WorldWideScience

Sample records for psig design test

  1. Flowrate testing of the bag filter LANCS-BOP 6CPVC-1.5-2SPVC (LANCS Industries) at 1 psig

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Murray E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Currie, Karissa Lyn [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Berg, Charlotte Katherine [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-13

    The air flowrate through a flexible HEPA grade filter (Part LANCS-BOP 6CPVC-1.5-2SPVC www.lancsindustries.com) was measured at 48 ALPM for a differential pressure drop of 1.0 psig (28 inWC, 7.0 kPa). These filters are rated by the manufacturer to have a flowrate of 3 ALPM at a differential pressure drop of 1 inWC (0.25 kPa). The Los Alamos National Laboratory Aerosol Engineering Facility used one of their test rigs (originally developed to measure the pressure drop in capsule HEPA filters) to measure the airflow through the LANCS bag filter.

  2. ORION - Crew Module Side Hatch: Proof Pressure Test Anomaly Investigation

    Science.gov (United States)

    Evernden, Brent A.; Guzman, Oscar J.

    2018-01-01

    The Orion Multi-Purpose Crew Vehicle program was performing a proof pressure test on an engineering development unit (EDU) of the Orion Crew Module Side Hatch (CMSH) assembly. The purpose of the proof test was to demonstrate structural capability, with margin, at 1.5 times the maximum design pressure, before integrating the CMSH to the Orion Crew Module structural test article for subsequent pressure testing. The pressure test was performed at lower pressures of 3 psig, 10 psig and 15.75 psig with no apparent abnormal behavior or leaking. During pressurization to proof pressure of 23.32 psig, a loud 'pop' was heard at 21.3 psig. Upon review into the test cell, it was noted that the hatch had prematurely separated from the proof test fixture, thus immediately ending the test. The proof pressure test was expected be a simple verification but has since evolved into a significant joint failure investigation from both Lockheed Martin and NASA.

  3. The PSIG procedure to Persistent Scatterer Interferometry (PSI) using X-band and C-band Sentinel-1 data

    Science.gov (United States)

    Cuevas-González, María.; Devanthéry, Núria; Crosetto, Michele; Monserrat, Oriol; Crippa, Bruno

    2015-10-01

    A new approach to Persistent Scatterer Interferometry (PSI) data processing and analysis implemented in the PSI chain of the Geomatics (PSIG) Division of CTTC is used in this work. The flexibility of the PSIG procedure allowed evaluating two different processing chains of the PSIG procedure. A full PSIG procedure was implemented in the TerraSAR-X dataset while a reduced PSIG procedure was applied to the nine Sentinel-1 images available at the time of processing. The performance of the PSIG procedure is illustrated using X-band and C-band Sentinel-1 data and several examples of deformation maps covering different types of deformation phenomena are shown.

  4. Relative Roles of the fla/che PA, PD-3, and PsigD Promoters in Regulating Motility and sigD Expression in Bacillus subtilis

    Science.gov (United States)

    West, Joyce T.; Estacio, William; Márquez-Magaña, Leticia

    2000-01-01

    Three promoters have been identified as having potentially important regulatory roles in governing expression of the fla/che operon and of sigD, a gene that lies near the 3′ end of the operon. Two of these promoters, fla/che PA and PD-3, lie upstream of the >26-kb fla/che operon. The third promoter, PsigD, lies within the operon, immediately upstream of sigD. fla/che PA, transcribed by EςA, lies ≥24 kb upstream of sigD and appears to be largely responsible for sigD expression. PD-3, transcribed by EςD, has been proposed to participate in an autoregulatory positive feedback loop. PsigD, a minor ςA-dependent promoter, has been implicated as essential for normal expression of the fla/che operon. We tested the proposed functions of these promoters in experiments that utilized strains that bear chromosomal deletions of fla/che PA, PD-3, or PsigD. Our analysis of these strains indicates that fla/che PA is absolutely essential for motility, that PD-3 does not function in positive feedback regulation of sigD expression, and that PsigD is not essential for normal fla/che expression. Further, our results suggest that an additional promoter(s) contributes to sigD expression. PMID:10940026

  5. Design Driven Testing Test Smarter, Not Harder

    CERN Document Server

    Stephens, M

    2010-01-01

    The groundbreaking book Design Driven Testing brings sanity back to the software development process by flipping around the concept of Test Driven Development (TDD) - restoring the concept of using testing to verify a design instead of pretending that unit tests are a replacement for design. Anyone who feels that TDD is "Too Damn Difficult" will appreciate this book. Design Driven Testing shows that, by combining a forward-thinking development process with cutting-edge automation, testing can be a finely targeted, business-driven, rewarding effort. In other words, you'll learn how to test

  6. 40 CFR 63.180 - Test methods and procedures.

    Science.gov (United States)

    2010-07-01

    ... emission test using the techniques specified in § 63.11(b)(4). (2) Determine the net heating value of the..., psig/hr. Pf=Final pressure, psig. Pi=Initial pressure, psig. tf−ti=Elapsed time, hours. (4) The...

  7. Multispecies Environmental Testing Designs

    NARCIS (Netherlands)

    Brink, van den P.J.; Daam, M.A.

    2014-01-01

    In order to increase the realism in the ecological risk assessment of chemicals, multispecies experiments are carried out. They have the advantage over laboratory single-species tests that they evaluate more realistic exposure regimes, assess effects on populations rather than individuals, allow the

  8. The properties of the positively charged loop region in PSI-G are essential for its "spontaneous" insertion into thylakoids and rapid assembly into the photosystem I complex

    National Research Council Canada - National Science Library

    Zygadlo, Agnieszka; Robinson, Colin; Scheller, Henrik Vibe; Mant, Alexandra; Jensen, Poul Erik

    2006-01-01

    The PSI-G subunit of photosystem I (PSI) is an 11-kDa membrane protein that plays an important role in electron transport between plastocyanin and PSI and is involved in the stability of the PSI complex...

  9. Ares I Static Tests Design

    Science.gov (United States)

    Carson, William; Lindemuth, Kathleen; Mich, John; White, K. Preston; Parker, Peter A.

    2009-01-01

    Probabilistic engineering design enhances safety and reduces costs by incorporating risk assessment directly into the design process. In this paper, we assess the format of the quantitative metrics for the vehicle which will replace the Space Shuttle, the Ares I rocket. Specifically, we address the metrics for in-flight measurement error in the vector position of the motor nozzle, dictated by limits on guidance, navigation, and control systems. Analyses include the propagation of error from measured to derived parameters, the time-series of dwell points for the duty cycle during static tests, and commanded versus achieved yaw angle during tests. Based on these analyses, we recommend a probabilistic template for specifying the maximum error in angular displacement and radial offset for the nozzle-position vector. Criteria for evaluating individual tests and risky decisions also are developed.

  10. Optical design and testing: introduction.

    Science.gov (United States)

    Liang, Chao-Wen; Koshel, John; Sasian, Jose; Breault, Robert; Wang, Yongtian; Fang, Yi Chin

    2014-10-10

    Optical design and testing has numerous applications in industrial, military, consumer, and medical settings. Assembling a complete imaging or nonimage optical system may require the integration of optics, mechatronics, lighting technology, optimization, ray tracing, aberration analysis, image processing, tolerance compensation, and display rendering. This issue features original research ranging from the optical design of image and nonimage optical stimuli for human perception, optics applications, bio-optics applications, 3D display, solar energy system, opto-mechatronics to novel imaging or nonimage modalities in visible and infrared spectral imaging, modulation transfer function measurement, and innovative interferometry.

  11. Nanoelectronic circuit design and test

    Science.gov (United States)

    Simsir, Muzaffer Orkun

    Controlling power consumption in CMOS integrated circuits (ICs) during normal mode of operation is becoming one of the limiting factors to further scaling. In addition, it is a well known fact that during testing of a complex IC, power consumption can far exceed the values reached during its normal operation. High power consumption, combined with limited cooling support, leads to overheating of ICs. This can cause permanent damage to the chip or can invalidate test results due to the fact that extreme temperature variations lead to changes in path delays. Therefore, even good chips can fail the test. For these reasons, thermal problems during test need to be identified to prevent the loss of yield in CMOS ICs. In this thesis, we propose a methodology for thermally characterizing circuits under test. Using this methodology, it is possible to simulate the thermal profiles of the chips during test and prevent possible yield loss because of thermal problems. In addition to the problems associated with power and temperature, a more important barrier is the scaling limitations of the CMOS technology. It has been predicted that in next decade, it will not be possible to scale it further. In the near future, rather than a transition to a completely new technology, extensions to CMOS seem to be more realistic. Double-gate CMOS technology is one of the most promising alternatives that offers a simple extension to CMOS. The transistors of this technology are formed by adding a second gate across the conventional CMOS transistor gate. Designing circuits using this technology has attracted a lot of attention. However, as circuit design methods mature, there is a need to identify how these circuits can be tested. From a circuit testing viewpoint, it is unclear if CMOS fault models are comprehensive enough to model all defects in double-gate CMOS circuits. Therefore, fault models of this technology need to be defined to enable manufacturing-time testing. In this thesis, we

  12. Functional Testing of Wireless Sensor Node Designs

    DEFF Research Database (Denmark)

    Virk, Kashif M.; Madsen, Jan

    2007-01-01

    test approach can enable their conformance to design and deployment specifications. We discuss off-line, hierarchical, functional testing of complete wireless sensor nodes containing configurable logic through a combination of FPGA-based board test and Software-Based Self-Test (SBST) techniques....... The proposed functional test methodology has been applied to a COTS-based sensor node development platform and can be applied, in general, for testing all types of wireless sensor node designs....

  13. Designing special test instruments for preventive maintenance.

    Science.gov (United States)

    McCullough, C E; Baker, L S

    1979-01-01

    Periodic performance testing of biomedical equipment can be made considerably more efficient by careful design of test procedures and by fabrication of special test instruments which are designed for those procedures. The design philosophy behind such procedures and instruments and its applicability to a wide variety of biomedical devices is discussed. As a practical example, an ECG machine/patient monitor test system is described and construction details are given.

  14. Minigenerator - Analysis, Design and Tests

    Directory of Open Access Journals (Sweden)

    Pavel Fiala

    2006-01-01

    Full Text Available The paper presents results of the analysis of the vibrational generator. The paper deals with the design of a vibrational generator that is used as a power supply for independent electric circuits. The vibrational generator can be used in the various areas, e.g. traffic, electronics, special-purpose machines, and robotics. The proposed design employs magnetic damping of the core movement. It was numerically evaluated and it was shown that it was possible to obtain significantly larger output voltage and output power than in experimental settings used previously [1].

  15. A3 Subscale Diffuser Test Article Design

    Science.gov (United States)

    Saunders, G. P.

    2009-01-01

    This paper gives a detailed description of the design of the A3 Subscale Diffuser Test (SDT) Article Design. The subscale diffuser is a geometrically accurate scale model of the A3 altitude rocket facility. It was designed and built to support the SDT risk mitigation project located at the E3 facility at Stennis Space Center, MS (SSC) supporting the design and construction of the A3 facility at SSC. The subscale test article is outfitted with a large array of instrumentation to support the design verification of the A3 facility. The mechanical design of the subscale diffuser and test instrumentation are described here

  16. 10 CFR 63.133 - Design testing.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Design testing. 63.133 Section 63.133 Energy NUCLEAR... MOUNTAIN, NEVADA Performance Confirmation Program § 63.133 Design testing. (a) During the early or developmental stages of construction, a program for testing of engineered systems and components used in the...

  17. 10 CFR 60.142 - Design testing.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Design testing. 60.142 Section 60.142 Energy NUCLEAR... Performance Confirmation Program § 60.142 Design testing. (a) During the early or developmental stages of construction, a program for in situ testing of such features as borehole and shaft seals, backfill, and the...

  18. Designing a Test Fixture with DFSS Methodology

    Directory of Open Access Journals (Sweden)

    Charles G. Kibbe

    2016-01-01

    Full Text Available This paper addresses the application of Design for Six Sigma (DFSS methodology to the design of a marine riser joint hydraulic line test fixture. The original test fixture was evaluated using Value Steam Mapping (VSM and appropriate Lean design tools such as 3D Modeling and Finite Element Analysis (FEA. A new test fixture was developed which resulted in improving the process cycle efficiency for the test from 25% to 50% percent, leading to a 50% reduction in test cost. Handling of the new test fixture is greatly improved as compared to the original fixture.

  19. Design and Testing of Digital Microfluidic Biochips

    CERN Document Server

    Zhao, Yang

    2013-01-01

    This book provides a comprehensive methodology for automated design, test and diagnosis, and use of robust, low-cost, and manufacturable digital microfluidic systems. It focuses on the development of a comprehensive CAD optimization framework for digital microfluidic biochips that unifies different design problems. With the increase in system complexity and integration levels, biochip designers can utilize the design methods described in this book to evaluate different design alternatives, and carry out design-space exploration to obtain the best design point. Describes practical design automation tools that address different design problems (e.g., synthesis, droplet routing, control-pin mapping, testing and diagnosis, and error recovery) in a unified manner; Applies test pattern generation and error-recovery techniques for digital microfluidics-based biochips; Uses real bioassays as evaluation examples, e.g., multiplexed in vitro human physiological fluids diagnostics, PCR, protein crystallization.  

  20. Designing a CR Test bed

    DEFF Research Database (Denmark)

    Cattoni, Andrea Fabio; Buthler, Jakob Lindbjerg; Tonelli, Oscar

    2014-01-01

    , the software is most of the times open source and ready to use for third party users. Even though the software solution developers claim complete easiness in the development of custom applications, in reality there are a number of practical hardware and software issues that research groups need to face, before...... they are up and running in generating results. With this chapter we would like to provide a tutorial guide, based on direct experience, on how to enter in the world of test bed-based research, providing both insight on the issues encountered in every day development, and practical solutions. Finally...

  1. Geotechnical Design Asssisted by Laboratory Testing

    DEFF Research Database (Denmark)

    Foged, Niels; Dysli, Michel; Head, Ken H.

    1997-01-01

    Eurocode 7 Part 2 is intended to serve as a reference document for the use of laboratory tests for geotechnical design. It covers the execution and interpretation of the most commonly used laboratory tests. The standard aims at ensuring that adequate quality is reached in the execution...... of laboratory tests and their interpretation. Within the framework of European Standardisation, Eurocode 7 Part 1 on the design of geotechnical structures was established. Complementary, Eurocode 7 Part 3 addresses field testing....

  2. A powerful test for Balaam's design.

    Science.gov (United States)

    Mori, Joji; Kano, Yutaka

    2015-01-01

    The crossover trial design (AB/BA design) is often used to compare the effects of two treatments in medical science because it performs within-subject comparisons, which increase the precision of a treatment effect (i.e., a between-treatment difference). However, the AB/BA design cannot be applied in the presence of carryover effects and/or treatments-by-period interaction. In such cases, Balaam's design is a more suitable choice. Unlike the AB/BA design, Balaam's design inflates the variance of an estimate of the treatment effect, thereby reducing the statistical power of tests. This is a serious drawback of the design. Although the variance of parameter estimators in Balaam's design has been extensively studied, the estimators of the treatment effect to improve the inference have received little attention. If the estimate of the treatment effect is obtained by solving the mixed model equations, the AA and BB sequences are excluded from the estimation process. In this study, we develop a new estimator of the treatment effect and a new test statistic using the estimator. The aim is to improve the statistical inference in Balaam's design. Simulation studies indicate that the type I error of the proposed test is well controlled, and that the test is more powerful and has more suitable characteristics than other existing tests when interactions are substantial. The proposed test is also applied to analyze a real dataset. Copyright © 2015 John Wiley & Sons, Ltd.

  3. Designing a Software Test Automation Framework

    OpenAIRE

    Sabina AMARICAI; Constantinescu, Radu

    2014-01-01

    Testing is an art and science that should ultimately lead to lower cost businesses through increasing control and reducing risk. Testing specialists should thoroughly understand the system or application from both the technical and the business perspective, and then design, build and implement the minimum-cost, maximum-coverage validation framework. Test Automation is an important ingredient for testing large scale applications. In this paper we discuss several test automation frameworks, th...

  4. Computerized Adaptive Testing System Design: Preliminary Design Considerations.

    Science.gov (United States)

    Croll, Paul R.

    A functional design model for a computerized adaptive testing (CAT) system was developed and presented through a series of hierarchy plus input-process-output (HIPO) diagrams. System functions were translated into system structure: specifically, into 34 software components. Implementation of the design in a physical system was addressed through…

  5. Diffractive optics: design, fabrication, and test

    National Research Council Canada - National Science Library

    O'Shea, Donald C

    2004-01-01

    This book provides the reader with the broad range of materials that were discussed in a series of short courses presented at Georgia Tech on the design, fabrication, and testing of diffractive optical elements (DOEs...

  6. Analysis of Levene's Test under Design Imbalance.

    Science.gov (United States)

    Keyes, Tim K.; Levy, Martin S.

    1997-01-01

    H. Levene (1960) proposed a heuristic test for heteroscedasticity in the case of a balanced two-way layout, based on analysis of variance of absolute residuals. Conditions under which design imbalance affects the test's characteristics are identified, and a simple correction involving leverage is proposed. (SLD)

  7. Designing a Software Test Automation Framework

    Directory of Open Access Journals (Sweden)

    Sabina AMARICAI

    2014-01-01

    Full Text Available Testing is an art and science that should ultimately lead to lower cost businesses through increasing control and reducing risk. Testing specialists should thoroughly understand the system or application from both the technical and the business perspective, and then design, build and implement the minimum-cost, maximum-coverage validation framework. Test Automation is an important ingredient for testing large scale applications. In this paper we discuss several test automation frameworks, their advantages and disadvantages. We also propose a custom automation framework model that is suited for applications with very complex business requirements and numerous interfaces.

  8. Water NSTF Design, Instrumentation, and Test Planning

    Energy Technology Data Exchange (ETDEWEB)

    Lisowski, Darius D.; Gerardi, Craig D.; Hu, Rui; Kilsdonk, Dennis J.; Bremer, Nathan C.; Lomperski, Stephen W.; Kraus, Adam R.; Bucknor, Matthew D.; Lv, Qiuping; Farmer, Mitchell T.

    2017-08-01

    The following report serves as a formal introduction to the water-based Natural convection Shutdown heat removal Test Facility (NSTF) program at Argonne. Since 2005, this US Department of Energy (DOE) sponsored program has conducted large scale experimental testing to generate high-quality and traceable validation data for guiding design decisions of the Reactor Cavity Cooling System (RCCS) concept for advanced reactor designs. The most recent facility iteration, and focus of this report, is the operation of a 1/2 scale model of a water-RCCS concept. Several features of the NSTF prototype align with the conceptual design that has been publicly released for the AREVA 625 MWt SC-HTGR. The design of the NSTF also retains all aspects common to a fundamental boiling water thermosiphon, and thus is well poised to provide necessary experimental data to advance basic understanding of natural circulation phenomena and contribute to computer code validation. Overall, the NSTF program operates to support the DOE vision of aiding US vendors in design choices of future reactor concepts, advancing the maturity of codes for licensing, and ultimately developing safe and reliable reactor technologies. In this report, the top-level program objectives, testing requirements, and unique considerations for the water cooled test assembly are discussed, and presented in sufficient depth to support defining the program’s overall scope and purpose. A discussion of the proposed 6-year testing program is then introduced, which outlines the specific strategy and testing plan for facility operations. The proposed testing plan has been developed to meet the toplevel objective of conducting high-quality test operations that span across a broad range of single- and two-phase operating conditions. Details of characterization, baseline test cases, accident scenario, and parametric variations are provided, including discussions of later-stage test cases that examine the influence of geometric

  9. Designing healthy communities: Testing the walkability model

    OpenAIRE

    Zuniga-Teran, Adriana; Orr, Barron; Gimblett, Randy; Chalfoun, Nader; Marsh, Stuart; Guertin, David; Going, Scott

    2017-01-01

    Research from multiple domains has provided insights into how neighborhood design can be improved to have a more favorable effect on physical activity, a concept known as walkability. The relevant research findings/hypotheses have been integrated into a Walkability Framework, which organizes the design elements into nine walkability categories. The purpose of this study was to test whether this conceptual framework can be used as a model to measure the interactions between the built environme...

  10. Designing, engineering, and testing wood structures

    Science.gov (United States)

    Gorman, Thomas M.

    1992-01-01

    The objective of this paper is to introduce basic structural engineering concepts in a clear, simple manner while actively involving students. This project emphasizes the fact that a good design uses materials efficiently. The test structure in this experiment can easily be built and has various design options. Even when the structure is loaded to collapsing, only one or two pieces usually break, leaving the remaining pieces intact and reusable.

  11. Design, modeling and testing of data converters

    CERN Document Server

    Kiaei, Sayfe; Xu, Fang

    2014-01-01

    This book presents the a scientific discussion of the state-of-the-art techniques and designs for modeling, testing and for the performance analysis of data converters. The focus is put on sustainable data conversion. Sustainability has become a public issue that industries and users can not ignore. Devising environmentally friendly solutions for data conversion designing, modeling and testing is nowadays a requirement that researchers and practitioners must consider in their activities. This book presents the outcome of the IWADC workshop 2011, held in Orvieto, Italy.

  12. Tethered satellite thermal design and test

    Science.gov (United States)

    Chapter, John J.

    1991-01-01

    The Tethered Satellite System (TSS) is the first Shuttle Orbiter mission that investigates electrodynamic phenomenon of a 20 km conductive tether, in space. The TSS Mission is planned for January 1992. The 'Deployer' that provides the mechanisms that control a tethered satellite is mounted on a Spacelab Pallet. The Deployer thermal design uses Multilayer Insulation (MLI), heaters, and the Spacelab payload freon loop. The pallet and Deployer are isolated from the space thermal environment with MLI that forms an enclosure that is a unique part of the thermal design. This paper describes the TSS thermal design, presents the analysis approach, and details the Deployer thermal balance test.

  13. Advanced wing design survivability testing and results

    Science.gov (United States)

    Bruno, J.; Tobias, M.

    1992-01-01

    Composite wings on current operational aircraft are conservatively designed to account for stress/strain concentrations, and to assure specified damage tolerance. The technology that can lead to improved composite wing structures and associated structural efficiency is to increase design ultimate strain levels beyond their current limit of 3500 to 4000 micro-in/in to 6000 micro-in/in without sacrificing structural integrity, durability, damage tolerance, or survivability. Grumman, under the sponsorship of the Naval Air Development Center (NADC), has developed a high-strain composite wing design for a subsonic aircraft wing using novel and innovative design concepts and manufacturing methods, while maintaining a state-of-the-art fiber/resin system. The current advanced wing design effort addressed a tactical subsonic aircraft wing using previously developed, high-strain wing design concepts in conjunction with newer/emerging fiber and polymer matrix composite (PMC) materials to achieve the same goals, while reducing complexity. Two categories of advanced PMC materials were evaluated: toughened thermosets; and engineered thermoplastics. Advanced PMC materials offer the technological opportunity to take maximum advantage of improved material properties, physical characteristics, and tailorability to increase performance and survivability over current composite structure. Damage tolerance and survivability to various threats, in addition to structural integrity and durability, were key technical issues addressed during this study, and evaluated through test. This paper focuses on the live-fire testing, and the results performed to experimentally evaluate the survivability of the advanced wing design.

  14. (AJST) DESIGNING AND TESTING THE REPRESENTATIVE ...

    African Journals Online (AJOL)

    establishing the optimum mesh of grind for the various ores, to achieve effective separation of the cobalt minerals from those of copper. This prompted the designing and testing of .... well clear of the falling stream before it could begin the return stroke to avoid stray particles falling into it, whilst ensuring that the samplers did ...

  15. A Computerized Test of Design Fluency.

    Directory of Open Access Journals (Sweden)

    David L Woods

    Full Text Available Tests of design fluency (DF assess a participant's ability to generate geometric patterns and are thought to measure executive functions involving the non-dominant frontal lobe. Here, we describe the properties of a rapidly administered computerized design-fluency (C-DF test that measures response times, and is automatically scored. In Experiment 1, we found that the number of unique patterns produced over 90 s by 180 control participants (ages 18 to 82 years correlated with age, education, and daily computer-use. Each line in the continuous 4-line patterns required approximately 1.0 s to draw. The rate of pattern production and the incidence of repeated patterns both increased over the 90 s test. Unique pattern z-scores (corrected for age and computer-use correlated with the results of other neuropsychological tests performed on the same day. Experiment 2 analyzed C-DF test-retest reliability in 55 participants in three test sessions at weekly intervals and found high z-score intraclass correlation coefficients (ICC = 0.79. Z-scores in the first session did not differ significantly from those of Experiment 1, but performance improved significantly over repeated tests. Experiment 3 investigated the performance of Experiment 2 participants when instructed to simulate malingering. Z-scores were significantly reduced and pattern repetitions increased, but there was considerable overlap with the performance of the control population. Experiment 4 examined performance in veteran patients tested more than one year after traumatic brain injury (TBI. Patients with mild TBI performed within the normal range, but patients with severe TBI showed reduced z-scores. The C-DF test reliably measures visuospatial pattern generation ability and reveals performance deficits in patients with severe TBI.

  16. Severe Accident Test Station Design Document

    Energy Technology Data Exchange (ETDEWEB)

    Snead, Mary A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yan, Yong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Howell, Michael [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Keiser, James R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-01

    The purpose of the ORNL severe accident test station (SATS) is to provide a platform for evaluation of advanced fuels under projected beyond design basis accident (BDBA) conditions. The SATS delivers the capability to map the behavior of advanced fuels concepts under accident scenarios across various temperature and pressure profiles, steam and steam-hydrogen gas mixtures, and thermal shock. The overall facility will include parallel capabilities for examination of fuels and irradiated materials (in-cell) and non-irradiated materials (out-of-cell) at BDBA conditions as well as design basis accident (DBA) or loss of coolant accident (LOCA) conditions. Also, a supporting analytical infrastructure to provide the data-needs for the fuel-modeling components of the Fuel Cycle Research and Development (FCRD) program will be put in place in a parallel manner. This design report contains the information for the first, second and third phases of design and construction of the SATS. The first phase consisted of the design and construction of an out-of-cell BDBA module intended for examination of non-irradiated materials. The second phase of this work was to construct the BDBA in-cell module to test irradiated fuels and materials as well as the module for DBA (i.e. LOCA) testing out-of-cell, The third phase was to build the in-cell DBA module. The details of the design constraints and requirements for the in-cell facility have been closely captured during the deployment of the out-of-cell SATS modules to ensure effective future implementation of the in-cell modules.

  17. Deep Borehole Field Test Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Hardin, Ernest L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-09-30

    This report documents conceptual design development for the Deep Borehole Field Test (DBFT), including test packages (simulated waste packages, not containing waste) and a system for demonstrating emplacement and retrieval of those packages in the planned Field Test Borehole (FTB). For the DBFT to have demonstration value, it must be based on conceptualization of a deep borehole disposal (DBD) system. This document therefore identifies key options for a DBD system, describes an updated reference DBD concept, and derives a recommended concept for the DBFT demonstration. The objective of the DBFT is to confirm the safety and feasibility of the DBD concept for long-term isolation of radioactive waste. The conceptual design described in this report will demonstrate equipment and operations for safe waste handling and downhole emplacement of test packages, while contributing to an evaluation of the overall safety and practicality of the DBD concept. The DBFT also includes drilling and downhole characterization investigations that are described elsewhere (see Section 1). Importantly, no radioactive waste will be used in the DBFT, nor will the DBFT site be used for disposal of any type of waste. The foremost performance objective for conduct of the DBFT is to demonstrate safe operations in all aspects of the test.

  18. Avoiding bias in safety testing design

    DEFF Research Database (Denmark)

    Calow, Peter

    2011-01-01

    All scientists are biased, no matter what their backgrounds or affiliations, so what is it about the scientific method that overcomes this and which makes science so successful? Key features are transparency and critical peer scrutiny. These general issues will be will be considered in terms of t...... of the scientific basis of risk assessment, including the design of safety testing procedures, particularly as applied to industrial chemicals....

  19. OPSAID Initial Design and Testing Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hurd, Steven A.; Stamp, Jason Edwin [Sandia National Laboratories, Albuquerque, NM; Chavez, Adrian R. [Sandia National Laboratories, Albuquerque, NM

    2007-11-01

    Process Control System (PCS) security is critical to our national security. Yet, there are a number of technological, economic, and educational impediments to PCS owners implementing effective security on their systems. OPSAID (Open PCS Security Architecture for Interoperable Design), a project sponsored by the US Department of Energy's Office of Electricity Delivery and Reliability, aims to address this issue through developing and testing an open source architecture for PCS security. Sandia National Laboratories, along with a team of PCS vendors and owners, have developed and tested this PCS security architecture. This report describes their progress to date.2 AcknowledgementsThe authors acknowledge and thank their colleagues for their assistance with the OPSAID project.Sandia National Laboratories: Alex Berry, Charles Perine, Regis Cassidy, Bryan Richardson, Laurence PhillipsTeumim Technical, LLC: Dave TeumimIn addition, the authors are greatly indebted to the invaluable help of the members of the OPSAID Core Team. Their assistance has been critical to the success and industry acceptance of the OPSAID project.Schweitzer Engineering Laboratory: Rhett Smith, Ryan Bradetich, Dennis GammelTelTone: Ori Artman Entergy: Dave Norton, Leonard Chamberlin, Mark AllenThe authors would like to acknowledge that the work that produced the results presented in this paper was funded by the U.S. Department of Energy/Office of Electricity Delivery and Energy Reliability (DOE/OE) as part of the National SCADA Test Bed (NSTB) Program. Executive SummaryProcess control systems (PCS) are very important for critical infrastructure and manufacturing operations, yet cyber security technology in PCS is generally poor. The OPSAID (Open PCS (Process Control System) Security Architecture for Interoperable Design) program is intended to address these security shortcomings by accelerating the availability and deployment of comprehensive security technology for PCS, both for existing PCS

  20. EFFICIENT HYDROLOGICAL TRACER-TEST DESIGN (EHTD ...

    Science.gov (United States)

    Hydrological tracer testing is the most reliable diagnostic technique available for establishing flow trajectories and hydrologic connections and for determining basic hydraulic and geometric parameters necessary for establishing operative solute-transport processes. Tracer-test design can be difficult because of a lack of prior knowledge of the basic hydraulic and geometric parameters desired and the appropriate tracer mass to release. A new efficient hydrologic tracer-test design (EHTD) methodology has been developed that combines basic measured field parameters (e.g., discharge, distance, cross-sectional area) in functional relationships that describe solute-transport processes related to flow velocity and time of travel. The new method applies these initial estimates for time of travel and velocity to a hypothetical continuously stirred tank reactor as an analog for the hydrologic flow system to develop initial estimates for tracer concentration and axial dispersion, based on a preset average tracer concentration. Root determination of the one-dimensional advection-dispersion equation (ADE) using the preset average tracer concentration then provides a theoretical basis for an estimate of necessary tracer mass.Application of the predicted tracer mass with the hydraulic and geometric parameters in the ADE allows for an approximation of initial sample-collection time and subsequent sample-collection frequency where a maximum of 65 samples were determined to

  1. Insights Gained from Testing Alternate Cell Designs

    Energy Technology Data Exchange (ETDEWEB)

    J. E. O' Brien; C. M. Stoots; J. S. Herring; G. K. Housley; M. S. Sohal; D. G. Milobar; Thomas Cable

    2009-09-01

    The Idaho National Laboratory (INL) has been researching the application of solid-oxide electrolysis cell for large-scale hydrogen production from steam over a temperature range of 800 to 900ºC. The INL has been testing various solid oxide cell designs to characterize their electrolytic performance operating in the electrolysis mode for hydrogen production. Some results presented in this report were obtained from cells, initially developed by the Forschungszentrum Jülich and now manufactured by the French ceramics firm St. Gobain. These cells have an active area of 16 cm2 per cell. They were initially developed as fuel cells, but are being tested as electrolytic cells in the INL test stands. The electrolysis cells are electrode-supported, with ~10 µm thick yttria-stabilized zirconia (YSZ) electrolytes, ~1400 µm thick nickel-YSZ steam-hydrogen electrodes, and manganite (LSM) air-oxygen electrodes. The experiments were performed over a range of steam inlet mole fractions (0.1 to 0.6), gas flow rates, and current densities (0 to 0.6 A/cm2). Steam consumption rates associated with electrolysis were measured directly using inlet and outlet dewpoint instrumentation. On a molar basis, the steam consumption rate is equal to the hydrogen production rate. Cell performance was evaluated by performing DC potential sweeps at 800, 850, and 900°C. The voltage-current characteristics are presented, along with values of area-specific resistance as a function of current density. Long-term cell performance is also assessed to evaluate cell degradation. Details of the custom single-cell test apparatus developed for these experiments are also presented. NASA, in conjunction with the University of Toledo, has developed another fuel cell concept with the goals of reduced weight and high power density. The NASA cell is structurally symmetrical, with both electrodes supporting the thin electrolyte and containing micro-channels for gas diffusion. This configuration is called a bi

  2. 29 mm Diameter Test Target Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Woloshun, Keith Albert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dale, Gregory E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Olivas, Eric Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Naranjo, Angela Carol [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Romero, Frank Patrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-15

    The Northstar target for Mo99 production is made up of Mo100 disks in a stack separated by coolant gaps for helium flow. A number of targets have been tested at ANL for both production of Mo99 and for thermal-hydraulic performance. These have all been with a 12 mm diameter target, even while the production goals have increased the diameter to now 29 mm. A 29 mm diameter target has been designed that is consistent with the ANL beam capabilities and the capabilities of the helium circulation system currently in use at ANL. This target is designed for 500 μA at 35 MeV electrons. While the plant design calls for 42 MeV, the chosen design point is more favorable and higher power given the limits of the ANL accelerator. The intended beam spot size is 12 mm FWHM, but the thermal analysis presented herein conservatively assumed a 10 mm FWHM beam, which results in a 44% higher beam current density at beam center.

  3. Wind Turbine Blade Design for Subscale Testing

    Science.gov (United States)

    Hassanzadeh, Arash; Naughton, Jonathan W.; Kelley, Christopher L.; Maniaci, David C.

    2016-09-01

    Two different inverse design approaches are proposed for developing wind turbine blades for sub-scale wake testing. In the first approach, dimensionless circulation is matched for full scale and sub-scale wind turbine blades for equal shed vorticity in the wake. In the second approach, the normalized normal and tangential force distributions are matched for large scale and small scale wind turbine blades, as these forces determine the wake dynamics and stability. The two approaches are applied for the same target full scale turbine blade, and the shape of the blades are compared. The results show that the two approaches have been successfully implemented, and the designed blades are able to produce the target circulation and target normal and tangential force distributions.

  4. Temperature buffer test design, instrumentation and measurements

    Science.gov (United States)

    Sandén, Torbjörn; Goudarzi, Reza; de Combarieu, Michel; Åkesson, Mattias; Hökmark, Harald

    The Temperature Buffer Test, TBT, is a heated full-scale field experiment carried out jointly by ANDRA and SKB at the SKB Äspö Hard Rock Laboratory in Southeast Sweden. An existing 8 m deep, 1.8 m diameter KBS-3-type deposition hole located at -420 m level has been selected for the test. The objectives are to improve the general understanding of Thermo-Hydro-Mechanical, THM, behavior of buffer materials submitted to severe thermal conditions with temperatures well over 100 °C during water uptake of partly saturated bentonite-based buffer materials, and to check, in due time, their properties after water saturation. The test includes two carbon steel heating canisters each 3 m high and 0.6 m diameter, surrounded by 0.6 m of buffer material. There is a 0.2 m thick sand shield between the upper heater and the surrounding bentonite, while the lower heater is surrounded by bentonite only. On top of the stack of bentonite blocks is a confining plug anchored to the rock. In the slot between buffer and rock wall is a sand filter equipped with pipes to control the water pressure at the boundary, which is seldom done with an EBS in situ experiment. Both heater mid-height planes are densely instrumented in order to follow, with direct or indirect methods, buffer THM evolution. Temperature, relative humidity, stress and pore pressure have been monitored since the test start in March 2003. Total water inflow is also monitored. Firstly, the present paper describes the test design, the instrumentation, the plug anchoring system and the system for water boundary pressure control. Second, having described the test, the paper shows different measurements that illustrate evolution of temperature, saturation, suction and swelling pressure in the upper and the lower buffer.

  5. Designing healthy communities: Testing the walkability model

    Directory of Open Access Journals (Sweden)

    Adriana A. Zuniga-Teran

    2017-03-01

    Full Text Available Research from multiple domains has provided insights into how neighborhood design can be improved to have a more favorable effect on physical activity, a concept known as walkability. The relevant research findings/hypotheses have been integrated into a Walkability Framework, which organizes the design elements into nine walkability categories. The purpose of this study was to test whether this conceptual framework can be used as a model to measure the interactions between the built environment and physical activity. We explored correlations between the walkability categories and physical activity reported through a survey of residents of Tucson, Arizona (n=486. The results include significant correlations between the walkability categories and physical activity as well as between the walkability categories and the two motivations for walking (recreation and transportation. To our knowledge, this is the first study that reports links between walkability and walking for recreation. Additionally, the use of the Walkability Framework allowed us to identify the walkability categories most strongly correlated with the two motivations for walking. The results of this study support the use of the Walkability Framework as a model to measure the built environment in relation to its ability to promote physical activity.

  6. Learning Design at White Sands Test Facility

    Science.gov (United States)

    Grotewiel, Shane

    2010-01-01

    During the Fall of 2010, I spent my time at NASA White Sands Test Facility in Las Cruces, NM as an Undergraduate Student Research Program (USRP) Intern. During that time, I was given three projects to work on: Large Altitude Simulation System (LASS) basket strainer, log books, and the design of a case for touch screen monitors used for simulations. I spent most of my time on the LASS basket strainer. The LASS system has a water feed line with a basket strainer that filters out rust. In 2009, there were three misfires which cost approximately $27,000 and about 8% of the allotted time. The strainer was getting a large change in pressure that would result in a shutdown of the system. I have designed a new basket that will eliminate the large pressure change and it can be used with the old basket strainer housing. The LASS system has three steam generators (modules). Documents pertaining to these modules are stored electronically, and the majority of the documents are not able to be searched with keywords, so they have to be gone through one by one. I have come up with an idea on how to organize these files so that the Propulsion Department may efficiently search through the documents needed. Propulsion also has a LASS simulator that incorporates two touch screen monitors. Currently these monitors are in six foot by two foot metal cabinet on wheels. During simulation these monitors are used in the block house and need to be taken out of the block house when not in use. I have designed different options for hand held cases for storing and transporting the monitors in and out of the block house. The three projects previously mentioned demonstrate my contributions to the Propulsion Department and have taught me real world experience that is essential in becoming a productive engineer.

  7. Super Conducting and Conventional Magnets Test & Mapping Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — Vertical Magnet Test Facility: Accommodate a device up to 3.85 m long, 0.61 m diameter, and 14,400 lbs. Configured for 5 psig sub-cooled liquid helium bath cooling...

  8. Advanced burner test reactor preconceptual design report.

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y. I.; Finck, P. J.; Grandy, C.; Cahalan, J.; Deitrich, L.; Dunn, F.; Fallin, D.; Farmer, M.; Fanning, T.; Kim, T.; Krajtl, L.; Lomperski, S.; Moisseytsev, A.; Momozaki, Y.; Sienicki, J.; Park, Y.; Tang, Y.; Reed, C.; Tzanos, C; Wiedmeyer, S.; Yang, W.; Chikazawa, Y.; JAEA

    2008-12-16

    advanced fuel cycle; (2) To qualify the transuranics-containing fuels and advanced structural materials needed for a full-scale ABR; and (3) To support the research, development and demonstration required for certification of an ABR standard design by the U.S. Nuclear Regulatory Commission. The ABTR should also address the following additional objectives: (1) To incorporate and demonstrate innovative design concepts and features that may lead to significant improvements in cost, safety, efficiency, reliability, or other favorable characteristics that could promote public acceptance and future private sector investment in ABRs; (2) To demonstrate improved technologies for safeguards and security; and (3) To support development of the U.S. infrastructure for design, fabrication and construction, testing and deployment of systems, structures and components for the ABRs. Based on these objectives, a pre-conceptual design of a 250 MWt ABTR has been developed; it is documented in this report. In addition to meeting the primary and additional objectives listed above, the lessons learned from fast reactor programs in the U.S. and worldwide and the operating experience of more than a dozen fast reactors around the world, in particular the Experimental Breeder Reactor-II have been incorporated into the design of the ABTR to the extent possible.

  9. Fluidized Bed Asbestos Sampler Design and Testing

    Energy Technology Data Exchange (ETDEWEB)

    Karen E. Wright; Barry H. O' Brien

    2007-12-01

    A large number of samples are required to characterize a site contaminated with asbestos from previous mine or other industrial operations. Current methods, such as EPA Region 10’s glovebox method, or the Berman Elutriator method are time consuming and costly primarily because the equipment is difficult to decontaminate between samples. EPA desires a shorter and less costly method for characterizing soil samples for asbestos. The objective of this was to design and test a qualitative asbestos sampler that operates as a fluidized bed. The proposed sampler employs a conical spouted bed to vigorously mix the soil and separate fine particulate including asbestos fibers on filters. The filters are then analyzed using transmission electron microscopy for presence of asbestos. During initial testing of a glass prototype using ASTM 20/30 sand and clay fines as asbestos surrogates, fine particulate adhered to the sides of the glass vessel and the tubing to the collection filter – presumably due to static charge on the fine particulate. This limited the fines recovery to ~5% of the amount added to the sand surrogate. A second prototype was constructed of stainless steel, which improved fines recovery to about 10%. Fines recovery was increased to 15% by either humidifying the inlet air or introducing a voltage probe in the air space above the sample. Since this was not a substantial improvement, testing using the steel prototype proceeded without using these techniques. Final testing of the second prototype using asbestos suggests that the fluidized bed is considerably more sensitive than the Berman elutriator method. Using a sand/tremolite mixture with 0.005% tremolite, the Berman elutriator did not segregate any asbestos structures while the fluidized bed segregated an average of 11.7. The fluidized bed was also able to segregate structures in samples containing asbestos at a 0.0001% concentration, while the Berman elutriator method did not detect any fibers at this

  10. Optimal Test Design with Rule-Based Item Generation

    Science.gov (United States)

    Geerlings, Hanneke; van der Linden, Wim J.; Glas, Cees A. W.

    2013-01-01

    Optimal test-design methods are applied to rule-based item generation. Three different cases of automated test design are presented: (a) test assembly from a pool of pregenerated, calibrated items; (b) test generation on the fly from a pool of calibrated item families; and (c) test generation on the fly directly from calibrated features defining…

  11. Optimal test design with rule-based item generation

    NARCIS (Netherlands)

    Geerlings, Hanneke; van der Linden, Willem J.; Glas, Cornelis A.W.

    2013-01-01

    Optimal test-design methods are applied to rule-based item generation. Three different cases of automated test design are presented: (a) test assembly from a pool of pregenerated, calibrated items; (b) test generation on the fly from a pool of calibrated item families; and (c) test generation on the

  12. Single Event Testing on Complex Devices: Test Like You Fly versus Test-Specific Design Structures

    Science.gov (United States)

    Berg, Melanie; LaBel, Kenneth A.

    2014-01-01

    We present a framework for evaluating complex digital systems targeted for harsh radiation environments such as space. Focus is limited to analyzing the single event upset (SEU) susceptibility of designs implemented inside Field Programmable Gate Array (FPGA) devices. Tradeoffs are provided between application-specific versus test-specific test structures.

  13. Teal Ruby - Design, manufacture and test

    Science.gov (United States)

    Pepi, J. W.; Kahan, M. A.; Barnes, W. H.; Zielinski, R. J.

    The Teal Ruby infrared telescope, designed to passively operate in a cryogenic and orbital environment, and capable of maintaining integrity under a severe set of design criteria, is presented. The infrared telescope unit, a curved-field centered design, is described; a woven graphite epoxy composite structure encloses the lightweight fused silica mirrors. The completed telescope design satisfies the necessary criteria, including spacecraft payload capabilities, good stiffness characteristics, low heat loss, and low thermal expansion. To meet performance in terms of optical resolution, the overall design error is held to one-tenth of one wavelength or less of near infrared light. To ascertain the design validity, a detailed mathematical model was constructed using the NASTRAN digital routine. The instrument is scheduled for Space Shuttle orbital launch, one of its purposes being the verification of the capabilities of an infrared sensor and a mosaic focal plane.

  14. Design guide for Geothermal Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Lombard. G.L.

    1974-08-20

    The intent of this design guide is to provide the engineer with the necessary information to produce a design for a workable installation. It contains a project scope, specific design information, and project control procedures. The desired process is to flash the geothermal brine to steam in three or four stages and transfer the steam heat energy to the working fluid circulating in closed loop. (MHR)

  15. Testing and Formal Verification of Logarithmic Function Design

    Science.gov (United States)

    Agarwal, Sanjeev; Bhuria, Indu

    2010-11-01

    Logarithmic function has been designed on basis of multiplicative normalization and then its testing is been done using tetraMAX. It is observed that 7050 possible faults can be there in the design and tetraMAX ATPG can provide test coverage of 99.29%. Using design compiler .db file is generated which is used for functional verification of the design with respect to RTL design. Compare points are shown by cone views of the design.

  16. A Fractual Mechanical Testing and Design Strategy for FRC Structures

    DEFF Research Database (Denmark)

    Stang, Henrik; Olesen, John Forbes

    1999-01-01

    A unified testing and design strategy for fibre reinforced concrete structures is summarised. The strategy is based on fracture mechanical concepts. Emphasis is placed on material characterisation and testing specifications.......A unified testing and design strategy for fibre reinforced concrete structures is summarised. The strategy is based on fracture mechanical concepts. Emphasis is placed on material characterisation and testing specifications....

  17. Design and performance test of spacecraft test and operation software

    Science.gov (United States)

    Wang, Guohua; Cui, Yan; Wang, Shuo; Meng, Xiaofeng

    2011-06-01

    Main test processor (MTP) software is the key element of Electrical Ground Support Equipment (EGSE) for spacecraft test and operation used in the Chinese Academy of Space Technology (CAST) for years without innovation. With the increasing demand for a more efficient and agile MTP software, the new MTP software was developed. It adopts layered and plug-in based software architecture, whose core runtime server provides message queue management, share memory management and process management services and forms the framework for a configurable and open architecture system. To investigate the MTP software's performance, the test case of network response time, test sequence management capability and data-processing capability was introduced in detail. Test results show that the MTP software is common and has higher performance than the legacy one.

  18. FASTER Test Reactor Preconceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Grandy, C. [Argonne National Lab. (ANL), Argonne, IL (United States); Belch, H. [Argonne National Lab. (ANL), Argonne, IL (United States); Brunett, A. J. [Argonne National Lab. (ANL), Argonne, IL (United States); Heidet, F. [Argonne National Lab. (ANL), Argonne, IL (United States); Hill, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Hoffman, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Jin, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Mohamed, W. [Argonne National Lab. (ANL), Argonne, IL (United States); Moisseytsev, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Passerini, S. [Argonne National Lab. (ANL), Argonne, IL (United States); Sienicki, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Sumner, T. [Argonne National Lab. (ANL), Argonne, IL (United States); Vilim, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Hayes, S. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-03-31

    The FASTER test reactor plant is a sodium-cooled fast spectrum test reactor that provides high levels of fast and thermal neutron flux for scientific research and development. The 120MWe FASTER reactor plant has a superheated steam power conversion system which provides electrical power to a local grid allowing for recovery of operating costs for the reactor plant.

  19. Algorithmic test design using classical item parameters

    OpenAIRE

    van der Linden, Willem J.; Adema, Jos J.

    1988-01-01

    Two optimalization models for the construction of tests with a maximal value of coefficient alpha are given. Both models have a linear form and can be solved by using a branch-and-bound algorithm. The first model assumes an item bank calibrated under the Rasch model and can be used, for instance, when classical test theory has to serve as an interface between the item bank system and a user not familiar with modern test theory. Maximization of alpha was obtained by inserting a special constra...

  20. APEX 3D Propeller Test Preliminary Design

    Science.gov (United States)

    Colozza, Anthony J.

    2002-01-01

    A low Reynolds number, high subsonic mach number flight regime is fairly uncommon in aeronautics. Most flight vehicles do not fly under these aerodynamic conditions. However, recently there have been a number of proposed aircraft applications (such as high altitude observation platforms and Mars aircraft) that require flight within this regime. One of the main obstacles to flight under these conditions is the ability to reliably generate sufficient thrust for the aircraft. For a conventional propulsion system, the operation and design of the propeller is the key aspect to its operation. Due to the difficulty in experimentally modeling the flight conditions in ground-based facilities, it has been proposed to conduct propeller experiments from a high altitude gliding platform (APEX). A preliminary design of a propeller experiment under the low Reynolds number, high mach number flight conditions has been devised. The details of the design are described as well as the potential data that will be collected.

  1. Design and Test of a Cognitive Model

    Science.gov (United States)

    Cunningham, Michael A.; Gary, Harry J.

    1974-01-01

    A presentation of arguments demonstrating piaget's sensorimotor stages in Hebb's terms, and the suggestion for performing a computer test. This paper is an early progress report of an attempt to translate some plausible arguments into a rigorous demonstration. (Author)

  2. Test Rig Design and Presentation for a Hydraulic Yaw System

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Andersen, Torben Ole

    2013-01-01

    The design and development of a hydraulic yaw system for multi MWturbines is presented and the concept explained. As part of the development of the new concept a full scale test rig for a 5 MW wind turbine has been designed and constructed. The test rig is presented along with its unique design...

  3. Designing and implementing test automation frameworks with QTP

    CERN Document Server

    Bhargava, Ashish

    2013-01-01

    A tutorial-based approach, showing basic coding and designing techniques to build test automation frameworks.If you are a beginner, an automation engineer, an aspiring test automation engineer, a manual tester, a test lead or a test architect who wants to learn, create, and maintain test automation frameworks, this book will accelerate your ability to develop and adapt the framework.

  4. Power Systems Development Facility Gasification Test Run TC11

    Energy Technology Data Exchange (ETDEWEB)

    Southern Company Services

    2003-04-30

    This report discusses Test Campaign TC11 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed gasifier designed to operate as either a combustor or a gasifier in air- or oxygen-blown mode of operation using a particulate control device (PCD). Test run TC11 began on April 7, 2003, with startup of the main air compressor and the lighting of the gasifier start-up burner. The Transport Gasifier operated until April 18, 2003, when a gasifier upset forced the termination of the test run. Over the course of the entire test run, gasifier temperatures varied between 1,650 and 1,800 F at pressures from 160 to 200 psig during air-blown operations and around 135 psig during enriched-air operations. Due to a restriction in the oxygen-fed lower mixing zone (LMZ), the majority of the test run featured air-blown operations.

  5. Preliminary Design of the AEGIS Test Facility

    CERN Document Server

    Dassa, Luca; Cambiaghi, Danilo

    2010-01-01

    The AEGIS experiment is expected to be installed at the CERN Antiproton Decelerator in a very close future, since the main goal of the AEGIS experiment is the measurement of gravity impact on antihydrogen, which will be produced on the purpose. Antihydrogen production implies very challenging environmental conditions: at the heart of the AEGIS facility 50 mK temperature, 1e-12 mbar pressure and a 1 T magnetic field are required. Interfacing extreme cryogenics with ultra high vacuum will affect very strongly the design of the whole facility, requiring a very careful mechanical design. This paper presents an overview of the actual design of the AEGIS experimental facility, paying special care to mechanical aspects. Each subsystem of the facility – ranging from the positron source to the recombination region and the measurement region – will be shortly described. The ultra cold region, which is the most critical with respect to the antihydrogen formation, will be dealt in detail. The assembly procedures will...

  6. FASTER test reactor preconceptual design report summary

    Energy Technology Data Exchange (ETDEWEB)

    Grandy, C. [Argonne National Lab. (ANL), Argonne, IL (United States); Belch, H. [Argonne National Lab. (ANL), Argonne, IL (United States); Brunett, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Heidet, F. [Argonne National Lab. (ANL), Argonne, IL (United States); Hill, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Hoffman, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Jin, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Mohamed, W. [Argonne National Lab. (ANL), Argonne, IL (United States); Moisseytsev, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Passerini, S. [Argonne National Lab. (ANL), Argonne, IL (United States); Sienicki, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Sumner, T. [Argonne National Lab. (ANL), Argonne, IL (United States); Vilim, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Hayes, Steven [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-02-29

    The FASTER reactor plant is a sodium-cooled fast spectrum test reactor that provides high levels of fast and thermal neutron flux for scientific research and development. The 120MWe FASTER reactor plant has a superheated steam power conversion system which provides electrical power to a local grid allowing for recovery of operating costs for the reactor plant.

  7. Algorithmic test design using classical item parameters

    NARCIS (Netherlands)

    van der Linden, Willem J.; Adema, Jos J.

    Two optimalization models for the construction of tests with a maximal value of coefficient alpha are given. Both models have a linear form and can be solved by using a branch-and-bound algorithm. The first model assumes an item bank calibrated under the Rasch model and can be used, for instance,

  8. Design Study of Beijing XFEL Test Facility

    CERN Document Server

    Dai, J P

    2005-01-01

    As R&D of X-ray Free Electron Laser facility in China, the construction of Beijing XFEL Test Facility (BTF) has been proposed. And the start to end simulation of BTF was made with codes PARMELA, ELEGANT and TDA. This paper presents the motivation, the scheme and the simulation results of BTF.

  9. Design and Activation of a LOX/GH Chemical Steam Generator

    Science.gov (United States)

    Saunders, G. P.; Mulkey, C. A.; Taylor, S. A.

    2009-01-01

    The purpose of this paper is to give a detailed description of the design and activation of the LOX/GH fueled chemical steam generator installed in Cell 2 of the E3 test facility at Stennis Space Center, MS (SSC). The steam generator uses a liquid oxygen oxidizer with gaseous hydrogen fuel. The combustion products are then quenched with water to create steam at pressures from 150 to 450 psig at temperatures from 350 to 750 deg F (from saturation to piping temperature limits).

  10. Design and realization of test question bank database system

    Science.gov (United States)

    Wang, Xin; Wang, Zhong; Huang, Wei; Wen, Guanqi; Zhang, Shaolei

    2017-05-01

    This paper introduces the analysis of system, the design of database and the design process of software, and then summarizes the characteristics of the test question bank, and gets very good results in the actual use.

  11. Speculations on the Future of Test Design.

    Science.gov (United States)

    1984-04-01

    Harris, Pastorok, & Wilcox , 1977) rather than the broader foundation provided by generalizability theory. In short, the closest that has been come to...developments. Review of Educational Research, 48, 1-47. Harris C. W., Pastorok, A., & Wilcox , R. R. (1977). Achievement testing: Item methods of study. Los...I Dr. Richard Sorensen Navy Personnel R&D Center San Diego, CA 92152 I Dr. Frederick Steinheiser CNG - OP115 Navy Annex Arlington, VA 20370 I Mr. Brad

  12. A Design Methodology for Computer Security Testing

    OpenAIRE

    Ramilli, Marco

    2013-01-01

    The field of "computer security" is often considered something in between Art and Science. This is partly due to the lack of widely agreed and standardized methodologies to evaluate the degree of the security of a system. This dissertation intends to contribute to this area by investigating the most common security testing strategies applied nowadays and by proposing an enhanced methodology that may be effectively applied to different threat scenarios with the same degree of effectiveness. ...

  13. Bellows design and testing for KEKB

    Energy Technology Data Exchange (ETDEWEB)

    Suetsugu, Y. [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)

    1996-08-01

    A bellows assembly with an RF-shield has been developed for the KEK B-Factory (KEKB). The RF-shield is a usual finger-type but has a special spring-finger to press the contact-finger on to the beam tube without fail. The mechanical workings of the RF-shield is tested using a trial model and no mechanical problem is found except for the dust production. The necessary contact force, 50 g/finger, is obtained experimentally transmitting the 508 MHz microwave up to 80 kW through the trial model. (author)

  14. Proceedings of Design, Automation and Test in Europe (DATE07)

    DEFF Research Database (Denmark)

    Welcome to the DATE 07 Conference Proceedings. DATE combines the world’s leading electronic systems design conference and Europe's leading international exhibition for electronic design, automation and test, from system level hardware and software implementation right down to integrated circuit...... with 78 sessions covering the latest in system design and embedded software, IC design methodologies and EDA tool developments. One of the main strengths of the conference is a wide but high-quality coverage of design, design automation and test topics, from the system level (including PCB and FPGA...

  15. Bellows design and testing for KEKB

    Energy Technology Data Exchange (ETDEWEB)

    Suetsugu, Y.; Kanazawa, K. [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan); Ohshima, K. [Irie-Koken Co. Ltd., Akasaka Kawagoe (Japan)

    1996-06-01

    The bellows assembly with an RF-shield has been developed for the KEK B-Factory (KEKB). The RF-shield is a usual finger-type but has a special spring-finger to press the contact-finger to the beam tube. The mechanical workings of the RF-shield is tested using a trial model and no mechanical problem is found except for the dust generation. The necessary contact force is obtained experimentally transmitting the 508MHz microwave up to 80 kW through the trial model. The higher order modes power leaked into the inside of bellows assembly is also estimated measuring the coupling coefficient of the RF-shield. (Author).

  16. Computer-Aided Test Flow in Core-Based Design

    NARCIS (Netherlands)

    Zivkovic, V.; Tangelder, R.J.W.T.; Kerkhoff, Hans G.

    2000-01-01

    This paper copes with the efficient test-pattern generation in a core-based design. A consistent Computer-Aided Test (CAT) flow is proposed based on the required core-test strategy. It generates a test-pattern set for the embedded cores with high fault coverage and low DfT area overhead. The CAT

  17. A default Bayesian hypothesis test for ANOVA designs

    NARCIS (Netherlands)

    Wetzels, R.; Grasman, R.P.P.P.; Wagenmakers, E.J.

    2012-01-01

    This article presents a Bayesian hypothesis test for analysis of variance (ANOVA) designs. The test is an application of standard Bayesian methods for variable selection in regression models. We illustrate the effect of various g-priors on the ANOVA hypothesis test. The Bayesian test for ANOVA

  18. Test of a High Power Target Design

    CERN Multimedia

    2002-01-01

    %IS343 :\\\\ \\\\ A high power tantalum disc-foil target (RIST) has been developed for the proposed radioactive beam facility, SIRIUS, at the Rutherford Appleton Laboratory. The yield and release characteristics of the RIST target design have been measured at ISOLDE. The results indicate that the yields are at least as good as the best ISOLDE roll-foil targets and that the release curves are significantly faster in most cases. Both targets use 20 -25 $\\mu$m thick foils, but in a different internal geometry.\\\\ \\\\Investigations have continued at ISOLDE with targets having different foil thickness and internal geometries in an attempt to understand the release mechanisms and in particular to maximise the yield of short lived isotopes. A theoretical model has been developed which fits the release curves and gives physical values of the diffusion constants.\\\\ \\\\The latest target is constructed from 2 $\\mu$m thick tantalum foils (mass only 10 mg) and shows very short release times. The yield of $^{11}$Li (half-life of ...

  19. Students' Initial Knowledge State and Test Design: Towards a Valid and Reliable Test Instrument

    Science.gov (United States)

    CoPo, Antonio Roland I.

    2015-01-01

    Designing a good test instrument involves specifications, test construction, validation, try-out, analysis and revision. The initial knowledge state of forty (40) tertiary students enrolled in Business Statistics course was determined and the same test instrument undergoes validation. The designed test instrument did not only reveal the baseline…

  20. Using partial safety factors in wind turbine design and testing

    Energy Technology Data Exchange (ETDEWEB)

    Musial, W.D. [National Renewable Energy Lab., Golden, CO (United States)

    1997-12-31

    This paper describes the relationship between wind turbine design and testing in terms of the certification process. An overview of the current status of international certification is given along with a description of limit-state design basics. Wind turbine rotor blades are used to illustrate the principles discussed. These concepts are related to both International Electrotechnical Commission and Germanischer Lloyd design standards, and are covered using schematic representations of statistical load and material strength distributions. Wherever possible, interpretations of the partial safety factors are given with descriptions of their intended meaning. Under some circumstances, the authors` interpretations may be subjective. Next, the test-load factors are described in concept and then related to the design factors. Using technical arguments, it is shown that some of the design factors for both load and materials must be used in the test loading, but some should not be used. In addition, some test factors not used in the design may be necessary for an accurate test of the design. The results show that if the design assumptions do not clearly state the effects and uncertainties that are covered by the design`s partial safety factors, outside parties such as test labs or certification agencies could impose their own meaning on these factors.

  1. Design, Construction and Testing of a Dry Sand Sieving Machine ...

    African Journals Online (AJOL)

    Michael Horsfall

    www.ajol.info and www.bioline.org.br/ja. Design, Construction and Testing of a Dry Sand Sieving Machine. OLADEJI AKANNI OGUNWOLE. Department of Mechanical Engineering, Federal University of Technology, Minna, Nigeria. ABSTRACT: This paper reports on the design, construction and Testing of a dry sand sieving.

  2. The Design, Fabrication, and Testing of Composite Heat Exchange Coupons

    Science.gov (United States)

    Quade, Derek J.; Meador, Michael A.; Shin, Euy-Sik; Johnston, James C.; Kuczmarski, Maria A.

    2011-01-01

    Several heat exchanger (HX) test panels were designed, fabricated and tested at the NASA Glenn Research Center to explore the fabrication and performance of several designs for composite heat exchangers. The development of these light weight, high efficiency air-liquid test panels was attempted using polymer composites and carbon foam materials. The fundamental goal of this effort was to demonstrate the feasibility of the composite HX for various space exploration and thermal management applications including Orion CEV and Altair. The specific objectives of this work were to select optimum materials, designs, and to optimize fabrication procedures. After fabrication, the individual design concept prototypes were tested to determine their thermal performance and to guide the future development of full-size engineering development units (EDU). The overall test results suggested that the panel bonded with pre-cured composite laminates to KFOAM Grade L1 scored above the other designs in terms of ease of manufacture and performance.

  3. Design of Test Parts to Characterize Micro Additive Manufacturing Processes

    DEFF Research Database (Denmark)

    Thompson, Mary Kathryn; Mischkot, Michael

    2015-01-01

    The minimum feature size and obtainable tolerances of additive manufacturing processes are linked to the smallest volumetric elements (voxels) that can be created. This work presents the iterative design of a test part to investigate the resolution of AM processes with voxel sizes at the micro...... scale. Each design iteration reduces the test part size, increases the number of test features, improves functionality, and decreases coupling in the part. The final design is a set of three test parts that are easy to orient and measure, and that provide useful information about micro additive...... manufacturing processes....

  4. Design, manufacturing and testing of Controllable Rubber Trailing Edge Flaps

    DEFF Research Database (Denmark)

    Løgstrup Andersen, Tom; Aagaard Madsen, Helge; Barlas, Thanasis K

    The overall goal for the INDUFLAP project was realization of a test facility for development and test of Controllable Rubber Trailing Edge Flaps (CRTEF) for wind turbines. This report covers experimental work at DTU Wind Energy including design, manufacture and test of different configurations...... of flaps with voids in chord- or spanwise direction. Development of rubber flaps has involved further design improvements. Non-metallic spring elements and solutions for sealing of continuous extruded rubber profiles have been investigated....

  5. Hypothesis Designs for Three-Hypothesis Test Problems

    OpenAIRE

    Yan Li; Xiaolong Pu

    2010-01-01

    As a helpful guide for applications, the alternative hypotheses of the three-hypothesis test problems are designed under the required error probabilities and average sample number in this paper. The asymptotic formulas and the proposed numerical quadrature formulas are adopted, respectively, to obtain the hypothesis designs and the corresponding sequential test schemes under the Koopman-Darmois distributions. The example of the normal mean test shows that our methods are qu...

  6. Proceedings of Design, Automation and Test in Europe (DATE07)

    DEFF Research Database (Denmark)

    Welcome to the DATE 07 Conference Proceedings. DATE combines the world’s leading electronic systems design conference and Europe's leading international exhibition for electronic design, automation and test, from system level hardware and software implementation right down to integrated circuit....... Challenges that you all face or soon will face in your daily practice are the increasing design complexity of highly integrated systems, the introduction of reconfigurability and embedded software, and the control of power, reliability and variability in nanometer IC designs. All these issues...... with 78 sessions covering the latest in system design and embedded software, IC design methodologies and EDA tool developments. One of the main strengths of the conference is a wide but high-quality coverage of design, design automation and test topics, from the system level (including PCB and FPGA...

  7. Hybrid Computerized Adaptive Testing: From Group Sequential Design to Fully Sequential Design

    Science.gov (United States)

    Wang, Shiyu; Lin, Haiyan; Chang, Hua-Hua; Douglas, Jeff

    2016-01-01

    Computerized adaptive testing (CAT) and multistage testing (MST) have become two of the most popular modes in large-scale computer-based sequential testing. Though most designs of CAT and MST exhibit strength and weakness in recent large-scale implementations, there is no simple answer to the question of which design is better because different…

  8. Designing an Affordable Usability Test for E-Learning Modules

    Science.gov (United States)

    O'Bryan, Corliss A.; Johnson, Donald M.; Shores-Ellis, Katrina D.; Crandall, Philip G.; Marcy, John A.; Seideman, Steve C.; Ricke, Steven C.

    2010-01-01

    This article provides background and an introduction to a user-centered design and usability test in an inexpensive format that allows content experts who are novices in e-learning development to perform testing on newly developed technical training modules prior to their release. The use of a small number of test participants, avoidance of…

  9. Study of test script design methods for Web Service performance testing

    Science.gov (United States)

    Xu, Peng

    2017-09-01

    Web Service interface technology is more and more widely applied in information system. And more requirements of Web Service performance testing are demanded. Nevertheless, designing the test script for performance testing is hard to take into practice. In this paper, two kinds of test script design methods for Web Service performance testing are presented by using LoadRunner and SOAP UI tools. That is The Service Call Method and The SOAP Method.

  10. The J-2X Fuel Turbopump - Design, Development, and Test

    Science.gov (United States)

    Tellier, James G.; Hawkins, Lakiesha V.; Shinguchi, Brian H.; Marsh, Matthew W.

    2011-01-01

    Pratt and Whitney Rocketdyne (PWR), a NASA subcontractor, is executing the design, development, test, and evaluation (DDT&E) of a liquid oxygen, liquid hydrogen two hundred ninety four thousand pound thrust rocket engine initially intended for the Upper Stage (US) and Earth Departure Stage (EDS) of the Constellation Program Ares-I Crew Launch Vehicle (CLV). A key element of the design approach was to base the new J-2X engine on the heritage J-2S engine with the intent of uprating the engine and incorporating SSME and RS-68 lessons learned. The J-2S engine was a design upgrade of the flight proven J-2 configuration used to put American astronauts on the moon. The J-2S Fuel Turbopump (FTP) was the first Rocketdyne-designed liquid hydrogen centrifugal pump and provided many of the early lessons learned for the Space Shuttle Main Engine High Pressure Fuel Turbopumps. This paper will discuss the design trades and analyses performed for the current J-2X FTP to increase turbine life; increase structural margins, facilitate component fabrication; expedite turbopump assembly; and increase rotordynamic stability margins. Risk mitigation tests including inducer water tests, whirligig turbine blade tests, turbine air rig tests, and workhorse gas generator tests characterized operating environments, drove design modifications, or identified performance impact. Engineering design, fabrication, analysis, and assembly activities support FTP readiness for the first J-2X engine test scheduled for July 2011.

  11. Design, development and testing twin pulse tube cryocooler

    Science.gov (United States)

    Gour, Abhay Singh; Sagar, Pankaj; Karunanithi, R.

    2017-09-01

    The design and development of Twin Pulse Tube Cryocooler (TPTC) is presented. Both the coolers are driven by a single Linear Moving Magnet Synchronous Motor (LMMSM) with piston heads at both ends of the mover shaft. Magnetostatic analysis for flux line distribution was carried-out during design and development of LMMSM based pressure wave generator. Based on the performance of PWG, design of TPTC was carried out using Sage and Computational Fluid Dynamics (CFD) analysis. Detailed design, fabrication and testing of LMMSM, TPTC and their integration tests are presented in this paper.

  12. Design of Test Wrapper Scan Chain Based on Differential Evolution

    Directory of Open Access Journals (Sweden)

    Aijun Zhu

    2013-08-01

    Full Text Available Integrated Circuit has entered the era of design of the IP-based SoC (System on Chip, which makes the IP core reuse become a key issue. SoC test wrapper design for scan chain is a NP Hard problem, we propose an algorithm based on Differential Evolution (DE to design wrapper scan chain. Through group’s mutation, crossover and selection operations, the design of test wrapper scan chain is achieved. Experimental verification is carried out according to the international standard benchmark ITC’02. The results show that the algorithm can obtain shorter longest wrapper scan chains, compared with other algorithms.

  13. Advanced Control Design for Wind Turbines; Part I: Control Design, Implementation, and Initial Tests

    Energy Technology Data Exchange (ETDEWEB)

    Wright, A. D.; Fingersh, L. J.

    2008-03-01

    The purpose of this report is to give wind turbine engineers information and examples of the design, testing through simulation, field implementation, and field testing of advanced wind turbine controls.

  14. Conceptional design of test loop for FIV in fuel bundle

    Energy Technology Data Exchange (ETDEWEB)

    Sim, W. G.; Yang, J. S.; Kim, S. W. [Hannam Univ., Taejeon (Korea)

    2001-01-01

    It is urgent to develop the analytical model for the structural/mechanical integrity of fuel rod. In general, it is not easy to develop a pure analytical model. Occasionally, experimental results have been utilized for the model. Because of this reason, it is required to design proper test loop. Using the optimized test loop, with the optimized test loop, the dynamic behaviour of the rod will be evaluated and the critical flow velocity, which the rod loses the stability in, will be measured for the design of the rod. To verify the integrity of the fuel rod, it is required to evaluate the dynamic behaviour and the critical flow velocity with the test loop. The test results will be utilized to the design of the rod. Generally, the rod has a ground vibration due to turbulence in wide range of flow velocity and the amplitude of vibration becomes larger by the resonance, in a range of the velocity where occurs vortex. The rod loses stability in critical flow velocity caused by fluid-elastic instability. For the purpose of the present work to perform the conceptional design of the test loop, it is necessary (1) to understand the mechanism of the flow-induced vibration and the related experimental coefficients, (2) to evaluate the existing test loops for improving the loop with design parameters and (3) to decide the design specifications of the major equipments of the loop. 35 refs., 23 figs., 2 tabs. (Author)

  15. Design and field testing of solar-assisted Earth coils

    Science.gov (United States)

    Bose, J. E.

    A nominal 1000-foot, 4-inch, PVC coil buried in a serpentine pattern is the heat source/sink for two commercial heat pump systems. This system is vented which allows the easy placement of thermocouples down its length to measure changes in temperature as well as changes in overall U values as a function of length. Integral to the earth coil is a 1000-gallon uninsulated water storage tank in which solar energy from 210 sq ft of solar collectors (single-glazed, metal absorber) can be added directly to the heat pump, circulated through the 1000-foot earth coil system, or added to an insulated storage tank for direct transfer. Temperature ranges for this type of system at the four-foot level are from a nominal range of 780F to a low of 420F in the absence of heat rejection of absorption. The second type of earth coil was a vertical coil approximately 240 feet in length. The vertical heat exchanger consists of a 5-inch PVC pipe which is capped at both ends and pressurized at approximately 15 PSIG. This sealed and pressurized heat exchanger allows a low power pump to circulate water through both the heat pump and vertical heat exchanger system.

  16. Skylab Medical Experiments Altitude Test /SMEAT/ facility design and operation.

    Science.gov (United States)

    Hinners, A. H., Jr.; Correale, J. V.

    1973-01-01

    This paper presents the design approaches and test facility operation methods used to successfully accomplish a 56-day test for Skylab to permit evaluation of selected Skylab medical experiments in a ground test simulation of the Skylab environment with an astronaut crew. The systems designed for this test include the two-gas environmental control system, the fire suppression and detection system, equipment transfer lock, ground support equipment, safety systems, potable water system, waste management system, lighting and power system, television monitoring, communications and recreation systems, and food freezer.

  17. Honeycomb technology materials, design, manufacturing, applications and testing

    CERN Document Server

    Bitzer, Tom

    1997-01-01

    Honeycomb Technology is a guide to honeycomb cores and honeycomb sandwich panels, from the manufacturing methods by which they are produced, to the different types of design, applications for usage and methods of testing the materials. It explains the different types of honeycomb cores available and provides tabulated data of their properties. The author has been involved in the testing and design of honeycomb cores and sandwich panels for nearly 30 years. Honeycomb Technology reflects this by emphasizing a `hands-on' approach and discusses procedures for designing sandwich panels, explaining the necessary equations. Also included is a section on how to design honeycomb energy absorbers and one full chapter discussing honeycomb core and sandwich panel testing. Honeycomb Technology will be of interest to engineers in the aircraft, aerospace and building industries. It will also be of great use to engineering students interested in basic sandwich panel design.

  18. MITG post-test analysis and design improvements

    Energy Technology Data Exchange (ETDEWEB)

    Schock, A.

    1983-01-01

    The design, performance analysis, and key attributes of the Modular Isotopic Thermoelectric Generator (MITG) were described in a 1981 IECEC paper; and the design, fabrication, and testing of prototypical MITG test assemblies were described in preceding papers in these proceedings. Each test assembly simulated a typical modular slice of the flight generator. The present paper describes a detailed thermal-stress analysis, which identified the causes of stress-related problems observed during the tests. It then describes how additional analyses were used to evaluate design changes to alleviate those problems. Additional design improvements are discussed in the next paper in these proceedings, which also describes revised fabrication procedures and updated performance estimates for the generator.

  19. Conceptual Design Report for the Extreme Ecosystems Test Chambers

    Energy Technology Data Exchange (ETDEWEB)

    C. Barnes; J. Beller; K. Caldwell; K. Croft; R. Cherry; W. Landman

    1998-12-01

    This conceptual design supports the creation of Extreme Ecosystems Test Chambers, which will replicate deep subsurface and subocean environments characterized by high pressure (2,000 psi) and subfreezing to high temperature (-4 to 300 degrees F) with differing chemical and saturation conditions. The design provides a system to support research and development that includes heat transfer, phase change issues in porous media, microbiology in extreme environments, and carbon sequestration and extraction. The initial system design is based on the research needs to support the commercial production of methane hydrates from subsurface sediments. The design provides for three pressure vessels: a Down Hole Test Vessel, a Vertical Multi-phase Test Vessel, and a Horizontal Multi-phase Test Vessel.

  20. SMART Wind Turbine Rotor: Design and Field Test

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Jonathan C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Resor, Brian R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Paquette, Joshua A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); White, Jonathan R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-01-29

    This report documents the design, fabrication, and testing of the SMART Rotor. This work established hypothetical approaches for integrating active aerodynamic devices (AADs) into the wind turbine structure and controllers.

  1. Engine Test Stand Design Constraints Expert System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Propulsion test stands are designed for thermal and pressure loads for certain classes of engines. These plume induced loads are: radiative heating, acoustics and...

  2. Design and Testing of CPAS Main Deployment Bag Energy Modulator

    Science.gov (United States)

    Mollmann, Catherine

    2017-01-01

    During the developmental testing program for CPAS (Capsule Parachute Assembly System), the parachute system for the NASA Orion Crew Module, simulation revealed that high loads may be experienced by the pilot risers during the most devere deployment conditions. As the role of the pilot parachutes is to deploy the main parachutes, these high loads introduced the possibility of main deployment failure. In order to mitigate these high loads, a set of energy modulators was incorporated between the pilot riser and the main deployment bag. An extensive developmental program was implemented to ensure the adequacy of these energy modulators. After initial design comparisons, the energy modulator design was validated through slow-speed joint tests as well as through high-speed bungee tests. This paper documents the design, development, and results of multiple tests completed on the final design.

  3. Engine testing the design, building, modification and use of powertrain test facilities

    CERN Document Server

    MARTYR, A J

    2012-01-01

    Engine Testing is a unique, well-organized and comprehensive collection of the different aspects of engine and vehicle testing equipment and infrastructure for anyone involved in facility design and management, physical testing and the maintenance, upgrading and trouble shooting of testing equipment. Designed so that its chapters can all stand alone to be read in sequence or out of order as needed, Engine Testing is also an ideal resource for automotive engineers required to perform testing functions whose jobs do not involve engine testing on a regular basis. This recognized standard refer

  4. Preconceptual design of the new production reactor circulator test facility

    Energy Technology Data Exchange (ETDEWEB)

    Thurston, G.

    1990-06-01

    This report presents the results of a study of a new circulator test facility for the New Production Reactor Modular High-Temperature Gas-Cooled Reactor. The report addresses the preconceptual design of a stand-alone test facility with all the required equipment to test the Main Circulator/shutoff valve and Shutdown Cooling Circulator/shutoff valve. Each type of circulator will be tested in its own full flow, full power helium test loop. Testing will cover the entire operating range of each unit. The loop will include a test vessel, in which the circulator/valve will be mounted, and external piping. The external flow piping will include a throttle valve, flowmeter, and heat exchanger. Subsystems will include helium handling, helium purification, and cooling water. A computer-based data acquisition and control system will be provided. The estimated costs for the design and construction of this facility are included. 2 refs., 15 figs.

  5. Graphical Tests for Power Comparison of Competing Designs.

    Science.gov (United States)

    Hofmann, H; Follett, L; Majumder, M; Cook, D

    2012-12-01

    Lineups have been established as tools for visual testing similar to standard statistical inference tests, allowing us to evaluate the validity of graphical findings in an objective manner. In simulation studies lineups have been shown as being efficient: the power of visual tests is comparable to classical tests while being much less stringent in terms of distributional assumptions made. This makes lineups versatile, yet powerful, tools in situations where conditions for regular statistical tests are not or cannot be met. In this paper we introduce lineups as a tool for evaluating the power of competing graphical designs. We highlight some of the theoretical properties and then show results from two studies evaluating competing designs: both studies are designed to go to the limits of our perceptual abilities to highlight differences between designs. We use both accuracy and speed of evaluation as measures of a successful design. The first study compares the choice of coordinate system: polar versus cartesian coordinates. The results show strong support in favor of cartesian coordinates in finding fast and accurate answers to spotting patterns. The second study is aimed at finding shift differences between distributions. Both studies are motivated by data problems that we have recently encountered, and explore using simulated data to evaluate the plot designs under controlled conditions. Amazon Mechanical Turk (MTurk) is used to conduct the studies. The lineups provide an effective mechanism for objectively evaluating plot designs.

  6. The Danish SAR system: design and initial tests

    DEFF Research Database (Denmark)

    Madsen, Søren Nørvang; Christensen, Erik Lintz; Skou, Niels

    1991-01-01

    In January 1986, the design of a high-resolution airborne C -band synthetic aperture radar (SAR) started at the Electromagnetics Institute of the Technical University of Denmark. The initial system test flights took place in November and December 1989. The authors describe the design of the system...

  7. Designing and testing the representative samplers for sampling a ...

    African Journals Online (AJOL)

    establishing the optimum mesh of grind for the various ores, to achieve effective separation of the cobalt minerals from those of copper. This prompted the designing and testing of representative samplers for sampling the milling circuit at Nkana Concentrator. In the design of the samplers, use was made of the Gy's formula to ...

  8. Design, fabrication and testing of elliptical crystal bender for the ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    design of the beam-line has been completed based on the working principle that a single crystal bent in ... In the present communication, the design, development and testing of an indigenous crys- tal bender has been .... Software simulation of crystal bending has been done by finite element modelling and analysis using ...

  9. Design, fabrication, testing and packaging of a silicon ...

    Indian Academy of Sciences (India)

    Home; Journals; Sadhana; Volume 38; Issue 2. Design, fabrication, testing and packaging of a silicon micromachined radio frequency microelectromechanical series (RF MEMS) switch. M S Giridhar Ashwini ... The design of the device is based on stiffness equations derived from first principles. Displacement of the actuator ...

  10. Design, Construction and Testing of a Dry Sand Sieving Machine ...

    African Journals Online (AJOL)

    This paper reports on the design, construction and Testing of a dry sand sieving machine. The sample to be sieved is uniformly graded. The coefficient of uniformity is 1.11, thus the machine design does not sieve larger particles such as gravel. The slip calculated is 36% which enabled the proper configuration of the V-belt.

  11. Design, construction and testing of a base driven static inverter ...

    African Journals Online (AJOL)

    Based on the active circuit of a 50Hz astable multivibrator, a base driven static inverter has been designed, constructed and tested. Design is able to convert small amounts of dc current to their amplified ac equivalents. A conversion of 12V dc input to the usual domestic range of 220-240V ac is also derivable from the ...

  12. High-Temperature Gas-Cooled Test Reactor Point Design

    Energy Technology Data Exchange (ETDEWEB)

    Sterbentz, James William [Idaho National Laboratory; Bayless, Paul David [Idaho National Laboratory; Nelson, Lee Orville [Idaho National Laboratory; Gougar, Hans David [Idaho National Laboratory; Kinsey, James Carl [Idaho National Laboratory; Strydom, Gerhard [Idaho National Laboratory; Kumar, Akansha [Idaho National Laboratory

    2016-04-01

    A point design has been developed for a 200 MW high-temperature gas-cooled test reactor. The point design concept uses standard prismatic blocks and 15.5% enriched UCO fuel. Reactor physics and thermal-hydraulics simulations have been performed to characterize the capabilities of the design. In addition to the technical data, overviews are provided on the technological readiness level, licensing approach and costs.

  13. The test-negative design for estimating influenza vaccine effectiveness.

    Science.gov (United States)

    Jackson, Michael L; Nelson, Jennifer C

    2013-04-19

    The test-negative design has emerged in recent years as the preferred method for estimating influenza vaccine effectiveness (VE) in observational studies. However, the methodologic basis of this design has not been formally developed. In this paper we develop the rationale and underlying assumptions of the test-negative study. Under the test-negative design for influenza VE, study subjects are all persons who seek care for an acute respiratory illness (ARI). All subjects are tested for influenza infection. Influenza VE is estimated from the ratio of the odds of vaccination among subjects testing positive for influenza to the odds of vaccination among subjects testing negative. With the assumptions that (a) the distribution of non-influenza causes of ARI does not vary by influenza vaccination status, and (b) VE does not vary by health care-seeking behavior, the VE estimate from the sample can generalized to the full source population that gave rise to the study sample. Based on our derivation of this design, we show that test-negative studies of influenza VE can produce biased VE estimates if they include persons seeking care for ARI when influenza is not circulating or do not adjust for calendar time. The test-negative design is less susceptible to bias due to misclassification of infection and to confounding by health care-seeking behavior, relative to traditional case-control or cohort studies. The cost of the test-negative design is the additional, difficult-to-test assumptions that incidence of non-influenza respiratory infections is similar between vaccinated and unvaccinated groups within any stratum of care-seeking behavior, and that influenza VE does not vary across care-seeking strata. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Optimal testlet pool assembly for multistage testing designs

    NARCIS (Netherlands)

    Ariel, A.; Veldkamp, Bernard P.; Breithaupt, Krista

    2006-01-01

    Computerized multistage testing (MST) designs require sets of test questions (testlets) to be assembled to meet strict, often competing criteria. Rules that govern testlet assembly may dictate the number of questions on a particular subject or may describe desirable statistical properties for the

  15. The design of a postgraduate test of academic literacy ...

    African Journals Online (AJOL)

    As a consideration in the design of a test of academic literacy, the face validity of such a test is determined by its perceived suitability and usefulness in addressing the literacy requirements of specific academic contexts. This article focuses on one such a literacy context: that of postgraduate academic literacy at a South ...

  16. Design and Test Space Exploration of Transport-Triggered Architectures

    NARCIS (Netherlands)

    Zivkovic, V.; Tangelder, R.J.W.T.; Kerkhoff, Hans G.

    2000-01-01

    This paper describes a new approach in the high level design and test of transport-triggered architectures (TTA), a special type of application specific instruction processors (ASIP). The proposed method introduces the test as an additional constraint, besides throughput and circuit area. The

  17. NASA reliability preferred practices for design and test

    Science.gov (United States)

    1991-01-01

    Given here is a manual that was produced to communicate within the aerospace community design practices that have contributed to NASA mission success. The information represents the best technical advice that NASA has to offer on reliability design and test practices. Topics covered include reliability practices, including design criteria, test procedures, and analytical techniques that have been applied to previous space flight programs; and reliability guidelines, including techniques currently applied to space flight projects, where sufficient information exists to certify that the technique will contribute to mission success.

  18. The Use of Test Method Characteristics in the Content Analysis and Design of EFL Proficiency Tests.

    Science.gov (United States)

    Bachman, Lyle F.; And Others

    1996-01-01

    Discusses the value of content considerations in the design of language tests and the implications of the findings of various investigations of content analysis. The article argues that content analysis can be viewed as the application of a model of test design to a particular measurement instrument, using judgments of trained analysts. (26…

  19. Design, fabrication and testing of the Pegasus composite payload fairing

    Science.gov (United States)

    Barth, James R.; Davis, Fred L.; Edwards, Colby W.; Gillit, C. B.; Itchkawich, Thomas J.

    Hercules has successfully designed, fabricated and tested a composite payload fairing for the Pegasus air-launched space booster. The design features include an aluminum honeycomb core with graphite/epoxy skins for the cylindrical and ogive sections of the fairing and a monocoque graphite/epoxy nose cap. The fairing is designed to hinge at the aft end and separate along two (2) axial joints. The structure is fabricated to nearly net shape using a unique process which includes co-curing the joints and honeycomb core to the graphite/epoxy skins in one operation. This process minimizes the amount of secondary machining and bonding operations required to achieve the final configuration. The payload fairing was tested by applying static and dynamic loads to the structure. Separation testing was also performed to verify system performance. Data obtained from the first operational flight indicate the payload fairing performed as designed and two satellites were successfully deployed.

  20. Consensus on Intermediate Scale Salt Field Test Design

    Energy Technology Data Exchange (ETDEWEB)

    Kuhlman, Kristopher L; Mills, Melissa Marie; Matteo, Edward N

    2017-03-01

    This report summarizes the first stage in a collaborative effort by Sandia, Los Alamos, and Lawrence Berkeley National Laboratories to design a small-diameter borehole heater test in salt at the Waste Isolation Pilot Plant (WIPP) for the US Department of Energy Office of Nuclear Energy (DOE-NE). The intention is to complete test design during the remainder of fiscal year 2017 (FY17), and the implementation of the test will begin in FY18. This document is the result of regular meetings between the three national labs and the DOE-NE, and is intended to represent a consensus of these meetings and discussions.

  1. SMART wind turbine rotor. Design and field test

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Jonathan Charles; Resor, Brian Ray; Paquette, Joshua A.; White, Jonathan Randall

    2014-01-01

    The Wind Energy Technologies department at Sandia National Laboratories has developed and field tested a wind turbine rotor with integrated trailing-edge flaps designed for active control of rotor aerodynamics. The SMART Rotor project was funded by the Wind and Water Power Technologies Office of the U.S. Department of Energy (DOE) and was conducted to demonstrate active rotor control and evaluate simulation tools available for active control research. This report documents the design, fabrication, and testing of the SMART Rotor. This report begins with an overview of active control research at Sandia and the objectives of this project. The SMART blade, based on the DOE / SNL 9-meter CX-100 blade design, is then documented including all modifications necessary to integrate the trailing edge flaps, sensors incorporated into the system, and the fabrication processes that were utilized. Finally the test site and test campaign are described.

  2. Do Test Design and Uses Influence Test Preparation? Testing a Model of Washback with Structural Equation Modeling

    Science.gov (United States)

    Xie, Qin; Andrews, Stephen

    2013-01-01

    This study introduces Expectancy-value motivation theory to explain the paths of influences from perceptions of test design and uses to test preparation as a special case of washback on learning. Based on this theory, two conceptual models were proposed and tested via Structural Equation Modeling. Data collection involved over 870 test takers of…

  3. Design and Testing for a New Thermosyphon Irradiation Vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Felde, David K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Carbajo, Juan J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); McDuffee, Joel Lee [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-01

    The High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL) requires most materials and all fuel experiments to be placed in a pressure containment vessel to ensure that internal contaminants such as fission products cannot be released into the primary coolant. It also requires that all experiments be capable of withstanding various accident conditions (e.g., loss of coolant) without generating vapor bubbles on the surface of the experiment in the primary coolant. These requirements are intended to artificially increase experiment temperatures by introducing a barrier between the experimental materials and the HFIR coolant, and by reducing heat loads to the HFIR primary coolant, thus ensuring that no boiling can occur. A proposed design for materials irradiation would remove these limitations by providing the required primary containment with an internal cooling flow. This would allow for experiments to be irradiated without concern for coolant contamination (e.g., from cladding failure of advanced fuel pins) or for specimen heat load. This report describes a new materials irradiation experiment design that uses a thermosyphon cooling system to allow experimental materials direct access to a liquid coolant. The new design also increases the range of conditions that can be tested in HFIR. This design will provide a unique capability to validate the performance of current and advanced fuels and materials. Because of limited supporting data for this kind of irradiation vehicle, a test program was initiated to obtain operating data that can be used to (1) qualify the vehicle for operation in HFIR and (2) validate computer models used to perform design- and safety-basis calculations. This report also describes the test facility and experimental data, and it provides a comparison of the experimental data to computer simulations. A total of 51 tests have been completed: four tests with pure steam, 12 tests with argon, and 35 tests with helium. A total

  4. Design of a test facility for probe calibration

    Directory of Open Access Journals (Sweden)

    Šimák Jan

    2017-01-01

    Full Text Available A possibility to easily calibrate probes for flow field measurements is always welcome. From this reason, a design of a test facility for probe calibration was made. The probes will be calibrated in a free jet of known properties, which is created by an exchangeable nozzle to cover a wide range of Mach numbers up to Mach 2. The most important is to create a homogeneous flow across the test section. This is accomplished by a precise design of the nozzles carried out by numerical tools. The convergent nozzle part is common for all subsonic flow regimes while the divergent part (forming a de Laval nozzle is suited for a specific supersonic Mach number. These parts are designed using the method of characteristics. Numerical simulations performed by a CFD code show a feasibility and quality of the proposed test facility.

  5. The design and manufacture of the catalyst test equipment

    Energy Technology Data Exchange (ETDEWEB)

    Cho, J. H.; Song, I. T. [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-02-01

    The object of this report is to design and manufacture of the catalyst test equipment for removing tritium(H3) included in heavy water for the heavy water reactor. The design conditions of the reactor with the test equipment are summarized as follows 1) Flow rate : 336 l/min. 2) Pressure : 1.15kg/cm{sup 2}. 3) Maximum Temperature : 80 deg C. The test equipment is composed of the water jacket reactor, water equilibrator, heaters, condensers, tanks and pumps. As well as, it is composed of the water, hydrogen, helium, vacuum, emergency operation and control systems. This report will be used important data for the design and manufacture of the equipment for removing tritium. 30 tabs. (Author)

  6. Proceedings of Design, Automation and Test in Europe (DATE07)

    DEFF Research Database (Denmark)

    Welcome to the DATE 07 Conference Proceedings. DATE combines the world’s leading electronic systems design conference and Europe's leading international exhibition for electronic design, automation and test, from system level hardware and software implementation right down to integrated circuit...... an international conference. DATE is now the world’s premier event in electronic system design. The submissions have been reviewed by the more than 600 members of the Technical Programme Committee. After a thorough review and selection process (with an average of 4.6 reviews per paper), finally 208 papers were......) to the integrated circuit level. In addition, for the third year a special embedded software track is offered to allow for the increasing importance of software in embedded systems. Compared with previous years, submissions in design, test and embedded software have grown significantly, showing a clear trend toward...

  7. Space Launch System, Core Stage, Structural Test Design and Implementation

    Science.gov (United States)

    Shaughnessy, Ray

    2017-01-01

    As part of the National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) Program, engineers at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama are working to design, develop and implement the SLS Core Stage structural testing. The SLS will have the capability to return humans to the Moon and beyond and its first launch is scheduled for December of 2017. The SLS Core Stage consist of five major elements; Forward Skirt, Liquid Oxygen (LOX) tank, Intertank (IT), Liquid Hydrogen (LH2) tank and the Engine Section (ES). Structural Test Articles (STA) for each of these elements are being designed and produced by Boeing at Michoud Assembly Facility located in New Orleans, La. The structural test for the Core Stage STAs (LH2, LOX, IT and ES) are to be conducted by the MSFC Test Laboratory. Additionally, the MSFC Test Laboratory manages the Structural Test Equipment (STE) design and development to support the STAs. It was decided early (April 2012) in the project life that the LH2 and LOX tank STAs would require new test stands and the Engine Section and Intertank would be tested in existing facilities. This decision impacted schedules immediately because the new facilities would require Construction of Facilities (C of F) funds that require congressional approval and long lead times. The Engine Section and Intertank structural test are to be conducted in existing facilities which will limit lead times required to support the first launch of SLS. With a SLS launch date of December, 2017 Boeing had a need date for testing to be complete by September of 2017 to support flight certification requirements. The test facilities were required to be ready by October of 2016 to support test article delivery. The race was on to get the stands ready before Test Article delivery and meet the test complete date of September 2017. This paper documents the past and current design and development phases and the supporting processes, tools, and

  8. Hybrid microcircuit technology handbook materials, processes, design, testing and production

    CERN Document Server

    Licari, James J

    1998-01-01

    The Hybrid Microcircuit Technology Handbook integrates the many diverse technologies used in the design, fabrication, assembly, and testing of hybrid segments crucial to the success of producing reliable circuits in high yields. Among these are: resistor trimming, wire bonding, die attachment, cleaning, hermetic sealing, and moisture analysis. In addition to thin films, thick films, and assembly processes, important chapters on substrate selections, handling (including electrostatic discharge), failure analysis, and documentation are included. A comprehensive chapter of design guidelines will

  9. 49 CFR 192.123 - Design limitations for plastic pipe.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Design limitations for plastic pipe. 192.123... Design limitations for plastic pipe. (a) Except as provided in paragraph (e) and paragraph (f) of this section, the design pressure may not exceed a gauge pressure of 100 psig (689 kPa) for plastic pipe used...

  10. Task based displays - rationale, design, user test and assessment

    Energy Technology Data Exchange (ETDEWEB)

    Foerdestroemmen, Nils

    2004-04-15

    The report summarizes the work that has been done on task-based displays within the Halden Reactor Project in the period 1998-2003. The development work on task-based displays was initiated in 1998, and the prototype design was reported in 1999. In 2001, four realised task displays were exposed to a user test, and the display design and user test results were reported in 2002. During 2003, the previous work was reviewed, summarised and assessed. The work presented in this report forms the basis for the future planned work on task-based displays. (Author)

  11. Design verification and cold-flow modeling test report

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    This report presents a compilation of the following three test reports prepared by TRW for Alaska Industrial Development and Export Authority (AIDEA) as part of the Healy Clean Coal Project, Phase 1 Design of the TRW Combustor and Auxiliary Systems, which is co-sponsored by the Department of Energy under the Clean Coal Technology 3 Program: (1) Design Verification Test Report, dated April 1993, (2) Combustor Cold Flow Model Report, dated August 28, 1992, (3) Coal Feed System Cold Flow Model Report, October 28, 1992. In this compilation, these three reports are included in one volume consisting of three parts, and TRW proprietary information has been excluded.

  12. Conceptual design study of a scyllac fusion test reactor

    Energy Technology Data Exchange (ETDEWEB)

    Thomassen, K.I. (comp.)

    1975-07-01

    The report describes a conceptual design study of a fusion test reactor based on the Scyllac toroidal theta-pinch approach to fusion. It is not the first attempt to describe the physics and technology required for demonstrating scientific feasibility of the approach, but it is the most complete design in the sense that the physics necessary to achieve the device goals is extrapolated from experimentally tested MHD theories of toroidal systems,and it uses technological systems whose engineering performance has been carefully calculated to ensure that they meet the machine requirements.

  13. Design, construction and testing of a DC bioeffects test enclosure for small animals. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Frazier, M J; Preache, M M

    1980-11-01

    This final report describes both the engineering development of a DC bioeffects test enclosure for small laboratory animals, and the biological protocol for the use of such enclosures in the testing of animals to determine possible biological effects of the environment associated with HVDC transmission lines. The test enclosure which has been designed is a modular unit, which will house up to eight rat-sized animals in individual compartments. Multiple test enclosures can be used to test larger numbers of animals. A prototype test enclosure has been fabricated and tested to characterize its electrical performance characteristics. The test enclosure provides a simulation of the dominant environment associated with HVDC transmission lines; namely, a static electric field and an ion current density. A biological experimental design has been developed for assessing the effects of the dominant components of the HVDC transmission line environment.

  14. Injector Cavities Fabrication, Vertical Test Performance and Primary Cryomodule Design

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haipeng [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Cheng, Guangfeng [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Clemens, William [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Davis, G [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Macha, Kurt [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Overton, Roland [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Spell, D. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2015-09-01

    After the electromagnetic design and the mechanical design of a β=0.6, 2-cell elliptical SRF cavity, the cavity has been fabricated. Then both 2-cell and 7-cell cavities have been bench tuned to the target values of frequency, coupling external Q and field flatness. After buffer chemistry polishing (BCP) and high pressure rinses (HPR), Vertical 2K cavity test results have been satisfied the specifications and ready for the string assembly. We will report the cavity performance including Lorenz Force Detuning (LFD) and Higher Order Modes (HOM) damping data. Its integration with cavity tuners to the cryomodule design will be reported.

  15. Design of Pump as Turbine Experimental Test Facility

    Directory of Open Access Journals (Sweden)

    Zariatin D. L.

    2017-01-01

    Full Text Available This paper presents the design process of experimental test facility for pump as turbine hydropower system. Three design possibilities that related to the PAT condition of operation was developed and analyzed by using CFD Software. It is found that the First Variant with a straight flow to the PAT will produce higher velocity, which is needed to generate more rotation of the shaft generator, in order to generate more electric power. The strength of PAT construction was analyzed by using FEM software. It was found that the maximum stress is 6 MPa and can be concluded that the construction is appropriate to the design requirement.

  16. Preliminary Design of a LSA Aircraft Using Wind Tunnel Tests

    Directory of Open Access Journals (Sweden)

    Norbert ANGI

    2015-12-01

    Full Text Available This paper presents preliminary results concerning the design and aerodynamic calculations of a light sport aircraft (LSA. These were performed for a new lightweight, low cost, low fuel consumption and long-range aircraft. The design process was based on specific software tools as Advanced Aircraft Analysis (AAA, XFlr 5 aerodynamic and dynamic stability analysis, and Catia design, according to CS-LSA requirements. The calculations were accomplished by a series of tests performed in the wind tunnel in order to assess experimentally the aerodynamic characteristics of the airplane.

  17. HyRAM Testing Strategy and Quality Design Elements.

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, John Thomas

    2014-12-01

    Strategy document and tentative schedule for testing of HyRAM, a software toolkit that integrates data and methods relevant to assessing the safety of hydrogen fueling and storage infrastructure. Because proposed and existing features in HyRAM that support testing are important factors in this discussion, relevant design considerations of HyRAM are also discussed. However, t his document does not cover all of HyRAM desig n, nor is the full HyRAM software development schedule included.

  18. Design Of Computer Based Test Using The Unified Modeling Language

    Science.gov (United States)

    Tedyyana, Agus; Danuri; Lidyawati

    2017-12-01

    The Admission selection of Politeknik Negeri Bengkalis through interest and talent search (PMDK), Joint Selection of admission test for state Polytechnics (SB-UMPN) and Independent (UM-Polbeng) were conducted by using paper-based Test (PBT). Paper Based Test model has some weaknesses. They are wasting too much paper, the leaking of the questios to the public, and data manipulation of the test result. This reasearch was Aimed to create a Computer-based Test (CBT) models by using Unified Modeling Language (UML) the which consists of Use Case diagrams, Activity diagram and sequence diagrams. During the designing process of the application, it is important to pay attention on the process of giving the password for the test questions before they were shown through encryption and description process. RSA cryptography algorithm was used in this process. Then, the questions shown in the questions banks were randomized by using the Fisher-Yates Shuffle method. The network architecture used in Computer Based test application was a client-server network models and Local Area Network (LAN). The result of the design was the Computer Based Test application for admission to the selection of Politeknik Negeri Bengkalis.

  19. Adaptive transmission disequilibrium test for family trio design.

    Science.gov (United States)

    Yuan, Min; Tian, Xin; Zheng, Gang; Yang, Yaning

    2009-01-01

    The transmission disequilibrium test (TDT) is a standard method to detect association using family trio design. It is optimal for an additive genetic model. Other TDT-type tests optimal for recessive and dominant models have also been developed. Association tests using family data, including the TDT-type statistics, have been unified to a class of more comprehensive and flexable family-based association tests (FBAT). TDT-type tests have high efficiency when the genetic model is known or correctly specified, but may lose power if the model is mis-specified. Hence tests that are robust to genetic model mis-specification yet efficient are preferred. Constrained likelihood ratio test (CLRT) and MAX-type test have been shown to be efficiency robust. In this paper we propose a new efficiency robust procedure, referred to as adaptive TDT (aTDT). It uses the Hardy-Weinberg disequilibrium coefficient to identify the potential genetic model underlying the data and then applies the TDT-type test (or FBAT for general applications) corresponding to the selected model. Simulation demonstrates that aTDT is efficiency robust to model mis-specifications and generally outperforms the MAX test and CLRT in terms of power. We also show that aTDT has power close to, but much more robust, than the optimal TDT-type test based on a single genetic model. Applications to real and simulated data from Genetic Analysis Workshop (GAW) illustrate the use of our adaptive TDT.

  20. Detail design of test loop for FIV in fuel bundle and preliminary test

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Woo Gunl; Lee, Wan Young; Kim, Sung Won [Hannam University, Taejeon (Korea)

    2002-04-01

    It is urgent to develop the analytical model for the structural/mechanical integrity of fuel rod. In general, it is not easy to develop a pure analytical model. Occasionally, experimental results have been utilized for the model.Because of this reason, it is required to design proper test loop. Using the optimized test loop, With the optimized test loop, the dynamic behaviour of the rod will be evaluated and the critical flow velocity, which the rod loses the stability in, will be measured for the design of the rod. To verify the integrity of the fuel rod, it is required to evaluate the dynamic behaviour and the critical flow velocity with the test loop. The test results will be utilized to the design of the rod. Generally, the rod has a ground vibration due to turbulence in wide range of flow velocity and the amplitude of vibration becomes larger by the resonance, in a range of the velocity where occurs vortex. The rod loses stability in critical flow velocity caused by fluid-elastic instability. For the purpose of the present work to perform the conceptional design of the test loop, it is necessary (1) to understand the mechanism of the flow-induced vibration and the related experimental coefficients, (2) to evaluate the existing test loops for improving the loop with design parameters and (3) to decide the design specifications of the major equipments of the loop. 35 refs., 14 figs., 4 tabs. (Author)

  1. In-Space Engine (ISE-100) Development - Design Verification Test

    Science.gov (United States)

    Trinh, Huu P.; Popp, Chris; Bullard, Brad

    2017-01-01

    In the past decade, NASA has formulated science mission concepts with an anticipation of landing spacecraft on the lunar surface, meteoroids, and other planets. Advancing thruster technology for spacecraft propulsion systems has been considered for maximizing science payload. Starting in 2010, development of In-Space Engine (designated as ISE-100) has been carried out. ISE-100 thruster is designed based on heritage Missile Defense Agency (MDA) technology aimed for a lightweight and efficient system in terms volume and packaging. It runs with a hypergolic bi-propellant system: MON-25 (nitrogen tetroxide, N2O4, with 25% of nitric oxide, NO) and MMH (monomethylhydrazine, CH6N2) for NASA spacecraft applications. The utilization of this propellant system will provide a propulsion system capable of operating at wide range of temperatures, from 50 C (122 F) down to -30 C (-22 F) to drastically reduce heater power. The thruster is designed to deliver 100 lb(sub f) of thrust with the capability of a pulse mode operation for a wide range of mission duty cycles (MDCs). Two thrusters were fabricated. As part of the engine development, this test campaign is dedicated for the design verification of the thruster. This presentation will report the efforts of the design verification hot-fire test program of the ISE-100 thruster in collaboration between NASA Marshall Space Flight Center (MSFC) and Aerojet Rocketdyne (AR) test teams. The hot-fire tests were conducted at Advance Mobile Propulsion Test (AMPT) facility in Durango, Colorado, from May 13 to June 10, 2016. This presentation will also provide a summary of key points from the test results.

  2. Design and Testing of Improved Spacesuit Shielding Components

    Energy Technology Data Exchange (ETDEWEB)

    Ware, J.; Ferl, J.; Wilson, J.W.; Clowdsley, M.S.; DeAngelis, G.; Tweed, J.; Zeitlin, C.J.

    2002-05-08

    In prior studies of the current Shuttle Spacesuit (SSA), where basic fabric lay-ups were tested for shielding capabilities, it was found that the fabric portions of the suit give far less protection than previously estimated due to porosity and non-uniformity of fabric and LCVG components. In addition, overall material transmission properties were less than optimum. A number of alternate approaches are being tested to provide more uniform coverage and to use more efficient materials. We will discuss in this paper, recent testing of new material lay-ups/configurations for possible use in future spacesuit designs.

  3. Design-for-test and test optimization techniques for TSV-based 3D stacked ICs

    CERN Document Server

    Noia, Brandon

    2014-01-01

    This book describes innovative techniques to address the testing needs of 3D stacked integrated circuits (ICs) that utilize through-silicon-vias (TSVs) as vertical interconnects.  The authors identify the key challenges facing 3D IC testing and present results that have emerged from cutting-edge research in this domain.  Coverage includes topics ranging from die-level wrappers, self-test circuits, and TSV probing to test-architecture design, test scheduling, and optimization.  Readers will benefit from an in-depth look at test-technology solutions that are needed to make 3D ICs a reality and commercially viable.   • Provides a comprehensive guide to the challenges and solutions for the testing of TSV-based 3D stacked ICs; • Includes in-depth explanation of key test and design-for-test technologies, emerging standards, and test- architecture and test-schedule optimizations; • Encompasses all aspects of test as related to 3D ICs, including pre-bond and post-bond test as well as the test optimizatio...

  4. Mathematical-programming approaches to test item pool design

    NARCIS (Netherlands)

    Veldkamp, Bernard P.; van der Linden, Willem J.; Ariel, A.

    2002-01-01

    This paper presents an approach to item pool design that has the potential to improve on the quality of current item pools in educational and psychological testing andhence to increase both measurement precision and validity. The approach consists of the application of mathematical programming

  5. Engineering Design, construction and testing of an optical device for ...

    African Journals Online (AJOL)

    This study reports the design, construction and testing of an optical device to determine the fertility of poultry egg at early age. The device consists of optical components such as condenser lens, objective lens, eyepiece lens and a source of light, all encased in a wooden frame. It has a total length of about 1m and produces ...

  6. Design of a quadrotor flight test stand for system identification

    CSIR Research Space (South Africa)

    Beharie, MM

    2015-01-01

    Full Text Available This paper presents the design, development and construction of a flight test stand for a quadrotor UAV. As opposed to alternate forms of UAV, the power plant in the case of the quadrotor serves a dual purpose of control and propulsion. Since...

  7. Designing a test of neutrinos as dark matter candidates

    CERN Multimedia

    Marquit, Mirandu

    2008-01-01

    One of the biggest mysteries of the universe deals with questions of dark matter. There are several experiments and models being designed all over the world to try and determine what would make good dark matter candidates. And with the Large Hadron Collider (LHC) at CERN in Switzerland, some of these experiments may be ready for testing.

  8. Continuous-Flow Biochips: Technology, Physical Design Methods and Testing

    DEFF Research Database (Denmark)

    Pop, Paul; Araci, Ismail Emre; Chakrabarty, Krishnendu

    2015-01-01

    This article is a tutorial on continuous-flow biochips where the basic building blocks are microchannels, and microvalves, and by combining them, more complex units such as mixers, switches, and multiplexers can be built. It also presents the state of the art in flow-based biochip technology and ...... and emerging research challenges in the areas of physical design and testing techniques....

  9. NEPSTP Propulsion Module Design and Flight Test Plans

    Science.gov (United States)

    Herbert, Gregg A.; Day, Michael

    1994-07-01

    The Nuclear Electric Propulsion Space Test Program (NEPSTP) is a Ballistic Missile Defense Organization (BMDO) sponsored technology demonstration of a Russian space nuclear reactor and an international complement of xenon electric thrusters. The mission is described along with some of the design accomplishments to date. The spacecraft description includes discussions on the spacecraft bus and the propulsion module which supports the experimental electric thrusters. A discussion on the basic structural, thermal and electronic designs of the propulsion module is included. The baseline thruster set is presented highlighting the Russian, U.S. and UK participation. Ground and flight test plans for the electric thrusters are described and several of the key thruster/spacecraft integration and operational issues are addressed. The NEPSTP reached a preliminary design level in all significant areas in 1993. The unique opportunities for scientific and engineering demonstration of EP technologies and for international collaboration on a major space program are elaborated.

  10. Design of a Hyperbaric Chamber for Pressure Testing

    Directory of Open Access Journals (Sweden)

    Mohamad Sazali Shahmir Fikhri bin

    2014-07-01

    Full Text Available A hyperbaric chamber is an application of a pressure vessel to test the integrity of components and equipments subjected to high pressure. The chamber comprises of several main parts such as a shell, heads, instrumentation attachments, threaded fasteners and support. This paper describes the design of hyperbaric chamber for pressure testing that compiles to the ASME Boiler and Pressure Vessel code. The design approach adopted is the “design by formula” method. A structural analysis of the hyperbaric chamber with a cylindrical shell and a vertical orientation, based on an operating pressure of 34.5 MPa, was done. The analysis of the stress distribution shows that the normalized principal stresses acting on the chamber are within the yield envelop based on the maximum distortional energy criteria.

  11. Runtime reconfiguration in networked embedded systems design and testing practices

    CERN Document Server

    Exarchakos, George

    2016-01-01

    This book focuses on the design and testing of large-scale, distributed signal processing systems, with a special emphasis on systems architecture, tooling and best practices. Architecture modeling, model checking, model-based evaluation and model-based design optimization occupy central roles. Target systems with resource constraints on processing, communication or energy supply require non-trivial methodologies to model their non-functional requirements, such as timeliness, robustness, lifetime and “evolution” capacity. Besides the theoretical foundations of the methodology, an engineering process and toolchain are described. Real-world cases illustrate the theory and practice tested by the authors in the course of the European project ARTEMIS DEMANES. The book can be used as a “cookbook” for designers and practitioners working with complex embedded systems like sensor networks for the structural integrity monitoring of steel bridges, and distributed micro-climate control systems for greenhouses and...

  12. RTOL: design and implementation of an network equipment testing tool

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.Y.; Kim, H.J.; Kim, B.S.; Park, K.H.; An, S.S [Korea University, Seoul (Korea, Republic of); Choi, H.S.; Yu, S.H. [Samsung Electronics, Suwon (Korea, Republic of)

    1997-11-01

    As the infrastructure of information communication network becomes larger and more complicated, many network equipment are being developed. To verify the reliability of such equipment, many test methods have been proposed. But those require a lot of cost and efforts. In this paper, we designed and implemented a test tool, called RTOL(Router Testing command Language system), to verify the functions of network equipment, especially router. RTOL can be used to test OSPF, Appletalk, DecNet, as well as IP and supports the functions of SNMP manager. By using the virtual router functions of RTOL, we can operate many virtual routers with only one router. Finally, we present test results of specific routers by using RTOL. (author). 17 refs., 8 figs., 5 tabs.

  13. Canadian Health Measures Survey pre-test: design, methods, results.

    Science.gov (United States)

    Tremblay, Mark; Langlois, Renée; Bryan, Shirley; Esliger, Dale; Patterson, Julienne

    2007-01-01

    The Canadian Health Measures Survey (CHMS) pre-test was conducted to provide information about the challenges and costs associated with administering a physical health measures survey in Canada. To achieve the specific objectives of the pre-test, protocols were developed and tested, and methods for household interviewing and clinic testing were designed and revised. The cost, logistics and suitability of using fixed sites for the CHMS were assessed. Although data collection, transfer and storage procedures are complex, the pre-test experience confirmed Statistics Canada's ability to conduct a direct health measures survey and the willingness of Canadians to participate in such a health survey. Many operational and logistical procedures worked well and, with minor modifications, are being employed in the main survey. Fixed sites were problematic, and survey costs were higher than expected.

  14. Tritium Systems Test Assembly: design for major device fabrication review

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, J.L.; Sherman, R.H.

    1977-06-01

    This document has been prepared for the Major Device Fabrication Review for the Tritium Systems Test Assembly (TSTA). The TSTA is dedicated to the development, demonstration, and interfacing of technologies related to the deuterium-tritium fuel cycle for fusion reactor systems. The principal objectives for TSTA are: (a) demonstrate the fuel cycle for fusion reactor systems; (b) develop test and qualify equipment for tritium service in the fusion program; (c) develop and test environmental and personnel protective systems; (d) evaluate long-term reliability of components; (e) demonstrate long-term safe handling of tritium with no major releases or incidents; and (f) investigate and evaluate the response of the fuel cycle and environmental packages to normal, off-normal, and emergency situations. This document presents the current status of a conceptual design and cost estimate for TSTA. The total cost to design, construct, and operate TSTA through FY-1981 is estimated to be approximately $12.2 M.

  15. Documentation of Stainless Steel Lithium Circuit Test Section Design. Suppl

    Science.gov (United States)

    Godfroy, Thomas J. (Compiler); Martin, James J.

    2010-01-01

    The Early Flight Fission-Test Facilities (EFF-TF) team was tasked by Naval Reactors Prime Contract Team (NRPCT) to design, fabricate, and test an actively pumped lithium (Li) flow circuit. This Li circuit takes advantage of work in progress at the EFF TF on a stainless steel sodium/potassium (NaK) circuit. The effort involved modifying the original stainless steel NaK circuit such that it could be operated with Li in place of NaK. This new design considered freeze/thaw issues and required the addition of an expansion tank and expansion/extrusion volumes in the circuit plumbing. Instrumentation has been specified for Li and circuit heaters have been placed throughout the design to ensure adequate operational temperatures and no uncontrolled freezing of the Li. All major components have been designed and fabricated prior to circuit redesign for Li and were not modified. Basic circuit components include: reactor segment, Li to gas heat exchanger, electromagnetic liquid metal pump, load/drain reservoir, expansion reservoir, instrumentation, and trace heaters. The reactor segment, based on a Los Alamos National Laboratory 100-kW design study with 120 fuel pins, is the only prototypic component in the circuit. However, due to earlier funding constraints, a 37-pin partial-array of the core, including the central three rings of fuel pins (pin and flow path dimensions are the same as those in the full design), was selected for fabrication and test. This Technical Publication summarizes the design and integration of the pumped liquid metal Li flow circuit as of May 1, 2005. This supplement contains drawings, analysis, and calculations

  16. Drop Testing Representative Multi-Canister Overpacks

    Energy Technology Data Exchange (ETDEWEB)

    Snow, Spencer D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Morton, Dana K. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-06-01

    The objective of the work reported herein was to determine the ability of the Multi- Canister Overpack (MCO) canister design to maintain its containment boundary after an accidental drop event. Two test MCO canisters were assembled at Hanford, prepared for testing at the Idaho National Engineering and Environmental Laboratory (INEEL), drop tested at Sandia National Laboratories, and evaluated back at the INEEL. In addition to the actual testing efforts, finite element plastic analysis techniques were used to make both pre-test and post-test predictions of the test MCOs structural deformations. The completed effort has demonstrated that the canister design is capable of maintaining a 50 psig pressure boundary after drop testing. Based on helium leak testing methods, one test MCO was determined to have a leakage rate not greater than 1x10-5 std cc/sec (prior internal helium presence prevented a more rigorous test) and the remaining test MCO had a measured leakage rate less than 1x10-7 std cc/sec (i.e., a leaktight containment) after the drop test. The effort has also demonstrated the capability of finite element methods using plastic analysis techniques to accurately predict the structural deformations of canisters subjected to an accidental drop event.

  17. A new design of a test platform for testing multiple partial discharge sources

    NARCIS (Netherlands)

    Rodrigo Mor, A. R.; Castro Heredia, L.C.; Harmsen, Daniel A.; Muñoz Muñoz, F.A.

    Partial discharge (PD) measurements are an effective tool for insulation assessment of high-voltage (HV) equipment widely used in both HV laboratories and in field tests. This paper presents the design of a test platform for electrical detection of partial discharges that contribute to the

  18. Design and Build an Adapter for Hearing Protector Test

    Directory of Open Access Journals (Sweden)

    Rostam Golmohammadi

    2016-06-01

    Full Text Available Introduction: To determine the effectiveness of hearing protective devices that lack the technical information are one of the major challenges of occupational health experts to judge the impact of this exposure on reducing the level of occupational exposure to noise. The aim of this study was to design a built a hearing test adapter and expriment it to determine the reduction rate of earmuffs and earplugs. Methods: Technical information in real environments and glass industries were Hamadan kitchen garden and guards to ensure exceptional performance test results were compared with computational methods. Results: The results of the testing of Personal hearing protection compared with the results in real industry environment and octave-band method, have shown good regrassions average operating transmission losses. Results showed that the average noise reduction between measured and calculations method for earmuffs 9.3, 8.8 dB and 9.3, 11.2 dB for earplugs respectively. Comparison of the tests, did not show significant differences between the results in tow methods (P>0.05. Conclusion: The results of the testing designed Adaptor for some hearing protectors showed that the valid tool for used to reduction rate teste of earmuffs and earplugs

  19. Space shuttle orbiter windshield system design and test

    Science.gov (United States)

    Hayashida, K.; Suppanz, M. J.

    1972-01-01

    The development and testing of primary structural elements that are necessary to design a windshield system for the space shuttle orbiter are summarized. The elements include the outer (heat shield) panes, the inner pressure panes, the seals for both panes, and components of both window frames. One test article representing a pressure pane, including frames and seals, was tested under two sets of conditions. One set represented 100 mission cycles with temperature and pressure typical of those exerted on the innermost pane of the three-pane window system, and the second set represented 100 mission cycles with temperature and pressure typical of those exerted on a middle pane. A second test article representing an outer (heat sheild) pane was tested to conditions of 120 entry cycles, which equates to 100 entry cycles plus sufficient fatigue on the pane to account for 100 boost cycles. All elements of the design survived the test conditions in good condition. Window system for the shuttle orbiter vehicle.

  20. Design of Refractory Metal Life Test Heat Pipe and Calorimeter

    Science.gov (United States)

    Martin, J. J.; Reid, R. S.; Bragg-Sitton, S. M.

    2010-01-01

    Heat pipe life tests have seldom been conducted on a systematic basis. Typically, one or more heat pipes are built and tested for an extended period at a single temperature with simple condenser loading. Results are often reported describing the wall material, working fluid, test temperature, test duration, and occasionally the nature of any failure. Important information such as design details, processing procedures, material assay, power throughput, and radial power density are usually not mentioned. We propose to develop methods to generate carefully controlled data that conclusively establish heat pipe operating life with material-fluid combinations capable of extended operation. The test approach detailed in this Technical Publication will use 16 Mo-44.5%Re alloy/sodium heat pipe units that have an approximate12-in length and 5/8-in diameter. Two specific test series have been identified: (1) Long-term corrosion rates based on ASTM-G-68-80 (G-series) and (2) corrosion trends in a cross-correlation sequence at various temperatures and mass fluences based on a Fisher multifactor design (F-series). Evaluation of the heat pipe hardware will be performed in test chambers purged with an inert purified gas (helium or helium/argon mixture) at low pressure (10-100 torr) to provide thermal coupling between the heat pipe condenser and calorimeter. The final pressure will be selected to minimize the potential for voltage breakdown between the heat pipe and radio frequency (RF) induction coil (RF heating is currently the planned method of powering the heat pipes). The proposed calorimeter is constructed from a copper alloy and relies on a laminar flow water-coolant channel design to absorb and transport energy

  1. Gas cooled fast breeder reactor design for a circulator test facility (modified HTGR circulator test facility)

    Energy Technology Data Exchange (ETDEWEB)

    1979-10-01

    A GCFR helium circulator test facility sized for full design conditions is proposed for meeting the above requirements. The circulator will be mounted in a large vessel containing high pressure helium which will permit testing at the same power, speed, pressure, temperature and flow conditions intended in the demonstration plant. The electric drive motor for the circulator will obtain its power from an electric supply and distribution system in which electric power will be taken from a local utility. The conceptual design decribed in this report is the result of close interaction between the General Atomic Company (GA), designer of the GCFR, and The Ralph M. Parson Company, architect/engineer for the test facility. A realistic estimate of total project cost is presented, together with a schedule for design, procurement, construction, and inspection.

  2. The J-2X Oxidizer Turbopump - Design, Development, and Test

    Science.gov (United States)

    Brozowski, Laura A.; Beatty, D. Preston; Shinguchi, Brian H.; Marsh, Matthew W.

    2011-01-01

    Pratt and Whitney Rocketdyne (PWR), a NASA subcontractor, is executing the Design, Development, Test, and Evaluation (DDT&E) of a liquid oxygen, liquid hydrogen two hundred ninety-four thousand pound thrust rocket engine initially intended for the Upper Stage (US) and Earth Departure Stage (EDS) of the Constellation Program Ares-I Crew Launch Vehicle (CLV). A key element of the design approach was to base the new J-2X engine on the heritage J-2S engine which was a design upgrade of the flight proven J-2 engine used to put American astronauts on the moon. This paper will discuss the design trades and analyses performed to achieve the required uprated Oxidizer Turbopump performance; structural margins and rotordynamic margins; incorporate updated materials and fabrication capability; and reflect lessons learned from legacy and existing Liquid Rocket Propulsion Engine turbomachinery. These engineering design, analysis, fabrication and assembly activities support the Oxidizer Turbopump readiness for J-2X engine test in 2011.

  3. A statistical design for testing apomictic diversification through linkage analysis.

    Science.gov (United States)

    Zeng, Yanru; Hou, Wei; Song, Shuang; Feng, Sisi; Shen, Lin; Xia, Guohua; Wu, Rongling

    2014-03-01

    The capacity of apomixis to generate maternal clones through seed reproduction has made it a useful characteristic for the fixation of heterosis in plant breeding. It has been observed that apomixis displays pronounced intra- and interspecific diversification, but the genetic mechanisms underlying this diversification remains elusive, obstructing the exploitation of this phenomenon in practical breeding programs. By capitalizing on molecular information in mapping populations, we describe and assess a statistical design that deploys linkage analysis to estimate and test the pattern and extent of apomictic differences at various levels from genotypes to species. The design is based on two reciprocal crosses between two individuals each chosen from a hermaphrodite or monoecious species. A multinomial distribution likelihood is constructed by combining marker information from two crosses. The EM algorithm is implemented to estimate the rate of apomixis and test its difference between two plant populations or species as the parents. The design is validated by computer simulation. A real data analysis of two reciprocal crosses between hickory (Carya cathayensis) and pecan (C. illinoensis) demonstrates the utilization and usefulness of the design in practice. The design provides a tool to address fundamental and applied questions related to the evolution and breeding of apomixis.

  4. Journal: Efficient Hydrologic Tracer-Test Design for Tracer ...

    Science.gov (United States)

    Hydrological tracer testing is the most reliable diagnostic technique available for the determination of basic hydraulic and geometric parameters necessary for establishing operative solute-transport processes. Tracer-test design can be difficult because of a lack of prior knowledge of the basic hydraulic and geometric parameters desired and the appropriate tracer mass to release. A new efficient hydrologic tracer-test design (EHTD) methodology has been developed to facilitate the design of tracer tests by root determination of the one-dimensional advection-dispersion equation (ADE) using a preset average tracer concentration which provides a theoretical basis for an estimate of necessary tracer mass. The method uses basic measured field parameters (e.g., discharge, distance, cross-sectional area) that are combined in functional relatipnships that descrive solute-transport processes related to flow velocity and time of travel. These initial estimates for time of travel and velocity are then applied to a hypothetical continuous stirred tank reactor (CSTR) as an analog for the hydrological-flow system to develop initial estimates for tracer concentration, tracer mass, and axial dispersion. Application of the predicted tracer mass with the hydraulic and geometric parameters in the ADE allows for an approximation of initial sample-collection time and subsequent sample-collection frequency where a maximum of 65 samples were determined to be necessary for descri

  5. System design description for GCFR-core flow test loop

    Energy Technology Data Exchange (ETDEWEB)

    Huntley, W.R.; Grindell, A.G.

    1980-12-01

    The Core Flow Test Loop is a high-pressure, high-temperature, out-of-reactor helium circulation system that is being constructed to permit detailed study of the thermomechanical and thermal performance at prototypic steady-state and transient operating conditions of simulated segments of core assemblies for a GCFR Demonstration Plant, as designed by General Atomic Company. It will also permit the expermental verification of predictive analytical models of the GCFR core assemblies needed to reduce operational and safety uncertainties of the GCFR. Full-sized blanket assemblies and segments of fuel rod and control rod fuel assemblies will be simulated with test bundles of electrically powered fuel rod or blanket rod simulators. The loop will provide the steady-state and margin test requirements of bundle power and heat removal, and of helium coolant flow rate, pressure, and temperature for test bundles having up to 91 rods; these requirements set the maximum power, coolant helium flow, and thermal requirements for the loop. However, the size of the test vessel that contains the test bundles will be determined by the bundles that simulate a full-sized GCFR blanket assembly. The loop will also provide for power and coolant transients to simulate transient operation of GCFR core assemblies, including the capability for rapid helium depressurization to simulate the depressurization class of GCFR accidents. In addition, the loop can be used as an out-of-reactor test bed for characterizing in-reactor test bundle configurations.

  6. Design and Test of Portable Hyperspectral Imaging Spectrometer

    Directory of Open Access Journals (Sweden)

    Chunbo Zou

    2017-01-01

    Full Text Available We design and implement a portable hyperspectral imaging spectrometer, which has high spectral resolution, high spatial resolution, small volume, and low weight. The flight test has been conducted, and the hyperspectral images are acquired successfully. To achieve high performance, small volume, and regular appearance, an improved Dyson structure is designed and used in the hyperspectral imaging spectrometer. The hyperspectral imaging spectrometer is suitable for the small platform such as CubeSat and UAV (unmanned aerial vehicle, and it is also convenient to use for hyperspectral imaging acquiring in the laboratory and the field.

  7. Custom Unit Pump Design and Testing for the EVA PLSS

    Science.gov (United States)

    Schuller, Michael; Kurwitz, Cable; Goldman, Jeff; Morris, Kim; Trevino, Luis

    2009-01-01

    This paper describes the effort by the Texas Engineering Experiment Station (TEES) and Honeywell for NASA to design and test a pre-flight prototype pump for use in the Extra-vehicular activity (EVA) portable life support subsystem (PLSS). Major design decisions were driven by the need to reduce the pump s mass, power, and volume compared to the existing PLSS pump. In addition, the pump must accommodate a much wider range of abnormal conditions than the existing pump, including vapor/gas bubbles and increased pressure drop when employed to cool two suits simultaneously. A positive displacement, external gear type pump was selected because it offers the most compact and highest efficiency solution over the required range of flow rates and pressure drops. An additional benefit of selecting a gear pump design is that it is self priming and capable of ingesting non-condensable gas without becoming air locked. The chosen pump design consists of a 28 V DC, brushless, sealless, permanent magnet motor driven, external gear pump that utilizes a Honeywell development that eliminates the need for magnetic coupling. Although the planned flight unit will use a sensorless motor with custom designed controller, the pre-flight prototype to be provided for this project incorporates Hall effect sensors, allowing an interface with a readily available commercial motor controller. This design approach reduced the cost of this project and gives NASA more flexibility in future PLSS laboratory testing. The pump design was based on existing Honeywell designs, but incorporated features specifically for the PLSS application, including all of the key features of the flight pump. Testing at TEES verified that the pump meets the design requirements for range of flow rates, pressure drop, power consumption, working fluid temperature, operating time, gas ingestion , and restart capability under both ambient and vacuum conditions. The pump operated between 40 and 240 lbm/hr flowrate, 35 to 100 F

  8. Design and experiment of pneumatic EPB test platform

    Directory of Open Access Journals (Sweden)

    Jianshi GONG

    2017-02-01

    Full Text Available In order to verify the accuracy and reliability of the function and control strategy of the pneumatic electronic parking brake(EPB system, a test platform of the pneumatic EPB system is designed. The working principle of the air pressure type EPB test platform is introduced, the composition of the platform is confirmed, including air press storage module, braking module, man-machine interaction module, signal imitation module, data collection module, and fault diagnosis module, and the function of rapid charging and discharging of the pneumatic EPB system is carried out. The results show that, compared with manual control valve, the air pressure EPB braking process is more sensitive, and the test platform can meet the test requirements of the pneumatic electronic brake system.

  9. Cryomdoule Test Stand Reduced-Magnetic Support Design at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    McGee, Mike [Fermilab; Chandrasekaran, Saravan Kumar [Fermilab; Crawford, Anthony [Fermilab; Harms, Elvin [Fermilab; Leibfritz, Jerry [Fermilab; Wu, Genfa [Fermilab

    2016-06-01

    In a partnership with SLAC National Accelerator Laboratory (SLAC) and Jefferson Lab, Fermilab will assemble and test 17 of the 35 total 1.3 GHz cryomodules for the Linac Coherent Light Source II (LCLS-II) Project. These devices will be tested at Fermilab's Cryomodule Test Facility (CMTF) within the Cryomodule Test Stand (CMTS-1) cave. The problem of magnetic pollution became one of major issues during design stage of the LCLS-II cryomodule as the average quality factor of the accelerating cavities is specified to be 2.7 x 10¹⁰. One of the possible ways to mitigate the effect of stray magnetic fields and to keep it below the goal of 5 mGauss involves the application of low permeable materials. Initial permeability and magnetic measurement studies regarding the use of 316L stainless steel material indicated that cold work (machining) and heat affected zones from welding would be acceptable.

  10. AGS tune jump power supply design and test

    Energy Technology Data Exchange (ETDEWEB)

    Mi, J.; Glenn, J.W.; Huang, H.; Marneris, I.; Rosas, P.; Sandberg, J.; Tan, Y.; Zhang, W.

    2011-03-28

    A horizontal tune jump system has been installed to overcome the horizontal intrinsic spin resonances, which requires jumping the horizontal tune 0.04 units 82 times, 41 up and 41 down. Two quadruple magnets have been installed in AGS ring to perform this. The pulsed magnet current ranges from about 140A near injection to about 1400A later. The current pulse rise and fall time are around 100uS and flat tops time is around 4mS. These quadruples have separated supplies. This tune jump pulse power supply employees all semiconductor parts as well as the main switches. During dummy load and magnet testing, the test results showed that the power supply could meet the specification. This article will describe some details of power supply simulation, design and testing. Some test waveforms and pictures are presented in this paper.

  11. Design and Testing of Sandwich Structures with Different Core Materials

    Directory of Open Access Journals (Sweden)

    Henrik HERRANEN

    2012-03-01

    Full Text Available The purpose of this study was to design a light-weight sandwich panel for trailers. Strength calculations and selection of different materials were carried out in order to find a new solution for this specific application. The sandwich materials were fabricated using vacuum infusion technology. The different types of sandwich composite panels were tested in 4-point bending conditions according to ASTM C393/C393M. Virtual testing was performed by use of ANSYS software to simplify the core material selection process and to design the layers. 2D Finite element analysis (FEA of 4-point bending was made with ANSYS APDL (Classic software. Data for the FEA was obtained from the tensile tests of glass fiber plastic (GFRP laminates. Virtual 2D results were compared with real 4-point bending tests.  3D FEA was applied to virtually test the selected sandwich structure in real working conditions. Based on FEA results the Pareto optimality concept has been applied and optimal solutions determined.DOI: http://dx.doi.org/10.5755/j01.ms.18.1.1340

  12. 46 CFR 154.438 - Design vapor pressure.

    Science.gov (United States)

    2010-10-01

    ... Independent Tank Type A § 154.438 Design vapor pressure. (a) If the surface of an independent tank type A are mostly flat surfaces,the Po must not exceed 69 kPa gauge (10 psig). (b) If the surfaces of an independent tank type A are formed by bodies of revolution, the design calculation of the Po must be specially...

  13. Design, Construction and Testing of Simple Solar Maize Dryer

    Directory of Open Access Journals (Sweden)

    Joshua FOLARANMI

    2008-12-01

    Full Text Available This project reports the design, construction and testing of a simple solar maize dryer. It is design in such a way that solar radiation is not incident directly on the maize, but preheated air warmed during its flow through a low pressure thermosphonic solar energy air heater or collector made up of an insulating material (polystyrene of size 100mmx50mmx25.4mm, absorber plate (aluminium sheet painted black of size 100mmx50mm and a cover glass (5mm thickness measuring 100mmx50mm all arranged in this order contributed to the heating. The test results gave temperature above 45OC in the drying chamber, and the moisture content of 50kg of maize reduced to about 12.5% in three days of 9hours each day of drying.

  14. Sanitary Landfill Simulation - Test Parameters and a Simulator Conceptual Design

    Science.gov (United States)

    1976-08-01

    ACSM -1~ for Nils ........... By L:R-yo/VAILaiL;1I CODES Library card Civil Engineering Laboratory SANITARY LANDFILL SIMULATION - TEST PARAMETERS AND...these landfills comply only marginally with Navy mandatory guidelines [2]. In a FY-74 report on this project [3], CEL presented the results of a...landfills are presently designed for burying solid waste in compliance with Environmental Protection Agency (EPA) operational guidelines . These

  15. Design and testing of the Series III AMTEC cell

    Energy Technology Data Exchange (ETDEWEB)

    Mital, R.; Sievers, R.K.

    1999-07-01

    This paper describes the design and testing of the Series III (S3) Alkali Metal Thermal to Electric Converter (AMTEC) cell which is capable of high efficiency (15--25%) and high power density (100--150 W/kg). Compared to the Series 2 cell which is being developed primarily for space power systems, the Series III cell design provides a significantly higher beta{double_prime}-alumina solid electrolyte (BASE) tube packing density around the heat source thereby increasing cell power and minimizing heat loss. The prototype S3 cell will have 96 BASE tubes and is expected to produce about 150 We. In this cell design the BASE tube assemblies are mounted on a cylindrical tube support plate. The BASE tubes are arranged like spokes on a wheel. The inner cylinder, concentric to the tube support plate, is the hot side of the cell and the outer cylinder is the condenser. Since the prototype S3 cell will be the first of its kind, an engineering cell with same dimensions as the prototype but with 24 BASE tubes was built first. The purpose of this cell was to identify and resolve structural, thermal, manufacturing and sodium management issues before launching into the build of a complete 96 BASE tube cell. The engineering cell has been successfully built and tested. The data of the engineering cells have been used to calibrate the SINDA/FLUINT code to predict the prototype cell performance more accurately. The build of the prototype 96 BASE tube cells is now in progress. This paper presents the design and development of the prototype S3 cell. The fabrication and testing of the first S3 engineering cell is discussed next. Based on the test data of the engineering cell, the anticipated thermal performance of the prototype cells predicted by the calibrated SINDA model are also presented.

  16. Aerothermal Protuberance Heating Design and Test Configurations for Ascent Vehicle Design

    Science.gov (United States)

    Martin, Charles E.; Neumann, Richard D.; Freeman, Delma

    2010-01-01

    A series of tests were conducted to evaluate protuberance heating for the purposes of vehicle design and modification. These tests represent a state of the art approach to both testing and instrumentation for defining aerothermal protuberance effects on the protuberance and surrounding areas. The testing was performed with a number of wind tunnel entries beginning with the proof of concept "pathfinder" test in the Test Section 1 (TS1) tunnel in the Langley Unitary Plan Wind Tunnel (UPWT). The TS1 section (see Figures 1a and 1b) is a lower Mach number tunnel and the Test Section 2 (TS2) has overlapping and higher Mach number capability as showin in Figure 1c. The pathfinder concept was proven and testing proceeded for a series of protuberance tests using an existing splitter aluminum protuberance mounting plate, Macor protuberances, thin film gages, total temperature and pressure gages, Kulite pressure transducers, Infra-Red camera imaging, LASER velocimetry evaluations and the UPWT data collection system. A boundary layer rake was used to identify the boundary layer profile at the protuberance locations for testing and helped protuberance design. This paper discusses the techniques and instrumentation used during the protuberance heating tests performed in the UPWT in TS1 and TS2. Runs of the protuberances were made Mach numbers of 1.5, 2.16, 2.65, and 3.51. The data set generated from this testing is for ascent protuberance effects and is termed Protuberance Heating Ascent Data (PHAD) and this testing may be termed PHAD-1 to distinguish it from future testing of this type.

  17. Designing and remotely testing mobile diabetes video games.

    Science.gov (United States)

    DeShazo, Jonathan; Harris, Lynne; Turner, Anne; Pratt, Wanda

    2010-01-01

    We have investigated game design and usability for three mobile phone video games designed to deliver diabetes education. The games were refined using focus groups. Six people with diabetes participated in the first focus group and five in the second. Following the focus groups, we incorporated the new findings into the game design, and then conducted a field test to evaluate the games in the context in which they would actually be used. Data were collected remotely about game usage by eight people with diabetes. The testers averaged 45 seconds per question and answered an average of 50 total nutrition questions each. They self-reported playing the game for 10-30 min, which coincided with the measured metrics of the game. Mobile games may represent a promising new way to engage the user and deliver relevant educational content.

  18. Proceedings of Design, Automation and Test in Europe (DATE07)

    DEFF Research Database (Denmark)

    Welcome to the DATE 07 Conference Proceedings. DATE combines the world’s leading electronic systems design conference and Europe's leading international exhibition for electronic design, automation and test, from system level hardware and software implementation right down to integrated circuit...... an international conference. DATE is now the world’s premier event in electronic system design. The submissions have been reviewed by the more than 600 members of the Technical Programme Committee. After a thorough review and selection process (with an average of 4.6 reviews per paper), finally 208 papers were...... selected for presentation at the conference. In addition, 57 papers were selected for Interactive Presentations, which highlight quality work in progress. Together with the invited special sessions (panels, embedded tutorials and hot topic sessions) this has resulted in a high-quality technical programme...

  19. Hardware Design and Testing of SUPERball, A Modular Tensegrity Robot

    Science.gov (United States)

    Sabelhaus, Andrew P.; Bruce, Jonathan; Caluwaerts, Ken; Chen, Yangxin; Lu, Dizhou; Liu, Yuejia; Agogino, Adrian K.; SunSpiral, Vytas; Agogino, Alice M.

    2014-01-01

    We are developing a system of modular, autonomous "tensegrity end-caps" to enable the rapid exploration of untethered tensegrity robot morphologies and functions. By adopting a self-contained modular approach, different end-caps with various capabilities (such as peak torques, or motor speeds), can be easily combined into new tensegrity robots composed of rods, cables, and actuators of different scale (such as in length, mass, peak loads, etc). As a first step in developing this concept, we are in the process of designing and testing the end-caps for SUPERball (Spherical Underactuated Planetary Exploration Robot), a project at the Dynamic Tensegrity Robotics Lab (DTRL) within NASA Ames's Intelligent Robotics Group. This work discusses the evolving design concepts and test results that have gone into the structural, mechanical, and sensing aspects of SUPERball. This representative tensegrity end-cap design supports robust and repeatable untethered mobility tests of the SUPERball, while providing high force, high displacement actuation, with a low-friction, compliant cabling system.

  20. Optimal design and dynamic impact tests of removable bollards

    Science.gov (United States)

    Chen, Suwen; Liu, Tianyi; Li, Guoqiang; Liu, Qing; Sun, Jianyun

    2017-10-01

    Anti-ram bollard systems, which are installed around buildings and infrastructure, can prevent unauthorized vehicles from entering, maintain distance from vehicle-borne improvised explosive devices (VBIED) and reduce the corresponding damage. Compared with a fixed bollard system, a removable bollard system provides more flexibility as it can be removed when needed. This paper first proposes a new type of K4-rated removable anti-ram bollard system. To simulate the collision of a vehicle hitting the bollard system, a finite element model was then built and verified through comparison of numerical simulation results and existing experimental results. Based on the orthogonal design method, the factors influencing the safety and economy of this proposed system were examined and sorted according to their importance. An optimal design scheme was then produced. Finally, to validate the effectiveness of the proposed design scheme, four dynamic impact tests, including two front impact tests and two side impact tests, have been conducted according to BSI Specifications. The residual rotation angles of the specimen are smaller than 30º and satisfy the requirements of the BSI Specification.

  1. Research on Core Design for ACME Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Fang Fang; Qin, Ben Ke [Tsinghua University, Beijing (China); Chang, Hua Jian; Chen, Lian [State Nuclear Power Technology R and D Center, Beijing (China)

    2011-08-15

    The Advanced Core-Cooling Mechanism Experiment (ACME) is designed and will be built to assess the performance of the passive safety system of CAP1400. In the reactor core of ACME, the electrical heater rods simulating the fuel rods provide the energy that drives the natural circulation in the primary loop, and single phase and two phase natural circulation are the main physical processes transporting core decay heat during small break loss of coolant accident (SBLOCA), which is the key part of the ACME test program. Natural circulation scaling which determines the integral scaling parameters of the test facility was presented in this paper, and the criteria in the core design were also investigated, which leads to a procedure that could be applied to the core design. According to the results from calculation, the maximum heat flux of heater rods, the maximum power for a single rod would increase while the number of rods would decrease with the increasing of pitch to diameter ratio (P/D) and the rod diameter fixed. Therefore a reasonable pitch value can be obtained by considering the maximum heat flux, the maximum single-rod power and other engineering factors. On this basis, the number of rods could be selected according to the similarity principle of flow area. Finally, a reasonable core arrangement could be designed by requiring the core to be symmetrical and approximately circular.

  2. Design and Installation of a Disposal Cell Cover Field Test

    Energy Technology Data Exchange (ETDEWEB)

    Benson, C.H. [University of Wisconsin–Madison, Madison, Wisconsin; Waugh, W.J. [S.M. Stoller Corporation, Grand Junction, Colorado; Albright, W.H. [Desert Research Institute, Reno, Nevada; Smith, G.M. [Geo-Smith Engineering, Grand Junction, Colorado; Bush, R.P. [U.S. Department of Energy, Grand Junction, Colorado

    2011-02-27

    The U.S. Department of Energy’s Office of Legacy Management (LM) initiated a cover assessment project in September 2007 to evaluate an inexpensive approach to enhancing the hydrological performance of final covers for disposal cells. The objective is to accelerate and enhance natural processes that are transforming existing conventional covers, which rely on low-conductivity earthen barriers, into water balance covers, that store water in soil and release it as soil evaporation and plant transpiration. A low conductivity cover could be modified by deliberately blending the upper layers of the cover profile and planting native shrubs. A test facility was constructed at the Grand Junction, Colorado, Disposal Site to evaluate the proposed methodology. The test cover was constructed in two identical sections, each including a large drainage lysimeter. The test cover was constructed with the same design and using the same materials as the existing disposal cell in order to allow for a direct comparison of performance. One test section will be renovated using the proposed method; the other is a control. LM is using the lysimeters to evaluate the effectiveness of the renovation treatment by monitoring hydrologic conditions within the cover profile as well as all water entering and leaving the system. This paper describes the historical experience of final covers employing earthen barrier layers, the design and operation of the lysimeter test facility, testing conducted to characterize the as-built engineering and edaphic properties of the lysimeter soils, the calibration of instruments installed at the test facility, and monitoring data collected since the lysimeters were constructed.

  3. Design study of an ERL Test Facility at CERN

    CERN Document Server

    Jensen, E; Brüning, O; Calaga, R; Catalan-Lasheras, N; Goddard, B; Klein, M; Torres-Sanchez, R; Valloni, A

    2014-01-01

    The modern concept of an Energy Recovery Linac allows providing large electron currents at large beam energy with low power consumption. This concept is used in FEL’s, electron-ion colliders and electron coolers. CERN has started a Design Study of an ERL Test Facility with the purpose of 1) studying the ERL principle, its specific beam dynamics and operational issues, as relevant for LHeC, 2) providing a test bed for superconducting cavity modules, cryogenics and integration, 3) studying beam induced quenches in superconducting magnets and protection methods, 4) providing test beams for detector R&D and other applications. It will be complementary to existing or planned facilities and is fostering international collaboration. The operating frequency of 802 MHz was chosen for performance and for optimum synergy with SPS and LHC; the design of the cryomodule has started. The ERL Test Facility can be constructed in stages from initially 150 MeV to ultimately 1 GeV in 3 passes, with beam currents of up to 8...

  4. Parametric test for the preliminary design of suspension bridges

    Science.gov (United States)

    Arruda, M. R. T.; Serafim, J. P. M.

    2017-06-01

    The preliminary design of suspension bridges is a very important step in the design of a structure, since this stage is the one that will lead to an efficient and economic structure. The models that are used nowadays are complex and sometimes hard to apply, leading to a lack of comprehension from the designing team. This work proposes a new simplified method for the preliminary design of cable suspension bridges that relate the stiffness of the deck truss with the stiffness of the cable, in which stresses are calculated. This relation is intended to know how much of the live load is absorbed by each of these elements and finally obtaining the pre-design values of each substructure. First simple parametric tests are executed using the proposed method and finite element method with geometrical non-linear analysis, in order to study its accuracy. Finally, a real case study is analysed using a known Portuguese suspension bridge, in which the proposed method is applied and compared with numerical solutions.

  5. Design of a Realistic Test Simulator For a Built-In Self Test Environment

    Directory of Open Access Journals (Sweden)

    A. Ahmad

    2010-12-01

    Full Text Available This paper presents a realistic test approach suitable to Design For Testability (DFT and Built- In Self Test (BIST environments. The approach is culminated in the form of a test simulator which is capable of providing a required goal of test for the System Under Test (SUT. The simulator uses the approach of fault diagnostics with fault grading procedure to provide the tests. The tool is developed on a common PC platform and hence no special software is required. Thereby, it is a low cost tool and hence economical. The tool is very much suitable for determining realistic test sequences for a targeted goal of testing for any SUT. The developed tool incorporates a flexible Graphical User Interface (GUI procedure and can be operated without any special programming skill. The tool is debugged and tested with the results of many bench mark circuits. Further, this developed tool can be utilized for educational purposes for many courses such as fault-tolerant computing, fault diagnosis, digital electronics, and safe - reliable - testable digital logic designs.

  6. Blade system design studies volume II : preliminary blade designs and recommended test matrix.

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, Dayton A. (Global Energy Concepts, LLC, Kirkland, WA)

    2004-06-01

    As part of the U.S. Department of Energy's Wind Partnerships for Advanced Component Technologies (WindPACT) program, Global Energy Concepts, LLC is performing a Blade System Design Study (BSDS) concerning innovations in materials, processes and structural configurations for application to wind turbine blades in the multi-megawatt range. The BSDS Volume I project report addresses issues and constraints identified to scaling conventional blade designs to the megawatt size range, and evaluated candidate materials, manufacturing and design innovations for overcoming and improving large blade economics. The current report (Volume II), presents additional discussion of materials and manufacturing issues for large blades, including a summary of current trends in commercial blade manufacturing. Specifications are then developed to guide the preliminary design of MW-scale blades. Using preliminary design calculations for a 3.0 MW blade, parametric analyses are performed to quantify the potential benefits in stiffness and decreased gravity loading by replacement of a baseline fiberglass spar with carbon-fiberglass hybrid material. Complete preliminary designs are then presented for 3.0 MW and 5.0 MW blades that incorporate fiberglass-to-carbon transitions at mid-span. Based on analysis of these designs, technical issues are identified and discussed. Finally, recommendations are made for composites testing under Part I1 of the BSDS, and the initial planned test matrix for that program is presented.

  7. Designing and testing of backflow-free catheters.

    Science.gov (United States)

    Ivanchenko, O; Ivanchenko, V

    2011-06-01

    Convection-enhanced delivery (CED) is a drug delivery technique used to target specific regions of the central nervous system (CNS) for the treatment of neurodegenerative diseases and cancer while bypassing the blood-brain barrier (BBB). The application of CED is limited by low volumetric flow rate infusions in order to prevent the possibility of backflow. Consequently, a small convective flow produces poor drug distribution inside the treatment region, which can render CED treatment ineffective. Novel catheter designs and CED protocols are needed in order to improve the drug distribution inside the treatment region and prevent backflow. In order to develop novel backflow-free catheter designs, the impact of the micro-fluid injection into deformable porous media was investigated experimentally as well as numerically. Fluid injection into the porous media has a considerable effect on local transport properties such as porosity and hydraulic conductivity because of the local media deformation. These phenomena not only alter the bulk flow velocity distribution of the micro-fluid flow due to the changing porosity, but significantly modify the flow direction, and even the volumetric flow distribution, due to induced local hydraulic conductivity anisotropy. These findings help us to design backflow-free catheters with safe volumetric flow rates up to 10 μl/min. A first catheter design reduces porous media deformation in order to improve catheter performance and control an agent volumetric distribution. A second design prevents the backflow by reducing the porosity and hydraulic conductivity along a catheter's shaft. A third synergistic catheter design is a combination of two previous designs. Novel channel-inducing and dual-action catheters, as well as a synergistic catheter, were successfully tested without the occurrence of backflow and are recommended for future animal experiments.

  8. Test-based approach to cable tray support system analysis and design: Behavior and test methods

    Energy Technology Data Exchange (ETDEWEB)

    Reigles, Damon G., E-mail: dreigles@engnovex.com [engNoveX, Inc., 19C Trolley Square, Wilmington, DE 19806 (United States); Brachmann, Ingo; Johnson, William H. [Bechtel Nuclear, Security & Environmental, 12011 Sunset Hills Rd, Suite 110, Reston, VA 20190 (United States); Gürbüz, Orhan [Tobolski Watkins Engineering, Inc., 4125 Sorrento Valley Blvd, Suite B, San Diego, CA 92121 (United States)

    2016-06-15

    Highlights: • Describes dynamic response behavior of unistrut type cable tray supports. • Summarizes observations from past full-scale shake table test programs. • Outlines testing methodologies necessary to identify key system parameters. - Abstract: Nuclear power plant safety-related cable tray support systems subjected to seismic loadings were originally understood and designed to behave as linear elastic systems. This behavioral paradigm persisted until the early 1980s when, due to evolution of regulatory criteria, some as-installed systems needed to be qualified to higher seismic motions than originally designed for. This requirement prompted a more in-depth consideration of the true seismic response behavior of support systems. Several utilities initiated extensive test programs, which demonstrated that trapeze strut-type cable tray support systems exhibited inelastic and nonlinear response behaviors with plastic hinging at the connections together with high damping due to bouncing of cables in the trays. These observations were used to demonstrate and justify the seismic adequacy of the aforementioned as-installed systems. However, no formalized design methodology or criteria were ever established to facilitate use of these test data for future evaluations. This paper assimilates and reviews the various test data and conclusions for the purpose of developing a design methodology for the seismic qualification of safety-related cable tray support systems.

  9. Design of a Test Bench for Intraocular Lens Optical Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Alba-Bueno, Francisco; Vega, Fidel; Millan, Maria S, E-mail: francisco.alba-bueno@upc.edu, E-mail: fvega@oo.upc.edu, E-mail: millan@oo.upc.edu [Departamento de Optica y Optometria, Universidad Politecnica de Cataluna, C/ Violinista Vellsola 37, 08222 Terrassa (Spain)

    2011-01-01

    The crystalline lens is the responsible for focusing at different distances (accommodation) in the human eye. This organ grows throughout life increasing in size and rigidity. Moreover, due this growth it loses transparency through life, and becomes gradually opacified causing what is known as cataracts. Cataract is the most common cause of visual loss in the world. At present, this visual loss is recoverable by surgery in which the opacified lens is destroyed (phacoemulsification) and replaced by the implantation of an intraocular lens (IOL). If the IOL implanted is mono-focal the patient loses its natural capacity of accommodation, and as a consequence they would depend on an external optic correction to focus at different distances. In order to avoid this dependency, multifocal IOLs designs have been developed. The multi-focality can be achieved by using either, a refractive surface with different radii of curvature (refractive IOLs) or incorporating a diffractive surface (diffractive IOLs). To analyze the optical quality of IOLs it is necessary to test them in an optical bench that agrees with the ISO119679-2 1999 standard (Ophthalmic implants. Intraocular lenses. Part 2. Optical Properties and Test Methods). In addition to analyze the IOLs according to the ISO standard, we have designed an optical bench that allows us to simulate the conditions of a real human eye. To do that, we will use artificial corneas with different amounts of optical aberrations and several illumination sources with different spectral distributions. Moreover, the design of the test bench includes the possibility of testing the IOLs under off-axis conditions as well as in the presence of decentration and/or tilt. Finally, the optical imaging quality of the IOLs is assessed by using common metrics like the Modulation Transfer Function (MTF), the Point Spread Function (PSF) and/or the Strehl ratio (SR), or via registration of the IOL's wavefront with a Hartmann-Shack sensor and its

  10. GPM Avionics Module Heat Pipes Design and Performance Test Results

    Science.gov (United States)

    Ottenstein, Laura; DeChristopher, Mike

    2011-01-01

    The Global Precipitation Measurement (GPM) mission is an international network of satellites that provide the next-generation global observations of rain and snow. The GPM core satellite carries an advanced radar / radiometer system to measure precipitation from space and serve as a reference standard to unify precipitation measurements from a constellation of research and operational satellites. Through improved measurements of precipitation globally, the GPM mission will help to advance our understanding of Earth's water and energy cycle, improve forecasting of extreme events that cause natural hazards and disasters, and extend current capabilities in using accurate and timely information of precipitation to directly benefit society. The avionics module on the core satellite contains a number of electronics boxes which are cooled by a network of aluminum/ammonia heat pipes and a honeycomb radiator which contains thirteen embedded aluminum/ammonia heat pipes. All heat pipes were individually tested by the vendor (Advanced Cooling Technologies, Inc.) prior to delivery. Following delivery to NASA, the flight avionics radiator and the flight spare transport heat pipes were mounted to flight-like test structure and a system level thermal vacuum test was performed. This test, which used simulators in place of all electronics boxes, was done to verify the operation of the thermal control system as a whole. This presentation will discuss the design of the avionics module heat pipes, and then discuss performance tests results for the individual heat pipes prior to delivery and for the system level thermal vacuum test. All heat pipes met their performance requirements. However, it was found that the power was too low in some instances to start all of the smaller radiator spreader heat pipes when they were tested in a reflux configuration (which is the nominal test configuration). Although this lowered the efficiency of the radiator somewhat, it did not impact the operating

  11. Design and testing of a model CELSS chamber robot

    Science.gov (United States)

    Davis, Mark; Dezego, Shawn; Jones, Kinzy; Kewley, Christopher; Langlais, Mike; Mccarthy, John; Penny, Damon; Bonner, Tom; Funderburke, C. Ashley; Hailey, Ruth

    1994-01-01

    A robot system for use in an enclosed environment was designed and tested. The conceptual design will be used to assist in research performed by the Controlled Ecological Life Support System (CELSS) project. Design specifications include maximum load capacity, operation at specified environmental conditions, low maintenance, and safety. The robot system must not be hazardous to the sealed environment, and be capable of stowing and deploying within a minimum area of the CELSS chamber facility. This design consists of a telescoping robot arm that slides vertically on a shaft positioned in the center of the CELSS chamber. The telescoping robot arm consists of a series of links which can be fully extended to a length equal to the radius of the working envelope of the CELSS chamber. The vertical motion of the robot arm is achieved through the use of a combination ball screw/ball spline actuator system. The robot arm rotates cylindrically about the vertical axis through use of a turntable bearing attached to a central mounting structure fitted to the actuator shaft. The shaft is installed in an overhead rail system allowing the entire structure to be stowed and deployed within the CELSS chamber. The overhead rail system is located above the chamber's upper lamps and extends to the center of the CELSS chamber. The mounting interface of the actuator shaft and rail system allows the entire actuator shaft to be detached and removed from the CELSS chamber. When the actuator shaft is deployed, it is held fixed at the bottom of the chamber by placing a square knob on the bottom of the shaft into a recessed square fitting in the bottom of the chamber floor. A support boot ensures the rigidity of the shaft. Three student teams combined into one group designed a model of the CELSS chamber robot that they could build. They investigated materials, availability, and strength in their design. After the model arm and stand were built, the class performed pre-tests on the entire system

  12. Design, Development and Testing of the GMI Reflector Deployment Assembly

    Science.gov (United States)

    Guy, Larry; Foster, Mike; McEachen, Mike; Pellicciotti, Joseph; Kubitschek, Michael

    2011-01-01

    The GMI Reflector Deployment Assembly (RDA) is an articulating structure that accurately positions and supports the main reflector of the Global Microwave Imager (GMI) throughout the 3 year mission life. The GMI instrument will fly on the core Global Precipitation Measurement (GPM) spacecraft and will be used to make calibrated radiometric measurements at multiple microwave frequencies and polarizations. The GPM mission is an international effort managed by the National Aeronautics and Space Administration (NASA) to improve climate, weather, and hydrometeorological predictions through more accurate and frequent precipitation measurements1. Ball Aerospace and Technologies Corporation (BATC) was selected by NASA Goddard to design, build, and test the GMI instrument. The RDA was designed and manufactured by ATK Aerospace Systems Group to meet a number of challenging packaging and performance requirements. ATK developed a flight-like engineering development unit (EDU) and two flight mechanisms that have been delivered to BATC. This paper will focus on driving GMI instrument system requirements, the RDA design, development, and test activities performed to demonstrate that requirements have been met.

  13. Experimental Design for the INL Sample Collection Operational Test

    Energy Technology Data Exchange (ETDEWEB)

    Amidan, Brett G.; Piepel, Gregory F.; Matzke, Brett D.; Filliben, James J.; Jones, Barbara

    2007-12-13

    This document describes the test events and numbers of samples comprising the experimental design that was developed for the contamination, decontamination, and sampling of a building at the Idaho National Laboratory (INL). This study is referred to as the INL Sample Collection Operational Test. Specific objectives were developed to guide the construction of the experimental design. The main objective is to assess the relative abilities of judgmental and probabilistic sampling strategies to detect contamination in individual rooms or on a whole floor of the INL building. A second objective is to assess the use of probabilistic and Bayesian (judgmental + probabilistic) sampling strategies to make clearance statements of the form “X% confidence that at least Y% of a room (or floor of the building) is not contaminated. The experimental design described in this report includes five test events. The test events (i) vary the floor of the building on which the contaminant will be released, (ii) provide for varying or adjusting the concentration of contaminant released to obtain the ideal concentration gradient across a floor of the building, and (iii) investigate overt as well as covert release of contaminants. The ideal contaminant gradient would have high concentrations of contaminant in rooms near the release point, with concentrations decreasing to zero in rooms at the opposite end of the building floor. For each of the five test events, the specified floor of the INL building will be contaminated with BG, a stand-in for Bacillus anthracis. The BG contaminant will be disseminated from a point-release device located in the room specified in the experimental design for each test event. Then judgmental and probabilistic samples will be collected according to the pre-specified sampling plan. Judgmental samples will be selected based on professional judgment and prior information. Probabilistic samples will be selected in sufficient numbers to provide desired confidence

  14. Ares I Stage Separation System Design Certification Testing

    Science.gov (United States)

    Mayers, Stephen L.; Beard, Bernard B.; Smith, R. Kenneth; Patterson, Alan

    2009-01-01

    NASA is committed to the development of a new crew launch vehicle, the Ares I, that can support human missions to low Earth orbit (LEO) and the moon with unprecedented safety and reliability. NASA's Constellation program comprises the Ares I and Ares V launch vehicles, the Orion crew vehicle, and the Altair lunar lander. Based on historical precedent, stage separation is one of the most significant technical and systems engineering challenges that must be addressed in order to achieve this commitment. This paper surveys historical separation system tests that have been completed in order to ensure staging of other launch vehicles. Key separation system design trades evaluated for Ares I include single vs. dual separation plane options, retro-rockets vs. pneumatic gas actuators, small solid motor quantity/placement/timing, and continuous vs. clamshell interstage configuration options. Both subscale and full-scale tests are required to address the prediction of complex dynamic loading scenarios present during staging events. Test objectives such as separation system functionality, and pyroshock and debris field measurements for the full-scale tests are described. Discussion about the test article, support infrastructure and instrumentation are provided.

  15. A Mastication Mechanism Designed for Testing Temporomandibular Joint Implants

    Directory of Open Access Journals (Sweden)

    Ryan J. Frayne

    2012-01-01

    Full Text Available The development of temporomandibular joint implants has involved simplified mechanical tests that apply pure vertical forces or pure rotational movements to the implant. The aim of this study was to develop a biological based mastication mechanism and conduct preliminary testing of a novel temporomandibular joint implant. The mechanism was designed to mimic temporomandibular joint loads by performing compression and anterior/posterior translation. Pilot testing was performed on six implant/joint specimens for seven consecutive hours, completing approximately 22,000 cycles at a frequency of approximately 1 Hz. Each cycle had a joint compression phase (67.3 N over 0.15 s followed by a translation phase (8.67 N over 0.43 s that was similar to joint loads/motions that have been reported in vivo. This new mastication mechanism incorporates both anatomical and mechanical variability. The use of biological specimens is an important approach that can help bridge the gap between traditional synthetic implant materials/mechanical testing and in vivo testing.

  16. Mock Target Window OTR and IR Design and Testing

    Energy Technology Data Exchange (ETDEWEB)

    Wass, Alexander Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-19

    In order to fully verify temperature measurements made on the target window using infrared (IR) optical non-contact methods, actual comparative measurements are made with a real beam distribution as the heat source using Argonne National Laboratory’s (ANL) 35 MeV electron accelerator. Using Monte Carlo N-Particle (MCNP) simulations and thermal Finite Element Analysis (FEA), a cooled mock target window with thermocouple implants is designed to be used in such a test to achieve window temperatures up to 700°C. An uncoated and blackcoated mock window is designed to enhance the IR temperature measurements and verify optical transmitted radiation (OTR) imagery. This allows us to fully verify and characterize our temperature accuracy with our current IR camera method and any future method we may wish to explore using actual production conditions. This test also provides us with valuable conclusions/concerns regarding the calibration method we developed using our IR test stand at TA-53 in MPF-14.

  17. Design and testing of an advanced portable tritium getter bed

    Energy Technology Data Exchange (ETDEWEB)

    Schrader, K.H.; Perujo, A. [European Commission, Ispra (Italy)

    1995-10-01

    This paper presents the design and first tests of a portable uranium getter bed where the drawbacks of the standard available transport getters have been either mitigated or eliminated. The heating of the bed is made internally, ie, heating the uranium by a close contact of the heater element with the material, therefore reducing the temperature of the wall that is shielded from the heat source. Keeping the wall relatively cold reduces the tritium losses by permeation and the heat load to the glovebox. With this design the maximum operating temperature of the external wall is {approx}= 373 K; this corresponds to a nominal reduction in permeation of four orders of magnitude. 2 refs., 4 figs.

  18. Aerogel Hybrid Composite Materials: Designs and Testing for Multifunctional Applications

    Science.gov (United States)

    Williams, Martha K.; Fesmire, James E.

    2016-01-01

    This webinar will introduce the broad spectrum of aerogel composites and their diverse performance properties such as reduced heat transfer to energy storage, and expands specifically on the aerogel/fiber laminate systems and testing methodologies. The multi-functional laminate composite system, AeroFiber, and its construction is designed by varying the type of fiber (e.g. polyester, carbon, Kevlar®, Spectra® or Innegral(TradeMark) and combinations thereof), the aerogel panel type and thickness, and overall layup configuration. The combination and design of materials may be customized and tailored to achieve a range of desired properties in the resulting laminate system. Multi-functional properties include structural strength, impact resistance, reduction in heat transfer, increased fire resistance, mechanical energy absorption, and acoustic energy dampening. Applications include aerospace, aircraft, automotive, boating, building and construction, lightweight portable structures, liquefied natural gas, cryogenics, transportation and energy, sporting equipment, and military protective gear industries.

  19. Design, development, and testing of a hybrid in situ testing device for building joint sealant

    Science.gov (United States)

    C. White; N. Embree; C. Buch; R.S. Williams

    2005-01-01

    The testing of sealant samples has been restricted to devices that either focus on fatiguing multiple samples or quantifying the mechanical properties of a single sample. This manuscript describes a device that combines these two instrumental designs: the ability to both fatigue and characterize multiple sealant samples at the same time. This device employs precise...

  20. Linking Mixed-Signal Design and Test: Generation and Evaluation of Specification-Based Tests

    NARCIS (Netherlands)

    Engin, N.

    2000-01-01

    The work described in this thesis is aimed at the exploration of new methods for the integration of design and test development procedures for mixedsignal integrated circuits (IC's). Mixed-signal IC's are currently found in many electronic systems, including telecommunications, audio and video

  1. Experimental Design for Testing Local Lorentz Invariance Violations in Gravity

    Science.gov (United States)

    Chen, Ya-Fen; Tan, Yu-Jie; Shao, Cheng-Gang

    2017-09-01

    Local Lorentz invariance is an important component of General Relativity. Testing for Local Lorentz invariance can not only probe the foundation stone of General Relativity but also help to explore the unified theory for General Relativity and quantum mechanics. In this paper, we search the Local Lorentz invariance violation associated with operators of mass dimension d=6 in the pure-gravity sector with short-range gravitational experiments. To enlarge the Local Lorentz invariance violation signal effectively, we design a new experiment in which the constraints of all fourteen violation coefficients may be improved by about one order of magnitude

  2. Design of the Dual Conjugate Adaptive Optics Test-bed

    Science.gov (United States)

    Sharf, Inna; Bell, K.; Crampton, D.; Fitzsimmons, J.; Herriot, Glen; Jolissaint, Laurent; Lee, B.; Richardson, H.; van der Kamp, D.; Veran, Jean-Pierre

    In this paper, we describe the Multi-Conjugate Adaptive Optics laboratory test-bed presently under construction at the University of Victoria, Canada. The test-bench will be used to support research in the performance of multi-conjugate adaptive optics, turbulence simulators, laser guide stars and miniaturizing adaptive optics. The main components of the test-bed include two micro-machined deformable mirrors, a tip-tilt mirror, four wavefront sensors, a source simulator, a dual-layer turbulence simulator, as well as computational and control hardware. The paper will describe in detail the opto-mechanical design of the adaptive optics module, the design of the hot-air turbulence generator and the configuration chosen for the source simulator. Below, we present a summary of these aspects of the bench. The optical and mechanical design of the test-bed has been largely driven by the particular choice of the deformable mirrors. These are continuous micro-machined mirrors manufactured by Boston Micromachines Corporation. They have a clear aperture of 3.3 mm and are deformed with 140 actuators arranged in a square grid. Although the mirrors have an open-loop bandwidth of 6.6 KHz, their shape can be updated at a sampling rate of 100 Hz. In our optical design, the mirrors are conjugated at 0km and 10 km in the atmosphere. A planar optical layout was achieved by using four off-axis paraboloids and several folding mirrors. These optics will be mounted on two solid blocks which can be aligned with respect to each other. The wavefront path design accommodates 3 monochromatic guide stars that can be placed at either 90 km or at infinity. The design relies on the natural separation of the beam into 3 parts because of differences in locations of the guide stars in the field of view. In total four wavefront sensors will be procured from Adaptive Optics Associates (AOA) or built in-house: three for the guide stars and the fourth to collect data from the science source output in

  3. Bayesian hypothesis testing for single-subject designs.

    Science.gov (United States)

    de Vries, Rivka M; Morey, Richard D

    2013-06-01

    Researchers using single-subject designs are typically interested in score differences between intervention phases, such as differences in means or trends. If intervention effects are suspected in data, it is desirable to determine how much evidence the data show for an intervention effect. In Bayesian statistics, Bayes factors quantify the evidence in the data for competing hypotheses. We introduce new Bayes factor tests for single-subject data with 2 phases, taking serial dependency into account: a time-series extension of Rouder, Speckman, Sun, Morey, and Iverson's (2009) Jeffreys-Zellner-Siow Bayes factor for mean differences, and a time-series Bayes factor for testing differences in intercepts and slopes. The models we describe are closely related to interrupted time-series models (McDowall, McCleary, Meidinger, & Hay, 1980). (PsycINFO Database Record (c) 2013 APA, all rights reserved).

  4. Design, Construction and Testing of a Parabolic Solar Steam Generator

    Directory of Open Access Journals (Sweden)

    Joshua FOLARANMI

    2009-07-01

    Full Text Available This paper reports the design, construction and testing of a parabolic dish solar steam generator. Using concentrating collector, heat from the sun is concentrated on a black absorber located at the focus point of the reflector in which water is heated to a very high temperature to form steam. It also describes the sun tracking system unit by manual tilting of the lever at the base of the parabolic dish to capture solar energy. The whole arrangement is mounted on a hinged frame supported with a slotted lever for tilting the parabolic dish reflector to different angles so that the sun is always directed to the collector at different period of the day. On the average sunny and cloud free days, the test results gave high temperature above 200°C.

  5. Design and Performance Test of Locking Curved-Nut

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Min Cheol; Kang, Ho Sung; Kim, Do Yeop; Lee, Suk Yong; Lee, Eung Suk [Chungbuk Nat’l Univ., Cheongju (Korea, Republic of); Jeong, Hui Jong [Viblock Company, Cheongwon (Korea, Republic of)

    2017-03-15

    Many types of locking nut are commercializing in the various industries where has heavy vibration. Because Nut's loosing causes a serious accident. But the most locking nuts are too expensive as the complicate manufacturing process. In this study, we design the new type of locking nut, 'Curved-Nut' that is relatively simple making process. We study a relation between the elastic energy and the nut loosing mechanism. So it is analysed, the elastic energy of Curved-Nut comparing with the locking test. The Curved-Nut was manufactured on the commercial nut using a milling tool with horizontal cutting, one or two time under the nut. As the result, the more elastic energy the more prevent the loosing of the nut. We verified the performance of the loosing nut using the vibration testing equipment (NAS3350).

  6. Design and Testing of Subsystems for Mo-99 Production

    Energy Technology Data Exchange (ETDEWEB)

    Gromov, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Bailey, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Virgo, M. [Argonne National Lab. (ANL), Argonne, IL (United States); Chemerisov, S. [Argonne National Lab. (ANL), Argonne, IL (United States); Vandegrift, G. F. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-01-01

    Argonne National Laboratory, in cooperation with Los Alamos National Laboratory, is developing technology with NorthStar Medical Technologies to produce 99Mo from the γ,n reaction on a 100Mo target in an electron accelerator. During production runs and thermal testing of the helium-cooled target, it became obvious that a production-scale beam-line configuration would need a collimator to protect the target from accidental beam misplacement or a beam-profile change. A prototype high-power collimator and beam stop were designed and fabricated. Testing indicated that they will be able to operate at full power in the production-scale accelerator.

  7. Design and testing of a model CELSS chamber robot

    Science.gov (United States)

    Davis, Mark; Dezego, Shawn; Jones, Kinzy; Kewley, Christopher; Langlais, Mike; McCarthy, John; Penny, Damon; Bonner, Tom; Funderburke, C. Ashley; Hailey, Ruth

    1994-08-01

    A robot system for use in an enclosed environment was designed and tested. The conceptual design will be used to assist in research performed by the Controlled Ecological Life Support System (CELSS) project. Design specifications include maximum load capacity, operation at specified environmental conditions, low maintenance, and safety. The robot system must not be hazardous to the sealed environment, and be capable of stowing and deploying within a minimum area of the CELSS chamber facility. This design consists of a telescoping robot arm that slides vertically on a shaft positioned in the center of the CELSS chamber. The telescoping robot arm consists of a series of links which can be fully extended to a length equal to the radius of the working envelope of the CELSS chamber. The vertical motion of the robot arm is achieved through the use of a combination ball screw/ball spline actuator system. The robot arm rotates cylindrically about the vertical axis through use of a turntable bearing attached to a central mounting structure fitted to the actuator shaft. The shaft is installed in an overhead rail system allowing the entire structure to be stowed and deployed within the CELSS chamber. The overhead rail system is located above the chamber's upper lamps and extends to the center of the CELSS chamber. The mounting interface of the actuator shaft and rail system allows the entire actuator shaft to be detached and removed from the CELSS chamber. When the actuator shaft is deployed, it is held fixed at the bottom of the chamber by placing a square knob on the bottom of the shaft into a recessed square fitting in the bottom of the chamber floor. A support boot ensures the rigidity of the shaft. Three student teams combined into one group designed a model of the CELSS chamber robot that they could build. They investigated materials, availability, and strength in their design. After the model arm and stand were built, the class performed pre-tests on the entire system

  8. Thermohydraulic design of saturated temperature capsule for IASCC irradiation test

    Energy Technology Data Exchange (ETDEWEB)

    Ide, Hiroshi; Matsui, Yoshinori; Itabashi, Yukio [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment] [and others

    2002-10-01

    An advanced water chemistry controlled irradiation research device is being developed in JAERI, to perform irradiation tests for irradiation assisted stress corrosion cracking (IASCC) research concerned with aging of LWR. This device enables the irradiation tests under the water chemistry condition and the temperature, which simulate the conditions for BWR core internals. The advanced water chemistry controlled irradiation research device is composed of saturated temperature capsule inserted into the JMTR core and the water chemistry control unit installed in the reactor building. Regarding the saturated temperature capsule, the Thermohydraulic design of capsule structure was done, aimed at controlling the specimen's temperature, feeding water velocity on specimen's surface to the environment of BWR nearer. As the result of adopting the new capsule structure based on the design study, it was found out that feeding water velocity at the surface of specimen's is increased to about 10 times as much as before, and nuclear heat generated in the capsule components can be removed safely even in the abnormal event such as the case of loss of feeding water. (author)

  9. Design and Testing of Space Telemetry SCA Waveform

    Science.gov (United States)

    Mortensen, Dale J.; Handler, Louis M.; Quinn, Todd M.

    2006-01-01

    A Software Communications Architecture (SCA) Waveform for space telemetry is being developed at the NASA Glenn Research Center (GRC). The space telemetry waveform is implemented in a laboratory testbed consisting of general purpose processors, field programmable gate arrays (FPGAs), analog-to-digital converters (ADCs), and digital-to-analog converters (DACs). The radio hardware is integrated with an SCA Core Framework and other software development tools. The waveform design is described from both the bottom-up signal processing and top-down software component perspectives. Simulations and model-based design techniques used for signal processing subsystems are presented. Testing with legacy hardware-based modems verifies proper design implementation and dynamic waveform operations. The waveform development is part of an effort by NASA to define an open architecture for space based reconfigurable transceivers. Use of the SCA as a reference has increased understanding of software defined radio architectures. However, since space requirements put a premium on size, mass, and power, the SCA may be impractical for today s space ready technology. Specific requirements for an SCA waveform and other lessons learned from this development are discussed.

  10. GMI Spin Mechanism Assembly Design, Development, and Test Results

    Science.gov (United States)

    Woolaway, Scott; Kubitschek, Michael; Berdanier, Barry; Newell, David; Dayton, Chris; Pellicciotti, Joseph W.

    2012-01-01

    The GMI Spin Mechanism Assembly (SMA) is a precision bearing and power transfer drive assembly mechanism that supports and spins the Global Microwave Imager (GMI) instrument at a constant rate of 32 rpm continuously for the 3 year plus mission life. The GMI instrument will fly on the core Global Precipitation Measurement (GPM) spacecraft and will be used to make calibrated radiometric measurements at multiple microwave frequencies and polarizations. The GPM mission is an international effort managed by the National Aeronautics and Space Administration (NASA) to improve climate, weather, and hydro-meteorological predictions through more accurate and frequent precipitation measurements [1]. Ball Aerospace and Technologies Corporation (BATC) was selected by NASA Goddard Space Flight Center (GSFC) to design, build, and test the GMI instrument. The SMA design has to meet a challenging set of requirements and is based on BATC space mechanisms heritage and lessons learned design changes made to the WindSat BAPTA mechanism that is currently operating on orbit and has recently surpassed 8 years of Flight operation.

  11. Design, construction, and testing of the vacuum vessel for the tandem Mirror Fusion Test Facility

    Science.gov (United States)

    Gerich, J. W.

    1985-11-01

    In 1980, the US Department of Energy gave the Lawrence Livermore National Laboratory approval to design and build a tandem Mirror Fusion Test Facility (MFTF-B) to support the goals of the National Mirror Program. We designed the MFTF-B vacuum vessel both to maintain the required ultrahigh vacuum environment and to structurally support the 42 superconducting magnets plus auxiliary internal and external equipment. During our design work, we made extensive use of both simple and complex computer models to arrive at a cost-effective final configuration. As part of this work, we conducted a unique dynamic analysis to study the interaction of the 32,000-ton concrete-shielding vault with the 2850-ton vacuum vessel system. To maintain a vacuum of 2 x 10 to the -8 Torr during the physics experiments inside the vessel, we designed a vacuum pumping system of enormous capacity. The vacuum vessel (4200 cu m) has been fabricated, erected, and acceptance tests have been completed at the Livermore site. The rest of the machine has been assembled, and individual systems have been successfully checked. On October 1, 1985, we began a series of integrated engineering tests to verify the operation of all components as a complete system.

  12. Design and experimental tests of free electron laser wire scanners

    Directory of Open Access Journals (Sweden)

    G. L. Orlandi

    2016-09-01

    Full Text Available SwissFEL is a x-rays free electron laser (FEL driven by a 5.8 GeV linac under construction at Paul Scherrer Institut. In SwissFEL, wire scanners (WSCs will be complementary to view-screens for emittance measurements and routinely used to monitor the transverse profile of the electron beam during FEL operations. The SwissFEL WSC is composed of an in-vacuum beam-probe—motorized by a stepper motor—and an out-vacuum pick-up of the wire signal. The mechanical stability of the WSC in-vacuum hardware has been characterized on a test bench. In particular, the motor induced vibrations of the wire have been measured and mapped for different motor speeds. Electron-beam tests of the entire WSC setup together with different wire materials have been carried out at the 250 MeV SwissFEL Injector Test Facility (SITF, Paul Scherrer Institut, CH and at FERMI (Elettra-Sincrotrone Trieste, Italy. In particular, a comparative study of the relative measurement accuracy and the radiation-dose release of Al(99∶Si(1 and tungsten (W wires has been carried out. On the basis of the outcome of the bench and electron-beam tests, the SwissFEL WSC can be qualified as a high resolution and machine-saving diagnostic tool in consideration of the mechanical stability of the scanning wire at the micrometer level and the choice of the wire material ensuring a drastic reduction of the radiation-dose release with respect to conventional metallic wires. The main aspects of the design, laboratory characterization and electron beam tests of the SwissFEL WSCs are presented.

  13. Design and experimental tests of free electron laser wire scanners

    Science.gov (United States)

    Orlandi, G. L.; Heimgartner, P.; Ischebeck, R.; Loch, C. Ozkan; Trovati, S.; Valitutti, P.; Schlott, V.; Ferianis, M.; Penco, G.

    2016-09-01

    SwissFEL is a x-rays free electron laser (FEL) driven by a 5.8 GeV linac under construction at Paul Scherrer Institut. In SwissFEL, wire scanners (WSCs) will be complementary to view-screens for emittance measurements and routinely used to monitor the transverse profile of the electron beam during FEL operations. The SwissFEL WSC is composed of an in-vacuum beam-probe—motorized by a stepper motor—and an out-vacuum pick-up of the wire signal. The mechanical stability of the WSC in-vacuum hardware has been characterized on a test bench. In particular, the motor induced vibrations of the wire have been measured and mapped for different motor speeds. Electron-beam tests of the entire WSC setup together with different wire materials have been carried out at the 250 MeV SwissFEL Injector Test Facility (SITF, Paul Scherrer Institut, CH) and at FERMI (Elettra-Sincrotrone Trieste, Italy). In particular, a comparative study of the relative measurement accuracy and the radiation-dose release of Al (99 )∶Si (1 ) and tungsten (W) wires has been carried out. On the basis of the outcome of the bench and electron-beam tests, the SwissFEL WSC can be qualified as a high resolution and machine-saving diagnostic tool in consideration of the mechanical stability of the scanning wire at the micrometer level and the choice of the wire material ensuring a drastic reduction of the radiation-dose release with respect to conventional metallic wires. The main aspects of the design, laboratory characterization and electron beam tests of the SwissFEL WSCs are presented.

  14. Design, Fabrication, and Testing of a Hopper Spacecraft Simulator

    Science.gov (United States)

    Mucasey, Evan Phillip Krell

    A robust test bed is needed to facilitate future development of guidance, navigation, and control software for future vehicles capable of vertical takeoff and landings. Specifically, this work aims to develop both a hardware and software simulator that can be used for future flight software development for extra-planetary vehicles. To achieve the program requirements of a high thrust to weight ratio with large payload capability, the vehicle is designed to have a novel combination of electric motors and a micro jet engine is used to act as the propulsion elements. The spacecraft simulator underwent several iterations of hardware development using different materials and fabrication methods. The final design used a combination of carbon fiber and fiberglass that was cured under vacuum to serve as the frame of the vehicle which provided a strong, lightweight platform for all flight components and future payloads. The vehicle also uses an open source software development platform, Arduino, to serve as the initial flight computer and has onboard accelerometers, gyroscopes, and magnetometers to sense the vehicles attitude. To prevent instability due to noise, a polynomial kalman filter was designed and this fed the sensed angles and rates into a robust attitude controller which autonomously control the vehicle' s yaw, pitch, and roll angles. In addition to the hardware development of the vehicle itself, both a software simulation and a real time data acquisition interface was written in MATLAB/SIMULINK so that real flight data could be taken and then correlated to the simulation to prove the accuracy of the analytical model. In result, the full scale vehicle was designed and own outside of the lab environment and data showed that the software model accurately predicted the flight dynamics of the vehicle.

  15. Design of Bioprosthetic Aortic Valves using biaxial test data.

    Science.gov (United States)

    Dabiri, Y; Paulson, K; Tyberg, J; Ronsky, J; Ali, I; Di Martino, E; Narine, K

    2015-01-01

    Bioprosthetic Aortic Valves (BAVs) do not have the serious limitations of mechanical aortic valves in terms of thrombosis. However, the lifetime of BAVs is too short, often requiring repeated surgeries. The lifetime of BAVs might be improved by using computer simulations of the structural behavior of the leaflets. The goal of this study was to develop a numerical model applicable to the optimization of durability of BAVs. The constitutive equations were derived using biaxial tensile tests. Using a Fung model, stress and strain data were computed from biaxial test data. SolidWorks was used to develop the geometry of the leaflets, and ABAQUS finite element software package was used for finite element calculations. Results showed the model is consistent with experimental observations. Reaction forces computed by the model corresponded with experimental measurements when the biaxial test was simulated. As well, the location of maximum stresses corresponded to the locations of frequent tearing of BAV leaflets. Results suggest that BAV design can be optimized with respect to durability.

  16. Design, analysis, and testing of a CCD array mounting structure

    Science.gov (United States)

    Sultana, John A.; O'Neill, Mark B.

    1991-12-01

    A method has been developed for mounting charge-coupled device (CCD) arrays in an optical telescope so as to minimize thermal defocusing errors. The mounting arrangement was developed for a six-inch aperture, visible band, off-axis reimaging telescope attached to an experimental satellite. The mounting arrangement consists of two pieces: a fiberglass frame which holds the actively cooled CCD package and provides thermal isolation from the telescope body; and a titanium flexure, which acts to minimize structural distortions caused by the difference in thermal expansion properties of the CCD array and the telescope body. This paper describes the design, analysis, and testing of this CCD array mounting arrangement. A detailed finite-element model of the CCD array and the mount was developed and used to predict thermally-induced defocus and gravity sag deformations, as well as natural frequencies. Experimental tests to verify the computer model results were performed using holographic interferometry. Vibration tests were also performed to verify the natural frequencies as well as structural integrity during launch. A comparison of the computer model predictions and the holographic interferometric measurements of thermally-induced defocussing indicates agreement to within 15 to 20%. Both the experimental and computer results indicate that the mounting structure provides focus stability over the operational temperature range of the telescope with sufficient structural integrity to survive the anticipated spacecraft launch loads.

  17. Design, fabrication, and test of lightweight shell structure. [for application to the space tug design

    Science.gov (United States)

    1974-01-01

    A cylindrical shell skirt structure was subjected to a design and analysis study using a wide variety of structural materials and concepts. The design loading, axial compression, and torsion is representative of that expected on a typical space tug skirt section. Structural concepts evaluated included honeycomb sandwich, truss, isogrid, and skin/stringer/frame. The materials considered included a wide variety of structural metals as well as glass, graphite, and boron-reinforced composites. Honeycomb sandwich with aluminum faceskins, honeycomb sandwich with graphite/epoxy faceskins, and aluminum truss with fiberglass meteoroid protection layers were the designs selected for further evaluation. Procurement of materials required for fabrication is reported and the structural test plan and fabrication drawings are included. Construction of the graphite/epoxy faceskins, chem mill of the aluminum faceskins, chem mill of aluminum truss components, and fabrication of the graphite/epoxy honeycomb sandwich development panel is also reported.

  18. Design for reliability: NASA reliability preferred practices for design and test

    Science.gov (United States)

    Lalli, Vincent R.

    1994-01-01

    This tutorial summarizes reliability experience from both NASA and industry and reflects engineering practices that support current and future civil space programs. These practices were collected from various NASA field centers and were reviewed by a committee of senior technical representatives from the participating centers (members are listed at the end). The material for this tutorial was taken from the publication issued by the NASA Reliability and Maintainability Steering Committee (NASA Reliability Preferred Practices for Design and Test. NASA TM-4322, 1991). Reliability must be an integral part of the systems engineering process. Although both disciplines must be weighed equally with other technical and programmatic demands, the application of sound reliability principles will be the key to the effectiveness and affordability of America's space program. Our space programs have shown that reliability efforts must focus on the design characteristics that affect the frequency of failure. Herein, we emphasize that these identified design characteristics must be controlled by applying conservative engineering principles.

  19. Low Power Testing—What Can Commercial Design-for-Test Tools Provide?

    OpenAIRE

    Xijiang Lin

    2011-01-01

    Minimizing power consumption during functional operation and during manufacturing tests has become one of the dominant requirements for the semiconductor designs in the past decade. From commercial design-for-test (DFT) tools’ point of view, this paper describes how DFT tools can help to achieve comprehensive testing of low power designs and reduce test power consumption during test application.

  20. Design, Development and Test Challenges: Separation Mechanisms for the Orion Pad Abort-1 Flight Test

    Science.gov (United States)

    Dinsel, Alison; Morrey, Jeremy M.; OMalley, Patrick; Park, Samuel

    2011-01-01

    On May 6, 2010, NASA launched the first successful integrated flight test, Pad Abort-1, of the Orion Project from the White Sands Missile Range in Las Cruces, New Mexico. This test demonstrated the ability to perform an emergency pad abort of a full-scale 4.8 m diameter, 8200 kg crew capsule. During development of the critical separation mechanisms for this flight test, various challenges were overcome related to environments definition, installation complications, separation joint retraction speed, thruster ordnance development issues, load path validation and significant design loads increases. The Launch Abort System retention and release (LAS R&R) mechanism consisted of 6 discrete structural connections between the LAS and the crew module (CM) simulator, each of which had a preloaded tension tie, Superbolt torque-nut and frangible nut. During the flight test, the frangible nuts were pyrotechnically split, permitting the CM to separate from the LAS. The LAS separation event was the driving case in the shock environment for many co-located hardware items. During development testing, it was necessary to measure the source shock during the separation event so the predicted shock environment could be validated and used for certification testing of multiple hardware items. The Lockheed Martin test team measured the source separation shock due to the LAS R&R function, which dramatically decreased the predicted environment by 90% at 100 Hz. During development testing a hydraulic tensioner was used to preload the joint; however, the joint relaxation with the tensioner proved unsatisfactory so the design was modified to include a Superbolt torque-nut. The observed preload creep during lab testing was 4% after 30 days, with 2.5% occurring in the first 24 hours. The conversion of strain energy (preload) to kinetic energy (retraction) was measured to be 50-75%. Design features and careful monitoring of multiple strain gauges on each tension tie allowed a pure tensile load

  1. Design, fabrication, and testing of the CUORE detector calibration system

    Science.gov (United States)

    Dally, Adam

    2013-04-01

    CUORE, the Cryogenic Underground Observatory for Rare Events, is a neutrinoless double beta decay experiment with an active mass of 206 kg of ^130Te. The detector consists of 988 TeO2 bolometers operating at 10 mK. The signature of 0νββ decay is an excess of events at the Q-value of 2528 keV. Understanding the energy response is critical for event identification, but this presents many challenges. The detector requires ultra-low background radiation, vacuum compatible materials, and cryogenic temperatures. Individual energy calibration of the bolometers is achieved by placing radioactive sources between detectors inside the cryostat. A source deployment and thermalization system that meets the background and thermal requirements of the CUORE experiment has been developed. This talk will discuss the design, fabrication, and testing of the CUORE detector calibration system.

  2. Designing and testing a hybrid lightweight shoulder prosthesis.

    Science.gov (United States)

    Sekine, Masashi; Tsuchiya, Nobuto; Kita, Kahori; Yu, Wenwei

    2014-01-01

    Lightweight prostheses are preferred in terms of usability in daily living. However, this is not a property easy to realize, especially for shoulder prostheses. High portability, multiple degrees of freedom (DOFs) with an appropriate ROM (range of motion), sufficient end-effector power, and suitable viscoelasticity for the safe use in daily living, usually result in a heavy weight. In this paper, a hybrid shoulder prosthesis that combined servo motors and pneumatic elastic actuators, with a weight distribution scheme, was designed to meet the requirements. The prosthetic system was preliminarily tested by comparing its ADL (activities of daily living) motion data with that of an intact arm. The experiment results showed that the shoulder prosthesis could reproduce the motion of an intact arm, thus demonstrate its usability in daily living.

  3. Design study for wood gasifier/engine test project

    Energy Technology Data Exchange (ETDEWEB)

    Bircher, K.G.; Sutherland, R.P.

    1982-03-01

    This report investigates various aspects of coupling wood gasifiers with engine/generators for commercial use (size greater than 1.0 MWe). A brief review of current available gas cleaning and cooling equipment and low heating value engines is presented. Accelerated research into dry methods of scrubbing wood gas will assist greatly in making commercial gasifier/engine combinations a viable alternative. Process design of a gas cleaning system for an 800 kW/sub e/ generator, includes heat and mass balances and instrumentation requirements. A testing program for the gasifier-gas cleaning unit-engine/generator system is outlined. The benfits and drawbacks of upgrading the calorific value of the producer gas by both carbon dioxide removal and oxygen addition are discussed briefly. 10 refs., 10 figs., 12 tabs.

  4. Design, realization and structural testing of a compliant adaptable wing

    Science.gov (United States)

    Molinari, G.; Quack, M.; Arrieta, A. F.; Morari, M.; Ermanni, P.

    2015-10-01

    This paper presents the design, optimization, realization and testing of a novel wing morphing concept, based on distributed compliance structures, and actuated by piezoelectric elements. The adaptive wing features ribs with a selectively compliant inner structure, numerically optimized to achieve aerodynamically efficient shape changes while simultaneously withstanding aeroelastic loads. The static and dynamic aeroelastic behavior of the wing, and the effect of activating the actuators, is assessed by means of coupled 3D aerodynamic and structural simulations. To demonstrate the capabilities of the proposed morphing concept and optimization procedure, the wings of a model airplane are designed and manufactured according to the presented approach. The goal is to replace conventional ailerons, thus to achieve controllability in roll purely by morphing. The mechanical properties of the manufactured components are characterized experimentally, and used to create a refined and correlated finite element model. The overall stiffness, strength, and actuation capabilities are experimentally tested and successfully compared with the numerical prediction. To counteract the nonlinear hysteretic behavior of the piezoelectric actuators, a closed-loop controller is implemented, and its capability of accurately achieving the desired shape adaptation is evaluated experimentally. Using the correlated finite element model, the aeroelastic behavior of the manufactured wing is simulated, showing that the morphing concept can provide sufficient roll authority to allow controllability of the flight. The additional degrees of freedom offered by morphing can be also used to vary the plane lift coefficient, similarly to conventional flaps. The efficiency improvements offered by this technique are evaluated numerically, and compared to the performance of a rigid wing.

  5. Design and testing of mini-size biogas plant

    Science.gov (United States)

    Randjawali, Erwin; Waris, Abdul

    2016-08-01

    Biogas is a renewable source of energy which is developed to fulfill the energy needs of the society. Two important aspects of the biogas itself is biogas plant and starter. This research aims to design a mini-sized biogas plant which can be use effectively to produce the alternative energy, and also to examine the difference quality of biogas which is produced from slurry which was given starter and slurry which was not given starter. In this study, a mini-sized biogas plant has been designed, and tested for two different types of slurry. Ratio of cow dung : water : starter of the first slurry is 3 : 2 : 0.003 (The starter which was used in this study is Green Phoskko), and for the second type of slurry, ratio of cow dung : water is 3 : 2, but in this second type, the slurry was not given a starter. Cattle dung used in this study is stored in advance for one week, two weeks, and three weeks, before use. Result of this study showed that the first type of slurry produce biogas in a faster time than the second type of slurry. Also, the amount of gas obtained from the first slurry is more than the second type of slurry. It can be seen from the length of time which is takes to burn the gas produced from the first slurry much longer than the second type of slurry.

  6. Design of cryostat for testing high-Tc superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Ho Myung; Baik, Joun Hoon; Lee, Hoon; Kim, Young Kwon; Park, Jeong Soo; Song, Seung Jae [Hongik University, Seoul (Korea, Republic of)

    1997-07-01

    This project is proposed to develop several design techniques concerning the gas-cooled or the refrigerator-cooled cryostats to test the HTS at temperature ranges between 20 K and 100 K. (1) It is shown by a numerical analysis that the thermal stability of HTS in a gas-cooled cryostat is satisfactory, mainly because of large heat capacity. The feasibility of the gas-cooled cryostat is demonstrated after the cooling load calculation, the selection of the cryocooler, and the detailed design and fabrication. It is also found that the current leads in the gas-cooled cryostat increases the cooling load but can make the cool-down time shorter to a considerable degree. (2) The thermal stability and the cooling load of HTS in a refrigerator-cooled cryostat do not differ much from those in a gas-cooled cryostat. On the other hand, it has been known that the thermal switches and the soft-contact materials in the refrigerator-superconductor interface are necessary to shorten the coo-down time and to provide a flexibility in the configuration of cryostat. Various shapes and designs are demonstrated for the refrigerator-cooled cryostat. (3) Binary current leads are indispensable in a refrigerator-cooled cryostat. The current lead is a series combination of a normal metal at warm side and a HTS at cold side. It is shown that the optimal diameter-length relation exits for the minimum refrigeration work. It is also found that the refrigerator work decreases as the length of HTS increases. For a given length of HTS, there is an optimal cross-sectional area and it increases with the length. 54 refs., 9 tabs., 56 figs. (author)

  7. Low-Cost Mini Radar: Design Prototyping and Tests

    Directory of Open Access Journals (Sweden)

    Dario Tarchi

    2017-01-01

    Full Text Available Radar systems are largely employed for surveillance of wide and remote areas; the recent advent of drones gives the opportunity to exploit radar sensors on board of unmanned aerial platforms. Nevertheless, whereas drone radars are currently available for military applications, their employment in the civilian domain is still limited. The present research focuses on design, prototyping, and testing of an agile, low-cost, mini radar system, to be carried on board of Remotely Piloted Aircraft (RPAs or tethered aerostats. In particular, the paper faces the challenge to integrate the in-house developed radar sensor with a low-cost navigation board, which is used to estimate attitude and positioning data. In fact, a suitable synchronization between radar and navigation data is essential to properly reconstruct the radar picture whenever the platform is moving or the radar is scanning different azimuthal sectors. Preliminary results, relative to tests conducted in preoperational conditions, are provided and exploited to assert the suitable consistency of the obtained radar pictures. From the results, there is a high consistency between the radar images and the picture of the current environment emerges; finally, the comparison of radar images obtained in different scans shows the stability of the platform.

  8. Chalcogenide Glass Radiation Sensor; Materials Development, Design and Device Testing

    Energy Technology Data Exchange (ETDEWEB)

    Mitkova, Maria; Butt, Darryl; Kozicki, Michael; Barnaby, Hugo

    2013-04-30

    studied the effect of x-rays and γ-rays, on thin film chalcogenide glasses and applied them in conjunction with film incorporating a silver source in a new type of radiation sensor for which we have an US patent application [3]. In this report, we give data about our studies regarding our designed radiation sensor along with the testing and performance at various radiation doses. These studies have been preceded by materials characterization research related to the compositional and structural characteristics of the active materials used in the radiation sensor design. During the work on the project, we collected a large volume of material since every experiment was repeated many times to verify the results. We conducted a comprehensive material research, analysis and discussion with the aim to understand the nature of the occurring effects, design different structures to harness these effects, generated models to aid in the understanding the effects, built different device structures and collected data to quantify device performance. These various aspects of our investigation have been detailed in previous quarterly reports. In this report, we present our main results and emphasize on the results pertaining to the core project goals materials development, sensor design and testing and with an emphasis on classifying the appropriate material and design for the optimal application. The report has three main parts: (i) Presentation of the main data; (ii) Bulleted summary of the most important results; (iii) List of the patent, journal publications, conference proceedings and conferences participation, occurring as a result of working on the project.

  9. GASIFICATION TEST RUN TC06

    Energy Technology Data Exchange (ETDEWEB)

    Southern Company Services, Inc.

    2003-08-01

    This report discusses test campaign TC06 of the Kellogg Brown & Root, Inc. (KBR) Transport Reactor train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Reactor is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using a particulate control device (PCD). The Transport Reactor was operated as a pressurized gasifier during TC06. Test run TC06 was started on July 4, 2001, and completed on September 24, 2001, with an interruption in service between July 25, 2001, and August 19, 2001, due to a filter element failure in the PCD caused by abnormal operating conditions while tuning the main air compressor. The reactor temperature was varied between 1,725 and 1,825 F at pressures from 190 to 230 psig. In TC06, 1,214 hours of solid circulation and 1,025 hours of coal feed were attained with 797 hours of coal feed after the filter element failure. Both reactor and PCD operations were stable during the test run with a stable baseline pressure drop. Due to its length and stability, the TC06 test run provided valuable data necessary to analyze long-term reactor operations and to identify necessary modifications to improve equipment and process performance as well as progressing the goal of many thousands of hours of filter element exposure.

  10. PULSE COMBUSTOR DESIGN QUALIFICATION TEST AND CLEAN COAL FEEDSTOCK TEST - VOLUME I AND VOLUME II

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2002-02-08

    For this Cooperative Agreement, the pulse heater module is the technology envelope for an indirectly heated steam reformer. The field of use of the steam reformer pursuant to this Cooperative Agreement with DOE is for the processing of sub-bituminous coals and lignite. The main focus is the mild gasification of such coals for the generation of both fuel gas and char--for the steel industry is the main focus. An alternate market application for the substitution of metallurgical coke is also presented. This project was devoted to qualification of a 253-tube pulse heater module. This module was designed, fabricated, installed, instrumented and tested in a fluidized bed test facility. Several test campaigns were conducted. This larger heater is a 3.5 times scale-up of the previous pulse heaters that had 72 tubes each. The smaller heater has been part of previous pilot field testing of the steam reformer at New Bern, North Carolina. The project also included collection and reduction of mild gasification process data from operation of the process development unit (PDU). The operation of the PDU was aimed at conditions required to produce char (and gas) for the Northshore Steel Operations. Northshore Steel supplied the coal for the process unit tests.

  11. Design of an Axisymmetric Afterbody Test Case for CFD Validation

    Science.gov (United States)

    Disotell, Kevin J.; Rumsey, Christopher L.

    2017-01-01

    As identified in the CFD Vision 2030 Study commissioned by NASA, validation of advanced RANS models and scale-resolving methods for computing turbulent flow fields must be supported by continuous improvements in fundamental, high-fidelity experiments designed specifically for CFD implementation. In accordance with this effort, the underpinnings of a new test platform referred to herein as the NASA Axisymmetric Afterbody are presented. The devised body-of-revolution is a modular platform consisting of a forebody section and afterbody section, allowing for a range of flow behaviors to be studied on interchangeable afterbody geometries. A body-of-revolution offers advantages in shape definition and fabrication, in avoiding direct contact with wind tunnel sidewalls, and in tail-sting integration to facilitate access to higher Reynolds number tunnels. The current work is focused on validation of smooth-body turbulent flow separation, for which a six-parameter body has been developed. A priori RANS computations are reported for a risk-reduction test configuration in order to demonstrate critical variation among turbulence model results for a given afterbody, ranging from barely-attached to mild separated flow. RANS studies of the effects of forebody nose (with/without) and wind tunnel boundary (slip/no-slip) on the selected afterbody are presented. Representative modeling issues that can be explored with this configuration are the effect of higher Reynolds number on separation behavior, flow physics of the progression from attached to increasingly-separated afterbody flows, and the effect of embedded longitudinal vortices on turbulence structure.

  12. Design and tests of an adaptive focusing neutron guide

    Energy Technology Data Exchange (ETDEWEB)

    Valicu, Roxana Georgiana

    2012-08-23

    This work contains the Monte Carlo Simulations, as well as the first tests with an adaptive focusing neutron guide for creating a focus that does not depend on the wavelength of the incoming neutrons. All known neutron guides consist of a rectangular shape, built out of four glass plates. The inner side of the guide is coated with a complex structure of metal layers. This reflects and guides the neutrons (in analogy with the reflection of the light). For beam focusing neutron guides with fixed curvature can be built. For most experiments it is important that the beam is focused on to a small surface of the sample. In the case of focusing guides with fixed curvature it has been observed that the focusing (dimension and position of the beam focus) is wavelength dependent. This is why for measurements that are performed with different wavelengths it is very important to change the curvature of the neutron guide in order to obtain optimal results. In this work we have designed, constructed and tested a guide where we can change the curvature during the experiment. In this way we can obtain a variable curvature in horizontal as well as in vertical direction. For a curvature in the horizontal or vertical direction it is not necessary to move all four walls, only two of the opposed plates. The element that changes the curvature of the guide consists of an acting element (piezomotor) as well as a rod that can be operated by the piezomotor and that acts through a lever onto the plate. The action of a force and a consecutive torsion momentum at the free end of the plate changes the curvature of the whole plate in an almost parabolic way. Making use of the Monte Carlo simulations we were able to determine the optimal curvature for each wavelength of a neutron guide for the spectrometer TOFTOF installed at the Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II). First tests have shown that with an adaptive focusing guide one can gain up to a factor three in intensity at

  13. Design and testing of low intensity laser biostimulator.

    Science.gov (United States)

    Valchinov, Emil S; Pallikarakis, Nicolas E

    2005-01-13

    proposed method for testing the device efficiency employs a biofeedback from the subject by recording the biopotentials evoked by the laser stimulus at related distant SLB sites. Therefore measuring of SLB biopotentials caused by the stimulus would indicate that a biopotential has been evoked at the irradiated site and has propagated to the measurement sites, rather than being caused by local changes of the electrical skin conductivity. A prototype device was built according to the proposed design using relatively inexpensive and commercially available components. The laser output can be pulse modulated from 0.1 to 1000 Hz with a duty factor from 10 to 90%. The average output power density can be adjusted in the range 24-480 mW/cm2, where the total irradiation is limited to 2 Joule per stimulation session. The device is controlled by an 8-bit RISC Flash microcontroller with internal RAM and EEPROM memory, which allows for a wide range of different stimulation protocols to be implemented and memorized. The integrated laser diode driver with its onboard light power control loop provides safe and consistent laser modulation. The prototype was tested on the right Tri-Heater (TH) acupuncture meridian according to the proposed method. Laser evoked potentials were recorded from most of the easily accessible SLB along the meridian under study. They appear like periodical spikes with a repetition rate from 0.05 to 10 Hz and amplitude range 0.1-1 mV. The prototype's specifications were found to be better or comparable to those of other existing devices. It features low component count, small size and low power consumption. Because of the low power levels used the possibility of sensory nerve stimulation via the phenomenon of shock or heat is excluded. Thus senseless optical stimulation is achieved. The optical system presented offers simple and cost effective way for beam collimation and polarization change. The novel method proposed for testing the device efficiency allows for

  14. Spiral 2 cryogenic system overview: Design, construction and performance test

    Energy Technology Data Exchange (ETDEWEB)

    Deschildre, C.; Bernhardt, J.; Flavien, G.; Crispel, S. [Air Liquide Advanced Technologies, Sassenage (France); Souli, M. [GANIL, Caen (France); Commeaux, C. [IPN, Orsay (France)

    2014-01-29

    The new particle accelerator project Spiral 2 at GANIL (“Grand Accélérateur d’Ions Lourds, i.e. National Large Heavy Ion Accelerator) in Caen (France) is a very large installation, intended to serve fundamental research in nuclear physics. The heart of the future machine features a superconductor linear accelerator, delivering a beam until 20Mev/A, which are then used to bombard a matter target. The resulting reactions, such as fission, transfer, fusion, etc. will generate billions of exotic nuclei. To achieve acceleration of the beam, 26 cavities which are placed inside cryomodules at helium cryogenic temperature will be used. AL-AT (Air Liquide Advanced Technologies) takes part to the project by supplying cryogenic plant. The plant includes the liquefier associated to its compressor station, a large dewar, a storage tank for helium gas and transfer lines. In addition, a helium recovery system composed of recovery compressor, high pressure storage and external purifier has been supplied. Customized HELIAL LF has been designed, manufactured and tested by AL-AT to match the refrigeration power need for the Spiral 2 project which is around 1300 W equivalent at 4.5 K.

  15. Design and Test of Capacitive Micromachined Ultrasonic Transducer

    Directory of Open Access Journals (Sweden)

    Hongliang Wang

    2014-09-01

    Full Text Available Currently, most capacitive micromachined ultrasound transducers, adopting surface sacrificial technology encounter various problems such as difficult cavity etch, low controllability of membrane thickness etc., and their operating frequencies are more concentrated in several MHz bandwidths that cannot meet the requirements of long-distance imaging applications. In order to solve these problems, this paper proposes a new capacitive ultrasound transducer based on Si-Si bonding technology, which consists of an integration vibration membrane requiring no extra separate metal film and having high sensitivity, uniform thickness and more controllable frequencies. This transducer has several great advantages such as: easy processing, simple structure and process technology, and a high degree of integration. The structure and size of the transducer is determined by theoretical analysis and finite element analysis software ANSYS, and a process flow is also presented. Through scanning by SEM and Polytec MSA-400, the processed transducer is tested and analyzed, and the results are consonant with the simulation, verifying the reliability of the design and fabrication.

  16. Design and testing of low intensity laser biostimulator

    Directory of Open Access Journals (Sweden)

    Pallikarakis Nicolas E

    2005-01-01

    and a quarter-wave retardation plate. The proposed method for testing the device efficiency employs a biofeedback from the subject by recording the biopotentials evoked by the laser stimulus at related distant SLB sites. Therefore measuring of SLB biopotentials caused by the stimulus would indicate that a biopotential has been evoked at the irradiated site and has propagated to the measurement sites, rather than being caused by local changes of the electrical skin conductivity. Results A prototype device was built according to the proposed design using relatively inexpensive and commercially available components. The laser output can be pulse modulated from 0.1 to 1000 Hz with a duty factor from 10 to 90 %. The average output power density can be adjusted in the range 24 – 480 mW/cm2, where the total irradiation is limited to 2 Joule per stimulation session. The device is controlled by an 8-bit RISC Flash microcontroller with internal RAM and EEPROM memory, which allows for a wide range of different stimulation protocols to be implemented and memorized. The integrated laser diode driver with its onboard light power control loop provides safe and consistent laser modulation. The prototype was tested on the right Tri-Heater (TH acupuncture meridian according to the proposed method. Laser evoked potentials were recorded from most of the easily accessible SLB along the meridian under study. They appear like periodical spikes with a repetition rate from 0.05 to 10 Hz and amplitude range 0.1 – 1 mV. Conclusion The prototype's specifications were found to be better or comparable to those of other existing devices. It features low component count, small size and low power consumption. Because of the low power levels used the possibility of sensory nerve stimulation via the phenomenon of shock or heat is excluded. Thus senseless optical stimulation is achieved. The optical system presented offers simple and cost effective way for beam collimation and polarization change

  17. Spiral 2 cryogenic system overview: Design, construction and performance test

    Science.gov (United States)

    Deschildre, C.; Bernhardt, J.; Flavien, G.; Crispel, S.; Souli, M.; Commeaux, C.

    2014-01-01

    The new particle accelerator project Spiral 2 at GANIL ("Grand Accélérateur d'Ions Lourds, i.e. National Large Heavy Ion Accelerator) in Caen (France) is a very large installation, intended to serve fundamental research in nuclear physics. The heart of the future machine features a superconductor linear accelerator, delivering a beam until 20Mev/A, which are then used to bombard a matter target. The resulting reactions, such as fission, transfer, fusion, etc. will generate billions of exotic nuclei. To achieve acceleration of the beam, 26 cavities which are placed inside cryomodules at helium cryogenic temperature will be used. AL-AT (Air Liquide Advanced Technologies) takes part to the project by supplying cryogenic plant. The plant includes the liquefier associated to its compressor station, a large dewar, a storage tank for helium gas and transfer lines. In addition, a helium recovery system composed of recovery compressor, high pressure storage and external purifier has been supplied. Customized HELIAL LF has been designed, manufactured and tested by AL-AT to match the refrigeration power need for the Spiral 2 project which is around 1300 W equivalent at 4.5 K.

  18. Custom-designed nanomaterial libraries for testing metal oxide toxicity.

    Science.gov (United States)

    Pokhrel, Suman; Nel, André E; Mädler, Lutz

    2013-03-19

    Advances in aerosol technology over the past 10 years have enabled the generation and design of ultrafine nanoscale materials for many applications. A key new method is flame spray pyrolysis (FSP), which produces particles by pyrolyzing a precursor solution in the gas phase. FSP is a highly versatile technique for fast, single-step, scalable synthesis of nanoscale materials. New innovations in particle synthesis using FSP technology, including variations in precursor chemistry, have enabled flexible, dry synthesis of loosely agglomerated, highly crystalline ultrafine powders (porosity ≥ 90%) of binary, ternary, and mixed-binary-and-ternary oxides. FSP can fulfill much of the increasing demand, especially in biological applications, for particles with specific material composition, high purity, and high crystallinity. In this Account, we describe a strategy for creating nanoparticle libraries (pure or Fedoped ZnO or TiO₂) utilizing FSP and using these libraries to test hypotheses related to the particles' toxicity. Our innovation lies in the overall integration of the knowledge we have developed in the last 5 years in (1) synthesizing nanomaterials to address specific hypotheses, (2) demonstrating the electronic properties that cause the material toxicity, (3) understanding the reaction mechanisms causing the toxicity, and (4) extracting from in vitro testing and in vivo testing in terrestrial and marine organisms the essential properties of safe nanomaterials. On the basis of this acquired knowledge, we further describe how the dissolved metal ion from these materials (Zn²⁺ in this Account) can effectively bind with different cell constituents, causing toxicity. We use Fe-S protein clusters as an example of the complex chemical reactions taking place after free metal ions migrate into the cells. As a second example, TiO₂ is an active material in the UV range that exhibits photocatalytic behavior. The induction of electron-hole (e⁻/h⁺) pairs followed by

  19. Design and Drawing for Production. Syllabus. Field Test Edition II.

    Science.gov (United States)

    New York State Education Dept., Albany.

    This syllabus, which replaces the New York State Education Department publication "Mechanical Drawing and Design," is intended for use in teaching a high school course in design and drawing for production. The materials included in the guide reflect a shift away from the conventional methods of teaching design and drawing to a greater…

  20. Design, analysis, and test verification of advanced encapsulation system

    Science.gov (United States)

    Garcia, A.; Minning, C.

    1981-01-01

    Procurement of 4 in x 4 in polycrystalline solar cells were proceeded with some delays. A total of 1200 cells were procured for use in both the verification testing and qualification testing. Additional thermal structural analyses were run and the data are presented. An outline of the verification testing is included with information on test specimen construction.

  1. Design and preliminary testing of an active intramedullary nail.

    Science.gov (United States)

    Letechipia, Jorge; Alessi, Aldo; Rodríguez, Gerardo; Asbun, Juan

    2014-07-01

    To enhance bone healing through controlled interfragmentary movements, numerous experiments have been conducted in animal models employing external fixation devices to apply mechanical stimulation to the fracture site. However, the efficacy of these fixators has been questioned. On the other hand, intramedullary nailing is a widely established clinical practice for reducing closed tibial fractures. In an effort to enhance bone healing, to overcome the disadvantages of external fixators (i.e., non-uniform linear movement), and to enhance the advantages of intramedullary nailing (i.e., reduced risk of infection), an active intramedullary nail has been designed and fabricated. Active nail will provide controlled in-situ stimulation (simultaneously axial and shear) from a selectable acceleration (0.35 to 8.17g - axial and 0.44g to 10.46 g - shear), associated to a discreet set of high-frequency values (29.82 - 172.05 Hz - axial and 29.68 to 172.13 - shear). Five active intramedullary nails were fabricated, capable of producing average acceleration between 0.35 and 10.4 g. Acceleration is applied simultaneously by all three axes (x, y, and z), resulting in axial and shear stimulation. For each acceleration level, there are a limited number of frequencies that can be selected. For each frequency, there are a limited number of acceleration levels that can be delivered. Bone morphology produces different levels of acceleration in each axe. Acceleration levels are controlled externally only by the variable power source (1.5VDC to 6VDC). Accelerated in-vitro testing showed that the life of the device exceeded the required active period. Mechanical test showed that in case of failure of the active component, the active intramedullary nail will act as a standard nail, allowing bone healing to continue its normal course. Ex vivo experiments were conducted inserting one active intramedullary nail in two intact adult sheep tibia. Results indicate that the strain induced by the

  2. Test bed control center design concept for Tank Waste Retrieval Manipulator Systems

    Energy Technology Data Exchange (ETDEWEB)

    Sundstrom, E. [Human Machine Interfaces, Inc., Knoxville, TN (United States); Draper, J.V. [Oak Ridge National Lab., TN (United States); Fausz, A. [Tennessee Univ., Knoxville, TN (United States). Dept. of Psychology

    1995-02-01

    This paper describes the design concept for the control center for the Single Shell Tank Waste Retrieval Manipulator System test bed and the design process behind the concept. The design concept supports all phases of the test bed mission, including technology demonstration, comprehensive system testing, and comparative evaluation for further development and refinement of the TWRMS for field operations.

  3. 40 CFR Figure F-1 to Subpart F of... - Designation Testing Checklist

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Designation Testing Checklist F Figure F-1 to Subpart F of Part 53 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Figure F-1 to Subpart F of Part 53—Designation Testing Checklist DESIGNATION TESTING CHECKLIST FOR CLASS...

  4. Humidifying system design of PEMFC test platform based on the mixture of dry and wet air

    Directory of Open Access Journals (Sweden)

    Tiancai Ma

    2015-01-01

    Full Text Available Based on the present humidifying system of PEMFC test platform, a novel design based on dry and wet air mixture is proposed. Key parameters are calculated, and test platform is built. Three experiments are implemented to test the performance of proposed design. Results show that the new design can meet the requirements, and realize the quick response and accurate control.

  5. 76 FR 82323 - Design, Inspection, and Testing Criteria for Air Filtration and Adsorption Units

    Science.gov (United States)

    2011-12-30

    ... COMMISSION Design, Inspection, and Testing Criteria for Air Filtration and Adsorption Units AGENCY: Nuclear...-1274, ``Design, Inspection, and Testing Criteria for Air Filtration and Adsorption Units of....'' This guide applies to the design, inspection, and testing of air filtration and iodine adsorption units...

  6. Evaluation of LLTR Series II test A-2 results. [Large Leak Test Rig

    Energy Technology Data Exchange (ETDEWEB)

    Whipple, J C; Shoopak, B F; Chen, K; Fan, C K; Odegaard, T K

    1980-07-01

    Series II Test A-2 employed a double-ended (DEG) tube rupture 122'' above the lower end of the LLTI shroud under typical evaporator startup conditions. The leak site was located 2'' below Spacer No. 4 at the same location as Test A-lb which employed nitrogen as the inert non-reactive injection fluid. The test yielded peak pressures of 375 psig in the leak site region and 485 psig at the upper tubesheet approximately 10 ms and 12 ms, respectively, after tube rupture. Higher peak temperatures (approx. 2200/sup 0/F) were measured in this test than during Series I sodium-water reaction testing (peak temperatures measured during Series were about 1900/sup 0/F maximum). These high peak temperatures occurred in Test A-2 long after the tube rupture (approx. 8 seconds) and did not contribute to the acoustic peak pressures produced in the first few milliseconds.

  7. Demonstrating Hemostasis with a Student-Designed Prothrombin Time Test

    Science.gov (United States)

    Fardy, Richard Wiley

    1978-01-01

    Describes a blood coagulation test developed by two high school biology students. Although the test lacks some precision, results indicate that the technique is comparable to standard methods used in laboratories. (MA)

  8. Permutation Test Approach for Ordered Alternatives in Randomized Complete Block Design: A Comparative Study

    OpenAIRE

    GOKPINAR, Esra; GUL, Hasan; GOKPINAR, Fikri; BAYRAK, Hülya; OZONUR, Deniz

    2013-01-01

    Randomized complete block design is one of the most used experimental designs in statistical analysis. For testing ordered alternatives in randomized complete block design, parametric tests are used if random sample are drawn from Normal distribution. If normality assumption is not provide, nonparametric methods are used. In this study, we are interested nonparametric tests and we introduce briefly the nonparametric tests, such as Page, Modified Page and Hollander tests. We also give Permutat...

  9. Testing Universal Design of a Public Media Website with Diverse Users.

    Science.gov (United States)

    Chen, Weiqin; Kessel, Siri; Sanderson, Norun C; Tatara, Naoe

    2016-01-01

    Testing with users can identify more issues than other testing methods. Many researchers have argued for the importance of user testing in Universal Design. However, testing Universal Design with diverse users poses many challenges. In this paper we will share our experience with testing the Universal Design of a public media website with real users. We discuss the challenges faced and lessons learned in the process.

  10. Academic literacy tests: design, development, piloting and refinement

    African Journals Online (AJOL)

    The paper investigates how a blueprint for an academic literacy test may be conceptualised, how that could be operationalised, and demonstrates how pilot tests are analysed with a view to refining them. Finally, that leads to a consideration of how to arrive at a final draft test, and how valid and appropriate interpretations of ...

  11. SEDIMENT TOXICITY ASSESSMENT: COMPARISON OF STANDARD AND NEW TESTING DESIGNS

    Science.gov (United States)

    Standard methods of sediment toxicity testing are fairly well accepted; however, as with all else, evolution of these methods is inevitable. We compared a standard ASTM 10-day amphipod toxicity testing method with smaller, 48- and 96-h test methods using very toxic and reference ...

  12. Occupant safety design approaches using physical testing and numerical simulation.

    NARCIS (Netherlands)

    Linzmaier, L.C.; Carvalho, J.R.; Benar, M.; Vilela, D.; Altamore, P.

    2001-01-01

    The vehicle design environment from a crashworthiness and safety perspective has become increasingly complex in recent years. New legal requirements imposed by the European Union (EU) and the United States National Highway Traffic Safety Administration (NHTSA) have created a design space of great

  13. Human factors issues in the design of stereo-rendered photorealistic objects: a stereoscopic Turing test

    Science.gov (United States)

    Brack, Collin D.; Clewlow, John C.; Kessel, Ivan

    2010-02-01

    We present visual acuity metrics, human factors issues, and technical considerations in the construction of a stereorendered reality test in the spirit of the Turing test, Alan Turing's famous artificial intelligence test designed to explore the boundaries between human and machine interaction. The overall aim of this work is to provide guiding principles in the design of a stereoscopic reality test.

  14. 46 CFR 160.027-7 - Pre-approval tests for alternate platform designs.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Pre-approval tests for alternate platform designs. 160... § 160.027-7 Pre-approval tests for alternate platform designs. (a) The tests in this section are for... deformation as a result of this test. (c) The float body must be supported so that the platform is suspended...

  15. AVNG as a Test Case for Cooperative Design

    Energy Technology Data Exchange (ETDEWEB)

    Luke, S J

    2010-05-21

    Designing a measurement system that might be used in a nuclear facility is a challenging, if not daunting, proposition. The situation is made more complicated when the system needs to be designed to satisfy the disparate requirements of a monitoring and a host party - a relationship that could prove to be adversarial. The cooperative design of the elements of the AVNG (Attribute Verification with Neutrons and Gamma Rays) system served as a crucible that exercised the possible pitfalls in the design and implementation of a measurement system that could be used in a host party nuclear facility that satisfied the constraints of operation for both the host and monitoring parties. Some of the issues that needed to be addressed in the joint design were certification requirements of the host party and the authentication requirements of the monitoring party. In this paper the nature of the problem of cooperative design will be introduced. The details of cooperative design revolve around the idiosyncratic nature of the adversarial relationship between the parties involved in a possible measurement regime, particularly if measurements on items that may contain sensitive information are being pursued. The possibility of an adversarial interaction is more likely if an information barrier is required for the measurement system. The origin of the antagonistic elements of the host party and hosted party relationship will be considered. In addition, some of the conclusions will be presented that make cooperative design (and development) proceed more efficiently. Finally, some lessons learned will be presented as a result of this expedition into cooperative design.

  16. The Design of Cruciform Test Specimens for Planar Biaxial Testing of Fabrics for Inflatable Aerodynamic Decelerators

    Science.gov (United States)

    Corbin, Cole K.

    2012-01-01

    A preliminary analytical study was conducted to investigate the effects of cruciform test specimen geometries on strain distribution uniformity in the central gage section under biaxial loads. Three distinct specimen geometries were considered while varying the applied displacements in the two orthogonal directions. Two sets of woven fabric material properties found in literature were used to quantify the influence of specimen geometries on the resulting strain distributions. The uniformity of the strain distribution is quantified by taking the ratio between the two orthogonal strain components and characterizing its gradient across the central area of the gage section. The analysis results show that increasing the specimen s length relative to its width promotes a more uniform strain distribution in the central section of the cruciform test specimen under equibiaxial enforced tensile displacements. However, for the two sets of material properties used in this study, this trend did not necessary hold, when the enforced tensile displacements in the two orthogonal directions were not equal. Therefore, based on the current study, a tail length that is 1.5 times that of the tail width is recommended to be the baseline/initial specimen design.

  17. Optimal design for projectile and blast protection during pressure testing

    OpenAIRE

    Storhaug, Eirik

    2016-01-01

    The thesis identifies the main hazards in hydrostatic pressure testing as pressure wave, water jet, burst of water hose, fragment and projectile discharge as well as ejection of plug or end section. A test, where a pressurized vessel ejected a projectile, was conducted as part of the thesis. The aim of this test was to find the relationship between potential energy inside pressure vessel and kinetic energy in a discharged projectile. The results showed that the Baker formula together with...

  18. Design of a Pelton Model Test Rig at Kathmandu University

    OpenAIRE

    Stene, Ida Bordi

    2014-01-01

    Design av Pelton modelltestrigg for Kathmandu University. Pelton-riggen ved vannkraftlaboratoriet på NTNU vil bli brukt som utgangspunkt. Nødvendige endringer vil bli evaluert, designet og dokumentert.

  19. Celebrating 100 Years of Flight: Testing Wing Designs in Aircraft

    Science.gov (United States)

    Pugalee, David K.; Nusinov, Chuck; Giersch, Chris; Royster, David; Pinelli, Thomas E.

    2005-01-01

    This article describes an investigation involving several designs of airplane wings in trial flight simulations based on a NASA CONNECT program. Students' experiences with data collection and interpretation are highlighted. (Contains 5 figures.)

  20. Skills for Creativity in Graphic Design: Testing the relationship between visualisation, written comprehension, and graphic design creativity

    OpenAIRE

    Jeffries, Karl K.

    2017-01-01

    This thesis explores the relationship between skills, creativity and domain. It is situated within an evolving topic of design creativity; an emerging field that interfaces between creativity research, which has often occurred in the field of psychology, and design research often associated with the fields of engineering, art and design.\\ud \\ud Through five interconnected studies, and the domain of graphic design as the basis for experimentation, the research culminates in testing the relatio...

  1. Designs for Environmental Scanning Systems: Tests of a Contingency Theory

    OpenAIRE

    Masoud Yasai-Ardekani; Paul C. Nystrom

    1996-01-01

    This study compared the relationships between organizational context and the designs of environmental scanning systems for organizational with effective and ineffective scanning systems. The study analyzed data from over 100 North American business organizations. Results indicate that organizations with effective scanning systems tend to align their scanning designs with the requirements of their context. On the other hand, the results show that organizations with ineffective scanning systems...

  2. Design and Test of a Transonic Axial Splittered Rotor

    Science.gov (United States)

    2015-06-15

    AXIAL SPLITTERED ROTOR A new design procedure was developed that uses commercial-off-the- shelf software (MATLAB, SolidWorks, and ANSYS-CFX) for the...TRANSONIC AXIAL SPLITTERED ROTOR Report Title A new design procedure was developed that uses commercial-off-the- shelf software (MATLAB, SolidWorks, and... placement , and performance benefits. In particular, it was determined that moving the splitter blade forward in the passage between the main blades

  3. Optimum Design of PIλDμ Controller for an Automatic Voltage Regulator System Using Combinatorial Test Design.

    Science.gov (United States)

    Ahmed, Bestoun S; Sahib, Mouayad A; Gambardella, Luca M; Afzal, Wasif; Zamli, Kamal Z

    2016-01-01

    Combinatorial test design is a plan of test that aims to reduce the amount of test cases systematically by choosing a subset of the test cases based on the combination of input variables. The subset covers all possible combinations of a given strength and hence tries to match the effectiveness of the exhaustive set. This mechanism of reduction has been used successfully in software testing research with t-way testing (where t indicates the interaction strength of combinations). Potentially, other systems may exhibit many similarities with this approach. Hence, it could form an emerging application in different areas of research due to its usefulness. To this end, more recently it has been applied in a few research areas successfully. In this paper, we explore the applicability of combinatorial test design technique for Fractional Order (FO), Proportional-Integral-Derivative (PID) parameter design controller, named as FOPID, for an automatic voltage regulator (AVR) system. Throughout the paper, we justify this new application theoretically and practically through simulations. In addition, we report on first experiments indicating its practical use in this field. We design different algorithms and adapted other strategies to cover all the combinations with an optimum and effective test set. Our findings indicate that combinatorial test design can find the combinations that lead to optimum design. Besides this, we also found that by increasing the strength of combination, we can approach to the optimum design in a way that with only 4-way combinatorial set, we can get the effectiveness of an exhaustive test set. This significantly reduced the number of tests needed and thus leads to an approach that optimizes design of parameters quickly.

  4. Optimum Design of PIλDμ Controller for an Automatic Voltage Regulator System Using Combinatorial Test Design.

    Directory of Open Access Journals (Sweden)

    Bestoun S Ahmed

    Full Text Available Combinatorial test design is a plan of test that aims to reduce the amount of test cases systematically by choosing a subset of the test cases based on the combination of input variables. The subset covers all possible combinations of a given strength and hence tries to match the effectiveness of the exhaustive set. This mechanism of reduction has been used successfully in software testing research with t-way testing (where t indicates the interaction strength of combinations. Potentially, other systems may exhibit many similarities with this approach. Hence, it could form an emerging application in different areas of research due to its usefulness. To this end, more recently it has been applied in a few research areas successfully. In this paper, we explore the applicability of combinatorial test design technique for Fractional Order (FO, Proportional-Integral-Derivative (PID parameter design controller, named as FOPID, for an automatic voltage regulator (AVR system. Throughout the paper, we justify this new application theoretically and practically through simulations. In addition, we report on first experiments indicating its practical use in this field. We design different algorithms and adapted other strategies to cover all the combinations with an optimum and effective test set. Our findings indicate that combinatorial test design can find the combinations that lead to optimum design. Besides this, we also found that by increasing the strength of combination, we can approach to the optimum design in a way that with only 4-way combinatorial set, we can get the effectiveness of an exhaustive test set. This significantly reduced the number of tests needed and thus leads to an approach that optimizes design of parameters quickly.

  5. 4BMS-X Design and Test Activation

    Science.gov (United States)

    Peters, Warren T.; Knox, James C.

    2017-01-01

    In support of the NASA goals to reduce power, volume and mass requirements on future CO2 (Carbon Dioxide) removal systems for exploration missions, a 4BMS (Four Bed Molecular Sieve) test bed was fabricated and activated at the NASA Marshall Space Flight Center. The 4BMS-X (Four Bed Molecular Sieve-Exploration) test bed used components similar in size, spacing, and function to those on the flight ISS flight CDRA system, but were assembled in an open framework. This open framework allows for quick integration of changes to components, beds and material systems. The test stand is highly instrumented to provide data necessary to anchor predictive modeling efforts occurring in parallel to testing. System architecture and test data collected on the initial configurations will be presented.

  6. Beam Line Design for the CERN Hiradmat Test Facility

    OpenAIRE

    Hessler, C.; Assmann, R.; Goddard, B; Meddahi, M; Weterings, W

    2009-01-01

    The LHC phase II collimation project requires beam shock and impact tests of materials used for beam intercepting devices. Similar tests are also of great interest for other accelerator components such as beam entrance/exit windows and protection devices. For this purpose a dedicated High Radiation Material test facility (HiRadMat) is under study. This facility may be installed at CERN at the location of a former beam line. This paper describes the associated beam line which is foreseen to de...

  7. NASA preferred reliability-practices for design and test

    Science.gov (United States)

    Lisk, Ronald C.

    1992-01-01

    NASA HQ established the NASA R&M Steering Committee (R&MSC) comprised of membership from each NASA field center. The primary charter of the R&MSC is to obtain, record, and share the best design practices that NASA has applied to successful space flight programs and current design considerations (guidelines) that should enhance flight reliability on emerging programs. The practices and guidelines are being assembled in a living document for distribution to NASA centers and the aerospace community. The document will be updated annually with additional practices and guidelines as contributions from the centers are reviewed and approved by the R&MSC. Practices and guidelines are not requirements, but rather a means of sharing procedures and techniques that a given center and the R&MSC together feel have strong technical merit and application to the design of space-related equipment.

  8. Test Requirements and Conceptual Design for a Potassium Test Loop to Support an Advanced Potassium Rankine Cycle Power Conversion Systems

    Energy Technology Data Exchange (ETDEWEB)

    Yoder, JR.G.L.

    2006-03-08

    Parameters for continuing the design and specification of an experimental potassium test loop are identified in this report. Design and construction of a potassium test loop is part of the Phase II effort of the project ''Technology Development Program for an Advanced Potassium Rankine Power Conversion System''. This program is supported by the National Aeronautics and Space Administration. Design features for the potassium test loop and its instrumentation system, specific test articles, and engineered barriers for ensuring worker safety and protection of the environment are described along with safety and environmental protection requirements to be used during the design process. Information presented in the first portion of this report formed the basis to initiate the design phase of the program; however, the report is a living document that can be changed as necessary during the design process, reflecting modifications as additional design details are developed. Some portions of the report have parameters identified as ''to be determined'' (TBD), reflecting the early stage of the overall process. In cases where specific design values are presently unknown, the report attempts to document the quantities that remain to be defined in order to complete the design of the potassium test loop and supporting equipment.

  9. Medical chilling device designed for hypothermic hydration graft storage system: Design, thermohydrodynamic modeling, and preliminary testing

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jung Hwan [Hongik University, Seoul (Korea, Republic of)

    2015-02-15

    Hypothermic hydration graft storage is essential to reduce the metabolic demand of cells in vitro. The alleviated metabolic demands reduce the emergence rate of anaerobic metabolism generating adenosine triphosphate (ATP) energy that creates free radicals. The cessive free radicals can damage cells and tissues due to their highly oxidative power with molecules. Current cooling systems such as a conventional air cooling system and an ice pack system are inappropriate for chilling cell tissues in vitro because of inconvenience in use and inconsistent temperature sustainability caused by large size and progressive melting, respectively. Here, we develop a medical chilling device (MCD) for hypothermic hydration graft storage based on thermo-hydrodynamic modeling and thermal electric cooling technology. Our analysis of obtained hydrodynamic thermal behavior of the MCD revealed that the hypothermic condition of 4 .deg. C was continuously maintained, which increased the survival rates of cells in vitro test by reduced free radicals. The validated performance of the MCD promises future development of an optimal hypothermic hydration graft storage system designed for clinical use.

  10. New Designs of Biofuel Cells and Their Work Testing

    Science.gov (United States)

    Stom, D. I.; Zhdanova, G. O.; Kashevskii, A. V.

    2017-11-01

    The developed designs and modifications of biofuel elements (BFC) are presented. The approbation of their work using strains and consortia of microorganisms is given. The proposed designs made it possible to solve a number of problems that arise when working with BFC: 1) gain access to the contents of the anode BFC space without disturbing its sterility and anaerobic environment; 2) take samples from the anode space for chemical and microbiological analysis without interrupting the BFC operation; 3) conduct continuous monitoring of electrochemical processes directly in the anode space (Ox-Red media, electrode charge, concentration of hydrogen and other ions by means of potentiometry).

  11. Design and Testing of Improved Spacesuit Shielding Components

    OpenAIRE

    Ware, J.; Ferl, J.; Wilson, J W; Clowdsley, M.S.; DeAngelis, G.; Tweed, J.; Zeitlin, C.J.

    2002-01-01

    In prior studies of the current Shuttle Spacesuit (SSA), where basic fabric lay-ups were tested for shielding capabilities, it was found that the fabric portions of the suit give far less protection than previously estimated due to porosity and non-uniformity of fabric and LCVG components. In addition, overall material transmission properties were less than optimum. A number of alternate approaches are being tested to provide more uniform coverage and to use more efficient materials. We...

  12. Extended Cold Testing of a Russian Pulsating Mixer Pump at the Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, BE

    2002-12-23

    The effectiveness of a mixer is dependent on the size of the tank to be mixed, the characteristics of the waste, and the operating conditions. Waste tanks throughout the U.S. Department of Energy Complex require mixing and mobilization systems capable of (1) breaking up and suspending materials that are difficult to mix and pump, without introducing additional liquids into the tank; (2) complementing and augmenting the performance of other remotely operated and/or robotic waste retrieval systems; and (3) operating in tanks with various quantities of waste. The Oak Ridge Russian pulsating mixer pump (PMP) system was designed with the flexibility to permit deployment in a variety of cylindrical tanks. The PMP was installed at the Tanks Technology Cold Test Facility at the Oak Ridge National Laboratory (ORNL) to assess the performance of the system over an extended range of operating conditions, including supply pressures up to 175 psig. Previously conducted cold tests proved the applicability of the PMP for deployment in ORNL gunite tank TH-4. The previous testing and hot demonstrations had been limited to operating at air supply pressures of <100 psig. The extended cold testing of the Russian PMP system showed that the system was capable of mobilizing waste simulants in tanks in excess of 20-ft diam. The waste simulant used in these tests was medium-grain quartz sand. The system was successfully installed, checked out, and operated for 406 pulse discharge cycles. Only minor problems (i.e., a sticking air distributor valve and a few system lockups) were noted. Some improvements to the design of the air distributor valve may be needed to improve reliability. The air supply requirements of the PMP during the discharge cycle necessitated the operation of the system in single pulse discharge cycles to allow time for the air supply reservoir to recharge to the required pressure. During the test program, the system was operated with sand depths of 2, 4, and 4.5 in.; at

  13. Gear Design Effects on the Performance of High Speed Helical Gear Trains as Used in Aerospace Drive Systems

    Science.gov (United States)

    Handschuh, R.; Kilmain, C.; Ehinger, R.; Sinusas, E.

    2013-01-01

    The performance of high-speed helical gear trains is of particular importance for tiltrotor aircraft drive systems. These drive systems are used to provide speed reduction / torque multiplication from the gas turbine output shaft and provide the necessary offset between these parallel shafts in the aircraft. Four different design configurations have been tested in the NASA Glenn Research Center, High Speed Helical Gear Train Test Facility. The design configurations included the current aircraft design, current design with isotropic superfinished gear surfaces, double helical design (inward and outward pumping), increased pitch (finer teeth), and an increased helix angle. All designs were tested at multiple input shaft speeds (up to 15,000 rpm) and applied power (up to 5,000 hp). Also two lubrication, system-related, variables were tested: oil inlet temperature (160 to 250 degF) and lubricating jet pressure (60 to 80 psig). Experimental data recorded from these tests included power loss of the helical system under study, the temperature increase of the lubricant from inlet to outlet of the drive system and fling off temperatures (radially and axially). Also, all gear systems were tested with and without shrouds around the gears. The empirical data resulting from this study will be useful to the design of future helical gear train systems anticipated for next generation rotorcraft drive systems.

  14. Design, synthesis, manufacturing, and testing of a competitive FHSAE vehicle.

    Science.gov (United States)

    2012-06-01

    The goal of this multi-year project is to create a fully functional University of Idaho entry in the hybrid FSAE competition scheduled for : 2012. Vehicle integration has been completed as part of a variety of 2010-2011 senior design projects and 201...

  15. New design algorithm and reliability testing of solar powered near ...

    African Journals Online (AJOL)

    Our aircraft will combine lighter-than-air technology to augment the lift from the wing. Every major components contributing to the aircraft total weight has been considered, resulting in a range of design solutions. We chose wing span and aspect ratio of 50m and 13 respectively, from which other specifications of the aircraft ...

  16. Bayesian Hypothesis Testing for Single-Subject Designs

    NARCIS (Netherlands)

    de Vries, Rivka M.; Morey, Richard D.

    Researchers using single-subject designs are typically interested in score differences between intervention phases, such as differences in means or trends. If intervention effects are suspected in data, it is desirable to determine how much evidence the data show for an intervention effect. In

  17. Design, fabrication and testing of elliptical crystal bender for the ...

    Indian Academy of Sciences (India)

    The heart of the beam-line is the crystal bender which has been designed on the basis of the principle of four-point bending and has been fabricated indigenously. The crystal bender is capable of producing pre-defined elliptical curvature on a crystal surface by applying different couples at the two-ends of the crystal which ...

  18. Design, testing, and delivery of an interactive graphics display subsystem

    Science.gov (United States)

    Holmes, B.

    1973-01-01

    An interactive graphics display system was designed to be used in locating components on a printed circuit card and outputting data concerning their thermal values. The manner in which this was accomplished in terms of both hardware and software is described. An analysis of the accuracy of this approach is also included.

  19. Design, construction and test operation of a thermal incinerator for ...

    African Journals Online (AJOL)

    Montfort type intermittent incinerator for combusting medical wastes were the waste types, fuel, chimney size, and flue gas residence time. The design analysis was based on flue gas flow rate of 0.13 m3/s, maximum primary chamber ...

  20. Testing familial transmission of smoking with two different research designs

    NARCIS (Netherlands)

    Treur, Jorien L; Verweij, Karin J. H.; Abdellaoui, Abdel; Fedko, Iryna O; de Zeeuw, E.L.; Ehli, Erik A; Davies, Gareth E; Hottenga, Jouke-Jan; Willemsen, Gonneke; Boomsma, Dorret I; Vink, Jacqueline M

    2017-01-01

    Introduction: Classical twin studies show that smoking is heritable. To determine if shared family environment plays a role in addition to genetic factors, and if they interact (GxE), we use a children-of-twins design. In a second sample, we measure genetic influence with polygenic risk scores (PRS)

  1. Design and Testing of Aeroelastically Tailored Wings Under Maneuver Loading

    NARCIS (Netherlands)

    Werter, N.P.M.; Sodja, J.; De Breuker, R.

    2016-01-01

    The goal of the present paper is to provide experimental validation data for the aeroelastic analysis of composite aeroelastically tailored wings with a closed-cell cross-sectional structure. Several rectangular wings with differ- ent skin thicknesses and composite layups are designed in order to

  2. Design and wear testing of a temporomandibular joint prosthesis articulation

    NARCIS (Netherlands)

    van Loon, JP; Verkerke, GJ; de Vries, MP; de Bont, LGM

    As part of the development of a total temporomandibular joint prosthesis, a prosthesis articulation was designed. The articulation consists of a spherical head (ball) of the mandibular part, rotating against an enveloping ultra-high-molecular-weight polyethylene (UHMWPE) disc with a flat cranial

  3. Design, Construction and Testing of an Uninterruptible Power ...

    African Journals Online (AJOL)

    The interruption of power supply is a source of concern to the consumer, and gives rise to the need to provide emergency power source in some important areas of both domestic and industrial application. This has led to the design and construction of the Uninterruptible Power Supply (UPS). In this work, we made use of ...

  4. Test verification and design of the bicycle frame parameters

    Science.gov (United States)

    Zhang, Long; Xiang, Zhongxia; Luo, Huan; Tian, Guan

    2015-07-01

    Research on design of bicycles is concentrated on mechanism and auto appearance design, however few on matches between the bike and the rider. Since unreasonable human-bike relationship leads to both riders' worn-out joints and muscle injuries, the design of bicycles should focus on the matching. In order to find the best position of human-bike system, simulation experiments on riding comfort under different riding postures are done with the lifemode software employed to facilitate the cycling process as well as to obtain the best position and the size function of it. With BP neural network and GA, analyzing simulation data, conducting regression analysis of parameters on different heights and bike frames, the equation of best position of human-bike system is gained at last. In addition, after selecting testers, customized bikes based on testers' height dimensions are produced according to the size function. By analyzing and comparing the experimental data that are collected from testers when riding common bicycles and customized bicycles, it is concluded that customized bicycles are four times even six times as comfortable as common ones. The equation of best position of human-bike system is applied to improve bikes' function, and the new direction on future design of bicycle frame parameters is presented.

  5. Design and Testing of a Cupola Furnace for Micheal Okpara ...

    African Journals Online (AJOL)

    ... for the present study. It is thus recommended that this novelty design be used as a foundation for building bigger furnaces and for the sensitisation of students' awareness in foundry technology and practices. Keywords: furnace lining, refractory materials, critical radius of insulation, furnace fuel, heat transfer, cupola zones ...

  6. User-Centered Design and Usability Testing of a Web Site: An Illustrative Case Study.

    Science.gov (United States)

    Corry, Michael D.; Frick, Theodore W.; Hansen, Lisa

    1997-01-01

    Presents an overview of user-centered design and usability testing. Describes a Web site evaluation project at a university, the iterative process of rapid prototyping and usability testing, and how the findings helped to improve the design. Discusses recommendations for university Web site design and reflects on problems faced in usability…

  7. Efficient preliminary floating offshore wind turbine design and testing methodologies and application to a concrete spar design.

    Science.gov (United States)

    Matha, Denis; Sandner, Frank; Molins, Climent; Campos, Alexis; Cheng, Po Wen

    2015-02-28

    The current key challenge in the floating offshore wind turbine industry and research is on designing economic floating systems that can compete with fixed-bottom offshore turbines in terms of levelized cost of energy. The preliminary platform design, as well as early experimental design assessments, are critical elements in the overall design process. In this contribution, a brief review of current floating offshore wind turbine platform pre-design and scaled testing methodologies is provided, with a focus on their ability to accommodate the coupled dynamic behaviour of floating offshore wind systems. The exemplary design and testing methodology for a monolithic concrete spar platform as performed within the European KIC AFOSP project is presented. Results from the experimental tests compared to numerical simulations are presented and analysed and show very good agreement for relevant basic dynamic platform properties. Extreme and fatigue loads and cost analysis of the AFOSP system confirm the viability of the presented design process. In summary, the exemplary application of the reduced design and testing methodology for AFOSP confirms that it represents a viable procedure during pre-design of floating offshore wind turbine platforms. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  8. Efficient preliminary floating offshore wind turbine design and testing methodologies and application to a concrete spar design

    Science.gov (United States)

    Matha, Denis; Sandner, Frank; Molins, Climent; Campos, Alexis; Cheng, Po Wen

    2015-01-01

    The current key challenge in the floating offshore wind turbine industry and research is on designing economic floating systems that can compete with fixed-bottom offshore turbines in terms of levelized cost of energy. The preliminary platform design, as well as early experimental design assessments, are critical elements in the overall design process. In this contribution, a brief review of current floating offshore wind turbine platform pre-design and scaled testing methodologies is provided, with a focus on their ability to accommodate the coupled dynamic behaviour of floating offshore wind systems. The exemplary design and testing methodology for a monolithic concrete spar platform as performed within the European KIC AFOSP project is presented. Results from the experimental tests compared to numerical simulations are presented and analysed and show very good agreement for relevant basic dynamic platform properties. Extreme and fatigue loads and cost analysis of the AFOSP system confirm the viability of the presented design process. In summary, the exemplary application of the reduced design and testing methodology for AFOSP confirms that it represents a viable procedure during pre-design of floating offshore wind turbine platforms. PMID:25583870

  9. Design of aging intervention studies: the NIA interventions testing program.

    Science.gov (United States)

    Nadon, N L; Strong, R; Miller, R A; Nelson, J; Javors, M; Sharp, Z D; Peralba, J M; Harrison, D E

    2008-12-01

    The field of biogerontology has made great strides towards understanding the biological processes underlying aging, and the time is ripe to look towards applying this knowledge to the pursuit of aging interventions. Identification of safe, inexpensive, and non-invasive interventions that slow the aging process and promote healthy aging could have a significant impact on quality of life and health care expenditures for the aged. While there is a plethora of supplements and interventions on the market that purport to slow aging, the evidence to validate such claims is generally lacking. Here we describe the development of an aging interventions testing program funded by the National Institute on Aging (NIA) to test candidate interventions in a model system. The development of this program highlights the challenges of long-term intervention studies and provides approaches to cope with the stringent requirements of a multi-site testing program.

  10. Design Assisted by Testing of Cold Formed Steel Trusses

    Directory of Open Access Journals (Sweden)

    Raul Zaharia

    2004-01-01

    Full Text Available The paper presents the experimental program developed in the Laboratory of Civil Engineering Faculty of the ”Politehnica” University of Timișoara, Romania, in order to establish the real behavior of bolted connections in cold formed steel trusses. First, the semi-rigid behavior of cold formed steel truss joints is demonstrated by means of test of typical T joints. A formula for the axial rigidity of single lap joint is determined, and, based on this formula, theoretical models are proposed for the rotational rigidity of cold formed steel truss bolted joints. In the third step of the experimental program, a cold formed steel truss is tested, in order to observe the structural behavior of joints and to validate the theoretical assumptions. A numerical analysis of the tested structure is also performed, and comparisons with the experimental results are given.

  11. Design, Test, and Acceptance Criteria for Helicopter Transparent Enclosures

    Science.gov (United States)

    1978-11-01

    cross-sectional area of the test specimen was determined in a plane parallel to the surface to within +0.01 in. using Vernier Calipers or similar...of 1/16 inch camber until the camber was 0.5 inch, or 3000 psi was measured on the glass material. Micrometer measurements were also taken to measure...Contour Mismatch Test Setup. 140 4 14 Strain Gauges on Opposite SSurfaces of Specimen 106 10/ Interlayer 9 1 SPl 1 Curved Edge , Micrometer A 1 ply

  12. Design and use of a computerized test generating program

    Science.gov (United States)

    Schaefer, Edward; Marschall, Laurence A.

    1980-07-01

    An easy-to-use set of programs for the computerized generation of multiple-choice and essay examinations in an introductory astronomy course is described. The programs allow the user to establish files of test questions and to rapidly assemble printed copies of examinations suitable for photocopying. Written in ALGOL for a Burroughs B6700 computer, the programs can, in principle, be implemented on large mainframe computers or on microcomputers of a size increasingly available to physics departments. The advantages and costs of computerized test generation are discussed.

  13. Design, Development and Testing of the GMI Launch Locks

    Science.gov (United States)

    Sexton, Adam; Dayton, Chris; Wendland, Ron; Pellicciotti, Joseph

    2011-01-01

    Ball Aerospace will deliver the GPM Microwave Imager (GMI), to NASA as one of the 3 instruments to fly on the Global Precipitation Measurement (GPM) mission, for launch in 2013. The radiometer, when deployed, is over 8 feet tall and rotates at 32 revolutions per minute (RPM) can be described as a collection of mechanisms working to achieve its scientific objectives. This collection precisely positions a 1.2 meter reflector to a 48.5 degree off nadir angle while rotating, transferring electrical power and signals to and from the RF receivers, designs two very stable calibration sources, and provides the structural integrity of all the components. There are a total of 7 launch restraints coupling across the moving and stationary elements of the structure,. Getting from design to integration will be the focus of this paper.

  14. Design, Development and Testing of Shape Shifting Wing Model

    Directory of Open Access Journals (Sweden)

    Dean Ninian

    2017-11-01

    Full Text Available The design and development of morphing (shape shifting aircraft wings—an innovative technology that has the potential to increase the aerodynamic efficiency and reduce noise signatures of aircrafts—was carried out. This research was focused on reducing lift-induced drag at the flaps of the aerofoil and to improve the design to achieve the optimum aerodynamic efficiency. Simulation revealed a 10.8% coefficient of lift increase for the initial morphing wing and 15.4% for the optimized morphing wing as compared to conventional wing design. At angles of attack of 0, 5, 10 and 15 degrees, the optimized wing has an increase in lift-to-drag ratio of 18.3%, 10.5%, 10.6% and 4% respectively when compared with the conventional wing. Simulations also showed that there is a significant improvement on pressure distribution over the lower surface of the morphing wing aerofoil. The increase in flow smoothness and reduction in vortex size reduced pressure drag along the trailing edge of the wing as a result an increase in pressure on the lower surface was experienced. A morphing wing reduced the size of the vortices and therefore the noise levels measured were reduced by up to 50%.

  15. Design and field tests of a modified small mammallivetrap

    African Journals Online (AJOL)

    -vinyl-chloride) and metal small mammal live-trap has been developed and subjected to field tests. The PVC traps captured greater numbers of very small rodents and shrews but fewer large rodents than did hardboard ones. s. Afr. J. Zool.

  16. A Control Systems Concept Inventory Test Design and Assessment

    Science.gov (United States)

    Bristow, M.; Erkorkmaz, K.; Huissoon, J. P.; Jeon, Soo; Owen, W. S.; Waslander, S. L.; Stubley, G. D.

    2012-01-01

    Any meaningful initiative to improve the teaching and learning in introductory control systems courses needs a clear test of student conceptual understanding to determine the effectiveness of proposed methods and activities. The authors propose a control systems concept inventory. Development of the inventory was collaborative and iterative. The…

  17. Implementation of centrifuge testing of expansive soils for pavement design.

    Science.gov (United States)

    2017-03-01

    The novel centrifuge-based method for testing of expansive soils from project 5-6048-01 was implemented into : use for the determination of the Potential Vertical Rise (PVR) of roadways that sit on expansive subgrades. The : centrifuge method was mod...

  18. On Designing Construct Driven Situational Judgment Tests: Some Preliminary Recommendations

    Science.gov (United States)

    Guenole, Nigel; Chernyshenko, Oleksandr S.; Weekly, Jeff

    2017-01-01

    Situational judgment tests (SJTs) are widely agreed to be a measurement technique. It is also widely agreed that SJTs are a questionable methodological choice for measurement of psychological constructs, such as behavioral competencies, due to a lack of evidence supporting appropriate factor structures and high internal consistencies.…

  19. Designing for learner engagement with computer-based testing

    Directory of Open Access Journals (Sweden)

    Richard Walker

    2016-12-01

    Full Text Available The issues influencing student engagement with high-stakes computer-based exams were investigated, drawing on feedback from two cohorts of international MA Education students encountering this assessment method for the first time. Qualitative data from surveys and focus groups on the students’ examination experience were analysed, leading to the identification of engagement issues in the delivery of high-stakes computer-based assessments.The exam combined short-answer open-response questions with multiple-choice-style items to assess knowledge and understanding of research methods. The findings suggest that engagement with computer-based testing depends, to a lesser extent, on students’ general levels of digital literacy and, to a greater extent, on their information technology (IT proficiency for assessment and their ability to adapt their test-taking strategies, including organisational and cognitive strategies, to the online assessment environment. The socialisation and preparation of students for computer-based testing therefore emerge as key responsibilities for instructors to address, with students requesting increased opportunities for practice and training to develop the IT skills and test-taking strategies necessary to succeed in computer-based examinations. These findings and their implications in terms of instructional responsibilities form the basis of a proposal for a framework for Learner Engagement with e-Assessment Practices.

  20. Modeling DIF in Complex Response Data Using Test Design Strategies

    Science.gov (United States)

    Kahraman, Nilufer; De Boeck, Paul; Janssen, Rianne

    2009-01-01

    This study introduces an approach for modeling multidimensional response data with construct-relevant group and domain factors. The item level parameter estimation process is extended to incorporate the refined effects of test dimension and group factors. Differences in item performances over groups are evaluated, distinguishing two levels of…

  1. Innovative Medium-Speed Drivetrain Design Program and Dynamometer Testing; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Jonathan; Halse, Christopher

    2015-05-19

    Presented at the American Wind Energy Association WINDPOWER 2015 conference. This presentation covers the concept of the next-generation drivetrain, including its impacts, innovations, design and design benefits, instrumentation, assembly, and testing programs.

  2. Fatigue Test Design: Scenarios for Biaxial Fatigue Testing of a 60-Meter Wind Turbine Blade

    Energy Technology Data Exchange (ETDEWEB)

    Post, Nathan [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-07-01

    Current practice in commercial certification of wind turbine blades is to perform separate flap and lead-lag fatigue tests. The National Renewable Energy Laboratory has been researching and evaluating biaxial fatigue testing techniques and demonstrating various options, typically on smaller-scale test articles at the National Wind Technology Center. This report evaluates some of these biaxial fatigue options in the context of application to a multimegawatt blade certification test program at the Wind Technology Testing Center in Charlestown, Massachusetts.

  3. LABORATORY TESTING OF BENTONITE CLAYS FOR LANDFILL DESIGN AND CONSTRUCTION

    Directory of Open Access Journals (Sweden)

    Biljana Kovačević Zelić

    2007-12-01

    Full Text Available Top and bottom liners are one of the key construction elements in every landfill. They are usually made as compacted clay liners (CCLs composed of several layers of compacted clay with strictly defined properties or by the use of alternative materials such as: GCL – geosynthetic clay liner, BES – bentonite enhanced soils or bentonite/polymer mixtures. Following the state of the art experiences in the world, GCLs are used in Croatian landfills for several years, as well. Depending upon the location and the obeying function, GCLs have to fulfill certain conditions. A legislated compatibility criterion has to be proven by various laboratory tests. In the paper are presented the results of direct shear and chemical compatibility tests of GCLs as well as the results of permeability measurement of kaolin clay (the paper is published in Croatian .

  4. Design of a reading test for low vision image warping

    Science.gov (United States)

    Loshin, David S.; Wensveen, Janice; Juday, Richard D.; Barton, R. S.

    1993-01-01

    NASA and the University of Houston College of Optometry are examining the efficacy of image warping as a possible prosthesis for at least two forms of low vision - maculopathy and retinitis pigmentosa. Before incurring the expense of reducing the concept to practice, one would wish to have confidence that a worthwhile improvement in visual function would result. NASA's Programmable Remapper (PR) can warp an input image onto arbitrary geometric coordinate systems at full video rate, and it has recently been upgraded to accept computer-generated video text. We have integrated the Remapper with an SRI eye tracker to simulate visual malfunction in normal observers. A reading performance test has been developed to determine if the proposed warpings yield an increase in visual function; i.e., reading speed. We will describe the preliminary experimental results of this reading test with a simulated central field defect with and without remapped images.

  5. Design and Calibration Tests of an Active Sound Intensity Probe

    Directory of Open Access Journals (Sweden)

    Thomas Kletschkowski

    2008-01-01

    Full Text Available The paper presents an active sound intensity probe that can be used for sound source localization in standing wave fields. The probe consists of a sound hard tube that is terminated by a loudspeaker and an integrated pair of microphones. The microphones are used to decompose the standing wave field inside the tube into its incident and reflected part. The latter is cancelled by an adaptive controller that calculates proper driving signals for the loudspeaker. If the open end of the actively controlled tube is placed close to a vibrating surface, the radiated sound intensity can be determined by measuring the cross spectral density between the two microphones. A one-dimensional free field can be realized effectively, as first experiments performed on a simplified test bed have shown. Further tests proved that a prototype of the novel sound intensity probe can be calibrated.

  6. A Long Term Test of Differently Designed Evacuated Tubular Collectors

    DEFF Research Database (Denmark)

    Fan, Jianhua; Dragsted, Janne; Furbo, Simon

    2008-01-01

    and one direct flow ETC from Sunda Technolgoy Co. Ltd and one all-glass ETC with heat pipe from Exoheat AB. The collectors have been investigated side-by-side in an outdoor test facility for a long period. During the measurements, the operating conditions – such as weather conditions and temperature....... Further, the collector performances are compared for different times of the year and it is illustrated how the performance of the different collector types depends on weather conditions....

  7. Linear Accelerator Test Facility at LNF Conceptual Design Report

    CERN Document Server

    Valente, Paolo; Bolli, Bruno; Buonomo, Bruno; Cantarella, Sergio; Ceccarelli, Riccardo; Cecchinelli, Alberto; Cerafogli, Oreste; Clementi, Renato; Di Giulio, Claudio; Esposito, Adolfo; Frasciello, Oscar; Foggetta, Luca; Ghigo, Andrea; Incremona, Simona; Iungo, Franco; Mascio, Roberto; Martelli, Stefano; Piermarini, Graziano; Sabbatini, Lucia; Sardone, Franco; Sensolini, Giancarlo; Ricci, Ruggero; Rossi, Luis Antonio; Rotundo, Ugo; Stella, Angelo; Strabioli, Serena; Zarlenga, Raffaele

    2016-01-01

    Test beam and irradiation facilities are the key enabling infrastructures for research in high energy physics (HEP) and astro-particles. In the last 11 years the Beam-Test Facility (BTF) of the DA{\\Phi}NE accelerator complex in the Frascati laboratory has gained an important role in the European infrastructures devoted to the development and testing of particle detectors. At the same time the BTF operation has been largely shadowed, in terms of resources, by the running of the DA{\\Phi}NE electron-positron collider. The present proposal is aimed at improving the present performance of the facility from two different points of view: extending the range of application for the LINAC beam extracted to the BTF lines, in particular in the (in some sense opposite) directions of hosting fundamental physics and providing electron irradiation also for industrial users; extending the life of the LINAC beyond or independently from its use as injector of the DA{\\Phi}NE collider, as it is also a key element of the electron/...

  8. High Temperature Gas-Cooled Test Reactor Point Design: Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Sterbentz, James William [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bayless, Paul David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nelson, Lee Orville [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gougar, Hans David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Strydom, Gerhard [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-01-01

    A point design has been developed for a 200-MW high-temperature gas-cooled test reactor. The point design concept uses standard prismatic blocks and 15.5% enriched uranium oxycarbide fuel. Reactor physics and thermal-hydraulics simulations have been performed to characterize the capabilities of the design. In addition to the technical data, overviews are provided on the technology readiness level, licensing approach, and costs of the test reactor point design.

  9. High Temperature Gas-Cooled Test Reactor Point Design: Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Sterbentz, James William [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bayless, Paul David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nelson, Lee Orville [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gougar, Hans David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kinsey, J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Strydom, Gerhard [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-03-01

    A point design has been developed for a 200-MW high-temperature gas-cooled test reactor. The point design concept uses standard prismatic blocks and 15.5% enriched uranium oxycarbide fuel. Reactor physics and thermal-hydraulics simulations have been performed to characterize the capabilities of the design. In addition to the technical data, overviews are provided on the technology readiness level, licensing approach, and costs of the test reactor point design.

  10. Accounting for Proof Test Data in a Reliability Based Design Optimization Framework

    Science.gov (United States)

    Ventor, Gerharad; Scotti, Stephen J.

    2012-01-01

    This paper investigates the use of proof (or acceptance) test data during the reliability based design optimization of structural components. It is assumed that every component will be proof tested and that the component will only enter into service if it passes the proof test. The goal is to reduce the component weight, while maintaining high reliability, by exploiting the proof test results during the design process. The proposed procedure results in the simultaneous design of the structural component and the proof test itself and provides the designer with direct control over the probability of failing the proof test. The procedure is illustrated using two analytical example problems and the results indicate that significant weight savings are possible when exploiting the proof test results during the design process.

  11. Design, Implementation and Testing of Master Slave Robotic Surgical System

    Directory of Open Access Journals (Sweden)

    Syed Amjad Ali

    2015-01-01

    Full Text Available The autonomous manipulation of the medical robotics is needed to draw up a complete surgical plan in development. The autonomy of the robot comes from the fact that once the plan is drawn up off-line, it is the servo loops, and only these, that control the actions of the robot online, based on instantaneous control signals and measurements provided by the vision or force sensors. Using only these autonomous techniques in medical and surgical robotics remain relatively limited for two main reasons: Predicting complexity of the gestures, and human Safety. Therefore, Modern research in haptic force feedback in medical robotics is aimed to develop medical robots capable of performing remotely, what a surgeon does by himself. These medical robots are supposed to work exactly in the manner that a surgeon does in daily routine. In this paper the master slave tele-robotic system is designed and implemented with accuracy and stability by using 6DOF (Six Degree of Freedom haptic force feedback devices. The master slave control strategy, haptic devices integration, application software designing using Visual C++ and experimental setup are considered. Finally, results are presented the stability, accuracy and repeatability of the system

  12. BeamCal Instrumentation IC: Design, Implementation, and Test Results

    Science.gov (United States)

    Abusleme, Angel; Dragone, Angelo; Haller, Gunther; Wooley, Bruce A.

    2012-06-01

    The BeamCal detector, one of the calorimeters in the forward region of the International Linear Collider detector, will serve three purposes: ensure hermeticity of the detector for small polar angles, reduce the backscattering from beamstrahlung electron-positron pairs into the detector center, and provide a low-latency signal for beam diagnostics. The BeamCal specifications in terms of noise suppression, signal charge, pulse rate, and occupancy pose unique challenges in the front end and readout electronics design. The Bean-BeamCal instrumentation IC is the integrated circuit under study to fulfill these requirements. To process the signal charge at the International Collider pulse rate, the Bean uses switched-capacitor filters and a slow reset-release technique. Each channel has a 10-bit successive approximation analog-to-digital converter. The Bean also features a fast feedback adder capable of providing a low latency output for beam diagnostic purposes. This work presents the design and characterization of a 3-channel prototype of the Bean built to validate concepts while the final device will comprise 32 channels.

  13. Design and test of urea hydrolysis reactor for vehicle

    Directory of Open Access Journals (Sweden)

    Qi Zhanfeng

    2017-01-01

    Full Text Available Ammonia production technology of urea-SCR system for vehicle is mainly used in pyrolysis. The reaction is complex, and there are some side effects. So a kind of urea hydrolysis device for vehicle is designed. Based on the in-depth analysis of ammonia production technology’s mechanism of urea hydrolysis for vehicle, the modified extended UNIQUAC equation and PHS equation of state were used to solve the thermodynamic model, and the experimental verification was carried out on the JX493ZLQ3 diesel engine. The results show that the design of urea hydrolysis reactor is in agreement with the experimental results. In the environment of urea hydrolysis, the higher the hydrolysis temperature, the faster the urea hydrolysis and the faster the production of ammonia. Under the same conditions, the hydrolysis rate of urea was the same, the higher the initial quality, the more ammonia produced. The method is suitable for the ammonia production technology of urea hydrolysis for vehicle and can be used for the formation of urea hydrolysis SCR system.

  14. Pressure-Sensitive Paints Advance Rotorcraft Design Testing

    Science.gov (United States)

    2013-01-01

    The rotors of certain helicopters can spin at speeds as high as 500 revolutions per minute. As the blades slice through the air, they flex, moving into the wind and back out, experiencing pressure changes on the order of thousands of times a second and even higher. All of this makes acquiring a true understanding of rotorcraft aerodynamics a difficult task. A traditional means of acquiring aerodynamic data is to conduct wind tunnel tests using a vehicle model outfitted with pressure taps and other sensors. These sensors add significant costs to wind tunnel testing while only providing measurements at discrete locations on the model's surface. In addition, standard sensor solutions do not work for pulling data from a rotor in motion. "Typical static pressure instrumentation can't handle that," explains Neal Watkins, electronics engineer in Langley Research Center s Advanced Sensing and Optical Measurement Branch. "There are dynamic pressure taps, but your costs go up by a factor of five to ten if you use those. In addition, recovery of the pressure tap readings is accomplished through slip rings, which allow only a limited amount of sensors and can require significant maintenance throughout a typical rotor test." One alternative to sensor-based wind tunnel testing is pressure sensitive paint (PSP). A coating of a specialized paint containing luminescent material is applied to the model. When exposed to an LED or laser light source, the material glows. The glowing material tends to be reactive to oxygen, explains Watkins, which causes the glow to diminish. The more oxygen that is present (or the more air present, since oxygen exists in a fixed proportion in air), the less the painted surface glows. Imaged with a camera, the areas experiencing greater air pressure show up darker than areas of less pressure. "The paint allows for a global pressure map as opposed to specific points," says Watkins. With PSP, each pixel recorded by the camera becomes an optical pressure

  15. Effect of verbal encoding and motor memory on test performance in the Rey Visual Design Learning Test.

    Science.gov (United States)

    Wilhelm, P; Maathuis, I; Matzner, M

    2011-01-01

    This study offers new evidence for the validity of the interpretation of the Rey Visual Design Learning Test (RVDLT) test score. The RVDLT is a design memory test that requires constructive output (drawings of memorized test items) in the recall phase. We mainly focused on response processes and tested the effect of a verbal and a motor memory strategy on test performance. Strategies were only explained and participants (12- to 15-year-olds) were stimulated to use them in a subsequent test session. In the verbal encoding condition, participants were instructed to name the test items of the RVDLT. In the copy condition, participants copied test items with an empty pen concurrent with test item presentation (rehearsal of motor sequences). Test performances were compared to a control group. No significant difference in RVDLT test score was detected between the verbal encoding group and the control group. However, the copy group scored significantly lower than the other two groups. Results are discussed in light of the validity of the test interpretation.

  16. Design and test of the RHIC CMD10 abort kicker

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Blaskiewicz, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Drees, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Fischer, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Mi, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Meng, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Montag, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Pai, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Sandberg, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tsoupas, N. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tuozzolo, J. E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Zhang, W. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    In recent RHIC operational runs, planned and unplanned pre-fire triggered beam aborts have been observed that resulted in quenches of SC main ring magnets, indicating a weakened magnet kick strength due to beam-induced ferrite heating. An improvement program was initiated to reduce the longitudinal coupling impedance with changes to the ferrite material and the eddy-current strip geometry. Results of the impedance measurements and of magnet heating tests with CMD10 ferrite up to 190°C are reported. All 10 abort kickers in the tunnel have been modified and were provided with a cooling system for the RUN 15.

  17. Design and Testing of Subsystems for Mo-99 Production Facility

    Energy Technology Data Exchange (ETDEWEB)

    Chemerisov, Sergey; Bailey, James; Virgo, Mathew; Gromov, R.; Makarashvili, Vakhtang; Micklich, Bradley

    2014-10-01

    Three beamline configurations have been proposed for the SHINE Medical Technologies facility for producing fission-product 99Mo using a D/T-accelerator (Figure 1). One configuration, proposed by Los Alamos National Laboratory (LANL), includes a three-bend magnet system with a total 20° bending angle. This configuration also includes a set of octuplet magnets to generate a non-Gaussian beam profile. Argonne has proposed two beamlines based on a (1) 10° bending magnet (Appendix A and Ref. 1) and (2) alpha magnets (Appendix B) that use a pair of raster doublets to redistribute the beam over the face of the target. This report gives an overview of the various designs.

  18. Design and Testing of Electronic Devices for Harsh Environments

    CERN Document Server

    Nico, Costantino

    This thesis reports an overview and the main results of the research activity carried out within the PhD programme in Information Engineering of the University of Pisa (2010-2012). The research activity has been focused on different fields, including Automotive and High Energy Physics experiments, according to a common denominator: the development of electroni c devices and systems operating in harsh environments. There are many applications that forc e the adoption of design methodologies and strategies focused on this type of envir onments: military, biom edical, automotive, industrial and space. The development of solutions fulfilling specific operational requirements, therefore represents an interesting field of research. The first research activity has been framed within the ATHENIS project, funded by the CORDIS Commission of the European Community, and aiming at the development of a System-on-Chip, a r egulator for alternators employed on vehicles, presenting both configurability an d t...

  19. Tracer-Test Planning Using the Efficient Hydrologic Tracer-Test Design (Ehtd) Program (2003)

    Science.gov (United States)

    Hydrological tracer testing is the most reliable diagnostic technique available for establishing flow trajectories and hydrologic connections and for determining basic hydraulic and geometric parameters necessary for establishing operative solute-transport processes. Tracer-test ...

  20. Experimental Design and Validation of an Accelerated Random Vibration Fatigue Testing Methodology

    OpenAIRE

    Yu Jiang(Center for Statistical and Theoretical Condensed Matter Physics, Zhejiang Normal University, Jinhua City, Zhejiang Province 321004, China); Gun Jin Yun; Li Zhao; Junyong Tao

    2015-01-01

    Novel accelerated random vibration fatigue test methodology and strategy are proposed, which can generate a design of the experimental test plan significantly reducing the test time and the sample size. Based on theoretical analysis and fatigue damage model, several groups of random vibration fatigue tests were designed and conducted with the aim of investigating effects of both Gaussian and non-Gaussian random excitation on the vibration fatigue. First, stress responses at a weak point of a ...

  1. Basic principles of test-negative design in evaluating influenza vaccine effectiveness.

    Science.gov (United States)

    Fukushima, Wakaba; Hirota, Yoshio

    2017-08-24

    Based on the unique characteristics of influenza, the concept of "monitoring" influenza vaccine effectiveness (VE) across the seasons using the same observational study design has been developed. In recent years, there has been a growing number of influenza VE reports using the test-negative design, which can minimize both misclassification of diseases and confounding by health care-seeking behavior. Although the test-negative designs offer considerable advantages, there are some concerns that widespread use of the test-negative design without knowledge of the basic principles of epidemiology could produce invalid findings. In this article, we briefly review the basic concepts of the test-negative design with respect to classic study design such as cohort studies or case-control studies. We also mention selection bias, which may be of concern in some countries where rapid diagnostic testing is frequently used in routine clinical practices, as in Japan. Copyright © 2017. Published by Elsevier Ltd.

  2. Levene tests of homogeneity of variance for general block and treatment designs.

    Science.gov (United States)

    O'Neill, Michael E; Mathews, Ky L

    2002-03-01

    This article develops a weighted least squares version of Levene's test of homogeneity of variance for a general design, available both for univariate and multivariate situations. When the design is balanced, the univariate and two common multivariate test statistics turn out to be proportional to the corresponding ordinary least squares test statistics obtained from an analysis of variance of the absolute values of the standardized mean-based residuals from the original analysis of the data. The constant of proportionality is simply a design-dependent multiplier (which does not necessarily tend to unity). Explicit results are presented for randomized block and Latin square designs and are illustrated for factorial treatment designs and split-plot experiments. The distribution of the univariate test statistic is close to a standard F-distribution, although it can be slightly underdispersed. For a complex design, the test assesses homogeneity of variance across blocks, treatments, or treatment factors and offers an objective interpretation of residual plots.

  3. Design and test of a power-generated magnetorheological damper

    Science.gov (United States)

    Bai, Xian-Xu; Zou, Qi; Qian, Li-Jun

    2017-04-01

    A power-generated magnetorheological (MR) damper with integrating a controllable damping mechanism and a power-generation mechanism is proposed in this paper. The controllable damping mechanism is realized by an annular rotary gap filled with MR fluids working in pure shear mode. The rotary damping moment is transformed to a linear damping force via a ball-screw mechanism. The power-generation mechanism is realized via a permanent magnet rotor and a stator with winding coils, which transforms the vibration energy of the system into electric power or directly to power the controllable damping mechanism. The characteristics of the controllable damping force and the power-generated performance are theoretically analyzed and experimentally tested.

  4. Task 8 -- Design and test of critical components

    Energy Technology Data Exchange (ETDEWEB)

    Chance, T.F.

    1996-11-01

    This report covers tasks 8.1, 8.1.1, and 8.2. The primary objective of Task 8.1, Particulates Flow Deposition, is to characterize the particulate generated in an operating gas turbine combined cycle (GTCC) power plant whose configuration approximates that proposed for an ATS power plant. In addition, the task is to evaluate the use of full-flow filtering to reduce the steam particulate loads. Before the start of this task, GE had already negotiated an agreement with the candidate power plant, piping and a filter unit had already been installed at the power plant site, and major elements of the data acquisition system had been purchased. The objective of Task 8.1.1, Coolant Purity, is to expose typical ATS gas turbine airfoil cooling channel geometries to real steam flow to determine whether there are any unexpected deposit formations. The task is a static analog of the centrifugal deposition rig trials of Task 8.2, in which a bucket channel return bend is exposed to steam flow. Two cooling channel geometries are of primary interest in this static exposure. The primary objective of Task 8.2, Particle Centrifugal Sedimentation, is to determine the settling characteristics of particles in a cooling stream from an operating gas turbine combined cycle (GTCC) power plant when that stream is ducted through a passage experiencing the G-loads expected in a simulated bucket channel specimen representative of designs proposed for an ATS gas turbine.

  5. Design, Fabrication and Test of WFIRST-AFTA GRISM Assembly

    Science.gov (United States)

    Gong, Qian; Content, David; Kruk, Jeffrey; Pasquale, Bert; Wallace, Thomas; Smith, Walter

    2014-01-01

    The Wide-Field Infra-Red Survey Telescope (WFIRST) is designed to perform wide-field imaging and slitless spectroscopic survey of the sky. A compound Grism assembly is selected as its slitless dispersing element. Compared to the grisms in several instruments installed on the Hubble space telescope, the challenge of this grism is the much wider Field Of View (FOV), larger dispersion, and smaller f. The image quality of the slitless spectrometer is directly related to how deep of the sky the spectrometer is able to see. This paper discusses how to use a diffractive lens surface to compensate the wavelength dependent aberration created by the grating in non-collimated space to make the spectrometer diffraction limited, as well as how to intelligently combine the two diffractive surfaces (lens and grating) to reduce the unwanted diffraction orders from the grating. The paper also discusses how to improve the diffraction efficiency of the diffractive surfaces, as well as how to align and assemble the optics.

  6. Introduction to adoption of lean canvas in software test architecture design

    Directory of Open Access Journals (Sweden)

    Padmaraj Nidagundi

    2017-01-01

    Full Text Available The growth of the software dependent businesses, as well as the use of electronic devices in daily life, brings new challenges requiring the software to work error free all the time, to achieve this goal software needs to be sufficiently and effectively tested during various development phases. Most software development companies make great efforts in testing; it is even more difficult to reach the error-free software goal. Different software development methodologies (e.g. traditional waterfall, agile brought in a new dimension for both - development and testing - introducing new technologies and tools. In software test automation the test architecture design plays a key role in managing written test cases and effectively executing them. Having the more effective software test automation architecture design in test process saves resources, efforts and reduces the technical depth. This paper provides the new dimension and possibilities of using lean canvas in the design of the software test architecture.

  7. Towards sensible toxicity testing for nanomaterials: proposal for the specification of test design.

    Science.gov (United States)

    Potthoff, Annegret; Weil, Mirco; Meißner, Tobias; Kühnel, Dana

    2015-12-01

    During the last decade, nanomaterials (NM) were extensively tested for potential harmful effects towards humans and environmental organisms. However, a sound hazard assessment was so far hampered by uncertainties and a low comparability of test results. The reason for the low comparability is a high variation in the (1) type of NM tested with regard to raw material, size and shape and (2) procedures before and during the toxicity testing. This calls for tailored, nanomaterial-specific protocols. Here, a structured approach is proposed, intended to lead to test protocols not only tailored to specific types of nanomaterials, but also to respective test system for toxicity testing. There are existing standards on single procedures involving nanomaterials, however, not all relevant procedures are covered by standards. Hence, our approach offers a detailed way of weighting several plausible alternatives for e.g. sample preparation, in order to decide on the procedure most meaningful for a specific nanomaterial and toxicity test. A framework of several decision trees (DT) and flow charts to support testing of NM is proposed as a basis for further refinement and in-depth elaboration. DT and flow charts were drafted for (1) general procedure-physicochemical characterisation, (2) choice of test media, (3) decision on test scenario and application of NM to liquid media, (4) application of NM to the gas phase, (5) application of NM to soil and sediments, (6) dose metrics, (S1) definition of a nanomaterial, and (S2) dissolution. The applicability of the proposed approach was surveyed by using experimental data retrieved from studies on nanoscale CuO. This survey demonstrated the DT and flow charts to be a convenient tool to systematically decide upon test procedures and processes, and hence pose an important step towards harmonisation of NM testing.

  8. Test Design Description (TDD). Volume 1A. Design description and safety analysis for IFR-1 metal fuels irradiation test in FFTF

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, H.; Neimark, L. A.; Billone, M. C.; Fryer, R. M.; Koenig, J. F.; Lehto, W. K.; Malloy, D. J.

    1986-01-01

    A steady-state irradiation experiment on metal fuels, designated IFR-1, will be conducted in the FTR. The purpose of the experiment is to support the development of metal fuels for the Integral Fast Reactor (IFR) program. The main objective of the IFR-1 test is to generate integral fuel performance data for full-length metal fuels. The effect of fuel column length on the integral behavior of metal fuels will be evaluated by comparing the results of the IFR-1 test with those of the EBR-II tests conducted under similar power and temperature conditions. This document describes the IFR-1 metal fuel irradiation experiment and provides the test requirements and supporting steady-state, transient and safety analyses as required by the User`s Guide for the Irradiation of Experiments in the FTR [1] for Test Design Description Volume 1A. 40 refs.

  9. Design and Testing of a Bionic Dancing Prosthesis.

    Science.gov (United States)

    Rouse, Elliott J; Villagaray-Carski, Nathan C; Emerson, Robert W; Herr, Hugh M

    2015-01-01

    Traditionally, prosthetic leg research has focused on improving mobility for activities of daily living. Artistic expression such as dance, however, is not a common research topic and consequently prosthetic technology for dance has been severely limited for the disabled. This work focuses on investigating the ankle joint kinetics and kinematics during a Latin-American dance to provide unique motor options for disabled individuals beyond those of daily living. The objective of this study was to develop a control system for a bionic ankle prosthesis that outperforms conventional prostheses when dancing the rumba. The biomechanics of the ankle joint of a non-amputee, professional dancer were acquired for the development of the bionic control system. Subsequently, a professional dancer who received a traumatic transtibial amputation in April 2013 tested the bionic dance prosthesis and a conventional, passive prosthesis for comparison. The ability to provide similar torque-angle behavior of the biological ankle was assessed to quantify the biological realism of the prostheses. The bionic dancing prosthesis overlapped with 37 ± 6% of the non-amputee ankle torque and ankle angle data, compared to 26 ± 2% for the conventional, passive prosthesis, a statistically greater overlap (p = 0.01). This study lays the foundation for quantifying unique, expressive activity modes currently unavailable to individuals with disabilities. Future work will focus on an expansion of the methods and types of dance investigated in this work.

  10. Design and Testing of a Bionic Dancing Prosthesis.

    Directory of Open Access Journals (Sweden)

    Elliott J Rouse

    Full Text Available Traditionally, prosthetic leg research has focused on improving mobility for activities of daily living. Artistic expression such as dance, however, is not a common research topic and consequently prosthetic technology for dance has been severely limited for the disabled. This work focuses on investigating the ankle joint kinetics and kinematics during a Latin-American dance to provide unique motor options for disabled individuals beyond those of daily living. The objective of this study was to develop a control system for a bionic ankle prosthesis that outperforms conventional prostheses when dancing the rumba. The biomechanics of the ankle joint of a non-amputee, professional dancer were acquired for the development of the bionic control system. Subsequently, a professional dancer who received a traumatic transtibial amputation in April 2013 tested the bionic dance prosthesis and a conventional, passive prosthesis for comparison. The ability to provide similar torque-angle behavior of the biological ankle was assessed to quantify the biological realism of the prostheses. The bionic dancing prosthesis overlapped with 37 ± 6% of the non-amputee ankle torque and ankle angle data, compared to 26 ± 2% for the conventional, passive prosthesis, a statistically greater overlap (p = 0.01. This study lays the foundation for quantifying unique, expressive activity modes currently unavailable to individuals with disabilities. Future work will focus on an expansion of the methods and types of dance investigated in this work.

  11. Experiments and Modeling to Support Field Test Design

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Peter Jacob [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bourret, Suzanne Michelle [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Zyvoloski, George Anthony [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Boukhalfa, Hakim [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stauffer, Philip H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Weaver, Douglas James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-25

    Disposition of heat-generating nuclear waste (HGNW) remains a continuing technical and sociopolitical challenge. We define HGNW as the combination of both heat generating defense high level waste (DHLW) and civilian spent nuclear fuel (SNF). Numerous concepts for HGNW management have been proposed and examined internationally, including an extensive focus on geologic disposal (c.f. Brunnengräber et al., 2013). One type of proposed geologic material is salt, so chosen because of its viscoplastic deformation that causes self-repair of damage or deformation induced in the salt by waste emplacement activities (Hansen and Leigh, 2011). Salt as a repository material has been tested at several sites around the world, notably the Morsleben facility in Germany (c.f. Fahland and Heusermann, 2013; Wollrath et al., 2014; Fahland et al., 2015) and at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, NM. Evaluating the technical feasibility of a HGNW repository in salt is an ongoing process involving experiments and numerical modeling of many processes at many facilities.

  12. Design and testing of hardware improvements of an acoustic sounder

    Science.gov (United States)

    Richards, W. L.

    1985-06-01

    The application of lasers in military communications and weapons systems accentuate the need for instruments capable of measuring the fine dynamic structure of the atmosphere. One of the most useful tools available for the probing of the atmosphere is the acoustic sounder. Commercial grade acoustic sounders, such as the Aeroviroment model number 300 cannot collect atmospheric data with the quality needed for laser propagation research. The usable range of the Aerovironment model 300 acoustic sounder is less than 500 meters. Many laser systems need atmospheric information at altitudes of 1 to 2 kilometers and higher. The objective of this thesis was to upgrade an existing acoustic sounder to increase the range and improve the quality of the receiver-processor. A serious deficiency of the Aerovironment model number 300 is the poor coupling of the acoustic transducer to the feedhorn. This thesis involved a complete redesign and experimental test of the transducer feedhorn using two different horn styles as well as making the horn removable and easily changeable.

  13. Design and first tests of a Macroseismic Sensor System

    Science.gov (United States)

    Brueckl, Ewald; Polydor, Stefan; Ableitinger, Klaus; Rafeiner-Magor, Walter; Kristufek, Werner; Mertl, Stefan; Lenhardt, Wolfgang

    2017-04-01

    Seismic observatories are located in remote, low-noise areas for good reason and do not probe areas of dense and sensitive infrastructure. Complementary macroseismic data provide dense, qualitative information on ground motion in populated areas. Motivated by the QCN (Quake Catcher Network), a new low-cost sensor system (Macroseismic Sensor System = MSS) has been developed to support the evaluation of macroseismic data with quantitative information on ground movement in populated and industrial areas. Scholars, alumni and teachers from a technical high school contributed substantially to this development within the Sparkling Science project Schools & Quakes and the Citizen Science project QuakeWatch Austria. The MSS uses horizontal 4.5 Hz geophones and 16Bit AD conversion, and 100 Hz sampling, formatting to MiniSeed, and continuous data transmission via LAN or WLAN to a server are controlled by an integrated microcomputer (Raspberry Pi). Real-time generation of shake and source maps (based on proxies of the PGV in successive time windows) allows for differentiation between local seismic events (e.g., traffic noise, shock close to the sensor) and signals from earthquakes or quarry blasts. The inherent noise of the MSS is about 1% of the PGV corresponding to the lower boundary of intensity I = 2, which is below the ambient noise level at stations in highly populated or industrial areas. The MSS is already being tested at locations around a quarry with regular production blasts. An expansion to a local network in the Vienna Basin will be the next step.

  14. Design and performance of the South Pole Acoustic Test Setup

    Energy Technology Data Exchange (ETDEWEB)

    Abdou, Y. [Department of Subatomic and Radiation Physics, University of Gent, B-9000 Gent (Belgium); Becker, K.-H. [Department of Physics, University of Wuppertal, D-42119 Wuppertal (Germany); Berdermann, J. [DESY, D-15735 Zeuthen (Germany); Bissok, M. [III. Physikalisches Institut, RWTH Aachen University, D-52056 Aachen (Germany); Bohm, C. [Oskar Klein Centre and Department of Physics, Stockholm University, SE-10691 Stockholm (Sweden); Boeser, S.; Bothe, M. [DESY, D-15735 Zeuthen (Germany); Carson, M. [Department of Subatomic and Radiation Physics, University of Gent, B-9000 Gent (Belgium); Descamps, F., E-mail: Freija.Descamps@icecube.wisc.edu [Department of Subatomic and Radiation Physics, University of Gent, B-9000 Gent (Belgium); Fischer-Wolfarth, J.-H. [DESY, D-15735 Zeuthen (Germany); Gustafsson, L.; Hallgren, A. [Department of Physics and Astronomy, Uppsala University, Box 516, S-75120 Uppsala (Sweden); Heinen, D. [III. Physikalisches Institut, RWTH Aachen University, D-52056 Aachen (Germany); Helbing, K. [Department of Physics, University of Wuppertal, D-42119 Wuppertal (Germany); Heller, R. [DESY, D-15735 Zeuthen (Germany); Hundertmark, S. [Oskar Klein Centre and Department of Physics, Stockholm University, SE-10691 Stockholm (Sweden); Karg, T. [Department of Physics, University of Wuppertal, D-42119 Wuppertal (Germany); Krieger, K. [DESY, D-15735 Zeuthen (Germany); Laihem, K.; Meures, T. [III. Physikalisches Institut, RWTH Aachen University, D-52056 Aachen (Germany); and others

    2012-08-11

    The South Pole Acoustic Test Setup (SPATS) was built to evaluate the acoustic characteristics of the South Pole ice in the 10-100 kHz frequency range, for the purpose of assessing the feasibility of an acoustic neutrino detection array at the South Pole. The SPATS hardware consists of four vertical strings deployed in the upper 500 m of the South Pole ice cap. The strings form a trapezoidal array with a maximum baseline of 543 m. Each string has seven stages equipped with one transmitter and one sensor module (glaciophone). Sound is detected or generated by piezoelectric ceramic elements inside the modules. Analogue signals are sent to the surface on electric cables where they are digitized by a PC-based data acquisition system. The data from all strings are collected on a central computer in the IceCube Laboratory from where they are sent to a central data storage facility via a satellite link or stored locally on tape. A technical overview of SPATS and its performance is presented.

  15. Design and validation of a novel immunological test for enterolactone.

    Science.gov (United States)

    Shinkaruk, Svitlana; Pinot, Edith; Lamothe, Valérie; Schmitter, Jean-Marie; Baguenard, Laurie; Bennetau, Bernard; Bennetau-Pelissero, Catherine

    2014-02-01

    Enterolactone (ENL) is produced by the gut microflora from lignans found in edible plants. ENL is estrogenic with no effect on the E-screen test and is a natural Selected Estrogen Receptor Modulator (SERM) with health interests that have to be checked in clinical studies with bioavailability assessment. Two haptens of ENL were synthesized, with a spacer arm at the C5 position having either 2 or 4 carbon atoms (ENLΔ2 and ENLΔ4, respectively). Hapten coupling to bovine serum albumin (BSA) was characterized by MALDI mass spectrometry. Polyclonal antibodies were obtained against the BSA conjugates. Additional conjugates were generated by coupling to swine thyroglobulin (Thyr). Homologous and heterologous competitive ELISAs were developed with Thyr or BSA conjugates as coating. The best assays were validated on biological samples from mice. Both antibodies exhibited the same IC50 at 1.5 ng mL(-1) with a detection limit below 0.5 ng mL(-1). Most cross-reactions with structurally related lignans were lower than 0.03%. This new assay type is faster, more specific and more reliable than existing ones. © 2013 Elsevier B.V. All rights reserved.

  16. Verifying seismic design of nuclear reactors by testing. Volume 1: test plan

    Energy Technology Data Exchange (ETDEWEB)

    1979-07-20

    This document sets forth recommendations for a verification program to test the ability of operational nuclear power plants to achieve safe shutdown immediately following a safe-shutdown earthquake. The purpose of the study is to develop a program plan to provide assurance by physical demonstration that nuclear power plants are earthquake resistant and to allow nuclear power plant operators to (1) decide whether tests should be conducted on their facilities, (2) specify the tests that should be performed, and (3) estimate the cost of the effort to complete the recommended test program.

  17. Conceptual Design for a High-Temperature Gas Loop Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    James B. Kesseli

    2006-08-01

    This report documents an early-stage conceptual design for a high-temperature gas test loop. The objectives accomplished by the study include, (1) investigation of existing gas test loops to determine ther capabilities and how the proposed system might best complement them, (2) development of a preliminary test plan to help identify the performance characteristics required of the test unit, (3) development of test loop requirements, (4) development of a conceptual design including process flow sheet, mechanical layout, and equipment specifications and costs, and (5) development of a preliminary test loop safety plan.

  18. Analytical design and performance studies of nuclear furnace tests of small nuclear light bulb models

    Science.gov (United States)

    Latham, T. S.; Rodgers, R. J.

    1972-01-01

    Analytical studies were continued to identify the design and performance characteristics of a small-scale model of a nuclear light bulb unit cell suitable for testing in a nuclear furnace reactor. Emphasis was placed on calculating performance characteristics based on detailed radiant heat transfer analyses, on designing the test assembly for ease of insertion, connection, and withdrawal at the reactor test cell, and on determining instrumentation and test effluent handling requirements. In addition, a review of candidate test reactors for future nuclear light bulb in-reactor tests was conducted.

  19. From Fulcher to PLEVALEX: Issues in Interface Design, Validity and Reliability in Internet Based Language Testing

    Science.gov (United States)

    Garcia Laborda, Jesus

    2007-01-01

    Interface design and ergonomics, while already studied in much of educational theory, have not until recently been considered in language testing (Fulcher, 2003). In this paper, we revise the design principles of PLEVALEX, a fully operational prototype Internet based language testing platform. Our focus here is to show PLEVALEX's interfaces and…

  20. Test Equating under the NEAT Design: A Necessary Condition for Anchor Items

    Science.gov (United States)

    Raykov, Tenko

    2010-01-01

    Mroch, Suh, Kane, & Ripkey (2009); Suh, Mroch, Kane, & Ripkey (2009); and Kane, Mroch, Suh, & Ripkey (2009) provided elucidating discussions on critical properties of linear equating methods under the nonequivalent groups with anchor test (NEAT) design. In this popular equating design, two test forms are administered to different…

  1. The Design and Life Test of a Multifunction Power Amplifier for Space Application

    Directory of Open Access Journals (Sweden)

    Xiuqin Xu

    2016-01-01

    Full Text Available A new multifunction power amplifier (MFPA is designed and fabricated for the application of point-to-point K-Band backhaul TR module. A DC temperature life test was performed to model the up-limit temperature effect of the designed MFPA under space application. After 240 hours of 100°C life test, the test results illustrate that the designed MFPA has only slight power degradation at the saturation region without change of the linear gain. The general performance of the designed MFPA satisfies the requirement of the application scenario.

  2. Generalized requirements and decompositions for the design of test parts for micro additive manufacturing research

    DEFF Research Database (Denmark)

    Thompson, Mary Kathryn; Clemmensen, Line Katrine Harder

    2015-01-01

    The design of experimental test parts to characterize micro additive manufacturing (AM) processes is challenging due to the influence of the manufacturing and metrology processes. This work builds on the lessons learned from a case study in the literature to derive generalized requirements and high...... level decompositions for the design of test parts and the design of experiments to characterize micro additive manufacturing processes. While the test parts and the experiments described are still work in progress, the generic requirements derived from them can serve as a starting point for the design...... of other micro additive manufacturing related studies and their decompositions can help structure future work....

  3. Contribution of thermal–hydraulic validation tests to the standard design approval of SMART

    Directory of Open Access Journals (Sweden)

    Hyun-Sik Park

    2017-10-01

    Full Text Available Many thermal–hydraulic tests have been conducted at the Korea Atomic Energy Research Institute for verification of the SMART (System-integrated Modular Advanced ReacTor design, the standard design approval of which was issued by the Korean regulatory body. In this paper, the contributions of these tests to the standard design approval of SMART are discussed. First, an integral effect test facility named VISTA-ITL (Experimental Verification by Integral Simulation of Transients and Accidents-Integral Test Loop has been utilized to assess the TASS/SMR-S (Transient and Set-point Simulation/Small and Medium safety analysis code and confirm its conservatism, to support standard design approval, and to construct a database for the SMART design optimization. In addition, many separate effect tests have been performed. The reactor internal flow test has been conducted using the SCOP (SMART COre flow distribution and Pressure drop test facility to evaluate the reactor internal flow and pressure distributions. An ECC (Emergency Core Coolant performance test has been carried out using the SWAT (SMART ECC Water Asymmetric Two-phase choking test facility to evaluate the safety injection performance and to validate the thermal–hydraulic model used in the safety analysis code. The Freon CHF (Critical Heat Flux test has been performed using the FTHEL (Freon Thermal Hydraulic Experimental Loop facility to construct a database from the 5 × 5 rod bundle Freon CHF tests and to evaluate the DNBR (Departure from Nucleate Boiling Ratio model in the safety analysis and core design codes. These test results were used for standard design approval of SMART to verify its design bases, design tools, and analysis methodology.

  4. Production Facility Prototype Blower 1000 Hour Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Woloshun, Keith Albert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dale, Gregory E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Romero, Frank Patrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dalmas, Dale Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-10-18

    The roots blower in use at ANL for in-beam experiments and also at LANL for flow tests was sized for 12 mm diameter disks and significantly less beam heating. Currently, the disks are 29 mm in diameter, with a 12 mm FWHM Gaussian beam spot at 42 MeV and 2.86 μA on each side of the target, 5.72 μA total. The target design itself is reported elsewhere. With the increased beam heating, the helium flow requirement increased so that a larger blower was needed for a mass flow rate of 400 g/s at 2.76 MPa (400 psig). An Aerzen GM 12.4 blower was selected, and is now installed at the LANL facility for target and component flow testing. Two extended tests of >1000 hr operation have been completed. Those results and discussion thereof are reported herein. Also included in Appendix A is the detailed description of the blower and its installation, while Appendix B documents the pressure vessel design analysis. The blower has been operated for 1000 hours as a preliminary investigation of long-term performance, operation and possible maintenance issues. The blower performed well, with no significant change in blower head or mass flow rate developed under the operating conditions. Upon inspection, some oil had leaked out of the shaft seal of the blower. The shaft seal and bearing race have been replaced. Test results and conclusions are in Appendix B.

  5. The Missing Data Assumptions of the NEAT Design and Their Implications for Test Equating

    Science.gov (United States)

    Sinharay, Sandip; Holland, Paul W.

    2010-01-01

    The Non-Equivalent groups with Anchor Test (NEAT) design involves "missing data" that are "missing by design." Three nonlinear observed score equating methods used with a NEAT design are the "frequency estimation equipercentile equating" (FEEE), the "chain equipercentile equating" (CEE), and the "item-response-theory observed-score-equating" (IRT…

  6. Empirical Test of the Know, See, Plan, Do Model for Curriculum Design in Leadership Education

    Science.gov (United States)

    Martin, Beth Ann; Allen, Scott J.

    2016-01-01

    This research assesses the Know, See, Plan, portions of the Know, See, Plan, Do (KSPD) model for curriculum design in leadership education. There were 3 graduate student groups, each taught using 1 of 3 different curriculum designs (KSPD and 2 control groups). Based on a pretest, post-test design, students' performance was measured to assess their…

  7. Design and initial testing of a compact and efficient rotary AMR prototype

    DEFF Research Database (Denmark)

    Eriksen, Dan; Engelbrecht, Kurt; Bahl, Christian R.H.

    2014-01-01

    MAGGIE, a new AMR prototype, is presented. It has been designed to produce a temperature span and cooling power relevant to commercial refrigeration applications combined with an attractive COP and a compact design. Concepts and design considerations are described. Initial non optimized tests sho...

  8. Test gear and measurements a collection of useful and tested circuit design ideas'

    CERN Document Server

    Stewart OBE DLitthc, David

    2013-01-01

    This book provides a clear introduction to test gear in the field of electronics. As well as being a first guide to test gear and its use, the book includes much practical information and reference material for the more experienced electronics enthusiast or student.Based on a collection of feature articles originally published in Electronics - the Maplin Magazine, this work by Danny Stewart is sure to be useful to electronics constructors, students and experimenters alike. Details of all the common (and some not-so-common) items of test gear are included, alongside information regarding its us

  9. Design and Testing of Scaled Ejector-Diffusers for Jet Engine Test Facility Applications.

    Science.gov (United States)

    1983-09-01

    for 3/4 inch steel drive shaft. The shaft was coupled to an electrically operated 24 drive mechanism, Figure 13, which was remotely activated , allowing...NATiONAL BUREAU OF STANDARDS 1963-A ,.7 -’ -’~~~~-777 . -7.17- -- - are large sea level test cells, one all purpose test tunnel and a helicopter transmission ...by TPL personnel. Twenty minutes of prelubrication is required on the compressor prior to start followed by approximately twenty minutes of warmup

  10. Minimal plus one point designs for testing lack of fit for some sigmoid curve models.

    Science.gov (United States)

    Su, Ying; Raghavarao, Damaraju

    2013-03-11

    D-optimal designs for nonlinear models are often minimally supported. They have been frequently criticized for their inability to test for lack of fit. We construct alternative designs to address this issue for some commonly used sigmoid curves, including logistic, probit, and Gompertz models with two, three, or four parameters. For each model, we compare five nonminimally supported designs in terms of their efficiency, and propose designs that are both statistically efficient and practically convenient for practitioners.

  11. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant Conceptual Design Engineering Report (CDER)

    Science.gov (United States)

    1981-01-01

    The reference conceptual design of the magnetohydrodynamic (MHD) Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD, is summarized. Main elements of the design, systems, and plant facilities are illustrated. System design descriptions are included for closed cycle cooling water, industrial gas systems, fuel oil, boiler flue gas, coal management, seed management, slag management, plant industrial waste, fire service water, oxidant supply, MHD power ventilating

  12. Single Group, Pre- and Post-Test Research Designs: Some Methodological Concerns

    Science.gov (United States)

    Marsden, Emma; Torgerson, Carole J.

    2012-01-01

    This article provides two illustrations of some of the factors that can influence findings from pre- and post-test research designs in evaluation studies, including regression to the mean (RTM), maturation, history and test effects. The first illustration involves a re-analysis of data from a study by Marsden (2004), in which pre-test scores are…

  13. DESIGN AND TESTING OF A DIGITAL REGULATOR FOR FERMILAB MAGNET POWER SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Li Vigni, Vincenzo [Palermo U.

    2012-01-01

    In this thesis, the design of a digitally controlled DC power system for testing conventional and superconducting magnets is proposed. The designed PID controller performances have been tested by the 30kA test stand for superconducting magnets, Vertical Magnet Test Facility (VMTF), which is hosted at the Fermilab Magnet Test Facility (MTF). The system is implemented on a National Instruments CompactRIO and both real-time and FPGA targets are programmed. A full 24-bit PID algorithm is coded and successfully tested by a manual tuning approach. An automated tuning algorithm is then introduced. As it will be shown by simulation and experimental results, the proposed system meets all design specifications. The current loop stability is up to 14 times better than the existing regulator and a control accuracy less than 4 ppm is achieved. Shorted-bus tests of the PID regulator have been successfully performed on the VMTF power system. In order to test the generalization capability of the designed system towards different types of magnets, the system has been easily adapted to and tested on the 10kA conventional magnet test stand (Stand C at Fermilab). As shown by experimental results, the designed PID controller features really high performancesin terms of steady-state accuracy and effectiveness of the tuning algorithm.

  14. Finite Element Analysis for Satellite Structures Applications to Their Design, Manufacture and Testing

    CERN Document Server

    Abdelal, Gasser F; Gad, Ahmed H

    2013-01-01

    Designing satellite structures poses an ongoing challenge as the interaction between analysis, experimental testing, and manufacturing phases is underdeveloped. Finite Element Analysis for Satellite Structures: Applications to Their Design, Manufacture and Testing explains the theoretical and practical knowledge needed to perform design of satellite structures. By layering detailed practical discussions with fully developed examples, Finite Element Analysis for Satellite Structures: Applications to Their Design, Manufacture and Testing provides the missing link between theory and implementation.   Computational examples cover all the major aspects of advanced analysis; including modal analysis, harmonic analysis, mechanical and thermal fatigue analysis using finite element method. Test cases are included to support explanations an a range of different manufacturing simulation techniques are described from riveting to shot peening to material cutting. Mechanical design of a satellites structures are covered...

  15. Electromagnetic compatibility (EMC) standard test chamber upgrade requirements for spacecraft design verification tests

    Science.gov (United States)

    Dyer, Edward F.

    1992-01-01

    In view of the serious performance deficiencies inherent in conventional modular and welded shielding EMC test enclosures, in which multipath reflections and resonant standing waves can damage flight hardware during RF susceptibility tests, NASA-Goddard has undertaken the modification of a 20 x 24 ft modular-shielded enclosure through installation of steel panels to which ferrite tiles will be mounted with epoxy. The internally reflected RF energy will thereby be absorbed, and exterior power-line noise will be reduced. Isolation of power-line filters and control of 60-Hz ground connections will also be undertaken in the course of upgrading.

  16. Computerizing the Cancellation Test1: Design, Development and Validation Study2

    Directory of Open Access Journals (Sweden)

    Sinan Hopcan

    2013-08-01

    Full Text Available This study is about the design, development and validation of computerized version of the Cancellation Test the paper - pencil version of which was first developed by Weintraub and Mesulam (1985. This computerized version consists of four sub-tests (organized letters, random letters, organized shapes and random shapes and administration panel where only researchers can access. The test was designed and developed according to universally accepted interface design principles. The test was formatively evaluated by administering to a small group of university students and was accordingly revised. The final version of the test was validated on 52 university students and the results were discussed together with the design and development processes.

  17. The design of a vehicle-mounted test system for the thermal performance of solar collector

    Science.gov (United States)

    Wen, S. R.; Wu, X. H.; Zhou, L.; Zheng, W.; Liu, L.; Yan, J. C.

    2016-08-01

    To increase the test efficiency of thermal performance of solar collector, a vehicle- mounted test system with high automation, simple operation, good mobility and stability is proposed in this paper. By refitting a medium bus, design of mechanical system and test loop, and using PC control technology, we implemented the vehicle-mounted system and realized effective integration between vehicle and test equipment. A number of tests have been done, and the results show that the vehicle-mounted test system has good parameters and performance and can be widely used to provide door-to-door testing services in the field of solar thermal application.

  18. High performance steam development. Final report, Phase No. 3: 1500{degree}F steam plant for industrial cogeneration prototype development tests

    Energy Technology Data Exchange (ETDEWEB)

    Duffy, T.; Schneider, P.

    1996-01-01

    As a key part of DOE`s and industry`s R&D efforts to improve the efficiency, cost, and emissions of power generation, a prototype High Performance Steam System (HPSS) has been designed, built, and demonstrated. The world`s highest temperature ASME Section I coded power plant successfully completed over 100 hours of development tests at 1500{degrees}F and 1500 psig on a 56,000 pound per hour steam generator, control valve and topping turbine at an output power of 5500 hp. This development advances the HPSS to 400{degrees}F higher steam temperature than the current best technology being installed around the world. Higher cycle temperatures produce higher conversion efficiencies and since steam is used to produce the large majority of the world`s power, the authors expect HPSS developments will have a major impact on electric power production and cogeneration in the twenty-first century. Coal fueled steam plants now produce the majority of the United States electric power. Cogeneration and reduced costs and availability of natural gas have now made gas turbines using Heat Recovery Steam Generators (HRSG`s) and combined cycles for cogeneration and power generation the lowest cost producer of electric power in the United States. These gas fueled combined cycles also have major benefits in reducing emissions while reducing the cost of electricity. Development of HPSS technology can significantly improve the efficiency of cogeneration, steam plants, and combined cycles. Figure 2 is a TS diagram that shows the HPSS has twice the energy available from each pound of steam when expanding from 1500{degrees}F and 1500 psia to 165 psia (150 psig, a common cogeneration process steam pressure). This report describes the prototype component and system design, and results of the 100-hour laboratory tests. The next phase of the program consists of building up the steam turbine into a generator set, and installing the power plant at an industrial site for extended operation.

  19. Design and evaluation of a wireless sensor network based aircraft strength testing system.

    Science.gov (United States)

    Wu, Jian; Yuan, Shenfang; Zhou, Genyuan; Ji, Sai; Wang, Zilong; Wang, Yang

    2009-01-01

    The verification of aerospace structures, including full-scale fatigue and static test programs, is essential for structure strength design and evaluation. However, the current overall ground strength testing systems employ a large number of wires for communication among sensors and data acquisition facilities. The centralized data processing makes test programs lack efficiency and intelligence. Wireless sensor network (WSN) technology might be expected to address the limitations of cable-based aeronautical ground testing systems. This paper presents a wireless sensor network based aircraft strength testing (AST) system design and its evaluation on a real aircraft specimen. In this paper, a miniature, high-precision, and shock-proof wireless sensor node is designed for multi-channel strain gauge signal conditioning and monitoring. A cluster-star network topology protocol and application layer interface are designed in detail. To verify the functionality of the designed wireless sensor network for strength testing capability, a multi-point WSN based AST system is developed for static testing of a real aircraft undercarriage. Based on the designed wireless sensor nodes, the wireless sensor network is deployed to gather, process, and transmit strain gauge signals and monitor results under different static test loads. This paper shows the efficiency of the wireless sensor network based AST system, compared to a conventional AST system.

  20. Design and Evaluation of a Wireless Sensor Network Based Aircraft Strength Testing System

    Directory of Open Access Journals (Sweden)

    Yang Wang

    2009-06-01

    Full Text Available The verification of aerospace structures, including full-scale fatigue and static test programs, is essential for structure strength design and evaluation. However, the current overall ground strength testing systems employ a large number of wires for communication among sensors and data acquisition facilities. The centralized data processing makes test programs lack efficiency and intelligence. Wireless sensor network (WSN technology might be expected to address the limitations of cable-based aeronautical ground testing systems. This paper presents a wireless sensor network based aircraft strength testing (AST system design and its evaluation on a real aircraft specimen. In this paper, a miniature, high-precision, and shock-proof wireless sensor node is designed for multi-channel strain gauge signal conditioning and monitoring. A cluster-star network topology protocol and application layer interface are designed in detail. To verify the functionality of the designed wireless sensor network for strength testing capability, a multi-point WSN based AST system is developed for static testing of a real aircraft undercarriage. Based on the designed wireless sensor nodes, the wireless sensor network is deployed to gather, process, and transmit strain gauge signals and monitor results under different static test loads. This paper shows the efficiency of the wireless sensor network based AST system, compared to a conventional AST system.

  1. Re-Design and Beat Testing of the Man-Machine Integration Design and Analysis System: MIDAS

    Science.gov (United States)

    Shively, R. Jay; Rutkowski, Michael (Technical Monitor)

    1999-01-01

    The Man-machine Design and Analysis System (MIDAS) is a human factors design and analysis system that combines human cognitive models with 3D CAD models and rapid prototyping and simulation techniques. MIDAS allows designers to ask 'what if' types of questions early in concept exploration and development prior to actual hardware development. The system outputs predictions of operator workload, situational awareness and system performance as well as graphical visualization of the cockpit designs interacting with models of the human in a mission scenario. Recently, MIDAS was re-designed to enhance functionality and usability. The goals driving the redesign include more efficient processing, GUI interface, advances in the memory structures, implementation of external vision models and audition. These changes were detailed in an earlier paper. Two Beta test sites with diverse applications have been chosen. One Beta test site is investigating the development of a new airframe and its interaction with the air traffic management system. The second Beta test effort will investigate 3D auditory cueing in conjunction with traditional visual cueing strategies including panel-mounted and heads-up displays. The progress and lessons learned on each of these projects will be discussed.

  2. Design Science Research toward Designing/Prototyping a Repeatable Model for Testing Location Management (LM) Algorithms for Wireless Networking

    Science.gov (United States)

    Peacock, Christopher

    2012-01-01

    The purpose of this research effort was to develop a model that provides repeatable Location Management (LM) testing using a network simulation tool, QualNet version 5.1 (2011). The model will provide current and future protocol developers a framework to simulate stable protocol environments for development. This study used the Design Science…

  3. Environmental testing of a prototypic digital safety channel, phase I: System design and test methodology

    Energy Technology Data Exchange (ETDEWEB)

    Korsah, K.; Turner, G.W.; Mullens, J.A.

    1995-02-01

    A microprocessor-based reactor trip channel has been assembled for environmental testing under an Instrumentation and Control (I&C) Qualification Program sponsored by the U.S. Nuclear Regulatory Commission. The goal of this program is to establish the technical basis for the qualification of advanced I&C systems. The trip channel implemented for this study employs technologies and digital subsystems representative of those proposed for use in some advanced light-water reactors (ALNWS) such as the Simplified Boiling Water Reactor (SBNW) and AP600. It is expected that these tests will reveal any potential system vulnerabilities for technologies representative of those proposed for use in ALNWS. The experimental channel will be purposely stressed considerably beyond what it is likely to experience in a normal nuclear power plant environment, so that the tests can uncover the worst-case failure modes (i.e., failures that are likely to prevent an entire trip system from performing its safety function when required to do so). Based on information obtained from this study, it may be possible to recommend tests that are likely to indicate the presence of such failure mechanisms. Such recommendations would be helpful in augmenting current qualification guidelines.

  4. Metamodel-Based Multidisciplinary Design Optimization of a Deep-Sea Manganese Nodules Test Miner

    Directory of Open Access Journals (Sweden)

    Minuk Lee

    2012-01-01

    Full Text Available A deep-sea manganese nodules test miner has not only coupled relationship between system components but also various design requirements of each system to meet the specified multitasks. To accomplish the multiobjectives of complex systems, multidisciplinary design optimization (MDO is performed. Metamodels such as the kriging model and the response surface model are employed to reduce computational costs for MDO and to integrate component systems in a design framework. After verifying the accuracy of each metamodel, metamodel-based MDO for a deep-ocean test miner is formulated and performed. Finally, results and advantages of the proposed design methodology are discussed.

  5. SRNL Review And Assessment Of WTP UFP-02 Sparger Design And Testing

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Duignan, M. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Fink, S. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Steimke, J. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-03-24

    During aerosol testing conducted by Parsons Constructors and Fabricators, Inc. (PCFI), air sparger plugging was observed in small-scale and medium-scale testing. Because of this observation, personnel identified a concern that the steam spargers in Pretreatment Facility vessel UFP-02 could plug during Waste Treatment and Immobilization Plant (WTP) operation. The U. S. Department of Energy (DOE) requested that Savannah River National Laboratory (SRNL) provide consultation on the evaluation of known WTP bubbler, and air and steam sparger issues. The authors used the following approach for this task: reviewed previous test reports (including smallscale testing, medium-scale testing, and Pretreatment Engineering Platform [PEP] testing), met with Bechtel National, Inc. (BNI) personnel to discuss sparger design, reviewed BNI documents supporting the sparger design, discussed sparger experience with Savannah River Site Defense Waste Processing Facility (DWPF) and Sellafield personnel, talked to sparger manufacturers about relevant operating experience and design issues, and reviewed UFP-02 vessel and sparger drawings.

  6. An Evaluation of a Two-Stage Testlet Design for Computerized Testing. Law School Admission Council Computerized Testing Report. LSAC Research Report Series.

    Science.gov (United States)

    Reese, Lynda M.; Schnipke, Deborah L.

    A two-stage design provides a way of roughly adapting item difficulty to test-taker ability. All test takers take a parallel stage-one test, and based on their scores, they are routed to tests of different difficulty levels in the second stage. This design provides some of the benefits of standard computer adaptive testing (CAT), such as increased…

  7. Permanent deformation testing for a new South African mechanistic pavement design method

    CSIR Research Space (South Africa)

    Anochie-Boateng, Joseph

    2012-01-01

    Full Text Available African Pavement Design Method (SAPDM) will use permanent deformation in addition to fatigue characteristics to model damage of HMA materials [5]. Permanent deformation properties determined from repeated load uniaxial or triaxial tests are key... temperature and stress pair require a news specimen to be used, because permanent deformation test is destructive, and samples are usually assumed to be damaged after testing; ? Conduct test to collect permanent strain accumulation data up to 20,000 load...

  8. Test design description Volume 2, Part 1. IFR-1 metal fuel irradiation test (AK-181) element as-built data

    Energy Technology Data Exchange (ETDEWEB)

    Dodds, N. E.

    1986-06-01

    The IFR-1 Test, designated as the AK-181 Test Assembly, will be the first irradiation test of wire wrapped, sodium-bonded metallic fuel elements in the Fast Flux Test Facility (FFTF). The test is part of the Integral Fast Reactor (IFR) fuels program conducted by Argonne National Laboratory (ANL) in support of the Innovative Reactor Concepts Program sponsored by the US Department of Energy (DOE). One subassembly, containing 169 fuel elements, will be irradiated for 600 full power days to achieve 10 at.% burnup. Three metal fuel alloys (U-10Zr, U-8Pu-10Zr) will be irradiated in D9 cladding tubes. The metal fuel elements have a fuel-smeared density of 75% and each contains five slugs. The enriched zone contains three slugs and is 36-in. long. One 6.5-in. long depleted uranium axial blanket slug (DU-10Zr) was loaded at each end of the enriched zone. the fuel elements were fabricated at ANL-W and delivered to Westinghouse-Hanford for wirewrapping and assembly into the test article. This Test Design Description contains relevant data on compositions, densities, dimensions and weights for the cast fuel slugs and completed fuel elements. The elements conform to the requirements in MG-22, "Users` Guide for the Irradiation of Experiments in the FTR."

  9. The Testing Behind The Test Facility: The Acoustic Design of the NASA Glenn Research Center's World-Class Reverberant Acoustic Test Facility

    Science.gov (United States)

    Hozman, Aron D.; Hughes, William O.; McNelis, Mark E.; McNelis, Anne M.

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is leading the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC's Plum Brook Station in Sandusky, Ohio, USA. Benham Companies, LLC is currently constructing modal, base-shake sine and reverberant acoustic test facilities to support the future testing needs of NASA's space exploration program. The large Reverberant Acoustic Test Facility (RATF) will be approximately 101,000 cu ft in volume and capable of achieving an empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world's known active reverberant acoustic test facilities. The key to achieving the expected acoustic test spectra for a range of many NASA space flight environments in the RATF is the knowledge gained from a series of ground acoustic tests. Data was obtained from several NASA-sponsored test programs, including testing performed at the National Research Council of Canada's acoustic test facility in Ottawa, Ontario, Canada, and at the Redstone Technical Test Center acoustic test facility in Huntsville, Alabama, USA. The majority of these tests were performed to characterize the acoustic performance of the modulators (noise generators) and representative horns that would be required to meet the desired spectra, as well as to evaluate possible supplemental gas jet noise sources. The knowledge obtained in each of these test programs enabled the design of the RATF sound generation system to confidently advance to its final acoustic design and subsequent on-going construction.

  10. Liquid metal blanket module testing and design for ITER/TIBER II

    Energy Technology Data Exchange (ETDEWEB)

    Mattas, R.F.; Cha, Y.; Finn, P.A.; Majumdar, S.; Picologlou, B.; Stevens, H.; Turner, L.

    1988-05-01

    A major goal for ITER is the testing of nuclear components to demonstrate the integrated performance of the most attractive concepts that can lead to a commercial fusion reactor. As part of the ITER/TIBER II study, the test program and design of test models were examined for a number of blanket concepts. The work at Argonne National Laboratory focused on self-cooled liquid metal blankets. A test program for liquid metal blankets was developed based upon the ITER/TIBER II operating schedule and the specific data needs to resolve the key issues for liquid metals. Testing can begin early in reactor operation with liquid metal MHD tests to confirm predictive capability. Combined heat transfer/MHD tests can be performed during initial plasma operation. After acceptable heat transfer performance is verified, tests to determine the integrated high temperature performance in a neutron environment can begin. During the high availability phase operation, long term performance and reliability tests will be performed. It is envisioned that a companion test program will be conducted outside ITER to determine behavior under severe accident conditions and upper performance limits. A detailed design of a liquid metal test module and auxiliary equipment was also developed. The module followed the design of the TPSS blanket. Detailed analysis of the heat transfer and tritium systems were performed, and the overall layout of the systems was determined. In general, the blanket module appears to be capable of addressing most of the testing needs. 8 refs., 27 figs., 11 tabs.

  11. A typical proficiency testing programmes sample design for electrical and electronic product

    Science.gov (United States)

    Wang, T. T.; Zhang, H.; Xie, L. L.; Wang, Y. Y.

    2017-04-01

    Creepage distance and clearance testing are the basic testing items in the safety standards for almost all electrical and electronic products. A typical sample group is designed in this paper for the purpose of proficiency testing programmes. The sample group is composed of two kinds of circuit board. The length of the creepage distance of the two circuit boards in pollution degree 2 and 3 are the same but with different paths. This sample group includes three testing points. This sample group is designed beneficial for numerical statistics and avoiding the data complicity in the laboratory. It can be used for effective laboratory monitoring.

  12. Review of application code and standards for mechanical and piping design of HANARO fuel test loop

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. Y.

    1998-02-01

    The design and installation of the irradiation test facility for verification test of the fuel performance are very important in connection with maximization of the utilization of HANARO. HANARO fuel test loop was designed in accordance with the same code and standards of nuclear power plant because HANARO FTL will be operated the high pressure and temperature same as nuclear power plant operation conditions. The objective of this study is to confirm the propriety of application code and standards for mechanical and piping of HANARO fuel test loop and to decide the technical specification of FTL systems. (author). 18 refs., 8 tabs., 6 figs.

  13. The NCS 45 cask family: an updated design replaces an old design lessons learned during design, testing and licensing

    Energy Technology Data Exchange (ETDEWEB)

    Bergmann, W.; Hilbert, F. [Nuclear Cargo und Service GmbH, Hanau (Germany)

    2004-07-01

    The NCS 45 cask family is intended to replace the cask types R52, TN6/1 and TN6/3. These packagings - country of origin France - were in operation worldwide since mid 1970. In the late nineties prolongations of the certificates of package approval became more and more difficult and time consuming. Finally only special arrangements for restricted contents were issued by the competent French authority which caused considerable problems when validations in other countries were applied for. To guarantee the availability of such a cask in the future for its customers NCS decided to replace the old casks by an updated design, the NCS 45 cask family.

  14. Meeting Human Reliability Requirements through Human Factors Design, Testing, and Modeling

    Energy Technology Data Exchange (ETDEWEB)

    R. L. Boring

    2007-06-01

    In the design of novel systems, it is important for the human factors engineer to work in parallel with the human reliability analyst to arrive at the safest achievable design that meets design team safety goals and certification or regulatory requirements. This paper introduces the System Development Safety Triptych, a checklist of considerations for the interplay of human factors and human reliability through design, testing, and modeling in product development. This paper also explores three phases of safe system development, corresponding to the conception, design, and implementation of a system.

  15. Deep Space CubeSat Prototype Platform Design and Testing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop and test a proof of concept prototype for a standard CubeSat form factor platform, designed for missions to deep space targets, as opposed to...

  16. Comparison between Genetic Algorithms and Particle Swarm Optimization Methods on Standard Test Functions and Machine Design

    DEFF Research Database (Denmark)

    Nica, Florin Valentin Traian; Ritchie, Ewen; Leban, Krisztina Monika

    2013-01-01

    Nowadays the requirements imposed by the industry and economy ask for better quality and performance while the price must be maintained in the same range. To achieve this goal optimization must be introduced in the design process. Two of the best known optimization algorithms for machine design......, genetic algorithm and particle swarm are shortly presented in this paper. These two algorithms are tested to determine their performance on five different benchmark test functions. The algorithms are tested based on three requirements: precision of the result, number of iterations and calculation time....... Both algorithms are also tested on an analytical design process of a Transverse Flux Permanent Magnet Generator to observe their performances in an electrical machine design application....

  17. Design and Development of a Testing Device for Experimental Measurements of Foundation Slabs on the Subsoil

    National Research Council Canada - National Science Library

    Čajka, Radim; Křivý, Vít; Sekanina, David

    2011-01-01

    The paper deals with technical solutions and construction of a testing stand designed for experimental measurements of deformations and state of stress of foundation structures placed on the subsoil...

  18. Multiple testing procedures for identifying desirable dose combinations in bifactorial designs

    Directory of Open Access Journals (Sweden)

    Buchheister, Bettina

    2006-06-01

    Full Text Available Hung, Chi, and Lipicky proposed the AVE and MAX tests to analyse in a bifactorial design whether combinations of two drugs at several doses fulfil the desirable property of superiority to both their single drug components. These are global tests and do not identify the special combinations which are more effective than their respective single components. Here multiple testing procedures based on linear contrast tests and on the closed testing principle will be presented. They will be compared with simultaneous Min tests of Laska and Meisner. The performance of these approaches is investigated by simulation studies.

  19. Design of Accelerated Reliability Test for CNC Motorized Spindle Based on Vibration Signal

    Directory of Open Access Journals (Sweden)

    Chen Chao

    2016-01-01

    Full Text Available Motorized spindle is the key functional component of CNC machining centers which is a mechatronics system with long life and high reliability. The reliability test cycle of motorized spindle is too long and infeasible. This paper proposes a new accelerated test for reliability evaluation of motorized spindle. By field reliability test, authors collect and calculate the load data including rotational speed, cutting force and torque. Load spectrum distribution law is analyzed. And authors design a test platform to apply the load spectrum. A new method to define the fuzzy acceleration factor based on the vibration signal is proposed. Then the whole test plan of accelerated reliability test is done.

  20. Design, fabrication and test of lightweight shell structure. [axial compression loads and torsion stress

    Science.gov (United States)

    Lager, J. R.

    1975-01-01

    A cylindrical shell structure 3.66 m (144 in.) high by 4.57 m (180 in.) diameter was designed using a wide variety of materials and structural concepts to withstand design ultimate combined loading 1225.8 N/cm (700 lb/in.) axial compression and 245.2 N/cm (140 lb/in.) torsion. The overall cylinder geometry and design loading are representative of that expected on a high performance space tug vehicle. The relatively low design load level results in designs that use thin gage metals and fibrous-composite laminates. Fabrication and structural tests of small panels and components representative of many of the candidate designs served to demonstrate proposed fabrication techniques and to verify design and analysis methods. Three of the designs evaluated, honeycomb sandwich with aluminum faceskins, honeycomb sandwich with graphite/epoxy faceskins, and aluminum truss with fiber-glass meteoroid protection layers, were selected for further evaluation.

  1. Design and Testing of Recharge Wells in a Coastal Aquifer: Summary of Field Scale Pilot Tests

    Directory of Open Access Journals (Sweden)

    Joseph Guttman

    2017-01-01

    Full Text Available Surplus water from seawater desalination plants along the Israeli Coast can be injected underground for seasonal storage. Two pilot projects were established to simulate the movement of air bubbles and changes in the well hydraulic parameters during pumping and recharging. The study showed that it is impossible to remove the smaller air bubbles (dissolved air that are created during the injection process, even when the injection pipe is fully saturated. The pumping tests showed that there were large differences in the well hydraulic parameters between the pumping and the recharge tests despite that they were conducted at the same well. Two mechanisms are responsible for the reduction in the aquifer coefficients during the recharge event. The first mechanism is the pressures that the injected water needs to overcome; the aquifer pressure and the pore water pressure it is supposed to replace at the time of the injection. The second mechanism is the pressure that the injected water needs to overcome the clogging process. It is expressed as the high water level inside the recharge well in comparison to the small rising of the water level in the observation wells. This research gives good insight into the injection mechanism through wells and is essential for any further development of injection facilities and for the operation and management protocols.

  2. The mechanical design and dynamic testing of the IBEX-H1 electrostatic analyzer spacecraft instrument

    Energy Technology Data Exchange (ETDEWEB)

    Bernardin, John D [Los Alamos National Laboratory; Baca, Allen G [SNL

    2009-01-01

    This paper presents the mechanical design, fabrication and dynamic testing of an electrostatic analyzer spacecraft instrument. The functional and environmental requirements combined with limited spacecraft accommodations, resulted in complex component geometries, unique material selections, and difficult fabrication processes. The challenging aspects of the mechanical design and several of the more difficult production processes are discussed. In addition, the successes, failures, and lessons learned from acoustic and random vibration testing of a full-scale prototype instrument are presented.

  3. Design and prototyping of HL-LHC double quarter wave crab cavities for SPS test

    Energy Technology Data Exchange (ETDEWEB)

    Verdu-Andres, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Skaritka, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wu, Q. [Brookhaven National Lab. (BNL), Upton, NY (United States); Xiao, B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Belomestnykh, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., NY (United States); Ben-Zvi, I. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., NY (United States); Alberty, L. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Artoos, K. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Calaga, R. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Capatina, O. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Capelli, T. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Carra, F. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Leuxe, R. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Kuder, N. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Zanoni, C. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Li, Z. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Ratti, A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-05-03

    The LHC high luminosity project envisages the use of the crabbing technique for increasing and levelling the LHC luminosity. Double Quarter Wave (DQW) resonators are compact cavities especially designed to meet the technical and performance requirements for LHC beam crabbing. Two DQW crab cavities are under fabrication and will be tested with beam in the Super Proton Synchrotron (SPS) at CERN by 2017. This paper describes the design and prototyping of the DQW crab cavities for the SPS test.

  4. Design and Prototyping of HL-LHC Double Quarter Wave Crab Cavities for SPS Test

    CERN Document Server

    Verdú-Andrés, S; Wu, Q; Xiao, B P; Belomestnykh, S; Ben-Zv, I; Alberty, L; Artoos, Kurt; Calaga, Rama; Capatina, Ofelia; Capelli, Teddy; Carra, Federico; Leuxe, Raphael; Kuder, Norbert; Zanoni, Carlo; Li, Z; Ratti, A

    2015-01-01

    The LHC high luminosity project envisages the use of the crabbing technique for increasing and levelling the LHC luminosity. Double Quarter Wave (DQW) resonators are compact cavities especially designed to meet the technical and performance requirements for LHC beam crabbing. Two DQW crab cavities are under fabrication and will be tested with beam in the Super Proton Synchrotron (SPS) at CERN by 2017. This paper describes the design and prototyping of the DQW crab cavities for the SPS test.

  5. Design of 500kW grate fired test facility using CFD

    DEFF Research Database (Denmark)

    Rosendahl, Lasse Aistrup; Kær, Søren Knudsen; Jørgensen, K.

    2005-01-01

    A 500kW vibrating grate fired test facility for solid biomass fuels has been designed using numerical models including CFD. The CFD modelling has focussed on the nozzle layout and flowpatterns in the lower part of the furnace, and the results have established confidence in the chosen design......, indicating that the test facility will adequately provide conditions resembling those found in full-scale industrial plants....

  6. Evaluation of a nurse-designed mobile health education application to enhance knowledge of Pap testing.

    Science.gov (United States)

    Christensen, Stacy

    2014-01-01

    An experimental study was conducted using a 2-group randomized control pretest/ posttest design to determine if knowledge about Pap testing could be increased through use of a nurse-designed mobile smartphone app developed to educate individuals about the Pap test. A 14-item pretest survey of knowledge about Pap tests was distributed to women attending a university in New England. Participants in the intervention group were provided with an Android device on which a digital health education application on Pap testing had been downloaded. The control group was given a standard pamphlet on Pap testing., Paired t test results demonstrated that knowledge scores on the posttest increased significantly in both groups, but were significantly higher in the intervention group. User satisfaction with the app was high. The results of this study may enhance nursing care by informing nurses about a unique way of learning about Pap testing to recommend to patients.

  7. Structured approach to design of diagnostic test evaluation studies for chronic progressive infections in animals

    DEFF Research Database (Denmark)

    Nielsen, Søren Saxmose; Toft, Nils; Gardner, Ian Andrew

    2011-01-01

    Diagnostic test evaluations (DTEs) for chronic infections are challenging because a protracted incubation period has to be considered in the design of the DTE, and the adverse effects of infection may be widespread and progressive over an animal's entire life. Frequently, the specific purpose......) than originally intended. The objective of this paper is to outline a structured approach to the design and conduct of a DTE for diagnostic tests used for chronic infections in animals, and intended for different purposes. We describe the process from reflections about test purpose and the underlying...... of the test is not formally considered when a test is evaluated. Therefore, the result is often a DTE where test sensitivity and specificity estimates are biased, either because of problems with establishing the true infection status or because the test detects another aspect of the infection (and analyte...

  8. Iterative design and testing of a modular anterior plate for lumbar spine fixation applications.

    Science.gov (United States)

    Demir, Teyfik

    2012-09-01

    In this study, a modular anterior lumbar plate is designed and tested in an iterative fashion. The study starts with a basic design that is built by combining same-sized modules; an approach that allow inventory costs to be decreased. The basic design is iteratively improved guided by the results of biomechanical tests performed on each new design. At the end of three iterations of improvements, the design is complete and the plate is of sufficient quality for it to be used in anterior surgical operations. Using these plates creates the advantage of being able to increase the size and slot count during surgical operations, even when some of the modules are already fixed to vertebrae. The designed modular plate is shown to be as safe for use as a rigid plate in terms of its static and fatigue biomechanical performances.

  9. The system design and performance test of hybrid vertical axis wind turbine

    Science.gov (United States)

    Dwiyantoro, Bambang Arip; Suphandani, Vivien

    2017-04-01

    Vertical axis wind turbine is a tool that is being developed to generate energy from wind. One cause is still little use of wind energy is the design of wind turbines that are less precise. Therefore in this study will be developed the system design of hybrid vertical axis wind turbine and tested performance with experimental methods. The design of hybrid turbine based on a straight bladed Darrieus turbine along with a double step Savonius turbine. The method used to design wind turbines is by studying literature, analyzing the critical parts of a wind turbine and the structure of the optimal design. Wind turbine prototype of the optimal design characteristic tests in the wind tunnel experimentally by varying the speed of the wind. From the experimental results show that the greater the wind speed, the greater the wind turbine rotation and torque is raised. The hybrid vertical axis wind turbine has much better self-starting and better conversion efficiency.

  10. Design, fabrication, and test planning for an SMA-actuated vortex wake control system

    Science.gov (United States)

    Quackenbush, Todd R.; Batcho, P. F.; Bilanin, Alan J.; Carpenter, Bernie F.

    1998-06-01

    This paper describes ongoing design and fabrication work on a vortex wake control system for submarines that employs SMA-actuated devices. Previous work has described the theoretical basis and feasibility studies for this system, which is based on a novel wake control scheme known as vortex leveraging. The critical item in the realization of this system is a Smart Vortex Leveraging Tab (SVLT), whose design and fabrication is the principal focus of this work. This paper outlines the background of the effort and the design principles involved, but will chiefly deal with three closely interrelated topics; the hydrodynamic design requirements and control surface layout for the vortex leveraging system; the detail design and fabrication techniques being used in the construction of a prototype SVLT; and the test planning and experiment design process currently underway for test of both the overall vortex leveraging concept and SVLT device itself.

  11. Mechanical Aspects of Design, Analysis, and Testing for the NORSAT-1 Microsatellite

    Science.gov (United States)

    Kanji, Shahil

    NORSAT-1 is a multi-payload microsatellite mission funded by the Norwegian Space Center, with three overall objectives: investigating solar radiation, space plasma research, and developing improved methods for detection and management of ship traffic. The successful development of the NORSAT-1 platform aims to lay the groundwork for additional low-cost microsatellites in the NORSAT series, and expand the Norwegian presence in space and space-based ship tracking technologies. This thesis provides some insight into the NORSAT-1 satellite platform design, and focuses heavily on the mechanical aspects of design, analysis, and testing. The structural design is detailed from the early conceptual design phases, and follows the development to the manufacturing, integration, and testing of the flight spacecraft. Validation of the design through finite element modeling is presented, along with the development and design of two honeycomb composite solar panels, and two deployable whip antennas.

  12. Composite transport wing technology development: Design development tests and advanced structural concepts

    Science.gov (United States)

    Griffin, Charles F.; Harvill, William E.

    1988-01-01

    Numerous design concepts, materials, and manufacturing methods were investigated for the covers and spars of a transport box wing. Cover panels and spar segments were fabricated and tested to verify the structural integrity of design concepts and fabrication techniques. Compression tests on stiffened panels demonstrated the ability of graphite/epoxy wing upper cover designs to achieve a 35 percent weight savings compared to the aluminum baseline. The impact damage tolerance of the designs and materials used for these panels limits the allowable compression strain and therefore the maximum achievable weight savings. Bending and shear tests on various spar designs verified an average weight savings of 37 percent compared to the aluminum baseline. Impact damage to spar webs did not significantly degrade structural performance. Predictions of spar web shear instability correlated well with measured performance. The structural integrity of spars manufactured by filament winding equalled or exceeded those fabricated by hand lay-up. The information obtained will be applied to the design, fabrication, and test of a full-scale section of a wing box. When completed, the tests on the technology integration box beam will demonstrate the structural integrity of an advanced composite wing design which is 25 percent lighter than the metal baseline.

  13. Design and test of a 434 MHz multi-channel amplifier system for targeted hyperthermia applicators

    NARCIS (Netherlands)

    Bakker, J. F.; Paulides, M. M.; Westra, A. H.; Schippers, H.; Van Rhoon, G. C.

    2010-01-01

    Purpose: For our head-and-neck hyperthermia ( HT) applicator, an amplifier system with full amplitude and phase-control to deliver the radio-frequency signals, was not available. We therefore designed and tested a 433.92 MHz multi-channel amplifier system. System description: The design consists of

  14. Design and testing of an aeroelastically tailored wing under manoeuvre loading

    NARCIS (Netherlands)

    Werter, N.P.M.; Sodja, J.; De Breuker, R.

    2015-01-01

    The design methodology and testing of an aeroelastically tailored wing subjected to manoeuvre loads is presented in this paper. The wing is designed using an aeroelastic analysis tool that is composed of a closely coupled nonlinear beam model and a vortex lattice aerodynamic model. The globally

  15. Design of two syllabic nonlinear multichannel signal processors and the results of speech tests in noise

    NARCIS (Netherlands)

    van Harten-de Bruijn, H. E.; van Kreveld-Bos, C. S.; Dreschler, W. A.; Verschuure, H.

    1997-01-01

    OBJECTIVE: Multichannel syllabic compressors have not yet shown clear advantages for speech perception. New multichannel syllabic nonlinear processors are designed and evaluated in this study to test whether they enhance speech perception scores. DESIGN: Nonsense consonant-vowel-consonant words have

  16. 42 CFR 84.1142 - Isoamyl acetate tightness test; respirators designed for respiratory protection against dusts...

    Science.gov (United States)

    2010-10-01

    ... designed for respiratory protection against dusts, fumes, and mists having an air contamination level less... Masks § 84.1142 Isoamyl acetate tightness test; respirators designed for respiratory protection against... AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Dust, Fume, and...

  17. Design and Usability Testing of an mHealth Application for Midwives in Rural Ghana

    Science.gov (United States)

    Velez, Olivia

    2011-01-01

    Midwives in Ghana provide the majority of rural primary and maternal healthcare services, but have limited access to data for decision making and knowledge work. Few mobile health (mHealth) applications have been designed for midwives. The study purpose was to design and test an mHealth application (mClinic) that can improve data access and reduce…

  18. Verification of Overall Safety Factors In Deterministic Design Of Model Tested Breakwaters

    DEFF Research Database (Denmark)

    Burcharth, H. F.

    2001-01-01

    The paper deals with concepts of safety implementation in design. An overall safety factor concept is evaluated on the basis of a reliability analysis of a model tested rubble mound breakwater with monolithic super structure. Also discussed are design load identification and failure mode limit st...

  19. Comparison of Resource Requirements for a Wind Tunnel Test Designed with Conventional vs. Modern Design of Experiments Methods

    Science.gov (United States)

    DeLoach, Richard; Micol, John R.

    2011-01-01

    The factors that determine data volume requirements in a typical wind tunnel test are identified. It is suggested that productivity in wind tunnel testing can be enhanced by managing the inference error risk associated with evaluating residuals in a response surface modeling experiment. The relationship between minimum data volume requirements and the factors upon which they depend is described and certain simplifications to this relationship are realized when specific model adequacy criteria are adopted. The question of response model residual evaluation is treated and certain practical aspects of response surface modeling are considered, including inference subspace truncation. A wind tunnel test plan developed by using the Modern Design of Experiments illustrates the advantages of an early estimate of data volume requirements. Comparisons are made with a representative One Factor At a Time (OFAT) wind tunnel test matrix developed to evaluate a surface to air missile.

  20. Design and testing of high temperature micro-ORC test stand using Siloxane as working fluid

    Science.gov (United States)

    Turunen-Saaresti, Teemu; Uusitalo, Antti; Honkatukia, Juha

    2017-03-01

    Organic Rankine Cycle is a mature technology for many applications e.g. biomass power plants, waste heat recovery and geothermal power for larger power capacity. Recently more attention is paid on an ORC utilizing high temperature heat with relatively low power. One of the attractive applications of such ORCs would be utilization of waste heat of exhaust gas of combustion engines in stationary and mobile applications. In this paper, a design procedure of the ORC process is described and discussed. The analysis of the major components of the process, namely the evaporator, recuperator, and turbogenerator is done. Also preliminary experimental results of an ORC process utilizing high temperature exhaust gas heat and using siloxane MDM as a working fluid are presented and discussed. The turbine type utilized in the turbogenerator is a radial inflow turbine and the turbogenerator consists of the turbine, the electric motor and the feed pump. Based on the results, it was identified that the studied system is capable to generate electricity from the waste heat of exhaust gases and it is shown that high molecular weight and high critical temperature fluids as the working fluids can be utilized in high-temperature small-scale ORC applications. 5.1 kW of electric power was generated by the turbogenerator.

  1. Conceptual Design of Forced Convection Molten Salt Heat Transfer Testing Loop

    Energy Technology Data Exchange (ETDEWEB)

    Manohar S. Sohal; Piyush Sabharwall; Pattrick Calderoni; Alan K. Wertsching; S. Brandon Grover

    2010-09-01

    This report develops a proposal to design and construct a forced convection test loop. A detailed test plan will then be conducted to obtain data on heat transfer, thermodynamic, and corrosion characteristics of the molten salts and fluid-solid interaction. In particular, this report outlines an experimental research and development test plan. The most important initial requirement for heat transfer test of molten salt systems is the establishment of reference coolant materials to use in the experiments. An earlier report produced within the same project highlighted how thermophysical properties of the materials that directly impact the heat transfer behavior are strongly correlated to the composition and impurities concentration of the melt. It is therefore essential to establish laboratory techniques that can measure the melt composition, and to develop purification methods that would allow the production of large quantities of coolant with the desired purity. A companion report describes the options available to reach such objectives. In particular, that report outlines an experimental research and development test plan that would include following steps: •Molten Salts: The candidate molten salts for investigation will be selected. •Materials of Construction: Materials of construction for the test loop, heat exchangers, and fluid-solid corrosion tests in the test loop will also be selected. •Scaling Analysis: Scaling analysis to design the test loop will be performed. •Test Plan: A comprehensive test plan to include all the tests that are being planned in the short and long term time frame will be developed. •Design the Test Loop: The forced convection test loop will be designed including extensive mechanical design, instrument selection, data acquisition system, safety requirements, and related precautionary measures. •Fabricate the Test Loop. •Perform the Tests. •Uncertainty Analysis: As a part of the data collection, uncertainty analysis will

  2. Design, fabrication and test of graphite/polyimide composite joints and attachments for advanced aerospace vehicles

    Science.gov (United States)

    Barclay, D. L.

    1980-01-01

    Results of an experimental program to develop several types of graphite/polyimide (GR/PI) bonded and bolted joints for lightly loaded flight components for advanced space transportation systems and high speed aircraft are presented. Tasks accomplished include: a literature survey; design of static discriminator specimens; design allowables testing; fabrication of test panels and specimens; small specimen testing; and standard joint testing. Detail designs of static discriminator specimens for each of the four major attachment types are presented. Test results are given for the following: (1) transverse tension of Celion 3000/PMR-15 laminate; (2) net tension of a laminate for both a loaded and unloaded bolt hole; (3) comparative testing of bonded and co-cured doublers along with pull-off tests of single and double bonded angles; (4) single lap shear tests, transverse tension and coefficient of thermal expansion tests of A7F (LARC-13 amide-imide modified) adhesive; and (5) tension tests of standard single lap, double lap, and symmetric step lap bonded joints. Also, included are results of a finite element analysis of a single lap bonded composite joint.

  3. Multi-canister overpack design report

    Energy Technology Data Exchange (ETDEWEB)

    SMITH, K.E.

    1999-05-12

    Revision 2 incorporates changes to reflect a 150 psig pressure rating for the mechanically closed MCO and 450 psig pressure rating with the cover cap welded in place, per the MCO Performance Specification, HNF-S-0426, Rev. 5 .

  4. Direct and Inverse Problems of Item Pool Design for Computerized Adaptive Testing

    Science.gov (United States)

    Belov, Dmitry I.; Armstrong, Ronald D.

    2009-01-01

    The recent literature on computerized adaptive testing (CAT) has developed methods for creating CAT item pools from a large master pool. Each CAT pool is designed as a set of nonoverlapping forms reflecting the skill levels of an assumed population of test takers. This article presents a Monte Carlo method to obtain these CAT pools and discusses…

  5. Engineering design and analysis of an ITER-like first mirror test assembly on JET

    DEFF Research Database (Denmark)

    Vizvary, Z.; Bourdel, B.; Garcia-Carrasco, A.

    2017-01-01

    is underway on JET, under contract to ITER, with primary objective to test if, under realistic plasma and wall material conditions and with ITER-like first mirror aperture geometry, deposits do grow on first mirrors. This paper describes the engineering design and analysis of this mirror test assembly...

  6. Model Selection for Equating Testlet-Based Tests in the NEAT Design: An Empirical Study

    Science.gov (United States)

    He, Wei; Li, Feifei; Wolfe, Edward W.; Mao, Xia

    2012-01-01

    For those tests solely composed of testlets, local item independency assumption tends to be violated. This study, by using empirical data from a large-scale state assessment program, was interested in investigates the effects of using different models on equating results under the non-equivalent group anchor-test (NEAT) design. Specifically, the…

  7. 40 CFR 63.2354 - What performance tests, design evaluations, and performance evaluations must I conduct?

    Science.gov (United States)

    2010-07-01

    ... evaluations, and performance evaluations must I conduct? 63.2354 Section 63.2354 Protection of Environment... tests, design evaluations, and performance evaluations must I conduct? (a)(1) For each performance test... procedures specified in subpart SS of this part. (3) For each performance evaluation of a continuous emission...

  8. Development and Validation of an Admission Test Designed to Assess Samples of Performance on Academic Tasks

    Science.gov (United States)

    Tanilon, Jenny; Segers, Mien; Vedder, Paul; Tillema, Harm

    2009-01-01

    This study illustrates the development and validation of an admission test, labeled as Performance Samples on Academic Tasks in Educational Sciences (PSAT-Ed), designed to assess samples of performance on academic tasks characteristic of those that would eventually be encountered by examinees in an Educational Sciences program. The test was based…

  9. Reliability and validity of the rey visual design learning test in primary school children

    NARCIS (Netherlands)

    Wilhelm, P.

    2004-01-01

    The Rey Visual Design Learning Test (Rey, 1964, in Spreen & Strauss, 1991) assesses immediate memory span, new learning and recognition for non-verbal material. Three studies are presented that focused on the reliability and validity of the RVDLT in primary school children. Test-retest reliability

  10. Michelson Interferometer for Global High-Resolution Thermospheric Imaging (MIGHTI): Monolithic Interferometer Design and Test

    Science.gov (United States)

    Harlander, John M.; Englert, Christoph R.; Brown, Charles M.; Marr, Kenneth D.; Miller, Ian J.; Zastera, Vaz; Bach, Bernhard W.; Mende, Stephen B.

    2017-10-01

    The design and laboratory tests of the interferometers for the Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) instrument which measures thermospheric wind and temperature for the NASA-sponsored Ionospheric Connection (ICON) Explorer mission are described. The monolithic interferometers use the Doppler Asymmetric Spatial Heterodyne (DASH) Spectroscopy technique for wind measurements and a multi-element photometer approach to measure thermospheric temperatures. The DASH technique and overall optical design of the MIGHTI instrument are described in an overview followed by details on the design, element fabrication, assembly, laboratory tests and thermal control of the interferometers that are the heart of MIGHTI.

  11. Design and Test of Low-Profile Composite Aerospace Tank Dome

    Science.gov (United States)

    Ahmed, R.

    1999-01-01

    This report summarizes the design, analysis, manufacture, and test of a subscale, low-profile composite aerospace dome under internal pressure. A low-profile dome has a radius-to-height ratio greater than the square root of two. This effort demonstrated that a low-profile composite dome with a radius-to-height ratio of three was a feasible design and could adequately withstand the varying stress states resulting from internal pressurization. Test data for strain and displacement versus pressure are provided to validate the design.

  12. Design and Testing of a Prototype Lunar or Planetary Surface Landing Research Vehicle (LPSLRV)

    Science.gov (United States)

    Murphy, Gloria A.

    2010-01-01

    This handbook describes a two-semester senior design course sponsored by the NASA Office of Education, the Exploration Systems Mission Directorate (ESMD), and the NASA Space Grant Consortium. The course was developed and implemented by the Mechanical and Aerospace Engineering Department (MAE) at Utah State University. The course final outcome is a packaged senior design course that can be readily incorporated into the instructional curriculum at universities across the country. The course materials adhere to the standards of the Accreditation Board for Engineering and Technology (ABET), and is constructed to be relevant to key research areas identified by ESMD. The design project challenged students to apply systems engineering concepts to define research and training requirements for a terrestrial-based lunar landing simulator. This project developed a flying prototype for a Lunar or Planetary Surface Landing Research Vehicle (LPSRV). Per NASA specifications the concept accounts for reduced lunar gravity, and allows the terminal stage of lunar descent to be flown either by remote pilot or autonomously. This free-flying platform was designed to be sufficiently-flexible to allow both sensor evaluation and pilot training. This handbook outlines the course materials, describes the systems engineering processes developed to facilitate design fabrication, integration, and testing. This handbook presents sufficient details of the final design configuration to allow an independent group to reproduce the design. The design evolution and details regarding the verification testing used to characterize the system are presented in a separate project final design report. Details of the experimental apparatus used for system characterization may be found in Appendix F, G, and I of that report. A brief summary of the ground testing and systems verification is also included in Appendix A of this report. Details of the flight tests will be documented in a separate flight test

  13. Efficient Testing Combing Design of Experiment and Learn-to-Fly Strategies

    Science.gov (United States)

    Murphy, Patrick C.; Brandon, Jay M.

    2017-01-01

    Rapid modeling and efficient testing methods are important in a number of aerospace applications. In this study efficient testing strategies were evaluated in a wind tunnel test environment and combined to suggest a promising approach for both ground-based and flight-based experiments. Benefits of using Design of Experiment techniques, well established in scientific, military, and manufacturing applications are evaluated in combination with newly developing methods for global nonlinear modeling. The nonlinear modeling methods, referred to as Learn-to-Fly methods, utilize fuzzy logic and multivariate orthogonal function techniques that have been successfully demonstrated in flight test. The blended approach presented has a focus on experiment design and identifies a sequential testing process with clearly defined completion metrics that produce increased testing efficiency.

  14. Designing, developing, and testing an app for parents being discharged early postnatally

    DEFF Research Database (Denmark)

    Danbjørg, Dorthe Boe; Wagner, Lis; Clemensen, Jane

    2014-01-01

    , and testing of an app as a viable information technology solution. The app was tested with 10 new families. The test results suggest that the new families and the nurses found the app to be viable and the app met the new families' needs for follow-up support. However, the app required refinements and wider...... testing. •We designed, developed, and testet an app for the iPad.•The app was viable, but the app requires refinements and wider testing.•The app met the new families' needs for follow-up support.•There is a potential for ensuring postnatal security with the use of technology....

  15. A Design Method of Saturation Test Image Based on CIEDE2000

    Directory of Open Access Journals (Sweden)

    Yang Yang

    2012-01-01

    Full Text Available In order to generate color test image consistent with human perception in aspect of saturation, lightness, and hue of image, we propose a saturation test image design method based on CIEDE2000 color difference formula. This method exploits the subjective saturation parameter C′ of CIEDE2000 to get a series of test images with different saturation but same lightness and hue. It is found experimentally that the vision perception has linear relationship with the saturation parameter C′. This kind of saturation test image has various applications, such as in the checking of color masking effect in visual experiments and the testing of the visual effects of image similarity component.

  16. Design and test of box girder for a large wind turbine blade

    DEFF Research Database (Denmark)

    Nielsen, Per Hørlyk; Tesauro, Angelo; Bitsche, Robert

    This report is covering the structural design and full scale test of a box girder as a part of the project “Demonstration of new blade design using manufacturing process simulations” supported by the EUDP program. A box girder with a predetermined outer geometry was designed using new inventions......, which create an inner structure in the box girder. With a combination of advanced FEM analysis and the inventions it was possible to reduce the material thickness of the cap by up to 40%. The new design of the box girder was manufactured at SSP Technology A/S, where it was demonstrated...... that the manufacturing process could include the new inventions. Subsequently the box girder was transported to the blade test facility at DTU Wind Energy. A series of test was performed with the blade to investigate the behaviour during loading, and finally the girder was loaded to ultimate failure. The report includes...

  17. Design of a Test Bed for evaluating an Intrusion Detection System (IDS)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Kwang; Kim, Jung Soo [Korea Institute of Nuclear Nonproliferation And Control, Daejeon (Korea, Republic of)

    2008-05-15

    Intrusion detection system (IDS) in domestic nuclear installation should be established in consideration of environmental and site-specific factors. Prior to this, a guidance of the IDS based on those factors at the specific nuclear facility should be provided. We have designed a concept of a test bed, which consists IDS and CCTV system, in order to execute several performance tests. The ultimate purpose of this study is to establish a test bed in which IDS could be evaluated and developed.

  18. Wind Tunnel Model Design and Test Using Rapid Prototype Materials and Processes

    Science.gov (United States)

    2001-07-23

    UNCLASSIFIED WIND TUNNEL MODEL DESIGN AND TEST USING RAPID PROTOTYPE MATERIALS AND PROCESSES Richard R. Heisler and Clifford L. Ratliff The Johns Hopkins...deflection, and attach directly to the strongback with screws. A and tolerance deviations when the material was grown. schematic diagram of the RPM...constructed around the clay to contain the I. R. R. Heisler , "Final Test Report for the Wind pouring of silicon resin. Tunnel Test of the JHU/APL WTM-01 at

  19. Rey Visual Design Learning Test performance correlates with white matter structure

    OpenAIRE

    Begré, Stefan; Kiefer, Claus; von Känel, Roland; Frommer, Angela; Federspiel, Andrea

    2017-01-01

    Objective: Studies exploring relation of visual memory to white matter are extensively lacking. The Rey Visual Design Learning Test (RVDLT) is an elementary motion, colour and word independent visual memory test. It avoids a significant contribution from as many additional higher order visual brain functions as possible to visual performance, such as three-dimensional, colour, motion or word-dependent brain operations. Based on previous results, we hypothesised that test performance would be ...

  20. Design of a testing strategy using non-animal based test methods: lessons learnt from the ACuteTox project.

    Science.gov (United States)

    Kopp-Schneider, Annette; Prieto, Pilar; Kinsner-Ovaskainen, Agnieszka; Stanzel, Sven

    2013-06-01

    In the framework of toxicology, a testing strategy can be viewed as a series of steps which are taken to come to a final prediction about a characteristic of a compound under study. The testing strategy is performed as a single-step procedure, usually called a test battery, using simultaneously all information collected on different endpoints, or as tiered approach in which a decision tree is followed. Design of a testing strategy involves statistical considerations, such as the development of a statistical prediction model. During the EU FP6 ACuteTox project, several prediction models were proposed on the basis of statistical classification algorithms which we illustrate here. The final choice of testing strategies was not based on statistical considerations alone. However, without thorough statistical evaluations a testing strategy cannot be identified. We present here a number of observations made from the statistical viewpoint which relate to the development of testing strategies. The points we make were derived from problems we had to deal with during the evaluation of this large research project. A central issue during the development of a prediction model is the danger of overfitting. Procedures are presented to deal with this challenge. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. The Development of the Acoustic Design of NASA Glenn Research Center's New Reverberant Acoustic Test Facility

    Science.gov (United States)

    Hughes, William O.; McNelis, Mark E.; Hozman, Aron D.; McNelis, Anne M.

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is leading the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC s Plum Brook Station in Sandusky, Ohio. Benham Companies, LLC is currently constructing modal, base-shake sine and reverberant acoustic test facilities to support the future testing needs of NASA s space exploration program. The large Reverberant Acoustic Test Facility (RATF) will be approximately 101,000 ft3 in volume and capable of achieving an empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world s known active reverberant acoustic test facilities. The key to achieving the expected acoustic test spectra for a range of many NASA space flight environments in the RATF is the knowledge gained from a series of ground acoustic tests. Data was obtained from several NASA-sponsored test programs, including testing performed at the National Research Council of Canada s acoustic test facility in Ottawa, Ontario, Canada, and at the Redstone Technical Test Center acoustic test facility in Huntsville, Alabama. The majority of these tests were performed to characterize the acoustic performance of the modulators (noise generators) and representative horns that would be required to meet the desired spectra, as well as to evaluate possible supplemental gas jet noise sources. The knowledge obtained in each of these test programs enabled the design of the RATF sound generation system to confidently advance to its final acoustic design and subsequent on-going construction.

  2. Design Guide for Aerodynamics Testing of Earth and Planetary Entry Vehicles in a Ballistic Range

    Science.gov (United States)

    Bogdanoff, David W.

    2017-01-01

    The purpose of this manual is to aid in the design of an aerodynamics test of an earth or planetary entry capsule in a ballistic range. In this manual, much use is made of the results and experience gained in 50 years of ballistic range aerodynamics testing at the NASA Ames Research Center, and in particular, that gained in the last 27 years, while the author was working at NASA Ames. The topics treated herein include: Data to be obtained; flight data needed to design test; Reynolds number and dynamic similarity of flight trajectory and ballistic range test; capabilities of various ballistic ranges; Calculations of swerves due to average and oscillating lift and of drag-induced velocity decreases; Model and sabot design; materials, weights and stresses; Sabot separation; Launches at angle of attack and slapping with paper to produce pitch/yaw oscillations.

  3. Subscale Testing of a Ceramic Composite Cooled Panel Led to Its Design and Fabrication for Scramjet Engine Testing

    Science.gov (United States)

    Jaskowiak, Martha H.

    2004-01-01

    In a partnership between the NASA Glenn Research Center and Pratt & Whitney, a ceramic heat exchanger panel intended for use along the hot-flow-path walls of future reusable launch vehicles was designed, fabricated, and tested. These regeneratively cooled ceramic matrix composite (CMC) panels offer lighter weight, higher operating temperatures, and reduced coolant requirements in comparison to their more traditional metallic counterparts. A maintainable approach to the design was adopted which allowed the panel components to be assembled with high-temperature fasteners rather than by permanent bonding methods. With this approach, the CMC hot face sheet, the coolant containment system, and backside structure were all fabricated separately and could be replaced individually as the need occurred during use. This maintainable design leads to both ease of fabrication and reduced cost.

  4. Radiated EMC& EMI Management During Design Qualification and Test Phases on LEO Satellites Constellation

    Science.gov (United States)

    Blondeaux, H.; Terral, M.; Gutierrez-Galvan, R.; Baud, C.

    2016-05-01

    The aim of the proposed paper is to present the global radiated EMC/EMI approach applied by Thales Alenia Space in the frame of a telecommunication Low Earth Orbit (LEO) satellites constellation program. The paper will present this approach in term of analyses, of specific characterisation and of sub-system and satellite tests since first design reviews up-to satellite qualification tests on Prototype Flight Model (PFM) and to production tests on reduced FMs. The global aim is : 1 - to reduce risk and cost (units EMC delta qualification, EMC tests at satellite level for the 81 Space Vehicles (SV) through appropriated EMC analyses (in term of methodologies and contours) provided in the frame of design reviews.2 - to early anticipate potential critical case to reduce the impact in term of engineering/qualification/test extra cost and of schedule.3 - to secure/assure the payload and SV design/layout.4 - to define and optimize the EMC/EMI test campaigns to be performed on Prototype Flight Model (PFM) for complete qualification and on some FMs for industrial qualification/validation.The last part of the paper is dedicated to system Bite Error Rate (BER) functional test performed on PFM SV to demonstrate the final compatibility between the three on-board payloads and to the Internal EMC tests performed on PFM and some FMs to demonstrate the SV panel RF shielding efficiency before and after environmental tests and the Thales Alenia Space (TAS) and Orbital AKT (OATK) workmanships reproducibility.

  5. Design of Test Facility to Evaluate Boric Acid Precipitation Following a LOCA

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Jeong-Kwan; Song, Yong-Jae [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    The U.S.NRC has identified a concern that debris associated with generic safety issue (GSI) - 191 may affect the potential precipitation of boric acid due to one or more of the following phenomena: - Reducing mass transport (i.e. mixing) between the core and the lower plenum (should debris accumulate at the core inlet) - Reduced lower plenum volume (should debris settle in the lower plenum), and, - Increased potential for boric acid precipitation (BAP) in the core (should debris accumulate in suspension in the core) To address these BAP issues, KHNP is planning to conduct validation tests by constructing a BAP test facility. This paper describes the design of test facility to evaluate BAP following a LOCA. The design of BAP test facility has been developed by KHNP. To design the test facility, test requirements and success criteria were established, and scaling analysis of power-to-volume method, Ishii-Kataoka method, and hierarchical two-tiered method were investigated. The test section is composed of two fuel assemblies with half of full of prototypic FA height. All the fuel rods are heated by the electric power supplier. The BAP tests in the presence of debris, buffering agents, and boron will be performed following the test matrix.

  6. Design and test of lightweight sandwich T-joint for naval ships

    DEFF Research Database (Denmark)

    Toftegaard, H.; Lystrup, Aa.

    2005-01-01

    -joint with reduced weight but with the same or higher strength than the existing design. The lightweight T-joint is designed for sandwich panels with 60 mm thick PVC foam core and 4 rum thick glass fibre/vinyl ester skin laminates. The panels are joined by use of filler and two triangular PVC foam fillets (core...... of panels joined by filler and overlaminates of the same thickness as the skin laminates. Various improved T-joints have been designed and investigated. Some with focus on improved strength (survivability), and others with focus on reduced weight. This paper describes the design and test of a sandwich T...

  7. Design and experimental tests of a novel neutron spin analyzer for wide angle spin echo spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Fouquet, Peter; Farago, Bela; Andersen, Ken H.; Bentley, Phillip M.; Pastrello, Gilles; Sutton, Iain; Thaveron, Eric; Thomas, Frederic [Institut Laue-Langevin, BP 156, F-38042 Grenoble Cedex 9 (France); Moskvin, Evgeny [Helmholtzzentrum Berlin, Glienicker Strasse 100, D-14109 Berlin (Germany); Pappas, Catherine [Helmholtzzentrum Berlin, Glienicker Strasse 100, D-14109 Berlin (Germany); Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB Delft (Netherlands)

    2009-09-15

    This paper describes the design and experimental tests of a novel neutron spin analyzer optimized for wide angle spin echo spectrometers. The new design is based on nonremanent magnetic supermirrors, which are magnetized by vertical magnetic fields created by NdFeB high field permanent magnets. The solution presented here gives stable performance at moderate costs in contrast to designs invoking remanent supermirrors. In the experimental part of this paper we demonstrate that the new design performs well in terms of polarization, transmission, and that high quality neutron spin echo spectra can be measured.

  8. Design and test of box girder for a large wind turbine blade

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Per H.; Tesauro, A.; Bitsche, R. [Technical Univ. of Denmark. DTU Wind Energy, DTU Risoe Campus, Roskilde (Denmark)] [and others

    2012-09-15

    This report is covering the structural design and full scale test of a box girder as a part of the project ''Demonstration of new blade design using manufacturing process simulations'' supported by the EUDP program. A box girder with a predetermined outer geometry was designed using new inventions, which create an inner structure in the box girder. With a combination of advanced FEM analysis and the inventions it was possible to reduce the material thickness of the cap by up to 40%. The new design of the box girder was manufactured at SSP Technology A/S, where it was demonstrated that the manufacturing process could include the new inventions. Subsequently the box girder was transported to the blade test facility at DTU Wind Energy. A series of test was performed with the blade to investigate the behaviour during loading, and finally the girder was loaded to ultimate failure. The report includes the description of the test setup, the test and an overview over the results from the test performed on the box girder. During the final test the box girder failed at 58 % of the expected ultimate load. Unfortunately, no definite conclusion could be made concerning the failure mechanism. (Author)

  9. Testing of a Narrow Gap Detector designed for a sensitive X-ray polarimeter

    Science.gov (United States)

    Gilberto Almonte, Rafael; Hill, Joanne E.; Morris, David C.; Emmett, Thomas

    2015-01-01

    Time projection polarimeters are gas detectors where incident X-rays interact with a gas atom to produce a photoelectron whose direction is correlated with the polarization of the incident X-ray. By imaging the path of many photoelectrons the polarization of the incident X-ray can be determined.The next generation of time projection polarimeter incorporates a narrow gap detector to minimize the diffusion in the transfer gap between the gas electron multiplier and the readout strips. We report on the testing performed to bring the narrow-gap design to Technology Readiness Level (TRL)-6.TRL-6 testing included random and sine burst vibration tests and thermal cycling tests. In addition thermal shock tests and creep tests were performed to further demonstrate that the design would meet requirements, particularly flatness, throughout the life of a 2 year mission.The post-test inspection following the vibration testing showed no degradation or loss of flatness. Thermal Shock testing showed no indication that the extreme temperature had any effect on the detector. Creep testing showed no positive or negative trends in flatness. Thermal cycle testing also showed no change in detector behavior. All the requirements have been met and the narrow gap polarimeter is at TRL-6.

  10. DESIGN OF A TEST RIG FOR THE EXAMINATION OF MECHANICAL PROPERTIES OF ROLLING BEARINGS

    Directory of Open Access Journals (Sweden)

    Rafał JURECKI

    2017-01-01

    Full Text Available The paper presents a design basis adopted for the construction of a test facility for the rig testing of rolling bearings. One of the methods of inspection of the bearings is the testing of the bearings as components having already been mounted in a specific machine component unit and tested in the conditions of operation of the unit as a whole. This article presents preliminary engineering requirements and the design of a special test rig for the examination of rolling bearings without the necessity of mounting the bearings in a specific machine component unit. The rig testing is widely used in consideration of numerous good points of such a method. The simulation testing of bearings (on test rigs consists in reproducing as accurately as possible the real conditions of operation of the bearings when mounted in the device for which they are intended. The rigs used for such tests are complicated and expensive, but the results of such tests are more “reliable” and more accurately represent the impact of various operational factors (loads on the durability of the bearings under test.

  11. Power Systems Development Facility Gasification Test Run TC09

    Energy Technology Data Exchange (ETDEWEB)

    Southern Company Services

    2002-09-30

    This report discusses Test Campaign TC09 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed gasifier designed to operate as either a combustor or a gasifier in air- or oxygen-blown mode of operation using a particulate control device (PCD). The Transport Gasifier was operated as a pressurized gasifier during TC09 in air- and oxygen-blown modes. Test Run TC09 was started on September 3, 2002, and completed on September 26, 2002. Both gasifier and PCD operations were stable during the test run, with a stable baseline pressure drop. The oxygen feed supply system worked well and the transition from air to oxygen was smooth. The gasifier temperature varied between 1,725 and 1,825 F at pressures from 125 to 270 psig. The gasifier operates at lower pressure during oxygen-blown mode due to the supply pressure of the oxygen system. In TC09, 414 hours of solid circulation and over 300 hours of coal feed were attained with almost 80 hours of pure oxygen feed.

  12. Effect of compressor design on auditory function and a psychoacoustic Turing test

    Science.gov (United States)

    Edwards, Brent W.

    2004-05-01

    Hearing aids incorporate multiband compression to compensate for the loudness recruitment that results from sensorineural hearing impairment. No consensus exists in the hearing-aid industry on the best compressor design or on what the design criteria should be. Differences exist in compressor time constants, number of bands, filter shapes, and fitting formula. Such design differences can result in different aided auditory ability as measured by psychoacoustic tests. This research investigated the effect of different compressor designs on fundamental psychoacoustic ability. Multiband compressors with different time constants and different analysis/synthesis filterbanks designs were simulated. Aided performance by the hearing impaired was calculated under each configuration for several psychoacoustic measures, including forward masking, loudness summation, and simultaneous off-frequency masking. Differences in aided performance in these tasks were found: some compressor designs produced aided psychoacoustic ability that resembled normal performance, while other compressor designs did not significantly alter performance from unaided impairment. A psychoacoustic Turing test is proposed that incorporates these aided performance measures as part of a hearing-aid design, a validation strategy, and a comparative technique for evaluating different hearing-aid designs.

  13. Borehole flowmeter logging for the accurate design and analysis of tracer tests.

    Science.gov (United States)

    Basiricò, Stefano; Crosta, Giovanni B; Frattini, Paolo; Villa, Alberto; Godio, Alberto

    2015-04-01

    Tracer tests often give ambiguous interpretations that may be due to the erroneous location of sampling points and/or the lack of flow rate measurements through the sampler. To obtain more reliable tracer test results, we propose a methodology that optimizes the design and analysis of tracer tests in a cross borehole mode by using vertical borehole flow rate measurements. Experiments using this approach, herein defined as the Bh-flow tracer test, have been performed by implementing three sequential steps: (1) single-hole flowmeter test, (2) cross-hole flowmeter test, and (3) tracer test. At the experimental site, core logging, pumping tests, and static water-level measurements were previously carried out to determine stratigraphy, fracture characteristics, and bulk hydraulic conductivity. Single-hole flowmeter testing makes it possible to detect the presence of vertical flows as well as inflow and outflow zones, whereas cross-hole flowmeter testing detects the presence of connections along sets of flow conduits or discontinuities intercepted by boreholes. Finally, the specific pathways and rates of groundwater flow through selected flowpaths are determined by tracer testing. We conclude that the combined use of single and cross-borehole flowmeter tests is fundamental to the formulation of the tracer test strategy and interpretation of the tracer test results. © 2014, National Ground Water Association.

  14. Design of a Kaplan turbine for a wide range of operating head -Curved draft tube design and model test verification-

    Science.gov (United States)

    KO, Pohan; MATSUMOTO, Kiyoshi; OHTAKE, Norio; DING, Hua

    2016-11-01

    As for turbomachine off-design performance improvement is challenging but critical for maximising the performing area. In this paper, a curved draft tube for a medium head Kaplan type hydro turbine is introduced and discussed for its significant effect on expanding operating head range. Without adding any extra structure and working fluid for swirl destruction and damping, a carefully designed outline shape of draft tube with the selected placement of center-piers successfully supresses the growth of turbulence eddy and the transport of the swirl to the outlet. Also, more kinetic energy is recovered and the head lost is improved. Finally, the model test results are also presented. The obvious performance improvement was found in the lower net head area, where the maximum efficiency improvement was measured up to 20% without compromising the best efficiency point. Additionally, this design results in a new draft tube more compact in size and so leads to better construction and manufacturing cost performance for prototype. The draft tube geometry parameter designing process was concerning the best efficiency point together with the off-design points covering various water net heads and discharges. The hydraulic performance and flow behavior was numerically previewed and visualized by solving Reynolds-Averaged Navier-Stokes equations with Shear Stress Transport turbulence model. The simulation was under the assumption of steady-state incompressible turbulence flow inside the flow passage, and the inlet boundary condition was the carefully simulated flow pattern from the runner outlet. For confirmation, the corresponding turbine efficiency performance of the entire operating area was verified by model test.

  15. Simulation and Design of High-Speed Hydraulic Velocity Generator in Shock Test Machine

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Hyeong; Shul, Chang Won; Kim, Yoon Jae; Yang, Myung Seog [Agency for Defense Development, Daejeon (Korea, Republic of); Lee, Gyu Sub [RMS Technology Corp., Seoul (Korea, Republic of)

    2014-06-15

    Mechanical and electrical devices in various forms are used in many different fields. These can be exposed to external environmental factors such as shock. Therefore, a shock test machine is commonly used to test these devices and evaluate their shock resistance. In this test, the break-down or permanent deformation and malfunction of inner parts due to a high stress or acceleration can be evaluated. As part of a shock test machine, a velocity generator is needed to create shocks between objects. In this study, a hydraulic velocity generator was conceptually designed and an AMESim model was developed to simulate the velocity under different conditions. Simulation results using this model were compared with the test results from a reduced-size velocity generator, and we designed a velocity generator that fits the target payload and velocity using the simulation results.

  16. Design of a sentence identification test with pictures (TIS-F based on the pediatric speech intelligibility test

    Directory of Open Access Journals (Sweden)

    Fernanda Freitas Vellozo

    Full Text Available ABSTRACT Purposes: to design a sentence identification test with pictures for adults (Teste de Identificação de Sentenças com Figuras (TIS-F as an alternative for evaluation of auditory figure-background ability for verbal sounds, based on the Pediatric Speech Intelligibility Test and also for assessment of unskillful individuals who cannot accomplish other tests with higher levels of difficulty and greater demands. Methods: the Adobe Illustrator software was used and the image vectorization technique applied for figures creation. The sentences and the competitive message were audio-recorded in a sound treated room by a female announcer, using the software - REAPER - FM Digital Audio Workstation. Results: the TIS-F consisted of a 32 x 45 cm card, containing 10 figures, each one measuring 12 x 12 cm; one compact disc containing a track with the test calibration tone and seven test tracks, each one containing ten sentences and a competitive message and a specific protocol. Conclusion: the TIS-F is composed of a compact disc with dual-channel recording, with seven tracks containing ten sentences and the competitive story, one card containing ten pictures and a labeling protocol for all presentations and S/N in use, as well as the established normality values.

  17. Design and testing of a regenerative magnetorheological actuator for assistive knee braces

    Science.gov (United States)

    Ma, Hao; Chen, Bing; Qin, Ling; Liao, Wei-Hsin

    2017-03-01

    In this paper, a multifunctional magneto-rheological actuator with power regeneration capability, named regenerative magnetorheological actuator (RMRA), is designed for gait assistance in the knee joint. RMRA has motor and magnetorheological (MR) brake parts working in parallel that can harvest energy through regenerative braking. This novel design provides multiple functions with good energy efficiency. The configuration and basic design of the RMRA are first introduced. Then geometrical optimization of the MR brake is conducted based on a parameterized model, and multiple factors are considered in the design objectives: braking torque, weight, and power consumption. After the optimal design is obtained, an RMRA prototype is fabricated and associated driver circuits are designed. Finally, multiple functions of the RMRA, especially three different braking modes, are modeled and tested. Experimental results of RMRA output performances in all working modes match the modeling and simulation. Assistive knee braces with the developed RMRA are promising for future applications in gait assistance and rehabilitation.

  18. ART/Ada design project, phase 1. Task 3 report: Test plan

    Science.gov (United States)

    Allen, Bradley P.

    1988-01-01

    The plan is described for the integrated testing and benchmark of Phase Ada based ESBT Design Research Project. The integration testing is divided into two phases: (1) the modules that do not rely on the Ada code generated by the Ada Generator are tested before the Ada Generator is implemented; and (2) all modules are integrated and tested with the Ada code generated by the Ada Generator. Its performance and size as well as its functionality is verified in this phase. The target platform is a DEC Ada compiler on VAX mini-computers and VAX stations running the VMS operating system.

  19. Embedded design-for-testability strategies to test high-resolution SD modulators

    Science.gov (United States)

    Escalera, Sara; Espin, Alvaro; Guerra, Oscar; de la Rosa, Jose M.; Medeiro, Fernando; Perez-Verdu, Belen

    2005-06-01

    This paper describes the design-for-testability strategies integrated in a 0.35μm CMOS 17-bit@40-kS/s chopper-stabilized Switched-Capacitor 2-1 cascade ΣΔ modulator for automotive sensor interfaces. After a brief review on the most important effects degrading the circuit performance, a test technique, based on the division of the circuit into several blocks that are tested separately, is presented. Experimental results shows the utility of the implemented test technique to detect errors in the circuit and to characterize the most important blocks with a minimum increase of extra area for the additional test circuitry.

  20. The case test-negative design for studies of the effectiveness of influenza vaccine.

    Science.gov (United States)

    Foppa, Ivo M; Haber, Michael; Ferdinands, Jill M; Shay, David K

    2013-06-26

    A modification to the case-control study design has become popular to assess vaccine effectiveness (VE) against viral infections. Subjects with symptomatic illness seeking medical care are tested by a highly specific polymerase chain reaction (PCR) assay for the detection of the infection of interest. Cases are subjects testing positive for the virus; those testing negative represent the comparison group. Influenza and rotavirus VE studies using this design are often termed "test-negative case-control" studies, but this design has not been formally described or evaluated. We explicitly state several assumptions of the design and examine the conditions under which VE estimates derived with it are valid and unbiased. We derived mathematical expressions for VE estimators obtained using this design and examined their statistical properties. We used simulation methods to test the validity of the estimators and illustrate their performance using an influenza VE study as an example. Because the marginal ratio of cases to non-cases is unknown during enrollment, this design is not a traditional case-control study; we suggest the name "case test-negative" design. Under sets of increasingly general assumptions, we found that the case test-negative design can provide unbiased VE estimates. However, differences in health care-seeking behavior among cases and non-cases by vaccine status, strong viral interference, or modification of the probability of symptomatic illness by vaccine status can bias VE estimates. Vaccine effectiveness estimates derived from case test-negative studies are valid and unbiased under a wide range of assumptions. However, if vaccinated cases are less severely ill and seek care less frequently than unvaccinated cases, then an appropriate adjustment for illness severity is required to avoid bias in effectiveness estimates. Viral interference will lead to a non-trivial bias in the vaccine effectiveness estimate from case test-negative studies only when

  1. Testing for carryover effects after cessation of treatments: a design approach

    Directory of Open Access Journals (Sweden)

    S. Gwynn Sturdevant

    2016-08-01

    Full Text Available Abstract Background Recently, trials addressing noisy measurements with diagnosis occurring by exceeding thresholds (such as diabetes and hypertension have been published which attempt to measure carryover - the impact that treatment has on an outcome after cessation. The design of these trials has been criticised and simulations have been conducted which suggest that the parallel-designs used are not adequate to test this hypothesis; two solutions are that either a differing parallel-design or a cross-over design could allow for diagnosis of carryover. Methods We undertook a systematic simulation study to determine the ability of a cross-over or a parallel-group trial design to detect carryover effects on incident hypertension in a population with prehypertension. We simulated blood pressure and focused on varying criteria to diagnose systolic hypertension. Results Using the difference in cumulative incidence hypertension to analyse parallel-group or cross-over trials resulted in none of the designs having acceptable Type I error rate. Under the null hypothesis of no carryover the difference is well above the nominal 5 % error rate. Conclusions When a treatment is effective during the intervention period, reliable testing for a carryover effect is difficult. Neither parallel-group nor cross-over designs using the difference in cumulative incidence appear to be a feasible approach. Future trials should ensure their design and analysis is validated by simulation.

  2. Design and Test of Application-Specific Integrated Circuits by use of Mobile Clients

    Directory of Open Access Journals (Sweden)

    Michael Auer

    2009-02-01

    Full Text Available The aim of this work is to develop a simultaneous multi user access system – READ (Remote ASIC Design and Test that allows users to perform test and measurements remotely via clients running on mobile devices as well as on standard PCs. The system also facilitates the remote design of circuits with the PAC-Designer The system is controlled by LabVIEW and was implemented using a Data Acquisition Card from National instruments. Such systems are specially suited for manufacturing process monitoring and control. The performance of the simultaneous access was tested under load with a variable number of users. The server implements a queue that processes user’s commands upon request.

  3. Design of cryosorption pumps for TEST BEDS of ITER relevant Neutral Beam Injectors

    Energy Technology Data Exchange (ETDEWEB)

    Dremel, M. [Forschungszentrum Karlsruhe, Institut fuer Technische Physik, P.O. Box 3640, D-76021 Karlsruhe (Germany)]. E-mail: matthias.dremel@itp.fzk.de; Day, C. [Forschungszentrum Karlsruhe, Institut fuer Technische Physik, P.O. Box 3640, D-76021 Karlsruhe (Germany); Mack, A. [Forschungszentrum Karlsruhe, Institut fuer Technische Physik, P.O. Box 3640, D-76021 Karlsruhe (Germany); Jensen, H. [Forschungszentrum Karlsruhe, Institut fuer Technische Physik, P.O. Box 3640, D-76021 Karlsruhe (Germany); Speth, E. [IPP CSU-Max-Planck-Institut fuer Plasma Physik, D-85748 Garching (Germany); Falter, H.D. [IPP CSU-Max-Planck-Institut fuer Plasma Physik, D-85748 Garching (Germany); Riedl, R. [IPP CSU-Max-Planck-Institut fuer Plasma Physik, D-85748 Garching (Germany); Cordier, J.J. [Association EURATOM-CEA, DSM/Departement Recherche Fusion Controlee, CEA/Cadarache, F-13108, Saint Paul Lez Durance Cedex (France); Gravil, B. [Association EURATOM-CEA, DSM/Departement Recherche Fusion Controlee, CEA/Cadarache, F-13108, Saint Paul Lez Durance Cedex (France); Henry, D. [Association EURATOM-CEA, DSM/Departement Recherche Fusion Controlee, CEA/Cadarache, F-13108, Saint Paul Lez Durance Cedex (France); Zaccaria, P. [CONSORZIO RFX Association EURATOM-ENEA, Corso Stati Uniti 4, I-35127 Padova (Italy)

    2005-11-15

    This paper presents the results of the design investigations and the manufacturing of cryosorption pumps for the Neutral Beam Test Facility 'MANITU' at Max Planck Institute for Plasma Physics (IPP) and the cryopump design analyses performed for the development of a test facility for the first ITER Neutral Beam Injector. The two identical cryopumps for IPP are foreseen to pump a hydrogen-throughput of 3 Pa m{sup 3}/s (H{sub 2}) with a pumping speed of 350 m{sup 3}/s per pump. The pressure conditions must be maintained over 4 h pumping without regeneration of the cryopanels. For the ITER Neutral Beam Test Facility, design calculations to assess heat loads and pumping parameters of the cryopumps will be briefly described.

  4. Design and test of a 10kW ORC supersonic turbine generator

    Science.gov (United States)

    Seume, J. R.; Peters, M.; Kunte, H.

    2017-03-01

    Manufactures are searching for possibilities to increase the efficiency of combustion engines by using the remaining energy of the exhaust gas. One possibility to recover some of this thermal energy is an organic Rankine cycle (ORC). For such an ORC running with ethanol, the aerothermodynamic design and test of a supersonic axial, single stage impulse turbine generator unit is described. The blade design as well as the regulation by variable partial admission is shown. Additionally the mechanical design of the directly coupled turbine generator unit including the aerodynamic sealing and the test facility is presented. Finally the results of CFD-based computations are compared to the experimental measurements. The comparison shows a remarkably good agreement between the numerical computations and the test data.

  5. Review of chamber design requirements for testing of personal protective clothing ensembles.

    Science.gov (United States)

    Gao, Pengfei; King, William P; Shaffer, Ronald

    2007-08-01

    This review focuses on the physical requirements for conducting ensemble testing and describes the salient issues that organizations involved in the design, test, or certification of personal protective equipment (PPE) and protective clothing ensembles need to consider for strategic planning. Several current and proposed PPE ensemble test practices and standards were identified. The man-in-simulant test (MIST) is the primary procedure used by the military to evaluate clothing ensembles for protection against chemical and biological warfare agents. MIST has been incorporated into the current editions of protective clothing and equipment standards promulgated by the National Fire Protection Association (NFPA). ASTM has recently developed a new test method (ASTM F 2588-06) for MIST evaluation of protective ensembles. Other relevant test methods include those described in International Organization for Standardization (ISO) standards. The primary differences among the test methods were the choice of test challenge material (e.g., sulfur hexafluoride, methyl salicylate, sodium chloride particles, corn oil, fluorophore-impregnated silica) and the exercise protocol for the subject(s). Although ensemble test methods and standards provide detailed descriptions of the test procedures, none give specific requirements for chamber design. A literature survey identified 28 whole-body exposure chambers that have been or could potentially be used for testing protective clothing ensembles using human test subjects. Median chamber size, median floor space, and median volume per subject were calculated from 15 chambers (involving human test subjects), where size information is available. Based on the literature survey of existing chambers and the review of the current and proposed standards and test methods, chamber design requirements will be dictated by the test methods selected. Due to widely different test conditions for aerosol/particulate and vapor ensemble testing, it is

  6. Comparison of two test designs for evaluating the shear bond strength of resin composite cements.

    Science.gov (United States)

    Hu, M; Weiger, R; Fischer, J

    2016-02-01

    To compare a shear bond strength test for resin composite cements developed in order to better consider the shrinkage stress (here termed "Swiss shear test") with the shear test design according to ISO 29022. Four restorative materials (VITA Enamic (VE), VITA Suprinity (VS), Vitablocs Mark II (VM) and VITA YZ T (YZ)) served as substrate. VE, VS and VM were polished or etched. YZ was polished, sandblasted or etched. Specimens were either bonded according to the Swiss or the ISO shear test. RelyX Unicem 2 Automix, Maxcem Elite and PermaFlo DC were used as cements. Shear bond strength (SBS) was measured. Failure modes (adhesive, cohesive or mixed) were evaluated by means of SEM. Mean SBS values obtained with the Swiss shear test were significantly lower than those obtained with the ISO shear test. VE and VM exhibited similar SBS, values of VS were significantly higher. On etched surfaces VM and VE exhibited primarily cohesive failures, VS primarily adhesive failures. On polished substrates significantly lower bond strength values and exclusively adhesive failures were observed. YZ exhibited solely adhesive failures. Compared to polished YZ, SBS significantly increased after sandblasting and even more after etching. Only for adhesively failed specimens mean SBS values of Swiss and ISO shear test were strongly correlated. Both test designs showed the same ranking of test results. When adhesive failure occurred test results were strongly correlated. When cohesive failure was involved, both test designs did not provide reliable results. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  7. Design, construction and performance of the current lead test facility CuLTKa

    Science.gov (United States)

    Richter, T.; Bobien, S.; Fietz, W. H.; Heiduk, M.; Heller, R.; Hollik, M.; Lange, C.; Lietzow, R.; Rohr, P.

    2017-09-01

    The Karlsruhe Institute of Technology (KIT) has a longtime experience in the development of High Temperature Superconductor (HTS) Current Leads (CLs) for high currents leading to several contracts with national and international partners. Within these contracts series production and cold acceptance tests of such CLs were required. The cold test of a large number of CLs requires the availability of a flexible facility which allows fast and reproducible testing. With the Current Lead Test Facility Karlsruhe (CuLTKa) a versatile and flexible test bed for CLs was designed and constructed. The facility consists of five cryostats including two test boxes and is directly connected by a transfer line to a refrigerator with a capacity of 2 kW at 4.4 K. The refrigerator supplies supercritical helium at two different temperature levels simultaneously. Each of the two test cryostats can be equipped with a pair of CLs which is short-circuited at the low temperature level via a superconducting bus bar. For current tests a power supply can provide DC currents up to 30 kA. If required, the facility design offers the potential of withstanding high voltages of up to 50 kV on the test objects. The commissioning of the facility started in July 2014. In total a series of acceptance tests of the CLs for the Japanese JT-60SA will be carried out until second half of 2017 to qualify six CLs with a current of 26 kA and 20 CLs with a current of 20 kA. In the meantime, six CLs@26 kA and 16 CLs@20 kA have been tested in CuLTKa which demonstrates the very effective operation of the facility. This paper describes the setup of the facility from cryogenic, electrical and process control point of view and will highlight the design of particular technical aspects. Furthermore, an overview of the performance during the commissioning phase will be given.

  8. Simulation, design, and testing of a high power collimator for the RDS-112 cyclotron.

    Science.gov (United States)

    Peeples, Johanna L; Stokely, Matthew H; Poorman, Michael C; Bida, Gerald T; Wieland, Bruce W

    2015-03-01

    A high power [F-18] fluoride target package for the RDS-112 cyclotron has been designed, tested, and commercially deployed. The upgrade includes the CF-1000 target, a 1.3kW water target with an established commercial history on RDS-111/Eclipse cyclotrons, and a redesigned collimator with improved heat rejection capabilities. Conjugate heat transfer analyses were employed to both evaluate the existing collimator capabilities and design a suitable high current replacement. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Progress on Test EBIS and the Design of an EBIS-Based RHIC Preinjector

    CERN Document Server

    Alessi, James; Gould, Omar; Kponou, Ahovi; Lockey, Robert; Pikin, Alexander I; Prelec, Krsto; Raparia, Deepak; Ritter, John; Snydstrup, Louis

    2005-01-01

    Following the successful development of the Test EBIS at BNL,* we now have a design for an EBIS-based heavy ion preinjector which would serve as an alternative to the Tandem Van de Graaffs in providing beams for RHIC and the NASA Space Radiation Laboratory. This baseline design includes an EBIS producing mA-level currents of heavy ions (ex. Au 32+) in ~ 10-20

  10. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Design Requirements Document (DRD)

    Science.gov (United States)

    Rigo, H. S.; Bercaw, R. W.; Burkhart, J. A.; Mroz, T. S.; Bents, D. J.; Hatch, A. M.

    1981-01-01

    A description and the design requirements for the 200 MWe (nominal) net output MHD Engineering Test Facility (ETF) Conceptual Design, are presented. Performance requirements for the plant are identified and process conditions are indicated at interface stations between the major systems comprising the plant. Also included are the description, functions, interfaces and requirements for each of these major systems. The lastest information (1980-1981) from the MHD technology program are integrated with elements of a conventional steam electric power generating plant.

  11. Preliminary test results in support of integrated EPP and SMT design methods development

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yanli [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jetter, Robert I. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sham, T. -L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-02-09

    The proposed integrated Elastic Perfectly-Plastic (EPP) and Simplified Model Test (SMT) methodology consists of incorporating a SMT data-based approach for creep-fatigue damage evaluation into the EPP methodology to avoid using the creep-fatigue interaction diagram (the D diagram) and to minimize over-conservatism while properly accounting for localized defects and stress risers. To support the implementation of the proposed code rules and to verify their applicability, a series of thermomechanical tests have been initiated. One test concept, the Simplified Model Test (SMT), takes into account the stress and strain redistribution in real structures by including representative follow-up characteristics in the test specimen. The second test concept is the two-bar thermal ratcheting tests with cyclic loading at high temperatures using specimens representing key features of potential component designs. This report summaries the previous SMT results on Alloy 617, SS316H and SS304H and presents the recent development on SMT approach on Alloy 617. These SMT specimen data are also representative of component loading conditions and have been used as part of the verification of the proposed integrated EPP and SMT design methods development. The previous two-bar thermal ratcheting test results on Alloy 617 and SS316H are also summarized and the new results from two bar thermal ratcheting tests on SS316H at a lower temperature range are reported.

  12. Research on Design and Simulation of Biaxial Tensile-Bending Complex Mechanical Performance Test Apparatus

    Directory of Open Access Journals (Sweden)

    Hailian Li

    2017-09-01

    Full Text Available In order to realize a micro-mechanic performance test of biaxial tensile-bending-combined loading and solve the problem of incompatibility of test apparatus and observation apparatus, novel biaxial-combined tensile-bending micro-mechanical performance test apparatus was designed. The working principle and major functions of key constituent parts of test apparatus, including the servo drive unit, clamping unit and test system, were introduced. Based on the finite element method, biaxial tensile and tension-bending-combined mechanical performances of the test-piece were studied as guidance to learn the distribution of elastic deformation and plastic deformation of all sites of the test-piece and to better plan test regions. Finally, this test apparatus was used to conduct a biaxial tensile test under different pre-bending loading and a tensile test at different rates; the image of the fracture of the test-piece was acquired by a scanning electron microscope and analyzed. It was indicated that as the pre-bending force rises, the elastic deformation phase would gradually shorten and the slope of the elastic deformation phase curve would slightly rise so that a yield limit would appear ahead of time. Bending speed could exert a positive and beneficial influence on tensile strength but weaken fracture elongation. If bending speed is appropriately raised, more ideal anti-tensile strength could be obtained, but fracture elongation would decline.

  13. Extraction of Uranium from Seawater: Design and Testing of a Symbiotic System

    Energy Technology Data Exchange (ETDEWEB)

    Slocum, Alex

    2018-02-22

    The U.S. Department of Energy in October 2014 awarded the Massachusetts Institute of Technology (MIT) a Nuclear Energy University Program grant (DE-NE0008268) to investigate the design and testing of a symbiotic system to harvest uranium from seawater. As defined in the proposal, the goals for the project are: 1. Address the design of machines for seawater uranium mining. 2. Develop design rules for a uranium harvesting system that would be integrated into an offshore wind power tower. 3. Fabricate a 1/50th size scale prototype for bench and pool-testing to verify initial analysis and theory. 4. Design, build, and test a second 1/10th size scale prototype in the ocean for more comprehensive testing and validation. This report describes work done as part of DE-NE0008268 from 10/01/2014 to 11/30/2017 entitled, “Extraction of Uranium from Seawater: Design and Testing of aSymbioticSystem.” Thiseffort is part of the Seawater Uranium Recovery Program. This report details the publications and presentations to date on the project, an introduction to the project’s goals and background research into previous work done to achieve these goals thusfar. From there, the report describes an algorithm developed during the project used to optimize the adsorption of uranium by changing mechanical parameters such as immersion time and adsorbent reuses is described. Next, a design tool developed as part of the project to determine the global feasibility of symbiotic uranium harvesting systems. Additionally, the report details work done on shell enclosures for uranium adsorption. Moving on, the results from the design, building, and testing of a 1/50th physical scale prototype of a highly feasible symbiotic uranium harvester is described. Then, the report describes the results from flume experiment used to determine the affect of enclosure shells on the uptake of uranium by the adsorbent they enclose. From there the report details the design of a Symbiotic Machine for Ocean u

  14. Design Optimization of HANARO Irradiation Capsule for Long-Term Irradiation Testing

    Directory of Open Access Journals (Sweden)

    Kee Nam Choo

    2018-01-01

    Full Text Available As HANARO has been recently required to support new R&D relevant to future nuclear systems requiring much higher neutron fluence, two types of bottom rod tip of the capsule were preliminarily prepared. The first one is a conventional design made of STS304 and welded using a tungsten inert gas (TIG welding method. The other is a new design made of STS316L and welded using electron beam (EB welding to strengthen the fatigue property of the rod tip. During the out-pile testing, they failed after 40 and 203 days, respectively. The fracture surfaces were examined using microscopes and the maximal applied stresses were estimated. The combination of these stresses was proved to be sufficient to cause a fatigue failure of the rod tip of the capsule. Based on the failure analysis, an optimized design of the rod tip of the capsule was made for long-term irradiation testing. It was designed to improve the welding and fatigue properties, to decrease the applied stress on the rod tip, and to fundamentally eliminate the effect of residual stress due to welding. The newly designed capsule was safely out-pile-tested up to 450 days and will be utilized for HANARO irradiation testing.

  15. Design and test experience with a triply redundant digital fly-by-wire control system

    Science.gov (United States)

    Szalai, K. J.; Felleman, P. G.; Gera, J.; Glover, R. D.

    1976-01-01

    A triplex digital fly-by-wire flight control system was developed and then installed in a NASA F-8C aircraft to provide fail-operative, full authority control. Hardware and software redundancy management techniques were designed to detect and identify failures in the system. Control functions typical of those projected for future actively controlled vehicles were implemented. This paper describes the principal design features of the system, the implementation of computer, sensor, and actuator redundancy management, and the ground test results. An automated test program to verify sensor redundancy management software is also described.

  16. Design of full scale wave simulator for testing Power Take Off systems for wave energy converters

    DEFF Research Database (Denmark)

    Pedersen, H. C.; Hansen, R. H.; Hansen, Anders Hedegaard

    2016-01-01

    For wave energy to become a major future contributor of renewable energy it is a requirement that the efficiency and reliability of the Power Take-Off (PTO) systems is significantly improved. However, the cost of installing and testing PTO-systems at sea is very high. The focus of the current paper...... is therefore on the design and commissioning of a full scale wave simulator for testing PTO-systems for point absorbers. The challenge is to be able to design a system, which mimics the behavior of a wave when interacting with a given PTO-system – especially when considering discrete type PTO...

  17. Design and Test of Fan/Nacelle Models Quiet High-Speed Fan

    Science.gov (United States)

    Miller, Christopher J. (Technical Monitor); Weir, Donald

    2003-01-01

    The Quiet High-Speed Fan program is a cooperative effort between Honeywell Engines & Systems (formerly AlliedSignal Engines & Systems) and the NASA Glenn Research Center. Engines & Systems has designed an advanced high-speed fan that will be tested on the Ultra High Bypass Propulsion Simulator in the NASA Glenn 9 x 15 foot wind tunnel, currently scheduled for the second quarter of 2000. An Engines & Systems modern fan design will be used as a baseline. A nacelle model is provided that is characteristic of a typical, modern regional aircraft nacelle and meets all of the program test objectives.

  18. Design of efficient and simple interface testing equipment for opto-electric tracking system

    Science.gov (United States)

    Liu, Qiong; Deng, Chao; Tian, Jing; Mao, Yao

    2016-10-01

    Interface testing for opto-electric tracking system is one important work to assure system running performance, aiming to verify the design result of every electronic interface matching the communication protocols or not, by different levels. Opto-electric tracking system nowadays is more complicated, composed of many functional units. Usually, interface testing is executed between units manufactured completely, highly depending on unit design and manufacture progress as well as relative people. As a result, it always takes days or weeks, inefficiently. To solve the problem, this paper promotes an efficient and simple interface testing equipment for opto-electric tracking system, consisting of optional interface circuit card, processor and test program. The hardware cards provide matched hardware interface(s), easily offered from hardware engineer. Automatic code generation technique is imported, providing adaption to new communication protocols. Automatic acquiring items, automatic constructing code architecture and automatic encoding are used to form a new program quickly with adaption. After simple steps, a standard customized new interface testing equipment with matching test program and interface(s) is ready for a waiting-test system in minutes. The efficient and simple interface testing equipment for opto-electric tracking system has worked for many opto-electric tracking system to test entire or part interfaces, reducing test time from days to hours, greatly improving test efficiency, with high software quality and stability, without manual coding. Used as a common tool, the efficient and simple interface testing equipment for opto-electric tracking system promoted by this paper has changed traditional interface testing method and created much higher efficiency.

  19. Sequential Design of Experiments to Maximize Learning from Carbon Capture Pilot Plant Testing

    Energy Technology Data Exchange (ETDEWEB)

    Soepyan, Frits B.; Morgan, Joshua C.; Omell, Benjamin P.; Zamarripa-Perez, Miguel A.; Matuszewski, Michael S.; Miller, David C.

    2018-02-06

    Pilot plant test campaigns can be expensive and time-consuming. Therefore, it is of interest to maximize the amount of learning and the efficiency of the test campaign given the limited number of experiments that can be conducted. This work investigates the use of sequential design of experiments (SDOE) to overcome these challenges by demonstrating its usefulness for a recent solvent-based CO2 capture plant test campaign. Unlike traditional design of experiments methods, SDOE regularly uses information from ongoing experiments to determine the optimum locations in the design space for subsequent runs within the same experiment. However, there are challenges that need to be addressed, including reducing the high computational burden to efficiently update the model, and the need to incorporate the methodology into a computational tool. We address these challenges by applying SDOE in combination with a software tool, the Framework for Optimization, Quantification of Uncertainty and Surrogates (FOQUS) (Miller et al., 2014a, 2016, 2017). The results of applying SDOE on a pilot plant test campaign for CO2 capture suggests that relative to traditional design of experiments methods, SDOE can more effectively reduce the uncertainty of the model, thus decreasing technical risk. Future work includes integrating SDOE into FOQUS and using SDOE to support additional large-scale pilot plant test campaigns.

  20. Design, Fabrication, and Testing of Composite Energy-Absorbing Keel Beams for General Aviation Type Aircraft

    Science.gov (United States)

    Kellas, Sotiris; Knight, Norman F., Jr.

    2002-01-01

    A lightweight energy-absorbing keel-beam concept was developed and retrofitted in a general aviation type aircraft to improve crashworthiness performance. The energy-absorbing beam consisted of a foam-filled cellular structure with glass fiber and hybrid glass/kevlar cell walls. Design, analysis, fabrication and testing of the keel beams prior to installation and subsequent full-scale crash testing of the aircraft are described. Factors such as material and fabrication constraints, damage tolerance, crush stress/strain response, seat-rail loading, and post crush integrity, which influenced the course of the design process are also presented. A theory similar to the one often used for ductile metal box structures was employed with appropriate modifications to estimate the sustained crush loads for the beams. This, analytical tool, coupled with dynamic finite element simulation using MSC.Dytran were the prime design and analysis tools. The validity of the theory as a reliable design tool was examined against test data from static crush tests of beam sections while the overall performance of the energy-absorbing subfloor was assessed through dynamic testing of 24 in long subfloor assemblies.

  1. GN and C Design Overview and Flight Test Results from NASA's Max Launch Abort System (MLAS)

    Science.gov (United States)

    Dennehy, Cornelius J.; Lanzi, Ryamond J.; Ward, Philip R.

    2010-01-01

    The National Aeronautics and Space Administration (NASA) Engineering and Safety Center (NESC) designed, developed and flew the alternative Max Launch Abort System (MLAS) as risk mitigation for the baseline Orion spacecraft launch abort system (LAS) already in development. The NESC was tasked with both formulating a conceptual objective system (OS) design of this alternative MLAS as well as demonstrating this concept with a simulated pad abort flight test. The goal was to obtain sufficient flight test data to assess performance, validate models/tools, and to reduce the design and development risks for a MLAS OS. Less than 2 years after Project start the MLAS simulated pad abort flight test was successfully conducted from Wallops Island on July 8, 2009. The entire flight test duration was 88 seconds during which time multiple staging events were performed and nine separate critically timed parachute deployments occurred as scheduled. Overall, the as-flown flight performance was as predicted prior to launch. This paper provides an overview of the guidance navigation and control (GN&C) technical approaches employed on this rapid prototyping activity. This paper describes the methodology used to design the MLAS flight test vehicle (FTV). Lessons that were learned during this rapid prototyping project are also summarized.

  2. Electrical design for origami solar panels and a small spacecraft test mission

    Science.gov (United States)

    Drewelow, James; Straub, Jeremy

    2017-05-01

    Efficient power generation is crucial to the design of spacecraft. Mass, volume, and other limitations prevent the use of traditional spacecraft support structures from being suitable for the size of solar array required for some missions. Folding solar panel / panel array systems, however, present a number of design challenges. This paper considers the electrical design of an origami system. Specifically, it considers how to provide low impedance, durable channels for the generated power and the electrical aspects of the deployment system and procedure. The ability to dynamically reconfigure the electrical configuration of the solar cells is also discussed. Finally, a small satellite test mission to demonstrate the technology is proposed, before concluding.

  3. Fuel aspects of Beyond Design Basis Event analyses for the Fast Flux Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Padilla, A. Jr.; Kessler, S.F.; Dobbin, K.D.; Waltar, A.E.

    1990-04-01

    Analyses of two Beyond Design Basis Events (transient overpower without scram and loss of flow without scram) were performed for four different core designs in the Fast Flux Test Facility using the SASSYS/SAS4A accident analysis computer code. The four core designs used the following fuels: mixed oxide, binary metal, enriched uranium oxide, and mixed nitride. Based on the numerical results for these four different fuels, a qualitative relative safety ranking was made. Nitride fuel gave the best safety performance, followed by enriched uranium oxide, binary metal, and mixed oxide. 7 refs., 6 figs., 4 tabs.

  4. Design and testing of shape memory alloy actuation mechanism for flapping wing micro unmanned aerial vehicles

    Science.gov (United States)

    Kamaruzaman, N. F.; Abdullah, E. J.

    2017-12-01

    Shape memory alloy (SMA) actuator offers great solution for aerospace applications with low weight being its most attractive feature. A SMA actuation mechanism for the flapping micro unmanned aerial vehicle (MAV) is proposed in this study, where SMA material is the primary system that provides the flapping motion to the wings. Based on several established design criteria, a design prototype has been fabricated to validate the design. As a proof of concept, an experiment is performed using an electrical circuit to power the SMA actuator to evaluate the flapping angle. During testing, several problems have been observed and their solutions for future development are proposed. Based on the experiment, the average recorded flapping wing angle is 14.33° for upward deflection and 12.12° for downward deflection. This meets the required design criteria and objective set forth for this design. The results prove the feasibility of employing SMA actuators in flapping wing MAV.

  5. Designing, Building, Measuring and Testing a Constant Equivalent Fall Height Terrain Park Jump

    CERN Document Server

    Petrone, Nicola; McNeil, James A; Hubbard, Mont

    2016-01-01

    Previous work has presented both a theoretical foundation for designing terrain park jumps that control landing impact and computer software to accomplish this task. US ski resorts have been reluctant to adopt this more engineered approach to jump design, in part due to questions of feasibility. The present study demonstrates this feasibility. It describes the design, construction, measurement and experimental testing of such a jump. It improves on previous efforts with more complete instrumentation, a larger range of jump distances, and a new method for combining jumper- and board-mounted accelerometer data to estimate equivalent fall height, a measure of impact severity. It unequivocally demonstrates the efficacy of the engineering design approach, namely that it is possible and practical to design and build free style terrain park jumps with landing surface shapes that control for landing impact as predicted by the theory.

  6. Empirical Statistical Power for Testing Multilocus Genotypic Effects under Unbalanced Designs Using a Gibbs Sampler

    Directory of Open Access Journals (Sweden)

    Chaeyoung Lee

    2012-11-01

    Full Text Available Epistasis that may explain a large portion of the phenotypic variation for complex economic traits of animals has been ignored in many genetic association studies. A Baysian method was introduced to draw inferences about multilocus genotypic effects based on their marginal posterior distributions by a Gibbs sampler. A simulation study was conducted to provide statistical powers under various unbalanced designs by using this method. Data were simulated by combined designs of number of loci, within genotype variance, and sample size in unbalanced designs with or without null combined genotype cells. Mean empirical statistical power was estimated for testing posterior mean estimate of combined genotype effect. A practical example for obtaining empirical statistical power estimates with a given sample size was provided under unbalanced designs. The empirical statistical powers would be useful for determining an optimal design when interactive associations of multiple loci with complex phenotypes were examined.

  7. Preliminary design of mesoscale turbocompressor and rotordynamics tests of rotor bearing system

    Science.gov (United States)

    Hossain, Md Saddam

    2011-12-01

    A mesoscale turbocompressor spinning above 500,000 RPM is evolutionary technology for micro turbochargers, turbo blowers, turbo compressors, micro-gas turbines, auxiliary power units, etc for automotive, aerospace, and fuel cell industries. Objectives of this work are: (1) to evaluate different air foil bearings designed for the intended applications, and (2) to design & perform CFD analysis of a micro-compressor. CFD analysis of shrouded 3-D micro compressor was conducted using Ansys Bladegen as blade generation tool, ICEM CFD as mesh generation tool, and CFX as main solver for different design and off design cases and also for different number of blades. Comprehensive experimental facilities for testing the turbocompressor system have been also designed and proposed for future work.

  8. A studentized permutation test for three-arm trials in the 'gold standard' design.

    Science.gov (United States)

    Mütze, Tobias; Konietschke, Frank; Munk, Axel; Friede, Tim

    2017-03-15

    The 'gold standard' design for three-arm trials refers to trials with an active control and a placebo control in addition to the experimental treatment group. This trial design is recommended when being ethically justifiable and it allows the simultaneous comparison of experimental treatment, active control, and placebo. Parametric testing methods have been studied plentifully over the past years. However, these methods often tend to be liberal or conservative when distributional assumptions are not met particularly with small sample sizes. In this article, we introduce a studentized permutation test for testing non-inferiority and superiority of the experimental treatment compared with the active control in three-arm trials in the 'gold standard' design. The performance of the studentized permutation test for finite sample sizes is assessed in a Monte Carlo simulation study under various parameter constellations. Emphasis is put on whether the studentized permutation test meets the target significance level. For comparison purposes, commonly used Wald-type tests, which do not make any distributional assumptions, are included in the simulation study. The simulation study shows that the presented studentized permutation test for assessing non-inferiority in three-arm trials in the 'gold standard' design outperforms its competitors, for instance the test based on a quasi-Poisson model, for count data. The methods discussed in this paper are implemented in the R package ThreeArmedTrials which is available on the comprehensive R archive network (CRAN). Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  9. Design and test of frequency tuner for CAEP high power THz free-electron laser

    OpenAIRE

    Mi, Zhenghui; Sun, Yi; Pan, Weimin; Lin, Haiying; Zhao, Danyang; Lu, Xiangyang; Quan, Shengwen; Luo, Xing; Li, Ming; Yang, Xingfan; Wang, Guangwei; Dai, Jianping; Li, Zhongquan; Ma, Qiang; Sha, Peng

    2014-01-01

    Peking University is developing a 1.3 GHz superconducting accelerating section for China Academy of Engineering Physics (CAEP) high power THz free-electron laser. A compact fast/slow tuner has developed by Institute of High Energy Physics (IHEP) for the accelerating section, to control Lorentz detuning, beam loading effect, compensate for microphonics and liquid Helium pressure fluctuations. The tuner design, warm test and cold test of the first prototype are presented.

  10. Design and simulation of the rotating test rig in the INDUFLAP project

    DEFF Research Database (Denmark)

    Barlas, Thanasis K.; Aagaard Madsen, Helge; Løgstrup Andersen, Tom

    The general description and objectives of the rotating test rig at the Risø campus of DTU are presented, as used for the aeroelastic testing of a controllable rubber trailing edge flap (CRTEF) system in the INDUFLAP project. The design of all new components is presented, including the electrical...... of the setup are documented. Finally, the measured structural dynamics of the rig setup are presented....

  11. Design, fabrication and tests of a 600A HTc current lead for the LHC correction magnets

    CERN Document Server

    García-Tabarés, L; Abramian, P; Toral, F; Angurel, L A; Diez, J C; Burriel, R; Natividad, E; Iturbe, R; Etxeandia, J

    2001-01-01

    This paper describes the design and fabrication of four sets of HTc 600 A current leads manufactured by ANTEC in collaboration with three more Institutes to test the feasibility of industrial fabrication of these units. This development has been made in the framework of a CERN programme to build low thermal losses leads for the correction magnets of the LHC. Tests performed at the manufacturer installations are also presented. (5 refs).

  12. The influence of prototype testing in three-dimensional aortic models on fenestrated endograft design.

    Science.gov (United States)

    Taher, Fadi; Falkensammer, Juergen; McCarte, Jamie; Strassegger, Johann; Uhlmann, Miriam; Schuch, Philipp; Assadian, Afshin

    2017-06-01

    The fenestrated Anaconda endograft (Vascutek/Terumo, Inchinnan, UK) is intended for the treatment of abdominal aortic aneurysms with an insufficient infrarenal landing zone. The endografts are custom-made with use of high-resolution, 1-mm-slice computed tomography angiography images. For every case, a nonsterile prototype and a three-dimensional (3D) model of the patient's aorta are constructed to allow the engineers as well as the physician to test-implant the device and to review the fit of the graft. The aim of this investigation was to assess the impact of 3D model construction and prototype testing on the design of the final sterile endograft. A prospectively held database on fenestrated endovascular aortic repair patients treated at a single institution was completed with data from the Vascutek engineers' prototype test results as well as the product request forms. Changes to endograft design based on prototype testing were assessed and are reported for all procedures. Between April 1, 2013, and August 18, 2015, 60 fenestrated Anaconda devices were implanted. Through prototype testing, engineers were able to identify and report potential risks to technical success related to use of the custom device for the respective patient. Theoretical concerns about endograft fit in the rigid model were expressed in 51 cases (85.0%), and the engineers suggested potential changes to the design of 21 grafts (35.0%). Thirteen cases (21.7%) were eventually modified after the surgeon's testing of the prototype. A second prototype was ordered in three cases (5.0%) because of extensive changes to endograft design, such as inclusion of an additional fenestration. Technical success rates were comparable for grafts that showed a perfect fit from the beginning and cases in which prototype testing resulted in a modification of graft design. Planning and construction of fenestrated endografts for complex aortic anatomies where exact fit and positioning of the graft are paramount to

  13. Development and verification of a reciprocating test rig designed for investigation of piston ring tribology

    DEFF Research Database (Denmark)

    Pedersen, Michael Torben; Imran, Tajammal; Klit, Peder

    2009-01-01

    This paper describes the development and verification of a reciprocating test rig, which was designed to study the piston ring tribology. A crank mechanism is used to generate a reciprocating motion for a moving plate, which acts as the liner. A stationary block acting as the ring package is loaded...... against the plate using dead-weights. The block has two holders for test specimens, which form line contacts with the plate. A force transducer is used to measure the frictional force between the block and the plate. During verification of the test rig unwanted ripples on the signal recorded from...... the force transducer were discovered. An identification process is undertaken in order to find the source of this disturbance and to reduce the effect as much as possible. Second a reproducibility test is conducted to check the reliability of the test rig. The outcome of this work is a verified test rig...

  14. Testing designing an electrical device compliant with the electromagnetic compatibility directive

    Science.gov (United States)

    Płaczek, M.; Maćkowski, M.; Nowak, P.

    2017-08-01

    The goal of presented work was to build an electronic device in order to test the effectiveness of different EMC-improving solutions. Three EMC tests were done in order to check the created device compliance with the electromagnetic compatibility directive. Each of them was conducted for both industrial and non-industrial parameters (voltage and field strength), according to IEC PN-EN 61000 standards. Three tests were done: conductive immunity test in EM clamp, radiated immunity test in GTEM chamber, radiated emission test in GTEM chamber. Firstly, the device’s conductive immunity was examined. The set of possible solutions was created by examining existing designs, papers, books and producers’ recommendations. In result, different component configurations were chosen to determine the most EMC-effective one. Next, electromagnetic compatibility of proposed device configurations was tested in the GTEM chamber (radiated immunity and radiated emission). Tests results are presented on charts and analysed in order to verify if designed device face requirements of the electromagnetic compatibility directive. It was verify which of proposed electromagnetic compatibility improving solutions can solve problems with electromagnetic compatibility.

  15. Design stage confirmation of lifetime improvement for newly modified products through accelerated life testing

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadian, S. Hossein, E-mail: seyed-h.mohammadian.1@ulaval.c [Centre Interuniversitaire de Recherche sur les Reseaux d' Entreprise, la Logistique et le Transport (CIRRELT), Departement de Genie Mecanique, Pavillon Adrien-Pouliot, Universite Laval, Quebec, G1V 0A6 (Canada) and Centre Interdisciplinaire de Recherche en Readaptation et en Integration Sociale (CIRRIS), Institut de Readaptation en Deficience Physique de Quebec, 525 Boul. Hamel, Quebec, G1M 2S8 (Canada); Ait-Kadi, Daoud, E-mail: Daoud.Aitkadi@gmc.ulaval.c [Centre Interuniversitaire de Recherche sur les Reseaux d' Entreprise, la Logistique et le Transport (CIRRELT), Departement de Genie Mecanique, Pavillon Adrien-Pouliot, Universite Laval, Quebec, G1V 0A6 (Canada); Centre Interdisciplinaire de Recherche en Readaptation et en Integration Sociale (CIRRIS), Institut de Readaptation en Deficience Physique de Quebec, 525 Boul. Hamel, Quebec, G1M 2S8 (Canada)

    2010-08-15

    After a modification to the original version of a product and before mass production, the expected improvement in the product lifetime or reliability needs to be validated. This paper presents three approaches based on accelerated life testing to verify, estimate and confirm the lifetime or reliability of a newly modified product at design stage: ALT comparative approach, reliability estimation approach, and reliability validation test. Test samples of the original and modified versions are expected to fail during the tests in order to obtain their failure time data. In ALT comparative approach, the statistical comparison between failure time data of the original and modified versions is used to verify the required improvement in lifetime. In reliability estimation approach, the relationship made between available lifetime and failure time data of the original version is used to extrapolate lifetime data of the modified version from its failure time data. Since modified versions are usually highly reliable, all test samples might survive the tests (without any failures) that results in the lack of failure time data for statistical analysis. To confirm a level of service reliability with confidence, reliability validation test is presented to make an estimate of the number of samples required to survive the tests. To fulfill the same level of confidence for fewer number of prototypes (as test samples), the test time must be extended. On the other hand, more prototypes are needed to pass a shorter test time if there are any time constraints.

  16. A Hardy-Weinberg equilibrium test for analyzing population genetic surveys with complex sample designs.

    Science.gov (United States)

    Moonesinghe, Ramal; Yesupriya, Ajay; Chang, Man-Huei; Dowling, Nicole F; Khoury, Muin J; Scott, Alastair J

    2010-04-15

    Testing for deviations from Hardy-Weinberg equilibrium is a widely recommended practice for population-based genetic association studies. However, current methods for this test assume a simple random sample and may not be appropriate for sample surveys with complex survey designs. In this paper, the authors present a test for Hardy-Weinberg equilibrium that adjusts for the sample weights and correlation of data collected in complex surveys. The authors perform this test by using a simple adjustment to procedures developed to analyze data from complex survey designs available within the SAS statistical software package (SAS Institute, Inc., Cary, North Carolina). Using 90 genetic markers from the Third National Health and Nutrition Examination Survey, the authors found that survey-adjusted and -unadjusted estimates of the disequilibrium coefficient were generally similar within self-reported races/ethnicities. However, estimates of the variance of the disequilibrium coefficient were significantly different between the 2 methods. Because the results of the survey-adjusted tests account for correlation among participants sampled within the same cluster, and the possibility of having related individuals sampled from the same household, the authors recommend use of this test when analyzing genetic data originating from sample surveys with complex survey designs to assess deviations from Hardy-Weinberg equilibrium.

  17. Liquid Acquisition Device Hydrogen Outflow Testing on the Cryogenic Propellant Storage and Transfer Engineering Design Unit

    Science.gov (United States)

    Zimmerli, Greg; Statham, Geoff; Garces, Rachel; Cartagena, Will

    2015-01-01

    As part of the NASA Cryogenic Propellant Storage and Transfer (CPST) Engineering Design Unit (EDU) testing with liquid hydrogen, screen-channel liquid acquisition devices (LADs) were tested during liquid hydrogen outflow from the EDU tank. A stainless steel screen mesh (325x2300 Dutch T will weave) was welded to a rectangular cross-section channel to form the basic LAD channel. Three LAD channels were tested, each having unique variations in the basic design. The LADs fed a common outflow sump at the aft end of the 151 cu. ft. volume aluminum tank, and included a curved section along the aft end and a straight section along the barrel section of the tank. Wet-dry sensors were mounted inside the LAD channels to detect when vapor was ingested into the LADs during outflow. The use of warm helium pressurant during liquid hydrogen outflow, supplied through a diffuser at the top of the tank, always led to early breakdown of the liquid column. When the tank was pressurized through an aft diffuser, resulting in cold helium in the ullage, LAD column hold-times as long as 60 minutes were achieved, which was the longest duration tested. The highest liquid column height at breakdown was 58 cm, which is 23 less than the isothermal bubble-point model value of 75 cm. This paper discusses details of the design, construction, operation and analysis of LAD test data from the CPST EDU liquid hydrogen test.

  18. A tool for designing digital test objects for module performance evaluation in medical digital imaging.

    Science.gov (United States)

    Kocsis, O; Costaridou, L; Efstathopoulos, E P; Lymberopoulos, D; Panayiotakis, G

    1999-01-01

    Currently, medical digital imaging systems are characterized by the introduction of additional modules such as digital display, image compression and image processing, as well as film printing and digitization. These additional modules require performance evaluation to ensure high image quality. A tool for designing computer-generated test objects applicable to performance evaluation of these modules is presented. The test objects can be directly used as digital images in the case of film printing, display, compression and image processing, or indirectly as images on film in the case of digitization. The performance evaluation approach is quality control protocol based. Digital test object design is user-driven according to specifications related to the requirements of the modules being tested. The available quality control parameters include input/output response curve, high contrast resolution, low contrast discrimination, noise, geometric distortion and field uniformity. The tool has been designed and implemented according to an object oriented approach in Visual C++ 5.0, and its user interface is based on the Microsoft Foundation Class Library version 4.2, which provides interface items such as windows, dialog boxes, lists, buttons, etc. The compatibility with DICOM 3.0 part 10 image formats specifications allows the integration of the tool in the existing software framework for medical digital imaging systems. The capability of the tool is demonstrated by direct use of the test objects in case of image processing, and indirect use of the test objects in case of film digitization.

  19. Design of the 15 GHz BPM test bench for the CLIC test facility to perform precise stretchedwire RF measurements

    CERN Document Server

    Silvia Zorzetti, Silvia; Galindo Muño, Natalia; Wendt, Manfred

    2015-01-01

    The Compact Linear Collider (CLIC) requires a low emittance beam transport and preservation, thus a precise control of the beam orbit along up to 50 km of the accelerator components in the sub-m regime is required. Within the PACMAN3 (Particle Accelerator Components Metrology and Alignment to the Nanometer Scale) PhD training action a study with the objective of pre-aligning the electrical centre of a 15 GHz cavity beam position monitor (BPM) to the magnetic centre of the main beam quadrupole is initiated. Of particular importance is the design of a specific test bench to study the stretched-wire setup for the CLIC Test Facility (CTF3) BPM, focusing on the aspects of microwave signal excitation, transmission and impedance-matching, as well as the mechanical setup and reproducibility of the measurement method.

  20. Damage Tolerance Testing of a NASA TransHab Derivative Woven Inflatable Module

    Science.gov (United States)

    Edgecombe, John; delaFuente, Horacio; Valle, Gerard

    2009-01-01

    Current options for Lunar habitat architecture include inflatable habitats and airlocks. Inflatable structures can have mass and volume advantages over conventional structures. However, inflatable structures carry different inherent risks and are at a lower Technical Readiness Level (TRL) than more conventional metallic structures. One of the risks associated with inflatable structures is in understanding the tolerance to induced damage. The Damage Tolerance Test (DTT) is designed to study the structural integrity of an expandable structure. TransHab (Figure 1) was an experimental inflatable module developed at the NASA/Johnson Space Center in the 1990 s. The TransHab design was originally envisioned for use in Mars Transits but was also studied as a potential habitat for the International Space Station (ISS). The design of the TransHab module was based on a woven design using an Aramid fabric. Testing of this design demonstrated a high level of predictability and repeatability with analytical predictions of stresses and deflections. Based on JSC s experience with the design and analysis of woven inflatable structures, the Damage Tolerance Test article was designed and fabricated using a woven design. The DTT article was inflated to 45 psig, representing 25% of the ultimate burst pressure, and one of the one-inch wide longitudinal structural members was severed by initiating a Linear Shaped Charge (LSC). Strain gage measurements, at the interface between the expandable elements (straps) and the nonexpandable metallic elements for pre-selected longitudinal straps, were taken throughout pressurization of the module and strap separation. Strain gage measurements show no change in longitudinal strap loading at the bulkhead interface after strap separation indicating loads in the restraint layer were re-distributed local to the damaged area due to the effects of friction under high internal pressure loading. The test completed all primary objectives with better than

  1. Jet-Surface Interaction: High Aspect Ratio Nozzle Test, Nozzle Design and Preliminary Data

    Science.gov (United States)

    Brown, Clifford; Dippold, Vance

    2015-01-01

    The Jet-Surface Interaction High Aspect Ratio (JSI-HAR) nozzle test is part of an ongoing effort to measure and predict the noise created when an aircraft engine exhausts close to an airframe surface. The JSI-HAR test is focused on parameters derived from the Turbo-electric Distributed Propulsion (TeDP) concept aircraft which include a high-aspect ratio mailslot exhaust nozzle, internal septa, and an aft deck. The size and mass flow rate limits of the test rig also limited the test nozzle to a 16:1 aspect ratio, half the approximately 32:1 on the TeDP concept. Also, unlike the aircraft, the test nozzle must transition from a single round duct on the High Flow Jet Exit Rig, located in the AeroAcoustic Propulsion Laboratory at the NASA Glenn Research Center, to the rectangular shape at the nozzle exit. A parametric nozzle design method was developed to design three low noise round-to-rectangular transitions, with 8:1, 12:1, and 16: aspect ratios, that minimizes flow separations and shocks while providing a flat flow profile at the nozzle exit. These designs validated using the WIND-US CFD code. A preliminary analysis of the test data shows that the actual flow profile is close to that predicted and that the noise results appear consistent with data from previous, smaller scale, tests. The JSI-HAR test is ongoing through October 2015. The results shown in the presentation are intended to provide an overview of the test and a first look at the preliminary results.

  2. Hardware Design of Tuber Electrical Resistance Tomography System Based on the Soil Impedance Test and Analysis

    Directory of Open Access Journals (Sweden)

    Liu Shuyi

    2016-01-01

    Full Text Available The hardware design of tuber electrical resistance tomography (TERT system is one of the key research problems of TERT data acquisition system. The TERT system can be applied to the tuber growth process monitoring in agriculture, i.e., the TERT data acquisition system can realize the real imaging of tuber plants in soil. In TERT system, the imaging tuber and soil multiphase medium is quite complexity. So, the impedance test and analysis of soil multiphase medium is very important to the design of sensitive array sensor subsystem and signals processing circuits. In the paper, the soil impedance test experimental is described and the results are analysed. The data acquisition hardware system is designed based on the result of soil medium impedance test and analysis. In the hardware design, the switch control chip ADG508, the instrumentation amplifier AD620 and programmable amplifier AD526 are employed. In the meantime, the phase locked loop technique for signal demodulation is introduced. The initial data collection is given and discussed under the conditions of existing plant tuber and no existing plant tuber. Conclusions of the hardware design of TERT system are presented.

  3. Design of Spacecraft Missions to Test Kinetic Impact for Asteroid Deflection

    Science.gov (United States)

    Barbee, Brent W.; Hernandez, Sonia

    2012-01-01

    Earth has previously been struck with devastating force by near-Earth asteroids (NEAs) and will be struck again. Telescopic search programs aim to provide advance warning of such an impact, but no techniques or systems have yet been tested for deflecting an incoming NEA. To begin addressing this problem, we have analyzed the more than 8000 currently known NEAs to identify those that offer opportunities for safe and meaningful near-term tests of the proposed kinetic impact asteroid deflection technique. In this paper we present our methodology and results, including complete mission designs for the best kinetic impactor test mission opportunities.

  4. Quality assessment in in vivo NMR spectroscopy: III. Clinical test objects: design, construction, and solutions

    DEFF Research Database (Denmark)

    Leach, M.O.; Collins, D.J.; Keevil, S

    1995-01-01

    Based on the requirements of test protocols developed to evaluate clinical MRS single slice and volume localisation sequences, two clinical test objects, STO1 and STO2 have been developed. The properties of a range of potential construction materials have been assessed, demonstrating that the water....../Perspex interface produced minimum susceptibility effects. The design of the objects has been evaluated in trials on different magnetic resonance instruments, with size and loading being adjusted to allow use on currently available equipment. Appropriate test solutions for 31P and 1H measurements have been...

  5. Design and analysis of the federal aviation administration next generation fire test burner

    Science.gov (United States)

    Ochs, Robert Ian

    The United States Federal Aviation Administration makes use of threat-based fire test methods for the certification of aircraft cabin materials to enhance the level of safety in the event of an in-flight or post-crash fire on a transport airplane. The global nature of the aviation industry results in these test methods being performed at hundreds of laboratories around the world; in some cases testing identical materials at multiple labs but yielding different results. Maintenance of this standard for an elevated level of safety requires that the test methods be as well defined as possible, necessitating a comprehensive understanding of critical test method parameters. The tests have evolved from simple Bunsen burner material tests to larger, more complicated apparatuses, requiring greater understanding of the device for proper application. The FAA specifies a modified home heating oil burner to simulate the effects of large, intense fires for testing of aircraft seat cushions, cargo compartment liners, power plant components, and thermal acoustic insulation. Recently, the FAA has developed a Next Generation (NexGen) Fire Test burner to replace the original oil burner that has become commercially unavailable. The NexGen burner design is based on the original oil burner but with more precise control of the air and fuel flow rates with the addition of a sonic nozzle and a pressurized fuel system. Knowledge of the fundamental flow properties created by various burner configurations is desired to develop an updated and standardized burner configuration for use around the world for aircraft materials fire testing and airplane certification. To that end, the NexGen fire test burner was analyzed with Particle Image Velocimetry (PIV) to resolve the non-reacting exit flow field and determine the influence of the configuration of burner components. The correlation between the measured flow fields and the standard burner performance metrics of flame temperature and

  6. Meeting the Needs of All Students: A Universal Design Approach to Computer-Based Testing

    Science.gov (United States)

    Russell, Michael; Hoffmann, Thomas; Higgins, Jennifer

    2009-01-01

    Michael Russell, Thomas Hoffmann, and Jennifer Higgins describe how the principles of universal design were applied to the development of an innovative computer-based test delivery system, NimbleTools, to meet the accessibility and accommodation needs of students with a wide range of disabilities and special needs. Noting the movement to…

  7. A Conduction-Cooled Superconducting Magnet System-Design, Fabrication and Thermal Tests

    DEFF Research Database (Denmark)

    Song, Xiaowei (Andy); Holbøll, Joachim; Wang, Qiuliang

    2015-01-01

    A conduction-cooled superconducting magnet system with an operating current of 105.5 A was designed, fabricated and tested for material processing applications. The magnet consists of two coaxial NbTi solenoid coils with an identical vertical height of 300 mm and is installed in a high...

  8. 40 CFR Figure E-1 to Subpart E of... - Designation Testing Checklist

    Science.gov (United States)

    2010-07-01

    ... Equivalent Methods for PM2.5 or PM10â2.5 Pt. 53, Subpt. E, Fig. E-1 Figure E-1 to Subpart E of Part 53... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Designation Testing Checklist E Figure...) AIR PROGRAMS (CONTINUED) AMBIENT AIR MONITORING REFERENCE AND EQUIVALENT METHODS Procedures for...

  9. De-Icing Systems of Flight Vehicles. Bases of Design Methods for Testing. Part 2,

    Science.gov (United States)

    1979-09-07

    BASES OF DESIGN METHODS F’OR TESTING by R.Kh. Tenishev, B.A. Strogaiov, et al Approved for public release; ditiuinulmtd FID - ID(RS)T-1163-79) UNEDITED...coefficients, which are the thermal characteristics of chamel in this section ASi: a AS, CPG = " (7.38) B, a -- _ ( -(7. 39a) It is mecessary to not. that

  10. Design and Application of a Beam Testing System for Experiential Learning in Mechanics of Materials

    Science.gov (United States)

    Sullivan, R. Warsi; Rais-Rohani, M.

    2009-01-01

    Research shows that students can significantly improve their understanding and retention of topics presented in an engineering course when discussions of theoretical and mathematical approaches are combined with active-learning exercises involving hands-on physical experiments. In this paper, the design and application of a beam testing system…

  11. IASI OGSE Spot Scan: Design and realization of an infrared test equipment for use in vacuum

    NARCIS (Netherlands)

    Kappelhof, J.P.; Dekker, A.; Spierdijk, J.P.F.; Boslooper, E.C.; Bokhove, H.; Verhoeff, P.

    2003-01-01

    This paper presents the development of the IASI Infrared Spot Scan test equipment, with a focus on the mechanical design. The IASI instrument, developed by Alcatel, is a spaceborne meteorological instrument, for observation of the Earth atmosphere in the infrared wavelength region. An infrared

  12. Usability Testing, User-Centered Design, and LibGuides Subject Guides: A Case Study

    Science.gov (United States)

    Sonsteby, Alec; DeJonghe, Jennifer

    2013-01-01

    Usability testing has become a routine way for many libraries to ensure that their Web presence is user-friendly and accessible. At the same time, popular subject guide creation systems, such as LibGuides, decentralize Web content creation and put authorship into the hands of librarians who may not be trained in user-centered design principles. At…

  13. Component design and testing for a miniaturised autonomous sensor based on a nanowire materials platform

    NARCIS (Netherlands)

    Annett Gawlik; Elizabeth Buitrago; John C De Mello; Nikolay Petkov; Frank van der Bent; Ing. Erik Puik; Ran Yu; Naser Khosropour; Hien Duy Tong; Fritz Falk; Yordan M. Georgiev; Rik Lafeber; Francois Krummenacher; Olan Lotty; Justin D. Holmes; Montserrat Fernández-Bolaños Badia; Guobin Jia; Adrian M. Nightingale; Björn Eisenhawer; Giorgos Fagas; Michael Nolan; Maher Kayal; Rajesh Ramaneti; Cees van Rijn; Adrian M. Ionescu

    2014-01-01

    From Springer description: "We present the design considerations of an autonomous wireless sensor and discuss the fabrication and testing of the various components including the energy harvester, the active sensing devices and the power management and sensor interface circuits. A common materials

  14. Advances on the constitutive characterization of composites via multiaxial robotic testing and design optimization

    Science.gov (United States)

    John G. Michopoulos; John Hermanson; Athanasios Iliopoulos

    2014-01-01

    The research areas of mutiaxial robotic testing and design optimization have been recently utilized for the purpose of data-driven constitutive characterization of anisotropic material systems. This effort has been enabled by both the progress in the areas of computers and information in engineering as well as the progress in computational automation. Although our...

  15. Mechanistic-empirical subgrade design model based on heavy vehicle simulator test results

    CSIR Research Space (South Africa)

    Theyse, HL

    2006-06-01

    Full Text Available -empirical design models. This paper presents a study on subgrade permanent deformation based on the data generated from a series of Heavy Vehicle Simulator (HVS) tests done at the Richmond Field Station in California. The total subgrade deflection was found to be a...

  16. Novel field test design for acquisition of DC and AC parameters during service

    DEFF Research Database (Denmark)

    Thorsteinsson, Sune; Poulsen, Peter Behrensdorff; Schou, Jørgen

    2016-01-01

    potential for more. In this work we describe a field test design where the modules are operating at their maximum power point, and via relays is switched out one by one for acquisition of an IV curve and an impedance spectrum. Some of the modules involved will undergo stimuli to accelerate certain...

  17. Results from evaporation tests to support the MWTF heat removal system design

    Energy Technology Data Exchange (ETDEWEB)

    Crea, B.A.

    1994-12-22

    An experimental tests program was conducted to measure the evaporative heat removal from the surface of a tank of simulated waste. The results contained in this report constitute definition design data for the latest heat removal function of the MWTF primary ventilation system.

  18. Comparison of a Class of Rank-Score Tests in Two-Factor Designs ...

    African Journals Online (AJOL)

    Department of Mathematics, Usmanu Danfodiyo University, Sokoto ... The empirical Type I error rate and power of these test statistics on the rank scores were ... INTRODUCTION. When analyzing data from a two-factor design, usually a linear model is assumed and the hypotheses are formulated by the parameters of this ...

  19. Validity of the rey visual design test in primary and secondary school children

    NARCIS (Netherlands)

    Wilhelm, P.; van Klink, M.; van Klink, M.

    2007-01-01

    The Rey Visual Design Learning Test (Rey, 1964, cited in Spreen & Strauss, 1991, Wilhelm, 2004) assesses immediate memory span, new learning, delayed recall and recognition for nonverbal material. Two studies are presented that focused on the construct validity of the RVDLT in primary and secondary

  20. Engineering the bundled glass column: From the design concept to full-scale experimental testing

    NARCIS (Netherlands)

    Oikonomopoulou, F.; Bristogianni, T.; Veer, F.A.; Nijsse, R.

    This article gives an overview of the research conducted by the authors from the design concept to the engineering and full-scale testing of the bundled glass column. Consisting of adhesively bonded solid glass rods, the bundled column is a promising solution for transparent compressive members. To