WorldWideScience

Sample records for psii electron donor

  1. Structural studies of cyanobacterial PSII

    International Nuclear Information System (INIS)

    Da Fonseca, Paula Cristina Alves

    2001-01-01

    Photosystem II (PSII) is the photosynthetic transmembrane protein-pigment complex which utilises light energy to drive the splitting of water and release of oxygen, a unique reaction in biological systems. The determination of the structure of PSII at high resolution is required in order to understand its mechanisms of reaction. For this reason, methods have been developed to purify highly active PSII complexes from the thermophilic cyanobacterium Synechococcus elongate These complexes have been studied by high resolution electron microscopy, using both single particle analysis and electron crystallography. A 30A three-dimensional map of the cyanobacterial PSII complex was obtained by single particle analysis. The comparison of this map with structural data from the spinach PSII core dimer revealed that both complexes share similar overall size and shape. These data also allowed a discussion on the organisation and positioning of the extrinsic lumenal proteins within the cyanobacterial PSII complex. A Synechococcus elongatus PSII projection map, at a resolution of 20A, was determined by image processing of two-dimensional crystals formed by the in vitro reconstitution method. This was the first projection map obtained by electron crystallography of a cyanobacterial highly active PSII complex, with all the extrinsic subunits retained. The analysis of this map and its comparison with a 10A three-dimensional map recently obtained from the spinach PSII core dimer revealed a similar organisation of the main transmembrane subunits. Moreover, at the level of resolution of the present data it is possible to identify differences which can be related to the content and organisation of the small subunits forming the PSII complex from both organisms. Cytochrome b559, an important but incompletely understood PSII subunit, was purified and subjected to crystallisation trials in order to aid the interpretation of intermediate resolution PSII structural data. Small crystals were

  2. Arabidopsis cotyledon chloroplast biogenesis factor CYO1 uses glutathione as an electron donor and interacts with PSI (A1 and A2) and PSII (CP43 and CP47) subunits.

    Science.gov (United States)

    Muranaka, Atsuko; Watanabe, Shunsuke; Sakamoto, Atsushi; Shimada, Hiroshi

    2012-08-15

    CYO1 is required for thylakoid biogenesis in cotyledons of Arabidopsis thaliana. To elucidate the enzymatic characteristics of CYO1, we analyzed the protein disulfide isomerase (PDI) activity of CYO1 using dieosin glutathione disulfide (Di-E-GSSG) as a substrate. The reductase activity of CYO1 increased as a function of Di-E-GSSG, with an apparent K(m) of 824nM and K(cat) of 0.53min(-1). PDI catalyzes dithiol/disulfide interchange reactions, and the cysteine residues in PDI proteins are very important. To analyze the significance of the cysteine residues for the PDI activity of CYO1, we estimated the kinetic parameters of point-mutated CYO1 proteins. C117S, C124S, C135S, and C156S had higher values for K(m) than did wild-type CYO1. C158S had a similar K(m) but a higher K(cat), and C138S and C161S had similar K(m) values but lower K(cat) values than did wild-type CYO1. These results suggested that the cysteine residues at positions 138 and 161 were important for PDI activity. Low PDI activity of CYO1 was observed when NADPH or NADH was used as an electron donor. However, PDI activity was observed with CYO1 and glutathione, suggesting that glutathione may serve as a reducing agent for CYO1 in vivo. Based on analysis with the split-ubiquitin system, CYO1 interacted with the A1 and A2 subunits of PSI and the CP43 and CP47 subunits of PSII. Thus, CYO1 may accelerate the folding of cysteine residue--containing PSI and PSII subunits by repeatedly breaking and creating disulfide bonds. Copyright © 2012 Elsevier GmbH. All rights reserved.

  3. The strontium inorganic mutant of the water oxidizing center (CaMn4O5) of PSII improves WOC efficiency but slows electron flux through the terminal acceptors.

    Science.gov (United States)

    Gates, Colin; Ananyev, Gennady; Dismukes, G Charles

    2016-09-01

    Herein we extend prior studies of biosynthetic strontium replacement of calcium in PSII-WOC core particles to characterize whole cells. Previous studies of Thermosynechococcus elongatus found a lower rate of light-saturated O2 from isolated PSII-WOC(Sr) cores and 5-8× slower rate of oxygen release. We find similar properties in whole cells, and show it is due to a 20% larger Arrhenius activation barrier for O2 evolution. Cellular adaptation to the sluggish PSII-WOC(Sr) cycle occurs in which flux through the QAQB acceptor gate becomes limiting for turnover rate in vivo. Benzoquinone derivatives that bind to QB site remove this kinetic chokepoint yielding 31% greater O2 quantum yield (QY) of PSII-WOC(Sr) vs. PSII-WOC(Ca). QY and efficiency of the WOC(Sr) catalytic cycle are greatly improved at low light flux, due to fewer misses and backward transitions and 3-fold longer lifetime of the unstable S3 state, attributed to greater thermodynamic stabilization of the WOC(Sr) relative to the photoactive tyrosine YZ. More linear and less cyclic electron flow through PSII occurs per PSII-WOC(Sr). The organismal response to the more active PSII centers in Sr-grown cells at 45°C is to lower the number of active PSII-WOC per Chl, producing comparable oxygen and energy per cell. We conclude that redox and protonic energy fluxes created by PSII are primary determinants for optimal growth rate of T. elongatus. We further conclude that the (Sr-favored) intermediate-spin S=5/2 form of the S2 state is the active form in the catalytic cycle relative to the low-spin S=1/2 form. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Rate Constants of PSII Photoinhibition and its Repair, and PSII Fluorescence Parameters in Field Plants in Relation to their Growth Light Environments.

    Science.gov (United States)

    Miyata, Kazunori; Ikeda, Hiroshi; Nakaji, Masayoshi; Kanel, Dhana Raj; Terashima, Ichiro

    2015-09-01

    The extent of photoinhibition of PSII is determined by a balance between the rate of photodamage to PSII and that of repair of the damaged PSII. It has already been indicated that the rate constants of photodamage (kpi) and repair (krec) of the leaves differ depending on their growth light environment. However, there are no studies using plants in the field. We examined these rate constants and fluorescence parameters of several field-grown plants to determine inter-relationships between these values and the growth environment. The kpi values were strongly related to the excess energy, EY, of the puddle model and non-regulated energy dissipation, Y(NO), of the lake model, both multiplied by the photosynthetically active photon flux density (PPFD) level during the photoinhibitory treatment. In contrast, the krec values corrected against in situ air temperature were very strongly related to the daily PPFD level. The plants from the fields showed higher NPQ than the chamber-grown plants, probably because these field plants acclimated to stronger lightflecks than the averaged growth PPFD. Comparing chamber-grown plants and the field plants, we showed that kpi is determined by the incident light level and the photosynthetic capacities such as in situ rate of PSII electron transport and non-photochemical quenching (NPQ) [e.g. Y(NO)×PPFD] and that krec is mostly determined by the growth light and temperature levels. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  5. Few electron quantum dot coupling to donor implanted electron spins

    Science.gov (United States)

    Rudolph, Martin; Harvey-Collard, Patrick; Neilson, Erik; Gamble, John; Muller, Richard; Jacobson, Toby; Ten-Eyck, Greg; Wendt, Joel; Pluym, Tammy; Lilly, Michael; Carroll, Malcolm

    2015-03-01

    Donor-based Si qubits are receiving increased interest because of recent demonstrations of high fidelity electron or nuclear spin qubits and their coupling. Quantum dot (QD) mediated interactions between donors are of interest for future coupling of two donors. We present experiment and modeling of a polysilicon/Si MOS QD, charge-sensed by a neighboring many electron QD, capable of coupling to one or two donor implanted electron spins (D) while tuned to the few electron regime. The unique design employs two neighboring gated wire FETs and self-aligned implants, which supports many configurations of implanted donors. We can access the (0,1) ⇔(1,0) transition between the D and QD, as well as the resonance condition between the few electron QD and two donors ((0,N,1) ⇔(0,N +1,0) ⇔(1,N,0)). We characterize capacitances and tunnel rate behavior combined with semi-classical and full configuration interaction simulations to study the energy landscape and kinetics of D-QD transitions. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE, Office of Basic Energy Sciences user facility. The work was supported by the Sandia National Laboratories Directed Research and Development Program. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.

  6. Nanographenes as electron-deficient cores of donor-acceptor systems.

    Science.gov (United States)

    Liu, Yu-Min; Hou, Hao; Zhou, Yan-Zhen; Zhao, Xin-Jing; Tang, Chun; Tan, Yuan-Zhi; Müllen, Klaus

    2018-05-15

    Conjugation of nanographenes (NGs) with electro-active molecules can establish donor-acceptor π-systems in which the former generally serve as the electron-donating moieties due to their electronic-rich nature. In contrast, here we report a series of reversed donor-acceptor structures are obtained by C-N coupling of electron-deficient perchlorinated NGs with electron-rich anilines. Selective amination at the vertexes of the NGs is unambiguously shown through X-ray crystallography. By varying the donating ability of the anilino groups, the optical and assembly properties of donor-acceptor NGs can be finely modulated. The electron-deficient concave core of the resulting conjugates can host electron-rich guest molecules by intermolecular donor-acceptor interactions and gives rise to charge-transfer supramolecular architectures.

  7. Donors in Semiconductors - are they Understood in Electronic Era?

    International Nuclear Information System (INIS)

    Dmochowski, Janusz E

    2007-01-01

    The physics of semiconductors and contemporary electronics cannot be understood without impurities. The hydrogen-like shallow donor (and acceptor) state of electron (hole) bound by Coulomb electrostatic force of excess charge of impurity is used to control conductivity of semiconductors and construct semiconductor diodes, transistors and numerous types of semiconductor electronic and optoelectronic devices, including lasers. Recently, surprisingly, the physics of impurity donors appeared to be much reacher. Experimental evidence has been provided for universal existence of other types of electronic states of the same donor impurity: i) mysterious, deep, DX-type state resulting in metastability - slow hysteresis phenomena - understood as two-electron, acceptor-like state of donor impurity, formed upon large lattice distortion or rearrangement around impurity and accompanying capture of second electron, resulting in negative electron correlation energy U; ii) deep, localized, fully symmetric, A1, one-electron donor state of substitutional impurity. The latter state can be formed from the 'ordinary' shallow hydrogen-like state in the process of strong localization of electron by short range, local potential of impurity core, preserving full (A 1 ) symmetry of the substitutional impurity in the host lattice. The 'anticrossing' of the two A 1 (shallow hydrogenic and deep localized) energy levels upon transformation is observed. All types of electronic states of impurity can be universally observed for the same donor impurity and mutual transformation between different states occur upon changing experimental conditions. The knowledge about existence and properties of these n ew , molecular type, donor states in semiconductors seems still await general recognition and positive application in contemporary material and device science and engineering

  8. On the effect of nuclear bridge modes on donor-acceptor electronic coupling in donor-bridge-acceptor molecules

    International Nuclear Information System (INIS)

    Davis, Daly; Toroker, Maytal Caspary; Speiser, Shammai; Peskin, Uri

    2009-01-01

    We report a theoretical study of intra-molecular electronic coupling in a symmetric DBA (donor-bridge-acceptor) complex, in which a donor electronic site is coupled to an acceptor site by way of intervening orbitals of a molecular bridge unit. In the off-resonant (deep tunneling) regime of electronic transport, the lowest unoccupied molecular orbitals (MO's) of the DBA system are split into distinguishable donor/acceptor and bridge orbitals. The effect of geometrical changes at the bridge on the donor/acceptor electronic energy manifold is studied for local stretching and bending modes. It is demonstrated that the energy splitting in the manifold of donor/acceptor unoccupied MOs changes in response to such changes, as assumed in simple McConnell-type models. Limitations of the simple models are revealed where the electronic charging of the bridge orbitals correlates with increasing donor/acceptor orbital energy splitting only for stretching but not for bending bridge modes.

  9. Spectral properties of chlorines and electron transfer with their participation in the photosynthetic reaction center of photosystem II

    Science.gov (United States)

    Shchupak, E. E.; Ivashin, N. V.

    2014-02-01

    Structural factors that provide localization of excited states and determine the properties of primary donor and acceptor of electron in the reaction center of photosystem II (PSII RC) are studied. The results of calculations using stationary and time-dependent density functional theory indicate an important role of protein environments of chlorophylls PA, PB, BA, and BB and pheophytins HA and HB in the area with a radius of no greater than ≤10 Å in the formation of excitonic states of PSII RC. When the neighboring elements are taken into account, the wavelength of long-wavelength Q y transition of chlorophyll molecules is varied by about 10 nm. The effect is less developed for pheophytin molecules (Δλ ≅ 2 nm). The following elements strongly affect energy of the transition: HisA198 and HisD197 amino-acid residues that serve as ligands of magnesium atoms affect PA and PB, respectively; MetA183 affects PA; MetA172 and MetD198 affect BA; water molecules that are located above the planes of the BA and BB macrocycles form H bonds with carbonyl groups; and phytol chains of PA and PB affect BA, BB, HA, and HB. The analysis of excitonic states, mutual positions of molecular orbitals of electron donors and acceptors, and matrix elements of electron transfer reaction shows that (i) charge separation between BA and HA and PB and BA is possible in the active A branch of cofactors of PSII RC and (ii) electron transfer is blocked at the BB - HB fragment in inactive B branch of PSII RC.

  10. Dechlorinating ability of TCE-fed microcosms with different electron donors

    International Nuclear Information System (INIS)

    Panagiotakis, Iraklis; Mamais, Daniel; Pantazidou, Marina; Marneri, Matina; Parapouli, Maria; Hatziloukas, Efstathios; Tandoi, Valter

    2007-01-01

    The main objective of the work presented herein is to assess the effect of different electron donors (butyric acid and methanol) on the dechlorinating activity of two microbial cultures where active methanogenic populations are present, in an effort to evaluate the importance of the electron donor selection process. The ability of each anaerobic culture to dechlorinate TCE, when enriched with either butyric acid or methanol, was verified based on the results of gas chromatography. In addition, the fluorescent in situ hybridization (FISH) and the polymerase chain reaction (PCR) methods gave positive results for the presence of Dehalococcoides spp. According to results of the batch tests conducted in this study, it appears that the selection of the electron donor for stimulating TCE dechlorination depends on microbial culture composition; therefore, the decision on the appropriate electron donor should be based on site-specific microcosm studies

  11. Metabolic response of Geobacter sulfurreducens towards electron donor/acceptor variation

    Directory of Open Access Journals (Sweden)

    Lovley Derek R

    2010-11-01

    Full Text Available Abstract Background Geobacter sulfurreducens is capable of coupling the complete oxidation of organic compounds to iron reduction. The metabolic response of G. sulfurreducens towards variations in electron donors (acetate, hydrogen and acceptors (Fe(III, fumarate was investigated via 13C-based metabolic flux analysis. We examined the 13C-labeling patterns of proteinogenic amino acids obtained from G. sulfurreducens cultured with 13C-acetate. Results Using 13C-based metabolic flux analysis, we observed that donor and acceptor variations gave rise to differences in gluconeogenetic initiation, tricarboxylic acid cycle activity, and amino acid biosynthesis pathways. Culturing G. sulfurreducens cells with Fe(III as the electron acceptor and acetate as the electron donor resulted in pyruvate as the primary carbon source for gluconeogenesis. When fumarate was provided as the electron acceptor and acetate as the electron donor, the flux analysis suggested that fumarate served as both an electron acceptor and, in conjunction with acetate, a carbon source. Growth on fumarate and acetate resulted in the initiation of gluconeogenesis by phosphoenolpyruvate carboxykinase and a slightly elevated flux through the oxidative tricarboxylic acid cycle as compared to growth with Fe(III as the electron acceptor. In addition, the direction of net flux between acetyl-CoA and pyruvate was reversed during growth on fumarate relative to Fe(III, while growth in the presence of Fe(III and acetate which provided hydrogen as an electron donor, resulted in decreased flux through the tricarboxylic acid cycle. Conclusions We gained detailed insight into the metabolism of G. sulfurreducens cells under various electron donor/acceptor conditions using 13C-based metabolic flux analysis. Our results can be used for the development of G. sulfurreducens as a chassis for a variety of applications including bioremediation and renewable biofuel production.

  12. Study on Effects of Electron Donors on Phosphine Production from Anaerobic Activated Sludge

    Directory of Open Access Journals (Sweden)

    Jianping Cao

    2017-07-01

    Full Text Available The effects of different types and concentrations of electron donors (glucose, starch, methanol and sodium acetate on the formation of phosphine from anaerobic activated sludge that has been domesticated for a prolonged period were studied in small batch experiments. The results show that types and concentrations of electron donor have significant effects on the production of phosphine from anaerobic activated sludge. Among them, glucose was the most favourable electron donor, whereas sodium acetate was the least favourable electron donor for the removal of phosphorus and the production of phosphine. Higher concentrations of electron donors were more favourable for the reduction of phosphate into phosphine, and supplying more than nine times the amount of electron donor as theoretically required for the reduction of phosphate into phosphine was favourable for the production of phosphine.

  13. 2012 Gordon Research Conference, Electron donor-acceptor interactions, August 5-10 2012

    Energy Technology Data Exchange (ETDEWEB)

    McCusker, James [Michigan State Univ., East Lansing, MI (United States)

    2012-08-10

    The upcoming incarnation of the Gordon Research Conference on Electron Donor Acceptor Interactions will feature sessions on classic topics including proton-coupled electron transfer, dye-sensitized solar cells, and biological electron transfer, as well as emerging areas such as quantum coherence effects in donor-acceptor interactions, spintronics, and the application of donor-acceptor interactions in chemical synthesis.

  14. Autotrophic antimonate bio-reduction using hydrogen as the electron donor.

    Science.gov (United States)

    Lai, Chun-Yu; Wen, Li-Lian; Zhang, Yin; Luo, Shan-Shan; Wang, Qing-Ying; Luo, Yi-Hao; Chen, Ran; Yang, Xiaoe; Rittmann, Bruce E; Zhao, He-Ping

    2016-01-01

    Antimony (Sb), a toxic metalloid, is soluble as antimonate (Sb(V)). While bio-reduction of Sb(V) is an effective Sb-removal approach, its bio-reduction has been coupled to oxidation of only organic electron donors. In this study, we demonstrate, for the first time, the feasibility of autotrophic microbial Sb(V) reduction using hydrogen gas (H2) as the electron donor without extra organic carbon source. SEM and EDS analysis confirmed the production of the mineral precipitate Sb2O3. When H2 was utilized as the electron donor, the consortium was able to fully reduce 650 μM of Sb(V) to Sb(III) in 10 days, a rate comparable to the culture using lactate as the electron donor. The H2-fed culture directed a much larger fraction of it donor electrons to Sb(V) reduction than did the lactate-fed culture. While 98% of the electrons from H2 were used to reduce Sb(V) by the H2-fed culture, only 12% of the electrons from lactate was used to reduce Sb(V) by the lactate-fed culture. The rest of the electrons from lactate went to acetate and propionate through fermentation, to methane through methanogenesis, and to biomass synthesis. High-throughput sequencing confirmed that the microbial community for the lactate-fed culture was much more diverse than that for the H2-fed culture, which was dominated by a short rod-shaped phylotype of Rhizobium (α-Protobacteria) that may have been active in Sb(V) reduction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. ESR Experiments on a Single Donor Electron in Isotopically Enriched Silicon

    Science.gov (United States)

    Tracy, Lisa; Luhman, Dwight; Carr, Stephen; Borchardt, John; Bishop, Nathaniel; Ten Eyck, Gregory; Pluym, Tammy; Wendt, Joel; Witzel, Wayne; Blume-Kohout, Robin; Nielsen, Erik; Lilly, Michael; Carroll, Malcolm

    In this talk we will discuss electron spin resonance experiments in single donor silicon qubit devices fabricated at Sandia National Labs. A self-aligned device structure consisting of a polysilicon gate SET located adjacent to the donor is used for donor electron spin readout. Using a cryogenic HEMT amplifier next to the silicon device, we demonstrate spin readout at 100 kHz bandwidth and Rabi oscillations with 0.96 visibility. Electron spin resonance measurements on these devices show a linewidth of 30 kHz and coherence times T2* = 10 us and T2 = 0.3 ms. We also discuss estimates of the fidelity of our donor electron spin qubit measurements using gate set tomography. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000. ESR Experiments on a Single Donor Electron in Isotopically Enriched Silicon.

  16. Highly solvatochromic emission of electron donor-acceptor compounds containing propanedioato boron electron acceptors

    NARCIS (Netherlands)

    Brouwer, A.M.; Bakker, N.A.C.; Wiering, P.G.; Verhoeven, J.W.

    1991-01-01

    Light-induced electron transfer occurs in bifunctional compounds consisting of 1,3-diphenylpropanedioato boron oxalate or fluoride electron acceptors and simple aromatic electron-donor groups, linked by a methylene bridge; fluorescence from the highly polar charge-transfer excited state is

  17. Cyclic electron flow may provide some protection against PSII photoinhibition in rice (Oryza sativa L.) leaves under heat stress.

    Science.gov (United States)

    Essemine, Jemaa; Xiao, Yi; Qu, Mingnan; Mi, Hualing; Zhu, Xin-Guang

    2017-04-01

    Previously we have shown that a quick down-regulation in PSI activity compares to that of PSII following short-term heat stress for two rice groups including C4023 and Q4149, studied herein. These accessions were identified to have different natural capacities in driving cyclic electron flow (CEF) around PSI; i.e., low CEF (lcef) and high CEF (hcef) for C4023 and Q4149, respectively. The aim of this study was to investigate whether these two lines have different mechanisms of protecting photosystem II from photodamage under heat stress. We observed a stepwise alteration in the shape of Chl a fluorescence induction (OJIP) with increasing temperature treatment. The effect of 44°C treatment on the damping in Chl a fluorescence was more pronounced in C4023 than in Q4149. Likewise, we noted a disruption in the I-step, a decline in the F v due to a strong damping in the F m , and a slight increase in the F 0 . Normalized data demonstrated that the I-step seems more susceptible to 44°C in C4023 than in Q4149. We also measured the redox states of plastocyanin (PC) and P 700 by monitoring the transmission changes at 820nm (I 820 ), and observed a disturbance in the oxidation/reduction kinetics of PC and P 700 . The decline in the amplitude of their oxidation was shown to be about 29% and 13% for C4023 and Q4149, respectively. The electropotential component (Δφ) of ms-DLE appeared more sensitive to temperature stress than the chemical component (ΔpH), and the impact of heat was more evident and drastic in C4023 than in Q4149. Under heat stress, we noticed a concomitant decline in the primary photochemistry of PSII as well as in both the membrane energization process and the lumen protonation for both accessions, and it is evident that heat affects these parameters more in C4023 than in Q4149. All these data suggest that higher CET can confer higher photoprotection to PSII in rice lines, which can be a desirable trait during rice breeding, especially in the context of a

  18. Variations in morphology and PSII photosynthetic capabilities during the early development of tetraspores of Gracilaria vermiculophylla (Ohmi) Papenfuss (Gracilariales, Rhodophyta).

    Science.gov (United States)

    Xie, Xiujun; Wang, Guangce; Pan, Guanghua; Gao, Shan; Xu, Pu; Zhu, Jianyi

    2010-04-28

    Red algae are primitive photosynthetic eukaryotes, whose spores are ideal subjects for studies of photosynthesis and development. Although the development of red alga spores has received considerable research attention, few studies have focused on the detailed morphological and photosynthetic changes that occur during the early development of tetraspores of Gracilaria vermiculophylla (Ohmi) Papenfuss (Gracilariales, Rhodophyta). Herein, we documented these changes in this species of red algae. In the tetraspores, we observed two types of division, cruciate and zonate, and both could develop into multicellular bodies (disks). During the first 84 hours, tetraspores divided several times, but the diameter of the disks changed very little; thereafter, the diameter increased significantly. Scanning electron microscopy observations and analysis of histological sections revealed that the natural shape of the disk remains tapered over time, and the erect frond grows from the central protrusion of the disk. Cultivation of tissue from excised disks demonstrated that the central protrusion of the disk is essential for initiation of the erect frond. Photosynthetic (i.e., PSII) activities were measured using chlorophyll fluorescence analysis. The results indicated that freshly released tetraspores retained limited PSII photosynthetic capabilities; when the tetraspores attached to a substrate, those capabilities increased significantly. In the disk, the PSII activity of both marginal and central cells was similar, although some degree of morphological polarity was present; the PSII photosynthetic capabilities in young germling exhibited an apico-basal gradient. Attachment of tetraspores to a substrate significantly enhanced their PSII photosynthetic capabilities, and triggered further development. The central protrusion of the disk is the growth point, may have transfer of nutritive material with the marginal cells. Within the young germling, the hetero-distribution of PSII

  19. Variations in morphology and PSII photosynthetic capabilities during the early development of tetraspores of Gracilaria vermiculophylla (Ohmi Papenfuss (Gracilariales, Rhodophyta

    Directory of Open Access Journals (Sweden)

    Gao Shan

    2010-04-01

    Full Text Available Abstract Background Red algae are primitive photosynthetic eukaryotes, whose spores are ideal subjects for studies of photosynthesis and development. Although the development of red alga spores has received considerable research attention, few studies have focused on the detailed morphological and photosynthetic changes that occur during the early development of tetraspores of Gracilaria vermiculophylla (Ohmi Papenfuss (Gracilariales, Rhodophyta. Herein, we documented these changes in this species of red algae. Results In the tetraspores, we observed two types of division, cruciate and zonate, and both could develop into multicellular bodies (disks. During the first 84 hours, tetraspores divided several times, but the diameter of the disks changed very little; thereafter, the diameter increased significantly. Scanning electron microscopy observations and analysis of histological sections revealed that the natural shape of the disk remains tapered over time, and the erect frond grows from the central protrusion of the disk. Cultivation of tissue from excised disks demonstrated that the central protrusion of the disk is essential for initiation of the erect frond. Photosynthetic (i.e., PSII activities were measured using chlorophyll fluorescence analysis. The results indicated that freshly released tetraspores retained limited PSII photosynthetic capabilities; when the tetraspores attached to a substrate, those capabilities increased significantly. In the disk, the PSII activity of both marginal and central cells was similar, although some degree of morphological polarity was present; the PSII photosynthetic capabilities in young germling exhibited an apico-basal gradient. Conclusions Attachment of tetraspores to a substrate significantly enhanced their PSII photosynthetic capabilities, and triggered further development. The central protrusion of the disk is the growth point, may have transfer of nutritive material with the marginal cells. Within

  20. Electron Donor Acceptor Interactions. Final Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Ana L. [Arizona State Univ., Tempe, AZ (United States)

    2002-08-16

    The Gordon Research Conference (GRC) on Electron Donor Acceptor Interactions was held at Salve Regina University, Newport, Rhode Island, 8/11-16/02. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  1. Study of chemical shifts of the chloroform complexes with cyclic donors of electrons

    International Nuclear Information System (INIS)

    Blaszkiewicz, B.; Pajak, Z.

    1973-01-01

    Chemical shifts of chloroform complexes with the heterocyclic electron donors: pyridine, piperidine, alpha-picoline and gamma-picoline have been studied using the high resolution (5.10 -9 ) spectrometer operating at 80 MHz. An attempt has also been made to study the three - component solutions of : chloroform, a heterocyclic donor of electrons and carbon tetrachloride. The results, which have been obtained, indicate that the complex-forming power of pyridine and other electron donors is greater in carbon tetrachloride than in other solvents. (S.B.)

  2. Spin-orbit coupling induced two-electron relaxation in silicon donor pairs

    Science.gov (United States)

    Song, Yang; Das Sarma, S.

    2017-09-01

    We unravel theoretically a key intrinsic relaxation mechanism among the low-lying singlet and triplet donor-pair states in silicon, an important element in the fast-developing field of spintronics and quantum computation. Despite the perceived weak spin-orbit coupling (SOC) in Si, we find that our discovered relaxation mechanism, combined with the electron-phonon and interdonor interactions, drives the transitions in the two-electron states over a large range of donor coupling regimes. The scaling of the relaxation rate with interdonor exchange interaction J goes from J5 to J4 at the low to high temperature limits. Our analytical study draws on the symmetry analysis over combined band, donor envelope, and valley configurations. It uncovers naturally the dependence on the donor-alignment direction and triplet spin orientation, and especially on the dominant SOC source from donor impurities. While a magnetic field is not necessary for this relaxation, unlike in the single-donor spin relaxation, we discuss the crossover behavior with increasing Zeeman energy in order to facilitate comparison with experiments.

  3. Phylogenetic analysis of TCE-dechlorinating consortia enriched on a variety of electron donors.

    Science.gov (United States)

    Freeborn, Ryan A; West, Kimberlee A; Bhupathiraju, Vishvesh K; Chauhan, Sadhana; Rahm, Brian G; Richardson, Ruth E; Alvarez-Cohen, Lisa

    2005-11-01

    Two rapidly fermented electron donors, lactate and methanol, and two slowly fermented electron donors, propionate and butyrate, were selected for enrichment studies to evaluate the characteristics of anaerobic microbial consortia that reductively dechlorinate TCE to ethene. Each electron donor enrichment subculture demonstrated the ability to dechlorinate TCE to ethene through several serial transfers. Microbial community analyses based upon 16S rDNA, including terminal restriction fragment length polymorphism (T-RFLP) and clone library/sequencing, were performed to assess major changes in microbial community structure associated with electron donors capable of stimulating reductive dechlorination. Results demonstrated that five phylogenic subgroups or genera of bacteria were present in all consortia, including Dehalococcoides sp., low G+C Gram-positives (mostly Clostridium and Eubacterium sp.), Bacteroides sp., Citrobacter sp., and delta Proteobacteria (mostly Desulfovibrio sp.). Phylogenetic association indicates that only minor shifts in the microbial community structure occurred between the four alternate electron donor enrichments and the parent consortium. Inconsistent detection of Dehalococcoides spp. in clone libraries and T-RFLP of enrichment subcultures was resolved using quantitative polymerase chain reaction (Q-PCR). Q-PCR with primers specific to Dehalococcoides 16S rDNA resulted in positive detection of this species in all enrichments. Our results suggest that TCE-dechlorinating consortia can be stably maintained on a variety of electron donors and that quantities of Dehalococcoides cells detected with Dehalococcoides specific 16S rDNA primer/probe sets do not necessarily correlate well with solvent degradation rates.

  4. Electronic messaging and communication with living kidney donors.

    Science.gov (United States)

    Ruck, Jessica M; Zhou, Sheng; Thomas, Alvin G; Cramm, Shannon L; Massie, Allan B; Montgomery, John R; Berger, Jonathan C; Henderson, Macey L; Segev, Dorry L

    2018-02-01

    New regulations require living kidney donor (LKD) follow-up for 2 years, but donor retention remains poor. Electronic communication (eg, text messaging and e-mail) might improve donor retention. To explore the possible impact of electronic communication, we recruited LKDs to participate in an exploratory study of communication via telephone, e-mail, or text messaging postdonation; communication through this study was purely optional and did not replace standard follow-up. Of 69 LKDs recruited, 3% requested telephone call, 52% e-mail, and 45% text messaging. Telephone response rate was 0%; these LKDs were subsequently excluded from analysis. Overall response rates with e-mail or text messaging at 1 week, 1 month, 6 months, 1 year, and 2 years were 94%, 87%, 81%, 72%, and 72%. Lower response rates were seen in African Americans, even after adjusting for age, sex, and contact method (incidence rate ratio (IRR) nonresponse 2.07 5.81 16.36 , P = .001). Text messaging had higher response rates than e-mail (IRR nonresponse 0.11 0.28 0.71 , P = .007). Rates of nonresponse were similar by sex (IRR 0.68, P = .4) and age (IRR 1.00, P > .9). In summary, LKDs strongly preferred electronic messaging over telephone and were highly responsive 2 years postdonation, even in this nonrequired, nonincentivized exploratory research study. These electronic communication tools can be automated and may improve regulatory compliance and postdonation care. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Lead induced changes in phosphorylation of PSII proteins in low light grown pea plants.

    Science.gov (United States)

    Wioleta, Wasilewska; Anna, Drożak; Ilona, Bacławska; Kamila, Kąkol; Elżbieta, Romanowska

    2015-02-01

    Light-intensity and redox-state induced thylakoid proteins phosphorylation involved in structural changes and in regulation of protein turnover. The presence of heavy metal ions triggers a wide range of cellular responses including changes in plant growth and photosynthesis. Plants have evolved a number of mechanisms to protect photosynthetic apparatus. We have characterized the effect of lead on PSII protein phosphorylation in pea (Pisum sativum L.) plants grown in low light conditions. Pb ions affected only slightly photochemical efficiency of PSII and had no effect on organization of thylakoid complexes. Lead activated strongly phosphorylation of PSII core D1 protein and dephosphorylation of this protein did not proceed in far red light. D1 protein was also not degraded in this conditions. However, phosphorylation of LHCII proteins was not affected by lead. These results indicate that Pb(2+) stimulate the phosphorylation of PSII core proteins and by disturbing the disassembly of supercomplexes play a role in PSII repair mechanism. LHCII phosphorylation could control the distribution of energy between the photosystems in low light conditions. This demonstrates that plants may respond to heavy metals by induction different pathways responsible for protein protection under stress conditions.

  6. Interplay between barrier width and height in electron tunneling: photoinduced electron transfer in porphyrin-based donor-bridge-acceptor systems.

    Science.gov (United States)

    Pettersson, Karin; Wiberg, Joanna; Ljungdahl, Thomas; Mårtensson, Jerker; Albinsson, Bo

    2006-01-12

    The rate of electron tunneling in molecular donor-bridge-acceptor (D-B-A) systems is determined both by the tunneling barrier width and height, that is, both by the distance between the donor and acceptor as well as by the energy gap between the donor and bridge moieties. These factors are therefore important to control when designing functional electron transfer systems, such as constructs for photovoltaics, artificial photosynthesis, and molecular scale electronics. In this paper we have investigated a set of D-B-A systems in which the distance and the energy difference between the donor and bridge states (DeltaEDB) are systematically varied. Zinc(II) and gold(III) porphyrins were chosen as electron donor and acceptor because of their suitable driving force for photoinduced electron transfer (-0.9 eV in butyronitrile) and well-characterized photophysics. We have previously shown, in accordance with the superexchange mechanism for electron transfer, that the electron transfer rate is proportional to the inverse of DeltaEDB in a series of zinc/gold porphyrin D-B-A systems with bridges of constant edge to edge distance (19.6 A) and varying DeltaEDB (3900-17 600 cm(-1)). Here, we use the same donor and acceptor but the bridge is shortened or extended giving a set of oligo-p-phenyleneethynylene bridges (OPE) with four different edge to edge distances ranging from 12.7 to 33.4 A. These two sets of D-B-A systems-ZnP-RB-AuP+ and ZnP-nB-AuP+-have one bridge in common, and hence, for the first time both the distance and DeltaEDB dependence of electron transfer can be studied simultaneously in a systematic way.

  7. Electron Transfer in Donor-Bridge-Acceptor Systems and Derived Materials

    NARCIS (Netherlands)

    Oosterbaan, W.D.

    2002-01-01

    Some aspects of photoinduced electron transfer (ET) in (electron donor)-bridge-(electron acceptor) compounds (D-B-A) and derived materials are investigated. Aim I is to determine how and to which extent non-conjugated double bonds in an otherwise saturated hydrocarbon bridge affect the rate of

  8. Methanol as electron donor for thermophilic biological sulfate and sulfite reduction

    OpenAIRE

    Weijma, J.

    2000-01-01

    Sulfur oxyanions (e.g. sulfate, sulfite) can be removed from aqueous waste- and process streams by biological reduction with a suitable electron donor to sulfide, followed by partial chemical or biological oxidation of sulfide to elemental sulfur. The aim of the research described in this thesis was to make this biological process more broadly applicable for desulfurization of flue-gases and ground- and wastewaters by using the cheap chemical methanol as electron donor for the reduct...

  9. Spectrophotometric investigation into iodine-electron donor systems at low temperature

    International Nuclear Information System (INIS)

    Gorodyskij, V.A.; Morachevskij, A.A.

    1978-01-01

    Iodine-sec. butanol (n-donor) and iodine - hexene - 1 (π-donor) have been investigated for the first time by the spectrophotometric method in the wide temeprature range (77-293 K). The existence of complexes with a charge transfer of the type, which is characterized by the long-wave absorption band in electron spectra, is determined in the systems

  10. Effects of keV electron irradiation on the avalanche-electron generation rates of three donors on oxidized silicon

    International Nuclear Information System (INIS)

    Sah, C.; Sun, J.Y.; Tzou, J.J.

    1983-01-01

    After keV electron beam irradiation of oxidized silicon, the avalanche-electron-injection generation rates and densities of the bulk compensating donor, the interface states, and the turnaround trap all increase. Heating at 200 0 C can anneal out these three donor-like traps, however, it cannot restore the generation rates back to their original and lower pre-keV electron irradiation values. The experimental results also indicate that all three traps may be related to the same mobile impurity species whose bonds are loosened by the keV electrons and then broken or released by the avalanche injected electrons

  11. Rice Photosynthetic Productivity and PSII Photochemistry under Nonflooded Irrigation

    Directory of Open Access Journals (Sweden)

    Haibing He

    2014-01-01

    Full Text Available Nonflooded irrigation is an important water-saving rice cultivation technology, but little is known on its photosynthetic mechanism. The aims of this work were to investigate photosynthetic characteristics of rice during grain filling stage under three nonflooded irrigation treatments: furrow irrigation with plastic mulching (FIM, furrow irrigation with nonmulching (FIN, and drip irrigation with plastic mulching (DI. Compared with the conventional flooding (CF treatment, those grown in the nonflooded irrigation treatments showed lower net photosynthetic rate (PN, lower maximum quantum yield (Fv/Fm, and lower effective quantum yield of PSII photochemistry (ΦPSII. And the poor photosynthetic characteristics in the nonflooded irrigation treatments were mainly attributed to the low total nitrogen content (TNC. Under non-flooded irrigation, the PN, Fv/Fm, and ΦPSII significantly decreased with a reduction in the soil water potential, but these parameters were rapidly recovered in the DI and FIM treatments when supplementary irrigation was applied. Moreover, The DI treatment always had higher photosynthetic productivity than the FIM and FIN treatments. Grain yield, matter translocation, and dry matter post-anthesis (DMPA were the highest in the CF treatment, followed by the DI, FIM, and FIN treatments in turn. In conclusion, increasing nitrogen content in leaf of rice plants could be a key factor to improve photosynthetic capacity in nonflooded irrigation.

  12. Spin Measurements of an Electron Bound to a Single Phosphorous Donor in Silicon

    Science.gov (United States)

    Luhman, D. R.; Nguyen, K.; Tracy, L. A.; Carr, S. M.; Borchardt, J.; Bishop, N. C.; Ten Eyck, G. A.; Pluym, T.; Wendt, J.; Carroll, M. S.; Lilly, M. P.

    2014-03-01

    The spin of an electron bound to a single donor implanted in silicon is potentially useful for quantum information processing. We report on our efforts to measure and manipulate the spin of an electron bound to a single P donor in silicon. A low number of P donors are implanted using a self-aligned process into a silicon substrate in close proximity to a single-electron-transistor (SET) defined by lithographically patterned polysilicon gates. The SET is used to sense the occupancy of the electron on the donor and for spin read-out. An adjacent transmission line allows the application of microwave pulses to rotate the spin of the electron. We will present data from various experiments designed to exploit these capabilities. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. The work was supported by Sandia National Laboratories Directed Research and Development Program. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.

  13. Methanol as an alternative electron donor in chain elongation for butyrate and caproate formation

    NARCIS (Netherlands)

    Chen, W.S.; Ye, Y.; Steinbusch, K.J.J.; Strik, D.P.B.T.B.; Buisman, C.J.N.

    2016-01-01

    Chain elongation is an emerging mixed culture biotechnology converting acetate into valuable biochemicals by using ethanol as an external electron donor. In this study we proposed to test another potential electron donor, methanol, in chain elongation. Methanol can be produced through the

  14. Recruitment of feces donors among blood donors

    DEFF Research Database (Denmark)

    Dahl Jørgensen, Simon Mark; Erikstrup, Christian; Dinh, Khoa Manh

    2018-01-01

    As the use of fecal microbiota transplantation (FMT) has gained momentum, an increasing need for continuous access to healthy feces donors has developed. Blood donors constitute a healthy subset of the general population and may serve as an appropriate group for recruitment. In this study, we...... investigated the suitability of blood donors as feces donors. In a prospective cohort study, we recruited blood donors onsite at a public Danish blood bank. Following their consent, the blood donors underwent a stepwise screening process: First, blood donors completed an electronic pre-screening questionnaire...... to rule out predisposing risk factors. Second, eligible blood donors had blood and fecal samples examined. Of 155 blood donors asked to participate, 137 (88%) completed the electronic pre-screening questionnaire, 16 declined, and 2 were excluded. Of the 137 donors who completed the questionnaire, 79 (58...

  15. Molecular Understanding of Fullerene - Electron Donor Interactions in Organic Solar Cells

    KAUST Repository

    Ryno, Sean

    2016-09-13

    Organic solar cells hold promise of providing low-cost, renewable power generation, with current devices providing up to 13% power conversion efficiency. The rational design of more performant systems requires an in-depth understanding of the interactions between the electron donating and electron accepting materials within the active layers of these devices. Here, we explore works that give insight into the intermolecular interactions between electron donors and electron acceptors, and the impact of molecular orientations and environment on these interactions. We highlight, from a theoretical standpoint, the effects of intermolecular interactions on the stability of charge carriers at the donor/acceptor interface and in the bulk and how these interactions influence the nature of the charge transfer states as wells as the charge separation and charge transport processes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Ultrafast Photoinduced Electron Transfer in Bimolecular Donor-Acceptor Systems

    KAUST Repository

    Alsulami, Qana A.

    2016-11-30

    The efficiency of photoconversion systems, such as organic photovoltaic (OPV) cells, is largely controlled by a series of fundamental photophysical processes occurring at the interface before carrier collection. A profound understanding of ultrafast interfacial charge transfer (CT), charge separation (CS), and charge recombination (CR) is the key determinant to improving the overall performances of photovoltaic devices. The discussion in this dissertation primarily focuses on the relevant parameters that are involved in photon absorption, exciton separation, carrier transport, carrier recombination and carrier collection in organic photovoltaic devices. A combination of steady-state and femtosecond broadband transient spectroscopies was used to investigate the photoinduced charge carrier dynamics in various donor-acceptor systems. Furthermore, this study was extended to investigate some important factors that influence charge transfer in donor-acceptor systems, such as the morphology, energy band alignment, electronic properties and chemical structure. Interestingly, clear correlations among the steady-state measurements, time-resolved spectroscopy results, grain alignment of the electron transporting layer (ETL), carrier mobility, and device performance are found. In this thesis, we explored the significant impacts of ultrafast charge separation and charge recombination at donor/acceptor (D/A) interfaces on the performance of a conjugated polymer PTB7-Th device with three fullerene acceptors: PC71BM, PC61BM and IC60BA. Time-resolved laser spectroscopy and high-resolution electron microscopy can illustrate the basis for fabricating solar cell devices with improved performances. In addition, we studied the effects of the incorporation of heavy metals into π-conjugated chromophores on electron transfer by monitoring the triplet state lifetime of the oligomer using transient absorption spectroscopy, as understanding the mechanisms controlling intersystem crossing and

  17. Toxic effects of amoxicillin on the photosystem II of Synechocystis sp. characterized by a variety of in vivo chlorophyll fluorescence tests

    International Nuclear Information System (INIS)

    Pan Xiangliang; Deng Chunnuan; Zhang Daoyong; Wang Jianlong; Mu Guijin; Chen Ying

    2008-01-01

    Amoxicillin is one of the widely used antibiotics of environmental concern. This study shows that amoxicillin has toxic effects on the photosynthesis of Synechocystis sp. Its inhibitory effects on photosystem II (PSII) of Synechocystis sp. were investigated by using a variety of in vivo chlorophyll fluorescence tests. The inhibitory effects of amoxicillin on PSII activity of Synechocystis sp. are concentration-dependent. Amoxicillin exposure leads to slowing down of electron transport on both donor side and acceptor side and causes accumulation of P680 + . Q A - reoxidation test revealed that amoxicillin hinders electron transfer from Q A - to Q B /Q B - and more Q A - is oxidized through S 2 (Q A Q B ) - charge recombination. Analysis of PSII heterogeneity demonstrated that an exposure to amoxicillin increases the proportion of inactive PSII (PSII X ) centers and the proportion of PSII centers with small antenna (PSIIβ). These changes finally result in deterioration of full photosynthesis performance

  18. The Use of Electron Donors to Increase Stereospecificity in Ziegler-Natta Propylene Polymerization

    Directory of Open Access Journals (Sweden)

    Farshid Nouri-Ahangarani

    2016-05-01

    Full Text Available Different chemical components in traditional Ziegler–Natta catalytic system include: (1 titanium and vanadium containing compounds, mostly TiCl4, as an active centre, (2 trialkylaluminium-based Lewis acid compounds, especially triethylaluminium, as precatalyst and alkylating agent, and (3 inorganic compounds, specifically MgCl2 and silica, as catalyst supports. Besides these compounds, shortly after the first discovery of Ziegler-Natta catalysts, electron donors have been considered as the key components for MgCl2-supported Ziegler-Natta catalysts, as they improve the stereospecificity and activity of these types of catalysts. Most electron donor compounds have oxygen atom and only a few contain nitrogen atom in their structure. Starting from benzoate for third-generation Ziegler–Natta catalysts, the discovery of new donors has always updated the performance of Ziegler–Natta catalysts. Since the first discovery of these compounds numerous efforts have been devoted in both industry and academic laboratories, not only to discover new electron donors but also to understand their roles in Ziegler–Natta olefin polymerization and suitable MgCl2-alcohol adducts formation. This article reviews the history of such research and development efforts. The first part of the article describes the historical developments of catalyst, with a special focus on donors of industrial importance, followed by an account given on recent trends in the latest donors developed. The next part of the article covers the historical progress toward mechanistic understanding of how donors improve the performance of Ziegler–Natta catalysts and how they undergo decomposition by interaction with Lewis acidic species such as the AlEt3 and TiCl.

  19. Non-intrusive Assessment of Photosystem II and Photosystem I in Whole Coral Tissues

    Directory of Open Access Journals (Sweden)

    Milán Szabó

    2017-08-01

    Full Text Available Reef building corals (phylum Cnidaria harbor endosymbiotic dinoflagellate algae (genus Symbiodinium that generate photosynthetic products to fuel their host's metabolism. Non-invasive techniques such as chlorophyll (Chl fluorescence analyses of Photosystem II (PSII have been widely used to estimate the photosynthetic performance of Symbiodinium in hospite. However, since the spatial origin of PSII chlorophyll fluorescence in coral tissues is uncertain, such signals give limited information on depth-integrated photosynthetic performance of the whole tissue. In contrast, detection of absorbance changes in the near infrared (NIR region integrates signals from deeper tissue layers due to weak absorption and multiple scattering of NIR light. While extensively utilized in higher plants, NIR bio-optical techniques are seldom applied to corals. We have developed a non-intrusive measurement method to examine photochemistry of intact corals, based on redox kinetics of the primary electron donor in Photosystem I (P700 and chlorophyll fluorescence kinetics (Fast-Repetition Rate fluorometry, FRRf. Since the redox state of P700 depends on the operation of both PSI and PSII, important information can be obtained on the PSII-PSI intersystem electron transfer kinetics. Under moderate, sub-lethal heat stress treatments (33°C for ~20 min, the coral Pavona decussata exhibited down-regulation of PSII electron transfer kinetics, indicated by slower rates of electron transport from QA to plastoquinone (PQ pool, and smaller relative size of oxidized PQ with concomitant decrease of a specifically-defined P700 kinetics area, which represents the active pool of PSII. The maximum quantum efficiency of PSII (Fv/Fm and functional absorption cross-section of PSIIPSII remained unchanged. Based on the coordinated response of P700 parameters and PSII-PSI electron transport properties, we propose that simple P700 kinetics parameters as employed here serve as indicators of

  20. Conformational dynamics of semiflexibly bridged electron donor-acceptor systems comprising long aliphatic tails

    NARCIS (Netherlands)

    Bleisteiner, B.; Marian, T.; Schneider, S.; Brouwer, A.M.; Verhoeven, J.W.

    2001-01-01

    In continuation of our previous work on the conformational dynamics (harpooning mechanism) of semiflexibly bridged electron donor-acceptor systems we have studied a derivative with two long aliphatic chains tethered to the donor and acceptor moieties, respectively. The fitting of the time- and

  1. Salicylic acid alleviates decreases in photosynthesis under heat stress and accelerates recovery in grapevine leaves

    Directory of Open Access Journals (Sweden)

    Cheng Jian-Shan

    2010-02-01

    Full Text Available Abstract Background Although the effect of salicylic acid (SA on photosynthesis of plants including grapevines has been investigated, very little is yet known about the effects of SA on carbon assimilation and several components of PSII electron transport (donor side, reaction center and acceptor side. In this study, the impact of SA pretreatment on photosynthesis was evaluated in the leaves of young grapevines before heat stress (25°C, during heat stress (43°C for 5 h, and through the following recovery period (25°C. Photosynthetic measures included gas exchange parameters, PSII electron transport, energy dissipation, and Rubisco activation state. The levels of heat shock proteins (HSPs in the chloroplast were also investigated. Results SA did not significantly (P Pn of leaves before heat stress. But, SA did alleviate declines in Pn and Rubisco activition state, and did not alter negative changes in PSII parameters (donor side, acceptor side and reaction center QA under heat stress. Following heat treatment, the recovery of Pn in SA-treated leaves was accelerated compared with the control (H2O-treated leaves, and, donor and acceptor parameters of PSII in SA-treated leaves recovered to normal levels more rapidly than in the controls. Rubisco, however, was not significantly (P Conclusion SA pretreatment alleviated the heat stress induced decrease in Pn mainly through maintaining higher Rubisco activition state, and it accelerated the recovery of Pn mainly through effects on PSII function. These effects of SA may be related in part to enhanced levels of HSP21.

  2. Methanol as an alternative electron donor in chain elongation for butyrate and caproate formation

    OpenAIRE

    Chen, W.S.; Ye, Y.; Steinbusch, K.J.J.; Strik, D.P.B.T.B.; Buisman, C.J.N.

    2016-01-01

    Chain elongation is an emerging mixed culture biotechnology converting acetate into valuable biochemicals by using ethanol as an external electron donor. In this study we proposed to test another potential electron donor, methanol, in chain elongation. Methanol can be produced through the thermochemical conversion of lignocellulosic biowaste. Use of methanol in chain elongation integrates the lignocellulosic feedstocks and the thermochemical platform technologies into chain elongation. After ...

  3. Two-electron spin correlations in precision placed donors in silicon.

    Science.gov (United States)

    Broome, M A; Gorman, S K; House, M G; Hile, S J; Keizer, J G; Keith, D; Hill, C D; Watson, T F; Baker, W J; Hollenberg, L C L; Simmons, M Y

    2018-03-07

    Substitutional donor atoms in silicon are promising qubits for quantum computation with extremely long relaxation and dephasing times demonstrated. One of the critical challenges of scaling these systems is determining inter-donor distances to achieve controllable wavefunction overlap while at the same time performing high fidelity spin readout on each qubit. Here we achieve such a device by means of scanning tunnelling microscopy lithography. We measure anti-correlated spin states between two donor-based spin qubits in silicon separated by 16 ± 1 nm. By utilising an asymmetric system with two phosphorus donors at one qubit site and one on the other (2P-1P), we demonstrate that the exchange interaction can be turned on and off via electrical control of two in-plane phosphorus doped detuning gates. We determine the tunnel coupling between the 2P-1P system to be 200 MHz and provide a roadmap for the observation of two-electron coherent exchange oscillations.

  4. Photosynthetic responses to heat treatments at different temperatures and following recovery in grapevine (Vitis amurensis L.) leaves.

    Science.gov (United States)

    Luo, Hai-Bo; Ma, Ling; Xi, Hui-Feng; Duan, Wei; Li, Shao-Hua; Loescher, Wayne; Wang, Jun-Fang; Wang, Li-Jun

    2011-01-01

    The electron transport chain, Rubisco and stomatal conductance are important in photosynthesis. Little is known about their combined responses to heat treatment at different temperatures and following recovery in grapevines (Vitis spp.) which are often grown in climates with high temperatures. The electron transport function of photosystem II, the activation state of Rubisco and the influence of stomatal behavior were investigated in grapevine leaves during heat treatments and following recovery. High temperature treatments included 35, 40 and 45°C, with 25°C as the control and recovery temperature. Heat treatment at 35°C did not significantly (P>0.05) inhibit net photosynthetic rate (P(n)). However, with treatments at 40 and 45°C, P(n) was decreased, accompanied by an increase in substomatal CO(2) concentration (C(i)), decreases in stomatal conductance (g(s)) and the activation state of Rubisco, and inhibition of the donor side and the reaction center of PSII. The acceptor side of PSII was inhibited at 45°C but not at 40°C. When grape leaves recovered following heat treatment, P(n), g(s) and the activation state of Rubisco also increased, and the donor side and the reaction center of PSII recovered. The increase in P(n) during the recovery period following the second 45°C stress was slower than that following the 40°C stress, and these increases corresponded to the donor side of PSII and the activation state of Rubisco. Heat treatment at 35°C did not significantly (P>0.05) influence photosynthesis. The decrease of P(n) in grape leaves exposed to more severe heat stress (40 or 45°C) was mainly attributed to three factors: the activation state of Rubisco, the donor side and the reaction center of PSII. However, the increase of P(n) in grape leaves following heat stress was also associated with a stomatal response. The acceptor side of PSII in grape leaves was responsive but less sensitive to heat stress.

  5. Longitudinal and transverse spin dynamics of donor-bound electrons in fluorine-doped ZnSe: Spin inertia versus Hanle effect

    Science.gov (United States)

    Heisterkamp, F.; Zhukov, E. A.; Greilich, A.; Yakovlev, D. R.; Korenev, V. L.; Pawlis, A.; Bayer, M.

    2015-06-01

    The spin dynamics of strongly localized donor-bound electrons in fluorine-doped ZnSe epilayers is studied using pump-probe Kerr rotation techniques. A method exploiting the spin inertia is developed and used to measure the longitudinal spin relaxation time T1 in a wide range of magnetic fields, temperatures, and pump densities. The T1 time of the donor-bound electron spin of about 1.6 μ s remains nearly constant for external magnetic fields varied from zero up to 2.5 T (Faraday geometry) and in a temperature range 1.8-45 K. These findings impose severe restrictions on possible spin relaxation mechanisms. In our opinion they allow us to rule out scattering between free and donor-bound electrons, jumping of electrons between different donor centers, scattering between phonons and donor-bound electrons, and with less certainty charge fluctuations in the environment of the donors caused by the 1.5 ps pulsed laser excitation.

  6. Bond of donor-acceptor interaction in metal-ligand system with energies of Fermi electrons

    International Nuclear Information System (INIS)

    Vlasov, Yu.V.; Khentov, V.Ya.; Velikanova, L.N.; Semchenko, V.V.

    1993-01-01

    Role of quantum nature of metal (W, Mo and others) in donor-acceptor interaction of metal salicylalaniline - aprotic solvent was discussed. The dependence of dissolution rate and activation energy of donor-acceptor interaction on electron energy was established

  7. Proton-Coupled Electron Transfer and a Tyrosine-Histidine Pair in a Photosystem II-Inspired β-Hairpin Maquette: Kinetics on the Picosecond Time Scale.

    Science.gov (United States)

    Pagba, Cynthia V; McCaslin, Tyler G; Chi, San-Hui; Perry, Joseph W; Barry, Bridgette A

    2016-02-25

    Photosystem II (PSII) and ribonucleotide reductase employ oxidation and reduction of the tyrosine aromatic ring in radical transport pathways. Tyrosine-based reactions involve either proton-coupled electron transfer (PCET) or electron transfer (ET) alone, depending on the pH and the pKa of tyrosine's phenolic oxygen. In PSII, a subset of the PCET reactions are mediated by a tyrosine-histidine redox-driven proton relay, YD-His189. Peptide A is a PSII-inspired β-hairpin, which contains a single tyrosine (Y5) and histidine (H14). Previous electrochemical characterization indicated that Peptide A conducts a net PCET reaction between Y5 and H14, which have a cross-strand π-π interaction. The kinetic impact of H14 has not yet been explored. Here, we address this question through time-resolved absorption spectroscopy and 280-nm photolysis, which generates a neutral tyrosyl radical. The formation and decay of the neutral tyrosyl radical at 410 nm were monitored in Peptide A and its variant, Peptide C, in which H14 is replaced by cyclohexylalanine (Cha14). Significantly, both electron transfer (ET, pL 11, L = lyonium) and PCET (pL 9) were accelerated in Peptide A and C, compared to model tyrosinate or tyrosine at the same pL. Increased electronic coupling, mediated by the peptide backbone, can account for this rate acceleration. Deuterium exchange gave no significant solvent isotope effect in the peptides. At pL 9, but not at pL 11, the reaction rate decreased when H14 was mutated to Cha14. This decrease in rate is attributed to an increase in reorganization energy in the Cha14 mutant. The Y5-H14 mechanism in Peptide A is reminiscent of proton- and electron-transfer events involving YD-H189 in PSII. These results document a mechanism by which proton donors and acceptors can regulate the rate of PCET reactions.

  8. The spin relaxation of nitrogen donors in 6H SiC crystals as studied by the electron spin echo method

    Science.gov (United States)

    Savchenko, D.; Shanina, B.; Kalabukhova, E.; Pöppl, A.; Lančok, J.; Mokhov, E.

    2016-04-01

    We present the detailed study of the spin kinetics of the nitrogen (N) donor electrons in 6H SiC wafers grown by the Lely method and by the sublimation "sandwich method" (SSM) with a donor concentration of about 1017 cm-3 at T = 10-40 K. The donor electrons of the N donors substituting quasi-cubic "k1" and "k2" sites (Nk1,k2) in both types of the samples revealed the similar temperature dependence of the spin-lattice relaxation rate (T1-1), which was described by the direct one-phonon and two-phonon processes induced by the acoustic phonons proportional to T and to T9, respectively. The character of the temperature dependence of the T1-1 for the donor electrons of N substituting hexagonal ("h") site (Nh) in both types of 6H SiC samples indicates that the donor electrons relax through the fast-relaxing centers by means of the cross-relaxation process. The observed enhancement of the phase memory relaxation rate (Tm-1) with the temperature increase for the Nh donors in both types of the samples, as well as for the Nk1,k2 donors in Lely grown 6H SiC, was explained by the growth of the free electron concentration with the temperature increase and their exchange scattering at the N donor centers. The observed significant shortening of the phase memory relaxation time Tm for the Nk1,k2 donors in the SSM grown sample with the temperature lowering is caused by hopping motion of the electrons between the occupied and unoccupied states of the N donors at Nh and Nk1,k2 sites. The impact of the N donor pairs, triads, distant donor pairs formed in n-type 6H SiC wafers on the spin relaxation times was discussed.

  9. Photosystem II-cyclic electron flow powers exceptional photoprotection and record growth in the microalga Chlorella ohadii.

    Science.gov (United States)

    Ananyev, Gennady; Gates, Colin; Kaplan, Aaron; Dismukes, G Charles

    2017-11-01

    The desert microalga Chlorella ohadii was reported to grow at extreme light intensities with minimal photoinhibition, tolerate frequent de/re-hydrations, yet minimally employs antenna-based non-photochemical quenching for photoprotection. Here we investigate the molecular mechanisms by measuring Photosystem II charge separation yield (chlorophyll variable fluorescence, Fv/Fm) and flash-induced O 2 yield to measure the contributions from both linear (PSII-LEF) and cyclic (PSII-CEF) electron flow within PSII. Cells grow increasingly faster at higher light intensities (μE/m 2 /s) from low (20) to high (200) to extreme (2000) by escalating photoprotection via shifting from PSII-LEF to PSII-CEF. This shifts PSII charge separation from plastoquinone reduction (PSII-LEF) to plastoquinol oxidation (PSII-CEF), here postulated to enable proton gradient and ATP generation that powers photoprotection. Low light-grown cells have unusually small antennae (332 Chl/PSII), use mainly PSII-LEF (95%) and convert 40% of PSII charge separations into O 2 (a high O 2 quantum yield of 0.06mol/mol PSII/flash). High light-grown cells have smaller antenna and lower PSII-LEF (63%). Extreme light-grown cells have only 42 Chl/PSII (no LHCII antenna), minimal PSII-LEF (10%), and grow faster than any known phototroph (doubling time 1.3h). Adding a synthetic quinone in excess to supplement the PQ pool fully uncouples PSII-CEF from its natural regulation and produces maximum PSII-LEF. Upon dark adaptation PSII-LEF rapidly reverts to PSII-CEF, a transient protection mechanism to conserve water and minimize the cost of antenna biosynthesis. The capacity of the electron acceptor pool (plastoquinone pool), and the characteristic times for exchange of (PQH 2 ) B with PQ pool and reoxidation of (PQH 2 ) pool were determined. Copyright © 2017. Published by Elsevier B.V.

  10. Electronic spectrum of a deterministic single-donor device in silicon

    International Nuclear Information System (INIS)

    Fuechsle, Martin; Miwa, Jill A.; Mahapatra, Suddhasatta; Simmons, Michelle Y.; Hollenberg, Lloyd C. L.

    2013-01-01

    We report the fabrication of a single-electron transistor (SET) based on an individual phosphorus dopant that is deterministically positioned between the dopant-based electrodes of a transport device in silicon. Electronic characterization at mK-temperatures reveals a charging energy that is very similar to the value expected for isolated P donors in a bulk Si environment. Furthermore, we find indications for bulk-like one-electron excited states in the co-tunneling spectrum of the device, in sharp contrast to previous reports on transport through single dopants

  11. Biotechnological aspects of sulfate reduction with methane as electron donor

    NARCIS (Netherlands)

    Meulepas, R.J.W.; Stams, A.J.M.; Lens, P.N.L.

    2010-01-01

    Biological sulfate reduction can be used for the removal and recovery of oxidized sulfur compounds and metals from waste streams. However, the costs of conventional electron donors, like hydrogen and ethanol, limit the application possibilities. Methane from natural gas or biogas would be a more

  12. Ultrafast electron transfer in all-carbon-based SWCNT-C60 donor-acceptor nanoensembles connected by poly(phenylene-ethynylene) spacers

    Science.gov (United States)

    Barrejón, Myriam; Gobeze, Habtom B.; Gómez-Escalonilla, María J.; Fierro, José Luis G.; Zhang, Minfang; Yudasaka, Masako; Iijima, Sumio; D'Souza, Francis; Langa, Fernando

    2016-08-01

    Building all-carbon based functional materials for light energy harvesting applications could be a solution to tackle and reduce environmental carbon output. However, development of such all-carbon based donor-acceptor hybrids and demonstration of photoinduced charge separation in such nanohybrids is a challenge since in these hybrids part of the carbon material should act as an electron donating or accepting photosensitizer while the second part should fulfil the role of an electron acceptor or donor. In the present work, we have successfully addressed this issue by synthesizing covalently linked all-carbon-based donor-acceptor nanoensembles using single-walled carbon nanotubes (SWCNTs) as the donor and C60 as the acceptor. The donor-acceptor entities in the nanoensembles were connected by phenylene-ethynylene spacer units to achieve better electronic communication and to vary the distance between the components. These novel SWCNT-C60 nanoensembles have been characterized by a number of techniques, including TGA, FT-IR, Raman, AFM, absorbance and electrochemical methods. The moderate number of fullerene addends present on the side-walls of the nanotubes largely preserved the electronic structure of the nanotubes. The thermodynamic feasibility of charge separation in these nanoensembles was established using spectral and electrochemical data. Finally, occurrence of ultrafast electron transfer from the excited nanotubes in these donor-acceptor nanohybrids has been established by femtosecond transient absorption studies, signifying their utility in building light energy harvesting devices.Building all-carbon based functional materials for light energy harvesting applications could be a solution to tackle and reduce environmental carbon output. However, development of such all-carbon based donor-acceptor hybrids and demonstration of photoinduced charge separation in such nanohybrids is a challenge since in these hybrids part of the carbon material should act as an

  13. Comparative study of donor-induced quantum dots in Si nano-channels by single-electron transport characterization and Kelvin probe force microscopy

    International Nuclear Information System (INIS)

    Tyszka, K.; Moraru, D.; Samanta, A.; Mizuno, T.; Tabe, M.; Jabłoński, R.

    2015-01-01

    We comparatively study donor-induced quantum dots in Si nanoscale-channel transistors for a wide range of doping concentration by analysis of single-electron tunneling transport and surface potential measured by Kelvin probe force microscopy (KPFM). By correlating KPFM observations of donor-induced potential landscapes with simulations based on Thomas-Fermi approximation, it is demonstrated that single-electron tunneling transport at lowest gate voltages (for smallest coverage of screening electrons) is governed most frequently by only one dominant quantum dot, regardless of doping concentration. Doping concentration, however, primarily affects the internal structure of the quantum dot. At low concentrations, individual donors form most of the quantum dots, i.e., “donor-atom” quantum dots. In contrast, at high concentrations above metal-insulator transition, closely placed donors instead of individual donors form more complex quantum dots, i.e., “donor-cluster” quantum dots. The potential depth of these “donor-cluster” quantum dots is significantly reduced by increasing gate voltage (increasing coverage of screening electrons), leading to the occurrence of multiple competing quantum dots

  14. The spin relaxation of nitrogen donors in 6H SiC crystals as studied by the electron spin echo method

    Energy Technology Data Exchange (ETDEWEB)

    Savchenko, D., E-mail: dariyasavchenko@gmail.com [Institute of Physics of the Czech Academy of Sciences, Prague 182 21 (Czech Republic); National Technical University of Ukraine “Kyiv Polytechnic Institute,” Kyiv 03056 (Ukraine); Shanina, B.; Kalabukhova, E. [V.E. Lashkaryov Institute of Semiconductor Physics, NASU, Kyiv 03028 (Ukraine); Pöppl, A. [Institute of Experimental Physics II, Leipzig University, Leipzig D-04103 (Germany); Lančok, J. [Institute of Physics of the Czech Academy of Sciences, Prague 182 21 (Czech Republic); Mokhov, E. [A.F. Ioffe Physical Technical Institute, RAS, St. Petersburg 194021 (Russian Federation); Saint-Petersburg National Research University of Information Technologies, Mechanics and Optics, St. Petersburg 19710 (Russian Federation)

    2016-04-07

    We present the detailed study of the spin kinetics of the nitrogen (N) donor electrons in 6H SiC wafers grown by the Lely method and by the sublimation “sandwich method” (SSM) with a donor concentration of about 10{sup 17 }cm{sup −3} at T = 10–40 K. The donor electrons of the N donors substituting quasi-cubic “k1” and “k2” sites (N{sub k1,k2}) in both types of the samples revealed the similar temperature dependence of the spin-lattice relaxation rate (T{sub 1}{sup −1}), which was described by the direct one-phonon and two-phonon processes induced by the acoustic phonons proportional to T and to T{sup 9}, respectively. The character of the temperature dependence of the T{sub 1}{sup −1} for the donor electrons of N substituting hexagonal (“h”) site (N{sub h}) in both types of 6H SiC samples indicates that the donor electrons relax through the fast-relaxing centers by means of the cross-relaxation process. The observed enhancement of the phase memory relaxation rate (T{sub m}{sup −1}) with the temperature increase for the N{sub h} donors in both types of the samples, as well as for the N{sub k1,k2} donors in Lely grown 6H SiC, was explained by the growth of the free electron concentration with the temperature increase and their exchange scattering at the N donor centers. The observed significant shortening of the phase memory relaxation time T{sub m} for the N{sub k1,k2} donors in the SSM grown sample with the temperature lowering is caused by hopping motion of the electrons between the occupied and unoccupied states of the N donors at N{sub h} and N{sub k1,k2} sites. The impact of the N donor pairs, triads, distant donor pairs formed in n-type 6H SiC wafers on the spin relaxation times was discussed.

  15. Control of charge transfer by conformational and electronic effects: Donor-donor and donor-acceptor phenyl pyrroles

    International Nuclear Information System (INIS)

    Neubauer, Antje; Bendig, Juergen; Rettig, Wolfgang

    2009-01-01

    Derivatives of N-pyrrolobenzene with a para-donor and a para-acceptor substituent on the benzene ring are compared. It is shown that by a suitable increase of the donor strength of the pyrrolo group, CT fluorescence can be achieved even for donor-donor-substituted benzenes. The ICT emission for sterically hindered compounds is more forbidden than that of unhindered phenyl pyrroles. This suggests conformational effects which induce a narrower twist angle distribution around a perpendicular minimum in the excited state.

  16. Myrsinoic A acid and its derivative: in vitro inhibitors of photosynthesis; Acido myrsinoico A e derivado: inibidores da fotossintese in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Burger, Marcela Carmen de M.; Oliveira, Gracielle S. de; Menezes, Antonio Carlos S [Universidade Estadual de Goias, Anapolis, GO (Brazil). Unidade Universitaria de Ciencias Exatas e Tecnologicas; Vieira, Paulo Cezar; Silva, Maria Fatima das G.F. da [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil). Dept. de Quimica; Veiga, Thiago A.M., E-mail: tveiga@unifesp.br [Universidade Federal de Sao Paulo (UNIFESP), SP (Brazil). Inst. de Ciencias Ambientais, Quimicas e Farmaceuticas. Dept. de Ciencias Exatas e da Terra

    2012-07-01

    Myrsinoic A acid, isolated from Myrsine cuneifolia and its hydrogenated derivative had their effect on photosynthesis tested. The compounds inhibited the electron flow (basal, phosphorylating and uncoupled) from water to methyl viologen; therefore, they act as Hill reaction inhibitors in spinach thylakoids. They inhibited partial reactions of PSII electron flow from water to 2,5-dichloro-1,4-benzoquinone, from water to sodium silicomolybdate, and partially electron flow from diphenylcarbazide to 2,6-dichloroindophenol. Their inhibition sites were at the donor and acceptor sides of PSII, between P{sub 680} and Q{sub A}. Chlorophyll {alpha} fluorescence measurements confirmed the behavior of the compounds (pool of quinones). (author)

  17. Myrsinoic A acid and its derivative: in vitro inhibitors of photosynthesis

    International Nuclear Information System (INIS)

    Burger, Marcela Carmen de M.; Oliveira, Gracielle S. de; Menezes, Antonio Carlos S.; Vieira, Paulo Cezar; Silva, Maria Fatima das G.F. da; Veiga, Thiago A.M.

    2012-01-01

    Myrsinoic A acid, isolated from Myrsine cuneifolia and its hydrogenated derivative had their effect on photosynthesis tested. The compounds inhibited the electron flow (basal, phosphorylating and uncoupled) from water to methyl viologen; therefore, they act as Hill reaction inhibitors in spinach thylakoids. They inhibited partial reactions of PSII electron flow from water to 2,5-dichloro-1,4-benzoquinone, from water to sodium silicomolybdate, and partially electron flow from diphenylcarbazide to 2,6-dichloroindophenol. Their inhibition sites were at the donor and acceptor sides of PSII, between P 680 and Q A . Chlorophyll α fluorescence measurements confirmed the behavior of the compounds (pool of quinones). (author)

  18. Lack of a peroxiredoxin suppresses the lethality of cells devoid of electron donors by channelling electrons to oxidized ribonucleotide reductase.

    Science.gov (United States)

    Boronat, Susanna; Domènech, Alba; Carmona, Mercè; García-Santamarina, Sarela; Bañó, M Carmen; Ayté, José; Hidalgo, Elena

    2017-06-01

    The thioredoxin and glutaredoxin pathways are responsible of recycling several enzymes which undergo intramolecular disulfide bond formation as part of their catalytic cycles such as the peroxide scavengers peroxiredoxins or the enzyme ribonucleotide reductase (RNR). RNR, the rate-limiting enzyme of deoxyribonucleotide synthesis, is an essential enzyme relying on these electron flow cascades for recycling. RNR is tightly regulated in a cell cycle-dependent manner at different levels, but little is known about the participation of electron donors in such regulation. Here, we show that cytosolic thioredoxins Trx1 and Trx3 are the primary electron donors for RNR in fission yeast. Unexpectedly, trx1 transcript and Trx1 protein levels are up-regulated in a G1-to-S phase-dependent manner, indicating that the supply of electron donors is also cell cycle-regulated. Indeed, genetic depletion of thioredoxins triggers a DNA replication checkpoint ruled by Rad3 and Cds1, with the final goal of up-regulating transcription of S phase genes and constitutive RNR synthesis. Regarding the thioredoxin and glutaredoxin cascades, one combination of gene deletions is synthetic lethal in fission yeast: cells lacking both thioredoxin reductase and cytosolic dithiol glutaredoxin. We have isolated a suppressor of this lethal phenotype: a mutation at the Tpx1-coding gene, leading to a frame shift and a loss-of-function of Tpx1, the main client of electron donors. We propose that in a mutant strain compromised in reducing equivalents, the absence of an abundant and competitive substrate such as the peroxiredoxin Tpx1 has been selected as a lethality suppressor to favor RNR function at the expense of the non-essential peroxide scavenging function, to allow DNA synthesis and cell growth.

  19. Lack of a peroxiredoxin suppresses the lethality of cells devoid of electron donors by channelling electrons to oxidized ribonucleotide reductase.

    Directory of Open Access Journals (Sweden)

    Susanna Boronat

    2017-06-01

    Full Text Available The thioredoxin and glutaredoxin pathways are responsible of recycling several enzymes which undergo intramolecular disulfide bond formation as part of their catalytic cycles such as the peroxide scavengers peroxiredoxins or the enzyme ribonucleotide reductase (RNR. RNR, the rate-limiting enzyme of deoxyribonucleotide synthesis, is an essential enzyme relying on these electron flow cascades for recycling. RNR is tightly regulated in a cell cycle-dependent manner at different levels, but little is known about the participation of electron donors in such regulation. Here, we show that cytosolic thioredoxins Trx1 and Trx3 are the primary electron donors for RNR in fission yeast. Unexpectedly, trx1 transcript and Trx1 protein levels are up-regulated in a G1-to-S phase-dependent manner, indicating that the supply of electron donors is also cell cycle-regulated. Indeed, genetic depletion of thioredoxins triggers a DNA replication checkpoint ruled by Rad3 and Cds1, with the final goal of up-regulating transcription of S phase genes and constitutive RNR synthesis. Regarding the thioredoxin and glutaredoxin cascades, one combination of gene deletions is synthetic lethal in fission yeast: cells lacking both thioredoxin reductase and cytosolic dithiol glutaredoxin. We have isolated a suppressor of this lethal phenotype: a mutation at the Tpx1-coding gene, leading to a frame shift and a loss-of-function of Tpx1, the main client of electron donors. We propose that in a mutant strain compromised in reducing equivalents, the absence of an abundant and competitive substrate such as the peroxiredoxin Tpx1 has been selected as a lethality suppressor to favor RNR function at the expense of the non-essential peroxide scavenging function, to allow DNA synthesis and cell growth.

  20. Interplay of alternative conjugated pathways and steric interactions on the electronic and optical properties of donor-acceptor conjugated polymers

    KAUST Repository

    Lima, Igo T.; Risko, Chad; Aziz, Saadullah Gary; Da Silva Filho, Demé trio A Da Silva; Bredas, Jean-Luc

    2014-01-01

    Donor-acceptor π-conjugated copolymers are of interest for a wide range of electronic applications, including field-effect transistors and solar cells. Here, we present a density functional theory (DFT) study of the impact of varying the conjugation pathway on the geometric, electronic, and optical properties of donor-acceptor systems. We consider both linear ("in series"), traditional conjugation among the donor-acceptor moieties versus structures where the acceptor units are appended orthogonally to the linear, donor-only conjugated backbone. Long-range-corrected hybrid functionals are used in the investigation with the values of the tuned long-range separation parameters providing an estimate of the extent of conjugation as a function of the oligomer architecture. Considerable differences in the electronic and optical properties are determined as a function of the nature of the conjugation pathway, features that should be taken into account in the design of donor-acceptor copolymers.

  1. Two-dimensional electron states bound to an off-plane donor in a magnetic field

    International Nuclear Information System (INIS)

    Bruno-Alfonso, A; Candido, L; Hai, G-Q

    2010-01-01

    The states of an electron confined in a two-dimensional (2D) plane and bound to an off-plane donor impurity center, in the presence of a magnetic field, are investigated. The energy levels of the ground state and the first three excited states are calculated variationally. The binding energy and the mean orbital radius of these states are obtained as a function of the donor center position and the magnetic field strength. The limiting cases are discussed for an in-plane donor impurity (i.e. a 2D hydrogen atom) as well as for the donor center far away from the 2D plane in strong magnetic fields, which corresponds to a 2D harmonic oscillator.

  2. Methanol as electron donor for thermophilic biological sulfate and sulfite reduction

    NARCIS (Netherlands)

    Weijma, J.

    2000-01-01

    Sulfur oxyanions (e.g. sulfate, sulfite) can be removed from aqueous waste- and process streams by biological reduction with a suitable electron donor to sulfide, followed by partial chemical or biological oxidation of sulfide to elemental sulfur. The aim of the research described in this

  3. Design of butterfly type organic dye sensitizers with double electron donors: The first principle study

    Science.gov (United States)

    Yang, Zhenqing; Shao, Di; Li, Juan; Tang, Lian; Shao, Changjin

    2018-05-01

    In this work, we designed a series of butterfly type organic dyes, named ME07-ME13 by introducing such as triphenylamine, phenothiazine, coumarin groups etc. as electron donors and further investigated their absorption spectra using density functional theory (DFT) and time-dependent DFT (TDDFT). All designed dyes cover the entire visible absorption spectrum from 300 to 800 nm. It's fascinating that ME13 molecule has two absorption peak and the molar coefficient of two absorption peaks are above 4.645 × 104 M-1·cm-1. The light absorption area of ME13 exhibits an increment of 16.5-19.1% compared to ME07-ME12. Furthermore, we performed a detailed analysis on their geometrical and electronic properties, including molecular structures, energy levels, light harvesting efficiency (LHE), driving force (ΔGinject), regeneration (ΔGregen),electron dipole moments (μnormal), intermolecular electron transfer and dye/(TiO2)38 system electron transitions. The results of calculation reveal that double coumarin donors in ME13 are promising functional groups for butterfly type organic dye sensitizers. It is expected that the design of double donors can provide a new strategy and guidance for the investigation in high efficiency dye-sensitized devices.

  4. Two-electron states of a group-V donor in silicon from atomistic full configuration interactions

    Science.gov (United States)

    Tankasala, Archana; Salfi, Joseph; Bocquel, Juanita; Voisin, Benoit; Usman, Muhammad; Klimeck, Gerhard; Simmons, Michelle Y.; Hollenberg, Lloyd C. L.; Rogge, Sven; Rahman, Rajib

    2018-05-01

    Two-electron states bound to donors in silicon are important for both two-qubit gates and spin readout. We present a full configuration interaction technique in the atomistic tight-binding basis to capture multielectron exchange and correlation effects taking into account the full band structure of silicon and the atomic-scale granularity of a nanoscale device. Excited s -like states of A1 symmetry are found to strongly influence the charging energy of a negative donor center. We apply the technique on subsurface dopants subjected to gate electric fields and show that bound triplet states appear in the spectrum as a result of decreased charging energy. The exchange energy, obtained for the two-electron states in various confinement regimes, may enable engineering electrical control of spins in donor-dot hybrid qubits.

  5. Heterogeneous semiconductor photocatalysts for hydrogen production from aqueous solutions of electron donors

    Science.gov (United States)

    Kozlova, E. A.; Parmon, V. N.

    2017-09-01

    Current views on heterogeneous photocatalysts for visible- and near-UV-light-driven production of molecular hydrogen from water and aqueous solutions of inorganic and organic electron donors are analyzed and summarized. Main types of such photocatalysts and methods for their preparation are considered. Particular attention is paid to semiconductor photocatalysts based on sulfides that are known to be sensitive to visible light. The known methods for increasing the quantum efficiency of the target process are discussed, including design of the structure, composition and texture of semiconductor photocatalysts and variation of the medium pH and the substrate and photocatalyst concentrations. Some important aspects of the activation and deactivation of sulfide photocatalysts and the evolution of their properties in the course of hydrogen production processes in the presence of various types of electron donors are analyzed. The bibliography includes 276 references.

  6. Electronic structure and properties of uranyl compounds. Problems of electron-donor conception

    International Nuclear Information System (INIS)

    Glebov, V.A.

    1982-01-01

    Comparison of the series of the ligand mutual substitution in the uranyl compounds with the ligand series of d-elements and with the uranyl ''covalent model'', is made. The data on ionization potentials of the ligand higher valent levels and on the structure of some uranyl nitrate compounds are considered. It is concluded that the mechanism of the ligand effect on the properties of uranyl grouping is more complex, than it is supposed in the traditional representations on the nature of electron-donor interactions in the uranyl compounds

  7. Electronic states of on- and off-center donors in quantum rings of finite width

    International Nuclear Information System (INIS)

    Lima, R.P.A.; Amado, M.

    2008-01-01

    The electronic states of a hydrogenic donor in two-dimensional quantum rings are calculated by taking into account the finite width of the potential well in the ring. In addition, a strong magnetic field is applied perpendicular to the quantum ring. Using the effective-mass approximation at the Γ valley, the radial Hamiltonian for the envelope-function is exactly diagonalized in the case of on-center donors. The corresponding energy levels for different angular momenta are studied as a function of the applied magnetic field. In the case of off-center donors, a perturbation approach is considered and its limitations are discussed. Finally, we calculate the absorption spectra and oscillator strength for different intraband transitions, specifically for on-center donors

  8. Deletion of Proton Gradient Regulation 5 (PGR5) and PGR5-Like 1 (PGRL1) proteins promote sustainable light-driven hydrogen production in Chlamydomonas reinhardtii due to increased PSII activity under sulfur deprivation.

    Science.gov (United States)

    Steinbeck, Janina; Nikolova, Denitsa; Weingarten, Robert; Johnson, Xenie; Richaud, Pierre; Peltier, Gilles; Hermann, Marita; Magneschi, Leonardo; Hippler, Michael

    2015-01-01

    Continuous hydrogen photo-production under sulfur deprivation was studied in the Chlamydomonas reinhardtii pgr5 pgrl1 double mutant and respective single mutants. Under medium light conditions, the pgr5 exhibited the highest performance and produced about eight times more hydrogen than the wild type, making pgr5 one of the most efficient hydrogen producer reported so far. The pgr5 pgrl1 double mutant showed an increased hydrogen burst at the beginning of sulfur deprivation under high light conditions, but in this case the overall amount of hydrogen produced by pgr5 pgrl1 as well as pgr5 was diminished due to photo-inhibition and increased degradation of PSI. In contrast, the pgrl1 was effective in hydrogen production in both high and low light. Blocking photosynthetic electron transfer by DCMU stopped hydrogen production almost completely in the mutant strains, indicating that the main pathway of electrons toward enhanced hydrogen production is via linear electron transport. Indeed, PSII remained more active and stable in the pgr mutant strains as compared to the wild type. Since transition to anaerobiosis was faster and could be maintained due to an increased oxygen consumption capacity, this likely preserves PSII from photo-oxidative damage in the pgr mutants. Hence, we conclude that increased hydrogen production under sulfur deprivation in the pgr5 and pgrl1 mutants is caused by an increased stability of PSII permitting sustainable light-driven hydrogen production in Chlamydomonas reinhardtii.

  9. Application of time release electron donors and electron acceptors for accelerated bioremediation

    International Nuclear Information System (INIS)

    Joksimovich, V.; Koenigsberg, S.

    2002-01-01

    Currently, there are limited options for cost effective approaches to soil and groundwater contamination. One technology that has proven its potential involves the use of time release electron acceptors to accelerate the natural bioattenuation of aerobically degradable compounds and time release electron donors to accelerate the natural bioattenuation of anaerobic compounds. This technology enjoys its reputations as a sensible strategy for engineering accelerated bioattenuation, because it delivers results while 1) limiting or eliminating design, capital and management costs and 2) allowing for the engineering of a low-impact application and a subsequently invisible remediation process. Oxygen Release Compound (ORC ) is proprietary formulation of intercalated magnesium peroxide that releases oxygen slowly, for about a year, and facilitates the aerobic degradation of a range of environmental contaminants including petroleum hydrocarbons, certain chlorinated hydrocarbons, ether oxygenates and nitroaromatics. The history of ORC's introduction and acceptance represents a model for the evolution of an innovative technology. This statement comes by virtue of the fact that since 1994 ORC has been used on over 7000 sites worldwide and has been the subject of an extensive body of literature. Hydrogen Release Compound (HRC) is also a proprietary polylactate ester that is food grade and, upon being deposited into the aquifer, is slowly hydrolyzed to release lactic acid and other organic acid derivatives for about one to two years. The organic acids are fermented to hydrogen, which in turn donates electrons that drive reductive bioattenuation processes. This is primarily directed at a wide range of chlorinated hydrocarbons, but can be applied to the remediation of metals by redox induced precipitation. HRC has now been used on over 220 sites, which we believe make it the most widely used electron donor for accelerating bioattenuation. ORC and HRC can be configured as a

  10. Circumvention of over-excitation of PSII by maintaining electron transport rate in leaves of four cotton genotypes developed under long-term drought.

    Science.gov (United States)

    Kitao, M; Lei, T T

    2007-01-01

    We investigated the patterns of response to a long-term drought in the field in cotton cultivars (genotypes) with known differences in their drought tolerance. Four cotton genotypes with varying physiological and morphological traits, suited to different cropping conditions, were grown in the field and subjected to a long-term moderate drought. In general, cotton leaves developed under drought had significantly higher area-based leaf nitrogen content (N (area)) than those under well irrigation. Droughted plants showed a lower light-saturated net photosynthetic rate (A (sat)) with lower stomatal conductance (g (s)) and intercellular CO (2) concentration (C (i)) than irrigated ones. Based on the responses of A (sat) to g (s) and C (i), there was no decreasing trend in A (sat) at a given g (s) and C (i) in droughted leaves, suggesting that the decline in A (sat) in field-grown cotton plants under a long-term drought can be attributed mainly to stomatal closure, but not to nonstomatal limitations. There was little evidence of an increase in thermal energy dissipation as indicated by the lack of a decrease in the photochemical efficiency of open PSII (F (v)'/F (m)') in droughted plants. On the basis of electron transport (ETR) and photochemical quenching (q (P)), however, we found evidence indicating that droughted cotton plants can circumvent the risk of excessive excitation energy in photosystem (PS) II by maintaining higher electron transport rates associated with higher N (area), even while photosynthetic rates were reduced by stomatal closure.

  11. A series of luminescent Re(I) complexes with electron-donor/acceptor moieties: Synthesis, characterization, and photoluminescence

    International Nuclear Information System (INIS)

    Ge Hu; Qing She; Lei Guo

    2012-01-01

    In this paper, we synthesize three Re(I) complexes of Re(CO) 3 (PPO)Br, Re(CO) 3 (PTO)Br, and Re(CO) 3 (PBI)Br, where PPO=2-phenyl-5-(pyridin-2-yl)-1,3,4-oxadiazole, PTO=2-(pyridin-2-yl)-5-p-tolyl-1,3,4-oxadiazole, PBI=2-(pyridin-2-yl)-1H-benzo[d]imidazole. Their single crystals and photophysical properties are measured and discussed in detail. The correlation between ligand structure and corresponding PL characteristics of Re(I) complex has been investigated. It is found that a ligand with strong electron-donor can efficiently increase both absorption and emissive energy of Re(I) complex. In addition, electron-rich ligand can increase the electron density of the complex and thus enhance the oscillator strength of electronic transition, improving the photoluminescence performance. - Highlights: ► Three novel phosphorescent Re(I) complexes are synthesized. ► Molecular structures, photophysical, and electronic properties are studied. ► Strong electron-donor can increase emissive energy. ► Electron-rich ligand can enhance the oscillator strength of electronic transition.

  12. PHOTOINHIBITION OF PSII IN EMILIANIA HUXLEYI (HAPTOPHYTA) UNDER HIGH LIGHT STRESS: THE ROLES OF PHOTOACCLIMATION, PHOTOPROTECTION, AND PHOTOREPAIR(1).

    Science.gov (United States)

    Ragni, Maria; Airs, Ruth L; Leonardos, Nikos; Geider, Richard J

    2008-06-01

    The response of the coccolithophorid Emiliania huxleyi (Lohmann) W. H. Hay et H. Mohler to acute exposure to high photon flux densities (PFD) was examined in terms of PSII photoinhibition, photoprotection, and photorepair. The time and light dependencies of these processes were characterized as a function of the photoacclimation state of the alga. Low-light (LL) acclimated cells displayed a higher degree of photoinhibition, measured as decline in Fv /Fm , than high-light (HL) acclimated cells. However, HL cultures were more susceptible to photodamage but also more capable of compensating for it by performing a faster repair cycle. The relation between gross photoinhibition (observed in the presence of an inhibitor of repair) and PFD to which the algae were exposed deviated from linearity at high PFD, which calls into question the universality of current concepts of photoinhibition in mechanistic models. The light dependence of the de-epoxidation state (DPS) of the xanthophyll cycle (XC) pigments on the timescale of hours was the same in cells acclimated to LL and HL. However, HL cells were more efficient in realizing nonphotochemical quenching (NPQ) on short timescales, most likely due to a larger XC pool. LL cells displayed an increase in the PSII effective cross-section (σPSII ) as a result of photoinhibition, which was observed also in HL cells when net photoinhibition was induced by blocking the D1 repair cycle. The link between σPSII and photoinhibition suggests that the population of PSII reaction centers (RCIIs) of E. huxleyi shares a common antenna, according to a "lake" organization of the light-harvesting complex. © 2008 Phycological Society of America.

  13. Magnetic insulation of secondary electrons in plasma source ion implantation

    International Nuclear Information System (INIS)

    Rej, D.J.; Wood, B.P.; Faehl, R.J.; Fleischmann, H.H.

    1993-01-01

    The uncontrolled loss of accelerated secondary electrons in plasma source ion implantation (PSII) can significantly reduce system efficiency and poses a potential x-ray hazard. This loss might be reduced by a magnetic field applied near the workpiece. The concept of magnetically-insulated PSII is proposed, in which secondary electrons are trapped to form a virtual cathode layer near the workpiece surface where the local electric field is essentially eliminated. Subsequent electrons that are emitted can then be reabsorbed by the workpiece. Estimates of anomalous electron transport from microinstabilities are made. Insight into the process is gained with multi-dimensional particle-in-cell simulations

  14. Functional update of the auxiliary proteins PsbW, PsbY, HCF136, PsbN, TerC and ALB3 in maintenance and assembly of PSII

    Directory of Open Access Journals (Sweden)

    Magdalena ePlöchinger

    2016-04-01

    Full Text Available Assembly of Photosystem (PS II in plants has turned out to be a highly complex process which, at least in part, occurs in a sequential order and requires many more auxiliary proteins than subunits present in the complex. Owing to the high evolutionary conservation of the subunit composition and the three-dimensional structure of the PSII complex, most plant factors involved in the biogenesis of PSII originated from cyanobacteria and only rarely evolved de novo. Furthermore, in chloroplasts the initial assembly steps occur in the non-appressed stroma lamellae, whereas the final assembly including the attachment of the major LHCII antenna proteins takes place in the grana regions. The stroma lamellae are also the place where part of PSII repair occurs, which very likely also involves assembly factors. In cyanobacteria initial PSII assembly also occurs in the thylakoid membrane, in so-called thylakoid centres, which are in contact with the plasma membrane. Here, we provide an update on the structures, localisations, topologies, functions, expression and interactions of the low molecular mass PSII subunits PsbY, PsbW and the auxiliary factors HCF136, PsbN, TerC and ALB3, assisting in PSII complex assembly and protein insertion into the thylakoid membrane.

  15. Algae as an electron donor promoting sulfate reduction for the bioremediation of acid rock drainage

    Energy Technology Data Exchange (ETDEWEB)

    Ayala-Parra, Pedro; Sierra-Alvarez, Reyes; Field, Jim A., E-mail: jimfield@email.arizona.edu

    2016-11-05

    Highlights: • Algal biomass can serve as an electron donor to drive reduction of sulfate to sulfide. • Biogenic sulfide precipitates Cu{sup 2+} as stable sulfide mineral. • Cu{sup +2} removal in sulfidogenic bioreactors amended with algal biomass exceeded 99.5%. • Acidity in synthetic acid rock drainage was consumed by sulfate reduction. - Abstract: This study assessed bioremediation of acid rock drainage in simulated permeable reactive barriers (PRB) using algae, Chlorella sorokiniana, as the sole electron donor for sulfate-reducing bacteria. Lipid extracted algae (LEA), the residues of biodiesel production, were compared with whole cell algae (WCA) as an electron donor to promote sulfate-reducing activity. Inoculated columns containing anaerobic granular sludge were fed a synthetic medium containing H{sub 2}SO{sub 4} and Cu{sup 2+}. Sulfate, sulfide, Cu{sup 2+} and pH were monitored throughout the experiment of 123 d. Cu recovered in the column packing at the end of the experiment was evaluated using sequential extraction. Both WCA and LEA promoted 80% of sulfate removal (12.7 mg SO{sub 4}{sup 2−} d{sup −1}) enabling near complete Cu removal (>99.5%) and alkalinity generation raising the effluent pH to 6.5. No noteworthy sulfate reduction, alkalinity formation and Cu{sup 2+} removal were observed in the endogenous control. In algae amended-columns, Cu{sup 2+} was precipitated with biogenic H{sub 2}S produced by sulfate reduction. Formation of CuS was evidenced by sequential extraction and X-ray diffraction. LEA and WCA provided similar levels of electron donor based on the COD balance. The results demonstrate an innovative passive remediation system using residual algae biomass from the biodiesel industry.

  16. Electronic states and optical properties of single donor in GaN conical quantum dot with spherical edge

    Science.gov (United States)

    El Aouami, A.; Feddi, E.; El-Yadri, M.; Aghoutane, N.; Dujardin, F.; Duque, C. A.; Phuc, Huynh Vinh

    2018-02-01

    In this paper we present a theoretical investigation of quantum confinement effects on the electron and single donor states in GaN conical quantum dot with spherical edge. In the framework of the effective mass approximation, the Schrödinger equations of electron and donor have been solved analytically in an infinite potential barrier model. Our calculations show that the energies of electron and donor impurity are affected by the two characteristic parameters of the structure which are the angle Ω and the radial dimension R. We show that, despite the fact that the reduction of the two parameters Ω and R leads to the same confinement effects, the energy remains very sensitive to the variation of the radial part than the variation of the angular part. The analysis of the photoionization cross-section corresponding to optical transitions between the conduction band and the first donor energy level shows clearly that the reduction of the radius R causes a shift in resonance peaks towards the high energies. On the other hand, the optical transitions between 1 s - 1 p , 1 p - 1 d and 1 p - 2 s show that the increment of the conical aperture Ω (or reduction of R) implies a displacement of the excitation energy to higher energies.

  17. Cyclic Electron Flow around Photosystem I Promotes ATP Synthesis Possibly Helping the Rapid Repair of Photodamaged Photosystem II at Low Light

    Directory of Open Access Journals (Sweden)

    Wei Huang

    2018-02-01

    Full Text Available In higher plants, moderate photoinhibition of photosystem II (PSII leads to a stimulation of cyclic electron flow (CEF at low light, which is accompanied by an increase in the P700 oxidation ratio. However, the specific role of CEF stimulation at low light is not well known. Furthermore, the mechanism underlying this increase in P700 oxidation ratio at low light is unclear. To address these questions, intact leaves of the shade-adapted plant Panax notoginseng were treated at 2258 μmol photons m-2 s-1 for 30 min to induce PSII photoinhibition. Before and after this high-light treatment, PSI and PSII activity, the energy quenching in PSII, the redox state of PSI and proton motive force (pmf at a low light of 54 μmol photons m-2 s-1 were determined at the steady state. After high-light treatment, electron flow through PSII (ETRII significantly decreased but CEF was remarkably stimulated. The P700 oxidation ratio significantly increased but non-photochemical quenching changed negligibly. Concomitantly, the total pmf decreased significantly and the proton gradient (ΔpH across the thylakoid membrane remained stable. Furthermore, the P700 oxidation ratio was negatively correlated with the value of ETRII. These results suggest that upon PSII photoinhibition, CEF is stimulated to increase the ATP synthesis, facilitating the rapid repair of photodamaged PSII. The increase in P700 oxidation ratio at low light cannot be explained by the change in pmf, but is primarily controlled by electron transfer from PSII.

  18. Fusarium solani Infection Depressed Photosystem Performance by Inducing Foliage Wilting in Apple Seedlings

    Directory of Open Access Journals (Sweden)

    Kun Yan

    2018-05-01

    Full Text Available Fusarium fungi are soil-borne pathogens, and the pathological effects on plant photosystems remain unclear. This study aimed to deeply reveal pathological characterization in apple seedlings infected with Fusarium solani by investigating photosystems performance and interaction. Roots were immersed in conidial suspension for inoculation. Thereafter, prompt and delayed chlorophyll a fluorescence and modulated 820 nm reflection were simultaneously detected. After 30 days of infection, leaf relative water content and dry weight were remarkably decreased by 55.7 and 47.1%, suggesting that the infected seedlings were subjected to Fusarium-induced water deficit stress. PSI reaction center was more susceptible than PSII reaction center in infected seedlings due to greater decrease in the maximal photochemical efficiency of PSI than that of PSII, but PSI reaction center injury was aggravated slowly, as PSII injury could partly protect PSI by restricting electron donation. PSII donor and acceptor sides were also damaged after 20 days of infection, and the restricted electron donation induced PSII and PSI disconnection by blocking PSI re-reduction. In accordance with greater damage of PSI reaction center, PSI oxidation was also suppressed. Notably, significantly increased efficiency of electron transport from plastoquinone (PQ to PSI acceptors (REo/ETo after 20 days of infection suggested greater inhibition on PQ reduction than re-oxidation, and the protection for PSI acceptors might alleviate the reduction of electron transport efficiency beyond PQ upon damaged PSI reaction center. Lowered delayed fluorescence in microsecond domain verified PSII damage in infected seedlings, and elevated delayed fluorescence in sub-millisecond domain during PQ reduction process conformed to increased REo/ETo. In conclusion, F. solani infection depressed PSII and PSI performance and destroyed their coordination by inducing pathological wilting in apple seedlings. It may

  19. Photoinduced electron transfer interaction of anthraquinones with aniline quenchers: Influence of methyl substitution in aniline donors

    Science.gov (United States)

    Sivakumar, V.; Ponnamma, Deepalekshmi; Hussein, Yasser H. A.

    2017-02-01

    Photoinduced electron transfer between triplet state of 9,10-anthraquinone (AQ) and its two derivatives: 2-chloro-9,10-anthraquinone (CAQ) and sodium anthraquinone-2-sulfonate (AQS) and ground state aniline (AN) and its dimethyl substitutions: 2,3-dimethylaniline (2,3-DMA), 2,6-dimethylaniline (2,6-DMA), 3,5-dimethylaniline (3,5-DMA) and N,N-dimethylaniline (N,N-DMA) is studied using nanosecond laser flash photolysis at room temperature. Detection of radical bands of quinone anions and aniline cations along with their formation and/or decay kinetics are used to confirm the electron transfer (ET) process. In MeCN medium, AN quenches the triplet state of CAQ (CAQT) but not the triplets AQT or AQST. However in aqueous medium, AN quenches AQST and forms radical ion pair. All the DMAs can react through ET with all the triplet quinones at different degrees of efficiency in MeCN medium. Noticeably, the ring substituted DMAs are less efficient in electron donation to AQT or AQST while the N,N-DMA shows high efficiency in donating electron to all triplet quinones in MeCN medium. Charge distribution of donor molecules, in MeCN medium is calculated using density functional theory (DFT), and shows an enhancement of electron density of the ring of N,N-DMA, making it an ideal electron donor for ET studies compared to other DMAs. This systematic selection and usage of anilines with electrochemically tunable quinones can be viewed as a working model of donor-acceptor system that can be utilized in photoinduced ET applications.

  20. Effect of donor orientation on ultrafast intermolecular electron transfer in coumarin-amine systems

    International Nuclear Information System (INIS)

    Singh, P. K.; Nath, S.; Bhasikuttan, A. C.; Kumbhakar, M.; Mohanty, J.; Sarkar, S. K.; Mukherjee, T.; Pal, H.

    2008-01-01

    Effect of donor amine orientation on nondiffusive ultrafast intermolecular electron transfer (ET) reactions in coumarin-amine systems has been investigated using femtosecond fluorescence upconversion measurements. Intermolecular ET from different aromatic and aliphatic amines used as donor solvents to the excited coumarin-151 (C151) acceptor occurs with ultrafast rates such that the shortest fluorescence lifetime component (τ 1 ) is the measure of the fastest ET rate (τ 1 =τ ET fast =(k ET fast ) -1 ), assigned to the C151-amine contact pairs in which amine donors are properly oriented with respect to C151 to maximize the acceptor-donor electronic coupling (V el ). It is interestingly observed that as the amine solvents are diluted by suitable diluents (either keeping solvent dielectric constant similar or with increasing dielectric constant), the τ 1 remains almost in the similar range as long as the amine dilution does not cross a certain critical limit, which in terms of the amine mole fraction (x A ) is found to be ∼0.4 for aromatic amines and ∼0.8 for aliphatic amines. Beyond these dilutions in the two respective cases of the amine systems, the τ 1 values are seen to increase very sharply. The large difference in the critical x A values involving aromatic and aliphatic amine donors has been rationalized in terms of the largely different orientational restrictions for the ET reactions as imposed by the aliphatic (n-type) and aromatic (π-type) nature of the amine donors [A. K. Satpati et al., J. Mol. Struct. 878, 84 (2008)]. Since the highest occupied molecular orbital (HOMO) of the n-type aliphatic amines is mostly centralized at the amino nitrogen, only some specific orientations of these amines with respect to the close-contact acceptor dye [also of π-character; A. K. Satpati et al., J. Mol. Struct. 878, 84 (2008) and E. W. Castner et al., J. Phys. Chem. A 104, 2869 (2000)] can give suitable V el and thus ultrafast ET reaction. In contrary, the

  1. Gradient ascent pulse engineering approach to CNOT gates in donor electron spin quantum computing

    International Nuclear Information System (INIS)

    Tsai, D.-B.; Goan, H.-S.

    2008-01-01

    In this paper, we demonstrate how gradient ascent pulse engineering (GRAPE) optimal control methods can be implemented on donor electron spin qubits in semiconductors with an architecture complementary to the original Kane's proposal. We focus on the high fidelity controlled-NOT (CNOT) gate and we explicitly find the digitized control sequences for a controlled-NOT gate by optimizing its fidelity using the effective, reduced donor electron spin Hamiltonian with external controls over the hyperfine A and exchange J interactions. We then simulate the CNOT-gate sequence with the full spin Hamiltonian and find that it has an error of 10 -6 that is below the error threshold of 10 -4 required for fault-tolerant quantum computation. Also the CNOT gate operation time of 100 ns is 3 times faster than 297 ns of the proposed global control scheme.

  2. Induction of cyclic electron flow around photosystem I during heat stress in grape leaves.

    Science.gov (United States)

    Sun, Yongjiang; Geng, Qingwei; Du, Yuanpeng; Yang, Xinghong; Zhai, Heng

    2017-03-01

    Photosystem II (PSII) in plants is susceptible to high temperatures. The cyclic electron flow (CEF) around PSI is thought to protect both PSII and PSI from photodamage. However, the underlying physiological mechanisms of the photosynthetic electron transport process and the role of CEF in grape at high temperatures remain unclear. To investigate this issue, we examined the responses of PSII energy distribution, the P700 redox state and CEF to high temperatures in grape leaves. After exposing 'Cabernet Sauvignon' leaves to various temperatures (25, 30, 35, 40 and 45°C) in the light (600μmol photons m -2 s -1 ) for 4h, the maximum quantum yield of PSII (Fv/Fm) significantly decreased at high temperatures (40 and 45°C), while the maximum photo-oxidizable P700 (Pm) was not affected. As the temperature increased, higher initial rates of increase in post-illumination Chl fluorescence were detected, which were accompanied by an increase in high energy state quenching (qE). The chloroplast NAD(P)H dehydrogenase-dependent CEF (NDH-dependent CEF) activities were different among grape cultivators. 'Gold Finger' with greater susceptibility to photoinhibition, exhibited lower NDH-dependent CEF activities under acute heat stress than a more heat tolerant 'Cabernet Sauvignon'. These results suggest that overclosure of PSII reaction centers at high temperature resulted in the photoinhibition of PSII, while the stimulation of CEF in grape played an important role in the photoprotection of PSII and PSI at high temperatures through contributing to the generation of a proton gradient. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Algae as an electron donor promoting sulfate reduction for the bioremediation of acid rock drainage.

    Science.gov (United States)

    Ayala-Parra, Pedro; Sierra-Alvarez, Reyes; Field, Jim A

    2016-11-05

    This study assessed bioremediation of acid rock drainage in simulated permeable reactive barriers (PRB) using algae, Chlorella sorokiniana, as the sole electron donor for sulfate-reducing bacteria. Lipid extracted algae (LEA), the residues of biodiesel production, were compared with whole cell algae (WCA) as an electron donor to promote sulfate-reducing activity. Inoculated columns containing anaerobic granular sludge were fed a synthetic medium containing H2SO4 and Cu(2+). Sulfate, sulfide, Cu(2+) and pH were monitored throughout the experiment of 123d. Cu recovered in the column packing at the end of the experiment was evaluated using sequential extraction. Both WCA and LEA promoted 80% of sulfate removal (12.7mg SO4(2-) d(-1)) enabling near complete Cu removal (>99.5%) and alkalinity generation raising the effluent pH to 6.5. No noteworthy sulfate reduction, alkalinity formation and Cu(2+) removal were observed in the endogenous control. In algae amended-columns, Cu(2+) was precipitated with biogenic H2S produced by sulfate reduction. Formation of CuS was evidenced by sequential extraction and X-ray diffraction. LEA and WCA provided similar levels of electron donor based on the COD balance. The results demonstrate an innovative passive remediation system using residual algae biomass from the biodiesel industry. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Steady state and time-resolved spectroscopic investigations on the photoreactions involved within the electronically excited electron acceptor 9-cyanoanthracene in presence of benzotriazole and benzimidazole donors

    International Nuclear Information System (INIS)

    Bhattacharya, Sudeshna; Bardhan, Munmun; Ganguly, Tapan

    2010-01-01

    The electrochemical, 'steady-state' and 'time-resolved' spectroscopic investigations were made on the well-known electron acceptor 9-cyanoanthracene (CNA) when interacted with the electron donors benzotriazole (BZT) and benzimidazole (BMI) molecules. Though electrochemical measurements indicate the thermodynamical possibility of occurrences of photoinduced electron transfer reactions within these reacting systems in the lowest excited singlet state (S 1 ) of the acceptor CNA but the steady-state and time-resolved measurements clearly demonstrate only the triplet-initiated charge separation reactions. It was reported earlier that in the cases of disubstituted indole molecules the occurrences of photoinduced electron transfer reactions were apparent both in the excited singlet and triplet states of the acceptor 9-cyanoanthracene, but the similarly structured present donor molecules benzotriazole (and benzimidazole) behave differently from indoles. The weak ground state complex formations within the presently studied reacting systems appear to be responsible for the observed static quenching phenomena as evidenced from the time-resolved fluorescence studies. Time-resolved spectroscopic investigations demonstrate the formation of the ground state of the reacting components (donor and acceptor) through recombination of triplet ion-pairs via formations of contact neutral radical produced by H-abstraction mechanism.

  5. Deletion of CGLD1 Impairs PSII and Increases Singlet Oxygen Tolerance of Green Alga Chlamydomonas reinhardtii

    Directory of Open Access Journals (Sweden)

    Jiale Xing

    2017-12-01

    Full Text Available The green alga Chlamydomonas reinhardtii is a key model organism for studying photosynthesis and oxidative stress in unicellular eukaryotes. Using a forward genetics approach, we have identified and characterized a mutant x32, which lacks a predicted protein named CGLD1 (Conserved in Green Lineage and Diatom 1 in GreenCut2, under normal and stress conditions. We show that loss of CGLD1 resulted in minimal photoautotrophic growth and PSII activity in the organism. We observed reduced amount of PSII complex and core subunits in the x32 mutant based on blue-native (BN/PAGE and immunoblot analysis. Moreover, x32 exhibited increased sensitivity to high-light stress and altered tolerance to different reactive oxygenic species (ROS stress treatments, i.e., decreased resistance to H2O2/or tert-Butyl hydroperoxide (t-BOOH and increased tolerance to neutral red (NR and rose bengal (RB that induce the formation of singlet oxygen, respectively. Further analysis via quantitative real-time PCR (qRT-PCR indicated that the increased singlet-oxygen tolerance of x32 was largely correlated with up-regulated gene expression of glutathione-S-transferases (GST. The phenotypical and physiological implications revealed from our experiments highlight the important roles of CGLD1 in maintaining structure and function of PSII as well as in protection of Chlamydomonas under photo-oxidative stress conditions.

  6. Light dependence of quantum yields for PSII charge separation and oxygen evolution in eucaryotic algae

    NARCIS (Netherlands)

    Flameling, I.A.; Kromkamp, J.C.

    1998-01-01

    Quantum yields of photosystem II (PSII) charge separation (Phi(P)) and oxygen production (Phi(O2)) were determined by simultaneous measurements of oxygen production and variable fluorescence in four different aquatic microalgae representing three different taxonomic groups: the freshwater alga

  7. Bar-coded pyrosequencing reveals the responses of PBDE-degrading microbial communities to electron donor amendments.

    Directory of Open Access Journals (Sweden)

    Meiying Xu

    Full Text Available Polybrominated diphenyl ethers (PBDEs can be reductively degraded by microorganisms under anaerobic conditions. However, little is known about the effect of electron donors on microbial communities involved in PBDEs degradation. Here we employed 454 Titanium pyrosequencing to examine the phylogenetic diversity, composition, structure and dynamics of microbial communities from microcosms under the conditions of different electron donor amendments. The community structures in each of the five alternate electron donor enrichments were significantly shifted in comparison with those of the control microcosm. Commonly existing OTUs between the treatment and control consortia increased from 5 to 17 and more than 50% of OTUs increased around 13.7 to 186 times at least in one of the microcosms after 90-days enrichment. Although the microbial communities at different taxonomic levels were significantly changed by different environmental variable groups in redundancy analysis, significant correlations were observed between the microbial communities and PBDE congener profiles. The lesser-brominated PBDE congeners, tri-BDE congener (BDE-32 and hexa-BDE, were identified as the key factors shaping the microbial community structures at OTU level. Some rare populations, including the known dechlorinating bacterium, Dehalobacter, showed significant positive-correlation with the amounts of PBDE congeners in the consortia. The same results were also observed on some unclassified bacteria. These results suggest that PBDEs-degrading microbial communities can be successfully enriched, and their structures and compositions can be manipulated through adjusting the environmental parameters.

  8. Dithienosilolothiophene: A New Polyfused Donor for Organic Electronics

    KAUST Repository

    Schroeder, Bob C.

    2015-08-13

    We report the synthesis of a novel pentacyclic donor moiety, dithienosilolothiophene, and its incorporation into low bandgap semiconducting polymers. The unique geometry of this new donor allowed attaching four solubilizing side chains on the same side of the fused ring system, thus ensuring sufficient solubility when incorporated into conjugated polymers while simultaneously reducing the steric hindrance between adjacent polymer chains. The optoelectronic properties of three new polymers comprising the novel pentacyclic donor were investigated and compared to structurally similar thieno[3,2-b]thienobis(silolothiophene) polymers. Organic solar cells were fabricated in order to evaluate the new materials’ potential as donor polymers in bulk heterojunction solar cells and gain further insight into how the single-sided side-chain arrangement affects the active layer blend morphology.

  9. Dithienosilolothiophene: A New Polyfused Donor for Organic Electronics

    KAUST Repository

    Schroeder, Bob C.; Kirkus, Mindaugas; Nielsen, Christian B.; Ashraf, Raja Shahid; McCulloch, Iain

    2015-01-01

    We report the synthesis of a novel pentacyclic donor moiety, dithienosilolothiophene, and its incorporation into low bandgap semiconducting polymers. The unique geometry of this new donor allowed attaching four solubilizing side chains on the same side of the fused ring system, thus ensuring sufficient solubility when incorporated into conjugated polymers while simultaneously reducing the steric hindrance between adjacent polymer chains. The optoelectronic properties of three new polymers comprising the novel pentacyclic donor were investigated and compared to structurally similar thieno[3,2-b]thienobis(silolothiophene) polymers. Organic solar cells were fabricated in order to evaluate the new materials’ potential as donor polymers in bulk heterojunction solar cells and gain further insight into how the single-sided side-chain arrangement affects the active layer blend morphology.

  10. Influence of temperature on properties of nitrogen plasma source ion implantation (N-PSII) of Ti6A14V alloy

    CERN Document Server

    Geng Man; Zhao Qing

    2001-01-01

    Specimens of Ti6Al4V alloy were implanted with nitrogen plasma source ion implantation (N-PSII) at temperatures between 100 degree C and 600 degree C to a ion dose of 4 x 10 sup 1 sup 7 cm sup - sup 2. Auger Electron Spectroscopy (AES) was used to determine the nitrogen concentration depth profiles. Microhardness measurements and pin-on-disk wear test were performed to evaluate the improvements of the surface modification. Glancing angle X-ray diffraction (XRD) was employed to determine the phases presented in the surface modified layer. The thickness of implanted layer increased by about an order of magnitude when the temperature was elevated from 100 degree C to 600 degree C. Higher surface hardness and wear resistance was also obtained at higher temperature. Scanning electron microscopy (SEM) showed distinct microstructural changes and the presence of titanium nitrides in the implanted surface

  11. Response of bean (Vicia faba L.) plants to low sink demand by measuring the gas exchange rates and chlorophyll a fluorescence kinetics.

    Science.gov (United States)

    Yan, Bo-Fang; Duan, Wei; Liu, Guo-Tian; Xu, Hong-Guo; Wang, Li-Jun; Li, Shao-Hua

    2013-01-01

    The decline of photosynthesis in plants under low sink demand is well known. Previous studies focused on the relationship between stomatal conductance (gs) and net photosynthetic rate (Pn). These studies investigated the effect of changes in Photosystem II (PSII) function on the Pn decline under low sink demand. However, little is known about its effects on different limiting steps of electron transport chain in PSII under this condition. Two-month-old bean plants were processed by removing pods and flowers (low sink demand). On the 1(st) day after low sink demand treatment, a decline of Pn was accompanied by a decrease in gs and internal-to-ambient CO2 concentration ratio (Ci/Ca). From the 3(rd) to 9(th) day, Pn and gs declined continuously while Ci/Ca ratio remained stable in the treatment. Moreover, these values were lower than that of control. Wk (a parameter reflecting the damage to oxygen evolving complex of the donor side of PSII) values in the treatment were significantly higher than their corresponding control values. However, RCQA (a parameter reflecting the number of active RCs per excited cross-section of PSII) values in the treatment were significantly lower than control from the 5(th) day. From the 11(th) to 21(st) day, Pn and gs of the treatment continued to decline and were lower than control. This was accompanied by a decrease of RCQA, and an increase of Wk. Furthermore, the quantum yield parameters φPo, φEo and ψEo in the treatment were lower than in control; however, Ci/Ca values in the treatment gradually increased and were significantly higher than control on the 21(st) day. Stomatal limitation during the early stage, whereas a combination of stomatal and non-stomatal limitation during the middle stage might be responsible for the reduction of Pn under low sink demand. Non-stomatal limitation during the late stages after the removal of the sink of roots and pods may also cause Pn reduction. The non-stomatal limitation was associated with the

  12. Competitive microbial reduction of perchlorate and nitrate with a cathode directly serving as the electron donor

    International Nuclear Information System (INIS)

    Xie, Daohai; Yu, Hui; Li, Chenchen; Ren, Yuan; Wei, Chaohai; Feng, Chunhua

    2014-01-01

    Microbial reduction of perchlorate with an electrode as the electron donor represents an emerging technology for remediation of perchlorate contamination; it is important to know how perchlorate reduction behaves when nitrate, a co-contaminant of perchlorate is present. We reported that electrons derived from the electrode can be directly transferred to the bacteria with perchlorate or nitrate as the sole electron acceptor. The presence of nitrate, even at the 0.07 mM level, can slow reduction of perchlorate (0.70 mM) as a poised potential of -0.50 V (vs. SCE) was applied to the inoculated cathode. Increasing the concentration of nitrate resulted in a noticeable inhibitory effect on perchlorate reduction. When the nitrate concentration was 2.10 mM, reduction of 0.70 mM perchlorate was totally inhibited. Bacterial community analyses based on 16S rDNA gene analysis with denaturing gradient gel electrophoresis (DGGE) revealed that most of the bacteria newly enriched on the nitrate and/or perchlorate biocathodes were the known electrochemically active denitrifiers, which possibly prefer to reduce nitrate over perchlorate. These results show that nitrate is a more favorable electron acceptor than perchlorate in the bioelectrochemical system where the cathode directly serves as the electron donor

  13. Study of microbial perchlorate reduction: Considering of multiple pH, electron acceptors and donors

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xing [Key Laboratory of Water Pollution Control and Recycling (Shandong), School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); Gao, Baoyu, E-mail: bygao@sdu.edu.cn [Key Laboratory of Water Pollution Control and Recycling (Shandong), School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); Jin, Bo [School of Chemical Engineering, The University of Adelaide, Adelaide SA 5005,Australia (Australia); Zhen, Hu [Key Laboratory of Water Pollution Control and Recycling (Shandong), School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); Wang, Xiaoyi [CSIRO Land and Water, Gate 5, Waite Road, Urrbrae, SA 5064 (Australia); Dai, Ming [School of Chemical Engineering, The University of Adelaide, Adelaide SA 5005,Australia (Australia)

    2015-03-21

    Graphical abstract: Schemes of perchlorate reduction in ClO{sub 4}{sup −}/ClO{sub 3}{sup −}–NO{sub 3}{sup −} e{sup −}acceptor systems. - Highlights: • We created a multiple electron acceptor/donor system for ClO{sub 4}{sup −} reduction. • Nitrate reduction was inhibited when using perchlorate-grown Azospira sp. KJ. • Reduction proceeded as an order of ClO{sub 3}{sup −}, ClO{sub 4}{sup −}and NO{sub 3}{sup −}. • Oxidation of acetate was inhibited by succinate in acetate–succinate series. - Abstract: Bioremediation of perchlorate-cotaminated water by a heterotrophic perchlorate reducing bacterium creates a multiple electron acceptor-donor system. We experimentally determined the perchlorate reduction by Azospira sp. KJ at multiple pH, electron acceptors and donors systems; this was the aim of this study. Perchlorate reduction was drastically inhibited at the pH 6.0, and the maximum reduction of perchlorate by Azospira sp. KJ was observed at pH value of 8.0. Perchlorate reduction was retarded in ClO{sub 4}{sup −}–ClO{sub 3}{sup −}, ClO{sub 4}{sup −}–ClO{sub 3}{sup −}–NO{sub 3}{sup −},and ClO{sub 4}{sup −}–NO{sub 3}{sup −} acceptor systems, while being completely inhibited by the additional O{sub 2} in the ClO{sub 4}{sup −}–O{sub 2} acceptor system. The reduction proceeded as an order of ClO{sub 3}{sup −}, ClO{sub 4}{sup −}, and NO{sub 3}{sup −} in the ClO{sub 4}{sup −}–ClO{sub 3}{sup −}–NO{sub 3}{sup −} system. K{sub S,}v{sub max}, and q{sub max} obtained at different e{sup −} acceptor and donor conditions are calculated as 140.5–190.6 mg/L, 8.7–13.2 mg-perchlorate/L-h, and 0.094–0.16 mg-perchlorate/mg-DW-h, respectively.

  14. Influence of Bicarbonate, Sulfate, and Electron Donors on Biological reduction of Uranium and Microbial Community Composition

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Wensui [ORNL; Zhou, Jizhong [ORNL; Wu, Weimin [ORNL; Yan, Tingfen [ORNL; Criddle, Craig [ORNL; Jardine, Philip M [ORNL; Gu, Baohua [ORNL

    2007-01-01

    A microcosm study was performed to investigate the effect of ethanol and acetate on uranium(VI) biological reduction and microbial community changes under various geochemical conditions. Each microcosm contained an uranium-contaminated sediment (up to 2.8 g U/kg) suspended in buffer with bicarbonate at concentrations of either 1 mM or 40 mM and sulfate at either 1.1 or 3.2 mM. Ethanol or acetate was used as an electron donor. Results indicate that ethanol yielded in significantly higher U(VI) reduction rates than acetate. A low bicarbonate concentration (1 mM) was favored for U(VI) bioreduction to occur in sediments, but high concentrations of bicarbonate (40 mM) and sulfate (3.2 mM) decreased the reduction rates of U(VI). Microbial communities were dominated by species from the Geothrix genus and Proteobacteria phylum in all microcosms. However, species in the Geobacteraceae family capable of reducing U(VI) were significantly enriched by ethanol and acetate in low bicarbonate buffer. Ethanol increased the population of unclassified Desulfuromonales, while acetate increased the population of Desulfovibrio. Additionally, species in the Geobacteraceae family were not enriched in high bicarbonate buffer, but the Geothrix and the unclassified Betaproteobacteria species were enriched. This study concludes that ethanol could be a better electron donor than acetate for reducing U(VI) under given experimental conditions, and electron donor and geoundwater geochemistry alter microbial communities responsible for U(VI) reduction.

  15. Influence of bicarbonate, sulfate, and electron donors on biological reduction of uranium and microbial community composition

    Energy Technology Data Exchange (ETDEWEB)

    Luo Wensui [Oak Ridge Inst. for Science and Education, TN (United States); Oak Ridge National Lab., TN (United States). Environmental Sciences Div.; Wu Wei-Min; Criddle, C.S. [Stanford Univ., CA (United States). Dept. of Civil and Environmental Engineering; Yan Tingfen [Oak Ridge Inst. for Science and Education, TN (United States); Jardine, P.M.; Gu Baohua [Oak Ridge National Lab., TN (United States). Environmental Sciences Div.; Zhou Jizhong [Oklahoma Univ., Norman, OK (United States). Dept. of Botany and Microbiology

    2007-12-15

    A microcosm study was performed to investigate the effect of ethanol and acetate on uranium(VI) biological reduction and microbial community changes under various geochemical conditions. Each microcosm contained an uranium-contaminated sediment (up to 2.8 g U/kg) suspended in buffer with bicarbonate at concentrations of either 1 or 40 mM and sulfate at either 1.1 or 3.2 mM. Ethanol or acetate was used as an electron donor. Results indicate that ethanol yielded in significantly higher U(VI) reduction rates than acetate. A low bicarbonate concentration (1 mM) was favored for U(VI) bioreduction to occur in sediments, but high concentrations of bicarbonate (40 mM) and sulfate (3.2 mM) decreased the reduction rates of U(VI). Microbial communities were dominated by species from the Geothrix genus and Proteobacteria phylum in all microcosms. However, species in the Geobacteraceae family capable of reducing U(VI) were significantly enriched by ethanol and acetate in low-bicarbonate buffer. Ethanol increased the population of unclassified Desulfuromonales, while acetate increased the population of Desulfovibrio. Additionally, species in the Geobacteraceae family were not enriched in high-bicarbonate buffer, but the Geothrix and the unclassified Betaproteobacteria species were enriched. This study concludes that ethanol could be a better electron donor than acetate for reducing U(VI) under given experimental conditions, and electron donor and groundwater geochemistry alter microbial communities responsible for U(VI) reduction. (orig.)

  16. Alcohol production through volatile fatty acids reduction with hydrogen as electron donor by mixed cultures

    NARCIS (Netherlands)

    Steinbusch, K.J.J.; Hamelers, H.V.M.; Buisman, C.J.N.

    2008-01-01

    In this research we demonstrated a new method to produce alcohols. It was experimentally feasible to produce ethanol, propanol and butanol from solely volatile fatty acids (VFAs) with hydrogen as electron donor. In batch tests, VFAs such as acetic, propionic and butyric acids were reduced by mixed

  17. An effective Hamiltonian approach for Donor-Bridge-Acceptor electronic transitions: Exploring the role of bath memory

    Directory of Open Access Journals (Sweden)

    E.R. Bittner

    2016-03-01

    Full Text Available We present here a formally exact model for electronic transitions between an initial (donor and final (acceptor states linked by an intermediate (bridge state. Our model incorporates a common set of vibrational modes that are coupled to the donor, bridge, and acceptor states and serves as a dissipative bath that destroys quantum coherence between the donor and acceptor. Taking the memory time of the bath as a free parameter, we calculate transition rates for a heuristic 3-state/2 mode Hamiltonian system parameterized to represent the energetics and couplings in a typical organic photovoltaic system. Our results indicate that if the memory time of the bath is of the order of 10-100 fs, a two-state kinetic (i.e., incoherent hopping model will grossly underestimate overall transition rate.

  18. Hydrogen production by Chlamydomonas reinhardtii: an elaborate interplay of electron sources and sinks

    International Nuclear Information System (INIS)

    Hemschemeier, A; Happe, T.; Fouchard, S; Cournac, L; Peltier, G.

    2008-01-01

    The unicellular green alga Chlamydomonas reinhardtii possesses a [FeFe]-hydrogenase HydA1 (EC 1.12.7.2), which is coupled to the photosynthetic electron transport chain. Large amounts of H 2 are produced in a light-dependent reaction for several days when C. reinhardtii cells are deprived of sulfur. Under these conditions, the cells drastically change their physiology from aerobic photosynthetic growth to an anaerobic resting state. The understanding of the underlying physiological processes is not only important for getting further insights into the adaptability of photosynthesis, but will help to optimize the biotechnological application of algae as H 2 producers. Two of the still most disputed questions regarding H 2 generation by C. reinhardtii concern the electron source for H 2 evolution and the competition of the hydrogenase with alternative electron sinks. We analyzed the H 2 metabolism of S-depleted C. reinhardtii cultures utilizing a special mass spectrometer setup and investigated the influence of photosystem II (PSII)- or ribulose-bisphosphate-carboxylase/oxygenase (Rubisco)-deficiency. We show that electrons for H 2 -production are provided both by PSII activity and by a non-photochemical plastoquinone reduction pathway, which is dependent on previous PSII activity. In a Rubisco-deficient strain, which produces H 2 also in the presence of sulfur, H 2 generation seems to be the only significant electron sink for PSII activity and rescues this strain at least partially from a light-sensitive phenotype.The latter indicates that the down-regulation of assimilatory pathways in S-deprived C. reinhardtii cells is one of the important prerequisites for a sustained H 2 evolution. (authors)

  19. Charged dopants in neutral supercells through substitutional donor (acceptor): nitrogen donor charging of the nitrogen-vacancy center in diamond

    Science.gov (United States)

    Löfgren, Robin; Pawar, Ravinder; Öberg, Sven; Larsson, J. Andreas

    2018-02-01

    Charged defects are traditionally computed by adding (subtracting) electrons for negative (positive) impurities. When using periodic boundary conditions this results in artificially charged supercells that also require a compensating background charge of the opposite sign, which makes slab supercells problematic because of an arbitrary dependence on the vacuum thickness. In this work, we test the method of using neutral supercells through the use of a substitutional electron donor (acceptor) to describe charged systems. We use density functional theory (DFT) to compare the effects of charging the well-studied NV-center in diamond by a substitutional donor nitrogen. We investigate the influence of the donor-N on the NV-center properties as a function of the distance between them, and find that they converge toward those obtained when adding an electron. We analyze the spin density and conclude that the donor-N has a zero magnetic moment, and thus, will not be seen in electron spin resonance. We validate our DFT energies through comparison to GW simulations. Charging the NV-center with a substitutional donor-N enables accurate calculations of slabs, without the ambiguity of using charged supercells. Implantation of donor-N atoms opens up the possibility to engineer NV-centers with the desired charge state for future ICT and sensor applications.

  20. Transformation of carbon tetrachloride in an anaerobic packed-bed reactor without addition of another electron donor

    NARCIS (Netherlands)

    de Best, JH; Hunneman, P; Doddema, HJ; Janssen, DB; Harder, W; Doddema, Hans J.

    1999-01-01

    Carbon tetrachloride (52 mu M) was biodegraded for more than 72% in an anaerobic packed-bed reactor without addition of an external electron donor. The chloride mass balance demonstrated that all carbon tetrachloride transformed was completely dechlorinated. Chloroform and dichloromethane were

  1. Transformation of carbon tetrachloride in an anaerobic packed-bed reactor without addition of another electron donor

    NARCIS (Netherlands)

    Best, J.H. de; Hunneman, P.; Doddema, H.J.; Janssen, D.B.; Harder, W.

    1999-01-01

    Carbon tetrachloride (52 μM) was biodegraded for more than 72% in an anaerobic packed-bed reactor without addition of an external electron donor. The chloride mass balance demonstrated that all carbon tetrachloride transformed was completely dechlorinated. Chloroform and dichloromethane were

  2. Influence of sub-lethal crude oil concentration on growth, water relations and photosynthetic capacity of maize (Zea mays L.) plants.

    Science.gov (United States)

    Athar, Habib-Ur-Rehman; Ambreen, Sarah; Javed, Muhammad; Hina, Mehwish; Rasul, Sumaira; Zafar, Zafar Ullah; Manzoor, Hamid; Ogbaga, Chukwuma C; Afzal, Muhammad; Al-Qurainy, Fahad; Ashraf, Muhammad

    2016-09-01

    Maize tolerance potential to oil pollution was assessed by growing Zea mays in soil contaminated with varying levels of crude oil (0, 2.5 and 5.0 % v/w basis). Crude oil contamination reduced soil microflora which may be beneficial to plant growth. It was observed that oil pollution caused a remarkable decrease in biomass, leaf water potential, turgor potential, photosynthetic pigments, quantum yield of photosystem II (PSII) (Fv/Fm), net CO2 assimilation rate, leaf nitrogen and total free amino acids. Gas exchange characteristics suggested that reduction in photosynthetic rate was mainly due to metabolic limitations. Fast chlorophyll a kinetic analysis suggested that crude oil damaged PSII donor and acceptor sides and downregulated electron transport as well as PSI end electron acceptors thereby resulting in lower PSII efficiency in converting harvested light energy into biochemical energy. However, maize plants tried to acclimate to moderate level of oil pollution by increasing root diameter and root length relative to its shoot biomass, to uptake more water and mineral nutrients.

  3. Donor level of interstitial hydrogen in GaAs

    International Nuclear Information System (INIS)

    Dobaczewski, L.; Bonde Nielsen, K.; Nylandsted Larsen, A.; Peaker, A.R.

    2006-01-01

    The first data evidencing the existence of the donor level of the interstitial hydrogen in GaAs are presented. The abundant formation of the (0/+) donor level after in situ low-temperature implantation of hydrogen into the depletion layer of GaAs Schottky diodes has been observed and the activation energy and annealing properties have been determined by Laplace DLTS. The activation energy for electron emission of this donor state is 0.14eV. Above 100K the hydrogen deep donor state is unstable, converting to a more stable form when there are electrons available for the capture process. A slightly perturbed form of the hydrogen donor in its neutral charge state can be recovered by illuminating the sample. This process releases twice as many electrons as the ionisation process of the hydrogen donor state itself. This fact, by analogy with the silicon case, evidences the negative-U behaviour of hydrogen in GaAs

  4. Fine-tuning of electronic properties in donor-acceptor conjugated polymers based on oligothiophenes

    Science.gov (United States)

    Imae, Ichiro; Sagawa, Hitoshi; Harima, Yutaka

    2018-03-01

    A novel series of donor-acceptor conjugated polymers having oligothiophenes with well-defined structures were synthesized and their optical, electrochemical, and photovoltaic properties were investigated. It was found that the absorption bands of polymers were red-shifted with increasing number of ethylenedioxy groups added to each oligothiophene unit and that their band edges reached over 1000 nm. The systematical fine-tuning of the electronic properties was achieved using the chemical structures of oligothiophene units. Photovoltaic cells based on polymer/(6,6)-phenyl C61 butyric acid methyl ester (PC61BM) exhibited power conversion efficiencies in the range from 0.004 to 1.10%, reflecting the electronic properties of the polymers.

  5. pH-Dependent Regulation of the Relaxation Rate of the Radical Anion of the Secondary Quinone Electron Acceptor QB in Photosystem II As Revealed by Fourier Transform Infrared Spectroscopy.

    Science.gov (United States)

    Nozawa, Yosuke; Noguchi, Takumi

    2018-05-15

    Photosystem II (PSII) is a protein complex that performs water oxidation using light energy during photosynthesis. In PSII, electrons abstracted from water are eventually transferred to the secondary quinone electron acceptor, Q B , and upon double reduction, Q B is converted to quinol by binding two protons. Thus, excess electron transfer in PSII increases the pH of the stroma. In this study, to investigate the pH-dependent regulation of the electron flow in PSII, we have estimated the relaxation rate of the Q B - radical anion in the pH region between 5 and 8 by direct monitoring of its population using light-induced Fourier transform infrared difference spectroscopy. The decay of Q B - by charge recombination with the S 2 state of the water oxidation center in PSII membranes was shown to be accelerated at higher pH, whereas that of Q A - examined in the presence of a herbicide was virtually unaffected at pH ≤7.5 and slightly slowed at pH 8. These observations were consistent with the previous studies that included rather indirect monitoring of the Q B - and Q A - decays using fluorescence detection. The accelerated relaxation of Q B - was explained by the shift of a redox equilibrium between Q A - and Q B - to the Q A - side due to the decrease in the redox potential of Q B at higher pH, which is induced by deprotonation of a single amino acid residue near Q B . It is proposed that this pH-dependent Q B - relaxation is one of the mechanisms of electron flow regulation in PSII for its photoprotection.

  6. Donor-acceptor-donor thienyl/bithienyl-benzothiadiazole/quinoxaline model oligomers: experimental and theoretical studies.

    Science.gov (United States)

    Pina, João; de Melo, J Seixas; Breusov, D; Scherf, Ullrich

    2013-09-28

    A comprehensive spectral and photophysical investigation of four donor-acceptor-donor (DAD) oligomers consisting of electron-deficient 2,1,3-benzothiadiazole or quinoxaline moieties linked to electron-rich thienyl or bithienyl units has been undertaken. Additionally, a bis(dithienyl) substituted naphthalene was also investigated. The D-A-D nature of these oligomers resulted in the presence of an intramolecular charge transfer (ICT) state, which was further substantiated by solvatochromism studies (analysis with the Lippert-Mataga formalism). Hereby, significant differences have been obtained for the fluorescence quantum yields of the oligomers in the non-polar solvent methylcyclohexane vs. the polar ethanol. The study was further complemented with the determination of the optimized ground-state molecular geometries for the oligomers together with the prediction of the lowest vertical one-electron excitation energy and the relevant molecular orbital contours using DFT calculations. The electronic transitions show a clear HOMO to LUMO charge-transfer character. In contrast to the thiophene oligomers (the oligothiophenes with n = 1-7), where the intersystem crossing (ISC) yield decreases with n, the studied DAD oligomers were found to show an increase in the ISC efficiency with the number of (donor) thienyl units.

  7. Density functional study of the electronic structure of dye-functionalized fullerenes and their model donor-acceptor complexes containing P3HT

    International Nuclear Information System (INIS)

    Baruah, Tunna; Garnica, Amanda; Paggen, Marina; Basurto, Luis; Zope, Rajendra R.

    2016-01-01

    We study the electronic structure of C 60 fullerenes functionalized with a thiophene-diketo-pyrrolopyrrole-thiophene based chromophore using density functional theory combined with large polarized basis sets. As the attached chromophore has electron donor character, the functionalization of the fullerene leads to a donor-acceptor (DA) system. We examine in detail the effect of the linker and the addition site on the electronic structure of the functionalized fullerenes. We further study the electronic structure of these DA complexes with a focus on the charge transfer excitations. Finally, we examine the interface of the functionalized fullerenes with the widely used poly(3-hexylthiophene-2,5-diyl) (P3HT) donor. Our results show that all functionalized fullerenes with an exception of the C 60 -pyrrolidine [6,6], where the pyrrolidine is attached at a [6,6] site, have larger electron affinities relative to the pristine C 60 fullerene. We also estimate the quasi-particle gap, lowest charge transfer excitation energy, and the exciton binding energies of the functionalized fullerene-P3MT model systems. Results show that the exciton binding energies in these model complexes are slightly smaller compared to a similarly prepared phenyl-C 61 -butyric acid methyl ester (PCBM)-P3MT complex.

  8. Zeaxanthin has enhanced antioxidant capacity with respect to all other xanthophylls in Arabidopsis leaves and functions independent of binding to PSII antennae.

    Science.gov (United States)

    Havaux, Michel; Dall'osto, Luca; Bassi, Roberto

    2007-12-01

    The ch1 mutant of Arabidopsis (Arabidopsis thaliana) lacks chlorophyll (Chl) b. Leaves of this mutant are devoid of photosystem II (PSII) Chl-protein antenna complexes and have a very low capacity of nonphotochemical quenching (NPQ) of Chl fluorescence. Lhcb5 was the only PSII antenna protein that accumulated to a significant level in ch1 mutant leaves, but the apoprotein did not assemble in vivo with Chls to form a functional antenna. The abundance of Lhca proteins was also reduced to approximately 20% of the wild-type level. ch1 was crossed with various xanthophyll mutants to analyze the antioxidant activity of carotenoids unbound to PSII antenna. Suppression of zeaxanthin by crossing ch1 with npq1 resulted in oxidative stress in high light, while removing other xanthophylls or the PSII protein PsbS had no such effect. The tocopherol-deficient ch1 vte1 double mutant was as sensitive to high light as ch1 npq1, and the triple mutant ch1 npq1 vte1 exhibited an extreme sensitivity to photooxidative stress, indicating that zeaxanthin and tocopherols have cumulative effects. Conversely, constitutive accumulation of zeaxanthin in the ch1 npq2 double mutant led to an increased phototolerance relative to ch1. Comparison of ch1 npq2 with another zeaxanthin-accumulating mutant (ch1 lut2) that lacks lutein suggests that protection of polyunsaturated lipids by zeaxanthin is enhanced when lutein is also present. During photooxidative stress, alpha-tocopherol noticeably decreased in ch1 npq1 and increased in ch1 npq2 relative to ch1, suggesting protection of vitamin E by high zeaxanthin levels. Our results indicate that the antioxidant activity of zeaxanthin, distinct from NPQ, can occur in the absence of PSII light-harvesting complexes. The capacity of zeaxanthin to protect thylakoid membrane lipids is comparable to that of vitamin E but noticeably higher than that of all other xanthophylls of Arabidopsis leaves.

  9. The Effect of PSII Inhibitors on Kautsky Curve and Chlorophyll Fluorescence in Common Lambsquarters (Chenopodium album L. and Common Purslane (Portulaca oleracea L.

    Directory of Open Access Journals (Sweden)

    A.A. Chitband

    2016-03-01

    Full Text Available Introduction: Desmedipham + phenmedipham + ethofumesate, phenylcarbamates + benzofuranyl alkanesulfonate herbicides, is widely used for post-emergence broad-leaved weed control in sugar beet. Chloridazon, a pyridazinone herbicide, is used as a pre- and post- emergence herbicide in sugar beet. Desmedipham, phenmedipham and chloridazon, are photosystem II (PSII inhibitors, their translocation via xylem are slow, mostly absorbed not only by roots, but also by foliage. Their mode of action is through the blocking of electron transfer between the primary and secondary quinones (QA and QB of PSII by binding to the QB-binding site and accepting electrons from QA in the chloroplasts. Measures of changes to the chlorophyll fluorescence induction curve (Kautsky curve, is a rapid, non-invasive and simple method for monitoring the physiological status of the photosynthetic apparatus in the plant. There are three phases found on the O, J, I and P steps. These phases primarily point out photochemical events relevant to PSII. The three phases are described as follows: at the O-J phase complete reduction of the primary electron acceptor QA of PSII takes place from 50 μs to 2 ms, the J-I phase corresponds to electron transfer from QA to QB happens between 2 to 30 ms and the I-P phase corresponds to the release of fluorescence quenching by the oxidized plastoquinone pool taking place within 30-500 ms. Materials and Methods: In order to determine how exposure affects the fluorescence induction curve (Kautsky curve and its parameters, two dose-response experiments carried out for chlorophyll fluorescence measuring. The treatments involved desmedipham + phenmedipham + ethofumesate at 0, 51.38, 102.75, 205.5, 308.25, 411, 616.5 and 822 g a.i. ha-1 and chloridazon at 0, 81.25, 162.5, 325, 650, 1300, 1950 and 2600 g a.i. ha-1 on common lambsquarters (Chenopodium album L. and common purslane (Portulaca oleracea L. at the research glasshouse of Agricultural Faculty of

  10. THE USE OF THE FINITE DIFFERENCE METHOD FOR CALCULATION OF ELECTRONIC STATES IN MIS-STRUCTURE WITH SINGLE DONOR 1

    Directory of Open Access Journals (Sweden)

    E. A. Levchuk

    2018-01-01

    Full Text Available Numerical modeling of electronic state evolution due to non-uniform external electric field in the structure metal-insulator-semiconductor with solitary donor center is carried out. Considering a nanometer disc-shaped gate as a source of the electric field, the problem for the Laplace equation in multilayered medium is solved numerically to determine the distribution of the gate potential. The energy spectrum of a bound electron is calculated from the problem for the stationary Schrödinger equation. Finite difference schemes are constructed to solve both the problems. Difference scheme for the Schrödinger equation takes into account cusp condition for the wave function at the donor location. To solve the problem for the Laplace equation, asymptotic boundary conditions for approximating the external field potential at large distances from the gate in different layers are suggested. These conditions allow to reduce the calculation domain for the electrostatic problem essentially. The effect of the boundary conditions on the accuracy of calculating the potential and energies is investigated. Using the developed difference schemes, the dependences of the energy spectrum of the bound electron on the gate potential are calculated, and the values of critical potential at which the wave function of the electron is relocated are determined. It has been found on the basis of calculation results, that governing parameter for the description of electronic behavior is the potential difference between the donor and semiconductor surface. It has been shown that critical potential difference does not depend on dielectric thickness and permittivity.

  11. Modification of indole by electron-rich atoms and their application in novel electron donor materials

    Science.gov (United States)

    Zhang, Maolin; Qin, Guangjiong; Liu, Jialei; Zhen, Zhen; Fedorchuk, A. A.; Lakshminarayana, G.; Albassam, A. A.; El-Naggar, A. M.; Ozga, Katarzyna; Kityk, I. V.

    2017-08-01

    Novel nonlinear optical (NLO) chromophore based on 6-(pyrrolidin-1-yl)-1H-indole as the electron donor group was designed and synthesized. The molecular structure of this chromophore was characterized by 1H NMR spectra, 13C NMR spectra, and MS spectra. The delocalized energy level was estimated by UV-Vis. spectra. The thermal property was studied by thermogravimetric analysis (TGA). The poled films containing chromophores ZML-1 with a loading density of 10 wt% in amorphous polycarbonate (APC) afford an average electro-optic (EO) coefficient (r33) of 19 pm/V at 1310 nm. Compared to the reported aniline-based chromophore (r33 = 12 pm/V) analogues, chromophore ZML-1 exhibits enhanced electro-optical activity.

  12. Intraspecific variation in Pinus pinaster PSII photochemical efficiency in response to winter stress and freezing temperatures.

    Directory of Open Access Journals (Sweden)

    Leyre Corcuera

    Full Text Available As part of a program to select maritime pine (Pinus pinaster Ait. genotypes for resistance to low winter temperatures, we examined variation in photosystem II activity by chlorophyll fluorescence. Populations and families within populations from contrasting climates were tested during two consecutive winters through two progeny trials, one located at a continental and xeric site and one at a mesic site with Atlantic influence. We also obtained the LT₅₀, or the temperature that causes 50% damage, by controlled freezing and the subsequent analysis of chlorophyll fluorescence in needles and stems that were collected from populations at the continental trial site.P. pinaster showed sensitivity to winter stress at the continental site, during the colder winter. The combination of low temperatures, high solar irradiation and low precipitation caused sustained decreases in maximal photochemical efficiency (F(v/F(m, quantum yield of non-cyclic electron transport (Φ(PSII and photochemical quenching (qP. The variation in photochemical parameters was larger among families than among populations, and population differences appeared only under the harshest conditions at the continental site. As expected, the environmental effects (winter and site on the photochemical parameters were much larger than the genotypic effects (population or family. LT₅₀ was closely related to the minimum winter temperatures of the population's range. The dark-adapted F(v/F(m ratio discriminated clearly between interior and coastal populations.In conclusion, variations in F(v/F(m, Φ(PSII, qP and non-photochemical quenching (NPQ in response to winter stress were primarily due to the differences between the winter conditions and the sites and secondarily due to the differences among families and their interactions with the environment. Populations from continental climates showed higher frost tolerance (LT₅₀ than coastal populations that typically experience mild

  13. Intraspecific variation in Pinus pinaster PSII photochemical efficiency in response to winter stress and freezing temperatures.

    Science.gov (United States)

    Corcuera, Leyre; Gil-Pelegrin, Eustaquio; Notivol, Eduardo

    2011-01-01

    As part of a program to select maritime pine (Pinus pinaster Ait.) genotypes for resistance to low winter temperatures, we examined variation in photosystem II activity by chlorophyll fluorescence. Populations and families within populations from contrasting climates were tested during two consecutive winters through two progeny trials, one located at a continental and xeric site and one at a mesic site with Atlantic influence. We also obtained the LT₅₀, or the temperature that causes 50% damage, by controlled freezing and the subsequent analysis of chlorophyll fluorescence in needles and stems that were collected from populations at the continental trial site.P. pinaster showed sensitivity to winter stress at the continental site, during the colder winter. The combination of low temperatures, high solar irradiation and low precipitation caused sustained decreases in maximal photochemical efficiency (F(v)/F(m)), quantum yield of non-cyclic electron transport (Φ(PSII)) and photochemical quenching (qP). The variation in photochemical parameters was larger among families than among populations, and population differences appeared only under the harshest conditions at the continental site. As expected, the environmental effects (winter and site) on the photochemical parameters were much larger than the genotypic effects (population or family). LT₅₀ was closely related to the minimum winter temperatures of the population's range. The dark-adapted F(v)/F(m) ratio discriminated clearly between interior and coastal populations.In conclusion, variations in F(v)/F(m), Φ(PSII), qP and non-photochemical quenching (NPQ) in response to winter stress were primarily due to the differences between the winter conditions and the sites and secondarily due to the differences among families and their interactions with the environment. Populations from continental climates showed higher frost tolerance (LT₅₀) than coastal populations that typically experience mild winters

  14. Photoinduced electron transfer through hydrogen bonds in a rod-like donor-acceptor molecule: A time-resolved EPR study

    International Nuclear Information System (INIS)

    Jakob, Manuela; Berg, Alexander; Stavitski, Eli; Chernick, Erin T.; Weiss, Emily A.; Wasielewski, Michael R.; Levanon, Haim

    2006-01-01

    Light-driven multi-step intramolecular electron transfer in a rod-like triad, in which two of the three redox components are linked by three hydrogen bonds, was studied by time-resolved electron paramagnetic resonance (TREPR) and optical spectroscopies. One part of the molecule consists of a p-methoxyaniline primary electron donor (MeOAn) covalently linked to a 4-aminonaphthalene-1, 8-dicarboximide (6ANI) chromophoric electron acceptor (MeOAn-6ANI). The unsubstituted dicarboximide of 6ANI serves as one half of a hydrogen bonding receptor pair. The other half of the receptor pair consists of a melamine linked to a naphthalene-1,8:4,5-bis(dicarboximide) (NI) secondary electron acceptor (MEL-NI). TREPR spectroscopy is used to probe the electronic interaction between the radicals within the photogenerated, spin-correlated radical ion pair MeOAn ·+ -6ANI/MEL-NI ·- . The results are compared to those obtained in earlier studies in which MeOAn-6ANI is covalently linked to NI through a 2,5-dimethylphenyl group (MeOAn-6ANI-Ph-NI). We show that the electronic coupling between the oxidized donor and reduced acceptor in the hydrogen-bonded radical ion pair MeOAn ·+ -6ANI/MEL-NI ·- is very similar to that of MeOAn ·+ -6ANI-Ph-NI ·-

  15. The mechanism of photosystem-II inactivation during sulphur deprivation-induced H2 production in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Nagy, Valéria; Vidal-Meireles, André; Podmaniczki, Anna; Szentmihályi, Klára; Rákhely, Gábor; Zsigmond, Laura; Kovács, László; Tóth, Szilvia Z

    2018-05-01

    Sulphur limitation may restrain cell growth and viability. In the green alga Chlamydomonas reinhardtii, sulphur limitation may induce H 2 production lasting for several days, which can be exploited as a renewable energy source. Sulphur limitation causes a large number of physiological changes, including the inactivation of photosystem II (PSII), leading to the establishment of hypoxia, essential for the increase in hydrogenase expression and activity. The inactivation of PSII has long been assumed to be caused by the sulphur-limited turnover of its reaction center protein PsbA. Here we reinvestigated this issue in detail and show that: (i) upon transferring Chlamydomonas cells to sulphur-free media, the cellular sulphur content decreases only by about 25%; (ii) as demonstrated by lincomycin treatments, PsbA has a significant turnover, and other photosynthetic subunits, namely RbcL and CP43, are degraded more rapidly than PsbA. On the other hand, sulphur limitation imposes oxidative stress early on, most probably involving the formation of singlet oxygen in PSII, which leads to an increase in the expression of GDP-L-galactose phosphorylase, playing an essential role in ascorbate biosynthesis. When accumulated to the millimolar concentration range, ascorbate may inactivate the oxygen-evolving complex and provide electrons to PSII, albeit at a low rate. In the absence of a functional donor side and sufficient electron transport, PSII reaction centers are inactivated and degraded. We therefore demonstrate that the inactivation of PSII is a complex and multistep process, which may serve to mitigate the damaging effects of sulphur limitation. © 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.

  16. Humin as an electron donor for enhancement of multiple microbial reduction reactions with different redox potentials in a consortium.

    Science.gov (United States)

    Zhang, Dongdong; Zhang, Chunfang; Xiao, Zhixing; Suzuki, Daisuke; Katayama, Arata

    2015-02-01

    A solid-phase humin, acting as an electron donor, was able to enhance multiple reductive biotransformations, including dechlorination of pentachlorophenol (PCP), dissimilatory reduction of amorphous Fe (III) oxide (FeOOH), and reduction of nitrate, in a consortium. Humin that was chemically reduced by NaBH4 served as an electron donor for these microbial reducing reactions, with electron donating capacities of 0.013 mmol e(-)/g for PCP dechlorination, 0.15 mmol e(-)/g for iron reduction, and 0.30 mmol e(-)/g for nitrate reduction. Two pairs of oxidation and reduction peaks within the humin were detected by cyclic voltammetry analysis. 16S rRNA gene sequencing-based microbial community analysis of the consortium incubated with different terminal electron acceptors, suggested that Dehalobacter sp., Bacteroides sp., and Sulfurospirillum sp. were involved in the PCP dechlorination, dissimilatory iron reduction, and nitrate reduction, respectively. These findings suggested that humin functioned as a versatile redox mediator, donating electrons for multiple respiration reactions with different redox potentials. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  17. Evaluation of sustained release polylactate electron donors for removal of hexavalent chromium from contaminated groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Brodie, E.L.; Joyner, D. C.; Faybishenko, B.; Conrad, M. E.; Rios-Velazquez, C.; Mork, B.; Willet, A.; Koenigsberg, S.; Herman, D.; Firestone, M. K.; Hazen, T. C.; Malave, Josue; Martinez, Ramon

    2011-02-15

    To evaluate the efficacy of bioimmobilization of Cr(VI) in groundwater at the Department of Energy Hanford site, we conducted a series of microcosm experiments using a range of commercial electron donors with varying degrees of lactate polymerization (polylactate). These experiments were conducted using Hanford Formation sediments (coarse sand and gravel) immersed in Hanford groundwater, which were amended with Cr(VI) and several types of lactate-based electron donors (Hydrogen Release Compound, HRC; primer-HRC, pHRC; extended release HRC) and the polylactate-cysteine form (Metal Remediation Compound, MRC). The results showed that polylactate compounds stimulated an increase in bacterial biomass and activity to a greater extent than sodium lactate when applied at equivalent carbon concentrations. At the same time, concentrations of headspace hydrogen and methane increased and correlated with changes in the microbial community structure. Enrichment of Pseudomonas spp. occurred with all lactate additions, and enrichment of sulfate-reducing Desulfosporosinus spp. occurred with almost complete sulfate reduction. The results of these experiments demonstrate that amendment with the pHRC and MRC forms result in effective removal of Cr(VI) from solution most likely by both direct (enzymatic) and indirect (microbially generated reductant) mechanisms.

  18. Contrasting responses of photosynthesis to salt stress in the glycophyte Arabidopsis and the halophyte thellungiella: role of the plastid terminal oxidase as an alternative electron sink.

    Science.gov (United States)

    Stepien, Piotr; Johnson, Giles N

    2009-02-01

    The effects of short-term salt stress on gas exchange and the regulation of photosynthetic electron transport were examined in Arabidopsis (Arabidopsis thaliana) and its salt-tolerant close relative Thellungiella (Thellungiella halophila). Plants cultivated on soil were challenged for 2 weeks with NaCl. Arabidopsis showed a much higher sensitivity to salt than Thellungiella; while Arabidopsis plants were unable to survive exposure to greater than 150 mM salt, Thellugiella could tolerate concentrations as high as 500 mM with only minimal effects on gas exchange. Exposure of Arabidopsis to sublethal salt concentrations resulted in stomatal closure and inhibition of CO2 fixation. This lead to an inhibition of electron transport though photosystem II (PSII), an increase in cyclic electron flow involving only PSI, and increased nonphotochemical quenching of chlorophyll fluorescence. In contrast, in Thellungiella, although gas exchange was marginally inhibited by high salt and PSI was unaffected, there was a large increase in electron flow involving PSII. This additional electron transport activity is oxygen dependent and sensitive to the alternative oxidase inhibitor n-propyl gallate. PSII electron transport in Thellungiella showed a reduced sensitivity to 2'-iodo-6-isopropyl-3-methyl-2',4,4'-trinitrodiphenylether, an inhibitor of the cytochrome b6f complex. At the same time, we observed a substantial up-regulation of a protein reacting with antibodies raised against the plastid terminal oxidase. No such up-regulation was seen in Arabidopsis. We conclude that in salt-stressed Thellungiella, plastid terminal oxidase acts as an alternative electron sink, accounting for up to 30% of total PSII electron flow.

  19. Structure and electronic properties of Alq3 derivatives with electron acceptor/donor groups at the C4 positions of the quinolate ligands: a theoretical study.

    Science.gov (United States)

    Rao, Joshi Laxmikanth; Bhanuprakash, Kotamarthi

    2011-12-01

    The molecular structures of the ground (S(0)) and first singlet excited (S(1)) states of Alq3 derivatives in which pyrazolyl and 3-methylpyrazolyl groups are substituted at the C4 positions of the 8-hydroxyquinolate ligands as electron acceptors, and piperidinyl and N-methylpiperazinyl groups are substituted at the same positions as electron donors, have been optimized using the B3LYP/6-31G and CIS/6-31G methods, respectively. In order to analyze the electronic transitions in these derivatives, the frontier molecular orbital characteristics were analyzed systematically, and it was found that the highest occupied molecular orbital is localized on the A ligand while the lowest unoccupied molecular orbital is localized on the B ligand in their ground states, similar to what is seen for mer-Alq3. The absorption and emission spectra were evaluated at the TD-PBE0/6-31G level, and it was observed that electron acceptor substitution causes a red-shift in the emission spectra, which is also seen experimentally. The reorganization energies were calculated at the B3LYP/6-31G level and the results show that acceptor/donor substitution has a significant effect on the intrinsic charge mobilities of these derivatives as compared to mer-Alq3.

  20. Cytochrome b 6 f function and localization, phosphorylation state of thylakoid membrane proteins and consequences on cyclic electron flow.

    Science.gov (United States)

    Dumas, Louis; Chazaux, Marie; Peltier, Gilles; Johnson, Xenie; Alric, Jean

    2016-09-01

    Both the structure and the protein composition of thylakoid membranes have an impact on light harvesting and electron transfer in the photosynthetic chain. Thylakoid membranes form stacks and lamellae where photosystem II and photosystem I localize, respectively. Light-harvesting complexes II can be associated to either PSII or PSI depending on the redox state of the plastoquinone pool, and their distribution is governed by state transitions. Upon state transitions, the thylakoid ultrastructure and lateral distribution of proteins along the membrane are subject to significant rearrangements. In addition, quinone diffusion is limited to membrane microdomains and the cytochrome b 6 f complex localizes either to PSII-containing grana stacks or PSI-containing stroma lamellae. Here, we discuss possible similarities or differences between green algae and C3 plants on the functional consequences of such heterogeneities in the photosynthetic electron transport chain and propose a model in which quinones, accepting electrons either from PSII (linear flow) or NDH/PGR pathways (cyclic flow), represent a crucial control point. Our aim is to give an integrated description of these processes and discuss their potential roles in the balance between linear and cyclic electron flows.

  1. Towards PSII analogs driven by ruthenium photophysics

    International Nuclear Information System (INIS)

    Olsson, Jerry

    2002-01-01

    A number of model complexes have been prepared in an attempt to develop models for photosystem II (PSII) in green plants. As replacement for the chlorophyll photosensitizer, we have used Ru(ll) tris-2,2-bipyridyl or Ru(ll) bis-2,2';6',2 - terpyridyl complexes linked to a pendant 2,2'-bipyridyl or 2,2';6',2''-terpyridyl moieties via spacers of varying lengths. Manganese (ll) has been covalently linked to the pendant 2,2'-bipyridyl /2,2';6',2''-terpyridyl moieties. The use of different ruthenium centres and spacers has made it possible to make assumptions about the way and how easily manganese is coordinated through self-assembly to the pendant 2,2'-bipyridyl or 2,2';6',2''-terpyridyl groups. Several polynuclear complexes containing a photoactive centre (Ru(ll) tris-2,2'-bipyridine or Ru(ll) bis-2,2';6',2''-terpyridine) or other metal ions (Co 2+ , Fe 2+ , Mn 2= ) have been prepared and characterised. The main work has been focused on organic synthesis and characterisation of polypyridine ligands and coordinated to different metal centres. The complexes have been investigated electrochemically and photophysically. Several new phenol-based ligands have been prepared by organic synthetic methods and characterised by various different methods. (author)

  2. Inhibition of photosystem II by UV-B-radiation

    International Nuclear Information System (INIS)

    Tevini, M.; Pfister, K.

    1985-01-01

    The effect of UV-B-radiation on PSII activity of spinach chloroplasts was analyzed by measuring the integrity of the herbicide-binding protein (HBP 32), by measurement of fluorescence induction in the presence of Diuron (DCMU), and by mathematical analysis of the fluorescence induction curves. It was shown that UV-B inactivates the PSII α-centers but not PSII β-centers. However, the possibility cannot be excluded that in addition the donor site of PSII near the reaction center is attacked by UV-B-radiation. (orig.)

  3. Syntheses of donor-acceptor-functionalized dihydroazulenes

    DEFF Research Database (Denmark)

    Broman, Søren Lindbæk; Jevric, Martyn; Bond, Andrew

    2014-01-01

    The dihydroazulene (DHA)/vinylheptafulvene (VHF) photo/thermoswitch has been of interest for use in molecular electronics and advanced materials. The switching between the two isomers has previously been found to depend strongly on the presence of donor and acceptor groups. The fine-tuning of opt......The dihydroazulene (DHA)/vinylheptafulvene (VHF) photo/thermoswitch has been of interest for use in molecular electronics and advanced materials. The switching between the two isomers has previously been found to depend strongly on the presence of donor and acceptor groups. The fine...

  4. Fluorescence quenching of derivatives of anthracene by organic electron donors and acceptors in acetonitrile. Electron and proton transfer mechanism

    Science.gov (United States)

    Mac, Marek; Najbar, Jan; Wirz, Jakob

    1995-03-01

    Fluorescence quenching of anthracene derivatives by organic electron donors (amines) and acceptors was investigated using stationary fluorescence measurements. The dependence of log( kq) on Δ Get shows Rehm-Weller-type behavior. The formation of anion radicals of anthracene, bianthryl, and 9-cyanoanthracene was detected by flash photolysis in systems containing aromatic amines (aniline, 2-bromoaniline, 4-bromoaniline, N,N-dimethylaniline, 4-bromo-N,N-dimethylaniline, N,N-diethylaniline, and 1,4-diazabicyclo[2.2.2]octane). The radical yields decreased and triplet yields increased when bromo derivatives of amines were used as donor quenchers, indicating the heavy-atom effect on spin conversion within radical pairs. The importance of the heavy-atom effect decreased when the energy gap between the charge transfer and molecular triplet states was small. The formation of separated radicals decreased when primary amines were used as quenchers which indicated the existence of an additional path of deactivation of the radical pair. The behavior of amines as quenchers of bianthryl and anthracene is compared with that of inorganic anion quenchers.

  5. Super electron donor-mediated reductive transformation of nitrobenzenes: a novel strategy to synthesize azobenzenes and phenazines.

    Science.gov (United States)

    Nozawa-Kumada, Kanako; Abe, Erina; Ito, Shungo; Shigeno, Masanori; Kondo, Yoshinori

    2018-05-02

    The transformation of nitrobenzenes into azobenzenes by pyridine-derived super electron donor 2 is described. This method provides an efficient synthesis of azobenzenes because of not requiring the use of expensive transition-metals, toxic or flammable reagents, or harsh conditions. Moreover, when using 2-fluoronitrobenzenes as substrates, phenazines were found to be obtained. The process affords a novel synthesis of phenazines.

  6. Isolation of acetogenic bacteria that induce biocorrosion by utilizing metallic iron as the sole electron donor.

    Science.gov (United States)

    Kato, Souichiro; Yumoto, Isao; Kamagata, Yoichi

    2015-01-01

    Corrosion of iron occurring under anoxic conditions, which is termed microbiologically influenced corrosion (MIC) or biocorrosion, is mostly caused by microbial activities. Microbial activity that enhances corrosion via uptake of electrons from metallic iron [Fe(0)] has been regarded as one of the major causative factors. In addition to sulfate-reducing bacteria and methanogenic archaea in marine environments, acetogenic bacteria in freshwater environments have recently been suggested to cause MIC under anoxic conditions. However, no microorganisms that perform acetogenesis-dependent MIC have been isolated or had their MIC-inducing mechanisms characterized. Here, we enriched and isolated acetogenic bacteria that induce iron corrosion by utilizing Fe(0) as the sole electron donor under freshwater, sulfate-free, and anoxic conditions. The enriched communities produced significantly larger amounts of Fe(II) than the abiotic controls and produced acetate coupled with Fe(0) oxidation prior to CH4 production. Microbial community analysis revealed that Sporomusa sp. and Desulfovibrio sp. dominated in the enrichments. Strain GT1, which is closely related to the acetogen Sporomusa sphaeroides, was eventually isolated from the enrichment. Strain GT1 grew acetogenetically with Fe(0) as the sole electron donor and enhanced iron corrosion, which is the first demonstration of MIC mediated by a pure culture of an acetogen. Other well-known acetogenic bacteria, including Sporomusa ovata and Acetobacterium spp., did not grow well on Fe(0). These results indicate that very few species of acetogens have specific mechanisms to efficiently utilize cathodic electrons derived from Fe(0) oxidation and induce iron corrosion. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  7. Zeaxanthin Has Enhanced Antioxidant Capacity with Respect to All Other Xanthophylls in Arabidopsis Leaves and Functions Independent of Binding to PSII Antennae1[C][W

    Science.gov (United States)

    Havaux, Michel; Dall'Osto, Luca; Bassi, Roberto

    2007-01-01

    The ch1 mutant of Arabidopsis (Arabidopsis thaliana) lacks chlorophyll (Chl) b. Leaves of this mutant are devoid of photosystem II (PSII) Chl-protein antenna complexes and have a very low capacity of nonphotochemical quenching (NPQ) of Chl fluorescence. Lhcb5 was the only PSII antenna protein that accumulated to a significant level in ch1 mutant leaves, but the apoprotein did not assemble in vivo with Chls to form a functional antenna. The abundance of Lhca proteins was also reduced to approximately 20% of the wild-type level. ch1 was crossed with various xanthophyll mutants to analyze the antioxidant activity of carotenoids unbound to PSII antenna. Suppression of zeaxanthin by crossing ch1 with npq1 resulted in oxidative stress in high light, while removing other xanthophylls or the PSII protein PsbS had no such effect. The tocopherol-deficient ch1 vte1 double mutant was as sensitive to high light as ch1 npq1, and the triple mutant ch1 npq1 vte1 exhibited an extreme sensitivity to photooxidative stress, indicating that zeaxanthin and tocopherols have cumulative effects. Conversely, constitutive accumulation of zeaxanthin in the ch1 npq2 double mutant led to an increased phototolerance relative to ch1. Comparison of ch1 npq2 with another zeaxanthin-accumulating mutant (ch1 lut2) that lacks lutein suggests that protection of polyunsaturated lipids by zeaxanthin is enhanced when lutein is also present. During photooxidative stress, α-tocopherol noticeably decreased in ch1 npq1 and increased in ch1 npq2 relative to ch1, suggesting protection of vitamin E by high zeaxanthin levels. Our results indicate that the antioxidant activity of zeaxanthin, distinct from NPQ, can occur in the absence of PSII light-harvesting complexes. The capacity of zeaxanthin to protect thylakoid membrane lipids is comparable to that of vitamin E but noticeably higher than that of all other xanthophylls of Arabidopsis leaves. PMID:17932304

  8. Organic substrates as electron donors in permeable reactive barriers for removal of heavy metals from acid mine drainage.

    Science.gov (United States)

    Kijjanapanich, P; Pakdeerattanamint, K; Lens, P N L; Annachhatre, A P

    2012-12-01

    This research was conducted to select suitable natural organic substrates as potential carbon sources for use as electron donors for biological sulphate reduction in a permeable reactive barrier (PRB). A number of organic substrates were assessed through batch and continuous column experiments under anaerobic conditions with acid mine drainage (AMD) obtained from an abandoned lignite coal mine. To keep the heavy metal concentration at a constant level, the AMD was supplemented with heavy metals whenever necessary. Under anaerobic conditions, sulphate-reducing bacteria (SRB) converted sulphate into sulphide using the organic substrates as electron donors. The sulphide that was generated precipitated heavy metals as metal sulphides. Organic substrates, which yielded the highest sulphate reduction in batch tests, were selected for continuous column experiments which lasted over 200 days. A mixture of pig-farm wastewater treatment sludge, rice husk and coconut husk chips yielded the best heavy metal (Fe, Cu, Zn and Mn) removal efficiencies of over 90%.

  9. Suitability of olive oil washing water as an electron donor in a feed batch operating bio-electrochemical system

    International Nuclear Information System (INIS)

    Fermoso, F.G.; Fernández-Rodríguez, M.J.; Jiménez-Rodríguez, A.; Serrano, A.; Borja, R.

    2017-01-01

    Olive oil washing water derived from the two-phase manufacturing process was assessed as an electron donor in a bio-electrochemical system (BES) operating at 35 ºC. Start-up was carried out by using acetate as a substrate for the BES, reaching a potential of around +680 mV. After day 54, BES was fed with olive oil washing water. The degradation of olive oil washing water in the BES generated a maximum voltage potential of around +520 mV and a Chemical Oxygen Demand (COD) removal efficiency of 41%. However, subsequent loads produced a decrease in the COD removal, while current and power density diminished greatly. The deterioration of these parameters could be a consequence of the accumulation of recalcitrant or inhibitory compounds, such as phenols. These results demonstrated that the use of olive oil washing water as an electron donor in a BES is feasible, although it has to be further investigated in order to make it more suitable for a real application. [es

  10. Donor-impurity-related optical response and electron Raman scattering in GaAs cone-like quantum dots

    Science.gov (United States)

    Gil-Corrales, A.; Morales, A. L.; Restrepo, R. L.; Mora-Ramos, M. E.; Duque, C. A.

    2017-02-01

    The donor-impurity-related optical absorption, relative refractive index changes, and Raman scattering in GaAs cone-like quantum dots are theoretically investigated. Calculations are performed within the effective mass and parabolic band approximations, using the variational procedure to include the electron-impurity correlation effects. The study involves 1 s -like, 2px-like, and 2pz-like states. The conical structure is chosen in such a way that the cone height is large enough in comparison with the base radius thus allowing the use a quasi-analytic solution of the uncorrelated Schrödinger-like electron states.

  11. Comparative analysis of salt stress, duration and intensity, on the chloroplast ultrastructure and photosynthetic apparatus in Thellungiella salsuginea.

    Science.gov (United States)

    Goussi, Rahma; Manaa, Arafet; Derbali, Walid; Cantamessa, Simone; Abdelly, Chedly; Barbato, Roberto

    2018-06-01

    Salinity is one of the most important abiotic stress affecting plant growth and productivity worldwide. Photosynthesis, together with cell growth, is among the primary process affected by salinity. Here, we report the effects of salt stress on photosynthesis in the model halophyte Thellungiella salsuginea. Plants were grown in hydroponic system and then treated for 2 weeks with different NaCl concentrations (0, 100, 200 and 400 mM). Leaf analysis using both photonic and transmission electron microscopes showed some changes in mesophyll cell organization, including shape and dimension. Under high NaCl concentration (400 mM) a swelling of thylakoids and starch accumulation was also observed. The obtained results also showed a change in the photosynthetic efficiency of both photosystems (PSI and PSII), depending on both NaCl concentrations and duration of the stress treatment. Under moderate salinity (100 and 200 mM NaCl) no significant variation was observed in PSI and PSII yield parameters. Chlorophyll a fluorescence transient showed some variations in OJ, JI and IP phases under salt stress depending also on NaCl levels and the duration of stress. Under high salinity PSII donor side was affected as well as quantum yield of PSI which also showed a donor side limitation. A significant decrease on quantum yields Y(I) and Y(II) under high salt treatment (400 mM NaCl) for prolonged period of time (15 days) was observed. The decrease of these parameters was quantitatively compensated by a corresponding increase of energy thermal dissipation Y(NPQ) in photosystem II and a increase in the Y(ND) in PSI. Analysis of derived parameters from the OJIP transient curve revealed that ABS/RC decreased under NaCl treatment by reason of the increase in size of antenna of active reaction centers. An increase in the performance index PI (ABS) , a slight decrease in the rate of DI O /RC, TR O /RC and the level of electron transport per PSII RC (ET O /RC) were observed during

  12. [Potential Carbon Fixation Capability of Non-photosynthetic Microbial Community at Different Depth of the South China Sea and Its Response to Different Electron Donors].

    Science.gov (United States)

    Fang, Feng; Wang, Lei; Xi, Xue-fei; Hu, Jia-jun; Fu, Xiao-hua; Lu, Bing; Xu, Dian-sheng

    2015-05-01

    The seawater samples collected from many different areas with different depth in the South China Sea were cultivated using different electron donors respectively. And the variation in the potential carbon fixation capability ( PCFC ) of non-photosynthetic microbial community (NPMC) in seawater with different depth was determined after a cycle of cultivation through the statistic analysis. In addition, the cause for the variation was clarified through analyzing key gene abundance regarding CO2 fixation and characteristics of seawater with different depth. The result showed that the PCFCs of NPMC in seawater with different depth were generally low and had no significant difference when using NaNO2 as the electron donor. The PCFC of NPMC in surface seawater was higher than that in deep seawater when using H2 as the electron donor, on the contrary, the PCFC of NPMC in deep seawater was higher than that in surface seawater when using Na2S2O3 as the electron donor. The abundance of the main CO2 fixation gene cbbL in surface seawater was higher than that in deep seawater while the cbbM gene abundance in deep seawater was higher than that in surface seawater. Most hydrogen-oxidizing bacteria had the cbbL gene, and most sulfur bacteria had the cbbM gene. The tendency of seawater cbbL/cbbM gene abundance with the change of depth revealed that there were different kinds of bacteria accounting for the majority in NPMC fixing CO2 at different depth of ocean, which led to different response of PCFC of NPMC at different depth of the sea to different electron donors. The distributions of dissolved oxygen and inorganic carbon concentration with the change of the depth of the sea might be an important reason leading to the difference of NPMC structure and even the difference of PCFC at different depth of the sea.

  13. The effect of magnetic field and donor impurity on electron spectrum in spherical core-shell quantum dot

    Science.gov (United States)

    Holovatsky, V. A.; Voitsekhivska, O. M.; Yakhnevych, M. Ya

    2018-04-01

    The effect of homogeneous magnetic field and location of donor impurity on the electron energy spectrum and distribution of its probability density in spherical core-shell quantum dot is investigated. In the framework of the effective mass approximation and rectangular infinitely deep potential well, the solutions of the Schrodinger equation are found using the matrix method. The wave functions are expanded over the complete set of exact functions obtained without the magnetic field and impurity. It is shown that when the induction of magnetic field increases, the ground state of electron in the nanostructure without impurity or on-center impurity is successively formed by the states with m = 0, -1, -2, … (Aharonov-Bohm effect). When donor impurity is located in the shell of the nanostructure the Aharonov-Bohm effect vanishes. The dependences of electron energy spectrum and its wave functions on the location of impurity, placed along the direction of magnetic field or perpendicularly to it, are studied. It is shown, that in the first case, the quantum states are characterized by the certain value of magnetic quantum number m and the expansion contains the wave functions of the states with it only. In the second case, the cylindrical symmetry of the problem is broken and the new quantum states are formed from the states with different values of all three quantum numbers n, l, m and electron energy spectrum weakly depends on the magnetic field induction.

  14. Investigation of electron and hydrogenic-donor states confined in a permeable spherical box using B-splines

    Directory of Open Access Journals (Sweden)

    T Nikbakht

    2012-12-01

    Full Text Available   Effects of quantum size and potential shape on the spectra of an electron and a hydrogenic-donor at the center of a permeable spherical cavity have been calculated, using linear variational method. B-splines have been used as basis functions. By extensive convergence tests and comparing with other results given in the literature, the validity and efficiency of the method were confirmed.

  15. Boron Doped diamond films as electron donors in photovoltaics: An X-ray absorption and hard X-ray photoemission study

    Energy Technology Data Exchange (ETDEWEB)

    Kapilashrami, M.; Zegkinoglou, I. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Physics, University of Wisconsin Madison, Madison, Wisconsin 53706 (United States); Conti, G.; Nemšák, S.; Conlon, C. S.; Fadley, C. S. [Department of Physics, University of California, Davis, California 95616 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Törndahl, T.; Fjällström, V. [Ångström Solar Center, Uppsala University, Box 534, SE-751 21 Uppsala (Sweden); Lischner, J. [Department of Physics, University of California, Berkeley, California 94720 (United States); Louie, Steven G. [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Physics, University of California, Berkeley, California 94720 (United States); Hamers, R. J.; Zhang, L. [Department of Chemistry, University of Wisconsin Madison, Madison, Wisconsin 53706 (United States); Guo, J.-H. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Himpsel, F. J., E-mail: fhimpsel@wisc.edu [Department of Physics, University of Wisconsin Madison, Madison, Wisconsin 53706 (United States)

    2014-10-14

    Highly boron-doped diamond films are investigated for their potential as transparent electron donors in solar cells. Specifically, the valence band offset between a diamond film (as electron donor) and Cu(In,Ga)Se₂ (CIGS) as light absorber is determined by a combination of soft X-ray absorption spectroscopy and hard X-ray photoelectron spectroscopy, which is more depth-penetrating than standard soft X-ray photoelectron spectroscopy. In addition, a theoretical analysis of the valence band is performed, based on GW quasiparticle band calculations. The valence band offset is found to be small: VBO=VBM{sub CIGS} – VBM{sub diamond}=0.3 eV±0.1 eV at the CIGS/Diamond interface and 0.0 eV±0.1 eV from CIGS to bulk diamond. These results provide a promising starting point for optimizing the band offset by choosing absorber materials with a slightly lower valence band maximum.

  16. Diversity and ubiquity of bacteria capable of utilizing humic substances as electron donors for anaerobic respiration.

    Science.gov (United States)

    Coates, John D; Cole, Kimberly A; Chakraborty, Romy; O'Connor, Susan M; Achenbach, Laurie A

    2002-05-01

    Previous studies have demonstrated that reduced humic substances (HS) can be reoxidized by anaerobic bacteria such as Geobacter, Geothrix, and Wolinella species with a suitable electron acceptor; however, little is known of the importance of this metabolism in the environment. Recently we investigated this metabolism in a diversity of environments including marine and aquatic sediments, forest soils, and drainage ditch soils. Most-probable-number enumeration studies were performed using 2,6-anthrahydroquinone disulfonate (AHDS), an analog for reduced HS, as the electron donor with nitrate as the electron acceptor. Anaerobic organisms capable of utilizing reduced HS as an electron donor were found in all environments tested and ranged from a low of 2.31 x 10(1) in aquifer sediments to a high of 9.33 x 10(6) in lake sediments. As part of this study we isolated six novel organisms capable of anaerobic AHDS oxidation. All of the isolates coupled the oxidation of AHDS to the reduction of nitrate with acetate (0.1 mM) as the carbon source. In the absence of cells, no AHDS oxidation was apparent, and in the absence of AHDS, no cell density increase was observed. Generally, nitrate was reduced to N(2). Analysis of the AHDS and its oxidized form, 2,6-anthraquinone disulfonate (AQDS), in the medium during growth revealed that the anthraquinone was not being biodegraded as a carbon source and was simply being oxidized as an energy source. Determination of the AHDS oxidized and nitrate reduced accounted for 109% of the theoretical electron transfer. In addition to AHDS, all of these isolates could also couple the oxidation of reduced humic substances to the reduction of nitrate. No HS oxidation occurred in the absence of cells and in the absence of a suitable electron acceptor, demonstrating that these organisms were capable of utilizing natural HS as an energy source and that AHDS serves as a suitable analog for studying this metabolism. Alternative electron donors included

  17. Rate dependence of electron transfer on donor-acceptor separation and on free enthalpy change. The Ru(bpy)32+/viologen2+ system

    International Nuclear Information System (INIS)

    Rau, H.; Frank, R.; Greiner, G.

    1986-01-01

    By attachment of hydrocarbon chains of different lengths to the bipyridyl ligands in Ru(bpy) 3 2+ we have adjusted the donor-acceptor separation in the electron-transfer system Ru[(C/sub n/H/sub 2n+1/) 2 bpyl 3 2+ /methylviolgen. Two electron-transfer reactions with different ΔG are investigated in fluid solution: the quenching of the excited complexes by methylviologen (MV 2+ ) which is exergonic with -0.4 eV and the thermal back electron transfer which is exergonic with -1.7 eV. We observe an exponential decrease of the quenching rate on distance. The back electron transfer is independent of donor-acceptor separation; electron transfer is found to take place at distances of 1.5 nm and more. The results are discussed in terms of a hypothesis on the interdependence of transfer distance and free enthalpy change and compared with current theories. In the framework of the simple classical Marcus model, the Marcus equation relating transfer rate and free enthalpy change is transposed into the Rehm-Weller equation by simple mathematical manipulations and the implications of this are discussed

  18. Theory of Primary Photoexcitations in Donor-Acceptor Copolymers

    OpenAIRE

    Aryanpour, Karan; Dutta, Tirthankar; Huynh, Uyen N. V.; Vardeny, Zeev Valy; Mazumdar, Sumit

    2015-01-01

    We present a generic theory of primary photoexcitations in low band gap donor-acceptor conjugated copolymers. Because of the combined effects of strong electron correlations and broken symmetry, there is considerable mixing between a charge-transfer exciton and an energetically proximate triplet-triplet state with an overall spin singlet. The triplet-triplet state, optically forbidden in homopolymers, is allowed in donor-acceptor copolymers. For an intermediate difference in electron affiniti...

  19. Shallow hydrogen-related donors in silicon

    International Nuclear Information System (INIS)

    Hartung, J.; Weber, J.

    1993-01-01

    Photothermal ionization spectroscopy on neutron-irradiated and subsequently hydrogen-plasma-treated silicon reveals the existence of new shallow donors. The binding energies of the observed effective-mass-like donors are between 34 and 53 meV. The optical dipole transitions of the different donors are shifted towards higher energies by ΔE=0.1--0.2 cm -1 , when deuterium is used in the plasma instead of hydrogen. This isotope shift of the optical dipole transitions between the electronic levels of the defects is direct proof of the incorporation of hydrogen in these defects

  20. Spectroscopic studies of charge transfer complexes of some amino aromatic donors with some acceptors

    International Nuclear Information System (INIS)

    Al-Ani, S.S.

    1989-01-01

    Charge transfer (C.T.) complexes are the products of the weak reversible interactions between electron donors and electron acceptors. Sixteen novel C.T. complexes were studied and discussed. These complexes were formed from aromatic electron donors with various electron acceptors in absolute ethyl alcohol at 20 0 C. Electronic absorption spectra of these complexes and their donors and acceptors were taken. New charge transfer absorption bands appeared for these complexes in the UV-VIS region. The donors used are tetramethyl diamino benzophenone, P-amino-N:N-dimethyl aniline, tetramethyl-diamino-diphenylmethane, P-amino-azobenzene and benzidine, while the acceptors are iodine, bromine, picric acid, 2,4-dinitrophenol, trifluoroacetic acid and trichloroacetic acid. The results showed a disappearance of some donors and acceptors absorption bands. The energy of C.T. bands were calculated from which the ionization potentials of donors were obtained. The results showed that energies of C.T. Bands for complexes of a given donor with a series of acceptors are very similar. Some C.T. complexes showed low value of energy and high values of electrical conductivity. These are ionic complexes rather than molecular ones. 4 tabs.; 2 figs.; 99 refs

  1. Intramolecular Charge-Transfer Interaction of Donor-Acceptor-Donor Arrays Based on Anthracene Bisimide.

    Science.gov (United States)

    Iwanaga, Tetsuo; Ogawa, Marina; Yamauchi, Tomokazu; Toyota, Shinji

    2016-05-20

    We designed anthracene bisimide (ABI) derivatives having two triphenylamine (TPA) groups as donor units at the 9,10-positions to form a novel π-conjugated donor-acceptor system. These compounds and their analogues with ethynylene linkers were synthesized by Suzuki-Miyaura and Sonogashira coupling reactions, respectively. In UV-vis spectra, the linker-free derivatives showed broad absorption bands arising from intramolecular charge-transfer interactions. Introducing ethynylene linkers resulted in a considerable red shift of the absorption bands. In fluorescence spectra, the ethynylene derivatives showed intense emission bands at 600-650 nm. Their photophysical and electrochemical properties were compared with those of the corresponding mono TPA derivatives on the basis of theoretical calculations and cyclic voltammetry to evaluate the intramolecular electronic interactions between the donor and acceptor units.

  2. Field Evidence for Co-Metabolism of Trichloroethene Stimulated by Addition of Electron Donor to Groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Conrad, Mark E.; Brodie, Eoin L.; Radtke, Corey W.; Bill, Markus; Delwiche, Mark E.; Lee, M. Hope; Swift, Dana L.; Colwell, Frederick S.

    2010-05-17

    For more than 10 years, electron donor has been injected into the Snake River aquifer beneath the Test Area North site of the Idaho National Laboratory for the purpose of stimulating microbial reductive dechlorination of trichloroethene (TCE) in groundwater. This has resulted in significant TCE removal from the source area of the contaminant plume and elevated dissolved CH4 in the groundwater extending 250 m from the injection well. The delta13C of the CH4 increases from 56o/oo in the source area to -13 o/oo with distance from the injection well, whereas the delta13C of dissolved inorganic carbon decreases from 8 o/oo to -13 o/oo, indicating a shift from methanogenesis to methane oxidation. This change in microbial activity along the plume axis is confirmed by PhyloChip microarray analyses of 16S rRNA genes obtained from groundwater microbial communities, which indicate decreasing abundances of reductive dechlorinating microorganisms (e.g., Dehalococcoides ethenogenes) and increasing CH4-oxidizing microorganisms capable of aerobic co-metabolism of TCE (e.g., Methylosinus trichosporium). Incubation experiments with 13C-labeled TCE introduced into microcosms containing basalt and groundwater from the aquifer confirm that TCE co-metabolism is possible. The results of these studies indicate that electron donor amendment designed to stimulate reductive dechlorination of TCE may also stimulate co-metabolism of TCE.

  3. Boron Doped diamond films as electron donors in photovoltaics: An X-ray absorption and hard X-ray photoemission study

    International Nuclear Information System (INIS)

    Kapilashrami, M.; Zegkinoglou, I.; Conti, G.; Nemšák, S.; Conlon, C. S.; Fadley, C. S.; Törndahl, T.; Fjällström, V.; Lischner, J.; Louie, Steven G.; Hamers, R. J.; Zhang, L.; Guo, J.-H.; Himpsel, F. J.

    2014-01-01

    Highly boron-doped diamond films are investigated for their potential as transparent electron donors in solar cells. Specifically, the valence band offset between a diamond film (as electron donor) and Cu(In,Ga)Se 2 (CIGS) as light absorber is determined by a combination of soft X-ray absorption spectroscopy and hard X-ray photoelectron spectroscopy, which is more depth-penetrating than standard soft X-ray photoelectron spectroscopy. In addition, a theoretical analysis of the valence band is performed, based on GW quasiparticle band calculations. The valence band offset is found to be small: VBO = VBM CIGS – VBM diamond  = 0.3 eV ± 0.1 eV at the CIGS/Diamond interface and 0.0 eV ± 0.1 eV from CIGS to bulk diamond. These results provide a promising starting point for optimizing the band offset by choosing absorber materials with a slightly lower valence band maximum.

  4. Suitability of olive oil washing water as an electron donor in a feed batch operating bio-electrochemical system

    Directory of Open Access Journals (Sweden)

    F. G. Fermoso

    2017-06-01

    Full Text Available Olive oil washing water derived from the two-phase manufacturing process was assessed as an electron donor in a bio-electrochemical system (BES operating at 35 ºC. Start-up was carried out by using acetate as a substrate for the BES, reaching a potential of around +680 mV. After day 54, BES was fed with olive oil washing water. The degradation of olive oil washing water in the BES generated a maximum voltage potential of around +520 mV and a Chemical Oxygen Demand (COD removal efficiency of 41%. However, subsequent loads produced a decrease in the COD removal, while current and power density diminished greatly. The deterioration of these parameters could be a consequence of the accumulation of recalcitrant or inhibitory compounds, such as phenols. These results demonstrated that the use of olive oil washing water as an electron donor in a BES is feasible, although it has to be further investigated in order to make it more suitable for a real application.

  5. 2010 Electron Donor-Acceptor Interactions Gordon Research Conference, August 8 - 13, 2010.

    Energy Technology Data Exchange (ETDEWEB)

    Gerald Meyer

    2010-08-18

    The Gordon Research Conference on Electron Donor Acceptor Interactions (GRC EDAI) presents and advances the current frontiers in experimental and theoretical studies of Electron Transfer Processes and Energy Conversion. The fundamental concepts underpinning the field of electron transfer and charge transport phenomena are understood, but fascinating experimental discoveries and novel applications based on charge transfer processes are expanding the discipline. Simultaneously, global challenges for development of viable and economical alternative energy resources, on which many researchers in the field focus their efforts, are now the subject of daily news headlines. Enduring themes of this conference relate to photosynthesis, both natural and artificial, and solar energy conversion. More recent developments include molecular electronics, optical switches, and nanoscale charge transport structures of both natural (biological) and man-made origin. The GRC EDAI is one of the major international meetings advancing this field, and is one of the few scientific meetings where fundamental research in solar energy conversion has a leading voice. The program includes sessions on coupled electron transfers, molecular solar energy conversion, biological and biomimetic systems, spin effects, ultrafast reactions and technical frontiers as well as electron transport in single molecules and devices. In addition to disseminating the latest advances in the field of electron transfer processes, the conference is an excellent forum for scientists from different disciplines to meet and initiate new directions; for scientists from different countries to make contacts; for young scientists to network and establish personal contacts with other young scientists and with established scientists who, otherwise, might not have the time to meet young people. The EDAI GRC also features an interactive atmosphere with lively poster sessions, a few of which are selected for oral presentations.

  6. Theory of Primary Photoexcitations in Donor-Acceptor Copolymers.

    Science.gov (United States)

    Aryanpour, Karan; Dutta, Tirthankar; Huynh, Uyen N V; Vardeny, Zeev Valy; Mazumdar, Sumit

    2015-12-31

    We present a generic theory of primary photoexcitations in low band gap donor-acceptor conjugated copolymers. Because of the combined effects of strong electron correlations and broken symmetry, there is considerable mixing between a charge-transfer exciton and an energetically proximate triplet-triplet state with an overall spin singlet. The triplet-triplet state, optically forbidden in homopolymers, is allowed in donor-acceptor copolymers. For an intermediate difference in electron affinities of the donor and the acceptor, the triplet-triplet state can have a stronger oscillator strength than the charge-transfer exciton. We discuss the possibility of intramolecular singlet fission from the triplet-triplet state, and how such fission can be detected experimentally.

  7. A Moessbauer study of the germanium two-electron donor centers in PbSe

    International Nuclear Information System (INIS)

    Terukov, E.I.; Khuzhakulov, Eh.S.

    2005-01-01

    The 73 As( 73 Ge) Moessbauer emission spectroscopy is used for identification of neutral and ionized two-electron germanium centers in PbSe. It is shown that the charge state of antistructural defect 73 Ge, generating in the anion sublattice after 73 As radioactive decay, does not depend on the Fermi level position. In contrast to this, the 73 Ge center in the cation PbSe sublattice represents the electrically active substitution impurity. The emission spectra correspond to the neutral state of the ( 73 Ge 2+ ) donor center in n-type conductors and to the double ionized state of this ( 73 Ge 4+ ) center in p-type conductors [ru

  8. Fine structure of granal thylakoid membrane organization using cryo electron tomography

    NARCIS (Netherlands)

    Kouril, Roman; Oostergetel, Gert T.; Boekema, Egbert J.

    The architecture of grana membranes from spinach chloroplasts was studied by cryo electron tomography. Tomographic reconstructions of ice-embedded isolated grana stacks enabled to resolve features of photosystem II (PSII) in the native membrane and to assign the absolute orientation of individual

  9. Thermotolerance of apple tree leaves probed by chlorophyll a fluorescence and modulated 820 nm reflection during seasonal shift.

    Science.gov (United States)

    Duan, Ying; Zhang, Mengxia; Gao, Jin; Li, Pengmin; Goltsev, Vasilij; Ma, Fengwang

    2015-11-01

    During the seasonal shift from June to August, air temperatures increase. To explore how apple trees improve their thermotolerance during this shift, we examined the photochemical reaction capacity of apple tree leaves by simultaneous measurement of prompt chlorophyll fluorescence, delayed chlorophyll fluorescence, and modulated 820 nm reflection at varying temperatures. It was found that the reaction centers and antennae of photosystem II (PSII) and photosystem I (PSI), the donor side of PSII, the electron transfer capacity from QA to QB, and the reoxidation capacity of plastoquinol were all sensitive to heat stress, particularly in June. As the season shifted, apple tree leaves improved in thermotolerance. Interestingly, the acclimation to seasonal shift enhanced the thermotolerance of PSII and PSI reaction centers more than that of their antennae, and the activity of PSII more than that of PSI. This may be a strategy for plant adaptation to changes in environmental temperatures. In addition, results from prompt and delayed fluorescence, as well as modulated 820 nm reflection corroborate each other. We suggest that the simultaneous measurement of the three independent signals may provide more information on thermal acclimation mechanisms of photochemical reactions in plant leaves. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Density functional theory study of silodithiophene thiophenepyrrolopyrroledion-based small molecules: The effect of alkyl side chain length in electron donor materials

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Dong Kyun; Yeo, Hak; Kwak, Kyung Won [Dept. of Chemistry, Chung-Ang University, Seoul (Korea, Republic of); Yoon, Young Woon; Kim, Bong Soo [Photo-electronic Hybrids Research Center, Korea Institute of Science and Technology, Seoul (Korea, Republic of); Lee, Kyung Koo [Dept. of Chemistry, Kunsan National University, Gunsan (Korea, Republic of)

    2015-02-15

    Push–pull small molecules are promising electron-donor materials for organic solar cells. Thus, precise prediction of their electronic structures is of paramount importance to control the optical and electrical properties of the solar cells. Various types of alkyl chains are usually introduced to increase solubility and modify the morphology of the resulting molecular films. Here, using density functional theory (DFT) and time-dependent DFT (TD-DFT), we report the precise effect of increasing the length of the alkyl chain on the electronic structure of an electron donor molecule 6,60-((4,4-dialkyl-4H-silolo[3,2-b:4,5-b′]-dithiophene-2,6-diyl) bis(thiophene-5,2-diyl))bis(2,5-alkyl-3-(thiophen-2-yl) -2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione) (DTS1TDPP). Alkyl groups were attached to the bridging position (silicon atom) of the fused rings and nitrogen atom of the pyrrolopyrroledione groups. We demonstrate that the alkyl groups do not perturb the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels, π-delocalized backbone structure, and UV–Vis absorption spectrum when they are placed at the least steric effect positions.

  11. Functional pyruvate formate lyase pathway expressed with two different electron donors in Saccharomyces cerevisiae at aerobic growth

    DEFF Research Database (Denmark)

    Zhang, Yiming; Dai, Zongjie; Krivoruchko, Anastasia

    2015-01-01

    pyruvate decarboxylase and having a reduced glucose uptake rate due to a mutation in the transcriptional regulator Mth1, IMI076 (Pdc-MTH1-ΔT ura3-52). PFL was expressed with two different electron donors, reduced ferredoxin or reduced flavodoxin, respectively, and it was found that the coexpression...

  12. Correlation of paramagnetic states and molecular structure in bacterial photosynthetic reaction centers: The symmetry of the primary electron donor in Rhodopseudomonas viridis and Rhodobacter sphaeroides R-26

    International Nuclear Information System (INIS)

    Norris, J.R.; Budil, D.E.; Gast, P.; Chang, C.H.; El-Kabbani, O.; Schiffer, M.

    1989-01-01

    The orientation of the principal axes of the primary electron donor triplet state measured in single crystals of photosynthetic reaction centers is compared to the x-ray structures of the bacteria Rhodobacter (Rb.) sphaeroides R-26 and Rhodopseudomonas (Rps.) viridis. The primary donor of Rps. viridis is significantly different from that of Rb. sphaeroides. The measured directions of the axes indicate that triplet excitation is almost completely localized on the L-subunit half of the dimer in Rps. viridis but is more symmetrically distributed on the dimeric donor in Rb. sphaeroides R-26. The large reduction of the zero field splitting parameters relative to monomeric bacteriochlorophyll triplet in vitro suggests significant participation of asymmetrical charge transfer electronic configurations in the special pair triplet state of both organisms

  13. Synthesis and spectroscopic characterization of a fluorescent pyrrole derivative containing electron acceptor and donor groups

    Science.gov (United States)

    Almeida, A. K. A.; Monteiro, M. P.; Dias, J. M. M.; Omena, L.; da Silva, A. J. C.; Tonholo, J.; Mortimer, R. J.; Navarro, M.; Jacinto, C.; Ribeiro, A. S.; de Oliveira, I. N.

    2014-07-01

    The synthesis and fluorescence characterization of a new pyrrole derivative (PyPDG) containing the electron donor-acceptor dansyl substituent is reported. The effects of temperature and solvent polarity on the steady-state fluorescence of this compound are investigated. Our results show that PyPDG exhibits desirable fluorescent properties which makes it a promising candidate to be used as the photoactive material in optical thermometry and thermography applications. Further, the electrochemical and emission properties of polymeric films obtained from the oxidation polymerization of PyPDG are also analyzed.

  14. A Methyl Substituted Thiophenic-TTF Donor and its Salts

    OpenAIRE

    Silva, Rafaela A. L.; Santos, Isabel C.; Lopes, Elsa B.; Rabaça, Sandra; Galindo, Sergi; Mas-Torrent, Marta; Rovira Angulo, Concepció

    2015-01-01

    α-Methyldithiophene–tetrathiafulvalene (α-mDT-TTF), the first alkyl-substituted thiophene–tetrathiafulvalene electronic donor, and some of its charge-transfer salts were explored. The crystal structure of α-mDT-TTF is composed of molecular stacks aligned parallel to each other. Its cyclic voltammetry shows higher electron-donor ability than the unsubstituted analogue. This material was employed as a semiconductor in an organic field-effect transistor and showed a mobil...

  15. Impact of the electron donor on in situ microbial nitrate reduction in Opalinus Clay: results from the Mont Terri rock laboratory (Switzerland)

    Energy Technology Data Exchange (ETDEWEB)

    Bleyen, N.; Smets, S. [Belgian Nuclear Research Centre SCK-CEN, Mol (Belgium); Small, J. [National Nuclear Laboratory NLL, Warrington (United Kingdom); and others

    2017-04-15

    At the Mont Terri rock laboratory (Switzerland), an in situ experiment is being carried out to examine the fate of nitrate leaching from nitrate-containing bituminized radioactive waste, in a clay host rock for geological disposal. Such a release of nitrate may cause a geochemical perturbation of the clay, possibly affecting some of the favorable characteristics of the host rock. In this in situ experiment, combined transport and reactivity of nitrate is studied inside anoxic and water-saturated chambers in a borehole in the Opalinus Clay. Continuous circulation of the solution from the borehole to the surface equipment allows a regular sampling and online monitoring of its chemical composition. In this paper, in situ microbial nitrate reduction in the Opalinus Clay is discussed, in the presence or absence of additional electron donors relevant for the disposal concept and likely to be released from nitrate-containing bituminized radioactive waste: acetate (simulating bitumen degradation products) and H{sub 2} (originating from radiolysis and corrosion in the repository). The results of these tests indicate that - in case microorganisms would be active in the repository or the surrounding clay - microbial nitrate reduction can occur using electron donors naturally present in the clay (e.g. pyrite, dissolved organic matter). Nevertheless, non-reactive transport of nitrate in the clay is expected to be the main process. In contrast, when easily oxidizable electron donors would be available (e.g. acetate and H{sub 2}), the microbial activity will be strongly stimulated. Both in the presence of H{sub 2} and acetate, nitrite and nitrogenous gases are predominantly produced, although some ammonium can also be formed when H{sub 2} is present. The reduction of nitrate in the clay could have an impact on the redox conditions in the pore-water and might also lead to a gas-related perturbation of the host rock, depending on the electron donor used during denitrification

  16. Cold-acclimation limits low temperature induced photoinhibition by promoting a higher photochemical quantum yield and a more effective PSII restoration in darkness in the Antarctic rather than the Andean ecotype of Colobanthus quitensis Kunt Bartl (Cariophyllaceae

    Directory of Open Access Journals (Sweden)

    Bascuñán-Godoy Luisa

    2012-07-01

    Full Text Available Abstract Background Ecotypes of Colobanthus quitensis Kunt Bartl (Cariophyllaceae from Andes Mountains and Maritime Antarctic grow under contrasting photoinhibitory conditions, reaching differential cold tolerance upon cold acclimation. Photoinhibition depends on the extent of photodamage and recovery capability. We propose that cold acclimation increases resistance to low-temperature-induced photoinhibition, limiting photodamage and promoting recovery under cold. Therefore, the Antarctic ecotype (cold hardiest should be less photoinhibited and have better recovery from low-temperature-induced photoinhibition than the Andean ecotype. Both ecotypes were exposed to cold induced photoinhibitory treatment (PhT. Photoinhibition and recovery of photosystem II (PSII was followed by fluorescence, CO2 exchange, and immunoblotting analyses. Results The same reduction (25% in maximum PSII efficiency (Fv/Fm was observed in both cold-acclimated (CA and non-acclimated (NA plants under PhT. A full recovery was observed in CA plants of both ecotypes under dark conditions, but CA Antarctic plants recover faster than the Andean ecotype. Under PhT, CA plants maintain their quantum yield of PSII, while NA plants reduced it strongly (50% and 73% for Andean and Antarctic plants respectively. Cold acclimation induced the maintenance of PsaA and Cyt b6/f and reduced a 41% the excitation pressure in Antarctic plants, exhibiting the lowest level under PhT. xCold acclimation decreased significantly NPQs in both ecotypes, and reduced chlorophylls and D1 degradation in Andean plants under PhT. NA and CA plants were able to fully restore their normal photosynthesis, while CA Antarctic plants reached 50% higher photosynthetic rates after recovery, which was associated to electron fluxes maintenance under photoinhibitory conditions. Conclusions Cold acclimation has a greater importance on the recovery process than on limiting photodamage. Cold acclimation determined the

  17. Time-dependent upregulation of electron transport with concomitant induction of regulated excitation dissipation in Haslea diatoms.

    Science.gov (United States)

    Perkins, R; Williamson, C; Lavaud, J; Mouget, J-L; Campbell, D A

    2018-04-16

    Photoacclimation by strains of Haslea "blue" diatom species H. ostrearia and H. silbo sp. nov. ined. was investigated with rapid light curves and induction-recovery curves using fast repetition rate fluorescence. Cultures were grown to exponential phase under 50 µmol m -2  s -1 photosynthetic available radiation (PAR) and then exposed to non-sequential rapid light curves where, once electron transport rate (ETR) had reached saturation, light intensity was decreased and then further increased prior to returning to near growth light intensity. The non-sequential rapid light curve revealed that ETR was not proportional to the instantaneously applied light intensity, due to rapid photoacclimation. Changes in the effective absorption cross sections for open PSII reaction centres (σ PSII ') or reaction centre connectivity (ρ) did not account for the observed increases in ETR under extended high light. σ PSII ' in fact decreased as a function of a time-dependent induction of regulated excitation dissipation Y(NPQ), once cells were at or above a PAR coinciding with saturation of ETR. Instead, the observed increases in ETR under extended high light were explained by an increase in the rate of PSII reopening, i.e. Q A - oxidation. This acceleration of electron transport was strictly light dependent and relaxed within seconds after a return to low light or darkness. The time-dependent nature of ETR upregulation and regulated NPQ induction was verified using induction-recovery curves. Our findings show a time-dependent induction of excitation dissipation, in parallel with very rapid photoacclimation of electron transport, which combine to make ETR independent of short-term changes in PAR. This supports a selective advantage for these diatoms when exposed to fluctuating light in their environment.

  18. Effects of a donor on the bond property of quantum-dot molecules

    Institute of Scientific and Technical Information of China (English)

    Wang Li-Min; Luo Ying; Ma Ben-Kun; Duan Su-Qing; Zhao Xian-Geng

    2004-01-01

    Within the framework of effective mass approximation, we have calculated the electronic structure of the two laterally coupled quantum dots with a donor by the finite element method. The calculated results show that the bond states of quantum-dot molecules are quite sensitive to the donor positions. By varying the donor position, the transition from covalent to ionic bond state is realized for some electronic states. Some extreme cases are also discussed for comparison.

  19. Triangulating the Position of Antimony Donors Implanted in Silicon

    Science.gov (United States)

    Bureau-Oxton, Chloe; Nielsen, Erik; Luhman, Dwight; Ten Eyck, Gregory; Pluym, Tammy; Wendt, Joel; Pioro-Ladrière, Michel; Lilly, Michael; Carroll, Malcolm

    2015-03-01

    A potential candidate for a quantum bit is a single Sb atom implanted in silicon. A single-electron-transistor (SET) situated close to an Sb donor can be used to measure the occupancy and spin of the electron on the donor while the lithographically patterned poly-silicon gates defining the SET can be used to control donor occupancy. In our samples two clusters of Sb donors have been implanted adjacent to opposite sides of the SET through a self-aligned process. In this talk, we will present experimental results that allow us to determine the approximate position of different donors by determining their relative capacitance to pairs of the SET's poly-silicon gates. We will present the results of capacitive-based modeling calculations that allow us to further locate the position of the donors. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.

  20. Electronic transitions and bonding properties in a series of five-coordinate "16-electron" complexes [Mn(CO)3(L2)]- (L2 = chelating redox-active .pi.-donor ligand)

    Czech Academy of Sciences Publication Activity Database

    Hartl, F.; Rosa, P.; Ricard, L.; Le Floch, P.; Záliš, Stanislav

    2007-01-01

    Roč. 251, 3-4 (2007), s. 557-576 ISSN 0010-8545 R&D Projects: GA MŠk 1P05OC068; GA AV ČR 1ET400400413 Institutional research plan: CEZ:AV0Z40400503 Keywords : manganese carbonyl * .pi.-donor ligand * electronic delocalization * Five-coordinate complex Subject RIV: CG - Electrochemistry Impact factor: 8.568, year: 2007

  1. Regulation of energy partitioning and alternative electron transport pathways during cold acclimation of lodgepole pine is oxygen dependent.

    Science.gov (United States)

    Savitch, Leonid V; Ivanov, Alexander G; Krol, Marianna; Sprott, David P; Oquist, Gunnar; Huner, Norman P A

    2010-09-01

    Second year needles of Lodgepole pine (Pinus contorta L.) were exposed for 6 weeks to either simulated control summer ['summer'; 25 °C/250 photon flux denisty (PFD)], autumn ('autumn'; 15°C/250 PFD) or winter conditions ('winter'; 5 °C/250 PFD). We report that the proportion of linear electron transport utilized in carbon assimilation (ETR(CO2)) was 40% lower in both 'autumn' and 'winter' pine when compared with the 'summer' pine. In contrast, the proportion of excess photosynthetic linear electron transport (ETR(excess)) not used for carbon assimilation within the total ETR(Jf) increased by 30% in both 'autumn' and 'winter' pine. In 'autumn' pine acclimated to 15°C, the increased amounts of 'excess' electrons were directed equally to 21  kPa O2-dependent and 2  kPa O2-dependent alternative electron transport pathways and the fractions of excitation light energy utilized by PSII photochemistry (Φ(PSII)), thermally dissipated through Φ(NPQ) and dissipated by additional quenching mechanism(s) (Φ(f,D)) were similar to those in 'summer' pine. In contrast, in 'winter' needles acclimated to 5 °C, 60% of photosynthetically generated 'excess' electrons were utilized through the 2  kPa O2-dependent electron sink and only 15% by the photorespiratory (21  kPa O2) electron pathway. Needles exposed to 'winter' conditions led to a 3-fold lower Φ(PSII), only a marginal increase in Φ(NPQ) and a 2-fold higher Φ(f,D), which was O2 dependent compared with the 'summer' and 'autumn' pine. Our results demonstrate that the employment of a variety of alternative pathways for utilization of photosynthetically generated electrons by Lodgepole pine depends on the acclimation temperature. Furthermore, dissipation of excess light energy through constitutive non-photochemical quenching mechanisms is O2 dependent.

  2. Challenges regarding the start-up of an anaerobic biological sulphate reactor using H2 and CO2 as electron donor and carbon sources

    CSIR Research Space (South Africa)

    Roux, SP

    2009-05-01

    Full Text Available Include neutralization and chemical precipitation as well as membrane dependent processes. Biological sulphate reduction is another, environmentally benign option but relies heavily on the availability of an economically viable electron donor...

  3. Modeling charge transfer at organic donor-acceptor semiconductor interfaces

    NARCIS (Netherlands)

    Cakir, Deniz; Bokdam, Menno; de Jong, Machiel Pieter; Fahlman, M.; Brocks, G.

    2012-01-01

    We develop an integer charge transfer model for the potential steps observed at interfaces between donor and acceptor molecular semiconductors. The potential step can be expressed as the difference between the Fermi energy pinning levels of electrons on the acceptor material and holes on the donor

  4. Photosynthetic and cellular toxicity of cadmium in Chlorella vulgaris.

    Science.gov (United States)

    Ou-Yang, Hui-Ling; Kong, Xiang-Zhen; Lavoie, Michel; He, Wei; Qin, Ning; He, Qi-Shuang; Yang, Bin; Wang, Rong; Xu, Fu-Liu

    2013-12-01

    The toxic effects of cadmium (Cd) on the green alga Chlorella vulgaris were investigated by following the response to Cd of various toxicity endpoints (cell growth, cell size, photochemical efficiency of PSII in the light or Φ(PSII), maximal photochemical efficiency or Fv/Fm, chlorophyll a fluorescence, esterase activity, and cell viability). These toxicity endpoints were studied in laboratory batch cultures of C. vulgaris over a long-term 96-h exposure to different Cd concentrations using flow cytometry and pulse amplitude modulated fluorometry. The sequence of sensitivity of these toxicity endpoints was: cell yield > Φ(PSII) ≈ esterase activity > Fv/Fm > chlorophyll a fluorescence ≈ cell viability. It is shown that cell apoptosis or cell death only accounted for a minor part of the reduction in cell yield even at very high algistatic free Cd²⁺ concentrations, and other mechanisms such as blocked cell divisions are major contributors to cell yield inhibition. Furthermore, cadmium may affect both the electron donors and acceptors of the electron transport chain at high free Cd²⁺ concentration. Finally, the resistance of cells to cell death was size-dependent; medium-sized cells had the highest toxicity threshold. The present study brings new insights into the toxicity mechanisms of Cd in C. vulgaris and provides a detailed comparison of the sensitivity of various Cd toxicity endpoints. © 2013 SETAC.

  5. Tight-binding model of the photosystem II reaction center: application to two-dimensional electronic spectroscopy

    Science.gov (United States)

    Gelzinis, Andrius; Valkunas, Leonas; Fuller, Franklin D.; Ogilvie, Jennifer P.; Mukamel, Shaul; Abramavicius, Darius

    2013-07-01

    We propose an optimized tight-binding electron-hole model of the photosystem II (PSII) reaction center (RC). Our model incorporates two charge separation pathways and spatial correlations of both static disorder and fast fluctuations of energy levels. It captures the main experimental features observed in time-resolved two-dimensional (2D) optical spectra at 77 K: peak pattern, lineshapes and time traces. Analysis of 2D spectra kinetics reveals that specific regions of the 2D spectra of the PSII RC are sensitive to the charge transfer states. We find that the energy disorder of two peripheral chlorophylls is four times larger than the other RC pigments.

  6. Effect of leaf dehydration duration and dehydration degree on PSII photochemical activity of papaya leaves.

    Science.gov (United States)

    Liu, Meijun; Zhang, Zishan; Gao, Huiyuan; Yang, Cheng; Fan, Xingli; Cheng, Dandan

    2014-09-01

    Although the effect of dehydration on photosynthetic apparatus has been widely studied, the respective effect of dehydration duration and dehydration degree was neglected. This study showed that, when leaves dehydrated in air, the PSII activities of leaves decreased with the decline of leaf relative water content (RWC). Unexpectedly, when leaves dehydrated to same RWC, the decreases in Fv/Fm, Ψo and RC/CSm were lower in leaves dehydrating at 43 °C than those at 25 °C. However, to reach the same RWC, leaves dehydrating at 43 °C experienced 1/6 of the dehydration duration for leaves dehydrating at 25 °C. To distinguish the respective effect of dehydration degree and dehydration duration on photosynthetic apparatus, we studied the PSII activities of leaves treated with different concentration of PEG solutions. Increasing dehydration degree aggravated the decline of Fv/Fm, Ψo and RC/CSm in leaves with the same dehydration duration, while prolonging the dehydration duration also exacerbated the decline of Fv/Fm, Ψo and RC/CSm in leaves with identical dehydration degree. With the same dehydration degree and duration, high temperature enhanced the decrease of Fv/Fm, Ψo and RC/CSm in the leaves. When leaves dehydrated in air, the effect of high temperature was underestimated due to reduction of dehydration duration. The results demonstrated that, dehydration degree and duration both play important roles in damage to photosynthetic apparatus. We suggest that, under combined stresses, the effects of dehydration degree and duration on plants should be considered comprehensively, otherwise, partial or incorrect results may be obtained. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  7. Electrical Manipulation of Donor Spin Qubits in Silicon and Germanium

    Science.gov (United States)

    Sigillito, Anthony James

    Many proposals for quantum information devices rely on electronic or nuclear spins in semiconductors because of their long coherence times and compatibility with industrial fabrication processes. One of the most notable qubits is the electron spin bound to phosphorus donors in silicon, which offers coherence times exceeding seconds at low temperatures. These donors are naturally isolated from their environments to the extent that silicon has been coined a "semiconductor vacuum". While this makes for ultra-coherent qubits, it is difficult to couple two remote donors so quantum information proposals rely on high density arrays of qubits. Here, single qubit addressability becomes an issue. Ideally one would address individual qubits using electric fields which can be easily confined. Typically these schemes rely on tuning a donor spin qubit onto and off of resonance with a magnetic driving field. In this thesis, we measure the electrical tunability of phosphorus donors in silicon and use the extracted parameters to estimate the effects of electric-field noise on qubit coherence times. Our measurements show that donor ionization may set in before electron spins can be sufficiently tuned. We therefore explore two alternative options for qubit addressability. First, we demonstrate that nuclear spin qubits can be directly driven using electric fields instead of magnetic fields and show that this approach offers several advantages over magnetically driven spin resonance. In particular, spin transitions can occur at half the spin resonance frequency and double quantum transitions (magnetic-dipole forbidden) can occur. In a second approach to realizing tunable qubits in semiconductors, we explore the option of replacing silicon with germanium. We first measure the coherence and relaxation times for shallow donor spin qubits in natural and isotopically enriched germanium. We find that in isotopically enriched material, coherence times can exceed 1 ms and are limited by a

  8. All-electric control of donor nuclear spin qubits in silicon

    Science.gov (United States)

    Sigillito, Anthony J.; Tyryshkin, Alexei M.; Schenkel, Thomas; Houck, Andrew A.; Lyon, Stephen A.

    2017-10-01

    The electronic and nuclear spin degrees of freedom of donor impurities in silicon form ultra-coherent two-level systems that are potentially useful for applications in quantum information and are intrinsically compatible with industrial semiconductor processing. However, because of their smaller gyromagnetic ratios, nuclear spins are more difficult to manipulate than electron spins and are often considered too slow for quantum information processing. Moreover, although alternating current magnetic fields are the most natural choice to drive spin transitions and implement quantum gates, they are difficult to confine spatially to the level of a single donor, thus requiring alternative approaches. In recent years, schemes for all-electrical control of donor spin qubits have been proposed but no experimental demonstrations have been reported yet. Here, we demonstrate a scalable all-electric method for controlling neutral 31P and 75As donor nuclear spins in silicon. Using coplanar photonic bandgap resonators, we drive Rabi oscillations on nuclear spins exclusively using electric fields by employing the donor-bound electron as a quantum transducer, much in the spirit of recent works with single-molecule magnets. The electric field confinement leads to major advantages such as low power requirements, higher qubit densities and faster gate times. Additionally, this approach makes it possible to drive nuclear spin qubits either at their resonance frequency or at its first subharmonic, thus reducing device bandwidth requirements. Double quantum transitions can be driven as well, providing easy access to the full computational manifold of our system and making it convenient to implement nuclear spin-based qudits using 75As donors.

  9. ODMR of shallow donors in Zn-doped LEC-grown InP

    International Nuclear Information System (INIS)

    Trombetta, J.M.; Kennedy, T.A.

    1990-01-01

    ODMR spectra observed while monitoring the shallow donor-shallow acceptor pair emission in Zn-doped LEC-grown InP display strong features in the region near the conduction electron value of g = 1.20. In addition to a previously observed narrow line, the authors observe a much broader resonance which dominates at low photoexcitation intensity. This broader line is interpreted as the unresolved exchange split resonances of electrons bound to residual shallow donors. The exchange broadening arises from interaction with nearby paramagnetic centers. Both resonances result in a decrease in the shallow-donor-to shallow-acceptor radiative recombination and give evidence for pair recombination processes which compete with this emission

  10. Changes in activities of both photosystems and the regulatory effect of cyclic electron flow in field-grown cotton (Gossypium hirsutum L) under water deficit.

    Science.gov (United States)

    Yi, Xiao-Ping; Zhang, Ya-Li; Yao, He-Sheng; Han, Ji-Mei; Chow, Wah Soon; Fan, Da-Yong; Zhang, Wang-Feng

    2018-01-01

    To clarify the influence of water deficit on the functionality of the photosynthetic apparatus of cotton plants, leaf gas exchange, chlorophyll a fluorescence, and P700 redox state were examined in field-grown cotton Gossypium hirsutum L. cv. Xinluzao 45. In addition, we measured changes in the P515 signal and analyzed the activity of ATP synthase and the trans-thylakoid proton gradient (ΔpH). With increasing water deficit, the net CO 2 assimilation rate (A N ) and stomatal conductance (g s ) significantly decreased, but the maximum quantum efficiency of PSII photochemistry (F v /F m ) did not change. The photochemical activity of photosystem II (PSII) was reflected by the photochemical quenching coefficient (qP), quantum efficiency of photosystem II [Y(II)], and electron transport rate through PSII [ETR(II)], while the activity of photosystem I (PSI) was reflected by the quantum efficiency of photosystem I [Y(I)] and the electron transport rate through PSI [ETR(I)]. Both activities were maintained under mild water deficit, but were slightly decreased under moderate water deficit. Under moderate water deficit, cyclic electron flow (CEF), the fraction of absorbed light dissipated thermally via the ΔpH- and xanthophyll-regulated process [Y(NPQ)], and the fraction of P700 oxidized under a given set of conditions [Y(ND)] increased. Our results suggest that the activities of both photosystems are stable under mild water deficit and decrease only slightly under moderate water deficit. Moderate water deficit stimulates CEF, and the stimulation of CEF is essential for protecting PSI and PSII against photoinhibition. Copyright © 2017 Elsevier GmbH. All rights reserved.

  11. The role of amino acid electron-donor/acceptor atoms in host-cell binding peptides is associated with their 3D structure and HLA-binding capacity in sterile malarial immunity induction

    Energy Technology Data Exchange (ETDEWEB)

    Patarroyo, Manuel E., E-mail: mepatarr@mail.com [Fundacion Instituto de Inmunologia de Colombia (FIDIC), Bogota (Colombia); Universidad Nacional de Colombia, Bogota (Colombia); Almonacid, Hannia; Moreno-Vranich, Armando [Fundacion Instituto de Inmunologia de Colombia (FIDIC), Bogota (Colombia)

    2012-01-20

    Highlights: Black-Right-Pointing-Pointer Fundamental residues located in some HABPs are associated with their 3D structure. Black-Right-Pointing-Pointer Electron-donor atoms present in {beta}-turn, random, distorted {alpha}-helix structures. Black-Right-Pointing-Pointer Electron-donor atoms bound to HLA-DR53. Black-Right-Pointing-Pointer Electron-acceptor atoms present in regular {alpha}-helix structure bound to HLA-DR52. -- Abstract: Plasmodium falciparum malaria continues being one of the parasitic diseases causing the highest worldwide mortality due to the parasite's multiple evasion mechanisms, such as immunological silence. Membrane and organelle proteins are used during invasion for interactions mediated by high binding ability peptides (HABPs); these have amino acids which establish hydrogen bonds between them in some of their critical binding residues. Immunisation assays in the Aotus model using HABPs whose critical residues had been modified have revealed a conformational change thereby enabling a protection-inducing response. This has improved fitting within HLA-DR{beta}1{sup Asterisk-Operator} molecules where amino acid electron-donor atoms present in {beta}-turn, random or distorted {alpha}-helix structures preferentially bound to HLA-DR53 molecules, whilst HABPs having amino acid electron-acceptor atoms present in regular {alpha}-helix structure bound to HLA-DR52. This data has great implications for vaccine development.

  12. Exogenous Calcium Enhances the Photosystem II Photochemistry Response in Salt Stressed Tall Fescue.

    Science.gov (United States)

    Wang, Guangyang; Bi, Aoyue; Amombo, Erick; Li, Huiying; Zhang, Liang; Cheng, Cheng; Hu, Tao; Fu, Jinmin

    2017-01-01

    Calcium enhances turfgrass response to salt stress. However, little is known about PSII photochemical changes when exogenous calcium was applied in salinity-stressed turfgrass. Here, we probe into the rearrangements of PSII electron transport and endogenous ion accumulation in tall fescue ( Festuca arundinacea Schreber) treated with exogenous calcium under salt stress. Three-month-old seedlings of genotype "TF133" were subjected to the control (CK), salinity (S), salinity + calcium nitrate (SC), and salinity + ethylene glycol tetraacetic acid (SE). Calcium nitrate and ethylene glycol tetraacetic acid was used as exogenous calcium donor and calcium chelating agent respectively. At the end of a 5-day duration treatment, samples in SC regime had better photochemistry performance on several parameters than salinity only. Such as the Area (equal to the plastoquinone pool size), N (number of [Formula: see text] redox turnovers until F m is reached), ψE 0 , or δRo (Efficiencdy/probability with which a PSII trapped electron is transferred from Q A to Q B or PSI acceptors), ABS/RC (Absorbed photon flux per RC). All the above suggested that calcium enhanced the electron transfer of PSII (especially beyond [Formula: see text]) and prevented reaction centers from inactivation in salt-stressed tall fescue. Furthermore, both grass shoot and root tissues generally accumulated more C, N, Ca 2+ , and K + in the SC regime than S regime. Interrelated analysis indicated that ψE 0 , δRo, ABS/RC, C, and N content in shoots was highly correlated to each other and significantly positively related to Ca 2+ and K + content in roots. Besides, high salt increased ATP6E and CAMK2 transcription level in shoot at 1 and 5 day, respectively while exogenous calcium relieved it. In root, CAMK2 level was reduced by Salinity at 5 day and exogenous calcium recovered it. These observations involved in electron transport capacity and ion accumulation assist in understanding better the protective role

  13. Exogenous Calcium Enhances the Photosystem II Photochemistry Response in Salt Stressed Tall Fescue

    Directory of Open Access Journals (Sweden)

    Guangyang Wang

    2017-11-01

    Full Text Available Calcium enhances turfgrass response to salt stress. However, little is known about PSII photochemical changes when exogenous calcium was applied in salinity-stressed turfgrass. Here, we probe into the rearrangements of PSII electron transport and endogenous ion accumulation in tall fescue (Festuca arundinacea Schreber treated with exogenous calcium under salt stress. Three-month-old seedlings of genotype “TF133” were subjected to the control (CK, salinity (S, salinity + calcium nitrate (SC, and salinity + ethylene glycol tetraacetic acid (SE. Calcium nitrate and ethylene glycol tetraacetic acid was used as exogenous calcium donor and calcium chelating agent respectively. At the end of a 5-day duration treatment, samples in SC regime had better photochemistry performance on several parameters than salinity only. Such as the Area (equal to the plastoquinone pool size, N (number of QA- redox turnovers until Fm is reached, ψE0, or δRo (Efficiencdy/probability with which a PSII trapped electron is transferred from QA to QB or PSI acceptors, ABS/RC (Absorbed photon flux per RC. All the above suggested that calcium enhanced the electron transfer of PSII (especially beyond QA- and prevented reaction centers from inactivation in salt-stressed tall fescue. Furthermore, both grass shoot and root tissues generally accumulated more C, N, Ca2+, and K+ in the SC regime than S regime. Interrelated analysis indicated that ψE0, δRo, ABS/RC, C, and N content in shoots was highly correlated to each other and significantly positively related to Ca2+ and K+ content in roots. Besides, high salt increased ATP6E and CAMK2 transcription level in shoot at 1 and 5 day, respectively while exogenous calcium relieved it. In root, CAMK2 level was reduced by Salinity at 5 day and exogenous calcium recovered it. These observations involved in electron transport capacity and ion accumulation assist in understanding better the protective role of exogenous calcium in tall

  14. A Putative Chloroplast-Localized Ca(2+)/H(+) Antiporter CCHA1 Is Involved in Calcium and pH Homeostasis and Required for PSII Function in Arabidopsis.

    Science.gov (United States)

    Wang, Chao; Xu, Weitao; Jin, Honglei; Zhang, Taijie; Lai, Jianbin; Zhou, Xuan; Zhang, Shengchun; Liu, Shengjie; Duan, Xuewu; Wang, Hongbin; Peng, Changlian; Yang, Chengwei

    2016-08-01

    Calcium is important for chloroplast, not only in its photosynthetic but also nonphotosynthetic functions. Multiple Ca(2+)/H(+) transporters and channels have been described and studied in the plasma membrane and organelle membranes of plant cells; however, the molecular identity and physiological roles of chloroplast Ca(2+)/H(+) antiporters have remained unknown. Here we report the identification and characterization of a member of the UPF0016 family, CCHA1 (a chloroplast-localized potential Ca(2+)/H(+) antiporter), in Arabidopsis thaliana. We observed that the ccha1 mutant plants developed pale green leaves and showed severely stunted growth along with impaired photosystem II (PSII) function. CCHA1 localizes to the chloroplasts, and the levels of the PSII core subunits and the oxygen-evolving complex were significantly decreased in the ccha1 mutants compared with the wild type. In high Ca(2+) concentrations, Arabidopsis CCHA1 partially rescued the growth defect of yeast gdt1Δ null mutant, which is defective in a Ca(2+)/H(+) antiporter. The ccha1 mutant plants also showed significant sensitivity to high concentrations of CaCl2 and MnCl2, as well as variation in pH. Taken these results together, we propose that CCHA1 might encode a putative chloroplast-localized Ca(2+)/H(+) antiporter with critical functions in the regulation of PSII and in chloroplast Ca(2+) and pH homeostasis in Arabidopsis. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  15. Scalable quantum computer architecture with coupled donor-quantum dot qubits

    Science.gov (United States)

    Schenkel, Thomas; Lo, Cheuk Chi; Weis, Christoph; Lyon, Stephen; Tyryshkin, Alexei; Bokor, Jeffrey

    2014-08-26

    A quantum bit computing architecture includes a plurality of single spin memory donor atoms embedded in a semiconductor layer, a plurality of quantum dots arranged with the semiconductor layer and aligned with the donor atoms, wherein a first voltage applied across at least one pair of the aligned quantum dot and donor atom controls a donor-quantum dot coupling. A method of performing quantum computing in a scalable architecture quantum computing apparatus includes arranging a pattern of single spin memory donor atoms in a semiconductor layer, forming a plurality of quantum dots arranged with the semiconductor layer and aligned with the donor atoms, applying a first voltage across at least one aligned pair of a quantum dot and donor atom to control a donor-quantum dot coupling, and applying a second voltage between one or more quantum dots to control a Heisenberg exchange J coupling between quantum dots and to cause transport of a single spin polarized electron between quantum dots.

  16. Experimental and theoretical investigations on the high-electron donor character of pyrido-annelated N-heterocyclic carbenes

    Directory of Open Access Journals (Sweden)

    Michael Nonnenmacher

    2016-08-01

    Full Text Available Rh(CO2Cl(NHC complexes of dipyrido-annelated N-heterocyclic carbenes were prepared. From the C–H coupling constant of the respective imidazolium salts and the N–C–N angle of the N-heterocyclic carbene (NHC, a weaker σ-donor character than that of typical unsaturated NHCs is expected. However, the IR stretching frequencies of their Rh(CO2Cl complexes suggest an electron-donor character even stronger than that of saturated NHCs. We ascribe this to the extremely weak π-acceptor character of the dipyrido-annelated NHCs caused by the conjugated 14 πe− system that thus allows for an enhanced Rh–CO backbonding. This extremely low π-acceptor ability is also corroborated by the 77Se NMR chemical shift of −55.8 ppm for the respective selenourea, the lowest value ever measured for imidazole derived selenoureas. DFT-calculations of the free carbene confirm the low σ-donor character by the fact that the σ-orbital of the carbene is the HOMO−1 that lies 0.58 eV below the HOMO which is located at the π-system. Natural population analysis reveals the lowest occupation of the pπ-orbital for the saturated carbene carbon atom and the highest for the pyrido-annelated carbene. Going from the free carbene to the Rh(CO2Cl(NHC complexes, the increase in occupancy of the complete π-system of the carbene ligand upon coordination is lowest for the pyrido-annelated carbene and highest for the saturated carbene.

  17. Effect of high electron donor supply on dissimilatory nitrate reduction pathways in a bioreactor for nitrate removal

    DEFF Research Database (Denmark)

    Behrendt, Anna; Tarre, Sheldon; Beliavski, Michael

    2014-01-01

    The possible shift of a bioreactor for NO3- removal from predominantly denitrification (DEN) to dissimilatory nitrate reduction to ammonium (DNRA) by elevated electron donor supply was investigated. By increasing the C/NO3- ratio in one of two initially identical reactors, the production of high...... sulfide concentrations was induced. The response of the dissimilatory NO3- reduction processes to the increased availability of organic carbon and sulfide was monitored in a batch incubation system. The expected shift from a DEN- towards a DNRA-dominated bioreactor was not observed, also not under...

  18. Long-range electron transfer in zinc-phthalocyanine-oligo(phenylene-ethynylene)-based donor-bridge-acceptor dyads.

    Science.gov (United States)

    Göransson, Erik; Boixel, Julien; Fortage, Jérôme; Jacquemin, Denis; Becker, Hans-Christian; Blart, Errol; Hammarström, Leif; Odobel, Fabrice

    2012-11-05

    In the context of long-range electron transfer for solar energy conversion, we present the synthesis, photophysical, and computational characterization of two new zinc(II) phthalocyanine oligophenylene-ethynylene based donor-bride-acceptor dyads: ZnPc-OPE-AuP(+) and ZnPc-OPE-C(60). A gold(III) porphyrin and a fullerene has been used as electron accepting moieties, and the results have been compared to a previously reported dyad with a tin(IV) dichloride porphyrin as the electron acceptor (Fortage et al. Chem. Commun. 2007, 4629). The results for ZnPc-OPE-AuP(+) indicate a remarkably strong electronic coupling over a distance of more than 3 nm. The electronic coupling is manifested in both the absorption spectrum and an ultrafast rate for photoinduced electron transfer (k(PET) = 1.0 × 10(12) s(-1)). The charge-shifted state in ZnPc-OPE-AuP(+) recombines with a relatively low rate (k(BET) = 1.0 × 10(9) s(-1)). In contrast, the rate for charge transfer in the other dyad, ZnPc-OPE-C(60), is relatively slow (k(PET) = 1.1 × 10(9) s(-1)), while the recombination is very fast (k(BET) ≈ 5 × 10(10) s(-1)). TD-DFT calculations support the hypothesis that the long-lived charge-shifted state of ZnPc-OPE-AuP(+) is due to relaxation of the reduced gold porphyrin from a porphyrin ring based reduction to a gold centered reduction. This is in contrast to the faster recombination in the tin(IV) porphyrin based system (k(BET) = 1.2 × 10(10) s(-1)), where the excess electron is instead delocalized over the porphyrin ring.

  19. Rational design and characterization of high-efficiency planar A–π–D–π–A type electron donors in small molecule organic solar cells: A quantum chemical approach

    International Nuclear Information System (INIS)

    Wang, Dongmei; Ding, Weilu; Geng, Zhiyuan; Wang, Li; Geng, Yun; Su, Zhongmin; Yu, Hailing

    2014-01-01

    Taking the reported donor DR3TBDT as reference, a series of A–π–D–π–A type donor molecules involving different planar donor cores were designed and investigated by using density functional theory (DFT)/time-dependent DFT methods. Preliminary calculations on geometries, energy levels and spectrum properties show that four of the designed molecules (4, 5, 12 and 13) could become potential donor replacements of DR3TBDT due to their good planarity, larger light harvesting efficiencies and similar exciton migration capability. Additionally, several factors influencing on short-circuit current density (J sc ) were analyzed by in-depth quantum chemical investigations on the transition density matrix, charge transfer indexes, exciton binding energy and Gibbs free energy loss in charge dissociation process. Comparative analyses demonstrate that 4 with indaceno[1,2-b:5,6-b′]dithiophene donor core has more significant electron transfer character and favorable exciton dissociation capability for enhancing the J sc , and would be potentially promising donor material in organic solar cells. - Graphical abstract: Display Omitted - Highlights: • A series of A–π–D–π–A type donors with different donor core for OSC were designed. • The relationship between donor properties and device performance is explored by DFT. • An In-depth quantum chemical investigation on the affecting factors on J sc . • The efficiency of new donor 4 may surpass the reported donor DR3TBDT

  20. Nature of oxygen donors and radiation defects in oxygen-doped germanium

    International Nuclear Information System (INIS)

    Fukuoka, Noboru; Atobe, Kozo; Honda, Makoto; Matsuda, Koji.

    1991-01-01

    The nature of oxygen donors and radiation defects in oxygen-doped germanium were studied through measurements of the infrared absorption spectrum, deep level transient spectroscopy spectrum and carrier concentration. It is revealed that a new donor is not formed in oxygen-doped germanium. An A-center (interstitial oxygen-vacancy pair) forms a complex with a thermal donor in its annealing stage at 60degC-140degC. The introduction rate of defects by 1.5 MeV electron irradiation was enhanced in thermal-donor-doped samples. (author)

  1. Rationalizing the photophysical properties of BODIPY laser dyes via aromaticity and electron-donor-based structural perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Waddell, Paul G.; Liu, Xiaogang; Zhao, Teng; Cole, Jacqueline M.

    2015-05-01

    The absorption and fluorescence properties of six boron dipyrromethene (BODIPY) laser dyes with simple non-aromatic substituents are rationalized by relating them to observable structural perturbations within the molecules of the dyes. An empirical relationship involving the structure and the optical properties is derived using a combination of single-crystal X-ray diffraction data, quantum chemical calculations and electronic constants: i.e. the tendency of the pyrrole bond lengths towards aromaticity and the UV-vis absorption and fluorescence wavelengths correlating with the electron-donor properties of the substituents. The effect of molecular conformation on the solid-state optical properties of the dyes is also discussed. The findings in this study also demonstrate the usefulness and limitations of using crystal structure data to develop structure-property relationships in this class of optical materials, contributing to the growing effort to design optoelectronic materials with tunable properties via molecular engineering.

  2. The impact of alkali metal halide electron donor complexes in the photocatalytic degradation of pentachlorophenol

    Energy Technology Data Exchange (ETDEWEB)

    Khuzwayo, Z., E-mail: zack.khuzwayo@up.ac.za; Chirwa, E.M.N

    2017-01-05

    Highlights: • Facilitation of photocatalysis using simple metal-halides as VB hole scavengers. • Recombination prevention by coupled valence and conduction band approaches. • Determination of anions critical levels beyond which process retardation occurs. • Determination of the photocatalytic process rate of reaction kinetics. - Abstract: The performance of photocatalytic oxidation of chemical pollutants is subjected to the presence of anion complexes in natural waters. This study investigated the influence of alkali metal (Na{sup +} (sodium), K{sup +} (potassium)) halides (Cl{sup −} (chloride), Br{sup −} (bromide), F{sup −} (fluoride)) as inorganic ion sources in the photocatalytic degradation of pentachlorophenol (PCP) in batch systems. It was found that the exclusive presence of halides in the absence of an electron acceptor adequately facilitated the photocatalyst process below critical levels of anion populations, where beyond the critical point the process was significantly hindered. Below the determined critical point, the performance in some cases near matches that of the facilitation of the photocatalytic process by exclusive oxygen, acting as an electron scavenger. The coupling of halide ions and oxygenation presented significantly improved photo-oxidation of PCP, this was confirmed by the inclusion of formic acid as a comparative electron donor. The Langmuir-Hinshelwood kinetic expression was used to calculate the performance rate kinetics. The probable impact of the halide anions was discussed with regards to the process of electron hole pair recombination prevention.

  3. Preferential inhibition of the plasma membrane NADH oxidase (NOX) activity by diphenyleneiodonium chloride with NADPH as donor

    Science.gov (United States)

    Morre, D. James

    2002-01-01

    The cell-surface NADH oxidase (NOX) protein of plant and animal cells will utilize both NADH and NADPH as reduced electron donors for activity. The two activities are distinguished by a differential inhibition by the redox inhibitor diphenyleneiodonium chloride (DPI). Using both plasma membranes and cells, activity with NADPH as donor was markedly inhibited by DPI at submicromolar concentrations, whereas with NADH as donor, DPI was much less effective or had no effect on the activity. The possibility of the inhibition being the result of two different enzymes was eliminated by the use of a recombinant NOX protein. The findings support the concept that NOX proteins serve as terminal oxidases for plasma membrane electron transport involving cytosolic reduced pyridine nucleotides as the natural electron donors and with molecular oxygen as the electron acceptor.

  4. Perylene-Diimide Based Donor-Acceptor-Donor Type Small-Molecule Acceptors for Solution-Processable Organic Solar Cells

    Science.gov (United States)

    Ganesamoorthy, Ramasamy; Vijayaraghavan, Rajagopalan; Sakthivel, Pachagounder

    2017-12-01

    Development of nonfullerene acceptors plays an important role in the commercial availability of plastic solar cells. We report herein synthesis of bay-substituted donor-acceptor-donor (D-A-D)-type perylene diimide (PDI)-based small molecules (SM-1 to SM-4) by Suzuki coupling method and their use as acceptors in bulk heterojunction organic solar cells (BHJ-OSCs) with poly(3-hexylthiophene) (P3HT) polymer donor. We varied the number of electron-rich thiophene units and the solubilizing side chains and also evaluated the optical and electrochemical properties of the small molecules. The synthesized small molecules were confirmed by Fourier-transform infrared (FT-IR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, and high-resolution mass spectroscopy (HR-MS). The small molecules showed extensive and strong absorption in the ultraviolet-visible (UV-Vis) region up to 750 nm, with bandgap (E_{{g}}^{{opt}} ) reduced below use as electron-accepting materials. The small molecules showed good thermal stability up to 300°C. BHJ-OSCs with SM-1 and P3HT polymer donor showed maximum power conversion efficiency (PCE) of 0.19% with V oc of 0.30 V, J sc of 1.72 mA cm-2, and fill factor (FF) of 37%. The PCE decreased with the number of thiophene units. The PCE of SM-2 was lower than that of SM-1. This difference in PCE can be explained by the higher aggregation tendency of the bithiophene compared with the thiophene unit. Introduction of the solubilizing group in the bay position increased the aggregation property, leading to much lower PCE than for the small molecules without solubilizing group.

  5. Electron transfer in organic glass. Distance and energy dependence

    International Nuclear Information System (INIS)

    Krongauz, V.V.

    1992-01-01

    The authors have investigated the distance and energy dependence of electron transfer in rigid organic glasses containing randomly dispersed electron donor and electron acceptor molecules. Pulsed radiolysis by an electron beam from a linear accelerator was used for ionization resulting in charge deposition on donor molecules. The disappearance kinetics of donor radical anions due to electron transfer to acceptor was monitored spectroscopically by the change in optical density at the wavelength corresponding to that of donor radical anion absorbance. It was found that the rate of the electron transfer observed experimentally was higher than that computed using the Marcus-Levich theory assuming that the electron-transfer activation barrier is equal to the binding energy of electron on the donor molecule. This discrepancy between the experimental and computed results suggests that the open-quotes inertclose quotes media in which electron-transfer reaction takes place may be participating in the process, resulting in experimentally observed higher electron-transfer rates. 32 refs., 3 figs., 2 tabs

  6. Electroluminescence from charge transfer states in Donor/Acceptor solar cells

    DEFF Research Database (Denmark)

    Sherafatipour, Golenaz; Madsen, Morten

    Charge photocurrent generation is a key process in solar energy conversion systems. Effective dissociation of the photo-generated electron-hole pairs (excitons) has a strong influence on the efficiency of the organic solar cells. Charge dissociation takes place at the donor/acceptor interface via...... which the maximum open-circuit voltage can be estimated, and further can be used in the modeling and optimization of the OPV devices. [1] C. Deibe, T. Strobe, and V. Dyakonov, “Role of the charge transfer state in organic donor-acceptor solar cells,” Adv. Mater., vol. 22, pp. 4097–4111, 2010. [2] K...... charge transfer (CT) excitons, which is Coulombically bound interfacial electron- hole pairs residing at the donor/acceptor heterojunctions. The CT state represents an intermediate state between the exciton dissociation and recombination back to the ground state. Since the recombination of photo...

  7. Transition Metal Donor-Peptide-Acceptor Complexes: From Intramolecular Electron Transfer Reactions to the Study of Reactive Intermediates

    Energy Technology Data Exchange (ETDEWEB)

    Isied, Stephan S.

    2003-03-11

    The trans-polyproline (PII) oligomers (Figure 1) are unusually rigid peptide structures which have been extensively studied by our group for peptide mediated intramolecular electron transfer (ET) at long distances. We have previously studied ET across a series of metal ion donor (D) acceptor (A) oligoproline peptides with different distances, driving forces and reorganizational energies. The majority of these experiments involve generating the ET intermediate using pulse radiolysis methods, although more recently photochemical methods are also used. Results of these studies showed that ET across peptides can vary by more than twelve orders of magnitude. Using ruthenium bipyridine donors, ET reaction rate constants across several proline residues (n = 4 - 9) occurred in the millisecond (ms) to {micro}s timescale, thus limiting the proline peptide conformational motions to only minor changes (far smaller than the large changes that occur on the ms to sec timescale, such as trans to cis proline isomerization). The present report describes our large data base of experimental results for D-peptide-A complexes in terms of a model where the involvement of both superexchange and hopping (hole and electron) mechanisms account for the long range ET rate constants observed. Our data shows that the change from superexchange to hopping mechanisms occurs at different distances depending on the type of D and A and their interactions with the peptides. Our model is also consistent with generalized models for superexchange and hopping which have been put forward by a number of theoretical groups to account for long range ET phenomena.

  8. Rational Design of High-Performance Wide-Bandgap (≈2 eV) Polymer Semiconductors as Electron Donors in Organic Photovoltaics Exhibiting High Open Circuit Voltages (≈1 V).

    Science.gov (United States)

    Chochos, Christos L; Katsouras, Athanasios; Gasparini, Nicola; Koulogiannis, Chrysanthos; Ameri, Tayebeh; Brabec, Christoph J; Avgeropoulos, Apostolos

    2017-01-01

    Systematic optimization of the chemical structure of wide-bandgap (≈2.0 eV) "donor-acceptor" copolymers consisting of indacenodithiophene or indacenodithieno[3,2-b]thiophene as the electron-rich unit and thieno[3,4-c]pyrrole-4,6-dione as the electron-deficient moiety in terms of alkyl side chain engineering and distance of the electron-rich and electron-deficient monomers within the repeat unit of the polymer chain results in high-performance electron donor materials for organic photovoltaics. Specifically, preliminary results demonstrate extremely high open circuit voltages (V oc s) of ≈1.0 V, reasonable short circuit current density (J sc ) of around 11 mA cm -2 , and moderate fill factors resulting in efficiencies close to 6%. All the devices are fabricated in an inverted architecture with the photoactive layer processed by doctor blade equipment, showing the compatibility with roll-to-roll large-scale manufacturing processes. From the correlation of the chemical structure-optoelectronic properties-photovoltaic performance, a rational guide toward further optimization of the chemical structure in this family of copolymers, has been achieved. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Complete bromate and nitrate reduction using hydrogen as the sole electron donor in a rotating biofilm-electrode reactor

    International Nuclear Information System (INIS)

    Zhong, Yu; Li, Xin; Yang, Qi; Wang, Dongbo; Yao, Fubing; Li, Xiaoming; Zhao, Jianwei; Xu, Qiuxiang; Zhang, Chang; Zeng, Guangming

    2016-01-01

    Graphical abstract: Main mechanism of simultaneous bromate and nitrate removal in the RBER. - Highlights: • Cathode of RBER was designed to automatically rotate. • Simultaneous bromate and nitrate removal was achieved by auto-hydrogenotrophic reduction. • The maximum bromate reduction rate estimated by the Monod equation was 109.12 μg/L h. • An electron transfer process and main reaction mechanism in RBER was explored. - Abstract: Simultaneous reduction of bromate and nitrate was investigated using a rotating biofilm-electrode reactor (RBER) with graphite carbon (GC) rods as anode and activated carbon fiber (ACF) bonded with steel ring as cathode. In RBER, the community of denitrifying bacteria immobilized on the cathode surface could completely utilize hydrogen (H 2 ) as the electron donor, which was internally produced by the electrolysis of water. The short-term test confirmed that the RBER system could reduce 150–800 μg/L bromate to below 10 μg/L under autotrophic conditions. The reduced bromate was considered to be roughly equivalent to the amount of bromide in effluent, indicating that bromate was completely reduced to bromide without accumulation of by-products. The long-term test (over 120 days) showed that the removal fluxes of bromate and nitrate could be improved by increasing the electric current and decreasing the hydraulic retention time (HRT). But nitrite in effluent was significantly accumulated when the electric current was beyond 10 mA and the HRT was less than 6 h. The maximum bromate reduction rate estimated by the Monod equation was 109.12 μg/L h when the electric current was 10 mA and HRT was 12 h. It was proposed that the electron transfer process in RBER produced H 2 on the surface of the ACF cathode, and the microbial cultures attached closely on the cathode which could completely utilize H 2 as electron donors for reduction of bromate and nitrate.

  10. Complete bromate and nitrate reduction using hydrogen as the sole electron donor in a rotating biofilm-electrode reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Yu; Li, Xin [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Yang, Qi, E-mail: yangqi@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Wang, Dongbo [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Advanced Water Management Centre, The University of Queensland, QLD 4072 (Australia); Yao, Fubing [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Li, Xiaoming, E-mail: xmli@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Zhao, Jianwei; Xu, Qiuxiang; Zhang, Chang; Zeng, Guangming [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China)

    2016-04-15

    Graphical abstract: Main mechanism of simultaneous bromate and nitrate removal in the RBER. - Highlights: • Cathode of RBER was designed to automatically rotate. • Simultaneous bromate and nitrate removal was achieved by auto-hydrogenotrophic reduction. • The maximum bromate reduction rate estimated by the Monod equation was 109.12 μg/L h. • An electron transfer process and main reaction mechanism in RBER was explored. - Abstract: Simultaneous reduction of bromate and nitrate was investigated using a rotating biofilm-electrode reactor (RBER) with graphite carbon (GC) rods as anode and activated carbon fiber (ACF) bonded with steel ring as cathode. In RBER, the community of denitrifying bacteria immobilized on the cathode surface could completely utilize hydrogen (H{sub 2}) as the electron donor, which was internally produced by the electrolysis of water. The short-term test confirmed that the RBER system could reduce 150–800 μg/L bromate to below 10 μg/L under autotrophic conditions. The reduced bromate was considered to be roughly equivalent to the amount of bromide in effluent, indicating that bromate was completely reduced to bromide without accumulation of by-products. The long-term test (over 120 days) showed that the removal fluxes of bromate and nitrate could be improved by increasing the electric current and decreasing the hydraulic retention time (HRT). But nitrite in effluent was significantly accumulated when the electric current was beyond 10 mA and the HRT was less than 6 h. The maximum bromate reduction rate estimated by the Monod equation was 109.12 μg/L h when the electric current was 10 mA and HRT was 12 h. It was proposed that the electron transfer process in RBER produced H{sub 2} on the surface of the ACF cathode, and the microbial cultures attached closely on the cathode which could completely utilize H{sub 2} as electron donors for reduction of bromate and nitrate.

  11. Donor Outcomes in Living Donor Liver Transplantation-Analysis of 275 Donors From a Single Centre in India.

    Science.gov (United States)

    Narasimhan, Gomathy; Safwan, Mohamed; Kota, Venugopal; Reddy, Mettu S; Bharathan, Anand; Dabora, Abderrhaim; Kaliamoorthy, Ilankumaran; Kanagavelu, Rathnavel G; Srinivasan, Vijaya; Rela, Mohamed

    2016-06-01

    Live donor liver transplantation is the predominant form of liver transplantation in India and in most Asian countries. Donor outcome reports are an important source of information to be shared with prospective donors at the time of informed consent. This is the first donor outcome series from India. Analysis of donor characteristics and morbidity of 275 live donors from a single large volume center is documented. Two hundred seventy-five patients donated from November 2009 to October 2014, 144 were women and 131 were men, 180 donated to adults and 95 donated to children. Right lobe donors were majority at 62.2% followed by left lateral segment 28%. Two thirds of the live donors did not have any morbidity; 114 complications were encountered in 85 patients. The complications were graded as per Clavien 5 tier grading and major morbidity (grade III b, grade IV grade V) was 4.36%. Postoperative biliary complication was seen in 3 donors. This large single-center study is the first donor outcome report from India, and the results are comparable to other published donor series. Documentation and regular audit of donor outcomes is important to help improve the safety of donor hepatectomy and to provide a database for informed consent of prospective donors.

  12. DFT Study of Electronic and Optical Properties of Small Oligothiophenes Based on Terthiophene End-capped by Several Donor Groups

    Directory of Open Access Journals (Sweden)

    El Alamy Aziz

    2017-07-01

    Full Text Available Eight small molecules based on terthiophene end-capped by several donor groups have been carried out using density functional theory (DFT and time-dependent (TDDFT methods in neutral and doped states. The theoretical ground-state geometry, electronic structure and optical properties of the studied molecules were obtained by the DFT and TD-DFT methods at the B3LYP level with 6-31G(d basis set. Theoretical knowledge of the highest occupied molecular orbital (HOMO, the lowest unoccupied molecular orbital (LUMO energy levels the gap energy (Eg and the open-circuit voltage (Voc of the studied compounds are calculated and discussed. The effects of the donor group substituents on the geometries and optoelectronic properties of these materials are discussed to investigate the relationship between molecular structure and optoelectronic properties. The results of this work suggest some of these materials as a good candidate for organic solar cells. DOI: http://dx.doi.org/10.17807/orbital.v9i3.995

  13. On chirality transfer in electron donor-acceptor complexes. A prediction for the sulfinimine···BF3 system.

    Science.gov (United States)

    Rode, Joanna E; Dobrowolski, Jan Cz

    2012-01-01

    Stabilization energies of the electron donor-acceptor sulfinimine···BF(3) complexes calculated at either the B3LYP/aug-cc-pVTZ or the MP2/aug-cc-pVTZ level do not allow to judge, whether the N- or O-atom in sulfinimine is stronger electron-donor to BF(3) . The problem seems to be solvable because chirality transfer phenomenon between chiral sulfinimine and achiral BF(3) is expected to be vibrational circular dichroism (VCD) active. Moreover, the bands associated with the achiral BF(3) molecule are predicted to be the most intense in the entire spectrum. However, the VCD band robustness analyses show that most of the chirality transfer modes of BF(3) are unreliable. Conversely, variation of VCD intensity with change of intermolecular distance, angle, and selected dihedrals between the complex partners shows that to establish the robustness of chirality transfer mode. It is also necessary to determine the influence of the potential energy surface (PES) shape on the VCD intensity. At the moment, there is still no universal criterion for the chirality transfer mode robustness and the conclusions formulated based on one system cannot be directly transferred even to a quite similar one. However, it is certain that more attention should be focused on relation of PES shape and the VCD mode robustness problem. Copyright © 2011 Wiley Periodicals, Inc.

  14. Impact of Thermal Annealing on Organic Photovoltaic Cells Using Regioisomeric Donor-Acceptor-Acceptor Molecules.

    Science.gov (United States)

    Zhang, Tao; Han, Han; Zou, Yunlong; Lee, Ying-Chi; Oshima, Hiroya; Wong, Ken-Tsung; Holmes, Russell J

    2017-08-02

    We report a promising set of donor-acceptor-acceptor (D-A-A) electron-donor materials based on coplanar thieno[3,2-b]/[2,3-b]indole, benzo[c][1,2,5]thiadiazole, and dicyanovinylene, which are found to show broadband absorption with high extinction coefficients. The role of the regioisomeric electron-donating thienoindole moiety on the physical and structural properties is examined. Bulk heterojunction (BHJ) organic photovoltaic cells (OPVs) based on the thieno[2,3-b]indole-based electron donor NTU-2, using C 70 as an electron acceptor, show a champion power conversion efficiency of 5.2% under AM 1.5G solar simulated illumination. This efficiency is limited by a low fill factor (FF), as has previously been the case in D-A-A systems. In order to identify the origin of the limited FF, further insight into donor layer charge-transport behavior is realized by examining planar heterojunction OPVs, with emphasis on the evolution of film morphology with thermal annealing. Compared to as-deposited OPVs that exhibit insufficient donor crystallinity, crystalline OPVs based on annealed thin films show an increase in the short-circuit current density, FF, and power conversion efficiency. These results suggest that that the crystallization of D-A-A molecules might not be realized spontaneously at room temperature and that further processing is needed to realize efficient charge transport in these materials.

  15. The spin relaxation of nitrogen donors in 6H SiC crystals as studied by the electron spin echo method

    Czech Academy of Sciences Publication Activity Database

    Savchenko, Dariia; Shanina, B.; Kalabukhova, E.; Pöppl, A.; Lančok, Ján; Mokhov, E.

    2016-01-01

    Roč. 119, č. 13 (2016), 1-7, č. článku 135706. ISSN 0021-8979 R&D Projects: GA ČR GP13-06697P; GA MŠk LO1409; GA MŠk LM2015088 Grant - others:SAFMAT(XE) CZ.2.16/3.1.00/22132 Institutional support: RVO:68378271 Keywords : electron spin resonance * SiC * nitrogen donors * relaxation times Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.068, year: 2016

  16. Effects of different electron donor feeding patterns on TCE reductive dechlorination performance.

    Science.gov (United States)

    Panagiotakis, I; Antoniou, K; Mamais, D; Pantazidou, M

    2015-03-01

    This study investigates how the feeding pattern of e(-) donors might affect the efficiency of enhanced in situ bioremediation in TCE-contaminated aquifers. A series of lab-scale batch experiments were conducted using butyrate or hydrogen gas (H2) as e(-) donor and a TCE-dechlorinating microbial consortium dominated by Dehalococcoides spp. The results of these experiments demonstrate that butyrate is similarly efficient for TCE dechlorination whether it is injected once or in doses. Moreover, the present work indicates that the addition of butyrate in great excess cannot be avoided, since it most likely provide, even indirectly, significant part of the H2 required. Furthermore, methanogenesis appears to be the major ultimate e(-) accepting process in all experiments, regardless the e(-) donor used and the feeding pattern. Finally, the timing of injection of H2 seems to significantly affect dechlorination performance, since the injection during the early stages improves VC-to-ETH dechlorination and reduce methanogenic activity.

  17. Mechanisms of molecular electronic rectification through electronic levels with strong vibrational coupling

    DEFF Research Database (Denmark)

    Kuznetsov, A.M.; Ulstrup, Jens

    2002-01-01

    We present a new view and an analytical formalism of electron flow through a donor-acceptor molecule inserted between a pair of metal electrodes. The donor and acceptor levels are strongly coupled to an environmental nuclear continuum. The formalism applies to molecular donor-acceptor systems bot...

  18. Reactions of Fischer carbene complexes with Electron-deficient olefins: Scope and limitations of this route to donor-acceptor-substituted cyclopropanes

    Energy Technology Data Exchange (ETDEWEB)

    Wienand, A.; Reissig, H.U. (Inst. fuer Organische Chemie der Technischen Hochschule Darmstadt (West Germany))

    1990-12-01

    The Fischer carbene complex ((CO){sub 5}Cr{double bond}C(OMe)Ph) (1) is able to transfer its carbene ligand to a variety of electron-deficient olefins and provides donor-acceptor-substituted cyclopropanes in good yields. Apt activating groups with respect to the alkene are ester, amide, nitrile, sulfone, and dialkyl phosphonate functions. Methyl vinyl ketone (19) affords products in low yield that may arise from an intermediate cyclopropane derivative. Phenyl vinyl sulfoxide (24) mainly acts as an oxidizing agent, transforming 1 into methyl benzoate. for olefin 24 and {alpha}-(N-methylanilino)acrylonitrile the authors found products that should be formed on an olefin metathesis pathway. The methyl-substituted carbene complex 48 also affords the expected donor-acceptor-substituted cyclopropanes; however, acyclic isomers are formed in higher amounts. The molybdenum and tungsten complexes 55 and 56, respectively, also furnish cyclopropane derivatives, but the yields are lower than with the chromium compound 1. Disubstituted olefins and complex 1 still give the cyclopropanes in moderate yields, while all trisubstituted and most of the difunctionalized alkenes do not react with this Fischer carbene complex. The cyclopropanes synthesized can be deprotonated and alkylated or transformed into ring-opened products. These model reactions demonstrate the synthetic potentials of donor-acceptor-substituted cyclopropanes prepared via Fischer carbene complexes.

  19. Ab initio and density functional theoretical design and screening of model crown ether based ligand (host) for extraction of lithium metal ion (guest): effect of donor and electronic induction.

    Science.gov (United States)

    Boda, Anil; Ali, Sk Musharaf; Rao, Hanmanth; Ghosh, Sandip K

    2012-08-01

    The structures, energetic and thermodynamic parameters of model crown ethers with different donor, cavity and electron donating/ withdrawing functional group have been determined with ab initio MP2 and density functional theory in gas and solvent phase. The calculated values of binding energy/ enthalpy for lithium ion complexation are marginally higher for hard donor based aza and oxa crown compared to soft donor based thia and phospha crown. The calculated values of binding enthalpy for lithium metal ion with 12C4 at MP2 level of theory is in good agreement with the available experimental result. The binding energy is altered due to the inductive effect imparted by the electron donating/ withdrawing group in crown ether, which is well correlated with the values of electron transfer. The role of entropy for extraction of hydrated lithium metal ion by different donor and functional group based ligand has been demonstrated. The HOMO-LUMO gap is decreased and dipole moment of the ligand is increased from gas phase to organic phase because of the dielectric constant of the solvent. The gas phase binding energy is reduced in solvent phase as the solvent molecules weaken the metal-ligand binding. The theoretical values of extraction energy for LiCl salt from aqueous solution in different organic solvent is validated by the experimental trend. The study presented here should contribute to the design of model host ligand and screening of solvent for metal ion recognition and thus can contribute in planning the experiments.

  20. Synthesis and characterization of the cyanobenzene-ethylenedithio-TTF donor

    Directory of Open Access Journals (Sweden)

    Sandrina Oliveira

    2015-06-01

    Full Text Available A dissymmetric TTF-type electron donor, cyanobenzene-ethylenedithio-tetrathiafulvalene (CNB-EDT-TTF, was obtained in high yield, by a cross-coupling reaction with triethyl phosphite between 2-thioxobenzo[d][1,3]dithiole-5-carbonitrile and 5,6-dihydro-[1,3]dithiolo[4,5-b][1,4]dithiin-2-one. This new donor was characterized namely by single crystal X-ray diffraction, cyclic voltammetry, NMR, UV-visible and IR spectroscopy.

  1. Antagonism between elevated CO2, nighttime warming, and summer drought reduces the robustness of PSII performance to freezing events

    DEFF Research Database (Denmark)

    Albert, Kristian Rost; Boesgaard, Kristine Stove; Ro-Poulsen, Helge

    2013-01-01

    yield in light, Fv′/Fm′, using the pulse amplitude methodology, and the total performance index, PItotal, which integrate changes of the chlorophyll-a fluorescence transient including the maximal quantum yield in darkness, Fv/Fm.Decreasing temperature during autumn linearly reduced PItotal, both...... in the wavy hair-grass, Deschampsia flexuosa, and in the evergreen dwarf shrub common heather, Calluna vulgaris, and following freezing events the PItotal and Fv′/Fm′ were reduced even more. Contrary to expected, indirect effects of the previous summer drought reduced PSII performance before freezing events...

  2. Two-Electron Transfer Pathways.

    Science.gov (United States)

    Lin, Jiaxing; Balamurugan, D; Zhang, Peng; Skourtis, Spiros S; Beratan, David N

    2015-06-18

    The frontiers of electron-transfer chemistry demand that we develop theoretical frameworks to describe the delivery of multiple electrons, atoms, and ions in molecular systems. When electrons move over long distances through high barriers, where the probability for thermal population of oxidized or reduced bridge-localized states is very small, the electrons will tunnel from the donor (D) to acceptor (A), facilitated by bridge-mediated superexchange interactions. If the stable donor and acceptor redox states on D and A differ by two electrons, it is possible that the electrons will propagate coherently from D to A. While structure-function relations for single-electron superexchange in molecules are well established, strategies to manipulate the coherent flow of multiple electrons are largely unknown. In contrast to one-electron superexchange, two-electron superexchange involves both one- and two-electron virtual intermediate states, the number of virtual intermediates increases very rapidly with system size, and multiple classes of pathways interfere with one another. In the study described here, we developed simple superexchange models for two-electron transfer. We explored how the bridge structure and energetics influence multielectron superexchange, and we compared two-electron superexchange interactions to single-electron superexchange. Multielectron superexchange introduces interference between singly and doubly oxidized (or reduced) bridge virtual states, so that even simple linear donor-bridge-acceptor systems have pathway topologies that resemble those seen for one-electron superexchange through bridges with multiple parallel pathways. The simple model systems studied here exhibit a richness that is amenable to experimental exploration by manipulating the multiple pathways, pathway crosstalk, and changes in the number of donor and acceptor species. The features that emerge from these studies may assist in developing new strategies to deliver multiple

  3. Properties of Excitons Bound to Ionized Donors

    DEFF Research Database (Denmark)

    Skettrup, Torben; Suffczynski, M.; Gorzkowski, W.

    1971-01-01

    Binding energies, interparticle distances, oscillator strengths, and exchange corrections are calculated for the three-particle complex corresponding to an exciton bound to an ionized donor. The results are given as functions of the mass ratio of the electron and hole. Binding of the complex is o...

  4. Electron spin exchange of shallow donor muonium states

    International Nuclear Information System (INIS)

    Senba, Masayoshi

    2005-01-01

    Shallow donor muonium states with small hyperfine frequencies, recently observed in II-VI semiconductor compounds, have a number of unique features that present both opportunities and challenges in understanding muon spin dynamics in the presence of Heisenberg spin exchange. First, the shallow muonium state in CdSe with hyperfine frequency ω 0 /2π ∼ 0.1 MHz is already in the high field regime even in the earth's magnetic field, where only two precession frequencies are observable by the muon spin rotation (μSR) technique. Second, unlike in the case of more conventional muonium species with a larger hyperfine frequency, the μSR signal of shallow muonium states can be observed even in the transition region, between the slow spin-flip regime and the fast spin-flip regime, where the spin-flip rate and the hyperfine frequency are comparable. The muon spin dynamics in the transition region has not been theoretically explored previously, mainly because normal muonium in vacuum gives no observable signal in this region. Third, in the case of shallow muonium states, the incoherent process defined to be those spin-flip collisions that cause changes in muon spin precession frequencies, becomes crucially important in the transition region, where the incoherent process is entirely negligible in more conventional muonium species. By taking incoherent multiple collisions into account, an analytical expression for the time evolution of the muon spin polarization in Mu is derived, where Mu undergoes repeated spin-flip collisions. Comparisons with Monte Carlo calculations show that the analytical expression obtained in this work can reliably be used to analyse experimental data for shallow donor states not only in the slow spin-flip regime, but also in the transition region up to the onset of the fast regime. The present work confirms a recent experimental finding that, in the transition region, the initial phases of the two precession components of shallow donor states

  5. Molecular designing of novel ternary copolymers of donor-acceptor polymers using genetic algorithm

    International Nuclear Information System (INIS)

    Arora, Vinita; Bakhshi, A.K.

    2010-01-01

    Graphical abstract: Alternate arrangement of donor acceptor moieties in the carbon backbone chain of an organic conjugated polymer is capable of inducing charge transfer and affects the electronic properties of the copolymer. Genetic algorithm along with simple NFC (negative factor counting) and IIM (inverse iteration method) has been used to optimize the properties of novel ternary copolymers based on polypyrrole PPy, polythiophene PTh and polyfuran PFu (as donor moieties) and containing >C=O and >C=CF 2 bridging units as acceptor moieties. - Abstract: An efficient designing route to novel ternary copolymers consisting of polypyrrole (PPy), polythiophene (PTh) and polyfuran (PFu) is developed with the help of genetic algorithm. Using the band structure results obtained from ab initio crystal orbital (CO) calculations, the electronic structures and conduction properties of real ternary copolymers based on donor acceptor type polymers are investigated. The electron rich heterocyclic rings in the backbone chain of the copolymer are joined together by electron withdrawing groups Y, carbonyl group (>C=O) and difluoromethylene group (>C=CF 2 ) in an attempt to design the conducting polymer with lowest band gap. A comparative study of various electronic properties is presented. The effects of substitution on the behaviour and properties of the copolymers as well as on the density of states (DOS) are discussed. Band gap decreases as a result of substitution on the polymer backbone chain due to decrease in ionization potential and increase in electron affinity values. This is expected to enhance the intrinsic conductivity of the resulting copolymer. Use of alternate donor acceptor moieties within the repeat units should maximize the extended π conjugation.

  6. Molecular designing of novel ternary copolymers of donor-acceptor polymers using genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Arora, Vinita [Department of Chemistry, University of Delhi, Delhi 110 007 (India); Bakhshi, A.K., E-mail: akbakhshi2000@yahoo.com [Department of Chemistry, University of Delhi, Delhi 110 007 (India)

    2010-08-03

    Graphical abstract: Alternate arrangement of donor acceptor moieties in the carbon backbone chain of an organic conjugated polymer is capable of inducing charge transfer and affects the electronic properties of the copolymer. Genetic algorithm along with simple NFC (negative factor counting) and IIM (inverse iteration method) has been used to optimize the properties of novel ternary copolymers based on polypyrrole PPy, polythiophene PTh and polyfuran PFu (as donor moieties) and containing >C=O and >C=CF{sub 2} bridging units as acceptor moieties. - Abstract: An efficient designing route to novel ternary copolymers consisting of polypyrrole (PPy), polythiophene (PTh) and polyfuran (PFu) is developed with the help of genetic algorithm. Using the band structure results obtained from ab initio crystal orbital (CO) calculations, the electronic structures and conduction properties of real ternary copolymers based on donor acceptor type polymers are investigated. The electron rich heterocyclic rings in the backbone chain of the copolymer are joined together by electron withdrawing groups Y, carbonyl group (>C=O) and difluoromethylene group (>C=CF{sub 2}) in an attempt to design the conducting polymer with lowest band gap. A comparative study of various electronic properties is presented. The effects of substitution on the behaviour and properties of the copolymers as well as on the density of states (DOS) are discussed. Band gap decreases as a result of substitution on the polymer backbone chain due to decrease in ionization potential and increase in electron affinity values. This is expected to enhance the intrinsic conductivity of the resulting copolymer. Use of alternate donor acceptor moieties within the repeat units should maximize the extended {pi} conjugation.

  7. Fluorinated arene, imide and unsaturated pyrrolidinone based donor acceptor conjugated polymers: Synthesis, structure-property and device studies

    Science.gov (United States)

    Liyanage, Arawwawala Don Thilanga

    After the discovery of doped polyacetylene, organic semiconductor materials are widely studied as high impending active components in consumer electronics. They have received substantial consideration due to their potential for structural tailoring, low cost, large area and mechanically flexible alternatives to common inorganic semiconductors. To acquire maximum use of these materials, it is essential to get a strong idea about their chemical and physical nature. Material chemist has an enormous role to play in this novel area, including development of efficient synthetic methodologies and control the molecular self-assembly and (opto)-electronic properties. The body of this thesis mainly focuses on the substituent effects: how different substituents affect the (opto)-electronic properties of the donor-acceptor (D-A) conjugated polymers. The main priority goes to understand, how different alkyl substituent effect to the polymer solubility, crystallinity, thermal properties (e.g.: glass transition temperature) and morphological order. Three classes of D-A systems were extensively studied in this work. The second chapter mainly focuses on the synthesis and structure-property study of fluorinated arene (TFB) base polymers. Here we used commercially available 1,4-dibromo-2,3,5,6-tetrafluorobenzene (TFB) as the acceptor material and prepare several polymers using 3,3'-dialkyl(3,3'-R2T2) or 3,3'-dialkoxy bithiophene (3,3'-RO2T2) units as electron donors. A detail study was done using 3,3'-bithiophene donor units incorporating branched alkoxy-functionalities by systematic variation of branching position and chain length. The study allowed disentangling the branching effects on (i) aggregation tendency, intermolecular arrangement, (iii) solid state optical energy gaps, and (iv) electronic properties in an overall consistent picture, which might guide future polymer synthesis towards optimized materials for opto-electronic applications. The third chapter mainly focused on

  8. Electron Bifurcation: Thermodynamics and Kinetics of Two-Electron Brokering in Biological Redox Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Peng; Yuly, Jonathon L.; Lubner, Carolyn E. [National Renewable Energy Laboratory, Golden, Colorado 80401, United States; Mulder, David W. [National Renewable Energy Laboratory, Golden, Colorado 80401, United States; King, Paul W. [National Renewable Energy Laboratory, Golden, Colorado 80401, United States; Peters, John W. [Institute; Beratan, David N. [Department

    2017-08-23

    How can proteins drive two electrons from a redox active donor onto two acceptors at very different potentials and distances? And how can this transaction be conducted without dissipating very much energy or violating the laws of thermodynamics? Nature appears to have addressed these challenges by coupling thermodynamically uphill and downhill electron transfer reactions, using two-electron donor cofactors that have very different potentials for the removal of the first and second electron. Although electron bifurcation is carried out with near perfection from the standpoint of energy conservation and electron delivery yields, it is a biological energy transduction paradigm that has only come into focus recently. This Account provides an exegesis of the biophysical principles that underpin electron bifurcation.

  9. Are drowned donors marginal donors? A single pediatric center experience.

    Science.gov (United States)

    Kumm, Kayla R; Galván, N Thao N; Koohmaraie, Sarah; Rana, Abbas; Kueht, Michael; Baugh, Katherine; Hao, Liu; Yoeli, Dor; Cotton, Ronald; O'Mahony, Christine A; Goss, John A

    2017-09-01

    Drowning, a common cause of death in the pediatric population, is a potentially large donor pool for OLT. Anecdotally, transplant centers have deemed these organs high risk over concerns for infection and graft dysfunction. We theorized drowned donor liver allografts do not portend worse outcomes and therefore should not be excluded from the donation pool. We reviewed our single-center experience of pediatric OLTs between 1988 and 2015 and identified 33 drowned donor recipients. These OLTs were matched 1:2 to head trauma donor OLTs from our center. A chart review assessed postoperative peak AST and ALT, incidence of HAT, graft and recipient survival. Recipient survival at one year between patients with drowned donor vs head trauma donor allografts was not statistically significant (94% vs 97%, P=.63). HAT incidence was 6.1% in the drowned donor group vs 7.6% in the control group (P=.78). Mean postoperative peak AST and ALT was 683 U/L and 450 U/L for drowned donors vs 1119 U/L and 828 U/L in the matched cohort. These results suggest drowned donor liver allografts do not portend worse outcomes in comparison with those procured from head trauma donors. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Imaging evaluation of potential donors in living-donor liver transplantation

    International Nuclear Information System (INIS)

    Low, G.; Wiebe, E.; Walji, A.H.; Bigam, D.L.

    2008-01-01

    Liver transplants, originally obtained from deceased donors, can now be harvested from living donors as well. This technique, called living-donor liver transplantation (LDLT), provides an effective alternative means of liver transplantation and is a method of expanding the donor pool in light of the demand and supply imbalance for organ transplants. Imaging plays an important role in LDLT programmes by providing robust evaluation of potential donors to ensure that only anatomically suitable donors with no significant co-existing pathology are selected and that crucial information that allows detailed preoperative planning is available. Imaging evaluation helps to improve the outcome of LDLT for both donors and recipients, by improving the chances of graft survival and reducing the postoperative complication rate. In this review, we describe the history of LDLT and discuss in detail the application of imaging in donor assessment with emphasis on use of modern computed tomography (CT) and magnetic resonance imaging (MRI) techniques

  11. Donor-derived infections among Chinese donation after cardiac death liver recipients.

    Science.gov (United States)

    Ye, Qi-Fa; Zhou, Wei; Wan, Qi-Quan

    2017-08-21

    To investigate blood cultures of deceased donors and report the confirmed transmission of bacterial infection from donors to liver recipients. We retrospectively studied the results of blood cultures among our donation after cardiac death (DCD) donors and calculated the donor-derived bacterial infection rates among liver recipients. Study participants underwent liver transplantation between January 1, 2010 and February 1, 2017. The study involved a total of 67 recipients of liver grafts from 67 DCD donors. We extracted the data of donors' and patients' characteristics, culture results and clinical outcomes, especially the post-transplant complications in liver recipients, from electronic medical records. We analyzed the characteristics of the donors and the corresponding liver recipients with emphasis put on donor-derived infections. Head trauma was the most common origin of death among our 67 DCD donors (46.3%). Blood taken prior to the procurement operation was cultured for 53 of the donors, with 17 episodes of bloodstream infections developing from 13 donors. The predominant organism isolated from the blood of donors was Gram-positive bacteria (70.6%). Only three (4.5%) of 67 liver recipients developed confirmed donor-derived bacterial infections, with two isolates of multidrug-resistant Klebsiella pneumoniae and one isolate of multidrug-resistant Enterobacter aerogenes. The liver recipients with donor-derived infections showed relation to higher crude mortality and graft loss rates (33.3% each) within 3 mo post transplantation, as compared to those without donor-derived infections (9.4% and 4.7%, respectively). All three liver recipients received appropriate antimicrobial therapy. Liver recipients have high occurrence of donor-derived infections. The liver recipients with donor-derived multidrug-resistant Enterobacteriaceae infections can have good outcome if appropriate antimicrobial therapy is given.

  12. On the origin of red and blue shifts of X-H and C-H stretching vibrations in formic acid (formate ion) and proton donor complexes.

    Science.gov (United States)

    Tâme Parreira, Renato Luis; Galembeck, Sérgio Emanuel; Hobza, Pavel

    2007-01-08

    Complexes between formic acid or formate anion and various proton donors (HF, H(2)O, NH(3), and CH(4)) are studied by the MP2 and B3LYP methods with the 6-311++G(3df,3pd) basis set. Formation of a complex is characterized by electron-density transfer from electron donor to ligands. This transfer is much larger with the formate anion, for which it exceeds 0.1 e. Electron-density transfer from electron lone pairs of the electron donor is directed into sigma* antibonding orbitals of X--H bonds of the electron acceptor and leads to elongation of the bond and a red shift of the X--H stretching frequency (standard H-bonding). However, pronounced electron-density transfer from electron lone pairs of the electron donor also leads to reorganization of the electron density in the electron donor, which results in changes in geometry and vibrational frequency. These changes are largest for the C--H bonds of formic acid and formate anion, which do not participate in H-bonding. The resulting blue shift of this stretching frequency is substantial and amounts to almost 35 and 170 cm(-1), respectively.

  13. Gamete donation: parents' experiences of searching for their child's donor siblings and donor.

    Science.gov (United States)

    Freeman, T; Jadva, V; Kramer, W; Golombok, S

    2009-03-01

    This study investigates the new phenomenon of parents of donor offspring searching for and contacting their child's 'donor siblings' (i.e. donor offspring conceived by the same donor) and donor. Online questionnaires were completed by 791 parents (39% lone-mother, 35% lesbian-couple, 21% heterosexual-couple, 5% non-specified) recruited via the Donor Sibling Registry; a US-based international registry that facilitates contact between donor conception families who share the same donor. Data were collected on parents' reasons for searching for their child's donor siblings and/or donor, the outcome of these searches and parents' and their child's experiences of any resulting contact. Parents' principal motivation for searching for their child's donor siblings was curiosity and for their donor, enhancing their child's sense of identity. Some parents had discovered large numbers of donor siblings (maximum = 55). Most parents reported positive experiences of contacting and meeting their child's donor siblings and donor. This study highlights that having access to information about a child's donor origins is important for some parents and has potentially positive consequences. These findings have wider implications because the removal of donor anonymity in the UK and elsewhere means that increasing numbers of donor offspring are likely to seek contact with their donor relations in the future.

  14. Organic Donor-Acceptor Complexes as Novel Organic Semiconductors.

    Science.gov (United States)

    Zhang, Jing; Xu, Wei; Sheng, Peng; Zhao, Guangyao; Zhu, Daoben

    2017-07-18

    Organic donor-acceptor (DA) complexes have attracted wide attention in recent decades, resulting in the rapid development of organic binary system electronics. The design and synthesis of organic DA complexes with a variety of component structures have mainly focused on metallicity (or even superconductivity), emission, or ferroelectricity studies. Further efforts have been made in high-performance electronic investigations. The chemical versatility of organic semiconductors provides DA complexes with a great number of possibilities for semiconducting applications. Organic DA complexes extend the semiconductor family and promote charge separation and transport in organic field-effect transistors (OFETs) and organic photovoltaics (OPVs). In OFETs, the organic complex serves as an active layer across extraordinary charge pathways, ensuring the efficient transport of induced charges. Although an increasing number of organic semiconductors have been reported to exhibit good p- or n-type properties (mobilities higher than 1 or even 10 cm 2 V -1 s -1 ), critical scientific challenges remain in utilizing the advantages of existing semiconductor materials for more and wider applications while maintaining less complicated synthetic or device fabrication processes. DA complex materials have revealed new insight: their unique molecular packing and structure-property relationships. The combination of donors and acceptors could offer practical advantages compared with their unimolecular materials. First, growing crystals of DA complexes with densely packed structures will reduce impurities and traps from the self-assembly process. Second, complexes based on the original structural components could form superior mixture stacking, which can facilitate charge transport depending on the driving force in the coassembly process. Third, the effective use of organic semiconductors can lead to tunable band structures, allowing the operation mode (p- or n-type) of the transistor to be

  15. Methods for the synthesis of donor-acceptor cyclopropanes

    Science.gov (United States)

    Tomilov, Yu V.; Menchikov, L. G.; Novikov, R. A.; Ivanova, O. A.; Trushkov, I. V.

    2018-03-01

    The interest in cyclopropane derivatives is caused by the facts that, first, the three-carbon ring is present in quite a few natural and biologically active compounds and, second, compounds with this ring are convenient building blocks for the synthesis of diverse molecules (acyclic, alicyclic and heterocyclic). The carbon–carbon bonds in cyclopropane are kinetically rather inert; hence, they need to be activated to be involved in reactions. An efficient way of activation is to introduce vicinal electron-donating and electron-withdrawing substituents into the ring; these substrates are usually referred to as donor-acceptor cyclopropanes. This review gives a systematic account of the key methods for the synthesis of donor-acceptor cyclopropanes. The most important among them are reactions of nucleophilic alkenes with diazo compounds and iodonium ylides and approaches based on reactions of electrophilic alkenes with sulfur ylides (the Corey–Chaykovsky reaction). Among other methods used for this purpose, noteworthy are cycloalkylation of CH-acids, addition of α-halocarbonyl compounds to alkenes, cyclization via 1,3-elimination, reactions of alkenes with halocarbenes followed by reduction, the Simmons–Smith reaction and some other. The scope of applicability and prospects of various methods for the synthesis of donor-acceptor cyclopropanes are discussed. The bibliography includes 530 references.

  16. Linear Hyperfine Tuning of Donor Spins in Silicon Using Hydrostatic Strain

    Science.gov (United States)

    Mansir, J.; Conti, P.; Zeng, Z.; Pla, J. J.; Bertet, P.; Swift, M. W.; Van de Walle, C. G.; Thewalt, M. L. W.; Sklenard, B.; Niquet, Y. M.; Morton, J. J. L.

    2018-04-01

    We experimentally study the coupling of group V donor spins in silicon to mechanical strain, and measure strain-induced frequency shifts that are linear in strain, in contrast to the quadratic dependence predicted by the valley repopulation model (VRM), and therefore orders of magnitude greater than that predicted by the VRM for small strains |ɛ |hydrostatic component of strain and achieve semiquantitative agreement with the experimental values. Our results provide a framework for making quantitative predictions of donor spins in silicon nanostructures, such as those being used to develop silicon-based quantum processors and memories. The strong spin-strain coupling we measure (up to 150 GHz per strain, for Bi donors in Si) offers a method for donor spin tuning—shifting Bi donor electron spins by over a linewidth with a hydrostatic strain of order 10-6—as well as opportunities for coupling to mechanical resonators.

  17. Bis(pyrrolo)tetrathiafulvalene - An Efficient Pi-Donor in Supramolecular Chemistry

    DEFF Research Database (Denmark)

    Lau, Jesper; Nielsen, Mogens Brøndsted; Thorup, Niels

    1999-01-01

    The synthesis of three novel macrocycles 3-5 based on the two electron donors bis(2,5-dimethyl- pyrrolo)[3,4-d]tetrathiafulvalene (1) and 1,4-hydroquinone is presented. Their abilities to include the electron acceptor paraquat (6) have been investigated by UV/Vis and sup 1 H NMR spectroscopy and ...

  18. Silver nanoparticle catalysed redox reaction: An electron relay effect

    International Nuclear Information System (INIS)

    Mallick, Kaushik; Witcomb, Mike; Scurrell, Mike

    2006-01-01

    A silver cluster shows efficient catalytic activity in a redox reaction because the cluster acts as the electron relay centre behaving alternatively as an acceptor and as a donor of electrons. An effective transfer of electrons is possible when the redox potential of the cluster is intermediate between the electron donor and electron acceptor system

  19. An ultrafast spectroscopic and quantum mechanical investigation of multiple emissions in push-pull pyridinium derivatives bearing different electron donors.

    Science.gov (United States)

    Carlotti, B; Benassi, E; Cesaretti, A; Fortuna, C G; Spalletti, A; Barone, V; Elisei, F

    2015-08-28

    A joint experimental and theoretical approach, involving state-of-the-art femtosecond fluorescence up-conversion measurements and quantum mechanical computations including vibronic effects, was employed to get a deep insight into the excited state dynamics of two cationic dipolar chromophores (Donor-π-Acceptor(+)) where the electron deficient portion is a N-methyl pyridinium and the electron donor a trimethoxyphenyl or a pyrene, respectively. The ultrafast spectroscopic investigation, and the time resolved area normalised emission spectra in particular, revealed a peculiar multiple emissive behaviour and allowed the distinct emitting states to be remarkably distinguished from solvation dynamics, occurring in water in a similar timescale. The two and three emissions experimentally detected for the trimethoxyphenyl and pyrene derivatives, respectively, were associated with specific local emissive minima in the potential energy surface of S1 on the ground of quantum-mechanical calculations. A low polar and planar Locally Excited (LE) state together with a highly polar and Twisted Intramolecular Charge Transfer (TICT) state is identified to be responsible for the dual emission of the trimethoxyphenyl compound. Interestingly, the more complex photobehaviour of the pyrenyl derivative was explained considering the contribution to the fluorescence coming not only from the LE and TICT states but also from a nearly Planar Intramolecular Charge Transfer (PICT) state, with both the TICT and the PICT generated from LE by progressive torsion around the quasi-single bond between the methylpyridinium and the ethene bridge. These findings point to an interconversion between rotamers for the pyrene compound taking place in its excited state against the Non-equilibrated Excited Rotamers (NEER) principle.

  20. Associations of health status with subsequent blood donor behavior-An alternative perspective on the Healthy Donor Effect from Donor InSight

    NARCIS (Netherlands)

    van den Hurk, Katja; Zalpuri, Saurabh; Prinsze, Femmeke J.; Merz, Eva-Maria; de Kort, Wim L. A. M.

    2017-01-01

    In donor health research, the 'Healthy Donor Effect' (HDE) often biases study results and hampers their interpretation. This refers to the fact that donors are a selected 'healthier' subset of a population due to both donor selection procedures and self-selection. Donors with long versus short donor

  1. 2004 Electron Donor Acceptor Interactions Gordon Conference - August 8-13, 2004

    Energy Technology Data Exchange (ETDEWEB)

    GUILFORD JONES; S ST

    2005-09-14

    The 2004 Gordon Conference on Donor/Acceptor Interactions will take place at Salve Regina University in Newport, Rhode Island on August 8-13, 2004. The conference will be devoted to the consequences of charge interaction and charge motion in molecular and materials systems.

  2. Ascorbic Acid Alleviates Damage from Heat Stress in the Photosystem II of Tall Fescue in Both the Photochemical and Thermal Phases

    Directory of Open Access Journals (Sweden)

    Ke Chen

    2017-08-01

    Full Text Available L-Ascorbate (Asc plays important roles in plant development, hormone signaling, the cell cycle and cellular redox system, etc. The higher content of Asc in plant chloroplasts indicates its important role in the photosystem. The objective of this study was to study the roles of Asc in tall fescue leaves against heat stress. After a heat stress treatment, we observed a lower value of the maximum quantum yield for primary photochemistry (φPo, which reflects the inhibited activity of the photochemical phase of photosystem II (PSII. Moreover, we observed a higher value of efficiency of electron transfer from QB to photosystem I acceptors (δR0, which reflects elevated activity of the thermal phase of the photosystem of the tall fescue. The addition of Asc facilitate the behavior of the photochemical phase of the PSII by lowering the ROS content as well as that of the alternative electron donor to provide electron to the tyrosine residue of the D1 protein. Additionally, exogenous Asc reduces the activity of the thermal phase of the photosystem, which could contribute to the limitation of energy input into the photosystem in tall fescue against heat stress. Synthesis of the Asc increased under heat stress treatment. However, under heat stress this regulation does not occur at the transcription level and requires further study.

  3. Cation radicals of xanthophylls.

    Science.gov (United States)

    Galinato, Mary Grace I; Niedzwiedzki, Dariusz; Deal, Cailin; Birge, Robert R; Frank, Harry A

    2007-10-01

    Carotenes and xanthophylls are well known to act as electron donors in redox processes. This ability is thought to be associated with the inhibition of oxidative reactions in reaction centers and light-harvesting pigment-protein complexes of photosystem II (PSII). In this work, cation radicals of neoxanthin, violaxanthin, lutein, zeaxanthin, beta-cryptoxanthin, beta-carotene, and lycopene were generated in solution using ferric chloride as an oxidant and then studied by absorption spectroscopy. The investigation provides a view toward understanding the molecular features that determine the spectral properties of cation radicals of carotenoids. The absorption spectral data reveal a shift to longer wavelength with increasing pi-chain length. However, zeaxanthin and beta-cryptoxanthin exhibit cation radical spectra blue-shifted compared to that of beta-carotene, despite all of these molecules having 11 conjugated carbon-carbon double bonds. CIS molecular orbital theory quantum computations interpret this effect as due to the hydroxyl groups in the terminal rings selectively stabilizing the highest occupied molecular orbitals of preferentially populated s-trans-isomers. The data are expected to be useful in the analysis of spectral results from PSII pigment-protein complexes seeking to understand the role of carotene and xanthophyll cation radicals in regulating excited state energy flow, in protecting PSII reaction centers against photoinhibition, and in dissipating excess light energy absorbed by photosynthetic organisms but not used for photosynthesis.

  4. Cyanobacterial flv4-2 Operon-Encoded Proteins Optimize Light Harvesting and Charge Separation in Photosystem II.

    Science.gov (United States)

    Chukhutsina, Volha; Bersanini, Luca; Aro, Eva-Mari; van Amerongen, Herbert

    2015-05-01

    Photosystem II (PSII) complexes drive the water-splitting reaction necessary to transform sunlight into chemical energy. However, too much light can damage and disrupt PSII. In cyanobacteria, the flv4-2 operon encodes three proteins (Flv2, Flv4, and Sll0218), which safeguard PSII activity under air-level CO2 and in high light conditions. However, the exact mechanism of action of these proteins has not been clarified yet. We demonstrate that the PSII electron transfer properties are influenced by the flv4-2 operon-encoded proteins. Accelerated secondary charge separation kinetics was observed upon expression/overexpression of the flv4-2 operon. This is likely induced by docking of the Flv2/Flv4 heterodimer in the vicinity of the QB pocket of PSII, which, in turn, increases the QB redox potential and consequently stabilizes forward electron transfer. The alternative electron transfer route constituted by Flv2/Flv4 sequesters electrons from QB(-) guaranteeing the dissipation of excess excitation energy in PSII under stressful conditions. In addition, we demonstrate that in the absence of the flv4-2 operon-encoded proteins, about 20% of the phycobilisome antenna becomes detached from the reaction centers, thus decreasing light harvesting. Phycobilisome detachment is a consequence of a decreased relative content of PSII dimers, a feature observed in the absence of the Sll0218 protein. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  5. Magnetic field enhanced electroluminescence in organic light emitting diodes based on electron donor-acceptor exciplex blends

    Science.gov (United States)

    Baniya, Sangita; Basel, Tek; Sun, Dali; McLaughlin, Ryan; Vardeny, Zeev Valy

    2016-03-01

    A useful process for light harvesting from injected electron-hole pairs in organic light emitting diodes (OLED) is the transfer from triplet excitons (T) to singlet excitons (S) via reverse intersystem crossing (RISC). This process adds a delayed electro-luminescence (EL) emission component that is known as thermally activated delayed fluorescence (TADF). We have studied electron donor (D)/acceptor(A) blends that form an exciplex manifold in which the energy difference, ΔEST between the lowest singlet (S1) and triplet (T1) levels is relatively small (exciplex blend is enhanced up to 40% by applying a relatively weak magnetic field of 50 mT at ambient. Moreover the MEL response is activated with activation energy similar that of the EL emission. This suggests that the large magneto-EL originates from an additional spin-mixing channel between singlet and triplet states of the generated exciplexes, which is due to TADF. We will report on the MEL dependencies on the temperature, bias voltage, and D-A materials for optimum OLED performance. Supported by SAMSUNG Global Research Outreach (GRO) program, and also by the NSF-Material Science & Engineering Center (MRSEC) program at the University of Utah (DMR-1121252).

  6. Transport Measurements on Si Nanostructures with Counted Sb Donors

    Science.gov (United States)

    Singh, Meenakshi; Bielejec, Edward; Garratt, Elias; Ten Eyck, Gregory; Bishop, Nathaniel; Wendt, Joel; Luhman, Dwight; Carroll, Malcolm; Lilly, Michael

    2014-03-01

    Donor based spin qubits are a promising platform for quantum computing. Single qubits using timed implant of donors have been demonstrated.1 Extending this to multiple qubits requires precise control over the placement and number of donors. Such control can be achieved by using a combination of low-energy heavy-ion implants (to reduce depth straggle), electron-beam lithography (to define position), focused ion beam (to localize implants to one lithographic site) and counting the number of implants with a single ion detector.2 We report transport measurements on MOS quantum dots implanted with 5, 10 and 20 Sb donors using the approach described above. A donor charge transition is identified by a charge offset in the transport characteristics. Correlation between the number of donors and the charge offsets is studied. These results are necessary first steps towards fabricating donor nanostructures for two qubit interactions. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. The work was supported by Sandia National Laboratories Directed Research and Development Program. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000. 1J. J. Pla et al., Nature 496, 334 (2013) 2J. A. Seamons et al., APL 93, 043124 (2008).

  7. Fullerene C70 as a p-type donor in organic photovoltaic cells

    International Nuclear Information System (INIS)

    Zhuang, Taojun; Wang, Xiao-Feng; Sano, Takeshi; Kido, Junji; Hong, Ziruo; Li, Gang; Yang, Yang

    2014-01-01

    Fullerenes and their derivatives have been widely used as n-type materials in organic transistor and photovoltaic devices. Though it is believed that they shall be ambipolar in nature, there have been few direct experimental proofs for that. In this work, fullerene C 70 , known as an efficient acceptor, has been employed as a p-type electron donor in conjunction with 1,4,5,8,9,11-hexaazatriphenylene hexacarbonitrile as an electron acceptor in planar-heterojunction (PHJ) organic photovoltaic (OPV) cells. High fill factors (FFs) of more than 0.70 were reliably achieved with the C 70 layer even up to 100 nm thick in PHJ cells, suggesting the superior potential of fullerene C 70 as the p-type donor in comparison to other conventional donor materials. The optimal efficiency of these unconventional PHJ cells was 2.83% with a short-circuit current of 5.33 mA/cm 2 , an open circuit voltage of 0.72 V, and a FF of 0.74. The results in this work unveil the potential of fullerene materials as donors in OPV devices, and provide alternative approaches towards future OPV applications.

  8. Experiences of offspring searching for and contacting their donor siblings and donor.

    Science.gov (United States)

    Jadva, Vasanti; Freeman, Tabitha; Kramer, Wendy; Golombok, Susan

    2010-04-01

    This study investigates a new phenomenon whereby individuals conceived by donor insemination are searching for and contacting their donor and/or 'donor siblings' (i.e. donor offspring conceived by the same donor who are their genetic half siblings). On-line questionnaires were completed by members of the Donor Sibling Registry (DSR), a US-based registry that facilitates contact between donor conception families who share the same donor. Of the 165 donor offspring who completed the survey, 15% were searching for their donor siblings, 13% were searching for their donor, and 64% were searching for both. Differences were found according to family type and age of disclosure. Fewer offspring from heterosexual couple families had told their father about their search when compared with offspring from lesbian couple families who had told their co-parent. Offspring who had found out about their conception after age 18 were more likely to be searching for medical reasons, whereas those who had found out before age 18 tended to be searching out of curiosity. Some offspring had discovered large numbers of half siblings (maximum=13). The majority of offspring who had found their donor relations reported positive experiences and remained in regular contact with them. Copyright (c) 2010 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  9. Donor structure and electric transport mechanism in β-Ga2O3

    International Nuclear Information System (INIS)

    Yamaga, Mitsuo; Villora, Encarnacion G.; Shimamura, Kiyoshi; Ichinose, Noboru; Honda, Makoto

    2003-01-01

    The electron paramagnetic resonance (EPR) study of β-Ga 2 O 3 crystals gives evidence that donors can be regarded as O 2- vacancies trapping single electrons. The Lorentzian line shape of the EPR spectra observed in the range of 5-300 K, which exhibit anisotropic g values, suggests that motional narrowing occurs in this temperature range. For any magnetic-field orientation a single EPR line is observed, indicating that donor electrons are predominantly created in one of the three different oxygen sites in the β-Ga 2 O 3 crystal. A previous transmission electron microscopy study suggested that a break of symmetry in domains of 2-3 nm correlates with a preceding cluster model of oxygen vacancies. From the temperature dependence of the EPR linewidth and the electrical conductivity it is found that the electron conduction in the clusters and/or between them is governed by a tunneling process at low temperatures, whereas at temperatures above 50 K, the transport of electrons through hopping between the clusters is thermally activated

  10. New donor-acceptor-donor molecules based on quinoline acceptor unit with Schiff base bridge: synthesis and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Kotowicz, Sonia [Institute of Chemistry, University of Silesia, 9 Szkolna Street, 40-006 Katowice (Poland); Siwy, Mariola [Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Str., 41-819 Zabrze (Poland); Filapek, Michal; Malecki, Jan G. [Institute of Chemistry, University of Silesia, 9 Szkolna Street, 40-006 Katowice (Poland); Smolarek, Karolina; Grzelak, Justyna; Mackowski, Sebastian [Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, 5 Grudziadzka Str., 87-100 Torun (Poland); Slodek, Aneta, E-mail: aneta.slodek@us.edu.pl [Institute of Chemistry, University of Silesia, 9 Szkolna Street, 40-006 Katowice (Poland); Schab-Balcerzak, Ewa, E-mail: ewa.schab-balcerzak@us.edu.pl [Institute of Chemistry, University of Silesia, 9 Szkolna Street, 40-006 Katowice (Poland); Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Str., 41-819 Zabrze (Poland)

    2017-03-15

    Three solution-processable small organic molecules bearing quinoline as electron-accepting moiety were synthesized via condensation reaction of novel 6-amino-2-(2,2’-bithiophen-5-yl)-4-phenylquinoline with 2,2’-bithiophene-5-carboxaldehyde, 9-ethyl-9H-carbazole-3-carbaldehyde and 9-phenanthrenecarboxaldehyde. The presence of alternating electron-donating and accepting units results in a donor-acceptor-donor architecture of these molecular systems. Thermal, photophysical, and electrochemical properties of these small molecules were examined and the experimental results were supported by the density functional theory calculations. The obtained molecular systems exhibited high thermal stability with decomposition temperatures (5% weight loss) exceeding 330 °C in nitrogen atmosphere. It was found, based on DSC measurements, that investigated Schiff bases form amorphous material with glass transition temperatures between 88 and 190 °C. They also showed a UV–vis absorption in the range of 250–500 nm both in solution and in solid state as film and blend with PMMA and PVK. Photoluminescence measurements revealed moderately strong blue-light emission of the imines in solution as well as in PMMA blend with quantum yields in the range of 2–26%. In the case of imines dispersed in PVK matrix the emission of green light was mainly observed. In addition, when mixed with plasmonically active silver nanowires, the compounds exhibit relatively strong electroluminescence signal, associated with plasmonics enhancement, as evidenced by high-resolution photoluminescence imaging. The energy band gap estimated based on cyclic voltammetry was between 2.38 and 2.61 eV. - Highlights: • New Schiff bases possess donor-acceptor-imine-bridge-donor architecture were synthesized and examined. • Thorough characterization of optical and electrochemical properties of novel Schiff bases has been carried out. • Optical and electrochemical measurements were compared with DFT

  11. Extracellular Electron Uptake: Among Autotrophs and Mediated by Surfaces

    DEFF Research Database (Denmark)

    Tremblay, Pier-Luc; Angenent, Largus T.; Zhang, Tian

    2017-01-01

    Autotrophic microbes can acquire electrons from solid donors such as steel, other microbial cells, or electrodes. Based on this feature, bioprocesses are being developed for the microbial electrosynthesis (MES) of useful products from the greenhouse gas CO2. Extracellular electron-transfer mechan......Autotrophic microbes can acquire electrons from solid donors such as steel, other microbial cells, or electrodes. Based on this feature, bioprocesses are being developed for the microbial electrosynthesis (MES) of useful products from the greenhouse gas CO2. Extracellular electron......; or (iii) mediator-generating enzymes detached from cells. This review explores the interactions of autotrophs with solid electron donors and their importance in nature and for biosustainable technologies....

  12. Photoinduced electron transfer in covalent ruthenium-anthraquinone dyads: relative importance of driving-force, solvent polarity, and donor-bridge energy gap.

    Science.gov (United States)

    Hankache, Jihane; Wenger, Oliver S

    2012-02-28

    Four rigid rod-like molecules comprised of a Ru(bpy)(3)(2+) (bpy = 2,2'-bipyridine) photosensitizer, a 9,10-anthraquinone electron acceptor, and a molecular bridge connecting the two redox partners were synthesized and investigated by optical spectroscopic and electrochemical means. An attempt was made to assess the relative importance of driving-force, solvent polarity, and bridge variation on the rates of photoinduced electron transfer in these molecules. Expectedly, introduction of tert-butyl substituents in the bipyridine ligands of the ruthenium complex and a change in solvent from dichloromethane to acetonitrile lead to a significant acceleration of charge transfer rates. In dichloromethane, photoinduced electron transfer is not competitive with the inherent excited-state deactivation processes of the photosensitizer. In acetonitrile, an increase in driving-force by 0.2 eV through attachment of tert-butyl substituents to the bpy ancillary ligands causes an increase in electron transfer rates by an order of magnitude. Replacement of a p-xylene bridge by a p-dimethoxybenzene spacer entails an acceleration of charge transfer rates by a factor of 3.5. In the dyads from this study, the relative order of importance of individual influences on electron transfer rates is therefore as follows: solvent polarity ≥ driving-force > donor-bridge energy gap.

  13. The role of metals in production and scavenging of reactive oxygen species in photosystem II.

    Science.gov (United States)

    Pospíšil, Pavel

    2014-07-01

    Metal ions play a crucial role in enzymatic reactions in all photosynthetic organisms such as cyanobacteria, algae and plants. It well known that metal ions maintain the binding of substrate in the active site of the metalloenzymes and control the redox activity of the metalloenzyme in the enzymatic reaction. A large pigment-protein complex, PSII, known to serve as a water-plastoquinone oxidoreductase, contains three metal centers comprising non-heme iron, heme iron of Cyt b559 and the water-splitting manganese complex. Metal ions bound to PSII proteins maintain the electron transport from water to plastoquinone and regulate the pro-oxidant and antioxidant activity in PSII. In this review, attention is focused on the role of PSII metal centers in (i) the formation of superoxide anion and hydroxyl radicals by sequential one-electron reduction of molecular oxygen and the formation of hydrogen peroxide by incomplete two-electron oxidation of water; and (ii) the elimination of superoxide anion radical by one-electron oxidation and reduction (superoxide dismutase activity) and of hydrogen peroxide by two-electron oxidation and reduction (catalase activity). The balance between the formation and elimination of reactive oxygen species by PSII metal centers is discussed as an important aspect in the prevention of photo-oxidative damage of PSII proteins and lipids. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. Reductive dechlorination of trichloroethene DNAPL source zones: source zone architecture versus electron donor availability

    Science.gov (United States)

    Krol, M.; Kokkinaki, A.; Sleep, B.

    2014-12-01

    The persistence of dense-non-aqueous-phase liquids (DNAPLs) in the subsurface has led practitioners and regulatory agencies to turn towards low-maintenance, low-cost remediation methods. Biological degradation has been suggested as a possible solution, based on the well-proven ability of certain microbial species to break down dissolved chlorinated ethenes under favorable conditions. However, the biodegradation of pure phase chlorinated ethenes is subject to additional constraints: the continuous release of electron acceptor at a rate governed by mass transfer kinetics, and the temporal and spatial heterogeneity of DNAPL source zones which leads to spatially and temporally variable availability of the reactants for reductive dechlorination. In this work, we investigate the relationship between various DNAPL source zone characteristics and reaction kinetics using COMPSIM, a multiphase groundwater model that considers non-equilibrium mass transfer and Monod-type kinetics for reductive dechlorination. Numerical simulations are performed for simple, homogeneous trichloroethene DNAPL source zones to demonstrate the effect of single source zone characteristics, as well as for larger, more realistic heterogeneous source zones. It is shown that source zone size, and mass transfer kinetics may have a decisive effect on the predicted bio-enhancement. Finally, we evaluate the performance of DNAPL bioremediation for realistic, thermodynamically constrained, concentrations of electron donor. Our results indicate that the latter may be the most important limitation for the success of DNAPL bioremediation, leading to reduced bio-enhancement and, in many cases, comparable performance with water flooding.

  15. Optical properties and energy spectra of donors in Gasub(x)Insub(1-x)P

    International Nuclear Information System (INIS)

    Berndt, V.; Kopylov, A.A.; Pikhtin, A.N.

    1977-01-01

    Impurity optical absorption is studied in n-Gasub(x)Insub(1-x)P for compositions with indirect band structure. For the first time the photoionization bands of shallow donor centers have been observed in semiconductor solid solutions. Analysis of spectra has shown the electron transitions to excited states of donor to contribute considerably to absorption. A simple theoretical model is presented to explain the shift of ionization energy of silicon donor and the variation in shape of the impurity absorption band

  16. Electron Bifurcation: Thermodynamics and Kinetics of Two-Electron Brokering in Biological Redox Chemistry.

    Science.gov (United States)

    Zhang, Peng; Yuly, Jonathon L; Lubner, Carolyn E; Mulder, David W; King, Paul W; Peters, John W; Beratan, David N

    2017-09-19

    How can proteins drive two electrons from a redox active donor onto two acceptors at very different potentials and distances? And how can this transaction be conducted without dissipating very much energy or violating the laws of thermodynamics? Nature appears to have addressed these challenges by coupling thermodynamically uphill and downhill electron transfer reactions, using two-electron donor cofactors that have very different potentials for the removal of the first and second electron. Although electron bifurcation is carried out with near perfection from the standpoint of energy conservation and electron delivery yields, it is a biological energy transduction paradigm that has only come into focus recently. This Account provides an exegesis of the biophysical principles that underpin electron bifurcation. Remarkably, bifurcating electron transfer (ET) proteins typically send one electron uphill and one electron downhill by similar energies, such that the overall reaction is spontaneous, but not profligate. Electron bifurcation in the NADH-dependent reduced ferredoxin: NADP + oxidoreductase I (Nfn) is explored in detail here. Recent experimental progress in understanding the structure and function of Nfn allows us to dissect its workings in the framework of modern ET theory. The first electron that leaves the two-electron donor flavin (L-FAD) executes a positive free energy "uphill" reaction, and the departure of this electron switches on a second thermodynamically spontaneous ET reaction from the flavin along a second pathway that moves electrons in the opposite direction and at a very different potential. The singly reduced ET products formed from the bifurcating flavin are more than two nanometers distant from each other. In Nfn, the second electron to leave the flavin is much more reducing than the first: the potentials are said to be "crossed." The eventually reduced cofactors, NADH and ferredoxin in the case of Nfn, perform crucial downstream redox

  17. Donor, dad, or…? Young adults with lesbian parents' experiences with known donors.

    Science.gov (United States)

    Goldberg, Abbie E; Allen, Katherine R

    2013-06-01

    In this exploratory qualitative study of 11 young adults, ages 19-29 years, we examine how young people who were raised by lesbian parents make meaning out of and construct their relationships with known donors. In-depth interviews were conducted to examine how participants defined their family composition, how they perceived the role of their donors in their lives, and how they negotiated their relationships with their donors. Findings indicate that mothers typically chose known donors who were family friends, that the majority of participants always knew who their donors were, and that their contact with donors ranged from minimal to involved. Further, participants perceived their donors in one of three ways: as strictly donors and not members of their family; as extended family members but not as parents; and as fathers. The more limited role of donors in participants' construction of family relationships sheds light on how children raised in lesbian, gay, and bisexual families are contributing to the redefinition and reconstruction of complex kinship arrangements. Our findings hold implications for clinicians who work with lesbian-mother families, and suggest that young adulthood is an important developmental phase during which interest in and contact with the donor may shift, warranting a transfer of responsibility from mother to offspring in terms of managing the donor-child relationship. © FPI, Inc.

  18. Trap spectrum of the ``new oxygen donor'' in silicon

    Science.gov (United States)

    Hölzlein, K.; Pensl, G.; Schulz, M.

    1984-07-01

    Electronic properties of the new oxygen donor generated in phosphorus-doped Czochralski-silicon at 650‡C are investigated by deep level transient spectroscopy. A continuous distribution of trap states (1014 1016 cm-3 eV-1) is detected in the upper half of the band gap with increasing values towards the conduction band. The magnitude of the state density observed increases with the oxygen content, the heat duration, and a preanneal at temperatures lower than 650‡C. The continuous trap spectrum of the new donor is explained by interface states occuring at the surface of SiO x precipitates.

  19. Electronic and Spatial Structures of Water-Soluble Dinitrosyl Iron Complexes with Thiol-Containing Ligands Underlying Their Ability to Act as Nitric Oxide and Nitrosonium Ion Donors

    OpenAIRE

    Vanin, Anatoly F.; Burbaev, Dosymzhan Sh.

    2011-01-01

    The ability of mononuclear dinitrosyl iron commplexes (M-DNICs) with thiolate ligands to act as NO donors and to trigger S-nitrosation of thiols can be explain only in the paradigm of the model of the [Fe+(NO+)2] core ({Fe(NO)2}7 according to the Enemark-Feltham classification). Similarly, the {(RS−)2Fe+(NO+)2}+ structure describing the distribution of unpaired electron density in M-DNIC corresponds to the low-spin (S = 1/2) state with a d7 electron configuration of the iron atom and predomin...

  20. The C-type Arabidopsis thioredoxin reductase ANTR-C acts as an electron donor to 2-Cys peroxiredoxins in chloroplasts

    International Nuclear Information System (INIS)

    Moon, Jeong Chan; Jang, Ho Hee; Chae, Ho Byoung; Lee, Jung Ro; Lee, Sun Yong; Jung, Young Jun; Shin, Mi Rim; Lim, Hye Song; Chung, Woo Sik; Yun, Dae-Jin; Lee, Kyun Oh; Lee, Sang Yeol

    2006-01-01

    2-Cys peroxiredoxins (Prxs) play important roles in the antioxidative defense systems of plant chloroplasts. In order to determine the interaction partner for these proteins in Arabidopsis, we used a yeast two-hybrid screening procedure with a C175S-mutant of Arabidopsis 2-Cys Prx-A as bait. A cDNA encoding an NADPH-dependent thioredoxin reductase (NTR) isotype C was identified and designated ANTR-C. We demonstrated that this protein effected efficient transfer of electrons from NADPH to the 2-Cys Prxs of chloroplasts. Interaction between 2-Cys Prx-A and ANTR-C was confirmed by a pull-down experiment. ANTR-C contained N-terminal TR and C-terminal Trx domains. It exhibited both TR and Trx activities and co-localized with 2-Cys Prx-A in chloroplasts. These results suggest that ANTR-C functions as an electron donor for plastidial 2-Cys Prxs and represents the NADPH-dependent TR/Trx system in chloroplasts

  1. Accurate donor electron wave functions from a multivalley effective mass theory.

    Science.gov (United States)

    Pendo, Luke; Hu, Xuedong

    Multivalley effective mass (MEM) theories combine physical intuition with a marginal need for computational resources, but they tend to be insensitive to variations in the wavefunction. However, recent papers suggest full Bloch functions and suitable central cell donor potential corrections are essential to replicating qualitative and quantitative features of the wavefunction. In this talk, we consider a variational MEM method that can accurately predict both spectrum and wavefunction of isolated phosphorus donors. As per Gamble et. al, we employ a truncated series representation of the Bloch function with a tetrahedrally symmetric central cell correction. We use a dynamic dielectric constant, a feature commonly seen in tight-binding methods. Uniquely, we use a freely extensible basis of either all Slater- or all Gaussian-type functions. With a large basis able to capture the influence of higher energy eigenstates, this method is well positioned to consider the influence of external perturbations, such as electric field or applied strain, on the charge density. This work is supported by the US Army Research Office (W911NF1210609).

  2. Laparoscopic donor nephrectomy

    Directory of Open Access Journals (Sweden)

    Gupta Nitin

    2005-01-01

    Full Text Available Of the various options for patients with end stage renal disease, kidney transplantation is the treatment of choice for a suitable patient. The kidney for transplantation is retrieved from either a cadaver or a live donor. Living donor nephrectomy has been developed as a method to address the shortfall in cadaveric kidneys available for transplantation. Laparoscopic living donor nephrectomy (LLDN, by reducing postoperative pain, shortening convalescence, and improving the cosmetic outcome of the donor nephrectomy, has shown the potential to increase the number of living kidney donations further by removing some of the disincentives inherent to donation itself. The technique of LLDN has undergone evolution at different transplant centers and many modifications have been done to improve donor safety and recipient outcome. Virtually all donors eligible for an open surgical procedure may also undergo the laparoscopic operation. Various earlier contraindications to LDN, such as right donor kidney, multiple vessels, anomalous vasculature and obesity have been overcome with increasing experience. Laparoscopic live donor nephrectomy can be done transperitoneally or retroperitoneally on either side. The approach is most commonly transperitoneal, which allows adequate working space and easy dissection. A review of literature and our experience with regards to standard approach and the modifications is presented including a cost saving model for the developing countries. An assessment has been made, of the impact of LDN on the outcome of donor and the recipient.

  3. Short-term regulation and alternative pathways of photosynthetic electron transport in Hibiscus rosa-sinensis leaves.

    Science.gov (United States)

    Trubitsin, Boris V; Vershubskii, Alexey V; Priklonskii, Vladimir I; Tikhonov, Alexander N

    2015-11-01

    In this work, using the EPR and PAM-fluorometry methods, we have studied induction events of photosynthetic electron transport in Hibiscus rosa-sinensis leaves. The methods used are complementary, providing efficient tools for in situ monitoring of P700 redox transients and photochemical activity of photosystem II (PSII). The induction of P700(+) in dark-adapted leaves is characterized by the multiphase kinetics with a lag-phase, which duration elongates with the dark-adaptation time. Analyzing effects of the uncoupler monensin and artificial electron carrier methylviologen (MV) on photooxidation of P700 and slow induction of chlorophyll a fluorescence (SIF), we could ascribe different phases of transient kinetics of electron transport processes in dark-adapted leaves to the following regulatory mechanisms: (i) acceleration of electron transfer on the acceptor side of PSI, (ii) pH-dependent modulation of the intersystem electron flow, and (iii) re-distribution of electron fluxes between alternative (linear, cyclic, and pseudocyclic) pathways. Monensin significantly decreases a level of P700(+) and inhibits SIF. MV, which mediates electron flow from PSI to O2 with consequent formation of H2O2, promotes a rapid photooxidation of P700 without any lag-phase peculiar to untreated leaves. MV-mediated water-water cycle (H2O→PSII→PSI→MV→O2→H2O2→H2O) is accompanied by generation of ascorbate free radicals. This suggests that the ascorbate peroxidase system of defense against reactive oxygen species is active in chloroplasts of H. rosa-sinensis leaves. In DCMU-treated chloroplasts with inhibited PSII, the contribution of cyclic electron flow is insignificant as compared to linear electron flow. For analysis of induction events, we have simulated electron transport processes within the framework of our generalized mathematical model of oxygenic photosynthesis, which takes into account pH-dependent mechanisms of electron transport control and re-distribution of

  4. 5' modification of duplex DNA with a ruthenium electron donor-acceptor pair using solid-phase DNA synthesis

    Science.gov (United States)

    Frank, Natia L.; Meade, Thomas J.

    2003-01-01

    Incorporation of metalated nucleosides into DNA through covalent modification is crucial to measurement of thermal electron-transfer rates and the dependence of these rates with structure, distance, and position. Here, we report the first synthesis of an electron donor-acceptor pair of 5' metallonucleosides and their subsequent incorporation into oligonucleotides using solid-phase DNA synthesis techniques. Large-scale syntheses of metal-containing oligonucleotides are achieved using 5' modified phosporamidites containing [Ru(acac)(2)(IMPy)](2+) (acac is acetylacetonato; IMPy is 2'-iminomethylpyridyl-2'-deoxyuridine) (3) and [Ru(bpy)(2)(IMPy)](2+) (bpy is 2,2'-bipyridine; IMPy is 2'-iminomethylpyridyl-2'-deoxyuridine) (4). Duplexes formed with the metal-containing oligonucleotides exhibit thermal stability comparable to the corresponding unmetalated duplexes (T(m) of modified duplex = 49 degrees C vs T(m) of unmodified duplex = 47 degrees C). Electrochemical (3, E(1/2) = -0.04 V vs NHE; 4, E(1/2) = 1.12 V vs NHE), absorption (3, lambda(max) = 568, 369 nm; 4, lambda(max) = 480 nm), and emission (4, lambda(max) = 720 nm, tau = 55 ns, Phi = 1.2 x 10(-)(4)) data for the ruthenium-modified nucleosides and oligonucleotides indicate that incorporation into an oligonucleotide does not perturb the electronic properties of the ruthenium complex or the DNA significantly. In addition, the absence of any change in the emission properties upon metalated duplex formation suggests that the [Ru(bpy)(2)(IMPy)](2+)[Ru(acac)(2)(IMPy)](2+) pair will provide a valuable probe for DNA-mediated electron-transfer studies.

  5. Marginal kidney donor

    Directory of Open Access Journals (Sweden)

    Ganesh Gopalakrishnan

    2007-01-01

    Full Text Available Renal transplantation is the treatment of choice for a medically eligible patient with end stage renal disease. The number of renal transplants has increased rapidly over the last two decades. However, the demand for organs has increased even more. This disparity between the availability of organs and waitlisted patients for transplants has forced many transplant centers across the world to use marginal kidneys and donors. We performed a Medline search to establish the current status of marginal kidney donors in the world. Transplant programs using marginal deceased renal grafts is well established. The focus is now on efforts to improve their results. Utilization of non-heart-beating donors is still in a plateau phase and comprises a minor percentage of deceased donations. The main concern is primary non-function of the renal graft apart from legal and ethical issues. Transplants with living donors outnumbered cadaveric transplants at many centers in the last decade. There has been an increased use of marginal living kidney donors with some acceptable medical risks. Our primary concern is the safety of the living donor. There is not enough scientific data available to quantify the risks involved for such donation. The definition of marginal living donor is still not clear and there are no uniform recommendations. The decision must be tailored to each donor who in turn should be actively involved at all levels of the decision-making process. In the current circumstances, our responsibility is very crucial in making decisions for either accepting or rejecting a marginal living donor.

  6. A Cu-Zn nanoparticle promoter for selective carbon dioxide reduction and its application in visible-light-active Z-scheme systems using water as an electron donor.

    Science.gov (United States)

    Yin, Ge; Sako, Hiroshi; Gubbala, Ramesh V; Ueda, Shigenori; Yamaguchi, Akira; Abe, Hideki; Miyauchi, Masahiro

    2018-04-17

    Selective carbon dioxide photoreduction to produce formic acid was achieved under visible light irradiation using water molecules as electron donors, similar to natural plants, based on the construction of a Z-scheme light harvesting system modified with a Cu-Zn alloy nanoparticle co-catalyst. The faradaic efficiency of our Z-scheme system for HCOOH generation was over 50% under visible light irradiation.

  7. Donor Retention in Online Crowdfunding Communities: A Case Study of DonorsChoose.org.

    Science.gov (United States)

    Althoff, Tim; Leskovec, Jure

    2015-05-01

    Online crowdfunding platforms like DonorsChoose.org and Kick-starter allow specific projects to get funded by targeted contributions from a large number of people. Critical for the success of crowdfunding communities is recruitment and continued engagement of donors. With donor attrition rates above 70%, a significant challenge for online crowdfunding platforms as well as traditional offline non-profit organizations is the problem of donor retention. We present a large-scale study of millions of donors and donations on DonorsChoose.org, a crowdfunding platform for education projects. Studying an online crowdfunding platform allows for an unprecedented detailed view of how people direct their donations. We explore various factors impacting donor retention which allows us to identify different groups of donors and quantify their propensity to return for subsequent donations. We find that donors are more likely to return if they had a positive interaction with the receiver of the donation. We also show that this includes appropriate and timely recognition of their support as well as detailed communication of their impact. Finally, we discuss how our findings could inform steps to improve donor retention in crowdfunding communities and non-profit organizations.

  8. The water-water cycle in leaves is not a major alternative electron sink for dissipation of excess excitation energy when CO2 assimilation is restricted

    NARCIS (Netherlands)

    Driever, S.M.; Baker, N.R.

    2011-01-01

    Electron flux from water via photosystem II (PSII) and PSI to oxygen (water–water cycle) may provide a mechanism for dissipation of excess excitation energy in leaves when CO2 assimilation is restricted. Mass spectrometry was used to measure O2 uptake and evolution together with CO2 uptake in leaves

  9. Pendant unit effect on electron tunneling in U-shaped molecules

    International Nuclear Information System (INIS)

    Liu Min; Chakrabarti, Subhasis; Waldeck, David H.; Oliver, Anna M.; Paddon-Row, Michael N.

    2006-01-01

    The electron transfer reactions of three U-shaped donor-bridge-acceptor molecules with different pendant groups have been studied in different solvents as a function of temperature. Analysis of the electron transfer kinetics in nonpolar and weakly polar solvents provides experimental reaction Gibbs energies that are used to parameterize a molecular solvation model. This solvation model is then used to predict energetic parameters in the electron transfer rate constant expression and allow the electronic coupling between the electron donor and electron acceptor groups to be determined from the rate data. The U-shaped molecules differ by alkylation of the aromatic pendant group, which lies in the 'line-of-sight' between the donor and acceptor groups. The findings show that the electronic coupling through the pendant group is similar for these molecules

  10. Nyretransplantation med levende donor

    DEFF Research Database (Denmark)

    Kamper, A L; Løkkegaard, H; Rasmussen, F

    2000-01-01

    In recent years transplantation from living donors has accounted for 25-30% of all kidney transplants in Denmark corresponding to 40-45 per year. Most of these living donors are parents or siblings, although internationally an increasing number are unrelated donors. Donor nephrectomy is associate...... in cadaver transplantation. The ethical and psychological aspects related to transplantation from a living donor are complex and need to be carefully evaluated when this treatment is offered to the patients....

  11. Doping Phosphorene with Holes and Electrons through Molecular Charge Transfer.

    Science.gov (United States)

    Vishnoi, Pratap; Rajesh, S; Manjunatha, S; Bandyopadhyay, Arkamita; Barua, Manaswee; Pati, Swapan K; Rao, C N R

    2017-11-03

    An important aspect of phosphorene, the novel two-dimensional semiconductor, is whether holes and electrons can both be doped in this material. Some reports found that only electrons can be preferentially doped into phosphorene. There are some theoretical calculations showing charge-transfer interaction with both tetrathiafulvalene (TTF) and tetracyanoethylene (TCNE). We have carried out an investigation of chemical doping of phosphorene by a variety of electron donor and acceptor molecules, employing both experiment and theory, Raman scattering being a crucial aspect of the study. We find that both electron acceptors and donors interact with phosphorene by charge-transfer, with the acceptors having more marked effects. All the three Raman bands of phosphorene soften and exhibit band broadening on interaction with both donor and acceptor molecules. First-principles calculations establish the occurrence of charge-transfer between phosphorene with donors as well as acceptors. The absence of electron-hole asymmetry is noteworthy. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Trapped electron decay by the thermally-assisted tunnelling to electron acceptors in glassy matrices. A computer simulation study

    International Nuclear Information System (INIS)

    Feret, B.; Bartczak, W.M.; Kroh, J.

    1991-01-01

    The Redi-Hopefield quantum mechanical model of the thermally-assisted electron transfer has been applied to simulate the decay of trapped electrons by tunnelling to electron acceptor molecules added to the glassy matrix. It was assumed that the electron energy levels in donors and acceptors are statistically distributed and the electron excess energy after transfer is dissipated in the medium by the electron-phonon coupling. The electron decay curves were obtained by the method of computer simulation. It was found that for a given medium there exists a certain preferred value of the electronic excess energy which can be effectively converted into the matrix vibrations. If the mismatch of the electron states on the donor and acceptor coincides with the ''resonance'' energy the overall kinetics of electron transfer is accelerated. (author)

  13. Special features of self-compensation of halogen donor action in lead telluride

    International Nuclear Information System (INIS)

    Kajdanov, V.I.; Nemov, S.A.; Ravich, Yu.I.; Dereza, A.Yu.

    1985-01-01

    Specific features of self-compensation of halogen donor action in lead telluride are investigasted. Lead telluride samples with chlorine additions (with tellurium excess) and, besides, with bromine- and iodine additions were studied in order to reveal general regularities in alloyind with all halogen donor impurities. Experimental dependences of the difference between the electron and hole concentrations (n-p) in PbTe as a function of an amount of introduced halogen impurities (Ni) are presented for samples with a maximum compensation at 295 K. General features of the n-p=f(Ni) dependence are presented for all halogens. The hypothesis on the kinetic mechanism of increasing the efficiency of self-compensation of halogen donor action in lead telluride is suggested

  14. Scanning capacitance microscopy of atomically-precise donor devices in Si

    Science.gov (United States)

    Bussmann, Ezra; Rudolph, M.; Carr, S. M.; Subramania, G.; Ten Eyck, G.; Dominguez, J.; Lilly, M. P.; Carroll, M. S.; QIST Team

    2014-03-01

    Recently, a scanning tunneling microscopy (STM) technique to fabricate atomically-precise dopant-based nanoelectronics in Si has been developed. Phosphorus donors are placed via an atomic-precision template formed by STM H-depassivation lithography, then capped with epi-Si and lastly metal contacts are made to the buried donor layer using conventional microfabrication. New challenges are introduced with this approach that center around difficulties to locate and characterize the pattern of buried donors. In this talk, we show that scanning capacitance microscopy (SCM) can image these buried donor nanostructures with sub-100-nm tip-limited resolution. The technique is used to successfully locate and characterize buried donor nanostructures relative to surface alignment marks. This approach relaxes alignment requirements for the STM lithography step and can offer improved alignment of subsequent metallization steps. The SCM technique is also used to nondestructively image the shape of the electronic carrier distribution and characterize the relative doping levels. This work, performed in part at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility, was supported by Sandia's Lab Directed Research and Development Program. Sandia is a multi-program lab operated by Sandia Corp, a Lockheed-Martin Company, for U. S. DOE under Contract DE-AC04-94AL85000.

  15. Photoinduced electron transfer between benzyloxy dendrimer phthalocyanine and benzoquinone

    Science.gov (United States)

    Zhang, Tiantian; Ma, Dongdong; Pan, Sujuan; Wu, Shijun; Jiang, Yufeng; Zeng, Di; Yang, Hongqin; Peng, Yiru

    2016-10-01

    Photo-induced electron transfer (PET) is an important and fundamental process in natural photosynthesis. To mimic such interesting PET process, a suitable donor and acceptor couple were properly chosen. Dendrimer phthalocyanines and their derivatives have emerged as promising materials for artificial photosynthesis systems. In this paper, the electron transfer between the light harvest dendrimer phthalocyanine (donor) and the 1,4-benzoquinone (acceptor) was studied by UV/Vis and fluorescence spectroscopic methods. It was found that fluorescence of phthalocyanine was quenched by benzoquinone (BQ) via excited state electron transfer, from the phthalocyanine to the BQ upon excitation at 610 nm. The Stern-Volmer constant (KSV) of electron transfer was calculated. Our study suggests that this dendritic phthalocyanine is an effective new electron donor and transmission complex and could be used as a potential artificial photosynthesis system.

  16. Influence of kinship on donors' mental burden in living donor liver transplantation.

    Science.gov (United States)

    Erim, Yesim; Beckmann, Mingo; Kroencke, Sylvia; Sotiropoulos, Georgios C; Paul, Andreas; Senf, Wolfgang; Schulz, Karl-Heinz

    2012-08-01

    In the context of living donor liver transplantation (LDLT), German transplantation law stipulates that donor candidates should primarily be relatives of the recipients or persons with distinct and close relationships. In this study, we investigated the influence of the relationship between the donor and the recipient on the donor's emotional strain before transplantation. Donors were categorized according to the following subgroups: (1) parents donating for their children, (2) children donating for their parents, (3) siblings, (4) spouses, (5) other relatives, and (6) nonrelatives. The sample consisted of 168 donor candidates. Anxiety (F = 2.8, P = 0.02), depression (F = 2.6, P = 0.03), and emotional quality of life (F = 3.1, P = 0.01) differed significantly according to the relationship between the donor and the recipient. In comparison with healthy controls, parents donating for their children were significantly less stressed before LDLT and demonstrated fewer anxiety (P depression symptoms (P < 0.05). Adult children donating for their parents demonstrated the highest mental burden and the lowest emotional quality of life. However, this was not due to the responsibility of these children for their own families because differences between donors with children and donors without children could not be ascertained. This group should be given special attention before LDLT and during follow-up visits, and psychological help should be provided when it is necessary. Copyright © 2012 American Association for the Study of Liver Diseases.

  17. Iron deficiency in blood donors

    Directory of Open Access Journals (Sweden)

    Rodolfo Delfini Cançado

    Full Text Available CONTEXT: Blood donation results in a substantial loss of iron (200 to 250 mg at each bleeding procedure (425 to 475 ml and subsequent mobilization of iron from body stores. Recent reports have shown that body iron reserves generally are small and iron depletion is more frequent in blood donors than in non-donors. OBJECTIVE: The aim of this study was to evaluate the frequency of iron deficiency in blood donors and to establish the frequency of iron deficiency in blood donors according to sex, whether they were first-time or multi-time donors, and the frequency of donations per year. DESIGN: From September 20 to October 5, 1999, three hundred blood donors from Santa Casa Hemocenter of São Paulo were studied. DIAGNOSTIC TESTS: Using a combination of biochemical measurements of iron status: serum iron, total iron-binding capacity, transferrin saturation index, serum ferritin and the erythrocyte indices. RESULTS: The frequency of iron deficiency in blood donors was 11.0%, of whom 5.5% (13/237 were male and 31.7% (20/63 female donors. The frequency of iron deficiency was higher in multi-time blood donors than in first-time blood donors, for male blood donors (7.6% versus 0.0%, P < 0.05 and female ones (41.5% versus 18.5%, P < 0.05. The frequency of iron deficiency found was higher among the male blood donors with three or more donations per year (P < 0.05 and among the female blood donors with two or more donations per year (P < 0.05. CONCLUSIONS: We conclude that blood donation is a very important factor for iron deficiency in blood donors, particularly in multi-time donors and especially in female donors. The high frequency of blood donors with iron deficiency found in this study suggests a need for a more accurate laboratory trial, as hemoglobin or hematocrit measurement alone is not sufficient for detecting and excluding blood donors with iron deficiency without anemia.

  18. Correlation between donor age and organs transplanted per donor: our experience in Japan.

    Science.gov (United States)

    Ashikari, J; Omiya, K; Konaka, S; Nomoto, K

    2014-05-01

    The shortage of available organs for transplantation is a worldwide issue. To maximize the number of transplantations, increasing the number of organs transplanted per donor (OTPD) is widely recognized as an important factor for improving the shortage. In Japan, we have had 211 donors, 1112 organs transplanted, and 924 recipients receiving the transplants, resulting in 4.4 ± 1.4 recipients receiving transplants per donor and 5.3 ± 1.6 OTPD as of February 2013. Because donor age is a well-recognized factor of donor suitability, we analyzed the correlation between donor age group and OTPD. Only the age group 60 to 69 years and the age group 70 to 79 years were significantly different (P donor under age 70 years has the potential to donate 4.6 to 6.7 organs. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Achieving donor management goals before deceased donor procurement is associated with more organs transplanted per donor.

    Science.gov (United States)

    Malinoski, Darren J; Daly, Michael C; Patel, Madhukar S; Oley-Graybill, Chrystal; Foster, Clarence E; Salim, Ali

    2011-10-01

    There is a national shortage of organs available for transplantation. Implementation of preset donor management goals (DMGs) to improve outcomes is recommended, but uniform practices and data are lacking. We hypothesized that meeting DMGs before organ procurement would result in more organs transplanted per donor (OTPD). The eight organ procurement organization in United Network for Organ Sharing Region 5 selected 10 critical care end points as DMGs. Each organ procurement organization submitted retrospective data from 40 standard criteria donors. "DMGs met" was defined as achieving any eight DMGs before procurement. The primary outcome was ≥4 OTPD. Binary logistic regression was used to determine independent predictors of ≥4 OTPD with a pdonors had 3.6±1.6 OTPD. Donors with DMGs met had more OTPD (4.4 vs. 3.3, p50% (OR=4.0), Pao2:FIO2>300 (OR=4.6), and serum sodium 135 to 160 mEq/L (OR=3.4). Meeting DMGs before procurement resulted in more OTPD. Donor factors and critical care end points are independent predictors of organ yield. Prospective studies are needed to determine the true impact of each DMG on the number and function of transplanted organs.

  20. A simplified donor risk index for predicting outcome after deceased donor kidney transplantation.

    Science.gov (United States)

    Watson, Christopher J E; Johnson, Rachel J; Birch, Rhiannon; Collett, Dave; Bradley, J Andrew

    2012-02-15

    We sought to determine the deceased donor factors associated with outcome after kidney transplantation and to develop a clinically applicable Kidney Donor Risk Index. Data from the UK Transplant Registry on 7620 adult recipients of adult deceased donor kidney transplants between 2000 and 2007 inclusive were analyzed. Donor factors potentially influencing transplant outcome were investigated using Cox regression, adjusting for significant recipient and transplant factors. A United Kingdom Kidney Donor Risk Index was derived from the model and validated. Donor age was the most significant factor predicting poor transplant outcome (hazard ratio for 18-39 and 60+ years relative to 40-59 years was 0.78 and 1.49, respectively, Pinformed consent.

  1. Carrier concentration dependence of donor activation energy in n-type GaN epilayers grown on Si (1 1 1) by plasma-assisted MBE

    International Nuclear Information System (INIS)

    Kumar, Mahesh; Bhat, Thirumaleshwara N.; Roul, Basanta; Rajpalke, Mohana K.; Kalghatgi, A.T.; Krupanidhi, S.B.

    2012-01-01

    Highlights: ► The n-type GaN layers were grown by plasma-assisted molecular beam epitaxy. ► The optical characteristics of a donor level in Si-doped GaN were studied. ► Activation energy of a Si-related donor was estimated from temperature dependent PL measurements. ► PL peak positions, FWHM of PL and activation energies are found to be proportional to the cube root of carrier density. ► The involvement of donor levels is supported by the temperature-dependent electron concentration measurements. -- Abstract: The n-type GaN layers were grown by plasma-assisted MBE and either intentionally doped with Si or unintentionally doped. The optical characteristics of a donor level in Si-doped, GaN were studied in terms of photoluminescence (PL) spectroscopy as a function of electron concentration. Temperature dependent PL measurements allowed us to estimate the activation energy of a Si-related donor from temperature-induced decay of PL intensity. PL peak positions, full width at half maximum of PL and activation energies are found to be proportional to the cube root of carrier density. The involvement of donor levels is supported by the temperature-dependent electron concentration measurements.

  2. Endophytic infection alleviates Pb{sup 2+} stress effects on photosystem II functioning of Oryza sativa leaves

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xuemei, E-mail: lxmls132@163.com [College of Chemistry and Life Science, Shenyang Normal University, Shenyang 110034 (China); Zhang, Lihong, E-mail: lihongzhang132@163.com [Environmental Science Department of Liaoning University,Shenyang 110036 (China)

    2015-09-15

    Highlights: • Chl fluorescence parameters of endophyte-infected rice under Pb{sup 2+} stress were tested. • The efficiency and stability of PSII are markedly affected by Pb{sup 2+} stress. • Endophyte infection improved photosynthetic system activity under Pb{sup 2+} stress. • JIP-test is a suitable tool for monitoring of Pb{sup 2+} stress. • Endophyte infection may increase tolerance to Pb{sup 2+} in rice. - Abstract: The aims of this study were to examine the effect of Pb{sup 2+} stress on the primary reaction of photosynthesis and to assess the potential benefits of endophytic infection on the Pb{sup 2+} tolerance of rice seedlings. Rice inoculated with an endophytic fungus (E+) and non-inoculated (E−) were subjected to 0, 50, 100, 150 and 200 μM Pb{sup 2+}. The responses to Pb{sup 2+} stress were characterized by the analysis of Chl a fluorescence. A comparison of E− with E+ rice seedlings, as evaluated by their performance index (PI{sub ABS} and PI{sub tot}), revealed the inhibitory effects of Pb{sup 2+} on photosystem II (PSII) connectivity, the oxygen evolving complex (OEC), and on the J step of the induction curves, which is associated with an inhibition of electron transport from the quinone acceptor Q{sub A} to Q{sub B}. Furthermore, the changes of the donor and the acceptor parameters of PSII were greater in E− than in E+ under Pb{sup 2+} stress. These observations suggest that the efficiency and stability of PSII are markedly affected by Pb{sup 2+} stress, and the photosynthetic energy conservation in E+ was more effective than in E−. We showed that endophytic infection plays an important role in enhancing the photosynthetic mechanism of rice seedlings exposed to Pb{sup 2+} stress.

  3. The impact of disclosure on donor gamete participants: donors, intended parents and offspring.

    Science.gov (United States)

    Greenfeld, Dorothy A

    2008-06-01

    The present review examines recent publications that provide insight into how the trend toward nonanonymity and disclosure in gamete donation impacts donors, intended parents, and their donor-conceived children. Recent findings show an increase in donor programs that offer open-identity between donors and offspring. The psychological needs of gamete donors and their attitudes toward disclosure are increasingly given consideration. Qualitative research on how parents of donor gamete offspring make decisions about disclosure reveals that even when couples initially disagree about disclosing to offspring, most ultimately come to a united disclosure decision. The literature on the impact of disclosure on donor gamete offspring has extended to include children conceived through embryo donation and children born as a result of surrogacy. The absence of genetic or gestational link between parents and their child does not have a negative impact on parent-child relationships. Parents through surrogacy tend to disclose the method of family creation to their child, whereas parents through embryo donation tend to be secretive about their child's origins. The trend toward greater openness in gamete donation has been accompanied by an increase in programs offering open-identity donation. In addition, the psychological needs of gamete donors and their attitudes toward disclosure are increasingly being given consideration. Parents of donor gamete offspring give careful thought to their disclosure decisions, and the psychological well being of donor-conceived children does not seem to be impacted by those decisions.

  4. Differences in social representation of blood donation between donors and non-donors: an empirical study.

    Science.gov (United States)

    Guarnaccia, Cinzia; Giannone, Francesca; Falgares, Giorgio; Caligaris, Aldo Ozino; Sales-Wuillemin, Edith

    2015-11-04

    Both donors and non-donors have a positive image of blood donation, so donors and non-donors do not differ regarding their views on donation but do differ in converting their opinion into an active deed of donation. Several studies have identified altruism and empathy as the main factors underlying blood donation. However, a mixture of various motivational factors mould the complex behaviour of donation. This paper presents an exploratory study on differences of social representations of blood donation between blood donors and non-donors, in order to understand the reasons that bring someone to take the decision to become a blood donor. Participants filled in the Adapted Self-Report Altruism Scale, Toronto Empathy Questionnaire and answered a test of verbal association. Descriptive and correlation analyses were carried out on quantitative data, while a prototypic analysis was used for qualitative data. The study was carried out on a convenience sample of 786 individuals, 583 donors (mean age: 35.40 years, SD: 13.01 years; 39.3% female) and 203 non-donors (mean age: 35.10 years, SD: 13.30 years; 67.5% female). Social representations of donors seem to be more complex and articulated than those of non-donors. The terms that appear to be central were more specific in donors (life, needle, blood, help, altruism were the words most associated by non-donors; life, aid, altruism, solidarity, health, love, gift, generosity, voluntary, control, needed, useful, needle were the words most associated by donors). Furthermore, non-donors associated a larger number of terms referring to negative aspects of blood donation. Aspects related to training and the accuracy of any information on blood donation seem to be important in the decision to become a donor and stabilise the behaviour of donation over time, thus ensuring the highest levels of quality and safety in blood establishments.

  5. Identification of the 2-hydroxyglutarate and isovaleryl-CoA dehydrogenases as alternative electron donors linking lysine catabolism to the electron transport chain of Arabidopsis mitochondria.

    Science.gov (United States)

    Araújo, Wagner L; Ishizaki, Kimitsune; Nunes-Nesi, Adriano; Larson, Tony R; Tohge, Takayuki; Krahnert, Ina; Witt, Sandra; Obata, Toshihiro; Schauer, Nicolas; Graham, Ian A; Leaver, Christopher J; Fernie, Alisdair R

    2010-05-01

    The process of dark-induced senescence in plants is relatively poorly understood, but a functional electron-transfer flavoprotein/electron-transfer flavoprotein:ubiquinone oxidoreductase (ETF/ETFQO) complex, which supports respiration during carbon starvation, has recently been identified. Here, we studied the responses of Arabidopsis thaliana mutants deficient in the expression of isovaleryl-CoA dehydrogenase and 2-hydroxyglutarate dehydrogenase to extended darkness and other environmental stresses. Evaluations of the mutant phenotypes following carbon starvation induced by extended darkness identify similarities to those exhibited by mutants of the ETF/ETFQO complex. Metabolic profiling and isotope tracer experimentation revealed that isovaleryl-CoA dehydrogenase is involved in degradation of the branched-chain amino acids, phytol, and Lys, while 2-hydroxyglutarate dehydrogenase is involved exclusively in Lys degradation. These results suggest that isovaleryl-CoA dehydrogenase is the more critical for alternative respiration and that a series of enzymes, including 2-hydroxyglutarate dehydrogenase, plays a role in Lys degradation. Both physiological and metabolic phenotypes of the isovaleryl-CoA dehydrogenase and 2-hydroxyglutarate dehydrogenase mutants were not as severe as those observed for mutants of the ETF/ETFQO complex, indicating some functional redundancy of the enzymes within the process. Our results aid in the elucidation of the pathway of plant Lys catabolism and demonstrate that both isovaleryl-CoA dehydrogenase and 2-hydroxyglutarate dehydrogenase act as electron donors to the ubiquinol pool via an ETF/ETFQO-mediated route.

  6. Characteristics and clinical outcomes of living renal donors in Hong Kong.

    Science.gov (United States)

    Hong, Y L; Yee, C H; Leung, C B; Teoh, J Yc; Kwan, B Ch; Li, P Kt; Hou, S Sm; Ng, C F

    2018-02-01

    In Asia, few reports are available on the outcomes for living renal donors. We report the short- and long-term clinical outcomes of individuals following living donor nephrectomy in Hong Kong. We retrospectively reviewed the characteristics and clinical outcomes of all living renal donors who underwent surgery from January 1990 to December 2015 at a teaching hospital in Hong Kong. Information was obtained from hospital records and territory-wide electronic patient records. During the study period, 83 individuals underwent donor nephrectomy. The mean (± standard deviation) follow-up time was 12.0 ± 8.3 years, and the mean age at nephrectomy was 37.3 ± 10.0 years. A total of 44 (53.0%), four (4.8%), and 35 (42.2%) donors underwent living donor nephrectomy via an open, hand-port assisted laparoscopic, and laparoscopic approach, respectively. The overall incidence of complications was 36.6%, with most being grade 1 or 2. There were three (9.4%) grade 3a complications; all were related to open donor nephrectomy. The mean glomerular filtration rate was 96.0 ± 17.5 mL/min/1.73 m 2 at baseline and significantly lower at 66.8 ± 13.5 mL/min/1.73 m 2 at first annual follow-up (P<0.01). The latest mean glomerular filtration rate was 75.6% ± 15.1% of baseline. No donor died or developed renal failure. Of the donors, 14 (18.2%) developed hypertension, two (2.6%) had diabetes mellitus, and three (4.0%) had experienced proteinuria. The overall perioperative outcomes are good, with very few serious complications. The introduction of a laparoscopic approach has decreased perioperative blood loss and also shortened hospital stay. Long-term kidney function is satisfactory and no patients developed end-stage renal disease. The incidences of new-onset medical diseases and pregnancy-related complications were also low.

  7. Donor-derived HLA antibody production in patients undergoing SCT from HLA antibody-positive donors.

    Science.gov (United States)

    Taniguchi, K; Yoshihara, S; Maruya, E; Ikegame, K; Kaida, K; Hayashi, K; Kato, R; Inoue, T; Fujioka, T; Tamaki, H; Okada, M; Onuma, T; Fujii, N; Kusunoki, Y; Soma, T; Saji, H; Ogawa, H

    2012-10-01

    Pre-existing donor-specific HLA antibodies in patients undergoing HLA-mismatched SCT have increasingly been recognized as a risk factor for primary graft failure. However, the clinical implications of the presence of HLA antibodies in donors remain unknown. We prospectively examined 123 related donors for the presence of HLA antibodies by using a Luminex-based single antigen assay. Of these, 1/57 (1.8%) male, 6/27 (22%) parous female and 0/39 (0%) nonparous female donors were HLA antibody-positive. Then, we determined the presence of HLA antibodies in seven patients who received SCT from antibody-positive donors. Of these, four became HLA antibody-positive after SCT. The specificities of the antibodies that emerged in the patients closely resembled those of the antibodies found in the donors, indicating their production by donor-derived plasma cells. Moreover, the kinetics of the HLA antibody levels were similar in all four patients: levels started increasing within 1 week after SCT and peaked at days 10-21, followed by a gradual decrease. These results suggest that donor-derived HLA antibody production frequently occurs in patients undergoing SCT from antibody-positive donors. Further studies are warranted for clarifying the clinical significance of donor-derived HLA antibodies, including the role of these antibodies in post transplant platelet transfusion refractoriness.

  8. Membrane protein damage and repair: selective loss of a quinone-protein function in chloroplast membranes

    International Nuclear Information System (INIS)

    Kyle, D.J.; Ohad, I.; Arntzen, C.J.

    1984-01-01

    A loss of electron transport capacity in chloroplast membranes was induced by high-light intensities (photoinhibition). The primary site of inhibition was at the reducing side of photosystem II (PSII) with little damage to the oxidizing side or to the reaction center core of PSII. Addition of herbicides (atrazine or diuron) partially protected the membrane from photoinhibition; these compounds displace the bound plastoquinone (designated as Q/sub B/), which functions as the secondary electron acceptor on the reducing side of PSII. Loss of function of the 32-kilodalton Q/sub B/ apoprotein was demonstrated by a loss of binding sites for [ 14 C]atraazine. We suggest that quinone anions, which may interact with molecular oxygen to produce an oxygen radical, selectively damage the apoprotein of the secondary acceptor of PSII, thus rendering it inactive and thereby blocking photosynthetic electron flow under conditions of high photon flux densities. 21 references, 4 figures, 2 tables

  9. Molecular orbital study of the primary electron donor P700 of photosystem I based on a recent X-ray single crystal structure analysis

    International Nuclear Information System (INIS)

    Plato, Martin; Krauss, Norbert; Fromme, Petra; Lubitz, Wolfgang

    2003-01-01

    The X-ray structure analysis of photosystem (PS) I single crystals showed that the primary electron donor P700 is a heterodimer formed by one chlorophyll (Chl) a and one Chl a ' [Nature 411 (2001) 909]. The electronic structure of the cation radical P700 +· of the primary donor, which is created in the charge separation process, has been probed by semiempirical molecular orbital calculations including spin polarization effects (RHF-INDO/SP). The calculations, which were based on the X-ray structure, clearly show that P700 is a supermolecule formed by two chlorophyll species. They furthermore predict an asymmetrical charge and spin density distribution in favor of the monomeric Chl a half of this dimer in accordance with results from earlier EPR and ENDOR studies [J. Phys. Chem. B 105 (2000) 1225]. The stepwise inclusion of various electrostatic interactions of the dimer with its nearest surrounding (one threonine forming a hydrogen bond to the keto group of Chl a ' and two histidines liganding the Mg atoms of the two chlorophylls) leads to a systematic enhancement of this electronic asymmetry yielding a spin density ratio of almost 5:1 as also found experimentally. A large part of this value is caused by spin polarization effects. This result is only weakly affected by the electrostatic field of more remote amino acid residues and other pigment molecules ('accessory' Chl a molecules) present in PS I. A separate group of calculations involving local geometry optimizations by energy minimization techniques yields a further enhancement of the spin density asymmetry. A particularly strong effect is obtained by allowing for variations of the geometry of the vinyl groups on both chlorophylls of the P700 dimer. Theoretical results for individual isotropic proton and nitrogen hyperfine coupling constants, showing a satisfactory agreement with experimental findings, are also presented

  10. The effect of whole-blood donor adverse events on blood donor return rates.

    Science.gov (United States)

    Newman, Bruce H; Newman, Daniel T; Ahmad, Raffat; Roth, Arthur J

    2006-08-01

    Some blood donation-related adverse events (AEs) can negatively impact the blood donor return rate (BDRR) and decrease donor retention. One-thousand randomly selected whole-blood donors were interviewed 3 weeks after a 525-mL index whole-blood donation for seven AEs. The number of return visits and duration of follow-up were recorded for each of the 1000 donors. A negative binomial regression analysis was used to determine the contribution of the four most common AEs to the BDRR, and interactions between these AEs were also evaluated. The four most common AEs were bruise alone (15.1%), sore arm "alone" (7.0%), fatigue "alone" (5.1%), and donor reaction "alone" (4.2%), where "alone" is defined to also include donors who had a bruise but no other AE. The estimated BDRR for donations without AEs was 1.32 visits per year. The estimated BDRRs for the four most common AEs were: bruise alone, 1.32 visits per year; sore arm alone, 1.30 visits per year (2% reduction in BDRR); fatigue alone, 1.06 visits per year (20% reduction in BDRR); and donor reaction alone, 0.87 visits per year (34% reduction in BDRR). The BDRR for donor reaction, fatigue, and sore arm together was 0.20 visits per year (85% reduction in BDRR). Donor reaction had the most negative impact on the BDRR. There appears to be a synergistic effect between donor reaction, fatigue, and sore arm. Theoretically, amelioration of some AEs has the potential to improve BDRRs.

  11. ِAnalysis of donor motivations in living donor liver transplantation

    Directory of Open Access Journals (Sweden)

    Hesham eAbdeldayem

    2014-07-01

    Full Text Available Objectives: The introduction of the living donor liver transplantation (LDLT in Egypt as in elsewhere, has raised important psychological conflicts and ethical questions. The objective of this study was to get better understanding of the potential donors’ motives towards LDLT.Methods:This study was conducted on consecutive 193 living –liver donors who underwent partial hepatectomy as donors for LDLT during the period between April 2003 and January 2013, at the National Liver Institute Menoufeyia University, Egypt. Potential donors were thoroughly evaluated preoperatively through a screening questionnaire and interviews as regard their demographic data, relationship to the potential recipient and motives towards proceeding to surgery. They were assured that the information shared between them and the transplant centre is confidential. Results.The donors’ mean age was 25.53± 6.39 years with a range of 18-45 years. Males represented 64.7 % and females were 35.3%. The most common donors (32.1%, n_62, were sons and daughters to their parents (sons: n_43, daughters: n_19 while parents to their offsprings represent 15% (mothers: n_21, fathers: n_8. Brothers and sisters represent 16.5 % (brothers: n_22, sisters: n_10. Nephews & nieces giving their uncles or aunts were 14%. The number of wives donating to their husbands was 11 (5.7%. Interestingly, there was no single husband who donated his wife. Among the remaining donors, there were 11 cousins & one uncle. Unrelated donors were 20 (10.4%. Several factors seemed to contribute to motivation for donation: the seriousness of the potential recipient condition, the relationship and personal history of the donor to the potential recipient, the religious beliefs, the trust in the health care system, and family dynamics and obligations.Conclusions. Absolute absence of coercion on the living-liver donor’s motives may not be realistic because of the serious condition of the potential recipient. It is

  12. Differences in Medication Adherence between Living and Deceased Donor Kidney Transplant Patients.

    Science.gov (United States)

    Denhaerynck, K; Schmid-Mohler, G; Kiss, A; Steiger, J; Wüthrich, R P; Bock, A; De Geest, S

    2014-01-01

    Literature review suggests that adherence to immunosuppressive drugs may be lower in recipients of living than of deceased donor kidney grafts, possibly because of profile differences. To compare the level of immunosuppressive adherence levels between patients with deceased and living (-related; -unrelated) donor grafts in Switzerland. Using data from two similar cross-sectional studies at two transplant centers in Switzerland, the level of adherence between the two groups was compared. Medication adherence was assessed by self-report or electronic monitoring. Possible explanatory factors included age, beliefs regarding immunosuppressive drugs, depressive symptomatology, pre-emptive transplantation, and the number of transplants received, were also considered. Data were analyzed using logistic regression analysis. Unadjusted non-adherence odds were 2 to 3 times higher in living-related than deceased donor transplantation (ORs: 2.09-3.05; padherence in recipients of living-related donor kidneys, possibly owing to differences in patient profile (ie, health beliefs regarding their immunosuppressive needs), knowledge of which may enhance adherence if addressed.

  13. Effects of different elevated CO2 concentrations on chlorophyll contents, gas exchange, water use efficiency, and PSII activity on C3 and C4 cereal crops in a closed artificial ecosystem.

    Science.gov (United States)

    Wang, Minjuan; Xie, Beizhen; Fu, Yuming; Dong, Chen; Hui, Liu; Guanghui, Liu; Liu, Hong

    2015-12-01

    Although terrestrial CO2 concentrations [CO2] are not expected to reach 1000 μmol mol(-1) (or ppm) for many decades, CO2 levels in closed systems such as growth chambers and greenhouses can easily exceed this concentration. CO2 levels in life support systems (LSS) in space can exceed 10,000 ppm (1 %). In order to understand how photosynthesis in C4 plants may respond to elevated CO2, it is necessary to determine if leaves of closed artificial ecosystem grown plants have a fully developed C4 photosynthetic apparatus, and whether or not photosynthesis in these leaves is more responsive to elevated [CO2] than leaves of C3 plants. To address this issue, we evaluated the response of gas exchange, water use efficiency, and photosynthetic efficiency of PSII by soybean (Glycine max (L.) Merr., 'Heihe35') of a typical C3 plant and maize (Zea mays L., 'Susheng') of C4 plant under four CO2 concentrations (500, 1000, 3000, and 5000 ppm), which were grown under controlled environmental conditions of Lunar Palace 1. The results showed that photosynthetic pigment by the C3 plants of soybean was more sensitive to elevated [CO2] below 3000 ppm than the C4 plants of maize. Elevated [CO2] to 1000 ppm induced a higher initial photosynthetic rate, while super-elevated [CO2] appeared to negate such initial growth promotion for C3 plants. The C4 plant had the highest ETR, φPSII, and qP under 500-3000 ppm [CO2], but then decreased substantially at 5000 ppm [CO2] for both species. Therefore, photosynthetic down-regulation and a decrease in photosynthetic electron transport occurred by both species in response to super-elevated [CO2] at 3000 and 5000 ppm. Accordingly, plants can be selected for and adapt to the efficient use of elevated CO2 concentration in LSS.

  14. Organic matter and hydrogen as electron donor for SRB and IRB activities in a clayey medium

    International Nuclear Information System (INIS)

    Chautard, C.; Mifsud, A.; Libert, M.; Marsal, F.

    2012-01-01

    Document available in extended abstract form only. According to the French concept for the disposal of High-Level radioactive Waste (HLW), waste will be emplaced in an environment with multiple metallic components into a geological clay formation. The presence of microorganisms has recently been evidenced in deep clayey environment. Therefore, neither the introduction of microbial species during the construction and operational phases nor the survival of bacteria after the disposal closure can be excluded. Indeed, microbial species may be able to tolerate specific environment with few nutrients to sustain life under high temperature, dry and highly radioactive conditions. Moreover, despite the low porosity of clays, cracks in the excavated disturbed zone and remaining void spaces between disposal components may be favorable for bacterial growth. Sulfate-Reducing Bacteria (SRB) and Iron-Reducing Bacteria (IRB) activities are notably expected to influence iron-clay reactivity, including corrosion processes. Their potential development must be investigated in order to better assess their metabolism, which may in turn influence the evolution of metallic and clayey materials involved in a HLW disposal cell. More specifically, deep geological environments containing low amounts of biodegradable Organic Matter (OM) are generally nutrient poor for microbial development. However, the radiolysis of pore water and the corrosion of metallic components of HLW disposal cell in anoxic conditions will lead to the production of hydrogen, which may also be used as an electron donor for microbial activity. Thus, the purpose of the present work is to quantify the potential of bacterial growth stimulation due either to the production of hydrogen or the presence of OM. In a first step, characterization of DOM leached from Tournemire clay powder has been performed in order to identify and estimate the concentration of soluble organic matter available for bacteria activity which will

  15. Negative polarity of phenyl-C61 butyric acid methyl ester adjacent to donor macromolecule domains

    International Nuclear Information System (INIS)

    Alley, Olivia J.; Dawidczyk, Thomas J.; Hardigree, Josué F. Martínez; Katz, Howard E.; Wu, Meng-Yin; Johns, Gary L.; Markovic, Nina; Arnold, Michael S.

    2015-01-01

    Interfacial fields within organic photovoltaics influence the movement of free charge carriers, including exciton dissociation and recombination. Open circuit voltage (V oc ) can also be dependent on the interfacial fields, in the event that they modulate the energy gap between donor HOMO and acceptor LUMO. A rise in the vacuum level of the acceptor will increase the gap and the V oc , which can be beneficial for device efficiency. Here, we measure the interfacial potential differences at donor-acceptor junctions using Scanning Kelvin Probe Microscopy, and quantify how much of the potential difference originates from physical contact between the donor and acceptor. We see a statistically significant and pervasive negative polarity on the phenyl-C 61 butyric acid methyl ester (PCBM) side of PCBM/donor junctions, which should also be present at the complex interfaces in bulk heterojunctions. This potential difference may originate from molecular dipoles, interfacial interactions with donor materials, and/or equilibrium charge transfer due to the higher work function and electron affinity of PCBM. We show that the contact between PCBM and poly(3-hexylthiophene) doubles the interfacial potential difference, a statistically significant difference. Control experiments determined that this potential difference was not due to charges trapped in the underlying substrate. The direction of the observed potential difference would lead to increased V oc , but would also pose a barrier to electrons being injected into the PCBM and make recombination more favorable. Our method may allow unique information to be obtained in new donor-acceptor junctions

  16. The synthesis, structure, and properties of 5,6,11,12-tetraarylindeno[1,2-b]fluorenes and their applications as donors for organic photovoltaic devices

    KAUST Repository

    Lo, Yuan-Chih; Ting, Hao-Chun; Li, Ya-Ze; Li, Yi-Hua; Liu, Shun-Wei; Huang, Kuo-Wei; Wong, Ken-Tsung

    2016-01-01

    The synthesis, structure, and properties of three new 5,6,11,12-tetraarylindeno[1,2-b]fluorenes are reported. The highly twisted conformations between an indeno[1,2-b]fluorene core and peripheral aryl substitutions endow these indeno[1,2-b]fluorene derivatives with good photostability for use as electron donors for vacuum-deposited photovoltaic devices. The optimized device based on a TAInF2 donor blended with C70 as an electron acceptor produces a high open-circuit voltage (>0.9 V) and a power conversion efficiency of 2.91%. This work demonstrates the first application of an indenofluorene derivative as an electron donor in organic solar cells.

  17. The synthesis, structure, and properties of 5,6,11,12-tetraarylindeno[1,2-b]fluorenes and their applications as donors for organic photovoltaic devices

    KAUST Repository

    Lo, Yuan-Chih

    2016-12-01

    The synthesis, structure, and properties of three new 5,6,11,12-tetraarylindeno[1,2-b]fluorenes are reported. The highly twisted conformations between an indeno[1,2-b]fluorene core and peripheral aryl substitutions endow these indeno[1,2-b]fluorene derivatives with good photostability for use as electron donors for vacuum-deposited photovoltaic devices. The optimized device based on a TAInF2 donor blended with C70 as an electron acceptor produces a high open-circuit voltage (>0.9 V) and a power conversion efficiency of 2.91%. This work demonstrates the first application of an indenofluorene derivative as an electron donor in organic solar cells.

  18. The National Heart, Lung, and Blood Institute Recipient Epidemiology and Donor Evaluation Study (REDS-III): A research program striving to improve blood donor and transfusion recipient outcomes

    Science.gov (United States)

    Kleinman, Steven; Busch, Michael P; Murphy, Edward L; Shan, Hua; Ness, Paul; Glynn, Simone A.

    2014-01-01

    Background The Recipient Epidemiology and Donor Evaluation Study -III (REDS-III) is a 7-year multicenter transfusion safety research initiative launched in 2011 by the National Heart, Lung, and Blood Institute. Study design The domestic component involves 4 blood centers, 12 hospitals, a data coordinating center, and a central laboratory. The international component consists of distinct programs in Brazil, China, and South Africa which involve US and in-country investigators. Results REDS-III is using two major methods to address key research priorities in blood banking/transfusion medicine. First, there will be numerous analyses of large “core” databases; the international programs have each constructed a donor/donation database while the domestic program has established a detailed research database that links data from blood donors and their donations, the components made from these donations, and data extracts from the electronic medical records of the recipients of these components. Secondly, there are more than 25 focused research protocols involving transfusion recipients, blood donors, or both that are either in progress or scheduled to begin within the next 3 years. Areas of study include transfusion epidemiology and blood utilization; transfusion outcomes; non-infectious transfusion risks; HIV-related safety issues (particularly in the international programs); emerging infectious agents; blood component quality; donor health and safety; and other donor issues. Conclusions It is intended that REDS-III serve as an impetus for more widespread recipient and linked donor-recipient research in the US as well as to help assure a safe and available blood supply in the US and in international locations. PMID:24188564

  19. Polaronic effects on the off-center donor impurity in AlAs/GaAs/SiO2 spherical core/shell quantum dots

    Science.gov (United States)

    El Haouari, M.; Feddi, E.; Dujardin, F.; Restrepo, R. L.; Mora-Ramos, M. E.; Duque, C. A.

    2017-11-01

    The ground state of a conduction electron coupled to an off-center impurity donor in a AlAS/GaAs spherical core/shell quantum dot is investigated theoretically. The image-charge effect and the influence of the electron-polar-LO-phonon interaction are considered. The electron-impurity binding energy is calculated via a variational procedure and is reported both as a function of the shell width and of the radial position of the donor atom. The polaronic effects on this quantity are particularly discussed.

  20. 77 FR 40068 - Draft Guidance for Industry: Recommendations for Donor Questioning, Deferral, Reentry, and...

    Science.gov (United States)

    2012-07-06

    ... the draft guidance are not applicable to donors of Source Plasma. DATES: Although you can comment on... electronic or written comments on the draft guidance by September 4, 2012. ADDRESSES: Submit written requests...-800-835-4709 or 301-827-1800. See the SUPPLEMENTARY INFORMATION section for electronic access to the...

  1. Inter- and Intrapersonal Barriers to Living Donor Kidney Transplant among Black Recipients and Donors.

    Science.gov (United States)

    Davis, LaShara A; Grogan, Tracy M; Cox, Joy; Weng, Francis L

    2017-08-01

    End-stage renal disease (ESRD) is more common among Blacks, but Blacks are less likely to receive a live donor kidney transplant (LDKT). The objective of this study is to identify barriers and coping mechanisms that Black LDKT recipients and donors experienced while receiving or donating a kidney. A qualitative study was conducted using structured interviews. Thematic analysis was used for data interpretation. All 20 participants identified as Black, with two participants identifying themselves as multiracial. The mean age for the 14 recipients was 60, and the average age for the 6 living donors was 47. Themes emerging from the data suggest both recipients and donors faced barriers in the LDKT experience. Recipients faced barriers associated with their denial and avoidance of the severity of their ESRD, their desire to maintain the privacy of their health status, and their refusal to approach potential donors. Donors encountered negative responses from others about the donors' desire to donate and the initial refusal of recipients to accept a LDKT offer. Recipients identified faith as a coping mechanism, while donors identified normalization of donation as their method of coping. Various types of social support helped donors and recipients navigate the transplant process. Black LDKT recipients and donors must overcome barriers prior to receiving or donating a kidney. Most of these barriers arise from communication and interactions with others that are either lacking or undesirable. Future interventions to promote LDKT among Blacks may benefit by specifically targeting these barriers.

  2. Alternative allogeneic donor sources for transplantation for childhood diseases: unrelated cord blood and haploidentical family donors.

    Science.gov (United States)

    Cairo, Mitchell S; Rocha, Vanderson; Gluckman, Eliane; Hale, Gregory; Wagner, John

    2008-01-01

    Allogeneic stem cell transplantation has been demonstrated to be curative in a wide variety of pediatric malignant and nonmalignant diseases, and can be traced back over 50 years ago to the original report of Thomas et al. HLA matched sibling donors have been the gold standard for pediatric recipients requiring allogeneic donors for both nonmalignant and malignant conditions. However, only 25% of potential pediatric recipients possesses an HLA-matched sibling donor, and the frequency is even less in those with genetic nonmalignant conditions because of genetically affected other siblings within the family. Therefore, 75% to 90% of potential pediatric recipients require alternative allogeneic donor cells for treatment of their underlying conditions. Potential alternative allogeneic donor sources include unrelated cord blood donors, unrelated adult donors, and haploidentical family donors. In this article we review the experience of both unrelated cord blood donor and haploidentical family donor transplants in selected pediatric malignant and nonmalignant conditions.

  3. Donor-Derived Myeloid Sarcoma in Two Kidney Transplant Recipients from a Single Donor

    Directory of Open Access Journals (Sweden)

    Amudha Palanisamy

    2015-01-01

    Full Text Available We report the rare occurrence of donor-derived myeloid sarcoma in two kidney transplant patients who received organs from a single deceased donor. There was no evidence of preexisting hematologic malignancy in the donor at the time of organ recovery. Both recipients developed leukemic involvement that appeared to be limited to the transplanted organ. Fluorescence in situ hybridization (FISH and molecular genotyping analyses confirmed that the malignant cells were of donor origin in each patient. Allograft nephrectomy and immediate withdrawal of immunosuppression were performed in both cases; systemic chemotherapy was subsequently administered to one patient. Both recipients were in remission at least one year following the diagnosis of donor-derived myeloid sarcoma. These cases suggest that restoration of the immune system after withdrawal of immunosuppressive therapy and allograft nephrectomy may be sufficient to control HLA-mismatched donor-derived myeloid sarcoma without systemic involvement.

  4. Energy status of pig donor organs after ischemia is independent of donor type.

    Science.gov (United States)

    Stadlbauer, Vanessa; Stiegler, Philipp; Taeubl, Philipp; Sereinigg, Michael; Puntschart, Andreas; Bradatsch, Andrea; Curcic, Pero; Seifert-Held, Thomas; Zmugg, Gerda; Stojakovic, Tatjana; Leopold, Barbara; Blattl, Daniela; Horki, Vera; Mayrhauser, Ursula; Wiederstein-Grasser, Iris; Leber, Bettina; Jürgens, Günther; Tscheliessnigg, Karlheinz; Hallström, Seth

    2013-04-01

    Literature is controversial whether organs from living donors have a better graft function than brain dead (BD) and non-heart-beating donor organs. Success of transplantation has been correlated with high-energy phosphate (HEP) contents of the graft. HEP contents in heart, liver, kidney, and pancreas from living, BD, and donation after cardiac death in a pig model (n=6 per donor type) were evaluated systematically. BD was induced under general anesthesia by inflating a balloon in the epidural space. Ten hours after confirmation, organs were retrieved. Cardiac arrest was induced by 9V direct current. After 10min of ventricular fibrillation without cardiac output, mechanical and medical reanimation was performed for 30min before organ retrieval. In living donors, organs were explanted immediately. Freeze-clamped biopsies were taken before perfusion with Celsior solution (heart) or University of Wisconsin solution (abdominal organs) in BD and living donors or with Histidine-Tryptophan-Ketoglutaric solution (all organs) in non-heart-beating donors, after perfusion, and after cold ischemia (4h for heart, 6h for liver and pancreas, and 12h for kidney). HEPs (adenosine triphosphate, adenosine diphosphate, adenosine monophosphate, and phosphocreatine), xanthine, and hypoxanthine were measured by high-performance liquid chromatography. Energy charge and adenosine triphosphate-to-adenosine diphosphate ratio were calculated. After ischemia, organs from different donor types showed no difference in energy status. In all organs, a decrease of HEP and an increase in hypoxanthine contents were observed during perfusion and ischemia, irrespective of the donor type. Organs from BD or non-heart-beating donors do not differ from living donor organs in their energy status after average tolerable ischemia. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Frequency and risk factors for donor reactions in an anonymous blood donor survey.

    Science.gov (United States)

    Goldman, Mindy; Osmond, Lori; Yi, Qi-Long; Cameron-Choi, Keltie; O'Brien, Sheila F

    2013-09-01

    Adverse donor reactions can result in injury and decrease the likelihood of donor return. Reaction reports captured in the blood center's database provide an incomplete picture of reaction rates and risk factors. We performed an anonymous survey, mailed to 40,000 donors in 2008, including questions about symptoms, height, weight, sex, and donation status. Reaction rates were compared to those recorded in our database. Possible risk factors were assessed for various reactions. The response rate was 45.5%. A total of 32% of first-time and 14% of repeat donors reported having any adverse symptom, most frequently bruising (84.9 per 1000 donors) or feeling faint or weak (66.2 per 1000). Faint reactions were two to eight times higher than reported in our database, although direct comparison was difficult. Younger age, female sex, and first-time donation status were risk factors for systemic and arm symptoms. In females, low estimated blood volume (EBV) was a risk factor for systemic symptoms. Only 51% of donors who consulted an outside physician also called Canadian Blood Services. A total of 10% of first-time donors with reactions found adverse effects information inadequate. This study allowed us to collect more information about adverse reactions, including minor symptoms and delayed reactions. Based on our findings of the risk factors and frequency of adverse reactions, we are implementing more stringent EBV criteria for younger donors and providing more detailed information to donors about possible adverse effects and their management. © 2012 American Association of Blood Banks.

  6. Alternative Donor Graft Sources for Adults with Hematologic Malignancies: A Donor for All Patients in 2017!

    Science.gov (United States)

    Kindwall-Keller, Tamila L; Ballen, Karen K

    2017-09-01

    Hematopoietic stem cell transplant (HSCT) is potentially curative for a wide variety of malignant diseases, including acute and leukemias, lymphoma, and myelodysplasia. Choice of a stem cell donor is dependent on donor availability, donor compatibility and health, recipient disease type, and recipient condition. Current sources of stem cell donation for HSCT are matched sibling donors (MSDs), matched unrelated donors (MUDs), 1-antigen mismatched unrelated donors (MMUDs), haploidentical donors (haplo), and umbilical cord blood (UCB) units. Historically, preferred donors for HSCT have been human leukocyte antigen (HLA)-matched sibling donors; however, only about 30% of U.S. patients will have a MSD available. The majority of patients referred for HSCT will require an alternative donor graft: MUD, MMUD, UCB, or haplo. The likelihood of finding a MUD varies depending on the ethnicity of the recipient. White Caucasians of European descent have the greatest chance of finding a MUD. Chances of finding a MUD are significantly less for African-American or Hispanic recipients due to HLA polymorphisms. Therefore, MMUD, UCB, and haplo donor graft sources expand the donor pool for recipients who do not have a MSD or MUD available. Given the variety of different donor stem cell sources available today, nearly every patient who needs an allogeneic HSCT has a potential donor in 2017. All transplant-eligible patients with hematologic malignancies should be evaluated by a transplant center to determine if HSCT is a viable treatment option for their underlying disease process. The goal of this review is to increase the awareness of oncology practitioners to the availability of alternative donor stem cell transplants for patients with hematologic malignancies. Despite new agents, stem cell transplant remains the only curative therapy for many patients with acute and chronic leukemia, myelodysplasia, and lymphoma. Given the variety of different donor stem cell sources available today

  7. Tellurium rings as electron pair donors in cluster compounds and coordination polymers; Tellurringe als Elektronenpaardonoren in Clusterverbindungen und Koordinationspolymeren

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, Anja

    2011-11-08

    In this dissertation novel and already known molecular tellurium rings are presented in cluster compounds and quasi-one-dimensional coordination polymers. The cyclic, homonuclear units are always stabilized by coordination to electron-rich transition metal atoms, with the coordinating tellurium atoms acting as two-electron donors. As a synthesis route, the solid-state reaction in quartz glass vials was used uniformly. In addition to structural determination, the focus was on the characterization of the resulting compounds. For this purpose, resistance measurements were carried out on selected compounds, the magnetic behavior and the thermal degradation reactions were investigated and accompanying quantum chemical calculations were carried out. [German] In dieser Dissertation werden neuartige sowie bereits bekannte molekulare Tellurringe in Clusterverbindungen und quasi-eindimensionalen Koordinationspolymeren vorgestellt. Die Stabilisierung der zyklischen, homonuklearen Einheiten erfolgt dabei stets durch die Koordination an elektronenreiche Uebergangsmetallatome, wobei die koordinierenden Telluratome gegenueber diesen als Zwei-Elektronendonoren fungieren. Als Syntheseroute wurde dabei einheitlich auf die Festkoerperreaktion in Quarzglasampullen zurueckgegriffen. Neben der Strukturaufklaerung stand die Charakterisierung der erhaltenden Verbindungen im Fokus der Arbeit. Dazu wurden an ausgewaehlten Verbindungen Widerstandsmessungen durchgefuehrt, das magnetische Verhalten sowie die thermischen Abbaureaktionen untersucht und begleitende quantenchemische Rechnungen durchgefuehrt.

  8. Responses to recipient and donor B cells by genetically donor T cells from human haploidentical chimeras

    International Nuclear Information System (INIS)

    Schiff, S.; Sampson, H.; Buckley, R.

    1986-01-01

    Following administration of haploidentical stem cells to infants with severe combined immunodeficiency (SCID), mature T cells of donor karyotype appear later in the recipient without causing graft-versus-host disease. To investigate the effect of the host environment on the responsiveness of these genetically donor T cells, blood B and T lymphocytes from 6 SCID recipients, their parental donors and unrelated controls were purified by double SRBC rosetting. T cells were stimulated by irradiated B cells at a 1:1 ratio in 6 day cultures. Engrafted T cells of donor karyotype gave much smaller responses to irradiated genetically recipient B cells than did fresh donor T cells. Moreover, engrafted T cells of donor karyotype from two of the three SCIDs who are longest post-transplantation responded more vigorously (14,685 and 31,623 cpm) than fresh donor T cells (5141 and 22,709 cpm) to donor B cells. These data indicate that T lymphocytes which have matured from donor stem cells in the recipient microenvironment behave differently from those that have matured in the donor

  9. Promoting Organ Donor Registries Through Public Education: What Is the Cost of Securing Organ Donors?

    Science.gov (United States)

    Razdan, Manik; Smith, Kenneth J; Bryce, Cindy L; Degenholtz, Howard B

    2016-06-01

    Transplant medicine's impact on America's public health is seriously limited by acute shortage of transplantable organs. Consequently, the United Sates has witnessed considerable investment in the promotion of organ donor registries. Although there is no evidence to support that donor registry promotion alleviates organ shortage, this belief continues to drive investments into registry promotion. In this study, return on investment in donor registry promotion was examined using cost-outcomes analysis. Cost of promoting the donor registry was estimated in US dollars whereas the outcome was measured as the number of individuals who join the registry (registrants) and their value in terms of organ donors. The study was conducted from the perspective of a regional Organ Procurement Organization (OPO). Costs were directly obtained from the OPO. The number of new registrants was obtained from the OPO and the departments of motor vehicles that maintain the donor registry. The value of registrants in terms of organ donors was computed based on a registrant's age-dependent risk of dying and age-dependent probability of becoming an organ donor. Six thousand seven hundred eight individuals joined the organ donor registry (95% confidence interval [95% CI], 5429-7956) at a cost of $455 per registrant (95% CI, US $383-US $562). These individuals result in 4.2 present-day donors (95% CI, 2.5-6.6) at a cost of US $726 000 (95% CI, US $462000-US $1.2 million). Because the cost per registrant and cost per donor is less than society's willingness to pay, donor registry promotion offers positive return on investment. Investment in registry promotion should at the minimum be maintained at current levels.

  10. Equivalence of donor and acceptor fits of temperature dependent Hall carrier density and Hall mobility data: Case of ZnO

    International Nuclear Information System (INIS)

    Brochen, Stéphane; Feuillet, Guy; Pernot, Julien

    2014-01-01

    In this work, statistical formulations of the temperature dependence of ionized and neutral impurity concentrations in a semiconductor, needed in the charge balance equation and for carrier scattering calculations, have been developed. These formulations have been used in order to elucidate a confusing situation, appearing when compensating acceptor (donor) levels are located sufficiently close to the conduction (valence) band to be thermally ionized and thereby to emit (capture) an electron to (from) the conduction (valence) band. In this work, the temperature dependent Hall carrier density and Hall mobility data adjustments are performed in an attempt to distinguish the presence of a deep acceptor or a deep donor level, coexisting with a shallower donor level and located near the conduction band. Unfortunately, the present statistical developments, applied to an n-type hydrothermal ZnO sample, lead in both cases to consistent descriptions of experimental Hall carrier density and mobility data and thus do not allow to determine the nature, donor or acceptor, of the deep level. This demonstration shows that the emission of an electron in the conduction band, generally assigned to a (0/+1) donor transition from a donor level cannot be applied systematically and could also be attributed to a (−1/0) donor transition from an acceptor level. More generally, this result can be extended for any semiconductor and also for deep donor levels located close to the valence band (acceptor transition)

  11. Donor selection criteria and procurement

    International Nuclear Information System (INIS)

    Agcaoili, N.R.

    1999-01-01

    Donor selection is one of the most important aspects of tissue banking practice. Without a good donor selection criteria, the results of any effort of trying to preserve tissues will have disastrous outcome for the recipient of these tissues. While with a very good and strict donor selection the Tissue Bank can guarantee safe and effective tissue allografts. There are significant aspects in the history and physical examination of the donor that must be emphasized. A donor exclusion criteria has also been formulated together with a list of all the needed laboratory examinations to eliminate possible diseases that may be transferred from the donor. The methods of procurement of tissue allografts from living and cadaver donors will be described. The limitations and advantages of each will be taken.There are also special restrictions that are important in the practice of removing the tissues from the donors. All the necessary equipment should be ready and the potential risk on the personnel should be known to all doing Tissue Banking

  12. Negative polarity of phenyl-C{sub 61} butyric acid methyl ester adjacent to donor macromolecule domains

    Energy Technology Data Exchange (ETDEWEB)

    Alley, Olivia J.; Dawidczyk, Thomas J.; Hardigree, Josué F. Martínez; Katz, Howard E., E-mail: hekatz@jhu.edu [Department of Materials Science and Engineering, Johns Hopkins University, 206 Maryland Hall, 3400 North Charles Street, Baltimore, Maryland 21218 (United States); Wu, Meng-Yin [Department of Electrical and Computer Engineering, University of Wisconsin, 415 Engineering Drive, Madison, Wisconsin 53706 (United States); Johns, Gary L.; Markovic, Nina [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218 (United States); Arnold, Michael S. [Department of Materials Science and Engineering, University of Wisconsin, 248 MS and E Building, 1509 University Avenue, Madison, Wisconsin 53706 (United States)

    2015-01-19

    Interfacial fields within organic photovoltaics influence the movement of free charge carriers, including exciton dissociation and recombination. Open circuit voltage (V{sub oc}) can also be dependent on the interfacial fields, in the event that they modulate the energy gap between donor HOMO and acceptor LUMO. A rise in the vacuum level of the acceptor will increase the gap and the V{sub oc}, which can be beneficial for device efficiency. Here, we measure the interfacial potential differences at donor-acceptor junctions using Scanning Kelvin Probe Microscopy, and quantify how much of the potential difference originates from physical contact between the donor and acceptor. We see a statistically significant and pervasive negative polarity on the phenyl-C{sub 61} butyric acid methyl ester (PCBM) side of PCBM/donor junctions, which should also be present at the complex interfaces in bulk heterojunctions. This potential difference may originate from molecular dipoles, interfacial interactions with donor materials, and/or equilibrium charge transfer due to the higher work function and electron affinity of PCBM. We show that the contact between PCBM and poly(3-hexylthiophene) doubles the interfacial potential difference, a statistically significant difference. Control experiments determined that this potential difference was not due to charges trapped in the underlying substrate. The direction of the observed potential difference would lead to increased V{sub oc}, but would also pose a barrier to electrons being injected into the PCBM and make recombination more favorable. Our method may allow unique information to be obtained in new donor-acceptor junctions.

  13. [Survey of blood donors on the topic of "reimbursement for blood donors"].

    Science.gov (United States)

    Zeiler, T; Kretschmer, V

    1995-02-01

    Remuneration for blood donors, in the way as presently handled by governmental and communal blood transfusion services in Germany, is not generally accepted. It is feared that donors are recruited with increased risk to transmit infectious diseases, especially AIDS. Alternative incentives are discussed. After the so-called AIDS scandal in Germany, a change in the donor motivation was to be expected, associated with an increased willingness to renounce remuneration. Therefore, we performed the present survey, in which we evaluated the donor's willingness to renounce remuneration, possibilities of cashless remuneration and other alternative incentives. During March and April 1994, a total of 1,157 blood donors of the University Blood Bank Marburg were questioned anonymously by a questionnaire in the framework of whole-blood donations. Beside the above-mentioned aspects demoscopic data were included (age, sex, profession, journey). Cutting of remuneration without any other compensation was refused by 86.1% of the donors, 77% would not want to further donate blood in this case. Transfer of money to a bank account instead of cash payment was accepted by 78.6%, the use of non-negotiable cheques by 68.7%. Alternative compensation by tickets for theater, concert, cinema or coupons for restaurants met with the approval of only 27.3%; under these circumstances, 36.9% would be willing to continue blood donation. With increasing age and number of donations, but largely independent of social status, donors attached greater importance to retention of remuneration. Cutting of remuneration would result in a considerable reduction of the willingness to donate blood within the population of donors of the governmental and communal blood transfusion services. However, an increase of virus safety of the blood products would not be reached in this way, since especially the long-term donors would be driven away. Considerable bottlenecks, particularly in the specific blood supply of

  14. Pulsed EPR study of spin coherence time of P donors in isotopically controlled Si

    International Nuclear Information System (INIS)

    Abe, Eisuke; Isoya, Junichi; Itoh, Kohei M.

    2006-01-01

    We investigate spin coherence time of electrons bound to phosphorus donors in silicon single crystals. The samples are isotopically controlled so that they may possess various concentrations (from 4.7% to 99.2%) of 29 Si, which is the only non-zero-spin stable isotope of silicon. The orientation dependence of electron-spin coherence times are presented, and electron spin echo envelope modulation is analyzed in time-frequency space

  15. The impact of meeting donor management goals on the number of organs transplanted per donor: results from the United Network for Organ Sharing Region 5 prospective donor management goals study.

    Science.gov (United States)

    Malinoski, Darren J; Patel, Madhukar S; Daly, Michael C; Oley-Graybill, Chrystal; Salim, Ali

    2012-10-01

    Many organ procurement organizations have implemented critical care end points as donor management goals in efforts to increase organs transplanted per donor after neurologic determination of death. Although retrospective studies have demonstrated an association between meeting donor management goals and organ yield, prospective studies are lacking. In June 2008, nine donor management goals were prospectively implemented as a checklist and every donor after neurologic determination of death was managed to meet them. The donor management goals represented normal cardiovascular, pulmonary, renal, and endocrine end points. Data were collected for 7 months. Donor management goals "met" was defined a priori as achieving any seven of the nine donor management goals, and this was recorded at the time of consent, 12-18 hrs later, and prior to organ recovery. The primary outcome measure was ≥4 organs transplanted per donor, and binary logistic regression was used to identify independent predictors of this outcome with a porgan procurement organizations in the five Southwestern United States (United Network for Organ Sharing Region 5). All standard criteria donors after neurologic determination of deaths. Prospective implementation of a donor management goal checklist. There were 380 standard criteria donors with 3.6±1.7 organs transplanted per donor. Fifteen percent had donor management goals met at the time of consent, 33% at 12-18 hrs, and 38% prior to organ recovery. Forty-eight percent had ≥4 organs transplanted per donor. Donors with ≥4 organs transplanted per donor had significantly more individual donor management goals met at all three time points. Independent predictors of ≥4 organs transplanted per donor were age (odds ratio=0.95 per year), final creatinine (odds ratio=0.75 per 1-unit increase), donor management goals "met" at consent (odds ratio=2.03), donor management goals "met" prior to organ recovery (odds ratio=2.34), and a change in the number of

  16. Development of Organ-Specific Donor Risk Indices

    Science.gov (United States)

    Akkina, Sanjeev K.; Asrani, Sumeet K.; Peng, Yi; Stock, Peter; Kim, Ray; Israni, Ajay K.

    2012-01-01

    Due to the shortage of deceased donor organs, transplant centers accept organs from marginal deceased donors, including older donors. Organ-specific donor risk indices have been developed to predict graft survival using various combinations of donor and recipient characteristics. We will review the kidney donor risk index (KDRI) and liver donor risk index (LDRI) and compare and contrast their strengths, limitations, and potential uses. The Kidney Donor Risk Index has a potential role in developing new kidney allocation algorithms. The Liver Donor Risk Index allows for greater appreciation of the importance of donor factors, particularly for hepatitis C-positive recipients; as the donor risk index increases, rates of allograft and patient survival among these recipients decrease disproportionately. Use of livers with high donor risk index is associated with increased hospital costs independent of recipient risk factors, and transplanting livers with high donor risk index into patients with Model for End-Stage Liver Disease scores Donor Risk Index has limited this practice. Significant regional variation in donor quality, as measured by the Liver Donor Risk Index, remains in the United States. We also review other potential indices for liver transplant, including donor-recipient matching and the retransplant donor risk index. While substantial progress has been made in developing donor risk indices to objectively assess donor variables that affect transplant outcomes, continued efforts are warranted to improve these indices to enhance organ allocation policies and optimize allograft survival. PMID:22287036

  17. Exogenous Calcium Alleviates Photoinhibition of PSII by Improving the Xanthophyll Cycle in Peanut (Arachis Hypogaea) Leaves during Heat Stress under High Irradiance

    Science.gov (United States)

    Yang, Sha; Wang, Fang; Guo, Feng; Meng, Jing-Jing; Li, Xin-Guo; Dong, Shu-Ting; Wan, Shu-Bo

    2013-01-01

    Peanut is one of the calciphilous plants. Calcium (Ca) serves as a ubiquitous central hub in a large number of signaling pathways. The effect of exogenous calcium nitrate [Ca(NO3)2] (6 mM) on the dissipation of excess excitation energy in the photosystem II (PSII) antenna, especially on the level of D1 protein and the xanthophyll cycle in peanut plants under heat (40°C) and high irradiance (HI) (1 200 µmol m−2 s−1) stress were investigated. Compared with the control plants [cultivated in 0 mM Ca(NO3)2 medium], the maximal photochemical efficiency of PSII (Fv/Fm) in Ca2+-treated plants showed a slighter decrease after 5 h of stress, accompanied by higher non-photochemical quenching (NPQ), higher expression of antioxidative genes and less reactive oxygen species (ROS) accumulation. Meanwhile, higher content of D1 protein and higher ratio of (A+Z)/(V+A+Z) were also detected in Ca2+-treated plants under such stress. These results showed that Ca2+ could help protect the peanut photosynthetic system from severe photoinhibition under heat and HI stress by accelerating the repair of D1 protein and improving the de-epoxidation ratio of the xanthophyll cycle. Furthermore, EGTA (a chelant of Ca ion), LaCl3 (a blocker of Ca2+ channel in cytoplasmic membrane), and CPZ [a calmodulin (CaM) antagonist] were used to analyze the effects of Ca2+/CaM on the variation of (A+Z)/(V+A+Z) (%) and the expression of violaxanthin de-epoxidase (VDE). The results indicated that CaM, an important component of the Ca2+ signal transduction pathway, mediated the expression of the VDE gene in the presence of Ca to improve the xanthophyll cycle. PMID:23940721

  18. Exogenous calcium alleviates photoinhibition of PSII by improving the xanthophyll cycle in peanut (Arachis hypogaea leaves during heat stress under high irradiance.

    Directory of Open Access Journals (Sweden)

    Sha Yang

    Full Text Available Peanut is one of the calciphilous plants. Calcium (Ca serves as a ubiquitous central hub in a large number of signaling pathways. The effect of exogenous calcium nitrate [Ca(NO32] (6 mM on the dissipation of excess excitation energy in the photosystem II (PSII antenna, especially on the level of D1 protein and the xanthophyll cycle in peanut plants under heat (40°C and high irradiance (HI (1 200 µmol m(-2 s(-1 stress were investigated. Compared with the control plants [cultivated in 0 mM Ca(NO32 medium], the maximal photochemical efficiency of PSII (Fv/Fm in Ca(2+-treated plants showed a slighter decrease after 5 h of stress, accompanied by higher non-photochemical quenching (NPQ, higher expression of antioxidative genes and less reactive oxygen species (ROS accumulation. Meanwhile, higher content of D1 protein and higher ratio of (A+Z/(V+A+Z were also detected in Ca(2+-treated plants under such stress. These results showed that Ca(2+ could help protect the peanut photosynthetic system from severe photoinhibition under heat and HI stress by accelerating the repair of D1 protein and improving the de-epoxidation ratio of the xanthophyll cycle. Furthermore, EGTA (a chelant of Ca ion, LaCl3 (a blocker of Ca(2+ channel in cytoplasmic membrane, and CPZ [a calmodulin (CaM antagonist] were used to analyze the effects of Ca(2+/CaM on the variation of (A+Z/(V+A+Z (% and the expression of violaxanthin de-epoxidase (VDE. The results indicated that CaM, an important component of the Ca(2+ signal transduction pathway, mediated the expression of the VDE gene in the presence of Ca to improve the xanthophyll cycle.

  19. Human decellularized bone scaffolds from aged donors show improved osteoinductive capacity compared to young donor bone.

    Directory of Open Access Journals (Sweden)

    Christopher A Smith

    Full Text Available To improve the safe use of allograft bone, decellularization techniques may be utilized to produce acellular scaffolds. Such scaffolds should retain their innate biological and biomechanical capacity and support mesenchymal stem cell (MSC osteogenic differentiation. However, as allograft bone is derived from a wide age-range, this study aimed to determine whether donor age impacts on the ability an osteoinductive, acellular scaffold produced from human bone to promote the osteogenic differentiation of bone marrow MSCs (BM-MSC. BM-MSCs from young and old donors were seeded on acellular bone cubes from young and old donors undergoing osteoarthritis related hip surgery. All combinations resulted in increased osteogenic gene expression, and alkaline phosphatase (ALP enzyme activity, however BM-MSCs cultured on old donor bone displayed the largest increases. BM-MSCs cultured in old donor bone conditioned media also displayed higher osteogenic gene expression and ALP activity than those exposed to young donor bone conditioned media. ELISA and Luminex analysis of conditioned media demonstrated similar levels of bioactive factors between age groups; however, IGF binding protein 1 (IGFBP1 concentration was significantly higher in young donor samples. Additionally, structural analysis of old donor bone indicated an increased porosity compared to young donor bone. These results demonstrate the ability of a decellularized scaffold produced from young and old donors to support osteogenic differentiation of cells from young and old donors. Significantly, the older donor bone produced greater osteogenic differentiation which may be related to reduced IGFBP1 bioavailability and increased porosity, potentially explaining the excellent clinical results seen with the use of allograft from aged donors.

  20. C–H arylation of unsubstituted furan and thiophene with acceptor bromides: access to donor–acceptor–donor-type building blocks for organic electronics.

    Science.gov (United States)

    Matsidik, Rukiya; Martin, Johannes; Schmidt, Simon; Obermayer, Johannes; Lombeck, Florian; Nübling, Fritz; Komber, Hartmut; Fazzi, Daniele; Sommer, Michael

    2015-01-16

    Pd-catalyzed direct arylation (DA) reaction conditions have been established for unsubstituted furan (Fu) and thiophene (Th) with three popular acceptor building blocks to be used in materials for organic electronics, namely 4,7-dibromo-2,1,3-benzothiadiazole (BTBr2), N,N′-dialkylated 2,6-dibromonaphthalene-1,4,5,8-bis(dicarboximide) (NDIBr2), and 1,4-dibromotetrafluorobenzene (F4Br2). Reactions with BTBr2, F4Br2, and NDIBr2 require different solvents to obtain high yields. The use of dimethylacetamide (DMAc) is essential for the successful coupling of BTBr2 and F4Br2, but detrimental for NDIBr2, as the electron-deficient NDI core is prone to nucleophilic core substitution in DMAc as solvent but not in toluene. NDIFu2 is much more planar compared to NDITh2, resulting in an enhanced charge-transfer character, which makes it an interesting building block for conjugated systems designed for organic electronics. This study highlights direct arylation as a simple and inexpensive method to construct a series of important donor–acceptor–donor building blocks to be further used for the preparation of a variety of conjugated materials.

  1. Vibrational properties of organic donor-acceptor molecular crystals: Anthracene-pyromellitic-dianhydride (PMDA) as a case study

    KAUST Repository

    Fonari, A.; Corbin, N. S.; Vermeulen, D.; Goetz, K. P.; Jurchescu, O. D.; McNeil, L. E.; Bredas, Jean-Luc; Coropceanu, V.

    2015-01-01

    We establish a reliable quantum-mechanical approach to evaluate the vibrational properties of donor-acceptor molecular crystals. The anthracene-PMDA (PMDA = pyromellitic dianhydride) crystal, where anthracene acts as the electron donor and PMDA as the electron acceptor, is taken as a representative system for which experimental non-resonance Raman spectra are also reported. We first investigate the impact that the amount of nonlocal Hartree-Fock exchange (HFE) included in a hybrid density functional has on the geometry, normal vibrational modes, electronic coupling, and electron-vibrational (phonon) couplings. The comparison between experimental and theoreticalRaman spectra indicates that the results based on the αPBE functional with 25%-35% HFE are in better agreement with the experimental results compared to those obtained with the pure PBE functional. Then, taking αPBE with 25% HFE, we assign the vibrational modes and examine their contributions to the relaxation energy related to the nonlocal electron-vibration interactions. The results show that the largest contribution (about 90%) is due to electron interactions with low-frequency vibrational modes. The relaxation energy in anthracene-PMDA is found to be about five times smaller than the electronic coupling.

  2. Vibrational properties of organic donor-acceptor molecular crystals: Anthracene-pyromellitic-dianhydride (PMDA) as a case study

    KAUST Repository

    Fonari, A.

    2015-12-10

    We establish a reliable quantum-mechanical approach to evaluate the vibrational properties of donor-acceptor molecular crystals. The anthracene-PMDA (PMDA = pyromellitic dianhydride) crystal, where anthracene acts as the electron donor and PMDA as the electron acceptor, is taken as a representative system for which experimental non-resonance Raman spectra are also reported. We first investigate the impact that the amount of nonlocal Hartree-Fock exchange (HFE) included in a hybrid density functional has on the geometry, normal vibrational modes, electronic coupling, and electron-vibrational (phonon) couplings. The comparison between experimental and theoreticalRaman spectra indicates that the results based on the αPBE functional with 25%-35% HFE are in better agreement with the experimental results compared to those obtained with the pure PBE functional. Then, taking αPBE with 25% HFE, we assign the vibrational modes and examine their contributions to the relaxation energy related to the nonlocal electron-vibration interactions. The results show that the largest contribution (about 90%) is due to electron interactions with low-frequency vibrational modes. The relaxation energy in anthracene-PMDA is found to be about five times smaller than the electronic coupling.

  3. Comparison of lactate, formate, and propionate as hydrogen donors for the reductive dehalogenation of trichloroethene in a continuous-flow column

    Science.gov (United States)

    Azizian, Mohammad F.; Marshall, Ian P. G.; Behrens, Sebastian; Spormann, Alfred M.; Semprini, Lewis

    2010-04-01

    A continuous-flow column study was conducted to analyze the reductive dehalogenation of trichloroethene (TCE) with aquifer material with high content of iron oxides. The column was bioaugmented with the Point Mugu (PM) culture, which is a mixed microbial enrichment culture capable of completely transforming TCE to ethene (ETH). We determined whether lactate, formate, or propionate fermentation resulted in more effective dehalogenation. Reductive dehalogenation, fermentation, and sulfate, Fe(III), and Mn(IV) reduction were all exhibited within the column. Different steady-states of dehalogenation were achieved based on the concentration of substrates added, with effective transformation to ETH obtained when ample electron donor equivalents were provided. Most of the metabolic reducing equivalents were channeled to sulfate, Fe(III), and Mn(IV) reduction. When similar electron reducing equivalents were added, the most effective dehalogenation was achieved with formate, with 14% of the electron equivalents going towards dehalogenation reactions, compared to 6.5% for lactate and 9.6% for propionate. Effective dehalogenation was maintained over 1000 days of column operation. Over 90% of electron equivalents added could be accounted for by the different electron accepting processes in the column, with 50% associated with soluble and precipitated Fe(II) and Mn(II). Bulk Fe(III) and Mn(IV) reduction was rather associated with lactate and propionate addition than formate addition. Sulfate reduction was a competing electron acceptor reaction with all three electron donors. DNA was extracted from solid coupon samples obtained during the course of the experiment and analyzed using 16S rRNA gene clone libraries and quantitative PCR. Lactate and propionate addition resulted in a significant increase in Geobacter, Spirochaetes, and Desulfitobacterium phylotypes relative to " Dehalococcoides" when compared to formate addition. Results from the molecular biological analyses support

  4. Compliance with donor age recommendations in oocyte donor recruitment advertisements in the USA.

    Science.gov (United States)

    Alberta, Hillary B; Berry, Roberta M; Levine, Aaron D

    2013-04-01

    IVF using donated oocytes offers benefits to many infertile patients, yet the technique also raises a number of ethical concerns, including worries about potential physical and psychological risks to oocyte donors. In the USA, oversight of oocyte donation consists of a combination of federal and state regulations and self-regulatory guidelines promulgated by the American Society for Reproductive Medicine. This study assesses compliance with one of these self-regulatory guidelines - specifically, ASRM's preferred minimum age for donors of 21. To assess compliance, 539 oocyte donor recruitment advertisements from two recruitment channels (Craigslist and college newspapers) were collected and evaluated. Of these, 61% in the Craigslist dataset and 43% in the college newspaper dataset listed minimum ages between 18 and 20, which is inconsistent with ASRM's preferred minimum age recommendation of 21. Advertisements placed by oocyte donor recruitment agencies were more likely than advertisements placed by clinics to specify minimum ages between 18 and 20. These results indicate that ASRM should evaluate and consider revising its donor age guidelines. IVF using donated human eggs can help many patients who have difficulty having children. However, the technique also raises ethical concerns, including concerns about potential physical and psychological harms to egg donors. In the USA, oversight of egg donation relies on a combination of federal and state regulation and professional self-regulation. Governmental regulations address only limited aspects of egg donation, such as the potential spread of infectious diseases and the reporting of success rates, leaving voluntary guidelines developed by an association of medical professionals to address most issues, including ethical concerns raised by the practice. One of these voluntary guidelines recommends that egg donors should be at least 21 years of age. In this article, we analysed 539 egg donor recruitment advertisements

  5. Identification of the 2-Hydroxyglutarate and Isovaleryl-CoA Dehydrogenases as Alternative Electron Donors Linking Lysine Catabolism to the Electron Transport Chain of Arabidopsis Mitochondria[W][OA

    Science.gov (United States)

    Araújo, Wagner L.; Ishizaki, Kimitsune; Nunes-Nesi, Adriano; Larson, Tony R.; Tohge, Takayuki; Krahnert, Ina; Witt, Sandra; Obata, Toshihiro; Schauer, Nicolas; Graham, Ian A.; Leaver, Christopher J.; Fernie, Alisdair R.

    2010-01-01

    The process of dark-induced senescence in plants is relatively poorly understood, but a functional electron-transfer flavoprotein/electron-transfer flavoprotein:ubiquinone oxidoreductase (ETF/ETFQO) complex, which supports respiration during carbon starvation, has recently been identified. Here, we studied the responses of Arabidopsis thaliana mutants deficient in the expression of isovaleryl-CoA dehydrogenase and 2-hydroxyglutarate dehydrogenase to extended darkness and other environmental stresses. Evaluations of the mutant phenotypes following carbon starvation induced by extended darkness identify similarities to those exhibited by mutants of the ETF/ETFQO complex. Metabolic profiling and isotope tracer experimentation revealed that isovaleryl-CoA dehydrogenase is involved in degradation of the branched-chain amino acids, phytol, and Lys, while 2-hydroxyglutarate dehydrogenase is involved exclusively in Lys degradation. These results suggest that isovaleryl-CoA dehydrogenase is the more critical for alternative respiration and that a series of enzymes, including 2-hydroxyglutarate dehydrogenase, plays a role in Lys degradation. Both physiological and metabolic phenotypes of the isovaleryl-CoA dehydrogenase and 2-hydroxyglutarate dehydrogenase mutants were not as severe as those observed for mutants of the ETF/ETFQO complex, indicating some functional redundancy of the enzymes within the process. Our results aid in the elucidation of the pathway of plant Lys catabolism and demonstrate that both isovaleryl-CoA dehydrogenase and 2-hydroxyglutarate dehydrogenase act as electron donors to the ubiquinol pool via an ETF/ETFQO-mediated route. PMID:20501910

  6. Development of Organ-Specific Donor Risk Indices

    OpenAIRE

    Akkina, Sanjeev K.; Asrani, Sumeet K.; Peng, Yi; Stock, Peter; Kim, Ray; Israni, Ajay K.

    2012-01-01

    Due to the shortage of deceased donor organs, transplant centers accept organs from marginal deceased donors, including older donors. Organ-specific donor risk indices have been developed to predict graft survival using various combinations of donor and recipient characteristics. We will review the kidney donor risk index (KDRI) and liver donor risk index (LDRI) and compare and contrast their strengths, limitations, and potential uses. The Kidney Donor Risk Index has a potential role in devel...

  7. Iron deficiency among blood donors

    DEFF Research Database (Denmark)

    Rigas, A S; Pedersen, O B; Magnussen, K

    2017-01-01

    Blood components collected from blood donors are an invaluable part of modern-day medicine. A healthy blood donor population is therefore of paramount importance. The results from the Danish Blood Donor Study (DBDS) indicate that gender, number of previous donations, time since last donation...... and menopausal status are the strongest predictors of iron deficiency. Only little information on the health effects of iron deficiency in blood donors exits. Possibly, after a standard full blood donation, a temporarily reduced physical performance for women is observed. However, iron deficiency among blood...... donors is not reflected in a reduced self-perceived mental and physical health. In general, the high proportion of iron-deficient donors can be alleviated either by extending the inter-donation intervals or by guided iron supplementation. The experience from Copenhagen, the Capital Region of Denmark...

  8. The dependence of the electronic coupling on energy gap and bridge conformation - Towards prediction of the distance dependence of electron transfer reactions

    International Nuclear Information System (INIS)

    Eng, Mattias P.; Albinsson, Bo

    2009-01-01

    The attenuation factor, β, for the distance dependence of electron exchange reactions is a sensitive function of the donor-bridge energy gap and bridge conformation. In this work the electronic coupling for electron and triplet excitation energy transfer has been investigated for five commonly used repeating bridge structures. The investigated bridge structures are OF (oligo fluorene), OP (oligo phenylene), OPE (oligo p-phenyleneethynylene), OPV (oligo phenylenevinylene), and OTP (oligo thiophene). Firstly, the impact of the donor-bridge energy gap was investigated by performing calculations with a variety of donors appended onto bridges that were kept in a planar conformation. This resulted in, to our knowledge, the first presented sets of bridge specific parameters to be inserted into the commonly used McConnell model. Secondly, since at experimental conditions large conformational flexibility is expected, a previously developed model that takes conformational disorder of the bridge into account has been applied to the investigated systems [M.P. Eng, T. Ljungdahl, J. Martensson, B. Albinsson, J. Phys. Chem. B 110 (2006) 6483]. This model is based on Boltzmann averaging and has been shown to describe the temperature dependence of the attenuation factor through OPE-bridges. Together, the parameters describing the donor-bridge energy gap dependence, for planar bridge structures, and the Boltzmann averaging procedure, describing the impact of rotational disorder, have the potential to a priori predict attenuation factors for electron and excitation energy transfer reactions through bridged donor-acceptor systems

  9. The Effects of Cold Stress on Photosynthesis in Hibiscus Plants

    Science.gov (United States)

    Paredes, Miriam; Quiles, María José

    2015-01-01

    The present work studies the effects of cold on photosynthesis, as well as the involvement in the chilling stress of chlororespiratory enzymes and ferredoxin-mediated cyclic electron flow, in illuminated plants of Hibiscus rosa-sinensis. Plants were sensitive to cold stress, as indicated by a reduction in the photochemistry efficiency of PSII and in the capacity for electron transport. However, the susceptibility of leaves to cold may be modified by root temperature. When the stem, but not roots, was chilled, the quantum yield of PSII and the relative electron transport rates were much lower than when the whole plant, root and stem, was chilled at 10°C. Additionally, when the whole plant was cooled, both the activity of electron donation by NADPH and ferredoxin to plastoquinone and the amount of PGR5 polypeptide, an essential component of the cyclic electron flow around PSI, increased, suggesting that in these conditions cyclic electron flow helps protect photosystems. However, when the stem, but not the root, was cooled cyclic electron flow did not increase and PSII was damaged as a result of insufficient dissipation of the excess light energy. In contrast, the chlororespiratory enzymes (NDH complex and PTOX) remained similar to control when the whole plant was cooled, but increased when only the stem was cooled, suggesting the involvement of chlororespiration in the response to chilling stress when other pathways, such as cyclic electron flow around PSI, are insufficient to protect PSII. PMID:26360248

  10. Donor-π-Acceptor Polymer with Alternating Triarylborane and Triphenylamine Moieties.

    Science.gov (United States)

    Li, Haiyan; Jäkle, Frieder

    2010-05-12

    A luminescent main chain donor-π-acceptor-type polymer (4) was prepared via organometallic polycondensation reaction followed by post modification. With both electron-rich amine and electron-deficient borane moieties embedded in the main chain, 4 exhibits an interesting ambipolar character: it can be reduced and oxidized electrochemically at moderate potentials and shows a strong solvatochromic effect in the emission spectra. Complexation studies show that 4 selectively binds to fluoride and cyanide; quantitative titration with cyanide reveals a two-step binding process. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Suicidal hanging donors for lung transplantation

    Science.gov (United States)

    Ananiadou, Olga; Schmack, Bastian; Zych, Bartlomiej; Sabashnikov, Anton; Garcia-Saez, Diana; Mohite, Prashant; Weymann, Alexander; Mansur, Ashham; Zeriouh, Mohamed; Marczin, Nandor; De Robertis, Fabio; Simon, Andre Rüdiger; Popov, Aron-Frederik

    2018-01-01

    Abstract In the context of limited donor pool in cardiothoracic transplantation, utilization of organs from high risk donors, such as suicidal hanging donors, while ensuring safety, is under consideration. We sought to evaluate the outcomes of lung transplantations (LTx) that use organs from this group. Between January 2011 and December 2015, 265 LTx were performed at our center. Twenty-two recipients received lungs from donors after suicidal hanging (group 1). The remaining 243 transplantations were used as a control (group 2). Analysis of recipient and donor characteristics as well as outcomes was performed. No statistically significant difference was found in the donor characteristics between analyzed groups, except for higher incidence of cardiac arrest, younger age and smoking history of hanging donors (P donor cause of death is not associated with poor mid-term survival or chronic lung allograft dysfunction following transplantation. These results encourage assessment of lungs from hanging donors, and their consideration for transplantation. PMID:29620623

  12. Mechanism of interaction of Al3+ with the proteins composition of photosystem II.

    Directory of Open Access Journals (Sweden)

    Imed Hasni

    Full Text Available The inhibitory effect of Al3+on photosystem II (PSII electron transport was investigated using several biophysical and biochemical techniques such as oxygen evolution, chlorophyll fluorescence induction and emission, SDS-polyacrylamide and native green gel electrophoresis, and FTIR spectroscopy. In order to understand the mechanism of its inhibitory action, we have analyzed the interaction of this toxic cation with proteins subunits of PSII submembrane fractions isolated from spinach. Our results show that Al 3+, especially above 3 mM, strongly inhibits oxygen evolution and affects the advancement of the S states of the Mn4O5Ca cluster. This inhibition was due to the release of the extrinsic polypeptides and the disorganization of the Mn4O5Ca cluster associated with the oxygen evolving complex (OEC of PSII. This fact was accompanied by a significant decline of maximum quantum yield of PSII (Fv/Fm together with a strong damping of the chlorophyll a fluorescence induction. The energy transfer from light harvesting antenna to reaction centers of PSII was impaired following the alteration of the light harvesting complex of photosystem II (LHCII. The latter result was revealed by the drop of chlorophyll fluorescence emission spectra at low temperature (77 K, increase of F0 and confirmed by the native green gel electrophoresis. FTIR measurements indicated that the interaction of Al 3+ with the intrinsic and extrinsic polypeptides of PSII induces major alterations of the protein secondary structure leading to conformational changes. This was reflected by a major reduction of α-helix with an increase of β-sheet and random coil structures in Al 3+-PSII complexes. These structural changes are closely related with the functional alteration of PSII activity revealed by the inhibition of the electron transport chain of PSII.

  13. The Psychosocial and Independent Living Donor Advocate Evaluation and Post-surgery Care of Living Donors.

    Science.gov (United States)

    Rudow, Dianne LaPointe; Swartz, Kathleen; Phillips, Chelsea; Hollenberger, Jennifer; Smith, Taylor; Steel, Jennifer L

    2015-09-01

    Solid organ transplantation as a treatment for end stage organ failure has been an accepted treatment option for decades. Despite advances in medicine and technology, and increased awareness of organ donation and transplantation, the gap between supply and demand continues to widen. Living donation has been an option that has increased the number of transplants despite the continued shortage of deceased organs. In the early 2000s live donor transplantation reached an all-time high in the United States. As a result, a consensus meeting was convened in 2000 to increase the oversight of living donor transplantation. Both the Centers for Medicare and Medicaid Services and the United Network for Organ Sharing developed regulations that transplant programs performing live donor transplantation. These regulations and guidelines involve the education, evaluation, informed consent process and living donor follow-up care. Two areas in which had significant changes included the psychosocial and the independent living donor advocate (ILDA) evaluation. The purpose of this paper was to outline the current regulations and guidelines associated with the psychosocial and ILDA evaluation as well as provide further recommendations for the administration of a high quality evaluation of living donors. The goals and timing of the evaluation and education of donors; qualifications of the health care providers performing the evaluation; components of the evaluation; education provided to donors; documentation of the evaluation; participation in the selection committee meeting; post-decline and post-donation care of donors is described. Caveats including the paired donor exchange programs and non-directed and directed donation are also considered.

  14. Charge sensing of a few-donor double quantum dot in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Watson, T. F., E-mail: tfwatson15@gmail.com; Weber, B.; Büch, H.; Fuechsle, M.; Simmons, M. Y., E-mail: michelle.simmons@unsw.edu.au [Australian Research Council Centre of Excellence for Quantum Computation and Communication Technology, University of New South Wales, Sydney, New South Wales 2052 (Australia)

    2015-12-07

    We demonstrate the charge sensing of a few-donor double quantum dot precision placed with atomic resolution scanning tunnelling microscope lithography. We show that a tunnel-coupled single electron transistor (SET) can be used to detect electron transitions on both dots as well as inter-dot transitions. We demonstrate that we can control the tunnel times of the second dot to the SET island by ∼4 orders of magnitude by detuning its energy with respect to the first dot.

  15. The electronic structure and optical properties of donor-acceptor codoped TiO{sub 2} nanosheets from hybrid functional calculations

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yanyu; Zhou, Wei; Wu, Ping, E-mail: pingwu@tju.edu.cn

    2017-01-15

    Here we explore the effect of charge-compensated donor-acceptor pairs (2Nb + C), (2Ta + C), (Mo + 2N) and (W + 2N) codoping on the electronic and optical properties of TiO{sub 2} nanosheets. The results demonstrate that the (2Nb + C) and (2Ta + C) codoping create the delocalized midgap states in TiO{sub 2} nanosheets. The appearance of impurity states extends the absorption edge of nanosheets to the visible light region. The interaction of the host and the foreign chiefly occurs at the band edges of the N-related systems, which reduces the band-gap by 0.5 eV. Although this large band-gap still renders the visible light inefficient, the enhanced UV light absorption has been observed. Besides, the position of absorption edge is independent on the doping concentration, but the higher codoping concentration yields stronger light absorption. Moreover, the band edge alignment verifies that the C-related systems are desirable visible and UV-light-driven photocatalysts for overall water splitting. - Highlights: • A systematical study has been employed on 2D TiO{sub 2} nanosheets with the donor-acceptor codoping. • The (2Nb/2Ta + C) codoping in TiO{sub 2} nanosheets creates the delocalized midgap states. • The C-related systems are desirable visible and UV-light-driven photocatalysts. • The water splitting power of (Mo/W + 2N) codoped systems is improved with enhanced UV light response. • The high doping concentration means the stronger absorption ability of the solar energy.

  16. Photosystem II Water Oxidation: Mechanism, Efficiency and Flux in Diverse Oxygenic Phototrophs

    Energy Technology Data Exchange (ETDEWEB)

    Dismukes, Gerard Charles [Rutgers Univ., Piscataway, NJ (United States); Ananyev, Gennady [Rutgers Univ., Piscataway, NJ (United States); Gates, Colin [Rutgers Univ., Piscataway, NJ (United States)

    2018-01-09

    In one year, we pursued four aims: 1) extend the VZAD model to allow analysis of PSII chlorophyll fluorescence emission as modulated by interaction with the WOC (partial success); 2) compare the solar energy conversion efficiencies of PSII-WOCs from intact cells, isolated thylakoid membranes and PSII core complexes and crystals from cyanobacterium Thermosynechococcus elongatus (collaboration with Lawrence Berkeley National Laboratory; some success after changing collaborator); 3) determine whether PSIIs can store light energy by pumping protons across the thylakoid membrane (PSII-cyclic electron flow) and how it is regulated within the green alga Chlorella ohadii (collaboration with the Hebrew University of Jerusalem; some success); and 4) genetically replace the native PSII-D1 protein subunit from a higher plant with two cyanobacterial D1 isoforms to test whether their functional advantages in growth and photoprotection can be transferred (collaboration with Rutgers University; success).

  17. Q-FISH measurement of hepatocyte telomere lengths in donor liver and graft after pediatric living-donor liver transplantation: donor age affects telomere length sustainability.

    Directory of Open Access Journals (Sweden)

    Youichi Kawano

    Full Text Available Along with the increasing need for living-donor liver transplantation (LDLT, the issue of organ shortage has become a serious problem. Therefore, the use of organs from elderly donors has been increasing. While the short-term results of LDLT have greatly improved, problems affecting the long-term outcome of transplant patients remain unsolved. Furthermore, since contradictory data have been reported with regard to the relationship between donor age and LT/LDLT outcome, the question of whether the use of elderly donors influences the long-term outcome of a graft after LT/LDLT remains unsettled. To address whether hepatocyte telomere length reflects the outcome of LDLT, we analyzed the telomere lengths of hepatocytes in informative biopsy samples from 12 paired donors and recipients (grafts of pediatric LDLT more than 5 years after adult-to-child LDLT because of primary biliary atresia, using quantitative fluorescence in situ hybridization (Q-FISH. The telomere lengths in the paired samples showed a robust relationship between the donor and grafted hepatocytes (r = 0.765, p = 0.0038, demonstrating the feasibility of our Q-FISH method for cell-specific evaluation. While 8 pairs showed no significant difference between the telomere lengths for the donor and the recipient, the other 4 pairs showed significantly shorter telomeres in the recipient than in the donor. Multiple regression analysis revealed that the donors in the latter group were older than those in the former (p = 0.001. Despite the small number of subjects, this pilot study indicates that donor age is a crucial factor affecting telomere length sustainability in hepatocytes after pediatric LDLT, and that the telomeres in grafted livers may be elongated somewhat longer when the grafts are immunologically well controlled.

  18. Photoprotection Conferred by Changes in Photosynthetic Protein Levels and Organization during Dehydration of a Homoiochlorophyllous Resurrection Plant1

    Science.gov (United States)

    Charuvi, Dana; Nevo, Reinat; Shimoni, Eyal; Naveh, Leah; Zia, Ahmad; Adam, Zach; Farrant, Jill M.; Kirchhoff, Helmut; Reich, Ziv

    2015-01-01

    During desiccation, homoiochlorophyllous resurrection plants retain most of their photosynthetic apparatus, allowing them to resume photosynthetic activity quickly upon water availability. These plants rely on various mechanisms to prevent the formation of reactive oxygen species and/or protect their tissues from the damage they inflict. In this work, we addressed the issue of how homoiochlorophyllous resurrection plants deal with the problem of excessive excitation/electron pressures during dehydration using Craterostigma pumilum as a model plant. To investigate the alterations in the supramolecular organization of photosynthetic protein complexes, we examined cryoimmobilized, freeze-fractured leaf tissues using (cryo)scanning electron microscopy. These examinations revealed rearrangements of photosystem II (PSII) complexes, including a lowered density during moderate dehydration, consistent with a lower level of PSII proteins, as shown by biochemical analyses. The latter also showed a considerable decrease in the level of cytochrome f early during dehydration, suggesting that initial regulation of the inhibition of electron transport is achieved via the cytochrome b6f complex. Upon further dehydration, PSII complexes are observed to arrange into rows and semicrystalline arrays, which correlates with the significant accumulation of sucrose and the appearance of inverted hexagonal lipid phases within the membranes. As opposed to PSII and cytochrome f, the light-harvesting antenna complexes of PSII remain stable throughout the course of dehydration. Altogether, these results, along with photosynthetic activity measurements, suggest that the protection of retained photosynthetic components is achieved, at least in part, via the structural rearrangements of PSII and (likely) light-harvesting antenna complexes into a photochemically quenched state. PMID:25713340

  19. Renal Transplantation from Elderly Living Donors

    Directory of Open Access Journals (Sweden)

    Jacob A. Akoh

    2013-01-01

    Full Text Available Acceptance of elderly living kidney donors remains controversial due to the higher incidence of comorbidity and greater risk of postoperative complications. This is a review of publications in the English language between 2000 and 2013 about renal transplantation from elderly living donors to determine trends and effects of donation, and the outcomes of such transplantation. The last decade witnessed a 50% increase in living kidney donor transplants, with a disproportionate increase in donors >60 years. There is no accelerated loss of kidney function following donation, and the incidence of established renal failure (ERF and hypertension among donors is similar to that of the general population. The overall incidence of ERF in living donors is about 0.134 per 1000 years. Elderly donors require rigorous assessment and should have a predicted glomerular filtration rate of at least 37.5 mL/min/1.73 m2 at the age of 80. Though elderly donors had lower glomerular filtration rate before donation, proportionate decline after donation was similar in both young and elderly groups. The risks of delayed graft function, acute rejection, and graft failure in transplants from living donors >65 years are significantly higher than transplants from younger donors. A multicentred, long-term, and prospective database addressing the outcomes of kidneys from elderly living donors is recommended.

  20. Single ion implantation for single donor devices using Geiger mode detectors

    International Nuclear Information System (INIS)

    Bielejec, E; Seamons, J A; Carroll, M S

    2010-01-01

    Electronic devices that are designed to use the properties of single atoms such as donors or defects have become a reality with recent demonstrations of donor spectroscopy, single photon emission sources, and magnetic imaging using defect centers in diamond. Ion implantation, an industry standard for atom placement in materials, requires augmentation for single ion capability including a method for detecting a single ion arrival. Integrating single ion detection techniques with the single donor device construction region allows single ion arrival to be assured. Improving detector sensitivity is linked to improving control over the straggle of the ion as well as providing more flexibility in lay-out integration with the active region of the single donor device construction zone by allowing ion sensing at potentially greater distances. Using a remotely located passively gated single ion Geiger mode avalanche diode (SIGMA) detector we have demonstrated 100% detection efficiency at a distance of >75 μm from the center of the collecting junction. This detection efficiency is achieved with sensitivity to ∼600 or fewer electron-hole pairs produced by the implanted ion. Ion detectors with this sensitivity and integrated with a thin dielectric, for example a 5 nm gate oxide, using low energy Sb implantation would have an end of range straggle of -1 and 10 -4 for operation temperatures of ∼300 K and ∼77 K, respectively. Low temperature operation and reduced false, 'dark', counts are critical to achieving high confidence in single ion arrival. For the device performance in this work, the confidence is calculated as a probability of >98% for counting one and only one ion for a false count probability of 10 -4 at an average ion number per gated window of 0.015.

  1. Working with previously anonymous gamete donors and donor-conceived adults: recent practice experiences of running the DNA-based voluntary information exchange and contact register, UK DonorLink.

    Science.gov (United States)

    Crawshaw, Marilyn; Gunter, Christine; Tidy, Christine; Atherton, Freda

    2013-03-01

    This article describes recent practice experiences with donor conceived adults, donors, non-donor-conceived adult children of donors using the voluntary DNA-based register, UK DonorLink. It highlights additional complexities faced when using DNA rather than paper records for searching, in particular from the risk of false positives, low chances of success and potential inclusion of biological parents' DNA. Professionals' experiences in supporting those being "linked" suggest challenges as well as rewards. Registration carries the potential to be therapeutic for donor-conceived adults and donors and to enhance their political awareness regardless of links being made. Registrants value both peer and professional support, providing the latter can respond flexibly and be delivered by staff experienced in intermediary work. Given that the majority of those affected by donor conception internationally come from anonymous donation systems, these findings are highly pertinent and argue the need for political and moral debate about such service provision.

  2. Development of organ-specific donor risk indices.

    Science.gov (United States)

    Akkina, Sanjeev K; Asrani, Sumeet K; Peng, Yi; Stock, Peter; Kim, W Ray; Israni, Ajay K

    2012-04-01

    Because of the shortage of deceased donor organs, transplant centers accept organs from marginal deceased donors, including older donors. Organ-specific donor risk indices have been developed to predict graft survival with various combinations of donor and recipient characteristics. Here we review the kidney donor risk index (KDRI) and the liver donor risk index (LDRI) and compare and contrast their strengths, limitations, and potential uses. The KDRI has a potential role in developing new kidney allocation algorithms. The LDRI allows a greater appreciation of the importance of donor factors, particularly for hepatitis C virus-positive recipients; as the donor risk index increases, the rates of allograft and patient survival among these recipients decrease disproportionately. The use of livers with high donor risk indices is associated with increased hospital costs that are independent of recipient risk factors, and the transplantation of livers with high donor risk indices into patients with Model for End-Stage Liver Disease scores indices for liver transplantation, including donor-recipient matching and the retransplant donor risk index. Although substantial progress has been made in developing donor risk indices to objectively assess donor variables that affect transplant outcomes, continued efforts are warranted to improve these indices to enhance organ allocation policies and optimize allograft survival. Copyright © 2012 American Association for the Study of Liver Diseases.

  3. Expanding the live kidney donor pool: ethical considerations regarding altruistic donors, paired and pooled programs.

    Science.gov (United States)

    Patel, Shaneel Rajendra; Chadha, Priyanka; Papalois, Vassilios

    2011-06-01

    In renal transplant, there is a well-known deficiency in organ supply relative to demand. Live donation provides superior results when compared with deceased donation including a better rate of graft success and fewer immunologic complications. This deficiency in organs leads to significant morbidity and mortality rates. Alternative avenues have been extensively explored that may expand the live donor pool. They include altruistic donation as well as paired and pooled exchange programs. Altruistic donation is a truly selfless act from a donor unknown to the recipient. Kidney paired donation involves 2 incompatible donor-recipient pairs swapping donors to produce compatibility. Pooled donation involves at least 2 pairs, and can take the form of domino chains in which altruistic input sets up a chain of transplants, in which each recipient's incompatible donor makes a donation for the next recipient. Despite application of these various methods, there lie extensive ethical issues surrounding them. Misconceptions frequently occur; for instance, the perceived benefit that donating an organ to a loved one is greater for a related donor than for an altruistic one. Additionally, it is frequently believed that immunologic incompatibility offers coerced donors liberation from surgery, and that overcoming these barriers by introducing exchange programs provides vulnerable donors less protection. This article explores these and other complex ethical issues surrounding the various methods of expanding the donor pool. The authors offer opinions that challenge the ethical issues and attempt to overcome those views that hinder progress in the field.

  4. Gamete donors' reasons for, and expectations and experiences of, registration with a voluntary donor linking register.

    Science.gov (United States)

    Blyth, Eric; Crawshaw, Marilyn; Frith, Lucy; van den Akker, Olga

    2017-12-01

    This paper reports on a study of the views and experiences of 21 sperm donors and five egg donors registered with UK DonorLink (UKDL), a voluntary DNA-based contact register established to facilitate contact between adults who wish to identify and locate others to whom they are genetically related following donor conception. Specifically, the paper examines donors' reasons for searching for, or making information about themselves available to donor-conceived offspring. Their expectations of registration with UKDL, experiences of being registered and finally, the experiences of those who had contacted donor-conceived offspring and other genetic relatives are investigated. While most respondents reported largely positive experiences of registration, the study found significant issues relating to concerns about donation, DNA testing, possible linking with offspring and expectations of any relationship that might be established with offspring that have implications for support, mediation and counselling. Research that puts the experiences, perceptions and interests of gamete donors as the central focus of study is a relatively recent phenomenon. This study contributes to this debate and highlights directions for future research in this area.

  5. Electron transfer reactions induced by the triplet state of thiacarbocyanine dimers

    International Nuclear Information System (INIS)

    Chibisov, Alexander K.; Slavnova, Tatyana D.; Goerner, Helmut

    2004-01-01

    The photoinduced electron transfer between either cationic 5,5 ' -dichloro-3,3 ' ,9-triethylthiacarbocyanine (1) or a structurally similar anionic dye (2) and appropriate donors, e.g. ascorbic acid, and acceptors, e.g. methyl viologen, was studied by ns-laser photolysis. In aqueous solution the dyes in the ground state are present as an equilibrated mixture of dimers and monomers, whereas the triplet state is mainly populated from dimers. The triplet states of both dimers and monomers are quenched by electron donors or acceptors and the rate constant for quenching is generally 2-4 times higher for dimers than for monomers. The kinetics of triplet decay and radical formation and decay as a result of primary and secondary electron transfer were analyzed. While the one-electron reduced dimer decays due to back reactions, the one-electron oxidized dimer rapidly dissociates into the monomer and the monomeric dye radical. For the dimeric dye/donor/acceptor systems the primary photoinduced electron transfer occurs either from the donor or to the acceptor yielding the dimeric dye radicals. The one-electron reduced dimer can be efficiently oxidized by acceptors, e.g. the rate constant for reaction of the dimeric dye radical of 1 with methyl viologen (photoreductive pathway of sensitization) is 1.6x10 9 M -1 s -1 . The photooxidative pathway of sensitization is more complicated; after dissociation of the dimeric dye radical, the monomeric dye radical is reduced in a secondary electron transfer from ascorbic acid, e.g. with a rate constant of 1x10 9 M -1 s -1 for 2, yielding the monomer. On increasing the donor concentration the photooxidative pathway of sensitization is switched to a photoreductive one

  6. Polyfluorophore Excimers and Exciplexes as FRET Donors in DNA

    Science.gov (United States)

    Teo, Yin Nah; Kool, Eric T.

    2009-01-01

    We describe studies aimed at testing whether oligomeric exciplex- and excimer fluorophores conjugated to DNA have the potential to act as donors for energy transfer by the Förster mechanism. Oligodeoxyfluorosides (ODFs) are composed of stacked, electronically interacting fluorophores replacing the bases on a DNA scaffold. The monomer chromophores in the twenty tetramer-length ODFs studied here include pyrene (Y), benzopyrene (B), perylene (E), dimethylaminostilbene (D), and a nonfluorescent spacer (S); these are conjugated in varied combinations at the 3’ end of a 14mer DNA probe sequence. In the absence of an acceptor chromophore, many of the ODF-DNAs show broad, unstructured long-wavelength emission peaks characteristic of excimer and exciplex excited states, similar to what has been observed for unconjugated ODFs. Although such delocalized excited states have been widely studied, we know of no prior report of their use in FRET. We tested the ability of the twenty ODFs to donate energy to Cy5 and TAMRA dyes conjugated to a complementary strand of DNA, with these acceptors oriented either at the near or far end of the ODF-conjugated probes. Results showed that a number of the ODF fluorophores exhibited relatively efficient energy transfer characteristic of the Förster mechanism, as judged by drops in donor emission quantum yield and fluorescence lifetime, accompanied by increases in intensity of acceptor emission bands. Excimer/exciplex bands in the donors were selectively quenched while shorter-wavelength monomer emission stayed relatively constant, consistent with the notion that the delocalized excited states, rather than individual fluorophores, are the donors. Interestingly, only specific sequences of ODFs were able to act as donors, while others did not, even though their emission wavelengths were similar. The new FRET donors possess large Stokes shifts, which can be beneficial for multiple applications. In addition, all ODFs can be excited at a single

  7. Hydrogenic-Donor Impurity Binding Energy Dependence of the Electric Field in GaAs/AlxGa1−xAs Quantum Rings

    Directory of Open Access Journals (Sweden)

    Guangxin Wang

    2013-01-01

    Full Text Available Using a variational method with two-parameter trial wave function and the effective mass approximation, the binding energy of a donor impurity in GaAs/AlxGa1−xAs cylindrical quantum ring (QR subjected to an external field is calculated. It is shown that the donor impurity binding energy is highly dependent on the QR structure parameters (radial thickness and height, impurity position, and external electric field. The binding energy increases inchmeal as the QR parameters (radial thickness and height decrease until a maximum value for a central impurity and then begins to drop quickly. The applied electric field can significantly modify the spread of electronic wave function in the QR and shift electronic wave function from the donor position and then leads to binding energy changes. In addition, results for the binding energies of a hydrogenic donor impurity as functions of the impurity position and applied electric field are also presented.

  8. Why Should Donors Care about Corruption?

    OpenAIRE

    Kolstad, Ivar

    2008-01-01

    Corruption is bad for donor business. Corruption reduces popular support for aid in donor countries. However, aid agencies should pay attention to corruption because it is the right thing to do, rather than just the smart thing to do. Donor anti-corruption policies require a strong grounding in ethics. Corruption produces bad development outcomes. This is the reasoning largely underlying donor anti-corruption efforts. The focus on consequences of corruption makes donor anticorruptioneffo...

  9. Being a haematopoietic stem cell donor for a sick sibling: Adult donors' experiences prior to donation.

    Science.gov (United States)

    Kisch, Annika; Bolmsjö, Ingrid; Lenhoff, Stig; Bengtsson, Mariette

    2015-10-01

    There is a lack of knowledge about sibling stem cell donors' experiences pre-donation and the waiting period before the donation might have been long. The donors and their corresponding sibling recipients were simultaneously included in two different interview studies. The results from the recipient study have been presented in a separate paper. The aim was to explore the experiences of being a stem cell donor for a sibling, prior to donation. Ten adult sibling donors were interviewed prior to stem cell donation. The interviews were digitally recorded, transcribed verbatim and subjected to qualitative content analysis. The main theme Being a cog in a big wheel describes the complex process of being a sibling donor prior to donation, covering a mixture of emotions and thoughts. The four subthemes Being available, Being anxious, Being concerned and Being obliged cover the various experiences. The sibling donors' experiences are influenced by the quality of the relationship with the sick sibling. Sibling stem cell donors go through a complex process once they have accidentally got involved in. They have been asked to become a donor; it was not a voluntary choice. In caring for sibling stem cell donors the nurses should be aware of the complexity of the process they experience and take into consideration their personal situation and needs. Providing optimal care for both sibling donors and their corresponding recipients is a challenge, and further improvement and exploration are needed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Density functional theory design D-D-A type small molecule with 1.03 eV narrow band gap: effect of electron donor unit for organic photovoltaic solar cell

    Science.gov (United States)

    Sıdır, İsa

    2017-10-01

    Six new low-band-gap copolymers of donor-donor-acceptor (D-D-A) architecture have been designed using density functional theory and time-dependent density functional theory methods in order to use them in organic photovoltaic cell (OPVC). Phenanthro[3,4-d:9,10-d‧]bis([1,2,3]thiadiazole)-10,12-dicarbonitrile moiety has been used as an acceptor for all compounds. We insert benzo[1,2-b:4,5-b‧]dithiophene and N,N-diphenylbenzo[1,2-b:4,5-b‧]dithiophen-2-amine units as donor to complete designing of copolymers. In order to tuning the optical and electronic properties, we have modified the donor unit by substituted with amine, methoxyamine, N-methylenethiophen-2-amine, methoxy, alkoxy moieties. The band gap (Eg), HOMO and LUMO values and plots, open circuit voltage (VOC) as well as optical properties have been analysed for designed copolymers. The optimised copolymers exhibit low-band-gap lying in the range of 1.03-2.24 eV. DPTD-6 copolymer presents the optimal properties to be used as an active layer due to its low Eg (1.03 eV) and a moderate VOC (0.56 eV). Thus, OPVC based on this copolymer in bulk-heterojunction composites with [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) as an acceptor has been modelled. Eg and VOC values of composite material DPTD-6:PCBM are found as 1.32 and 0.65 eV, respectively. A model band diagram has been established for OPVC, simulating the energy transfer between active layers.

  11. The Impact of Total Ischemic Time, Donor Age and the Pathway of Donor Death on Graft Outcomes After Deceased Donor Kidney Transplantation.

    Science.gov (United States)

    Wong, Germaine; Teixeira-Pinto, Armando; Chapman, Jeremy R; Craig, Jonathan C; Pleass, Henry; McDonald, Stephen; Lim, Wai H

    2017-06-01

    Prolonged ischemia is a known risk factor for delayed graft function (DGF) and its interaction with donor characteristics, the pathways of donor death, and graft outcomes may have important implications for allocation policies. Using data from the Australian and New Zealand Dialysis and Transplant registry (1994-2013), we examined the relationship between total ischemic time with graft outcomes among recipients who received their first deceased donor kidney transplants. Total ischemic time (in hours) was defined as the time of the donor renal artery interruption or aortic clamp, until the time of release of the clamp on the renal artery in the recipient. A total of 7542 recipients were followed up over a median follow-up time of 5.3 years (interquartile range of 8.2 years). Of these, 1823 (24.6%) experienced DGF and 2553 (33.9%) experienced allograft loss. Recipients with total ischemic time of 14 hours or longer experienced an increased odd of DGF compared with those with total ischemic time less than 14 hours. This effect was most marked among those with older donors (P value for interaction = 0.01). There was a significant interaction between total ischemic time, donor age, and graft loss (P value for interaction = 0.03). There was on average, a 9% increase in the overall risk of graft loss per hour increase in the total ischemic time (adjusted hazard ratio, 1.09; 95% confidence interval, 1.01-1.18; P = 0.02) in recipients with older donation after circulatory death grafts. There is a clinically important interaction between donor age, the pathway of donor death, and total ischemic time on graft outcomes, such that the duration of ischemic time has the greatest impact on graft survival in recipients with older donation after circulatory death kidneys.

  12. Donor conversion and procurement failure: the fate of our potential organ donors.

    Science.gov (United States)

    Branco, Bernardino C; Inaba, Kenji; Lam, Lydia; Salim, Ali; Barmparas, Galinos; Teixeira, Pedro G R; Talving, Peep; Demetriades, Demetrios

    2011-02-01

    Donor availability remains the primary limiting factor for organ transplantation today. The purpose of this study was to examine the causes of procurement failure amongst potential organ donors. After Institutional Review Board approval, all surgical intensive care unit (SICU) patients admitted to the LAC+USC Medical Center from 01/2006 to 12/2008 who became potential organ donors were identified. Demographics, clinical data, and procurement data were abstracted. In non-donors, the causes of procurement failure were documented. During the 3-year study period, a total of 254 patients were evaluated for organ donation. Mean age was 44.8±18.7 years; 191 (75.2%) were male, 136 (53.5%) were Hispanic, and 148 (58.3%) were trauma patients. Of the 254 patients, 116 (45.7%) were not eligible for donation: 34 had multi-system organ failure, 24 did not progress to brain death and had support withdrawn, 18 had uncontrolled sepsis, 15 had malignancy, 6 had human immunodeficiency virus or hepatitis B or C, and 19 patients had other contraindications to organ donation. Of the remaining 138 eligible patients, 83 (60.2%) did not donate: 56 because the family denied consent, 9 by their own choice. In six, next of kin could not be located, five died because of hemodynamic instability before organ procurement was possible, four had organs that could not be placed, and three had their organs declined by the organ procurement organization. The overall consent rate was 57.5% (n=67). From the 55 donors, 255 organs were procured (yield 4.6 organs/donor). Of all patients screened for organ donation, only a fifth actually donated. Denial of consent was the major potentially preventable cause of procurement failure, whereas hemodynamic instability accounted for only a small percentage of donor losses. With such low conversion rates, the preventable causes of procurement failure warrant further study.

  13. Non-donors' attitudes towards sperm donation and their willingness to donate.

    Science.gov (United States)

    Provoost, Veerle; Van Rompuy, Florence; Pennings, Guido

    2018-01-01

    The aim of this article is to study attitudes about sperm donation and willingness to donate sperm in students who have never shown an interest in sperm donation. The method used in this study is an electronic survey of 1012 male students. Only one third of the respondents (34.3%) would consider donating sperm. Overall, 85.7% indicated a positive attitude towards sperm donation while 14.3% indicated a neutral or negative attitude. The highest scored barriers to donating were the lack of practical information and the fear that the partner would not agree. Almost 40% of the respondents feared that the donation might have a negative impact on their current or future relationship. The majority (83.6%) of those who considered donating thought donors should receive a financial compensation. Money was also one of the main motivators. About 85% of the students thought positively about sperm donation but several factors such as perceived negative views by the social environment, especially the partner, may deter students from donating. This study indicates that the effect of strong incentives, for instance in monetary terms, on a donor pool consisting of students could be limited and that relational factors and donor's perceptions of the views of the wider social network should be taken into account when recruiting donors.

  14. Extended Hubbard model for mesoscopic transport in donor arrays in silicon

    Science.gov (United States)

    Le, Nguyen H.; Fisher, Andrew J.; Ginossar, Eran

    2017-12-01

    Arrays of dopants in silicon are promising platforms for the quantum simulation of the Fermi-Hubbard model. We show that the simplest model with only on-site interaction is insufficient to describe the physics of an array of phosphorous donors in silicon due to the strong intersite interaction in the system. We also study the resonant tunneling transport in the array at low temperature as a mean of probing the features of the Hubbard physics, such as the Hubbard bands and the Mott gap. Two mechanisms of localization which suppresses transport in the array are investigated: The first arises from the electron-ion core attraction and is significant at low filling; the second is due to the sharp oscillation in the tunnel coupling caused by the intervalley interference of the donor electron's wave function. This disorder in the tunnel coupling leads to a steep exponential decay of conductance with channel length in one-dimensional arrays, but its effect is less prominent in two-dimensional ones. Hence, it is possible to observe resonant tunneling transport in a relatively large array in two dimensions.

  15. Long distance electron transport in marine sediments: Microbial and geochemical implications

    DEFF Research Database (Denmark)

    Risgaard-Petersen, Nils; Larsen, Steffen; Pfeffer, Christian

    and promotes the formation of Mg-calcite and iron oxides in the oxic zone. Oxygen seems to be the major electron acceptor, and more than 40% of the oxygen consumption in sediments can be driven by long distance electron transfer from distant electron donors. The major e-donor is sulfide, which is oxidized......Anaerobic oxidation of organic matter in marine sediment is traditionally considered to be coupled to oxygen reduction via a cascade of redox processes and transport of intermittent electron donors and acceptors. Electric currents have been found to shortcut this cascade and directly couple...... oxidation of sulphide centimeters down in marine sediment to the reduction of oxygen at the very surface1 . This electric coupling of spatially separated redox half-reactions seems to be mediated by centimeter long filamentous Desulfubulbus affiliated bacteria with morphological and ultra...

  16. Philanthropic Motivations of Community College Donors

    Science.gov (United States)

    Carter, Linnie S.; Duggan, Molly H.

    2011-01-01

    This descriptive study surveyed current, lapsed, and major gift donors to explore the impact of college communications on donors' decisions to contribute to the college, the likelihood of donor financial support for various college projects, and the philanthropic motivation profiles of the donors of a midsized, multicampus community college in…

  17. Ultrafast Photoinduced Electron Transfer in Bimolecular Donor-Acceptor Systems

    KAUST Repository

    Alsulami, Qana

    2016-01-01

    , electronic properties and chemical structure. Interestingly, clear correlations among the steady-state measurements, time-resolved spectroscopy results, grain alignment of the electron transporting layer (ETL), carrier mobility, and device performance

  18. Heart transplantation from older donors

    Directory of Open Access Journals (Sweden)

    V. N. Poptsov

    2017-01-01

    Full Text Available In the current situation of the shortage of suitable donor organs, heart transplantation from older donors is one of the ways to increase the performance of more heart transplants, particularly, in patients with urgent need of transplantation. While planning a heart transplantation from older donor one should consider increased risk of early cardiac allograft dysfunction, preexisting coronary artery disease, accelerated transplant vasculopathy which may adversely affect early and long-term survival of recipients. Subject to careful selection of donor–recipient pairs, effective prevention and treatment of early cardiac allograft dysfunction, pre-existing atherosclerosis and transplant vasculopathy the early and long-term survival of heart transplant recipients from older donors is comparable to heart transplantation from young donors.

  19. Individual, contextual and network characteristics of blood donors and non-donors: a systematic review of recent literature

    Science.gov (United States)

    Piersma, Tjeerd W.; Bekkers, René; Klinkenberg, Elisabeth F.; de Kort, Wim L.A.M.; Merz, Eva-Maria

    2017-01-01

    Background The ageing population and recent migration flows may negatively affect the blood supply in the long term, increasing the importance of targeted recruitment and retention strategies to address donors. This review sought to identify individual, network and contextual characteristics related to blood donor status and behaviour, to systematically discuss differences between study results, and to identify possible factors to target in recruitment and retention efforts. Methods The systematic review was conducted in accordance with a predefined PROSPERO protocol (CRD42016039591). After quality assessments by multiple independent raters, a final set of 66 peer-reviewed papers, published between October 2009 and January 2017, were included for review. Results Individual and contextual characteristics of blood donor status and behaviour were categorised into five main lines of research: donor demographics, motivations and barriers, adverse reactions and deferral, contextual factors, and blood centre factors. Results on donor demographics, motivations and barriers, and contextual factors were inconclusive, differing between studies, countries, and sample characteristics. Adverse reactions and deferral were negatively related to blood donor behaviour. Blood centre factors play an important role in donor management, e.g., providing information, reminders, and (non-)monetary rewards. No studies were found on network characteristics of (non-)donors. Discussion Although individual and contextual characteristics strongly relate to blood donor status and behaviour, mechanisms underlying these relations have not been studied sufficiently. We want to stress the importance of longitudinal studies in donor behaviour, exploring the role of life events and network characteristics within blood donor careers. Increased understanding of donor behaviour will assist policy makers of blood collection agencies, with the ultimate goal of safeguarding a sufficient and matching blood

  20. Individual, contextual and network characteristics of blood donors and non-donors: a systematic review of recent literature.

    Science.gov (United States)

    Piersma, Tjeerd W; Bekkers, René; Klinkenberg, Elisabeth F; De Kort, Wim L A M; Merz, Eva-Maria

    2017-09-01

    The ageing population and recent migration flows may negatively affect the blood supply in the long term, increasing the importance of targeted recruitment and retention strategies to address donors. This review sought to identify individual, network and contextual characteristics related to blood donor status and behaviour, to systematically discuss differences between study results, and to identify possible factors to target in recruitment and retention efforts. The systematic review was conducted in accordance with a predefined PROSPERO protocol (CRD42016039591). After quality assessments by multiple independent raters, a final set of 66 peer-reviewed papers, published between October 2009 and January 2017, were included for review. Individual and contextual characteristics of blood donor status and behaviour were categorised into five main lines of research: donor demographics, motivations and barriers, adverse reactions and deferral, contextual factors, and blood centre factors. Results on donor demographics, motivations and barriers, and contextual factors were inconclusive, differing between studies, countries, and sample characteristics. Adverse reactions and deferral were negatively related to blood donor behaviour. Blood centre factors play an important role in donor management, e.g., providing information, reminders, and (non-)monetary rewards. No studies were found on network characteristics of (non-)donors. Although individual and contextual characteristics strongly relate to blood donor status and behaviour, mechanisms underlying these relations have not been studied sufficiently. We want to stress the importance of longitudinal studies in donor behaviour, exploring the role of life events and network characteristics within blood donor careers. Increased understanding of donor behaviour will assist policy makers of blood collection agencies, with the ultimate goal of safeguarding a sufficient and matching blood supply.

  1. Diaphragmatic herniation following donor hepatectomy for living donor liver transplantation: a serious complication not given due recognition.

    Science.gov (United States)

    Lochan, Rajiv; Saif, Rehan; Ganjoo, Naveen; Sakpal, Mallikarjun; Panackal, Charles; Raja, Kaiser; Reddy, Jayanth; Asthana, Sonal; Jacob, Mathew

    2017-11-01

    A clear appreciation of benefits and risks associated with living donor hepatectomy is important to facilitate counselling for the donor, family, and recipient in preparation for living donor liver transplant (LDLT). We report a life-threatening complication occurring in one of our live liver donors at 12 weeks following hemi-liver donation. We experienced five donor complications among our first 50 LDLT: Clavien Grade 1, n=1; Clavien grade 2, n=3; and Clavien grade 3B, n=1. The one with Clavien grade 3B had a life-threatening diaphragmatic hernia occurring 12 weeks following hepatectomy. This was promptly recognized and emergency surgery was performed. The donor is well at 1-year follow-up. Here we provide a review of reported instances of diaphragmatic hernia following donor hepatectomy with an attempt to elucidate the pathophysiology behind such occurrence. Life-threatening donor risk needs to be balanced with recipient benefit and risk on a tripartite basis during the counselling process for LDLT. With increasing use of LDLT, we need to be aware of such life-threatening complication. Preventive measures in this regard and counselling for such complication should be incorporated into routine work-up for potential live liver donor.

  2. Laparoscopic donor nephrectomy increases the supply of living donor kidneys: a center-specific microeconomic analysis.

    Science.gov (United States)

    Kuo, P C; Johnson, L B

    2000-05-27

    A tenet of microeconomics is that new technology will shift the supply curve to the right. Laparoscopic donor nephrectomy (LDN) is a new technique for removal of living donor kidneys. Centers performing this procedure have noted an increased number of patients presenting for donor evaluation. This has not been previously studied. The records of all LDN performed from May 1998 to February 1999 were reviewed. The following variables were examined: sex, age, related vs. unrelated donation, estimated blood loss, i.v. analgesia, length of stay, and time out of work. Donors undergoing traditional open donor nephrectomy during January 1997 to May 1998 served as the control group. A composite cost index was constructed. LDN significantly decreased length of stay, pain, and time out of work; the supply function shifted to the right. Telephone interviews revealed that 47% donated solely because of the LDN procedure. LDN increases the supply of living donor kidneys.

  3. Acetate, lactate, propionate, and isobutyrate as electron donors for iron and sulfate reduction in Arctic marine sediments, Svalbard

    DEFF Research Database (Denmark)

    Finke, Niko; Vandieken, Verona; Jørgensen, Bo Barker

    2007-01-01

    The contribution of volatile fatty acids (VFA) as e--donors for anaerobic terminal oxidation of organic carbon through iron and sulfate reduction was studied in Arctic fjord sediment. Dissolved inorganic carbon, Fe2+, VFA concentrations, and sulfate reduction were monitored in slurries from...... by alternative e--donors. The accumulation of VFA in the selenate-inhibited 0-2 cm slurry did not enhance iron reduction, indicating that iron reducers were not limited by VFA availability....

  4. Ex-vivo partial nephrectomy after living donor nephrectomy: Surgical technique for expanding kidney donor pool

    Directory of Open Access Journals (Sweden)

    Yaw A Nyame

    2017-01-01

    Full Text Available Renal transplantation has profound improvements in mortality, morbidity, and overall quality of life compared to renal replacement therapy. This report aims to illustrate the use of ex-vivo partial nephrectomy in a patient with a renal angiomyolipoma prior to living donor transplantation. The surgical outcomes of the donor nephrectomy and recipient transplantation are reported with 2 years of follow-up. Both the donor and recipient are healthy and without any significant comorbidities. In conclusion, urologic techniques such as partial nephrectomy can be used to expand the living donor pool in carefully selected and well informed transplant recipients. Our experience demonstrated a safe and positive outcome for both the recipient and donor, and is consistent with other reported outcomes in the literature.

  5. Organic Metals. Systematic Molecular Modifications of Hexamethylenetetraheterofulvalene Donors

    DEFF Research Database (Denmark)

    Engler, E. M.; Patel, V. V.; Andersen, Jan Rud

    1978-01-01

    Two synthetic approaches for modifying hexamethylenetetraheterofulvalene donors are described for the purpose of perturbing in a systematic way the interesting solid state properties of the TCNQ salts of the parent systems. The first approach consists of a steric modification in which a methyl gr...... group is introduced into the outer five-membered rings of the parent molecules. The second type of modification involves an electronic perturbation in which the outer five-membered alkyl rings are replaced with fused thiophene derivatives...

  6. Electron Spin Resonance Experiments on a Single Electron in Silicon Implanted with Phosphorous

    Science.gov (United States)

    Luhman, Dwight R.; Nguyen, K.; Tracy, L. A.; Carr, S.; Borchardt, J.; Bishop, N.; Ten Eyck, G.; Pluym, T.; Wendt, J.; Lilly, M. P.; Carroll, M. S.

    2015-03-01

    In this talk we will discuss the results of our ongoing experiments involving electron spin resonance (ESR) on a single electron in a natural silicon sample. The sample consists of an SET, defined by lithographic polysilicon gates, coupled to nearby phosphorous donors. The SET is used to detect charge transitions and readout the spin of the electron being investigated with ESR. The measurements were done with the sample at dilution refrigerator temperatures in the presence of a 1.3 T magnetic field. We will present data demonstrating Rabi oscillations of a single electron in this system as well as measurements of the coherence time, T2. We will also discuss our results using these and various other pulsing schemes in the context of a donor-SET system. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.

  7. Loss of the precise control of photosynthesis and increased yield of non-radiative dissipation of exitation energy after mild heat treatment of barley leaves

    International Nuclear Information System (INIS)

    Bukhov, N.G.; Boucher, N.; Carpentier, R.

    1998-01-01

    The after effects of a short exposure of intact barley leaves to moderately elevated temperature (40°C, 5 min) on the induction transients and the irradiance dependencies of photosynthesis and chlorophyll fluorescence are presented. This mild heat treatment strongly reduced the oscillations in the rate of photosynthesis and in the yield of chlorophyll fluorescence. However, only a 25% irreversible inhibition of maximum photosynthetic capacity of photosystem II (PSII) measured by oxygen evolution was produced and the intrinsic quantum yield of PSII measured by the chlorophyll fluorescence ratio (F m - F o )/Fm decreased by only 15%. In contrast, the above treatment increased radiationless dissipation processes in PSII by a factor of two. In heat-treated leaves, photosynthesis was not saturated even by strong light. Both ΔpH-dependent quenching of excitons in PSII (including formation of zeaxanthin) and state 1/state 2 transition were found to be stimulated. Heat exposure enhanced the control of PSII activity by PSI, as evidenced by a significant increase in the quenching effect of far-red light on the maximum yield of chlorophyll fluorescence. It was deduced that after mild heat treatment, the photosynthetic apparatus in leaves lacks the precise coordinating control of electron transport and carbon metabolism owing to the inability of PSII to support electron transport at a level adequate for carbon metabolism. This effect was not related to the small irreversible thermal damage to PSII, but was rather due to a significant increase in non-photochemical quenching of excitation energy. (author)

  8. Direct view at colossal permittivity in donor-acceptor (Nb, In) co-doped rutile TiO2

    International Nuclear Information System (INIS)

    Mandal, Suman; Pal, Somnath; Hazarika, Abhijit; Kundu, Asish K.; Menon, Krishnakumar S. R.; Rioult, Maxime; Belkhou, Rachid

    2016-01-01

    Topical observations of colossal permittivity (CP) with low dielectric loss in donor-acceptor cations co-doped rutile TiO 2 have opened up several possibilities in microelectronics and energy-storage devices. Yet, the precise origin of the CP behavior, knowledge of which is essential to empower the device integration suitably, is highly disputed in the literature. From spectromicroscopic approach besides dielectric measurements, we explore that microscopic electronic inhomogeneities along with the nano-scale phase boundaries and the low temperature polaronic relaxation are mostly responsible for such a dielectric behavior, rather than electron-pinned defect-dipoles/grain-boundary effects as usually proposed. Donor-acceptor co-doping results in a controlled carrier-hopping inevitably influencing the dielectric loss while invariably upholding the CP value.

  9. Adult-to-Adult Living Donor Liver Transplantation

    Directory of Open Access Journals (Sweden)

    Shimul A Shah

    2006-01-01

    Full Text Available The present review outlines the principles of living donor liver transplantation, donor workup, procedure and outcomes. Living donation offers a solution to the growing gap between the need for liver transplants and the limited availability of deceased donor organs. With a multidisciplinary team focused on donor safety and experienced surgeons capable of performing complex resection/reconstruction procedures, donor morbidity is low and recipient outcomes are comparable with results of deceased donor transplantation.

  10. Surface donor states distribution post SiN passivation of AlGaN/GaN heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Goyal, Nitin, E-mail: nitin@unik.no [Carinthian Tech Research CTR AG, Europastraße 4/1, Technologiepark Villach, A- 9524 Villach/St. Magdalen (Austria); Department of Electronics and Telecommunication, Norwegian University of Science and Technology, Trondheim NO7034 (Norway); Fjeldly, Tor A. [Department of Electronics and Telecommunication, Norwegian University of Science and Technology, Trondheim NO7034 (Norway)

    2014-07-21

    In this paper, we present a physics based analytical model to describe the effect of SiN passivation on two-dimensional electron gas density and surface barrier height in AlGaN/GaN heterostructures. The model is based on an extraction technique to calculate surface donor density and surface donor level at the SiN/AlGaN interface. The model is in good agreement with the experimental results and promises to become a useful tool in advanced design and characterization of GaN based heterostructures.

  11. Modulation of Donor-Acceptor Distance in a Series of Carbazole Push-Pull Dyes; A Spectroscopic and Computational Study

    Directory of Open Access Journals (Sweden)

    Joshua J. Sutton

    2018-02-01

    Full Text Available A series of eight carbazole-cyanoacrylate based donor-acceptor dyes were studied. Within the series the influence of modifying the thiophene bridge, linking donor and acceptor and a change in the nature of the acceptor, from acid to ester, was explored. In this joint experimental and computational study we have used electronic absorbance and emission spectroscopies, Raman spectroscopy and computational modeling (density functional theory. From these studies it was found that extending the bridge length allowed the lowest energy transition to be systematically red shifted by 0.12 eV, allowing for limited tuning of the absorption of dyes using this structural motif. Using the aforementioned techniques we demonstrate that this transition is charge transfer in nature. Furthermore, the extent of charge transfer between donor and acceptor decreases with increasing bridge length and the bridge plays a smaller role in electronically mixing with the acceptor as it is extended.

  12. Peer-to-peer milk donors' and recipients' experiences and perceptions of donor milk banks.

    Science.gov (United States)

    Gribble, Karleen D

    2013-07-01

    To explore the intersection of peer-to-peer milk sharing and donor milk banks. A descriptive survey design containing closed and open-ended questions was used to examine women's perceptions of peer-to-peer milk sharing and milk banking. Closed-ended questions were analyzed using descriptive statistics and conventional qualitative content analysis was used to analyze open-ended responses. Participants were recruited via the Facebook sites of two online milk-sharing networks (Human Milk 4 Human Babies and Eats on Feet). Ninety-eight milk donors and 41 milk recipients who had donated or received breast milk in an arrangement that was facilitated via the Internet. One half of donor recipients could not donate to a milk bank because there were no banks local to them or they did not qualify as donors. Other respondents did not donate to a milk bank because they viewed the process as difficult, had philosophical objections to milk banking, or had a philosophical attraction to peer sharing. Most donor respondents felt it was important to know the circumstances of their milk recipients. No recipient respondents had obtained milk from a milk bank; it was recognized that they would not qualify for banked milk or that banked milk was cost prohibitive. Peer-to-peer milk donors and recipients may differ from milk bank donors and recipients in significant ways. Cooperation between milk banks and peer sharing networks could benefit both groups. © 2013 AWHONN, the Association of Women's Health, Obstetric and Neonatal Nurses.

  13. Blood donation and blood donor mortality after adjustment for a healthy donor effect

    DEFF Research Database (Denmark)

    Ullum, Henrik; Rostgaard, Klaus; Kamper-Jørgensen, Mads

    2015-01-01

    BACKGROUND: Studies have repeatedly demonstrated that blood donors experience lower mortality than the general population. While this may suggest a beneficial effect of blood donation, it may also reflect the selection of healthy persons into the donor population. To overcome this bias, we...... investigated the relation between blood donation frequency and mortality within a large cohort of blood donors. In addition, our analyses also took into consideration the effects of presumed health differences linked to donation behavior. STUDY DESIGN AND METHODS: Using the Scandinavian Donation...... and mortality. The magnitude of the association was reduced after adjustment for an estimate of self-selection in the donor population. Our observations indicate that repeated blood donation is not associated with premature death, but cannot be interpreted as conclusive evidence of a beneficial health effect....

  14. Thermotolerance and Photosystem II Behaviour in Co-occuring Temperate Tree Species Exposed to Short-term Extreme Heat Waves

    Science.gov (United States)

    Guha, A.; Warren, J.; Cummings, C.; Han, J.

    2017-12-01

    Thermal stress can induce irreversible photodamage with longer consequences for plant metabolism. We focused on photosystem II (PSII) behaviour to understand how this complex responds in different co-occuring temperate trees exposed to short-term extreme heat waves. The study was designed for understanding complex heat tolerance mechanisms in trees. During manipulative heat-wave experiments, we monitored instantaneous PSII performance and tracked both transient and chronic PSII damages using chlorophyll a fluorescence characteristics. Fluorescence signals were used to simulate PSII bioenergetic processes. The light (Fv'/Fm') and dark-adapted (Fv/Fm) fluorescence traits including fast induction kinetics (OJIP), electron transport rate, PSII operating efficiency and quenching capacities were significantly affected by the heat treatments. Loss in PSII efficiency was more apparent in species like black cottonwood, yellow poplar, walnuts and conifers, whereas oaks maintained relatively better PSII functions. The post-heat recovery of Fv/Fm varied across the studied species showing differential carry over effects. PSII down-regulation was one of dominant factors for the loss in operational photosynthesis during extreme heat wave events. Both light and dark-adapted fluorescence characteristics showed loss in photo-regulatory functions and photodamage. Some resilient species showed rapid recovery from transient PSII damage, whereas fingerprints of chronic PSII damage were observed in susceptibles. Thresholds for Fv/Fm and non-photochemical quenching were identified for the studied species. PSII malfunctioning was largely associated with the observed photosynthetic down-regulation during heat wave treatments, however, its physiological recovery should be a key factor to determine species resilience to short-term extreme heat wave events.

  15. Vulnerability of photosynthesis and photosystem I in Jerusalem artichoke (Helianthus tuberosus L.) exposed to waterlogging.

    Science.gov (United States)

    Yan, Kun; Zhao, Shijie; Cui, Mingxing; Han, Guangxuan; Wen, Pei

    2018-04-01

    Jerusalem artichoke (Helianthus tuberosus L.) is an important energy crop for utilizing coastal marginal land. This study was to investigate waterlogging tolerance of Jerusalem artichoke through photosynthetic diagnose with emphasis on photosystem II (PSII) and photosystem I (PSI) performance. Potted plants were subjected to severe (liquid level 5 cm above vermiculite surface) and moderate (liquid level 5 cm below vermiculite surface) waterlogging for 9 days. Large decreased photosynthetic rate suggested photosynthesis vulnerability upon waterlogging. After 7 days of severe waterlogging, PSII and PSI photoinhibition arose, indicated by significant decrease in the maximal photochemical efficiency of PSII (Fv/Fm) and PSI (△MR/MR 0 ), and PSI seemed more vulnerable because of greater decrease in △MR/MR 0 than Fv/Fm. In line with decreased △MR/MR 0 and unchanged Fv/Fm after 9 days of moderate waterlogging, the amount of PSI reaction center protein rather than PSII reaction center protein was lowered, confirming greater PSI vulnerability. According to positive correlation between △MR/MR 0 and efficiency that an electron moves beyond primary quinone and negative correlation between △MR/MR 0 and PSII excitation pressure, PSI inactivation elevated PSII excitation pressure by depressing electron transport at PSII acceptor side. Thus, PSI vulnerability induced PSII photoinhibition and endangered the stability of whole photosynthetic apparatus under waterlogging. In agreement with photosystems photoinhibition, elevated H 2 O 2 concentration and lipid peroxidation in the leaves corroborated waterlogging-induced oxidative stress. In conclusion, Jerusalem artichoke is a waterlogging sensitive species in terms of photosynthesis and PSI vulnerability. Consistently, tuber yield was tremendously reduced by waterlogging, confirming waterlogging sensitivity of Jerusalem artichoke. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  16. Advances in electron transfer chemistry

    CERN Document Server

    Mariano, Patrick S

    1993-01-01

    Advances in Electron Transfer Chemistry, Volume 3 presents studies that discuss findings in the various aspects of electron chemistry. The book is comprised of four chapters; each chapter reviews a work that tackles an issue in electron transfer chemistry. Chapter 1 discusses the photoinduced electron transfer in flexible biaryl donor-acceptor molecules. Chapter 2 tackles light-induced electron transfer in inorganic systems in homogeneous and heterogeneous phases. The book also covers internal geometry relaxation effects on electron transfer rates of amino-centered systems. The sequential elec

  17. Increasing the supply of kidneys for transplantation by making living donors the preferred source of donor kidneys.

    Science.gov (United States)

    Testa, Giuliano; Siegler, Mark

    2014-12-01

    At the present time, increasing the use of living donors offers the best solution to the organ shortage problem. The clinical questions raised when the first living donor kidney transplant was performed, involving donor risk, informed consent, donor protection, and organ quality, have been largely answered. We strongly encourage a wider utilization of living donation and recommend that living donation, rather than deceased donation, become the first choice for kidney transplantation. We believe that it is ethically sound to have living kidney donation as the primary source for organs when the mortality and morbidity risks to the donor are known and kept extremely low, when the donor is properly informed and protected from coercion, and when accepted national and local guidelines for living donation are followed.

  18. Response of Chloroplast NAD(PH Dehydrogenase-Mediated Cyclic Electron Flow to a Shortage or Lack in Ferredoxin-Quinone Oxidoreductase-Dependent Pathway in Rice Following Short-Term Heat Stress

    Directory of Open Access Journals (Sweden)

    Jemaa eEssemine

    2016-03-01

    Full Text Available Cyclic electron flow around PSI can protect photosynthetic electron carriers under conditions of stromal over-reduction. The goal of the research reported in this paper was to investigate the responses of both PSI and PSII to a short-term heat stress in two rice lines with different capacities of cyclic electron transfer, i.e. Q4149 with a high capacity (hcef and C4023 with a low capacity (lcef. The absorbance change at 820 nm (ΔA820 was used here to assess the charge separation in the photosystem I (PSI reaction center (P700. The results obtained show that short-term heat stress abolishes the FQR-dependent CEF in rice and accelerates the initial rate of P700+ re-reduction. The P700+ amplitude was slightly increased at a moderate heat-stress (35°C because of a partial restriction of FQR but it was decreased following high heat-stress (42°C. Assessment of PSI and PSII activities shows that PSI is more susceptible to heat stress than photosystem II (PSII. Under high temperature, FQR-dependent CEF was completely removed and NDH-dependent CEF was up-regulated and strengthened to a higher extent in C4023 than in Q4149. Specifically, under normal growth temperature, hcef (Q4149 was characterized by higher FQR- and NDH-dependent CEF rates than lcef (C4023. Following thermal stress, the activation of NDH-pathway was 130% and 10% for C4023 and Q4149, respectively. Thus, the NDH-dependent CEF may constitute the second layer of plant protection and defence against heat stress after the main route, i.e. FQR-dependent CEF, reaches its capacity. We discuss the possibility that under high heat stress, the NDH pathway serves as a safety valve to dissipate excess energy by cyclic photophosphorylation and overcome the stroma over-reduction following inhibition of CO2 assimilation and any shortage or lack in the FQR pathway. The potential role of the NDH-dependent pathway during the evolution of C4 photosynthesis is briefly discussed.

  19. Comparison of donor, and early and late recipient outcomes following hand assisted and laparoscopic donor nephrectomy.

    Science.gov (United States)

    Lucas, Steven M; Liaw, Aron; Mhapsekar, Rishi; Yelfimov, Daniel; Goggins, William C; Powelson, John A; Png, Keng Siang; Sundaram, Chandru P

    2013-02-01

    While laparoscopic donor nephrectomy has encouraged living kidney donation, debate exists about the safest laparoscopic technique. We compared purely laparoscopic and hand assisted laparoscopic donor nephrectomies in terms of donor outcome, early graft function and long-term graft outcome. We reviewed the records of consecutive laparoscopic and hand assisted laparoscopic donor nephrectomies performed by a single surgeon from 2002 to 2011. Donor operative time and perioperative morbidity were compared. Early graft function for kidneys procured by each technique was evaluated by rates of delayed graft function, need for dialysis and recipient discharge creatinine. Long-term outcomes were evaluated by graft function. A total of 152 laparoscopic donor nephrectomies were compared with 116 hand assisted laparoscopic donor nephrectomies. Hand assisted procedures were more often done for the right kidney (41.1% vs 17.1%, p recipient outcomes were also similar. Delayed function occurred after 0% hand assisted vs 0.9% purely laparoscopic nephrectomies, dialysis was required in 0.9% vs 1.7% and rejection episodes developed in 9.7% vs 18.4% (p >0.05). At last followup the organ was nonfunctioning in 6.1% of hand assisted and 7.7% of purely laparoscopic cases (p >0.05). The recipient glomerular filtration rate at discharge home was similar in the 2 groups. Hand assisted laparoscopic donor nephrectomy had shorter warm ischemia time but perioperative donor morbidity and graft outcome were comparable. The choice of technique should be based on patient and surgeon preference. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  20. Donor Telomere Length SAA

    Science.gov (United States)

    A new NCI study has found that, among patients with severe aplastic anemia who received a hematopoietic cell transplant from an unrelated donor, those whose donor white blood cells had longer telomeres had higher survival rates five-years after transplant

  1. Effects of electric and magnetic fields on fluorescence in electron donor and acceptor pairs of pyrene and N-methylphthalimide doped in a polymer film

    Energy Technology Data Exchange (ETDEWEB)

    Yoshizawa, Tomokazu [Research Institute for Electronic Science (RIES), Hokkaido University, N12, W6 Sapporo 060-0812 (Japan); Graduate School of Environmental Earth Science, Hokkaido University, Sapporo 060-0810 (Japan); Mizoguchi, Miwako [Graduate School of Environmental Earth Science, Hokkaido University, Sapporo 060-0810 (Japan); Iimori, Toshifumi [Research Institute for Electronic Science (RIES), Hokkaido University, N12, W6 Sapporo 060-0812 (Japan); Graduate School of Environmental Earth Science, Hokkaido University, Sapporo 060-0810 (Japan); Nakabayashi, Takakazu [Research Institute for Electronic Science (RIES), Hokkaido University, N12, W6 Sapporo 060-0812 (Japan); Graduate School of Environmental Earth Science, Hokkaido University, Sapporo 060-0810 (Japan); Ohta, Nobuhiro [Research Institute for Electronic Science (RIES), Hokkaido University, N12, W6 Sapporo 060-0812 (Japan); Graduate School of Environmental Earth Science, Hokkaido University, Sapporo 060-0810 (Japan)], E-mail: nohta@es.hokudai.ac.jp

    2006-05-09

    External electric-field-induced change in fluorescence spectra as well as in fluorescence decay has been measured for electron donor and acceptor pairs of pyrene (PY) and N-methylphthalimide (NMPI) doped in a polymer film. Field-induced quenching and field-induced shortening of lifetime are observed for fluorescence emitted from the locally excited (LE) state of PY, indicating that intermolecular electron transfer from the excited state of PY to NMPI is enhanced by an electric field in a polymer film. A simulation has been made for the field effect on decay profile of the LE fluorescence of PY. Exciplex fluorescence is also quenched by an electric field because of the field-induced decrease in the initial population of the fluorescent exciplex. Both in LE fluorescence of PY and in exciplex fluorescence, electric-field-induced quenching becomes less efficient in the presence of a magnetic field. The mechanism of the synergy effect of electric and magnetic fields on fluorescence has been discussed.

  2. Effects of electric and magnetic fields on fluorescence in electron donor and acceptor pairs of pyrene and N-methylphthalimide doped in a polymer film

    International Nuclear Information System (INIS)

    Yoshizawa, Tomokazu; Mizoguchi, Miwako; Iimori, Toshifumi; Nakabayashi, Takakazu; Ohta, Nobuhiro

    2006-01-01

    External electric-field-induced change in fluorescence spectra as well as in fluorescence decay has been measured for electron donor and acceptor pairs of pyrene (PY) and N-methylphthalimide (NMPI) doped in a polymer film. Field-induced quenching and field-induced shortening of lifetime are observed for fluorescence emitted from the locally excited (LE) state of PY, indicating that intermolecular electron transfer from the excited state of PY to NMPI is enhanced by an electric field in a polymer film. A simulation has been made for the field effect on decay profile of the LE fluorescence of PY. Exciplex fluorescence is also quenched by an electric field because of the field-induced decrease in the initial population of the fluorescent exciplex. Both in LE fluorescence of PY and in exciplex fluorescence, electric-field-induced quenching becomes less efficient in the presence of a magnetic field. The mechanism of the synergy effect of electric and magnetic fields on fluorescence has been discussed

  3. Donor and Acceptor Unit Sequences Influence Material Performance in Benzo[1,2-b:4,5-b′]dithiophene-6,7-Difluoroquinoxaline Small Molecule Donors for BHJ Solar Cells

    KAUST Repository

    Wang, Kai

    2016-08-22

    Well-defined small molecule (SM) donors can be used as alternatives to π-conjugated polymers in bulk-heterojunction (BHJ) solar cells with fullerene acceptors (e.g., PC61/71BM). Taking advantage of their synthetic tunability, combinations of various donor and acceptor motifs can lead to a wide range of optical, electronic, and self-assembling properties that, in turn, may impact material performance in BHJ solar cells. In this report, it is shown that changing the sequence of donor and acceptor units along the π-extended backbone of benzo[1,2-b:4,5-b\\']dithiophene-6,7-difluoroquinoxaline SM donors critically impacts (i) molecular packing, (ii) propensity to order and preferential aggregate orientations in thin-films, and (iii) charge transport in BHJ solar cells. In these systems (SM1-3), it is found that 6,7-difluoroquinoxaline ([2F]Q) motifs directly appended to the central benzo[1,2-b:4,5-b\\']dithiophene (BDT) unit yield a lower-bandgap analogue (SM1) with favorable molecular packing and aggregation patterns in thin films, and optimized BHJ solar cell efficiencies of ≈6.6%. 1H-1H DQ-SQ NMR analyses indicate that SM1 and its counterpart with [2F]Q motifs substituted as end-group SM3 possess distinct self-assembly patterns, correlating with the significant charge transport and BHJ device efficiency differences observed for the two analogous SM donors (avg. 6.3% vs 2.0%, respectively). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Donor and Acceptor Unit Sequences Influence Material Performance in Benzo[1,2-b:4,5-b′]dithiophene-6,7-Difluoroquinoxaline Small Molecule Donors for BHJ Solar Cells

    KAUST Repository

    Wang, Kai; Liang, Ru-Ze; Wolf, Jannic Sebastian; Saleem, Qasim; Babics, Maxime; Wucher, Philipp; Abdelsamie, Maged; Amassian, Aram; Hansen, Michael Ryan; Beaujuge, Pierre

    2016-01-01

    Well-defined small molecule (SM) donors can be used as alternatives to π-conjugated polymers in bulk-heterojunction (BHJ) solar cells with fullerene acceptors (e.g., PC61/71BM). Taking advantage of their synthetic tunability, combinations of various donor and acceptor motifs can lead to a wide range of optical, electronic, and self-assembling properties that, in turn, may impact material performance in BHJ solar cells. In this report, it is shown that changing the sequence of donor and acceptor units along the π-extended backbone of benzo[1,2-b:4,5-b']dithiophene-6,7-difluoroquinoxaline SM donors critically impacts (i) molecular packing, (ii) propensity to order and preferential aggregate orientations in thin-films, and (iii) charge transport in BHJ solar cells. In these systems (SM1-3), it is found that 6,7-difluoroquinoxaline ([2F]Q) motifs directly appended to the central benzo[1,2-b:4,5-b']dithiophene (BDT) unit yield a lower-bandgap analogue (SM1) with favorable molecular packing and aggregation patterns in thin films, and optimized BHJ solar cell efficiencies of ≈6.6%. 1H-1H DQ-SQ NMR analyses indicate that SM1 and its counterpart with [2F]Q motifs substituted as end-group SM3 possess distinct self-assembly patterns, correlating with the significant charge transport and BHJ device efficiency differences observed for the two analogous SM donors (avg. 6.3% vs 2.0%, respectively). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Graphene oxide-Li(+)@C60 donor-acceptor composites for photoenergy conversion.

    Science.gov (United States)

    Supur, Mustafa; Kawashima, Yuki; Ohkubo, Kei; Sakai, Hayato; Hasobe, Taku; Fukuzumi, Shunichi

    2015-06-28

    An ionic endohedral metallofullerene (Li(+)@C60) with mild hydrophilic nature was combined with graphene oxide (GO) to construct a donor-acceptor composite in neat water. The resulting composite was characterised by UV-Vis and Raman spectroscopy, powder X-ray diffraction, dynamic light scattering measurements and transmission electron microscopy. Theoretical calculations (DFT at the B3LYP/6-31(d) level) were also utilized to gain further insight into the composite formation. As detected by electron paramagnetic resonance spectroscopy, photoexcitation of the GO-Li(+)@C60 composite results in electron transfer from GO to the triplet excited state of Li(+)@C60, leading to photocurrent generation at the OTE/SnO2 electrode.

  6. Open-Identity Sperm Donation: How Does Offering Donor-Identifying Information Relate to Donor-Conceived Offspring's Wishes and Needs?

    Science.gov (United States)

    Ravelingien, An; Provoost, Veerle; Pennings, Guido

    2015-09-01

    Over the past years, a growing number of countries have legislated open-identity donation, in which donor-conceived offspring are given access to the donor's identity once the child has reached maturity. It is held that donor anonymity creates identity problems for such children similar to the "genealogical bewilderment" described within the adoption context. The study of the social and psychological effects of open-identity donation is still very much in its infancy, but what has been left unquestioned is whether (and to what extent) offering access to the donor's name and address is an adequate response to such effects. This study has two goals: First, we aim to provide a systematic review of the reasons why donor-conceived (DC) offspring want to know the identity of their sperm donor. Second, we examine to what extent the provision of donor-identifying information can satisfy the reasons mentioned. The most important motivations appear to be: (1) to avoid medical risks and consanguineous relationships; (2) to satisfy curiosity; (3) to learn more about the self or to complete one's identity; (4) to learn more about what kind of person the donor is (biographical information, why he donated, etc.); (5) to form a relationship with the donor and/or his family; and (6) to learn about one's ancestry/genealogy. Our analysis shows that for nearly all of these reasons access to the donor's identity is not necessary. In those cases where it is, moreover, donor identification is not sufficient. What is really needed is (extended) contact with the donor, rather than the mere provision of his name.

  7. Deceased donor organ transplantation with expanded criteria donors: a single-center experience from India.

    Science.gov (United States)

    Goplani, K R; Firoz, A; Ramakrishana, P; Shah, P R; Gumber, M R; Patel, H V; Vanikar, A V; Trivedi, H L

    2010-01-01

    Deceased donor organ transplantation (DDOT) accounts for DKT) and 19 single (SKT). Fourteen donors had hypertension, a cerebrovascular accident as the cause of death, 9 had both, and 4 had diabetes. Mean donor age was 70.3 +/- 8.9 years. Decisions on the procedure were based upon frozen section biopsy in 13 of 21 donors. Mean DKT donor age was 76 +/- 9.7 years versu 64 +/- 5.7 years of SKT donors. The native kidney diseases were chronic glomerulonephritis (n = 14), diabetic nephropathy (n = 7), tubulointerstitial nephritis (n = 4) and polycystic kidney disease, focal segmental glomerulosclerosis, lupus nephritis and patchy cortical necrosis, (n = 1 each). Mean recipient age of DKT versus SKT was 43.5 versus 42.3 years. All recipients received rabbit anti-thymocyte globulin, followed by steroid, mycophenolate mofetil/calcinueurin inhibitor. Over a mean follow-up of 341 days, the mean serum creatinine (SCr) of 25/29 patients was 1.60 mg/dL (range, 1.0-2.6). The mean SCr of SKT patients was 1.59 +/- 0.63 mg/dL and of DKT, 1.62 +/- 0.48 mg/dL. Ten patients had delayed graft function and 11 had biopsy proven acute tubular necrosis. Seven (24%) patients had rejection (grade 3 Banff update '05, type IA; 4, type 2A); 6 responded to antirejection; 1 graft was lost at 7 months due to chronic rejection. Three (10.3%) patients were lost, 1 each due to AMI, sepsis, and CMV disease. In the circumstances of organ shortage, DDOT with expanded criteria donor is a feasible option.

  8. The effect of World Blood Donor Day on digital information seeking and donor recruitment.

    Science.gov (United States)

    Kranenburg, Floris J; Kreuger, Aukje L; Arbous, M Sesmu; Laeijendecker, Daphne; van Kraaij, Marian G J

    2017-10-01

    The purpose of World Blood Donor Day (WBDD) is to raise awareness for the importance of blood donation. The aim of this study was to quantify the impact of WBDD on digital information seeking and donor recruitment. Google Trends data were used to quantify seeking behavior on "blood donation" and "blood donor." Differences in relative search volume (RSV) between the 3 weeks surrounding WBDD and the rest of the year were calculated. Second, mean differences in RSV were compared to assess the additional effect of hosting using translated search terms. Third, we compared the period around WBDD with the control period regarding page views of the Sanquin website and Facebook likes and number of newly registered donors in 2016. The mean RSV for "blood donation" in the period of interest was 78.6, compared to 72.1 in the control period (difference, 6.5; 95% confidence interval [95% CI], 1.2-11.8). For "blood donor" this was 78.9 compared to 65.9 (difference, 12.9; 95% CI, 8.1-17.8). We found no additional effect of hosting. In the period of interest, the website of Sanquin was visited 6862 times a day and 4293 times in the control period (difference, 2569; 95% CI, 1687-3451). In June 2016, 54.6% (95% CI, 53.0-56.2) more new donors were registered compared to the control period. An international campaign like WBDD raises the awareness of blood donation and is effective in convincing people to register as blood donors. © 2017 AABB.

  9. Active Donor Management During the Hospital Phase of Care Is Associated with More Organs Transplanted per Donor.

    Science.gov (United States)

    Patel, Madhukar S; De La Cruz, Salvador; Sally, Mitchell B; Groat, Tahnee; Malinoski, Darren J

    2017-10-01

    Meeting donor management goals when caring for potential organ donors has been associated with more organs transplanted per donor (OTPD). Concern persists, however, as to whether this indicates that younger/healthier donors are more likely to meet donor management goals or whether active management affects outcomes. A prospective observational study of all standard criteria donors was conducted by 10 organ procurement organizations across United Network for Organ Sharing Regions 4, 5, and 6. Donor management goals representing normal critical care end points were measured at 2 time points: when a catastrophic brain injury was recognized and a referral was made to the organ procurement organization by the DH; and after brain death was declared and authorization for organ donation was obtained. Donor management goals Bundle "met" was defined as achieving any 7 of 9 end points. A positive Bundle status change was defined as not meeting the Bundle at referral and subsequently achieving it at authorization. The primary outcomes measure was having ≥4 OTPD. Data were collected for 1,398 standard criteria donors. Of the 1,166 (83%) who did not meet the Bundle at referral, only 254 (22%) had a positive Bundle status change. On adjusted analysis, positive Bundle status change increased the odds of achieving ≥4 OTPD significantly (odds ratio 2.04; 95% CI 1.49 to 2.81; p management goal Bundle status change during donor hospital management is associated with a 2-fold increase in achieving ≥4 OTPD. Active critical care management of the potential organ donor, as evidenced by improvement in routinely measured critical care end points can be a means by which to substantially increase the number of organs available for transplantation. Published by Elsevier Inc.

  10. Brush Polymer of Donor-Accepter Dyads via Adduct Formation between Lewis Base Polymer Donor and All Carbon Lewis Acid Acceptor

    Directory of Open Access Journals (Sweden)

    Yang Wang

    2017-09-01

    Full Text Available A synthetic method that taps into the facile Lewis base (LB→Lewis acid (LA adduct forming reaction between the semiconducting polymeric LB and all carbon LA C60 for the construction of covalently linked donor-acceptor dyads and brush polymer of dyads is reported. The polymeric LB is built on poly(3-hexylthiophene (P3HT macromers containing either an alkyl or vinyl imidazolium end group that can be readily converted into the N-heterocyclic carbene (NHC LB site, while the brush polymer architecture is conveniently constructed via radical polymerization of the macromer P3HT with the vinyl imidazolium chain end. Simply mixing of such donor polymeric LB with C60 rapidly creates linked P3HT-C60 dyads and brush polymer of dyads in which C60 is covalently linked to the NHC junction connecting the vinyl polymer main chain and the brush P3HT side chains. Thermal behaviors, electronic absorption and emission properties of the resulting P3HT-C60 dyads and brush polymer of dyads have been investigated. The results show that a change of the topology of the P3HT-C60 dyad from linear to brush architecture enhances the crystallinity and Tm of the P3HT domain and, along with other findings, they indicate that the brush polymer architecture of donor-acceptor domains provides a promising approach to improve performances of polymer-based solar cells.

  11. Proton transport facilitating water-oxidation: the role of second sphere ligands surrounding the catalytic metal cluster.

    Science.gov (United States)

    Bao, Han; Dilbeck, Preston L; Burnap, Robert L

    2013-10-01

    The ability of PSII to extract electrons from water, with molecular oxygen as a by-product, is a remarkable biochemical and evolutionary innovation. From an evolutionary perspective, the invention of PSII approximately 2.7 Ga led to the accelerated accumulation of biomass in the biosphere and the accumulation of oxygen in the atmosphere, a combination that allowed for the evolution of a much more complex and extensive biosphere than would otherwise have been possible. From the biochemical and enzymatic perspective, PSII is remarkable because of the thermodynamic and kinetic obstacles that needed to have been overcome to oxidize water as the ultimate photosynthetic electron donor. This article focuses on how proton release is an integral part of how these kinetic and thermodynamic obstacles have been overcome: the sequential removal of protons from the active site of H2O-oxidation facilitates the multistep oxidation of the substrate water at the Mn4CaOx, the catalytic heart of the H2O-oxidation reaction. As noted previously, the facilitated deprotonation of the Mn4CaOx cluster exerts a redox-leveling function preventing the accumulation of excess positive charge on the cluster, which might otherwise hinder the already energetically difficult oxidation of water. Using recent results, including the characteristics of site-directed mutants, the role of the second sphere of amino acid ligands and the associated network of water molecules surrounding the Mn4CaOx is discussed in relation to proton transport in other systems. In addition to the redox-leveling function, a trapping function is assigned to the proton release step occurring immediately prior to the dioxygen chemistry. This trapping appears to involve a yet-to-be clarified gating mechanism that facilitates to coordinated release of a proton from the neighborhood of the active site thereby insuring that the backward charge-recombination reaction does not out-compete the forward reaction of dioxygen chemistry

  12. [Lack of donor organs as an argument for living donors?].

    Science.gov (United States)

    Kirste, G

    2010-09-01

    In Germany more than 12,000 patients are presently waiting for an organ donation. Living donation makes sense for the long waiting time for a kidney, but it is not a permanent solution for the lack of organ donations. In the future topics which should be discussed are intensified public relations, a better family care and the allocation of rights and duties at the German coordinating agency. For all the prospects of success after a living donation the high standards of quality and security, which are targeted by the German donor organization in recipient protection, responsible evaluation of the expanded donor criteria and immunosuppressive therapy are all in favor of post-mortem organ donation. For all the phenomenal chance of success the priority of the post-mortem organ donation is regulated by law. The living donation remains an individual decision of the donor and the personal situation of life.

  13. Synthesis of OMS Materials and Investigation of Their Acceptor-Donor Characteristics.

    Science.gov (United States)

    Grajek, H; Paciura-Zadrożna, J; Choma, J; Michalski, E; Witkiewicz, Z

    2012-10-01

    Three ordered mesoporous siliceous (OMS) materials known as MCM41s-unmodified MCM-41C16 ("C16"), and two MCM41s with different surface functionalities: MCM-41C16-SH ("C16-SH") and MCM-41C16-NH 2 ("C16-NH 2 ")-were synthesized and studied by inverse gas chromatography in order to determine their acceptor-donor properties. The specific retention volumes of nonpolar and polar probes that were chromatographed on these ordered mesoporous silica adsorbents were evaluated under infinite dilution conditions. Two methods were employed to calculate the standard free energy of adsorption, Δ G ads , of each chromatographed probe on the basis its specific retention volume. These Δ G ads values were then employed to estimate the van der Waals contribution and the specific contribution of the free surface energy for each MCM41. DN values (donor numbers, based on the Gutmann scale) and AN* values (acceptor numbers, based on the Riddle-Fowkes scale) were employed to determine the values of parameters that characterize the ability of the MCM41s to act as electron acceptors (parameter: K A ) and donors (parameter: K D ). Considering the different compositions of the probes, each of which has different acceptor-donor properties, a new chromatographic test to supplement the Grob test is suggested.

  14. Device fabrication and transport measurements of FinFETs built with 28Si SOI wafers towards donor qubits in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Cheuk Chi; Persaud, Arun; Dhuey, Scott; Olynick, Deirdre; Borondics, Ferenc; Martin, Michael C.; Bechtel, Hans A.; Bokor, Jeffrey; Schenkel, Thomas

    2009-06-10

    We report fabrication of transistors in a FinFET geometry using isotopically purified silicon-28 -on-insulator (28-SOI) substrates. Donor electron spin coherence in natural silicon is limited by spectral diffusion due to the residual 29Si nuclear spin bath, making isotopically enriched nuclear spin-free 28Si substrates a promising candidate for forming spin quantum bit devices. The FinFET architecture is fully compatible with single-ion implant detection for donor-based qubits, and the donor spin-state readout through electrical detection of spin resonance. We describe device processing steps and discuss results on electrical transport measurements at 0.3 K.

  15. Donor-derived aspergillosis from use of a solid organ recipient as a multiorgan donor.

    Science.gov (United States)

    Mueller, N J; Weisser, M; Fehr, T; Wüthrich, R P; Müllhaupt, B; Lehmann, R; Imhof, A; Aubert, J-D; Genoni, M; Kunz, R; Weber, M; Steiger, J

    2010-02-01

    The growing need for organs and the scarcity of donors has resulted in an increased use of extended criteria donors. We report a case where a recipient of a cardiac graft was used as an organ donor. Death of the recipient occurred 9 days after transplantation and was attributed to presumed cerebral hemorrhage, which post mortem was diagnosed as invasive aspergillosis of the brain. One recipient of a kidney transplant lost the graft due to infection with Aspergillus fumigatus, whereas prompt initiation of therapy successfully prevented disseminated aspergillosis in the other recipients. Despite the pressure to extend the use of organs by lowering the acceptance criteria, organs should only be accepted if the cause of death of the donors is unequivocally explained.

  16. Non-fullerene electron acceptors for organic photovoltaic devices

    Energy Technology Data Exchange (ETDEWEB)

    Jenekhe, Samson A.; Li, Haiyan; Earmme, Taeshik; Ren, Guoqiang

    2017-11-07

    Non-fullerene electron acceptors for highly efficient organic photovoltaic devices are described. The non-fullerene electron acceptors have an extended, rigid, .pi.-conjugated electron-deficient framework that can facilitate exciton and charge derealization. The non-fullerene electron acceptors can physically mix with a donor polymer and facilitate improved electron transport. The non-fullerene electron acceptors can be incorporated into organic electronic devices, such as photovoltaic cells.

  17. Systems of donor transfer

    NARCIS (Netherlands)

    F.T. de Charro (Frank); J.E.M. Akveld (Hans); E. Hessing (Ellen)

    1993-01-01

    textabstractThe development of medical knowledge has resulted in a demand in society for donor organs, but the recruitment of donor organs for transplantation is difficult. This paper aims to provide some general insights into the complex interaction processes involved. A laissez-faire policy, in

  18. Adult-to-adult living donor liver transplantation

    OpenAIRE

    Shah, Shimul A; Levy, Gary A; Adcock, Lesley D; Gallagher, Gary; Grant, David R

    2006-01-01

    The present review outlines the principles of living donor liver transplantation, donor workup, procedure and outcomes. Living donation offers a solution to the growing gap between the need for liver transplants and the limited availability of deceased donor organs. With a multidisciplinary team focused on donor safety and experienced surgeons capable of performing complex resection/reconstruction procedures, donor morbidity is low and recipient outcomes are comparable with results of decease...

  19. Direct view at colossal permittivity in donor-acceptor (Nb, In) co-doped rutile TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Suman, E-mail: suman.mandal@sscu.iisc.ernet.in; Pal, Somnath; Hazarika, Abhijit [Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru 560012 (India); Kundu, Asish K.; Menon, Krishnakumar S. R. [Surface Physics and Material Science Division, Saha Institute of Nuclear Physics, Kolkata 700064 (India); Rioult, Maxime; Belkhou, Rachid [Synchrotron SOLEIL, L' Orme des Merisiers Saint-Aubin, 91192 Gif-sur-Yvette (France)

    2016-08-29

    Topical observations of colossal permittivity (CP) with low dielectric loss in donor-acceptor cations co-doped rutile TiO{sub 2} have opened up several possibilities in microelectronics and energy-storage devices. Yet, the precise origin of the CP behavior, knowledge of which is essential to empower the device integration suitably, is highly disputed in the literature. From spectromicroscopic approach besides dielectric measurements, we explore that microscopic electronic inhomogeneities along with the nano-scale phase boundaries and the low temperature polaronic relaxation are mostly responsible for such a dielectric behavior, rather than electron-pinned defect-dipoles/grain-boundary effects as usually proposed. Donor-acceptor co-doping results in a controlled carrier-hopping inevitably influencing the dielectric loss while invariably upholding the CP value.

  20. Kidney transplant outcomes from older deceased donors

    DEFF Research Database (Denmark)

    Pippias, Maria; Jager, Kitty J; Caskey, Fergus

    2018-01-01

    As the median age of deceased kidney donors rises, updated knowledge of transplant outcomes from older deceased donors in differing donor-recipient age groups is required. Using ERA-EDTA Registry data we determined survival outcomes of kidney allografts donated from the same older deceased donor...

  1. Improvements of fill factor in solar cells based on blends of polyfluorene copolymers as electron donors

    International Nuclear Information System (INIS)

    Gadisa, Abay; Zhang, Fengling; Sharma, Deepak; Svensson, Mattias; Andersson, Mats R.; Inganaes, Olle

    2007-01-01

    The photovoltaic characteristics of solar cells based on alternating polyfluorene copolymers, poly(2,7-(9,9-dioctyl-fluorene)-alt-5,5-(4',7'-di-2-thienyl-2',1',3' -benzothia diazole)) (APFO-3), and poly(2,7-(9,9-didodecyl-fluorene)-alt-5,5-(4',7'-di-2-thienyl-2',1',3' -benzothiadiazole)) (APFO-4), blended with an electron acceptor fullerene molecule [6,6]-phenyl-C 61 -butyric acid methyl ester (PCBM), have been investigated and compared. The two copolymers have the same aromatic backbone structure but differ by the length of their alkyl side chain. The overall photovoltaic performance of the solar cells is comparable irrespective of the copolymer used in the active layer. However, the fill factor (FF) values of the devices are strongly affected by the copolymer type. Higher FF values were realized in solar cells with APFO-4 (with longer alkyl side chain)/PCBM bulk heterojunction active layer. On the other hand, devices with blends of APFO-3/APFO-4/PCBM were found to render fill factor values that are intermediate between the values obtained in solar cells with APFO-3/PCBM and APFO-4/PCBM active film. Upon using APFO-3/APFO-4 blends as electron donors, the cell efficiency can be enhanced by about 16% as compared to cells with either APFO-3 or APFO-4. The transport of holes in each polymer obeys the model of hopping transport in disordered media. However, the degree of energetic barrier against hopping was found to be larger in APFO-3. The tuning of the photovoltaic parameters will be discussed based on studies of hole transport in the pure polymer films, and morphology of blend layers. The effect of bipolar transport in PCBM will also be discussed

  2. Comparison of dynamical aspects of nonadiabatic electron, proton, and proton-coupled electron transfer reactions

    International Nuclear Information System (INIS)

    Hatcher, Elizabeth; Soudackov, Alexander; Hammes-Schiffer, Sharon

    2005-01-01

    The dynamical aspects of a model proton-coupled electron transfer (PCET) reaction in solution are analyzed with molecular dynamics simulations. The rate for nonadiabatic PCET is expressed in terms of a time-dependent probability flux correlation function. The impact of the proton donor-acceptor and solvent dynamics on the probability flux is examined. The dynamical behavior of the probability flux correlation function is dominated by a solvent damping term that depends on the energy gap correlation function. The proton donor-acceptor motion does not impact the dynamical behavior of the probability flux correlation function but does influence the magnitude of the rate. The approximations previously invoked for the calculation of PCET rates are tested. The effects of solvent damping on the proton donor-acceptor vibrational motion are found to be negligible, and the short-time solvent approximation, in which only equilibrium fluctuations of the solvent are considered, is determined to be valid for these types of reactions. The analysis of PCET reactions is compared to previous analyses of single electron and proton transfer reactions. The dynamical behavior is qualitatively similar for all three types of reactions, but the time scale of the decay of the probability flux correlation function is significantly longer for single proton transfer than for PCET and single electron transfer due to a smaller solvent reorganization energy for proton transfer

  3. Determine The Factors Affecting The Blood Donors Of Selecting Blood Donor Program Me In Western Province Sri Lanka

    Directory of Open Access Journals (Sweden)

    Perera D. A. K.

    2015-08-01

    Full Text Available Abstract Blood and blood component transfusion is one of the major therapeutic practices throughout the world. National Blood Transfusion Service NBTS in Sri Lanka requires approximately 300000 blood units annually. After initiating mobile donor programme there have been two types of blood donation programs in Sri Lanka since 1980. Since second half of first decade of 21st century Sri Lanka shifted to 100 non-replacement blood transfusion policy. That means whole blood and blood component requirement of NBTS has to be collected through mobile blood donor program and voluntary In-house blood donor program. Therefore the objective of this study was to determine the factors affecting the blood donors of selecting blood donor program in Western province Sri Lanka. Methodology This was a cross sectional descriptive study. The study composed of two components. .First the factors that cause the blood donor to select a blood donor programme second the facility survey of blood banks In-house donation. An interviewer administered questionnaire was used to collect data from a sample of 410 Mobile blood donors. Facility survey was done using a checklist. The dependant variables were the attendance of the blood donors to Mobile blood donation and In-house blood donation. Independent variables included were the factors related to socio demography service quality accessibility availability and intrinsic extrinsic motivation. The analytical statistics applied for testing the association of factors with the blood donor programme was chi-square test. The study has shown some important findings. There was significant association between income level and donating blood. Only 3.3 of In-house blood donor population was female. Majority of In-house population belonged to 30-41 age group. A statistically significant association exists between age and repeat blood donation. The female blood donors tendency of becoming repeat donors was very low. Distance problem and non

  4. Identification of rhenium donors and sulfur vacancy acceptors in layered MoS{sub 2} bulk samples

    Energy Technology Data Exchange (ETDEWEB)

    Brandão, F. D., E-mail: fdbrand@fisica.ufmg.br; Ribeiro, G. M.; Vaz, P. H.; González, J. C.; Krambrock, K. [Departamento de Física, Universidade Federal de Minas Gerais, CP 702, 30.123-970 Belo Horizonte, MG (Brazil)

    2016-06-21

    MoS{sub 2} monolayers, a two-dimensional (2D) direct semiconductor material with an energy gap of 1.9 eV, offer many opportunities to be explored in different electronic devices. Defects often play dominant roles in the electronic and optical properties of semiconductor devices. However, little experimental information about intrinsic and extrinsic defects or impurities is available for this 2D system, and even for macroscopic 3D samples for which MoS{sub 2} shows an indirect bandgap of 1.3 eV. In this work, we evaluate the nature of impurities with unpaired spins using electron paramagnetic resonance (EPR) in different geological macroscopic samples. Regarding the fact that monolayers are mostly obtained from natural crystals, we expect that the majority of impurities found in macroscopic samples are also randomly present in MoS{sub 2} monolayers. By EPR at low temperatures, rhenium donors and sulfur vacancy acceptors are identified as the main impurities in bulk MoS{sub 2} with a corresponding donor concentration of about 10{sup 8–12} defects/cm{sup 2} for MoS{sub 2} monolayer. Electrical transport experiments as a function of temperature are in good agreement with the EPR results, revealing a shallow donor state with an ionization energy of 89 meV and a concentration of 7 × 10{sup 15 }cm{sup −3}, which we attribute to rhenium, as well as a second deeper donor state with ionization energy of 241 meV with high concentration of 2 × 10{sup 19 }cm{sup −3} and net acceptor concentration of 5 × 10{sup 18 }cm{sup −3} related to sulfur vacancies.

  5. The Roles of Biofilm Conductivity and Donor Substrate Kinetics in a Mixed-Culture Biofilm Anod

    Science.gov (United States)

    We experimentally assessed kinetics and thermodynamics of electron transfer (ET) from the donor substrate (acetate) to the anode for a mixed-culture biofilm anode. We interpreted the results with a modified biofilm-conduction model consisting of three ET steps: (1) intracellular...

  6. Trends in organ donor management: 2002 to 2012.

    Science.gov (United States)

    Callahan, Devon S; Kim, Dennis; Bricker, Scott; Neville, Angela; Putnam, Brant; Smith, Jennifer; Bongard, Frederic; Plurad, David

    2014-10-01

    Refinements in donor management have resulted in increased numbers and quality of grafts after neurologic death. We hypothesize that the increased use of hormone replacement therapy (HRT) has been accompanied by improved outcomes over time. Using the Organ Procurement and Transplant Network donor database, all brain-dead donors procured from July 1, 2001 to June 30, 2012 were studied. Hormone replacement therapy was identified by an infusion of thyroid hormone. An expanded criteria donor was defined as age 60 years or older. Incidence of HRT administration and number of donors and organs recovered were calculated. Using the Organ Procurement and Transplant Network thoracic recipient database transplant list, wait times were examined. There were 74,180 brain-dead donors studied. Hormone replacement therapy use increased substantially from 25.6% to 72.3% of donors. However, mean number of organs procured per donor remained static (3.51 to 3.50; p = 0.083), and the rate of high-yield donors decreased (46.4% to 43.1%; p donors decreased (42.1% to 33.9%; p donors (22.1% to 26%). Despite this, there has been an increase in the raw number of donors (20,558 to 24,308; p organs (5,857 to 6,945; p organs per traumatic brain injury donor (4.02 to 4.12; p = 0.002) and a decrease in days on the waiting list (462.2 to 170.4 days; p donors has been accompanied by increased organ availability overall. Potential mechanisms might include successful conversion of previously unacceptable donors and improved recovery in certain subsets of donors. Copyright © 2014 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  7. Synthesis of Donor-Acceptor Conjugated Polymers by "CLICK" Polymerization for OPV applications

    DEFF Research Database (Denmark)

    Brandt, Rasmus Guldbæk; Yu, Donghong

    The intent of this study was to utilize the Copper(I)-catalyzed Azide Alkyne Cycloaddition (CuAAC) as a polymerization technique (“Click” Polymerization) for synthesizing novel π-conjugated low band gap polymers for organic photovoltaic applications (OPV). The chosen approach was to synthesize...... an alternating electron donating (donor, D) and electron withdrawing (acceptor, A) co-polymer. The chosen monomers were well known units, and the novelty lies in using the monomer units with the click methodology. An insoluble alternating copolymer consisting of 2,7-diazido-9,9-dioctyl-9Hflourene and 1...

  8. Counted Sb donors in Si quantum dots

    Science.gov (United States)

    Singh, Meenakshi; Pacheco, Jose; Bielejec, Edward; Perry, Daniel; Ten Eyck, Gregory; Bishop, Nathaniel; Wendt, Joel; Luhman, Dwight; Carroll, Malcolm; Lilly, Michael

    2015-03-01

    Deterministic control over the location and number of donors is critical for donor spin qubits in semiconductor based quantum computing. We have developed techniques using a focused ion beam and a diode detector integrated next to a silicon MOS single electron transistor to gain such control. With the diode detector operating in linear mode, the numbers of ions implanted have been counted and single ion implants have been detected. Poisson statistics in the number of ions implanted have been observed. Transport measurements performed on samples with counted number of implants have been performed and regular coulomb blockade and charge offsets observed. The capacitances to various gates are found to be in agreement with QCAD simulations for an electrostatically defined dot. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. The work was supported by Sandia National Laboratories Directed Research and Development Program. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.

  9. [Effects of groundwater level on chlorophyll fluorescence characteristics of Tamarix hispida in lower reaches of Tarim River].

    Science.gov (United States)

    Zhu, Cheng-gang; Li, Wei-hong; Ma, Jian-xin; Ma, Xiao-dong

    2010-07-01

    Based on the monitoring data of groundwater level at the typical sections in lower reaches of Tarim River, three survey plots nearby the ecological monitoring wells with groundwater depths > 6 m were selected to investigate the chlorophyll fluorescence characteristics of Tamarix hispida and its photosynthetic activity of PSII under effects of different groundwater depths. With increasing groundwater depth, the chlorophyll fluorescence parameters such as actual photochemical efficiency of PSII in the light (phi(PSII)), electron transport rate (ETR), and photochemistry quenching (q(p)) of T. hispida decreased, while the non-photochemistry quenching (q(N), NPQ) and the yield for dissipation by down-regulation (Y(NPQ)) increased remarkably, and the maximal photochemical efficiency of PSII (Fv/Fm) maintained an optimum value. All the results suggested that the PSII photosynthetic activity of T. hispida under drought stress declined with increasing groundwater depth, and the greater excess energy could result in more risk of photo-inhibition. However, the good adaptability and drought tolerance of T. hispida could make its PSII not seriously damaged, though the drought stress actually existed.

  10. Theoretical study on the application of double-donor branched organic dyes in dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yan-Hong; Liu, Rui-Rui [Gansu Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering, Key Laboratory of Eco-environment-related Polymer Materials, Ministry of Education, Northwest Normal University, Lanzhou, 730070, Gansu (China); Zhu, Kai-Li [College of Chemistry and Life Science, Gansu Normal University for Nationalities, Hezuo, 747000, Gansu (China); Song, Yan-Lin [Gansu Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering, Key Laboratory of Eco-environment-related Polymer Materials, Ministry of Education, Northwest Normal University, Lanzhou, 730070, Gansu (China); Geng, Zhi-Yuan, E-mail: zhiyuangeng@126.com [Gansu Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering, Key Laboratory of Eco-environment-related Polymer Materials, Ministry of Education, Northwest Normal University, Lanzhou, 730070, Gansu (China)

    2016-09-15

    A novel organic dye with 2D-A structure has been designed and calculated whereby density functional theory (DFT) and time-dependent density functional theory (TD-DFT) for dye-sensitized solar cells. The double-donor branched dye which was consisted of two separated light-harvesting moieties was beneficial to photocurrent generation. First, we discussed the effects of different donor chains on photoelectric performance in the dye molecule, using the DTP-B8 which was a previously reported structure as the reference. Only to conclude that the suitable length can achieve the satisfactory efficiency. Secondly, to modify and sift potential sensitizers further, three series of dyes (BC-series, CB-series and CC-series) were designed and characterized. The increased molar extinction coefficient and the red-shifted λ{sub max} was attributed to an increasing in electron conjunction. This work presented a new route to design sensitizers that provide two channels for donating more electrons and improve the final efficiency. It is expected to provide some theoretical guidance on designing and synthetizing high efficiency photosensitive dye in the future experiments. - Highlights: • A novel organic dye with 2D-A structure was designed and characterized. • The double-donor branched dye was consisted of two separated light-harvesting paths. • The double-donor branched dye was beneficial to photocurrent generation. • The molar extinction coefficient was greatly improved in this novel structure. • Four promising candidates have been screened out.

  11. Living related donor liver transplantation.

    Science.gov (United States)

    Chen, C L; Chen, Y S; Liu, P P; Chiang, Y C; Cheng, Y F; Huang, T L; Eng, H L

    1997-10-01

    Living related liver transplantation (LRLT) has been developed in response to the paediatric organ donor shortage. According to the International Living Donor Registry, 521 transplants had been performed in 515 patients between December 8 1988 and January 19 1996 in 30 centres worldwide. The overall actuarial patient and graft survival rates were 82.7 and 80%, respectively. Between June 17 1994 and November 30 1996, the authors performed 11 LRLT at the Chung Gung Memorial Hospital. The living donors consisted of 10 mothers and one father. The mean graft weight was 303 g and the mean graft recipient weight ratio was 2.2%. Donor hepatectomy was performed without vascular inflow occlusion. The intra-operative blood loss ranged from 30 mL to 120 mL with an average of 61 mL, and blood transfusion was not required in all donors both intra-operatively and during the postoperative period. Underlying diseases of the recipients were biliary atresia (n = 10) and glycogen storage disease (n = 1). The mean graft cold ischaemia time was 106 min, the mean second warm ischaemia time was 51 min and the mean interval between portal and arterial reperfusion was 81 min. The initial LRLT results were promising with all donors having been discharged without complication. The recipients experienced a few complications, all of which were manageable with early intervention. All 11 recipients are alive and well. These are encouraging results and the authors hope to expand the use of live donors for liver transplantation to cope with demand.

  12. The donor star of the X-ray pulsar X1908+075

    Science.gov (United States)

    Martínez-Núñez, S.; Sander, A.; Gímenez-García, A.; Gónzalez-Galán, A.; Torrejón, J. M.; Gónzalez-Fernández, C.; Hamann, W.-R.

    2015-06-01

    High-mass X-ray binaries consist of a massive donor star and a compact object. While several of those systems have been well studied in X-rays, little is known for most of the donor stars as they are often heavily obscured in the optical and ultraviolet regime. There is an opportunity to observe them at infrared wavelengths, however. The goal of this study is to obtain the stellar and wind parameters of the donor star in the X1908+075 high-mass X-ray binary system with a stellar atmosphere model to check whether previous studies from X-ray observations and spectral morphology lead to a sufficient description of the donor star. We obtained H- and K-band spectra of X1908+075 and analysed them with the Potsdam Wolf-Rayet (PoWR) model atmosphere code. For the first time, we calculated a stellar atmosphere model for the donor star, whose main parameters are: Mspec = 15 ± 6 M⊙, T∗ = 23-3+6 kK, log geff = 3.0 ± 0.2 and log L/L⊙ = 4.81 ± 0.25. The obtained parameters point towards an early B-type (B0-B3) star, probably in a supergiant phase. Moreover we determined a more accurate distance to the system of 4.85 ± 0.50 kpc than the previously reported value. Based on observations made with the William Herschel Telescope operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.Appendix A is available in electronic form at http://www.aanda.org

  13. Why search for a sperm donor online? The experiences of women searching for and contacting sperm donors on the internet.

    Science.gov (United States)

    Jadva, Vasanti; Freeman, Tabitha; Tranfield, Erika; Golombok, Susan

    2018-06-01

    Whilst studies have examined the experiences of women who use clinic donors, to date there has been limited research investigating women's motivations and experiences of searching for a sperm donor online. A total of 429 women looking for a sperm donor on Pride Angel (a website that facilitates contact between donors and recipients) completed an online survey. Fifty-eight percent (249) saw advantages of obtaining donated sperm online with the most common advantage reported as being able to connect with and meet the donor (n = 50 (24%)). A third (n = 157 (37%)) of the participants gave disadvantages, the most common reported was encountering 'dishonest donors' (n = 63 (40%)). Most recipients (n = 181 (61%)) wanted the donor to be 'just a donor' (i.e. to provide sperm and have no further contact). Whilst it was important for recipients to know the identity of the donor, some did not see this as important for the child and thus the level of information that parents have about the donor, and that which the child has, can differ. Finding a donor online blurs the distinction between categories of 'anonymous', 'known' and 'identity release' donations. Whilst the survey had a large sample size, the representativeness of the sample is not known.

  14. Optimum energy levels and offsets for organic donor/acceptor binary photovoltaic materials and solar cells

    International Nuclear Information System (INIS)

    Sun, S.-S.

    2005-01-01

    Optimum frontier orbital energy levels and offsets of an organic donor/acceptor binary type photovoltaic material have been analyzed using classic Marcus electron transfer theory in order to achieve the most efficient photo induced charge separation. This study reveals that, an exciton quenching parameter (EQP) yields one optimum donor/acceptor frontier orbital energy offset that equals the sum of the exciton binding energy and the charge separation reorganization energy, where the photo generated excitons are converted into charges most efficiently. A recombination quenching parameter (RQP) yields a second optimum donor/acceptor energy offset where the ratio of charge separation rate constant over charge recombination rate constant becomes largest. It is desirable that the maximum RQP is coincidence or close to the maximum EQP. A third energy offset is also identified where charge recombination becomes most severe. It is desirable that the most severe charge recombination offset is far away from maximum EQP offset. These findings are very critical for evaluating and fine tuning frontier orbital energy levels of a donor/acceptor pair in order to realize high efficiency organic photovoltaic materials

  15. Inactivation of high-risk human papillomaviruses by Holder pasteurization: implications for donor human milk banking.

    Science.gov (United States)

    Donalisio, Manuela; Cagno, Valeria; Vallino, Marta; Moro, Guido E; Arslanoglu, Sertac; Tonetto, Paola; Bertino, Enrico; Lembo, David

    2014-01-01

    Several studies have recently reported the detection of oncogenic human papillomaviruses (HPV) in human milk of a minority of lactating mothers. These findings raised safety concerns in the context of human donor milk banking given the potential risk of HPV transmission to recipient infants. The aim of this study was to investigate whether the Holder pasteurization, a procedure currently in use in human donor milk banks for milk pasteurization, completely inactivates high-risk and low-risk HPV. HPV pseudoviruses (PsV) were generated, spiked into cell culture medium or donor human milk and subjected to thermal inactivation. HPV PsV infectivity and morphological integrity was analyzed by cell-based assay and by electron microscopy, respectively. The Holder pasteurization completely inactivated the infectivity of high-risk (types 16 and 18) and low-risk (type 6) HPV both in cell culture medium and in human milk causing PsV particle disassembly. The results presented here indicate that the Holder pasteurization is an efficient procedure to inactivate high-risk and low-risk HPV thus preventing the potential risk of their transmission through human donor milk.

  16. Microtransfer printing of metal ink patterns onto plastic substrates utilizing an adhesion-controlled polymeric donor layer

    International Nuclear Information System (INIS)

    Park, Ji-Sub; Choi, Jun-Chan; Park, Min-Kyu; Bae, Jeong Min; Bae, Jin-Hyuk; Kim, Hak-Rin

    2016-01-01

    We propose a method for transfer-printed electrode patterns onto flexible/plastic substrates, specifically intended for metal ink that requires a high sintering temperature. Typically, metal-ink-based electrodes cannot be picked up for microtransfer printing because the adhesion between the electrodes and the donor substrate greatly increases after the sintering process due to the binding materials. We introduced a polymeric donor layer between the printed electrodes and the donor substrate and effectively reduced the adhesion between the Ag pattern and the polymeric donor layer by controlling the interfacial contact area. After completing a wet-etching process for the polymeric donor layer, we obtained Ag patterns supported on the fine polymeric anchor structures; the Ag patterns could be picked up onto the stamp surface even after the sintering process by utilizing the viscoelastic properties of the elastomeric stamp with a pick-up velocity control. The proposed method enables highly conductive metal-ink-based electrode patterns to be applied on thermally weak plastic substrates via an all-solution process. Metal electrodes transferred onto a film showed superior electrical and mechanical stability under the bending stress test required for use in printed flexible electronics. (paper)

  17. Liver transplantation from maastricht category 2 non-heart-beating donors: a source to increase the donor pool?

    Science.gov (United States)

    Otero, A; Gómez-Gutiérrez, M; Suárez, F; Arnal, F; Fernández-García, A; Aguirrezabalaga, J; García-Buitrón, J; Alvarez, J; Máñez, R

    2004-04-01

    The demand for liver transplantation has increasingly exceeded the supply of cadaver donor organs. Non-heart-beating donors (NHBDs) may be an alternative to increase the cadaver donor pool. The outcome of 20 liver transplants from Maastricht category 2 NHBD was compared with that of 40 liver transplants from heart-beating donors (HBDs). After unsuccessful cardiopulmonary resuscitation (CPR), cardiopulmonary support with simultaneous application of chest and abdominal compression (CPS; n = 6) or cardiopulmonary bypass (CPB; n = 14) was used to maintain the donors. At a minimum follow-up of 2 years, actuarial patient and graft survival rates with livers from Maastricht category 2 NHBD were 80% and 55%, respectively. Transplantation of organs from these donors was associated with a significantly higher incidence of primary nonfunction, biliary complications, and more severe initial liver dysfunction compared with organs from HBDs. The graft survival rates was 83% for livers from NHBDs preserved with CPS and 42% in those maintained with CPB.

  18. Heteromolecular metal–organic interfaces: Electronic and structural fingerprints of chemical bonding

    International Nuclear Information System (INIS)

    Stadtmüller, Benjamin; Schröder, Sonja; Kumpf, Christian

    2015-01-01

    Highlights: • We present a study of molecular donor–acceptor blends adsorbed on Ag(1 1 1). • Geometric and electronic structure of blends and pristine phases are compared. • The surface bonding of the acceptor is strengthened, that of the donor weakened. • But counter intuitively, the acceptor (donor) bond length becomes larger (smaller). • This contradiction is resolved by a model based on charge transfer via the surface. - Abstract: Beside the fact that they attract highest interest in the field of organic electronics, heteromolecular structures adsorbed on metal surfaces, in particular donor–acceptor blends, became a popular field in fundamental science, possibly since some surprising and unexpected behaviors were found for such systems. One is the apparent breaking of a rather fundamental rule in chemistry, namely that stronger chemical bonds go along with shorter bond lengths, as it is, e.g., well-known for the sequence from single to triple bonds. In this review we summarize the results of heteromolecular monolayer structures adsorbed on Ag(1 1 1), which – regarding this rule – behave in a counterintuitive way. The charge acceptor moves away from the substrate while its electronic structure indicates a stronger chemical interaction, indicated by a shift of the formerly lowest unoccupied molecular orbital toward higher binding energies. The donor behaves in the opposite way, it gives away charge, hence, electronically the bonding to the surface becomes weaker, but at the same time it also approaches the surface. It looks as if the concordant link between electronic and geometric structure was broken. But both effects can be explained by a substrate-mediated charge transfer from the donor to the acceptor. The charge reorganization going along with this transfer is responsible for both, the lifting-up of the acceptor molecule and the filling of its LUMO, and also for the reversed effects at the donor molecules. In the end, both molecules

  19. Diels-Alder cyclo-addition as an efficient tool for linking π-donors onto fullerene C60

    International Nuclear Information System (INIS)

    Hudhomme, P.

    2006-01-01

    Diels-Alder reaction of endo-cyclic, acyclic 1,3-dienes or (hetero) o-quinodimethanes with the dienophilic fullerene C 60 is presented as an efficient tool for linking electro-active units giving rise to systems where both the donor and C 60 partners take up well defined volumes and orientations with respect to one another. While porphyrin is the most frequently used electron donor in artificial photosynthetic models, C 60 -based tetrathiafulvalene (TTF) or p-conjugated oligomer adducts remain interesting candidates for the preparation of photovoltaic devices. In this account, we focus on the use of the Diels-Alder cyclo-addition and its use in the synthesis of TTF-C 60 dyads, (TTF) n -C 60 polyads and C 60 -TTF-C 60 dumbbells as part of ongoing research into materials which display efficient photo-induced electron transfer. (author)

  20. Moessbauer spectroscopy in studies of photosynthesis

    International Nuclear Information System (INIS)

    Burda, Kvetoslava

    2008-01-01

    Photosynthesis is a process occurring in certain species of bacteria, algae and higher plants. It transforms solar energy into various forms of energy-rich organic molecules. Photosystem II (PSII) is the 'heart' of the photosynthetic apparatus because it delivers electrons and protons for further steps of the light-driven phases of photosynthesis. There are two enigmatic iron binding structures within the core of photosynthetic apparatus, which play an important role in the electron transfer within PSII. Many investigations focus on the determination of their function which is the key to the understanding of the molecular mechanism of the energy and electron transfer within PSII. Among many methods used in this research field, the Moessbauer spectroscopy is a unique one, which gives the possibility to study changes of the valence and spin states of those two iron sites and the dynamical properties of their protein matrix in the presence of various physiological and stress conditions.

  1. Mössbauer spectroscopy in studies of photosynthesis

    Science.gov (United States)

    Burda, Květoslava

    2008-02-01

    Photosynthesis is a process occurring in certain species of bacteria, algae and higher plants. It transforms solar energy into various forms of energy-rich organic molecules. Photosystem II (PSII) is the “heart” of the photosynthetic apparatus because it delivers electrons and protons for further steps of the light-driven phases of photosynthesis. There are two enigmatic iron binding structures within the core of photosynthetic apparatus, which play an important role in the electron transfer within PSII. Many investigations focus on the determination of their function which is the key to the understanding of the molecular mechanism of the energy and electron transfer within PSII. Among many methods used in this research field, the Mössbauer spectroscopy is a unique one, which gives the possibility to study changes of the valence and spin states of those two iron sites and the dynamical properties of their protein matrix in the presence of various physiological and stress conditions.

  2. Exciplex formation and electron transfer in polychromophoric systems

    International Nuclear Information System (INIS)

    Yang, N.C.C.; Minsek, D.W.; Johnson, D.G.; Wasielewski, M.R.

    1989-01-01

    This paper discusses the rates of excited anthracene decay and intramolecular exciplex formation from biochromophoric molecules containing an anthryl group and an amine donor which vary with the length of the chain link, the nature of the amine donor and the viscosity of the medium. According to the authors, the results indicate that the intramolecular exciplex formation may proceed via more than one pathway. Experimental results suggest that electron transfer from the amino donor to the excited anthryl group may play a role in the exciplex formation in viscous alkanes

  3. The healthy donor effect impacts self-reported physical and mental health - results from the Danish Blood Donor Study (DBDS)

    DEFF Research Database (Denmark)

    Rigas, A S; Skytthe, A; Erikstrup, C

    2017-01-01

    AIMS: This study aimed at quantifying the healthy donor effect by comparing self-perceived mental and physical health between blood donors and non-donors. BACKGROUND: In theory, the selection process known as the healthy donor effect should result in better self-perceived, health-related quality...... of life in donors than in non-donors. METHODS: The Short Form-12 data from the Danish Twin Registry (DTR) was compared with the data from the Danish Blood Donor Study (DBDS). Data on age, sex and smoking status were included in the analyses. The multivariable linear regression analysis was stratified......-perceived mental health was associated with a blood donor. With the increase in age, better self-perceived physical health was associated with blood donation....

  4. Secrets and disclosure in donor conception.

    Science.gov (United States)

    Frith, Lucy; Blyth, Eric; Crawshaw, Marilyn; van den Akker, Olga

    2018-01-01

    This article considers the disclosure, sharing and exchange of information on being donor conceived within families, drawing on data from a study undertaken with donor-conceived adults registered with UK Donor Link (a voluntary DNA-linking register). This paper considers the narratives of how respondents found out they were donor-conceived and what events triggered disclosure of this information. This paper then goes on to examine the role secrecy played in their family life and uses the concept of 'display' to explore how secrecy affected their relationships with their immediate and extended family. Secrets are notoriously 'leaky' and we found complex patterns of knowing and uncertainty about whom in the family knew that the person was donor-conceived. We argue that what is kept secret and from whom provides insights into the multifaceted web of social relationships that can be created by donor-conception, and how knowledge can be managed and controlled in attempts to display and maintain family narratives of biogenetic connection. © 2017 Foundation for the Sociology of Health & Illness.

  5. Protocol for a national blood transfusion data warehouse from donor to recipient.

    Science.gov (United States)

    van Hoeven, Loan R; Hooftman, Babette H; Janssen, Mart P; de Bruijne, Martine C; de Vooght, Karen M K; Kemper, Peter; Koopman, Maria M W

    2016-08-04

    Blood transfusion has health-related, economical and safety implications. In order to optimise the transfusion chain, comprehensive research data are needed. The Dutch Transfusion Data warehouse (DTD) project aims to establish a data warehouse where data from donors and transfusion recipients are linked. This paper describes the design of the data warehouse, challenges and illustrative applications. Quantitative data on blood donors (eg, age, blood group, antibodies) and products (type of product, processing, storage time) are obtained from the national blood bank. These are linked to data on the transfusion recipients (eg, transfusions administered, patient diagnosis, surgical procedures, laboratory parameters), which are extracted from hospital electronic health records. Expected scientific contributions are illustrated for 4 applications: determine risk factors, predict blood use, benchmark blood use and optimise process efficiency. For each application, examples of research questions are given and analyses planned. The DTD project aims to build a national, continuously updated transfusion data warehouse. These data have a wide range of applications, on the donor/production side, recipient studies on blood usage and benchmarking and donor-recipient studies, which ultimately can contribute to the efficiency and safety of blood transfusion. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  6. Organ donors: deceased or alive? Quo vadis?

    Science.gov (United States)

    Rozental, R

    2006-01-01

    Irrespectively of universal shortage of donor organs there is a tendency of increasing the number of transplantations from living and deceased donors. Each of these two methods has positive and negative features. The main obstacles using living donors are health hazard, necessity to solve certain donor's social and psychological problems, possibility of organ trade and moving. The main problems connected with organ retrieval from deceased donors are possible conflicts with public opinion: difficulties in interpretation of brain death, legislation, obtaining of informed consent from donor's relatives, etc. Future progress in organ transplantation may take place through activation of organ retrieval from deceased donors. The most perspective ways are change to presumed consent in all countries, establishing of centralized system of donor detection and registration, intensification of transplant coordination, active contacts with mass-media, etc. It is necessary to increase (enhance) participation of the members of the public in organ donation process, to develop solidarity among the public members and to involve public authorities to deal with this problem. Bioethical standards should be put in accordance with common progress and some ethical traditions should be changed.

  7. Langmuir-Blodgett and X-ray diffraction studies of isolated photosystem II reaction centers in monolayers and multilayers: physical dimensions of the complex.

    Science.gov (United States)

    Uphaus, R A; Fang, J Y; Picorel, R; Chumanov, G; Wang, J Y; Cotton, T M; Seibert, M

    1997-04-01

    The photosystem II (PSII) reaction center (RC) is a hydrophobic intrinsic protein complex that drives the water-oxidation process of photosynthesis. Unlike the bacterial RC complex, an X-ray crystal structure of the PSII RC is not available. In order to determine the physical dimensions of the isolated PSII RC complex, we applied Langmuir techniques to determine the cross-sectional area of an isolated RC in a condensed monolayer film. Low-angle X-ray diffraction results obtained by examining Langmuir-Blodgett multilayer films of alternating PSII RC/Cd stearate monolayers were used to determine the length (or height; z-direction, perpendicular to the plane of the original membrane) of the complex. The values obtained for a PSII RC monomer were 26 nm2 and 4.8 nm, respectively, and the structural integrity of the RC in the multilayer film was confirmed by several approaches. Assuming a cylindrical-type RC structure, the above dimensions lead to a predicted volume of about 125 nm3. This value is very close to the expected volume of 118 nm3, calculated from the known molecular weight and partial specific volume of the PSII RC proteins. This same type of comparison was also made with the Rhodobacter sphaeroides RC based on published data, and we conclude that the PSII RC is much shorter in length and has a more regular solid geometric structure than the bacterial RC. Furthermore, the above dimensions of the PSII RC and those of PSII core (RC plus proximal antenna) proteins protruding outside the plane of the PSII membrane into the lumenal space as imaged by scanning tunneling microscopy (Seibert, Aust. J. Pl. Physiol. 22, 161-166, 1995) fit easily into the known dimensions of the PSII core complex visualized by others as electron-density projection maps. From this we conclude that the in situ PSII core complex is a dimeric structure containing two copies of the PSII RC.

  8. Oocyte cryopreservation for donor egg banking.

    Science.gov (United States)

    Cobo, Ana; Remohí, José; Chang, Ching-Chien; Nagy, Zsolt Peter

    2011-09-01

    Oocyte donation is an efficient alternative to using own oocytes in IVF treatment for different indications. Unfortunately, 'traditional' (fresh) egg donations are challenged with inefficiency, difficulties of synchronization, very long waiting periods and lack of quarantine measures. Given the recent improvements in the efficiency of oocyte cryopreservation, it is reasonable to examine if egg donation through oocyte cryopreservation has merits. The objective of the current manuscript is to review existing literature on this topic and to report on the most recent outcomes from two established donor cryobank centres. Reports on egg donation using slow freezing are scarce and though results are encouraging, outcomes are not yet comparable to a fresh egg donation treatment. Vitrification on the other hand appears to provide high survival rates (90%) of donor oocytes and comparable fertilization, embryo development, implantation and pregnancy rates to traditional (fresh) egg donation. Besides the excellent outcomes, the ease of use for both donors and recipients, higher efficiency, lower cost and avoiding the problem of synchronization are all features associated with the benefit of a donor egg cryobank and makes it likely that this approach becomes the future standard of care. Oocyte donation is one of the last resorts in IVF treatment for couples challenged with infertility problems. However, traditional (fresh) egg donation, as it is performed today, is not very efficient, as typically all eggs from one donor are given to only one recipient, it is arduous as it requires an excellent synchronization between the donor and recipient and there are months or years of waiting time. Because of the development of an efficient oocyte cryopreservation technique, it is now possible to cryo-store donor (as well as non-donor) eggs, maintaining their viability and allowing their use whenever there is demand. Therefore, creating a donor oocyte cryobank would carry many advantages

  9. Donor–Acceptor Copolymers of Relevance for Organic Photovoltaics: A Theoretical Investigation of the Impact of Chemical Structure Modifications on the Electronic and Optical Properties

    KAUST Repository

    Pandey, Laxman

    2012-08-28

    We systematically investigate at the density functional theory level how changes to the chemical structure of donor-acceptor copolymers used in a number of organic electronics applications influences the intrinsic geometric, electronic, and optical properties. We consider the combination of two distinct donors, where a central five-membered ring is fused on both sides by either a thiophene or a benzene ring, with 12 different acceptors linked to the donor either directly or through thienyl linkages. The interplay between the electron richness/deficiency of the subunits as well as the evolution of the frontier electronic levels of the isolated donors/acceptors plays a significant role in determining the electronic and optical properties of the copolymers. © 2012 American Chemical Society.

  10. Biogeochemical Modeling of In Situ U(VI) Reduction and Immobilization with Emulsified Vegetable Oil as the Electron Donor at a Field Site in Oak Ridge, Tennessee

    Science.gov (United States)

    Tang, G.; Parker, J.; Wu, W.; Schadt, C. W.; Watson, D. B.; Brooks, S. C.; Orifrc Team

    2011-12-01

    A comprehensive biogeochemical model was developed to quantitatively describe the coupled hydrologic, geochemical and microbiological processes that occurred following injection of emulsified vegetable oil (EVO) as the electron donor to immobilize U(VI) at the Oak Ridge Integrated Field Research Challenge site (ORIFRC) in Tennessee. The model couples the degradation of EVO, production and oxidation of long-chain fatty acids (LCFA), glycerol, hydrogen and acetate, reduction of nitrate, manganese, ferrous iron, sulfate and uranium, and methanoganesis with growth of multiple microbial groups. The model describes the evolution of geochemistry and microbial populations not only in the aqueous phase as typically observed, but also in the mineral phase and therefore enables us to evaluate the applicability of rates from the literature for field scale assessment, estimate the retention and degradation rates of EVO and LCFA, and assess the influence of the coupled processes on fate and transport of U(VI). Our results suggested that syntrophic bacteria or metal reducers might catalyze LCFA oxidation in the downstream locations when sulfate was consumed, and competition between methanogens and others for electron donors and slow growth of methanogen might contribute to the sustained reducing condition. Among the large amount of hydrologic, geochemical and microbiological parameter values, the initial biomass, and the interactions (e.g., inhibition) of the microbial functional groups, and the rate and extent of Mn and Fe oxide reduction appear as the major sources of uncertainty. Our model provides a platform to conduct numerical experiments to study these interactions, and could be useful for further iterative experimental and modeling investigations into the bioreductive immobiliztion of radionuclide and metal contaminants in the subsurface.

  11. Donor transplant programme

    International Nuclear Information System (INIS)

    Abu Bakar Sulaiman

    1999-01-01

    The transplantation of organs and tissues from one human to another human has become an essential and well established form of therapy for many types of organ and tissue failure. In Malaysia, kidney, cornea and bone marrow transplantation are well established. Recently, liver, bone and heart transplanation have been performed. Unfortunately, because of the lack of cadaveric organ donation, only a limited number of solid organ transplantation have been performed. The cadaveric organ donor rate in Malaysia is low at less than one per million population. The first tissue transplanted in Malaysia was the cornea which was performed in the early 1970s. At that time and even now the majority of corneas came from Sri Lanka. The first kidney transplant was performed in 1975 from a live related donor. The majority of the 629 kidney transplants done at Hospital Kuala Lumpur to date have been from live related donors. Only 35 were from cadaver donors. Similarly, the liver transplantation programme which started in 1995 are from live related donors. A more concerted effort has been made recently to increase the awareness of the public and the health professionals on organ and tissue donation. This national effort to promote organ and tissue donation seems to have gathered momentum in 1997 with the first heart transplant successfully performed at the National Heart Institute. The rate of cadaveric donors has also increased from a previous average of I to 2 per year to 6 per year in the last one year. These developments are most encouraging and may signal the coming of age of our transplantati on programme. The Ministry of Health in conjunction with various institutions, organizations and professional groups, have taken a number of proactive measures to facilitate the development of the cadaveric organ donation programme. Efforts to increase public awareness and to overcome the negative cultural attitude towards organ donation have been intensified. Equally important are efforts

  12. Establishment of an oocyte donor program. Donor screening and selection.

    Science.gov (United States)

    Quigley, M M; Collins, R L; Schover, L R

    1991-01-01

    IVF with donated oocytes, followed by embryo placement in the uterus of a recipient who has been primed with exogenous steroids, is a successful treatment for special cases of infertility. Preliminary results indicate that the success rate in this situation is even greater than that usually seen with normal IVF (with placement of the embryos back into the uteri of the women from whom the oocytes were recovered). Although different sources for donated oocytes have been identified, the use of "excess" oocytes from IVF cycles and the attempted collection of oocytes at the time of otherwise indicated pelvic surgery have ethical and practical problems associated with their use. We have herein described the establishment of a successful program relying on anonymous volunteers who go through ovarian stimulation, monitoring, and oocyte recovery procedures solely to donate oocytes. The potential donors go through an exhaustive screening and education process before they are accepted in the program. Psychological evaluation of our potential donors indicated a great degree of turmoil in their backgrounds and a wide variety of motivations for actually participating. Despite the extensive educational and screening process, a substantial percentage of the donors did not complete a donation cycle, having either voluntarily withdrawn or been dropped because of lack of compliance. Further investigation of the psychological aspects of participating in such a program is certainly warranted. The use of donated oocytes to alleviate specific types of infertility is quite successful, but the application of this treatment is likely to be limited by the relative unavailability of suitable oocyte donors.

  13. Self-assembly of Hydrazide-based Heterodimers Driven by Hydrogen Bonding and Donor-Acceptor Interaction

    Institute of Scientific and Technical Information of China (English)

    FENG,Dai-Jun; WANG,Peng; LI,Xiao-Qiang; LI,Zhan-Ting

    2006-01-01

    A new series of hydrogen bonding-driven heterodimers have been self-assembled in chloroform from hydrazide-based monomers. Additional intermolecular donor-acceptor interaction between the electron-rich bis(p-phenylene)-34-crown-10 unit and the electron-deficient naphthalene diimide unit has been utilized to increase the stability of the dimmers, and pronounced cooperativity of the two discrete non-covalent forces to stabilize the dimer has been revealed by the quantitative 1H (2D) NMR and UV-Vis experiments.

  14. Type IV pili of Acidithiobacillus ferrooxidans can transfer electrons from extracellular electron donors.

    Science.gov (United States)

    Li, Yongquan; Li, Hongyu

    2014-03-01

    Studies on Acidithiobacillus ferrooxidans accepting electrons from Fe(II) have previously focused on cytochrome c. However, we have discovered that, besides cytochrome c, type IV pili (Tfp) can transfer electrons. Here, we report conduction by Tfp of A. ferrooxidans analyzed with a conducting-probe atomic force microscope (AFM). The results indicate that the Tfp of A. ferrooxidans are highly conductive. The genome sequence of A. ferrooxidans ATCC 23270 contains two genes, pilV and pilW, which code for pilin domain proteins with the conserved amino acids characteristic of Tfp. Multiple alignment analysis of the PilV and PilW (pilin) proteins indicated that pilV is the adhesin gene while pilW codes for the major protein element of Tfp. The likely function of Tfp is to complete the circuit between the cell surface and Fe(II) oxides. These results indicate that Tfp of A. ferrooxidans might serve as biological nanowires transferring electrons from the surface of Fe(II) oxides to the cell surface. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Seropositive abdominal and thoracic donor organs are largely underutilized.

    Science.gov (United States)

    Taylor, R M; Pietroski, R E; Hagan, M; Eisenbrey, A B; Fontana, R J

    2010-12-01

    The aim of this study was to describe the epidemiology and utilization of anti-hepatitis B core protein(+) and anti-hepatitis C virus(+) organ donor referrals in a large organ procurement organization. Between 1995 and 2006, 3,134 deceased organ donor referrals were tested for anti-HBc and anti-HCV using commercial assays. The prevalence of anti-HCV(+) organ donor referrals significantly increased from 3.4% in 1994-1996 to 8.1% in 2003-2005 (P organ donor referrals remained unchanged at 3%-4% (P = .20). The 112 anti-HBc(+) (3.5%) and 173 anti-HCV(+) (5.5%) organ donor referrals were significantly older and more likely to be noncaucasian than seronegative organ donor referrals (P donor organs were significantly lower compared with seronegative organ donors (P donors over time (21% vs 46%; P = .026), whereas utilization of anti-HCV(+) liver donors remained unchanged over time (5% vs 18%; P = .303). In summary, the proportion of anti-HCV(+) organ donor referrals has significantly increased and the proportion of anti-HBc(+) organ donor referrals has remained stable. Both thoracic and abdominal organs from seropositive donors are largely underutilized. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. Anonymous living liver donation: donor profiles and outcomes.

    Science.gov (United States)

    Reichman, T W; Fox, A; Adcock, L; Wright, L; Abbey, S E; Levy, G; Grant, D R

    2010-09-01

    There are no published series of the assessment process, profiles and outcomes of anonymous, directed or nondirected live liver donation. The outcomes of 29 consecutive potential anonymous liver donors at our center were assessed. We used our standard live liver assessment process, augmented with the following additional acceptance criteria: a logical rationale for donation, a history of social altruism, strong social supports and a willingness to maintain confidentiality of patient information. Seventeen potential donors were rejected and 12 donors were ultimately accepted (six male, six female). All donors were strongly motivated by a desire and sense of responsibility to help others. Four donations were directed toward recipients who undertook media appeals. The donor operations included five left lateral segmentectomies and seven right hepatectomies. The overall donor morbidity was 40% with one patient having a transient Clavien level 3 complication (a pneumothorax). All donors are currently well. None expressed regret about their decision to donate, and all volunteered the opinion that donation had improved their lives. The standard live liver donor assessment process plus our additional requirements appears to provide a robust assessment process for the selection of anonymous live liver donors. Acceptance of anonymous donors enlarges the donor liver pool. © 2010 The Authors Journal compilation © 2010 The American Society of Transplantation and the American Society of Transplant Surgeons.

  17. Factors influencing the virological testing of cornea donors.

    Science.gov (United States)

    Röck, Tobias; Beck, Robert; Jürgens, Stefan; Bartz-Schmidt, Karl Ulrich; Bramkamp, Matthias; Thaler, Sebastian; Röck, Daniel

    2017-11-01

    To assess the influence of donor, environment, and logistical factors on the results of virological testing of blood samples from cornea donors.Data from 670 consecutive cornea donors were analyzed retrospectively. Logistic regression analysis was used to assess the influence of different factors on the results of virological testing of blood samples from cornea donors.The mean annual rate of donors with serology-reactive or not evaluable result was 14.8% (99 of 670) (range 11.9%-16.9%). The cause of donor death by cancer increased the risk of serology-reactive or not evaluable result (P = .0300). Prolonged time between death and post mortem blood removal was associated with a higher rate of serology-reactive or not evaluable result (P donors, sex, and donor age had no significant impact on the results of virological testing of blood samples from cornea donors.The cause of donor death by cancer and a prolonged time between death and post mortem blood removal seem to be mainly responsible for serology-reactive or not evaluable result of blood samples from cornea donors. The percentage of discarded corneas caused by serology-reactive or not evaluable result may be reduced by shortening the period of time between death and post mortem blood removal. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.

  18. New hydrogen donors in germanium

    International Nuclear Information System (INIS)

    Pokotilo, Yu.M.; Petukh, A.N.; Litvinov, V.V.

    2003-01-01

    The electrophysical properties of the n-type conductivity germanium, irradiated through protons, is studied by the volt-farad method. It is shown that the heat treatment of the implanted germanium at the temperature of 200-300 deg C leads to formation of the fast-diffusing second-rate donors. It is established that the diffusion coefficient of the identified donors coincides with the diffusion coefficient of the atomic hydrogen with an account of the capture on the traps. The conclusion is made, that the atomic hydrogen is the second-rate donor center in germanium [ru

  19. Injection-limited electron current in a methanofullerene

    NARCIS (Netherlands)

    Duren, J.K.J. van; Mihailetchi, V.D.; Blom, P.W.M.; Woudenbergh, T. van; Hummelen, J.C.; Rispens, M.T.; Janssen, R.A.J.; Wienk, M.M.

    2003-01-01

    The dark current of bulk-heterojunction photodiodes consisting of a blend of a methanofullerene (PCBM) as n-type electron acceptor and a dialkoxy-(p-phenylene vinylene) (OC1C10-PPV) as a p-type electron donor sandwiched between electrodes with different work functions has been investigated. With

  20. Nonlinear optical response in a zincblende GaN cylindrical quantum dot with donor impurity center

    Energy Technology Data Exchange (ETDEWEB)

    Hoyos, Jaime H. [Departamento de Ciencias Básicas, Universidad de Medellín, Cra. 87 No. 30-65, Medellín (Colombia); Correa, J.D., E-mail: jcorrea@udem.edu.co [Departamento de Ciencias Básicas, Universidad de Medellín, Cra. 87 No. 30-65, Medellín (Colombia); Mora-Ramos, M.E. [Centro de Investigación en Ciencias, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, CP 62209 Cuernavaca, Morelos (Mexico); Duque, C.A. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia)

    2016-03-01

    We calculate the nonlinear optical absorption coefficient of a cylindrical zincblende GaN-based quantum dot. For this purpose, we consider Coulomb interactions between electrons and an impurity ionized donor atom. The electron-donor-impurity spectrum and the associated quantum states are calculated using the effective mass approximation with a parabolic potential energy model describing both the radial and axial electron confinement. We also include the effects of the hydrostatic pressure and external electrostatic fields. The energy spectrum is obtained through an expansion of the eigenstates as a linear combination of Gaussian-type functions which reduces the computational effort since all the matrix elements are obtained analytically. Therefore, the numerical problem is reduced to the direct diagonalization of the Hamiltonian. The obtained energies are used in the evaluation of the dielectric susceptibility and the nonlinear optical absorption coefficient within a modified two-level approach in a rotating wave approximation. This quantity is investigated as a function of the quantum dot dimensions, the impurity position, the external electric field intensity and the hydrostatic pressure. The results of this research could be important in the design and fabrication of zincblende GaN-quantum-dot-based electro-optical devices.

  1. Nonlinear optical response in a zincblende GaN cylindrical quantum dot with donor impurity center

    International Nuclear Information System (INIS)

    Hoyos, Jaime H.; Correa, J.D.; Mora-Ramos, M.E.; Duque, C.A.

    2016-01-01

    We calculate the nonlinear optical absorption coefficient of a cylindrical zincblende GaN-based quantum dot. For this purpose, we consider Coulomb interactions between electrons and an impurity ionized donor atom. The electron-donor-impurity spectrum and the associated quantum states are calculated using the effective mass approximation with a parabolic potential energy model describing both the radial and axial electron confinement. We also include the effects of the hydrostatic pressure and external electrostatic fields. The energy spectrum is obtained through an expansion of the eigenstates as a linear combination of Gaussian-type functions which reduces the computational effort since all the matrix elements are obtained analytically. Therefore, the numerical problem is reduced to the direct diagonalization of the Hamiltonian. The obtained energies are used in the evaluation of the dielectric susceptibility and the nonlinear optical absorption coefficient within a modified two-level approach in a rotating wave approximation. This quantity is investigated as a function of the quantum dot dimensions, the impurity position, the external electric field intensity and the hydrostatic pressure. The results of this research could be important in the design and fabrication of zincblende GaN-quantum-dot-based electro-optical devices.

  2. Profile of Heart Donors from the Human Valve Bank of the Santa Casa de Misericórdia de Curitiba.

    Science.gov (United States)

    Ferreira, Renata Maria; da Costa, Marise Teresinha Brenner Affonso; Canciglieri Junior, Osiris; Sant'Anna, Ângelo Márcio Oliveira

    2016-04-01

    Human heart valves are used as replacement valves and have satisfactory functional results compared with conventional prostheses. Characterize the profile of effective heart donors from the human valve bank of the santa casa de misericórdia de curitiba and analyze the association between the profile variables. It consists of a retrospective and quantitative study of electronic medical records from heart donors for heart valves. every heart donation made to the bank between january 2004 and december 2014 was studied. 2,149 donations were analyzed, from donors aged 0 to 71 years old, with an average of 34.9 ± 15.03 years old. most donors were male 65.7% (n=1,411) and 34.3% (n=738) were female. among the most frequent causes of the donors' death are trauma at 53% (n=1,139) and cerebral vascular accident at 34.2% (n=735). there was significant statistical association between the analyzed variables. There has been an improvement in brazil's donation rate, being essential that the tissue banks work together with the state and federal district centers for notification, procurement and distribution of organs in order to increase the number of donors.

  3. Negotiating boundaries: Accessing donor gametes in India.

    Science.gov (United States)

    Widge, A; Cleland, J

    2011-01-01

    This paper documents how couples and providers access donor materials for conception in the Indian context and perceptions about using them. The objective is to facilitate understanding of critical issues and relevant concerns. A postal survey was conducted with a sample of 6000 gynaecologists and in-depth interviews were -conducted with 39 gynaecologists in four cities. Donor gametes are relatively more acceptable than a few years ago, especially if confidentiality can be -maintained, though lack of availability of donor materials is sometimes an impediment to infertility treatment. Donor sperms are usually accessed from in-house or commercial sperm banks, pathology laboratories, IVF centres, -professional donors, relatives or friends. There is scepticism about screening procedures of sperm banks. Donor eggs are usually accessed from voluntary donors, friends, relatives, egg sharing programmes, donation from other patients, advertising and commercial donors. There are several concerns regarding informed consent for using donated gametes, using -relatives and friends gametes, the unregulated use of gametes and embryos, record keeping and documentation, -unethical and corrupt practices and commercialisation. These issues need to be addressed by patients, providers and regulatory authorities by providing -information, counselling, ensuring informed consent, addressing exploitation and commercialisation, ensuring -monitoring, proper documentation and transparency.

  4. The impact of meeting donor management goals on the number of organs transplanted per expanded criteria donor: a prospective study from the UNOS Region 5 Donor Management Goals Workgroup.

    Science.gov (United States)

    Patel, Madhukar S; Zatarain, John; De La Cruz, Salvador; Sally, Mitchell B; Ewing, Tyler; Crutchfield, Megan; Enestvedt, C Kristian; Malinoski, Darren J

    2014-09-01

    The shortage of organs available for transplant has led to the use of expanded criteria donors (ECDs) to extend the donor pool. These donors are older and have more comorbidities and efforts to optimize the quality of their organs are needed. To determine the impact of meeting a standardized set of critical care end points, or donor management goals (DMGs), on the number of organs transplanted per donor in ECDs. Prospective interventional study from February 2010 to July 2013 of all ECDs managed by the 8 organ procurement organizations in the southwestern United States (United Network for Organ Sharing Region 5). Implementation of 9 DMGs as a checklist to guide the management of every ECD. The DMGs represented normal cardiovascular, pulmonary, renal, and endocrine end points. Meeting the DMG bundle was defined a priori as achieving any 7 of the 9 end points and was recorded at the time of referral to the organ procurement organization, at the time of authorization for donation, 12 to 18 hours later, and prior to organ recovery. The primary outcome measure was 3 or more organs transplanted per donor and binary logistic regression was used to identify independent predictors with P organs transplanted per donor. Ten percent of the ECDs had met the DMG bundle at referral, 15% at the time of authorization, 33% at 12 to 18 hours, and 45% prior to recovery. Forty-three percent had 3 or more organs transplanted per donor. Independent predictors of 3 or more organs transplanted per donor were older age (odds ratio [OR] = 0.95 per year [95% CI, 0.93-0.97]), increased creatinine level (OR = 0.73 per mg/dL [95% CI, 0.63-0.85]), DMGs met prior to organ recovery (OR = 1.90 [95% CI, 1.35-2.68]), and a change in the number of DMGs achieved from referral to organ recovery (OR = 1.11 per additional DMG [95% CI, 1.00-1.23]). Meeting DMGs prior to organ recovery with ECDs is associated with achieving 3 or more organs transplanted per donor. An increase in the number

  5. Photosystem Trap Energies and Spectrally-Dependent Energy-Storage Efficiencies in the Chl d-Utilizing Cyanobacterium, Acaryochloris Marina

    Science.gov (United States)

    Mielke, Steven P.; Kiang, Nancy Y.; Blankenship, Robert E.; Mauzerall, David

    2012-01-01

    Acaryochloris marina is the only species known to utilize chlorophyll (Chl) d as a principal photopigment. The peak absorption wavelength of Chl d is redshifted approx. 40 nm in vivo relative to Chl a, enabling this cyanobacterium to perform oxygenic phototrophy in niche environments enhanced in far-red light. We present measurements of the in vivo energy-storage (E-S) efficiency of photosynthesis in A. marina, obtained using pulsed photoacoustics (PA) over a 90-nm range of excitation wavelengths in the red and far-red. Together with modeling results, these measurements provide the first direct observation of the trap energies of PSI and PSII, and also the photosystem-specific contributions to the total E-S efficiency. We find the maximum observed efficiency in A. marina (40+/-1% at 735 nm) is higher than in the Chl a cyanobacterium Synechococcus leopoliensis (35+/-1% at 690 nm). The efficiency at peak absorption wavelength is also higher in A. marina (36+/-1% at 710 nm vs. 31+/-1% at 670 nm). In both species, the trap efficiencies are approx. 40% (PSI) and approx. 30% (PSII). The PSI trap in A. marina is found to lie at 740+/-5 nm, in agreement with the value inferred from spectroscopic methods. The best fit of the model to the PA data identifies the PSII trap at 723+/-3 nm, supporting the view that the primary electron-donor is Chl d, probably at the accessory (ChlD1) site. A decrease in efficiency beyond the trap wavelength, consistent with uphill energy transfer, is clearly observed and fit by the model. These results demonstrate that the E-S efficiency in A. marina is not thermodynamically limited, suggesting that oxygenic photosynthesis is viable in even redder light environments.

  6. Parvovirus B19 viraemia in Dutch blood donors

    NARCIS (Netherlands)

    Zaaijer, H. L.; Koppelman, M. H. G. M.; Farrington, C. P.

    2004-01-01

    Blood, donated by asymptomatic donors, may contain and transmit parvovirus B19. To investigate the dynamics of parvovirus viraemia in asymptomatic blood donors, we studied the amounts of parvovirus DNA in pools of donor plasma, the prevalence of parvovirus antibodies among blood donors in relation

  7. Direct correlation of charge transfer absorption with molecular donor:acceptor interfacial area via photothermal deflection spectroscopy

    KAUST Repository

    Domingo, Ester

    2015-04-09

    We show that the Charge Transfer (CT) absorption signal in bulk-heterojunction (BHJ) solar cell blends, measured by photothermal deflection spectroscopy (PDS), is directly proportional to the density of molecular donor/acceptor interfaces. Since the optical transitions from ground state to the interfacial CT state are weakly allowed at photon energies below the optical gap of both donor and acceptor, we can exploit the use of this sensitive linear absorption spectroscopy for such quantification. Moreover, we determine the absolute molar extinction coefficient of the CT transition for an archetypical polymer-fullerene interface. The latter is ~100 times lower than the extinction coefficient of the donor chromophore involved, allowing us to experimentally estimate the transition dipole moment (0.3 D) and the electronic coupling between ground state and CT state to be on the order of 30 meV.

  8. Two-axis control of a coupled quantum dot - donor qubit in Si-MOS

    Science.gov (United States)

    Rudolph, Martin; Harvey-Collard, Patrick; Jacobson, Tobias; Wendt, Joel; Pluym, Tammy; Dominguez, Jason; Ten-Eyck, Greg; Lilly, Mike; Carroll, Malcolm

    Si-MOS based QD qubits are attractive due to their similarity to the current semiconductor industry. We introduce a highly tunable MOS foundry compatible qubit design that couples an electrostatic quantum dot (QD) with an implanted donor. We show for the first time coherent two-axis control of a two-electron spin logical qubit that evolves under the QD-donor exchange interaction and the hyperfine interaction with the donor nucleus. The two interactions are tuned electrically with surface gate voltages to provide control of both qubit axes. Qubit decoherence is influenced by charge noise, which is of similar strength as epitaxial systems like GaAs and Si/SiGe. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE, Office of Basic Energy Sciences user facility. The work was supported by the Sandia National Laboratories Directed Research and Development Program. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.

  9. Non-Fullerene Electron Acceptors for Use in Organic Solar Cells

    KAUST Repository

    Nielsen, Christian B.; Holliday, Sarah; Chen, Hung-Yang; Cryer, Samuel J.; McCulloch, Iain

    2015-01-01

    The active layer in a solution processed organic photovoltaic device comprises a light absorbing electron donor semiconductor, typically a polymer, and an electron accepting fullerene acceptor. Although there has been huge effort targeted

  10. Analytic computation of the quantum levels of a two-dimensional hydrogenic donor in the presence of a constant magnetic field of arbitrary strength

    Energy Technology Data Exchange (ETDEWEB)

    Villalba, Victor M.; Pino, Ramiro [Instituto Venezolano de Investigaciones Cientificas, Caracas (Venezuela)

    2001-03-01

    In this article we review different techniques for computing the energy spectrum of 2 D hydrogenic donors and two-electron quantum dots in the presence of a constant, magnetic field perpendicular to the plane of the electron. We compute the 1S, 2P- and 3D- energy levels via a scaled variational mixed-bases method. We compare our results with those obtained with the shifted 1/N method. [Spanish] En el presente articulo se exhiben distintos metodos para calcular el espectro de energia de donores hidrogenicos y puntos cuanticos con dos electrones en presencia de un campo magnetico constante perpendicular al plano del electron. Se calculan los niveles de energia 1S, 2P- y 3D- con ayuda del metodo variacional de bases mixtas con escalamiento. Comparamos nuestro resultados con los obtenidos con ayuda del metodo 1/N con corrimiento.

  11. Emergency department referral for organ donation: more organ donors and more organs per donor.

    Science.gov (United States)

    Miller, Lisabeth D; Gardiner, Stuart K; Gubler, K Dean

    2014-05-01

    This study sought to determine whether early referral from the emergency department (ED) would increase the number of organ donors and the number of organs transplanted per donor (OTPD). This is a retrospective cohort analysis of all patients referred to a single organ procurement organization for a period of 60 months. Patients referred for organ donation evaluation from the ED were more likely to become organ donors than patients referred from the intensive care unit (19.3% vs 5.2%, P organ donation from the ED is associated with an increased likelihood of organ recovery and with an increased number of OTPD. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Toxoplasmosis in Blood Donors: A Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Foroutan-Rad, Masoud; Majidiani, Hamidreza; Dalvand, Sahar; Daryani, Ahmad; Kooti, Wesam; Saki, Jasem; Hedayati-Rad, Faezeh; Ahmadpour, Ehsan

    2016-07-01

    Transfusion-transmissible infections include pathogens that may cause severe and debilitating diseases. Toxoplasmosis is a cosmopolitan neglected parasitic infection that can lead to severe complications including death in immune-compromised patients or following infection in utero. Multiple studies have demonstrated the transmission of Toxoplasma gondii by blood transfusion. The objective of this review was to comprehensively assess the seroprevalence rate of Toxoplasma in blood donors from a worldwide perspective. Seven electronic databases (PubMed, Science Direct, Web of Science, Scopus, Cochrane, Ovid, and Google Scholar) were searched using medical subject headings terms. A total of 43 records met the inclusion criteria in which 20,964 donors were tested during the period from January 1980 to June 2015. The overall weighted prevalence of exposure to toxoplasmosis in blood donors was 33% (95% confidence interval [CI], 28%-39%). The seroprevalences of immunoglobulin (Ig)M and both IgG and IgM antibodies were 1.8% (95% CI, 1.1%-2.4%) and 1.1% (95% CI, 0.3%-1.8%), respectively. The highest and the lowest seroprevalences of toxoplasmosis were observed in Africa (46%; 95% CI, 14%-78%) and in Asia (29%; 95% CI, 23%-35%), respectively. Brazil (75%) and Ethiopia (73%) were identified as countries with high seroprevalence. Because positive serology does not imply infectiousness and because seroprevalence is high in some nations, a positive serology test result alone cannot be used as an effective method for donor screening. Future research for methods to prevent transfusion-transmitted toxoplasmosis may derive benefit from studies conducted in areas of high endemicity. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. MDCT evaluation of potential living renal donor, prior to laparoscopic donor nephrectomy: What the transplant surgeon wants to know?

    International Nuclear Information System (INIS)

    Ghonge, Nitin P; Gadanayak, Satyabrat; Rajakumari, Vijaya

    2014-01-01

    As Laparoscopic Donor Nephrectomy (LDN) offers several advantages for the donor such as lesser post-operative pain, fewer cosmetic concerns and faster recovery time, there is growing global trend towards LDN as compared to open nephrectomy. Comprehensive pre-LDN donor evaluation includes assessment of renal morphology including pelvi-calyceal and vascular system. Apart from donor selection, evaluation of the regional anatomy allows precise surgical planning. Due to limited visualization during laparoscopic renal harvesting, detailed pre-transplant evaluation of regional anatomy, including the renal venous anatomy is of utmost importance. MDCT is the modality of choice for pre-LDN evaluation of potential renal donors. Apart from appropriate scan protocol and post-processing methods, detailed understanding of surgical techniques is essential for the Radiologist for accurate image interpretation during pre-LDN MDCT evaluation of potential renal donors. This review article describes MDCT evaluation of potential living renal donor, prior to LDN with emphasis on scan protocol, post-processing methods and image interpretation. The article laid special emphasis on surgical perspectives of pre-LDN MDCT evaluation and addresses important points which transplant surgeons want to know

  14. Donor-Acceptor Block Copolymers: Synthesis and Solar Cell Applications

    Directory of Open Access Journals (Sweden)

    Kazuhiro Nakabayashi

    2014-04-01

    Full Text Available Fullerene derivatives have been widely used for conventional acceptor materials in organic photovoltaics (OPVs because of their high electron mobility. However, there are also considerable drawbacks for use in OPVs, such as negligible light absorption in the visible-near-IR regions, less compatibility with donor polymeric materials and high cost for synthesis and purification. Therefore, the investigation of non-fullerene acceptor materials that can potentially replace fullerene derivatives in OPVs is increasingly necessary, which gives rise to the possibility of fabricating all-polymer (polymer/polymer solar cells that can deliver higher performance and that are potentially cheaper than fullerene-based OPVs. Recently, considerable attention has been paid to donor-acceptor (D-A block copolymers, because of their promising applications as fullerene alternative materials in all-polymer solar cells. However, the synthesis of D-A block copolymers is still a challenge, and therefore, the establishment of an efficient synthetic method is now essential. This review highlights the recent advances in D-A block copolymers synthesis and their applications in all-polymer solar cells.

  15. High electron mobility InN

    International Nuclear Information System (INIS)

    Jones, R. E.; Li, S. X.; Haller, E. E.; van Genuchten, H. C. M.; Yu, K. M.; Ager, J. W. III; Liliental-Weber, Z.; Walukiewicz, W.; Lu, H.; Schaff, W. J.

    2007-01-01

    Irradiation of InN films with 2 MeV He + ions followed by thermal annealing below 500 deg. C creates films with high electron concentrations and mobilities, as well as strong photoluminescence. Calculations show that electron mobility in irradiated samples is limited by triply charged donor defects. Subsequent thermal annealing removes a fraction of the defects, decreasing the electron concentration. There is a large increase in electron mobility upon annealing; the mobilities approach those of the as-grown films, which have 10 to 100 times smaller electron concentrations. Spatial ordering of the triply charged defects is suggested to cause the unusual increase in electron mobility

  16. BLOODR: blood donor and requester mobile application.

    Science.gov (United States)

    Tatikonda, Vamsi Krishna; El-Ocla, Hosam

    2017-01-01

    With rapid increase in the usage of social networks sites across the world, there is also a steady increase in blood donation requests as being noticed in the number of posts on these sites such as Facebook and twitter seeking blood donors. Finding blood donor is a challenging issue in almost every country. There are some blood donor finder applications in the market such as Blood app by Red Cross and Blood Donor Finder application by Neologix. However, more reliable applications that meet the needs of users are prompted. Several software technologies including languages and framework are used to develop our blood-donor web application known as BLOODR application. These technologies comprise Ruby programming language (simply known as Ruby) along with JavaScript and PostgreSQL for database are used. Ruby on Rails (simply known as Rails) is an open source Web framework that makes it possible to quickly and easily create data-based web applications. We show screenshots for the BLOODR application for different types of users including requester, donor, and administrator. Various features of the application are described and their needs of use are analyzed. If a patient needs a blood at a clinic, blood donors in vicinity can be contacted through using a clinic management service provided in this application. Registered donors will get notification for the blood requests only if their blood group is compatible with the requested blood type and in the same city/region. Then matching blood donors can go to the requesting clinic and donate. BLOODR application provides a reliable platform to connect local blood donors with patients. BLOODR creates a communication channel through authenticated clinics whenever a patient needs blood donation. It is a useful tool to find compatible blood donors who can receive blood request posts in their local area. Clinics can use this web application to maintain the blood donation activity. Future improvement of the BLOODR is explained.

  17. Estimation of the basicity of the donor strength of terminal groups in cationic polymethine dyes

    Science.gov (United States)

    Kachkovsky, Alexey; Obernikhina, Nataliya; Prostota, Yaroslav; Naumenko, Antonina; Melnyk, Dmitriy; Yashchuk, Valeriy

    2018-02-01

    The well-known conception of the basicity of the terminal groups in the cationic polymethine dyes showing their donor properties is examined (considered) in detail. The various approachs are proposed to quantitative quantum-chemical estimation of a donor strength of the terminal groups in cationic polymethine dyes: shift of the frontier levels upon introducing terminal residues in comparison with unsybstituted polymethine cation; transferring of the electron density from the terminal groups to the polymethine chain and hence manifested itself as a redistribution of total positive charge between molecular fragments; changes of the charge alternation at carbon atoms along the chain. All approach correlate between them and agree with the concept of the basicity as a capability of terminal heterocycles to show its donor properties in the polymethine dyes. The results of the fulfilled calculations of numerous examples are presented; the proposed parameters point correctly the tendency in the change donor strength upon varying of the chemical constitution: the dimension of cycle, introducing of various heteroatoms, linear or angular annelating by benzene ring; as well as direct to take into consideration the existence of local levels.

  18. Initial experience with purely laparoscopic living-donor right hepatectomy.

    Science.gov (United States)

    Hong, S K; Lee, K W; Choi, Y; Kim, H S; Ahn, S W; Yoon, K C; Kim, H; Yi, N J; Suh, K S

    2018-05-01

    There may be concerns about purely laparoscopic donor right hepatectomy (PLDRH) compared with open donor right hepatectomy, especially when performed by surgeons accustomed to open surgery. This study aimed to describe technical tips and pitfalls in PLDRH. Data from donors who underwent PLDRH at Seoul National University Hospital between December 2015 and July 2017 were analysed retrospectively. Endpoints analysed included intraoperative events and postoperative complications. All operations were performed by a single surgeon with considerable experience in open living donor hepatectomy. A total of 26 donors underwent purely laparoscopic right hepatectomy in the study interval. No donor required transfusion during surgery, whereas two underwent reoperation. In two donors, the dissection plane at the right upper deep portion of the midplane was not correct. One donor experienced portal vein injury during caudate lobe transection, and one developed remnant left hepatic duct stenosis. One donor experienced remnant portal vein angulation owing to a different approach angle, and one experienced arterial damage associated with the use of a laparoscopic energy device. One donor had postoperative bleeding due to masking of potential bleeding foci owing to intra-abdominal pressure during laparoscopy. Two donors experienced right liver surface damage caused by a xiphoid trocar. Purely laparoscopic donor hepatectomy differs from open donor hepatectomy in terms of angle and caudal view. Therefore, surgeons experienced in open donor hepatectomy must gain adequate experience in laparoscopic liver surgery and make adjustments when performing PLDRH. © 2018 BJS Society Ltd Published by John Wiley & Sons Ltd.

  19. Medium-Bandgap Small-Molecule Donors Compatible with Both Fullerene and Nonfullerene Acceptors.

    Science.gov (United States)

    Huo, Yong; Yan, Cenqi; Kan, Bin; Liu, Xiao-Fei; Chen, Li-Chuan; Hu, Chen-Xia; Lau, Tsz-Ki; Lu, Xinhui; Sun, Chun-Lin; Shao, Xiangfeng; Chen, Yongsheng; Zhan, Xiaowei; Zhang, Hao-Li

    2018-03-21

    Much effort has been devoted to the development of new donor materials for small-molecule organic solar cells due to their inherent advantages of well-defined molecular weight, easy purification, and good reproducibility in photovoltaic performance. Herein, we report two small-molecule donors that are compatible with both fullerene and nonfullerene acceptors. Both molecules consist of an (E)-1,2-di(thiophen-2-yl)ethane-substituted (TVT-substituted) benzo[1,2-b:4,5-b']dithiophene (BDT) as the central unit, and two rhodanine units as the terminal electron-withdrawing groups. The central units are modified with either alkyl side chains (DRBDT-TVT) or alkylthio side chains (DRBDT-STVT). Both molecules exhibit a medium bandgap with complementary absorption and proper energy level offset with typical acceptors like PC 71 BM and IDIC. The optimized devices show a decent power conversion efficiency (PCE) of 6.87% for small-molecule organic solar cells and 6.63% for nonfullerene all small-molecule organic solar cells. Our results reveal that rationally designed medium-bandgap small-molecule donors can be applied in high-performance small-molecule organic solar cells with different types of acceptors.

  20. Protocol for a national blood transfusion data warehouse from donor to recipient

    Science.gov (United States)

    van Hoeven, Loan R; Hooftman, Babette H; Janssen, Mart P; de Bruijne, Martine C; de Vooght, Karen M K; Kemper, Peter; Koopman, Maria M W

    2016-01-01

    Introduction Blood transfusion has health-related, economical and safety implications. In order to optimise the transfusion chain, comprehensive research data are needed. The Dutch Transfusion Data warehouse (DTD) project aims to establish a data warehouse where data from donors and transfusion recipients are linked. This paper describes the design of the data warehouse, challenges and illustrative applications. Study design and methods Quantitative data on blood donors (eg, age, blood group, antibodies) and products (type of product, processing, storage time) are obtained from the national blood bank. These are linked to data on the transfusion recipients (eg, transfusions administered, patient diagnosis, surgical procedures, laboratory parameters), which are extracted from hospital electronic health records. Applications Expected scientific contributions are illustrated for 4 applications: determine risk factors, predict blood use, benchmark blood use and optimise process efficiency. For each application, examples of research questions are given and analyses planned. Conclusions The DTD project aims to build a national, continuously updated transfusion data warehouse. These data have a wide range of applications, on the donor/production side, recipient studies on blood usage and benchmarking and donor–recipient studies, which ultimately can contribute to the efficiency and safety of blood transfusion. PMID:27491665

  1. Characterization of an anion antisite defect as a deep double donor in InP

    International Nuclear Information System (INIS)

    Ando, K.; Katsui, A.; Jeon, D.Y.; Watkins, G.D.; Gislason, H.P.

    1989-01-01

    A study of optically detected magnetic resonance (ODMR) on the anion antisite defect in electron irradiated InP has been made by monitoring the magnetic circular dichroism (MCD), combined with DLTS experiment. Comparison of the ODMR and DLTS results reveals that the intrinsic anion antisite defect acts as a deep double-donor in the gap. The first ionization (D o /D 1+ ) process occurs both in thermal and optical excitation as a mid-gap electron trap, detected by DLTS and DLOS experiment. (author) 12 refs., 6 figs

  2. Potential organ donor audit in Ireland.

    LENUS (Irish Health Repository)

    Hegarty, M

    2010-11-01

    As increasing demand for organs is a challenge for transplant services worldwide it is essential to audit the process of organ donation. To address this, a national audit of potential organ donors was undertaken across hospitals with Intensive Care Units (N = 36). Questionnaires were returned on all patients (n = 2073) who died in these units from 1\\/9\\/07-31\\/8\\/08; 200 (10%) of these patients were considered for Brain Stem Testing (BST), 158 patients (79%) were diagnosed Brain Stem Dead (BSD) and 138 patients (87%) became potential donors. Consent for donation was given by 92 (69%) next of kin and 90 potential donors (65%) became organ donors. There was no evidence of a large number of potential organ donors being missed. Recommendations included completion of BSTs on all appropriate patients, development of support on BST, referral of all BSD patients to the Organ Procurement Service; enhanced co-ordination within hospitals and sustained information\\/education campaigns.

  3. Excitation and recombination of donor-acceptor pairs in ZnTe

    International Nuclear Information System (INIS)

    Nakashima, S.; Yasuda, S.

    1979-01-01

    The photoluminescence spectra and its excitation spectra of the donor-acceptor pairs are observed in ZnTe crystals doped with Li and As in the region below the bandgap energy. The relaxation of electrons and holes into the first excited state of d-a pairs is studied for the three excitation processes: (1) bound-to-bound transitions, (2) bound-to-free transitions, and (3) free-to-free transitions. It is concluded that most of the electrons and holes at the excited states of each impurity level are relaxed rapidly into their ground states before the occurrence of the recombination involving the excited states. For the excitation process (2), conduction electrons are preferentially trapped by positively charged pairs. The redistribution of bound holes by hopping is suggested to explain the broad d-a emission band observed for the bound-to-free excitation for very distant pairs. (author)

  4. Electronic-excitation energy transfer in heterogeneous dye solutions under laser excitation

    International Nuclear Information System (INIS)

    Levshin, L.V.; Mukushev, B.T.; Saletskii, A.M.

    1995-01-01

    An experimental study has been made of electronic-excitation energy transfer (EEET) among dye molecules of different types for different exciting-fight wavelengths and temperatures. Upon selective laser excitation of the donor, the inhomogeneous broadening of molecular levels increases the probability of EEET from the donor to acceptor molecules. The efficiency of this process is directly proportional to the acceptor molecule concentration and is temperature dependent. The EEET is accompanied by the spectral migration of energy among donor molecules, which reduces the fluorescence quantum efficiency of the donor. Increasing the frequency of the exciting light decreases in the donor fluorescence quantum efficiency. An increase in the acceptor molecule concentration results in a decrease of the spectral migration of excitation in the donor molecule system. 5 refs., 5 figs

  5. Expectations and experiences of gamete donors and donor-conceived adults searching for genetic relatives using DNA linking through a voluntary register.

    Science.gov (United States)

    van den Akker, O B A; Crawshaw, M A; Blyth, E D; Frith, L J

    2015-01-01

    What are the experiences of donor-conceived adults and donors who are searching for a genetic link through the use of a DNA-based voluntary register service? Donor-conceived adults and donors held positive beliefs about their search and although some concerns in relation to finding a genetically linked relative were reported, these were not a barrier to searching. Research with donor-conceived people has consistently identified their interest in learning about-and in some cases making contact with-their donor and other genetic relatives. However, donor-conceived individuals or donors rarely have the opportunity to act on these desires. A questionnaire was administered for online completion using Bristol Online Surveys. The survey was live for 3 months and responses were collected anonymously. The survey was completed by 65 donor-conceived adults, 21 sperm donors and 5 oocyte donors who had registered with a DNA-based voluntary contact register in the UK. The questionnaire included socio-demographic questions, questions specifically developed for the purposes of this study and the standardized Aspects of Identity Questionnaire (AIQ). Motivations for searching for genetic relatives were varied, with the most common reasons being curiosity and passing on information. Overall, participants who were already linked and those awaiting a link were positive about being linked and valued access to a DNA-based register. Collective identity (reflecting self-defining feelings of continuity and uniqueness), as assessed by the AIQ, was significantly lower for donor-conceived adults when compared with the donor groups (P 0.05) for donor-conceived adults. Participants were members of a UK DNA-based registry which is unique. It was therefore not possible to determine how representative participants were of those who did not register for the service, those in other countries or of those who do not seek information exchange or contact. This is the first survey exploring the

  6. Organic Materials in the Undergraduate Laboratory: Microscale Synthesis and Investigation of a Donor-Acceptor Molecule

    Science.gov (United States)

    Pappenfus, Ted M.; Schliep, Karl B.; Dissanayake, Anudaththa; Ludden, Trevor; Nieto-Ortega, Belen; Lopez Navarrete, Juan T.; Ruiz Delgado, M. Carmen; Casado, Juan

    2012-01-01

    A series of experiments for undergraduate courses (e.g., organic, physical) have been developed in the area of small molecule organic materials. These experiments focus on understanding the electronic and redox properties of a donor-acceptor molecule that is prepared in a convenient one-step microscale reaction. The resulting intensely colored…

  7. MDCT evaluation of potential living renal donor, prior to laparoscopic donor nephrectomy: What the transplant surgeon wants to know?

    Directory of Open Access Journals (Sweden)

    Nitin P Ghonge

    2014-01-01

    Full Text Available As Laparoscopic Donor Nephrectomy (LDN offers several advantages for the donor such as lesser post-operative pain, fewer cosmetic concerns and faster recovery time, there is growing global trend towards LDN as compared to open nephrectomy. Comprehensive pre-LDN donor evaluation includes assessment of renal morphology including pelvi-calyceal and vascular system. Apart from donor selection, evaluation of the regional anatomy allows precise surgical planning. Due to limited visualization during laparoscopic renal harvesting, detailed pre-transplant evaluation of regional anatomy, including the renal venous anatomy is of utmost importance. MDCT is the modality of choice for pre-LDN evaluation of potential renal donors. Apart from appropriate scan protocol and post-processing methods, detailed understanding of surgical techniques is essential for the Radiologist for accurate image interpretation during pre-LDN MDCT evaluation of potential renal donors. This review article describes MDCT evaluation of potential living renal donor, prior to LDN with emphasis on scan protocol, post-processing methods and image interpretation. The article laid special emphasis on surgical perspectives of pre-LDN MDCT evaluation and addresses important points which transplant surgeons want to know.

  8. Efecto de la temperatura, el estrés hídrico y luminoso sobre la heterogeneidad del fotosistema II en cuatro variedades de poroto (Phaseolus vulgaris L. Effect of temperature, water and light stress on PSII heterogeneity in four bean varieties (Phaseolus vulgaris L.

    Directory of Open Access Journals (Sweden)

    JAVIERA GONZÁLEZ

    2001-12-01

    Full Text Available Las plantas superiores, requieren de mecanismos que permitan proteger a los centros fotosintéticos de daño oxidativo, particularmente en condiciones ambientales que determinen una absorción luminosa en exceso de su capacidad de utilización fotoquímica, como son las altas intensidades de luz, propiamente tal, restricción de agua y aumentos de temperatura. En el mediano y largo plazo los centros PSII tendrían la capacidad de modificar su localización y estructura, formando los centros PSII del tipo ß y los estados de transición, cuya variación no depende, exclusivamente, de la intensidad luminosa. En el presente estudio se determinó el efecto de distintos estreses ambientales sobre la heterogeneidad del PSII, en cuatro cultivares de poroto: Arroz Tuscola (AT, Orfeo INIA (OI, Bayos Titán (BT y Hallado Dorado (HD. En plantas desarrolladas en cámaras de crecimiento, la proporción de centros PSIIß aumentó hasta en un 100 % en la medida que se incrementó la temperatura. Dicho efecto fue magnificado por el estrés hídrico, en estas plantas. En condiciones de campo, el estrés lumínico impuesto por la fijación de folíolos a la posición horizontal, aumentó aun más el efecto del estrés hídrico sobre la proporción de tales centros, desde un 27 %, en plantas regadas y hoja en posición normal, hasta un 63 % en plantas estresadas y hojas forzadas a la horizontalidad. En cuanto a los estados de transición, se observó, en plantas desarrolladas a 20 ºC en cámaras de crecimiento, un aumento de estos al someter sus hojas a 15 ºC. Así mismo, temperaturas de 25 a 35 ºC indujeron aumentos en los estados de transición. El estrés hídrico, en los cultivares AT y OI, aminoró la magnitud del efecto de la temperatura, al contrario de lo observado en BT. En el cultivar HD, no se distingue un efecto claro del estrés hídrico, sobre la formación de los estados de transición inducidos por cambios en la temperatura. Aún cuando existen

  9. Electronic and spatial structures of water-soluble dinitrosyl iron complexes with thiol-containing ligands underlying their ability to act as nitric oxide and nitrosonium ion donors.

    Science.gov (United States)

    Vanin, Anatoly F; Burbaev, Dosymzhan Sh

    2011-01-01

    The ability of mononuclear dinitrosyl iron commplexes (M-DNICs) with thiolate ligands to act as NO donors and to trigger S-nitrosation of thiols can be explain only in the paradigm of the model of the [Fe(+)(NO(+))(2)] core ({Fe(NO)(2)}(7) according to the Enemark-Feltham classification). Similarly, the {(RS(-))(2)Fe(+)(NO(+))(2)}(+) structure describing the distribution of unpaired electron density in M-DNIC corresponds to the low-spin (S = 1/2) state with a d(7) electron configuration of the iron atom and predominant localization of the unpaired electron on MO(d(z2)) and the square planar structure of M-DNIC. On the other side, the formation of molecular orbitals of M-DNIC including orbitals of the iron atom, thiolate and nitrosyl ligands results in a transfer of electron density from sulfur atoms to the iron atom and nitrosyl ligands. Under these conditions, the positive charge on the nitrosyl ligands diminishes appreciably, the interaction of the ligands with hydroxyl ions or with thiols slows down and the hydrolysis of nitrosyl ligands and the S-nitrosating effect of the latter are not manifested. Most probably, the S-nitrosating effect of nitrosyl ligands is a result of weak binding of thiolate ligands to the iron atom under conditions favoring destabilization of M-DNIC.

  10. Donor impurity-related photoionization cross section in GaAs cone-like quantum dots under applied electric field

    Science.gov (United States)

    Iqraoun, E.; Sali, A.; Rezzouk, A.; Feddi, E.; Dujardin, F.; Mora-Ramos, M. E.; Duque, C. A.

    2017-06-01

    The donor impurity-related electron states in GaAs cone-like quantum dots under the influence of an externally applied static electric field are theoretically investigated. Calculations are performed within the effective mass and parabolic band approximations, using the variational procedure to include the electron-impurity correlation effects. The uncorrelated Schrödinger-like electron states are obtained in quasi-analytical form and the entire electron-impurity correlated states are used to calculate the photoionisation cross section. Results for the electron state energies and the photoionisation cross section are reported as functions of the main geometrical parameters of the cone-like structures as well as of the electric field strength.

  11. True HIV seroprevalence in Indian blood donors.

    Science.gov (United States)

    Choudhury, N; Ayagiri, A; Ray, V L

    2000-03-01

    The National AIDS Control Organization (NACO), the apex body for controlling AIDS in India, projected that HIV seroprevalence would increase from 7/1000 in 1995 to 21.2/1000 in 1997. A high incidence (8.2%) of HIV was observed in blood donors. This study was carried out to find out the true HIV positivity in Indian blood donors. Blood donors from our centre were followed for more than 5 years to determine the true HIV seroprevalence and our result was compared with similar studies from India. Voluntary and relative blood donors who visited the SGPGIMS, Lucknow, since 1993 to June 1998 were included. They were screened for HIV 1/2 by ELISA kits (WHO approved). First-time HIV-positive samples were preserved frozen for further study (stage-I). They were repeated in duplicate and retested with other kits. If found positive, the sample was labelled as ELISA positive (stage-II). ELISA-positive samples were confirmed by Western Blot (WB) at stage-III. A total of 65 288 donors were included and 834 (12.8/1000) were reactive at stage-I. But 1.1/1000 donors were found to be ELISA positive at stage-II, and 0.28/1000 donors were positive by WB at stage-III. The 'seropositivity' rate from the NACO was significantly (P commercial blood banks. The HIV prevalence of blood donors (and national prevalence) is to be reassessed.

  12. Creation of a 3Mn/1Fe cluster in the oxygen-evolving complex of photosystem II and investigation of its functional activity.

    Science.gov (United States)

    Semin, B К; Davletshina, L N; Seibert, M; Rubin, A B

    2018-01-01

    Extraction of Mn cations from the oxygen-evolving complex (OEC) of Ca-depleted PSII membranes (PSII[-Ca,4Mn]) by reductants like hydroquinone (H 2 Q) occurs with lower efficiency at acidic pH (2Mn/reaction center [RC] are extracted at pH5.7) than at neutral pH (3Mn/RC are extracted at pH6.5) [Semin et al. Photosynth. Res. 125 (2015) 95]. Fe(II) also extracts Mn cations from PSII(-Ca,4Mn), but only 2Mn/RC at pH6.5, forming a heteronuclear 2Mn/2Fe cluster [Semin and Seibert, J. Bioenerg. Biomembr. 48 (2016) 227]. Here we investigated the efficiency of Mn extraction by Fe(II) at acidic pH and found that Fe(II) cations can extract only 1Mn/RC from PSII(-Ca,4Mn) membranes at pH 5.7, forming a 3Mn/1Fe cluster. Also we found that the presence of Fe cations in a heteronuclear cluster (2Mn/2Fe) increases the resistance of the remaining Mn cations to H 2 Q action, since H 2 Q can extract Mn cations from homonuclear Mn clusters of PSII(-Ca,4Mn) and PSII(-Ca,2Mn) membranes but not from the heteronuclear cluster in PSII(-Ca,2Mn,2Fe) membranes. H 2 Q also cannot extract Mn from PSII membranes obtained by incubation of PSII(-Ca,4Mn) membranes with Fe(II) cations at pH5.7, which suggests the formation of a heteronuclear 3Mn/1Fe cluster in the OEC. Functional activity of PSII with a 3Mn/1Fe cluster was investigated. PSII preparations with a 3Mn/1Fe cluster in the OEC are able to photoreduce the exogenous electron acceptor 2,6-dichlorophenolindophenol, possibly due to incomplete oxidation of water molecules as is the case with PSII(-Ca,2Mn,2Fe) samples. However, in the contrast to PSII(-Ca,2Mn,2Fe) samples PSII(-Ca,3Mn,1Fe) membranes can evolve O 2 at a low rate in the presence of exogenous Ca 2+ (at about 27% of the rate of O 2 evolution in native PSII membranes). The explanation for this phenomenon (either water splitting and production of molecular O 2 by the 3Mn/1Fe cluster or apparent O 2 evolution due to minor contamination of PSII(3Mn,1Fe) samples with PSII(-Ca,4Mn) membranes

  13. Anesthesia Management of Organ Donors.

    Science.gov (United States)

    Xia, Victor W; Braunfeld, Michelle

    2017-09-01

    The shortage of suitable organs is the biggest obstacle for transplants. At present, most organs for transplant in the United States are from donation after neurologic determination of death (brain death). Potential organs for transplant need to maintain their viability during a series of insults, including the original disease, physiologic derangements during the dying process, ischemia, and reperfusion. Proper donor management before, during, and after procurement has potential to increase the number and quality of organs from donors. Anesthesiologists need to understand the physiologic derangements associated with brain death and the updated donor management during the periprocurement period. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Live donor transplantation--the incompetent donor: comparative law.

    Science.gov (United States)

    Wolfman, Samuel; Shaked, Tali

    2008-12-01

    Informed consent of the patient to medical treatment is an essential prerequisite for any invasive medical procedure. However in emergency cases, when the patient is unable to sign a consent form due to unconsciousness or to psychotic state, than the primary medical consideration shall take place. In such a case, in order to save life or even prevent a major medical hazard to the patient, doctors are allowed, in certain cases and in accordance with well accepted medical practice, to perform invasive procedures, major surgery or risky pharmacological treatment, without the explicit consent of the patient. All the above refers to the cases when avoidance of such non-consented treatment may harm severely the health and wellbeing of the patient and there is no doubt that such treatment is for the ultimate benefit of the patient. The question, however, shall arise when such a medical procedure is not necessarily for the benefit of the patient, but rather for the benefit of somebody else. Such is the case in the transplantation area and the question of living donor-donee relationship. This paper shall analyze the legal situation in cases of non competent donors whose consent cannot be considered legal consent given in full understanding and out of free will. It will also compare three legal systems, the Israeli, the American and the traditional Jewish law, with regard to the different approaches to this human problem, where the autonomy of the donor may be sacrificed for the purpose of saving life of another person.

  15. Factors affecting the serological testing of cadaveric donor cornea.

    Science.gov (United States)

    Raj, Anuradha; Mittal, Garima; Bahadur, Harsh

    2018-01-01

    The purpose of this study was to evaluate the serological profile of the eye donors and to study the influence of various factors on serological test results. A cross-sectional, observational study was conducted, and data of 509 donors were reviewed from the records of eye bank from December 2012 to June 2017. Various details of donors analyzed included the age, sex of the donor, cause of death, source of tissue, time since blood collection after death, macroscopic appearance of blood sample, and details of discarded tissues. Serological examination of blood was performed for human immunodeficiency virus (HIV), hepatitis B virus, hepatitis C virus (HCV), venereal disease research laboratory (VDRL), and serology reports reactive or nonreactive were analyzed. Among the 509 donors, 295 (58%) were male, and 420 (82.50%) belonged to age group ≥60 years. Most donors (354, 69.5%) died due to cardiac arrest. Macroscopically, sera were normal in the majority of 488 (95.9%) cases. Among 509 donors, 475 (93.3%) were nonreactive, 12 (2.4%) donors were found to be reactive to hepatitis B surface antigen (HBsAg), and 1 (0.2%) was reactive to HCV, but no donor serology was reactive to HIV or VDRL. Twenty-one (4.12%) donors' sera were not fit for serological testing. Among all donors, 475 (93.32%) donors were accepted and 34 (6.67%) were rejected or discarded on the basis of serological testing. Cause of death and macroscopic aspect of sera influenced the serological results in a highly significant manner (P = 0.00). Acceptance or rejection of the donor was significantly influenced by the serological results of the donor (P = 0.00). The seroprevalence among eye donor for HBsAg and HCV was 12 (2.4%) and 1 (0.2%), respectively. Factors such as cause of death and macroscopic aspect of sera influence the serological results. Time since blood collection or sampling will not show any impact on viral serological results if postmortem sampling will be done in donor cornea.

  16. Comparison of postoperative coagulation profiles and outcome for sugammadex versus pyridostigmine in 992 living donors after living-donor hepatectomy.

    Science.gov (United States)

    Moon, Young-Jin; Kim, Sung-Hoon; Kim, Jae-Won; Lee, Yoon-Kyung; Jun, In-Gu; Hwang, Gyu-Sam

    2018-03-01

    Donor safety is the major concern in living donor liver transplantation, although hepatic resection may be associated with postoperative coagulopathy. Recently, the use of sugammadex has been gradually increased, but sugammadex is known to prolong prothrombin time (PT) and activated partial thromboplastin time (aPTT). We compared the postoperative coagulation profiles and outcomes of sugammadex versus pyridostigmine group in donors receiving living donor hepatectomy.Consecutive donor hepatectomy performed between September 2013 and August 2016 was retrospectively analyzed. For reversal of rocuronium-induced neuromuscular blockade, donors received sugammadex 4 mg/kg or pyridostigmine 0.25 mg/kg. The primary end-points were laboratory findings (PT, aPTT, hemoglobin, platelet count) and clinically evaluated postoperative bleeding (relaparotomy for bleeding, cumulative volume collected in drains). Secondary outcomes were anesthesia time, postoperative hospital day.Of 992 donors, 383 treated with sugammadex and 609 treated with pyridostigmine for the reversal of neuromuscular blockade. There were no significant differences between both groups for drop in hemoglobin and platelet, prolongation in PT, aPTT, and the amount of 24-h drain volume. Bleeding events within 24 h were reported in 2 (0.3%) for pyridostigmine group and 0 (0%) for sugammadex group (P = .262). Anesthesia time was significantly longer in pyridostigmine group than that in sugammadex group (438.8 ± 71.4 vs. 421.3 ± 62.3, P sugammadex group (P = .002).Sugammadex 4 mg/kg was not associated with increased bleeding tendency, but associated with reduced anesthesia time and hospital stay. Therefore, sugammadex may be safely used and will decrease morbidity in donor undergoing living-donor hepatectomy.

  17. Tuning the electronic structure and transport properties of graphene by noncovalent functionalization: effects of organic donor, acceptor and metal atoms

    International Nuclear Information System (INIS)

    Zhang Yonghui; Zhou Kaige; Xie Kefeng; Zeng Jing; Zhang Haoli; Peng Yong

    2010-01-01

    Using density functional theory and nonequilibrium Green's function (NEGF) formalism, we have theoretically investigated the binding of organic donor, acceptor and metal atoms on graphene sheets, and revealed the effects of the different noncovalent functionalizations on the electronic structure and transport properties of graphene. The adsorptions of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) and tetrathiafulvalene (TTF) induce hybridization between the molecular levels and the graphene valence bands, and transform the zero-gap semiconducting graphene into a metallic graphene. However, the current versus voltage (I-V) simulation indicates that the noncovalent modifications by organic molecules are not sufficient to significantly alter the transport property of the graphene for sensing applications. We found that the molecule/graphene interaction could be dramatically enhanced by introducing metal atoms to construct molecule/metal/graphene sandwich structures. A chemical sensor based on iron modified graphene shows a sensitivity two orders of magnitude higher than that of pristine graphene. The results of this work could help to design novel graphene-based sensing or switching devices.

  18. Function following Living Donor Nephrectomy

    Directory of Open Access Journals (Sweden)

    Jonathan Heldt

    2011-01-01

    Full Text Available Background. While tobacco use by a renal transplant recipient has been shown to negatively affect graft and patient survival, the effect of smoking on the part of the kidney donor remains unknown. Methods. 29 smoking donors (SD and their recipients (SD-R as well as 71 non-smoking donors (ND and their recipients (ND-R were retrospectively reviewed. Preoperative demographics and perioperative variables including serum creatinine (Cr and glomerular filtration rate (GFR were calculated and stratified by amount of tobacco exposure in pack-years. Clinical outcomes were analyzed with a Student's t-test, chi-square, and multiple linear regression analysis (=0.05. Results. At most recent followup, SD-R's had a significantly smaller percent decrease in postoperative Cr than ND-R's (−57% versus −81%; =0.015 and lower calculated GFR's (37.0 versus 53.0 mL/min per 1.73 m2; <0.001. SD's had a larger percent increase in Cr than ND's at most recent followup (57% versus 40%; <0.001, with active smokers having a larger increase than those who quit, although this difference was not statistically significant (68% versus 52%; =0.055. Conclusions. Use of tobacco by kidney donors is associated with decreased posttransplant renal function, although smoking cessation can improve outcomes. Kidneys from donors who smoke should be used with caution.

  19. Synthesis and electrochemical properties of a new benzimidazole derivative as the acceptor unit in donor–acceptor–donor type polymers

    International Nuclear Information System (INIS)

    Ozelcaglayan, Ali Can; Sendur, Merve; Akbasoglu, Naime; Apaydin, Dogukan Hazar; Cirpan, Ali; Toppare, Levent

    2012-01-01

    A new benzimidazole unit, 4′-(tert-butyl)spiro[benzo[d]imidazole-2,1′-cyclohexane] was synthesized and coupled with different donor units like 3-hexylthiophene and 3,4-ethylenedioxythiophene (EDOT) via Stille coupling. The donor–acceptor–donor (D–A–D) type monomers, 4′-(tert-butyl)-4,7-bis(4-hexylthiophen-2-yl) spiro[benzo[d]imidazole-2,1′-cyclohexane] (BIHT) and 4′-(tert-butyl)-4,7-bis(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl) spiro[benzo[d]imidazole-2,1′-cyclohexane] (BIED) were electrochemically polymerized, their electrochemical and optical properties were investigated by cyclic voltammetry, UV–vis-NIR spectroscopy techniques. Effect of donor groups on the optical and electronic properties of polymer was studied.

  20. Importance of the Donor:Fullerene intermolecular arrangement for high-efficiency organic photovoltaics

    KAUST Repository

    Graham, Kenneth; Cabanetos, Clement; Jahnke, Justin P.; Idso, Matthew N.; El Labban, Abdulrahman; Ngongang Ndjawa, Guy Olivier; Heumueller, Thomas; Vandewal, Koen; Salleo, Alberto; Chmelka, Bradley F.; Amassian, Aram; Beaujuge, Pierre; McGehee, Michael D.

    2014-01-01

    The performance of organic photovoltaic (OPV) material systems are hypothesized to depend strongly on the intermolecular arrangements at the donor:fullerene interfaces. A review of some of the most efficient polymers utilized in polymer:fullerene PV devices, combined with an analysis of reported polymer donor materials wherein the same conjugated backbone was used with varying alkyl substituents, supports this hypothesis. Specifically, the literature shows that higher-performing donor-acceptor type polymers generally have acceptor moieties that are sterically accessible for interactions with the fullerene derivative, whereas the corresponding donor moieties tend to have branched alkyl substituents that sterically hinder interactions with the fullerene. To further explore the idea that the most beneficial polymer:fullerene arrangement involves the fullerene docking with the acceptor moiety, a family of benzo[1,2-b:4,5-b]dithiophene-thieno[3,4-c]pyrrole-4,6-dione polymers (PBDTTPD derivatives) was synthesized and tested in a variety of PV device types with vastly different aggregation states of the polymer. In agreement with our hypothesis, the PBDTTPD derivative with a more sterically accessible acceptor moiety and a more sterically hindered donor moiety shows the highest performance in bulk-heterojunction, bilayer, and low-polymer concentration PV devices where fullerene derivatives serve as the electron-accepting materials. Furthermore, external quantum efficiency measurements of the charge-transfer state and solid-state two-dimensional (2D) 13C{1H} heteronuclear correlation (HETCOR) NMR analyses support that a specific polymer:fullerene arrangement is present for the highest performing PBDTTPD derivative, in which the fullerene is in closer proximity to the acceptor moiety of the polymer. This work demonstrates that the polymer:fullerene arrangement and resulting intermolecular interactions may be key factors in determining the performance of OPV material systems

  1. Importance of the Donor:Fullerene intermolecular arrangement for high-efficiency organic photovoltaics

    KAUST Repository

    Graham, Kenneth

    2014-07-09

    The performance of organic photovoltaic (OPV) material systems are hypothesized to depend strongly on the intermolecular arrangements at the donor:fullerene interfaces. A review of some of the most efficient polymers utilized in polymer:fullerene PV devices, combined with an analysis of reported polymer donor materials wherein the same conjugated backbone was used with varying alkyl substituents, supports this hypothesis. Specifically, the literature shows that higher-performing donor-acceptor type polymers generally have acceptor moieties that are sterically accessible for interactions with the fullerene derivative, whereas the corresponding donor moieties tend to have branched alkyl substituents that sterically hinder interactions with the fullerene. To further explore the idea that the most beneficial polymer:fullerene arrangement involves the fullerene docking with the acceptor moiety, a family of benzo[1,2-b:4,5-b]dithiophene-thieno[3,4-c]pyrrole-4,6-dione polymers (PBDTTPD derivatives) was synthesized and tested in a variety of PV device types with vastly different aggregation states of the polymer. In agreement with our hypothesis, the PBDTTPD derivative with a more sterically accessible acceptor moiety and a more sterically hindered donor moiety shows the highest performance in bulk-heterojunction, bilayer, and low-polymer concentration PV devices where fullerene derivatives serve as the electron-accepting materials. Furthermore, external quantum efficiency measurements of the charge-transfer state and solid-state two-dimensional (2D) 13C{1H} heteronuclear correlation (HETCOR) NMR analyses support that a specific polymer:fullerene arrangement is present for the highest performing PBDTTPD derivative, in which the fullerene is in closer proximity to the acceptor moiety of the polymer. This work demonstrates that the polymer:fullerene arrangement and resulting intermolecular interactions may be key factors in determining the performance of OPV material systems

  2. Magnitude and direction of the change in dipole moment associated with excitation of the primary electron donor in Rhodopseudomonas sphaeroides reaction centers

    Energy Technology Data Exchange (ETDEWEB)

    Lockhart, D.J.; Boxer, S.G.

    1987-02-10

    The magnitude and direction of the change in dipole moment, ..delta mu.., associated with the Q/sub y/ transition of the dimeric primary electron donor (special pair or P870) in Rhodopseudomonas sphaeroides reaction centers have been measured by Stark spectroscopy at 20 /sup 0/C. The magnitude of ..delta mu.. is found to be f/sup -1/ (10.3 +/- 0.7) D, where f is a correction factor for the local dielectric properties of the protein matrix. With the spherical cavity approximation and an effective local dielectric constant of 2, f = 1.2, and absolute value of ..delta mu.. is 8.6 +/- 0.6 D. Absolute value of ..delta mu.. for the Q/sub y/ transition of the special pair is approximately a factor of 3.4 and 2 greater than for the monomeric bacteriochlorophylls and bacteriopheophytins, respectively, in the reaction center. The angle between ..delta mu.. and the transition dipole moment for excitation of the first singlet electron state of the special pair was found to be 24 +/- 2/sup 0/. The measured values are combined to suggest a physical model in which the lowest excited singlet state of the special pair has substantial charge-transfer character and where charge is separated between the two monomers comprising the dimeric special pair. This leads to the hypothesis that the first charge-separated state in bacterial photosynthesis is formed directly upon photoexcitation. These data provide stringent values for comparison with theoretical calculations of the electronic structure of the chromophores in the reaction center.

  3. Halogen Bonding Involving CO and CS with Carbon as the Electron Donor

    Directory of Open Access Journals (Sweden)

    Janet E. Del Bene

    2017-11-01

    Full Text Available MP2/aug’-cc-pVTZ calculations have been carried out to investigate the halogen-bonded complexes formed when CO and CS act as electron-pair donors through C to ClF, ClNC, ClCl, ClOH, ClCN, ClCCH, and ClNH2. CO forms only complexes stabilized by traditional halogen bonds, and all ClY molecules form traditional halogen-bonded complexes with SC, except ClF which forms only an ion-pair complex. Ion-pair complexes are also found on the SC:ClNC and SC:ClCl surfaces. SC:ClY complexes stabilized by traditional halogen bonds have greater binding energies than the corresponding OC:ClY complexes. The largest binding energies are found for the ion-pair SC–Cl+:−Y complexes. The transition structures which connect the complex and the ion pair on SC:ClNC and SC:ClCl potential surfaces provide the barriers for inter-converting these structures. Charge-transfer from the lone pair on C to the σ-hole on Cl is the primary charge-transfer interaction stabilizing OC:ClY and SC:ClY complexes with traditional halogen bonds. A secondary charge-transfer occurs from the lone pairs on Cl to the in-plane and out-of-plane π antibonding orbitals of ClY. This secondary interaction assumes increased importance in the SC:ClNH2 complex, and is a factor leading to its unusual structure. C–O and C–S stretching frequencies and 13C chemical shieldings increase upon complex formation with ClY molecules. These two spectroscopic properties clearly differentiate between SC:ClY complexes and SC–Cl+:−Y ion pairs. Spin–spin coupling constants 1xJ(C–Cl for OC:ClY complexes increase with decreasing distance. As a function of the C–Cl distance, 1xJ(C–Cl and 1J(C–Cl provide a fingerprint of the evolution of the halogen bond from a traditional halogen bond in the complexes, to a chlorine-shared halogen bond in the transition structures, to a covalent bond in the ion pairs.

  4. Grandparents’ Stories of Family Life After Donor Conception (Parents of heterosexual couples with children conceived using donor sperm or eggs)

    OpenAIRE

    Burke, Hazel; Nordqvist, Petra; Smart, Carol

    2015-01-01

    This leaflet is written for the parents of heterosexual couples who have, or are planning, children using donor conception. It is based on many hours of research interviews, during which parents and grandparents of donor-conceived children told usabout their experiences of family life after donor conception.This leaflet is one of a series of four, written for parents and grandparents with donor-conceived children. They are based on research from the Relative Strangers project.

  5. How to optimize the lung donor.

    Science.gov (United States)

    Sales, Gabriele; Costamagna, Andrea; Fanelli, Vito; Boffini, Massimo; Pugliese, Francesco; Mascia, Luciana; Brazzi, Luca

    2018-02-01

    Over the last two decades, lung transplantation emerged as the standard of care for patients with advanced and terminal lung disease. Despite the increment in lung transplantation rates, in 2016 the overall mortality while on waiting list in Italy reached 10%, whereas only 39% of the wait-list patients were successfully transplanted. A number of approaches, including protective ventilatory strategy, accurate management of fluid balance, and administration of a hormonal resuscitation therapy, have been reported to improve lung donor performance before organ retrieval. These approaches, in conjunction with the use of ex-vivo lung perfusion technique contributed to expand the lung donor pool, without affecting the harvest of other organs and the outcomes of lung recipients. However, the efficacy of issues related to the ex-vivo lung perfusion technique, such as the optimal ventilation strategy, the ischemia-reperfusion induced lung injury management, the prophylaxis of germs transmission from donor to recipient and the application of targeted pharmacologic therapies to treat specific donor lung injuries are still to be explored. The main objective of the present review is to summarize the "state-of-art" strategies to optimize the donor lungs and to present the actual role of ex-vivo lung perfusion in the process of lung transplant. Moreover, different approaches about the technique reported in literature and several issues that are under investigation to treat specific donor lung injury will be discussed.

  6. Damage to photosystem II due to heat stress without light-driven electron flow: involvement of enhanced introduction of reducing power into thylakoid membranes.

    Science.gov (United States)

    Marutani, Yoko; Yamauchi, Yasuo; Kimura, Yukihiro; Mizutani, Masaharu; Sugimoto, Yukihiro

    2012-08-01

    Under a moderately heat-stressed condition, the photosystems of higher plants are damaged in the dark more easily than they are in the presence of light. To obtain a better understanding of this heat-derived damage mechanism that occurs in the dark, we focused on the involvement of the light-independent electron flow that occurs at 40 °C during the damage. In various plant species, the maximal photochemical quantum yield of photosystem (PS) II (Fv/Fm) decreased as a result of heat treatment in the dark. In the case of wheat, the most sensitive plant species tested, both Fv/Fm and oxygen evolution rapidly decreased by heat treatment at 40 °C for 30 min in the dark. In the damage, specific degradation of D1 protein was involved, as shown by immunochemical analysis of major proteins in the photosystem. Because light canceled the damage to PSII, the light-driven electron flow may play a protective role against PSII damage without light. Light-independent incorporation of reducing power from stroma was enhanced at 40 °C but not below 35 °C. Arabidopsis mutants that have a deficit of enzymes which mediate the incorporation of stromal reducing power into thylakoid membranes were tolerant against heat treatment at 40 °C in the dark, suggesting that the reduction of the plastoquinone pool may be involved in the damage. In conclusion, the enhanced introduction of reducing power from stroma into thylakoid membranes that occurs around 40 °C causes over-reduction of plastoquinone, resulting in the damage to D1 protein under heat stress without linear electron flow.

  7. Quality of life of elderly live kidney donors.

    Science.gov (United States)

    Klop, Karel W J; Dols, Leonienke F C; Weimar, Willem; Dooper, Ine M; IJzermans, Jan N M; Kok, Niels F M

    2013-10-15

    Expanding the use of elderly live donors may help meet the demand for kidney transplants. The aim of this study was to quantify the effect of the surgical procedure on the quality of life (QOL) of elderly donors compared with younger donors. Alongside three prospective studies (two randomized) running between May 2001 and October 2010, we asked 501 live donors to fill out the Short Form-36 questionnaire preoperatively and at 1, 3, 6, and 12 months postoperatively. We defined live donors 60 years or older as elderly. Between-group analyses regarding QOL were adjusted for baseline values and gender. One hundred thirty-five donors were older and 366 donors were younger than 60 years. The response rate was high, with 87% at 12 months postoperatively. Elderly donors less often scored as American Society of Anaesthesiology classification 1 (60% vs. 81%; Pvitality" (5 points; P=0.008). At 3 months, "bodily pain" (3 points, P=0.04) and "role physical" (8 points, P=0.02) were still in favor of the older group. At 6 and 12 months, "physical function" was in favor of the younger group (3 and 5 points, respectively; P=0.04 and P<0.001). This study demonstrates that elderly donors recover relatively fast. The perspective of excellent postoperative QOL may help convince elderly individuals to donate.

  8. Evaluation of living liver donors using contrast enhanced multidetector CT – The radiologists impact on donor selection

    International Nuclear Information System (INIS)

    Ringe, Kristina Imeen; Ringe, Bastian Paul; Falck, Christian von; Shin, Hoen-oh; Becker, Thomas; Pfister, Eva-Doreen; Wacker, Frank; Ringe, Burckhardt

    2012-01-01

    Living donor liver transplantation (LDLT) is a valuable and legitimate treatment for patients with end-stage liver disease. Computed tomography (CT) has proven to be an important tool in the process of donor evaluation. The purpose of this study was to evaluate the significance of CT in the donor selection process. Between May 1999 and October 2010 170 candidate donors underwent biphasic CT. We retrospectively reviewed the results of the CT and liver volumetry, and assessed reasons for rejection. 89 candidates underwent partial liver resection (52.4%). Based on the results of liver CT and volumetry 22 candidates were excluded as donors (31% of the cases). Reasons included fatty liver (n = 9), vascular anatomical variants (n = 4), incidental finding of hemangioma and focal nodular hyperplasia (n = 1) and small (n = 5) or large for size (n = 5) graft volume. CT based imaging of the liver in combination with dedicated software plays a key role in the process of evaluation of candidates for LDLT. It may account for up to 1/3 of the contraindications for LDLT

  9. Interface Si donor control to improve dynamic performance of AlGaN/GaN MIS-HEMTs

    Science.gov (United States)

    Song, Liang; Fu, Kai; Zhang, Zhili; Sun, Shichuang; Li, Weiyi; Yu, Guohao; Hao, Ronghui; Fan, Yaming; Shi, Wenhua; Cai, Yong; Zhang, Baoshun

    2017-12-01

    In this letter, we have studied the performance of AlGaN/GaN metal-insulator-semiconductor high electron mobility transistors (MIS-HEMTs) with different interface Si donor incorporation which is tuned during the deposition process of LPCVD-SiNx which is adopted as gate dielectric and passivation layer. Current collapse of the MIS-HEMTs without field plate is suppressed more effectively by increasing the SiH2Cl2/NH3 flow ratio and the normalized dynamic on-resistance (RON) is reduced two orders magnitude after off-state VDS stress of 600 V for 10 ms. Through interface characterization, we have found that the interface deep-level traps distribution with high Si donor incorporation by increasing the SiH2Cl2/NH3 flow ratio is lowered. It's indicated that the Si donors are most likely to fill and screen the deep-level traps at the interface resulting in the suppression of slow trapping process and the virtual gate effect. Although the Si donor incorporation brings about the increase of gate leakage current (IGS), no clear degradation of breakdown voltage can be seen by choosing appropriate SiH2Cl2/NH3 flow ratio.

  10. Living unrelated donors in kidney transplants: better long-term results than with non-HLA-identical living related donors?

    Science.gov (United States)

    Humar, A; Durand, B; Gillingham, K; Payne, W D; Sutherland, D E; Matas, A J

    2000-05-15

    Given the severe organ shortage and the documented superior results obtained with living (vs. cadaver) donor kidney transplants, we have adopted a very aggressive policy for the use of living donors. Currently, we make thorough attempts to locate a living related donor (LRD) or a living unrelated donor (LURD) before proceeding with a cadaver transplant. We compared the results of our LURD versus LRD transplants to determine any significant difference in outcome. Between 1/1/84 and 6/30/98, we performed 711 adult kidney transplants with non-HLA-identical living donors. Of these, 595 procedures used LRDs and 116 used LURDs. Immunosuppression for both groups was cyclosporine-based, although LURD recipients received 5-7 days of induction therapy (antilymphocyte globulin or antithymocyte globulin), whereas LRD recipients did not. LURD recipients tended to be older, to have inferior HLA matching, and to have older donors than did the LRD recipients (all factors potentially associated with decreased graft survival). Short-term results, including initial graft function and incidence of acute rejection, were similar in the two groups. LURD recipients had a slightly higher incidence of cytomegalovirus disease (P=NS). We found no difference in patient and graft survival rates. However, the incidence of biopsy-proven chronic rejection was significantly lower among LURD recipients (16.7% for LRD recipients and 10.0% for LURD recipients at 5 years posttransplant; P=0.05). LRD recipients also had a greater incidence of late (>6 months posttransplant) acute rejection episodes than did the LURD recipients (8.6% vs. 2.6%, P=0.04). The exact reason for these findings is unknown. Although LURD recipients have poorer HLA matching and older donors, their patient and graft survival rates are equivalent to those of non-HLA-identical LRD recipients. The incidence of biopsy-proven chronic rejection is lower in LURD transplants. Given this finding and the superior results of living donor (vs

  11. Effect of proton transfer on the electronic coupling in DNA

    International Nuclear Information System (INIS)

    Rak, Janusz; Makowska, Joanna; Voityuk, Alexander A.

    2006-01-01

    The effects of single and double proton transfer within Watson-Crick base pairs on donor-acceptor electronic couplings, V da , in DNA are studied on the bases of quantum chemical calculations. Four dimers [AT,AT], [GC,GC], [GC,AT] and [GC,TA)] are considered. Three techniques - the generalized Mulliken-Hush scheme, the fragment charge method and the diabatic states method - are employed to estimate V da for hole transfer between base pairs. We show that both single- and double proton transfer (PT) reactions may substantially affect the electronic coupling in DNA. The electronic coupling in [AT,AT] is predicted to be most sensitive to PT. Single PT within the first base pair in the dimer leads to increase in the hole transfer efficiency by a factor of 4, while proton transfer within the second pair should substantially, by 2.7 times, decrease the rate of charge transfer. Thus, directional asymmetry of the PT effects on the electronic coupling is predicted. The changes in the V da matrix elements correlate with the topological properties of orbitals of donor and acceptor and can be qualitatively rationalized in terms of resonance structures of donor and acceptor. Atomic pair contributions to the V da matrix elements are also analyzed

  12. A novel signal-on photoelectrochemical immunosensor for detection of alpha-fetoprotein by in situ releasing electron donor.

    Science.gov (United States)

    Chen, Jiexia; Zhao, Guang-Chao

    2017-12-15

    A signal-on photoelectrochemical (PEC) immunosensor was constructed for detecting tumor marker in this work. α-fetoprotein (AFP) was chosen as a model analyte to investigate the prepared procedure and the analytical performance of the exploited sensor. In order to construct the sensor, CdSe QDs were used as photoactive material, biotin conjugated AFP antibody (Bio-anti-AFP) as detecting probe, streptavidin (SA) as signal capturing unit, biotin functionalized apoferritin encapsulated ascorbic acid (Bio-APOAA) as amplification unit, which were assembled onto the electrodes. The sensing strategy was based on in situ enzymatic hydrolysis of Bio-APOAA to release ascorbic acid (AA) as sacrificial electron donor to produce photocurrent. The photocurrent from the immunosensor was monitored as a result of AFP concentrations. The constructed sensing platform displayed high selectivity and good sensitivity for detecting AFP. Under optimal conditions, a wide linear range from 0.001 to 1000ng/mL and a low detection limit of 0.31pg/mL were obtained. The developed immunosensor is expected to be used to determine AFP and other tumor markers in human plasma in clinical laboratories either for pre-cancer screening or cancer monitoring. Moreover, this sensing platform further has the potential to use for the detection of trypsin activity and the corresponding inhibitor-screening. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Improving Photoconductance of Fluorinated Donors with Fluorinated Acceptors

    Energy Technology Data Exchange (ETDEWEB)

    Garner, Logan E.; Larson, Bryon; Oosterhout, Stefan; Owczarczyk, Zbyslaw; Olson, Dana C.; Kopidakis, Nikos; Boltalina, Olga V.; Strauss, Steven H.; Braunecker, Wade A.

    2016-11-21

    This work investigates the influence of fluorination of both donor and acceptor materials on the generation of free charge carriers in small molecule donor/fullerene acceptor BHJ OPV active layers. A fluorinated and non-fluorinated small molecule analogue were synthesized and their optoelectronic properties characterized. The intrinsic photoconductance of blends of these small molecule donors was investigated using time-resolved microwave conductivity. Blends of the two donor molecules with a traditional non-fluorinated fullerene (PC70BM) as well as a fluorinated fullerene (C60(CF3)2-1) were investigated using 5% and 50% fullerene loading. We demonstrate for the first time that photoconductance in a 50:50 donor:acceptor BHJ blend using a fluorinated fullerene can actually be improved relative to a traditional non-fluorinated fullerene by fluorinating the donor molecule as well.

  14. 'No daddy', 'A kind of daddy': words used by donor conceived children and (aspiring) parents to refer to the sperm donor.

    Science.gov (United States)

    Provoost, Veerle; Bernaerdt, Jodie; Van Parys, Hanna; Buysse, Ann; De Sutter, Petra; Pennings, Guido

    2018-04-01

    Research has shown that the recipients of donor sperm can experience difficulties finding appropriate language to refer to the donor. Based on two qualitative analysis techniques, namely word count and empirical discourse analysis, we studied the words used to refer to the donor in heterosexual and lesbian (aspiring) parents and in donor conceived children. Findings show that the words used in these households are highly diverse and have at least four different interlinked functions: (1) to position the donor in relation to the nuclear family; (2) to safeguard the role of the social parent; (3) to clarify family structure; and (4) to present a positive picture of the donor. Both parents and children consciously reflect on what words to use to refer to the donor. Although parents try to keep words like 'father' and 'daddy' out of the family narrative, children use these words. These findings show that it is important for healthcare personnel and policy makers to reflect on the careful use of terminology when they address questions around sperm donation because the terminology invokes specific meanings that have an effect on how the recipients and their children perceive the role of the donor.

  15. Energies and wave functions of an off-centre donor in hemispherical quantum dot: Two-dimensional finite difference approach and ritz variational principle

    Energy Technology Data Exchange (ETDEWEB)

    Nakra Mohajer, Soukaina; El Harouny, El Hassan [Laboratoire de Physique de la Matière Condensée, Département de Physique, Faculté des Sciences, Université Abdelmalek Essaadi, B.P. 2121 M’Hannech II, 93030 Tétouan (Morocco); Ibral, Asmaa [Equipe d’Optique et Electronique du Solide, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B. P. 20 El Jadida Principale, El Jadida (Morocco); Laboratoire d’Instrumentation, Mesure et Contrôle, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B. P. 20 El Jadida Principale, El Jadida (Morocco); El Khamkhami, Jamal [Laboratoire de Physique de la Matière Condensée, Département de Physique, Faculté des Sciences, Université Abdelmalek Essaadi, B.P. 2121 M’Hannech II, 93030 Tétouan (Morocco); and others

    2016-09-15

    Eigenvalues equation solutions of a hydrogen-like donor impurity, confined in a hemispherical quantum dot deposited on a wetting layer and capped by an insulating matrix, are determined in the framework of the effective mass approximation. Conduction band alignments at interfaces between quantum dot and surrounding materials are described by infinite height barriers. Ground and excited states energies and wave functions are determined analytically and via one-dimensional finite difference approach in case of an on-center donor. Donor impurity is then moved from center to pole of hemispherical quantum dot and eigenvalues equation is solved via Ritz variational principle, using a trial wave function where Coulomb attraction between electron and ionized donor is taken into account, and by two-dimensional finite difference approach. Numerical codes developed enable access to variations of donor total energy, binding energy, Coulomb correlation parameter, spatial extension and radial probability density with respect to hemisphere radius and impurity position inside the quantum dot.

  16. Energies and wave functions of an off-centre donor in hemispherical quantum dot: Two-dimensional finite difference approach and ritz variational principle

    International Nuclear Information System (INIS)

    Nakra Mohajer, Soukaina; El Harouny, El Hassan; Ibral, Asmaa; El Khamkhami, Jamal

    2016-01-01

    Eigenvalues equation solutions of a hydrogen-like donor impurity, confined in a hemispherical quantum dot deposited on a wetting layer and capped by an insulating matrix, are determined in the framework of the effective mass approximation. Conduction band alignments at interfaces between quantum dot and surrounding materials are described by infinite height barriers. Ground and excited states energies and wave functions are determined analytically and via one-dimensional finite difference approach in case of an on-center donor. Donor impurity is then moved from center to pole of hemispherical quantum dot and eigenvalues equation is solved via Ritz variational principle, using a trial wave function where Coulomb attraction between electron and ionized donor is taken into account, and by two-dimensional finite difference approach. Numerical codes developed enable access to variations of donor total energy, binding energy, Coulomb correlation parameter, spatial extension and radial probability density with respect to hemisphere radius and impurity position inside the quantum dot.

  17. CMV infection after transplant from cord blood compared to other alternative donors: the importance of donor-negative CMV serostatus.

    Science.gov (United States)

    Mikulska, Małgorzata; Raiola, Anna Maria; Bruzzi, Paolo; Varaldo, Riccardo; Annunziata, Silvana; Lamparelli, Teresa; Frassoni, Francesco; Tedone, Elisabetta; Galano, Barbara; Bacigalupo, Andrea; Viscoli, Claudio

    2012-01-01

    Cytomegalovirus (CMV) infection and disease are important complications after hematopoietic stem cell transplant, particularly after transplant from alternative donors. Allogeneic cord blood transplantation (CBT) is being increasingly used, but immune recovery may be delayed. The aim of this study was to compare CMV infection in CBT with transplants from unrelated or mismatched related donors, from now on defined as alternative donors. A total of 165 consecutive transplants were divided in 2 groups: (1) alternative donors transplants (n = 85) and (2) CBT recipients (n = 80). Donor and recipient (D/R) CMV serostatus were recorded. The incidence of CMV infection, its severity, timing, and outcome were compared. Median follow-up was 257 days (1-1328). CMV infection was monitored by CMV antigenemia and expressed as CMV Ag positive cell/2 × 10(5) polymorphonuclear blood cells. There was a trend toward a higher cumulative incidence of CMV infection among CBT than alternative donor transplant recipients (64% vs 51%, P = .12). The median time to CMV reactivation was 35 days, and was comparable in the 2 groups (P = .8). The maximum number of CMV-positive cells was similar in the 2 groups (11 versus 16, P = .2). The time interval between the first and the last positive CMV antigenemia was almost 4 times longer in CBT compared with alternative donor transplants (109 vs 29 days, respectively, P = .008). The incidence of late CMV infection was also higher in CBT (62% vs 24%, P donor transplants, whereas no difference in mortality was observed. The duration and incidence of late CMV infection were similar when D-/R+ CBT were compared with D-/R+ alternative donor transplants. Copyright © 2012 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  18. Factors affecting the serological testing of cadaveric donor cornea

    Directory of Open Access Journals (Sweden)

    Anuradha Raj

    2018-01-01

    Full Text Available Purpose: The purpose of this study was to evaluate the serological profile of the eye donors and to study the influence of various factors on serological test results. Methods: A cross-sectional, observational study was conducted, and data of 509 donors were reviewed from the records of eye bank from December 2012 to June 2017. Various details of donors analyzed included the age, sex of the donor, cause of death, source of tissue, time since blood collection after death, macroscopic appearance of blood sample, and details of discarded tissues. Serological examination of blood was performed for human immunodeficiency virus (HIV, hepatitis B virus, hepatitis C virus (HCV, venereal disease research laboratory (VDRL, and serology reports reactive or nonreactive were analyzed. Results: Among the 509 donors, 295 (58% were male, and 420 (82.50% belonged to age group ≥60 years. Most donors (354, 69.5% died due to cardiac arrest. Macroscopically, sera were normal in the majority of 488 (95.9% cases. Among 509 donors, 475 (93.3% were nonreactive, 12 (2.4% donors were found to be reactive to hepatitis B surface antigen (HBsAg, and 1 (0.2% was reactive to HCV, but no donor serology was reactive to HIV or VDRL. Twenty-one (4.12% donors' sera were not fit for serological testing. Among all donors, 475 (93.32% donors were accepted and 34 (6.67% were rejected or discarded on the basis of serological testing. Cause of death and macroscopic aspect of sera influenced the serological results in a highly significant manner (P = 0.00. Acceptance or rejection of the donor was significantly influenced by the serological results of the donor (P = 0.00. Conclusion: The seroprevalence among eye donor for HBsAg and HCV was 12 (2.4% and 1 (0.2%, respectively. Factors such as cause of death and macroscopic aspect of sera influence the serological results. Time since blood collection or sampling will not show any impact on viral serological results if postmortem sampling

  19. Scar evaluation of split thickness skin graft donor site

    Directory of Open Access Journals (Sweden)

    Jani Muha

    2014-12-01

    Full Text Available BACKGROUND. Split thickness skin graft harvesting causes a certain degree of scaring on the donor site. Donor site scar can cause aesthetic and functional sequelae on the patient's body. Our goal was to study the process of donor site selection, and then evaluate donor site scars and their impact on patients. PATIENTS AND METHODS. This retrospective study included 45 patients aged 5 to 61 years (in average 36, who have been treated with STSG in the 2004–2010 period. 57.8% of them were men. On a follow-up visit, we photographed healed skin defects and donor sites. We then determined and compared the surface areas of skin defect and the donor site using the Adobe® Illustrator® CS5 computer program. Donor site scars were assessed according to the Vancouver scar scale (VSS. We examined scar’s light touch sensitivity with monofilaments and skin colouring compared to adjacent healthy skin using colorimeter. Patients were also interviewed about their treatment course in a form of a standardized questionnaire. RESULTS. Our research has revealed that 20.0% of patients participated in the decision making process of choosing the donor site, while in 80.0% the donor site was chosen by the surgeon himself. 6.7% of patients were not satisfied with their donor site. Most of the patients (37/45 had donor sites on their thighs. In average, the donor site surface area was 94% bigger than the skin defect area. We found statistically significant differences in VSS values, light touch sensitivity and skin colouring between donor site scaring and adjacent healthy skin. CONCLUSIONS. Donor site scar can represent a lasting aesthetic and functional disability for patients. Our research has shown that most of the patients do not participate in the donor site selection process, but are satisfied with their donor site. In most cases, STGSs are harvested from the thigh, other anatomical regions, where scarring would be aesthetically less obtrusive, are underused

  20. Socio-demographic characteristics of Danish blood donors

    DEFF Research Database (Denmark)

    Burgdorf, Kristoffer Sølvsten; Simonsen, Jacob; Sundby, Anna

    2017-01-01

    Background: Blood transfusion is an essential component of a modern healthcare system. Because knowledge about blood donor demography may inform the design of strategies for donor recruitment and retention, we used nationwide registers to characterize the entire population of blood donors...... in 2010. The association between sociodemographic characteristics and blood donor prevalence was examined using regression models. Results: The overall prevalence of blood donation was 5.4% among both women and men. The age-specific prevalence of blood donation peaked at 25 years of age (6.8%) for women...... and 30 years of age (5.7%) for men. Children of any age were associated with lower prevalence of blood donation among women, while the opposite was seen for men. Middle to high income groups, but not the highest income group, had fourfold higher donor prevalence than the lowest income group (6...

  1. Higher refusal rates for organ donation among older potential donors in the Netherlands: impact of the donor register and relatives.

    NARCIS (Netherlands)

    Leiden, H.A. van; Jansen, N.E.; Haase-Kromwijk, B.J.; Hoitsma, A.J.

    2010-01-01

    BACKGROUND: The availability of donor organs is considerably reduced by relatives refusing donation after death. There is no previous large-scale evaluation of the influence of the Donor Register (DR) consultation and the potential donor's age on this refusal in The Netherlands. METHODS: This study

  2. The Dirt on the Donors.

    Science.gov (United States)

    Walker, Mary Margaret

    1996-01-01

    A discussion of donor records in college and university fund-raising programs looks at a variety of issues, including who sees them (administrators, donors, volunteers, and members of the legal profession), how access to them is controlled, and what is kept in them. Suggestions are offered for managing such records, and the experiences of a number…

  3. Predictors of Donor Heart Utilization for Transplantation in United States.

    Science.gov (United States)

    Trivedi, Jaimin R; Cheng, Allen; Gallo, Michele; Schumer, Erin M; Massey, H Todd; Slaughter, Mark S

    2017-06-01

    Optimum use of donor organs can increase the reach of the transplantation therapy to more patients on waiting list. The heart transplantation (HTx) has remained stagnant in United States over the past decade at approximately 2,500 HTx annually. With the use of the United Network of Organ Sharing (UNOS) deceased donor database (DCD) we aimed to evaluate donor factors predicting donor heart utilization. UNOS DCD was queried from 2005 to 2014 to identify total number of donors who had at least one of their organs donated. We then generated a multivariate logistic regression model using various demographic and clinical donor factors to predict donor heart use for HTx. Donor hearts not recovered due to consent or family issues or recovered for nontransplantation reasons were excluded from the analysis. During the study period there were 80,782 donors of which 23,606 (29%) were used for HTx, and 38,877 transplants (48%) were not used after obtaining consent because of poor organ function (37%), donor medical history (13%), and organ refused by all programs (5%). Of all, 22,791 donors with complete data were used for logistic regression (13,389 HTx, 9,402 no-HTx) which showed significant predictors of donor heart use for HTx. From this model we assigned probability of donor heart use and identified 3,070 donors with HTx-eligible unused hearts for reasons of poor organ function (28%), organ refused by all programs (15%), and recipient not located (9%). An objective system based on donor factors can predict donor heart use for HTx and may help increase availability of hearts for transplantation from existing donor pool. Copyright © 2017 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  4. Optimization of IVF pregnancy outcomes with donor spermatozoa.

    Science.gov (United States)

    Wang, Jeff G; Douglas, Nataki C; Prosser, Robert; Kort, Daniel; Choi, Janet M; Sauer, Mark V

    2009-03-01

    To identify risk factors for suboptimal IVF outcomes using insemination with donor spermatozoa and to define a lower threshold that may signal a conversion to fertilization by ICSI rather than insemination. Retrospective, age-matched, case-control study of women undergoing non-donor oocyte IVF cycles using either freshly ejaculated (N=138) or cryopreserved donor spermatozoa (N=69). Associations between method of fertilization, semen sample parameters, and pregnancy rates were analyzed. In vitro fertilization of oocytes with donor spermatozoa by insemination results in equivalent fertilization and pregnancy rates compared to those of freshly ejaculated spermatozoa from men with normal semen analyses when the post-processing motility is greater than or equal to 88%. IVF by insemination with donor spermatozoa when the post-processing motility is less than 88% is associated with a 5-fold reduction in pregnancy rates when compared to those of donor spermatozoa above this motility threshold. When the post-processing donor spermatozoa motility is low, fertilization by ICSI is associated with significantly higher pregnancy rates compared to those of insemination. While ICSI does not need to be categorically instituted when using donor spermatozoa in IVF, patients should be counseled that conversion from insemination to ICSI may be recommended based on low post-processing motility.

  5. Dengue antibodies in blood donors.

    Science.gov (United States)

    Ribas-Silva, Rejane Cristina; Eid, Andressa Ahmad

    2012-01-01

    Dengue is an urban arbovirus whose etiologic agent is a virus of the genus Flavorius with four distinct antigen serotypes (DENV-1, DENV-2, DENV-3 and DENV-4) that is transmitted to humans through the bite of the mosquito Aedes aegypti. The Campo Mourão region in Brazil is endemic for dengue fever. OBTECTIVE: The aim of this study was to evaluate the presence of IgG and IgM antibodies specific to the four serotypes of dengue in donors of the blood donor service in the city of Campo Mourão. Epidemiological records were evaluated and 4 mL of peripheral blood from 213 blood donors were collected in tubes without anticoagulant. Serum was then obtained and immunochromatographic tests were undertaken (Imuno-Rápido Dengue IgM/IgG(TM)). Individuals involved in the study answered a social and epidemiological questionnaire on data which included age, gender and diagnosis of dengue. Only three (1.4%) of the 213 blood tests were positive for IgG anti-dengue antibodies. No donors with IgM antibody, which identifies acute infection, were identified. The results of the current analysis show that the introduction of quantitative or molecular serological methods to determine the presence of anti-dengue antibodies or the detection of the dengue virus in blood donors in endemic regions should be established so that the quality of blood transfusions is guaranteed.

  6. Are live kidney donors at risk

    International Nuclear Information System (INIS)

    Kamran, T.; Zaheer, K.; Hussain, S.W.; Zahid, K.H.; Akhtar, M.S.

    2003-01-01

    Objective: To share experience of live donor nephrectomy (including intraoperative variables, morbidity and ethical aspects) and to give an overview of surgical technique being practiced. Results: Majority of the donors (58.5%) were 31-50 years old and 70.6% were first-degree relatives. Left sided kidney was taken in 96.5% cases. Mean operative time was 145 minutes. Mean renal warm ischemia time from cross clamping of renal vessels to cold perfusion on the bench was 1.5 minutes per operation. Operative complications encountered were injury to lumbar veins in 5.1 % cases, slipping of satinsky clamp on vena cava stump in 1.7 % and accidental pleural damage in 5.1 % cases. Postoperative morbid complications found were urinary retention in 6.4 % cases, epididymo-orchitis in 1.7 %, prolonged lymph drain in 3.4 %, stitch infection in 1.7 % and prolonged wound discomfort in 5.1 % patients. Conclusions: Open live donor nepherectomy appears to be safe procedure for harvesting kidney. Related or emotionally related donors must be the choice in all cases. Non-related donors may be entertained in selected cases despite the probability of organ vending in our society. (author)

  7. Donor insemination: eugenic and feminist implications.

    Science.gov (United States)

    Hanson, F A

    2001-09-01

    One concern regarding developments in genetics is that, when techniques such as genetic engineering become safe and affordable, people will use them for positive eugenics: to "improve" their offspring by enpowering them with exceptional qualities. Another is whether new reproductive technologies are being used to improve the condition of women or as the tools of a patriarchal system that appropriates female functions to itself and exploits women to further its own ends. Donor insemination is relevant to both of these issues. The degree to which people have used donor insemination in the past for positive eugenic purposes may give some insight into the likelihood of developing technologies being so used in the future. Donor insemination provides women with the opportunity to reproduce with only the most remote involvement of a man. To what degree do women take advantage of this to liberate themselves from male dominance? Through questionnaires and interviews, women who have used donor insemination disclosed their criteria for selecting sperm donors. The results are analyzed for the prevalence of positive eugenic criteria in the selection process and women's attitudes toward minimizing the male role in reproduction.

  8. Kinetics of the metal exchange in Bis(salicylaldiminato)-copper(II)-complexes. Pt. 3. Influence of the electron density at the donor nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Winkler, H; Wannowius, K J; Elias, H [Technische Hochschule Darmstadt (Germany, F.R.). Fachbereich Anorganische Chemie und Kernchemie

    1977-01-01

    The kinetics of isotopic copper exchange between various (bis-(N-phenyl-salicylaldiminato))copper(II)complexes (= CuL/sub 2/) and mono(pyridine)copper(II)acetate (= CuAc/sub 2/py) was studied in dichloromethane as solvent in the temperature range -20 to +20/sup 0/C. The exchange follows the experimental rate law (5), which is simplified in certain cases due to k''((CuAc/sub 2/py)/sub 2/)/sup 1///sup 2/ < 1. The variation of substituents X on the salicylaldehyde ring and of substituents Y on the N-phenyl ring leads via Hammett plots to the conclusion that substituent effects become apparent as rate increasing or rate decreasing only in those cases, in which they cause an increase or decrease in electron density at the donor oxygen. Substituents Y in 2-position, and especially in 2.6-position, reduce the rate of exchange with increasing van der Waals radius of Y. The mechanistic implications of the results are discussed. (orig.) 891 HK.

  9. Low-dose ultraviolet-B irradiation of donor corneal endothelium and graft survival

    International Nuclear Information System (INIS)

    Dana, M.R.; Olkowski, S.T.; Ahmadian, H.; Stark, W.J.; Young, E.M.

    1990-01-01

    Donor rabbit corneal endothelium was pretreated with different doses of ultraviolet (UV-B) irradiation (302 nm) before grafting to test whether allograft survival could be favorably affected in comparison with untreated corneas grafted into the same recipients. Endothelial rejection was observed in 19 of 32 (59%) eyes that received no treatment compared with five of 32 (16%) eyes that received UV-B (P less than 0.001), and increasing doses of UV-B were associated with lower rejection rates (P less than 0.05). Although exposure of donor endothelium significantly reduced endothelial rejection at all doses tested, it resulted in primary graft failure in a substantial proportion of corneas treated at high doses. Class II (Ia) antigen staining of corneal tissue was present in conjunction with clinical evidence of rejection, and the magnitude of staining correlated with the histologic extent of inflammation. Scanning electron microscopy revealed various endothelial cell surface irregularities and membrane defects in high-dose UV-treated corneas. Endothelial cell cultures exposed in vitro to UV-B light showed a dose-dependent loss in cell viability. These data suggest that UV-B pretreatment of donor corneal endothelium prolongs graft survival but that toxic side effects must be carefully controlled

  10. Study of the Contributions of Donor and Acceptor Photoexcitations to Open Circuit Voltage in Bulk Heterojunction Organic Solar Cells

    Directory of Open Access Journals (Sweden)

    Douglas Yeboah

    2017-10-01

    Full Text Available One of the key parameters in determining the power conversion efficiency (PCE of bulk heterojunction (BHJ organic solar cells (OSCs is the open circuit voltage . The processes of exciting the donor and acceptor materials individually in a BHJ OSC are investigated and are found to produce two different expressions for . Using the contributions of electron and hole quasi-Fermi levels and charge carrier concentrations, the two different expressions are derived as functions of the energetics of the donor and acceptor materials and the photo-generated charge carrier concentrations, and calculated for a set of donor-acceptor blends. The simultaneous excitation of both the donor and acceptor materials is also considered and the corresponding , which is different from the above two, is derived. The calculated from the photoexcitation of the donor is found to be somewhat comparable with that obtained from the photoexcitation of the acceptor in most combinations of the donor and acceptor materials considered here. It is also found that the calculated from the simultaneous excitations of donor and acceptor in BHJ OSCs is also comparable with the other two . All three thus derived produce similar results and agree reasonably well with the measured values. All three depend linearly on the concentration of the photoexcited charge carriers and hence incident light intensity, which agrees with experimental results. The outcomes of this study are expected to help in finding materials that may produce higher and hence enhanced PCE in BHJ OSCs.

  11. Donor states in a semimagnetic Cd1 -xinMnxin Te /Cd1 -xoutMnxout Te Double Quantum Well

    Science.gov (United States)

    Kalpana, Panneer Selvam; Nithiananthi, Perumal; Jayakumar, Kalyanasundaram

    2017-02-01

    The theoretical investigation has been carried out on the binding energy of donor associated with the electrons confined in a Cd1 -xinMnxin Te /Cd1 -xoutMnxout Te Double Quantum Well (DQW) as a function of central barrier width for various well dimensions and impurity locations in the barrier and the well. The magnetic field can act as a tool to continuously change the interwell coupling inside this DQW systems and its effect on donor binding has also been studied. Moreover, the polaronic corrections, which is due to the strong exchange interaction between the magnetic moment of Mn2+ ion and the spin of the confined carrier, to the binding energy of the hydrogenic donor impurity has also been estimated with and without the application of magnetic field. The binding energy of the donor impurity is determined by solving the Schrodinger equation variationally in the effective mass approximation and the effect due to Bound Magnetic Polaron (BMP) is included using mean field theory with the modified Brillouin function. The results are reported and discussed.

  12. Donor policy rules and aid effectiveness

    DEFF Research Database (Denmark)

    Dalgaard, Carl-Johan Lars

    2008-01-01

    The present paper examines the macroeconomic impact of aid, by introducing endogenous aid allocations into a neoclassical growth framework. On this basis it is shown that donor policies can have important implications for the trajectory of recipients' GDP per capita. Depending on specific donor...... policy choices, aid disbursements may lead to faster transitional growth, stagnation or cyclical growth. Moreover, the analysis also suggests that donor policies may be part of the reason why foreign aid is not found to be uniformly effective in raising long-run productivity across recipients...

  13. Design principle for efficient charge separation at the donor-acceptor interface for high performance organic solar cell device

    Science.gov (United States)

    Nie, Wanyi; Gupta, Gautam; Crone, Brian; Wang, Hsing-Lin; Mohite, Aditya; MPA-11 Material synthesis and integrated device Team; MPA-chemistry Team

    2014-03-01

    The performance of donor (D) /acceptor (A) structure based organic electronic devices, such as solar cell, light emitting devices etc., relays on the charge transfer process at the interface dramatically. In organic solar cell, the photo-induced electron-hole pair is tightly bonded and will form a charge transfer (CT) state at the D/A interface after dissociation. There is a large chance for them to recombine through CT state and thus is a major loss that limit the overall performance. Here, we report three different strategies that allow us to completely suppress the exciplex (or charge transfer state) recombination between any D/A system. We observe that the photocurrent increases by 300% and the power conversion efficiency increases by 4-5 times simply by inserting a spacer layer in the form of an a) insulator b) Oliogomer or using a c) heavy atom at the donor-acceptor interface in a P3HT/C60 bilayer device. By using those different functional mono layers, we successfully suppressed the exciplex recombination in evidence of increased photocurrent and open circuit voltage. Moreover, these strategies are applicable universally to any donor-acceptor interface. And we demonstrated such strategies in a bulk-heterojunction device which improved the power conversion efficiency from 3.5% up to 4.6%.

  14. A new family of thermal donors generated around 450 °C in phosphorus-doped Czochralski silicon

    Science.gov (United States)

    Kamiura, Yoichi; Hashimoto, Fumio; Yoneta, Minoru

    1989-01-01

    We have discovered a new family of oxygen-related double donors [new thermal donors (NTD's)] generated around 450 °C in phosphorus-doped Czochralski silicon by combining deep-level transient spectroscopy with Hall measurements. This new family was well distinguished from the normal family of thermal donors (TD's) currently studied so far. Our results have shown that both families of thermal donors exhibit qualitatively the same kinetic behavior. Namely, as the annealing time increases, their ionization energy of levels continuously decrease with their densities increasing until the maxima and then become constant with their densities decreasing. However, there are significantly quantitative differences between the both families; NTD's have shallower levels, considerably smaller generation rates, and higher thermal stability than TD's. Sufficiently prolonged annealing for more than 105 min around 450 °C or short donor-killing annealing for 20 min at 650 °C completely annihilates TD's, leaving only NTD's, of which the most stable and therefore most shallow species have been suggested by our Hall measurements to have donor levels at 0.04 and 0.09 eV below the conduction-band edge. The density of interstitial oxygen still continues to decrease even after prolonged annealing for more than 105 min, where NTD's are present in a stable condition in a concentration of 1×1015 cm-3. NTD's may correlate with the NL10 electron paramagnetic resonance center because of similarities in their generation kinetics. We have suggested a hypothesis that NTD's have similar defect structures as TD's and that an unknown nucleus involved in the core of NTD's plays an essential role in lowering their ionization energy of levels and generation rates and also in stabilizing their donor activity.

  15. PATHOMORPHOLOGY OF ZERO BIOPSIES OF DONOR KIDNEYS

    Directory of Open Access Journals (Sweden)

    M. L. Arefjev

    2011-01-01

    Full Text Available There is well known fact that kidney transplants from Extended Criteria Donors may increase risk of De- layed Graft Function and Primary Non-Function of transplants. We have collected and tested 65 «zero» kidney biopsies from cadaver donors aged from 19 to 71 years old. In the pool of elderly donors who died from cerebrovascular accident the frequency of nephrosclerosis presentation was higher than in donors of yonger age who died from craniocephalic trauma. Nevertheless in the general donor pool the number of sclerosed glomeruli was no more than 12%. We did not meet at all in the whole volume of material any bi- opsy with the severe degree of arteriosclerosis. The «zero» biopsies of cadaver kidneys is quite usable and unexpensive tool to measure the degree of nephrosclerosis in order to exclude kidneys which are not fitable for transplantation. 

  16. Can value for money be improved by changing the sequence of our donor work-up in the living kidney donor programme?

    Science.gov (United States)

    Larsen, Jesper; Sørensen, Søren Schwartz; Feldt-Rasmussen, Bo

    2009-08-01

    The aim of the study was to identify procedures of maximum importance for acceptance or rejection of kidney donation from a living donor as well as making the process more cost-effective. We identified all potential living related donors who were examined during the period between January 2002 and December 2006 at our department. The cost in euro (euro) for the programme was estimated using the Danish diagnosis-related group-system (DRG). The donor work-up programme was described. One hundred and thirty-three potential donors were identified; 66 male- and 67 female subjects, median age of 52 years (range 22-69). Sixty-four participants were rejected as donors. Abdominal CT-scan with angiography and urography ruled out 22 of the above 64 potential organ donors; thus, 48% of the volunteers for living kidney donation were unsuited for donation. Abdominal CT-scan with angiography and urography was the procedure identifying most subjects who were unsuited for kidney donation. A rearrangement of the present donor work-up programme could potentially reduce the costs from euro6911 to euro5292 per donor--saving 23% of the costs. By changing the sequence of examinations, it might be possible to cut down on time spent and number of tests needed for approving or rejecting subjects for living kidney donation.

  17. Prisoners as Living Donors: A Vulnerabilities Analysis.

    Science.gov (United States)

    Ross, Lainie Friedman; Thistlethwaite, J Richard

    2018-01-01

    Although national guidelines exist for evaluating the eligibility of potential living donors and for procuring their informed consent, no special protections or considerations exist for potential living donors who are incarcerated. Human research subject protections in the United States are codified in the Federal Regulations, 45 CFR 46, and special protections are given to prisoners. Living donor transplantation has parallels with human subject research in that both activities are performed with the primary goal of benefiting third parties. In this article, we describe what special considerations should be provided to prisoners as potential living donors using a vulnerabilities approach adapted from the human research subject protection literature.

  18. Embryo donation parents' attitudes towards donors: comparison with adoption.

    Science.gov (United States)

    MacCallum, Fiona

    2009-03-01

    Embryo donation produces a family structure where neither rearing parent is genetically related to the child, as in adoption. It is not known how embryo donation parents view the donors compared with how adoptive parents view the birth parents. 21 couples with an embryo donation child aged 2-5 years were compared with 28 couples with an adopted child. Parents were administered a semi-structured interview, assessing knowledge of the donors/birth parents, frequency of thoughts and discussions about the donors/birth parents and disclosure of the donor conception/adoption to the child. Comparisons were made between mothers and fathers to examine gender differences. Embryo donation parents generally knew only the donors' physical characteristics, and thought about and talked about the donors less frequently than adoptive parents thought about and talked about the birth parents. Embryo donation fathers tended to think about the donors less often than did mothers. Disclosure of the child's origins in embryo donation families was far less common than in adoptive families (P parents' views on the donors differ from adoptive parents' views on the birth parents, with donors having little significance in family life once treatment is successful.

  19. Donors and archives a guidebook for successful programs

    CERN Document Server

    Purcell, Aaron D

    2015-01-01

    Donors and Archives: A Guidebook for Successful Programs highlights the importance of development and fundraising for archives, while focusing on the donor and potential donor. Their interest, their support, their enthusiasm, and their stuff are vital to the success of archival programs.

  20. Alkylated indacenodithieno[3,2-b]thiophene-based all donor ladder-type conjugated polymers for organic thin film transistors

    KAUST Repository

    Lu, Rimei

    2018-01-29

    We report the synthesis of a series of indacenodithieno[3,2-b]thiophene (IDTT) based conjugated polymers by copolymerization with three different electron rich co-monomers [thiophene (T), thieno[3,2-b]thiophene (TT) and dithieno[3,2-b:2\\',3\\'-d]thiophene (DTT)] under Stille coupling conditions. The resulting all-donor polymers show very good solubility in common solvents and exhibit similar optical, thermal and electronic properties. However, the performance of these semiconductors in thin film transistor devices varied and was highly dependent on the nature of the co-monomer. All polymers exhibited unipolar p-type charge transport behaviour, with the mobility values following the trend of IDTT-TT>IDTT-DTT>IDTT-T. The peak saturation mobility value of IDTT-TT was extracted to be 1.1 cm2V-1s-1, amongst the highest mobility for all-donor conjugated polymers reported to date.