed system of first-order linear differential equations with constant coefficients, for the average density matrix elements and for their first moments. Under some conditions, we obtained analytic expressions for the electron transfer rates and found the range of parameters for their applicability by comparing with the exact numerical simulations. We also compared the correlated and uncorrelated regimes and demonstrated numerically that the uncorrelated fluctuations of the protein environment can, under some conditions, either increase or decrease the electron transfer rates.

  8. Distinct configurations of protein complexes and biochemical pathways revealed by epistatic interaction network motifs

    LENUS (Irish Health Repository)

    Casey, Fergal

    2011-08-22

    Abstract Background Gene and protein interactions are commonly represented as networks, with the genes or proteins comprising the nodes and the relationship between them as edges. Motifs, or small local configurations of edges and nodes that arise repeatedly, can be used to simplify the interpretation of networks. Results We examined triplet motifs in a network of quantitative epistatic genetic relationships, and found a non-random distribution of particular motif classes. Individual motif classes were found to be associated with different functional properties, suggestive of an underlying biological significance. These associations were apparent not only for motif classes, but for individual positions within the motifs. As expected, NNN (all negative) motifs were strongly associated with previously reported genetic (i.e. synthetic lethal) interactions, while PPP (all positive) motifs were associated with protein complexes. The two other motif classes (NNP: a positive interaction spanned by two negative interactions, and NPP: a negative spanned by two positives) showed very distinct functional associations, with physical interactions dominating for the former but alternative enrichments, typical of biochemical pathways, dominating for the latter. Conclusion We present a model showing how NNP motifs can be used to recognize supportive relationships between protein complexes, while NPP motifs often identify opposing or regulatory behaviour between a gene and an associated pathway. The ability to use motifs to point toward underlying biological organizational themes is likely to be increasingly important as more extensive epistasis mapping projects in higher organisms begin.

  9. Direct infusion-SIM as fast and robust method for absolute protein quantification in complex samples

    Directory of Open Access Journals (Sweden)

    Christina Looße

    2015-06-01

    Full Text Available Relative and absolute quantification of proteins in biological and clinical samples are common approaches in proteomics. Until now, targeted protein quantification is mainly performed using a combination of HPLC-based peptide separation and selected reaction monitoring on triple quadrupole mass spectrometers. Here, we show for the first time the potential of absolute quantification using a direct infusion strategy combined with single ion monitoring (SIM on a Q Exactive mass spectrometer. By using complex membrane fractions of Escherichia coli, we absolutely quantified the recombinant expressed heterologous human cytochrome P450 monooxygenase 3A4 (CYP3A4 comparing direct infusion-SIM with conventional HPLC-SIM. Direct-infusion SIM revealed only 14.7% (±4.1 (s.e.m. deviation on average, compared to HPLC-SIM and a decreased processing and analysis time of 4.5 min (that could be further decreased to 30 s for a single sample in contrast to 65 min by the LC–MS method. Summarized, our simplified workflow using direct infusion-SIM provides a fast and robust method for quantification of proteins in complex protein mixtures.

  10. Ligand-induced protein mobility in complexes of carbonic anhydrase II and benzenesulfonamides with oligoglycine chains.

    Directory of Open Access Journals (Sweden)

    Vijay M Krishnamurthy

    Full Text Available This paper describes a biophysical investigation of residual mobility in complexes of bovine carbonic anhydrase II (BCA and para-substituted benzenesulfonamide ligands with chains of 1-5 glycine subunits, and explains the previously observed increase in entropy of binding with chain length. The reported results represent the first experimental demonstration that BCA is not the rigid, static globulin that has been typically assumed, but experiences structural fluctuations upon binding ligands. NMR studies with (15N-labeled ligands demonstrated that the first glycine subunit of the chain binds without stabilization or destabilization by the more distal subunits, and suggested that the other glycine subunits of the chain behave similarly. These data suggest that a model based on ligand mobility in the complex cannot explain the thermodynamic data. Hydrogen/deuterium exchange studies provided a global estimate of protein mobility and revealed that the number of exchanged hydrogens of BCA was higher when the protein was bound to a ligand with five glycine subunits than when bound to a ligand with only one subunit, and suggested a trend of increasing number of exchanged hydrogens with increasing chain length of the BCA-bound ligand, across the series. These data support the idea that the glycine chain destabilizes the structure of BCA in a length-dependent manner, causing an increase in BCA mobility. This study highlights the need to consider ligand-induced mobility of even "static" proteins in studies of protein-ligand binding, including rational ligand design approaches.

  11. Chemical, physicochemical and spectrophotometric properties of crystalline chlorophyll-protein complexes from Lepidium virginicum L.

    Science.gov (United States)

    Murata, T; Ishikawa, C

    1981-04-13

    Two kinds of water-soluble chlorophyll-protein complexes were prepared from leaves of Lepidium virginicum L., one (CP661) from the plant cultivated in a green house from seeds collected near Mono Lake, CA, and the other (CP-663) from a plant collected at Narashino, Chiba, Japan, by ammonium sulfate fractionation followed by column chromatography on DEAE-cellulose and Sephacryl S-200. The chlorophyll . proteins were further purified by crystallization. CP661 has absorption peaks at 661, 468, 439, 419, 380, 339 and 272 nm. CP663 had absorption peaks at 663, 469, 438, 419, 379, 338 and 272 nm. Estimated molecular weights were 78 000 for CP661 and 80 000 for CP663 by gel filtration chromatography and 83 000 for CP661 and 107 000 for CP663 by an equilibrium sedimentation method. 1 mol chlorophyll . protein contained 4 mol chlorophyll a and b with ratios of 1.0 in CP661 and 1.6 to 1.9 in CP663, but no carotenoids. These characters are different from those of chlorophyll-protein complexes which are prepared from the thylakoid membranes of chloroplasts with detergents.

  12. Structure of a protein-detergent complex: the balance between detergent cohesion and binding.

    Science.gov (United States)

    Khao, Jonathan; Arce-Lopera, Jaime; Sturgis, James N; Duneau, Jean-Pierre

    2011-10-01

    Despite the major interest in membrane proteins at functional, genomic, and therapeutic levels, their biochemical and structural study remains challenging, as they require, among other things, solubilization in detergent micelles. The complexity of this task derives from the dependence of membrane protein structure on their anisotropic environment, influenced by a delicate balance between many different physicochemical properties. To study such properties in a small protein-detergent complex, we used fluorescence measurements and molecular dynamics (MD) simulations on the transmembrane part of glycophorin A (GpAtm) solubilized in micelles of dihexanoylphosphatidylcholine (DHPC) detergent. Fluorescence measurements show that DHPC has limited ability to solubilize the peptide, while MD provides a possible molecular explanation for this. We observe that the detergent molecules are balanced between two different types of interactions: cohesive interactions between detergent molecules that hold the micelle together, and adhesive interactions with the peptide. While the cohesive interactions are detergent mediated, the adhesion to the peptide depends on the specific interactions between the hydrophobic parts of the detergent and the topography of the peptide dictated by the amino acids. The balance between these two parameters results in a certain frustration of the system and rather slow equilibration. These observations suggest how molecular properties of detergents could influence membrane protein stabilization and solubilization.

  13. Protein-carbohydrate complex reveals circulating metastatic cells in a microfluidic assay

    KAUST Repository

    Simone, Giuseppina

    2013-02-11

    Advances in carbohydrate sequencing technologies reveal the tremendous complexity of the glycome and the role that glycomics might have to bring insight into the biological functions. Carbohydrate-protein interactions, in particular, are known to be crucial to most mammalian physiological processes as mediators of cell adhesion and metastasis, signal transducers, and organizers of protein interactions. An assay is developed here to mimic the multivalency of biological complexes that selectively and sensitively detect carbohydrate-protein interactions. The binding of β-galactosides and galectin-3 - a protein that is correlated to the progress of tumor and metastasis - is examined. The efficiency of the assay is related to the expression of the receptor while anchoring to the interaction\\'s strength. Comparative binding experiments reveal molecular binding preferences. This study establishes that the assay is robust to isolate metastatic cells from colon affected patients and paves the way to personalized medicine. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Iron-sulfur proteins are the major source of protein-bound dinitrosyl iron complexes formed in Escherichia coli cells under nitric oxide stress.

    Science.gov (United States)

    Landry, Aaron P; Duan, Xuewu; Huang, Hao; Ding, Huangen

    2011-06-01

    Protein-bound dinitrosyl iron complexes (DNICs) have been observed in prokaryotic and eukaryotic cells under nitric oxide (NO) stress. The identity of proteins that bind DNICs, however, still remains elusive. Here we demonstrate that iron-sulfur proteins are the major source of protein-bound DNICs formed in Escherichia coli cells under NO stress. Expression of recombinant iron-sulfur proteins, but not proteins without iron-sulfur clusters, almost doubles the amount of protein-bound DNICs formed in E. coli cells after NO exposure. Purification of recombinant proteins from the NO-exposed E. coli cells further confirms that iron-sulfur proteins, but not proteins without iron-sulfur clusters, are modified, forming protein-bound DNICs. Deletion of the iron-sulfur cluster assembly proteins IscA and SufA to block the [4Fe-4S] cluster biogenesis in E. coli cells largely eliminates the NO-mediated formation of protein-bound DNICs, suggesting that iron-sulfur clusters are mainly responsible for the NO-mediated formation of protein-bound DNICs in cells. Furthermore, depletion of the "chelatable iron pool" in wild-type E. coli cells effectively removes iron-sulfur clusters from proteins and concomitantly diminishes the NO-mediated formation of protein-bound DNICs, indicating that iron-sulfur clusters in proteins constitute at least part of the chelatable iron pool in cells. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Microencapsulation of chia seed oil using chia seed protein isolate-chia seed gum complex coacervates.

    Science.gov (United States)

    Timilsena, Yakindra Prasad; Adhikari, Raju; Barrow, Colin J; Adhikari, Benu

    2016-10-01

    Chia seed oil (CSO) microcapsules were produced by using chia seed protein isolate (CPI)-chia seed gum (CSG) complex coacervates aiming to enhance the oxidative stability of CSO. The effect of wall material composition, core-to-wall ratio and method of drying on the microencapsulation efficiency (MEE) and oxidative stability (OS) was studied The microcapsules produced using CPI-CSG complex coacervates as wall material had higher MEE at equivalent payload, lower surface oil and higher OS compared to the microcapsules produced by using CSG and CPI individually. CSO microcapsules produced by using CSG as wall material had lowest MEE (67.3%) and oxidative stability index (OSI=6.6h), whereas CPI-CSG complex coacervate microcapsules had the highest MEE (93.9%) and OSI (12.3h). The MEE and OSI of microcapsules produced by using CPI as wall materials were in between those produced by using CSG and CPI-CSG complex coacervates as wall materials. The CSO microcapsules produced by using CPI-CSG complex coacervate as shell matrix at core-to-wall ratio of 1:2 had 6 times longer storage life compared to that of unencapsulated CSO. The peroxide value of CSO microcapsule produced using CPI-CSG complex coacervate as wall material was oil during 30 days of storage. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Computational analysis of the CB1 carboxyl-terminus in the receptor-G protein complex.

    Science.gov (United States)

    Shim, Joong-Youn; Khurana, Leepakshi; Kendall, Debra A

    2016-04-01

    Despite the important role of the carboxyl-terminus (Ct) of the activated brain cannabinoid receptor one (CB1) in the regulation of G protein signaling, a structural understanding of interactions with G proteins is lacking. This is largely due to the highly flexible nature of the CB1 Ct that dynamically adapts its conformation to the presence of G proteins. In the present study, we explored how the CB1 Ct can interact with the G protein by building on our prior modeling of the CB1-Gi complex (Shim, Ahn, and Kendall, The Journal of Biological Chemistry 2013;288:32449-32465) to incorporate a complete CB1 Ct (Glu416(Ct)-Leu472(Ct)). Based on the structural constraints from NMR studies, we employed ROSETTA to predict tertiary folds, ZDOCK to predict docking orientation, and molecular dynamics (MD) simulations to obtain two distinct plausible models of CB1 Ct in the CB1-Gi complex. The resulting models were consistent with the NMR-determined helical structure (H9) in the middle region of the CB1 Ct. The CB1 Ct directly interacted with both Gα and Gβ and stabilized the receptor at the Gi interface. The results of site-directed mutagenesis studies of Glu416(Ct), Asp423(Ct), Asp428(Ct), and Arg444(Ct) of CB1 Ct suggested that the CB1 Ct can influence receptor-G protein coupling by stabilizing the receptor at the Gi interface. This research provided, for the first time, models of the CB1 Ct in contact with the G protein. © 2016 Wiley Periodicals, Inc.

  17. Evolution of light-harvesting complex proteins from Chl c-containing algae

    Directory of Open Access Journals (Sweden)

    Puerta M Virginia

    2011-04-01

    Full Text Available Abstract Background Light harvesting complex (LHC proteins function in photosynthesis by binding chlorophyll (Chl and carotenoid molecules that absorb light and transfer the energy to the reaction center Chl of the photosystem. Most research has focused on LHCs of plants and chlorophytes that bind Chl a and b and extensive work on these proteins has uncovered a diversity of biochemical functions, expression patterns and amino acid sequences. We focus here on a less-studied family of LHCs that typically bind Chl a and c, and that are widely distributed in Chl c-containing and other algae. Previous phylogenetic analyses of these proteins suggested that individual algal lineages possess proteins from one or two subfamilies, and that most subfamilies are characteristic of a particular algal lineage, but genome-scale datasets had revealed that some species have multiple different forms of the gene. Such observations also suggested that there might have been an important influence of endosymbiosis in the evolution of LHCs. Results We reconstruct a phylogeny of LHCs from Chl c-containing algae and related lineages using data from recent sequencing projects to give ~10-fold larger taxon sampling than previous studies. The phylogeny indicates that individual taxa possess proteins from multiple LHC subfamilies and that several LHC subfamilies are found in distantly related algal lineages. This phylogenetic pattern implies functional differentiation of the gene families, a hypothesis that is consistent with data on gene expression, carotenoid binding and physical associations with other LHCs. In all probability LHCs have undergone a complex history of evolution of function, gene transfer, and lineage-specific diversification. Conclusion The analysis provides a strikingly different picture of LHC diversity than previous analyses of LHC evolution. Individual algal lineages possess proteins from multiple LHC subfamilies. Evolutionary relationships showed

  18. Ternary WD40 repeat-containing protein complexes: evolution, composition and roles in plant immunity

    Directory of Open Access Journals (Sweden)

    Jimi C. Miller

    2016-01-01

    Full Text Available Plants, like mammals, rely on their innate immune system to perceive and discriminate among the majority of their microbial pathogens. Unlike mammals, plants respond to this molecular dialogue by unleashing a complex chemical arsenal of defense metabolites to resist or evade pathogen infection. In basal or non-host resistance, plants utilize signal transduction pathways to detect non-self, damaged-self and altered-self-associated molecular patterns and translate these danger signals into largely inducible chemical defenses. The WD40 repeat (WDR-containing proteins Gβ and TTG1 are constituents of two independent ternary protein complexes functioning at opposite ends of a plant immune signaling pathway. Gβ and TTG1 are also encoded by single-copy genes that are ubiquitous in higher plants, implying the limited diversity and functional conservation of their respective complexes. In this review, we summarize what is currently known about the evolutionary history of these WDR-containing ternary complexes, their repertoire and combinatorial interactions, and their downstream effectors and pathways in plant defense.

  19. Efficient Tor signaling requires a functional class C Vps protein complex in Saccharomyces cerevisiae.

    Science.gov (United States)

    Zurita-Martinez, Sara A; Puria, Rekha; Pan, Xuewen; Boeke, Jef D; Cardenas, Maria E

    2007-08-01

    The Tor kinases regulate responses to nutrients and control cell growth. Unlike most organisms that only contain one Tor protein, Saccharomyces cerevisiae expresses two, Tor1 and Tor2, which are thought to share all of the rapamycin-sensitive functions attributable to Tor signaling. Here we conducted a genetic screen that defined the global TOR1 synthetic fitness or lethal interaction gene network. This screen identified mutations in distinctive functional categories that impaired vacuolar function, including components of the EGO/Gse and PAS complexes that reduce fitness. In addition, tor1 is lethal in combination with mutations in class C Vps complex components. We find that Tor1 does not regulate the known function of the class C Vps complex in protein sorting. Instead class C vps mutants fail to recover from rapamycin-induced growth arrest or to survive nitrogen starvation and have low levels of amino acids. Remarkably, addition of glutamate or glutamine restores viability to a tor1 pep3 mutant strain. We conclude that Tor1 is more effective than Tor2 at providing rapamycin-sensitive Tor signaling under conditions of amino acid limitation, and that an intact class C Vps complex is required to mediate intracellular amino acid homeostasis for efficient Tor signaling.

  20. Phenanthrene binding by humic acid-protein complexes as studied by passive dosing technique.

    Science.gov (United States)

    Zhao, Jian; Wang, Zhenyu; Ghosh, Saikat; Xing, Baoshan

    2014-01-01

    This work investigated the binding behavior of phenanthrene by humic acids (HA-2 and HA-5), proteins (bovine serum albumin (BSA)), lysozyme and pepsin), and their complexes using a passive dosing technique. All sorption isotherms were fitted well with Freundlich model and the binding capability followed an order of HA-5 > HA-2 > BSA > pepsin > lysozyme. In NaCl solution, phenanthrene binding to HA-BSA complexes was much higher than the sum of binding to individual HA and BSA, while there was no enhancement for HA-pepsin. Positively charged lysozyme slightly lowered phenanthrene binding on both HAs due to strong aggregation of HA-lysozyme complexes, leading to reduction in the number of binding sites. The binding enhancement by HA-BSA was observed under all tested ion species and ionic strengths. This enhancement can be explained by unfolding of protein, reduction of aggregate size and formation of HA-BSA complexes with favorable conformations for binding phenanthrene. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Differences in protein binding and excretion of Triapine and its Fe(III) complex.

    Science.gov (United States)

    Pelivan, Karla; Miklos, Walter; van Schoonhoven, Sushilla; Koellensperger, Gunda; Gille, Lars; Berger, Walter; Heffeter, Petra; Kowol, Christian R; Keppler, Bernhard K

    2016-07-01

    Triapine has been investigated as anticancer drug in multiple clinical phase I/II trials. Although promising anti-leukemic activity was observed, Triapine was ineffective against solid tumors. The reasons are currently widely unknown. The biological activity of Triapine is strongly connected to its iron complex (Fe-Triapine) which is pharmacologically not investigated. Here, novel analytical tools for Triapine and Fe-Triapine were developed and applied for cell extracts and body fluids of treated mice. Triapine and its iron complex showed a completely different behavior: for Triapine, low protein binding was observed in contrast to fast protein adduct formation of Fe-Triapine. Notably, both drugs were rapidly cleared from the body (serum half-life time <1h). Remarkably, in contrast to Triapine, where (in accordance to clinical data) basically no renal excretion was found, the iron complex was effectively excreted via urine. Moreover, no Fe-Triapine was detected in serum or cytosolic extracts after Triapine treatment. Taken together, our study will help to further understand the biological behavior of Triapine and its Fe-complex and allow the development of novel thiosemicarbazones with pronounced activity against solid tumor types. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Modification of the protein corona–nanoparticle complex by physiological factors

    Energy Technology Data Exchange (ETDEWEB)

    Braun, Nicholas J.; DeBrosse, Madeleine C.; Hussain, Saber M. [Molecular Bioeffects Branch, Bioeffects Division, Human Effectiveness Directorate, 711 Human Performance Wing, Air Force Research Laboratory, Wright Patterson AFB, 2729 R. St, Bldg 837, Dayton, OH, 45433 (United States); Comfort, Kristen K., E-mail: kcomfort1@udayton.edu [Department of Chemical and Materials Engineering, University of Dayton, 524 Kettering Laboratories, 300 College Park, Dayton, OH 45469 (United States)

    2016-07-01

    Nanoparticle (NP) effects in a biological system are driven through the formation and structure of the protein corona–NP complex, which is dynamic by nature and dependent upon factors from both the local environment and NP physicochemical parameters. To date, considerable data has been gathered regarding the structure and behavior of the protein corona in blood, plasma, and traditional cell culture medium. However, there exists a knowledge gap pertaining to the protein corona in additional biological fluids and following incubation in a dynamic environment. Using 13 nm gold NPs (AuNPs), functionalized with either polyethylene glycol or tannic acid, we demonstrated that both particle characteristics and the associated protein corona were altered when exposed to artificial physiological fluids and under dynamic flow. Furthermore, the magnitude of observed behavioral shifts were dependent upon AuNP surface chemistry. Lastly, we revealed that exposure to interstitial fluid produced protein corona modifications, reshaping of the nano-cellular interface, modified AuNP dosimetry, and induction of previously unseen cytotoxicity. This study highlights the need to elucidate both NP and protein corona behavior in biologically representative environments in an effort to increase accurate interpretation of data and transfer of this knowledge to efficacy, behavior, and safety of nano-based applications. - Highlights: • Dynamic flow increased the size of the gold nanoparticle protein corona. • Exposure to biological fluids altered protein corona size and composition. • Interstitial fluid modified the nano-cellular interface and deposition efficiency. • Tannic acid coated nanoparticles induced toxicity in an interstitial environment.

  3. Formation of a covalent complex between the terminal protein of pneumococcal bacteriophage Cp-1 and 5'-dAMP

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, P.; Hermoso, J.M.; Garcia, J.A.; Garcia, E.; Lopez, R.; Salas, M.

    1986-04-01

    Incubation of extracts of Cp-1-infected Streptococcus pneumoniae with (..cap alpha..-/sup 32/P)dATP produced a labeled protein with the electrophoretic mobility of the Cp-1 terminal protein. The reaction product was resistant to treatment with micrococcal nuclease and sensitive to treatment with proteinase K. Incubation of the /sup 32/P-labeled protein with 5 M piperidine for 4 h at 50/sup 0/C released 5'-dAMP, indicating that a covalent complex between the terminal protein and 5'-dAMP was formed in vitro. When the four deoxynucleoside triphosphates were included in the reaction mixture, a labeled complex of slower electrophoretic mobility in sodium dodecyl sulfate-polyacrylamide gels than the terminal protein-dAMP complex was also found, indicating that the Cp-1 terminal protein-dAMP complex can be elongated and, therefore, that it is an initiation complex. Treatment of the /sup 32/P-labeled terminal protein-dAMP complex with 5.8 M HCl at 110/sup 0/C for 2 h yielded phosphothreonine. These results, together with the resistance of the terminal protein-DNA linkage to hydroxylamine, suggest that the Cp-1 terminal protein is covalently linked to the DNA through a phosphoester bond between L-threonine and 5'-dAMP, namely, a O-5'-deoxyadenylyl-L-threonine bond.

  4. Changes in some thylakoid membrane proteins and pigments upon desiccation of the resurrection plant Haberlea rhodopensis.

    Science.gov (United States)

    Georgieva, Katya; Röding, Anja; Büchel, Claudia

    2009-09-15

    The changes in some proteins involved in the light reactions of photosynthesis of the resurrection plant Haberlea rhodopensis were examined in connection with desiccation. Fully hydrated (control) and completely desiccated plants (relative water content (RWC) 6.5%) were used for thylakoid preparations. The chlorophyll (Chl) a to Chl b ratios of thylakoids isolated from control and desiccated leaves were very similar, which was also confirmed by measuring their absorption spectra. HPLC analysis revealed that beta-carotene content was only slightly enhanced in desiccated leaves compared with the control, but the zeaxanthin level was strongly increased. Desiccation of H. rhodopensis to an air-dried state at very low light irradiance led to a little decrease in the level of D1, D2, PsbS and PsaA/B proteins in thylakoids, but a relative increase in LHC polypeptides. To further elucidate whether the composition of the protein complexes of the thylakoid membranes had changed, we performed a separation of solubilized thylakoids on sucrose density gradients. In contrast to spinach, Haberlea thylakoids appeared to be much more resistant to the same solubilization procedure, i.e. complexes were not separated completely and complexes of higher density were found. However, the fractions analyzed provided clear evidence for a move of part of the antenna complexes from PSII to PSI when plants became desiccated. This move was also confirmed by low temperature emission spectra of thylakoids. Overall, the photosynthetic proteins remained comparatively stable in dried Haberlea leaves when plants were desiccated under conditions similar to their natural habitat. Low light during desiccation was enough to induce a rise in the xanthophyll zeaxanthin and beta-carotene. Together with the extensive leaf shrinkage and some leaf folding, increased zeaxanthin content and the observed shift in antenna proteins from PSII to PSI during desiccation of Haberlea contributed to the integrity of the

  5. Machines vs. ensembles: effective MAPK signaling through heterogeneous sets of protein complexes.

    Directory of Open Access Journals (Sweden)

    Ryan Suderman

    Full Text Available Despite the importance of intracellular signaling networks, there is currently no consensus regarding the fundamental nature of the protein complexes such networks employ. One prominent view involves stable signaling machines with well-defined quaternary structures. The combinatorial complexity of signaling networks has led to an opposing perspective, namely that signaling proceeds via heterogeneous pleiomorphic ensembles of transient complexes. Since many hypotheses regarding network function rely on how we conceptualize signaling complexes, resolving this issue is a central problem in systems biology. Unfortunately, direct experimental characterization of these complexes has proven technologically difficult, while combinatorial complexity has prevented traditional modeling methods from approaching this question. Here we employ rule-based modeling, a technique that overcomes these limitations, to construct a model of the yeast pheromone signaling network. We found that this model exhibits significant ensemble character while generating reliable responses that match experimental observations. To contrast the ensemble behavior, we constructed a model that employs hierarchical assembly pathways to produce scaffold-based signaling machines. We found that this machine model could not replicate the experimentally observed combinatorial inhibition that arises when the scaffold is overexpressed. This finding provides evidence against the hierarchical assembly of machines in the pheromone signaling network and suggests that machines and ensembles may serve distinct purposes in vivo. In some cases, e.g. core enzymatic activities like protein synthesis and degradation, machines assembled via hierarchical energy landscapes may provide functional stability for the cell. In other cases, such as signaling, ensembles may represent a form of weak linkage, facilitating variation and plasticity in network evolution. The capacity of ensembles to signal effectively

  6. The protein-protein interactions involved in the periplasmic components of the β-barrel assembly machinery (BAM) complex of Escherichia coli

    OpenAIRE

    Aulakh, Suraaj Kaur

    2012-01-01

    The β-barrel assembly machinery (BAM) complex plays the essential role of folding and inserting outer membrane proteins (OMPs) into the outer membrane of Gram-negative bacteria. In Escherichia coli, the BAM complex is comprised of five proteins: BamA, BamB, BamC, BamD, and BamE. This thesis project investigates the interactions between the periplasmic components of the BAM complex by analyzing complex formation using gel-filtration chromatography. Results from the interaction studies have id...

  7. Identification of an FHL1 protein complex containing gamma-actin and non-muscle myosin IIB by analysis of protein-protein interactions.

    Directory of Open Access Journals (Sweden)

    Lili Wang

    Full Text Available FHL1 is multifunctional and serves as a modular protein binding interface to mediate protein-protein interactions. In skeletal muscle, FHL1 is involved in sarcomere assembly, differentiation, growth, and biomechanical stress. Muscle abnormalities may play a major role in congenital clubfoot (CCF deformity during fetal development. Thus, identifying the interactions of FHL1 could provide important new insights into its functional role in both skeletal muscle development and CCF pathogenesis. Using proteins derived from rat L6GNR4 myoblastocytes, we detected FHL1 interacting proteins by immunoprecipitation. Samples were analyzed by liquid chromatography mass spectrometry (LC-MS. Dynamic gene expression of FHL1 was studied. Additionally, the expression of the possible interacting proteins gamma-actin and non-muscle myosin IIB, which were isolated from the lower limbs of E14, E15, E17, E18, E20 rat embryos or from adult skeletal muscle was analyzed. Potential interacting proteins isolated from E17 lower limbs were verified by immunoprecipitation, and co-localization in adult gastrocnemius muscle was visualized by fluorescence microscopy. FHL1 expression was associated with skeletal muscle differentiation. E17 was found to be the critical time-point for skeletal muscle differentiation in the lower limbs of rat embryos. We also identified gamma-actin and non-muscle myosin IIB as potential binding partners of FHL1, and both were expressed in adult skeletal muscle. We then demonstrated that FHL1 exists as part of a complex, which binds gamma-actin and non-muscle myosin IIB.

  8. Isolation of a Membrane Protein Complex for Type VII Secretion in Staphylococcus aureus.

    Science.gov (United States)

    Aly, Khaled A; Anderson, Mark; Ohr, Ryan Jay; Missiakas, Dominique

    2017-12-01

    The ESAT6-like secretion system (ESS) of Staphylococcus aureus promotes effector protein transport across the bacterial envelope. Genes in the ESS cluster are required for S. aureus establishment of persistent abscess lesions and the modulation of immune responses during bloodstream infections. However, the biochemical functions of most of the ESS gene products, specifically the identity of secretion machine components, are unknown. Earlier work demonstrated that deletion of essB, which encodes a membrane protein, abolishes S. aureus ESS secretion. Loss-of-function mutations truncating the essB gene product cause dominant-negative phenotypes on ESS secretion, suggesting that EssB is a central component of the secretion machinery. To test this prediction, we purified native and affinity-tagged EssB from staphylococcal membranes via dodecyl-maltoside extraction, identifying a complex assembled from five proteins, EsaA, EssA, EssB, EssD, and EsxA. All five proteins are essential for secretion, as knockout mutations in the corresponding genes abolish ESS transport. Biochemical and bacterial two-hybrid analyses revealed a direct interaction between EssB and EsaA that, by engaging a mobile machine component, EsxA, may also recruit EssA and EssD.IMPORTANCE Type VII secretion systems support the lifestyle of Gram-positive bacteria, including important human pathogens such as Bacillus anthracis, Mycobacterium tuberculosis, and Staphylococcus aureus Genes encoding SpoIIIE-FtsK-like ATPases and WXG100-secreted products are conserved features of type VII secretion pathways; however, most of the genes in T7SS clusters are not conserved between different bacterial species. Here, we isolate a complex of proteins from the membranes of S. aureus that appears to represent the core secretion machinery, designated ESS. These results suggest that three membrane proteins, EsaA, EssB, and EssA, form a secretion complex that associates with EssC, the SpoIIIE-FtsK-like ATPase, and with Esx

  9. Functional interconnections of Arabidopsis exon junction complex proteins and genes at multiple steps of gene expression.

    Science.gov (United States)

    Mufarrege, Eduardo F; Gonzalez, Daniel H; Curi, Graciela C

    2011-10-01

    The exon junction complex (EJC) is deposited on mRNA after splicing and participates in several aspects of RNA metabolism, from intracellular transport to translation. In this work, the functional and molecular interactions of Arabidopsis homologues of Mago, Y14, and PYM, three EJC components that participate in intron-mediated enhancement of gene expression in animals, have been analysed. AtMago, AtY14, and AtPYM are encoded by single genes that show similar expression patterns and contain common regulatory elements, known as site II, that are required for expression. AtPYM and AtY14 are phosphorylated by plant extracts and this modification regulates complex formation between both proteins. In addition, overexpression of AtMago and AtY14 in plants produces an increase in AtPYM protein levels, while overexpression of AtPYM results in increased formation of a complex that contains the three proteins. The effect of AtMago and AtY14 on AtPYM expression is most likely to be due to intron-mediated enhacement of AtPYM expression, since the AtPYM gene contains a leader intron that is required for expression. Indeed, transient transformation asssays indicated that the three proteins are able to increase expression from reporter constructs that contain leader introns required for the expression of different genes. The results indicate that the plant homologues of Mago, Y14, and PYM are closely interconnected, not only through their function as EJC components but also at different steps of their own gene expression mechanisms, probably reflecting the importance of their interaction for the correct expression of plant genes.

  10. Bacterial conjugation protein MobA mediates integration of complex DNA structures into plant cells.

    Science.gov (United States)

    Bravo-Angel, A M; Gloeckler, V; Hohn, B; Tinland, B

    1999-09-01

    Agrobacterium tumefaciens transfers T-DNA to plant cells, where it integrates into the genome, a property that is ensured by bacterial proteins VirD2 and VirE2. Under natural conditions, the protein MobA mobilizes its encoding plasmid, RSF1010, between different bacteria. A detailed analysis of MobA-mediated DNA mobilization by Agrobacterium to plants was performed. We compared the ability of MobA to transfer DNA and integrate it into the plant genome to that of pilot protein VirD2. MobA was found to be about 100-fold less efficient than VirD2 in conducting the DNA from the pTi plasmid to the plant cell nucleus. However, interestingly, DNAs transferred by the two proteins were integrated into the plant cell genome with similar efficiencies. In contrast, most of the integrated DNA copies transferred from a MobA-containing strain were truncated at the 5' end. Isolation and analysis of the most conserved 5' ends revealed patterns which resulted from the illegitimate integration of one transferred DNA within another. These complex integration patterns indicate a specific deficiency in MobA. The data conform to a model according to which efficiency of T-DNA integration is determined by plant enzymes and integrity is determined by bacterial proteins.

  11. Karyopherin binding interactions and nuclear import mechanism of nuclear pore complex protein Tpr

    Directory of Open Access Journals (Sweden)

    Frosst Phyllis D

    2009-10-01

    Full Text Available Abstract Background Tpr is a large protein with an extended coiled-coil domain that is localized within the nuclear basket of the nuclear pore complex. Previous studies 1 involving antibody microinjection into mammalian cells suggested a role for Tpr in nuclear export of proteins via the CRM1 export receptor. In addition, Tpr was found to co-immunoprecipitate with importins α and β from Xenopus laevis egg extracts 2, although the function of this is unresolved. Yeast Mlp1p and Mlp2p, which are homologous to vertebrate Tpr, have been implicated in mRNA surveillance to retain unspliced mRNAs in the nucleus34. To augment an understanding of the role of Tpr in nucleocytoplasmic trafficking, we explored the interactions of recombinant Tpr with the karyopherins CRM1, importin β and importin α by solid phase binding assays. We also investigated the conditions required for nuclear import of Tpr using an in vitro assay. Results We found that Tpr binds strongly and specifically to importin α, importin β, and a CRM1 containing trimeric export complex, and that the binding sites for importins α and β are distinct. We also determined that the nuclear import of Tpr is dependent on cytosolic factors and energy and is efficiently mediated by the importin α/β import pathway. Conclusion Based on the binding and nuclear import assays, we propose that Tpr is imported into the nucleus by the importin α/β heterodimer. In addition, we suggest that Tpr can serve as a nucleoporin binding site for importin β during import of importin β cargo complexes and/or importin β recycling. Our finding that Tpr bound preferentially to CRM1 in an export complex strengthens the notion that Tpr is involved in protein export.

  12. Ultra-sensitive complex as phosphorescence probe for the determination of trace protein.

    Science.gov (United States)

    Liu, Jia-Ming; Jiang, Shu-Lian; Cui, Ma-Lin; Jiao, Li; Zhang, Li-Hong; Zheng, Zhi-Yong

    2013-02-01

    β-CD-HMTA-L-Tyr complex, formed in the host guest inclusion reaction carried out between host molecule β-cyclodextrin (β-CD) in β-CD-HMTA (HMTA is methenamine) and guest molecule L-tryptophan (L-Tyr), possessing the characteristic of room temperature phosphorescence (RTP). Bovine serum albumin (BSA) reacted with L-Tyr to form a complex of cage structure bringing in the sharply RTP signal quenching of L-Tyr. Based on the above facts, a new ultra-sensitive solid substrate room temperature phosphorimetry (SSRTP) for the determination of trace protein has been established using β-CD-HMTA-L-Tyr complex as a phosphorescence probe. Under the optimum conditions, the linear range of this method was 0.0040-0.56 agspot(-1) with a detection limit (D.L.) as 0.92 zgspot(-1), and the regression equations of working curve was ΔI(p)=0.8239+162.5 m(BSA) (agspot(-1), n=8) with the correlation coefficient (r) of 0.9994. The relatively standard deviation (RSD) and the recovery of SSRTP were 4.8-3.3% and 96.7-102%, respectively, indicating that this method had good repeatability. The proposed phosphorescence probe has been applied in the detection of protein in real samples and the results agreed well with those obtained with SSRTP using methylene blue-sodium tetraphenylborate as phosphorescence probe. Meanwhile, the reaction mechanism for the determination of trace protein with β-CD-HMTA-L-Tyr complex as phosphorescence probe has been discussed. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Toxic and nontoxic components of botulinum neurotoxin complex are evolved from a common ancestral zinc protein

    Energy Technology Data Exchange (ETDEWEB)

    Inui, Ken [Department of Food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri 099-2493 (Japan); Japan Society for the Promotion of Science, 1-8 Chiyoda-ku, Tokyo 102-8472 (Japan); Sagane, Yoshimasa [Department of Food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri 099-2493 (Japan); Miyata, Keita [Department of Food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri 099-2493 (Japan); Japan Society for the Promotion of Science, 1-8 Chiyoda-ku, Tokyo 102-8472 (Japan); Miyashita, Shin-Ichiro [Department of Food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri 099-2493 (Japan); Suzuki, Tomonori [Department of Bacteriology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558 (Japan); Shikamori, Yasuyuki [Agilent Technologies International Japan, Ltd. Takaura-cho 9-1, Hachioji-shi, Tokyo 192-0033 (Japan); Ohyama, Tohru; Niwa, Koichi [Department of Food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri 099-2493 (Japan); Watanabe, Toshihiro, E-mail: t-watana@bioindustry.nodai.ac.jp [Department of Food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri 099-2493 (Japan)

    2012-03-16

    Highlights: Black-Right-Pointing-Pointer BoNT and NTNHA proteins share a similar protein architecture. Black-Right-Pointing-Pointer NTNHA and BoNT were both identified as zinc-binding proteins. Black-Right-Pointing-Pointer NTNHA does not have a classical HEXXH zinc-coordinating motif similar to that found in all serotypes of BoNT. Black-Right-Pointing-Pointer Homology modeling implied probable key residues involved in zinc coordination. -- Abstract: Zinc atoms play an essential role in a number of enzymes. Botulinum neurotoxin (BoNT), the most potent toxin known in nature, is a zinc-dependent endopeptidase. Here we identify the nontoxic nonhemagglutinin (NTNHA), one of the BoNT-complex constituents, as a zinc-binding protein, along with BoNT. A protein structure classification database search indicated that BoNT and NTNHA share a similar domain architecture, comprising a zinc-dependent metalloproteinase-like, BoNT coiled-coil motif and concanavalin A-like domains. Inductively coupled plasma-mass spectrometry analysis demonstrated that every single NTNHA molecule contains a single zinc atom. This is the first demonstration of a zinc atom in this protein, as far as we know. However, the NTNHA molecule does not possess any known zinc-coordinating motif, whereas all BoNT serotypes possess the classical HEXXH motif. Homology modeling of the NTNHA structure implied that a consensus K-C-L-I-K-X{sub 35}-D sequence common among all NTNHA serotype molecules appears to coordinate a single zinc atom. These findings lead us to propose that NTNHA and BoNT may have evolved distinct functional specializations following their branching out from a common ancestral zinc protein.

  14. Single Molecule Visualization of Protein-DNA Complexes: Watching Machines at Work

    Science.gov (United States)

    Kowalczykowski, Stephen

    2013-03-01

    We can now watch individual proteins acting on single molecules of DNA. Such imaging provides unprecedented interrogation of fundamental biophysical processes. Visualization is achieved through the application of two complementary procedures. In one, single DNA molecules are attached to a polystyrene bead and are then captured by an optical trap. The DNA, a worm-like coil, is extended either by the force of solution flow in a micro-fabricated channel, or by capturing the opposite DNA end in a second optical trap. In the second procedure, DNA is attached by one end to a glass surface. The coiled DNA is elongated either by continuous solution flow or by subsequently tethering the opposite end to the surface. Protein action is visualized by fluorescent reporters: fluorescent dyes that bind double-stranded DNA (dsDNA), fluorescent biosensors for single-stranded DNA (ssDNA), or fluorescently-tagged proteins. Individual molecules are imaged using either epifluorescence microscopy or total internal reflection fluorescence (TIRF) microscopy. Using these approaches, we imaged the search for DNA sequence homology conducted by the RecA-ssDNA filament. The manner by which RecA protein finds a single homologous sequence in the genome had remained undefined for almost 30 years. Single-molecule imaging revealed that the search occurs through a mechanism termed ``intersegmental contact sampling,'' in which the randomly coiled structure of DNA is essential for reiterative sampling of DNA sequence identity: an example of parallel processing. In addition, the assembly of RecA filaments on single molecules of single-stranded DNA was visualized. Filament assembly requires nucleation of a protein dimer on DNA, and subsequent growth occurs via monomer addition. Furthermore, we discovered a class of proteins that catalyzed both nucleation and growth of filaments, revealing how the cell controls assembly of this protein-DNA complex.

  15. Major Histocompatibility Complex (MHC) Class I and MHC Class II Proteins: Conformational Plasticity in Antigen Presentation.

    Science.gov (United States)

    Wieczorek, Marek; Abualrous, Esam T; Sticht, Jana; Álvaro-Benito, Miguel; Stolzenberg, Sebastian; Noé, Frank; Freund, Christian

    2017-01-01

    Antigen presentation by major histocompatibility complex (MHC) proteins is essential for adaptive immunity. Prior to presentation, peptides need to be generated from proteins that are either produced by the cell's own translational machinery or that are funneled into the endo-lysosomal vesicular system. The prolonged interaction between a T cell receptor and specific pMHC complexes, after an extensive search process in secondary lymphatic organs, eventually triggers T cells to proliferate and to mount a specific cellular immune response. Once processed, the peptide repertoire presented by MHC proteins largely depends on structural features of the binding groove of each particular MHC allelic variant. Additionally, two peptide editors-tapasin for class I and HLA-DM for class II-contribute to the shaping of the presented peptidome by favoring the binding of high-affinity antigens. Although there is a vast amount of biochemical and structural information, the mechanism of the catalyzed peptide exchange for MHC class I and class II proteins still remains controversial, and it is not well understood why certain MHC allelic variants are more susceptible to peptide editing than others. Recent studies predict a high impact of protein intermediate states on MHC allele-specific peptide presentation, which implies a profound influence of MHC dynamics on the phenomenon of immunodominance and the development of autoimmune diseases. Here, we review the recent literature that describe MHC class I and II dynamics from a theoretical and experimental point of view and we highlight the similarities between MHC class I and class II dynamics despite the distinct functions they fulfill in adaptive immunity.

  16. Major Histocompatibility Complex (MHC) Class I and MHC Class II Proteins: Conformational Plasticity in Antigen Presentation

    Science.gov (United States)

    Wieczorek, Marek; Abualrous, Esam T.; Sticht, Jana; Álvaro-Benito, Miguel; Stolzenberg, Sebastian; Noé, Frank; Freund, Christian

    2017-01-01

    Antigen presentation by major histocompatibility complex (MHC) proteins is essential for adaptive immunity. Prior to presentation, peptides need to be generated from proteins that are either produced by the cell’s own translational machinery or that are funneled into the endo-lysosomal vesicular system. The prolonged interaction between a T cell receptor and specific pMHC complexes, after an extensive search process in secondary lymphatic organs, eventually triggers T cells to proliferate and to mount a specific cellular immune response. Once processed, the peptide repertoire presented by MHC proteins largely depends on structural features of the binding groove of each particular MHC allelic variant. Additionally, two peptide editors—tapasin for class I and HLA-DM for class II—contribute to the shaping of the presented peptidome by favoring the binding of high-affinity antigens. Although there is a vast amount of biochemical and structural information, the mechanism of the catalyzed peptide exchange for MHC class I and class II proteins still remains controversial, and it is not well understood why certain MHC allelic variants are more susceptible to peptide editing than others. Recent studies predict a high impact of protein intermediate states on MHC allele-specific peptide presentation, which implies a profound influence of MHC dynamics on the phenomenon of immunodominance and the development of autoimmune diseases. Here, we review the recent literature that describe MHC class I and II dynamics from a theoretical and experimental point of view and we highlight the similarities between MHC class I and class II dynamics despite the distinct functions they fulfill in adaptive immunity. PMID:28367149

  17. Automated builder and database of protein/membrane complexes for molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Sunhwan Jo

    Full Text Available Molecular dynamics simulations of membrane proteins have provided deeper insights into their functions and interactions with surrounding environments at the atomic level. However, compared to solvation of globular proteins, building a realistic protein/membrane complex is still challenging and requires considerable experience with simulation software. Membrane Builder in the CHARMM-GUI website (http://www.charmm-gui.org helps users to build such a complex system using a web browser with a graphical user interface. Through a generalized and automated building process including system size determination as well as generation of lipid bilayer, pore water, bulk water, and ions, a realistic membrane system with virtually any kinds and shapes of membrane proteins can be generated in 5 minutes to 2 hours depending on the system size. Default values that were elaborated and tested extensively are given in each step to provide reasonable options and starting points for both non-expert and expert users. The efficacy of Membrane Builder is illustrated by its applications to 12 transmembrane and 3 interfacial membrane proteins, whose fully equilibrated systems with three different types of lipid molecules (DMPC, DPPC, and POPC and two types of system shapes (rectangular and hexagonal are freely available on the CHARMM-GUI website. One of the most significant advantages of using the web environment is that, if a problem is found, users can go back and re-generate the whole system again before quitting the browser. Therefore, Membrane Builder provides the intuitive and easy way to build and simulate the biologically important membrane system.

  18. Structure of the BAM complex and its implications for biogenesis of outer-membrane proteins.

    Science.gov (United States)

    Han, Long; Zheng, Jiangge; Wang, Yan; Yang, Xu; Liu, Yanqing; Sun, Chuanqi; Cao, Baohua; Zhou, Haizhen; Ni, Dongchun; Lou, Jizhong; Zhao, Yongfang; Huang, Yihua

    2016-03-01

    In Gram-negative bacteria, the assembly of β-barrel outer-membrane proteins (OMPs) requires the β-barrel-assembly machinery (BAM) complex. We determined the crystal structure of the 200-kDa BAM complex from Escherichia coli at 3.55-Å resolution. The structure revealed that the BAM complex assembles into a hat-like shape, in which the BamA β-barrel domain forms the hat's crown embedded in the outer membrane, and its five polypeptide transport-associated (POTRA) domains interact with the four lipoproteins BamB, BamC, BamD and BamE, thus forming the hat's brim in the periplasm. The assembly of the BAM complex creates a ring-like apparatus beneath the BamA β-barrel in the periplasm and a potential substrate-exit pore located at the outer membrane-periplasm interface. The complex structure suggests that the chaperone-bound OMP substrates may feed into the chamber of the ring-like apparatus and insert into the outer membrane via the potential substrate-exit pore in an energy-independent manner.

  19. A Protein Data Bank survey reveals shortening of intermolecular hydrogen bonds in ligand-protein complexes when a halogenated ligand is an H-bond donor.

    Directory of Open Access Journals (Sweden)

    Jarosław Poznański

    Full Text Available Halogen bonding in ligand-protein complexes is currently widely exploited, e.g. in drug design or supramolecular chemistry. But little attention has been directed to other effects that may result from replacement of a hydrogen by a strongly electronegative halogen. Analysis of almost 30000 hydrogen bonds between protein and ligand demonstrates that the length of a hydrogen bond depends on the type of donor-acceptor pair. Interestingly, lengths of hydrogen bonds between a protein and a halogenated ligand are visibly shorter than those estimated for the same family of proteins in complexes with non-halogenated ligands. Taking into account the effect of halogenation on hydrogen bonding is thus important when evaluating structural and/or energetic parameters of ligand-protein complexes. All these observations are consistent with the concept that halogenation increases the acidity of the proximal amino/imino/hydroxyl groups and thus makes them better, i.e. stronger, H-bond donors.

  20. A Protein Data Bank Survey Reveals Shortening of Intermolecular Hydrogen Bonds in Ligand-Protein Complexes When a Halogenated Ligand Is an H-Bond Donor

    Science.gov (United States)

    Poznański, Jarosław; Poznańska, Anna; Shugar, David

    2014-01-01

    Halogen bonding in ligand-protein complexes is currently widely exploited, e.g. in drug design or supramolecular chemistry. But little attention has been directed to other effects that may result from replacement of a hydrogen by a strongly electronegative halogen. Analysis of almost 30000 hydrogen bonds between protein and ligand demonstrates that the length of a hydrogen bond depends on the type of donor-acceptor pair. Interestingly, lengths of hydrogen bonds between a protein and a halogenated ligand are visibly shorter than those estimated for the same family of proteins in complexes with non-halogenated ligands. Taking into account the effect of halogenation on hydrogen bonding is thus important when evaluating structural and/or energetic parameters of ligand-protein complexes. All these observations are consistent with the concept that halogenation increases the acidity of the proximal amino/imino/hydroxyl groups and thus makes them better, i.e. stronger, H-bond donors. PMID:24933273

  1. Surface-Induced Dissociation of Protein Complexes in a Hybrid Fourier Transform Ion Cyclotron Resonance Mass Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Jing; Zhou, Mowei; Gilbert, Joshua D.; Wolff, Jeremy J.; Somogyi, Árpád; Pedder, Randall E.; Quintyn, Royston S.; Morrison, Lindsay J.; Easterling, Michael L.; Paša-Tolić, Ljiljana; Wysocki, Vicki H.

    2017-01-03

    Mass spectrometry continues to develop as a valuable tool in the analysis of proteins and protein complexes. In protein complex mass spectrometry studies, surface-induced dissociation (SID) has been successfully applied in quadrupole time-of-flight (Q-TOF) instruments. SID provides structural information on non-covalent protein complexes that is complementary to other techniques. However, the mass resolution of Q-TOF instruments can limit the information that can be obtained for protein complexes by SID. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) provides ultrahigh resolution and ultrahigh mass accuracy measurements. In this study, an SID device was designed and successfully installed in a hybrid FT-ICR instrument in place of the standard gas collision cell. The SID-FT-ICR platform has been tested with several protein complex systems (homooligomers, a heterooligomer, and a protein-ligand complex, ranging from 53 kDa to 85 kDa), and the results are consistent with data previously acquired on Q-TOF platforms, matching predictions from known protein interface information. SID fragments with the same m/z but different charge states are well-resolved based on distinct spacing between adjacent isotope peaks, and the addition of metal cations and ligands can also be isotopically resolved with the ultrahigh mass resolution available in FT-ICR.

  2. Mechanism of Assembly of a Substrate Transfer Complex during Tail-anchored Protein Targeting*

    Science.gov (United States)

    Gristick, Harry B.; Rome, Michael E.; Chartron, Justin W.; Rao, Meera; Hess, Sonja; Shan