WorldWideScience

Sample records for pseudotypes expressing influenza

  1. Pseudotyping of vesicular stomatitis virus with the envelope glycoproteins of highly pathogenic avian influenza viruses.

    Science.gov (United States)

    Zimmer, Gert; Locher, Samira; Berger Rentsch, Marianne; Halbherr, Stefan J

    2014-08-01

    Pseudotype viruses are useful for studying the envelope proteins of harmful viruses. This work describes the pseudotyping of vesicular stomatitis virus (VSV) with the envelope glycoproteins of highly pathogenic avian influenza viruses. VSV lacking the homotypic glycoprotein (G) gene (VSVΔG) was used to express haemagglutinin (HA), neuraminidase (NA) or the combination of both. Propagation-competent pseudotype viruses were only obtained when HA and NA were expressed from the same vector genome. Pseudotype viruses containing HA from different H5 clades were neutralized specifically by immune sera directed against the corresponding clade. Fast and sensitive reading of test results was achieved by vector-mediated expression of GFP. Pseudotype viruses expressing a mutant VSV matrix protein showed restricted spread in IFN-competent cells. This pseudotype system will facilitate the detection of neutralizing antibodies against virulent influenza viruses, circumventing the need for high-level biosafety containment. © 2014 The Authors.

  2. Pseudotype-based neutralization assays for influenza: a systematic analysis

    Directory of Open Access Journals (Sweden)

    George William Carnell

    2015-04-01

    Full Text Available The use of vaccination against the influenza virus remains the most effective method of mitigating the significant morbidity and mortality caused by this virus. Antibodies elicited by currently licensed influenza vaccines are predominantly hemagglutination-inhibition (HI-competent antibodies that target the globular head of HA thus inhibiting influenza virus entry into target cells. These antibodies predominantly confer homosubtypic/strain specific protection and only rarely confer heterosubtypic protection. However, recent academia or pharma-led R&D towards the production of a universal vaccine has centered on the elicitation of antibodies directed against the stalk of the influenza HA that has been shown to confer broad protection across a range of different subtypes (H1 to H16. The accurate and sensitive measurement of antibody responses elicited by these next-generation influenza vaccines is however hampered by the lack of sensitivity of the traditional influenza serological assays hemagglutinin inhibition (HI, single radial hemolysis (SRH and microneutralization (MN. Assays utilizing pseudotypes, chimeric viruses bearing influenza glycoproteins, have been shown to be highly efficient for the measurement of homosubtypic and heterosubtypic broadly-neutralizing antibodies, making them ideal serological tools for the study of cross-protective responses against multiple influenza subtypes with pandemic potential. In this review, we will analyze and compare literature involving the production of influenza pseudotypes with particular emphasis on their use in serum antibody neutralization assays. This will enable us to establish the parameters required for optimization and propose a consensus protocol to be employed for the further deployment of these assays in influenza vaccine immunogenicity studies.

  3. Enhanced protective efficacy of H5 subtype influenza vaccine with modification of the multibasic cleavage site of hemagglutinin in retroviral pseudotypes.

    Science.gov (United States)

    Tao, Ling; Chen, Jianjun; Meng, Jin; Chen, Yao; Li, Hongxia; Liu, Yan; Zheng, Zhenhua; Wang, Hanzhong

    2013-06-01

    Traditionally, the multibasic cleavage site (MBCS) of surface protein H5-hemagglutinin (HA) is converted to a monobasic one so as to weaken the virulence of recombinant H5N1 influenza viruses and to produce inactivated and live attenuated vaccines. Whether such modification benefits new candidate vaccines has not been adequately investigated. We previously used retroviral vectors to generate wtH5N1 pseudotypes containing the wild-type HA (wtH5) from A/swine/Anhui/ca/2004 (H5N1) virus. Here, we generated mtH5N1 pseudotypes, which contained a mutant-type HA (mtH5) with a modified monobasic cleavage site. Groups of mice were subcutaneously injected with the two types of influenza pseudotypes. Compared to the group immunized with wtH5N1 pseudotypes, the inoculation of mtH5N1 pseudotypes induced significantly higher levels of HA specific IgG and IFN-γ in immunized mice, and enhanced protection against the challenge of mouse-adapted avian influenza virus A/Chicken/Henan/12/2004 (H5N1). This study suggests modification of the H5-hemagglutinin MBCS in retroviral pseudotypes enhances protection efficacy in mice and this information may be helpful for development of vaccines from mammalian cells to fight against H5N1 influenza viruses.

  4. Kidney-specific expression of GFP by in-utero delivery of pseudotyped adeno-associated virus 9

    Directory of Open Access Journals (Sweden)

    Jason L Picconi

    2014-01-01

    Full Text Available Gene therapy targeting of kidneys has been largely unsuccessful. Recently, a recombinant adeno-associated virus (rAAV vector was used to target adult mouse kidneys. Our hypothesis is that a pseudotyped rAAV 2/9 vector can produce fetal kidney-specific expression of the green fluorescent protein (GFP gene following maternal tail vein injection of pregnant mice. Pregnant mice were treated with rAAV2/9 vectors with either the ubiquitous cytomegalovirus promoter or the minimal NPHS1 promoter to drive kidney-specific expression of GFP. Kidneys from dams and pups were analyzed for vector DNA, gene expression, and protein. Vector DNA was identified in kidney tissue out to 12 weeks at low but stable levels, with levels higher in dams than that in pups. Robust GFP expression was identified in the kidneys of both dams and pups treated with the cytomegalovirus (CMV-enhanced green fluorescent protein (eGFP vector. When treated with the NPHS1-eGFP vector, dams and pups showed expression of GFP only in kidneys, localized to the glomeruli. An 80-fold increase in GFP mRNA expression in dams and a nearly 12-fold increase in pups was found out to 12 weeks of life. Selective targeting of the fetal kidney with a gene therapy vector was achieved by utilizing the pseudotyped rAAV 2/9 vector containing the NPHS1 promoter.

  5. Differential activation of NK cells by influenza A pseudotype H5N1 and 1918 and 2009 pandemic H1N1 viruses.

    Science.gov (United States)

    Du, Ning; Zhou, Jianfang; Lin, Xiaojing; Zhang, Yonghui; Yang, Xiaoxing; Wang, Yue; Shu, Yuelong

    2010-08-01

    Natural killer (NK) cells are the effectors of innate immunity and are recruited into the lung 48 h after influenza virus infection. Functional NK cell activation can be triggered by the interaction between viral hemagglutinin (HA) and natural cytotoxicity receptors NKp46 and NKp44 on the cell surface. Recently, novel subtypes of influenza viruses, such as H5N1 and 2009 pandemic H1N1, transmitted directly to the human population, with unusual mortality and morbidity rates. Here, the human NK cell responses to these viruses were studied. Differential activation of heterogeneous NK cells (upregulation of CD69 and CD107a and gamma interferon [IFN-gamma] production as well as downregulation of NKp46) was observed following interactions with H5N1, 1918 H1N1, and 2009 H1N1 pseudotyped particles (pps), respectively, and the responses of the CD56(dim) subset predominated. Much stronger NK activation was triggered by H5N1 and 1918 H1N1 pps than by 2009 H1N1 pps. The interaction of pps with NK cells and subsequent internalization were mediated by NKp46 partially. The NK cell activation by pps showed a dosage-dependent manner, while an increasing viral HA titer attenuated NK activation phenotypes, cytotoxicity, and IFN-gamma production. The various host innate immune responses to different influenza virus subtypes or HA titers may be associated with disease severity.

  6. Differential Activation of NK Cells by Influenza A Pseudotype H5N1 and 1918 and 2009 Pandemic H1N1 Viruses▿ ‡ ‖

    Science.gov (United States)

    Du, Ning; Zhou, Jianfang; Lin, Xiaojing; Zhang, Yonghui; Yang, Xiaoxing; Wang, Yue; Shu, Yuelong

    2010-01-01

    Natural killer (NK) cells are the effectors of innate immunity and are recruited into the lung 48 h after influenza virus infection. Functional NK cell activation can be triggered by the interaction between viral hemagglutinin (HA) and natural cytotoxicity receptors NKp46 and NKp44 on the cell surface. Recently, novel subtypes of influenza viruses, such as H5N1 and 2009 pandemic H1N1, transmitted directly to the human population, with unusual mortality and morbidity rates. Here, the human NK cell responses to these viruses were studied. Differential activation of heterogeneous NK cells (upregulation of CD69 and CD107a and gamma interferon [IFN-γ] production as well as downregulation of NKp46) was observed following interactions with H5N1, 1918 H1N1, and 2009 H1N1 pseudotyped particles (pps), respectively, and the responses of the CD56dim subset predominated. Much stronger NK activation was triggered by H5N1 and 1918 H1N1 pps than by 2009 H1N1 pps. The interaction of pps with NK cells and subsequent internalization were mediated by NKp46 partially. The NK cell activation by pps showed a dosage-dependent manner, while an increasing viral HA titer attenuated NK activation phenotypes, cytotoxicity, and IFN-γ production. The various host innate immune responses to different influenza virus subtypes or HA titers may be associated with disease severity. PMID:20484512

  7. A MicroRNA-regulated and GP64-pseudotyped Lentiviral Vector Mediates Stable Expression of FVIII in a Murine Model of Hemophilia A

    Science.gov (United States)

    Matsui, Hideto; Hegadorn, Carol; Ozelo, Margareth; Burnett, Erin; Tuttle, Angie; Labelle, Andrea; McCray, Paul B; Naldini, Luigi; Brown, Brian; Hough, Christine; Lillicrap, David

    2011-01-01

    The objective to use gene therapy to provide sustained, therapeutic levels of factor VIII (FVIII) for hemophilia A is compromised by the emergence of inhibitory antibodies that prevent FVIII from performing its essential function as a cofactor for factor IX (FIX). FVIII appears to be more immunogenic than FIX and an immune response is associated more frequently with FVIII than FIX gene therapy strategies. We have evaluated a modified lentiviral delivery strategy that facilitates liver-restricted transgene expression and prevents off-target expression in hematopoietic cells by incorporating microRNA (miRNA) target sequences. In contrast to outcomes using this strategy to deliver FIX, this modified delivery strategy was in and of itself insufficient to prevent an anti-FVIII immune response in treated hemophilia A mice. However, pseudotyping the lentivirus with the GP64 envelope glycoprotein, in conjunction with a liver-restricted promoter and a miRNA-regulated FVIII transgene resulted in sustained, therapeutic levels of FVIII. These modifications to the lentiviral delivery system effectively restricted FVIII transgene expression to the liver. Plasma levels of FVIII could be increased to around 9% that of normal levels when macrophages were depleted prior to treating the hemophilia A mice with the modified lentiviral FVIII delivery system. PMID:21285959

  8. Multiplex Evaluation of Influenza Neutralizing Antibodies with Potential Applicability to In-Field Serological Studies

    National Research Council Canada - National Science Library

    Molesti, Eleonora; Wright, Edward; Terregino, Calogero; Rahman, Rafat; Cattoli, Giovanni; Temperton, Nigel J

    2014-01-01

    .... Retroviral pseudotypes bearing influenza haemagglutinin (HA) and neuraminidase (NA) envelope glycoproteins represent a flexible platform for sensitive, readily standardized influenza serological assays...

  9. Packaging HIV- or FIV-based lentivector expression constructs and transduction of VSV-G pseudotyped viral particles.

    Science.gov (United States)

    Mendenhall, Amy; Lesnik, Jacob; Mukherjee, Chandreyee; Antes, Travis; Sengupta, Ranjita

    2012-04-08

    As with standard plasmid vectors, it is possible to transfect lentivectors in plasmid form into cells with low-to-medium efficiency to obtain transient expression of effectors. Packaging lentiviral expression constructs into pseudoviral particles, however, enables up to 100% transduction, even with difficult-to-transfect cells, such as primary, stem, and differentiated cells. Moreover, the lentiviral delivery does not produce the specific cellular responses typically associated with chemical transfections, such as cell death resulting from toxicity of the transfection reagent. When transduced into target cells, the lentiviral construct integrates into genomic DNA and provides stable expression of the small hairpin RNA (shRNA), cDNA, microRNA or reporter gene. Target cells stably expressing the effector molecule can be isolated using a selectable marker contained in the expression vector construct such as puromycin or GFP. After pseudoviral particles infect target cells, they cannot replicate within target cells because the viral structural genes are absent and the long terminal repeats (LTRs) are designed to be self-inactivating upon transduction. There are three main components necessary for efficient lentiviral packaging. 1. The lentiviral expression vector that contains some of the genetic elements required for packaging, stable integration of the viral expression construct into genomic DNA, and expression of the effector or reporter. 2. The lentiviral packaging plasmids that provide the proteins essential for transcription and packaging of an RNA copy of the expression construct into recombinant pseudoviral particles. This protocol uses the pPACK plasmids (SBI) that encode for gag, pol, and rev from the HIV or FIV genome and Vesicular Stomatitis Virus g protein (VSV-G) for the viral coat protein. 3. 293TN producer cells (derived from HEK293 cells) that express the SV40 large T antigen, which is required for high-titer lentiviral production and a neomycin

  10. The use of pseudotypes to study viruses, virus sero-epidemiology and vaccination.

    Science.gov (United States)

    Bentley, Emma M; Mather, Stuart T; Temperton, Nigel J

    2015-06-12

    The globalization of the world's economies, accompanied by increasing international travel, changing climates, altered human behaviour and demographics is leading to the emergence of different viral diseases, many of which are highly pathogenic and hence are considered of great public and animal health importance. To undertake basic research and therapeutic development, many of these viruses require handling by highly trained staff in BSL-3/4 facilities not readily available to the majority of the global R&D community. In order to circumvent the enhanced biosafety requirement, the development of non-pathogenic, replication-defective pseudotyped viruses is an effective and established solution to permit the study of many aspects of virus biology in a low containment biosafety level (BSL)-1/2 laboratory. Under the spectre of the unfolding Ebola crisis, this timely conference (the second to be organised by the Viral Pseudotype Unit, www.viralpseudotypeunit.info*) discusses the recent advances in pseudotype technology and how it is revolutionizing the study of important human and animal pathogens (human and avian influenza viruses, rabies/lyssaviruses, HIV, Marburg and Ebola viruses). Key topics addressed in this conference include the exploitation of pseudotypes for serology and serosurveillance, immunogenicity testing of current and next-generation vaccines and new pseudotype assay formats (multiplexing, kit development). The first pseudotype-focused Euroscicon conference organised by the Viral Pseudotype Unit was recently reviewed [1]. Copyright © 2015. Published by Elsevier Ltd.. All rights reserved.

  11. Stability of Retroviral Vectors Against Ultracentrifugation Is Determined by the Viral Internal Core and Envelope Proteins Used for Pseudotyping.

    Science.gov (United States)

    Kim, Soo-Hyun; Lim, Kwang-Il

    2017-05-31

    Retroviral and lentiviral vectors are mostly pseudotyped and often purified and concentrated via ultracentrifugation. In this study, we quantified and compared the stabilities of retroviral [murine leukemia virus (MLV)-based] and lentiviral [human immunodeficiency virus (HIV)-1-based] vectors pseudotyped with relatively mechanically stable envelope proteins, vesicular stomatitis virus glycoproteins (VSVGs), and the influenza virus WSN strain envelope proteins against ultracentrifugation. Lentiviral genomic and functional particles were more stable than the corresponding retroviral particles against ultracentrifugation when pseudotyped with VSVGs. However, both retroviral and lentiviral particles were unstable when pseudotyped with the influenza virus WSN strain envelope proteins. Therefore, the stabilities of pseudotyped retroviral and lentiviral vectors against ultracentrifugation process are a function of not only the type of envelope proteins, but also the type of viral internal core (MLV or HIV-1 core). In addition, the fraction of functional viral particles among genomic viral particles greatly varied at times during packaging, depending on the type of envelope proteins used for pseudotyping and the viral internal core.

  12. Replication-competent fluorescent-expressing influenza B virus.

    Science.gov (United States)

    Nogales, Aitor; Rodríguez-Sánchez, Irene; Monte, Kristen; Lenschow, Deborah J; Perez, Daniel R; Martínez-Sobrido, Luis

    2016-02-02

    Influenza B viruses (IBVs) cause annual outbreaks of respiratory illness in humans and are increasingly recognized as a major cause of influenza-associated morbidity and mortality. Studying influenza viruses requires the use of secondary methodologies to identify virus-infected cells. To this end, replication-competent influenza A viruses (IAVs) expressing easily traceable fluorescent proteins have been recently developed. In contrast, similar approaches for IBV are mostly lacking. In this report, we describe the generation and characterization of replication-competent influenza B/Brisbane/60/2008 viruses expressing fluorescent mCherry or GFP fused to the C-terminal of the viral non-structural 1 (NS1) protein. Fluorescent-expressing IBVs display similar growth kinetics and plaque phenotype to wild-type IBV, while fluorescent protein expression allows for the easy identification of virus-infected cells. Without the need of secondary approaches to monitor viral infection, fluorescent-expressing IBVs represent an ideal approach to study the biology of IBV and an excellent platform for the rapid identification and characterization of antiviral therapeutics or neutralizing antibodies using high-throughput screening approaches. Lastly, fluorescent-expressing IBVs can be combined with the recently described reporter-expressing IAVs for the identification of novel therapeutics to combat these two important human respiratory pathogens. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Rabies-virus-glycoprotein-pseudotyped recombinant baculovirus vaccine confers complete protection against lethal rabies virus challenge in a mouse model.

    Science.gov (United States)

    Wu, Qunfeng; Yu, Fulai; Xu, Jinfang; Li, Yang; Chen, Huanchun; Xiao, Shaobo; Fu, Zhen F; Fang, Liurong

    2014-06-25

    Rabies virus has been an ongoing threat to humans and animals. Here, we developed a new strategy to generate a rabies virus vaccine based on a pseudotyped baculovirus. The recombinant baculovirus (BV-RVG/RVG) was pseudotyped with the rabies virus glycoprotein (RVG) and also simultaneously expressed another RVG under the control of the immediate early CMV promoter. In vitro, this RVG-pseudotyped baculovirus vector induced syncytium formation in insect cells and displayed more efficient gene delivery into mammalian cells. Mice immunized with BV-RVG/RVG developed higher levels of virus-neutralizing antibodies, and conferred 100% protection against rabies viral challenge. These data indicate that the RVG-pseudotyped baculovirus BV-RVG/RVG can be used as an alternative strategy to develop a safe and efficacious vaccine against the rabies virus. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Efficient transduction of neurons using Ross River glycoprotein-pseudotyped lentiviral vectors

    DEFF Research Database (Denmark)

    Jakobsson, J; Nielsen, T Tolstrup; Staflin, K

    2006-01-01

    and human glial fibrillary acidic protein, we demonstrated cell-specific transgene expression in the desired cell type. Ross River virus glycoprotein-pseudotyped lentiviral vectors also transduced human neural progenitor cells in vitro, showing that receptors for the RRV-G are present on human neural cells....

  15. Expression of nerve growth factor carried by pseudotyped lentivirus improves neuron survival and cognitive functional recovery of post-ischemia in rats.

    Science.gov (United States)

    Cao, Jia-Yu; Lin, Yong; Han, Yan-Fei; Ding, Sheng-Hao; Fan, Yi-Ling; Pan, Yao-Hua; Zhao, Bing; Guo, Qin-Hua; Sun, Wen-Hua; Wan, Jie-Qing; Tong, Xiao-Ping

    2018-02-06

    Nerve growth factor (NGF) has been reported to prevent neuronal damage and contributes to the functional recovery in animal brain injury models and human ischemic disease as well. We aimed to investigate a potential therapeutic effect of NGF gene treatment in ischemic stroke and to estimate the functional recovery both at the cellular and cognitive levels in an ischemia rat model. After microinjection of pseudolentivirus-delivered β-NGF into an established ischemic stroke model in rats (tMCAO), we estimated neuronal cell apoptosis with TUNEL labeling and neurogenesis by cell proliferation marker Ki67 staining in both ischemic core and penumbra of striatum. Furthermore, we used behavioral functional tests, Morris water maze performance, to evaluate cognitive functional recovery in vivo and propose a potential underlying mechanism. We found that pseudolentivirus-mediated delivery of β-NGF gene into the brain induced high expression in striatum of the infarct core area after ischemia in rats. The β-NGF overexpression in the striatal infarction core after ischemia not only improved neuronal survival by reducing cell apoptosis and increasing cell proliferation, but also rescued cognitive functional impairment through upregulation of GAP-43 protein expression in tMCAO rat model of ischemia. This study demonstrates a potential β-NGF gene therapy by utilization of pseudolentivirus in ischemia and indicates future applications of NGF gene treatment in ischemic patients. © 2018 John Wiley & Sons Ltd.

  16. A Viable Recombinant Rhabdovirus Lacking Its Glycoprotein Gene and Expressing Influenza Virus Hemagglutinin and Neuraminidase Is a Potent Influenza Vaccine

    Science.gov (United States)

    Ryder, Alex B.; Buonocore, Linda; Vogel, Leatrice; Nachbagauer, Raffael; Krammer, Florian

    2014-01-01

    ABSTRACT The emergence of novel influenza viruses that cause devastating human disease is an ongoing threat and serves as an impetus for the continued development of novel approaches to influenza vaccines. Influenza vaccine development has traditionally focused on producing humoral and/or cell-mediated immunity, often against the viral surface glycoproteins hemagglutinin (HA) and neuraminidase (NA). Here, we describe a new vaccine candidate that utilizes a replication-defective vesicular stomatitis virus (VSV) vector backbone that lacks the native G surface glycoprotein gene (VSVΔG). The expression of the H5 HA of an H5N1 highly pathogenic avian influenza virus (HPAIV), A/Vietnam/1203/04 (VN1203), and the NA of the mouse-adapted H1N1 influenza virus A/Puerto Rico/8/34 (PR8) in the VSVΔG vector restored the ability of the recombinant virus to replicate in cell culture, without the requirement for the addition of trypsin. We show here that this recombinant virus vaccine candidate was nonpathogenic in mice when given by either the intramuscular or intranasal route of immunization and that the in vivo replication of VSVΔG-H5N1 is profoundly attenuated. This recombinant virus also provided protection against lethal H5N1 infection after a single dose. This novel approach to vaccination against HPAIVs may be widely applicable to other emerging strains of influenza virus. IMPORTANCE Preparation for a potentially catastrophic influenza pandemic requires novel influenza vaccines that are safe, can be produced and administered quickly, and are effective, both soon after administration and for a long duration. We have created a new influenza vaccine that utilizes an attenuated vesicular stomatitis virus (VSV) vector, to deliver and express influenza virus proteins against which vaccinated animals develop potent antibody responses. The influenza virus hemagglutinin and neuraminidase proteins, expressed on the surface of VSV particles, allowed this vaccine to grow in cell

  17. A viable recombinant rhabdovirus lacking its glycoprotein gene and expressing influenza virus hemagglutinin and neuraminidase is a potent influenza vaccine.

    Science.gov (United States)

    Ryder, Alex B; Buonocore, Linda; Vogel, Leatrice; Nachbagauer, Raffael; Krammer, Florian; Rose, John K

    2015-03-01

    The emergence of novel influenza viruses that cause devastating human disease is an ongoing threat and serves as an impetus for the continued development of novel approaches to influenza vaccines. Influenza vaccine development has traditionally focused on producing humoral and/or cell-mediated immunity, often against the viral surface glycoproteins hemagglutinin (HA) and neuraminidase (NA). Here, we describe a new vaccine candidate that utilizes a replication-defective vesicular stomatitis virus (VSV) vector backbone that lacks the native G surface glycoprotein gene (VSVΔG). The expression of the H5 HA of an H5N1 highly pathogenic avian influenza virus (HPAIV), A/Vietnam/1203/04 (VN1203), and the NA of the mouse-adapted H1N1 influenza virus A/Puerto Rico/8/34 (PR8) in the VSVΔG vector restored the ability of the recombinant virus to replicate in cell culture, without the requirement for the addition of trypsin. We show here that this recombinant virus vaccine candidate was nonpathogenic in mice when given by either the intramuscular or intranasal route of immunization and that the in vivo replication of VSVΔG-H5N1 is profoundly attenuated. This recombinant virus also provided protection against lethal H5N1 infection after a single dose. This novel approach to vaccination against HPAIVs may be widely applicable to other emerging strains of influenza virus. Preparation for a potentially catastrophic influenza pandemic requires novel influenza vaccines that are safe, can be produced and administered quickly, and are effective, both soon after administration and for a long duration. We have created a new influenza vaccine that utilizes an attenuated vesicular stomatitis virus (VSV) vector, to deliver and express influenza virus proteins against which vaccinated animals develop potent antibody responses. The influenza virus hemagglutinin and neuraminidase proteins, expressed on the surface of VSV particles, allowed this vaccine to grow in cell culture and induced a

  18. Pseudotyped Adeno-associated Viral Vector Tropism and Transduction Efficiencies in Murine Wound Healing

    OpenAIRE

    Keswani, Sundeep G.; Balaji, Swathi; Le, Louis; Leung, Alice; Lim, Foong-Yen; Habli, Mounira; Jones, Helen N.; Wilson, James M.; Crombleholme, Timothy M.

    2012-01-01

    Cell specific gene transfer and sustained transgene expression are goals of cutaneous gene therapy for tissue repair and regeneration. Adeno-associated virus serotype 2 (AAV2/2) mediated gene transfer to the skin results in stable transgene expression in the muscle fascicles of the panniculus carnosus in mice, with minimal gene transfer to the dermal or epidermal elements. We hypothesized that pseudotyped AAV vectors may have a unique and characteristic tropism and transduction efficiency pro...

  19. A single residue substitution in the receptor-binding domain of H5N1 hemagglutinin is critical for packaging into pseudotyped lentiviral particles.

    Directory of Open Access Journals (Sweden)

    Dong-Jiang Tang

    Full Text Available BACKGROUND: Serological studies for influenza infection and vaccine response often involve microneutralization and hemagglutination inhibition assays to evaluate neutralizing antibodies against human and avian influenza viruses, including H5N1. We have previously characterized lentiviral particles pseudotyped with H5-HA (H5pp and validated an H5pp-based assay as a safe alternative for high-throughput serological studies in BSL-2 facilities. Here we show that H5-HAs from different clades do not always give rise to efficient production of H5pp and the underlying mechanisms are addressed. METHODOLOGY/FINDINGS: We have carried out mutational analysis to delineate the molecular determinants responsible for efficient packaging of HA from A/Cambodia/40808/2005 (H5Cam and A/Anhui/1/2005 (H5Anh into H5pp. Our results demonstrate that a single A134V mutation in the 130-loop of the receptor binding domain is sufficient to render H5Anh the ability to generate H5Anh-pp efficiently, whereas the reverse V134A mutation greatly hampers production of H5Cam-pp. Although protein expression in total cell lysates is similar for H5Anh and H5Cam, cell surface expression of H5Cam is detected at a significantly higher level than that of H5Anh. We further demonstrate by several independent lines of evidence that the behaviour of H5Anh can be explained by a stronger binding to sialic acid receptors implicating residue 134. CONCLUSIONS: We have identified a single A134V mutation as the molecular determinant in H5-HA for efficient incorporation into H5pp envelope and delineated the underlying mechanism. The reduced binding to sialic acid receptors as a result of the A134V mutation not only exerts a critical influence in pseudotyping efficiency of H5-HA, but has also an impact at the whole virus level. Because A134V substitution has been reported as a naturally occurring mutation in human host, our results may have implications for the understanding of human host adaptation

  20. Differential sensitivity of bat cells to infection by enveloped RNA viruses: coronaviruses, paramyxoviruses, filoviruses, and influenza viruses.

    Directory of Open Access Journals (Sweden)

    Markus Hoffmann

    Full Text Available Bats (Chiroptera host major human pathogenic viruses including corona-, paramyxo, rhabdo- and filoviruses. We analyzed six different cell lines from either Yinpterochiroptera (including African flying foxes and a rhinolophid bat or Yangochiroptera (genera Carollia and Tadarida for susceptibility to infection by different enveloped RNA viruses. None of the cells were sensitive to infection by transmissible gastroenteritis virus (TGEV, a porcine coronavirus, or to infection mediated by the Spike (S protein of SARS-coronavirus (SARS-CoV incorporated into pseudotypes based on vesicular stomatitis virus (VSV. The resistance to infection was overcome if cells were transfected to express the respective cellular receptor, porcine aminopeptidase N for TGEV or angiotensin-converting enzyme 2 for SARS-CoV. VSV pseudotypes containing the S proteins of two bat SARS-related CoV (Bg08 and Rp3 were unable to infect any of the six tested bat cell lines. By contrast, viral pseudotypes containing the surface protein GP of Marburg virus from the family Filoviridae infected all six cell lines though at different efficiency. Notably, all cells were sensitive to infection by two paramyxoviruses (Sendai virus and bovine respiratory syncytial virus and three influenza viruses from different subtypes. These results indicate that bat cells are more resistant to infection by coronaviruses than to infection by paramyxoviruses, filoviruses and influenza viruses. Furthermore, these results show a receptor-dependent restriction of the infection of bat cells by CoV. The implications for the isolation of coronaviruses from bats are discussed.

  1. Cloning and Expression of Recombinant Nucleoprotein of Influenza H1N1

    Directory of Open Access Journals (Sweden)

    Somaie Tavakoli

    2015-04-01

    Full Text Available Background: Influenza virus is the major cause of lower respiratory tract illnesses on the worldwide. Vaccination can be an effective tool to prevent its outbreak. Highly conserved viral nucleoprotein is an effective vaccine candidate to provide heterosubtypic immunity, offering resistance against various influenza virus strains.Materials and Methods: In present research NP gene was inserted in pET-22b expression vector. New construct (pET-22b/NP was transformed into E. coli BL21 (DE3 strain and the expression of nucleoprotein was induced by IPTG. It was analyzed by SDS-PAGE and confirmed by Western blotting.Results: Western blotting confirmed the expression and production of recombinant Influenza nucleoprotein.Conclusion: These results suggest that the codon-optimized influenza A virus NP gene can be efficiently expressed in E. coli.

  2. Susceptibility of domestic animals to a pseudotype virus bearing RD-114 virus envelope protein.

    Science.gov (United States)

    Miyaho, Rie Nakaoka; Nakagawa, So; Hashimoto-Gotoh, Akira; Nakaya, Yuki; Shimode, Sayumi; Sakaguchi, Shoichi; Yoshikawa, Rokusuke; Takahashi, Mahoko Ueda; Miyazawa, Takayuki

    2015-08-10

    Retroviral vectors are used for gene transduction into cells and have been applied to gene therapy. Retroviral vectors using envelope protein (Env) of RD-114 virus, a feline endogenous retrovirus, have been used for gene transduction. In this study, we investigated the susceptibility to RD-114 Env-pseudotyped virus in twelve domestic animals including cattle, sheep, horse, pig, dog, cat, ferret, mink, rabbit, rat, mouse, and quail. Comparison of nucleotide sequences of ASCT2 (SLC1A5), a receptor of RD-114 virus, in 10 mammalian and 2 avian species revealed that insertion and deletion events at the region C of ASCT2 where RD-114 viral Env interacts occurred independently in the mouse and rat lineage and in the chicken and quail lineage. By the pseudotype virus infection assay, we found that RD-114 Env-pseudotyped virus could efficiently infect all cell lines except those from mouse and rat. Furthermore, we confirmed that bovine ASCT2 (bASCT2) functions as a receptor for RD-114 virus infection. We also investigated bASCT2 mRNA expression in cattle tissues and found that it is expressed in various tissues including lung, spleen and kidney. These results indicate that retrovirus vectors with RD-114 virus Env can be used for gene therapy in large domestic animals in addition to companion animals such as cat and dog. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. The expression of essential components for human influenza virus internalisation in Vero and MDCK cells.

    Science.gov (United States)

    Ugiyadi, Maharani; Tan, Marselina I; Giri-Rachman, Ernawati A; Zuhairi, Fawzi R; Sumarsono, Sony H

    2014-05-01

    MDCK and Vero cell lines have been used as substrates for influenza virus replication. However, Vero cells produced lower influenza virus titer yield compared to MDCK. Influenza virus needs molecules for internalisation of the virus into the host cell, such as influenza virus receptor and clathrin. Human influenza receptor is usually a membrane protein containing Sia(α2,6) Gal, which is added into the protein in the golgi apparatus by α2,6 sialyltransferase (SIAT1). Light clathrin A (LCA), light clathrin B (LCB) and heavy clathrin (HC) are the main components needed for virus endocytosis. Therefore, it is necessary to compare the expression of SIAT1 and clathrin in Vero and MDCK cells. This study is reporting the expression of SIAT1 and clathrin observed in both cells with respect to the levels of (1) RNA by using RT-PCR, (2) protein by using dot blot analysis and confocal microscope. The results showed that Vero and MDCK cells expressed both SIAT1 and clathrin proteins, and the expression of SIAT1 in MDCK was higher compared to Vero cells. On the other hand, the expressions of LCA, LCB and HC protein in MDCK cells were not significantly different to Vero cells. This result showed that the inability of Vero cells to internalize H1N1 influenza virus was possibly due to the lack of transmembrane protein receptor which contained Sia(α2,6) Gal.

  4. Influenza

    Directory of Open Access Journals (Sweden)

    Eduardo Forleo-Neto

    2003-04-01

    Full Text Available A influenza (gripe é doença infecciosa aguda de origem viral que acomete o trato respiratório e a cada inverno atinge mais de 100 milhões de pessoas na Europa, Japão e Estados Unidos, causando anualmente a morte de cerca de 20 a 40 mil pessoas somente neste último país. O agente etiológico é o Myxovirus influenzae, ou vírus da gripe. Este subdivide-se nos tipos A, B e C, sendo que apenas os do tipo A e B apresentam relevância clínica em humanos. O vírus influenza apresenta altas taxas de mutação, o que resulta freqüentemente na inserção de novas variantes virais na comunidade, para as quais a população não apresenta imunidade. São poucas as opções disponíveis para o controle da influenza. Dentre essas, a vacinação constitui a forma mais eficaz para o controle da doença e de suas complicações. Em função das mutações que ocorrem naturalmente no vírus influenza, recomenda-se que a vacinação seja realizada anualmente. No Brasil, segundo dados obtidos pelo Projeto VigiGripe - ligado à Universidade Federal de São Paulo -, verifica-se que a influenza apresenta pico de atividade entre os meses de maio e setembro. Assim, a época mais indicada para a vacinação corresponde aos meses de março e abril. Para o tratamento específico da influenza estão disponíveis quatro medicamentos antivirais: os fármacos clássicos amantadina e rimantidina e os antivirais de segunda geração oseltamivir e zanamivir. Os últimos, acrescentam alternativas para o tratamento da influenza e ampliam as opções disponíveis para o seu controle.

  5. Influenza

    Directory of Open Access Journals (Sweden)

    Forleo-Neto Eduardo

    2003-01-01

    Full Text Available A influenza (gripe é doença infecciosa aguda de origem viral que acomete o trato respiratório e a cada inverno atinge mais de 100 milhões de pessoas na Europa, Japão e Estados Unidos, causando anualmente a morte de cerca de 20 a 40 mil pessoas somente neste último país. O agente etiológico é o Myxovirus influenzae, ou vírus da gripe. Este subdivide-se nos tipos A, B e C, sendo que apenas os do tipo A e B apresentam relevância clínica em humanos. O vírus influenza apresenta altas taxas de mutação, o que resulta freqüentemente na inserção de novas variantes virais na comunidade, para as quais a população não apresenta imunidade. São poucas as opções disponíveis para o controle da influenza. Dentre essas, a vacinação constitui a forma mais eficaz para o controle da doença e de suas complicações. Em função das mutações que ocorrem naturalmente no vírus influenza, recomenda-se que a vacinação seja realizada anualmente. No Brasil, segundo dados obtidos pelo Projeto VigiGripe - ligado à Universidade Federal de São Paulo -, verifica-se que a influenza apresenta pico de atividade entre os meses de maio e setembro. Assim, a época mais indicada para a vacinação corresponde aos meses de março e abril. Para o tratamento específico da influenza estão disponíveis quatro medicamentos antivirais: os fármacos clássicos amantadina e rimantidina e os antivirais de segunda geração oseltamivir e zanamivir. Os últimos, acrescentam alternativas para o tratamento da influenza e ampliam as opções disponíveis para o seu controle.

  6. Factors that influence VSV-G pseudotyping and transduction efficiency of lentiviral vectors-in vitro and in vivo implications.

    Science.gov (United States)

    Farley, Daniel C; Iqball, Sharifah; Smith, Joanne C; Miskin, James E; Kingsman, Susan M; Mitrophanous, Kyriacos A

    2007-05-01

    Pseudotyping viral vectors with vesicular stomatitis virus glycoprotein (VSV-G) enables the transduction of an extensive range of cell types from different species. We have discovered two important parameters of the VSV-G-pseudotyping phenomenon that relate directly to the transduction potential of lentiviral vectors: (1) the glycosylation status of VSV-G, and (2) the quantity of glycoprotein associated with virions. We measured production-cell and virion-associated quantities of two isoform variants of VSV-G, which differ in their glycosylation status, VSV-G1 and VSV-G2, and assessed the impact of this difference on the efficiency of mammalian cell transduction by lentiviral vectors. The glycosylation of VSV-G at N336 allowed greater maximal expression of VSV-G in HEK293T cells, thus facilitating vector pseudotyping. The transduction of primate cell lines was substantially affected (up to 50-fold) by the degree of VSV-G1 or VSV-G2 incorporation, whereas other cell lines, such as D17 (canine), were less sensitive to virion-associated VSV-G1/2 quantities. These data indicate that the minimum required concentration of virion-associated VSV-G differs substantially between cell species/types. The implications of these data with regard to VSV-G-pseudotyped vector production, titration, and use in host-cell restriction studies, are discussed. Copyright (c) 2007 John Wiley & Sons, Ltd.

  7. Improved Coinfection with Amphotropic Pseudotyped Retroviral Vectors

    Directory of Open Access Journals (Sweden)

    Yuehong Wu

    2009-01-01

    Full Text Available Amphotropic pseudotyped retroviral vectors have typically been used to infect target cells without prior concentration. Although this can yield high rates of infection, higher rates may be needed where highly efficient coinfection of two or more vectors is needed. In this investigation we used amphotropic retroviral vectors produced by the Plat-A cell line and studied coinfection rates using green and red fluorescent proteins (EGFP and dsRed2. Target cells were primary human fibroblasts (PHF and 3T3 cells. Unconcentrated vector preparations produced a coinfection rate of ∼4% (defined as cells that are both red and green as a percentage of all cells infected. Optimized spinoculation, comprising centrifugation at 1200 g for 2 hours at 15∘C, increased the coinfection rate to ∼10%. Concentration by centrifugation at 10,000 g or by flocculation using Polybrene increased the coinfection rate to ∼25%. Combining the two processes, concentration by Polybrene flocculation and optimized spinoculation, increased the coinfection rate to 35% (3T3 or >50% (PHF. Improved coinfection should be valuable in protocols that require high transduction by combinations of two or more retroviral vectors.

  8. Sublingual administration of bacteria-expressed influenza virus hemagglutinin 1 (HA1) induces protection against infection with 2009 pandemic H1N1 influenza virus.

    Science.gov (United States)

    Shim, Byoung-Shik; Choi, Jung-Ah; Song, Ho-Hyun; Park, Sung-Moo; Cheon, In Su; Jang, Ji-Eun; Woo, Sun Je; Cho, Chung Hwan; Song, Min-Suk; Kim, Hyemi; Song, Kyung Joo; Lee, Jae Myun; Kim, Suhng Wook; Song, Dae Sub; Choi, Young Ki; Kim, Jae-Ouk; Nguyen, Huan Huu; Kim, Dong Wook; Bahk, Young Yil; Yun, Cheol-Heui; Song, Man Ki

    2013-02-01

    Influenza viruses are respiratory pathogens that continue to pose a significantly high risk of morbidity and mortality of humans worldwide. Vaccination is one of the most effective strategies for minimizing damages by influenza outbreaks. In addition, rapid development and production of efficient vaccine with convenient administration is required in case of influenza pandemic. In this study, we generated recombinant influenza virus hemagglutinin protein 1 (sHA1) of 2009 pandemic influenza virus as a vaccine candidate using a well-established bacterial expression system and administered it into mice via sublingual (s.l.) route. We found that s.l. immunization with the recombinant sHA1 plus cholera toxin (CT) induced mucosal antibodies as well as systemic antibodies including neutralizing Abs and provided complete protection against infection with pandemic influenza virus A/CA/04/09 (H1N1) in mice. Indeed, the protection efficacy was comparable with that induced by intramuscular (i.m.) immunization route utilized as general administration route of influenza vaccine. These results suggest that s.l. vaccination with the recombinant non-glycosylated HA1 protein offers an alternative strategy to control influenza outbreaks including pandemics.

  9. Pseudotyping exosomes for enhanced protein delivery in mammalian cells.

    Science.gov (United States)

    Meyer, Conary; Losacco, Joseph; Stickney, Zachary; Li, Lingxuan; Marriott, Gerard; Lu, Biao

    2017-01-01

    Exosomes are cell-derived nanovesicles that hold promise as living vehicles for intracellular delivery of therapeutics to mammalian cells. This potential, however, is undermined by the lack of effective methods to load exosomes with therapeutic proteins and to facilitate their uptake by target cells. Here, we demonstrate how a vesicular stomatitis virus glycoprotein (VSVG) can both load protein cargo onto exosomes and increase their delivery ability via a pseudotyping mechanism. By fusing a set of fluorescent and luminescent reporters with VSVG, we show the successful targeting and incorporation of VSVG fusions into exosomes by gene transfection and fluorescence tracking. We subsequently validate our system by live cell imaging of VSVG and its participation in endosomes/exosomes that are ultimately released from transfected HEK293 cells. We show that VSVG pseudotyping of exosomes does not affect the size or distributions of the exosomes, and both the full-length VSVG and the VSVG without the ectodomain are shown to integrate into the exosomal membrane, suggesting that the ectodomain is not required for protein loading. Finally, exosomes pseudotyped with full-length VSVG are internalized by multiple-recipient cell types to a greater degree compared to exosomes loaded with VSVG without the ectodomain, confirming a role of the ectodomain in cell tropism. In summary, our work introduces a new genetically encoded pseudotyping platform to load and enhance the intracellular delivery of therapeutic proteins via exosome-based vehicles to target cells.

  10. A DNA vaccine expressing PB1 protein of influenza A virus protects mice against virus infection.

    Science.gov (United States)

    Košík, Ivan; Krejnusová, Ingrid; Práznovská, Margaréta; Poláková, Katarína; Russ, Gustáv

    2012-05-01

    Although influenza DNA vaccine research has focused mainly on viral hemagglutinin and has led to promising results, other virion proteins have also shown some protective potential. In this work, we explored the potential of a DNA vaccine based on the PB1 protein to protect BALB/c mice against lethal influenza A virus infection. The DNA vaccine consisted of pTriEx4 plasmid expressing PB1. As a positive control, a pTriEx4 plasmid expressing influenza A virus HA was used. Two weeks after three subcutaneous doses of DNA vaccine, the mice were challenged intranasally with 1 LD50 of A/Puerto Rico/8/34 (H1N1) virus, and PB1- and HA-specific antibodies, survival rate, body weight change, viral mRNA load, infectious virus titer in the lungs, cytokines IL-2, IL-4 and IL-10, and granzyme-B were measured. The results showed that (i) the PB1-expressing DNA vaccine provided a fair protective immunity in the mouse model and (ii) viral structural proteins such as PB1 represent promising antigens for DNA vaccination against influenza A.

  11. Constitutively Expressed IFITM3 Protein in Human Endothelial Cells Poses an Early Infection Block to Human Influenza Viruses.

    Science.gov (United States)

    Sun, Xiangjie; Zeng, Hui; Kumar, Amrita; Belser, Jessica A; Maines, Taronna R; Tumpey, Terrence M

    2016-12-15

    A role for pulmonary endothelial cells in the orchestration of cytokine production and leukocyte recruitment during influenza virus infection, leading to severe lung damage, has been recently identified. As the mechanistic pathway for this ability is not fully known, we extended previous studies on influenza virus tropism in cultured human pulmonary endothelial cells. We found that a subset of avian influenza viruses, including potentially pandemic H5N1, H7N9, and H9N2 viruses, could infect human pulmonary endothelial cells (HULEC) with high efficiency compared to human H1N1 or H3N2 viruses. In HULEC, human influenza viruses were capable of binding to host cellular receptors, becoming internalized and initiating hemifusion but failing to uncoat the viral nucleocapsid and to replicate in host nuclei. Unlike numerous cell types, including epithelial cells, we found that pulmonary endothelial cells constitutively express a high level of the restriction protein IFITM3 in endosomal compartments. IFITM3 knockdown by small interfering RNA (siRNA) could partially rescue H1N1 virus infection in HULEC, suggesting IFITM3 proteins were involved in blocking human influenza virus infection in endothelial cells. In contrast, selected avian influenza viruses were able to escape IFITM3 restriction in endothelial cells, possibly by fusing in early endosomes at higher pH or by other, unknown mechanisms. Collectively, our study demonstrates that the human pulmonary endothelium possesses intrinsic immunity to human influenza viruses, in part due to the constitutive expression of IFITM3 proteins. Notably, certain avian influenza viruses have evolved to escape this restriction, possibly contributing to virus-induced pneumonia and severe lung disease in humans. Avian influenza viruses, including H5N1 and H7N9, have been associated with severe respiratory disease and fatal outcomes in humans. Although acute respiratory distress syndrome (ARDS) and progressive pulmonary endothelial damage

  12. Inhibition of influenza A virus matrix and nonstructural gene expression using RNA interference.

    Science.gov (United States)

    McMillen, Cynthia M; Beezhold, Donald H; Blachere, Francoise M; Othumpangat, Sreekumar; Kashon, Michael L; Noti, John D

    2016-10-01

    Influenza antiviral drugs that use protein inhibitors can lose their efficacy as resistant strains emerge. As an alternative strategy, we investigated the use of small interfering RNA molecules (siRNAs) by characterizing three siRNAs (M747, M776 and M832) targeting the influenza matrix 2 gene and three (NS570, NS595 and NS615) targeting the nonstructural protein 1 and 2 genes. We also re-examined two previously reported siRNAs, M331 and M950, which target the matrix 1 and 2 genes. Treatment with M331-, M776-, M832-, and M950-siRNAs attenuated influenza titer. M776-siRNA treated cells had 29.8% less infectious virus than cells treated with the previously characterized siRNA, M950. NS570-, NS595- and NS615-siRNAs reduced nonstructural protein 1 and 2 expression and enhanced type I interferon expression by 50%. Combination siRNA treatment attenuated 20.9% more infectious virus than single siRNA treatment. Our results suggest a potential use for these siRNAs as an effective anti-influenza virus therapy. Published by Elsevier Inc.

  13. Genome Wide Host Gene Expression Analysis in Chicken Lungs Infected with Avian Influenza Viruses.

    Directory of Open Access Journals (Sweden)

    Pradip B Ranaware

    Full Text Available The molecular pathogenesis of avian influenza infection varies greatly with individual bird species and virus strain. The molecular pathogenesis of the highly pathogenic avian influenza virus (HPAIV or the low pathogenic avian influenza virus (LPAIV infection in avian species remains poorly understood. Thus, global immune response of chickens infected with HPAI H5N1 (A/duck/India/02CA10/2011 and LPAI H9N2 (A/duck/India/249800/2010 viruses was studied using microarray to identify crucial host genetic components responsive to these infection. HPAI H5N1 virus induced excessive expression of type I IFNs (IFNA and IFNG, cytokines (IL1B, IL18, IL22, IL13, and IL12B, chemokines (CCL4, CCL19, CCL10, and CX3CL1 and IFN stimulated genes (OASL, MX1, RSAD2, IFITM5, IFIT5, GBP 1, and EIF2AK in lung tissues. This dysregulation of host innate immune genes may be the critical determinant of the severity and the outcome of the influenza infection in chickens. In contrast, the expression levels of most of these genes was not induced in the lungs of LPAI H9N2 virus infected chickens. This study indicated the relationship between host immune genes and their roles in pathogenesis of HPAIV infection in chickens.

  14. Expression of the hemagglutinin HA1 subunit of the equine influenza virus using a baculovirus expression system.

    Science.gov (United States)

    Sguazza, Guillermo H; Fuentealba, Nadia A; Tizzano, Marco A; Galosi, Cecilia M; Pecoraro, Marcelo R

    2013-01-01

    Equine influenza virus is a leading cause of respiratory disease in horses worldwide. Disease prevention is by vaccination with inactivated whole virus vaccines. Most current influenza vaccines are generated in embryonated hens' eggs. Virions are harvested from allantoic fluid and chemically inactivated. Although this system has served well over the years, the use of eggs as the substrate for vaccine production has several well-recognized disadvantages (cost, egg supply, waste disposal and yield in eggs). The aim of this study was to evaluate a baculovirus system as a potential method for producing recombinant equine influenza hemagglutinin to be used as a vaccine. The hemagglutinin ectodomain (HA1 subunit) was cloned and expressed using a baculovirus expression vector. The expression was determined by SDS-PAGE and immunoblotting. A high yield, 20μg/ml of viral protein, was obtained from recombinant baculovirus-infected cells. The immune response in BALB/c mice was examined following rHA1 inoculation. Preliminary results show that recombinant hemagglutinin expressed from baculovirus elicits a strong antibody response in mice; therefore it could be used as an antigen for subunit vaccines and diagnostic tests. Copyright © 2013 Asociación Argentina de Microbiología. Publicado por Elsevier España. All rights reserved.

  15. A generic system for the expression and purification of soluble and stable influenza neuraminidase.

    Directory of Open Access Journals (Sweden)

    Peter M Schmidt

    Full Text Available The influenza surface glycoprotein neuraminidase (NA is essential for the efficient spread of the virus. Antiviral drugs such as Tamiflu (oseltamivir and Relenza (zanamivir that inhibit NA enzyme activity have been shown to be effective in the treatment of influenza infections. The recent 'swine flu' pandemic and world-wide emergence of Tamiflu-resistant seasonal human influenza A(H1N1 H(274Y have highlighted the need for the ongoing development of new anti-virals, efficient production of vaccine proteins and novel diagnostic tools. Each of these goals could benefit from the production of large quantities of highly pure and stable NA. This publication describes a generic expression system for NAs in a baculovirus Expression Vector System (BEVS that is capable of expressing milligram amounts of recombinant NA. To construct NAs with increased stability, the natural influenza NA stalk was replaced by two different artificial tetramerization domains that drive the formation of catalytically active NA homotetramers: GCN4-pLI from yeast or the Tetrabrachion tetramerization domain from Staphylothermus marinus. Both recombinant NAs are secreted as FLAG-tagged proteins to allow for rapid and simple purification. The Tetrabrachion-based NA showed good solubility, increased stability and biochemical properties closer to the original viral NA than the GCN4-pLI based construct. The expressed quantities and high quality of the purified recombinant NA suggest that this expression system is capable of producing recombinant NA for a broad range of applications including high-throughput drug screening, protein crystallisation, or vaccine development.

  16. A Recombinant Antibody-Expressing Influenza Virus Delays Tumor Growth in a Mouse Model

    Directory of Open Access Journals (Sweden)

    Jennifer R. Hamilton

    2018-01-01

    Full Text Available Influenza A virus (IAV has shown promise as an oncolytic agent. To improve IAV as an oncolytic virus, we sought to design a transgenic virus expressing an immune checkpoint-inhibiting antibody during the viral life cycle. To test whether it was possible to express an antibody during infection, an influenza virus was constructed encoding the heavy chain of an antibody on the PB1 segment and the light chain of an antibody on the PA segment. This antibody-expressing IAV grows to high titers, and the antibodies secreted from infected cells exhibit comparable functionality with hybridoma-produced antibodies. To enhance the anti-cancer activity of IAV, an influenza virus was engineered to express a single-chain antibody antagonizing the immune checkpoint CTLA4 (IAV-CTLA4. In mice implanted with the aggressive B16-F10 melanoma, intratumoral injection with IAV-CTLA4 delayed the growth of treated tumors, mediated an abscopal effect, and increased overall survival.

  17. Endogenous expression of proteases in colon cancer cells facilitate influenza A viruses mediated oncolysis.

    Science.gov (United States)

    Sturlan, Sanda; Stremitzer, Stefan; Bauman, Suzann; Sachet, Monika; Wolschek, Markus; Ruthsatz, Tanja; Egorov, Andrej; Bergmann, Michael

    2010-09-15

    Previously we have developed a prototype for conditionally replicating oncolytic influenza A virus which is based on deletions in the non-structural (NS1) protein. Multi-cycle replication of influenza A virus in malignant tissue is critically dependent on a protease which cleaves the viral entry protein. Here we demonstrate that the malignant colon cancer cell lines Caco-2, HT-29 and SW-620 can endogenously provide a virus-activating protease, which allows lytic multi-cycle replication of NS1 deletion viruses in those cancer cells in vitro. The oncolytic potency of an influenza NS1 deletion virus (NS1-80) was further tested in SCID mice bearing HT-29 derived tumors. The intra-tumoral injection of live, but not of heat inactivated NS1-80 virus significantly inhibited progression of established tumors. We conclude that a selected set of human cancer expressing virus activating- proteases will be a preferred target for oncolytic tumor therapy using influenza A virus mutants.

  18. RIG-I Signaling Is Essential for Influenza B Virus-Induced Rapid Interferon Gene Expression

    OpenAIRE

    Sanna M Mäkelä; Österlund, Pamela; Westenius, Veera; Latvala, Sinikka; Diamond, Michael S.; Gale, Michael; Julkunen, Ilkka

    2015-01-01

    Influenza B virus causes annual epidemics and, along with influenza A virus, accounts for substantial disease and economic burden throughout the world. Influenza B virus infects only humans and some marine mammals and is not responsible for pandemics, possibly due to a very low frequency of reassortment and a lower evolutionary rate than that of influenza A virus. Influenza B virus has been less studied than influenza A virus, and thus, a comparison of influenza A and B virus infection mechan...

  19. Cigarette smoke inhibits BAFF expression and mucosal immunoglobulin A responses in the lung during influenza virus infection.

    Science.gov (United States)

    Wang, Jianmiao; Li, Qinghai; Xie, Jungang; Xu, Yongjian

    2015-03-14

    It is incompletely understood how cigarette smoke (CS) exposure affects lung mucosal immune responses during viral respiratory infections. B cell activating factor belonging to the tumor necrosis factor family (BAFF) plays an important role in the induction of secretory immunoglobulin A (S-IgA) which is the main effector of the mucosal immune system. We therefore investigated the effects of CS exposure on BAFF expression and S-IgA responses in the lung during influenza virus infection. Mice were exposed to CS and/or infected with influenza virus. Bronchoalveolar lavage fluid and lung compartments were analyzed for BAFF expression, influenza-specific S-IgA level and histological changes. Lung B cells were isolated and the activation-induced cytidine deaminase (Aicda) expression was determined. BEAS-2B cells were treated with CS extract (CSE), influenza virus, interferon beta or N-acetylcysteine and BAFF expression was measured. CS inhibited BAFF expression in the lung, particularly after long-term exposure. BAFF and S-IgA levels were increased during influenza virus infection. Three-month CS exposure prior to influenza virus infection resulted in reduced BAFF and S-IgA levels in the lung as well as augmented pulmonary inflammation on day 7 after infection. Prior CS exposure also caused decreased Aicda expression in lung B cells during infection. Neutralization of BAFF in the lung resulted in reduced S-IgA levels during influenza virus infection. CSE inhibited virus-mediated BAFF induction in a dose-dependent manner in BEAS-2B cells, while this inhibition of BAFF by CSE was prevented by pretreatment with the antioxidant N-acetylcysteine. Our findings indicate that CS may hinder early mucosal IgA responses in the lung during influenza virus infection through oxidative inhibition of BAFF, which might contribute to the increased incidence and severity of viral infections in smokers.

  20. Lemna (duckweed) expressed hemagglutinin from avian influenza H5N1 protects chickens against H5N1 high pathogenicity avian influenza virus challenge

    Science.gov (United States)

    In the last two decades, transgenic plants have been explored as safe and cost effective alternative expression platforms for producing recombinant proteins. In this study, a synthetic hemagglutinin (HA) gene from the high pathogenicity avian influenza (HPAI) virus A/chicken/Indonesia/7/2003 (H5N1)...

  1. Dynamic gene expression analysis in a H1N1 influenza virus mouse pneumonia model.

    Science.gov (United States)

    Bao, Yanyan; Gao, Yingjie; Shi, Yujing; Cui, Xiaolan

    2017-06-01

    H1N1, a major pathogenic subtype of influenza A virus, causes a respiratory infection in humans and livestock that can range from a mild infection to more severe pneumonia associated with acute respiratory distress syndrome. Understanding the dynamic changes in the genome and the related functional changes induced by H1N1 influenza virus infection is essential to elucidating the pathogenesis of this virus and thereby determining strategies to prevent future outbreaks. In this study, we filtered the significantly expressed genes in mouse pneumonia using mRNA microarray analysis. Using STC analysis, seven significant gene clusters were revealed, and using STC-GO analysis, we explored the significant functions of these seven gene clusters. The results revealed GOs related to H1N1 virus-induced inflammatory and immune functions, including innate immune response, inflammatory response, specific immune response, and cellular response to interferon-beta. Furthermore, the dynamic regulation relationships of the key genes in mouse pneumonia were revealed by dynamic gene network analysis, and the most important genes were filtered, including Dhx58, Cxcl10, Cxcl11, Zbp1, Ifit1, Ifih1, Trim25, Mx2, Oas2, Cd274, Irgm1, and Irf7. These results suggested that during mouse pneumonia, changes in the expression of gene clusters and the complex interactions among genes lead to significant changes in function. Dynamic gene expression analysis revealed key genes that performed important functions. These results are a prelude to advancements in mouse H1N1 influenza virus infection biology, as well as the use of mice as a model organism for human H1N1 influenza virus infection studies.

  2. DNA microarray global gene expression analysis of influenza virus-infected chicken and duck cells

    Directory of Open Access Journals (Sweden)

    Suresh V. Kuchipudi

    2015-06-01

    Full Text Available The data described in this article pertain to the article by Kuchipudi et al. (2014 titled “Highly Pathogenic Avian Influenza Virus Infection in Chickens But Not Ducks Is Associated with Elevated Host Immune and Pro-inflammatory Responses” [1]. While infection of chickens with highly pathogenic avian influenza (HPAI H5N1 virus subtypes often leads to 100% mortality within 1 to 2 days, infection of ducks in contrast causes mild or no clinical signs. The rapid onset of fatal disease in chickens, but with no evidence of severe clinical symptoms in ducks, suggests underlying differences in their innate immune mechanisms. We used Chicken Genechip microarrays (Affymetrix to analyse the gene expression profiles of primary chicken and duck lung cells infected with a low pathogenic avian influenza (LPAI H2N3 virus and two HPAI H5N1 virus subtypes to understand the molecular basis of host susceptibility and resistance in chickens and ducks. Here, we described the experimental design, quality control and analysis that were performed on the data set. The data are publicly available through the Gene Expression Omnibus (GEOdatabase with accession number GSE33389, and the analysis and interpretation of these data are included in Kuchipudi et al. (2014 [1].

  3. Human, Pig, and Mouse Interferon-Induced Transmembrane Proteins Partially Restrict Pseudotyped Lentiviral Vectors.

    Science.gov (United States)

    Hornick, Andrew L; Li, Ni; Oakland, Mayumi; McCray, Paul B; Sinn, Patrick L

    2016-05-01

    Lentiviral vectors are increasingly used in clinical trials to treat genetic diseases. Our research has focused on strategies to improve lentiviral gene transfer efficiency in the airways. Previously we demonstrated that a feline immunodeficiency virus (FIV)-based lentiviral vector pseudotyped with the baculovirus envelope glycoprotein GP64 (GP64-FIV) efficiently transduced mouse nasal epithelia in vivo but transduced mouse intrapulmonary airways with 10-fold less efficiency. Here, we demonstrate that members of a family of proteins with antiviral activity, interferon-induced transmembrane proteins (IFITMs), are more highly expressed in mouse intrapulmonary airways as compared with mouse nasal airways. Using GP64- and VSV-G (vesicular stomatitis virus G glycoprotein)-pseudotyped FIV, we show that expression of mouse IFITM1, IFITM2, and IFITM3 restricts gene transfer. Further, we show that both the nasal and intrapulmonary airways of IFITM locus knockout mice are more efficiently transduced with GP64-FIV than their heterozygous littermates. In anticipation of transitioning our studies into pig models of airway disease and clinical trials in humans, we investigated the ability of pig and human IFITMs to restrict lentiviral gene transfer. We observed that both human and pig IFITMs partially restricted both VSV-G-FIV and GP64-FIV transduction in vitro. Previous studies have focused on IFITM-mediated restriction of replication-competent wild-type viruses; however, these results implicate the IFITM proteins as restriction factors that can limit lentivirus-based vector gene transfer to airway epithelia. The findings are relevant to future preclinical and clinical airway gene therapy trials using lentivirus-based vectors.

  4. A Functional Henipavirus Envelope Glycoprotein Pseudotyped Lentivirus Assay System

    Directory of Open Access Journals (Sweden)

    Broder Christopher C

    2010-11-01

    Full Text Available Abstract Background Hendra virus (HeV and Nipah virus (NiV are newly emerged zoonotic paramyxoviruses discovered during outbreaks in Queensland, Australia in 1994 and peninsular Malaysia in 1998/9 respectively and classified within the new Henipavirus genus. Both viruses can infect a broad range of mammalian species causing severe and often-lethal disease in humans and animals, and repeated outbreaks continue to occur. Extensive laboratory studies on the host cell infection stage of HeV and NiV and the roles of their envelope glycoproteins have been hampered by their highly pathogenic nature and restriction to biosafety level-4 (BSL-4 containment. To circumvent this problem, we have developed a henipavirus envelope glycoprotein pseudotyped lentivirus assay system using either a luciferase gene or green fluorescent protein (GFP gene encoding human immunodeficiency virus type-1 (HIV-1 genome in conjunction with the HeV and NiV fusion (F and attachment (G glycoproteins. Results Functional retrovirus particles pseudotyped with henipavirus F and G glycoproteins displayed proper target cell tropism and entry and infection was dependent on the presence of the HeV and NiV receptors ephrinB2 or B3 on target cells. The functional specificity of the assay was confirmed by the lack of reporter-gene signals when particles bearing either only the F or only G glycoprotein were prepared and assayed. Virus entry could be specifically blocked when infection was carried out in the presence of a fusion inhibiting C-terminal heptad (HR-2 peptide, a well-characterized, cross-reactive, neutralizing human mAb specific for the henipavirus G glycoprotein, and soluble ephrinB2 and B3 receptors. In addition, the utility of the assay was also demonstrated by an examination of the influence of the cytoplasmic tail of F in its fusion activity and incorporation into pseudotyped virus particles by generating and testing a panel of truncation mutants of NiV and HeV F

  5. Two novel adeno-associated viruses from cynomolgus monkey: pseudotyping characterization of capsid protein.

    Science.gov (United States)

    Mori, Seiichiro; Wang, Lina; Takeuchi, Takamasa; Kanda, Tadahito

    2004-12-20

    We demonstrated the presence of two adeno-associated viruses (AAVs), designated AAV10 and AAV11, in cynomolgus monkeys by isolating and sequencing the entire viral coding regions from the monkey DNA. AAV10 and AAV11 capsid proteins shared 84% and 65%, respectively, of amino acids with AAV2. A phylogenetic analysis of AAV capsid proteins showed that AAV10 and AAV11 resembled most AAV8 and AAV4, respectively. To characterize the capsid protein, we pseudotyped an AAV2 vector with the monkey AAV capsid proteins and examined the resulting pseudotypes AAV2/10 and AAV2/11, in comparison with the AAV2 vector, for their host ranges in cell lines and tissue tropism in mice. AAV2/10 and AAV2/11 transduced primate cells less efficiently than AAV2. Whereas AAV2 transduced undifferentiated C2C12 mouse myoblasts more efficiently than differentiated ones, AAV2/10 and AAV2/11 transduced the undifferentiated myoblasts less efficiently than differentiated ones. Three weeks after injection to the muscle of the hind legs, AAV2/10 and AAV2 induced transgene expression similarly, but AAV2/11 did not transduce the skeletal muscle. Six weeks after systemic administration, transduced vector DNA was detected by PCR in the liver and spleen of mice inoculated with AAV2, in the liver, heart, muscle, lung, kidney, and uterus of mice with AAV2/10, and the muscle, kidney, spleen, lung, heart, and stomach of mice with AAV2/11. Mouse antisera against capsid protein VP2 of the three AAVs neutralized the respective vector particles in a type-specific manner. The results indicate that AAV10 and AAV11 capsid proteins, which are antigenically distinct from each other and AAV2, are likely to determine their host ranges and tissue tropism that are different from AAV2s, suggesting that cynomolgus AAVs could provide a broader choice of pseudotype AAV vectors for gene therapy.

  6. Transduction of pancreatic islets with pseudotyped adeno-associated virus: effect of viral capsid and genome conversion.

    Science.gov (United States)

    Zhang, Nan; Clément, Nathalie; Chen, Dongmei; Fu, Shuang; Zhang, Haojiang; Rebollo, Patricia; Linden, R Michael; Bromberg, Jonathan S

    2005-09-15

    Recombinant adeno-associated viral (rAAV) vectors currently show promise for islet gene therapy. In the presence of complementing AAV2 Rep proteins, AAV2 genomes can be packaged with other serotype capsids to assemble infectious virions. During transduction, the ssDNA to dsDNA conversion is one of the major rate-limiting steps that contribute to the slow onset of transgene expression. Using pseudotyping strategy, we produced double-stranded (dsAAV) and single-stranded (ssAAV) rAAV2 genomes carrying the GFP reporter gene packaged into AAV1, AAV2, and AAV5 capsids. The ability of cross-packaged AAV1, AAV2, and AAV5 at the same genome containing particle (gcp) concentration to transduce murine and human pancreatic islets was evaluated by GFP positive cell percentage. Transgenic expression was also determined by transplant transduced human islet into SCID mice. Pseudotyped rAAV2/1 based vectors transduced murine islets at greater efficiency than either rAAV2/2 or rAAV2/5 vectors. For human islets transduction, the rAAV2/2 vector was more efficient than rAAV2/1 or rAAV2/5 vectors. rAAV2/2 transduced human islets more efficiently than murine islets, while rAAV2/1 transducted murine islets more efficiently than human islets. dsAAV, which do not require second strand synthesis and thus are potentially more efficient, evidenced 5 fold higher transduction ability than ssAAV vectors. Pseudotyped rAAV transduced islet grafts maintained normal function, expressed transgenic product persistently in vivo, and reversed diabetes. The transduction efficiency of rAAV vectors was dependent on the cross-packaged capsid. The vector capsids permit species-specific transduction. For human islets, dsAAV2/2 vectors may be the most efficient vector for clinical development.

  7. Enhanced immunosurveillance for animal morbilliviruses using vesicular stomatitis virus (VSV) pseudotypes.

    Science.gov (United States)

    Logan, Nicola; Dundon, William G; Diallo, Adama; Baron, Michael D; James Nyarobi, M; Cleaveland, Sarah; Keyyu, Julius; Fyumagwa, Robert; Hosie, Margaret J; Willett, Brian J

    2016-11-11

    The measurement of virus-specific neutralising antibodies represents the "gold-standard" for diagnostic serology. For animal morbilliviruses, such as peste des petits ruminants (PPRV) or rinderpest virus (RPV), live virus-based neutralisation tests require high-level biocontainment to prevent the accidental escape of the infectious agents. In this study, we describe the adaptation of a replication-defective vesicular stomatitis virus (VSVΔG) based pseudotyping system for the measurement of neutralising antibodies against animal morbilliviruses. By expressing the haemagglutinin (H) and fusion (F) proteins of PPRV on VSVΔG pseudotypes bearing a luciferase marker gene, neutralising antibody titres could be measured rapidly and with high sensitivity. Serological responses against the four distinct lineages of PPRV could be measured simultaneously and cross-neutralising responses against other morbilliviruses compared. Using this approach, we observed that titres of neutralising antibodies induced by vaccination with live attenuated PPRV were lower than those induced by wild type virus infection and the level of cross-lineage neutralisation varied between vaccinates. By comparing neutralising responses from animals infected with either PPRV or RPV, we found that responses were highest against the homologous virus, indicating that retrospective analyses of serum samples could be used to confirm the nature of the original pathogen to which an animal had been exposed. Accordingly, when screening sera from domestic livestock and wild ruminants in Tanzania, we detected evidence of cross-species infection with PPRV, canine distemper virus (CDV) and a RPV-related bovine morbillivirus, suggesting that exposure to animal morbilliviruses may be more widespread than indicated previously using existing diagnostic techniques. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Expression and purification of native and functional influenza A virus matrix 2 proton selective ion channel.

    Science.gov (United States)

    Desuzinges Mandon, Elodie; Traversier, Aurélien; Champagne, Anne; Benier, Lorraine; Audebert, Stéphane; Balme, Sébastien; Dejean, Emmanuel; Rosa Calatrava, Manuel; Jawhari, Anass

    2017-03-01

    Influenza A virus displays one of the highest infection rates of all human viruses and therefore represents a severe human health threat associated with an important economical challenge. Influenza matrix protein 2 (M2) is a membrane protein of the viral envelope that forms a proton selective ion channel. Here we report the expression and native isolation of full length active M2 without mutations or fusions. The ability of the influenza virus to efficiently infect MDCK cells was used to express native M2 protein. Using a Calixarene detergents/surfactants based approach; we were able to solubilize most of M2 from the plasma membrane and purify it. The tetrameric form of native M2 was maintained during the protein preparation. Mass spectrometry shows that M2 was phosphorylated in its cytoplasmic tail (serine 64) and newly identifies an acetylation of the highly conserved Lysine 60. ELISA shows that solubilized and purified M2 was specifically recognized by M2 antibody MAB65 and was able to displace the antibody from M2 MDCK membranes. Using a bilayer voltage clamp measurement assay, we demonstrate a pH dependent proton selective ion channel activity. The addition of the M2 ion channel blocker amantadine allows a total inhibition of the channel activity, illustrating therefore the specificity of purified M2 activity. Taken together, this work shows the production and isolation of a tetrameric and functional native M2 ion channel that will pave the way to structural and functional characterization of native M2, conformational antibody development, small molecules compounds screening towards vaccine treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Assessment of HIV-1 entry inhibitors by MLV/HIV-1 pseudotyped vectors

    Directory of Open Access Journals (Sweden)

    Thaler Sonja

    2005-09-01

    Full Text Available Abstract Background Murine leukemia virus (MLV vector particles can be pseudotyped with a truncated variant of the human immunodeficiency virus type 1 (HIV-1 envelope protein (Env and selectively target gene transfer to human cells expressing both CD4 and an appropriate co-receptor. Vector transduction mimics the HIV-1 entry process and is therefore a safe tool to study HIV-1 entry. Results Using FLY cells, which express the MLV gag and pol genes, we generated stable producer cell lines that express the HIV-1 envelope gene and a retroviral vector genome encoding the green fluorescent protein (GFP. The BH10 or 89.6 P HIV-1 Env was expressed from a bicistronic vector which allowed the rapid selection of stable cell lines. A codon-usage-optimized synthetic env gene permitted high, Rev-independent Env expression. Vectors generated by these producer cells displayed different sensitivity to entry inhibitors. Conclusion These data illustrate that MLV/HIV-1 vectors are a valuable screening system for entry inhibitors or neutralizing antisera generated by vaccines.

  10. Adenovirus hexon modifications influence in vitro properties of pseudotyped human adenovirus type 5 vectors.

    Science.gov (United States)

    Solanki, Manish; Zhang, Wenli; Jing, Liu; Ehrhardt, Anja

    2016-01-01

    Commonly used human adenovirus (HAdV)-5-based vectors are restricted by their tropism and pre-existing immunity. Here, we characterized novel HAdV-5 vectors pseudotyped with hypervariable regions (HVRs) and surface domains (SDs) of other HAdV types. Hexon-modified HAdV-5 vectors (HV-HVR5, HV-HVR12, HV-SD12 and HV-SD4) could be reconstituted and amplified in human embryonic kidney cells. After infection of various cell lines, we measured transgene expression levels by performing luciferase reporter assays or coagulation factor IX (FIX) ELISA. Dose-dependent studies revealed that luciferase expression levels were comparable for HV-HVR5, HV-SD12 and HV-SD4, whereas HV-HVR12 expression levels were significantly lower. Vector genome copy numbers (VCNs) from genomic DNA and nuclear extracts were then determined by quantitative real-time PCR. Surprisingly, determination of cell- and nuclear fraction-associated VCNs revealed increased VCNs for HV-HVR12 compared with HV-SD12 and HV-HVR5. Increased nuclear fraction-associated HV-HVR12 DNA molecules and decreased transgene expression levels were independent of the cell line used, and we observed the same effect for a hexon-modified high-capacity adenoviral vector encoding canine FIX. In conclusion, studying hexon-modified adenoviruses in vitro demonstrated that HVRs but also flanking hexon regions influence uptake and transgene expression of adenoviral vectors.

  11. In vivo gene marking of rhesus macaque long-term repopulating hematopoietic cells using a VSV-G pseudotyped versus amphotropic oncoretroviral vector.

    Science.gov (United States)

    Shi, Patricia A; De Angioletti, Maria; Donahue, Robert E; Notaro, Rosario; Luzzatto, Lucio; Dunbar, Cynthia E

    2004-04-01

    Gene transfer efficiency into primitive hematopoietic cells may be limited by their expression of surface receptors allowing vector entry. Vectors pseudotyped with the vesicular stomatitis virus (VSV-G) envelope do not need receptors to enter cells, and therefore may provide superior transduction efficiency. Using a competitive repopulation model in the rhesus macaque, we examined in vivo gene marking levels of blood cells transduced with two vectors: (i) a VSV-G pseudotyped retrovirus and (ii) a conventional amphotropic retrovirus. The VSV-G vector, containing the human glucose-6-phosphate dehydrogenase (G6PD) gene, was constructed for treatment of severe hemolytic anemia caused by G6PD deficiency. Three myeloablated animals were transplanted with peripheral blood CD34+ cells, half of which were transduced with the VSV-G vector and the other half with the amphotropic vector. In all animals post-transplantation, levels of in vivo marking in circulating granulocytes and mononuclear cells were similar: 1% or less with both vectors. In one animal, the human G6PD enzyme transferred by the VSV-G vector was expressed in erythrocytes, early after transplantation, at a level of 45% of the endogenous rhesus G6PD protein. In a clinically relevant animal model, we found similar in vivo marking with a VSV-G pseudotyped and a standard amphotropic oncoretroviral vector. Amphotropic receptor expression may not be a limiting factor in transduction efficiency, but VSV-G pseudotypes possess other practical advantages that may make them advantageous for clinical use. Copyright 2004 John Wiley & Sons, Ltd.

  12. Self-Amplifying mRNA Vaccines Expressing Multiple Conserved Influenza Antigens Confer Protection against Homologous and Heterosubtypic Viral Challenge

    Science.gov (United States)

    Magini, Diletta; Giovani, Cinzia; Mangiavacchi, Simona; Maccari, Silvia; Cecchi, Raffaella; Ulmer, Jeffrey B.; De Gregorio, Ennio; Geall, Andrew J.; Brazzoli, Michela; Bertholet, Sylvie

    2016-01-01

    Current hemagglutinin (HA)-based seasonal influenza vaccines induce vaccine strain-specific neutralizing antibodies that usually fail to provide protection against mismatched circulating viruses. Inclusion in the vaccine of highly conserved internal proteins such as the nucleoprotein (NP) and the matrix protein 1 (M1) was shown previously to increase vaccine efficacy by eliciting cross-reactive T-cells. However, appropriate delivery systems are required for efficient priming of T-cell responses. In this study, we demonstrated that administration of novel self-amplifying mRNA (SAM®) vectors expressing influenza NP (SAM(NP)), M1 (SAM(M1)), and NP and M1 (SAM(M1-NP)) delivered with lipid nanoparticles (LNP) induced robust polyfunctional CD4 T helper 1 cells, while NP-containing SAM also induced cytotoxic CD8 T cells. Robust expansions of central memory (TCM) and effector memory (TEM) CD4 and CD8 T cells were also measured. An enhanced recruitment of NP-specific cytotoxic CD8 T cells was observed in the lungs of SAM(NP)-immunized mice after influenza infection that paralleled with reduced lung viral titers and pathology, and increased survival after homologous and heterosubtypic influenza challenge. Finally, we demonstrated for the first time that the co-administration of RNA (SAM(M1-NP)) and protein (monovalent inactivated influenza vaccine (MIIV)) was feasible, induced simultaneously NP-, M1- and HA-specific T cells and HA-specific neutralizing antibodies, and enhanced MIIV efficacy against a heterologous challenge. In conclusion, systemic administration of SAM vectors expressing conserved internal influenza antigens induced protective immune responses in mice, supporting the SAM® platform as another promising strategy for the development of broad-spectrum universal influenza vaccines. PMID:27525409

  13. Self-Amplifying mRNA Vaccines Expressing Multiple Conserved Influenza Antigens Confer Protection against Homologous and Heterosubtypic Viral Challenge.

    Directory of Open Access Journals (Sweden)

    Diletta Magini

    Full Text Available Current hemagglutinin (HA-based seasonal influenza vaccines induce vaccine strain-specific neutralizing antibodies that usually fail to provide protection against mismatched circulating viruses. Inclusion in the vaccine of highly conserved internal proteins such as the nucleoprotein (NP and the matrix protein 1 (M1 was shown previously to increase vaccine efficacy by eliciting cross-reactive T-cells. However, appropriate delivery systems are required for efficient priming of T-cell responses. In this study, we demonstrated that administration of novel self-amplifying mRNA (SAM® vectors expressing influenza NP (SAM(NP, M1 (SAM(M1, and NP and M1 (SAM(M1-NP delivered with lipid nanoparticles (LNP induced robust polyfunctional CD4 T helper 1 cells, while NP-containing SAM also induced cytotoxic CD8 T cells. Robust expansions of central memory (TCM and effector memory (TEM CD4 and CD8 T cells were also measured. An enhanced recruitment of NP-specific cytotoxic CD8 T cells was observed in the lungs of SAM(NP-immunized mice after influenza infection that paralleled with reduced lung viral titers and pathology, and increased survival after homologous and heterosubtypic influenza challenge. Finally, we demonstrated for the first time that the co-administration of RNA (SAM(M1-NP and protein (monovalent inactivated influenza vaccine (MIIV was feasible, induced simultaneously NP-, M1- and HA-specific T cells and HA-specific neutralizing antibodies, and enhanced MIIV efficacy against a heterologous challenge. In conclusion, systemic administration of SAM vectors expressing conserved internal influenza antigens induced protective immune responses in mice, supporting the SAM® platform as another promising strategy for the development of broad-spectrum universal influenza vaccines.

  14. Expression of innate immune genes, proteins and microRNAs in lung tissue of pigs infected experimentally with influenza virus (H1N2)

    DEFF Research Database (Denmark)

    Skovgaard, Kerstin; Cirera, Susanna; Vasby, Ditte

    2013-01-01

    This study aimed at providing a better understanding of the involvement of innate immune factors, including miRNA, in the local host response to influenza virus infection. Twenty pigs were challenged by influenza A virus subtype H1N2. Expression of microRNA (miRNA), mRNA and proteins were...... results suggest that, in addition to a wide range of innate immune factors, miRNAs may also be involved in controlling acute influenza infection in pigs....

  15. Efficient generation of vesicular stomatitis virus (VSV)-pseudotypes bearing morbilliviral glycoproteins and their use in quantifying virus neutralising antibodies.

    Science.gov (United States)

    Logan, Nicola; McMonagle, Elizabeth; Drew, Angharad A; Takahashi, Emi; McDonald, Michael; Baron, Michael D; Gilbert, Martin; Cleaveland, Sarah; Haydon, Daniel T; Hosie, Margaret J; Willett, Brian J

    2016-02-03

    Morbillivirus neutralising antibodies are traditionally measured using either plaque reduction neutralisation tests (PRNTs) or live virus microneutralisation tests (micro-NTs). While both test formats provide a reliable assessment of the strength and specificity of the humoral response, they are restricted by the limited number of viral strains that can be studied and often present significant biological safety concerns to the operator. In this study, we describe the adaptation of a replication-defective vesicular stomatitis virus (VSVΔG) based pseudotyping system for the measurement of morbillivirus neutralising antibodies. By expressing the haemagglutinin (H) and fusion (F) proteins of canine distemper virus (CDV) on VSVΔG pseudotypes bearing a luciferase marker gene, neutralising antibody titres could be measured rapidly and with high sensitivity. Further, by exchanging the glycoprotein expression construct, responses against distinct viral strains or species may be measured. Using this technique, we demonstrate cross neutralisation between CDV and peste des petits ruminants virus (PPRV). As an example of the value of the technique, we demonstrate that UK dogs vary in the breadth of immunity induced by CDV vaccination; in some dogs the neutralising response is CDV-specific while, in others, the neutralising response extends to the ruminant morbillivirus PPRV. This technique will facilitate a comprehensive comparison of cross-neutralisation to be conducted across the morbilliviruses. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Adeno-associated virus pseudotype 5 vector improves gene transfer in arthritic joints.

    Science.gov (United States)

    Apparailly, F; Khoury, M; Vervoordeldonk, M J B; Adriaansen, J; Gicquel, E; Perez, N; Riviere, C; Louis-Plence, P; Noel, D; Danos, O; Douar, A-M; Tak, P P; Jorgensen, C

    2005-04-01

    The potential for gene delivery to joints, using recombinant adeno-associated virus (rAAV) vectors for the treatment of rheumatoid arthritis (RA), has received much attention. Different serotypes have different virion shell proteins and, as a consequence, vary in their tropism for diverse tissues. The aim of this study was to compare the transduction efficiency of different AAV serotypes encoding murine secreted alkaline phosphatase (mSEAP) or Escherichia coli beta-galactosidase for intraarticular gene delivery in an experimental model of arthritis. The vectors contained AAV2 terminal repeats flanking the reporter gene in an AAV1, AAV2, or AAV5 capsid, producing the pseudotypes rAAV-2/1, rAAV-2/2, and rAAV-2/5. Left knee joints of mice with collagen-induced arthritis were injected and transgene expression was analyzed by chemiluminescence or direct in situ staining of frozen sections. We show for the first time that intraarticular gene transfer with AAV- 2/5 was far more efficient than with the other serotypes tested. Transgene expression was detectable as early as 7 days after injection, reached a maximum at 21 days, and was stably expressed for at least 130 days, whereas AAV-2/1- and AAV-2/2-mediated expression levels were barely detectable. These findings provide a practical application for future local AAV-mediated gene therapy trials in RA.

  17. Analysis of VSV pseudotype virus infection mediated by rubella virus envelope proteins

    National Research Council Canada - National Science Library

    Masafumi Sakata; Hideki Tani; Masaki Anraku; Michiyo Kataoka; Noriyo Nagata; Fumio Seki; Maino Tahara; Noriyuki Otsuki; Kiyoko Okamoto; Makoto Takeda; Yoshio Mori

    2017-01-01

    .... To establish an infection the host cells must be susceptible and permissible. To assess the susceptibility of individual cell lines, we generated a pseudotype vesicular stomatitis virus bearing RV envelope proteins (VSV-RV/CE2E1...

  18. Neutralization epitopes on HIV pseudotyped with HTLV-I: conservation of carbohydrate epitopes

    DEFF Research Database (Denmark)

    Sørensen, A M; Nielsen, C; Arendrup, M

    1994-01-01

    One mechanism for expanding the cellular tropism of human immunodeficiency virus (HIV) in vitro is through formation of phenotypically mixed particles (pseudotypes) with human T lymphotropic virus type I (HTLV-I). In this study we found that pseudotypes allow penetration of HIV particles into CD4...... for pseudotypes to escape neutralization by the immune system in vivo. Previous reports have suggested that carbohydrate structures may be conserved neutralization epitopes on retroviruses. In this study, the neutralizing capacity of lectins and anti-carbohydrate monoclonal antibodies was found to block infection...... by cell-free pseudotypes in CD4-negative cells. We suggest that although viral cofactors might expand the tropism of HIV in vivo, HIV and HTLV-I seem to induce common carbohydrate neutralization epitopes....

  19. Neutralization epitopes on HIV pseudotyped with HTLV-I: Conservation of carbohydrate Epitopes

    DEFF Research Database (Denmark)

    Sørensen, A M; Nielsen, C; Arendrup, M

    1994-01-01

    One mechanism for expanding the cellular tropism of human immunodeficiency virus (HIV) in vitro is through formation of phenotypically mixed particles (pseudotypes) with human T lymphotropic virus type I (HTLV-I). In this study we found that pseudotypes allow penetration of HIV particles into CD4...... for pseudotypes to escape neutralization by the immune system in vivo. Previous reports have suggested that carbohydrate structures may be conserved neutralization epitopes on retroviruses. In this study, the neutralizing capacity of lectins and anti-carbohydrate monoclonal antibodies was found to block infection...... by cell-free pseudotypes in CD4-negative cells. We suggest that although viral cofactors might expand the tropism of HIV in vivo, HIV and HTLV-I seem to induce common carbohydrate neutralization epitopes....

  20. Transcription factor regulation and cytokine expression following in vitro infection of primary chicken cell culture with low pathogenic avian influenza virus

    Science.gov (United States)

    Avian influenza virus (AIV) induced proinflammatory cytokine expression is believed to contribute to the disease pathogenesis following infection. However, there is limited information on the avian immune response to infection with low pathogenic avian influenza virus (LPAIV). To gain a better under...

  1. Expression of innate immune genes, proteins and microRNAs in lung tissue and leukocytes of pigs infected with influenza virus

    DEFF Research Database (Denmark)

    Skovgaard, Kerstin; Cirera, Susanna; Vasby, Ditte

    This study aimed at providing a better understanding of the involvement of innate immune factors including microRNA (miRNA) in the local and systemic host response to influenza virus infection. Twenty pigs were challenged by influenza A virus subtype H1N2. Expression of miRNA, mRNA and proteins w...

  2. Expression and Purification of Haemophilus influenzae Rhomboid Intramembrane Protease GlpG for Structural Studies.

    Science.gov (United States)

    Panwar, Pankaj; Lemieux, M Joanne

    2014-04-01

    Rhomboid proteases are membrane-embedded proteases that cleave peptide bonds of transmembrane proteins. They play a variety of roles in cell signaling events. The rhomboid protease GlpG from Haemophilus influenzae (hiGlpG) is a canonical form of rhomboid protease having six transmembrane segments. In this unit, detailed protocols are presented for optimization of hiGlpG expression using the araBAD promotor system in the pBAD vector. The parameters for optimization include concentration of inducing agent, induction temperature, and time. Optimization of these key factors led to the development of a protocol yielding 1.6 to 2.5 mg/liter protein purified after ion metal affinity chromatography (IMAC). Further purification can include size exclusion chromatography (SEC). Copyright © 2014 John Wiley & Sons, Inc.

  3. Cholesterol Supplementation During Production Increases the Infectivity of Retroviral and Lentiviral Vectors Pseudotyped with the Vesicular Stomatitis Virus Glycoprotein (VSV-G).

    Science.gov (United States)

    Chen, Yong; Ott, Christopher J; Townsend, Kay; Subbaiah, Papasani; Aiyar, Ashok; Miller, William M

    2009-05-15

    Cholesterol, a major component of plasma membrane lipid rafts, is important for assembly and budding of enveloped viruses, including influenza and HIV-1. Cholesterol depletion impairs virus assembly and infectivity. This study examined the effects of exogenous cholesterol addition (delivered as a complex with methyl beta cyclodextrin) on the production of Molony murine leukemia virus retroviral vector and HIV-1-based lentiviral vector pseudotyped with the vesicular stomatitis virus glycoprotein (VSV-G). Cholesterol supplementation before and during vector production enhanced the infectivity of retroviral and lentiviral vectors up to 4-fold and 6-fold, respectively. In contrast, the amount of retroviral vector produced was unchanged, and that of lentiviral vector was increased less than two-fold. Both free cholesterol and cholesterol ester content in 293-gag-pol producer cells increased with cholesterol addition. In contrast, the phospholipids headgroup composition was essentially unchanged by cholesterol supplementation in 293-gag-pol packaging cells. Based on these results, it is proposed that cholesterol supplementation increases the infectivity of VSV-G-pseudotyped retroviral and lentiviral vectors, possibly by altering the composition of the producer cell membrane where the viral vectors are assembled and bud, and/or by changing the lipid composition of the viral vectors.

  4. Nontypeable Haemophilus influenzae induces sustained lung oxidative stress and protease expression.

    Directory of Open Access Journals (Sweden)

    Paul T King

    Full Text Available Nontypeable Haemophilus influenzae (NTHi is a prevalent bacterium found in a variety of chronic respiratory diseases. The role of this bacterium in the pathogenesis of lung inflammation is not well defined. In this study we examined the effect of NTHi on two important lung inflammatory processes 1, oxidative stress and 2, protease expression. Bronchoalveolar macrophages were obtained from 121 human subjects, blood neutrophils from 15 subjects, and human-lung fibroblast and epithelial cell lines from 16 subjects. Cells were stimulated with NTHi to measure the effect on reactive oxygen species (ROS production and extracellular trap formation. We also measured the production of the oxidant, 3-nitrotyrosine (3-NT in the lungs of mice infected with this bacterium. NTHi induced widespread production of 3-NT in mouse lungs. This bacterium induced significantly increased ROS production in human fibroblasts, epithelial cells, macrophages and neutrophils; with the highest levels in the phagocytic cells. In human macrophages NTHi caused a sustained, extracellular production of ROS that increased over time. The production of ROS was associated with the formation of macrophage extracellular trap-like structures which co-expressed the protease metalloproteinase-12. The formation of the macrophage extracellular trap-like structures was markedly inhibited by the addition of DNase. In this study we have demonstrated that NTHi induces lung oxidative stress with macrophage extracellular trap formation and associated protease expression. DNase inhibited the formation of extracellular traps.

  5. Interleukin 37 expression in mice alters sleep responses to inflammatory agents and influenza virus infection

    Directory of Open Access Journals (Sweden)

    Christopher J. Davis

    2017-06-01

    Full Text Available Multiple interactions between the immune system and sleep are known, including the effects of microbial challenge on sleep or the effects of sleep loss on facets of the immune response. Cytokines regulate, in part, sleep and immune responses. Here we examine the role of an anti-inflammatory cytokine, interleukin-37 (IL-37 on sleep in a mouse strain that expresses human IL-37b (IL37tg mice. Constitutive expression of the IL-37 gene in the brains of these mice under resting conditions is low; however, upon an inflammatory stimulus, expression increases dramatically. We measured sleep in three conditions; (a under baseline conditions and after 6 h of sleep loss, (b after bolus intraperitoneal administration of lipopolysaccharide (LPS or IL-1β and (c after intranasal influenza virus challenge. Under baseline conditions, the IL37tg mice had 7% more spontaneous non-rapid eye movement sleep (NREMS during the light period than wild-type (WT mice. After sleep deprivation both WT mice and IL37tg mice slept an extra 21% and 12%, respectively, during the first 6 h of recovery. NREMS responses after sleep deprivation did not significantly differ between WT mice and IL37tg mice. However, in response to either IL-1β or LPS, the increases in time spent in NREMS were about four-fold greater in the WT mice than in the IL37tg mice. In contrast, in response to a low dose of mouse-adapted H1N1 influenza virus, sleep responses developed slowly over the 6 day recording period. By day 6, NREMS increased by 10% and REMS increased by 18% in the IL37tg mice compared to the WT mice. Further, by day 4 IL37tg mice lost less weight, remained more active, and retained their body temperatures closer to baseline values than WT mice. We conclude that conditions that promote IL-37 expression attenuate morbidity to severe inflammatory challenge.

  6. Production in yeast of pseudotype virus-like particles harboring functionally active antibody fragments neutralizing the cytolytic activity of vaginolysin

    Directory of Open Access Journals (Sweden)

    Pleckaityte Milda

    2011-12-01

    Full Text Available Abstract Background Recombinant antibodies can be produced in different formats and different expression systems. Single chain variable fragments (scFvs represent an attractive alternative to full-length antibodies and they can be easily produced in bacteria or yeast. However, the scFvs exhibit monovalent antigen-binding properties and short serum half-lives. The stability and avidity of the scFvs can be improved by their multimerization or fusion with IgG Fc domain. The aim of the current study was to investigate the possibilities to produce in yeast high-affinity scFv-Fc proteins neutralizing the cytolytic activity of vaginolysin (VLY, the main virulence factor of Gardnerella vaginalis. Results The scFv protein derived from hybridoma cell line producing high-affinity neutralizing antibodies against VLY was fused with human IgG1 Fc domain. Four different variants of anti-VLY scFv-Fc fusion proteins were constructed and produced in yeast Saccharomyces cerevisiae. The non-tagged scFv-Fc and hexahistidine-tagged scFv-Fc proteins were found predominantly as insoluble aggregates and therefore were not suitable for further purification and activity testing. The addition of yeast α-factor signal sequence did not support secretion of anti-VLY scFv-Fc but increased the amount of its intracellular soluble form. However, the purified protein showed a weak VLY-neutralizing capability. In contrast, the fusion of anti-VLY scFv-Fc molecules with hamster polyomavirus-derived VP2 protein and its co-expression with VP1 protein resulted in an effective production of pseudotype virus-like particles (VLPs that exhibited strong VLY-binding activity. Recombinant scFv-Fc molecules displayed on the surface of VLPs neutralized VLY-mediated lysis of human erythrocytes and HeLa cells with high potency comparable to that of full-length antibody. Conclusions Recombinant scFv-Fc proteins were expressed in yeast with low efficiency. New approach to display the sc

  7. Novel Bivalent Viral-Vectored Vaccines Induce Potent Humoral and Cellular Immune Responses Conferring Protection against Stringent Influenza A Virus Challenge.

    Science.gov (United States)

    Tully, Claire M; Chinnakannan, Senthil; Mullarkey, Caitlin E; Ulaszewska, Marta; Ferrara, Francesca; Temperton, Nigel; Gilbert, Sarah C; Lambe, Teresa

    2017-07-19

    Seasonal influenza viruses are a common cause of acute respiratory illness worldwide and generate a significant socioeconomic burden. Influenza viruses mutate rapidly, necessitating annual vaccine reformulation because traditional vaccines do not typically induce broad-spectrum immunity. In addition to seasonal infections, emerging pandemic influenza viruses present a continued threat to global public health. Pandemic influenza viruses have consistently higher attack rates and are typically associated with greater mortality compared with seasonal strains. Ongoing strategies to improve vaccine efficacy typically focus on providing broad-spectrum immunity; although B and T cells can mediate heterosubtypic responses, typical vaccine development will augment either humoral or cellular immunity. However, multipronged approaches that target several Ags may limit the generation of viral escape mutants. There are few vaccine platforms that can deliver multiple Ags and generate robust cellular and humoral immunity. In this article, we describe a novel vaccination strategy, tested preclinically in mice, for the delivery of novel bivalent viral-vectored vaccines. We show this strategy elicits potent T cell responses toward highly conserved internal Ags while simultaneously inducing high levels of Abs toward hemagglutinin. Importantly, these humoral responses generate long-lived plasma cells and generate Abs capable of neutralizing variant hemagglutinin-expressing pseudotyped lentiviruses. Significantly, these novel viral-vectored vaccines induce strong immune responses capable of conferring protection in a stringent influenza A virus challenge. Thus, this vaccination regimen induces lasting efficacy toward influenza. Importantly, the simultaneous delivery of dual Ags may alleviate the selective pressure that is thought to potentiate antigenic diversity in avian influenza viruses. Copyright © 2017 by The American Association of Immunologists, Inc.

  8. Development of a neutralization assay for Nipah virus using pseudotype particles.

    Science.gov (United States)

    Tamin, Azaibi; Harcourt, Brian H; Lo, Michael K; Roth, James A; Wolf, Mike C; Lee, Benhur; Weingartl, Hana; Audonnet, Jean-Christophe; Bellini, William J; Rota, Paul A

    2009-09-01

    Nipah virus (NiV) and Hendra virus (HeV) are zoonotic paramyxoviruses capable of causing severe disease in humans and animals. These viruses require biosafety level 4 (BSL-4) containment. Like other paramyxoviruses, the plaque reduction neutralization test (PRNT) can be used to detect antibodies to the surface glycoproteins, fusion (F) and attachment (G), and PRNT titers give an indication of protective immunity. Unfortunately, for NiV and HeV, the PRNT must be performed in BSL-4 containment and takes several days to complete. Thus, we have developed a neutralization assay using VSV pseudotype particles expressing the F and G proteins of NiV (pVSV-NiV-F/G) as target antigens. This rapid assay, which can be performed at BSL-2, was evaluated using serum samples from outbreak investigations and more than 300 serum samples from an experimental NiV vaccination study in swine. The results of the neutralization assays with pVSV-NiV-F/G as antigen showed a good correlation with those of standard PRNT. Therefore, this new method has the potential to be a rapid and cost-effective diagnostic method, especially in locations that lack high containment facilities, and will provide a valuable tool for basic research and vaccine development.

  9. Aging-dependent alterations in gene expression and a mitochondrial signature of responsiveness to human influenza vaccination.

    Science.gov (United States)

    Thakar, Juilee; Mohanty, Subhasis; West, A Phillip; Joshi, Samit R; Ueda, Ikuyo; Wilson, Jean; Meng, Hailong; Blevins, Tamara P; Tsang, Sui; Trentalange, Mark; Siconolfi, Barbara; Park, Koonam; Gill, Thomas M; Belshe, Robert B; Kaech, Susan M; Shadel, Gerald S; Kleinstein, Steven H; Shaw, Albert C

    2015-01-01

    To elucidate gene expression pathways underlying age-associated impairment in influenza vaccine response, we screened young (age 21-30) and older (age≥65) adults receiving influenza vaccine in two consecutive seasons and identified those with strong or absent response to vaccine, including a subset of older adults meeting criteria for frailty. PBMCs obtained prior to vaccination (Day 0) and at day 2 or 4, day 7 and day 28 post-vaccine were subjected to gene expression microarray analysis. We defined a response signature and also detected induction of a type I interferon response at day 2 and a plasma cell signature at day 7 post-vaccine in young responders. The response signature was dysregulated in older adults, with the plasma cell signature induced at day 2, and was never induced in frail subjects (who were all non-responders). We also identified a mitochondrial signature in young vaccine responders containing genes mediating mitochondrial biogenesis and oxidative phosphorylation that was consistent in two different vaccine seasons and verified by analyses of mitochondrial content and protein expression. These results represent the first genome-wide transcriptional profiling analysis of age-associated dynamics following influenza vaccination, and implicate changes in mitochondrial biogenesis and function as a critical factor in human vaccine responsiveness.

  10. Lack of PD-L1 expression by iNKT cells improves the course of influenza A infection.

    Directory of Open Access Journals (Sweden)

    Hadi Maazi

    Full Text Available There is evidence indicating that invariant Natural Killer T (iNKT cells play an important role in defense against influenza A virus (IAV. However, the effect of inhibitory receptor, programmed death-1 (PD-1, and its ligands, programmed death ligand (PD-L 1 and 2 on iNKT cells in protection against IAV remains to be elucidated. Here we investigated the effects of these co-stimulatory molecules on iNKT cells in the response to influenza. We discovered that compare to the wild type, PD-L1 deficient mice show reduced sensitivity to IAV infection as evident by reduced weight loss, decreased pulmonary inflammation and cellular infiltration. In contrast, PD-L2 deficient mice showed augmented weight loss, pulmonary inflammation and cellular infiltration compare to the wild type mice after influenza infection. Adoptive transfer of iNKT cells from wild type, PD-L1 or PD-L2 deficient mice into iNKT cell deficient mice recapitulated these findings. Interestingly, in our transfer system PD-L1(-/--derived iNKT cells produced high levels of interferon-gamma whereas PD-L2(-/--derived iNKT cells produced high amounts of interleukin-4 and 13 suggesting a role for these cytokines in sensitivity to influenza. We identified that PD-L1 negatively regulates the frequency of iNKT cell subsets in the lungs of IAV infected mice. Altogether, these results demonstrate that lack of PD-L1 expression by iNKT cells reduces the sensitivity to IAV and that the presence of PD-L2 is important for dampening the deleterious inflammatory responses after IAV infection. Our findings potentially have clinical implications for developing new therapies for influenza.

  11. Broad protection against avian influenza virus by using a modified vaccinia Ankara virus expressing a mosaic hemagglutinin gene.

    Science.gov (United States)

    Kamlangdee, Attapon; Kingstad-Bakke, Brock; Anderson, Tavis K; Goldberg, Tony L; Osorio, Jorge E

    2014-11-01

    A critical failure in our preparedness for an influenza pandemic is the lack of a universal vaccine. Influenza virus strains diverge by 1 to 2% per year, and commercially available vaccines often do not elicit protection from one year to the next, necessitating frequent formulation changes. This represents a major challenge to the development of a cross-protective vaccine that can protect against circulating viral antigenic diversity. We have constructed a recombinant modified vaccinia virus Ankara (MVA) that expresses an H5N1 mosaic hemagglutinin (H5M) (MVA-H5M). This mosaic was generated in silico using 2,145 field-sourced H5N1 isolates. A single dose of MVA-H5M provided 100% protection in mice against clade 0, 1, and 2 avian influenza viruses and also protected against seasonal H1N1 virus (A/Puerto Rico/8/34). It also provided short-term (10 days) and long-term (6 months) protection postvaccination. Both neutralizing antibodies and antigen-specific CD4(+) and CD8(+) T cells were still detected at 5 months postvaccination, suggesting that MVA-H5M provides long-lasting immunity. Influenza viruses infect a billion people and cause up to 500,000 deaths every year. A major problem in combating influenza is the lack of broadly effective vaccines. One solution from the field of human immunodeficiency virus vaccinology involves a novel in silico mosaic approach that has been shown to provide broad and robust protection against highly variable viruses. Unlike a consensus algorithm which picks the most frequent residue at each position, the mosaic method chooses the most frequent T-cell epitopes and combines them to form a synthetic antigen. These studies demonstrated that a mosaic influenza virus H5 hemagglutinin expressed by a viral vector can elicit full protection against diverse H5N1 challenges as well as induce broader immunity than a wild-type hemagglutinin. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  12. Effect of 1918 PB1-F2 expression on influenza A virus infection kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Ruy [Los Alamos National Laboratory; Perelson, Alan S [Los Alamos National Laboratory; Smith, Amber M [UNIV OF UTAH; Adler, Frederick R [UNIV OF UTAH; Mcauley, Julie L [ST. JUDES CHILDREN RESEARCH; Mccullers, Jonathan A [ST. JUDES CHILDREN RESEARCH

    2009-01-01

    Relatively little is known about the viral factors contributing to the lethality of the 1918 pandemic, although its unparalleled virulence was likely due in part to the newly discovered PB1-F2 protein. This protein, while unnecessary for replication, increases apoptosis in monocytes, alters viral polymerase activity in vitro, and produces enhanced inflammation and increased secondary pneumonia in vivo. However, the effects the PB1-F2 protein have in vivo remain unclear. To address the mechanisms involved, we intranasally infected groups of mice with either influenza A virus PR8 or a genetically engineered virus that expresses the 1918 PB1-F2 protein on a PR8 background, PR8-PB1-F2(1918). Mice inoculated with PR8 had viral concentrations peaking at 72 hours, while those infected with PR8-PB1-F2(1918) reached peak concentrations earlier, 48 hours. Mice given PR8-PB1-F2(1918) also showed a faster decline in viral loads. We fit a mathematical model to these data to estimate parameter values and select the best model. This model supports a lower viral clearance rate and higher infected cell death rate with the PR8-PB1-F2(1918) virus, although the viral production rate may also be higher. We hypothesize that the higher PR8-PB1-F2(1918) viral titers early in an infection are due to both an increase in viral production with decreased viral clearance, and that the faster decline in the later stages of infection result from elevated cell death rates. We discuss the implications these mechanisms have during an infection with a virus expressing a virulent PBI-F2 on the possibility of a pandemic and on the importance of antiviral treatments.

  13. Expression of microRNAs and innate immune factor genes in lung tissue of pigs infected with influenza virus (H1N2)

    DEFF Research Database (Denmark)

    Skovgaard, Kerstin; Cirera, S.; Vasby, D.

    Swine influenza is a highly infectious respiratory disease in pigs caused by influenza A virus. Activation of a frontline of pattern-recognition receptors (PRRs) expressed by epithelial cells as well as immune cells of the upper respiratory tract, leads to a potent type 1 interferon (IFN) release...... A infection. The present work aimed of providing a better understanding of the involvement of innate immune factors including miRNA in the host response to establishment and progression of influenza virus infection. Twenty pigs were challenged by aerosol containing H1N2 (A/swine/Denmark/12687/03) influenza...... and simultaneous proinflammatory cytokine expression. A transient induction of cytokines is required for an efficient antiviral defence; however, an over-reactive and prolonged inflammatory response may lead to excessive infiltration of immune cells, contributing to immunopathology of the infected lung. Thus...

  14. Molecular Cloning, Expression and Purification of Truncated hpd Fragment of Haemophilus influenzae in Escherichia coli

    OpenAIRE

    Behrouzi, Ava; Bouzari, Saeid; Siadat, Seyed Davar; Jafari, Anis; Irani, Shiva

    2015-01-01

    Background: Nontypeable Haemophilus influenzae (NTHi) is a significant pathogen in children, causing otitis media, sinusitis, conjunctivitis, pneumonia, and occasionally invasive infections. Protein D (PD) belongs to the minor outer-membrane proteins of H. influenza. Moreover, it has been shown that this protein is one of the most potent vaccine candidates against the NTHi strain. Objectives: In the present study, a new truncated form of PD was designed based on conserved areas, and recombina...

  15. Vectors based on modified vaccinia Ankara expressing influenza H5N1 hemagglutinin induce substantial cross-clade protective immunity.

    Directory of Open Access Journals (Sweden)

    Annett Hessel

    Full Text Available BACKGROUND: New highly pathogenic H5N1 influenza viruses are continuing to evolve with a potential threat for an influenza pandemic. So far, the H5N1 influenza viruses have not widely circulated in humans and therefore constitute a high risk for the non immune population. The aim of this study was to evaluate the cross-protective potential of the hemagglutinins of five H5N1 strains of divergent clades using a live attenuated modified vaccinia Ankara (MVA vector vaccine. METHODOLOGY/PRINCIPAL FINDINGS: The replication-deficient MVA virus was used to express influenza hemagglutinin (HA proteins. Specifically, recombinant MVA viruses expressing the HA genes of the clade 1 virus A/Vietnam/1203/2004 (VN/1203, the clade 2.1.3 virus A/Indonesia/5/2005 (IN5/05, the clade 2.2 viruses A/turkey/Turkey/1/2005 (TT01/05 and A/chicken/Egypt/3/2006 (CE/06, and the clade 2.3.4 virus A/Anhui/1/2005 (AH1/05 were constructed. These experimental live vaccines were assessed in a lethal mouse model. Mice vaccinated with the VN/1203 hemagglutinin-expressing MVA induced excellent protection against all the above mentioned clades. Also mice vaccinated with the IN5/05 HA expressing MVA induced substantial protection against homologous and heterologous AH1/05 challenge. After vaccination with the CE/06 HA expressing MVA, mice were fully protected against clade 2.2 challenge and partially protected against challenge of other clades. Mice vaccinated with AH1/05 HA expressing MVA vectors were only partially protected against homologous and heterologous challenge. The live vaccines induced substantial amounts of neutralizing antibodies, mainly directed against the homologous challenge virus, and high levels of HA-specific IFN-γ secreting CD4 and CD8 T-cells against epitopes conserved among the H5 clades and subclades. CONCLUSIONS/SIGNIFICANCE: The highest level of cross-protection was induced by the HA derived from the VN/1203 strain, suggesting that pandemic H5 vaccines

  16. RNAseq expression analysis of resistant and susceptible mice after influenza A virus infection identifies novel genes associated with virus replication and important for host resistance to infection.

    Science.gov (United States)

    Wilk, Esther; Pandey, Ashutosh K; Leist, Sarah Rebecca; Hatesuer, Bastian; Preusse, Matthias; Pommerenke, Claudia; Wang, Junxi; Schughart, Klaus

    2015-09-02

    The host response to influenza A infections is strongly influenced by host genetic factors. Animal models of genetically diverse mouse strains are well suited to identify host genes involved in severe pathology, viral replication and immune responses. Here, we have utilized a dual RNAseq approach that allowed us to investigate both viral and host gene expression in the same individual mouse after H1N1 infection. We performed a detailed expression analysis to identify (i) correlations between changes in expression of host and virus genes, (ii) host genes involved in viral replication, and (iii) genes showing differential expression between two mouse strains that strongly differ in resistance to influenza infections. These genes may be key players involved in regulating the differences in pathogenesis and host defense mechanisms after influenza A infections. Expression levels of influenza segments correlated well with the viral load and may thus be used as surrogates for conventional viral load measurements. Furthermore, we investigated the functional role of two genes, Reg3g and Irf7, in knock-out mice and found that deletion of the Irf7 gene renders the host highly susceptible to H1N1 infection. Using RNAseq analysis we identified novel genes important for viral replication or the host defense. This study adds further important knowledge to host-pathogen-interactions and suggests additional candidates that are crucial for host susceptibility or survival during influenza A infections.

  17. A DNA Vaccine That Targets Hemagglutinin to Antigen-Presenting Cells Protects Mice against H7 Influenza.

    Science.gov (United States)

    Andersen, Tor Kristian; Zhou, Fan; Cox, Rebecca; Bogen, Bjarne; Grødeland, Gunnveig

    2017-12-01

    Zoonotic influenza H7 viral infections have a case fatality rate of about 40%. Currently, no or limited human to human spread has occurred, but we may be facing a severe pandemic threat if the virus acquires the ability to transmit between humans. Novel vaccines that can be rapidly produced for global distribution are urgently needed, and DNA vaccines may be the only type of vaccine that allows for the speed necessary to quench an emerging pandemic. Here, we constructed DNA vaccines encoding the hemagglutinin (HA) from influenza A/chicken/Italy/13474/99 (H7N1). In order to increase the efficacy of DNA vaccination, HA was targeted to either major histocompatibility complex class II molecules or chemokine receptors 1, 3, and 5 (CCR1/3/5) that are expressed on antigen-presenting cells (APC). A single DNA vaccination with APC-targeted HA significantly increased antibody levels in sera compared to nontargeted control vaccines. The antibodies were confirmed neutralizing in an H7 pseudotype-based neutralization assay. Furthermore, the APC-targeted vaccines increased the levels of antigen-specific cytotoxic T cells, and a single DNA vaccination could confer protection against a lethal challenge with influenza A/turkey/Italy/3889/1999 (H7N1) in mice. In conclusion, we have developed a vaccine that rapidly could contribute protection against a pandemic threat from avian influenza. IMPORTANCE Highly pathogenic avian influenza H7 constitute a pandemic threat that can cause severe illness and death in infected individuals. Vaccination is the main method of prophylaxis against influenza, but current vaccine strategies fall short in a pandemic situation due to a prolonged production time and insufficient production capabilities. In contrast, a DNA vaccine can be rapidly produced and deployed to prevent the potential escalation of a highly pathogenic influenza pandemic. We here demonstrate that a single DNA delivery of hemagglutinin from an H7 influenza could mediate full

  18. Murine Leukemia Virus (MLV)-based Coronavirus Spike-pseudotyped Particle Production and Infection.

    Science.gov (United States)

    Millet, Jean Kaoru; Whittaker, Gary R

    2016-12-05

    Viral pseudotyped particles (pp) are enveloped virus particles, typically derived from retroviruses or rhabdoviruses, that harbor heterologous envelope glycoproteins on their surface and a genome lacking essential genes. These synthetic viral particles are safer surrogates of native viruses and acquire the tropism and host entry pathway characteristics governed by the heterologous envelope glycoprotein used. They have proven to be very useful tools used in research with many applications, such as enabling the study of entry pathways of enveloped viruses and to generate effective gene-delivery vectors. The basis for their generation lies in the capacity of some viruses, such as murine leukemia virus (MLV), to incorporate envelope glycoproteins of other viruses into a pseudotyped virus particle. These can be engineered to contain reporter genes such as luciferase, enabling quantification of virus entry events upon pseudotyped particle infection with susceptible cells. Here, we detail a protocol enabling generation of MLV-based pseudotyped particles, using the Middle East respiratory syndrome coronavirus (MERS-CoV) spike (S) as an example of a heterologous envelope glycoprotein to be incorporated. We also describe how these particles are used to infect susceptible cells and to perform a quantitative infectivity readout by a luciferase assay.

  19. Pseudotyped Lentiviral Vectors for Retrograde Gene Delivery into Target Brain Regions

    Directory of Open Access Journals (Sweden)

    Kenta Kobayashi

    2017-08-01

    Full Text Available Gene transfer through retrograde axonal transport of viral vectors offers a substantial advantage for analyzing roles of specific neuronal pathways or cell types forming complex neural networks. This genetic approach may also be useful in gene therapy trials by enabling delivery of transgenes into a target brain region distant from the injection site of the vectors. Pseudotyping of a lentiviral vector based on human immunodeficiency virus type 1 (HIV-1 with various fusion envelope glycoproteins composed of different combinations of rabies virus glycoprotein (RV-G and vesicular stomatitis virus glycoprotein (VSV-G enhances the efficiency of retrograde gene transfer in both rodent and nonhuman primate brains. The most recently developed lentiviral vector is a pseudotype with fusion glycoprotein type E (FuG-E, which demonstrates highly efficient retrograde gene transfer in the brain. The FuG-E–pseudotyped vector permits powerful experimental strategies for more precisely investigating the mechanisms underlying various brain functions. It also contributes to the development of new gene therapy approaches for neurodegenerative disorders, such as Parkinson’s disease, by delivering genes required for survival and protection into specific neuronal populations. In this review article, we report the properties of the FuG-E–pseudotyped vector, and we describe the application of the vector to neural circuit analysis and the potential use of the FuG-E vector in gene therapy for Parkinson’s disease.

  20. Pseudotyped Lentiviral Vectors for Retrograde Gene Delivery into Target Brain Regions.

    Science.gov (United States)

    Kobayashi, Kenta; Inoue, Ken-Ichi; Tanabe, Soshi; Kato, Shigeki; Takada, Masahiko; Kobayashi, Kazuto

    2017-01-01

    Gene transfer through retrograde axonal transport of viral vectors offers a substantial advantage for analyzing roles of specific neuronal pathways or cell types forming complex neural networks. This genetic approach may also be useful in gene therapy trials by enabling delivery of transgenes into a target brain region distant from the injection site of the vectors. Pseudotyping of a lentiviral vector based on human immunodeficiency virus type 1 (HIV-1) with various fusion envelope glycoproteins composed of different combinations of rabies virus glycoprotein (RV-G) and vesicular stomatitis virus glycoprotein (VSV-G) enhances the efficiency of retrograde gene transfer in both rodent and nonhuman primate brains. The most recently developed lentiviral vector is a pseudotype with fusion glycoprotein type E (FuG-E), which demonstrates highly efficient retrograde gene transfer in the brain. The FuG-E-pseudotyped vector permits powerful experimental strategies for more precisely investigating the mechanisms underlying various brain functions. It also contributes to the development of new gene therapy approaches for neurodegenerative disorders, such as Parkinson's disease, by delivering genes required for survival and protection into specific neuronal populations. In this review article, we report the properties of the FuG-E-pseudotyped vector, and we describe the application of the vector to neural circuit analysis and the potential use of the FuG-E vector in gene therapy for Parkinson's disease.

  1. Development of an influenza virus vaccine using the baculovirus-insect cell expression system : implications for pandemic preparedness

    NARCIS (Netherlands)

    Cox, M.M.J.

    2009-01-01

    Key word Influenza, rHA, vaccine, baculovirus, insect cells, production, pandemic preparedness Influenza (or flu) is a highly contagious, acute viral respiratory disease that occurs seasonally in most parts of the world and is caused by influenza viruses. Influenza vaccination is an effective

  2. Influenza A virus inhibits type I IFN signaling via NF-kappaB-dependent induction of SOCS-3 expression.

    Directory of Open Access Journals (Sweden)

    Eva-K Pauli

    2008-11-01

    Full Text Available The type I interferon (IFN system is a first line of defense against viral infections. Viruses have developed various mechanisms to counteract this response. So far, the interferon antagonistic activity of influenza A viruses was mainly observed on the level of IFNbeta gene induction via action of the viral non-structural protein 1 (NS1. Here we present data indicating that influenza A viruses not only suppress IFNbeta gene induction but also inhibit type I IFN signaling through a mechanism involving induction of the suppressor of cytokine signaling-3 (SOCS-3 protein. Our study was based on the observation that in cells that were infected with influenza A virus and subsequently stimulated with IFNalpha/beta, phosphorylation of the signal transducer and activator of transcription protein 1 (STAT1 was strongly reduced. This impaired STAT1 activation was not due to the action of viral proteins but rather appeared to be induced by accumulation of viral 5' triphosphate RNA in the cell. SOCS proteins are potent endogenous inhibitors of Janus kinase (JAK/STAT signaling. Closer examination revealed that SOCS-3 but not SOCS-1 mRNA levels increase in an RNA- and nuclear factor kappa B (NF-kappaB-dependent but type I IFN-independent manner early in the viral replication cycle. This direct viral induction of SOCS-3 mRNA and protein expression appears to be relevant for suppression of the antiviral response since in SOCS-3 deficient cells a sustained phosphorylation of STAT1 correlated with elevated expression of type I IFN-dependent genes. As a consequence, progeny virus titers were reduced in SOCS-3 deficient cells or in cells were SOCS-3 expression was knocked-down by siRNA. These data provide the first evidence that influenza A viruses suppress type I IFN signaling on the level of JAK/STAT activation. The inhibitory effect is at least in part due to the induction of SOCS-3 gene expression, which results in an impaired antiviral response.

  3. Regulation of virulence gene expression resulting from Streptococcus pneumoniae and nontypeable Haemophilus influenzae interactions in chronic disease.

    Directory of Open Access Journals (Sweden)

    Emily K Cope

    Full Text Available Chronic rhinosinusitis (CRS is a common inflammatory disease of the sinonasal cavity mediated, in part, by polymicrobial communities of bacteria. Recent molecular studies have confirmed the importance of Streptococcus pneumoniae and nontypeable Haemophilus influenzae (NTHi in CRS. Here, we hypothesize that interaction between S. pneumoniae and NTHi mixed-species communities cause a change in bacterial virulence gene expression. We examined CRS as a model human disease to validate these polymicrobial interactions. Clinical strains of S. pneumoniae and NTHi were grown in mono- and co-culture in a standard biofilm assay. Reverse transcriptase real-time PCR (RTqPCR was used to measure gene expression of key virulence factors. To validate these results, we investigated the presence of the bacterial RNA transcripts in excised human tissue from patients with CRS. Consequences of physical or chemical interactions between microbes were also investigated. Transcription of NTHi type IV pili was only expressed in co-culture in vitro, and expression could be detected ex vivo in diseased tissue. S. pneumoniae pyruvate oxidase was up-regulated in co-culture, while pneumolysin and pneumococcal adherence factor A were down-regulated. These results were confirmed in excised human CRS tissue. Gene expression was differentially regulated by physical contact and secreted factors. Overall, these data suggest that interactions between H. influenzae and S. pneumoniae involve physical and chemical mechanisms that influence virulence gene expression of mixed-species biofilm communities present in chronically diseased human tissue. These results extend previous studies of population-level virulence and provide novel insight into the importance of S. pneumoniae and NTHi in CRS.

  4. Robust immunity and heterologous protection against influenza in mice elicited by a novel recombinant NP-M2e fusion protein expressed in E. coli.

    Directory of Open Access Journals (Sweden)

    Wenling Wang

    Full Text Available BACKGROUND: The 23-amino acid extracellular domain of matrix 2 protein (M2e and the internal nucleoprotein (NP of influenza are highly conserved among viruses and thus are promising candidate antigens for the development of a universal influenza vaccine. Various M2e- or NP-based DNA or viral vector vaccines have been shown to have high immunogenicity; however, high cost, complicated immunization procedures, and vector-specific antibody responses have restricted their applications. Immunization with an NP-M2e fusion protein expressed in Escherichia coli may represent an alternative strategy for the development of a universal influenza vaccine. METHODOLOGY/PRINCIPAL FINDINGS: cDNA encoding M2e was fused to the 3' end of NP cDNA from influenza virus A/Beijing/30/95 (H3N2. The fusion protein (NM2e was expressed in E. coli and isolated with 90% purity. Mice were immunized with recombinant NM2e protein along with aluminum hydroxide gel and/or CpG as adjuvant. NM2e plus aluminum hydroxide gel almost completely protected the mice against a lethal (20 LD(50 challenge of heterologous influenza virus A/PR/8/34. CONCLUSIONS/SIGNIFICANCE: The NM2e fusion protein expressed in E. coli was highly immunogenic in mice. Immunization with NM2e formulated with aluminum hydroxide gel protected mice against a lethal dose of a heterologous influenza virus. Vaccination with recombinant NM2e fusion protein is a promising strategy for the development of a universal influenza vaccine.

  5. Trophic activity of Rabies G protein-pseudotyped equine infectious anemia viral vector mediated IGF-I motor neuron gene transfer in vitro.

    Science.gov (United States)

    Teng, Qingshan; Garrity-Moses, Mary; Federici, Thais; Tanase, Diana; Liu, James K; Mazarakis, Nicholas D; Azzouz, Mimoun; Walmsley, Lucy E; Carlton, Erin; Boulis, Nicholas M

    2005-12-01

    The present study examines gene delivery to cultured motor neurons (MNs) with the Rabies G protein (RabG)-pseudotyped lentiviral equine infectious anemia virus (RabG.EIAV) vector. RabG.EIAV-mediated beta-galactosidase (RabG.EIAV-LacZ) gene expression in cultured MNs plateaus 120 h after infection. The rate and percent of gene expression observed are titer-dependent (P vector (RabG.EIAV-IGF-I) and was shown to induce IGF-I expression in HEK 293 cells. MNs infected with RabG.EIAV-IGF-I demonstrate enhanced survival compared to MNs infected with RabG.EIAV-LacZ virus (P control virus (P motor neuron tropism of RabG.EIAV previously demonstrated in vivo, together with the trophic effects of RabG.EIAV-IGF-I MN gene expression may lend this vector to therapeutic application in motor neuron disease.

  6. A Novel Lactococcal Vaccine Expressing a Peptide from the M2 Antigen of H5N2 Highly Pathogenic Avian Influenza A Virus Prolongs Survival of Vaccinated Chickens

    Directory of Open Access Journals (Sweden)

    Kaleb A. Reese

    2013-01-01

    Full Text Available A cost-effective and efficacious influenza vaccine for use in commercial poultry farms would help protect against avian influenza outbreaks. Current influenza vaccines for poultry are expensive and subtype specific, and therefore there is an urgent need to develop a universal avian influenza vaccine. We have constructed a live bacterial vaccine against avian influenza by expressing a conserved peptide from the ectodomain of M2 antigen (M2e on the surface of Lactococcus lactis (LL. Chickens were vaccinated intranasally with the lactococcal vaccine (LL-M2e or subcutaneously with keyhole-limpet-hemocyanin conjugated M2e (KLH-M2e. Vaccinated and nonvaccinated birds were challenged with high pathogenic avian influenza virus A subtype H5N2. Birds vaccinated with LL-M2e or KLH-M2e had median survival times of 5.5 and 6.0 days, respectively, which were significantly longer than non-vaccinated birds (3.5 days. Birds vaccinated subcutaneously with KLH-M2e had a lower mean viral burden than either of the other two groups. However, there was a significant correlation between the time of survival and M2e-specific serum IgG. The results of these trials show that birds in both vaccinated groups had significantly (P<0.05 higher median survival times than non-vaccinated birds and that this protection could be due to M2e-specific serum IgG.

  7. Single-dose vaccination of a recombinant parainfluenza virus 5 expressing NP from H5N1 virus provides broad immunity against influenza A viruses.

    Science.gov (United States)

    Li, Zhuo; Gabbard, Jon D; Mooney, Alaina; Gao, Xiudan; Chen, Zhenhai; Place, Ryan J; Tompkins, S Mark; He, Biao

    2013-05-01

    Influenza viruses often evade host immunity via antigenic drift and shift despite previous influenza virus infection and/or vaccination. Vaccines that match circulating virus strains are needed for optimal protection. Development of a universal influenza virus vaccine providing broadly cross-protective immunity will be of great importance. The nucleoprotein (NP) of influenza A virus is highly conserved among all strains of influenza A viruses and has been explored as an antigen for developing a universal influenza virus vaccine. In this work, we generated a recombinant parainfluenza virus 5 (PIV5) containing NP from H5N1 (A/Vietnam/1203/2004), a highly pathogenic avian influenza (HPAI) virus, between HN and L (PIV5-NP-HN/L) and tested its efficacy. PIV5-NP-HN/L induced humoral and T cell responses in mice. A single inoculation of PIV5-NP-HN/L provided complete protection against lethal heterosubtypic H1N1 challenge and 50% protection against lethal H5N1 HPAI virus challenge. To improve efficacy, NP was inserted into different locations within the PIV5 genome. Recombinant PIV5 containing NP between F and SH (PIV5-NP-F/SH) or between SH and HN (PIV5-NP-SH/HN) provided better protection against H5N1 HPAI virus challenge than did PIV5-NP-HN/L. These results suggest that PIV5 expressing NP from H5N1 has the potential to be utilized as a universal influenza virus vaccine.

  8. RNA levels of human retrovirus receptors Pit1 and Pit2 do not correlate with infectibility by three retroviral vector pseudotypes

    DEFF Research Database (Denmark)

    Uckert, Wolfgang; Willimsky, Gerald; Pedersen, Finn Skou

    1998-01-01

    cell line it used Pit1 more efficiently for entry. We conclude that (1) Pit1 and Pit2 mRNA levels in human cells are not indicative of the infectibility by GaLV and A-MuLV pseudotypes, respectively; (2) A-MuLV can infect target cells as efficiently as can GaLV, although Pit2 RNA is less abundant than......The gibbon ape leukemia virus (GaLV) and the amphotropic murine leukemia virus (A-MuLV) infect human cells via specific receptors, Pit1 and Pit2, respectively. mRNA levels of these receptors were determined by Northern analysis and for Pit2 in addition by quantitative RT-PCR. Pit1 and Pit2 were...... expressed in different amounts in human tissues and cell lines; Pit1-specific mRNA was generally more abundant than Pit2 mRNA. No correlation was found between Pit1 and Pit2 RNA levels and infectibility by GaLV and A-MuLV pseudotyped vectors, respectively. GaLV and A-MuLV revealed a partial reciprocal...

  9. Cell-cell transmission of VSV-G pseudotyped lentivector particles.

    Science.gov (United States)

    Skinner, Amy M; Chakkaramakkil Verghese, Santhosh; Kurre, Peter

    2013-01-01

    Many replicating viruses, including HIV-1 and HTLV-1, are efficiently transmitted from the cell surface of actively infected cells upon contact with bystander cells. In a previous study, we reported the prolonged cell surface retention of VSV-G replication-deficient pseudotyped lentivector prior to endocytic entry. However, the competing kinetics of cell surface versus dissociation, neutralization or direct transfer to other cells have received comparatively little attention. Here we demonstrate that the relative efficiency of cell-cell surface transmission can outpace "cell-free" transduction at limiting vector input. This coincides with the prolonged half-life of cell bound vector but occurs, unlike HTLV-1, without evidence for particle aggregation. These studies suggest that cell-surface attachment stabilizes particles and alters neutralization kinetics. Our experiments provide novel insight into the underexplored cell-cell transmission of pseudotyped particles.

  10. Cell-cell transmission of VSV-G pseudotyped lentivector particles.

    Directory of Open Access Journals (Sweden)

    Amy M Skinner

    Full Text Available Many replicating viruses, including HIV-1 and HTLV-1, are efficiently transmitted from the cell surface of actively infected cells upon contact with bystander cells. In a previous study, we reported the prolonged cell surface retention of VSV-G replication-deficient pseudotyped lentivector prior to endocytic entry. However, the competing kinetics of cell surface versus dissociation, neutralization or direct transfer to other cells have received comparatively little attention. Here we demonstrate that the relative efficiency of cell-cell surface transmission can outpace "cell-free" transduction at limiting vector input. This coincides with the prolonged half-life of cell bound vector but occurs, unlike HTLV-1, without evidence for particle aggregation. These studies suggest that cell-surface attachment stabilizes particles and alters neutralization kinetics. Our experiments provide novel insight into the underexplored cell-cell transmission of pseudotyped particles.

  11. Complement inhibition enables tumor delivery of LCMV glycoprotein pseudotyped viruses in the presence of antiviral antibodies

    Directory of Open Access Journals (Sweden)

    Laura Evgin

    2016-01-01

    Full Text Available The systemic delivery of therapeutic viruses, such as oncolytic viruses or vaccines, is limited by the generation of neutralizing antibodies. While pseudotyping of rhabdoviruses with the lymphocytic choriomeningitis virus glycoprotein has previously allowed for multiple rounds of delivery in mice, this strategy has not translated to other animal models. For the first time, we provide experimental evidence that antibodies generated against the lymphocytic choriomeningitis virus glycoprotein mediate robust complement-dependent viral neutralization via activation of the classical pathway. We show that this phenotype can be capitalized upon to deliver maraba virus pseudotyped with the lymphocytic choriomeningitis virus glycoprotein in a Fischer rat model in the face of neutralizing antibody through the use of complement modulators. This finding changes the understanding of the humoral immune response to arenaviruses, and also describes methodology to deliver viral vectors to their therapeutic sites of action without the interference of neutralizing antibody.

  12. Expression of H5 hemagglutinin vaccine antigen in common duckweed (Lemna minor) protects against H5N1 high pathogenicity avian influenza virus challenge in immunized chickens

    Science.gov (United States)

    A synthetic hemagglutinin (HA) gene from the highly pathogenic avian influenza (HPAI) virus A/chicken/Indonesia/7/2003 (H5N1) (Indo/03) was expressed in aquatic plant Lemna minor (rLemna-HA). In Experiment 1, efficacy of rLemna-HA was tested on specific pathogen free (SPF) birds immunized with 0.2 ...

  13. Hydrophobin fusion of an influenza virus hemagglutinin allows high transient expression in Nicotiana benthamiana, easy purification and immune response with neutralizing activity.

    Directory of Open Access Journals (Sweden)

    Nicolas Jacquet

    Full Text Available The expression of recombinant hemagglutinin in plants is a promising alternative to the current egg-based production system for the influenza vaccines. Protein-stabilizing fusion partners have been developed to overcome the low production yields and the high downstream process costs associated with the plant expression system. In this context, we tested the fusion of hydrophobin I to the hemagglutinin ectodomain of the influenza A (H1N1pdm09 virus controlled by the hybrid En2PMA4 transcriptional promoter to rapidly produce high levels of recombinant antigen by transient expression in agro-infiltrated Nicotiana benthamiana leaves. The fusion increased the expression level by a factor of ∼ 2.5 compared to the unfused protein allowing a high accumulation level of 8.6% of the total soluble proteins. Hemagglutinin was located in ER-derived protein bodies and was successfully purified by combining an aqueous-two phase partition system and a salting out step. Hydrophobin interactions allowed the formation of high molecular weight hemagglutinin structures, while unfused proteins were produced as monomers. Purified protein was shown to be biologically active and to induce neutralizing antibodies after mice immunization. Hydrophobin fusion to influenza hemagglutinin might therefore be a promising approach for rapid, easy, and low cost production of seasonal or pandemic influenza vaccines in plants.

  14. Co-expression of sialic acid receptors compatible with avian and human influenza virus binding in emus (Dromaius novaehollandiae).

    Science.gov (United States)

    Gujjar, Naveen; Chothe, Shubhada K; Gawai, Shashikant; Nissly, Ruth; Bhushan, Gitanjali; Kanagaraj, Vijayarani; Jayarao, Bhushan M; Kathaperumal, Kumanan; Subbiah, Madhuri; Kuchipudi, Suresh V

    2017-01-01

    Influenza A viruses (IAVs) continue to threaten animal and human health with constant emergence of novel variants. While aquatic birds are a major reservoir of most IAVs, the role of other terrestrial birds in the evolution of IAVs is becoming increasingly evident. Since 2006, several reports of IAV isolations from emus have surfaced and avian influenza infection of emus can lead to the selection of mammalian like PB2-E627K and PB2-D701N mutants. However, the potential of emus to be co-infected with avian and mammalian IAVs is not yet understood. As a first step, we investigated sialic acid (SA) receptor distribution across major organs and body systems of emu and found a widespread co-expression of both SAα2,3Gal and SAα2,6Gal receptors in various tissues that are compatible with avian and human IAV binding. Our results suggest that emus could allow genetic recombination and hence play an important role in the evolution of IAVs. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Expression pattern of NLRP3 and its related cytokines in the lung and brain of avian influenza virus H9N2 infected BALB/c mice.

    Science.gov (United States)

    Yu, Meng; Zhang, Kaizhao; Qi, Wenbao; Huang, Zhiqiang; Ye, Jinhui; Ma, Yongjiang; Liao, Ming; Ning, Zhangyong

    2014-12-30

    H9N2 avian influenza virus (AIV) becomes the focus for its ability of transmission to mammals and as a donor to provide internal genes to form the new epidemic lethal influenza viruses. Residue 627 in PB2 has been proven the virulence factor of H9N2 avian influenza virus in mice, but the detailed data for inflammation difference between H9N2 virus strains with site 627 mutation is still unclear. The inflammasome NLRP3 is recently reported as the cellular machinery responsible for activation of inflammatory processes and plays an important role during the development of inflammation caused by influenza virus infection. In this study, we investigated the expression pattern of NLRP3 and its related cytokines of IL-1β and TNF-α in BALB/c mice infected by H9N2 AIV strains with only a site 627 difference at both mRNA and protein levels at different time points. The results showed that the expression level of NLRP3, IL-1β and TNF-α changed in the lung and brain of BALB/c mice after infection by VK627 and rVK627E. The immunohistological results showed that the positive cells of NLRP3, IL-1β and TNF-α altered the positive levels of original cells in tissues and infiltrated inflammatory cells which caused by H9N2 infection. Our results provided the basic data at differences in expression pattern of NLRP3 and its related cytokines in BALB/c mice infected by H9N2 influenza viruses with only a site 627 difference. This implied that NLRP3 inflammasome plays a role in host response to influenza virus infection and determines the outcome of clinical manifestation and pathological injury. This will explain the variable of pathological presentation in tissues and enhance research on inflammation process of the AIV H9N2 infection.

  16. Pseudotype formation of murine leukemia virus with the G protein of vesicular stomatitis virus.

    OpenAIRE

    Emi, N; Friedmann, T; Yee, J K

    1991-01-01

    Mixed infection of a cell by vesicular stomatitis virus (VSV) and retroviruses results in the production of progeny virions bearing the genome of one virus encapsidated by the envelope proteins of the other. The mechanism for the phenomenon of pseudotype formation is not clear, although specific recognition of a viral envelope protein by the nucleocapsid of an unrelated virus is presumably involved. In this study, we used Moloney murine leukemia virus (MoMLV)-based retroviral vectors encoding...

  17. Effects of selenium supplementation on selenoprotein gene expression and response to influenza vaccine challenge: a randomised controlled trial.

    Directory of Open Access Journals (Sweden)

    Andrew J Goldson

    2011-03-01

    Full Text Available The uncertainty surrounding dietary requirements for selenium (Se is partly due to limitations in biomarkers of Se status that are related to health outcomes. In this study we determined the effect of different doses and forms of Se on gene expression of selenoprotein S (SEPS1, selenoprotein W (SEPW1 and selenoprotein R (SEPR, and responses to an immune function challenge, influenza vaccine, were measured in order to identify functional markers of Se status.A 12 week human dietary intervention study was undertaken in 119 volunteers who received placebo, 50, 100 or 200 µg/day Se-enriched yeast (Se-yeast or meals containing unenriched or Se-enriched onions (50 µg/day. Gene expression was quantified in RNA samples extracted from human peripheral blood mononuclear cells (PBMC's using quantitative RT-PCR. There was a significant increase in SEPW1 mRNA in the Se-enriched onion group (50 µg/day compared with the unenriched onion group. SEPR and SEPW1 did not change significantly over the duration of the supplementation period in the control or Se-yeast groups, except at week 10 when SEPW1 mRNA levels were significantly lower in the 200 µg/day Se-yeast group compared to the placebo group. Levels of SEPS1 mRNA increased significantly 7 days after the influenza vaccine challenge, the magnitude of the increase in SEPS1 gene expression was dose-dependent, with a significantly greater response with higher Se supplementation.This novel finding provides preliminary evidence for a role of SEPS1 in the immune response, and further supports the relationship between Se status and immune function.ClinicalTrials.gov [NCT00279812].

  18. Efficient transduction of equine adipose-derived mesenchymal stem cells by VSV-G pseudotyped lentiviral vectors.

    Science.gov (United States)

    Petersen, Gayle F; Hilbert, Bryan; Trope, Gareth; Kalle, Wouter; Strappe, Padraig

    2014-12-01

    Equine adipose-derived mesenchymal stem cells (EADMSC) provide a unique cell-based approach for treatment of a variety of equine musculoskeletal injuries, via regeneration of diseased or damaged tissue, or the secretion of immunomodulatory molecules. These capabilities can be further enhanced by genetic modification using lentiviral vectors, which provide a safe and efficient method of gene delivery. We investigated the suitability of lentiviral vector technology for gene delivery into EADMSC, using GFP expressing lentiviral vectors pseudotyped with the G glycoprotein from the vesicular stomatitis virus (V-GFP) or, for the first time, the baculovirus gp64 envelope protein (G-GFP). In this study, we produced similarly high titre V-GFP and G-GFP lentiviral vectors. Flow cytometric analysis showed efficient transduction using V-GFP; however G-GFP exhibited a poor ability to transduce EADMSC. Transduction resulted in sustained GFP expression over four passages, with minimal effects on cell viability and doubling time, and an unaltered chondrogenic differentiation potential. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Analyses of Entry Mechanisms of Novel Emerging Viruses Using Pseudotype VSV System.

    Science.gov (United States)

    Tani, Hideki

    2014-06-01

    Emerging infectious diseases include newly identified diseases caused by previously unknown organisms or diseases found in new and expanding geographic areas. Viruses capable of causing clinical disease associated with fever and bleeding are referred to as viral hemorrhagic fevers (VHFs). Arenaviruses and Bunyaviruses, both belonging to families classified as VHFs are considered major etiologies of hemorrhagic fevers caused by emerging viruses; having significant clinical and public health impact. Because these viruses are categorized as Biosafety Level (BSL) 3 and 4 pathogens, restricting their use, biological studies including therapeutic drug and vaccine development have been impeded. Due to these restrictions and the difficulties in handling such live viruses, pseudotype viruses bearing envelope proteins of VHF viruses have been developed using vesicular stomatitis virus (VSV) as a surrogate system. Here, we report the successful developments of two pseudotype VSV systems; bearing the envelope proteins of Lujo virus and severe fever with thrombocytopenia syndrome (SFTS) virus, both recently identified viruses of the family Arenaviridae and Bunyaviridae, respectively. My presentation will summarize the characterization of the envelope proteins of Lujo virus including its cellular receptor use and cell entry mechanisms. In addition, I will also present a brief introduction of SFTS reported in Japan and the diagnostic studies in progress using these newly pseudotype VSV system.

  20. Expression of surface-bound nonstructural 1 (NS1) protein of influenza virus A H5N1 on Lactobacillus casei strain C1.

    Science.gov (United States)

    Tan, T S; Syed Hassan, S; Yap, W B

    2017-06-01

    The study aimed to construct a recombinant Lactobacillus casei expressing the nonstructural (NS) 1 protein of influenza A virus H5N1 on its cell wall. The NS1 gene was first amplified and fused to the pSGANC332 expression plasmid. The NS1 protein expression was carried out by Lact. casei strain C1. PCR screening and DNA sequencing confirmed the presence of recombinant pSG-NS1-ANC332 plasmid in Lact. casei. The plasmid was stably maintained (98·94 ± 1·65%) by the bacterium within the first 20 generations without selective pressure. The NS1 was expressed as a 49-kDa protein in association with the anchoring peptide. The yield was 1·325 ± 0·065 μg mg(-1) of bacterial cells. Lactobacillus casei expressing the NS1 on its cell wall was red-fluorescently stained, but the staining was not observed on Lact. casei carrying the empty pSGANC332. The results implied that Lact. casei strain C1 is a promising host for the expression of surface-bound NS1 protein using the pSGANC332 expression plasmid. The study has demonstrated, for the first time, the expression of nonstructural 1 (NS1) protein of influenza A virus H5N1 on the cell wall of Lactobacillus casei using the pSGANC332 expression plasmid. Display of NS1 protein on the bacterial cell wall was evident under an immunofluorescence microscopic observation. Lactobacillus casei carrying the NS1 protein could be developed into a universal oral influenza vaccine since the NS1 is highly conserved among influenza viruses. © 2017 The Society for Applied Microbiology.

  1. High-Yield Expression of M2e Peptide of Avian Influenza Virus H5N1 in Transgenic Duckweed Plants.

    Science.gov (United States)

    Firsov, Aleksey; Tarasenko, Irina; Mitiouchkina, Tatiana; Ismailova, Natalya; Shaloiko, Lyubov; Vainstein, Alexander; Dolgov, Sergey

    2015-07-01

    Avian influenza is a major viral disease in poultry. Antigenic variation of this virus hinders vaccine development. However, the extracellular domain of the virus-encoded M2 protein (peptide M2e) is nearly invariant in all influenza A strains, enabling the development of a broad-range vaccine against them. Antigen expression in transgenic plants is becoming a popular alternative to classical expression methods. Here we expressed M2e from avian influenza virus A/chicken/Kurgan/5/2005(H5N1) in nuclear-transformed duckweed plants for further development of avian influenza vaccine. The N-terminal fragment of M2, including M2e, was selected for expression. The M2e DNA sequence fused in-frame to the 5' end of β-glucuronidase was cloned into pBI121 under the control of CaMV 35S promoter. The resulting plasmid was successfully used for duckweed transformation, and western analysis with anti-β-glucuronidase and anti-M2e antibodies confirmed accumulation of the target protein (M130) in 17 independent transgenic lines. Quantitative ELISA of crude protein extracts from these lines showed M130-β-glucuronidase accumulation ranging from 0.09-0.97 mg/g FW (0.12-1.96 % of total soluble protein), equivalent to yields of up to 40 μg M2e/g plant FW. This relatively high yield holds promise for the development of a duckweed-based expression system to produce an edible vaccine against avian influenza.

  2. VSV-G pseudotyped, MuLV-based, semi-replication-competent retrovirus for cancer treatment.

    Science.gov (United States)

    Qiao, J; Moreno, J; Sanchez-Perez, L; Kottke, T; Thompson, J; Caruso, M; Diaz, R M; Vile, R

    2006-10-01

    Low levels of gene delivery in vivo using replication-defective retroviral vectors have severely limited their application for clinical protocols. To overcome this problem, we describe here a semi-replication-competent retrovirus (s-RCR) in which the gag-pol and envelope (VSV-G, vesicular stomatitis virus G protein) genes were split into two vectors. This system offers potential advantages over both replication-defective vectors, in terms of efficiency of in vivo spread through a tumor, and all-in-one replication-competent vectors in terms of the payload of therapeutic genes that can be carried. We achieved a viral titer of s-RCR viruses approximately 70-fold higher than VSV-G pseudotyped, replication-defective vectors. In addition, s-RCR vectors induced tumor killing by the cytotoxicity of VSV-G during viral spread. Inclusion of the herpes simplex virus thymidine kinase (HSVtk30) gene into vectors significantly improved tumor killing activity followed by ganciclovir (GCV) treatment in vitro under conditions of low-level viral replication. However, at high levels of viral spread, VSV-G-mediated cytotoxicity predominated. Xenografts of human fibrosarcoma HT1080 cells, preinfected by semi-replicative green fluorescent protein vectors (semi-GFP), were completely non-tumorigenic in nude mice. Implantation of cells preinfected by semi-replicative TK30 vectors (semi-TK30) mixed with parental HT1080 cells at a ratio of 1:1 efficiently prevented tumor growth in mice treated by GCV. Direct intratumoral injection of HT1080 tumors growing in nude mice, or B16 murine melanoma in immunocompetent mice, with semi-TK30 viruses significantly prolonged survival. Injection of autologous cells (B16) producing semi-TK30 vector into B16 tumors prolonged survival only in mice treated with GCV but not with phosphate-buffered saline (PBS). In contrast, when xenogeneic cells (293T) producing semi-TK30 vectors were injected into B16 tumors, an optimal survival advantage was obtained in mice

  3. Identification of swine influenza virus epitopes and analysis of multiple specificities expressed by cytotoxic T cell subsets

    DEFF Research Database (Denmark)

    Pedersen, Lasse Eggers; Breum, Solvej Østergaard; Riber, Ulla

    2014-01-01

    Background: Major histocompatibility complex (MHC) class I peptide binding and presentation are essential for antigen-specific activation of cytotoxic T lymphocytes (CTLs) and swine MHC class I molecules, also termed swine leukocyte antigens (SLA), thus play a crucial role in the process that leads...... to elimination of viruses such as swine influenza virus (SwIV). This study describes the identification of SLA-presented peptide epitopes that are targets for a swine CTL response, and further analyses multiple specificities expressed by SwIV activated CTL subsets. Findings: Four SwIV derived peptides were...... subsets indicating multiple specificities. Conclusions: This study describes a timely and cost-effective approach for viral epitope identification in livestock animals. Analysis of T cell subsets showed multiple specificities suggesting SLA-bound epitope recognition of different conformations....

  4. Influenza Photos

    Science.gov (United States)

    ... Polio Whooping cough Influenza (flu) Rabies Yellow fever Influenza Photos Photographs accompanied by text that reads "Courtesy ... of these photos are quite graphic. Shows how influenza germs spread through the air when someone coughs ...

  5. Oncolytic effects of a novel influenza A virus expressing interleukin-15 from the NS reading frame.

    Directory of Open Access Journals (Sweden)

    Marijke van Rikxoort

    Full Text Available Oncolytic influenza A viruses with deleted NS1 gene (delNS1 replicate selectively in tumour cells with defective interferon response and/or activated Ras/Raf/MEK/ERK signalling pathway. To develop a delNS1 virus with specific immunostimulatory properties, we used an optimised technology to insert the interleukin-15 (IL-15 coding sequence into the viral NS gene segment (delNS1-IL-15. DelNS1 and delNS1-IL-15 exerted similar oncolytic effects. Both viruses replicated and caused caspase-dependent apoptosis in interferon-defective melanoma cells. Virus replication was required for their oncolytic activity. Cisplatin enhanced the oncolytic activity of delNS1 viruses. The cytotoxic drug increased delNS1 replication and delNS1-induced caspase-dependent apoptosis. Interference with MEK/ERK signalling by RNAi-mediated depletion or the MEK inhibitor U0126 did not affect the oncolytic effects of the delNS1 viruses. In oncolysis sensitive melanoma cells, delNS1-IL-15 (but not delNS1 infection resulted in the production of IL-15 levels ranging from 70 to 1140 pg/mL in the cell culture supernatants. The supernatants of delNS1-IL-15-infected (but not of delNS1-infected melanoma cells induced primary human natural killer cell-mediated lysis of non-infected tumour cells. In conclusion, we constructed a novel oncolytic influenza virus that combines the oncolytic activity of delNS1 viruses with immunostimulatory properties through production of functional IL-15. Moreover, we showed that the oncolytic activity of delNS1 viruses can be enhanced in combination with cytotoxic anti-cancer drugs.

  6. Influenza A virus protein PB1-F2 exacerbates IFN-beta expression of human respiratory epithelial cells.

    Science.gov (United States)

    Le Goffic, Ronan; Bouguyon, Edwige; Chevalier, Christophe; Vidic, Jasmina; Da Costa, Bruno; Leymarie, Olivier; Bourdieu, Christiane; Decamps, Laure; Dhorne-Pollet, Sophie; Delmas, Bernard

    2010-10-15

    The PB1-F2 protein of the influenza A virus (IAV) contributes to viral pathogenesis by a mechanism that is not well understood. PB1-F2 was shown to modulate apoptosis and to be targeted by the CD8(+) T cell response. In this study, we examined the downstream effects of PB1-F2 protein during IAV infection by measuring expression of the cellular genes in response to infection with wild-type WSN/33 and PB1-F2 knockout viruses in human lung epithelial cells. Wild-type virus infection resulted in a significant induction of genes involved in innate immunity. Knocking out the PB1-F2 gene strongly decreased the magnitude of expression of cellular genes implicated in antiviral response and MHC class I Ag presentation, suggesting that PB1-F2 exacerbates innate immune response. Biological network analysis revealed the IFN pathway as a link between PB1-F2 and deregulated genes. Using quantitative RT-PCR and IFN-β gene reporter assay, we determined that PB1-F2 mediates an upregulation of IFN-β expression that is dependent on NF-κB but not on AP-1 and IFN regulatory factor-3 transcription factors. Recombinant viruses knocked out for the PB1-F2 and/or the nonstructural viral protein 1 (the viral antagonist of the IFN response) genes provide further evidence that PB1-F2 increases IFN-β expression and that nonstructural viral protein 1 strongly antagonizes the effect of PB1-F2 on the innate response. Finally, we compared the effect of PB1-F2 variants taken from several IAV strains on IFN-β expression and found that PB1-F2-mediated IFN-β induction is significantly influenced by its amino acid sequence, demonstrating its importance in the host cell response triggered by IAV infection.

  7. A GFP expressing influenza A virus to report in vivo tropism and protection by a matrix protein 2 ectodomain-specific monoclonal antibody.

    Science.gov (United States)

    De Baets, Sarah; Verhelst, Judith; Van den Hoecke, Silvie; Smet, Anouk; Schotsaert, Michael; Job, Emma R; Roose, Kenny; Schepens, Bert; Fiers, Walter; Saelens, Xavier

    2015-01-01

    The severity of influenza-related illness is mediated by many factors, including in vivo cell tropism, timing and magnitude of the immune response, and presence of pre-existing immunity. A direct way to study cell tropism and virus spread in vivo is with an influenza virus expressing a reporter gene. However, reporter gene-expressing influenza viruses are often attenuated in vivo and may be genetically unstable. Here, we describe the generation of an influenza A virus expressing GFP from a tri-cistronic NS segment. To reduce the size of this engineered gene segment, we used a truncated NS1 protein of 73 amino acids combined with a heterologous dimerization domain to increase protein stability. GFP and nuclear export protein coding information were fused in frame with the truncated NS1 open reading frame and separated from each other by 2A self-processing sites. The resulting PR8-NS1(1-73)GFP virus was successfully rescued and replicated as efficiently as the parental PR8 virus in vitro and was slightly attenuated in vivo. Flow cytometry-based monitoring of cells isolated from PR8-NS1(1-73)GFP virus infected BALB/c mice revealed that GFP expression peaked on day two in all cell types tested. In particular respiratory epithelial cells and myeloid cells known to be involved in antigen presentation, including dendritic cells (CD11c+) and inflammatory monocytes (CD11b+ GR1+), became GFP positive following infection. Prophylactic treatment with anti-M2e monoclonal antibody or oseltamivir reduced GFP expression in all cell types studied, demonstrating the usefulness of this reporter virus to analyze the efficacy of antiviral treatments in vivo. Finally, deep sequencing analysis, serial in vitro passages and ex vivo analysis of PR8-NS1(1-73)GFP virus, indicate that this virus is genetically and phenotypically stable.

  8. Oral Delivery of a Novel Attenuated Salmonella Vaccine Expressing Influenza A Virus Proteins Protects Mice against H5N1 and H1N1 Viral Infection.

    Directory of Open Access Journals (Sweden)

    Zenglin Pei

    Full Text Available Attenuated strains of invasive enteric bacteria, such as Salmonella, represent promising gene delivery agents for nucleic acid-based vaccines as they can be administrated orally. In this study, we constructed a novel attenuated strain of Salmonella for the delivery and expression of the hemagglutinin (HA and neuraminidase (NA of a highly pathogenic H5N1 influenza virus. We showed that the constructed Salmonella strain exhibited efficient gene transfer activity for HA and NA expression and little cytotoxicity and pathogenicity in mice. Using BALB/c mice as the model, we evaluated the immune responses and protection induced by the constructed Salmonella-based vaccine. Our study showed that the Salmonella-based vaccine induced significant production of anti-HA serum IgG and mucosal IgA, and of anti-HA interferon-γ producing T cells in orally vaccinated mice. Furthermore, mice orally vaccinated with the Salmonella vaccine expressing viral HA and NA proteins were completely protected from lethal challenge of highly pathogenic H5N1 as well as H1N1 influenza viruses while none of the animals treated with the Salmonella vaccine carrying the empty expression vector with no viral antigen expression was protected. These results suggest that the Salmonella-based vaccine elicits strong antigen-specific humoral and cellular immune responses and provides effective immune protection against multiple strains of influenza viruses. Furthermore, our study demonstrates the feasibility of developing novel attenuated Salmonella strains as new oral vaccine vectors against influenza viruses.

  9. In Silico Prediction and Experimental Confirmation of HA Residues Conferring Enhanced Human Receptor Specificity of H5N1 Influenza A Viruses

    Science.gov (United States)

    Schmier, Sonja; Mostafa, Ahmed; Haarmann, Thomas; Bannert, Norbert; Ziebuhr, John; Veljkovic, Veljko; Dietrich, Ursula; Pleschka, Stephan

    2015-06-01

    Newly emerging influenza A viruses (IAV) pose a major threat to human health by causing seasonal epidemics and/or pandemics, the latter often facilitated by the lack of pre-existing immunity in the general population. Early recognition of candidate pandemic influenza viruses (CPIV) is of crucial importance for restricting virus transmission and developing appropriate therapeutic and prophylactic strategies including effective vaccines. Often, the pandemic potential of newly emerging IAV is only fully recognized once the virus starts to spread efficiently causing serious disease in humans. Here, we used a novel phylogenetic algorithm based on the informational spectrum method (ISM) to identify potential CPIV by predicting mutations in the viral hemagglutinin (HA) gene that are likely to (differentially) affect critical interactions between the HA protein and target cells from bird and human origin, respectively. Predictions were subsequently validated by generating pseudotyped retrovirus particles and genetically engineered IAV containing these mutations and characterizing potential effects on virus entry and replication in cells expressing human and avian IAV receptors, respectively. Our data suggest that the ISM-based algorithm is suitable to identify CPIV among IAV strains that are circulating in animal hosts and thus may be a new tool for assessing pandemic risks associated with specific strains.

  10. The K186E Amino Acid Substitution in the Canine Influenza Virus H3N8 NS1 Protein Restores Its Ability To Inhibit Host Gene Expression.

    Science.gov (United States)

    Nogales, Aitor; Chauché, Caroline; DeDiego, Marta L; Topham, David J; Parrish, Colin R; Murcia, Pablo R; Martínez-Sobrido, Luis

    2017-11-15

    Canine influenza viruses (CIVs) are the causative agents of canine influenza, a contagious respiratory disease in dogs, and include the equine-origin H3N8 and the avian-origin H3N2 viruses. Influenza A virus (IAV) nonstructural protein 1 (NS1) is a virulence factor essential for counteracting the innate immune response. Here, we evaluated the ability of H3N8 CIV NS1 to inhibit host innate immune responses. We found that H3N8 CIV NS1 was able to efficiently counteract interferon (IFN) responses but was unable to block general gene expression in human or canine cells. Such ability was restored by a single amino acid substitution in position 186 (K186E) that resulted in NS1 binding to the 30-kDa subunit of the cleavage and polyadenylation specificity factor (CPSF30), a cellular protein involved in pre-mRNA processing. We also examined the frequency distribution of K186 and E186 among H3N8 CIVs and equine influenza viruses (EIVs), the ancestors of H3N8 CIV, and experimentally determined the impact of amino acid 186 in the ability of different CIV and EIV NS1s to inhibit general gene expression. In all cases, the presence of E186 was responsible for the control of host gene expression. In contrast, the NS1 protein of H3N2 CIV harbors E186 and blocks general gene expression in canine cells. Altogether, our results confirm previous studies on the strain-dependent ability of NS1 to block general gene expression. Moreover, the observed polymorphism on amino acid 186 between H3N8 and H3N2 CIVs might be the result of adaptive changes acquired during long-term circulation of avian-origin IAVs in mammals.IMPORTANCE Canine influenza is a respiratory disease of dogs caused by two CIV subtypes, the H3N8 and H3N2 viruses, of equine and avian origins, respectively. Influenza NS1 is the main viral factor responsible for the control of host innate immune responses, and changes in NS1 can play an important role in host adaptation. Here we assessed the ability of H3N8 CIV NS1 to inhibit

  11. Characterization of the Bas-Congo virus glycoprotein and its function in pseudotyped viruses.

    Science.gov (United States)

    Steffen, Imke; Liss, Nathan M; Schneider, Bradley S; Fair, Joseph N; Chiu, Charles Y; Simmons, Graham

    2013-09-01

    Bas-Congo virus (BASV) is a novel rhabdovirus recently identified from a patient with acute hemorrhagic fever in the Bas-Congo province of the Democratic Republic of Congo (DRC). Here we show that the BASV glycoprotein (BASV-G) can be successfully used to pseudotype glycoprotein-deficient vesicular stomatitis virus (VSV), allowing studies of BASV-G-driven membrane fusion and viral entry into target cells without replication-competent virus. BASV-G displayed broad tissue and species tropism in vitro, and BASV-G-mediated membrane fusion was pH dependent. The conformational changes induced in BASV-G by acidification were fully reversible and did not lead to inactivation of the viral fusion protein. Our data combined with comparative sequence similarity analyses suggest that BASV-G shares structural and functional features with other rhabdovirus glycoproteins and falls into the group of class III viral fusion proteins. However, activation of BASV-G-driven fusion required a lower pH and higher temperatures than did VSV-G-mediated fusion. Moreover, in contrast to VSV-G, mature BASV-G in VSV pseudotypes consists of a mixture of high-mannose and complex glycans that enables it to bind to certain C-type lectins, thereby enhancing its attachment to target cells. Taken together, the results presented in this study will facilitate future investigations of BASV-G-mediated cell entry and its inhibition in the absence of an infectious cell culture assay for BASV and at lower biosafety levels. Moreover, serology testing based on BASV-G pseudotype neutralization can be used to uncover the prevalence and importance of BASV as a potential novel human pathogen in the DRC and throughout Central Africa.

  12. Effective in vivo and ex vivo gene transfer to intestinal mucosa by VSV-G-pseudotyped lentiviral vectors

    Directory of Open Access Journals (Sweden)

    Kasahara Noriyuki

    2010-05-01

    Full Text Available Abstract Background Gene transfer to the gastrointestinal (GI mucosa is a therapeutic strategy which could prove particularly advantageous for treatment of various hereditary and acquired intestinal disorders, including inflammatory bowel disease (IBD, GI infections, and cancer. Methods We evaluated vesicular stomatitis virus glycoprotein envelope (VSV-G-pseudotyped lentiviral vectors (LV for efficacy of gene transfer to both murine rectosigmoid colon in vivo and human colon explants ex vivo. LV encoding beta-galactosidase (LV-β-Gal or firefly-luciferase (LV-fLuc reporter genes were administered by intrarectal instillation in mice, or applied topically for ex vivo transduction of human colorectal explant tissues from normal individuals. Macroscopic and histological evaluations were performed to assess any tissue damage or inflammation. Transduction efficiency and systemic biodistribution were evaluated by real-time quantitative PCR. LV-fLuc expression was evaluated by ex vivo bioluminescence imaging. LV-β-Gal expression and identity of transduced cell types were examined by histochemical and immunofluorescence staining. Results Imaging studies showed positive fLuc signals in murine distal colon; β-Gal-positive cells were found in both murine and human intestinal tissue. In the murine model, β-Gal-positive epithelial and lamina propria cells were found to express cytokeratin, CD45, and CD4. LV-transduced β-Gal-positive cells were also seen in human colorectal explants, consisting mainly of CD45, CD4, and CD11c-positive cells confined to the LP. Conclusions We have demonstrated the feasibility of LV-mediated gene transfer into colonic mucosa. We also identified differential patterns of mucosal gene transfer dependent on whether murine or human tissue was used. Within the limitations of the study, the LV did not appear to induce mucosal damage and were not distributed beyond the distal colon.

  13. MAPK Phosphatase 5 Expression Induced by Influenza and Other RNA Virus Infection Negatively Regulates IRF3 Activation and Type I Interferon Response

    Directory of Open Access Journals (Sweden)

    Sharmy J. James

    2015-03-01

    Full Text Available The type I interferon system is essential for antiviral immune response and is a primary target of viral immune evasion strategies. Here, we show that virus infection induces the expression of MAPK phosphatase 5 (MKP5, a dual-specificity phosphatase (DUSP, in host cells. Mice deficient in MKP5 were resistant to H1N1 influenza infection, which is associated with increased IRF3 activation and type I interferon expression in comparison with WT mice. Increased type I interferon responses were also observed in MKP5-deficient cells and animals upon other RNA virus infection, including vesicular stomatitis virus and sendai virus. These observations were attributed to the ability of MKP5 to interact with and dephosphorylate IRF3. Our study reveals a critical function of a DUSP in negative regulation of IRF3 activity and demonstrates a mechanism by which influenza and other RNA viruses inhibit type I interferon response in the host through MKP5.

  14. PD-L1 Expression Induced by the 2009 Pandemic Influenza A(H1N1) Virus Impairs the Human T Cell Response

    Science.gov (United States)

    Arriaga-Pizano, Lourdes; Ferat-Osorio, Eduardo; Mora-Velandia, Luz María; Pastelin-Palacios, Rodolfo; Villasís-Keever, Miguel Ángel; Alpuche-Aranda, Celia; Sánchez-Torres, Luvia Enid; Isibasi, Armando; Bonifaz, Laura; López-Macías, Constantino

    2013-01-01

    PD-L1 expression plays a critical role in the impairment of T cell responses during chronic infections; however, the expression of PD-L1 on T cells during acute viral infections, particularly during the pandemic influenza virus (A(H1N1)pdm09), and its effects on the T cell response have not been widely explored. We found that A(H1N1)pdm09 virus induced PD-L1 expression on human dendritic cells (DCs) and T cells, as well as PD-1 expression on T cells. PD-L1 expression impaired the T cell response against A(H1N1)pdm09 by promoting CD8+ T cell death and reducing cytokine production. Furthermore, we found increased PD-L1 expression on DCs and T cells from influenza-infected patients from the first and second 2009 pandemic waves in Mexico City. PD-L1 expression on CD8+ T cells correlated inversely with T cell proportions in patients infected with A(H1N1)pdm09. Therefore, PD-L1 expression on DCs and T cells could be associated with an impaired T cell response during acute infection with A(H1N1)pdm09 virus. PMID:24187568

  15. PD-L1 Expression Induced by the 2009 Pandemic Influenza A(H1N1 Virus Impairs the Human T Cell Response

    Directory of Open Access Journals (Sweden)

    Nuriban Valero-Pacheco

    2013-01-01

    Full Text Available PD-L1 expression plays a critical role in the impairment of T cell responses during chronic infections; however, the expression of PD-L1 on T cells during acute viral infections, particularly during the pandemic influenza virus (A(H1N1pdm09, and its effects on the T cell response have not been widely explored. We found that A(H1N1pdm09 virus induced PD-L1 expression on human dendritic cells (DCs and T cells, as well as PD-1 expression on T cells. PD-L1 expression impaired the T cell response against A(H1N1pdm09 by promoting CD8+ T cell death and reducing cytokine production. Furthermore, we found increased PD-L1 expression on DCs and T cells from influenza-infected patients from the first and second 2009 pandemic waves in Mexico City. PD-L1 expression on CD8+ T cells correlated inversely with T cell proportions in patients infected with A(H1N1pdm09. Therefore, PD-L1 expression on DCs and T cells could be associated with an impaired T cell response during acute infection with A(H1N1pdm09 virus.

  16. Live Attenuated Influenza Vaccines engineered to express the nucleoprotein of a recent isolate stimulate human influenza CD8+T cells more relevant to current infections.

    Science.gov (United States)

    Korenkov, D; Nguyen, T H O; Isakova-Sivak, I; Smolonogina, T; Brown, L E; Kedzierska, K; Rudenko, L

    2017-12-18

    Live attenuated influenza vaccines (LAIV) induce CD8 + T lymphocyte responses that play an important role in killing virus-infected cells. Despite the relative conservation of internal influenza A proteins, the epitopes recognized by T cells can undergo drift under immune pressure. The internal proteins of Russian LAIVs are derived from the master donor virus A/Leningrad/134/17/57 (Len/17) isolated 60 years ago and as such, some CD8 + T cell epitopes may vary between the vaccine and circulating wild-type strains. To partially overcome this issue, the nucleoprotein (NP) gene of wild-type virus can be incorporated into LAIV reassortant virus, along with the HA and NA genes. The present study compares the human CD8+ T cell memory responses to H3N2 LAIVs with the Len/17 or the wild-type NP using an in vitro model.

  17. Influenza vaccination

    DEFF Research Database (Denmark)

    Østerhus, Sven Frederick

    2015-01-01

    The Cochrane Library was systematically searched for meta-analyses regarding influenza vaccination of various populations, both healthy and sick. An effect in reducing the number of cases of influenza, influenza-like illness or complications to influenza was found in some studies, but, generally......, the quality of the studies was low, and several studies lacked hard clinical endpoints. Data on adverse effects were scarce. More randomised controlled trials investigating the effects of influenza vaccination are warranted....

  18. Properly folded bacterially expressed H1N1 hemagglutinin globular head and ectodomain vaccines protect ferrets against H1N1 pandemic influenza virus.

    Directory of Open Access Journals (Sweden)

    Surender Khurana

    2010-07-01

    Full Text Available In the face of impending influenza pandemic, a rapid vaccine production and mass vaccination is the most effective approach to prevent the large scale mortality and morbidity that was associated with the 1918 "Spanish Flu". The traditional process of influenza vaccine production in eggs is time consuming and may not meet the demands of rapid global vaccination required to curtail influenza pandemic.Recombinant technology can be used to express the hemagglutinin (HA of the emerging new influenza strain in a variety of systems including mammalian, insect, and bacterial cells. In this study, two forms of HA proteins derived from the currently circulating novel H1N1 A/California/07/2009 virus, HA1 (1-330 and HA (1-480, were expressed and purified from E. coli under controlled redox refolding conditions that favoured proper protein folding. However, only the recombinant HA1 (1-330 protein formed oligomers, including functional trimers that bound receptor and caused agglutination of human red blood cells. These proteins were used to vaccinate ferrets prior to challenge with the A/California/07/2009 virus. Both proteins induced neutralizing antibodies, and reduced viral loads in nasal washes. However, the HA1 (1-330 protein that had higher content of multimeric forms provided better protection from fever and weight loss at a lower vaccine dose compared with HA (1-480. Protein yield for the HA1 (1-330 ranged around 40 mg/Liter, while the HA (1-480 yield was 0.4-0.8 mg/Liter.This is the first study that describes production in bacterial system of properly folded functional globular HA1 domain trimers, lacking the HA2 transmembrane protein, that elicit potent neutralizing antibody responses following vaccination and protect ferrets from in vivo challenge. The combination of bacterial expression system with established quality control methods could provide a mechanism for rapid large scale production of influenza vaccines in the face of influenza pandemic

  19. Cell wall biochemical alterations during Agrobacterium-mediated expression of haemagglutinin-based influenza virus-like vaccine particles in tobacco.

    Science.gov (United States)

    Le Mauff, François; Loutelier-Bourhis, Corinne; Bardor, Muriel; Berard, Caroline; Doucet, Alain; D'Aoust, Marc-André; Vezina, Louis-Philippe; Driouich, Azeddine; Couture, Manon M-J; Lerouge, Patrice

    2017-03-01

    Influenza virus-like particles (VLPs) have been shown to induce a safe and potent immune response through both humoral and cellular responses. They represent promising novel influenza vaccines. Plant-based biotechnology allows for the large-scale production of VLPs of biopharmaceutical interest using different model organisms, including Nicotiana benthamiana plants. Through this platform, influenza VLPs bud from the plasma membrane and accumulate between the membrane and the plant cell wall. To design and optimize efficient production processes, a better understanding of the plant cell wall composition of infiltrated tobacco leaves is a major interest for the plant biotechnology industry. In this study, we have investigated the alteration of the biochemical composition of the cell walls of N. benthamiana leaves subjected to abiotic and biotic stresses induced by the Agrobacterium-mediated transient transformation and the resulting high expression levels of influenza VLPs. Results show that abiotic stress due to vacuum infiltration without Agrobacterium did not induce any detectable modification of the leaf cell wall when compared to non infiltrated leaves. In contrast, various chemical changes of the leaf cell wall were observed post-Agrobacterium infiltration. Indeed, Agrobacterium infection induced deposition of callose and lignin, modified the pectin methylesterification and increased both arabinosylation of RG-I side chains and the expression of arabinogalactan proteins. Moreover, these modifications were slightly greater in plants expressing haemagglutinin-based VLP than in plants infiltrated with the Agrobacterium strain containing only the p19 suppressor of silencing. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  20. Macrophage-expressed IFN-β contributes to apoptotic alveolar epithelial cell injury in severe influenza virus pneumonia.

    Directory of Open Access Journals (Sweden)

    Katrin Högner

    2013-02-01

    Full Text Available Influenza viruses (IV cause pneumonia in humans with progression to lung failure and fatal outcome. Dysregulated release of cytokines including type I interferons (IFNs has been attributed a crucial role in immune-mediated pulmonary injury during severe IV infection. Using ex vivo and in vivo IV infection models, we demonstrate that alveolar macrophage (AM-expressed IFN-β significantly contributes to IV-induced alveolar epithelial cell (AEC injury by autocrine induction of the pro-apoptotic factor TNF-related apoptosis-inducing ligand (TRAIL. Of note, TRAIL was highly upregulated in and released from AM of patients with pandemic H1N1 IV-induced acute lung injury. Elucidating the cell-specific underlying signalling pathways revealed that IV infection induced IFN-β release in AM in a protein kinase R- (PKR- and NF-κB-dependent way. Bone marrow chimeric mice lacking these signalling mediators in resident and lung-recruited AM and mice subjected to alveolar neutralization of IFN-β and TRAIL displayed reduced alveolar epithelial cell apoptosis and attenuated lung injury during severe IV pneumonia. Together, we demonstrate that macrophage-released type I IFNs, apart from their well-known anti-viral properties, contribute to IV-induced AEC damage and lung injury by autocrine induction of the pro-apoptotic factor TRAIL. Our data suggest that therapeutic targeting of the macrophage IFN-β-TRAIL axis might represent a promising strategy to attenuate IV-induced acute lung injury.

  1. Type IV Pilus Expression Is Upregulated in Nontypeable Haemophilus influenzae Biofilms Formed at the Temperature of the Human Nasopharynx.

    Science.gov (United States)

    Mokrzan, Elaine M; Ward, Michael O; Bakaletz, Lauren O

    2016-10-01

    Nontypeable Haemophilus influenzae (NTHI), a commensal of the human nasopharynx (hNP), is a common cause of biofilm-associated diseases of the respiratory tract. However, NTHI biofilm biology at the average hNP temperature, i.e., 34°C, has not been well studied. Here we grew NTHI biofilms at 34°C and 37°C, to evaluate relative biofilm growth, expression, and function of the type IV pilus (Tfp), a critical adhesin important for NTHI biofilm formation. The kinetics and regulation of Tfp expression in NTHI biofilms are unclear, especially at 34°C. Tfp expression, as estimated by pilA promoter activity, was distributed throughout the biofilms, with a unique pattern that was dependent on temperature, time in culture, and position within the maturing biofilm. Tfp expression was required for the formation of the characteristic tower structures of NTHI biofilms and was significantly upregulated in NTHI biofilms formed at 34°C versus 37°C. This increase correlated with significantly greater twitching motility at 34°C than at 37°C. Treatment with antisera targeting the major subunit of Tfp (PilA) significantly inhibited NTHI biofilm formation at both temperatures, confirming the importance of this critical adhesin in biofilm formation. Additionally, treatment of preestablished biofilms with antisera against PilA significantly decreased biofilm biomass and mean thickness at both temperatures. These results demonstrated a pivotal role for Tfp in NTHI biofilm formation and stability at the temperature of the hNP, and they underscore the utility of PilA as a vaccine candidate for treatment and/or prevention of NTHI biofilm-associated diseases. NTHI is an important cause of chronic respiratory tract infections, including otitis media, chronic rhinosinusitis, and exacerbations of chronic obstructive pulmonary disease and cystic fibrosis. The chronic and recurrent nature of these diseases is attributed to the presence of bacterial biofilms, which are highly resistant to

  2. High-Level Systemic Expression of Conserved Influenza Epitope in Plants on the Surface of Rod-Shaped Chimeric Particles

    Directory of Open Access Journals (Sweden)

    Natalia V. Petukhova

    2014-04-01

    Full Text Available Recombinant viruses based on the cDNA copy of the tobacco mosaic virus (TMV genome carrying different versions of the conserved M2e epitope from influenza virus A cloned into the coat protein (CP gene were obtained and partially characterized by our group previously; cysteines in the human consensus M2e sequence were changed to serine residues. This work intends to show some biological properties of these viruses following plant infections. Agroinfiltration experiments on Nicotiana benthamiana confirmed the efficient systemic expression of M2e peptides, and two point amino acid substitutions in recombinant CPs significantly influenced the symptoms and development of viral infections. Joint expression of RNA interference suppressor protein p19 from tomato bushy stunt virus (TBSV did not affect the accumulation of CP-M2e-ser recombinant protein in non-inoculated leaves. RT-PCR analysis of RNA isolated from either infected leaves or purified TMV-M2e particles proved the genetic stability of TMV‑based viral vectors. Immunoelectron microscopy of crude plant extracts demonstrated that foreign epitopes are located on the surface of chimeric virions. The rod‑shaped geometry of plant-produced M2e epitopes is different from the icosahedral or helical filamentous arrangement of M2e antigens on the carrier virus-like particles (VLP described earlier. Thereby, we created a simple and efficient system that employs agrobacteria and plant viral vectors in order to produce a candidate broad-spectrum flu vaccine.

  3. Reduced expression IRF7 in nasal epithelial cells from smokers as a potential mechanism mediating enhanced susceptibility to influenza

    Science.gov (United States)

    Rationale: Smokers are more susceptible to viral infections, including influenza virus, yet the mechanisms mediating this effect are not known. Methods: We have established an in vitro model of differentiated nasal epithelial cells from smokers, which maintain enhanced levels...

  4. Delta Inulin Adjuvant Enhances Plasmablast Generation, Expression of Activation-Induced Cytidine Deaminase and B-Cell Affinity Maturation in Human Subjects Receiving Seasonal Influenza Vaccine.

    Directory of Open Access Journals (Sweden)

    Lei Li

    Full Text Available There is a major need for new adjuvants to improve the efficacy of seasonal and pandemic influenza vaccines. Advax is a novel polysaccharide adjuvant based on delta inulin that has been shown to enhance the immunogenicity of influenza vaccine in animal models and human clinical trials. To better understand the mechanism for this enhancement, we sought to assess its effect on the plasmablast response in human subjects. This pilot study utilised cryopreserved 7 day post-vaccination (7dpv peripheral blood mononuclear cell samples obtained from a subset of 25 adult subjects from the FLU006-12 trial who had been immunized intramuscularly with a standard dose of 2012 trivalent inactivated influenza vaccine (TIV alone (n=9 subjects or combined with 5mg (n=8 or 10mg (n=8 of Advax adjuvant. Subjects receiving Advax adjuvant had increased 7dpv plasmablasts, which in turn exhibited a 2-3 fold higher rate of non-silent mutations in the B-cell receptor CDR3 region associated with higher expression of activation-induced cytidine deaminase (AID, the major enzyme controlling BCR affinity maturation. Together, these data suggest that Advax adjuvant enhances influenza immunity in immunized subjects via multiple mechanisms including increased plasmablast generation, AID expression and CDR3 mutagenesis resulting in enhanced BCR affinity maturation and increased production of high avidity antibody. How Advax adjuvant achieves these beneficial effects on plasmablasts remains the subject of ongoing investigation.Australia New Zealand Clinical Trials Register ACTRN12612000709842 https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=362709.

  5. Loss of capsule expression by Haemophilus influenzae type b results in enhanced adherence to and invasion of human cells.

    OpenAIRE

    St Geme, J W; Falkow, S

    1991-01-01

    Haemophilus influenzae type b is a common cause of systemic bacterial disease in children, and the serotype b capsule is a major determinant of virulence. Nevertheless, as a consequence of the genetic configuration of the capb locus, type b strains become capsule deficient at a high frequency. To investigate the potential biological relevance of the predisposition to capsule loss, we compared the adherent and invasive abilities of several strains of H. influenzae type b and their isogenic cap...

  6. Biochemical composition of haemagglutinin-based influenza virus-like particle vaccine produced by transient expression in tobacco plants.

    Science.gov (United States)

    Le Mauff, François; Mercier, Geneviève; Chan, Philippe; Burel, Carole; Vaudry, David; Bardor, Muriel; Vézina, Louis-Philippe; Couture, Manon; Lerouge, Patrice; Landry, Nathalie

    2015-06-01

    Influenza virus-like particles (VLPs) are noninfectious particles resembling the influenza virus representing a promising vaccine alternative to inactivated influenza virions as antigens. Medicago inc. has developed a plant-based VLP manufacturing platform allowing the large-scale production of GMP-grade influenza VLPs. In this article, we report on the biochemical compositions of these plant-based influenza candidate vaccines, more particularly the characterization of the N-glycan profiles of the viral haemagglutinins H1 and H5 proteins as well as the tobacco-derived lipid content and residual impurities. Mass spectrometry analyses showed that all N-glycosylation sites of the extracellular domain of the recombinant haemagglutinins carry plant-specific complex-type N-glycans having core α(1,3)-fucose, core β(1,2)-xylose epitopes and Lewis(a) extensions. Previous phases I and II clinical studies have demonstrated that no hypersensibility nor induction of IgG or IgE directed against these glycans was observed. In addition, this article showed that the plant-made influenza vaccines are highly pure VLPs preparations while detecting no protein contaminants coming either from Agrobacterium or from the enzymes used for the enzyme-assisted extraction process. In contrast, VLPs contain few host cell proteins and glucosylceramides associated with plant lipid rafts. Identification of such raft markers, together with the type of host cell impurity identified, confirmed that the mechanism of VLP formation in planta is similar to the natural process of influenza virus assembly in mammals. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  7. Recombinant influenza virus expressing a fusion protein neutralizing epitope of respiratory syncytial virus (RSV) confers protection without vaccine-enhanced RSV disease.

    Science.gov (United States)

    Lee, Yu-Na; Hwang, Hye Suk; Kim, Min-Chul; Lee, Young-Tae; Lee, Jong Seok; Moore, Martin L; Kang, Sang-Moo

    2015-03-01

    Respiratory syncytial virus (RSV) is the leading cause of viral bronchiolitis in both children and the elderly. There is no vaccine available for the prevention of RSV infection. Here, we generated recombinant influenza virus (PR8/RSV.HA-F) expressing an RSV F243-294 neutralizing epitope in the hemagglutinin (HA) as a chimeric protein. Neutralizing antibodies specific for both RSV and influenza virus were induced by a single intranasal immunization of mice with PR8/RSV.HA-F. Mice that were immunized with PR8/RSV.HA-F were protected against RSV infection comparable with live RSV as evidenced by significant reduction of RSV lung viral loads, as well as the absence of lung eosinophilia and RSV-specific cellular immune responses. In contrast, formalin-inactivated RSV-immunized mice showed severe disease and high cellular immune responses in lungs after RSV infection. These findings support a concept that recombinant influenza virus carrying the RSV F243-294 neutralizing epitope can be developed as a promising RSV vaccine candidate which induces protective neutralizing antibodies but avoids lung immunopathology. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Avian influenza

    Science.gov (United States)

    Bird flu; H5N1; H5N2; H5N8; H7N9; Avian influenza A (HPAI) H5 ... The first avian influenza in humans was reported in Hong Kong in 1997. It was called avian influenza (H5N1). The outbreak was linked ...

  9. Emerging influenza

    NARCIS (Netherlands)

    E. de Wit (Emmie); R.A.M. Fouchier (Ron)

    2008-01-01

    textabstractIn 1918 the Spanish influenza pandemic, caused by an avian H1N1 virus, resulted in over 50 million deaths worldwide. Several outbreaks of H7 influenza A viruses have resulted in human cases, including one fatal case. Since 1997, the outbreaks of highly pathogenic avian influenza (HPAI)

  10. Broadly protective immunity against divergent influenza viruses by oral co-administration of Lactococcus lactis expressing nucleoprotein adjuvanted with cholera toxin B subunit in mice.

    Science.gov (United States)

    Lei, Han; Peng, Xiaojue; Jiao, Huifeng; Zhao, Daxian; Ouyang, Jiexiu

    2015-08-05

    Current influenza vaccines need to be annually reformulated to well match the predicated circulating strains. Thus, it is critical for developing a novel universal influenza vaccine that would be able to confer cross-protection against constantly emerging divergent influenza virus strains. Influenza virus A is a genus of the Orthomyxoviridae family of viruses. Influenza virus nucleoprotein (NP) is a structural protein which encapsidates the negative strand viral RNA, and anti-NP antibodies play role in cross-protective immunity. Lactococcus lactis (L. lactis) is an ideal vaccine delivery vehicle via oral administration route. However, L. lactis vectored vaccine exhibits poor immunogenicity without the use of mucosal adjuvant. To enhance the immunogenicity of L. lactis vectored vaccine, cholera toxin B (CTB) subunit, one of mucosal adjuvants, is a safe adjuvant for oral route, when combined with L. lactis vectored vaccine. In this study, we hypothesized that pNZ8008, a L. lactis expression plasmid, encoding NP antigen, would be able to elicit cross-protection with the use of CTB via oral administration route. To construct L. lactis vectored vaccine, nucleoprotein (NP) gene of A/California/04/2009(H1N1) was sub-cloned into a L. lactis expression plasmid, pNZ8008. The expression of recombinant L. lactis/pNZ8008-NP was confirmed by Western blot, immunofluorescence assay and flow cytometric analysis. Further, immunogenicity of L. lactis/pNZ8008-NP alone or adjuvanted with cholera toxin B (CTB) subunit was evaluated in a mouse model via oral administration route. Antibodies responses were detected by ELISA. The result indicated that oral administration of L. lactis/pNZ8008-NP adjuvanted with CTB could elicit significant humoral and mucosal immune responses, as well as cellular immune response, compared with L. lactis/pNZ8008-NP alone. To further assess the cross-protective immunity of L. lactis/pNZ8008-NP adjuvanted with CTB, we used L. lactis/pNZ8110-pgsA-HA1 alone or

  11. A Role for Protein Phosphatase 2A in Regulating p38 Mitogen Activated Protein Kinase Activation and Tumor Necrosis Factor-Alpha Expression during Influenza Virus Infection

    Directory of Open Access Journals (Sweden)

    Anna H. Y. Law

    2013-04-01

    Full Text Available Influenza viruses of avian origin continue to pose pandemic threats to human health. Some of the H5N1 and H9N2 virus subtypes induce markedly elevated cytokine levels when compared with the seasonal H1N1 virus. We previously showed that H5N1/97 hyperinduces tumor necrosis factor (TNF-alpha through p38 mitogen activated protein kinase (MAPK. However, the detailed mechanisms of p38MAPK activation and TNF-alpha hyperinduction following influenza virus infections are not known. Negative feedback regulations of cytokine expression play important roles in avoiding overwhelming production of proinflammatory cytokines. Here we hypothesize that protein phosphatases are involved in the regulation of cytokine expressions during influenza virus infection. We investigated the roles of protein phosphatases including MAPK phosphatase-1 (MKP-1 and protein phosphatase type 2A (PP2A in modulating p38MAPK activation and downstream TNF-alpha expressions in primary human monocyte-derived macrophages (PBMac infected with H9N2/G1 or H1N1 influenza virus. We demonstrate that H9N2/G1 virus activated p38MAPK and hyperinduced TNF-alpha production in PBMac when compared with H1N1 virus. H9N2/G1 induced PP2A activity in PBMac and, with the treatment of a PP2A inhibitor, p38MAPK phosphorylation and TNF-alpha production were further increased in the virus-infected macrophages. However, H9N2/G1 did not induce the expression of PP2A indicating that the activation of PP2A is not mediated by p38MAPK in virus-infected PBMac. On the other hand, PP2A may not be the targets of H9N2/G1 in the upstream of p38MAPK signaling pathways since H1N1 also induced PP2A activation in primary macrophages. Our results may provide new insights into the control of cytokine dysregulation.

  12. Meningitis - H. influenzae

    Science.gov (United States)

    H. influenzae meningitis; H. flu meningitis; Haemophilus influenzae type b meningitis ... H. influenzae meningitis is caused by Haemophilus influenzae type b bacteria. This illness is not the same as the flu ( influenza ), ...

  13. Analysis of the changes in expression levels of sialic acid on influenza-virus-infected cells using lectin-tagged polymeric nanoparticles

    Directory of Open Access Journals (Sweden)

    Jaebum Cho

    2016-07-01

    Full Text Available Viral infections affect millions around the world, sometimes leading to severe consequences or even epidemics. Understanding the molecular dynamics during viral infections would provide crucial information for preventing or stopping the progress of infections. However, the current methods often involve the disruption of the infected cells or expensive and time-consuming procedures. In this study, fluorescent polymeric nanoparticles were fabricated and used as bioimaging nanoprobes that can monitor the progression of influenza viral infection through the changes in the expression levels of sialic acids expressed on the cell membrane. The nanoparticles were composed of a biocompatible monomer to prevent non-specific interactions, a hydrophobic monomer to form the core, a fluorescent monomer, and a protein-binding monomer to conjugate lectin, which binds sialic acids. It was shown that these lectin-tagged nanoparticles that specifically target sialic acids could track the changes in the expression levels of sialic acids caused by influenza viral infections in human lung epithelial cells. There was a sudden drop in the levels of sialic acid at the initial onset of virus infection (t = 0~1 hr and at approximately 4~5 hrs post-infection. The latter drop correlated with the production of viral proteins that was confirmed using traditional techniques. Thus, the accuracy, the rapidity and the efficacy of the nanoprobes were demonstrated. Such molecular bioimaging tools, which allow easy-handling and in situ monitoring, would be useful to directly observe and decipher the viral infection mechanisms.

  14. Comparative analysis of the transduction efficiency of five adeno associated virus serotypes and VSV-G pseudotype lentiviral vector in lung cancer cells.

    Science.gov (United States)

    Chen, Chiachen; Akerstrom, Victoria; Baus, James; Lan, Michael S; Breslin, Mary B

    2013-03-14

    Lung cancer is the leading cause of cancer-related deaths in the US. Recombinant vectors based on adeno-associated virus (AAV) and lentivirus are promising delivery tools for gene therapy due to low toxicity and long term expression. The efficiency of the gene delivery system is one of the most important factors directly related to the success of gene therapy. We infected SCLC cell lines, SHP-77, DMS 53, NCI-H82, NCI-H69, NCI-H727, NCI-H1155, and NSCLC cell lines, NCI-H23, NCI-H661, and NCI-H460 with VSV-G pseudo-typed lentivirus or 5 AAV serotypes, AAV2/1, AAV2/2, AAV2/4, AAV2/5, and AAV2/8 expressing the CMV promoter mCherry or green fluorescent protein transgene (EGFP). The transduction efficiency was analyzed by fluorescent microscopy and flow cytometry. Of all the serotypes of AAV examined, AAV2/1 was the optimal serotype in most of the lung cancer cell lines except for NCI-H69 and NCI-H82. The highest transduction rate achieved with AAV2/1 was between 30-50% at MOI 100. Compared to all AAV serotypes, lentivirus had the highest transduction efficiency of over 50% at MOI 1. Even in NCI-H69 cells resistant to all AAV serotypes, lentivirus had a 10-40% transduction rate. To date, AAV2 is the most widely-used serotype to deliver a transgene. Our results showed the transduction efficiency of AAVs tested was AAV2/1 > AA2/5 = AAV2/2> > AAV2/4 and AAV2/8. This study demonstrated that VSV-G pseudotyped lentivirus and AAV2/1 can mediate expression of a transgene for lung cancer gene therapy. Overall, our results showed that lentivirus is the best candidate to deliver a transgene into lung cancer cells for treatment.

  15. Antigen-specific H1N1 influenza antibody responses in acute respiratory tract infections and their relation to influenza infection and disease course.

    Science.gov (United States)

    Haran, John Patrick; Hoaglin, David C; Chen, Huaiqing; Boyer, Edward W; Lu, Shan

    2014-08-01

    Early antibody responses to influenza infection are important in both clearance of virus and fighting the disease. Acute influenza antibody titers directed toward H1-antigens and their relation to infection type and patient outcomes have not been well investigated. Using hemagglutination inhibition (HI) assays, we aimed to characterize the H1-specific antibody titers in patients with influenza infection or another respiratory infection before and after the H1N1-pandemic influenza outbreak. Among patients with acute influenza infection we related duration of illness, severity of symptoms, and need for hospitalization to antibody titers. There were 134 adult patients (average age 34.7) who presented to an urban academic emergency department (ED) from October through March during the 2008-2011 influenza seasons with symptoms of fever and a cough. Nasal aspirates were tested by viral culture, and peripheral blood serum was run in seven H1-subtype HI assays. Acutely infected influenza patients had markedly lower antibody titers for six of the seven pseudotype viruses. For the average over the seven titers (log units, base 2) their mean was 7.24 (95% CI 6.88, 7.61) compared with 8.60 (95% CI 8.27, 8.92) among patients who had a non-influenza respiratory illness, pinfection, titers of some antibodies correlated with severity of symptoms and with total duration of illness (pacute respiratory infections, lower concentrations of H1-influenza-specific antibodies were associated with influenza infection. Among influenza-infected patients, higher antibody titers were present in patients with a longer duration of illness and with higher severity-of-symptom scores. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Generation of VSV pseudotypes using recombinant ΔG-VSV for studies on virus entry, identification of entry inhibitors, and immune responses to vaccines.

    Science.gov (United States)

    Whitt, Michael A

    2010-11-01

    Vesicular stomatitis virus (VSV) is a prototypic enveloped animal virus that has been used extensively to study virus entry, replication and assembly due to its broad host range and robust replication properties in a wide variety of mammalian and insect cells. Studies on VSV assembly led to the creation of a recombinant VSV in which the glycoprotein (G) gene was deleted. This recombinant (rVSV-ΔG) has been used to produce VSV pseudotypes containing the envelope glycoproteins of heterologous viruses, including viruses that require high-level biocontainment; however, because the infectivity of rVSV-ΔG pseudotypes is restricted to a single round of replication the analysis can be performed using biosafety level 2 (BSL-2) containment. As such, rVSV-ΔG pseudotypes have facilitated the analysis of virus entry for numerous viral pathogens without the need for specialized containment facilities. The pseudotypes also provide a robust platform to screen libraries for entry inhibitors and to evaluate the neutralizing antibody responses following vaccination. This manuscript describes methods to produce and titer rVSV-ΔG pseudotypes. Procedures to generate rVSV-ΔG stocks and to quantify virus infectivity are also described. These protocols should allow any laboratory knowledgeable in general virological and cell culture techniques to produce successfully replication-restricted rVSV-ΔG pseudotypes for subsequent analysis. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Enhanced gene transfer efficiency in the murine striatum and an orthotopic glioblastoma tumor model, using AAV-7- and AAV-8-pseudotyped vectors.

    Science.gov (United States)

    Harding, Thomas C; Dickinson, Peter J; Roberts, Byron N; Yendluri, Satya; Gonzalez-Edick, Melissa; Lecouteur, Richard A; Jooss, Karin U

    2006-08-01

    In this study, recombinant AAV vectors pseudotyped with viral capsids derived from AAV serotypes 7 and 8 were evaluated for gene transfer in the murine striatum relative to vectors pseudotyped with AAV serotypes 2, 5, and 6. In comparison with rAAV serotype 2, pseudotyped vectors derived from AAV-7 and AAV-8 have increased transduction efficiency in the murine CNS, with the rank order rAAV-7 > rAAV-8 > rAAV-5 > rAAV-2 = rAAV-6, with all vectors demonstrating a marked tropism for neuronal transduction. Pseudotyped rAAV vector gene transfer in the brain after preimplantation of a murine 4C8 glioblastoma tumor was also evaluated. Efficiency of gene transfer to the orthotopic tumor was increased when using AAV-6, -7, and -8 capsid proteins in comparison with serotype 2, with the order rAAV-8 = rAAV-7 > rAAV-6 > rAAV-2 > rAAV-5. The increased gene transfer efficiency of rAAV vectors pseudotyped with the rAAV-8 capsid also provided enhanced therapeutic efficacy in a mouse model of glioblastoma multiforme, using vectors encoding an inhibitor of the vascular endothelial growth factor pathway. These studies demonstrate that rAAV vectors pseudotyped with capsids derived from AAV serotypes 7 and 8 provide enhanced gene transfer in the murine CNS and may offer increased therapeutic efficacy in the treatment of neurological disease.

  18. Functional variants regulating LGALS1 (Galectin 1) expression affect human susceptibility to influenza A(H7N9)

    NARCIS (Netherlands)

    Chen, Yu; Zhou, Jie; Cheng, Zhongshan; Yang, Shigui; Chu, Hin; Fan, Yanhui; Li, Cun; Wong, Bosco Ho-Yin; Zheng, Shufa; Zhu, Yixin; Yu, Fei; Wang, Yiyin; Liu, Xiaoli; Gao, Hainv; Yu, Liang; Tang, Linglin; Cui, Dawei; Hao, Ke; Bosse, Yohan; Obeidat, Maen; Brandsma, Corry-Anke; Song, You-Qiang; Kai-Wang, Kelvin; Sham, Pak Chung; Yuen, Kwok-Yung; Li, Lanjuan

    2015-01-01

    The fatality of avian influenza A(H7N9) infection in humans was over 30%. To identify human genetic susceptibility to A(H7N9) infection, we performed a genome-wide association study (GWAS) involving 102 A(H7N9) patients and 106 heavily-exposed healthy poultry workers, a sample size critically

  19. Sphingosine 1-phosphate receptor 1 (S1PR1) agonist CYM5442 inhibits expression of intracellular adhesion molecule 1 (ICAM1) in endothelial cells infected with influenza A viruses.

    Science.gov (United States)

    Jiang, Hao; Shen, Si-Mei; Yin, Jie; Zhang, Peng-Peng; Shi, Yi

    2017-01-01

    Influenza A virus infection and its complications effect a large population worldwide. Endothelial cells are an important component in lung inflammation caused by influenza A virus infection. The roles of endothelial sphingosine 1-phophate receptor 1 (S1PR1) in the regulation of molecules involved in leukocyte recruitment during influenza A virus infection still remain unknown. In this report, we tested our hypothesis that S1PR1 agonist CYM5442 inhibits expression of intracellular adhesion molecules 1 (ICAM1) in endothelial cells infected with influenza A virus. Human pulmonary microvascular endothelial cells (HPMEC) were infected with influenza A virus H1N1. Expression of cytokines, chemokines, interferons, and cellular adhesion molecules was measured by q-PCR. Expression of ICAM1 was further tested by Western Blotting. A S1PR1 agonist CYM5442 was added to the culture media to assess CYM5442's inhibitory effects during virus infection. HPMEC could be infected with H1N1 and responded to produce pro-inflammatory cytokines, chemokines, type I interferons, and cellular adhesion molecules. Addition of CYM5442 in culture media reduced the production of ICAM1 via a dosage- and time-dependent manner. CYM5442 inhibited the activation of nuclear factor (NF)-κB. The regulatory effects of CYM5442 were β-arrestin2-dependent. Activated S1PR1 signaling regulates the production of cellular adhesion molecules by inhibiting NF- κB activation via a β-arrestin2-dependent manner.

  20. Pseudotyped AAV vector-mediated gene transfer in a human fetal trachea xenograft model: implications for in utero gene therapy for cystic fibrosis.

    Directory of Open Access Journals (Sweden)

    Sundeep G Keswani

    Full Text Available Lung disease including airway infection and inflammation currently causes the majority of morbidities and mortalities associated with cystic fibrosis (CF, making the airway epithelium and the submucosal glands (SMG novel target cells for gene therapy in CF. These target cells are relatively inaccessible to postnatal gene transfer limiting the success of gene therapy. Our previous work in a human-fetal trachea xenograft model suggests the potential benefit for treating CF in utero. In this study, we aim to validate adeno-associated virus serotype 2 (AAV2 gene transfer in a human fetal trachea xenograft model and to compare transduction efficiencies of pseudotyping AAV2 vectors in fetal xenografts and postnatal xenograft controls.Human fetal trachea or postnatal bronchus controls were xenografted onto immunocompromised SCID mice for a four-week engraftment period. After injection of AAV2/2, 2/1, 2/5, 2/7 or 2/8 with a LacZ reporter into both types of xenografts, we analyzed for transgene expression in the respiratory epithelium and SMGs. At 1 month, transduction by AAV2/2 and AAV2/8 in respiratory epithelium and SMG cells was significantly greater than that of AAV2/1, 2/5, and 2/7 in xenograft tracheas. Efficiency in SMG transduction was significantly greater in AAV2/8 than AAV2/2. At 3 months, AAV2/2 and AAV2/8 transgene expression was >99% of respiratory epithelium and SMG. At 1 month, transduction efficiency of AAV2/2 and AAV2/8 was significantly less in adult postnatal bronchial xenografts than in fetal tracheal xenografts.Based on the effectiveness of AAV vectors in SMG transduction, our findings suggest the potential utility of pseudotyped AAV vectors for treatment of cystic fibrosis. The human fetal trachea xenograft model may serve as an effective tool for further development of fetal gene therapy strategies for the in utero treatment of cystic fibrosis.

  1. Multiplex Evaluation of Influenza Neutralizing Antibodies with Potential Applicability to In-Field Serological Studies

    Directory of Open Access Journals (Sweden)

    Eleonora Molesti

    2014-01-01

    Full Text Available The increased number of outbreaks of H5 and H7 LPAI and HPAI viruses in poultry has major public and animal health implications. The continuous rapid evolution of these subtypes and the emergence of new variants influence the ability to undertake effective surveillance. Retroviral pseudotypes bearing influenza haemagglutinin (HA and neuraminidase (NA envelope glycoproteins represent a flexible platform for sensitive, readily standardized influenza serological assays. We describe a multiplex assay for the study of neutralizing antibodies that are directed against both influenza H5 and H7 HA. This assay permits the measurement of neutralizing antibody responses against two antigenically distinct HAs in the same serum/plasma sample thus increasing the amount and quality of serological data that can be acquired from valuable sera. Sera obtained from chickens vaccinated with a monovalent H5N2 vaccine, chickens vaccinated with a bivalent H7N1/H5N9 vaccine, or turkeys naturally infected with an H7N3 virus were evaluated in this assay and the results correlated strongly with data obtained by HI assay. We show that pseudotypes are highly stable under basic cold-chain storage conditions and following multiple rounds of freeze-thaw. We propose that this robust assay may have practical utility for in-field serosurveillance and vaccine studies in resource-limited regions worldwide.

  2. Pseudotyping Vesicular Stomatitis Virus with Lymphocytic Choriomeningitis Virus Glycoproteins Enhances Infectivity for Glioma Cells and Minimizes Neurotropism▿†

    OpenAIRE

    Muik, Alexander; Kneiske, Inna; Werbizki, Marina; Wilflingseder, Doris; Giroglou, Tsanan; Ebert, Oliver; Kraft, Anna; Dietrich, Ursula; Zimmer, Gert; Momma, Stefan; von Laer, Dorothee

    2011-01-01

    Vesicular stomatitis virus (VSV)-based oncolytic virotherapy has the potential to significantly improve the prognosis of aggressive malignancies such as brain cancer. However, VSV's inherent neurotoxicity has hindered clinical development so far. Given that this neurotropism is attributed to the glycoprotein VSV-G, VSV was pseudotyped with the nonneurotropic envelope glycoprotein of the lymphocytic choriomeningitis virus (LCMV-GP→VSV-GP). Compared to VSV, VSV-GP showed enhanced infectivity fo...

  3. Pseudotyping and culture conditions affect efficiency and cytotoxicity of retroviral gene transfer to human corneal endothelial cells.

    Science.gov (United States)

    Valtink, Monika; Stanke, Nicole; Knels, Lilla; Engelmann, Katrin; Funk, Richard H W; Lindemann, Dirk

    2011-08-29

    To evaluate retroviral vectors as a tool to transduce normal human corneal endothelial cells (HCECs) and to optimize transduction to increase gene transfer efficiency. Enhanced green fluorescent protein (EGFP) encoding retroviral vectors based on HIV-1 or murine leukemia virus (MLV), pseudotyped with either vesicular stomatitis virus glycoprotein (VSV-G) or a modified foamy virus envelope protein (FV Env), and prototype foamy virus (PFV) were produced. Transduction was performed in four HCEC culture media that were previously described for specific cultivation of HCECs or organ culture of donor corneas, namely enriched HCEC growth medium F99(HCEC), its unsupplemented basal medium F99, MEM + 2% fetal calf serum (FCS) (MEM), and Human Endothelial-SFM (SFM). Transduction efficiency was evaluated by marker gene transfer assay, and cytotoxic effects of virus infection were evaluated by means of resazurin conversion assay. PFV- and HIV-1-based vectors showed superior transduction efficiency compared with MLV-based vectors. Pseudotyping with a modified FV Env increased transduction efficiency compared with pseudotyping with VSV-G. In medium SFM, transduction efficiency of PFV, HIV-1-/FV Env, and MLV-based vectors was markedly reduced compared with the other culture media. When cells were cultured in F99-based media, cell viability was reduced by retroviral transduction compared with uninfected or mock infected controls, but remained unaffected when cells were cultured in SFM and was even increased when cells were cultured in MEM. HIV-1-based vectors pseudotyped with FV Env can efficiently be used to transduce primary HCECs in vitro. However, transduction efficiency is dependent on culture conditions and impairs metabolic activity and viability of HCECs in vitro.

  4. [Differences of the regulation on the expression of mucin 1 induced by two single-strand RNA viruses, respiratory syncytial virus and influenza virus].

    Science.gov (United States)

    Lu, Xin; Ni, Shu-Yuan; Li, Yu-Sheng

    2012-11-01

    To investigate whether influenza virus (IFZ) could up-regulate the expression of mucin 1 (MUC1) which exists in epithelial cells of upper respiratory track to restrict the inflammation, as respiratory syncytial virus (RSV) does. Quantitative RT-PCR and Western Blot were performed to detect the expression level of MUC1 induced by two single-strand RNA viruses in A549 cell lines. HEp-2 and MDCK cells were used respectively to culture RSV and IFZ. At 24h post A549 cells infection with the same titer of RSV or IFZ, the total RNA was harvest, qRT-PCR was then performed to observe the expression level of MUC1 mRNA. Meanwhile, at 24 h and 48 h post A549 cells infection with the same titer of RSV or IFZ, the total protein and supernatant were collected respectively after cell lysis, Western Blot was then used to detect the expression level of MUC1. Results showed that RSV could up-regulate the expression of MUC1 in airway epithelial cells with a significant dose-effect correlation, whereas IFZ could not. This study firstly investigated the differences of the regulation on the expression of MUC1 induced by two single-strand RNA viruses, and demonstrated initially that the mechanism of IFZ self-limiting differed from RSV, which attributed to up-regulation of the expression level of MUC1.

  5. Influenza A virus does not encode a tetherin antagonist with Vpu-like activity and induces IFN-dependent tetherin expression in infected cells.

    Directory of Open Access Journals (Sweden)

    Michael Winkler

    Full Text Available The interferon-induced host cell factor tetherin inhibits release of human immunodeficiency virus (HIV from the plasma membrane of infected cells and is counteracted by the HIV-1 protein Vpu. Influenza A virus (FLUAV also buds from the plasma membrane and is not inhibited by tetherin. Here, we investigated if FLUAV encodes a functional equivalent of Vpu for tetherin antagonism. We found that expression of the FLUAV protein NS1, which antagonizes the interferon (IFN response, did not block the tetherin-mediated restriction of HIV release, which was rescued by Vpu. Similarly, tetherin-mediated inhibition of HIV release was not rescued by FLUAV infection. In contrast, FLUAV infection induced tetherin expression on target cells in an IFN-dependent manner. These results suggest that FLUAV escapes the antiviral effects of tetherin without encoding a tetherin antagonist with Vpu-like activity.

  6. Analysis of VSV pseudotype virus infection mediated by rubella virus envelope proteins.

    Science.gov (United States)

    Sakata, Masafumi; Tani, Hideki; Anraku, Masaki; Kataoka, Michiyo; Nagata, Noriyo; Seki, Fumio; Tahara, Maino; Otsuki, Noriyuki; Okamoto, Kiyoko; Takeda, Makoto; Mori, Yoshio

    2017-09-14

    Rubella virus (RV) generally causes a systemic infection in humans. Viral cell tropism is a key determinant of viral pathogenesis, but the tropism of RV is currently poorly understood. We analyzed various human cell lines and determined that RV only establishes an infection efficiently in particular non-immune cell lines. To establish an infection the host cells must be susceptible and permissible. To assess the susceptibility of individual cell lines, we generated a pseudotype vesicular stomatitis virus bearing RV envelope proteins (VSV-RV/CE2E1). VSV-RV/CE2E1 entered cells in an RV envelope protein-dependent manner, and thus the infection was neutralized completely by an RV-specific antibody. The infection was Ca2+-dependent and inhibited by endosomal acidification inhibitors, further confirming the dependency on RV envelope proteins for the VSV-RV/CE2E1 infection. Human non-immune cell lines were mostly susceptible to VSV-RV/CE2E1, while immune cell lines were much less susceptible than non-immune cell lines. However, susceptibility of immune cells to VSV-RV/CE2E1 was increased upon stimulation of these cells. Our data therefore suggest that immune cells are generally less susceptible to RV infection than non-immune cells, but the susceptibility of immune cells is enhanced upon stimulation.

  7. [Cell lineage tracing of regenerating cells after partial pancreatectomy using pseudo-type retrovirus].

    Science.gov (United States)

    Zhang, Lixin; Ju, Xiaofang; Wang, Fa; Guo, Zhiwei; Piao, Shanhua; Teng, Chunbo

    2008-04-01

    Pancreas is an important mixed gland having both endocrine and exocrine functions, and has been proven regeneration after injury. To explore the cell lineage tracing methods in pancreas in vivo and the regenerate cells source, we used pseudo-type retrovirus to transfect adult mouse pancreas which had been partially pancreatectomized by rubbing the kerf using a cotton stick saturated with retrovirus suspension then injecting 100 microL retrovirus suspension into pancreas, injecting 100 microL retrovirus by caudal vein, or interperitoneally injecting retrovirus respectively. The results showed that the method of rubbing the kerf then injection of retrovirus suspension into pancreas could more effectively mark the pancreatic cells than the caudal vein injection and the intraperitoneal injection did in vivo. Furthermore, this study also found that some acinus cells could accept injury stimulus signals to regenerate through resuming mitosis after pancreatic injury. This study establishes a cell lineage tracing method in pancreas in vivo using retrovirus and offers a clue for gene therapy of pancreatic diseases using retrovirus vectors.

  8. In vitro expression of native H5 and N1 genes of avian influenza virus by using Green Fluorescent Protein as reporter

    Directory of Open Access Journals (Sweden)

    Risza Hartawan

    2011-10-01

    Full Text Available The hemagglutinin and neuraminidase are important immunogen of avian influenza virus that are suitable for recombinant experimentation. However, both genes have been experienced rapid mutation resulting in diverse variety of genotypes. Hence, gene expression in recombinant systems will be difficult to predict. The objective of the study was to examine expression level of H5 and N1 genes from a field isolate by cloning the genes into expression vector pEGFP-C1. Two clones respresenting fulllength of H5 and N1 gene in plasmid pEGFP-C1 were transfected into chicken embryo fibroblasts (CEF, rabbit kidney (RK13 and African green monkey kidney (VERO cells using Lipofectamine ‘Plus’ reagent. The experiment showed level of gene expression in the VERO cell was higher than in the RK13 and CEF cells. Observations using fluorescent microscopy and Western blotting revealed that the N1 gene was expressed better in all cells compared to the H5 gene.

  9. Live-attenuated auxotrophic mutant of Salmonella Typhimurium expressing immunogenic HA1 protein enhances immunity and protective efficacy against H1N1 influenza virus infection.

    Science.gov (United States)

    Kamble, Nitin Machindra; Hyoung, Kim Je; Lee, John Hwa

    2017-07-01

    To evaluate the efficacy of attenuated Salmonella Typhimurium (JOL912) as a live bacterial vaccine vector. The JOL912 engineered to deliver HA1 protein from influenza A/Puerto Rico/8/1934 (H1N1; PR8) virus was coined as JOL1635 and further evaluated for immunogenicity and protective efficacy. The JOL1635 stably harbored the HA1 gene within pMMP65 plasmid with periplasmic expression and effective delivery of HA1 protein to RAW264.7 cells. The JOL1635 immunized chickens showed the significant increase in HA1-specific IgG, sIgA antibody, IFN-γ, IL-6 cytokine and cellular immune responses. The postoral challenge, the JOL1635-immunized chickens showed a faster clearance of PR8 virus cloacal shedding than the control group. Generated JOL1635 can establish specific immunogenicity and protection against the PR8 virus in chickens.

  10. Swine Influenza/Variant Influenza Viruses

    Science.gov (United States)

    ... Address What's this? Submit What's this? Submit Button Influenza Types Seasonal Avian Swine Variant Other Information on Swine Influenza/Variant Influenza Virus Language: English (US) Español Recommend ...

  11. An automated HIV-1 Env-pseudotyped virus production for global HIV vaccine trials.

    Directory of Open Access Journals (Sweden)

    Anke Schultz

    Full Text Available BACKGROUND: Infections with HIV still represent a major human health problem worldwide and a vaccine is the only long-term option to fight efficiently against this virus. Standardized assessments of HIV-specific immune responses in vaccine trials are essential for prioritizing vaccine candidates in preclinical and clinical stages of development. With respect to neutralizing antibodies, assays with HIV-1 Env-pseudotyped viruses are a high priority. To cover the increasing demands of HIV pseudoviruses, a complete cell culture and transfection automation system has been developed. METHODOLOGY/PRINCIPAL FINDINGS: The automation system for HIV pseudovirus production comprises a modified Tecan-based Cellerity system. It covers an area of 5×3 meters and includes a robot platform, a cell counting machine, a CO(2 incubator for cell cultivation and a media refrigerator. The processes for cell handling, transfection and pseudovirus production have been implemented according to manual standard operating procedures and are controlled and scheduled autonomously by the system. The system is housed in a biosafety level II cabinet that guarantees protection of personnel, environment and the product. HIV pseudovirus stocks in a scale from 140 ml to 1000 ml have been produced on the automated system. Parallel manual production of HIV pseudoviruses and comparisons (bridging assays confirmed that the automated produced pseudoviruses were of equivalent quality as those produced manually. In addition, the automated method was fully validated according to Good Clinical Laboratory Practice (GCLP guidelines, including the validation parameters accuracy, precision, robustness and specificity. CONCLUSIONS: An automated HIV pseudovirus production system has been successfully established. It allows the high quality production of HIV pseudoviruses under GCLP conditions. In its present form, the installed module enables the production of 1000 ml of virus-containing cell

  12. Avian Influenza

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This is a letter from a professor at Clemson University about waterfowl that had been tested for avian influenza at Santee National Wildlife Refuge

  13. Identification of adaptive mutations in the influenza A virus non-structural 1 gene that increase cytoplasmic localization and differentially regulate host gene expression.

    Directory of Open Access Journals (Sweden)

    Nicole Forbes

    Full Text Available The NS1 protein of influenza A virus (IAV is a multifunctional virulence factor. We have previously characterized gain-of-function mutations in the NS1 protein arising from the experimental adaptation of the human isolate A/Hong Kong/1/1968(H3N2 (HK to the mouse. The majority of these mouse adapted NS1 mutations were demonstrated to increase virulence, viral fitness, and interferon antagonism, but differ in binding to the post-transcriptional processing factor cleavage and polyadenylation specificity factor 30 (CPSF30. Because nuclear trafficking is a major genetic determinant of influenza virus host adaptation, we assessed subcellular localization and host gene expression of NS1 adaptive mutations. Recombinant HK viruses with adaptive mutations in the NS1 gene were assessed for NS1 protein subcellular localization in mouse and human cells using confocal microscopy and cellular fractionation. In human cells the HK wild-type (HK-wt virus NS1 protein partitioned equivalently between the cytoplasm and nucleus but was defective in cytoplasmic localization in mouse cells. Several adaptive mutations increased the proportion of NS1 in the cytoplasm of mouse cells with the greatest effects for mutations M106I and D125G. The host gene expression profile of the adaptive mutants was determined by microarray analysis of infected mouse cells to show either high or low extents of host-gene regulation (HGR or LGR phenotypes. While host genes were predominantly down regulated for the HGR group of mutants (D2N, V23A, F103L, M106I+L98S, L98S, M106V, and M106V+M124I, the LGR phenotype mutants (D125G, M106I, V180A, V226I, and R227K were characterized by a predominant up regulation of host genes. CPSF30 binding affinity of NS1 mutants did not predict effects on host gene expression. To our knowledge this is the first report of roles of adaptive NS1 mutations that impact intracellular localization and regulation of host gene expression.

  14. Digital sensing and sizing of vesicular stomatitis virus pseudotypes in complex media: a model for Ebola and Marburg detection.

    Science.gov (United States)

    Daaboul, George G; Lopez, Carlos A; Chinnala, Jyothsna; Goldberg, Bennett B; Connor, John H; Ünlü, M Selim

    2014-06-24

    Rapid, sensitive, and direct label-free capture and characterization of nanoparticles from complex media such as blood or serum will broadly impact medicine and the life sciences. We demonstrate identification of virus particles in complex samples for replication-competent wild-type vesicular stomatitis virus (VSV), defective VSV, and Ebola- and Marburg-pseudotyped VSV with high sensitivity and specificity. Size discrimination of the imaged nanoparticles (virions) allows differentiation between modified viruses having different genome lengths and facilitates a reduction in the counting of nonspecifically bound particles to achieve a limit-of-detection (LOD) of 5 × 10(3) pfu/mL for the Ebola and Marburg VSV pseudotypes. We demonstrate the simultaneous detection of multiple viruses in a single sample (composed of serum or whole blood) for screening applications and uncompromised detection capabilities in samples contaminated with high levels of bacteria. By employing affinity-based capture, size discrimination, and a "digital" detection scheme to count single virus particles, we show that a robust and sensitive virus/nanoparticle sensing assay can be established for targets in complex samples. The nanoparticle microscopy system is termed the Single Particle Interferometric Reflectance Imaging Sensor (SP-IRIS) and is capable of high-throughput and rapid sizing of large numbers of biological nanoparticles on an antibody microarray for research and diagnostic applications.

  15. Hepatitis C virus quasispecies and pseudotype analysis from acute infection to chronicity in HIV-1 co-infected individuals.

    Science.gov (United States)

    Ferns, R Bridget; Tarr, Alexander W; Hue, Stephane; Urbanowicz, Richard A; McClure, C Patrick; Gilson, Richard; Ball, Jonathan K; Nastouli, Eleni; Garson, Jeremy A; Pillay, Deenan

    2016-05-01

    HIV-1 infected patients who acquire HCV infection have higher rates of chronicity and liver disease progression than patients with HCV mono-infection. Understanding early events in this pathogenic process is important. We applied single genome sequencing of the E1 to NS3 regions and viral pseudotype neutralization assays to explore the consequences of viral quasispecies evolution from pre-seroconversion to chronicity in four co-infected individuals (mean follow up 566 days). We observed that one to three founder viruses were transmitted. Relatively low viral sequence diversity, possibly related to an impaired immune response, due to HIV infection was observed in three patients. However, the fourth patient, after an early purifying selection displayed increasing E2 sequence evolution, possibly related to being on suppressive antiretroviral therapy. Viral pseudotypes generated from HCV variants showed relative resistance to neutralization by autologous plasma but not to plasma collected from later time points, confirming ongoing virus escape from antibody neutralization. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Transient expression of the influenza A virus PB1-F2 protein using a plum pox virus-based vector in Nicotiana benthamiana.

    Science.gov (United States)

    Kamencayová, M; Košík, I; Hunková, J; Subr, Z W

    2014-01-01

    PB1-F2 protein of influenza A virus (IAV) was cloned in a plum pox virus (PPV) genome-based vector and attempts to express it in biolistically transfected Nicotiana benthamiana plants were performed. The vector-insert construct replicated in infected plants properly and was stable during repeated passage by mechanical inoculation, as demonstrated by disease symptoms and immunoblot detection of PPV capsid protein, while PB1-F2-specific band was more faint. We showed that it was due its low solubility. Modification of sample preparation (denaturation/solubilization preceding the centrifugation of cell debris) led to substantial signal enhancement. Maximal level of PB1-F2 expression in plants was observed 12 days post inoculation (dpi). Only 1% SDS properly solubilized the protein, other detergents were much less efficient. Solubilization with 8M urea released approximately 50% of PB1-F2 from the plant tissues, thus the treatment with this removable chaotropic agent may be a good starting point for the purification of the protein for eventual functional studies in the future.

  17. Cross reactivity of serum antibody responses elicited by DNA vaccines expressing HA antigens from H1N1 subtype influenza vaccines in the past 30 years.

    Science.gov (United States)

    Almansour, Iman; Chen, Huaiqing; Wang, Shixia; Lu, Shan

    2013-10-01

    In the past three decades, ten H1 subtype influenza vaccines have been recommended for global seasonal flu vaccination. Some of them were used only for one year before being replaced by another H1 flu vaccine while others may be used for up to seven years. While the selection of a new seasonal flu vaccine was based on the escape of a new emerging virus that was not effectively protected by the existing flu formulation, there is limited information on the magnitude and breadth of cross reactivity among H1 subtype virus circulation over a long period. In the current study, HA-expressing DNA vaccines were constructed to express individual HA antigens from H1 subtype vaccines used in the past 30 y. Rabbits naïve to HA antibody responses were immunized with these HA DNA vaccines and the cross reactivity of these sera against HA antigen and related H1 viruses in the same period was studied. Our data indicate that the level of cross reactivity was different for different viral isolates and the key mutations responsible for the cross reactivity may involve only a limited number of residues. Our results provide useful information for the development of improved seasonal vaccines than can achieve broad protection against viruses within the same H1 subtype.

  18. Identification of differentially expressed miRNAs in chicken lung and trachea with avian influenza virus infection by a deep sequencing approach

    Directory of Open Access Journals (Sweden)

    Chen Rui

    2009-11-01

    Full Text Available Abstract Background MicroRNAs (miRNAs play critical roles in a wide spectrum of biological processes and have been shown to be important effectors in the intricate host-pathogen interaction networks. Avian influenza virus (AIV not only causes significant economic losses in poultry production, but also is of great concern to human health. The objective of this study was to identify miRNAs associated with AIV infections in chickens. Results Total RNAs were isolated from lung and trachea of low pathogenic H5N3 infected and non-infected SPF chickens at 4 days post-infection. A total of 278,398 and 340,726 reads were obtained from lung and trachea, respectively. And 377 miRNAs were detected in lungs and 149 in tracheae from a total of 474 distinct chicken miRNAs available at the miRBase, respectively. Seventy-three and thirty-six miRNAs were differentially expressed between infected and non-infected chickens in lungs and tracheae, respectively. There were more miRNAs highly expressed in non-infected tissues than in infected tissues. Interestingly, some of these differentially expressed miRNAs, including miR-146, have been previously reported to be associated with immune-related signal pathways in mammals. Conclusion To our knowledge, this is the first study on miRNA gene expression in AIV infected chickens using a deep sequencing approach. During AIV infection, many host miRNAs were differentially regulated, supporting the hypothesis that certain miRNAs might be essential in the host-pathogen interactions. Elucidation of the mechanism of these miRNAs on the regulation of host-AIV interaction will lead to the development of new control strategies to prevent or treat AIV infections in poultry.

  19. Vaccination of chickens with recombinant salmonella expressing the M2e and CD154 increase protection and decrease viral shedding following low pathogenic avian influenza challenge

    Science.gov (United States)

    Avian influenza (AI) is a significant public health concern and serious economic threat to the commercial poultry industry worldwide. Previous research demonstrates that antibodies against M2e confer protection against influenza challenge. Using the Red recombinase system in combination with overl...

  20. Infection with human H1N1 influenza virus affects the expression of sialic acids of metaplastic mucous cells in the ferret airways

    DEFF Research Database (Denmark)

    Kirkeby, Svend; Martel, Cyril Jean-Marie; Aasted, Bent

    2009-01-01

    Glycans terminating in sialic acids serve as receptors for influenza viruses. In this study ferrets were infected with influenza virus A/New Caledonia/20/99, and the in situ localization of sialic acids linked a2-3 and a2-6 in the airways was investigated in infected and non-infected animals by u...

  1. Inability of rat DPP4 to allow MERS-CoV infection revealed by using a VSV pseudotype bearing truncated MERS-CoV spike protein.

    Science.gov (United States)

    Fukuma, Aiko; Tani, Hideki; Taniguchi, Satoshi; Shimojima, Masayuki; Saijo, Masayuki; Fukushi, Shuetsu

    2015-09-01

    Middle East respiratory syndrome (MERS) coronavirus (Co-V) contains a single spike (S) protein, which binds to a receptor molecule, dipeptidyl peptidase 4 (DPP4; also known as CD26), and serves as a neutralizing antigen. Pseudotyped viruses are useful for measuring neutralization titers against highly infectious viruses as well as for studying their mechanism of entry. In this study, we constructed a series of cytoplasmic deletion mutants of MERS-CoV S and compared the efficiency with which they formed pseudotypes with vesicular stomatitis virus. A pseudotype bearing an S protein with the C-terminal 16 amino acids deleted (MERSpv-St16) reached a maximum titer that was approximately tenfold higher than that of a pseudotype bearing a non-truncated full-length S protein. Using MERSpv-St16, we demonstrated the inability of rat DPP4 to serve as a functional receptor for MERS-CoV, suggesting that rats are not susceptible to MERS-CoV infection. This study provides novel information that enhances our understanding of the host range of MERS-CoV.

  2. Avian influenza.

    Science.gov (United States)

    Zeitlin, Gary A; Maslow, Melanie J

    2006-03-01

    The current epidemic of H5N1 highly pathogenic avian influenza in Southeast Asia raises serious concerns that genetic reassortment will result in the next influenza pandemic. There have been 164 confirmed cases of human infection with avian influenza since 1996. In 2004 alone, there were 45 cases of human H5N1 in Vietnam and Thailand, with a mortality rate over 70%. In addition to the potential public health hazard, the current zoonotic epidemic has caused severe economic losses. Efforts must be concentrated on early detection of bird outbreaks with aggressive culling, quarantines, and disinfection. To prepare for and prevent increased human cases, it is essential to improve detection methods and stockpile effective antivirals. Novel therapeutic modalities, including short, interfering RNAs and new vaccine strategies that use plasmid-based genetic systems offer promise, should a pandemic occur.

  3. Detection of antibodies against H5 and H7 strains in birds: evaluation of influenza pseudovirus particle neutralization tests

    Directory of Open Access Journals (Sweden)

    Sofie Wallerström

    2014-01-01

    Full Text Available Introduction: Avian influenza viruses circulate in bird populations, and it is important to maintain and uphold our knowledge of the viral strains that are currently of interest in this context. Here, we describe the use of hemagglutinin-pseudotype retroviruses based on highly pathogenic influenza viruses for the screening of avian sera for influenza A antibodies. Our aim was also to determine whether the pseudovirus neutralization tests that we assessed were sensitive and simple to use compared to the traditional methods, including hemagglutination inhibition assays and microneutralization tests. Material and methods: H5 and H7 pseudovirus neutralization tests were evaluated by using serum from infected rabbits. Subsequently, the assays were further investigated using a panel of serum samples from avian species. The panel contained samples that were seropositive for five different hemagglutinin subtypes as well as influenza A seronegative samples. Results and discussion: The results suggest that the pseudovirus neutralization test is an alternative to hemagglutination inhibition assays, as we observed comparable titers to those of both standard microneutralizations assays as well as hemagglutinin inhibition assays. When evaluated by a panel of avian sera, the method also showed its capability to recognize antibodies directed toward low-pathogenic H5 and H7. Hence, we conclude that it is possible to use pseudoviruses based on highly pathogenic avian influenza viruses to screen avian sera for antibodies directed against influenza A subtypes H5 and H7.

  4. Overcoming maternal antibody interference by vaccination with human adenovirus 5 recombinant viruses expressing the hemagglutinin and the nucleoprotein of swine influenza virus.

    Science.gov (United States)

    Wesley, Ronald D; Lager, Kelly M

    2006-11-26

    Sows and gilts lack immunity to human adenovirus 5 (Ad-5) vectored vaccines so immunogens of swine pathogens can be expressed with these vaccines in order to immunize suckling piglets that have interfering, maternally derived antibodies. In this study 7-day-old piglets, that had suckled H3N2 infected gilts, were sham-inoculated with a non-expressing Ad-5 vector or given a primary vaccination with replication-defective Ad-5 viruses expressed the H3 hemagglutinin and the nucleoprotein of swine influenza virus (SIV) subtype H3N2. The hemagglutination inhibition (HI) titer of the sham-inoculated group (n = 12) showed continued antibody decay whereas piglets vaccinated with Ad-5 SIV (n = 23) developed an active immune response by the second week post-vaccination. At 4 weeks-of-age when the HI titer of the sham-inoculated group had decayed to 45, the sham-inoculated group and half of the Ad-5 SIV vaccinated pigs were boosted with a commercial inactivated SIV vaccine. The boosted pigs that had been primed in the presence of maternal interfering antibodies had a strong anamnestic response while sham-inoculated pigs did not respond to the commercial vaccine. Two weeks after the booster vaccination the pigs were challenged with a non-homologous H3N2 virulent SIV. The efficacy of the vaccination protocol was demonstrated by abrogation of clinical signs, by clearance of challenge virus from pulmonary lavage fluids, by markedly reduced virus shedding in nasal secretions, and by the absence of moderate or severe SIV-induced lung lesions. These recombinant Ad-5 SIV vaccines are useful for priming the immune system to override the effects of maternally derived antibodies which interfere with conventional SIV vaccines.

  5. Influenza Vaccine, Live Intranasal

    Science.gov (United States)

    ... influenza vaccine (RIV). The nasal spray flu vaccine (live attenuated influenza vaccine or LAIV) should NOT be ... What is live, attenuated influenza vaccine-LAIV (nasal spray)?A dose of flu vaccine is recommended every flu season. Children younger ...

  6. Novel vector vaccine against Brucella abortus based on influenza A viruses expressing Brucella L7/L12 or Omp16 proteins: evaluation of protection in pregnant heifers.

    Science.gov (United States)

    Tabynov, Kaissar; Yespembetov, Bolat; Sansyzbay, Abylai

    2014-10-14

    The present study provides the first information about the protection of a novel influenza viral vector vaccine expressing the Brucella proteins ribosomal L7/L12 or Omp16 containing the adjuvant Montanide Gel01 in pregnant heifers. Immunization of pregnant heifers was conducted via the conjunctival (n=10) or subcutaneous (n=10) route using cross prime and booster vaccination schedules at an interval of 28 days. The vector vaccine was evaluated in comparison with positive control groups vaccinated with Brucella abortus S19 (n=10) or B. abortus RB51 (n=10) and a negative (PBS+Montanide Gel01; n=10) control group. Via both the conjunctival or subcutaneous route, evaluation of protectiveness against abortion, effectiveness of vaccination and index of infection (in heifers and their fetuses or calves) demonstrated the vector vaccine provided good protection against B. abortus 544 infection compared to the negative control group (PBS+Montanide Gel01) and comparable protection to commercial vaccines B. abortus S19 or B. abortus RB51. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Nontypeable Haemophilus influenzae-Induced MyD88 Short Expression Is Regulated by Positive IKKβ and CREB Pathways and Negative ERK1/2 Pathway

    Science.gov (United States)

    Andrews, Carla S.; Miyata, Masanori; Susuki-Miyata, Seiko; Lee, Byung-Cheol; Komatsu, Kensei; Li, Jian-Dong

    2015-01-01

    Airway diseases such as asthma and chronic obstructive pulmonary disease (COPD) are characterized by excessive inflammation and are exacerbated by nontypeable Haemophilus influenzae (NTHi). Airway epithelial cells mount the initial innate immune responses to invading pathogens and thus modulate inflammation. While inflammation is necessary to eliminate a pathogen, excessive inflammation can cause damage to the host tissue. Therefore, the inflammatory response must be tightly regulated and deciphering the signaling pathways involved in this response will enhance our understanding of the regulation of the host inflammatory response. NTHi binds to TLR2 and signal propagation requires the adaptor molecule myeloid differentiation factor 88 (MyD88). An alternative spliced form of MyD88 is called MyD88 short (MyD88s) and has been identified in macrophages and embryonic cell lines as a negative regulator of inflammation. However, the role of MyD88s in NTHi-induced inflammation in airway epithelial cells remains unknown. Here we show that NTHi induces MyD88s expression and MyD88s is a negative regulator of inflammation in airway epithelial cells. We further demonstrate that MyD88s is positively regulated by IKKβ and CREB and negatively regulated by ERK1/2 signaling pathways. Taken together these data indicate that airway inflammation is controlled in a negative feedback manner involving MyD88s and suggest that airway epithelial cells are essential to maintain immune homeostasis. PMID:26669856

  8. An LASV GPC pseudotyped virus based reporter system enables evaluation of vaccines in mice under non-BSL-4 conditions.

    Science.gov (United States)

    Li, Qianqian; Liu, Qiang; Huang, Weijin; Wu, Jiajing; Nie, Jianhui; Wang, Meng; Zhao, Chenyan; Zhang, Li; Wang, Youchun

    2017-09-12

    Lassa virus (LASV) causes a severe hemorrhagic fever endemic throughout western Africa. Because of the ability to cause lethal disease in humans, limited treatment options, and potential as a bioweapon, the need for vaccines to prevent LASV epidemic is urgent. However, LASV vaccine development has been hindered by the lack of appropriate small animal models for efficacy evaluation independent of biosafety level four (BSL-4) facilities. Here we generated an LASV-glycoprotein precursor (GPC)-pseudotyped Human immunodeficiency virus containing firefly luciferase (Fluc) reporter gene as surrogate to develop a bioluminescent-imaging-based BALB/c mouse model for one-round infection under non-BSL-4 conditions, in which the bioluminescent intensity of Fluc was utilized as endpoint when evaluating vaccine efficacy. Electron microscopy analysis demonstrated that LASV GPC pseudotyped virus appeared structurally similar to native virion. Meanwhile, we constructed DNA vaccine (pSV1.0-LASVGPC) and pseudoparticle-based vaccine (LASVpp) that displayed conformational GPC protein of LASV strain Josiah to vaccinate BALB/c mice using intramuscular electroporation and by intraperitoneal routes, respectively. Vaccinated mice in LASVpp alone and DNA prime+LASVpp boost schedules were protected against 100 AID50 of LASV pseudovirus challenge, and it was found that in vivo efficiencies correlated with their anti-LASV neutralizing activities and MCP-1 cytokine levels in serum sampled before infection. The bioluminescence pseudovirus infection model can be useful tool for the preliminary evaluation of immunogenicity and efficacy of vaccine candidates against LASV outside of BSL-4 containments, and the results with pseudoparticle-based vaccine provided very helpful information for LASV vaccine design. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Partial Protection against Porcine Influenza A Virus by a Hemagglutinin-Expressing Virus Replicon Particle Vaccine in the Absence of Neutralizing Antibodies.

    Science.gov (United States)

    Ricklin, Meret E; Vielle, Nathalie J; Python, Sylvie; Brechbühl, Daniel; Zumkehr, Beatrice; Posthaus, Horst; Zimmer, Gert; Summerfield, Artur

    2016-01-01

    This work was initiated by previous reports demonstrating that mismatched influenza A virus (IAV) vaccines can induce enhanced disease, probably mediated by antibodies. Our aim was, therefore, to investigate if a vaccine inducing opsonizing but not neutralizing antibodies against the hemagglutinin (HA) of a selected heterologous challenge virus would enhance disease or induce protective immune responses in the pig model. To this end, we immunized pigs with either whole inactivated virus (WIV)-vaccine or HA-expressing virus replicon particles (VRP) vaccine based on recombinant vesicular stomatitis virus (VSV). Both types of vaccines induced virus neutralizing and opsonizing antibodies against homologous virus as shown by a highly sensitive plasmacytoid dendritic cell-based opsonization assay. Opsonizing antibodies showed a broader reactivity against heterologous IAV compared with neutralizing antibodies. Pigs immunized with HA-recombinant VRP vaccine were partially protected from infection with a mismatched IAV, which was not neutralized but opsonized by the immune sera. The VRP vaccine reduced lung lesions, lung inflammatory cytokine responses, serum IFN-α responses, and viral loads in the airways. Only the VRP vaccine was able to prime IAV-specific IFNγ/TNFα dual secreting CD4(+) T cells detectable in the peripheral blood. In summary, this work demonstrates that with the virus pair selected, a WIV vaccine inducing opsonizing antibodies against HA which lack neutralizing activity, is neither protective nor does it induce enhanced disease in pigs. In contrast, VRP-expressing HA is efficacious vaccines in swine as they induced both potent antibodies and T-cell immunity resulting in a broader protective value.

  10. A rapid Flp-In system for expression of secreted H5N1 influenza hemagglutinin vaccine immunogen in mammalian cells.

    Directory of Open Access Journals (Sweden)

    Hanxin Lu

    2011-02-01

    Full Text Available Continuing transmissions of highly pathogenic H5N1 viruses in poultry and humans underscores the need for a rapid response to potential pandemic in the form of vaccine. Recombinant technologies for production of immunogenic hemagglutinin (HA could provide an advantage over the traditional inactivated vaccine manufacturing process. Generation of stably transfected mammalian cells secreting properly folded HA proteins is important for scalable controlled manufacturing.We have developed a Flp-In based 293 stable cell lines through targeted site-specific recombination for expression of secreted hemagglutinin (HA proteins and evaluated their immunogenicity. H5N1 globular domain HA1(1-330 and HA0(1-500 proteins were purified from the supernatants of 293 Flp-In stable cell lines. Both proteins were properly folded as confirmed by binding to H5N1-neutralizing conformation-dependent human monoclonal antibodies. The HA0 (with unmodified cleavage site was monomeric, while the HA1 contained oligomeric forms. Upon rabbit immunization, both HA proteins elicited neutralizing antibodies against the homologous virus (A/Vietnam/1203/2004, clade 1 as well as cross-neutralizing antibodies against heterologous H5N1 clade 2 strains, including A/Indonesia/5/2005. These results exceeded the human antibody responses against the inactivated sub-virion H5N1 vaccine.Our data suggest that the 293 Flp-In system could serve as a platform for rapid expression of HA immunogens in mammalian cells from emerging influenza strains.

  11. Pandemisk influenza

    DEFF Research Database (Denmark)

    Andersen, Nina Blom; Almlund, Pernille

    danske myndigheder kommunikerede åbent og løbende om influenza-krisen og dens trusler. Indsatsen blev anerkendt fra alle sider og førte på intet tidspunkt til alvorlig og længerevarende kritik af myndighederne. Der var tale om en tilfredsstillende krisehåndtering, hvad angår den del, der fokuserede på...... kommunikation om denne tog en drejning i forhold til selve influenza-krisen. Myndighedernes kommunikation blev mere uklar, forvirringen voksede i befolkningen, og der blev rejst kritik i offentligheden. Forløbet rejser spørgsmålene om, den samlede håndtering af kommunikationsindsatsen kunne have været mere...

  12. Avian influenza

    Directory of Open Access Journals (Sweden)

    Tjandra Y. Aditama

    2006-06-01

    Full Text Available Avian influenza, or “bird flu”, is a contagious disease of animals which crossed the species barrier to infect humans and gave a quite impact on public health in the world since 2004, especially due to the threat of pandemic situation. Until 1st March 2006, laboratory-confirmed human cases have been reported in seven countries: Cambodia, Indonesia, Thailand, Viet Nam, China, Iraq and Turkey with a total of 174 cases and 94 dead (54.02%. Indonesia has 27 cases, 20 were dead (74.07%. AI cases in Indonesia are more in male (62.5% and all have a symptom of fever. An influenza pandemic is a rare but recurrent event. An influenza pandemic happens when a new subtype emerges that has not previously circulated in humans. For this reason, avian H5N1 is a strain with pandemic potential, since it might ultimately adapt into a strain that is contagious among humans. Impact of the pandemic could include high rates of illness and worker absenteeism are expected, and these will contribute to social and economic disruption. Historically, the number of deaths during a pandemic has varied greatly. Death rates are largely determined by four factors: the number of people who become infected, the virulence of the virus, the underlying characteristics and vulnerability of affected populations, and the effectiveness of preventive measures. Accurate predictions of mortality cannot be made before the pandemic virus emerges and begins to spread. (Med J Indones 2006; 15:125-8Keywords: Avian Influenza, Pandemic

  13. Expression of Two N1 Clones with Single Amino Acid Dissimilarity of Avian Influenza H5N1 Virus

    Directory of Open Access Journals (Sweden)

    RISZA HARTAWAN

    2012-12-01

    Full Text Available Two clones of N1 gene derived from isolate A/Dk/Tangerang/Bbalitvet-ACIAR-TE11/2007 (H5N1 exhibit single mismatch of amino acid sequence at position 242 that is threonine and methionine for the clone #3 and #5, respectively. In order to evaluate the effect of the amino acid substitution, these clones were inserted into two different expression vectors that are pEGFP-C1 and pcDNA-3.3 TOPO® TA cloning. Subsequently, the respective recombinant clones were transfected into eukaryotic cells, including CEF, RK13 and VERO using Lipofectamine ‘plus’ reagent. As a result, the clone #3 retaining atypical sequence showed lower expression level rather than the clone #15 in both vectors and all type of cells. The 3D conformational modelling revealed that the mutation occurs in the inner part of glycoprotein embedded within envelope or matrix. Therefore, the missense mutation seems has no effect on the antigenic properties of neuraminidase but this substitution by any means causes lethal mutagenesis in the individual gene expression by reducing level of protein transcript.

  14. Traditional and New Influenza Vaccines

    Science.gov (United States)

    Wong, Sook-San

    2013-01-01

    SUMMARY The challenges in successful vaccination against influenza using conventional approaches lie in their variable efficacy in different age populations, the antigenic variability of the circulating virus, and the production and manufacturing limitations to ensure safe, timely, and adequate supply of vaccine. The conventional influenza vaccine platform is based on stimulating immunity against the major neutralizing antibody target, hemagglutinin (HA), by virus attenuation or inactivation. Improvements to this conventional system have focused primarily on improving production and immunogenicity. Cell culture, reverse genetics, and baculovirus expression technology allow for safe and scalable production, while adjuvants, dose variation, and alternate routes of delivery aim to improve vaccine immunogenicity. Fundamentally different approaches that are currently under development hope to signal new generations of influenza vaccines. Such approaches target nonvariable regions of antigenic proteins, with the idea of stimulating cross-protective antibodies and thus creating a “universal” influenza vaccine. While such approaches have obvious benefits, there are many hurdles yet to clear. Here, we discuss the process and challenges of the current influenza vaccine platform as well as new approaches that are being investigated based on the same antigenic target and newer technologies based on different antigenic targets. PMID:23824369

  15. Generation of VSV Pseudotypes Using Recombinant ΔG-VSV for Studies on Virus Entry, Identification of Entry Inhibitors, and Immune Responses to Vaccines

    OpenAIRE

    Whitt, Michael A.

    2010-01-01

    Vesicular stomatitis virus (VSV) is a prototypic enveloped animal virus that has been used extensively to study virus entry, replication and assembly due to its broad host range and robust replication properties in a wide variety of mammalian and insect cells. Studies on VSV assembly led to the creation of a recombinant VSV in which the glycoprotein (G) gene was deleted. This recombinant (rVSV-ΔG) has been used to produce VSV pseudotypes containing the envelope glycoproteins of heterologous v...

  16. Cervical spinal cord delivery of a rabies G protein pseudotyped lentiviral vector in the SOD-1 transgenic mouse. Invited submission from the Joint Section Meeting on Disorders of the Spine and Peripheral Nerves, March 2004.

    Science.gov (United States)

    Tanase, Kiana; Teng, Qingshan; Krishnaney, Ajit A; Liu, James K; Garrity-Moses, Mary E; Boulis, Nicholas M

    2004-07-01

    Lentiviral vectors may constitute a vehicle for long-term therapeutic gene expression in the spinal cord. In amyotrophic lateral sclerosis, spinal cord sclerosis and altered axonal transport pose barriers to therapeutic gene distribution. In the present study the authors characterize gene expression distribution and the behavioral impact of the rabies G (RabG) protein pseudotyped lentiviral vector EIAV.LacZ through cervical spinal cord injection in control and Cu/Zn superoxide dismutase-1 (SOD-1) transgenic mice. Seven-week-old SOD-1 transgenic mice and their wild-type littermates underwent exposure of the cervicomedullary junction and microinjection of RabG.EIAV.LacZ or vehicle. The Basso-Beattie-Bresnahan locomotor score, grip strength meter, and Rotarod assays were used to assess the effects of disease progression, spinal cord microinjection, and lentiviral gene expression. Spinal cords were removed when the mice were in the terminal stage of the disease. The distribution of LacZ gene expression was histologically evaluated and quantified. Direct cervical spinal cord microinjection of RabG.EIAV.LacZ results in extensive central nervous system uptake in SOD-1 transgenic mice; these findings were statistically similar to those in wild-type mice (p > 0.05). Gene expression lasts for the duration of the animal's survival (132 days). The SOD-1 mutation does not prevent retrograde axonal transport of the vector. Three behavioral assays were used to demonstrate that long-term gene expression does not alter sensorimotor function. In comparison with normative data, vector injection and transgene expression do not accelerate disease progression. Direct spinal cord injection of RabG.EIAV vectors represents a feasible method for delivering therapeutic genes to upper cervical spinal cord and brainstem motor neurons. Distribution is not affected by the SOD-1 mutation or disease phenotype.

  17. Infection of female primary lower genital tract epithelial cells after natural pseudotyping of HIV-1: possible implications for sexual transmission of HIV-1.

    Directory of Open Access Journals (Sweden)

    Yuyang Tang

    Full Text Available The global AIDS pandemic continues to expand and in some regions of the world, such as southern Africa, the prevalence of HIV-1 infection exceeds 20%. The devastating spread of the virus in young women in these countries appears disproportional to overall risk of infection. Regions with high prevalence of HIV-1 are often also highly endemic for other pathogenic viruses including HSV, CMV and HTLV. We propose that acquisition by HIV-1 of the envelope glycoproteins of other viruses, in a process we call "natural pseudotyping," expands the cellular tropism of HIV-1, enabling it to infect female genital epithelial cells directly and thereby dramatically increasing risk of infection during sexual intercourse. In this proof-of-concept study, we demonstrate that when HIV-1 co-infects T cells along with the gammaretrovirus xenotropic murine leukemia virus-related virus (XMRV, progeny HIV-1 particles are produced capable of infecting primary vaginal, ectocervical and endocervical epithelial cells. These cell types are normally resistant to HIV-1 infection. Infection of primary genital cells was neutralized by antisera against the XMRV glycoprotein, confirming that infection was mediated by the XMRV glycoprotein acquired through pseudotyping of HIV. Inhibition by AZT showed that active replication of HIV-1 occurred in these cells and ruled out non-specific endocytic uptake of the virus. These results demonstrate that natural pseudotyping can expand the tropism of HIV-1 to include genital epithelial cells and have potential implications for sexual transmission of the virus.

  18. Infection of Female Primary Lower Genital Tract Epithelial Cells after Natural Pseudotyping of HIV-1: Possible Implications for Sexual Transmission of HIV-1

    Science.gov (United States)

    Tang, Yuyang; George, Alvin; Nouvet, Franklin; Sweet, Stephanie; Emeagwali, Nkiruka; Taylor, Harry E.; Simmons, Glenn; Hildreth, James E. K.

    2014-01-01

    The global AIDS pandemic continues to expand and in some regions of the world, such as southern Africa, the prevalence of HIV-1 infection exceeds 20%. The devastating spread of the virus in young women in these countries appears disproportional to overall risk of infection. Regions with high prevalence of HIV-1 are often also highly endemic for other pathogenic viruses including HSV, CMV and HTLV. We propose that acquisition by HIV-1 of the envelope glycoproteins of other viruses, in a process we call “natural pseudotyping,” expands the cellular tropism of HIV-1, enabling it to infect female genital epithelial cells directly and thereby dramatically increasing risk of infection during sexual intercourse. In this proof-of-concept study, we demonstrate that when HIV-1 co-infects T cells along with the gammaretrovirus xenotropic murine leukemia virus-related virus (XMRV), progeny HIV-1 particles are produced capable of infecting primary vaginal, ectocervical and endocervical epithelial cells. These cell types are normally resistant to HIV-1 infection. Infection of primary genital cells was neutralized by antisera against the XMRV glycoprotein, confirming that infection was mediated by the XMRV glycoprotein acquired through pseudotyping of HIV. Inhibition by AZT showed that active replication of HIV-1 occurred in these cells and ruled out non-specific endocytic uptake of the virus. These results demonstrate that natural pseudotyping can expand the tropism of HIV-1 to include genital epithelial cells and have potential implications for sexual transmission of the virus. PMID:25010677

  19. Encefalitis aguda: Manifestaciones neuropsiquiátricas como expresión de infección por virus de influenza Acute encephalitis: Neuropsychiatric manifestations as expression of influenza virus infection

    OpenAIRE

    Noris Moreno-Flagge; Vicente Bayard; Evelia Quirós; Tomás Alonso

    2009-01-01

    El objetivo fue revisar la encefalitis en niños y adolescentes, su etiología, manifestaciones clínicas, fisiopatología, métodos diagnósticos y tratamiento, enfatizando las manifestaciones neuropsiquiátricas de la encefalitis durante una epidemia de influenza. La encefalitis se considera una inflamación del sistema nervioso central (SNC) que compromete el cerebro. Se manifiesta usualmente por cefaleas, fiebre y trastorno del estado de conciencia. Puede además manifestarse por convulsiones, cam...

  20. Influenza A and B Virus Intertypic Reassortment through Compatible Viral Packaging Signals

    Science.gov (United States)

    Baker, Steven F.; Nogales, Aitor; Finch, Courtney; Tuffy, Kevin M.; Domm, William; Perez, Daniel R.; Topham, David J.

    2014-01-01

    ABSTRACT Influenza A and B viruses cocirculate in humans and together cause disease and seasonal epidemics. These two types of influenza viruses are evolutionarily divergent, and exchange of genetic segments inside coinfected cells occurs frequently within types but never between influenza A and B viruses. Possible mechanisms inhibiting the intertypic reassortment of genetic segments could be due to incompatible protein functions of segment homologs, a lack of processing of heterotypic segments by influenza virus RNA-dependent RNA polymerase, an inhibitory effect of viral proteins on heterotypic virus function, or an inability to specifically incorporate heterotypic segments into budding virions. Here, we demonstrate that the full-length hemagglutinin (HA) of prototype influenza B viruses can complement the function of multiple influenza A viruses. We show that viral noncoding regions were sufficient to drive gene expression for either type A or B influenza virus with its cognate or heterotypic polymerase. The native influenza B virus HA segment could not be incorporated into influenza A virus virions. However, by adding the influenza A virus packaging signals to full-length influenza B virus glycoproteins, we rescued influenza A viruses that possessed HA, NA, or both HA and NA of influenza B virus. Furthermore, we show that, similar to single-cycle infectious influenza A virus, influenza B virus cannot incorporate heterotypic transgenes due to packaging signal incompatibilities. Altogether, these results demonstrate that the lack of influenza A and B virus reassortants can be attributed at least in part to incompatibilities in the virus-specific packaging signals required for effective segment incorporation into nascent virions. IMPORTANCE Reassortment of influenza A or B viruses provides an evolutionary strategy leading to unique genotypes, which can spawn influenza A viruses with pandemic potential. However, the mechanism preventing intertypic reassortment or

  1. Induction of broadly neutralising HCV antibodies in mice by integration-deficient lentiviral vector-based pseudotyped particles.

    Directory of Open Access Journals (Sweden)

    Yao Deng

    Full Text Available INTRODUCTION: Integration-deficient lentiviral vectors (IDLVs are a promising platform for immunisation to elicit both humoral immunity and cellular mediated immunity (CMI. Here, we compared the specific immunity in mice immunised via different regimens (homologous and cocktail with IDLV-based HCV pseudoparticles (HCVpps carrying pseudotyped glycoproteins E1E2 and bearing the HCV NS3 gene. Humoral and cell-mediated immune responses were also evaluated after IDLV-HCVpp immunisation combined with heterologous rAd5-CE1E2 priming protocols. Sera from the mice effectively elicited anti-E1, -E2, and -NS3 antibody responses, and neutralised various HCVpp subtypes (1a, 1b, 2a, 3a and 5a. No significant CMI was detected in the groups immunised with IDLV-based HCVpps. In contrast, the combination of rAd5-CE1E2 priming and IDLV-based HCVpp boosting induced significant CMI against multiple antigens (E1, E2, and NS3. CONCLUSION: IDLV-based HCVpps are a promising vaccination platform and the combination of rAd5-CE1E2 and IDLV-based HCVpp prime-boost strategy should be further explored for the development of a cross-protective HCV vaccine.

  2. Cross-neutralizing antibodies to pandemic 2009 H1N1 and recent seasonal H1N1 influenza A strains influenced by a mutation in hemagglutinin subunit 2.

    Science.gov (United States)

    Wang, Wei; Anderson, Christine M; De Feo, Christopher J; Zhuang, Min; Yang, Hong; Vassell, Russell; Xie, Hang; Ye, Zhiping; Scott, Dorothy; Weiss, Carol D

    2011-06-01

    Pandemic 2009 H1N1 influenza A virus (2009 H1N1) differs from H1N1 strains that circulated in the past 50 years, but resembles the A/New Jersey/1976 H1N1 strain used in the 1976 swine influenza vaccine. We investigated whether sera from persons immunized with the 1976 swine influenza or recent seasonal influenza vaccines, or both, neutralize 2009 H1N1. Using retroviral pseudovirions bearing hemagglutinins on their surface (HA-pseudotypes), we found that 77% of the sera collected in 1976 after immunization with the A/New Jersey/1976 H1N1 swine influenza vaccine neutralized 2009 H1N1. Forty five percent also neutralized A/New Caledonia/20/1999 H1N1, a strain used in seasonal influenza vaccines during the 2000/01-2006/07 seasons. Among adults aged 48-64 who received the swine influenza vaccine in 1976 and recent seasonal influenza vaccines during the 2004/05-2008/09 seasons, 83% had sera that neutralized 2009 H1N1. However, 68% of age-matched subjects who received the same seasonal influenza vaccines, but did not receive the 1976 swine influenza vaccine, also had sera that neutralized 2009 H1N1. Sera from both 1976 and contemporary cohorts frequently had cross-neutralizing antibodies to 2009 H1N1 and A/New Caledonia/20/1999 that mapped to hemagglutinin subunit 2 (HA2). A conservative mutation in HA2 corresponding to a residue in the A/Solomon Islands/3/2006 and A/Brisbane/59/2007 H1N1 strains that circulated in the 2006/07 and 2007/08 influenza seasons, respectively, abrogated this neutralization. These findings highlight a cross-neutralization determinant influenced by a point mutation in HA2 and suggest that HA2 may be evolving under direct or indirect immune pressure.

  3. Avian Influenza (Bird Flu)

    Science.gov (United States)

    ... Submit What's this? Submit Button Archived Flu Emails Influenza Types Seasonal Avian Swine/Variant Pandemic Other Information on Avian Influenza Language: English (US) Español Recommend on Facebook Tweet ...

  4. Influenza-Associated Encephalitis

    Directory of Open Access Journals (Sweden)

    J. Gordon Millichap

    2002-02-01

    Full Text Available Twenty patients with influenza-associated encephalitis/encephalopathy treated during the 1997-2001 influenza A epidemics in Japan are reported from Niigata City General Hospital, Japan.

  5. Influenza-A-pneumonie

    NARCIS (Netherlands)

    Veenstra, R P; Boelen, C C; Zijlstra, J G; Bos, A P; Ligtenberg, J J

    2000-01-01

    The majority of influenza cases are not associated with complications. Secondary bacterial pneumonia, commonly caused by Streptococcus pneumoniae or Staphylococcus aureus, is well known to most clinicians. Primary influenza viral pneumonia, characterized by rapidly progressive hypoxia and

  6. Overview of Serological Techniques for Influenza Vaccine Evaluation: Past, Present and Future

    Directory of Open Access Journals (Sweden)

    Claudia Maria Trombetta

    2014-10-01

    Full Text Available Serological techniques commonly used to quantify influenza-specific antibodies include the Haemagglutination Inhibition (HI, Single Radial Haemolysis (SRH and Virus Neutralization (VN assays. HI and SRH are established and reproducible techniques, whereas VN is more demanding. Every new influenza vaccine needs to fulfil the strict criteria issued by the European Medicines Agency (EMA in order to be licensed. These criteria currently apply exclusively to SRH and HI assays and refer to two different target groups—healthy adults and the elderly, but other vaccine recipient age groups have not been considered (i.e., children. The purpose of this timely review is to highlight the current scenario on correlates of protection concerning influenza vaccines and underline the need to revise the criteria and assays currently in use. In addition to SRH and HI assays, the technical advantages provided by other techniques such as the VN assay, pseudotype-based neutralization assay, neuraminidase and cell-mediated immunity assays need to be considered and regulated via EMA criteria, considering the many significant advantages that they could offer for the development of effective vaccines.

  7. Encefalitis aguda: Manifestaciones neuropsiquiátricas como expresión de infección por virus de influenza Acute encephalitis: Neuropsychiatric manifestations as expression of influenza virus infection

    Directory of Open Access Journals (Sweden)

    Noris Moreno-Flagge

    2009-01-01

    Full Text Available El objetivo fue revisar la encefalitis en niños y adolescentes, su etiología, manifestaciones clínicas, fisiopatología, métodos diagnósticos y tratamiento, enfatizando las manifestaciones neuropsiquiátricas de la encefalitis durante una epidemia de influenza. La encefalitis se considera una inflamación del sistema nervioso central (SNC que compromete el cerebro. Se manifiesta usualmente por cefaleas, fiebre y trastorno del estado de conciencia. Puede además manifestarse por convulsiones, cambios en la personalidad y manifestaciones obsesivas (síntomas neuropsiquiátricos. Las manifestaciones dependerán del tipo de virus y las células afectadas. La encefalitis puede ser causada por una gran variedad de agentes infecciosos incluyendo virus, bacterias, hongos y parásitos. Causas virales de encefalitis incluyen herpesvirus, arbovirus, rabia y enterovirus. Casos establecidos de bacterias incluyen Borrelia burgdorferi y rickettsia y el Mycoplasma neumoniae, al cual se atribuyen varios casos de encefalitis. Otros agentes como el hongo Coccidioides immitis e Histoplasma capsulatum pueden también generarla. Más de 100 agentes se han asociado a encefalitis. El diagnóstico de encefalitis constituye un reto para el clínico, y su etiología infecciosa usualmente se identifica entre el 40% al 70% de casos. El diagnóstico se hace con absoluta certeza sólo con una biopsia cerebral. La epidemiología depende de ciertos factores como la edad, la localización geográfica, la época del año, las condiciones climáticas y la inmunocompetencia del huésped. El tratamiento temprano puede disminuir el riesgo de muerte y las secuelas. Describimos cuatro pacientes con encefalitis y manifestaciones neuropsiquiátricas durante una epidemia de influenza, con el fin de alertar sobre esta asociación.The aim is to review the encephalitis in infants and adolescents as well as its etiology, clinical manifestation, epidemiology, physiopathology, diagnostic

  8. Advances in influenza vaccination

    NARCIS (Netherlands)

    L.A. Reperant (Leslie); G.F. Rimmelzwaan (Guus); A.D.M.E. Osterhaus (Albert)

    2014-01-01

    textabstractInfluenza virus infections yearly cause high morbidity and mortality burdens in humans, and the development of a new influenza pandemic continues to threaten mankind as a Damoclean sword. Influenza vaccines have been produced by using egg-based virus growth and passaging techniques that

  9. New USDA licensed avian influenza vaccine (rHVT-AI) for protection against H5 avian influenza and usage discussion

    Science.gov (United States)

    Recently, a new avian influenza vaccine was licensed by USDA for use in the United States for protection of commercial poultry. The vaccine is a recombinant herpes virus of turkeys expressing the hemagglutinin gene of an H5 subtype avian influenza virus belonging to the 2.2 clade of the H5N1 highly ...

  10. Diminished ICAM-1 Expression and Impaired Pulmonary Clearance of Nontypeable Haemophilus influenzae in a Mouse Model of Chronic Obstructive Pulmonary Disease/Emphysema▿

    OpenAIRE

    Pang, Bing; Hong, Wenzhou; West-Barnette, Shayla L.; Kock, Nancy D.; Swords, W. Edward

    2008-01-01

    The airways of patients with chronic obstructive pulmonary disease (COPD) are continually colonized with bacterial opportunists like nontypeable Haemophilus influenzae (NTHi), and a wealth of evidence indicates that changes in bacterial populations within the lung can influence the severity of COPD. In this study, we used a murine model for COPD/emphysema to test the hypothesis that COPD affects pulmonary clearance. Mice were treated with a pulmonary bolus of elastase, and as reported previou...

  11. Baboon envelope pseudotyped LVs outperform VSV-G-LVs for gene transfer into early-cytokine-stimulated and resting HSCs.

    Science.gov (United States)

    Girard-Gagnepain, Anais; Amirache, Fouzia; Costa, Caroline; Lévy, Camille; Frecha, Cecilia; Fusil, Floriane; Nègre, Didier; Lavillette, Dimitri; Cosset, François-Loïc; Verhoeyen, Els

    2014-08-21

    Hematopoietic stem cell (HSC)-based gene therapy holds promise for the cure of many diseases. The field is now moving toward the use of lentiviral vectors (LVs) as evidenced by 4 successful clinical trials. These trials used vesicular-stomatitis-virus-G protein (VSV-G)-LVs at high doses combined with strong cytokine-cocktail stimulation to obtain therapeutically relevant transduction levels; however, they might compromise the HSC character. Summarizing all these disadvantages, alternatives to VSV-G-LVs are urgently needed. We generated here high-titer LVs pseudotyped with a baboon retroviral envelope glycoprotein (BaEV-LVs), resistant to human complement. Under mild cytokine prestimulation to preserve the HSC characteristics, a single BaEV-LV application at a low dose, resulted in up to 90% of hCD34(+) cell transduction. Even more striking was that these new BaEV-LVs allowed, at low doses, efficient transduction of up to 30% of quiescent hCD34(+) cells, whereas high-dose VSV-G-LVs were insufficient. Importantly, reconstitution of NOD/Lt-SCID/γc(-/-) (NSG) mice with BaEV-LV-transduced hCD34(+) cells maintained these high transduction levels in all myeloid and lymphoid lineages, including early progenitors. This transduction pattern was confirmed or even increased in secondary NSG recipient mice. This suggests that BaEV-LVs efficiently transduce true HSCs and could improve HSC-based gene therapy, for which high-level HSC correction is needed for life-long cure. © 2014 by The American Society of Hematology.

  12. Development and characterization of a pooled Haemophilus influenzae genomic library for the evaluation of gene expression changes associated with mucosal biofilm formation in otitis media.

    Science.gov (United States)

    Erdos, Geza; Sayeed, Sameera; Antalis, Patricia; Hu, Fen Ze; Hayes, Jay; Goodwin, Joseph; Dopico, Richard; Post, J Christopher; Ehrlich, Garth D

    2003-07-01

    Haemophilus influenzae is one of the most important respiratory pathogens of man. It has been etiologically associated with otitis media, otorrhea, and chronic obstructive pulmonary disease. Identification of new genomic elements will provide novel targets to fight chronic infections caused by this organism. The new paradigm that chronic infections are caused by bacterial biofilms prompted us to study the relationship between bacterial pathogenicity, biofilm formation and bacterial communal cooperation. To do this, it is essential to determine the virulence gene sets that are involved in the above processes and whether they are present in every bacterial cell or distributed in a "communal gene-pool", the distributed genome hypothesis (DGH). We designed, constructed and characterized a highly redundant genomic DNA library comprised of the genomes of ten low passage clinical isolates of H. influenzae carrying large numbers of genes that are not present in the laboratory strains of H. influenzae. Genomic DNA fragments of the ten clinical strains were hydro-dynamically sheared to produce a mean fragment size of 1.5-2.5 kb. The ten sheared DNAs were than pooled and used in the construction of a genomic library with 76800 clones. Our restriction endonuclease and sequence analyses of 800 clones demonstrate that 75% of the clones carry an insert larger than 0.5 kb. The library has an approximately 1.5 kb average insert size, and therefore, better than 4.5x redundancy for each of the genomes of the ten clinical isolates. Our sequencing effort ( approximately 1 million nucleotides to date) reveals that a high percentage of genes (75 clones, 11% of the 686 sequenced clones) present in this library are not represented in the genome of the reference strain H. influenzae Rd. The library, based on the above results, has a better than 4.5x coverage for each of the ten constituent genomes. On the basis of our preliminary sequencing data ( approximately 1 million nucleotides) the

  13. Sequencing, annotation, and characterization of the influenza ferret infectome.

    Science.gov (United States)

    León, Alberto J; Banner, David; Xu, Luoling; Ran, Longsi; Peng, Zhiyu; Yi, Kang; Chen, Chao; Xu, Fengping; Huang, Jinrong; Zhao, Zhen; Lin, Zhen; Huang, Stephen H S; Fang, Yuan; Kelvin, Alyson A; Ross, Ted M; Farooqui, Amber; Kelvin, David J

    2013-02-01

    Ferrets have become an indispensable tool in the understanding of influenza virus virulence and pathogenesis. Furthermore, ferrets are the preferred preclinical model for influenza vaccine and therapeutic testing. Here we characterized the influenza infectome during the different stages of the infectious process in ferrets with and without prior specific immunity to influenza. RNA from lung tissue and lymph nodes from infected and naïve animals was subjected to next-generation sequencing, followed by de novo data assembly and annotation of the resulting sequences; this process generated a library comprising 13,202 ferret mRNAs. Gene expression profiles during pandemic H1N1 (pdmH1N1) influenza virus infection were analyzed by digital gene expression and solid support microarrays. As expected during primary infection, innate immune responses were triggered in the lung tissue; meanwhile, in the lymphoid tissue, genes encoding antigen presentation and maturation of effector cells of adaptive immunity increased dramatically. After 5 days postinfection, the innate immune gene expression was replaced by the adaptive immune response, which correlates with viral clearance. Reinfection with homologous pandemic influenza virus resulted in a diminished innate immune response, early adaptive immune gene regulation, and a reduction in clinical severity. The fully annotated ferret infectome will be a critical aid to the understanding of the molecular events that regulate disease severity and host-influenza virus interactions among seasonal, pandemic, and highly pathogenic avian influenzas.

  14. Protective effect of a polyvalent influenza DNA vaccine in pigs

    DEFF Research Database (Denmark)

    Karlsson, Ingrid; Borggren, Marie; Rosenstierne, Maiken Worsøe

    2018-01-01

    Background Influenza A virus in swine herds represents a major problem for the swine industry and poses a constant threat for the emergence of novel pandemic viruses and the development of more effective influenza vaccines for pigs is desired. By optimizing the vector backbone and using a needle......-free delivery method, we have recently demonstrated a polyvalent influenza DNA vaccine that induces a broad immune response, including both humoral and cellular immunity. Objectives To investigate the protection of our polyvalent influenza DNA vaccine approach in a pig challenge study. Methods By intradermal...... needle-free delivery to the skin, we immunized pigs with two different doses (500 μg and 800 μg) of an influenza DNA vaccine based on six genes of pandemic origin, including internally expressed matrix and nucleoprotein and externally expressed hemagglutinin and neuraminidase as previously demonstrated...

  15. Methamphetamine reduces human influenza A virus replication.

    Directory of Open Access Journals (Sweden)

    Yun-Hsiang Chen

    Full Text Available Methamphetamine (meth is a highly addictive psychostimulant that is among the most widely abused illicit drugs, with an estimated over 35 million users in the world. Several lines of evidence suggest that chronic meth abuse is a major factor for increased risk of infections with human immunodeficiency virus and possibly other pathogens, due to its immunosuppressive property. Influenza A virus infections frequently cause epidemics and pandemics of respiratory diseases among human populations. However, little is known about whether meth has the ability to enhance influenza A virus replication, thus increasing severity of influenza illness in meth abusers. Herein, we investigated the effects of meth on influenza A virus replication in human lung epithelial A549 cells. The cells were exposed to meth and infected with human influenza A/WSN/33 (H1N1 virus. The viral progenies were titrated by plaque assays, and the expression of viral proteins and cellular proteins involved in interferon responses was examined by Western blotting and immunofluorescence staining. We report the first evidence that meth significantly reduces, rather than increases, virus propagation and the susceptibility to influenza infection in the human lung epithelial cell line, consistent with a decrease in viral protein synthesis. These effects were apparently not caused by meth's effects on enhancing virus-induced interferon responses in the host cells, reducing viral biological activities, or reducing cell viability. Our results suggest that meth might not be a great risk factor for influenza A virus infection among meth abusers. Although the underlying mechanism responsible for the action of meth on attenuating virus replication requires further investigation, these findings prompt the study to examine whether other structurally similar compounds could be used as anti-influenza agents.

  16. Effectiveness of 2010/2011 seasonal influenza vaccine in Ireland.

    LENUS (Irish Health Repository)

    Barret, A S

    2012-02-01

    We conducted a case-control study to estimate the 2010\\/2011 trivalent influenza vaccine effectiveness (TIVE) using the Irish general practitioners\\' influenza sentinel surveillance scheme. Cases were influenza-like illness (ILI) patients with laboratory-confirmed influenza. Controls were ILI patients who tested negative for influenza. Participating sentinel general practitioners (GP) collected swabs from patients presenting with ILI along with their vaccination history and other individual characteristics. The TIVE was computed as (1 - odds ratiofor vaccination) x100%. Of 60 sentinel GP practices, 22 expressed interest in participating in the study and 17 (28%) recruited at least one ILI patient. In the analysis, we included 106 cases and 85 controls. Seven controls (8.2%) and one influenza case (0.9%) had been vaccinated in 2010\\/2011. The estimated TIVE against any influenza subtype was 89.4% [95% CI: 13.8; 99.8%], suggesting a protective effect against GP-attended laboratory confirmed influenza. This study design could be used to monitor influenza vaccine effectiveness annually but sample size and vaccination coverage should be increased to obtain precise and adjusted estimates.

  17. Bacterially produced recombinant influenza vaccines based on virus-like particles.

    Directory of Open Access Journals (Sweden)

    Andrea Jegerlehner

    Full Text Available Although current influenza vaccines are effective in general, there is an urgent need for the development of new technologies to improve vaccine production timelines, capacities and immunogenicity. Herein, we describe the development of an influenza vaccine technology which enables recombinant production of highly efficient influenza vaccines in bacterial expression systems. The globular head domain of influenza hemagglutinin, comprising most of the protein's neutralizing epitopes, was expressed in E. coli and covalently conjugated to bacteriophage-derived virus-like particles produced independently in E.coli. Conjugate influenza vaccines produced this way were used to immunize mice and found to elicit immune sera with high antibody titers specific for the native influenza hemagglutinin protein and high hemagglutination-inhibition titers. Moreover vaccination with these vaccines induced full protection against lethal challenges with homologous and highly drifted influenza strains.

  18. Apoptosis and other immune biomarkers predict influenza vaccine responsiveness

    National Research Council Canada - National Science Library

    Furman, David; Jojic, Vladimir; Kidd, Brian; Shen‐Orr, Shai; Price, Jordan; Jarrell, Justin; Tse, Tiffany; Huang, Huang; Lund, Peder; Maecker, Holden T; Utz, Paul J; Dekker, Cornelia L; Koller, Daphne; Davis, Mark M

    ... (60 to >89 years) as models for strong and weak immune responses, respectively, and assayed their serological responses to influenza strains as well as a wide variety of other parameters, including gene expression...

  19. Influenza A virus infection in zebrafish recapitulates mammalian infection and sensitivity to anti-influenza drug treatment

    Directory of Open Access Journals (Sweden)

    Kristin A. Gabor

    2014-11-01

    Full Text Available Seasonal influenza virus infections cause annual epidemics and sporadic pandemics. These present a global health concern, resulting in substantial morbidity, mortality and economic burdens. Prevention and treatment of influenza illness is difficult due to the high mutation rate of the virus, the emergence of new virus strains and increasing antiviral resistance. Animal models of influenza infection are crucial to our gaining a better understanding of the pathogenesis of and host response to influenza infection, and for screening antiviral compounds. However, the current animal models used for influenza research are not amenable to visualization of host-pathogen interactions or high-throughput drug screening. The zebrafish is widely recognized as a valuable model system for infectious disease research and therapeutic drug testing. Here, we describe a zebrafish model for human influenza A virus (IAV infection and show that zebrafish embryos are susceptible to challenge with both influenza A strains APR8 and X-31 (Aichi. Influenza-infected zebrafish show an increase in viral burden and mortality over time. The expression of innate antiviral genes, the gross pathology and the histopathology in infected zebrafish recapitulate clinical symptoms of influenza infections in humans. This is the first time that zebrafish embryos have been infected with a fluorescent IAV in order to visualize infection in a live vertebrate host, revealing a pattern of vascular endothelial infection. Treatment of infected zebrafish with a known anti-influenza compound, Zanamivir, reduced mortality and the expression of a fluorescent viral gene product, demonstrating the validity of this model to screen for potential antiviral drugs. The zebrafish model system has provided invaluable insights into host-pathogen interactions for a range of infectious diseases. Here, we demonstrate a novel use of this species for IAV research. This model has great potential to advance our

  20. The evolving history of influenza viruses and influenza vaccines.

    Science.gov (United States)

    Hannoun, Claude

    2013-09-01

    The isolation of influenza virus 80 years ago in 1933 very quickly led to the development of the first generation of live-attenuated vaccines. The first inactivated influenza vaccine was monovalent (influenza A). In 1942, a bivalent vaccine was produced after the discovery of influenza B. It was later discovered that influenza viruses mutated leading to antigenic changes. Since 1973, the WHO has issued annual recommendations for the composition of the influenza vaccine based on results from surveillance systems that identify currently circulating strains. In 1978, the first trivalent vaccine included two influenza A strains and one influenza B strain. Currently, there are two influenza B lineages circulating; in the latest WHO recommendations, it is suggested that a second B strain could be added to give a quadrivalent vaccine. The history of influenza vaccine and the associated technology shows how the vaccine has evolved to match the evolution of influenza viruses.

  1. 3,4-Dicaffeoylquinic Acid, a Major Constituent of Brazilian Propolis, Increases TRAIL Expression and Extends the Lifetimes of Mice Infected with the Influenza A Virus

    Directory of Open Access Journals (Sweden)

    Tomoaki Takemura

    2012-01-01

    Full Text Available Brazilian green propolis water extract (PWE and its chemical components, caffeoylquinic acids, such as 3,4-dicaffeoylquinic acid (3,4-diCQA, act against the influenza A virus (IAV without influencing the viral components. Here, we evaluated the anti-IAV activities of these compounds in vivo. PWE or PEE (Brazilian green propolis ethanol extract at a dose of 200 mg/kg was orally administered to Balb/c mice that had been inoculated with IAV strain A/WSN/33. The lifetimes of the PWE-treated mice were significantly extended compared to the untreated mice. Moreover, oral administration of 3,4-diCQA, a constituent of PWE, at a dose of 50 mg/kg had a stronger effect than PWE itself. We found that the amount of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL mRNA in the mice that were administered 3,4-diCQA was significantly increased compared to the control group, while H1N1 hemagglutinin (HA mRNA was slightly decreased. These data indicate that PWE, PEE or 3,4-diCQA possesses a novel and unique mechanism of anti-influenza viral activity, that is, enhancing viral clearance by increasing TRAIL.

  2. Changes in cytokine levels and NK cell activation associated with influenza.

    Directory of Open Access Journals (Sweden)

    Stephanie Jost

    Full Text Available Several studies have highlighted the important role played by murine natural killer (NK cells in the control of influenza infection. However, human NK cell responses in acute influenza infection, including infection with the 2009 pandemic H1N1 influenza virus, are poorly documented. Here, we examined changes in NK cell phenotype and function and plasma cytokine levels associated with influenza infection and vaccination. We show that absolute numbers of peripheral blood NK cells, and particularly those of CD56(bright NK cells, decreased upon acute influenza infection while this NK cell subset expanded following intramuscular influenza vaccination. NK cells exposed to influenza antigens were activated, with higher proportions of NK cells expressing CD69 in study subjects infected with seasonal influenza strains. Vaccination led to increased levels of CD25+ NK cells, and notably CD56(bright CD25+ NK cells, whereas decreased amounts of this subset were present in the peripheral blood of influenza infected individuals, and predominantly in study subjects infected with the 2009 pandemic H1N1 influenza virus. Finally, acute influenza infection was associated with low plasma concentrations of inflammatory cytokines, including IFN-γ, MIP-1β, IL-2 and IL-15, and high levels of the anti-inflammatory cytokines IL-10 and IL-1ra. Altogether, these data suggest a role for the CD56(bright NK cell subset in the response to influenza, potentially involving their recruitment to infected tissues and a local production and/or uptake of inflammatory cytokines.

  3. Influenza-Sediment Interactions

    Science.gov (United States)

    Trusiak, A.; Block, K. A.; Katz, A.; Gottlieb, P.; Alimova, A.; Galarza, J.; Wei, H.; Steiner, J. C.

    2013-12-01

    A typical water fowl can secrete 1012 influenza virions per day. Therefore it is not unexpected that influenza virions interact with sediments in the water column. The influence of sediments on avian influenza virions is not known. With the threat of avian influenza emerging into the human population, it is crucial to understand virus survivability and residence time in a body of water. Influenza and clay sediments are colloidal particles and thus aggregate as explained by DLVO (Derjaguin & Landau, Verwey & Overbeek) theory. Of great importance is an understanding of the types of particulate or macromolecular components that bind the virus particles, and whether the virus remains biologically active. We present results of hetero-aggregation and transmission electron microscopy experiments performed with influenza A/PR8/38. Influenza particles are suspended with sediment and minimal nutrients for several days, after which the components are evaluated to determine influenza concentration and survivability. Transmission electron microscopy results are reported on the influenza-sediment aggregates to elucidate structure and morphology of the components.

  4. Use of recombinant nucleoproteins in enzyme-linked immunosorbent assays for detection of virus-specific immunoglobulin A (IgA) and IgG antibodies in influenza virus A- or B-infected patients

    NARCIS (Netherlands)

    J. Groen (Jan); D. van Alphen; E.C.J. Claas (Eric); R. de Groot (Ronald); G.F. Rimmelzwaan (Guus); J.T.M. Voeten; A.D.M.E. Osterhaus (Albert)

    1998-01-01

    textabstractThe nucleoprotein genes of influenza virus A/Netherlands/018/94 (H3N2) and influenza virus B/Harbin/7/94 were cloned into the bacterial expression vector pMalC to yield highly purified recombinant influenza virus A and B nucleoproteins. With these recombinant influenza

  5. Progress in Developing Virus-like Particle Influenza Vaccines

    Science.gov (United States)

    Quan, Fu-Shi; Lee, Young-Tae; Kim, Ki-Hye; Kim, Min-Chul; Kang, Sang-Moo

    2016-01-01

    Summary Recombinant vaccines based on virus-like particles (VLPs) or nanoparticles have been successful in their safety and efficacy in preclinical and clinical studies. The technology of expressing enveloped VLP vaccines has combined with molecular engineering of proteins in membrane-anchor and immunogenic forms mimicking the native conformation of surface proteins on the enveloped viruses. This review summarizes recent developments in influenza VLP vaccines against seasonal, pandemic, and avian influenza viruses from the perspective of use in humans. The immunogenicity and efficacies of influenza VLP vaccine in the homologous and cross-protection were reviewed. Discussions include limitations of current influenza vaccination strategies and future directions to confer broadly cross protective new influenza vaccines as well as vaccination. PMID:27058302

  6. Influenza Virus Specific CD8+ T Cells Exacerbate Infection Following High Dose Influenza Challenge of Aged Mice

    Directory of Open Access Journals (Sweden)

    E. M. Parzych

    2013-01-01

    Full Text Available Influenza viruses cause severe illnesses and death, mainly in the aged population. Protection afforded by licensed vaccines through subtype-specific neutralizing antibodies is incomplete, especially when the vaccine antigens fail to closely match those of the circulating viral strains. Efforts are underway to generate a so-called universal influenza vaccine expressing conserved viral sequences that induce broad protection to multiple strains of influenza virus through the induction of CD8+ T cells. Here we assess the effect of a potent antiviral CD8+ T cell response on influenza virus infection of young and aged mice. Our results show that CD8+ T cell-inducing vaccines can provide some protection to young mice, but they exacerbate influenza virus-associated disease in aged mice, causing extensive lung pathology and death.

  7. Protection of guinea pigs by vaccination with a recombinant swinepox virus co-expressing HA1 genes of swine H1N1 and H3N2 influenza viruses.

    Science.gov (United States)

    Xu, Jiarong; Yang, Deji; Huang, Dongyan; Xu, Jiaping; Liu, Shichao; Lin, Huixing; Zhu, Haodan; Liu, Bao; Lu, Chengping

    2013-03-01

    Swine influenza (SI) is an acute respiratory infectious disease of swine caused by swine influenza virus (SIV). SIV is not only an important respiratory pathogen in pigs but also a potent threat to human health. Here, we report the construction of a recombinant swinepox virus (rSPV/H3-2A-H1) co-expressing hemagglutinin (HA1) of SIV subtypes H1N1 and H3N2. Immune responses and protection efficacy of the rSPV/H3-2A-H1 were evaluated in guinea pigs. Inoculation of rSPV/H3-2A-H1 yielded neutralizing antibodies against SIV H1N1 and H3N2. The IFN-γ and IL-4 concentrations in the supernatant of lymphocytes stimulated with purified SIV HA1 antigen were significantly higher (P guinea pigs against SIV H1N1 or H3N2 challenge was observed. No SIV shedding was detected from guinea pigs vaccinated with rSPV/H3-2A-H1 after challenge. Most importantly, the guinea pigs immunized with rSPV/H3-2A-H1 did not show gross and micrographic lung lesions. However, the control guinea pigs experienced distinct gross and micrographic lung lesions at 7 days post-challenge. Our data suggest that the recombinant swinepox virus encoding HA1 of SIV H1N1 and H3N2 might serve as a promising candidate vaccine for protection against SIV H1N1 and H3N2 infections.

  8. Enhanced CD103 Expression and Reduced Frequencies of Virus-Specific CD8+ T Cells Among Airway Lymphocytes After Influenza Vaccination of Mice Deficient in Vitamins A + D.

    Science.gov (United States)

    Surman, Sherri L; Jones, Bart G; Woodland, David L; Hurwitz, Julia L

    2017-11-13

    Previous research has evaluated antibody responses toward an influenza virus vaccine in the context of deficiencies for vitamins A and D (VAD+VDD). Results showed that antibodies and antibody-forming cells in the respiratory tract were reduced in VAD+VDD mice. However, effectors were recovered when oral supplements of vitamins A + D were delivered at the time of vaccination. Here we address the question of how vaccine-induced CD8+ T cell responses are affected by deficiencies for vitamins A + D. VAD+VDD and control mice were vaccinated with an intranasal, cold-adapted influenza virus A/Puerto Rico/8/34 vaccine, with or without oral supplements of vitamins A + D. Results showed that the percentages of vaccine-induced CD8+ T cell and total CD4+ T cell responses were low among lymphocytes in the airways of VAD+VDD animals compared to controls. The CD103 membrane marker, a protein that binds e-cadherin (expressed on respiratory tract epithelial cells), was unusually high on virus-specific T cells in VAD+VDD mice compared to controls. Interestingly, when T cells specific for the PA224-233/Db epitope were compared with T cells specific for the NP366-374/Db epitope, the former population was more strongly positive for CD103. Preliminary experiments revealed normal or above-normal percentages for vaccine-induced T cells in airways when VAD+VDD animals were supplemented with vitamins A + D at the time of vaccination and on days 3 and 7 after vaccination. Our results suggest that close attention should be paid to levels of vitamins A and D among vaccine recipients in the clinical arena, as low vitamin levels may render individuals poorly responsive to vaccines.

  9. Anti-influenza activity of c60 fullerene derivatives.

    Science.gov (United States)

    Shoji, Masaki; Takahashi, Etsuhisa; Hatakeyama, Dai; Iwai, Yuma; Morita, Yuka; Shirayama, Riku; Echigo, Noriko; Kido, Hiroshi; Nakamura, Shigeo; Mashino, Tadahiko; Okutani, Takeshi; Kuzuhara, Takashi

    2013-01-01

    The H1N1 influenza A virus, which originated in swine, caused a global pandemic in 2009, and the highly pathogenic H5N1 avian influenza virus has also caused epidemics in Southeast Asia in recent years. Thus, the threat from influenza A remains a serious global health issue, and novel drugs that target these viruses are highly desirable. Influenza A RNA polymerase consists of the PA, PB1, and PB2 subunits, and the N-terminal domain of the PA subunit demonstrates endonuclease activity. Fullerene (C60) is a unique carbon molecule that forms a sphere. To identify potential new anti-influenza compounds, we screened 12 fullerene derivatives using an in vitro PA endonuclease inhibition assay. We identified 8 fullerene derivatives that inhibited the endonuclease activity of the PA N-terminal domain or full-length PA protein in vitro. We also performed in silico docking simulation analysis of the C60 fullerene and PA endonuclease, which suggested that fullerenes can bind to the active pocket of PA endonuclease. In a cell culture system, we found that several fullerene derivatives inhibit influenza A viral infection and the expression of influenza A nucleoprotein and nonstructural protein 1. These results indicate that fullerene derivatives are possible candidates for the development of novel anti-influenza drugs.

  10. Drug Discovery of Host CLK1 Inhibitors for Influenza Treatment

    Directory of Open Access Journals (Sweden)

    Mian Zu

    2015-11-01

    Full Text Available The rapid evolution of influenza virus makes antiviral drugs less effective, which is considered to be a major bottleneck in antiviral therapy. The key proteins in the host cells, which are related with the replication cycle of influenza virus, are regarded as potential drug targets due to their distinct advantage of lack of evolution and drug resistance. Cdc2-like kinase 1 (CLK1 in the host cells is responsible for alternative splicing of the M2 gene of influenza virus during influenza infection and replication. In this study, we carried out baculovirus-mediated expression and purification of CLK1 and established a reliable screening assay for CLK1 inhibitors. After a virtual screening of CLK1 inhibitors was performed, the activities of the selected compounds were evaluated. Finally, several compounds with strong inhibitory activity against CLK1 were discovered and their in vitro anti-influenza virus activities were validated using a cytopathic effect (CPE reduction assay. The assay results showed that clypearin, corilagin, and pinosylvine were the most potential anti-influenza virus compounds as CLK1 inhibitors among the compounds tested. These findings will provide important information for new drug design and development in influenza treatment, and CLK1 may be a potent drug target for anti-influenza drug screening and discovery.

  11. Avian influenza virus

    Science.gov (United States)

    Avian influenza virus (AIV) is type A influenza that is adapted to avian host species. Although the virus can be isolated from numerous avian species, the natural host reservoir species are dabbling ducks, shorebirds and gulls. Domestic poultry species (poultry being defined as birds that are rais...

  12. Seasonal Influenza: An Overview

    Science.gov (United States)

    Li, Christina; Freedman, Marian

    2009-01-01

    Seasonal influenza is a major cause of morbidity and mortality in the United States. It also has major social and economic consequences in the form of high rates of absenteeism from school and work as well as significant treatment and hospitalization costs. In fact, annual influenza epidemics and the resulting deaths and lost days of productivity…

  13. Haemophilus influenzae biotype VII.

    OpenAIRE

    Gratten, M

    1983-01-01

    A hitherto unreported biotype of Haemophilus influenzae is described. The isolate is noncapsulate and fails to decarboxylate ornithine or hydrolyze urea but is a strong indole producer. Its frequency is low. It is suggested that this newly recognized biotype of H. influenzae be designated biotype VII.

  14. Towards universal influenza vaccines?

    NARCIS (Netherlands)

    A.D.M.E. Osterhaus (Albert); R.A.M. Fouchier (Ron); G.F. Rimmelzwaan (Guus)

    2011-01-01

    textabstractVaccination is the most cost-effective way to reduce the considerable disease burden of seasonal influenza. Although seasonal influenza vaccines are effective, their performance in the elderly and immunocompromised individuals would benefit from improvement. Major problems related to the

  15. Nasal commensal Staphylococcus epidermidis counteracts influenza virus

    Science.gov (United States)

    Chen, Hui-Wen; Liu, Pei-Feng; Liu, Yu-Tsueng; Kuo, Sherwin; Zhang, Xing-Quan; Schooley, Robert T.; Rohde, Holger; Gallo, Richard L.; Huang, Chun-Ming

    2016-01-01

    Several microbes, including Staphylococcus epidermidis (S. epidermidis), a Gram-positive bacterium, live inside the human nasal cavity as commensals. The role of these nasal commensals in host innate immunity is largely unknown, although bacterial interference in the nasal microbiome may promote ecological competition between commensal bacteria and pathogenic species. We demonstrate here that S. epidermidis culture supernatants significantly suppressed the infectivity of various influenza viruses. Using high-performance liquid chromatography together with mass spectrometry, we identified a giant extracellular matrix-binding protein (Embp) as the major component involved in the anti-influenza effect of S. epidermidis. This anti-influenza activity was abrogated when Embp was mutated, confirming that Embp is essential for S. epidermidis activity against viral infection. We also showed that both S. epidermidis bacterial particles and Embp can directly bind to influenza virus. Furthermore, the injection of a recombinant Embp fragment containing a fibronectin-binding domain into embryonated eggs increased the survival rate of virus-infected chicken embryos. For an in vivo challenge study, prior Embp intranasal inoculation in chickens suppressed the viral titres and induced the expression of antiviral cytokines in the nasal tissues. These results suggest that S. epidermidis in the nasal cavity may serve as a defence mechanism against influenza virus infection. PMID:27306590

  16. Combination Chemotherapy for Influenza

    Directory of Open Access Journals (Sweden)

    Robert G. Webster

    2010-07-01

    Full Text Available The emergence of pandemic H1N1 influenza viruses in April 2009 and the continuous evolution of highly pathogenic H5N1 influenza viruses underscore the urgency of novel approaches to chemotherapy for human influenza infection. Anti-influenza drugs are currently limited to the neuraminidase inhibitors (oseltamivir and zanamivir and to M2 ion channel blockers (amantadine and rimantadine, although resistance to the latter class develops rapidly. Potential targets for the development of new anti-influenza agents include the viral polymerase (and endonuclease, the hemagglutinin, and the non-structural protein NS1. The limitations of monotherapy and the emergence of drug-resistant variants make combination chemotherapy the logical therapeutic option. Here we review the experimental data on combination chemotherapy with currently available agents and the development of new agents and therapy targets.

  17. New treatments for influenza

    Directory of Open Access Journals (Sweden)

    Barik Sailen

    2012-09-01

    Full Text Available Abstract Influenza has a long history of causing morbidity and mortality in the human population through routine seasonal spread and global pandemics. The high mutation rate of the RNA genome of the influenza virus, combined with assortment of its multiple genomic segments, promote antigenic diversity and new subtypes, allowing the virus to evade vaccines and become resistant to antiviral drugs. There is thus a continuing need for new anti-influenza therapy using novel targets and creative strategies. In this review, we summarize prospective future therapeutic regimens based on recent molecular and genomic discoveries.

  18. Enhancement of Th1-biased protective immunity against avian influenza H9N2 virus via oral co-administration of attenuated Salmonella enterica serovar Typhimurium expressing chicken interferon-α and interleukin-18 along with an inactivated vaccine

    Directory of Open Access Journals (Sweden)

    Rahman Md

    2012-07-01

    Full Text Available Abstract Background Control of currently circulating re-assorted low-pathogenicity avian influenza (LPAI H9N2 is a major concern for both animal and human health. Thus, an improved LPAI H9N2 vaccination strategy is needed to induce complete immunity in chickens against LPAI H9N2 virus strains. Cytokines play a crucial role in mounting both the type and extent of an immune response generated following infection with a pathogen or after vaccination. To improve the efficacy of inactivated LPAI H9N2 vaccine, attenuated Salmonella enterica serovar Typhimurium was used for oral co-administration of chicken interferon-α (chIFN-α and chicken interleukin-18 (chIL-18 as natural immunomodulators. Results Oral co-administration of S. enterica serovar Typhimurium expressing chIFN-α and chIL-18, prior to vaccination with inactivated AI H9N2 vaccine, modulated the immune response of chickens against the vaccine antigen through enhanced humoral and Th1-biased cell-mediated immunity, compared to chickens that received single administration of S. enterica serovar Typhimurium expressing either chIFN-α or chIL-18. To further test the protective efficacy of this improved vaccination regimen, immunized chickens were intra-tracheally challenged with a high dose of LPAI H9N2 virus. Combined administration of S. enterica serovar Typhimurium expressing chIFN-α and chIL-18 showed markedly enhanced protection compared to single administration of the construct, as determined by mortality, clinical severity, and feed and water intake. This enhancement of protective immunity was further confirmed by reduced rectal shedding and replication of AIV H9N2 in different tissues of challenged chickens. Conclusions Our results indicate the value of combined administration of chIFN-α and chIL-18 using a Salmonella vaccine strain to generate an effective immunization strategy in chickens against LPAI H9N2.

  19. Diminished ICAM-1 expression and impaired pulmonary clearance of nontypeable Haemophilus influenzae in a mouse model of chronic obstructive pulmonary disease/emphysema.

    Science.gov (United States)

    Pang, Bing; Hong, Wenzhou; West-Barnette, Shayla L; Kock, Nancy D; Swords, W Edward

    2008-11-01

    The airways of patients with chronic obstructive pulmonary disease (COPD) are continually colonized with bacterial opportunists like nontypeable Haemophilus influenzae (NTHi), and a wealth of evidence indicates that changes in bacterial populations within the lung can influence the severity of COPD. In this study, we used a murine model for COPD/emphysema to test the hypothesis that COPD affects pulmonary clearance. Mice were treated with a pulmonary bolus of elastase, and as reported previously, the lungs of these mice were pathologically similar to those with COPD/emphysema at approximately 1 month posttreatment. Pulmonary clearance of NTHi was significantly impaired in elastase-treated versus mock-treated mice. While histopathologic analysis revealed minimal differences in localized lung inflammation between the two groups, lower levels of intercellular adhesion molecule 1 (ICAM-1) were observed for the airway epithelial surface of elastase-treated mice than for those of control mice. Following infection, elastase-treated mice had lung pathology consistent with pneumonia for as long as 72 h postinfection, whereas at the same time point, mock-treated mice had cleared NTHi and showed little apparent pathology. Large aggregates of bacteria were observed within damaged lung tissue of the elastase-treated mice, whereas sparse individual bacteria were observed in lungs of mock-treated mice at the same time point postinfection. Additional infection studies showed that NTHi mutants with biofilm defects were less persistent in the elastase-treated mice than the parent strain. These findings establish a model for COPD-related infections and support the hypotheses that ICAM-1 promotes clearance of NTHi. Furthermore, the data indicate that NTHi may form biofilms within the context of COPD-related infections.

  20. Treating Influenza (Flu)

    Science.gov (United States)

    Treating Influenza (Flu) Information for People at High Risk for Flu Complications Do you have Asthma, Diabetes, or Chronic Heart Disease? ... risk of serious illness if you get the flu. Asthma, diabetes and chronic heart disease were among ...

  1. Haemophilus influenzae biotype VIII.

    OpenAIRE

    Sottnek, F O; Albritton, W L

    1984-01-01

    Six Haemophilus influenzae strains could not be classified as biotypes I through VII. The strains were indole, urease, and ornithine decarboxylase negative. We propose that they be classified as biotype VIII, a previously unreported biotype.

  2. Influenza (Flu) Viruses

    Science.gov (United States)

    ... Virus Testing Clinical Signs & Symptoms of Influenza Symptoms & Laboratory Diagnosis Information for Clinicians on Rapid Diagnostic Testing for ... Help: How do I view different file formats (PDF, DOC, PPT, MPEG) on this site? Adobe PDF ...

  3. Seasonal Influenza Questions & Answers

    Science.gov (United States)

    ... Virus Testing Clinical Signs & Symptoms of Influenza Symptoms & Laboratory Diagnosis Information for Clinicians on Rapid Diagnostic Testing for ... Help: How do I view different file formats (PDF, DOC, PPT, MPEG) on this site? Adobe PDF ...

  4. Influenza and IBD

    Science.gov (United States)

    ... influenza virus as well as the H1N1 flu virus, so only a single vaccination is necessary this year. Patients on steroids, immunosuppressant therapies, and biologic therapies should discuss the risks and ...

  5. Vaccination against seasonal influenza

    CERN Multimedia

    DG Unit

    2009-01-01

    As every year, the Medical Service is taking part in the campaign to promote vaccination against seasonal influenza. Vaccination against seasonal influenza is especially recommended for people suffering from chronic lung, cardio-vascular or kidney conditions or diabetes, for those recovering from a serious illness or surgical operation and for everyone over the age of 65. The influenza virus is transmitted by air and contact with contaminated surfaces, hence the importance of washing hands regularly with soap and / or disinfection using a hydro-alcoholic solution. From the onset of symptoms (fever> 38°, chills, cough, muscle aches and / or joint pain, fatigue) you are strongly recommended to stay at home to avoid spreading the virus. In the present context of the influenza A (H1N1) pandemic, it is important to dissociate these two illnesses and emphasise that the two viruses and the vaccines used to combat them are quite different and that protection against one will not pr...

  6. Animal and human influenzas.

    Science.gov (United States)

    Peiris, M; Yen, H-L

    2014-08-01

    Influenza type A viruses affect humans and other animals and cause significant morbidity, mortality and economic impact. Influenza A viruses are well adapted to cross species barriers and evade host immunity. Viruses that cause no clinical signs in wild aquatic birds may adapt in domestic poultry to become highly pathogenic avian influenza viruses which decimate poultry flocks. Viruses that cause asymptomatic infection in poultry (e.g. the recently emerged A/H7N9 virus) may cause severe zoonotic disease and pose a major pandemic threat. Pandemic influenza arises at unpredictable intervals from animal viruses and, in its global spread, outpaces current technologies for making vaccines against such novel viruses. Confronting the threat of influenza in humans and other animals is an excellent example of a task that requires a One Health approach. Changes in travel, trade in livestock and pets, changes in animal husbandry practices, wet markets and complex marketing chains all contribute to an increased risk of the emergence of novel influenza viruses with the ability to cross species barriers, leading to epizootics or pandemics. Coordinated surveillance at the animal- human interface for pandemic preparedness, risk assessment, risk reduction and prevention at source requires coordinated action among practitioners in human and animal health and the environmental sciences. Implementation of One Health in the field can be challenging because of divergent short-term objectives. Successful implementation requires effort, mutual trust, respect and understanding to ensure that long-term goals are achieved without adverse impacts on agricultural production and food security.

  7. Influenza virus isolation.

    Science.gov (United States)

    Krauss, Scott; Walker, David; Webster, Robert G

    2012-01-01

    The isolation of influenza viruses is important for the diagnosis of respiratory diseases in lower animals and humans, for the detection of the infecting agent in surveillance programs, and is an essential element in the development and production of vaccine. Since influenza is caused by a zoonotic virus it is necessary to do surveillance in the reservoir species (aquatic waterfowls), intermediate hosts (quails, pigs), and in affected mammals including humans. Two of the hemagglutinin (HA) subtypes of influenza A viruses (H5 and H7) can evolve into highly pathogenic (HP) strains for gallinaceous poultry; some HP H5 and H7 strains cause lethal infection of humans. In waterfowls, low pathogenic avian influenza (LPAI) isolates are obtained primarily from the cloaca (or feces); in domestic poultry, the virus is more often recovered from the respiratory tract than from cloacal samples; in mammals, the virus is most often isolated from the respiratory tract, and in cases of high pathogenic avian influenza (HPAI) from the blood and internal organs of infected birds. Virus isolation procedures are performed by inoculation of clinical specimens into embryonated eggs (primarily chicken eggs) or onto a variety of primary or continuous tissue culture systems. Successful isolation of influenza virus depends on the quality of the sample and matching the appropriate culture method to the sample type.

  8. Avian And Other Zoonotic Influenza

    Science.gov (United States)

    ... sheets Fact files Questions & answers Features Multimedia Contacts Influenza (Avian and other zoonotic) Fact sheet Reviewed January ... known to infect or cause illness in people. Influenza type A viruses are of most significance to ...

  9. Influenza: exposing the true killer

    OpenAIRE

    Van Epps, Heather L.

    2006-01-01

    In the early 1930s, Richard Shope isolated influenza virus from infected pigs. Shope's finding was quickly followed by the isolation of the influenza virus from humans, proving that a virus—not a bacterium, as was widely believed—caused influenza.

  10. Improving pandemic influenza risk assessment

    Science.gov (United States)

    Assessing the pandemic risk posed by specific non-human influenza A viruses remains a complex challenge. As influenza virus genome sequencing becomes cheaper, faster and more readily available, the ability to predict pandemic potential from sequence data could transform pandemic influenza risk asses...

  11. [Cytokine storm in avian influenza].

    Science.gov (United States)

    Us, Dürdal

    2008-04-01

    The most dramatic example of defining the pathogenicity of influenza virus A/H5N1 strains is the higher fatality rate of avian influenza epidemic (>50%) occured in Southeast Asia in 1997 comparing to the pandemic caused by influenza virus A/H1N1 in 1918 (5-10%) which was recorded as the most destructive pandemic in the world. When considering the fatal/total case numbers (208/340) reported by World Health Organization in respect of December 14th, 2007, the mortality rate has now reached to 61 percent. Recent studies have shown that the high fatality rate of avian influenza virus infections is a consequence of an overactive inflammatory response and the severity of infection is closely related with virus-induced cytokine dysregulation. The most important feature of A/H5N1 immunopathogenesis is the appearence of hypercytokinemia ("cytokine storm") which is characterized by the extreme (exaggerated) production and secretion of large numbers and excessive levels of pro-inflammatory cytokines. This phenomenon is blamed on the emergence of lethal clinical symptoms such as extensive pulmonary oedema, acute bronchopneumoniae, alveolar haemorrhage, reactive haemophagocytosis, and acute respiratory distress syndrome, associated with necrosis and tissue destruction. Numerous in vitro, in vivo and clinical studies have pointed out that A/H5N1 viruses are very strong inducers of various cytokines and chemokines [Tumor Necrosis Factor (TNF)-alpha, Interferon (IFN)-gamma, IFN-alpha/beta, Interleukin (IL)-6, IL-1, MIP-1 (Macrophage Inflammatory Protein), MIG (Monokine Induced by IFN-gamma), IP-10 (Interferon-gamma-Inducible Protein), MCP-1 (Monocyte Chemoattractant Protein), RANTES (Regulated on Activation Normal T-cell Expressed and Secreted), IL-8], in both humans and animals. The privileged cells of cytokine storm are macrophages and CD8+ T-lymphocytes, while the primary contributor cytokines are TNF-alpha, IL-6 and IFN-gamma. It has been detected that, mutations of some viral

  12. Avian Influenza infection in Human

    Directory of Open Access Journals (Sweden)

    Mohan. M

    2008-08-01

    Full Text Available Outbreaks caused by the H5N1 strain are presently of the greatest concern for human health. In assessing risks to human health, it is important to know exactly which avian virus strains are causing the outbreaks in birds.All available evidence points to an increased risk of transmission to humans when outbreaks of highly pathogenic avian H5N1 influenza are widespread in poultry. There is mounting evidence that this strain has a unique capacity to jump the species barrier and cause severe disease, with high mortality, in humans. There is no evidence, to date that efficient human to human transmission of H5N1 strain has occurred and very often. Efficient transmission among humans is a key property of pandemic strains and a property that the avian H5N1 and H9N2 viruses apparently lacked. The biological and molecular basis for effective aerosol transmission among humans is not known. The virus can improve its transmissibility among humans via two principal mechanisms. The first is a “reassortment” event, in which genetic material is exchanged between human and avian viruses during co-infection of a human or pig.Reassortment could result in a fully transmissible pandemic virus, announced by a sudden surge of cases with explosive spread. The second mechanism is a more gradual process of adaptive mutation, whereby the capability of the virus to bind to human cells increases during subsequent infections of humans. Adaptive mutation, expressed initially as small clusters of human cases with some evidence of human-to-human transmission, would probably give the world some time to take defensive action, if detected sufficiently early. As the number of human infections grows, the risk increases that a new virus subtype could emerge, triggering an influenza pandemic. Humans as well as swine must now be considered a potential mixing vessel for the generation of such a virus. This link between widespread infection in poultry and increased risk of human

  13. Recombinant AAV viral vectors pseudotyped with viral capsids from serotypes 1, 2, and 5 display differential efficiency and cell tropism after delivery to different regions of the central nervous system.

    Science.gov (United States)

    Burger, Corinna; Gorbatyuk, Oleg S; Velardo, Margaret J; Peden, Carmen S; Williams, Philip; Zolotukhin, Sergei; Reier, Paul J; Mandel, Ronald J; Muzyczka, Nicholas

    2004-08-01

    Recombinant adeno-associated virus 2 (rAAV2) has been shown to deliver genes to neurons effectively in the brain, retina, and spinal cord. The characterization of new AAV serotypes has revealed that they have different patterns of transduction in diverse tissues. We have investigated the tropism and transduction frequency in the central nervous system (CNS) of three different rAAV vector serotypes. The vectors contained AAV2 terminal repeats flanking a green fluorescent protein expression cassette under the control of the synthetic CBA promoter, in AAV1, AAV2, or AAV5 capsids, producing the pseudotypes rAAV2/1, rAAV2/2, and rAAV2/5. Rats were injected with rAAV2/1, rAAV2/2, or rAAV2/5 into selected regions of the CNS, including the hippocampus (HPC), substantia nigra (SN), striatum, globus pallidus, and spinal cord. In all regions injected, the three vectors transduced neurons almost exclusively. All three vectors transduced the SN pars compacta with high efficiency, but rAAV2/1 and rAAV2/5 also transduced the pars reticulata. Moreover, rAAV2/1 showed widespread distribution throughout the entire midbrain. In the HPC, rAAV2/1 and rAAV2/5 targeted the pyramidal cell layers in the CA1-CA3 regions, whereas AAV2/2 primarily transduced the hilar region of the dentate gyrus. In general, rAAV2/1 and rAAV2/5 exhibited higher transduction frequencies than rAAV2/2 in all regions injected, although the differences were marginal in some regions. Retrograde transport of rAAV1 and rAAV5 was also observed in particular CNS areas. These results suggest that vectors based on distinct AAV serotypes can be chosen for specific applications in the nervous system. Copyright The American Society of Gene Therapy

  14. Intranasal co-administration of 1,8-cineole with influenza vaccine provide cross-protection against influenza virus infection.

    Science.gov (United States)

    Li, Yun; Xu, Yu-Ling; Lai, Yan-Ni; Liao, Shang-Hui; Liu, Ni; Xu, Pei-Ping

    2017-10-15

    , stimulated mucosal secretive IgA (s-IgA) responses at the nasal cavity, improved the expression of respiratory tract intraepithelial lymphocytes (IELs) in the upper respiratory tract, and promoted dendritic cell (DC) maturation and the expression of co-stimulatory molecules cluster of differentiation (CD)40, CD80 and CD86 in peripheral blood. Importantly, mice that had received 1,8-cineole-supplemented influenza vaccine showed longer survival time, milder inflammation, less weight loss and mortality rate and lower lung index and viral titers compared to that of mice immunized a non-1,8-cineole-adjuvanted split vaccine. Thus, i.n. immunization with 1,8-cineole-adjuvanted vaccine induces a superior cross-protective immunity against infection with influenza than an inactivated vaccine only. These results suggest that 1,8-cineole (12.5 mg/kg) has a cross-protection against influenza virus, co-administered with inactivated influenza viral antigen in a mouse model. Copyright © 2017 Elsevier GmbH. All rights reserved.

  15. Influenza sentinel surveillance network

    Science.gov (United States)

    Torner, Nuria; Baricot, Maretva; Martínez, Ana; Toledo, Diana; Godoy, Pere; Dominguez, Ángela; Primary care physicians’ Network of Catalonia (PID, the Influenza Sentinel Surveillance

    2013-01-01

    The aim of this study was to evaluate the outcome of a collaborative action between Public Health services and Primary Care in the context of a case-control study on effectiveness of pharmaceutical and non-pharmaceutical measures to prevent hospitalization in a pandemic situation. To carry out this research the collaborative action of the primary care physicians members of the Influenza surveillance network was needed, they had to recall clinical information from influenza A(H1N1)pmd09 confirmed outpatient cases and negative outpatient controls matching their corresponding hospitalized confirmed case. A survey questionnaire to assess involvement of Influenza Sentinel Surveillance Primary care physicians’ Network of Catalonia (PIDIRAC) regarding the outpatient case and control outreach during the pandemic influenza season was performed. A total of 71,1% of completed surveys were received. Perception of pandemic activity was considered to be similar to seasonal influenza activity in 43.8% or higher but not unbearable in 37.5% of the replies. There was no nuisance reported from patients regarding neither the questions nor the surveyor. Collaborative research between Public Health services and Primary Care physicians enhances Public Health actions and research. PMID:23396181

  16. Expression

    Directory of Open Access Journals (Sweden)

    Wang-Xia Wang

    2014-02-01

    Full Text Available The miR-15/107 family comprises a group of 10 paralogous microRNAs (miRNAs, sharing a 5′ AGCAGC sequence. These miRNAs have overlapping targets. In order to characterize the expression of miR-15/107 family miRNAs, we employed customized TaqMan Low-Density micro-fluid PCR-array to investigate the expression of miR-15/107 family members, and other selected miRNAs, in 11 human tissues obtained at autopsy including the cerebral cortex, frontal cortex, primary visual cortex, thalamus, heart, lung, liver, kidney, spleen, stomach and skeletal muscle. miR-103, miR-195 and miR-497 were expressed at similar levels across various tissues, whereas miR-107 is enriched in brain samples. We also examined the expression patterns of evolutionarily conserved miR-15/107 miRNAs in three distinct primary rat brain cell preparations (enriched for cortical neurons, astrocytes and microglia, respectively. In primary cultures of rat brain cells, several members of the miR-15/107 family are enriched in neurons compared to other cell types in the central nervous system (CNS. In addition to mature miRNAs, we also examined the expression of precursors (pri-miRNAs. Our data suggested a generally poor correlation between the expression of mature miRNAs and their precursors. In summary, we provide a detailed study of the tissue and cell type-specific expression profile of this highly expressed and phylogenetically conserved family of miRNA genes.

  17. Host-range restriction of vaccinia virus E3L deletion mutant can be overcome in vitro, but not in vivo, by expression of the influenza virus NS1 protein.

    Directory of Open Access Journals (Sweden)

    Susana Guerra

    Full Text Available During the last decades, research focused on vaccinia virus (VACV pathogenesis has been intensified prompted by its potential beneficial application as a vector for vaccine development and anti-cancer therapies, but also due to the fear of its potential use as a bio-terrorism threat. Recombinant viruses lacking a type I interferon (IFN antagonist are attenuated and hence good vaccine candidates. However, vaccine virus growth requires production in IFN-deficient systems, and thus viral IFN antagonists that are active in vitro, yet not in vivo, are of great value. The VACV E3 and influenza virus NS1 proteins are distinct double-stranded RNA-binding proteins that play an important role in pathogenesis by inhibiting the mammalian IFN-regulated innate antiviral response. Based on the functional similarities between E3 and NS1, we investigated the ability of NS1 to replace the biological functions of E3 of VACV in both in vitro and in vivo systems. For this, we generated a VACV recombinant virus lacking the E3L gene, yet expressing NS1 (VVΔE3L/NS1. Our study revealed that NS1 can functionally replace E3 in cultured cells, rescuing the protein synthesis blockade, and preventing apoptosis and RNA breakdown. In contrast, in vivo the VVΔE3L/NS1 virus was highly attenuated after intranasal inoculation, as it was unable to spread to the lungs and other organs. These results indicate that there are commonalities but also functional differences in the roles of NS1 and E3 as inhibitors of the innate antiviral response, which could potentially be utilized for vaccine production purposes in the future.

  18. Equine influenza in Brazil

    Directory of Open Access Journals (Sweden)

    Patricia Filippsen Favaro

    2016-06-01

    Full Text Available Equine influenza virus (EIV (H3N8 and H7N7 is the causative agent of equine influenza, or equine flu. The H7N7 subtype has been considered to be extinct worldwide since 1980. Affected animals have respiratory symptoms that can be worsened by secondary bacterial respiratory infection, thereby leading to great economic losses in the horse-breeding industry. In Brazil, equine influenza outbreaks were first reported in 1963 and studies on hemagglutination antibodies against viral subtypes in Brazilian horses have been conducted since then. The objective of the present review was to present the history of the emergence of EIV around the world and in Brazil and the studies that have thus far been developed on EIV in Brazilian equines.

  19. A polyvalent influenza A DNA vaccine induces heterologous immunity and protects pigs against pandemic A(H1N1)pdm09 virus infection

    DEFF Research Database (Denmark)

    Bragstad, Karoline; Vinner, Lasse; Hansen, Mette Sif

    2013-01-01

    The composition of current influenza protein vaccines has to be reconsidered every season to match the circulating influenza viruses, continuously changing antigenicity. Thus, influenza vaccines inducing a broad cross-reactive immune response would be a great advantage for protection against both...... seasonal and emerging influenza viruses. We have developed an alternative influenza vaccine based on DNA expressing selected influenza proteins of pandemic and seasonal origin. In the current study, we investigated the protection of a polyvalent influenza DNA vaccine approach in pigs. We immunised pigs...... intradermally with a combination of influenza DNA vaccine components based on the pandemic 1918 H1N1 (M and NP genes), pandemic 2009 H1N1pdm09 (HA and NA genes) and seasonal 2005 H3N2 genes (HA and NA genes) and investigated the protection against infection with virus both homologous and heterologous to the DNA...

  20. Cross-Neutralizing Antibodies to Pandemic 2009 H1N1 and Recent Seasonal H1N1 Influenza A Strains Influenced by a Mutation in Hemagglutinin Subunit 2

    Science.gov (United States)

    Wang, Wei; Anderson, Christine M.; De Feo, Christopher J.; Zhuang, Min; Yang, Hong; Vassell, Russell; Xie, Hang; Ye, Zhiping; Scott, Dorothy; Weiss, Carol D.

    2011-01-01

    Pandemic 2009 H1N1 influenza A virus (2009 H1N1) differs from H1N1 strains that circulated in the past 50 years, but resembles the A/New Jersey/1976 H1N1 strain used in the 1976 swine influenza vaccine. We investigated whether sera from persons immunized with the 1976 swine influenza or recent seasonal influenza vaccines, or both, neutralize 2009 H1N1. Using retroviral pseudovirions bearing hemagglutinins on their surface (HA-pseudotypes), we found that 77% of the sera collected in 1976 after immunization with the A/New Jersey/1976 H1N1 swine influenza vaccine neutralized 2009 H1N1. Forty five percent also neutralized A/New Caledonia/20/1999 H1N1, a strain used in seasonal influenza vaccines during the 2000/01–2006/07 seasons. Among adults aged 48–64 who received the swine influenza vaccine in 1976 and recent seasonal influenza vaccines during the 2004/05–2008/09 seasons, 83% had sera that neutralized 2009 H1N1. However, 68% of age-matched subjects who received the same seasonal influenza vaccines, but did not receive the 1976 swine influenza vaccine, also had sera that neutralized 2009 H1N1. Sera from both 1976 and contemporary cohorts frequently had cross-neutralizing antibodies to 2009 H1N1 and A/New Caledonia/20/1999 that mapped to hemagglutinin subunit 2 (HA2). A conservative mutation in HA2 corresponding to a residue in the A/Solomon Islands/3/2006 and A/Brisbane/59/2007 H1N1 strains that circulated in the 2006/07 and 2007/08 influenza seasons, respectively, abrogated this neutralization. These findings highlight a cross-neutralization determinant influenced by a point mutation in HA2 and suggest that HA2 may be evolving under direct or indirect immune pressure. PMID:21695241

  1. Synthesis of sialoglycopolypeptide for potentially blocking influenza virus infection using a rat α2,6-sialyltransferase expressed in BmNPV bacmid-injected silkworm larvae

    Directory of Open Access Journals (Sweden)

    Ogata Makoto

    2009-06-01

    Full Text Available Abstract Background Sialic acid is a deoxy uronic acid with a skeleton of nine carbons which is mostly found on cell surface in animals. This sialic acid on cell surface performs various biological functions by acting as a receptor for microorganisms, viruses, toxins, and hormones; by masking receptors; and by regulating the immune system. In order to synthesize an artificial sialoglycoprotein, we developed a large-scale production of rat α2,6-sialyltransferase (ST6Gal1. The ST6Gal1 was expressed in fifth instar silkworm larval hemolymph using recombinant both cysteine protease- and chitinase-deficient Bombyx mori nucleopolyhedrovirus (BmNPV-CP--Chi- bacmid. The expressed ST6Gal1 was purified, characterized and used for sialylation of asialoglycopolypeptide. We tested the inhibitory effect of the synthesized α2,6-sialoglycopolypeptide on hemagglutination by Sambucus nigra (SNA lectin. Results FLAG-tagged recombinant ST6Gal1 was expressed efficiently and purified by precipitation with ammonium sulphate followed by affinity chromatography on an anti-FLAG M2 column, generating 2.2 mg purified fusion protein from only 11 silkworm larvae, with a recovery yield of 64%. The purified ST6Gal1 was characterized and its N-glycan patterns were found to be approximately paucimannosidic type by HPLC mapping method. Fluorescently-labelled N-acetyllactosamine (LacNAc glycoside containing dansyl group was synthesized chemo-enzymatically as high-sensitivity acceptor substrate for ST6Gal1. The acceptor substrate specificity of the enzyme was similar to that of rat liver ST6Gal1. The fluorescent glycoside is useful as a substrate for a highly sensitive picomole assay of ST6Gal1. Asialoglycopolypeptide was regioselectively and quantitatively sialylated by catalytic reaction at the terminal Gal residue to obtain α2,6-sialoglycopolypeptide using ST6Gal1. The α2,6-sialoglycopolypeptide selectively inhibited hemagglutination induced by Sambucus nigra (SNA lectin

  2. Oscillococcinum for influenza treatment

    Directory of Open Access Journals (Sweden)

    Luigi Alberto Marrari

    2012-01-01

    Full Text Available The use of a complementary medicine approach, and specifically of the popular medicine Oscillococcinum, for the treatment of influenza-like syndromes remains controversial. This brief paper analyses the currently available literature on this homeopathic preparation and the Cochrane Collaboration’s 2006 systematic review, along with other recent studies, in order to clarify certain fundamental aspects of its use in the treatment of influenza. In the light of the reported findings, and applying the rigorous criteria of evidence-based medicine, we suggest that this medicine should be placed in category "BI".

  3. GM-CSF modulates pulmonary resistance to influenza A infection

    Science.gov (United States)

    Sever-Chroneos, Zvjezdana; Murthy, Aditi; Davis, Jeremy; Florence, Jon Matthew; Kurdowska, Anna; Krupa, Agnieszka; Tichelaar, Jay W.; White, Mitchell R.; Hartshorn, Kevan L.; Kobzik, Lester; Whitsett, Jeffrey A.; Chroneos, Zissis C.

    2016-01-01

    Alveolar type II epithelial or other pulmonary cells secrete GM-CSF that regulates surfactant catabolism and mucosal host defense through its capacity to modulate the maturation and activation of alveolar macrophages. GM-CSF enhances expression of scavenger receptors MARCO and SR-A. The alveolar macrophage SP-R210 receptor binds the surfactant collectin SP-A mediating clearance of respiratory pathogens. The current study determined the effects of epithelial-derived GM-CSF in host resistance to influenza A pneumonia. The results demonstrate that GM-CSF enhanced resistance to infection with 1.9 × 104 ffc of the mouse-adapted influenza A/Puerto Rico/8/34 (PR8) H1N1 strain, as indicated by significant differences in mortality and mean survival of GM-CSF-deficient (GM−/−) mice compared to GM−/− mice in which GM-CSF is expressed at increased levels. Protective effects of GM-CSF were observed both in mice with constitutive and inducible GM-CSF expression under the control of the pulmonary-specific SFTPC or SCGB1A1 promoters, respectively. Mice that continuously secrete high levels of GM-CSF developed desquamative interstitial pneumonia that impaired long-term recovery from influenza. Conditional expression of optimal GM-CSF levels at the time of infection, however, resulted in alveolar macrophage proliferation and focal lymphocytic inflammation of distal airways. GM-CSF enhanced alveolar macrophage activity as indicated by increased expression of SP-R210 and CD11c. Infection of mice lacking the GM-CSF-regulated SR-A and MARCO receptors revealed that MARCO decreases resistance to influenza in association with increased levels of SP-R210 in MARCO−/− alveolar macrophages. In conclusion, GM-CSF enhances early host resistance to influenza. Targeting of MARCO may reinforce GM-CSF-mediated host defense against pathogenic influenza. PMID:21925209

  4. Fluzone High-Dose Seasonal Influenza Vaccine

    Science.gov (United States)

    ... Variant Pandemic Other Fluzone High-Dose Seasonal Influenza Vaccine Questions & Answers Language: English (US) Español Recommend on ... flu season. What is Fluzone High-Dose influenza vaccine? Fluzone High-Dose is an influenza vaccine, manufactured ...

  5. The Virosome concept in influenza vaccines

    NARCIS (Netherlands)

    Wilschut, J; Huckriede, A; Bungener, L; Daemen, T; Stegmann, T; Palache, A

    2004-01-01

    Reconstituted influenza virus envelopes (virosomes) represent efficient influenza vaccines inducing high antibody titers upon intramuscular adminsitration. Virosomes are reconstituted viral envelopes which retain the cell entry and membrane fusion characteristics of native influenza virus. Here, we

  6. Avian Influenza A Virus Infections in Humans

    Science.gov (United States)

    ... Pandemic Other Avian Influenza A Virus Infections in Humans Language: English (US) Español Recommend on Facebook Tweet ... A Viruses Avian Influenza A Virus Infections in Humans Although avian influenza A viruses usually do not ...

  7. Influenza Vaccines: Unmet Needs and Recent Developments

    Science.gov (United States)

    Noh, Ji Yun

    2013-01-01

    Influenza is a worldwide public health concern. Since the introduction of trivalent influenza vaccine in 1978, vaccination has been the primary means of prevention and control of influenza. Current influenza vaccines have moderate efficacy, good safety, and acceptable tolerability; however, they have unsatisfactory efficacy in older adults, are dependent on egg supply for production, and are time-consuming to manufacture. This review outlines the unmet medical needs of current influenza vaccines. Recent developments in influenza vaccines are also described. PMID:24475351

  8. Hablemos de la Influenza

    Centers for Disease Control (CDC) Podcasts

    2010-12-08

    En la charla, un médico responde a las preguntas frecuentes sobre la vacuna contra la influenza (gripe).  Created: 12/8/2010 by Centro Nacional para la Inmunización y Enfermedades Respiratorias (NCIRD).   Date Released: 12/8/2010.

  9. Equine influenza: An overview

    Directory of Open Access Journals (Sweden)

    S. P. Waghmare

    2010-08-01

    Full Text Available Equine influenza virus is a leading cause of respiratory disease in the horses. The disease is the OIE listed disease of equines, ponies, mules and donkeys and spreads very fast. The sporadic outbreaks of the disease have occurred all over the country. Many cases have been reported in Delhi, Meerut, Saharanpur, Jaipur, Hisar, Calcutta, Ahmedabad. Nearly all the horses at Matheran (Hill station were infected with influenza. The disease has spread like wildfire at the stables of Royal Western India Turf Club (RWITC at Pune and suspended the Mumbai racing season for prolonged period of time resulting in marked economic losses. After affecting racing in Mumbai, Calcutta and New Delhi, the dreaded equine influenza has spread to Karnataka and Mysore. An outbreak of disease has marred the racing season across the country. The disease was first detected in Jammu & Kashmir before entering the central region Horses at the army polo clubs and Delhi equestrian center were also affected. As per the recent survey conducted by the army across India, it has been found that 5400 horses are infected so far, especially thoroughbred most severely. Nearly, 95 % of horses on a major farm in India are suspected of suffering from equine influenza. The government also banned inter-state movement of horses for three months to contain the disease. [Vet World 2010; 3(4.000: 194-197

  10. ADULT INFLUENZA VACCINATION GUIDELINE

    African Journals Online (AJOL)

    meeting to consider the draft guideline. Financial sponsor. Development supported by an ... respiratory vaccinations consensus meeting was held in. Gauteng (see below). Participants were invited ..... Boorman D. Influenza vaccine and its relationship to absenteeism in the workplace. Occupational Health SA 1997; 3: 29-30.

  11. Vaccination against seasonal influenza

    CERN Multimedia

    SC Unit

    2009-01-01

    As every year, the Medical Service is taking part in the campaign to promote vaccination against seasonal influenza. Vaccination against seasonal influenza is especially recommended for people suffering from chronic lung, cardio-vascular or kidney conditions or diabetes, for those recovering from a serious illness or surgical operation and for everyone over the age of 65. The influenza virus is transmitted by air and contact with contaminated surfaces, hence the importance of washing hands regularly with soap and / or disinfection using a hydro-alcoholic solution. From the onset of symptoms (fever> 38°, chills, cough, muscle aches and / or joint pain, fatigue) you are strongly recommended to stay at home to avoid spreading the virus. In the present context of the influenza A (H1N1) pandemic, it is important to dissociate these two illnesses and emphasise that the two viruses and the vaccines used to combat them are quite different and that protection against one will not provide protection against the...

  12. ADULT INFLUENZA VACCINATION GUIDELINE

    African Journals Online (AJOL)

    Infections with the influenza virus and Streptococcus pneumoniae are associated with considerable morbidity and ... for Disease Control and Prevention, Atlanta, Georgia; CNS = central nervous system; COPD = chronic .... During delivery and storage, the vaccine should be kept at. 2 - gcC in cold chain, and stored in the ...

  13. Metabolic versatility in Haemophilus influenzae: a metabolomic and genomic analysis.

    Science.gov (United States)

    Othman, Dk Seti Maimonah Pg; Schirra, Horst; McEwan, Alastair G; Kappler, Ulrike

    2014-01-01

    Haemophilus influenzae is a host adapted human pathogen known to contribute to a variety of acute and chronic diseases of the upper and lower respiratory tract as well as the middle ear. At the sites of infection as well as during growth as a commensal the environmental conditions encountered by H. influenzae will vary significantly, especially in terms of oxygen availability, however, the mechanisms by which the bacteria can adapt their metabolism to cope with such changes have not been studied in detail. Using targeted metabolomics the spectrum of metabolites produced during growth of H. influenzae on glucose in RPMI-based medium was found to change from acetate as the main product during aerobic growth to formate as the major product during anaerobic growth. This change in end-product is likely caused by a switch in the major route of pyruvate degradation. Neither lactate nor succinate or fumarate were major products of H. influenzae growth under any condition studied. Gene expression studies and enzyme activity data revealed that despite an identical genetic makeup and very similar metabolite production profiles, H. influenzae strain Rd appeared to favor glucose degradation via the pentose phosphate pathway, while strain 2019, a clinical isolate, showed higher expression of enzymes involved in glycolysis. Components of the respiratory chain were most highly expressed during microaerophilic and anaerobic growth in both strains, but again clear differences existed in the expression of genes associated e.g., with NADH oxidation, nitrate and nitrite reduction in the two strains studied. Together our results indicate that H. influenzae uses a specialized type of metabolism that could be termed "respiration assisted fermentation" where the respiratory chain likely serves to alleviate redox imbalances caused by incomplete glucose oxidation, and at the same time provides a means of converting a variety of compounds including nitrite and nitrate that arise as part of

  14. Metabolic versatility in Haemophilus influenzae: a metabolomic and genomic analysis

    Directory of Open Access Journals (Sweden)

    Dk Seti Maimonah Pg eOthman

    2014-03-01

    Full Text Available Haemophilus influenzae is a host adapted human pathogen known to contribute to a variety of acute and chronic diseases of the upper and lower respiratory tract as well as the middle ear. At the sites of infection as well as during growth as a commensal the environmental conditions encountered by H. influenzae will vary significantly, especially in terms of oxygen availability, however, the mechanisms by which the bacteria can adapt their metabolism to cope with such changes have not been studied in detail. Using targeted metabolomics the spectrum of metabolites produced during growth of H. influenzae on glucose in RPMI-based medium was found to change from acetate as the main product during aerobic growth to formate as the major product during anaerobic growth. This is likely caused by a switch in the major pyruvate degrading route. Neither lactate nor succinate or fumarate were major products of H. influenzae growth under any condition studied Gene expression studies and enzyme activity data revealed that despite an identical genetic makeup and very similar metabolite production profiles, H. influenzae strain Rd appeared to favour glucose degradation via the PPP, while strain 2019, a clinical isolate, showed higher expression of enzymes involved in glycolysis. Components of the respiratory chain were most highly expressed during microaerophilic and anaerobic growth in both strains, but again clear differences existed in the expression of genes associated e.g. with NADH oxidation, nitrate and nitrite reduction in the two strains studied.Together our results indicate that H. influenzae uses a specialized type of metabolism that could be termed ‘respiration assisted fermentation’ where the respiratory chain likely serves to alleviate redox imbalances caused by incomplete glucose oxidation, and at the same time provides a means of converting a variety of compounds including nitrite and nitrate that arise as part of the host defence mechanisms.

  15. Characterization and evaluation of monoclonal antibodies developed for typing influenza A and influenza B viruses.

    OpenAIRE

    Walls, H H; Harmon, M.W.; Slagle, J J; Stocksdale, C; Kendal, A P

    1986-01-01

    Monoclonal antibodies that are broadly reactive with influenza A or influenza B viruses were produced as stable reagents for typing influenza viruses. Monoclonal antibodies to influenza A were specific for either matrix protein or nucleoprotein. The antibodies to influenza B were specific for nucleoprotein or hemagglutinin protein. In an enzyme immunoassay procedure, influenza A antibodies detected H1N1, H2N2, and H3N2 influenza A virus strains collected between 1934 and 1984. Each of the inf...

  16. Approaches toward the development of DNA vaccine for influenza ...

    African Journals Online (AJOL)

    Administrator

    2011-06-13

    Jun 13, 2011 ... pathogen's genetic code (Kim and Jacob, 2009; Donnelly et al., 2005). The aims of this study were to develop eight. DNA constructs of influenza A virus in mammalian expression system, immunization of chicken by mixing the NP construct with other viral gene constructs, and evaluation study for the most ...

  17. Fimbria-mediated adherence and hemagglutination of Haemophilus influenzae

    NARCIS (Netherlands)

    van Ham, S. M.; van Alphen, L.; Mooi, F. R.

    1992-01-01

    The gram-negative bacterium Haemophilus influenzae expresses morphologically and functionally distinct types of fimbriae, of which the LKP fimbriae mediate hemagglutination and adherence to human epithelial cells but hamper mucosal invasion. Therefore, the both in vivo and in vitro observed fimbrial

  18. Neuraminidase-Mediated, NKp46-Dependent Immune-Evasion Mechanism of Influenza Viruses

    Directory of Open Access Journals (Sweden)

    Yotam Bar-On

    2013-04-01

    Full Text Available Natural killer (NK cells play an essential role in the defense against influenza virus, one of the deadliest respiratory viruses known today. The NKp46 receptor, expressed by NK cells, is critical for controlling influenza infections, as influenza-virus-infected cells are eliminated through the recognition of the viral hemagglutinin (HA protein by NKp46. Here, we describe an immune-evasion mechanism of influenza viruses that is mediated by the neuraminidase (NA protein. By using various NA blockers, we show that NA removes sialic acid residues from NKp46 and that this leads to reduced recognition of HA. Furthermore, we provide in vivo and in vitro evidence for the existence of this NA-mediated, NKp46-dependent immune-evasion mechanism and demonstrate that NA inhibitors, which are commonly used for the treatment of influenza infections, are useful not only as blockers of virus budding but also as boosters of NKp46 recognition.

  19. A novel method to produce Influenza A virus matrix protein M1 Capsid Like Particles (CLPs).

    Science.gov (United States)

    Baniasadi, Vahid; Lal, Sunil K

    2014-09-01

    Avian influenza viruses represent a growing threat for an influenza pandemic. The currently licensed influenza vaccines have inherent drawbacks which has led many research groups to explore different approaches of vaccine development among which Virus Like particles (VLPs) seem like a promising alternative in the near future. Although it is known that the Matrix 1 protein (M1) of influenza plays an essential role in VLP formation and it is documented that M1 is able to form dimers, it is not clear if M1 is capable of forming higher order structures without the interference of other influenza proteins or cell derived envelope. Here, for the first time we have demonstrated that expression of M1 alone is enough to form a Capsid Like Particle (CLP) without the requirement of any other external factor. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Epidemiological and virological characteristics of influenza B: results of the Global Influenza B Study

    NARCIS (Netherlands)

    Caini, S.; Huang, Q.S.; Ciblak, M.A.; Kusznierz, G.; Owen, R.; Wangchuk, S.; Henriques, C.M.P.; Njouom, R.; Fasce, R.A.; Yu, H.J.; Feng, L.Z.; Zambon, M.; Clara, A.W.; Kosasih, H.; Puzelli, S.; Kadjo, H.A.; Emukule, G.; Heraud, J.M.; Ang, L.W.; Venter, M.; Mironenko, A.; Brammer, L.; Mai, L.T.Q.; Schellevis, F.G.; Plotkin, S.; Paget, J.

    2015-01-01

    Introduction: Literature on influenza focuses on influenza A, despite influenza B having a large public health impact. The Global Influenza B Study aims to collect information on global epidemiology and burden of disease of influenza B since 2000. Methods: Twenty-six countries in the Southern (n=5)

  1. Epidemiological and virological characteristics of influenza B: results of the global influenza B study.

    NARCIS (Netherlands)

    Caini, S.; Sue Huang, Q.; Ciblak, M.A.; Kusznierz, G.; Owen, R.; Wangchuk, S.; Henriques, C.M.P.; Njouom, R.; Fasce, R.A.; Yu, H.; Feng, L.; Zambon, M.; Clara, A.W.; Kosasih, H.; Puzelli, S.; Kasjo, H.A.; Emukule, G.; Hereaud, J.M.; Ang, L.W.; Venter, M.; Mironenko, A.; Brammer, L.; Mai, L.T.Q.; Schellevis, F.; Plotkin, S.; Paget, J.

    2015-01-01

    Introduction: Literature on influenza focuses on influenza A, despite influenza B having a large public health impact. The Global Influenza B Study aims to collect information on global epidemiology and burden of disease of influenza B since 2000. Methods Twenty-six countries in the Southern (n = 5)

  2. Epidemiological and virological characteristics of influenza B: results of the Global Influenza B Study

    NARCIS (Netherlands)

    Caini, S.; Huang, Q.S.; Ciblak, M.A.; Kusznierz, G.; Owen, R.; Wangchuk, S.; Henriques, C.M.; Njouom, R.; Fasce, R.A.; Yu, H.; Feng, L.; Zambon, M.; Clara, A.W.; Kosasih, H.; Puzelli, S.; Kadjo, H.A.; Emukule, G.; Heraud, J.M.; Ang, L.W.; Venter, M.; Mironenko, A.; Brammer, L.; Mai, T.Q. le; Schellevis, F.; Plotkin, S.; Paget, J.

    2015-01-01

    INTRODUCTION: Literature on influenza focuses on influenza A, despite influenza B having a large public health impact. The Global Influenza B Study aims to collect information on global epidemiology and burden of disease of influenza B since 2000. METHODS: Twenty-six countries in the Southern (n =

  3. Potent neutralization of influenza A virus by a single-domain antibody blocking M2 ion channel protein.

    Directory of Open Access Journals (Sweden)

    Guowei Wei

    Full Text Available Influenza A virus poses serious health threat to humans. Neutralizing antibodies against the highly conserved M2 ion channel is thought to offer broad protection against influenza A viruses. Here, we screened synthetic Camel single-domain antibody (VHH libraries against native M2 ion channel protein. One of the isolated VHHs, M2-7A, specifically bound to M2-expressed cell membrane as well as influenza A virion, inhibited replication of both amantadine-sensitive and resistant influenza A viruses in vitro, and protected mice from a lethal influenza virus challenge. Moreover, M2-7A showed blocking activity for proton influx through M2 ion channel. These pieces of evidence collectively demonstrate for the first time that a neutralizing antibody against M2 with broad specificity is achievable, and M2-7A may have potential for cross protection against a number of variants and subtypes of influenza A viruses.

  4. Conventional influenza vaccines influence the performance of a universal influenza vaccine in mice.

    Science.gov (United States)

    Rowell, Janelle; Lo, Chia-Yun; Price, Graeme E; Misplon, Julia A; Epstein, Suzanne L; Garcia, Mayra

    2018-02-08

    Universal influenza vaccines are designed to protect against diverse strains of influenza virus. Preclinical testing of new vaccine candidates is usually done in naïve animals, despite intended use in the human population with its varied immune history including responses to previous vaccinations. As an approach more relevant to human use, we tested a candidate universal influenza vaccine in mice with a history of conventional vaccination. Female BALB/c mice were given two intramuscular doses of inactivated influenza vaccine (IIV) or diphtheria and tetanus toxoids vaccine (DT), one month apart. Another group was given two intranasal doses of live attenuated influenza virus (LAIV). One month after the second dose, mice were given the universal influenza vaccine: recombinant adenoviruses expressing influenza A nucleoprotein (A/NP) and matrix 2 (M2) (A/NP + M2-rAd). Immune responses to universal vaccine antigens A/NP and M2 were assessed by ELISA and interferon-γ ELISPOT. Protection was tested by challenge with mouse-adapted A/FM/1/47 (H1N1) and monitoring for weight loss and survival. Universal vaccine performance was enhanced, inhibited or unaffected by particular prior vaccinations. Mice given Afluria IIV and LAIV had greater antibody and T-cell response to A/NP than mice without prior vaccination, providing examples of enhanced A/NP + M2-rAd performance. Though Fluvirin IIV partially inhibited, the universal vaccine still provided considerable protection unlike conventional vaccination. Fluzone IIV and DT had no effect on A/NP + M2-rAd performance. Thus our results demonstrate that universal vaccine candidate A/NP + M2-rAd was at least partially effective in mice with diverse prior histories. However, the degree of protection and nature of the immune responses may be affected by a history of conventional vaccination and suggests that performance in humans would be influenced by immune history. Published by Elsevier Ltd.

  5. [Influenza vaccine and adjuvant].

    Science.gov (United States)

    Nakayama, Tetsuo

    2011-01-01

    Adjuvant is originated from the Latin word "adjuvare" which means "help" in English to enhance the immunological responses when given together with antigens. The beginning of adjuvant was mineral oil which enhanced the immune response when it was given with inactivated Salmonella typhimurium. Aluminium salt was used to precipitate diphtheria toxoid and increased level of antibody response was demonstrated when administered with alum-precipitated antigens. Since 1930, aluminium salt has been used as DTaP (diphtheria-tetanus-acellular pertussis vaccine) adjuvant. Many candidates were tested for adjuvant activity but only aluminum salt is allowed to use for human vaccines. New adjuvant MF59, oil-in-water emulsion type, was developed for influenza vaccine for elderly (Fluad) and series of AS adjuvant are used for hepatitis B, pandemic flue, and human papiloma virus vaccines. Oil-adjuvanted influenza pandemic vaccines induced higher antibody response than alum-adjuvanted vaccine with higher incidence of adverse events, especially for local reactions. Alum-adjuvanted whole virion inactivated H5N1 vaccine was developed in Japan, and it induced relatively well immune responses in adults. When it applied for children, febrile reaction was noted in approximately 60% of the subjects, with higher antibodies. Recent investigation on innate immunity demonstrates that adjuvant activity is initiated from the stimulation on innate immunity and/or inflammasome, resulting in cytokine induction and antigen uptake by monocytes and macrophages. The probable reason for high incidence of febrile reaction should be investigated to develop a safe and effective influenza vaccine.

  6. NK cells exacerbate the pathology of influenza virus infection in mice.

    Science.gov (United States)

    Zhou, Gang; Juang, Shih Wei W; Kane, Kevin P

    2013-04-01

    NK cells offer a first line of defense against viruses and are considered beneficial to the host during infection. Nevertheless, little is understood regarding the phenotype and function of NK cells in the lung during influenza virus infection. We found that the frequency of NK cells in mouse lung increased during influenza infection, with the majority of a mature phenotype. Cell surface CD107a and intracellular IFN-γ were detected in cells expressing multiple NK-cell receptors in infected lung, suggesting that NK cells were activated during infection. The activating receptor NKp46 was predominantly negative on such cells, possibly as a result of encountering influenza HA. Depletion of NK cells in vivo with anti-asialo GM1 or anti-NK1.1 reduced mortality from influenza infection and surviving mice recovered their body weight. Pathology induced by NK cells was only observed with high, not medium or low-dose influenza infection, indicating that the severity of infection influences NK-cell-mediated pathology. Furthermore, adoptive transfer of NK cells from influenza-infected lung, but not uninfected lung, resulted in more rapid weight loss and increased mortality of influenza-infected mice. Our results indicate that during severe influenza infection of the lung, NK cells have a deleterious impact on the host, promoting mortality. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. PANDEMIC SWINE INFLUENZA VIRUS: PREPAREDNESS ...

    African Journals Online (AJOL)

    Zamzar

    pandemic planning. Keywords: Pandemic, swine, influenza, virus, preparedness. INTRODUCTION. Effective pandemic preparedness and response should involve .... disaster. Academy of Emerging Medicine 2006;. 13: 1118-1129. 11. Coker R.J, Mounier-Jack S. Pandemic influenza preparedness in the Asia- pacific region.

  8. Avian influenza surveillance and diagnosis

    Science.gov (United States)

    Rapid detection and accurate identification of low (LPAI) and high pathogenicity avian influenza (HPAI) is critical to controlling infections and disease in poultry. Test selection and algorithms for the detection and diagnosis of avian influenza virus (AIV) in poultry may vary somewhat among differ...

  9. Rekonvalescens og sygemelding efter influenza

    DEFF Research Database (Denmark)

    Pedersen, Court

    2009-01-01

    Seasonal influenza has a significant impact on individuals and society alike. In otherwise healthy adults, a typical case of seasonal influenza is associated with six to eight days of clinical symptoms, and about four to five days of sick leave. Transmission mainly takes place during the initial...

  10. Influenza: diagnosis, management, and prophylaxis.

    OpenAIRE

    Wiselka, M

    1994-01-01

    Influenza causes enormous morbidity, death, and economic loss. Annual vaccination is strongly recommended for groups at high risk. Amantadine is effective treatment for and prophylaxis against influenza A during epidemics. New developments include rapid laboratory diagnosis, live attenuated vaccines, and antiviral drugs.

  11. Influenza vaccines : The virosome concept

    NARCIS (Netherlands)

    Wilschut, Jan

    2009-01-01

    Influenza virosomes are virus-like particles, which retain the cell binding and membrane fusion properties of the native virus, but lack the viral genetic material. These functional characteristics of influenza virosomes form the basis for their immunogenicity First, the repetitive arrangement of

  12. Influenza: prevention, prophylaxis and treatment

    African Journals Online (AJOL)

    period from 1997 to 2001, influenza and pneumonia combined was one of the top five causes of death for both males and females.1. Influenza illness ... chain outlet of flu vaccines and offering symptomatic treatment. Early flu patients .... who use the vaccine, thus healthcare professionals should not hesitate to vaccinate this ...

  13. Influenza A virus infections in swine: pathogenesis and diagnosis.

    Science.gov (United States)

    Janke, B H

    2014-03-01

    Influenza has been recognized as a respiratory disease in swine since its first appearance concurrent with the 1918 "Spanish flu" human pandemic. All influenza viruses of significance in swine are type A, subtype H1N1, H1N2, or H3N2 viruses. Influenza viruses infect epithelial cells lining the surface of the respiratory tract, inducing prominent necrotizing bronchitis and bronchiolitis and variable interstitial pneumonia. Cell death is due to direct virus infection and to insult directed by leukocytes and cytokines of the innate immune system. The most virulent viruses consistently express the following characteristics of infection: (1) higher or more prolonged virus replication, (2) excessive cytokine induction, and (3) replication in the lower respiratory tract. Nearly all the viral proteins contribute to virulence. Pigs are susceptible to infection with both human and avian viruses, which often results in gene reassortment between these viruses and endemic swine viruses. The receptors on the epithelial cells lining the respiratory tract are major determinants of infection by influenza viruses from other hosts. The polymerases, especially PB2, also influence cross-species infection. Methods of diagnosis and characterization of influenza viruses that infect swine have improved over the years, driven both by the availability of new technologies and by the necessity of keeping up with changes in the virus. Testing of oral fluids from pigs for virus and antibody is a recent development that allows efficient sampling of large numbers of animals.

  14. The Immunostimulatory Capacity of Nontypeable Haemophilus influenzae Lipooligosaccharide

    Directory of Open Access Journals (Sweden)

    Gabrielle N. Gaultier

    2017-02-01

    Full Text Available Background: We have recently found that lipooligosaccharide (LOS isolated from encapsulated strains of Haemophilus influenzae (H. influenzae has strong adjuvant, but diminished pro-inflammatory ability as compared to Escherichia coli lipopolysaccharide (LPS. In this study, we aimed to determine the immunostimulatory capacity of nontypeable/ non-encapsulated H. influenzae (NTHi LOS by comparing the effect of killed bacteria with LOS isolated from the same strain. Methods: Following stimulation of human monocytic THP-1 cells with killed NTHi strain 375, or with the corresponding amount of LOS, we studied the protein and gene expression of immunostimulatory and antigen-presenting molecules, cytokines, and innate immune receptors. Results: Stimulation with LOS resulted in lower expression of adhesion (CD54, CD58 as well as costimulatory molecules (CD40, CD86, but in higher expression of antigen-presenting molecules (HLA-DR and HLA-ABC compared to killed NTHi, whereas killed bacteria induced higher release of both TNF-α and IL-10. The results indicate that while LOS of NTHi has decreased capacity to induce pro-inflammatory responses compared to E. coli LPS or killed NTHi, this LOS has the potential to facilitate antigen presentation. Conclusions: Considering the important role of NTHi as a respiratory pathogen, and its currently increasing significance in the etiology of invasive infections, LOS deserves further attention as a vaccine antigen, which also has potent adjuvant properties. Keywords: Nontypeable Haemophilus influenzae, Lipooligosaccharide, THP-1 cells, innate immune responses

  15. Haemophilus influenzae and oxidative stress

    Directory of Open Access Journals (Sweden)

    Alistair eHarrison

    2012-03-01

    Full Text Available Haemophilus influenzae is a commensal of the human upper respiratory tract. H. influenzae can, however, move out of its commensal niche and cause multiple respiratory tract diseases. Such diseases include otitis media in young children, as well as exacerbations of chronic obstructive pulmonary disease, sinusitis, conjunctivitis and bronchitis. During the course of colonization and infection, H. influenzae must withstand oxidative stress generated by multiple reactive oxygen species produced endogenously, by other co-pathogens and by host cells. H. influenzae has therefore evolved multiple mechanisms that protect the cell against oxygen-generated stresses. In this review, we will describe these systems. Moreover, we will compare how H. influenzae obviates the effect of oxidative stress as a necessary phenotype for its roles as both a successful commensal and pathogen, relative to the well-described systems in Escherichia coli.

  16. Replication of influenza A virus in swine umbilical cord epithelial stem-like cells.

    Science.gov (United States)

    Khatri, Mahesh; Chattha, Kuldeep S

    2015-01-01

    In this study, we describe the isolation and characterization of epithelial stem-like cells from the swine umbilical cord and their susceptibility to influenza virus infection. Swine umbilical cord epithelial stem cells (SUCECs) expressed stem cell and pluripotency associated markers such as SSEA-1, SSEA-4, TRA 1-60 and TRA 1-81 and Oct4. Morphologically, cells displayed polygonal morphology and were found to express epithelial markers; pancytokeratin, cytokeratin-18 and occludin; mesenchymal cell markers CD44, CD90 and haematopoietic cell marker CD45 were not detected on these cells. The cells had extensive proliferation and self- renewal properties. The cells also possessed immunomodulatory activity and inhibited the proliferation of T cells. Also, higher levels of anti-inflammatory cytokine IL-10 were detected in SUCEC-T cell co-cultures. The cells were multipotent and differentiated into lung epithelial cells when cultured in epithelial differentiation media. We also examined if SUCECs are susceptible to infection with influenza virus. SUCECs expressed sialic acid receptors, used by influenza virus for binding to cells. The 2009 pandemic influenza virus and swine influenza virus replicated in these cells. SUCECs due to their differentiation and immunoregulatory properties will be useful as cellular therapy in a pig model for human diseases. Additionally, our data indicate that influenza virus can infect SUCECs and may transmit influenza virus from mother to fetus through umbilical cord and transplantation of influenza virus-infected stem cells may transmit infection to recipients. Therefore, we propose that umbilical cord cells, in addition to other agents, should also be tested for influenza virus before cryopreservation for future use as a cell therapy for disease conditions.

  17. The rationale for quadrivalent influenza vaccines

    OpenAIRE

    Ambrose, Christopher S.; Levin, Myron J.

    2012-01-01

    Two antigenically distinct lineages of influenza B viruses have circulated globally since 1985. However, licensed trivalent seasonal influenza vaccines contain antigens from only a single influenza B virus and thus provide limited immunity against circulating influenza B strains of the lineage not present in the vaccine. In recent years, predictions about which B lineage will predominate in an upcoming influenza season have been no better than chance alone, correct in only 5 of the 10 seasons...

  18. PnuC and the Utilization of the Nicotinamide Riboside Analog 3-Aminopyridine in Haemophilus influenzae

    OpenAIRE

    Sauer, Elizabeta; Merdanovic, Melisa; Price Mortimer, Anne; Bringmann, Gerhard; Reidl, Joachim

    2004-01-01

    The utilization pathway for the uptake of NAD and nicotinamide riboside was previously characterized for Haemophilus influenzae. We now report on the cellular location, topology, and substrate specificity of PnuC. pnuC of H. influenzae is only distantly related to pnuC of Escherichia coli and Salmonella enterica serovar Typhimurium. When E. coli PnuC was expressed in an H. influenzae pnuC mutant, it was able to take up only nicotinamide riboside and not nicotinamide mononucleotide. Therefore,...

  19. Antiviral Efficacy of Verdinexor In Vivo in Two Animal Models of Influenza A Virus Infection.

    Directory of Open Access Journals (Sweden)

    Olivia Perwitasari

    Full Text Available Influenza A virus (IAV causes seasonal epidemics of respiratory illness that can cause mild to severe illness and potentially death. Antiviral drugs are an important countermeasure against IAV; however, drug resistance has developed, thus new therapeutic approaches are being sought. Previously, we demonstrated the antiviral activity of a novel nuclear export inhibitor drug, verdinexor, to reduce influenza replication in vitro and pulmonary virus burden in mice. In this study, in vivo efficacy of verdinexor was further evaluated in two animal models or influenza virus infection, mice and ferrets. In mice, verdinexor was efficacious to limit virus shedding, reduce pulmonary pro-inflammatory cytokine expression, and moderate leukocyte infiltration into the bronchoalveolar space. Similarly, verdinexor-treated ferrets had reduced lung pathology, virus burden, and inflammatory cytokine expression in the nasal wash exudate. These findings support the anti-viral efficacy of verdinexor, and warrant its development as a novel antiviral therapeutic for influenza infection.

  20. Antiviral Efficacy of Verdinexor In Vivo in Two Animal Models of Influenza A Virus Infection.

    Science.gov (United States)

    Perwitasari, Olivia; Johnson, Scott; Yan, Xiuzhen; Register, Emery; Crabtree, Jackelyn; Gabbard, Jon; Howerth, Elizabeth; Shacham, Sharon; Carlson, Robert; Tamir, Sharon; Tripp, Ralph A

    2016-01-01

    Influenza A virus (IAV) causes seasonal epidemics of respiratory illness that can cause mild to severe illness and potentially death. Antiviral drugs are an important countermeasure against IAV; however, drug resistance has developed, thus new therapeutic approaches are being sought. Previously, we demonstrated the antiviral activity of a novel nuclear export inhibitor drug, verdinexor, to reduce influenza replication in vitro and pulmonary virus burden in mice. In this study, in vivo efficacy of verdinexor was further evaluated in two animal models or influenza virus infection, mice and ferrets. In mice, verdinexor was efficacious to limit virus shedding, reduce pulmonary pro-inflammatory cytokine expression, and moderate leukocyte infiltration into the bronchoalveolar space. Similarly, verdinexor-treated ferrets had reduced lung pathology, virus burden, and inflammatory cytokine expression in the nasal wash exudate. These findings support the anti-viral efficacy of verdinexor, and warrant its development as a novel antiviral therapeutic for influenza infection.

  1. Aflunov(®): a prepandemic influenza vaccine.

    Science.gov (United States)

    Gasparini, Roberto; Amicizia, Daniela; Lai, Piero Luigi; Panatto, Donatella

    2012-02-01

    Influenza viruses are adept in human populations. Indeed, they have the capacity to evade the immune system through mechanisms of mutations (antigenic drift) and major variations in surface protein expression (antigenic shift). When a major change occurs, the risk of a human pandemic arises. Three influenza pandemics occurred during the 20th century, the most serious being the Spanish influenza. The last pandemic of the past century occurred in 1968, and the responsible virus infected an estimated 1-3 million people throughout the world. The first pandemic of the present century occurred in 2009 and was sustained by a H1N1 strain (A/California/07/09). In 1997, a novel avian influenza virus, H5N1, first infected humans in China. Since its emergence, the H5N1 virus has spread from Asia to Europe and Africa, resulting in the infection of millions of poultry and wild birds. So far, 522 human cases and 322 deaths have been reported by the WHO. Many studies have therefore been performed to obtain efficacious and safe H5N1 vaccines. One of these is Aflunov(®). Aflunov is a prepandemic monovalent A/H5N1 influenza vaccine adjuvanted with MF59 produced by Novartis Vaccines and Diagnostics. In nonclinical studies conducted in rabbits, Aflunov proved to be well-tolerated, did not cause maternal or embryo-fetal toxicity, was not teratogenic, and had no effects on postnatal development. In clinical studies, Aflunov proved safe and well-tolerated in infants, children, adolescents, adults and the elderly. In the same subjects, the vaccine elicited robust immunogenicity against both homologous (A/Vietnam/1194/2004 clade 1) and heterologous viral strains (for instance, A/Indonesia/05/2005 or A/Turkey/15/2006) and induced immunologic memory. Thus, in 2010, the CHMP issued a positive opinion on Aflunov and in January 2011 Aflunov was given marketing authorization. This vaccine could be very useful in the event of adaptation of the H5N1 virus to humans, which could cause a new

  2. A polyvalent influenza DNA vaccine applied by needle-free intradermal delivery induces cross-reactive humoral and cellular immune responses in pigs

    DEFF Research Database (Denmark)

    Borggren, Marie; Nielsen, Jens; Karlsson, Ingrid

    2016-01-01

    BACKGROUND: Pigs are natural hosts for influenza A viruses, and the infection is widely prevalent in swine herds throughout the world. Current commercial influenza vaccines for pigs induce a narrow immune response and are not very effective against antigenically diverse viruses. To control...... influenza in pigs, the development of more effective swine influenza vaccines inducing broader cross-protective immune responses is needed. Previously, we have shown that a polyvalent influenza DNA vaccine using vectors containing antibiotic resistance genes induced a broadly protective immune response...... of the optimized DNA vaccine were evaluated in groups of five to six pigs. The DNA vaccine consisted of six selected influenza genes of pandemic origin, including internally expressed matrix and nucleoprotein and externally expressed hemagglutinin and neuraminidase. RESULTS: Needle-free vaccination of growing pigs...

  3. Cigarette smoke worsens lung inflammation and impairs resolution of influenza infection in mice

    Directory of Open Access Journals (Sweden)

    Jones Jessica E

    2008-07-01

    Full Text Available Abstract Background Cigarette smoke has both pro-inflammatory and immunosuppressive effects. Both active and passive cigarette smoke exposure are linked to an increased incidence and severity of respiratory virus infections, but underlying mechanisms are not well defined. We hypothesized, based on prior gene expression profiling studies, that upregulation of pro-inflammatory mediators by short term smoke exposure would be protective against a subsequent influenza infection. Methods BALB/c mice were subjected to whole body smoke exposure with 9 cigarettes/day for 4 days. Mice were then infected with influenza A (H3N1, Mem71 strain, and analyzed 3 and 10 days later (d3, d10. These time points are the peak and resolution (respectively of influenza infection. Results Inflammatory cell influx into the bronchoalveolar lavage (BALF, inflammatory mediators, proteases, histopathology, viral titres and T lymphocyte profiles were analyzed. Compared to smoke or influenza alone, mice exposed to smoke and then influenza had more macrophages, neutrophils and total lymphocytes in BALF at d3, more macrophages in BALF at d10, lower net gelatinase activity and increased activity of tissue inhibitor of metalloprotease-1 in BALF at d3, altered profiles of key cytokines and CD4+ and CD8+ T lymphocytes, worse lung pathology and more virus-specific, activated CD8+ T lymphocytes in BALF. Mice smoke exposed before influenza infection had close to 10-fold higher lung virus titres at d3 than influenza alone mice, although all mice had cleared virus by d10, regardless of smoke exposure. Smoke exposure caused temporary weight loss and when smoking ceased after viral infection, smoke and influenza mice regained significantly less weight than smoke alone mice. Conclusion Smoke induced inflammation does not protect against influenza infection. In most respects, smoke exposure worsened the host response to influenza. This animal model may be useful in studying how smoke worsens

  4. Influenza A virus attenuation by codon deoptimization of the NS gene for vaccine development.

    Science.gov (United States)

    Nogales, Aitor; Baker, Steven F; Ortiz-Riaño, Emilio; Dewhurst, Stephen; Topham, David J; Martínez-Sobrido, Luis

    2014-09-01

    Influenza viral infection represents a serious public health problem that causes contagious respiratory disease, which is most effectively prevented through vaccination to reduce transmission and future infection. The nonstructural (NS) gene of influenza A virus encodes an mRNA transcript that is alternatively spliced to express two viral proteins, the nonstructural protein 1 (NS1) and the nuclear export protein (NEP). The importance of the NS gene of influenza A virus for viral replication and virulence has been well described and represents an attractive target to generate live attenuated influenza viruses with vaccine potential. Considering that most amino acids can be synthesized from several synonymous codons, this study employed the use of misrepresented mammalian codons (codon deoptimization) for the de novo synthesis of a viral NS RNA segment based on influenza A/Puerto Rico/8/1934 (H1N1) (PR8) virus. We generated three different recombinant influenza PR8 viruses containing codon-deoptimized synonymous mutations in coding regions comprising the entire NS gene or the mRNA corresponding to the individual viral protein NS1 or NEP, without modifying the respective splicing and packaging signals of the viral segment. The fitness of these synthetic viruses was attenuated in vivo, while they retained immunogenicity, conferring both homologous and heterologous protection against influenza A virus challenges. These results indicate that influenza viruses can be effectively attenuated by synonymous codon deoptimization of the NS gene and open the possibility of their use as a safe vaccine to prevent infections with these important human pathogens. Vaccination serves as the best therapeutic option to protect humans against influenza viral infections. However, the efficacy of current influenza vaccines is suboptimal, and novel approaches are necessary for the prevention of disease cause by this important human respiratory pathogen. The nonstructural (NS) gene of

  5. 2012-2013 Seasonal Influenza Vaccine Effectiveness against Influenza Hospitalizations: Results from the Global Influenza Hospital Surveillance Network

    Science.gov (United States)

    Puig-Barberà, Joan; Natividad-Sancho, Angels; Launay, Odile; Burtseva, Elena; Ciblak, Meral A.; Tormos, Anita; Buigues-Vila, Amparo; Martínez-Úbeda, Sergio; Sominina, Anna

    2014-01-01

    Background The effectiveness of currently licensed vaccines against influenza has not been clearly established, especially among individuals at increased risk for complications from influenza. We used a test-negative approach to estimate influenza vaccine effectiveness (IVE) against hospitalization with laboratory-confirmed influenza based on data collected from the Global Influenza Hospital Surveillance Network (GIHSN). Methods and Findings This was a multi-center, prospective, active surveillance, hospital-based epidemiological study during the 2012–2013 influenza season. Data were collected from hospitals participating in the GIHSN, including five in Spain, five in France, and four in the Russian Federation. Influenza was confirmed by reverse transcription-polymerase chain reaction. IVE against hospitalization for laboratory-confirmed influenza was estimated for adult patients targeted for vaccination and who were swabbed within 7 days of symptom onset. The overall adjusted IVE was 33% (95% confidence interval [CI], 11% to 49%). Point estimates of IVE were 23% (95% CI, −26% to 53%) for influenza A(H1N1)pdm09, 30% (95% CI, −37% to 64%) for influenza A(H3N2), and 43% (95% CI, 17% to 60%) for influenza B/Yamagata. IVE estimates were similar in subjects influenza B/Yamagata were homogenous (I2 = 0.0%). Conclusions These results, which were based on data collected from the GIHSN during the 2012–2013 influenza season, showed that influenza vaccines provided low to moderate protection against hospital admission with laboratory-confirmed influenza in adults targeted for influenza vaccination. In this population, IVE estimates against A(H1N1)pdm09 were sensitive to age group and study site. Influenza vaccination was moderately effective in preventing admissions with influenza B/Yamagata for all sites and age groups. PMID:24945510

  6. Receptor for advanced glycation end products is detrimental during influenza A virus pneumonia☆

    OpenAIRE

    Marieke A D van Zoelen; van der Sluijs, Koenraad F.; Achouiti, Ahmed; Florquin, Sandrine; Braun-Pater, Jennie M.; Yang, Huan; Nawroth, Peter P.; Tracey, Kevin J.; Bierhaus, Angelika; van der Poll, Tom

    2009-01-01

    Pneumonia caused by influenza A virus (IAV) can have devastating effects, resulting in respiratory failure and death. The idea that a new influenza pandemic might occur in the near future has triggered renewed interests in IAV infection. The receptor for advanced glycation end products (RAGE) is expressed on different cell types and plays a key role in diverse inflammatory processes. We here investigated the role of RAGE in the host response to IAV pneumonia using wild-type (wt) and RAGE defi...

  7. Preparation of quadri-subtype influenza virus-like particles using bovine immunodeficiency virus gag protein

    Energy Technology Data Exchange (ETDEWEB)

    Tretyakova, Irina; Hidajat, Rachmat; Hamilton, Garrett; Horn, Noah; Nickols, Brian; Prather, Raphael O. [Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD (United States); Tumpey, Terrence M. [Influenza Division, Centers for Disease Control and Prevention, 1600 Clifton Road N.E., Atlanta, GA (United States); Pushko, Peter, E-mail: ppushko@medigen-usa.com [Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD (United States)

    2016-01-15

    Influenza VLPs comprised of hemagglutinin (HA), neuraminidase (NA), and matrix (M1) proteins have been previously used for immunological and virological studies. Here we demonstrated that influenza VLPs can be made in Sf9 cells by using the bovine immunodeficiency virus gag (Bgag) protein in place of M1. We showed that Bgag can be used to prepare VLPs for several influenza subtypes including H1N1 and H10N8. Furthermore, by using Bgag, we prepared quadri-subtype VLPs, which co-expressed within the VLP the four HA subtypes derived from avian-origin H5N1, H7N9, H9N2 and H10N8 viruses. VLPs showed hemagglutination and neuraminidase activities and reacted with specific antisera. The content and co-localization of each HA subtype within the quadri-subtype VLP were evaluated. Electron microscopy showed that Bgag-based VLPs resembled influenza virions with the diameter of 150–200 nm. This is the first report of quadri-subtype design for influenza VLP and the use of Bgag for influenza VLP preparation. - Highlights: • BIV gag protein was configured as influenza VLP core component. • Recombinant influenza VLPs were prepared in Sf9 cells using baculovirus expression system. • Single- and quadri-subtype VLPs were prepared by using BIV gag as a VLP core. • Co-localization of H5, H7, H9, and H10 HA was confirmed within quadri-subtype VLP. • Content of HA subtypes within quadri-subtype VLP was determined. • Potential advantages of quadri-subtype VLPs as influenza vaccine are discussed.

  8. Influenza in the acute hospital setting.

    Science.gov (United States)

    Salgado, Cassandra D; Farr, Barry M; Hall, Keri K; Hayden, Frederick G

    2002-03-01

    Influenza poses special hazards inside healthcare facilities and can cause explosive outbreaks of illness. Healthcare workers are at risk of acquiring influenza and thus serve as an important reservoir for patients under their care. Annual influenza immunisation of high-risk persons and their contacts, including healthcare workers, is the primary means of preventing nosocomial influenza. Despite influenza vaccine effectiveness, it is substantially underused by healthcare providers. Influenza can be diagnosed by culturing the virus from respiratory secretions and by rapid antigen detection kits; recognition of a nosocomial outbreak is important in order to employ infection-control efforts. Optimal control of influenza in the acute-care setting should focus upon reducing potential influenza reservoirs in the hospital, including: isolating patients with suspected or documented influenza, sending home healthcare providers or staff who exhibit typical symptoms of influenza, and discouraging persons with febrile respiratory illness from visiting the hospital during a known influenza outbreak in the community. (Note: influenza and other respiratory viruses can cause non-febrile illness but are still transmissible.) The antiviral M2 protein inhibitors (amantadine, rimantadine) and neuraminidase inhibitors (zanamivir, oseltamivir) have proven efficacy in treating and preventing influenza illness; however, their role in the prevention and control of influenza in the acute hospital setting remains to be more fully studied.

  9. Development of live attenuated influenza vaccines against pandemic influenza strains.

    Science.gov (United States)

    Coelingh, Kathleen L; Luke, Catherine J; Jin, Hong; Talaat, Kawsar R

    2014-07-01

    Avian and animal influenza viruses can sporadically transmit to humans, causing outbreaks of varying severity. In some cases, further human-to-human virus transmission does not occur, and the outbreak in humans is limited. In other cases, sustained human-to-human transmission occurs, resulting in worldwide influenza pandemics. Preparation for future pandemics is an important global public health goal. A key objective of preparedness is to gain an understanding of how to design, test, and manufacture effective vaccines that could be stockpiled for use in a pandemic. This review summarizes results of an ongoing collaboration to produce, characterize, and clinically test a library of live attenuated influenza vaccine strains (based on Ann Arbor attenuated Type A strain) containing protective antigens from influenza viruses considered to be of high pandemic potential.

  10. Influenza em animais heterotérmicos Influenza in heterothermics

    Directory of Open Access Journals (Sweden)

    Dalva Assunção Portari Mancini

    2004-06-01

    Full Text Available O objetivo foi pesquisar Ortomyxovirus em animais heterotérmicos. Coletou-se sangue de serpentes dos gêneros Bothrops e Crotalus e de sapo e rãs dos gêneros Bufo e Rana, para a detecção dos receptores de hemácias e anticorpos específicos, ao vírus influenza, pelos testes de hemaglutinação e inibição da hemaglutinação, respectivamente. Pelo teste de hemaglutinação, verificou-se que serpentes e sapos em cativeiro apresentaram receptores em suas hemácias para o vírus influenza, humano e eqüino do tipo A e tipo B. O mesmo ocorreu com serpentes recém chegadas. Quanto ao teste de inibição da hemaglutinação dos soros dos répteis observou-se títulos protetores de anticorpos aos vírus influenza tipo A (origens humana e eqüina e tipo B. Com soro de sapo não se observou reação de inibição da hemaglutinação porém, 83,3% das rãs obtiveram médias de 40UIH para algumas cepas. Conclui-se que animais heterotérmicos podem oferecer condições de hospedeiros aos vírus influenza, assim como susceptibilidade à infecção.The objective was to study Orthomyxovirus in heterothermic animals. Blood samples from snakes (genus Bothrops and Crotalus and from toads and frogs (genus Bufo and Rana were collected to evaluate the red cell receptors and antibodies specific to influenza virus by the hemagglutination and hemagglutination inhibition tests, respectively. Both snakes and toads kept in captivity presented receptors in their red cells and antibodies specific to either influenza virus type A (human and equine origin or influenza type B. The same was observed with recently captured snakes. Concerning the influenza hemagglutination inhibition antibodies protective levels were observed in the reptiles' serum, against influenza type A and type B. Unlike the toads, 83.3% of the frogs presented mean levels of Ab 40HIU for some influenza strains. It was concluded that heterothermic animals could offer host conditions to the influenza

  11. Influenza Vaccination Strategies: Comparing Inactivated and Live Attenuated Influenza Vaccines

    Science.gov (United States)

    Sridhar, Saranya; Brokstad, Karl A.; Cox, Rebecca J.

    2015-01-01

    Influenza is a major respiratory pathogen causing annual outbreaks and occasional pandemics. Influenza vaccination is the major method of prophylaxis. Currently annual influenza vaccination is recommended for groups at high risk of complications from influenza infection such as pregnant women, young children, people with underlying disease and the elderly, along with occupational groups such a healthcare workers and farm workers. There are two main types of vaccines available: the parenteral inactivated influenza vaccine and the intranasal live attenuated influenza vaccine. The inactivated vaccines are licensed from 6 months of age and have been used for more than 50 years with a good safety profile. Inactivated vaccines are standardized according to the presence of the viral major surface glycoprotein hemagglutinin and protection is mediated by the induction of vaccine strain specific antibody responses. In contrast, the live attenuated vaccines are licensed in Europe for children from 2–17 years of age and provide a multifaceted immune response with local and systemic antibody and T cell responses but with no clear correlate of protection. Here we discuss the immunological immune responses elicited by the two vaccines and discuss future work to better define correlates of protection. PMID:26343192

  12. Influenza Vaccination Strategies: Comparing Inactivated and Live Attenuated Influenza Vaccines

    Directory of Open Access Journals (Sweden)

    Saranya Sridhar

    2015-04-01

    Full Text Available Influenza is a major respiratory pathogen causing annual outbreaks and occasional pandemics. Influenza vaccination is the major method of prophylaxis. Currently annual influenza vaccination is recommended for groups at high risk of complications from influenza infection such as pregnant women, young children, people with underlying disease and the elderly, along with occupational groups such a healthcare workers and farm workers. There are two main types of vaccines available: the parenteral inactivated influenza vaccine and the intranasal live attenuated influenza vaccine. The inactivated vaccines are licensed from 6 months of age and have been used for more than 50 years with a good safety profile. Inactivated vaccines are standardized according to the presence of the viral major surface glycoprotein hemagglutinin and protection is mediated by the induction of vaccine strain specific antibody responses. In contrast, the live attenuated vaccines are licensed in Europe for children from 2–17 years of age and provide a multifaceted immune response with local and systemic antibody and T cell responses but with no clear correlate of protection. Here we discuss the immunological immune responses elicited by the two vaccines and discuss future work to better define correlates of protection.

  13. Flublok Seasonal Influenza (Flu) Vaccination

    Science.gov (United States)

    ... Virus Testing Clinical Signs & Symptoms of Influenza Symptoms & Laboratory Diagnosis Information for Clinicians on Rapid Diagnostic Testing for ... Help: How do I view different file formats (PDF, DOC, PPT, MPEG) on this site? Adobe PDF ...

  14. Influenza Prevention: Information for Travelers

    Science.gov (United States)

    ... Virus Testing Clinical Signs & Symptoms of Influenza Symptoms & Laboratory Diagnosis Information for Clinicians on Rapid Diagnostic Testing for ... Help: How do I view different file formats (PDF, DOC, PPT, MPEG) on this site? Adobe PDF ...

  15. Influenza vaccinations and chemosensory function.

    Science.gov (United States)

    Doty, Richard L; Berman, Austin H; Izhar, Mohammad; Hamilton, Hugh B; Villano, Danylko; Vazquez, Britney E; Warrum, Maja N; Mahbob, Mariam

    2014-01-01

    Although influenza vaccines have saved millions of lives, some have been associated with extremely rare adverse effects such as Guillain-Barré syndrome, Bell's palsy, and optic neuritis. Despite the fact that olfactory loss after an influenza vaccination is noted in one case report, no quantitative olfactory testing was performed. Hence, it is unclear whether, in fact, olfactory dysfunction can be associated with such vaccinations. This study was designed to (1) identify patients from the University of Pennsylvania Smell and Taste Center who attributed their empirically determined chemosensory disturbances to influenza vaccinations and (2) determine whether influenza vaccinations add to the degree of olfactory or gustatory dysfunction due to other causes. A retrospective analysis of self-reported etiologies of 4554 consecutive patients presenting to the University of Pennsylvania Smell and Taste Center with complaints of chemosensory dysfunction was performed. Those who reported dysfunction secondary to influenza vaccinations were identified. Additionally, in a subset of 925 patients for whom detailed inoculation histories were available, it was determined whether the number of lifetime inoculations added to the deficits due to other causes. Nine of the 4554 patients (0.19%) attributed olfactory disturbances to an influenza vaccination. None complained of taste dysfunction. All nine had abnormally low scores on the University of Pennsylvania Smell Identification Test (p vaccinations and the chemosensory test scores. In accord with previous studies, age and sex were significantly related to the test scores. A very small percentage of the 4554 patients evaluated (0.19%) attributed their chemosensory dysfunction to a prior influenza vaccination. No influences of the number of lifetime influenza vaccinations on the test scores were evident in the subset of 925 patients whose dysfunction was due to other causes.

  16. Influenza in Bristol Bay, 1919

    OpenAIRE

    Maria Gilson deValpine

    2015-01-01

    The 1918 influenza pandemic has been blamed for as many as 50 million deaths worldwide. Like all major disasters, the full story of the pandemic includes smaller, less noted episodes that have not attracted historical attention. The story of the 1919 wave of the influenza pandemic in Bristol Bay Alaska is one such lost episode. It is an important story because the most accessible accounts—the Congressional Record and t...

  17. Characteristics of seasonal influenza A and B in Latin America: influenza surveillance data from ten countries.

    NARCIS (Netherlands)

    Caini, S.; Alonso, W.J.; Balmaseda, A.; Bruno, A.; Busto, P.; Castillo, L.; Lozano, C. de; Mora, D. de; Fasce, R. A.; Ferreira de Almeida, W.A.; Kusznierz, G.F.; Lara, J.; Matute, M.L.; Moreno, B.; Pessanha Henriques, C.M.; Rudi, J.M.; El-Guerche Séblain, C.; Schellevis, F.; Paget, J.

    2017-01-01

    Introduction: The increased availability of influenza surveillance data in recent years justifies an actual and more complete overview of influenza epidemiology in Latin America. We compared the influenza surveillance systems and assessed the epidemiology of influenza A and B, including the

  18. Influenza vaccines: an Asia-Pacific perspective.

    Science.gov (United States)

    Jennings, Lance C

    2013-11-01

    This article provides an overview of some aspects of seasonal, pre-pandemic and pandemic influenza vaccines and initiatives aimed to increase influenza vaccine use within the Asia-Pacific region. Expanding the use of influenza vaccines in the Asia-Pacific region faces many challenges. Despite the recent regional history for the emergence of novel viruses, SARS, the H5N1 and H7N9, and the generation of and global seeding of seasonal influenza viruses and initiatives by WHO and other organisations to expand influenza awareness, the use of seasonal influenza vaccines remains low. The improvement in current vaccine technologies with the licensing of quadrivalent, live-attenuated, cell culture-based, adjuvanted and the first recombinant influenza vaccine is an important step. The development of novel influenza vaccines able to provide improved protection and with improved manufacturing capacity is also advancing rapidly. However, of ongoing concern are seasonal influenza impact and the low use of seasonal influenza vaccines in the Asia-Pacific region. Improved influenza control strategies and their implementation in the region are needed. Initiatives by the World Health Organization (WHO), and specifically the Western Pacific Regional Office of WHO, are focusing on consistent vaccine policies and guidelines in countries in the region. The Asian-Pacific Alliance for the Control of Influenza (APACI) is contributing through the coordination of influenza advocacy initiates. © 2013 Blackwell Publishing Ltd.

  19. Crosstalk between animal and human influenza viruses

    Science.gov (United States)

    Ozawa, Makoto; Kawaoka, Yoshihiro

    2017-01-01

    Although outbreaks of highly pathogenic avian influenza in wild and domestic birds have been posing the threat of a new influenza pandemic for the last decade, the first pandemic of the 21st century came from swine viruses. This fact emphasizes the complexity of influenza viral ecology and the difficulty of predicting influenza viral dynamics. Complete control of influenza viruses seems impossible. However, we must minimize the impact of animal and human influenza outbreaks by learning lessons from past experiences and recognizing the current status. Here, we review the most recent influenza virology data in the veterinary field, including aspects of zoonotic agents and recent studies that assessed the pandemic potential of H5N1 highly pathogenic avian influenza viruses. PMID:25387011

  20. Influenza Virus Infection of Marine Mammals.

    Science.gov (United States)

    Fereidouni, Sasan; Munoz, Olga; Von Dobschuetz, Sophie; De Nardi, Marco

    2016-03-01

    Interspecies transmission may play a key role in the evolution and ecology of influenza A viruses. The importance of marine mammals as hosts or carriers of potential zoonotic pathogens such as highly pathogenic H5 and H7 influenza viruses is not well understood. The fact that influenza viruses are some of the few zoonotic pathogens known to have caused infection in marine mammals, evidence for direct transmission of influenza A virus H7N7 subtype from seals to man, transmission of pandemic H1N1 influenza viruses to seals and also limited evidence for long-term persistence of influenza B viruses in seal populations without significant genetic change, makes monitoring of influenza viruses in marine mammal populations worth being performed. In addition, such monitoring studies could be a great tool to better understand the ecology of influenza viruses in nature.

  1. Swine Influenza (Swine Flu) in Pigs

    Science.gov (United States)

    ... Variant Other Key Facts about Swine Influenza (Swine Flu) in Pigs Language: English (US) Español Recommend on ... similar to outbreaks in humans. How many swine flu viruses are there? Like influenza viruses in humans ...

  2. PB1 as a potential target for increasing the breadth of T-cell mediated immunity to Influenza A

    DEFF Research Database (Denmark)

    Uddbäck, Ida E M; Steffensen, Maria A; Pedersen, Sara R

    2016-01-01

    in the dominant NP366 epitope were not efficiently protected. To address this problem, we envision the use of a cocktail of adenovectors targeting different internal proteins of influenza A virus. Consequently, we investigated the possibility of using PB1 as a target for an adenovector-based vaccine against...... not as efficiently protected against influenza A challenge as similarly NP-vaccinated animals. The reason for this is not a difference in the quality of the primed cells, nor in functional avidity. However, under similar conditions of immunization fewer PB1-specific cells were recruited to the airways, and surface......Recently, we showed that combined intranasal and subcutaneous immunization with a non-replicating adenoviral vector expressing NP of influenza A, strain PR8, induced long-standing protection against a range of influenza A viruses. However, H-2(b) mice challenged with an influenza A strain mutated...

  3. Recombinant Adenoviruses Displaying Matrix 2 Ectodomain Epitopes on Their Fiber Proteins as Universal Influenza Vaccines.

    Science.gov (United States)

    Tang, Xinying; Yang, Yong; Xia, Xiaoli; Zhang, Chao; Yang, Xi; Song, Yufeng; Dai, Xinyi; Wang, Min; Zhou, Dongming

    2017-04-01

    Influenza is a zoonotic disease that poses severe threats to public health and the global economy. Reemerging influenza pandemics highlight the demand for universal influenza vaccines. We developed a novel virus platform using extracellular domain IV of the matrix 2 protein (M2e), AdC68-F3M2e, by introducing three conserved M2e epitopes into the HI loop of the chimpanzee adenovirus (AdV) fiber protein. The M2e epitopes were expressed sufficiently on the AdV virion surface without affecting fiber trimerization. Additionally, one recombinant adenovirus, AdC68-F3M2e(H1-H5-H7), induced robust M2e-specific antibody responses in BALB/c mice after two sequential vaccinations and conferred efficient protection against homologous and heterologous influenza virus (IV) challenges. We found that the use of AdV with tandem M2e epitopes in fiber is a potential strategy for influenza prevention. IMPORTANCE Influenza epidemics and pandemics severely threaten public health. Universal influenza vaccines have increasingly attracted interest in recent years. Here, we describe a new strategy that incorporates triple M2e epitopes into the fiber protein of chimpanzee adenovirus 68. We optimized the process of inserting foreign genes into the AdC68 structural protein by one-step isothermal assembly and demonstrated that this 225-bp HI loop insertion could be well tolerated. Furthermore, two doses of adjuvant-free fiber-modified AdC68 could confer sufficient protection against homologous and heterologous influenza virus infections in mice. Our results show that AdC68-F3M2e could be pursued as a novel universal influenza vaccine. Copyright © 2017 American Society for Microbiology.

  4. Inhibition of influenza virus infection and hemagglutinin cleavage by the protease inhibitor HAI-2

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, Brian S.; Chung, Changik; Cyphers, Soreen Y.; Rinaldi, Vera D.; Marcano, Valerie C.; Whittaker, Gary R., E-mail: grw7@cornell.edu

    2014-07-25

    Highlights: • Biochemical and cell biological analysis of HAI-2 as an inhibitor of influenza HA cleavage activation. • Biochemical and cell biological analysis of HAI-2 as an inhibitor of influenza virus infection. • Comparative analysis of HAI-2 for vesicular stomatitis virus and human parainfluenza virus type-1. • Analysis of the activity of HAI-2 in a mouse model of influenza. - Abstract: Influenza virus remains a significant concern to public health, with the continued potential for a high fatality pandemic. Vaccination and antiviral therapeutics are effective measures to circumvent influenza virus infection, however, multiple strains have emerged that are resistant to the antiviral therapeutics currently on the market. With this considered, investigation of alternative antiviral therapeutics is being conducted. One such approach is to inhibit cleavage activation of the influenza virus hemagglutinin (HA), which is an essential step in the viral replication cycle that permits viral-endosome fusion. Therefore, targeting trypsin-like, host proteases responsible for HA cleavage in vivo may prove to be an effective therapeutic. Hepatocyte growth factor activator inhibitor 2 (HAI-2) is naturally expressed in the respiratory tract and is a potent inhibitor of trypsin-like serine proteases, some of which have been determined to cleave HA. In this study, we demonstrate that HAI-2 is an effective inhibitor of cleavage of HA from the human-adapted H1 and H3 subtypes. HAI-2 inhibited influenza virus H1N1 infection in cell culture, and HAI-2 administration showed protection in a mouse model of influenza. HAI-2 has the potential to be an effective, alternative antiviral therapeutic for influenza.

  5. [Attitudes and practices towards seasonal influenza vaccination amongst French hospital staff].

    Science.gov (United States)

    Maurette, Max; Pinzelli, Pierre; Yordanov Sandev, Aleksandar; Nock, Francis

    2017-04-27

    This survey intends to describe the attitudes towards vaccination amongst the hospital staff in the region of Castres, in the south-west of France, and their influenza vaccination coverage. A questionnaire was attached to all pay slips in March 2014 and 471 questionnaires were completed (return rate: 22.4%). Seasonal influenza vaccination coverage rate was similar to that reported in other French surveys. Paramedical personnel were less commonly immunized against influenza compared to medical personnel and age was the major factor associated with vaccination. Three quarters of the non-immunized hospital personnel did not wish to be vaccinated against influenza. Nearly 50% of respondents believed that healthcare personnel do not have to be role models regarding vaccination. The arguments considered most compelling in favour of vaccination are protection of the family, then patient protection and finally protection of other staff members. A demand for accurate scientific information was expressed by respondents, preferably delivered at their workplace.

  6. A qualitative study of the coverage of influenza vaccination on Dutch news sites and social media websites

    Science.gov (United States)

    2013-01-01

    Background Information about influenza and the effectiveness of vaccination against influenza is largely available on the Internet, and may influence individual decision making about participation in future influenza vaccination rounds. E-health information has often been found to be inaccurate, or even to contradict Health Authority recommendations, especially when it concerns controversial topics. Methods By means of an online media monitoring programme, Dutch news sites and social media websites were scanned for the Dutch counterparts of the terms influenza, vaccination, vaccine and epidemic during February, March and April 2012. Data were processed with QSR NVivo 8.0 and analysed using a general inductive approach. Results Three overarching themes were found in both media sources: (1) the (upcoming) influenza epidemic, (2) general information regarding the virus, its prevention and treatment, and (3) uncertainty and mistrust regarding influenza vaccination. Social media tended to report earlier on developments such as the occurrence of an influenza epidemic. The greatest difference was that in social media, influenza was not considered to be a serious disease, and more opposition to the flu shot was expressed in social media, as compared to news media. Conclusions News media and social media discussed the same topics regarding influenza, but differed in message tone. Whereas news media reports tended to be more objective and non-judgmental, social media more critically evaluated the harmfulness of influenza and the necessity of the flu shot. Media may influence decision making and behaviours of Internet users and may thereby influence the success of vaccination campaigns and recommendations made by health authorities. Social media may be more of a problem in this sense, since it is neither controlled nor censored. Future research should investigate the actual impact of Internet media on the influenza decision making process of its users. PMID:23738769

  7. A qualitative study of the coverage of influenza vaccination on Dutch news sites and social media websites.

    Science.gov (United States)

    Lehmann, Birthe A; Ruiter, Robert A C; Kok, Gerjo

    2013-06-05

    Information about influenza and the effectiveness of vaccination against influenza is largely available on the Internet, and may influence individual decision making about participation in future influenza vaccination rounds. E-health information has often been found to be inaccurate, or even to contradict Health Authority recommendations, especially when it concerns controversial topics. By means of an online media monitoring programme, Dutch news sites and social media websites were scanned for the Dutch counterparts of the terms influenza, vaccination, vaccine and epidemic during February, March and April 2012. Data were processed with QSR NVivo 8.0 and analysed using a general inductive approach. Three overarching themes were found in both media sources: (1) the (upcoming) influenza epidemic, (2) general information regarding the virus, its prevention and treatment, and (3) uncertainty and mistrust regarding influenza vaccination. Social media tended to report earlier on developments such as the occurrence of an influenza epidemic. The greatest difference was that in social media, influenza was not considered to be a serious disease, and more opposition to the flu shot was expressed in social media, as compared to news media. News media and social media discussed the same topics regarding influenza, but differed in message tone. Whereas news media reports tended to be more objective and non-judgmental, social media more critically evaluated the harmfulness of influenza and the necessity of the flu shot. Media may influence decision making and behaviours of Internet users and may thereby influence the success of vaccination campaigns and recommendations made by health authorities. Social media may be more of a problem in this sense, since it is neither controlled nor censored. Future research should investigate the actual impact of Internet media on the influenza decision making process of its users.

  8. Pandemic influenza communication: views from a deliberative forum.

    Science.gov (United States)

    Rogers, Wendy A; Street, Jackie M; Braunack-Mayer, Annette J; Hiller, Janet E

    2009-09-01

    To use a deliberative forum to elicit community perspectives on communication about pandemic influenza planning, and to compare these findings with the current Australian national communication strategy. Deliberative forum of 12 persons randomly selected from urban South Australia. Forum members were briefed by experts in infection control, virology, ethics and public policy before deliberating on four key questions: what, how and when should the community be told about pandemic influenza and by whom? The forum recommended provision of detailed and comprehensive information by credible experts, rather than politicians, using a variety of media including television and internet. Recommendations included cumulative communication to build expertise in the community, and specific strategies to include groups such as young people, people with physical or mental disabilities, and rural and remote communities. Information provided should be practical, accurate, and timely, with no 'holding back' about the seriousness of a pandemic. The forum expressed confidence in the expert witnesses, despite the acknowledged uncertainty of many of the predictions. The deliberative forum's recommendations were largely consistent with the Australian national pandemic influenza communication strategy and the relevant literature. However, the forum recommended: release of more detailed information than currently proposed in the national strategy; use of non-political spokespersons; and use of novel communication methods. Their acceptance of uncertainty suggests that policy makers should be open about the limits of knowledge in potentially threatening situations. Our findings show that deliberative forums can provide community perspectives on topics such as communication about pandemic influenza.

  9. Influenza antivirals currently in late?phase clinical trial

    OpenAIRE

    Koszalka, Paulina; Tilmanis, Danielle; Hurt, Aeron C.

    2017-01-01

    Influenza antiviral drugs are important for the control of influenza, most specifically for the treatment of influenza patients with severe disease following infection with a seasonal influenza virus, a newly emerging influenza strain, or in the event of a pandemic. Many influenza antivirals that are currently under investigation in late?stage clinical trials differ in their mechanism of action compared to drugs currently licensed for the treatment of influenza. Nitazoxanide and DAS181 target...

  10. Characterization of influenza vaccine immunogenicity using influenza antigen microarrays.

    Directory of Open Access Journals (Sweden)

    Jordan V Price

    Full Text Available Existing methods to measure influenza vaccine immunogenicity prohibit detailed analysis of epitope determinants recognized by immunoglobulins. The development of highly multiplex proteomics platforms capable of capturing a high level of antibody binding information will enable researchers and clinicians to generate rapid and meaningful readouts of influenza-specific antibody reactivity.We developed influenza hemagglutinin (HA whole-protein and peptide microarrays and validated that the arrays allow detection of specific antibody reactivity across a broad dynamic range using commercially available antibodies targeted to linear and conformational HA epitopes. We derived serum from blood draws taken from 76 young and elderly subjects immediately before and 28±7 days post-vaccination with the 2008/2009 trivalent influenza vaccine and determined the antibody reactivity of these sera to influenza array antigens.Using linear regression and correcting for multiple hypothesis testing by the Benjamini and Hochberg method of permutations over 1000 resamplings, we identified antibody reactivity to influenza whole-protein and peptide array features that correlated significantly with age, H1N1, and B-strain post-vaccine titer as assessed through a standard microneutralization assay (p<0.05, q <0.2. Notably, we identified several peptide epitopes that were inversely correlated with regard to age and seasonal H1N1 and B-strain neutralization titer (p<0.05, q <0.2, implicating reactivity to these epitopes in age-related defects in response to H1N1 influenza. We also employed multivariate linear regression with cross-validation to build models based on age and pre-vaccine peptide reactivity that predicted vaccine-induced neutralization of seasonal H1N1 and H3N2 influenza strains with a high level of accuracy (84.7% and 74.0%, respectively.Our methods provide powerful tools for rapid and accurate measurement of broad antibody-based immune responses to influenza

  11. Influenza and risk of later celiac disease

    DEFF Research Database (Denmark)

    Kårhus, Line Lund; Gunnes, Nina; Størdal, Ketil

    2018-01-01

    OBJECTIVES: Influenza has been linked to autoimmune conditions, but its relationship to subsequent celiac disease (CD) is unknown. Our primary aim was to determine the risk of CD after influenza. A secondary analysis examined the risk of CD following pandemic influenza vaccination. METHODS...

  12. VIRUSES ASSOCIATED WITH HUMAN AND ANIMAL INFLUENZA ...

    African Journals Online (AJOL)

    DR. AMINU

    in humans, dogs, horses and pigs; populations of camels, ferrets, cats, seals, mink and whales also show evidence ... flu, Horse Flu and Dog flu. Influenza virus A. This genus has one species, influenza A virus ..... Hay, A., Gregory, V., Douglas, A., and Lin, Y. (2001). “The evolution of human influenza viruses” Philos Trans R.

  13. 77 FR 34783 - Highly Pathogenic Avian Influenza

    Science.gov (United States)

    2012-06-12

    ... Avian Influenza AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION: Interim rule... importation of bird and poultry products from regions where any subtype of highly pathogenic avian influenza... avian influenza (HPAI). On January 24, 2011, we published in the Federal Register (76 FR 4046-4056...

  14. Anti-influenza M2e antibody

    Science.gov (United States)

    Bradbury, Andrew M [Santa Fe, NM

    2011-12-20

    Humanized recombinant and monoclonal antibodies specific for the ectodomain of the influenza virus M2 ion channel protein are disclosed. The antibodies of the invention have anti-viral activity and may be useful as anti-viral therapeutics and/or prophylactic/vaccine agents for inhibiting influenza virus replication and for treating individuals infected with influenza.

  15. 76 FR 24793 - Highly Pathogenic Avian Influenza

    Science.gov (United States)

    2011-05-03

    ... Inspection Service 9 CFR Parts 93, 94, and 95 RIN 0579-AC36 Highly Pathogenic Avian Influenza AGENCY: Animal... products from regions where any subtype of highly pathogenic avian influenza is considered to exist. The... vaccinated for certain types of avian influenza, or that have moved through regions where any subtype of...

  16. Anti-influenza M2e antibody

    Energy Technology Data Exchange (ETDEWEB)

    Bradbury, Andrew M.

    2013-04-16

    Humanized recombinant and monoclonal antibodies specific for the ectodomain of the influenza virus M2 ion channel protein are disclosed. The antibodies of the invention have anti-viral activity and may be useful as anti-viral therapeutics and/or prophylactic/vaccine agents for inhibiting influenza virus replication and for treating individuals infected with influenza.

  17. History and evolution of influenza vaccines.

    Science.gov (United States)

    Crovari, P; Alberti, M; Alicino, C

    2011-09-01

    Since the isolation of influenza virus in 1933, a great deal of work was carried out in order to develop influenza vaccines and improve these fundamental tools of prevention in terms of production, quality control, safety and tolerability, and immunogenicity. The paper summarizes the cornerstones of the continuous evolution of influenza vaccines and the most recent and promising developments in this field.

  18. Pandemic swine influenza virus: Preparedness planning | Ojogba ...

    African Journals Online (AJOL)

    The novel H1N1 influenza virus that emerged in humans in Mexico in early 2009 and transmitted efficiently in the human population with global spread was declared a pandemic strain. The introduction of different avian and human influenza virus genes into swine influenza viruses often result in viruses of increased fitness ...

  19. Influenza Vaccination in Community Dwelling Elderly Persons

    NARCIS (Netherlands)

    A.C.G. Voordouw (Bettie)

    2005-01-01

    textabstractAn influenza epidemic was first described in 1173, although there are reports of influenza as early as 412 BC. Recurrent epidemics and incidental pandemics caused by influenza virus are documented since the last 400 years. These were based upon clinical observation and epidemiology.

  20. Influenza: prevention, prophylaxis and treatment | Jones | South ...

    African Journals Online (AJOL)

    Influenza spreads rapidly to affect 515% of the global population on an annual basis. It is estimated that influenza causes between three and five million cases of severe illness and between a quarter and half a million deaths every year. In South Africa during the period from 1997 to 2001, influenza and pneumonia ...

  1. Syndecan-1 Attenuates Lung Injury during Influenza Infection by Potentiating c-Met Signaling to Suppress Epithelial Apoptosis.

    Science.gov (United States)

    Brauer, Rena; Ge, Lingyin; Schlesinger, Saundra Y; Birkland, Timothy P; Huang, Ying; Parimon, Tanyalak; Lee, Vivian; McKinney, Bonnie L; McGuire, John K; Parks, William C; Chen, Peter

    2016-08-01

    Syndecan-1 is a cell surface heparan sulfate proteoglycan primarily expressed in the lung epithelium. Because the influenza virus is tropic to the airway epithelium, we investigated the role of syndecan-1 in influenza infection. To determine the mechanism by which syndecan-1 regulates the lung mucosal response to influenza infection. Wild-type (WT) and Sdc1(-/-) mice were infected with a H1N1 virus (PR8) as an experimental model of influenza infection. Human and murine airway epithelial cell cultures were also infected with PR8 to study the mechanism by which syndecan-1 regulates the inflammatory response. We found worsened outcomes and lung injury in Sdc1(-/-) mice compared with WT mice after influenza infection. Our data demonstrated that syndecan-1 suppresses bronchial epithelial apoptosis during influenza infection to limit widespread lung inflammation. Furthermore, we determined that syndecan-1 attenuated apoptosis by crosstalking with c-Met to potentiate its cytoprotective signals in airway epithelial cells during influenza infection. Our work shows that cell-associated syndecan-1 has an important role in regulating lung injury. Our findings demonstrate a novel mechanism in which cell membrane-associated syndecan-1 regulates the innate immune response to influenza infection by facilitating cytoprotective signals through c-Met signaling to limit bronchial epithelial apoptosis, thereby attenuating lung injury and inflammation.

  2. Naturally-acquired influenza-specific CD4+ T-cell proliferative responses are impaired in HIV-infected African adults.

    Directory of Open Access Journals (Sweden)

    Kondwani C Jambo

    Full Text Available Seasonal influenza has been associated with greater morbidity and mortality in AIDS patients. Highly-active antiretroviral therapy (HAART has led to some reduction in influenza-related complications but the nature of naturally-acquired T-cell immunity to influenza virus in an African setting, and how this changes with immune reconstitution following HAART is unknown. We measured influenza-specific CD4(+ T-cell immunity in unimmunized HIV-infected Malawian adults and then investigated immune reconstitution following HAART.Peripheral blood mononuclear cells were isolated from HIV-infected and HIV-uninfected Malawian adults. CFSE proliferation and CD154 expression flow cytometry-based assays were used to measure influenza-specific CD4(+ T-cell immunity.We found lower naturally-acquired proliferative influenza-specific CD4(+ T-cell responses in AIDS patients that was also present in asymptomatic HIV-infected adults with relatively high CD4 counts (>350 cells/µl. Influenza-specific CD4(+ T-cell immune reconstitution in HIV-infected patients on HAART for 12 months was poor despite a marked reduction in viral load and an increase in CD4 count. This poor immune reconstitution was characterised by a low influenza-specific proliferative CD4(+ T-cell response and reduced proportions of CD154-expressing influenza-specific CD4(+ T-cells in peripheral blood.Our data suggest that asymptomatic HIV-infected adults may also be at risk of influenza-related complications and that HAART alone may not circumvent this risk in AIDS patients. This study highlights the need to identify possible interventions early in HIV infection to reduce the risk of influenza and to intensify influenza surveillance in these susceptible African populations.

  3. Seasonal Influenza Epidemics and El Ninos

    Directory of Open Access Journals (Sweden)

    Olusegun Steven Ayodele Oluwole

    2015-11-01

    Full Text Available Seasonal influenza epidemics occur annually during the winter in the north and south hemispheres, but timing of peaks and severity vary seasonally. Low humidity, which enhances survival and transmission of influenza virus, is the major risk factor. Both El Nino and La Nina phases of El Nino-southern oscillation (ENSO, which determine inter-annual variation of precipitation, are putative risk factors. This study was done to determine if seasonality, timing of peak, and severity of influenza epidemics are coupled to phases of ENSO. Monthly time series of positive specimens for influenza viruses and of multivariate El Nino-Southern Oscillation Index from January 2000 to August 2015 were analyzed. Seasonality, wavelet spectra, and cross wavelet spectra analyses were performed. Of 31 countries in the dataset, 21 were in north hemisphere and 10 in south hemisphere. Highest number of influenza occurred in January in the north hemisphere, but in July in the south hemisphere, p < 0.0001. Seasonal influenza epidemic was coupled to El Nino, while low occurrence was coupled to La Nina. The moderate La Nina of 2010–2011 was followed by weak seasonal influenza epidemic. The influenza pandemic of 2009–2010 followed the moderate El Nino of 2009–2010, which had three peaks. Spectrograms showed time varying periodicities of 6–48 months for ENSO, 6–24 months for north hemisphere influenza, and 6–12 months for south hemisphere influenza. Cross spectrograms showed time varying periodicities at 6–36 months for ENSO and influenza in both hemispheres, p < 0.0001. Phase plots showed that influenza time series lagged ENSO in both hemispheres. Severity of seasonal influenza increases during El Nino, but decreases during La Nina. Coupling of seasonality, timing, and severity of influenza epidemics to the strength and waveform of ENSO indicate that forecast models of El Nino should be integrated into surveillance programmes for influenza epidemics.

  4. Effective influenza vaccines for children

    Science.gov (United States)

    Banzhoff, Angelika; Stoddard, Jeffrey J.

    2012-01-01

    Seasonal influenza causes clinical illness and hospitalization in all age groups; however, conventional inactivated vaccines have only limited efficacy in young children. MF59®, an oil-in-water emulsion adjuvant, has been used since the 1990s to enhance the immunogenicity of influenza vaccines in the elderly, a population with waning immune function due to immunosenescence.   Clinical trials now provide information to support a favorable immunogenicity and safety profile of MF59-adjuvanted influenza vaccine in young children. Published data indicate that Fluad®, a trivalent seasonal influenza vaccine with MF59, was immunogenic and well tolerated in young children, with a benefit/risk ratio that supports routine clinical use. A recent clinical trial also shows that Fluad provides high efficacy against PCR-confirmed influenza. Based on the results of clinical studies in children, the use of MF59-adjuvanted vaccine offers the potential to enhance efficacy and make vaccination a viable prevention and control strategy in this population. PMID:22327501

  5. Universal influenza vaccines, science fiction or soon reality?

    Science.gov (United States)

    de Vries, Rory D; Altenburg, Arwen F; Rimmelzwaan, Guus F

    2015-01-01

    Currently used influenza vaccines are only effective when the vaccine strains match the epidemic strains antigenically. To this end, seasonal influenza vaccines must be updated almost annually. Furthermore, seasonal influenza vaccines fail to afford protection against antigenically distinct pandemic influenza viruses. Because of an ever-present threat of the next influenza pandemic and the continuous emergence of drift variants of seasonal influenza A viruses, there is a need for an universal influenza vaccine that induces protective immunity against all influenza A viruses. Here, we summarize some of the efforts that are ongoing to develop universal influenza vaccines.

  6. Influenza Pandemic Infrastructure Response in Thailand

    Centers for Disease Control (CDC) Podcasts

    2009-03-05

    Influenza viruses change antigenic properties, or drift, every year and they create seasonal outbreaks. Occasionally, influenza viruses change in a major way, called a “shift." If an influenza virus shifts, the entire human population is susceptible to the new influenza virus, creating the potential for a pandemic. On this podcast, CDC's Dr. Scott Dowell discusses responding to an influenza pandemic.  Created: 3/5/2009 by Emerging Infectious Diseases.   Date Released: 3/5/2009.

  7. Lysosome-associated membrane glycoprotein 3 is involved in influenza A virus replication in human lung epithelial (A549 cells

    Directory of Open Access Journals (Sweden)

    Wang Jianwei

    2011-08-01

    Full Text Available Abstract Background Influenza A virus mutates rapidly, rendering antiviral therapies and vaccines directed against virus-encoded targets ineffective. Knowledge of the host factors and molecular pathways exploited by influenza virus will provide further targets for novel antiviral strategies. However, the critical host factors involved in influenza virus infection have not been fully defined. Results We demonstrated that LAMP3, a member of lysosome-associated membrane glycoprotein (LAMP family, was significantly induced in human lung epithelial (A549 cells upon influenza A virus infection. Knockdown of LAMP3 expression by RNA interference attenuated production of viral nucleoprotein (NP as well as virus titers. Confocal microscopy results demonstrated that viral NP is colocalized within LAMP3 positive vesicles at early stages of virus infection. Furthermore, knockdown of LAMP3 expression led to a reduction in nuclear accumulation of viral NP and impeded virus replication. Conclusions LAMP3 is an influenza A virus inducible gene, and plays an important role in viral post-entry steps. Our observations may provide insights into the mechanism of influenza virus replication and potential targets for novel anti-influenza therapeutics.

  8. Elucidating the Mechanisms of Influenza Virus Recognition by Ncr1

    Science.gov (United States)

    Glasner, Ariella; Zurunic, Antonija; Meningher, Tal; Lenac Rovis, Tihana; Tsukerman, Pinchas; Bar-On, Yotam; Yamin, Rachel; Meyers, Adrienne F. A.; Mandeboim, Michal; Jonjic, Stipan; Mandelboim, Ofer

    2012-01-01

    Natural killer (NK) cells are innate cytotoxic lymphocytes that specialize in the defense against viral infection and oncogenic transformation. Their action is tightly regulated by signals derived from inhibitory and activating receptors; the later include proteins such as the Natural Cytotoxicity Receptors (NCRs: NKp46, NKp44 and NKp30). Among the NCRs, NKp46 is the only receptor that has a mouse orthologue named Ncr1. NKp46/Ncr1 is also a unique marker expressed on NK and on Lymphoid tissue inducer (LTI) cells and it was implicated in the control of various viral infections, cancer and diabetes. We have previously shown that human NKp46 recognizes viral hemagglutinin (HA) in a sialic acid-dependent manner and that the O-glycosylation is essential for the NKp46 binding to viral HA. Here we studied the molecular interactions between Ncr1 and influenza viruses. We show that Ncr1 recognizes influenza virus in a sialic acid dependent manner and that N-glycosylation is important for this binding. Surprisingly we demonstrate that none of the predicted N-glycosilated residues of Ncr1 are essential for its binding to influenza virus and we thus conclude that other, yet unidentified N-glycosilated residues are responsible for its recognition. We have demonstrated that N glycosylation play little role in the recognition of mouse tumor cell lines and also showed the in-vivo importance of Ncr1 in the control of influenza virus infection by infecting C57BL/6 and BALB/c mice knockout for Ncr1 with influenza. PMID:22615821

  9. Is influenza vaccination in asthma helpful?

    Science.gov (United States)

    Bueving, Herman J; Thomas, Siep; Wouden, Johannes C van der

    2005-02-01

    Influenza infections are frequently involved in asthma exacerbations. During influenza epidemics substantial excess morbidity due to respiratory tract complications is reported in all age categories as well as excess mortality among the elderly. Vaccines are available for protection against influenza. Worldwide, vaccination is advised and considered a quality point for asthma care. However, the protective effect of influenza vaccination in patients with asthma is still disputed. In order to establish the current state of affairs we reviewed the recent literature on the protective effect of influenza vaccination and its usefulness in patients with asthma. Several studies were found addressing influenza and the protective aspects of vaccination. They discussed the incidence, the adverse effects of vaccination, the coverage of influenza vaccination among patients with asthma and the effectiveness of the vaccine. Influenza vaccination can safely be used in patients with asthma. Allegations that vaccination could provoke asthma exacerbations are convincingly invalidated by previous and recent research. Although patients with asthma are one of the major target groups for immunization, vaccine coverage in all age categories remains low. So far, no unequivocal beneficial effect of influenza vaccination in patients with asthma was found in observational and experimental studies in the sense of reduction of asthma exacerbations and other complications. Recent studies confirm these negative findings. More long-term randomized, placebo-controlled studies, focusing on influenza- proven illness in patients with asthma, are needed to address the question of how helpful influenza vaccination is in these patients.

  10. Increased T-bet is associated with senescence of influenza virus-specific CD8 T cells in aged humans

    Science.gov (United States)

    Dolfi, Douglas V.; Mansfield, Kathleen D.; Polley, Antonio M.; Doyle, Susan A.; Freeman, Gordon J.; Pircher, Hanspeter; Schmader, Kenneth E.; Wherry, E. John

    2013-01-01

    Aged individuals have increased morbidity and mortality following influenza and other viral infections, despite previous exposure or vaccination. Mouse and human studies suggest increased senescence and/or exhaustion of influenza virus-specific CD8 T cells with advanced age. However, neither the relationship between senescence and exhaustion nor the underlying transcriptional pathways leading to decreased function of influenza virus-specific cellular immunity in elderly humans are well-defined. Here, we demonstrate that increased percentages of CD8 T cells from aged individuals express CD57 and KLRG1, along with PD-1 and other inhibitory receptors, markers of senescence, or exhaustion, respectively. Expression of T-box transcription factors, T-bet and Eomes, were also increased in CD8 T cells from aged subjects and correlated closely with expression of CD57 and KLRG1. Influenza virus-specific CD8 T cells from aged individuals exhibited decreased functionality with corresponding increases in CD57, KLRG1, and T-bet, a molecular regulator of terminal differentiation. However, in contrast to total CD8 T cells, influenza virus-specific CD8 T cells had altered expression of inhibitory receptors, including lower PD-1, in aged compared with young subjects. Thus, our data suggest a prominent role for senescence and/or terminal differentiation for influenza virus-specific CD8 T cells in elderly subjects. PMID:23440501

  11. The human side of influenza

    Science.gov (United States)

    Oshansky, Christine M.; Thomas, Paul G.

    2012-01-01

    A clear understanding of immunity in individuals infected with influenza virus is critical for the design of effective vaccination and treatment strategies. Whereas myriad studies have teased apart innate and adaptive immune responses to influenza infection in murine models, much less is known about human immunity as a result of the ethical and technical constraints of human research. Still, these murine studies have provided important insights into the critical correlates of protection and pathogenicity in human infection and helped direct the human studies that have been conducted. Here, we examine and review the current literature on immunity in humans infected with influenza virus, noting evidence offered by select murine studies and suggesting directions in which future research is most warranted. PMID:22362872

  12. Prevalence of Influenza Viruses (Influenza Like Illness In Regional Laboratory Avian Influenza Semarang

    Directory of Open Access Journals (Sweden)

    Ridha Wahyutomo

    2011-12-01

    Design and Method: Data from patients examined in the regional laboratory of avian influenza Semarang from April 2009 until December 2010 was collected. Samples were obtained from Malang sentinel, Yogyakarta sentinel and Semarang sentinel. Samples were examined using PCR to detect influenza A, influenza B, and swine flu. Result: out 1367 patients tested, 279 patients (20.41% were from Yogyakarta sentinel, 619 patients (45.28% were from Malang sentinel, and 467 patients (34.16% were from Semarang sentinel. Flu A virus was detected in 117 patients (8.5%. Influenza B virus was found in 39 patients (2.8%. H1 virus was detected in 5 patients (0.36%. H3 virus was detected in 45 patients (3.29%. Swine flu virus was detected in 3 patients in Malang. Conclusion: The highest prevalence of flu A and flu B examined in avian influenza regional laboratory Semarang was from Semarang sentinel, followed by Yogyakarta sentinel and Malang (Sains Medika, 3(2:157-161.

  13. IN VITRO INTERACTION OF INFLUENZA VIRUS A(H1N1pdm09 WITH MONOCYTIC MACROPHAGES: INDIVIDUAL RESPONSES OF TLR7 AND RIG1 RECEPTOR GENES

    Directory of Open Access Journals (Sweden)

    T. M. Sokolova

    2017-01-01

    Full Text Available In vitro differentiation of donor blood monocytes to macrophages (Mph following GM-CSF treatment was accompanied by a significant increase in the levels of gene transcription signaling receptors TLR7 or RIG1. The levels of intracellular viral RNA (M1 gene in Mph remained high upon infection by influenza virus A H1N1pdm (Moscow 2009 for 24-96 hours. The innate immunity reactions caused by influenza virus show individual features: they are decreased in Mph from donor 1 which had initially high level of endosomal TLR7 gene activity, and it increased by influenza virus in MPh from donor 2 who had a very low level of TLR7 gene expression. The influenza H1N1pdm virus weakly stimulated expression of gene RIG1 and production of inflammatory cytokines in Mf in donor 1. The differences may be connected with individual sensitivity of the donors to influenza infection.

  14. A dual vaccine against influenza & Alzheimer's disease failed to enhance anti-β-amyloid antibody responses in mice with pre-existing virus specific memory.

    Science.gov (United States)

    Davtyan, Hayk; Ghochikyan, Anahit; Hovakimyan, Armine; Davtyan, Arpine; Cadagan, Richard; Marleau, Annette M; Albrecht, Randy A; García-Sastre, Adolfo; Agadjanyan, Michael G

    2014-12-15

    Novel dual vaccine, WSN-Aβ(1-10), based on the recombinant influenza virus, expressing immunodominant B-cell epitope of β-amyloid, simultaneously induced therapeutically potent anti-Aβ and anti-influenza antibodies. In this study we showed that boosting of WSN-WT primed mice with WSN-Aβ(1-10) enhances anti-viral, but fails to induce anti-Aβ antibody responses. This inhibition is associated with expression of Aβ(1-10) within the context of an inactivated influenza virus vaccine. These results demonstrate that the use of an inactivated influenza virus as a carrier for AD vaccine may not be applicable due to the possible inhibition of anti-Aβ antibody response in individuals previously vaccinated or infected with influenza. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Influenza infection and Kawasaki disease

    Directory of Open Access Journals (Sweden)

    Xijing Huang

    2015-06-01

    Full Text Available INTRODUCTION: The objective of this study was to investigate the possible link between influenza (Flu infection and Kawasaki disease (KD. METHODS: We examined the medical records of 1,053 KD cases and 4,669 influenza infection cases hospitalized at our institute from January 1, 2011 to December 31, 2013. Cases of KD with concomitant influenza infection formed the KD + Flu group. Each KD + Flu case was matched with 2 KD cases and 2 influenza infection cases, and these cases were assigned to the KD group and Flu group, respectively. The differences in the principal clinical manifestations, course of disease, incomplete KD rate, intravenous immunoglobulin (IVIG resistance rate, and echocardiographic detection results between the KD + Flu group and KD group were compared. The fever durations and laboratory test results of these three groups were compared. RESULTS: 1 The seasonal variations of the KD + Flu group, KD group and Flu group were similar. 2 The morbidity rate of incomplete KD was higher in the KD + Flu group compared with the KD group. 3 Patients in the KD + Flu group exhibited a longer time to KD diagnosis compared with patients in the KD group. 4 The KD + Flu group exhibited the longest fever duration among the three groups. 5 The CRP and ESR values in the KD + Flu group were higher those in the Flu or KD groups. CONCLUSIONS: Concomitant influenza infection affects the clinical manifestations of KD and can impact the laboratory test results and the diagnosis and treatment of the disease. However, it remains unclear whether influenza contributes to KD etiology.

  16. On the epidemiology of influenza

    Directory of Open Access Journals (Sweden)

    Scragg Robert

    2008-02-01

    Full Text Available Abstract The epidemiology of influenza swarms with incongruities, incongruities exhaustively detailed by the late British epidemiologist, Edgar Hope-Simpson. He was the first to propose a parsimonious theory explaining why influenza is, as Gregg said, "seemingly unmindful of traditional infectious disease behavioral patterns." Recent discoveries indicate vitamin D upregulates the endogenous antibiotics of innate immunity and suggest that the incongruities explored by Hope-Simpson may be secondary to the epidemiology of vitamin D deficiency. We identify – and attempt to explain – nine influenza conundrums: (1 Why is influenza both seasonal and ubiquitous and where is the virus between epidemics? (2 Why are the epidemics so explosive? (3 Why do they end so abruptly? (4 What explains the frequent coincidental timing of epidemics in countries of similar latitude? (5 Why is the serial interval obscure? (6 Why is the secondary attack rate so low? (7 Why did epidemics in previous ages spread so rapidly, despite the lack of modern transport? (8 Why does experimental inoculation of seronegative humans fail to cause illness in all the volunteers? (9 Why has influenza mortality of the aged not declined as their vaccination rates increased? We review recent discoveries about vitamin D's effects on innate immunity, human studies attempting sick-to-well transmission, naturalistic reports of human transmission, studies of serial interval, secondary attack rates, and relevant animal studies. We hypothesize that two factors explain the nine conundrums: vitamin D's seasonal and population effects on innate immunity, and the presence of a subpopulation of "good infectors." If true, our revision of Edgar Hope-Simpson's theory has profound implications for the prevention of influenza.

  17. Setting up a platform for plant-based influenza virus vaccine production in South Africa

    Directory of Open Access Journals (Sweden)

    Mortimer Elizabeth

    2012-04-01

    Full Text Available Abstract Background During a global influenza pandemic, the vaccine requirements of developing countries can surpass their supply capabilities, if these exist at all, compelling them to rely on developed countries for stocks that may not be available in time. There is thus a need for developing countries in general to produce their own pandemic and possibly seasonal influenza vaccines. Here we describe the development of a plant-based platform for producing influenza vaccines locally, in South Africa. Plant-produced influenza vaccine candidates are quicker to develop and potentially cheaper than egg-produced influenza vaccines, and their production can be rapidly upscaled. In this study, we investigated the feasibility of producing a vaccine to the highly pathogenic avian influenza A subtype H5N1 virus, the most generally virulent influenza virus identified to date. Two variants of the haemagglutinin (HA surface glycoprotein gene were synthesised for optimum expression in plants: these were the full-length HA gene (H5 and a truncated form lacking the transmembrane domain (H5tr. The genes were cloned into a panel of Agrobacterium tumefaciens binary plant expression vectors in order to test HA accumulation in different cell compartments. The constructs were transiently expressed in tobacco by means of agroinfiltration. Stable transgenic tobacco plants were also generated to provide seed for stable storage of the material as a pre-pandemic strategy. Results For both transient and transgenic expression systems the highest accumulation of full-length H5 protein occurred in the apoplastic spaces, while the highest accumulation of H5tr was in the endoplasmic reticulum. The H5 proteins were produced at relatively high concentrations in both systems. Following partial purification, haemagglutination and haemagglutination inhibition tests indicated that the conformation of the plant-produced HA variants was correct and the proteins were functional. The

  18. Vaccination against seasonal influenza

    CERN Multimedia

    GS Department

    2010-01-01

    This year, as usual, the Medical Service is helping to promote vaccination against seasonal influenza. Vaccination against seasonal flu is especially recommended for anyone who suffers from chronic pulmonary, cardio-vascular or kidney disease or diabetes, is recovering from a serious illness or major surgery, or is over 65 years of age. The flu virus is transmitted through the air and through contact with contaminated surfaces, so frequent hand-washing with soap and/or an antiseptic hand wash is of great importance. As soon as the first symptoms appear (fever above 38°, shivering, coughing, muscle and/or joint pains, generalised weakness), you are strongly recommended to stay at home to avoid spreading the virus. Anyone working on the CERN site who wishes to be vaccinated against seasonal flu should go to the Infirmary (Building 57, ground floor), with their dose of vaccine. The Medical Service will issue a prescription on the day of the vaccination for the purposes of reimbursement through UNIQA...

  19. Influenza, anthropology, and global uncertainties.

    Science.gov (United States)

    Atlani-Duault, Laëtitia; Kendall, Carl

    2009-07-01

    The response to the novel H1N1 influenza (swine flu) pandemic has been overwhelmingly biological and epidemiological in scope. While plans are moving forward on a vaccine, few of the social effects of a truly massive global catastrophe-or the issues of communication, responding to predictable inappropriate reactions, preparation of populations for these effects, or using local population resources in the epidemic-have been well considered. Anthropology can play an important and underutilized role in planning and responding to influenza and other global emergencies. This editorial discusses these issues and makes some preliminary recommendations.

  20. RIG-I Activation Protects and Rescues from Lethal Influenza Virus Infection and Bacterial Superinfection.

    Science.gov (United States)

    Coch, Christoph; Stümpel, Jan Phillip; Lilien-Waldau, Vanessa; Wohlleber, Dirk; Kümmerer, Beate M; Bekeredjian-Ding, Isabelle; Kochs, Georg; Garbi, Natalio; Herberhold, Stephan; Schuberth-Wagner, Christine; Ludwig, Janos; Barchet, Winfried; Schlee, Martin; Hoerauf, Achim; Bootz, Friedrich; Staeheli, Peter; Hartmann, Gunther; Hartmann, Evelyn

    2017-09-06

    Influenza A virus infection causes substantial morbidity and mortality in seasonal epidemic outbreaks, and more efficient treatments are urgently needed. Innate immune sensing of viral nucleic acids stimulates antiviral immunity, including cell-autonomous antiviral defense mechanisms that restrict viral replication. RNA oligonucleotide ligands that potently activate the cytoplasmic helicase retinoic-acid-inducible gene I (RIG-I) are promising candidates for the development of new antiviral therapies. Here, we demonstrate in an Mx1-expressing mouse model of influenza A virus infection that a single intravenous injection of low-dose RIG-I ligand 5'-triphosphate RNA (3pRNA) completely protected mice from a lethal challenge with influenza A virus for at least 7 days. Furthermore, systemic administration of 3pRNA rescued mice with pre-established fulminant influenza infection and prevented the fatal effects of a streptococcal superinfection. Type I interferon, but not interferon-λ, was required for the therapeutic effect. Our results suggest that the use of RIG-I activating oligonucleotide ligands has the clinical potential to confine influenza epidemics when a strain-specific vaccine is not yet available and to reduce lethality of influenza in severely infected patients. Copyright © 2017. Published by Elsevier Inc.

  1. PnuC and the utilization of the nicotinamide riboside analog 3-aminopyridine in Haemophilus influenzae.

    Science.gov (United States)

    Sauer, Elizabeta; Merdanovic, Melisa; Mortimer, Anne Price; Bringmann, Gerhard; Reidl, Joachim

    2004-12-01

    The utilization pathway for the uptake of NAD and nicotinamide riboside was previously characterized for Haemophilus influenzae. We now report on the cellular location, topology, and substrate specificity of PnuC. pnuC of H. influenzae is only distantly related to pnuC of Escherichia coli and Salmonella enterica serovar Typhimurium. When E. coli PnuC was expressed in an H. influenzae pnuC mutant, it was able to take up only nicotinamide riboside and not nicotinamide mononucleotide. Therefore, we postulated that PnuC transporters in general possess specificity for nicotinamide riboside. Earlier studies showed that 3-aminopyridine derivatives (e.g., 3-aminopyridine adenine dinucleotide) are inhibitory for H. influenzae growth. By testing characterized strains with mutations in the NAD utilization pathway, we show that 3-aminopyridine riboside is inhibitory to H. influenzae and is taken up by the NAD-processing and nicotinamide riboside route. 3-Aminopyridine riboside is utilized effectively in a pnuC+ background. In addition, we demonstrate that 3-aminopyridine adenine dinucleotide resynthesis is produced by NadR. 3-Aminopyridine riboside-resistant H. influenzae isolates were characterized, and mutations in nadR could be detected. We also tested other species of the family Pasteurellaceae, Pasteurella multocida and Actinobacillus actinomycetemcomitans, and found that 3-aminopyridine riboside does not act as a growth inhibitor; hence, 3-aminopyridine riboside represents an anti-infective agent with a very narrow host range.

  2. High Affinity Antibodies against Influenza Characterize the Plasmablast Response in SLE Patients After Vaccination.

    Science.gov (United States)

    Kaur, Kaval; Zheng, Nai-Ying; Smith, Kenneth; Huang, Min; Li, Lie; Pauli, Noel T; Henry Dunand, Carole J; Lee, Jane-Hwei; Morrissey, Michael; Wu, Yixuan; Joachims, Michelle L; Munroe, Melissa E; Lau, Denise; Qu, Xinyan; Krammer, Florian; Wrammert, Jens; Palese, Peter; Ahmed, Rafi; James, Judith A; Wilson, Patrick C

    2015-01-01

    Breakdown of B cell tolerance is a cardinal feature of systemic lupus erythematosus (SLE). Increased numbers of autoreactive mature naïve B cells have been described in SLE patients and autoantibodies have been shown to arise from autoreactive and non-autoreactive precursors. How these defects, in the regulation of B cell tolerance and selection, influence germinal center (GC) reactions that are directed towards foreign antigens has yet to be investigated. Here, we examined the characteristics of post-GC foreign antigen-specific B cells from SLE patients and healthy controls by analyzing monoclonal antibodies generated from plasmablasts induced specifically by influenza vaccination. We report that many of the SLE patients had anti-influenza antibodies with higher binding affinity and neutralization capacity than those from controls. Although overall frequencies of autoreactivity in the influenza-specific plasmablasts were similar for SLE patients and controls, the variable gene repertoire of influenza-specific plasmablasts from SLE patients was altered, with increased usage of JH6 and long heavy chain CDR3 segments. We found that high affinity anti-influenza antibodies generally characterize the plasmablast responses of SLE patients with low levels of autoreactivity; however, certain exceptions were noted. The high-avidity antibody responses in SLE patients may also be correlated with cytokines that are abnormally expressed in lupus. These findings provide insights into the effects of dysregulated immunity on the quality of antibody responses following influenza vaccination and further our understanding of the underlying abnormalities of lupus.

  3. High Affinity Antibodies against Influenza Characterize the Plasmablast Response in SLE Patients After Vaccination.

    Directory of Open Access Journals (Sweden)

    Kaval Kaur

    Full Text Available Breakdown of B cell tolerance is a cardinal feature of systemic lupus erythematosus (SLE. Increased numbers of autoreactive mature naïve B cells have been described in SLE patients and autoantibodies have been shown to arise from autoreactive and non-autoreactive precursors. How these defects, in the regulation of B cell tolerance and selection, influence germinal center (GC reactions that are directed towards foreign antigens has yet to be investigated. Here, we examined the characteristics of post-GC foreign antigen-specific B cells from SLE patients and healthy controls by analyzing monoclonal antibodies generated from plasmablasts induced specifically by influenza vaccination. We report that many of the SLE patients had anti-influenza antibodies with higher binding affinity and neutralization capacity than those from controls. Although overall frequencies of autoreactivity in the influenza-specific plasmablasts were similar for SLE patients and controls, the variable gene repertoire of influenza-specific plasmablasts from SLE patients was altered, with increased usage of JH6 and long heavy chain CDR3 segments. We found that high affinity anti-influenza antibodies generally characterize the plasmablast responses of SLE patients with low levels of autoreactivity; however, certain exceptions were noted. The high-avidity antibody responses in SLE patients may also be correlated with cytokines that are abnormally expressed in lupus. These findings provide insights into the effects of dysregulated immunity on the quality of antibody responses following influenza vaccination and further our understanding of the underlying abnormalities of lupus.

  4. Influenza virus infection but not H1N1 influenza virus immunization is associated with changes in peripheral blood NK cell subset levels.

    Science.gov (United States)

    Juárez-Reyes, A; Noyola, D E; Monsiváis-Urenda, A; Alvarez-Quiroga, C; González-Amaro, R

    2013-08-01

    The innate immune system constitutes the first line of defense against viral agents, and NK cells seem to have an important protective role during the early phases of influenza virus infections. We decided to assess the levels of NK and NKT lymphocytes and the expression levels of different membrane receptors (NKp44, NKp46, NKG2A, killer cell immune-like receptor [KIR] 3DL1/DS1, KIR2DL1/DS1, and CD161) in peripheral blood samples of patients with influenza (n = 17) and healthy individuals immunized against this virus (seasonal and [H1N1]pdm2009 influenza vaccines; n = 15 and 12, respectively). Blood samples were obtained from all individuals, and NK and NKT cell subsets were analyzed by multiparametric flow cytometry. We found that the patients with severe influenza (n = 9) showed significant increases in the percentages of NKp46(+) NKp44(+) NK cells and the proportions of NK and NKT lymphocytes expressing KIR2DL1 and KIR3DL1 and reductions in the percentages of NKp46(+) NKp44(-) NK cells compared to those in the healthy controls (n = 27). In contrast, influenza immunization, against either the seasonal or the pandemic H1N1 virus, was not associated with important changes in the levels of NK and NKT lymphocytes or the expression levels of the different receptors by these cells. Our data suggest that severe influenza is associated with important and complex alterations on NK cells, which might contribute to the pathogenesis of this condition.

  5. Production of H5N1 influenza virus matrix protein 2 ectodomain protein bodies in tobacco plants and in insect cells as a candidate universal influenza vaccine

    Directory of Open Access Journals (Sweden)

    Sandiswa Mbewana

    2015-12-01

    Full Text Available The spread of influenza A viruses is partially controlled and prevented by vaccination. The matrix protein 2 ectodomain (M2e is the most conserved sequence in influenza A viruses, and is therefore a good potential target for a vaccine to protect against multiple virus subtypes. We explored the feasibility of a M2e-based universal influenza A vaccine candidate based on the highly pathogenic avian influenza A virus, H5N1. A synthetic M2e gene was human and plant codon optimised and fused in-frame with a sequence encoding the N-terminal proline-rich domain (Zera® of the γ-zein protein of maize. Zera®M2e was expressed transiently in Nicotiana benthamiana and Sf21 baculovirus / insect cell expression systems, and Zera®M2e protein bodies (PBs were successfully produced in both expression systems. The plant-produced Zera®M2e PBs were purified and injected into Balb/c mice. Western blot analysis using insect cell-produced Zera®M2e PBs and multiple tandem M2e sequences (5xM2e fused with the avian influenza H5N1 transmembrane and cytosolic tail (5xM2e_tHA confirmed the presence of M2e-specific antibodies in immunised mice sera. The immunogenicity of the Zera®M2e indicates that our plant-produced protein has potential as an inexpensive universal influenza A vaccine.

  6. A trivalent virus-like particle vaccine elicits protective immune responses against seasonal influenza strains in mice and ferrets.

    Directory of Open Access Journals (Sweden)

    Ted M Ross

    Full Text Available There is need for improved human influenza vaccines, particularly for older adults who are at greatest risk for severe disease, as well as to address the continuous antigenic drift within circulating human subtypes of influenza virus. We have engineered an influenza virus-like particle (VLP as a new generation vaccine candidate purified from the supernatants of Sf9 insect cells following infection by recombinant baculoviruses to express three influenza virus proteins, hemagglutinin (HA, neuraminidase (NA, and matrix 1 (M1. In this study, a seasonal trivalent VLP vaccine (TVV formulation, composed of influenza A H1N1 and H3N2 and influenza B VLPs, was evaluated in mice and ferrets for the ability to elicit antigen-specific immune responses. Animals vaccinated with the TVV formulation had hemagglutination-inhibition (HAI antibody titers against all three homologous influenza virus strains, as well as HAI antibodies against a panel of heterologous influenza viruses. HAI titers elicited by the TVV were statistically similar to HAI titers elicited in animals vaccinated with the corresponding monovalent VLP. Mice vaccinated with the TVV had higher level of influenza specific CD8+ T cell responses than a commercial trivalent inactivated vaccine (TIV. Ferrets vaccinated with the highest dose of the VLP vaccine and then challenged with the homologous H3N2 virus had the lowest titers of replicating virus in nasal washes and showed no signs of disease. Overall, a trivalent VLP vaccine elicits a broad array of immunity and can protect against influenza virus challenge.

  7. Perturbed CD8+ T cell immunity across universal influenza epitopes in the elderly.

    Science.gov (United States)

    Nguyen, Thi H O; Sant, Sneha; Bird, Nicola L; Grant, Emma J; Clemens, E Bridie; Koutsakos, Marios; Valkenburg, Sophie A; Gras, Stephanie; Lappas, Martha; Jaworowski, Anthony; Crowe, Jane; Loh, Liyen; Kedzierska, Katherine

    2018-02-01

    Influenza epidemics lead to severe illness, life-threatening complications, and deaths, especially in the elderly. As CD8+ T cells are associated with rapid recovery from influenza, we investigated the effects of aging on antigen-specific CD8+ T cells across the universal influenza epitopes in humans. We show that aging is characterized by altered frequencies in T cell subsets, with naive T cells being partially replaced by activated effector/memory populations. Although we observed no striking differences in TCR signaling capacity, T cells in the elderly had increased expression of transcription factors Eomes and T-bet, and such changes were most apparent in CD8+ T cells. Strikingly, the numbers of antigen-specific CD8+ T cells across universal influenza epitopes were reduced in the elderly, although their effector/memory phenotypes remained stable. To understand whether diminished numbers of influenza-specific CD8+ T cells in the elderly resulted from alteration in TCR clonotypes, we dissected the TCRαβ repertoire specific for the prominent HLA-A*02:01-restricted-M158-66 (A2/M158 ) influenza epitope. We provide the first ex vivo data on paired antigen-specific TCRαβ clonotypes in the elderly, showing that influenza-specific A2/M158+ TCRαβ repertoires in the elderly adults varied from those in younger adults, with the main features being a reduction in the frequency of the public TRAV27-TRBV19 TCRαβ clonotype, increased proportion of private TCRαβ signatures, broader use of TRAV and TRBV gene segments, and large clonal expansion of private TCRαβ clonotypes with longer CDR3 loops. Our study supports the development of T cell-targeted influenza vaccines that would boost the T cell compartment during life and maintain the numbers and optimal TCRαβ signatures in the elderly. ©2017 Society for Leukocyte Biology.

  8. Dietary wolfberry supplementation enhances the protective effect of flu vaccine against influenza challenge in aged mice.

    Science.gov (United States)

    Du, Xiaogang; Wang, Junpeng; Niu, Xinli; Smith, Donald; Wu, Dayong; Meydani, Simin Nikbin

    2014-02-01

    Current vaccines for influenza do not fully protect the aged against influenza infection. Although wolfberry (goji berry) has been shown to improve immune response, including enhanced antibody production, after vaccination in the aged, it is not known if this effect would translate to better protection after influenza infection, nor is its underlying mechanism well understood. To address these issues, we conducted a study using a 2 × 2 design in which aged male mice (20-22 mo) were fed a control or a 5% wolfberry diet for 30 d, then immunized with an influenza vaccine or saline (control) on days 31 and 52 of the dietary intervention, and finally challenged with influenza A/Puerto Rico/8/34 virus. Mice fed wolfberry had higher influenza antibody titers and improved symptoms (less postinfection weight loss) compared with the mice treated by vaccine alone. Furthermore, an in vitro mechanistic study showed that wolfberry supplementation enhanced maturation and activity of antigen-presenting dendritic cells (DCs) in aged mice, as indicated by phenotypic change in expression of DC activation markers major histocompatibility complex class II, cluster of differentiation (CD) 40, CD80, and CD86, and functional change in DC production of cytokines interleukin-12 and tumor necrosis factor-α as well as DC endocytosis. Also, adoptive transfer of wolfberry-treated bone marrow DCs (loaded with ovalbumin(323-339)-peptide) promoted antigen-specific T cell proliferation as well as interleukin-4 and interferon-γ production in CD4(+) T cells. In summary, our data indicate that dietary wolfberry enhances the efficacy of influenza vaccination, resulting in better host protection to prevent subsequent influenza infection; this effect may be partly attributed to improved DC function.

  9. Detection of influenza C virus but not influenza D virus in Scottish respiratory samples

    Science.gov (United States)

    Smith, Donald B.; Gaunt, Eleanor R.; Digard, Paul; Templeton, Kate; Simmonds, Peter

    2016-01-01

    Background A newly proposed genus of influenza virus (influenza D) is associated with respiratory disease in pigs and cattle. The novel virus is most closely related to human influenza C virus and can infect ferrets but infection has not been reported in humans. Objectives To ascertain if influenza D virus can be detected retrospectively in patient respiratory samples. Study design 3300 human respiratory samples from Edinburgh, Scotland, covering the period 2006–2008, were screened in pools of 10 by RT-PCR using primers capable of detecting both influenza C and D viruses. Results Influenza D was not detected in any sample. Influenza C was present in 6 samples (0.2%), compared with frequencies of 3.3% and 0.9% for influenza A and B viruses from RT-PCR testing of respiratory samples over the same period. Influenza C virus was detected in samples from individuals 45 years old, with cases occurring throughout the year. Phylogenetic analysis of nearly complete sequences of all seven segments revealed the presence of multiple, reassortant lineages. Conclusion We were unable to detect viruses related to influenza D virus in human respiratory samples. Influenza C virus was less prevalent than influenza A and B viruses, was associated with mild disease in the young (45 years) and comprised multiple, reassortant lineages. Inclusion of influenza C virus as part of a diagnostic testing panel for respiratory infections would be of limited additional value. PMID:26655269

  10. Cellular transcriptional profiling in influenza A virus-infected lung epithelial cells: The role of the nonstructural NS1 protein in the evasion of the host innate defense and its potential contribution to pandemic influenza

    Science.gov (United States)

    Geiss, Gary K.; Salvatore, Mirella; Tumpey, Terrence M.; Carter, Victoria S.; Wang, Xiuyan; Basler, Christopher F.; Taubenberger, Jeffery K.; Bumgarner, Roger E.; Palese, Peter; Katze, Michael G.; García-Sastre, Adolfo

    2002-08-01

    The NS1 protein of influenza A virus contributes to viral pathogenesis, primarily by enabling the virus to disarm the host cell type IFN defense system. We examined the downstream effects of NS1 protein expression during influenza A virus infection on global cellular mRNA levels by measuring expression of over 13,000 cellular genes in response to infection with wild-type and mutant viruses in human lung epithelial cells. Influenza A/PR/8/34 virus infection resulted in a significant induction of genes involved in the IFN pathway. Deletion of the viral NS1 gene increased the number and magnitude of expression of cellular genes implicated in the IFN, NF-B, and other antiviral pathways. Interestingly, different IFN-induced genes showed different sensitivities to NS1-mediated inhibition of their expression. A recombinant virus with a C-terminal deletion in its NS1 gene induced an intermediate cellular mRNA expression pattern between wild-type and NS1 knockout viruses. Most significantly, a virus containing the 1918 pandemic NS1 gene was more efficient at blocking the expression of IFN-regulated genes than its parental influenza A/WSN/33 virus. Taken together, our results suggest that the cellular response to influenza A virus infection in human lung cells is significantly influenced by the sequence of the NS1 gene, demonstrating the importance of the NS1 protein in regulating the host cell response triggered by virus infection.

  11. A onipresença do medo na influenza de 1918 Omnipotent fear along 1918 influenza

    Directory of Open Access Journals (Sweden)

    Liane Maria Bertucci

    2009-12-01

    Full Text Available O medo é um sentimento de diversas faces que durante a vigência de uma grave epidemia torna-se onipresente, podendo motivar tanto a discriminação e a exclusão, quanto a procura desesperada, e muitas vezes solidária, pela cura da doençaMoléstia que desafiou o saber médico-científico, a epidemia de influenza espanhola fez aflorar entre os brasileiros o medo do contato com o outro, a indiferença das pessoas e o temor ancestral dos hospitaisMas, o medo da gripe de 1918 motivou também a solidariedade, expressa de maneira singular na divulgação de práticas caseiras de cura que, combinadas com esparsas informações médicas e com a fé, traduziram a generosidade de indivíduos que difundiam gratuitamente aquilo que, acreditavam, poderia acabar com a epidemia.Fear is a multiple faces feeling that along a hard epidemic becomes omnipresent, as well as it can motivate discrimination and exclusion together to desperate, and many times solidary, search for disease cureA disease that challenged medical-scientific knowledge, influenza epidemic brought up among Brazilians fear of personal contact, as well as people unconcerning and ancestral terror of hospitalsOn the other hand, 1918 influenza fear motivated solidarity, which had been expressed in a singular manner on domestic healing practices that, joint together few medical information and faith, revealed generosity of individuals who broadcast for free those information that, they believed, could put an end to the epidemic.

  12. Influenza (Flu) vaccine (Live, Intranasal): What you need to know

    Science.gov (United States)

    ... is taken in its entirety from the CDC Influenza Live, Intranasal Flu Vaccine Information Statement (VIS): www.cdc.gov/vaccines/ ... flulive.html . CDC review information for Live, Intranasal Influenza VIS: Vaccine Information Statement Influenza Page last reviewed: ...

  13. Universal influenza vaccines, science fiction or soon reality?

    NARCIS (Netherlands)

    R.D. de Vries (Rory); A.F. Altenburg (Arwen); G.F. Rimmelzwaan (Guus)

    2015-01-01

    textabstractCurrently used influenza vaccines are only effective when the vaccine strains match the epidemic strains antigenically. To this end, seasonal influenza vaccines must be updated almost annually. Furthermore, seasonal influenza vaccines fail to afford protection against antigenically

  14. Symptoms of influenza virus infection in hospitalized patients

    NARCIS (Netherlands)

    van den Dool, C; Hak, E; Wallinga, J; van Loon, A M; Lammers, J W J; Bonten, M J M

    BACKGROUND: During influenza outbreaks, fever and cough are the most accurate symptoms in predicting influenza virus infection in the community. OBJECTIVE: To determine the usefulness of fever, cough, and other symptoms for diagnosing influenza virus infection in hospitalized patients. DESIGN:

  15. Double Plant Homeodomain Fingers 2 (DPF2) Promotes the Immune Escape of Influenza Virus by Suppressing Beta Interferon Production.

    Science.gov (United States)

    Shin, Dongjo; Lee, Jihye; Park, Ji Hoon; Min, Ji-Young

    2017-06-15

    The high mutation rates of the influenza virus genome facilitate the generation of viral escape mutants, rendering vaccines and drugs against influenza virus-encoded targets potentially ineffective. Therefore, we identified host cell determinants dispensable for the host but crucial for virus replication, with the goal of preventing viral escape and finding effective antivirals. To identify these host factors, we screened 2,732 human genes using RNA interference and focused on one of the identified host factors, the double plant homeodomain fingers 2 (DPF2/REQ) gene, for this study. We found that knockdown of DPF2 in cells infected with influenza virus resulted in decreased expression of viral proteins and RNA. Furthermore, production of progeny virus was reduced by two logs in the multiple-cycle growth kinetics assay. We also found that DPF2 was involved in the replication of seasonal influenza A and B viruses. Because DPF2 plays a crucial role in the noncanonical NF-κB pathway, which negatively regulates type I interferon (IFN) induction, we examined the relationship between DPF2 and IFN responses during viral infection. The results showed that knockdown of DPF2 resulted in increased expression of IFN-β and induced phosphorylation of STAT1 in infected cells. In addition, high levels of several cytokines/chemokines (interleukin-8 [IL-8], IP-10, and IL-6) and antiviral proteins (MxA and ISG56) were produced by DPF2 knockdown cells. In conclusion, we identified a novel host factor, DPF2, that is required for influenza virus to evade the host immune response and that may serve as a potential antiviral target.IMPORTANCE Influenza virus is responsible for seasonal epidemics and occasional pandemics and is an ongoing threat to public health worldwide. Influenza virus relies heavily on cellular factors to complete its life cycle. Here we identified a novel host factor, DPF2, which is involved in influenza virus infection. Our results showed that DPF2 plays a crucial

  16. Inflammatory response of Haemophilus influenzae biotype aegyptius causing Brazilian Purpuric Fever

    Directory of Open Access Journals (Sweden)

    Gisele Cristiane Gentile Cury

    2014-12-01

    Full Text Available The Brazilian Purpuric Fever (BPF is a systemic disease with many clinical features of meningococcal sepsis and is usually preceded by purulent conjunctivitis. The illness is caused by Haemophilus influenza biogroup aegyptius, which was associated exclusively with conjunctivitis. In this work construction of the las gene, hypothetically responsible for this virulence, were fusioned with ermAM cassette in Neisseria meningitidis virulent strains and had its DNA transfer to non BPF H. influenzae strains. The effect of the las transfer was capable to increase the cytokines TNFα and IL10 expression in Hec-1B cells line infected with these transformed mutants (in eight log scale of folding change RNA expression. This is the first molecular study involving the las transfer to search an elucidation of the pathogenic factors by horizontal intergeneric transfer from meningococci to H. influenzae.

  17. Universal influenza virus vaccines and therapeutic antibodies.

    Science.gov (United States)

    Nachbagauer, R; Krammer, F

    2017-04-01

    Current influenza virus vaccines are effective when well matched to the circulating strains. Unfortunately, antigenic drift and the high diversity of potential emerging zoonotic and pandemic viruses make it difficult to select the right strains for vaccine production. This problem causes vaccine mismatches, which lead to sharp drops in vaccine effectiveness and long response times to manufacture matched vaccines in case of novel pandemic viruses. To provide an overview of universal influenza virus vaccines and therapeutic antibodies in preclinical and clinical development. PubMed and clinicaltrials.gov were used as sources for this review. Universal influenza virus vaccines that target conserved regions of the influenza virus including the haemagglutinin stalk domain, the ectodomain of the M2 ion channel or the internal matrix and nucleoproteins are in late preclinical and clinical development. These vaccines could confer broad protection against all influenza A and B viruses including drift variants and thereby abolish the need for annual re-formulation and re-administration of influenza virus vaccines. In addition, these novel vaccines would enhance preparedness against emerging influenza virus pandemics. Finally, novel therapeutic antibodies against the same conserved targets are in clinical development and could become valuable tools in the fight against influenza virus infection. Both universal influenza virus vaccines and therapeutic antibodies are potential future options for the control of human influenza infections. Copyright © 2017 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  18. Antivirals and the control of influenza outbreaks.

    Science.gov (United States)

    Hota, Susy; McGeer, Allison

    2007-11-15

    During annual influenza epidemics, outbreaks of influenza in closed institutions are common. Among healthy children or young adults, such outbreaks are uncommonly associated with serious morbidity or mortality; however, in hospitals and nursing homes, attack rates as high as 60% and case-fatality rates as high as 50% have been reported. Annual influenza vaccination of both patients or residents and hospital and nursing home staff has had a substantial impact on mortality and has reduced the number of outbreaks. Nonpharmacologic interventions (e.g., handwashing and contact isolation of case patients) may reduce the spread of influenza, although evidence for their efficacy is lacking. Nonetheless, long-term care facilities for the elderly population with high vaccination rates and better-than-average infection-control programs have a 25%-50% chance of experiencing an influenza outbreak each year, with an expected resident attack rate of 35%-40%. Thus, antiviral drugs have been increasingly used to mitigate the impact of influenza outbreaks. There are 2 classes of antiviral drugs that are active against influenza: adamantanes and neuraminidase inhibitors. Drugs of the 2 classes appear to be equally effective for the treatment and prophylaxis of susceptible influenza A virus strains. However, adamantanes are not active against influenza B virus, and an increasing proportion of influenza A isolates are resistant to adamantanes. Adamantanes are associated with higher rates of adverse events than are neuraminidase inhibitors. There is substantial evidence that antiviral prophylaxis is effective in terminating outbreaks of seasonal influenza in closed institutions. If stockpiles are adequate, antiviral drugs are likely to be even more important in mitigating the impact of influenza transmission in health care institutions during the next influenza pandemic.

  19. Universal influenza vaccines, science fiction or soon reality?

    OpenAIRE

    Vries, Rory; Altenburg, Arwen; Rimmelzwaan, Guus

    2015-01-01

    textabstractCurrently used influenza vaccines are only effective when the vaccine strains match the epidemic strains antigenically. To this end, seasonal influenza vaccines must be updated almost annually. Furthermore, seasonal influenza vaccines fail to afford protection against antigenically distinct pandemic influenza viruses. Because of an ever-present threat of the next influenza pandemic and the continuous emergence of drift variants of seasonal influenza A viruses, there is a need for ...

  20. Formulation of influenza T cell peptides : in search of a universal influenza vaccine

    NARCIS (Netherlands)

    Soema, Peter Christiaan

    2015-01-01

    Current seasonal influenza vaccines rely on the induction of antibodies to neutralize the virus. However, influenza viruses frequently undergo genetic mutations due to antigenic drift and shift, altering the surface proteins hemagglutinin and neuraminidase to which antibodies usually bind. This

  1. Influenza vaccines to control influenza-associated bacterial infection: where do we stand?

    Science.gov (United States)

    Christopoulou, Ioanna; Roose, Kenny; Ibañez, Lorena Itatí; Saelens, Xavier

    2015-01-01

    Influenza A virus is a pathogen that is feared for its capacity to cause pandemics. In this review, we illustrate the clinical evidence which support the theory that bacterial co-infection is a considerable risk factor for exacerbated disease during pandemic and seasonal influenza, including infection with influenza B viruses. We provide an overview of the multiple and diverse mechanisms that help explain how influenza creates an opportunity for replication of secondary bacterial infections. Influenza vaccines and pneumococcal vaccines are widely used and often in overlapping target groups. We summarize the evidence for a protective effect of influenza immunization against bacterial infections, and vice versa of pneumococcal vaccines against influenza-associated pneumonia and lethality. It is important that future implementation of broadly protective influenza vaccines also takes into account protection against secondary bacterial infection.

  2. Control strategies against avian influenza

    Science.gov (United States)

    Since 1959, 40 epizootics of high pathogenicity avian influenza (HPAI) have occurred (Figure 1). Thirty-five of these epizootic HPAI viruses were geographically-limited (mostly to single countries), involved farm-to-farm spread and were eradicated from poultry by stamping-out programs; i.e. the HPAI...

  3. Influenza vaccines for avian species

    Science.gov (United States)

    Beginning in Southeast Asia, in 2003, a multi-national epizootic outbreak of H5N1 highly pathogenic avian influenza (HPAI) was identified in commercial poultry and wild bird species. This lineage, originally identified in Southern China in 1996 and then Hong Kong in 1997, caused severe morbidity an...

  4. Influenza Vaccine, Inactivated or Recombinant

    Science.gov (United States)

    ... die from flu, and many more are hospitalized.Flu vaccine can:keep you from getting flu, make flu ... What is inactivated or recombinant influenza vaccine?A dose of flu vaccine is recommended every flu season. Children 6 months through 8 years of age may need two ...

  5. Influenza: prevention, prophylaxis and treatment

    African Journals Online (AJOL)

    three and five million cases of severe illness and between a quarter and half a million deaths every year. In South ... Influenza illness causes substantial morbidity and mortality, with healthcare costs and lost productivity due to absenteeism resulting ... much further than simply providing a convenient and accessible cold-.

  6. PRODUCTION OF HYBRID RECOMBINANT PROTEIN Flu-Chim, CONTAINING INFLUENZA VIRUSES A AND B MAJOR EPITOPES

    Directory of Open Access Journals (Sweden)

    I. V. Dukhovlinov

    2017-01-01

    Full Text Available The influenza virus is highly contagious diseases of people, birds and mammals. Approximately 250 000– 500 000 deaths are caused by influenza epidemics worldwide yearly, and the death number may be up to millions in a possible influenza pandemic. Vaccination is the most cost-effective way to reduce the considerable disease burden of seasonal influenza. Although seasonal influenza vaccines are effective, their performance in the elderly and immunocompromised individuals would benefit from improvement. Major problems related to the development and production of pandemic influenza vaccines are response time and production capacity as well as vaccine efficacy and safety. Reverse genetics techniques can speed up the generation of seed viruses and new mathematical modelling methods improve vaccine strain selection. Using vaccines based on recombinant proteins, we avoid the risks associated with the introduction of the virus into the body, even inactivated. In this paper, we have got a highly purified recombinant fusion protein composed of fragments of the hemagglutinin of influenza viruses A and B. As adjuvant we used components of flagellin. We used the most immunogenic and conserved areas of hemagglutinin H1, H3, H5 and B, which cause the formation of specific antibodies which can cross-react with homologous epitopes among the various strains of influenza A and B. Vaccine efficacy is increased by using multiple epitopes of various proteins. The aim of this study was to clone and express the hybrid recombinant protein Flu-Chim, containing immunogenic epitopes of influenza A/H1N1, A/H3N2, A/H5N1 and B fused with fragments of flagellin in Escherichia coli expression system and its subsequent purification. During the study was created high-yield E. coli strain, which produces the recombinant protein Flu-Chim, selected the optimal protocol of induction of the gene encoding the protein. The protein was purified using metal affinity chromatography. The

  7. Shifting of Immune Responsiveness to House Dust Mite by Influenza A Infection: Genomic Insights

    KAUST Repository

    Al-Garawi, A.

    2011-12-14

    Respiratory viral infections have been associated with an increased incidence of allergic asthma. However, the mechanisms by which respiratory infections facilitate allergic airway disease are incompletely understood.We previously showed that exposure to a low dose of house dust mite (HDM) resulted in enhanced HDM-mediated allergic airway inflammation, and, importantly, marked airway hyperreactivity only when allergen exposure occurred during an acute influenza A infection. In this study, we evaluated the impact of concurrent influenza infection and allergen exposure at the genomic level, using whole-genome micro-array. Our data showed that, in contrast to exposure to a low dose of HDM, influenza A infection led to a dramatic increase in gene expression, particularly of TLRs, C-type lectin receptors, several complement components, as well as FcεR1. Additionally, we observed increased expression of a number of genes encoding chemokines and cytokines associated with the recruitment of proinflammatory cells. Moreover, HDM exposure in the context of an influenza A infection resulted in the induction of unique genes, including calgranulin A (S100a8), an endogenous damage-associated molecular pattern and TLR4 agonist. In addition, we observed significantly increased expression of serum amyloid A (Saa3) and serine protease inhibitor 3n (Serpina3n). This study showed that influenza infection markedly increased the expression of multiple gene classes capable of sensing allergens and amplifying the ensuing immune-inflammatory response. We propose that influenza A infection primes the lung environment in such a way as to lower the threshold of allergen responsiveness, thus facilitating the emergence of a clinically significant allergic phenotype. Copyright © 2012 by The American Association of Immunologists, Inc.

  8. Influenza Virus Targets Class I MHC-Educated NK Cells for Immunoevasion.

    Science.gov (United States)

    Mahmoud, Ahmad Bakur; Tu, Megan M; Wight, Andrew; Zein, Haggag S; Rahim, Mir Munir A; Lee, Seung-Hwan; Sekhon, Harman S; Brown, Earl G; Makrigiannis, Andrew P

    2016-02-01

    The immune response to influenza virus infection comprises both innate and adaptive defenses. NK cells play an early role in the destruction of tumors and virally-infected cells. NK cells express a variety of inhibitory receptors, including those of the Ly49 family, which are functional homologs of human killer-cell immunoglobulin-like receptors (KIR). Like human KIR, Ly49 receptors inhibit NK cell-mediated lysis by binding to major histocompatibility complex class I (MHC-I) molecules that are expressed on normal cells. During NK cell maturation, the interaction of NK cell inhibitory Ly49 receptors with their MHC-I ligands results in two types of NK cells: licensed ("functional"), or unlicensed ("hypofunctional"). Despite being completely dysfunctional with regard to rejecting MHC-I-deficient cells, unlicensed NK cells represent up to half of the mature NK cell pool in rodents and humans, suggesting an alternative role for these cells in host defense. Here, we demonstrate that after influenza infection, MHC-I expression on lung epithelial cells is upregulated, and mice bearing unlicensed NK cells (Ly49-deficient NKCKD and MHC-I-deficient B2m-/- mice) survive the infection better than WT mice. Importantly, transgenic expression of an inhibitory self-MHC-I-specific Ly49 receptor in NKCKD mice restores WT influenza susceptibility, confirming a direct role for Ly49. Conversely, F(ab')2-mediated blockade of self-MHC-I-specific Ly49 inhibitory receptors protects WT mice from influenza virus infection. Mechanistically, perforin-deficient NKCKD mice succumb to influenza infection rapidly, indicating that direct cytotoxicity is necessary for unlicensed NK cell-mediated protection. Our findings demonstrate that Ly49:MHC-I interactions play a critical role in influenza virus pathogenesis. We suggest a similar role may be conserved in human KIR, and their blockade may be protective in humans.

  9. Influenza virus types and subtypes among pediatric patients having influenza like illness in summer season

    OpenAIRE

    Bishwanath Acharya; Bishnu Prasad Upadhyay; Shailaja Adhikari; Ajit Rayamajhi; Kanchan Thapa

    2016-01-01

    Background: Acute respiratory infections (ARIs) represent one of the major causes of childhood mortality and morbidity in Nepal. The Influenza virus is one of the common causes of viral ARIs and bacterial infection secondary to influenza contributes to majority of childhood death worldwide. However, the diagnosis of influenza virus infection is not routinely suggested in Nepal even for children clinically presenting with influenza like illness (ILI). Methods: With an aim to describe the statu...

  10. Ten influenza seasons in France: distribution and timing of influenza A and B circulation, 2003?2013

    OpenAIRE

    Mosnier, Anne; Caini, Saverio; Daviaud, Isabelle; Bensoussan, Jean-Louis; Stoll-Keller, Fran?oise; Bui, Tan Tai; Lina, Bruno; van der Werf, Sylvie; Cohen, Jean Marie

    2015-01-01

    Background Describing the circulation of influenza viruses and the characteristics of seasonal epidemics remains an essential tool to optimize the strategies of influenza prevention and control. Special attention has been recently paid to influenza B in the context of the availability of a quadrivalent vaccine, containing two influenza B strains. Methods We used data from a practitioners-based influenza surveillance network to describe the circulation of influenza viruses in France from 2003?...

  11. Effects of influenza vaccination and influenza illness on exacerbations in multiple sclerosis

    NARCIS (Netherlands)

    De Keyser, J; Zwanikken, C

    1998-01-01

    Despite reports that influenza vaccination appears to be safe in multiple sclerosis there is uncertainty which patients may benefit from it. By using a questionnaire we compared the effects of influenza illness (1995-1996 season) and influenza vaccination (autumn of 1996) on neurologic symptoms in

  12. Molecular detection and typing of influenza viruses. Are we ready for an influenza pandemic?

    NARCIS (Netherlands)

    MacKay, W.G.; Loon, A.M. van; Niedrig, M.; Meijer, A.; Lina, B.; Niesters, H.G.M.

    2008-01-01

    BACKGROUND: We cannot predict when an influenza pandemic will occur or which variant of the virus will cause it. Little information is currently available on the ability of laboratories to detect and subtype influenza viruses including the avian influenza viruses. OBJECTIVES: To assess the ability

  13. Updates on Influenza Vaccination in Children.

    Science.gov (United States)

    Campbell, Angela J P; Grohskopf, Lisa A

    2018-03-01

    Influenza vaccination is recommended for all children 6 months of age and older who do not have contraindications. This article provides an overview of information concerning burden of influenza among children in the United States; US-licensed influenza vaccines; vaccine immunogenicity, effectiveness, and safety; and recent updates relevant to use of these vaccines in pediatric populations. Influenza antiviral medications are discussed. Details concerning vaccine-related topics may be found in the current US Centers for Disease Control and Prevention/Advisory Committee on Immunization Practices recommendations for use of influenza vaccines (https://www.cdc.gov/vaccines/hcp/acip-recs/vacc-specific/flu.html). Additional information on influenza antivirals is located at https://www.cdc.gov/flu/professionals/antivirals/index.htm. Published by Elsevier Inc.

  14. Virus-Vectored Influenza Virus Vaccines

    OpenAIRE

    Tripp, Ralph A.; Tompkins, S. Mark

    2014-01-01

    Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformul...

  15. Universal influenza vaccines: a realistic option?

    Science.gov (United States)

    de Vries, R D; Altenburg, A F; Rimmelzwaan, G F

    2016-12-01

    The extensive antigenic drift displayed by seasonal influenza viruses and the risk of pandemics caused by newly emerging antigenically distinct influenza A viruses of novel subtypes has raised considerable interest in the development of so-called universal influenza vaccines. We review options for the development of universal flu vaccines and discuss progress that has been made recently. Copyright © 2015 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  16. I costi dell’influenza in Italia

    OpenAIRE

    Lucioni, C.; Costa, B; Sessa, A

    2001-01-01

    The influenza is an acute viral infection that strikes respiratory tract and its diffusion is characteristic of epidemic and pandemic reoccurence. Globally the influenza represents, for the entity of its social impact (measurable in terms of morbility, hospitalization and mortality), a heavy healt care problem. In Italy the estimated incidence is 10-15%: the influenza is the third death cause for infectiuos disease, after AIDS and tubercolosis. This study is based on the Studio 606, the first...

  17. Intensive therapy of severe complications of influenza

    Directory of Open Access Journals (Sweden)

    V. I. Kozhokaru

    2012-01-01

    Full Text Available Definition of risk factors and clinical characteristics of heavy complications of influenza for working out of criteria of polymodal intensive therapy and resuscitation was the work purpose. Results of linical supervision by 114 sick heavy form of influenza with pulmonary and extra pulmonary complications are presented. All patients suffered from virus pneumonia and sharp defeat of lungs /sharp respirator distress-syndrome (OPL/ORDS. Pulmonary complications included bacterial (85, 96 % and micotic (2, 63 % pneumonia, thrombosis of legoch arteries (19,29 %, the sharp respiratory insufficiency, caused by the polyneuropathy of a critical condition of the patient (18,42 %, the exssudative pleuritis (9,65 %, spontaneous pheumothorax (4,39 %, spontaneous pheumomediastinum (2,69 %. Extra pulmonary complications concerned the swell of brain at 100 % of patients, including, with development of a brain coma (26,32 %, sepsis (85,96 %, including, with development of septic shock (68,42 %, syndrome of disseminated intravenous coagulation (49,12 %, multyorgan insufficiency (56,14 %, sharp heavy miocarditis (22,81 %, sharp nephritic insufficiency (18,42 %, sharp hepatic insufficiency (10,52 %. Early development of pathophysiological processes (the expressed infringements of a gas exchange and an acid-base condition, a secondary immunodeficiency, heamodynamical insufficiency,m etc. leads to underestimation of severity of the patient’s condition and to failer of algorithm of polymodal intensive therapy. Development of severe complications(sepsis, septic shock, sharp respirator distress-syndrome demands expansion for epidemic of specialized medicalstructures on rendering timely intensive therapy and resuscitation.

  18. Influenza Vaccines: From Surveillance Through Production to Protection

    Science.gov (United States)

    Tosh, Pritish K.; Jacobson, Robert M.; Poland, Gregory A.

    2010-01-01

    Influenza is an important contributor to population and individual morbidity and mortality. The current influenza pandemic with novel H1N1 has highlighted the need for health care professionals to better understand the processes involved in creating influenza vaccines, both for pandemic as well as for seasonal influenza. This review presents an overview of influenza-related topics to help meet this need and includes a discussion of the burden of disease, virology, epidemiology, viral surveillance, and vaccine strain selection. We then present an overview of influenza vaccine—related topics, including vaccine production, vaccine efficacy and effectiveness, influenza vaccine misperceptions, and populations that are recommended to receive vaccination. English-language articles in PubMed published between January 1, 1970, and October 7, 2009, were searched using key words human influenza, influenza vaccines, influenza A, and influenza B. PMID:20118381

  19. Effect of influenza on functional decline.

    Science.gov (United States)

    Gozalo, Pedro L; Pop-Vicas, Aurora; Feng, Zhanlian; Gravenstein, Stefan; Mor, Vincent

    2012-07-01

    To examine the relationship between influenza and activity of daily living (ADL) decline and other clinical indicators in nursing home (NH) residents. Retrospective NH-aggregated longitudinal study. Two thousand three hundred fifty-one NHs in 122 U.S. cities from 1999 to 2005. Long-stay (>90 days) NH residents. Quarterly city-level influenza mortality and state-level influenza severity. Quarterly incidence of Minimum Data Set-derived ADL decline (≥ 4 points), weight loss, new or worsening pressure ulcers (PUs), and infections. Outcome variables chosen as clinical controls were antipsychotic use, restraint use, and persistent pain. City-level influenza mortality and state-level influenza severity were associated with higher rates of large (≥ 4 points) ADL decline (mortality β = 0.20, P decline, β = 0.008, P = .07 for infections). Compared with the summer quarter of lowest influenza activity, the results for the other quarters translate to an additional 12,284 NH residents experiencing large ADL decline annually, 15,168 experiencing significant weight loss, 6,284 new or worsening PUs, and 29,753 experiencing infections due to influenza. The results suggest a substantial and potentially costly effect of influenza on NH residents. The effect of influenza vaccination on preventing further ADL decline and other clinical outcomes in NH residents should be studied further. © 2012, Copyright the Authors Journal compilation © 2012, The American Geriatrics Society.

  20. Repeated Vaccination Does Not Appear to Impact Upon Influenza Vaccine Effectiveness Against Hospitalization With Confirmed Influenza.

    Science.gov (United States)

    Cheng, Allen C; Macartney, Kristine K; Waterer, Grant W; Kotsimbos, Tom; Kelly, Paul M; Blyth, Christopher C

    2017-06-01

    Annual influenza vaccine is recommended for those at greatest risk of severe influenza infection. Recent reports of a negative impact of serial influenza vaccination on vaccine effectiveness (VE) raises concerns about the recommendation for annual influenza vaccines, particularly in persons at greatest risk. The Influenza Complications Alert Network (FluCAN) is an Australian hospital-based sentinel surveillance program. In this observational study, cases were defined as subjects aged >9 years admitted with influenza confirmed by polymerase chain reaction. Controls were subjects with acute respiratory illness testing negative for influenza. Propensity scores were used to adjust for the likelihood of being vaccinated. VE was calculated as 1 - adjusted odds ratio of vaccination in cases compared with test-negative controls. Over 2010-2015, 6223 cases and 6505 controls were hospitalized with confirmed influenza and influenza test-negative acute respiratory illness, respectively. Following stratification by quintile of propensity score, site, and year, VE was estimated to be 43% (95% confidence interval [CI], 37%-49%) overall. VE was estimated to be 51% (95% CI, 45%-57%) in those vaccinated in both the current and previous season, compared with 33% (95% CI, 17%-47%) vaccinated in the current season only and 35% (95% CI, 21%-46%) in the previous season only. Similar results were observed for influenza A/H1N1, influenza A/H3N2, and influenza B strains. Vaccination in both the current and previous seasons was associated with a higher VE against hospitalization with influenza than vaccination in either single season. These findings reinforce current recommendations for annual influenza vaccination, particularly those at greatest risk of influenza disease.

  1. Competition between influenza A virus genome segments.

    Directory of Open Access Journals (Sweden)

    Ivy Widjaja

    Full Text Available Influenza A virus (IAV contains a segmented negative-strand RNA genome. How IAV balances the replication and transcription of its multiple genome segments is not understood. We developed a dual competition assay based on the co-transfection of firefly or Gaussia luciferase-encoding genome segments together with plasmids encoding IAV polymerase subunits and nucleoprotein. At limiting amounts of polymerase subunits, expression of the firefly luciferase segment was negatively affected by the presence of its Gaussia luciferase counterpart, indicative of competition between reporter genome segments. This competition could be relieved by increasing or decreasing the relative amounts of firefly or Gaussia reporter segment, respectively. The balance between the luciferase expression levels was also affected by the identity of the untranslated regions (UTRs as well as segment length. In general it appeared that genome segments displaying inherent higher expression levels were more efficient competitors of another segment. When natural genome segments were tested for their ability to suppress reporter gene expression, shorter genome segments generally reduced firefly luciferase expression to a larger extent, with the M and NS segments having the largest effect. The balance between different reporter segments was most dramatically affected by the introduction of UTR panhandle-stabilizing mutations. Furthermore, only reporter genome segments carrying these mutations were able to efficiently compete with the natural genome segments in infected cells. Our data indicate that IAV genome segments compete for available polymerases. Competition is affected by segment length, coding region, and UTRs. This competition is probably most apparent early during infection, when limiting amounts of polymerases are present, and may contribute to the regulation of segment-specific replication and transcription.

  2. Chalcones as novel influenza A (H1N1) neuraminidase inhibitors from Glycyrrhiza inflata

    DEFF Research Database (Denmark)

    Dao, Trong Tuan; Nguyen, Phi Hung; Lee, Hong Sik

    2011-01-01

    -8) chalcones were isolated as active principles from the acetone extract of Glycyrrhiza inflata. Compounds 3 and 6 without prenyl group showed strong inhibitory effects on various neuraminidases from influenza viral strains, H1N1, H9N2, novel H1N1 (WT), and oseltamivir-resistant novel H1N1 (H274Y) expressed...

  3. THE IMMUNOCOMPETENT CELLS RECEPTORS RESEARCH UNDER EXPERIMENTAL INFLUENZA INFECTION IN VITRO

    Directory of Open Access Journals (Sweden)

    A. N. Lisakov

    2015-01-01

    Full Text Available Introduction. It is known that interferon is a cytokine and is a substantial part of the immune system necessary for antigenic challenge immune response full expression. Also it is considered that every antigen is an interferon inducer. Interferon induces antivirus response via binding to specific receptors, this receptors can be revealed straight on cell membranes of immune cells. Research objective. To evaluate the interferon inducer ability of some Influenza A virus strains upon indications of receptors functional activity (capacity to alpha and gamma interferons on peripheral mononuclear blood cells (PBMC induced in vitro by different Influenza A virus strains. Material and methods. The method is based on lymphocytes separation from the venous heparinized blood, with followed by in vitro lymphocytes inducing at temperature 36.5°С in the presence of 5% CO2. Blood samples were taken in different time intervals, labelled by mouse anti-idiotipyc FITCconjugated antibodies, structurally simulated human alpha and gamma interferon, samples were fixed with paraformaldehyde. Interferon receptors expression were performed by flow cytometer. Results. The in vitro experiments have determined the interferon-inducing ability of three influenza virus strains: A/PR8/34 (H1N1, A/Krasnodar/101/59 (H2N2 and A/ Ryazan/6103/87 (H3N2. MPBC blood sample (blood group was 0, Rh factor – positive was induced by irradiated noninfectious allantoic fluid with hemagglutinating activity. Expression of alpha and gamma interferon receptors (alpha and gamma IFNR on MPBC was determined by IFNR markers labelled with FITC and it (expression was estimated by flow cytometer. In parallel we compared expression of alpha and gamma IFNR on MPBC in primed and non primed cells by low doses of human alpha interferon. It was found that expression of alpha and gamma IFNR on MPBC, induced influenza A/ PR8/34 (H1N1 antigen, with high hemagglutinating activity was higher in primed MPBC in

  4. Infection with influenza virus induces IL-33 in murine lungs.

    Science.gov (United States)

    Le Goffic, Ronan; Arshad, Muhammad Imran; Rauch, Michel; L'Helgoualc'h, Annie; Delmas, Bernard; Piquet-Pellorce, Claire; Samson, Michel

    2011-12-01

    IL-33, a novel IL-1 family member, is crucially expressed and involved in pulmonary diseases, but its regulation in viral diseases such as influenza A virus (IAV) remains unclear. This study aimed to characterize the expression and release of IL-33 in lungs of IAV-infected mice in vivo and in murine respiratory epithelial cells (MLE-15) in vitro. Our results provide evidence of up-regulation of IL-33 mRNA in IAV-infected murine lungs, compared with noninfected control mice. The overexpression of IL-33 was positively correlated with a significant increase in mRNA encoding the proinflammatory cytokines TNF-α, IFN-γ, IL-1β, and IL-6, and was also associated with an increase in IFN-β mRNA. A profound overexpression of IL-33 protein was evident in IAV-infected murine lungs and bronchoalveolar lavages of influenza-infected mice, compared with low concentrations in naive lungs in vivo. Immunolocalization highlighted the cellular expression of IL-33 in alveolar epithelial and endothelial cells, along with increased infiltrate cells in virus-infected lungs. Further in vitro experiments showed an induction of IL-33 transcript-in MLE-15 cells and human epithelial cells (A549) infected with different strains of IAV in comparison with noninfected cells. In conclusion, our findings evidenced a profound expression of IL-33 in lungs during both in vivo and in vitro IAV infections, suggesting a role for IL-33 in virus-induced lung infections.

  5. Protein and modified vaccinia virus Ankara-based influenza virus nucleoprotein vaccines are differentially immunogenic in BALB/c mice.

    Science.gov (United States)

    Altenburg, A F; Magnusson, S E; Bosman, F; Stertman, L; de Vries, R D; Rimmelzwaan, G F

    2017-10-01

    Because of the high variability of seasonal influenza viruses and the eminent threat of influenza viruses with pandemic potential, there is great interest in the development of vaccines that induce broadly protective immunity. Most probably, broadly protective influenza vaccines are based on conserved proteins, such as nucleoprotein (NP). NP is a vaccine target of interest as it has been shown to induce cross-reactive antibody and T cell responses. Here we tested and compared various NP-based vaccine preparations for their capacity to induce humoral and cellular immune responses to influenza virus NP. The immunogenicity of protein-based vaccine preparations with Matrix-M™ adjuvant as well as recombinant viral vaccine vector modified Vaccinia virus Ankara (MVA) expressing the influenza virus NP gene, with or without modifications that aim at optimization of CD8 + T cell responses, was addressed in BALB/c mice. Addition of Matrix-M™ adjuvant to NP wild-type protein-based vaccines significantly improved T cell responses. Furthermore, recombinant MVA expressing the influenza virus NP induced strong antibody and CD8 + T cell responses, which could not be improved further by modifications of NP to increase antigen processing and presentation. © 2017 British Society for Immunology.

  6. Influenza A virus infection of intestinal epithelial cells enhances the adhesion ability of Crohn's disease associated Escherichia coli strains.

    Science.gov (United States)

    Aleandri, Marta; Conte, Maria Pia; Simonetti, Giovanna; Panella, Simona; Celestino, Ignacio; Checconi, Paola; Marazzato, Massimiliano; Longhi, Catia; Goldoni, Paola; Nicoletti, Mauro; Barnich, Nicolas; Palamara, Anna Teresa; Schippa, Serena; Nencioni, Lucia

    2015-01-01

    Modifications of intestinal glycoreceptors expression, in particular CEACAM6, typically found in ileal Crohn's disease (CD), favor, among the commensal species of microbiota, the enrichment in Escherichia coli. Removal of protein glycosidic residues by neuraminidase, a sialidase typical of influenza virus, increases adhesion ability of Escherichia coli to Caco-2 intestinal cells. In this study we investigated whether influenza virus infection of human intestinal epithelial cells could influence the adhesiveness of different Escherichia coli strains isolated from CD patients by altering surface glycoreceptors. Influenza virus infection of intestinal cells increased exposure of galactose and mannose residues on the cell surface. In particular, glycoreceptors Thomsen-Friedenreich and CEACAM6 were over-expressed in influenza virus infected cells. In the same experimental conditions, a significant increase in bacterial adhesiveness was observed, independently of their own adhesive ability. The increase was reverted by treatment with anti-TF and anti-CEACAM6 antibodies. Interestingly, influenza virus was able to efficiently replicate in human primary intestinal cells leading to TF exposure. Finally, intestinal infected cells produced high levels of pro-inflammatory cytokines compared to control. Overall these data suggest that influenza virus infection, could constitute an additional risk factor in CD patients.

  7. Guillain-Barre syndrome, influenza, and influenza vaccination: the epidemiologic evidence.

    Science.gov (United States)

    Vellozzi, Claudia; Iqbal, Shahed; Broder, Karen

    2014-04-01

    Guillain-Barré syndrome (GBS) is the most common cause of acute flaccid paralysis worldwide, and is thought to be immune-mediated. It is preceded by upper respiratory or gastrointestinal infection in about two-thirds of cases and is associated with some viral infections, including influenza. GBS has also been associated with the 1976 swine-influenza vaccine. Thereafter, some studies have shown a small increased risk of GBS following receipt of seasonal and 2009 H1N1 monovalent influenza vaccines. Studies over the years have also shown an increased risk of GBS following influenza infection, and the magnitude of risk is several times greater than that following influenza vaccination. Because GBS is rare, and even rarer following vaccination, it is difficult to estimate precise risk. We try to shed light on the complex relationship of GBS and its association with influenza and influenza vaccines over the past 35 years.

  8. Transmission of Influenza A Viruses

    Science.gov (United States)

    Neumann, Gabriele; Kawaoka, Yoshihiro

    2015-01-01

    Influenza A viruses cause respiratory infections that range from asymptomatic to deadly in humans. Widespread outbreaks (pandemics) are attributable to ‘novel’ viruses that possess a viral hemagglutinin (HA) gene to which humans lack immunity. After a pandemic, these novel viruses form stable virus lineages in humans and circulate until they are replaced by other novel viruses. The factors and mechanisms that facilitate virus transmission among hosts and the establishment of novel lineages are not completely understood, but the HA and basic polymerase 2 (PB2) proteins are thought to play essential roles in these processes by enabling avian influenza viruses to infect mammals and replicate efficiently in their new host. Here, we summarize our current knowledge of the contributions of HA, PB2, and other viral components to virus transmission and the formation of new virus lineages. PMID:25812763

  9. Reasons for low influenza vaccination coverage among adults in Puerto Rico, influenza season 2013-2014.

    Science.gov (United States)

    Arriola, Carmen S; Mercado-Crespo, Melissa C; Rivera, Brenda; Serrano-Rodriguez, Ruby; Macklin, Nora; Rivera, Angel; Graitcer, Samuel; Lacen, Mayra; Bridges, Carolyn B; Kennedy, Erin D

    2015-07-31

    Influenza vaccination is recommended annually for all persons 6 months and older. Reports of increased influenza-related morbidity and mortality during the 2013-2014 influenza season raised concerns about low adult influenza immunization rates in Puerto Rico. In order to inform public health actions to increase vaccination rates, we surveyed adults in Puerto Rico regarding influenza vaccination-related attitudes and barriers. A random-digit-dialing telephone survey (50% landline: 50% cellphone) regarding influenza vaccination, attitudes, practices and barriers was conducted November 19-25, 2013 among adults in Puerto Rico. Survey results were weighted to reflect sampling design and adjustments for non-response. Among 439 surveyed, 229 completed the survey with a 52% response rate. Respondents' median age was 55 years; 18% reported receiving 2013-2014 influenza vaccination. Among 180 unvaccinated respondents, 38% reported barriers associated with limited access to vaccination, 24% reported they did not want or need influenza vaccination, and 20% reported safety concerns. Vaccinated respondents were more likely to know if they were recommended for influenza vaccination, to report greater perceived risk of influenza illness, and to report being less concerned about influenza vaccine safety (p-valuevaccination and 17% were offered vaccination. Vaccination rates were higher among adults who received a recommendation and/or offer of influenza vaccination (43% vs. 14%; p-valuevaccination and patient attitudes (low perceived risk of influenza virus infection) may have contributed to low vaccination rates during the 2013-2014 season. HCP and public health practitioners should strongly recommend influenza vaccination and provide vaccinations during clinical encounters or refer patients for vaccination. Published by Elsevier Ltd.

  10. Reasons for low influenza vaccination coverage among adults in Puerto Rico, influenza season 2013–2014

    Science.gov (United States)

    Arriola, Carmen S.; Mercado-Crespo, Melissa C.; Rivera, Brenda; Serrano-Rodriguez, Ruby; Macklin, Nora; Rivera, Angel; Graitcer, Samuel; Lacen, Mayra; Bridges, Carolyn B.; Kennedy, Erin D.

    2017-01-01

    Background Influenza vaccination is recommended annually for all persons 6 months and older. Reports of increased influenza-related morbidity and mortality during the 2013–2014 influenza season raised concerns about low adult influenza immunization rates in Puerto Rico. In order to inform public health actions to increase vaccination rates, we surveyed adults in Puerto Rico regarding influenza vaccination-related attitudes and barriers. Methods A random-digit-dialing telephone survey (50% landline: 50% cellphone) regarding influenza vaccination, attitudes, practices and barriers was conducted November 19–25, 2013 among adults in Puerto Rico. Survey results were weighted to reflect sampling design and adjustments for non-response. Results Among 439 surveyed, 229 completed the survey with a 52% response rate. Respondents’ median age was 55 years; 18% reported receiving 2013–2014 influenza vaccination. Among 180 unvaccinated respondents, 38% reported barriers associated with limited access to vaccination, 24% reported they did not want or need influenza vaccination, and 20% reported safety concerns. Vaccinated respondents were more likely to know if they were recommended for influenza vaccination, to report greater perceived risk of influenza illness, and to report being less concerned about influenza vaccine safety (p-value vaccination and 17% were offered vaccination. Vaccination rates were higher among adults who received a recommendation and/or offer of influenza vaccination (43% vs. 14%; p-value vaccination and patient attitudes (low perceived risk of influenza virus infection) may have contributed to low vaccination rates during the 2013–2014 season. HCP and public health practitioners should strongly recommend influenza vaccination and provide vaccinations during clinical encounters or refer patients for vaccination. PMID:26144896

  11. Influenza A Virus Nucleoprotein Exploits Hsp40 to Inhibit PKR Activation

    Science.gov (United States)

    Ranjan, Priya; Kumar, Purnima; Garten, Rebecca; Deyde, Varough; Katz, Jacqueline M.; Cox, Nancy J.; Lal, Renu B.; Sambhara, Suryaprakash; Lal, Sunil K.

    2011-01-01

    Background Double-stranded RNA dependent protein kinase (PKR) is a key regulator of the anti-viral innate immune response in mammalian cells. PKR activity is regulated by a 58 kilo Dalton cellular inhibitor (P58IPK), which is present in inactive state as a complex with Hsp40 under normal conditions. In case of influenza A virus (IAV) infection, P58IPK is known to dissociate from Hsp40 and inhibit PKR activation. However the influenza virus component responsible for PKR inhibition through P58IPK activation was hitherto unknown. Principal Findings Human heat shock 40 protein (Hsp40) was identified as an interacting partner of Influenza A virus nucleoprotein (IAV NP) using a yeast two-hybrid screen. This interaction was confirmed by co-immunoprecipitation studies from mammalian cells transfected with IAV NP expressing plasmid. Further, the IAV NP-Hsp40 interaction was validated in mammalian cells infected with various seasonal and pandemic strains of influenza viruses. Cellular localization studies showed that NP and Hsp40 co-localize primarily in the nucleus. During IAV infection in mammalian cells, expression of NP coincided with the dissociation of P58IPK from Hsp40 and decrease PKR phosphorylation. We observed that, plasmid based expression of NP in mammalian cells leads to decrease in PKR phosphorylation. Furthermore, inhibition of NP expression during influenza virus replication led to PKR activation and concomitant increase in eIF2α phosphorylation. Inhibition of NP expression also led to reduced IRF3 phosphorylation, enhanced IFN β production and concomitant reduction of virus replication. Taken together our data suggest that NP is the viral factor responsible for P58IPK activation and subsequent inhibition of PKR-mediated host response during IAV infection. Significance Our findings demonstrate a novel role of IAV NP in inhibiting PKR-mediated anti-viral host response and help us understand P58IPK mediated inhibition of PKR activity during IAV infection

  12. 77 FR 13329 - Pandemic Influenza Vaccines-Amendment

    Science.gov (United States)

    2012-03-06

    ... HUMAN SERVICES Office of the Secretary Pandemic Influenza Vaccines--Amendment ACTION: Notice of... influenza vaccines, which has been amended a number of times. The original pandemic influenza vaccine... (2010). The major actions taken by this pandemic influenza vaccine declaration are the following: (1...

  13. How Experience Shapes Health Beliefs: The Case of Influenza Vaccination

    Science.gov (United States)

    Shahrabani, Shosh; Benzion, Uri

    2012-01-01

    This study examines the impact of past experience with influenza and the influenza vaccine on four categories of the Health Belief Model: beliefs about susceptibility to contracting influenza, severity of illness, perceived benefits of the vaccine in preventing influenza, and perceived barriers to getting vaccinated. The study population comprised…

  14. Digital dashboards as tools for regional influenza monitoring

    Directory of Open Access Journals (Sweden)

    Sarah Hamid

    2017-08-01

    Full Text Available The World Health Organization’s Regional Office for the Western Pacific has developed an interactive online influenza platform linking data from National Influenza Centres and Influenza Surveillance in the Western Pacific Region. This platform for regional monitoring of influenza enhances the accessibility of data and information for international and national authorities.

  15. Avian Influenza H5N1 in Tigers and Leopards

    Science.gov (United States)

    Keawcharoen, Juthatip; Oraveerakul, Kanisak; Kuiken, Thijs; Fouchier, Ron A.M.; Amonsin, Alongkorn; Payungporn, Sunchai; Noppornpanth, Suwanna; Wattanodorn, Sumitra; Theamboonlers, Apiradee; Tantilertcharoen, Rachod; Pattanarangsan, Rattapan; Arya, Nlin; Ratanakorn, Parntep; Osterhaus, Albert D.M.E.

    2004-01-01

    Influenza virus is not known to affect wild felids. We demonstrate that avian influenza A (H5N1) virus caused severe pneumonia in tigers and leopards that fed on infected poultry carcasses. This finding extends the host range of influenza virus and has implications for influenza virus epidemiology and wildlife conservation. PMID:15663858

  16. Development of stable influenza vaccine powder formulations : Challenges and possibilities

    NARCIS (Netherlands)

    Amorij, J-P; Huckriede, A; Wilschut, J; Frijlink, H W; Hinrichs, W L J

    2008-01-01

    Influenza vaccination represents the cornerstone of influenza prevention. However, today all influenza vaccines are formulated as liquids that are unstable at ambient temperatures and have to be stored and distributed under refrigeration. In order to stabilize influenza vaccines, they can be brought

  17. Construction and Immunogenicity Evaluation of Recombinant Influenza A Viruses Containing Chimeric Hemagglutinin Genes Derived from Genetically Divergent Influenza A H1N1 Subtype Viruses.

    Directory of Open Access Journals (Sweden)

    Kara McCormick

    Full Text Available Influenza A viruses cause highly contagious diseases in a variety of hosts, including humans and pigs. To develop a vaccine that can be broadly effective against genetically divergent strains of the virus, in this study we employed molecular breeding (DNA shuffling technology to create a panel of chimeric HA genes.Each chimeric HA gene contained genetic elements from parental swine influenza A viruses that had a history of zoonotic transmission, and also from a 2009 pandemic virus. Each parental virus represents a major phylogenetic clade of influenza A H1N1 viruses. Nine shuffled HA constructs were initially screened for immunogenicity in mice by DNA immunization, and one chimeric HA (HA-129 was expressed on both a A/Puerto Rico/8/34 backbone with mutations associated with a live, attenuated phenotype (PR8LAIV-129 and a A/swine/Texas/4199-2/98 backbone (TX98-129. When delivered to mice, the PR8LAIV-129 induced antibodies against all four parental viruses, which was similar to the breadth of immunity observed when HA-129 was delivered as a DNA vaccine. This chimeric HA was then tested as a candidate vaccine in a nursery pig model, using inactivated TX98-129 virus as the backbone. The results demonstrate that pigs immunized with HA-129 developed antibodies against all four parental viruses, as well as additional primary swine H1N1 influenza virus field isolates.This study established a platform for creating novel genes of influenza viruses using a molecular breeding approach, which will have important applications toward future development of broadly protective influenza virus vaccines.

  18. Construction and Immunogenicity Evaluation of Recombinant Influenza A Viruses Containing Chimeric Hemagglutinin Genes Derived from Genetically Divergent Influenza A H1N1 Subtype Viruses.

    Science.gov (United States)

    McCormick, Kara; Jiang, Zhiyong; Zhu, Longchao; Lawson, Steven R; Langenhorst, Robert; Ransburgh, Russell; Brunick, Colin; Tracy, Miranda C; Hurtig, Heather R; Mabee, Leah M; Mingo, Mark; Li, Yanhua; Webby, Richard J; Huber, Victor C; Fang, Ying

    2015-01-01

    Influenza A viruses cause highly contagious diseases in a variety of hosts, including humans and pigs. To develop a vaccine that can be broadly effective against genetically divergent strains of the virus, in this study we employed molecular breeding (DNA shuffling) technology to create a panel of chimeric HA genes. Each chimeric HA gene contained genetic elements from parental swine influenza A viruses that had a history of zoonotic transmission, and also from a 2009 pandemic virus. Each parental virus represents a major phylogenetic clade of influenza A H1N1 viruses. Nine shuffled HA constructs were initially screened for immunogenicity in mice by DNA immunization, and one chimeric HA (HA-129) was expressed on both a A/Puerto Rico/8/34 backbone with mutations associated with a live, attenuated phenotype (PR8LAIV-129) and a A/swine/Texas/4199-2/98 backbone (TX98-129). When delivered to mice, the PR8LAIV-129 induced antibodies against all four parental viruses, which was similar to the breadth of immunity observed when HA-129 was delivered as a DNA vaccine. This chimeric HA was then tested as a candidate vaccine in a nursery pig model, using inactivated TX98-129 virus as the backbone. The results demonstrate that pigs immunized with HA-129 developed antibodies against all four parental viruses, as well as additional primary swine H1N1 influenza virus field isolates. This study established a platform for creating novel genes of influenza viruses using a molecular breeding approach, which will have important applications toward future development of broadly protective influenza virus vaccines.

  19. Advancements in the development of subunit influenza vaccines

    Science.gov (United States)

    Zhang, Naru; Zheng, Bo-Jian; Lu, Lu; Zhou, Yusen; Jiang, Shibo; Du, Lanying

    2014-01-01

    The ongoing threat of influenza epidemics and pandemics has emphasized the importance of developing safe and effective vaccines against infections from divergent influenza viruses. In this review, we first introduce the structure and life cycle of influenza A viruses, describing major influenza A virus-caused pandemics. We then compare different types of influenza vaccines and discuss current advancements in the development of subunit influenza vaccines, particularly those based on nucleoprotein (NP), extracellular domain of matrix protein 2 (M2e) and hemagglutinin (HA) proteins. We also illustrate potential strategies for improving the efficacy of subunit influenza vaccines. PMID:25529753

  20. Mechanisms of influenza viral membrane fusion

    NARCIS (Netherlands)

    Blijleven, Jelle S; Boonstra, Sander; Onck, Patrick R; van der Giessen, Erik; van Oijen, Antoine M

    2016-01-01

    Influenza viral particles are enveloped by a lipid bilayer. A major step in infection is fusion of the viral and host cellular membranes, a process with large kinetic barriers. Influenza membrane fusion is catalyzed by hemagglutinin (HA), a class I viral fusion protein activated by low pH. The exact

  1. Type- and Subtype-Specific Influenza Forecast.

    Science.gov (United States)

    Kandula, Sasikiran; Yang, Wan; Shaman, Jeffrey

    2017-03-01

    Prediction of the growth and decline of infectious disease incidence has advanced considerably in recent years. As these forecasts improve, their public health utility should increase, particularly as interventions are developed that make explicit use of forecast information. It is the task of the research community to increase the content and improve the accuracy of these infectious disease predictions. Presently, operational real-time forecasts of total influenza incidence are produced at the municipal and state level in the United States. These forecasts are generated using ensemble simulations depicting local influenza transmission dynamics, which have been optimized prior to forecast with observations of influenza incidence and data assimilation methods. Here, we explore whether forecasts targeted to predict influenza by type and subtype during 2003-2015 in the United States were more or less accurate than forecasts targeted to predict total influenza incidence. We found that forecasts separated by type/subtype generally produced more accurate predictions and, when summed, produced more accurate predictions of total influenza incidence. These findings indicate that monitoring influenza by type and subtype not only provides more detailed observational content but supports more accurate forecasting. More accurate forecasting can help officials better respond to and plan for current and future influenza activity. © The Author 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Avian Influenza Policy Analysis | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Governments in Southeast Asia have adopted a range of policies aimed at controlling the disease in animals, preventing its spread to humans and strengthening national preparedness for an avian influenza pandemic. The Asia Partnership for Avian Influenza Research (APAIR) brings together national research agencies ...

  3. Nicotinamide ribosyl uptake mutants in Haemophilus influenzae.

    Science.gov (United States)

    Herbert, Mark; Sauer, Elizabeta; Smethurst, Graeme; Kraiss, Anita; Hilpert, Anna-Karina; Reidl, Joachim

    2003-09-01

    The gene for the nicotinamide riboside (NR) transporter (pnuC) was identified in Haemophilus influenzae. A pnuC mutant had only residual NR uptake and could survive in vitro with high concentrations of NR, but could not survive in vivo. PnuC may represent a target for the development of inhibitors for preventing H. influenzae disease.

  4. INFLUENZA IMMUNISATION IN HIV-INFECTED PERSONS

    African Journals Online (AJOL)

    as amantadine (Symmetrel). REFERENC,S. 1. (enters for Disease Control and Prevention. De ayed supply of influenza vaccine and aajuncr ACI? influenza vaccine recomrrendations for the. 2000-01 infh.eoza 5(:'=50n. MMWR 2000; 49: 619-622. 2 (enters for D-s~ase Conuol and Prevention. Pre\\ention ard control of.

  5. Seasonal influenza vaccination of the elderly.

    Science.gov (United States)

    2011-01-01

    The elderly are at increased risk of the complications of seasonal influenza. Annual vaccination is therefore recommended. However, two systematic reviews published by the Cochrane collaboration have highlighted a number of outstanding issues. This article examines whether annual influenza vaccination of the elderly and their regular contacts is still supported by the available scientific evidence. The randomised trials included in one of the Cochrane reviews suggest that influenza vaccination reduces the incidence of flu-like syndromes and laboratory-confirmed influenza in the elderly. There are no robust randomised trials specifically designed to assess whether vaccination of the elderly prevents influenza complications. Two case-control studies showed a statistical correlation between vaccination and a lower risk of death from influenza complications. Cohort studies have also shown that complications are less frequent when the vaccine strains correspond to circulating strains. Because of a patient selection bias, non-randomised studies seem to overestimate the efficacy of vaccination. Three randomised trials showed that vaccination of care home staff reduced mortality among elderly residents during seasonal flu epidemics. No such effect was observed in another trial, possibly because a large proportion (32%) of staff in the control institutions had also been vaccinated. In practice, influenza vaccination of the elderly with risk factors for complications is justified, especially for care home residents, their regular contacts and healthcare workers. Seasonal flu vaccination of healthy people over 65 provides limited benefit but its harm-benefit balance remains favourable. More studies of routine influenza vaccination of the elderly are needed.

  6. Protective immunity against influenza in pigs

    NARCIS (Netherlands)

    Heinen, Peter Paul

    2002-01-01

    Swine influenza is a highly contagious acute viral disease of the respiratory tract in pigs, which is prevalent world-wide. The disease causes considerable economic damage primarily due to reduced weight gain in finishing pigs and reduced reproductive performance of sows. In addition, influenza is a

  7. INFLUENZA IMMUNISATION IN HIV-INFECTED PERSONS

    African Journals Online (AJOL)

    Definitive, quantitative epidemiological data on the risk of influenza complications in HIV-infected persons are still not available. However, small-scale studies have shown more severe and prolonged influenza disease in. HIV-infected persons."'" Additional factors which would also need to be taken into account when ...

  8. Absolute Humidity and Pandemic Versus Epidemic Influenza

    Science.gov (United States)

    Shaman, Jeffrey; Goldstein, Edward; Lipsitch, Marc

    2011-01-01

    Experimental and epidemiologic evidence indicates that variations of absolute humidity account for the onset and seasonal cycle of epidemic influenza in temperate regions. A role for absolute humidity in the transmission of pandemic influenza, such as 2009 A/H1N1, has yet to be demonstrated and, indeed, outbreaks of pandemic influenza during more humid spring, summer, and autumn months might appear to constitute evidence against an effect of humidity. However, here the authors show that variations of the basic and effective reproductive numbers for influenza, caused by seasonal changes in absolute humidity, are consistent with the general timing of pandemic influenza outbreaks observed for 2009 A/H1N1 in temperate regions, as well as wintertime transmission of epidemic influenza. Indeed, absolute humidity conditions correctly identify the region of the United States vulnerable to a third, wintertime wave of pandemic influenza. These findings suggest that the timing of pandemic influenza outbreaks is controlled by a combination of absolute humidity conditions, levels of susceptibility, and changes in population-mixing and contact rates. PMID:21081646

  9. The virosome concept for influenza vaccines

    NARCIS (Netherlands)

    Huckriede, A; Bungener, L; Stegmann, T; Daemen, T; Medema, J; Palache, AM; Wilschut, J

    2005-01-01

    There is a need for more efficacious inactivated influenza vaccines, since current formulations show suboptimal immunogenicity in at-risk populations, like the elderly. More effective vaccines are also urgently needed for an improved influenza pandemic preparedness. In this context, there is

  10. Emerging influenza virus: A global threat

    Indian Academy of Sciences (India)

    2008-10-15

    Oct 15, 2008 ... Home; Journals; Journal of Biosciences; Volume 33; Issue 4. Emerging influenza virus: A global threat. M Khanna P Kumar ... Since 1918, influenza virus has been one of the major causes of morbidity and mortality, especially among young children. Though the commonly circulating strain of the virus is not ...

  11. Pandemic Influenza Pediatric Office Plan Template

    Energy Technology Data Exchange (ETDEWEB)

    HCTT CHE

    2010-01-01

    This is a planning tool developed by pediatric stakeholders that is intended to assist pediatric medical offices that have no pandemic influenza plan in place, but may experience an increase in patient calls/visits or workload due to pandemic influenza.

  12. Tuning of influenza A virus neuraminidase activity

    NARCIS (Netherlands)

    Dai, Meiling

    2017-01-01

    Influenza A viruses (IAVs) are zoonotic pathogens that constantly circulate in a wide variety of species, including birds, pigs and humans. In humans, IAVs cause seasonal epidemics and occasional influenza pandemics. Annual epidemics caused by seasonal IAVs usually lead to millions of human

  13. Dried influenza vaccines : Over the counter vaccines

    NARCIS (Netherlands)

    Saluja, Vinay; Hinrichs, Wouter L. J.; Frijlink, Henderik W.

    2010-01-01

    Since last year influenza pandemic has struck again after 40 years, this is the right moment to discuss the different available formulation options for influenza vaccine. Looking back to the last 4 decades, most vaccines are still formulated as liquid solution. These vaccines have shown a poor

  14. Overexpression of α-2,6 sialyltransferase stimulates propagation of human influenza viruses in Vero cells.

    Science.gov (United States)

    Li, N; Qi, Y; Zhang, F Y; Yu, X H; Wu, Y G; Chen, Y; Jiang, C L; Kong, W

    2011-01-01

    Human influenza viruses are major concern as the leading cause of global pandemics. In infecting cells, they preferentially bind to sialyloligosaccharides containing terminal N-acetyl sialic acid linked to galactose by an α-2,6-linkage (NeuAcα2,6Gal). The amount of NeuAcα2,6Gal in Vero cells, which are predominantly used for production of influenza vaccines over the past 30 years, may not be as high as that in epithelial cells of human respiratory tract, what leads to the suboptimal virus growth in Vero cells. In this study, we stably transfected Vero cells with cDNA of human α-2,6-sialyltransferase (SIAT1), an enzyme catalyzing α-2,6-sialylation of galactose on glycoproteins. Overexpression of SIAT1 in the transfected Vero cells (Vero-SIAT1 cells) was confirmed by Western blot analysis and immunofluorescence microscopy. Vero-SIAT1 cells expressed 7 times higher amounts of NeuAcα2,6Gal, but 3 times lower amounts of NeuAcα2,3Gal as compared to parental Vero cells. Furthermore, the influenza viruses A (H1N1 and H3N2) and B grew in Vero-SIAT1 cells to the higher titers than in Vero cells. Taken together, these results imply that Vero-SIAT1 cells are useful not only for the propagation of human influenza viruses, but also for the preparation of influenza vaccines.

  15. Neuraminidase-mediated, NKp46-dependent immune-evasion mechanism of influenza viruses.

    Science.gov (United States)

    Bar-On, Yotam; Glasner, Ariella; Meningher, Tal; Achdout, Hagit; Gur, Chamutal; Lankry, Dikla; Vitenshtein, Alon; Meyers, Adrienne F A; Mandelboim, Michal; Mandelboim, Ofer

    2013-04-25

    Natural killer (NK) cells play an essential role in the defense against influenza virus, one of the deadliest respiratory viruses known today. The NKp46 receptor, expressed by NK cells, is critical for controlling influenza infections, as influenza-virus-infected cells are eliminated through the recognition of the viral hemagglutinin (HA) protein by NKp46. Here, we describe an immune-evasion mechanism of influenza viruses that is mediated by the neuraminidase (NA) protein. By using various NA blockers, we show that NA removes sialic acid residues from NKp46 and that this leads to reduced recognition of HA. Furthermore, we provide in vivo and in vitro evidence for the existence of this NA-mediated, NKp46-dependent immune-evasion mechanism and demonstrate that NA inhibitors, which are commonly used for the treatment of influenza infections, are useful not only as blockers of virus budding but also as boosters of NKp46 recognition. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Prophylactic and therapeutic activity of fully human monoclonal antibodies directed against Influenza A M2 protein

    Directory of Open Access Journals (Sweden)

    Gwerder Myriam

    2009-12-01

    Full Text Available Abstract Influenza virus infection is a prevalent disease in humans. Antibodies against hemagglutinin have been shown to prevent infection and hence hemagglutinin is the major constituent of current vaccines. Antibodies directed against the highly conserved extracellular domain of M2 have also been shown to mediate protection against Influenza A infection in various animal models. Active vaccination is generally considered the best approach to combat viral diseases. However, passive immunization is an attractive alternative, particularly in acutely exposed or immune compromized individuals, young children and the elderly. We recently described a novel method for the rapid isolation of natural human antibodies by mammalian cell display. Here we used this approach to isolate human monoclonal antibodies directed against the highly conserved extracellular domain of the Influenza A M2 protein. The identified antibodies bound M2 peptide with high affinities, recognized native cell-surface expressed M2 and protected mice from a lethal influenza virus challenge. Moreover, therapeutic treatment up to 2 days after infection was effective, suggesting that M2-specific monoclonals have a great potential as immunotherapeutic agents against Influenza infection.

  17. Evaluation of a proximity extension assay for the detection of H1 2009 pandemic influenza viruses.

    Science.gov (United States)

    Van Wesenbeeck, Liesbeth; Meeuws, Hanne; De Wolf, Hans; Stuyver, Lieven

    2013-10-01

    The rapid influenza diagnostic tests (RIDTs) are widely distributed, simple to use, but often lack sensitivity as compared to gold standard methods (viral culture and nucleic acid detection technologies). Applying RIDTs outside of epidemic or pandemic infections results in large numbers of false negatives. Hence, a sensitive RIDT that would reduce the number of false negatives would result in an increased clinical value. We evaluated the potential of a proximity extension assay (PEA) for the detection of influenza A H1 viruses. This technology makes use of antibodies to capture the pathogen, followed by molecular detection. Forty-seven nasopharyngeal swab samples, all confirmed infections of the H1 2009 pandemic influenza virus, were evaluated. The performance of PEA was compared to the RIDT Quickvue Influenza A+B assay. The success rate of the comparative assays was modeled by means of a binary logistic response model. Both assays performed equally well within the current range of viral particles, expressed as log10 copies/ml. When the actual input of viral particles was taken into account, the 95% hitrate of PEA lies within the range of 4.60-7.02 log10 copies/reaction, which is an almost 2 log10 sensitivity improvement over the 95% hitrate of the Quickvue RIDT, ranging from 6.86 to 9.37 log10 copies/reaction. The PEA method holds promise to improve sensitive detection of influenza viruses in clinical samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. DNA-based influenza vaccines as immunoprophylactic agents toward universality.

    Science.gov (United States)

    Zhang, Han; El Zowalaty, Mohamed E

    2016-01-01

    Influenza is an illness of global public health concern. Influenza viruses have been responsible for several pandemics affecting humans. Current influenza vaccines have proved satisfactory safety; however, they have limitations and do not provide protection against unexpected emerging influenza virus strains. Therefore, there is an urgent need for alternative approaches to conventional influenza vaccines. The development of universal influenza vaccines will help alleviate the severity of influenza pandemics. Influenza DNA vaccines have been the subject of many studies over the past decades due to their ability to induce broad-based protective immune responses in various animal models. The present review highlights the recent advances in influenza DNA vaccine research and its potential as an affordable universal influenza vaccine.

  19. RNA Replicons - A New Approach for Influenza Virus Immunoprophylaxis

    Directory of Open Access Journals (Sweden)

    Gert Zimmer

    2010-01-01

    Full Text Available RNA replicons are derived from either positive- or negative-strand RNA viruses. They represent disabled virus vectors that are not only avirulent, but also unable to revert to virulence. Due to autonomous RNA replication, RNA replicons are able to drive high level, cytosolic expression of recombinant antigens stimulating both the humoral and the cellular branch of the immune system. This review provides an update on the available literature covering influenza virus vaccines based on RNA replicons. The pros and cons of these vaccine strategies will be discussed and future perspectives disclosed.

  20. Influenza-associated encephalopathy: no evidence for neuroinvasion by influenza virus nor for reactivation of human herpesvirus 6 or 7.

    NARCIS (Netherlands)

    van Zeijl, J.H.; Bakkers, J.; Wilbrink, B.; Melchers, W.J.; Mullaart, R.A.; Galama, J.M.

    2005-01-01

    During 2 consecutive influenza seasons we investigated the presence of influenza virus, human herpesvirus (HHV) type 6, and HHV-7 in cerebrospinal fluid samples from 9 white children suffering from influenza-associated encephalopathy. We conclude that it is unlikely that neuroinvasion by influenza

  1. Concepts and applications for influenza antigenic cartography

    Science.gov (United States)

    Cai, Zhipeng; Zhang, Tong; Wan, Xiu-Feng

    2011-01-01

    Influenza antigenic cartography projects influenza antigens into a two or three dimensional map based on immunological datasets, such as hemagglutination inhibition and microneutralization assays. A robust antigenic cartography can facilitate influenza vaccine strain selection since the antigenic map can simplify data interpretation through intuitive antigenic map. However, antigenic cartography construction is not trivial due to the challenging features embedded in the immunological data, such as data incompleteness, high noises, and low reactors. To overcome these challenges, we developed a computational method, temporal Matrix Completion-Multidimensional Scaling (MC-MDS), by adapting the low rank MC concept from the movie recommendation system in Netflix and the MDS method from geographic cartography construction. The application on H3N2 and 2009 pandemic H1N1 influenza A viruses demonstrates that temporal MC-MDS is effective and efficient in constructing influenza antigenic cartography. The web sever is available at http://sysbio.cvm.msstate.edu/AntigenMap. PMID:21761589

  2. Viral vector-based influenza vaccines

    Science.gov (United States)

    de Vries, Rory D.; Rimmelzwaan, Guus F.

    2016-01-01

    ABSTRACT Antigenic drift of seasonal influenza viruses and the occasional introduction of influenza viruses of novel subtypes into the human population complicate the timely production of effective vaccines that antigenically match the virus strains that cause epidemic or pandemic outbreaks. The development of game-changing vaccines that induce broadly protective immunity against a wide variety of influenza viruses is an unmet need, in which recombinant viral vectors may provide. Use of viral vectors allows the delivery of any influenza virus antigen, or derivative thereof, to the immune system, resulting in the optimal induction of virus-specific B- and T-cell responses against this antigen of choice. This systematic review discusses results obtained with vectored influenza virus vaccines and advantages and disadvantages of the currently available viral vectors. PMID:27455345

  3. Modeling human influenza infection in the laboratory

    Directory of Open Access Journals (Sweden)

    Radigan KA

    2015-08-01

    Full Text Available Kathryn A Radigan,1 Alexander V Misharin,2 Monica Chi,1 GR Scott Budinger11Division of Pulmonary and Critical Care Medicine, 2Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USAAbstract: Influenza is the leading cause of death from an infectious cause. Because of its clinical importance, many investigators use animal models to understand the biologic mechanisms of influenza A virus replication, the immune response to the virus, and the efficacy of novel therapies. This review will focus on the biosafety, biosecurity, and ethical concerns that must be considered in pursuing influenza research, in addition to focusing on the two animal models – mice and ferrets – most frequently used by researchers as models of human influenza infection.Keywords: mice, ferret, influenza, animal model, biosafety

  4. Examining Perceptions about Mandatory Influenza Vaccination of Healthcare Workers through Online Comments on News Stories.

    Directory of Open Access Journals (Sweden)

    Yang Lei

    Full Text Available The aim of this study was to understand online public perceptions of the debate surrounding the choice of annual influenza vaccinations or wearing masks as a condition of employment for healthcare workers, such as the one enacted in British Columbia in August 2012.Four national and 82 local (British Columbia Canadian online news sites were searched for articles posted between August 2012 and May 2013 containing the words "healthcare workers" and "mandatory influenza vaccinations/immunizations" or "mandatory flu shots and healthcare workers." We included articles from sources that predominantly concerned our topic of interest and that generated reader comments. Two researchers coded the unedited comments using thematic analysis, categorizing codes to allow themes to emerge. In addition to themes, the comments were categorized by: 1 sentiment towards influenza vaccines; 2 support for mandatory vaccination policies; 3 citing of reference materials or statistics; 4 self-identified health-care worker status; and 5 sharing of a personal story.1163 comments made by 648 commenters responding to 36 articles were analyzed. Popular themes included concerns about freedom of choice, vaccine effectiveness, patient safety, and distrust in government, public health, and the pharmaceutical industry. Almost half (48% of commenters expressed a negative sentiment toward the influenza vaccine, 28% were positive, 20% were neutral, and 4% expressed mixed sentiment. Of those who commented on the policy, 75% did not support the condition to work policy, while 25% were in favour. Of the commenters, 11% self-identified as healthcare workers, 13% shared personal stories, and 18% cited a reference or statistic.The perception of the influenza vaccine in the comment sections of online news sites is fairly poor. Public health agencies should consider including online forums, comment sections, and social media sites as part of their communication channels to correct

  5. Examining Perceptions about Mandatory Influenza Vaccination of Healthcare Workers through Online Comments on News Stories.

    Science.gov (United States)

    Lei, Yang; Pereira, Jennifer A; Quach, Susan; Bettinger, Julie A; Kwong, Jeffrey C; Corace, Kimberly; Garber, Gary; Feinberg, Yael; Guay, Maryse

    2015-01-01

    The aim of this study was to understand online public perceptions of the debate surrounding the choice of annual influenza vaccinations or wearing masks as a condition of employment for healthcare workers, such as the one enacted in British Columbia in August 2012. Four national and 82 local (British Columbia) Canadian online news sites were searched for articles posted between August 2012 and May 2013 containing the words "healthcare workers" and "mandatory influenza vaccinations/immunizations" or "mandatory flu shots and healthcare workers." We included articles from sources that predominantly concerned our topic of interest and that generated reader comments. Two researchers coded the unedited comments using thematic analysis, categorizing codes to allow themes to emerge. In addition to themes, the comments were categorized by: 1) sentiment towards influenza vaccines; 2) support for mandatory vaccination policies; 3) citing of reference materials or statistics; 4) self-identified health-care worker status; and 5) sharing of a personal story. 1163 comments made by 648 commenters responding to 36 articles were analyzed. Popular themes included concerns about freedom of choice, vaccine effectiveness, patient safety, and distrust in government, public health, and the pharmaceutical industry. Almost half (48%) of commenters expressed a negative sentiment toward the influenza vaccine, 28% were positive, 20% were neutral, and 4% expressed mixed sentiment. Of those who commented on the policy, 75% did not support the condition to work policy, while 25% were in favour. Of the commenters, 11% self-identified as healthcare workers, 13% shared personal stories, and 18% cited a reference or statistic. The perception of the influenza vaccine in the comment sections of online news sites is fairly poor. Public health agencies should consider including online forums, comment sections, and social media sites as part of their communication channels to correct misinformation

  6. The Flavonoid Isoliquiritigenin Reduces Lung Inflammation and Mouse Morbidity during Influenza Virus Infection.

    Science.gov (United States)

    Traboulsi, Hussein; Cloutier, Alexandre; Boyapelly, Kumaraswamy; Bonin, Marc-André; Marsault, Éric; Cantin, André M; Richter, Martin V

    2015-10-01

    The host response to influenza virus infection is characterized by an acute lung inflammatory response in which intense inflammatory cell recruitment, hypercytokinemia, and a high level of oxidative stress are present. The sum of these events contributes to the virus-induced lung damage that leads to high a level of morbidity and mortality in susceptible infected patients. In this context, we identified compounds that can simultaneously reduce the excessive inflammatory response and the viral replication as a strategy to treat influenza virus infection. We investigated the anti-inflammatory and antiviral potential activities of isoliquiritigenin (ILG). Interestingly, we demonstrated that ILG is a potent inhibitor of influenza virus replication in human bronchial epithelial cells (50% effective concentration [EC50] = 24.7 μM). In addition, our results showed that this molecule inhibits the expression of inflammatory cytokines induced after the infection of cells with influenza virus. We demonstrated that the anti-inflammatory activity of ILG in the context of influenza virus infection is dependent on the activation of the peroxisome proliferator-activated receptor gamma pathway. Interestingly, ILG phosphate (ILG-p)-treated mice displayed decreased lung inflammation as depicted by reduced cytokine gene expression and inflammatory cell recruitment. We also demonstrated that influenza virus-specific CD8(+) effector T cell recruitment was reduced up to 60% in the lungs of mice treated with ILG-p (10 mg/kg) compared to that in saline-treated mice. Finally, we showed that administration of ILG-p reduced lung viral titers and morbidity of mice infected with the PR8/H1N1 virus. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  7. Proposed Surveillance for Influenza A in Feral Pigs.

    Science.gov (United States)

    Dalziel, Antonia E; Peck, Heidi A; Hurt, Aeron C; Cooke, Julie; Cassey, Phillip

    2016-06-01

    Pigs carry receptors for both avian- and human-adapted influenza viruses and have previously been proposed as a mixing and amplification vessel for influenza. Until now, there has been no investigation of influenza A viruses within feral pigs in Australia. We collected samples from feral pigs in Ramsar listed wetlands of South Australia and demonstrated positive antibodies to influenza A viruses. We propose feral pigs, and their control programs, as an available resource for future surveillance for influenza A viruses.

  8. Influenza Vaccination Coverage Among Pregnant Women - United States, 2016-17 Influenza Season.

    Science.gov (United States)

    Ding, Helen; Black, Carla L; Ball, Sarah; Fink, Rebecca V; Williams, Walter W; Fiebelkorn, Amy Parker; Lu, Peng-Jun; Kahn, Katherine E; D'Angelo, Denise V; Devlin, Rebecca; Greby, Stacie M

    2017-09-29

    Pregnant women and their infants are at increased risk for severe influenza-associated illness (1), and since 2004, the Advisory Committee on Immunization Practices (ACIP) has recommended influenza vaccination for all women who are or might be pregnant during the influenza season, regardless of the trimester of the pregnancy (2). To assess influenza vaccination coverage among pregnant women during the 2016-17 influenza season, CDC analyzed data from an Internet panel survey conducted during March 28-April 7, 2017. Among 1,893 survey respondents pregnant at any time during October 2016-January 2017, 53.6% reported having received influenza vaccination before (16.2%) or during (37.4%) pregnancy, similar to coverage during the preceding four influenza seasons. Also similar to the preceding influenza season, 67.3% of women reported receiving a provider offer for influenza vaccination, 11.9% reported receiving a recommendation but no offer, and 20.7% reported receiving no recommendation; among these women, reported influenza vaccination coverage was 70.5%, 43.7%, and 14.8%, respectively. Among women who received a provider offer for vaccination, vaccination coverage differed by race/ethnicity, education, insurance type, and other sociodemographic factors. Use of evidence-based practices such as provider reminders and standing orders could reduce missed opportunities for vaccination and increase vaccination coverage among pregnant women.

  9. Fatal cases of influenza a in childhood.

    Directory of Open Access Journals (Sweden)

    Benjamin F Johnson

    Full Text Available BACKGROUND: In the northern hemisphere winter of 2003-04 antigenic variant strains (A/Fujian/411/02 -like of influenza A H3N2 emerged. Circulation of these strains in the UK was accompanied by an unusually high number of laboratory confirmed influenza associated fatalities in children. This study was carried out to better understand risk factors associated with fatal cases of influenza in children. METHODOLOGY/PRINCIPAL FINDINGS: Case histories, autopsy reports and death registration certificates for seventeen fatal cases of laboratory confirmed influenza in children were analyzed. None had a recognized pre-existing risk factor for severe influenza and none had been vaccinated. Three cases had evidence of significant bacterial co-infection. Influenza strains recovered from fatal cases were antigenically similar to those circulating in the community. A comparison of protective antibody titres in age stratified cohort sera taken before and after winter 2003-04 showed that young children had the highest attack rate during this season (21% difference, 95% confidence interval from 0.09 to 0.33, p = 0.0009. Clinical incidences of influenza-like illness (ILI in young age groups were shown to be highest only in the years when novel antigenic drift variants emerged. CONCLUSIONS/SIGNIFICANCE: This work presents a rare insight into fatal influenza H3N2 in healthy children. It confirms that circulating seasonal influenza A H3N2 strains can cause severe disease and death in children in the apparent absence of associated bacterial infection or predisposing risk factors. This adds to the body of evidence demonstrating the burden of severe illness due to seasonal influenza A in childhood.

  10. Influenza vaccination coverage among medical residents

    Science.gov (United States)

    Costantino, Claudio; Mazzucco, Walter; Azzolini, Elena; Baldini, Cesare; Bergomi, Margherita; Biafiore, Alessio Daniele; Bianco, Manuela; Borsari, Lucia; Cacciari, Paolo; Cadeddu, Chiara; Camia, Paola; Carluccio, Eugenia; Conti, Andrea; De Waure, Chiara; Di Gregori, Valentina; Fabiani, Leila; Fallico, Roberto; Filisetti, Barbara; Flacco, Maria E; Franco, Elisabetta; Furnari, Roberto; Galis, Veronica; Gallea, Maria R; Gallone, Maria F; Gallone, Serena; Gelatti, Umberto; Gilardi, Francesco; Giuliani, Anna R; Grillo, Orazio C; Lanati, Niccolò; Mascaretti, Silvia; Mattei, Antonella; Micò, Rocco; Morciano, Laura; Nante, Nicola; Napoli, Giuseppe; Nobile, Carmelo; Palladino, Raffaele; Parisi, Salvatore; Passaro, Maria; Pelissero, Gabriele; Quarto, Michele; Ricciardi, Walter; Romano, Gabriele; Rustico, Ennio; Saponari, Anita; Schioppa, Francesco S; Signorelli, Carlo; Siliquini, Roberta; Trabacchi, Valeria; Triassi, Maria; Varetta, Alessia; Ziglio, Andrea; Zoccali, Angela; Vitale, Francesco; Amodio, Emanuele

    2014-01-01

    Although influenza vaccination is recognized to be safe and effective, recent studies have confirmed that immunization coverage among health care workers remain generally low, especially among medical residents (MRs). Aim of the present multicenter study was to investigate attitudes and determinants associated with acceptance of influenza vaccination among Italian MRs. A survey was performed in 2012 on MRs attending post-graduate schools of 18 Italian Universities. Each participant was interviewed via an anonymous, self-administered, web-based questionnaire including questions on attitudes regarding influenza vaccination. A total of 2506 MRs were recruited in the survey and 299 (11.9%) of these stated they had accepted influenza vaccination in 2011–2012 season. Vaccinated MRs were older (P = 0.006), working in clinical settings (P = 0.048), and vaccinated in the 2 previous seasons (P < 0.001 in both seasons). Moreover, MRs who had recommended influenza vaccination to their patients were significantly more compliant with influenza vaccination uptake in 2011–2012 season (P < 0.001). “To avoid spreading influenza among patients” was recognized as the main reason for accepting vaccination by less than 15% of vaccinated MRs. Italian MRs seem to have a very low compliance with influenza vaccination and they seem to accept influenza vaccination as a habit that is unrelated to professional and ethical responsibility. Otherwise, residents who refuse vaccination in the previous seasons usually maintain their behaviors. Promoting correct attitudes and good practice in order to improve the influenza immunization rates of MRs could represent a decisive goal for increasing immunization coverage among health care workers of the future. PMID:24603089

  11. H3N2 influenza A virus replicates in immortalized human first trimester trophoblast cell lines and induces their rapid apoptosis.

    Science.gov (United States)

    Trinh, Quang Duy; Izumi, Yasuyuki; Komine-Aizawa, Shihoko; Shibata, Toshikatsu; Shimotai, Yoshitaka; Kuroda, Kazumichi; Mizuguchi, Masashi; Ushijima, Hiroshi; Mor, Gil; Hayakawa, Satoshi

    2009-09-01

    Epidemiological data suggested that pandemic influenza increased the risks of spontaneous abortion and premature labor, while seasonal influenza also increased the risk of schizophrenia in adolescence. However, their pathogenesis is so far unknown. The first trimester trophoblast cell lines, namely, Swan71 and HTR8 cells were challenged with A/Udorn/72 influenza virus (H3N2). At indicated time points, cells were examined for expression of influenza proteins. Viral replication in culture media, apoptosis and the expression of human leukocyte antigen (HLA)-G were also examined. Intracellular localization of viral proteins was observed. Twenty-four hours after inoculation, virus was detected in culture media while most cells fell into apoptosis. During apoptosis, expression of HLA-G was unchanged. We revealed replication of low pathogenic influenza virus in the first trimester trophoblast cell lines. Placental damages are likely to be induced by direct cytopathic effects of influenza virus and subsequent apoptosis rather than down regulation of HLA-G expression and subsequent rejection by maternal immune system.

  12. Novel Bat Influenza Virus NS1 Proteins Bind Double-Stranded RNA and Antagonize Host Innate Immunity.

    Science.gov (United States)

    Turkington, Hannah L; Juozapaitis, Mindaugas; Kerry, Philip S; Aydillo, Teresa; Ayllon, Juan; García-Sastre, Adolfo; Schwemmle, Martin; Hale, Benjamin G

    2015-10-01

    We demonstrate that novel bat HL17NL10 and HL18NL11 influenza virus NS1 proteins are effective interferon antagonists but do not block general host gene expression. Solving the RNA-binding domain structures revealed the canonical NS1 symmetrical homodimer, and RNA binding required conserved basic residues in this domain. Interferon antagonism was strictly dependent on RNA binding, and chimeric bat influenza viruses expressing NS1s defective in this activity were highly attenuated in interferon-competent cells but not in cells unable to establish antiviral immunity. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  13. Contribution of the Purinergic Receptor P2X7 to Development of Lung Immunopathology during Influenza Virus Infection

    Directory of Open Access Journals (Sweden)

    Victor H. Leyva-Grado

    2017-03-01

    Full Text Available An exacerbated immune response is one of the main causes of influenza-induced lung damage during infection. The molecular mechanisms regulating the fate of the initial immune response to infection, either as a protective response or as detrimental immunopathology, are not well understood. The purinergic receptor P2X7 is an ionotropic nucleotide-gated ion channel receptor expressed on immune cells that has been implicated in induction and maintenance of excessive inflammation. Here, we analyze the role of this receptor in a mouse model of influenza virus infection using a receptor knockout (KO mouse strain. Our results demonstrate that the absence of the P2X7 receptor results in a better outcome to influenza virus infection characterized by reduced weight loss and increased survival upon experimental influenza challenge compared to wild-type mice. This effect was not virus strain specific. Overall lung pathology and apoptosis were reduced in virus-infected KO mice. Production of proinflammatory cytokines and chemokines such as interleukin-10 (IL-10, gamma interferon (IFN-γ, and CC chemokine ligand 2 (CCL2 was also reduced in the lungs of the infected KO mice. Infiltration of neutrophils and depletion of CD11b+ macrophages, characteristic of severe influenza virus infection in mice, were lower in the KO animals. Together, these results demonstrate that activation of the P2X7 receptor is involved in the exacerbated immune response observed during influenza virus infection.

  14. Protection against Multiple Subtypes of Influenza Viruses by Virus-Like Particle Vaccines Based on a Hemagglutinin Conserved Epitope

    Directory of Open Access Journals (Sweden)

    Shaoheng Chen

    2015-01-01

    Full Text Available We selected the conserved sequence in the stalk region of influenza virus hemagglutinin (HA trimmer, the long alpha helix (LAH, as the vaccine candidate sequence, and inserted it into the major immunodominant region (MIR of hepatitis B virus core protein (HBc, and, by using the E. coli expression system, we prepared a recombinant protein vaccine LAH-HBc in the form of virus-like particles (VLP. Intranasal immunization of mice with this LAH-HBc VLP plus cholera toxin B subunit with 0.2% of cholera toxin (CTB* adjuvant could effectively elicit humoral and cellular immune responses and protect mice against a lethal challenge of homologous influenza viruses (A/Puerto Rico/8/1934 (PR8 (H1N1. In addition, passage of the immune sera containing specific antibodies to naïve mice rendered them resistant against a lethal homologous challenge. Immunization with LAH-HBc VLP vaccine plus CTB* adjuvant could also fully protect mice against a lethal challenge of the 2009 pandemic H1N1 influenza virus or the avian H9N2 virus and could partially protect mice against a lethal challenge of the avian H5N1 influenza virus. This study demonstrated that the LAH-HBc VLP vaccine based on a conserved sequence of the HA trimmer stalk region is a promising candidate vaccine for developing a universal influenza vaccine against multiple influenza viruses infections.

  15. Protection against multiple subtypes of influenza viruses by virus-like particle vaccines based on a hemagglutinin conserved epitope.

    Science.gov (United States)

    Chen, Shaoheng; Zheng, Dan; Li, Changgui; Zhang, Wenjie; Xu, Wenting; Liu, Xueying; Fang, Fang; Chen, Ze

    2015-01-01

    We selected the conserved sequence in the stalk region of influenza virus hemagglutinin (HA) trimmer, the long alpha helix (LAH), as the vaccine candidate sequence, and inserted it into the major immunodominant region (MIR) of hepatitis B virus core protein (HBc), and, by using the E. coli expression system, we prepared a recombinant protein vaccine LAH-HBc in the form of virus-like particles (VLP). Intranasal immunization of mice with this LAH-HBc VLP plus cholera toxin B subunit with 0.2% of cholera toxin (CTB(*)) adjuvant could effectively elicit humoral and cellular immune responses and protect mice against a lethal challenge of homologous influenza viruses (A/Puerto Rico/8/1934 (PR8) (H1N1)). In addition, passage of the immune sera containing specific antibodies to naïve mice rendered them resistant against a lethal homologous challenge. Immunization with LAH-HBc VLP vaccine plus CTB(*) adjuvant could also fully protect mice against a lethal challenge of the 2009 pandemic H1N1 influenza virus or the avian H9N2 virus and could partially protect mice against a lethal challenge of the avian H5N1 influenza virus. This study demonstrated that the LAH-HBc VLP vaccine based on a conserved sequence of the HA trimmer stalk region is a promising candidate vaccine for developing a universal influenza vaccine against multiple influenza viruses infections.

  16. Suppressive Effects of Chronic Stress on Influenza Virus Protection after Vaccination with Plasmid DNA-Encoded Nucleoprotein.

    Science.gov (United States)

    Nezam, Fatemeh Sadat; Hosseini, Seyed Masoud; Kheiri, Masoumeh Tavassoti; Abdoli, Asghar; Memarnejadian, Arash; Shenagari, Mohammad; Gholami, Shima; Sohani, Hesam; Rahmatollahi, Hamidreza; Jamali, Abbas

    2015-01-01

    Influenza is a highly infectious and acute respiratory disease caused by an infection of the host respiratory tract mucosa by the influenza virus. The use of DNA vaccines that express conserved genes such as nucleoprotein (NP) represents a new method of vaccination against influenza. In this study, the effect of chronic stress on the efficiency of this type of vaccine has been evaluated in a mouse model. The NP DNA vaccine was administered intradermally 3 times on days 0, 3 and 6 to stressed and nonstressed male BALB/c mice. Two weeks after the last immunization, half of these mice were challenged with A/Puerto Rico/8/34 (PR8) influenza virus and were weighed for 12 days, and their mortality rate was assessed during this period. The cellular immune response of the other half of the mice was evaluated by cytotoxicity assay. The results indicate a significant reduction in the cytotoxic T-lymphocyte response of stressed mice in comparison with unstressed mice. Also, the percentage of weight loss and mortality after the challenge in stressed mice was significantly increased compared to the other group. These results indicate that the NP DNA vaccine is not able to induce any effective cytotoxic T-lymphocyte response against influenza virus in stressed mice and cannot induce protective immunity against influenza infection in this group of mice. © 2015 S. Karger AG, Basel.

  17. The case test-negative design for studies of the effectiveness of influenza vaccine in inpatient settings.

    Science.gov (United States)

    Foppa, Ivo M; Ferdinands, Jill M; Chaves, Sandra S; Haber, Michael J; Reynolds, Sue B; Flannery, Brendan; Fry, Alicia M

    2016-12-01

    The test-negative design (TND) to evaluate influenza vaccine effectiveness is based on patients seeking care for acute respiratory infection, with those who test positive for influenza as cases and the test-negatives serving as controls. This design has not been validated for the inpatient setting where selection bias might be different from an outpatient setting. We derived mathematical expressions for vaccine effectiveness (VE) against laboratory-confirmed influenza hospitalizations and used numerical simulations to verify theoretical results exploring expected biases under various scenarios. We explored meaningful interpretations of VE estimates from inpatient TND studies. VE estimates from inpatient TND studies capture the vaccine-mediated protection of the source population against laboratory-confirmed influenza hospitalizations. If vaccination does not modify disease severity, these estimates are equivalent to VE against influenza virus infection. If chronic cardiopulmonary individuals are enrolled because of non-infectious exacerbation, biased VE estimates (too high) will result. If chronic cardiopulmonary disease status is adjusted for accurately, the VE estimates will be unbiased. If chronic cardiopulmonary illness cannot be adequately be characterized, excluding these individuals may provide unbiased VE estimates. The inpatient TND offers logistic advantages and can provide valid estimates of influenza VE. If highly vaccinated patients with respiratory exacerbation of chronic cardiopulmonary conditions are eligible for study inclusion, biased VE estimates will result unless this group is well characterized and the analysis can adequately adjust for it. Otherwise, such groups of subjects should be excluded from the analysis.

  18. Dry influenza vaccines: towards a stable, effective and convenient alternative to conventional parenteral influenza vaccination.

    Science.gov (United States)

    Tomar, Jasmine; Born, Philip A; Frijlink, Henderik W; Hinrichs, Wouter L J

    2016-11-01

    Cold-chain requirements, limited stockpiling potential and the lack of potent immune responses are major challenges of parenterally formulated influenza vaccines. Decreased cold chain dependence and stockpiling can be achieved if vaccines are formulated in a dry state using suitable excipients and drying technologies. Furthermore, having the vaccine in a dry state enables the development of non-parenteral patient friendly dosage forms: microneedles for transdermal administration, tablets for oral administration, and powders for epidermal, nasal or pulmonary administration. Moreover, these administration routes have the potential to elicit an improved immune response. This review highlights the rationale for the development of dried influenza vaccines, as well as processes used for the drying and stabilization of influenza vaccines; it also compares the immunogenicity of dried influenza vaccines administered via non-invasive routes with that of parenterally administered influenza vaccines. Finally, it discusses unmet needs, challenges and future developments in the field of dried influenza vaccines.

  19. An under-recognized influenza epidemic identified by rapid influenza testing, southern Sri Lanka, 2013.

    Science.gov (United States)

    Tillekeratne, L Gayani; Bodinayake, Champica K; Nagahawatte, Ajith; Vidanagama, Dhammika; Devasiri, Vasantha; Arachchi, Wasantha Kodikara; Kurukulasooriya, Ruvini; De Silva, Aruna Dharshan; Østybe, Truls; Reller, Megan E; Woods, Christopher W

    2015-05-01

    Influenza accounts for a large burden of acute respiratory tract infections in high-income countries; data from lower-income settings are limited due to lack of confirmatory testing. Consecutive outpatients presenting to the largest tertiary care hospital in southern Sri Lanka were surveyed for influenza-like illness (ILI), defined as acute onset of fever ≥ 38.0°C and cough. Patients were administered a questionnaire and nasal/nasopharyngeal sampling for rapid influenza A/B testing. We enrolled 311 patients with ILI from March to November 2013: 170 (54.7%) children and 172 (55.3%) males. Approximately half (147, 47.3%) tested positive for influenza, but 253 (81.4%) were prescribed antibiotics. On bivariable analysis, symptoms associated with influenza included pain with breathing (P testing to identify an influenza epidemic in a setting in which testing is not routinely available. © The American Society of Tropical Medicine and Hygiene.

  20. The highly conserved HA2 protein of the influenza A virus induces a cross protective immune response.

    Science.gov (United States)

    Lee, Jong-Soo; Chowdhury, Mohammed Y E; Moon, Ho-Jin; Choi, Young-Ki; Talactac, Melbourne R; Kim, Jae-Hoon; Park, Min-Eun; Son, Hwa-Young; Shin, Kwang-Soon; Kim, Chul-Joong

    2013-12-01

    Existing influenza vaccines protect mostly homologous subtypes and acted most effectively only when well matched to the circulating strain. Immunization with an updated vaccine is therefore necessary to maintain long-term protection and the development of a broadly protective influenza vaccine against the threat of pandemic outbreak. The highly conserved HA2 glyco-polypeptide (HA2 gp) is a promising new candidate for such an influenza vaccine. Helical domain and the fusion peptide (residues 15-137) of surface antigen from influenza A subtype A/EM/Korea/W149/06 (H5N1) was used to assess the potentiality of HA2 vaccination against multiple subtypes of the influenza viruses. The construct, named H5HA2 was expressed in Escherichia coli and allowed to refold from inclusion bodies. Purified proteins were used to investigate the immunogenicity of H5HA2 and its potential for cross protection. The immunization of mice with H5HA2 induced HA2 antibodies, HA2 specific T-cell responses, and protection against homologous A/EM/Korea/W149/06 (H5N1) influenza. Immunized mice were also protected from two distinct heterosubtypes of influenza: A/Puerto Rico/1/34(H1N1) and bird/Korea/w81/2005(H5N2). Results suggest that recombinant proteins based on the highly conserved residues within HA2 are candidates for the development of vaccines against pandemic outbreaks of emergent influenza variants. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Economic and policy implications of pandemic influenza.

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Braeton J.; Starks, Shirley J.; Loose, Verne W.; Brown, Theresa Jean; Warren, Drake E.; Vargas, Vanessa N.

    2010-03-01

    Pandemic influenza has become a serious global health concern; in response, governments around the world have allocated increasing funds to containment of public health threats from this disease. Pandemic influenza is also recognized to have serious economic implications, causing illness and absence that reduces worker productivity and economic output and, through mortality, robs nations of their most valuable assets - human resources. This paper reports two studies that investigate both the short- and long-term economic implications of a pandemic flu outbreak. Policy makers can use the growing number of economic impact estimates to decide how much to spend to combat the pandemic influenza outbreaks. Experts recognize that pandemic influenza has serious global economic implications. The illness causes absenteeism, reduced worker productivity, and therefore reduced economic output. This, combined with the associated mortality rate, robs nations of valuable human resources. Policy makers can use economic impact estimates to decide how much to spend to combat the pandemic influenza outbreaks. In this paper economists examine two studies which investigate both the short- and long-term economic implications of a pandemic influenza outbreak. Resulting policy implications are also discussed. The research uses the Regional Economic Modeling, Inc. (REMI) Policy Insight + Model. This model provides a dynamic, regional, North America Industrial Classification System (NAICS) industry-structured framework for forecasting. It is supported by a population dynamics model that is well-adapted to investigating macro-economic implications of pandemic influenza, including possible demand side effects. The studies reported in this paper exercise all of these capabilities.

  2. Immune responses to influenza virus infection.

    Science.gov (United States)

    Kreijtz, J H C M; Fouchier, R A M; Rimmelzwaan, G F

    2011-12-01

    Influenza viruses cause annual outbreaks of respiratory tract infection with attack rates of 5-10%. This means that humans are infected repeatedly with intervals of, on average, 10-20 years. Upon each infection subjects develop innate and adaptive immune responses which aim at clearing the infection. Strain-specific antibody responses are induced, which exert selective pressure on circulating influenza viruses and which drive antigenic drift of seasonal influenza viruses, especially in the hemagglutinin molecule. This antigenic drift necessitates updating of seasonal influenza vaccines regularly in order to match the circulating strains. Upon infection also virus-specific T cell responses are induced, including CD4+ T helper cells and CD8+ cytotoxic T cells. These cells are mainly directed to conserved proteins and therefore display cross-reactivity with a variety of influenza A viruses of different subtypes. T cell mediated immunity therefore may contribute to so-called heterosubtypic immunity and may afford protection against antigenically distinct, potentially pandemic influenza viruses. At present, novel viral targets are identified that may help to develop broad-protective vaccines. Here we review the various arms of the immune response to influenza virus infections and their viral targets and discuss the possibility of developing universal vaccines. The development of such novel vaccines would imply that also new immune correlates of protection need to be established in order to facilitate assessment of vaccine efficacy. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. The critical role of Notch ligand Delta-like 1 in the pathogenesis of influenza A virus (H1N1 infection.

    Directory of Open Access Journals (Sweden)

    Toshihiro Ito

    2011-11-01

    Full Text Available Influenza A viral infections have been identified as the etiologic agents for historic pandemics, and contribute to the annual mortality associated with acute viral pneumonia. While both innate and acquired immunity are important in combating influenza virus infection, the mechanism connecting these arms of the immune system remains unknown. Recent data have indicated that the Notch system is an important bridge between antigen-presenting cells (APCs and T cell communication circuits and plays a central role in driving the immune system to overcome disease. In the present study, we examine the role of Notch signaling during influenza H1N1 virus infection, focusing on APCs. We demonstrate here that macrophages, but not dendritic cells (DCs, increased Notch ligand Delta-like 1 (Dll1 expression following influenza virus challenge. Dll1 expression on macrophages was dependent on retinoic acid-inducible gene-I (RIG-I induced type-I IFN pathway, and not on the TLR3-TRIF pathway. We also found that IFNα-Receptor knockout mice failed to induce Dll1 expression on lung macrophages and had enhanced mortality during influenza virus infection. Our results further showed that specific neutralization of Dll1 during influenza virus challenge induced higher mortality, impaired viral clearance, and decreased levels of IFN-γ. In addition, we blocked Notch signaling by using γ-secretase inhibitor (GSI, a Notch signaling inhibitor. Intranasal administration of GSI during influenza infection also led to higher mortality, and higher virus load with excessive inflammation and an impaired production of IFN-γ in lungs. Moreover, Dll1 expression on macrophages specifically regulates IFN-γ levels from CD4(+and CD8(+T cells, which are important for anti-viral immunity. Together, the results of this study show that Dll1 positively influences the development of anti-viral immunity, and may provide mechanistic approaches for modifying and controlling the immune response

  4. Prevention of Influenza A(H7N9 and Bacterial Infections in Mice Using Intranasal Immunization With Live Influenza Vaccine and the Group B Streptococcus Recombinant Polypeptides

    Directory of Open Access Journals (Sweden)

    Yulia A Desheva

    2017-06-01

    Full Text Available We investigate the protective effect of combined vaccination based on live attenuated influenza vaccine (LAIV and group B streptococcus (GBS recombinant polypeptides against potential pandemic H7N9 influenza infection followed by GBS burden. Mice were intranasally immunized using 10 7 50% egg infectious dose (EID 50 of H7N3 LAIV, the mix of the 4 GBS peptides (group B streptococcus vaccine [GBSV], or combined LAIV + GBSV vaccine. The LAIV raised serum hemagglutination-inhibition antibodies against H7N9 in higher titers than against H7N3. Combined vaccination provided advantageous protection against infections with A/Shanghai/2/2013(H7N9CDC-RG influenza and serotype II GBS. Combined vaccine significantly improved bacterial clearance from the lungs after infection compared with other vaccine groups. The smallest lung lesions due to combined LAIV + GBSV vaccination were associated with a prevalence of lung interferon-γ messenger RNA expression. Thus, combined viral and bacterial intranasal immunization using H7N3 LAIV and recombinant bacterial polypeptides induced balanced adaptive immune response, providing protection against potential pandemic influenza H7N9 and bacterial complications.

  5. Vesicular Stomatitis Virus Pseudotyped with Ebola Virus Glycoprotein Serves as a Highly Protective, Non-infectious Vaccine Against Ebola Virus Challenge

    Science.gov (United States)

    2016-07-01

    parainfluenza virus type 3, 62 rabies virus and vesicular stomatitis virus (VSV) (reviewed in (7, 11)). Surprisingly, EBOV GP 63 pseudovirions have not been...Modified Eagle Medium (DMEM) with 10% fetal bovine serum (FBS) and 1% 111 penicillin/streptomycin. The pcDNA3.1 expression plasmids for EBOV GP...198 bovine serum albumin (BSA), incubated with serial dilutions (1:1000, 1:10,000 and 1:1000,000) 199 of serum for overnight at 4°C, probed with 1

  6. Universal influenza vaccines: Shifting to better vaccines.

    Science.gov (United States)

    Berlanda Scorza, Francesco; Tsvetnitsky, Vadim; Donnelly, John J

    2016-06-03

    Influenza virus causes acute upper and lower respiratory infections and is the most likely, among known pathogens, to cause a large epidemic in humans. Influenza virus mutates rapidly, enabling it to evade natural and vaccine-induced immunity. Furthermore, influenza viruses can cross from animals to humans, generating novel, potentially pandemic strains. Currently available influenza vaccines induce a strain specific response and may be ineffective against new influenza viruses. The difficulty in predicting circulating strains has frequently resulted in mismatch between the annual vaccine and circulating viruses. Low-resource countries remain mostly unprotected against seasonal influenza and are particularly vulnerable to future pandemics, in part, because investments in vaccine manufacturing and stockpiling are concentrated in high-resource countries. Antibodies that target conserved sites in the hemagglutinin stalk have been isolated from humans and shown to confer protection in animal models, suggesting that broadly protective immunity may be possible. Several innovative influenza vaccine candidates are currently in preclinical or early clinical development. New technologies include adjuvants, synthetic peptides, virus-like particles (VLPs), DNA vectors, messenger RNA, viral vectors, and attenuated or inactivated influenza viruses. Other approaches target the conserved exposed epitope of the surface exposed membrane matrix protein M2e. Well-conserved influenza proteins, such as nucleoprotein and matrix protein, are mainly targeted for developing strong cross-protective T cell responses. With multiple vaccine candidates moving along the testing and development pipeline, the field is steadily moving toward a product that is more potent, durable, and broadly protective than previously licensed vaccines. Copyright © 2016 World Health Organization. Published by Elsevier Ltd.. All rights reserved.

  7. [Shared surveillance: meningococcal disease vs influenza].

    Science.gov (United States)

    Moreno-Civantos, A; Díaz-Jiménez, J; Domínguez-Berjón, M F

    2000-01-01

    To analyse the association between the behavior of meningococcal disease and influenza, using for this purpose population statistics for Spain for the period of 1964 to 1997. Ecological study of the incidence of meningococcal disease and influenza in Spain from 1964 to 1997, inclusive. The study used weekly statistical data for these diseases supplied by the Compulsory Disease Reporting System (Enfermedades de Declaración Obligatoria, EDO). The deterministic component of the meningococcal disease and influenza series was studied by means of spectral analysis based on the Fast Fourier Transformation, and the non-deterministic component was studied using the ARIMA model. The Box-Jenkins method was used for pre-bleaching the series, and a cross-correlation was subsequently established between the residuals in order to detect the presence of any significant correlations between the meningococcal disease and influenza series. During the period from 1964 to 1997, the week that showed, on average, the greatest number of cases for the season was week 7 in the case of meningococcal disease and week 6 in the case of influenza. Spectral analysis of the meningococcal disease and influenza series clearly demonstrated the annual periodicity of both series, and periodicity of nearly 11 years for meningococcal disease and slightly over 10 years for influenza. When cross-correlation is established after prebleaching the series, positive correlations are obtained in the results of lags 0, 1, 2, and 3. Introducing influenza as an exogenous variable in the multivariate model of meningococcal disease corroborates these results. There was a statistically significant relationship between the two processes during the same week and with a three-week lapse. By means of a methodology not previously applied to this subject, and by the use of prolonged time-span, country-comprehensive population statistics (which includes several epidemics waves), an association was shown to exist between

  8. The global transmission and control of influenza.

    Directory of Open Access Journals (Sweden)

    Eben Kenah

    2011-05-01

    Full Text Available New strains of influenza spread around the globe via the movement of infected individuals. The global dynamics of influenza are complicated by different patterns of influenza seasonality in different regions of the world. We have released an open-source stochastic mathematical model of the spread of influenza across 321 major, strategically located cities of the world. Influenza is transmitted between cities via infected airline passengers. Seasonality is simulated by increasing the transmissibility in each city at the times of the year when influenza has been observed to be most prevalent. The spatiotemporal spread of pandemic influenza can be understood through clusters of global transmission and links between them, which we identify using the epidemic percolation network (EPN of the model. We use the model to explain the observed global pattern of spread for pandemic influenza A(H1N1 2009-2010 (pandemic H1N1 2009 and to examine possible global patterns of spread for future pandemics depending on the origin of pandemic spread, time of year of emergence, and basic reproductive number (. We also use the model to investigate the effectiveness of a plausible global distribution of vaccine for various pandemic scenarios. For pandemic H1N1 2009, we show that the biggest impact of vaccination was in the temperate northern hemisphere. For pandemics starting in the temperate northern hemisphere in May or April, vaccination would have little effect in the temperate southern hemisphere and a small effect in the tropics. With the increasing interconnectedness of the world's population, we must take a global view of infectious disease transmission. Our open-source, computationally simple model can help public health officials plan for the next pandemic as well as deal with interpandemic influenza.

  9. The innate immunity of guinea pigs against highly pathogenic avian influenza virus infection.

    Science.gov (United States)

    Zhang, Kun; Xu, Wei Wei; Zhang, Zhaowei; Liu, Jing; Li, Jing; Sun, Lijuan; Sun, Weiyang; Jiao, Peirong; Sang, Xiaoyu; Ren, Zhiguang; Yu, Zhijun; Li, Yuanguo; Feng, Na; Wang, Tiecheng; Wang, Hualei; Yang, Songtao; Zhao, Yongkun; Zhang, Xuemei; Wilker, Peter R; Liu, WenJun; Liao, Ming; Chen, Hualan; Gao, Yuwei; Xia, Xianzhu

    2017-05-02

    H5N1 avian influenza viruses are a major pandemic concern. In contrast to the highly virulent phenotype of H5N1 in humans and many animal models, guinea pigs do not typically display signs of severe disease in response to H5N1 virus infection. Here, proteomic and transcriptional profiling were applied to identify host factors that account for the observed attenuation of A/Tiger/Harbin/01/2002 (H5N1) virulence in guinea pigs. RIG-I and numerous interferon stimulated genes were among host proteins with altered expression in guinea pig lungs during H5N1 infection. Overexpression of RIG-I or the RIG-I adaptor protein MAVS in guinea pig cell lines inhibited H5N1 replication. Endogenous GBP-1 expression was required for RIG-I mediated inhibition of viral replication upstream of the activity of MAVS. Furthermore, we show that guinea pig complement is involved in viral clearance, the regulation of inflammation, and cellular apoptosis during influenza virus infection of guinea pigs. This work uncovers features of the guinea pig innate immune response to influenza that may render guinea pigs resistant to highly pathogenic influenza viruses.

  10. Fibroblast activation protein is dispensable in the anti-influenza immune response in mice.

    Directory of Open Access Journals (Sweden)

    Sioh-Yang Tan

    Full Text Available Fibroblast activation protein alpha (FAP is a unique dual peptidase of the S9B serine protease family, being capable of both dipeptidyl peptidase and endopeptidase activities. FAP is expressed at low level in healthy adult organs including the pancreas, cervix, uterus, submaxillary gland and the skin, and highly upregulated in embryogenesis, chronic inflammation and tissue remodelling. It is also expressed by cancer-associated stromal fibroblasts in more than 90% of epithelial tumours. FAP has enzymatic and non-enzymatic functions in the growth, immunosuppression, invasion and cell signalling of tumour cells. FAP deficient mice are fertile and viable with no gross abnormality, but little data exist on the role of FAP in the immune system. FAP is upregulated in association with microbial stimulation and chronic inflammation, but its function in infection remains unknown. We showed that major populations of immune cells including CD4+ and CD8+ T cells, B cells, dendritic cells and neutrophils are generated and maintained normally in FAP knockout mice. Upon intranasal challenge with influenza virus, FAP mRNA was increased in the lungs and lung-draining lymph nodes. Nonetheless, FAP deficient mice showed similar pathologic kinetics to wildtype controls, and were capable of supporting normal anti-influenza T and B cell responses. There was no evidence of compensatory upregulation of other DPP4 family members in influenza-infected FAP-deficient mice. FAP appears to be dispensable in anti-influenza adaptive immunity.

  11. A systems approach to understanding human rhinovirus and influenza virus infection.

    Science.gov (United States)

    Kim, Taek-Kyun; Bheda-Malge, Anjali; Lin, Yakang; Sreekrishna, Koti; Adams, Rachel; Robinson, Michael K; Bascom, Charles C; Tiesman, Jay P; Isfort, Robert J; Gelinas, Richard

    2015-12-01

    Human rhinovirus and influenza virus infections of the upper airway lead to colds and the flu and can trigger exacerbations of lower airway diseases including asthma and chronic obstructive pulmonary disease. Novel diagnostic and therapeutic targets are still needed to differentiate between the cold and the flu, since the clinical course of influenza can be severe while that of rhinovirus is usually more mild. In our investigation of influenza and rhinovirus infection of human respiratory epithelial cells, we used a systems approach to identify the temporally changing patterns of host gene expression from these viruses. After infection of human bronchial epithelial cells (BEAS-2B) with rhinovirus, influenza virus or co-infection with both viruses, we studied the time-course of host gene expression changes over three days. We modeled host responses to these viral infections with time and documented the qualitative and quantitative differences in innate immune activation and regulation. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Influenza vaccine in Hajj pilgrims: policy issues from field studies.

    Science.gov (United States)

    Rashid, Harunor; Shafi, Shuja; Haworth, Elizabeth; Memish, Ziad A; El Bashir, Haitham; Ali, Kamal A; Booy, Robert

    2008-09-02

    In pilgrims returning to the UK from the Hajj in 2005 and 2006, protection from PCR-confirmed influenza by influenza vaccine was estimated using verified vaccination histories from those with symptoms consistent with influenza. Of 538 patients whose nasal swabs were analysed and immunisation histories confirmed 115 (21%) were in a high-risk group for influenza; half of these (58/115) were immunised against influenza, compared with a fifth (90/423) of those not at high risk. Five percent of vaccinated 'at risk' pilgrims compared with 14% of unvaccinated (RR 0.37, 95% CI 0.1-1.4) had confirmed influenza. Rates of influenza in vaccinated and unvaccinated 'not at risk' pilgrims were similar (10% vs. 11%). Seasonal influenza vaccine was insignificantly protective against influenza in Hajj pilgrims.

  13. Influenza vaccine effectiveness against influenza-associated hospitalization in 2015/16 season, Beijing, China.

    Science.gov (United States)

    Zhang, Yi; Wu, Peng; Feng, Luzhao; Yang, Peng; Pan, Yang; Feng, Shuo; Qin, Ying; Zheng, Jiandong; Puig-Barberà, Joan; Muscatello, David; MacIntyre, Raina; Cowling, Benjamin J; Yu, Hongjie; Wang, Quanyi

    2017-05-25

    Vaccination is recommended to prevent influenza virus infection and associated complications. This study aimed to estimate the influenza vaccine effectiveness (VE) against hospitalization in the 2015/16 season in Beijing. Patients who were hospitalized in the 5 study hospitals between 1 Oct 2015 and 15 May 2016 were recruited. Influenza vaccination status was obtained for PCR-confirmed influenza patients and the selected controls who tested negative for the virus. Conditional logistic regression was used to estimate the influenza VE matching by calendar week, and adjusting for age, study sites, underlying medical conditions, smoking status, and hospital admissions over the past 12months. The overall VE was -37.9% (95% CI: -103.3, 6.5) against laboratory-confirmed influenza-associated hospitalization. The 2015-16 seasonal vaccine was had -61.9% (95% CI: -211.9, 15.9), -5.4% (95% CI: -108.1, 46.6) and -45.2% (95% CI: -152.6, 16.5) effectiveness to prevent infection from A(H1N1)pdm09, A(H3N2) and influenza B, respectively. Influenza vaccination did not show effective protection against hospitalization with influenza in 2015/16 season in Beijing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Naturligt forekommende oseltamivirresistens hos influenza A

    DEFF Research Database (Denmark)

    Madsen, Laura; Nielsen, Alex; Lundgren, Jens

    2010-01-01

    During the last two influenza seasons, one of the predominant influenza A types (H1N1) has developed complete resistance to oseltamivir, the primary treatment option. The virus does, however, remain sensitive to zanamavir and amantadine. There is no unequivocal explanation for this slide...... in the development of resistance. The best prevention strategy remains vaccination of the general population to avoid immunity. Future antiviral treatment calls for knowledge about resistance to existing types of influenza and the availability of all three types of antiviral medication....

  15. [Naturally occurring oseltamivir resistance in influenza A.

    DEFF Research Database (Denmark)

    Madsen, Laura; Nielsen, Alex; Lundgren, Jens

    2010-01-01

    During the last two influenza seasons, one of the predominant influenza A types (H1N1) has developed complete resistance to oseltamivir, the primary treatment option. The virus does, however, remain sensitive to zanamavir and amantadine. There is no unequivocal explanation for this slide...... in the development of resistance. The best prevention strategy remains vaccination of the general population to avoid immunity. Future antiviral treatment calls for knowledge about resistance to existing types of influenza and the availability of all three types of antiviral medication. Udgivelsesdato: 2010-Aug...

  16. Naturligt forekommende oseltamivirresistens hos influenza A

    DEFF Research Database (Denmark)

    Madsen, Laura; Nielsen, Alex; Lundgren, Jens

    2010-01-01

    in the development of resistance. The best prevention strategy remains vaccination of the general population to avoid immunity. Future antiviral treatment calls for knowledge about resistance to existing types of influenza and the availability of all three types of antiviral medication.......During the last two influenza seasons, one of the predominant influenza A types (H1N1) has developed complete resistance to oseltamivir, the primary treatment option. The virus does, however, remain sensitive to zanamavir and amantadine. There is no unequivocal explanation for this slide...

  17. Is influenza vaccination in asthmatic children helpful?

    Science.gov (United States)

    Bueving, H J

    2006-01-01

    The rationale for influenza vaccination in asthmatic children theoretically lies in prevention of exacerbations and serious complications like pneumonia. Solid evidence from randomized clinical trials of its preventive effects on these clinical endpoints is, however, lacking. Nevertheless, most Western guidelines advise to vaccinate these children. In the real life situation this advice isn't very well followed: vaccine coverage for this indication is low. To assess the usefulness of influenza vaccination in children with asthma a set of fundamental questions regarding this activity is presented and answered. This leads to the conclusion that, given the evidence, influenza vaccination in children with mild to moderate disease should be reconsidered.

  18. Dynamic transcriptional signatures and network responses for clinical symptoms in influenza-infected human subjects using systems biology approaches.

    Science.gov (United States)

    Linel, Patrice; Wu, Shuang; Deng, Nan; Wu, Hulin

    2014-10-01

    Recent studies demonstrate that human blood transcriptional signatures may be used to support diagnosis and clinical decisions for acute respiratory viral infections such as influenza. In this article, we propose to use a newly developed systems biology approach for time course gene expression data to identify significant dynamically response genes and dynamic gene network responses to viral infection. We illustrate the methodological pipeline by reanalyzing the time course gene expression data from a study with healthy human subjects challenged by live influenza virus. We observed clear differences in the number of significant dynamic response genes (DRGs) between the symptomatic and asymptomatic subjects and also identified DRG signatures for symptomatic subjects with influenza infection. The 505 common DRGs shared by the symptomatic subjects have high consistency with the signature genes for predicting viral infection identified in previous works. The temporal response patterns and network response features were carefully analyzed and investigated.

  19. Influenza NS1 directly modulates Hedgehog signaling during infection.

    Directory of Open Access Journals (Sweden)

    Margery G Smelkinson

    2017-08-01

    Full Text Available The multifunctional NS1 protein of influenza A viruses suppresses host cellular defense mechanisms and subverts other cellular functions. We report here on a new role for NS1 in modifying cell-cell signaling via the Hedgehog (Hh pathway. Genetic epistasis experiments and FRET-FLIM assays in Drosophila suggest that NS1 interacts directly with the transcriptional mediator, Ci/Gli1. We further confirmed that Hh target genes are activated cell-autonomously in transfected human lung epithelial cells expressing NS1, and in infected mouse lungs. We identified a point mutation in NS1, A122V, that modulates this activity in a context-dependent fashion. When the A122V mutation was incorporated into a mouse-adapted influenza A virus, it cell-autonomously enhanced expression of some Hh targets in the mouse lung, including IL6, and hastened lethality. These results indicate that, in addition to its multiple intracellular functions, NS1 also modifies a highly conserved signaling pathway, at least in part via cell autonomous activities. We discuss how this new Hh modulating function of NS1 may influence host lethality, possibly through controlling cytokine production, and how these new insights provide potential strategies for combating infection.

  20. Antibody and inflammatory response-mediated severity of pandemic 2009 (pH1N1) influenza virus.

    Science.gov (United States)

    Tiwari, Nivedita; Kapoor, Prerna; Dhole, Tapan N

    2014-06-01

    Influenza A virus causes significant morbidity and mortality each year worldwide due to antigenic drift, punctuated by infrequent pandemics following antigenic shift. H1N1 subtype of pandemic 2009 (pH1N1) influenza virus lineages has continued to circulate in humans and raised severe concerns about its pandemic developments. The pathogenesis of the disease and its progression as post-infectious sequelae is not well understood. Moderate inflammatory response protects against the ill effects and hyper-inflammatory response promotes the pathogenesis in disease progression. Samples were screened by RT-PCR and classified in pandemic 2009 (pH1N1), Influenza A virus infected patient. Further antibody titer was analyzed by hemagglutination inhibition assay and cytokine/chemokine response by Cytometric bead array assy. Screening of 216 patients shows 63 were belongs to pH1N1 influenza virus infection and 47 were Influenza A virus infected and 106 samples were negative for these viruses, were used as a disease control. Apart from that 100 samples were taken for healthy control. Lower antibody titer was found in patient infected with pH1N1/Influenza A virus and expression of cytokines (IL-6, IL-8, and IL-10) and chemokine MCP-1 was higher in patient infected with pH1N1 compare to healthy/disease control however there was no significant difference observed in the expression of pro-inflammatory cytokines TNF-α and antiviral cytokine IFN-γ in pH1N1 influenza virus infected patients. © 2014 Wiley Periodicals, Inc.

  1. Human Dendritic Cell Response Signatures Distinguish 1918, Pandemic, and Seasonal H1N1 Influenza Viruses.

    Science.gov (United States)

    Hartmann, Boris M; Thakar, Juilee; Albrecht, Randy A; Avey, Stefan; Zaslavsky, Elena; Marjanovic, Nada; Chikina, Maria; Fribourg, Miguel; Hayot, Fernand; Schmolke, Mirco; Meng, Hailong; Wetmur, James; García-Sastre, Adolfo; Kleinstein, Steven H; Sealfon, Stuart C

    2015-10-01

    Influenza viruses continue to present global threats to human health. Antigenic drift and shift, genetic reassortment, and cross-species transmission generate new strains with differences in epidemiology and clinical severity. We compared the temporal transcriptional responses of human dendritic cells (DC) to infection with two pandemic (A/Brevig Mission/1/1918, A/California/4/2009) and two seasonal (A/New Caledonia/20/1999, A/Texas/36/1991) H1N1 influenza viruses. Strain-specific response differences included stronger activation of NF-κB following infection with A/New Caledonia/20/1999 and a unique cluster of genes expressed following infection with A/Brevig Mission/1/1918. A common antiviral program showing strain-specific timing was identified in the early DC response and found to correspond with reported transcript changes in blood during symptomatic human influenza virus infection. Comparison of the global responses to the seasonal and pandemic strains showed that a dramatic divergence occurred after 4 h, with only the seasonal strains inducing widespread mRNA loss. Continuously evolving influenza viruses present a global threat to human health; however, these host responses display strain-dependent differences that are incompletely understood. Thus, we conducted a detailed comparative study assessing the immune responses of human DC to infection with two pandemic and two seasonal H1N1 influenza strains. We identified in the immune response to viral infection both common and strain-specific features. Among the stain-specific elements were a time shift of the interferon-stimulated gene response, selective induction of NF-κB signaling by one of the seasonal strains, and massive RNA degradation as early as 4 h postinfection by the seasonal, but not the pandemic, viruses. These findings illuminate new aspects of the distinct differences in the immune responses to pandemic and seasonal influenza viruses. Copyright © 2015, American Society for Microbiology. All

  2. Role of Nrf2 in host defense against influenza virus in cigarette smoke-exposed mice.

    Science.gov (United States)

    Yageta, Yuichi; Ishii, Yukio; Morishima, Yuko; Masuko, Hironori; Ano, Satoshi; Yamadori, Tadahiro; Itoh, Ken; Takeuchi, Kaoru; Yamamoto, Masayuki; Hizawa, Nobuyuki

    2011-05-01

    Influenza virus is a common respiratory tract viral infection. Although influenza can be fatal in patients with chronic pulmonary diseases such as chronic obstructive pulmonary disease, its pathogenesis is not fully understood. The Nrf2-mediated antioxidant system is essential to protect the lungs from oxidative injury and inflammation. In the present study, we investigated the role of Nrf2 in protection against influenza virus-induced pulmonary inflammation after cigarette smoke exposure with both in vitro and in vivo approaches. For in vitro analyses, peritoneal macrophages isolated from wild-type and Nrf2-deficient mice were treated with poly(I:C) and/or cigarette smoke extract. For in vivo analysis, these mice were infected with influenza A virus with or without exposure to cigarette smoke. In Nrf2-deficient macrophages, NF-κB activation and the induction of its target inflammatory genes were enhanced after costimulation with cigarette smoke extract and poly(I:C) compared with wild-type macrophages. The induction of antioxidant genes was observed for the lungs of wild-type mice but not those of Nrf2-deficient mice after cigarette smoke exposure. Cigarette smoke-exposed Nrf2-deficient mice showed higher rates of mortality than did wild-type mice after influenza virus infection, with enhanced peribronchial inflammation, lung permeability damage, and mucus hypersecretion. Lung oxidant levels and NF-κB-mediated inflammatory gene expression in the lungs were also enhanced in Nrf2-deficient mice. Our data indicate that the antioxidant pathway controlled by Nrf2 is pivotal for protection against the development of influenza virus-induced pulmonary inflammation and injury under oxidative conditions.

  3. Evaluation of Alere i Influenza A&B for rapid detection of influenza viruses A and B.

    Science.gov (United States)

    Nie, Shuping; Roth, Richard B; Stiles, Jeffrey; Mikhlina, Albina; Lu, Xuedong; Tang, Yi-Wei; Babady, N Esther

    2014-09-01

    Rapid and accurate diagnosis of influenza is important for infection control, as well as for patient management. Alere i Influenza A&B is an isothermal nucleic acid amplification-based integrated system for detection and differentiation of influenza virus A and influenza virus B. The performance of the Alere i Influenza A&B was screened using frozen nasopharyngeal-swab specimens collected in viral transport medium (VTM) that were originally tested fresh with the FilmArray Respiratory Panel (RP) assay during the 2012-2013 influenza outbreak. In total, 360 VTM specimens were selected for Alere i Influenza A&B testing: 40 influenza virus A H1N1-2009 (influenza virus A-1), 40 influenza virus A H3N2 (influenza virus A-3), 37 influenza virus A "equivocal" or "no subtype detected" (influenza virus A-u), 41 influenza virus B, and 202 influenza virus-negative specimens, as initially determined by the FilmArray RP assay. The Alere assay showed sensitivities of 87.2%, 92.5%, 25.0%, and 97.4% for influenza virus A-1, influenza virus A-3, influenza virus A-u, and influenza virus B, respectively, after discordant resolution by Prodesse ProFLU+ PCR. The specificities were 100% for both influenza virus A and influenza virus B. In general, the Alere i Influenza A&B provided good sensitivity, although the assay did show poorer sensitivity with samples determined to have low influenza virus A titers by Prodesse ProFlu+ PCR (a mean real-time PCR threshold cycle [CT] value of 31.9 ± 2.0), which included the majority of the samples called influenza virus A "equivocal" or "no subtype detected" by a single BioFire FilmArray RP test. The integrated, rapid, and simple characteristics of the Alere i Influenza A&B assay make it a potential candidate for point-of-care testing, with a test turnaround time of less than 15 min. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  4. An overview on avian influenza

    Directory of Open Access Journals (Sweden)

    Nelson Rodrigo da Silva Martins

    2012-06-01

    Full Text Available Avian influenza (AI is considered an exotic disease in the Brazilian poultry industry, according to the National Avian Health Program (PNSA, with permanent monitoring of domestic, exotic and native avian species. Brazil presents privileged environmental conditions of reduced risk. In addition, all commercial poultry and conservation holdings are registered in state or national inventories and geographically located (GPS for health control. Poultry health standards are adopted for the conformity to the international market, mostly for the intensified poultry destined for exportation, but also for companion exotic and native conservation facilities. Guidelines for monitoring and the diagnosis of AI are published by the PNSA and follow the standards proposed by the international health code (World Organization for Animal Health, Organization International des Epizooties - OIE and insure the free of status for avian influenza virus (AIV of LPAIV-low pathogenicity AIV and HPAIV-high pathogenicity AIV. In addition, the infections by mesogenic and velogenic Newcastle disease virus, Mycoplasma gallisepticum, M. synoviae and M. meleagridis, Salmonella enteric subspecies enterica serovar Gallinarum biovars Gallinarum and Pullorum are eradicated from reproduction. Controlled infections by S.enterica subspecies enterica serovars Enteritidis and Typhimurium are monitored for breeders. The vaccination of chickens in ovo or at hatch against Marek's disease is mandatory. Broiler production is an indoor activity, confinement which insures biosecurity, with safe distances from the potential AIV reservoir avian species. Worldwide HPAIV H5N1 notifications to the OIE, in March 2011, included 51 countries.

  5. Influenza in Bristol Bay, 1919

    Directory of Open Access Journals (Sweden)

    Maria Gilson deValpine

    2015-03-01

    Full Text Available The 1918 influenza pandemic has been blamed for as many as 50 million deaths worldwide. Like all major disasters, the full story of the pandemic includes smaller, less noted episodes that have not attracted historical attention. The story of the 1919 wave of the influenza pandemic in Bristol Bay Alaska is one such lost episode. It is an important story because the most accessible accounts—the Congressional Record and the Coast Guard Report—are inconsistent with reports made by employees, health care workers, and volunteers at the site of the disaster. Salmon fishing industry supervisors and medical officers recorded their efforts to save the region’s Native Alaskans in private company reports. The federal Bureau of Education physician retained wireless transmission, reports, and letters of events. The Coast Guard summarized its work in its Annual Report of 1920. The independent Bureau of Fisheries report to the Department of Commerce reveals the Coast Guard report at striking odds with others and reconciles only one account. This article explores the historical oversight, and attempts to tell the story of the 1919 wave of the pandemic which devastated the Native Alaskan population in this very remote place.

  6. Effect of Phosphorylation of CM2 Protein on Influenza C Virus Replication.

    Science.gov (United States)

    Goto, Takanari; Shimotai, Yoshitaka; Matsuzaki, Yoko; Muraki, Yasushi; Sho, Ri; Sugawara, Kanetsu; Hongo, Seiji

    2017-11-15

    CM2 is the second membrane protein of the influenza C virus and has been demonstrated to play a role in the uncoating and genome packaging processes in influenza C virus replication. Although the effects of N-linked glycosylation, disulfide-linked oligomerization, and palmitoylation of CM2 on virus replication have been analyzed, the effect of the phosphorylation of CM2 on virus replication remains to be determined. In this study, a phosphorylation site(s) at residue 78 and/or 103 of CM2 was replaced with an alanine residue(s), and the effects of the loss of phosphorylation on influenza C virus replication were analyzed. No significant differences were observed in the packaging of the reporter gene between influenza C virus-like particles (VLPs) produced from 293T cells expressing wild-type CM2 and those from the cells expressing the CM2 mutants lacking the phosphorylation site(s). Reporter gene expression in HMV-II cells infected with VLPs containing the CM2 mutants was inhibited in comparison with that in cells infected with wild-type VLPs. The virus production of the recombinant influenza C virus possessing CM2 mutants containing a serine-to-alanine change at residue 78 was significantly lower than that of wild-type recombinant influenza C virus. Furthermore, the virus growth of the recombinant viruses possessing CM2 with a serine-to-aspartic acid change at position 78, to mimic constitutive phosphorylation, was virtually identical to that of the wild-type virus. These results suggest that phosphorylation of CM2 plays a role in efficient virus replication, probably through the addition of a negative charge to the Ser78 phosphorylation site. IMPORTANCE It is well-known that many host and viral proteins are posttranslationally modified by phosphorylation, which plays a role in the functions of these proteins. In influenza A and B viruses, phosphorylation of viral proteins NP, M1, NS1, and the nuclear export protein (NEP), which are not integrated into the

  7. Age- and influenza activity-stratified case definitions of influenza-like illness: experience from hospital-based influenza surveillance in South Korea.

    Directory of Open Access Journals (Sweden)

    Tae Un Yang

    Full Text Available OBJECTIVES: This study aims to identify clinical case definitions of influenza with higher accuracy in patients stratified by age group and influenza activity using hospital-based surveillance system. METHODS: In seven tertiary hospitals across South Korea during 2011-2012 influenza season, respiratory specimens were obtained from patients presenting an influenza-like illness (ILI, defined as having fever plus at least one of following symptoms: cough, sore throat or rhinorrhea. Influenza was confirmed by reverse transcriptase-polymerase chain reaction. We performed multivariate logistic regression analyses to identify clinical variables with better relation with laboratory-confirmed influenza, and compared the accuracy of combinations. RESULTS: Over the study period, we enrolled 1417 patients, of which 647 had laboratory-confirmed influenza. Patients with cough, rhinorrhea, sore throat or headache were more likely to have influenza (p<0.05. The most accurate criterion across the study population was the combination of cough, rhinorrhea, sore throat and headache (sensitivity 71.3%, specificity 60.1% and AUROC 0.66. The combination of rhinorrhea, sore throat and sputum during the peak influenza activity period in the young age group showed higher accuracy than that using the whole population (sensitivity 89.3%, specificity 72.1%, and AUROC 0.81. CONCLUSIONS: The accuracy of clinical case definitions of influenza differed across age groups and influenza activity periods. Categorizing the entire population into subgroups would improve the detection of influenza patients in the hospital-based surveillance system.

  8. Temporal Patterns of Influenza A and B in Tropical and Temperate Countries: What Are the Lessons for Influenza Vaccination?

    Directory of Open Access Journals (Sweden)

    Saverio Caini

    Full Text Available Determining the optimal time to vaccinate is important for influenza vaccination programmes. Here, we assessed the temporal characteristics of influenza epidemics in the Northern and Southern hemispheres and in the tropics, and discuss their implications for vaccination programmes.This was a retrospective analysis of surveillance data between 2000 and 2014 from the Global Influenza B Study database. The seasonal peak of influenza was defined as the week with the most reported cases (overall, A, and B in the season. The duration of seasonal activity was assessed using the maximum proportion of influenza cases during three consecutive months and the minimum number of months with ≥80% of cases in the season. We also assessed whether co-circulation of A and B virus types affected the duration of influenza epidemics.212 influenza seasons and 571,907 cases were included from 30 countries. In tropical countries, the seasonal influenza activity lasted longer and the peaks of influenza A and B coincided less frequently than in temperate countries. Temporal characteristics of influenza epidemics were heterogeneous in the tropics, with distinct seasonal epidemics observed only in some countries. Seasons with co-circulation of influenza A and B were longer than influenza A seasons, especially in the tropics.Our findings show that influenza seasonality is less well defined in the tropics than in temperate regions. This has important implications for vaccination programmes in these countries. High-quality influenza surveillance systems are needed in the tropics to enable decisions about when to vaccinate.

  9. Exercise Improves Host Response to Influenza Viral Infection in Obese and Non-Obese Mice through Different Mechanisms.

    Directory of Open Access Journals (Sweden)

    Kristi J Warren

    Full Text Available Obesity has been associated with greater severity of influenza virus infection and impaired host defense. Exercise may confer health benefits even when weight loss is not achieved, but it has not been determined if regular exercise improves immune defense against influenza A virus (IAV in the obese condition. In this study, diet-induced obese mice and lean control mice exercised for eight weeks followed by influenza viral infection. Exercise reduced disease severity in both obese and non-obese mice, but the mechanisms differed. Exercise reversed the obesity-associated delay in bronchoalveolar-lavage (BAL cell infiltration, restored BAL cytokine and chemokine production, and increased ciliary beat frequency and IFNα-related gene expression. In non-obese mice, exercise treatment reduced lung viral load, increased Type-I-IFN-related gene expression early during infection, but reduced BAL inflammatory cytokines and chemokines. In both obese and non-obese mice, exercise increased serum anti-influenza virus specific IgG2c antibody, increased CD8+ T cell percentage in BAL, and reduced TNFα by influenza viral NP-peptide-responding CD8+ T cells. Overall, the results suggest that exercise "restores" the immune response of obese mice to a phenotype similar to non-obese mice by improving the delay in immune activation. In contrast, in non-obese mice exercise treatment results in an early reduction in lung viral load and limited inflammatory response.

  10. Protection against respiratory syncytial virus by inactivated influenza virus carrying a fusion protein neutralizing epitope in a chimeric hemagglutinin.

    Science.gov (United States)

    Lee, Yu-Na; Hwang, Hye Suk; Kim, Min-Chul; Lee, Young-Tae; Kim, Yu-Jin; Lee, F Eun-Hyung; Kang, Sang-Moo

    2016-04-01

    A desirable vaccine against respiratory syncytial virus (RSV) should induce neutralizing antibodies without eliciting abnormal T cell responses to avoid vaccine-enhanced pathology. In an approach to deliver RSV neutralizing epitopes without RSV-specific T cell antigens, we genetically engineered chimeric influenza virus expressing RSV F262-276 neutralizing epitopes in the globular head domain as a chimeric hemagglutinin (HA) protein. Immunization of mice with formalin-inactivated recombinant chimeric influenza/RSV F262-276 was able to induce RSV protective neutralizing antibodies and lower lung viral loads after challenge. Formalin-inactivated RSV immune mice showed high levels of pulmonary inflammatory cytokines, macrophages, IL-4-producing T cells, and extensive histopathology. However, RSV-specific T cell responses and enhancement of pulmonary histopathology were not observed after RSV infection of inactivated chimeric influenza/RSV F262-276. This study provides evidence that an inactivated vaccine platform of chimeric influenza/RSV virus can be developed into a safe RSV vaccine candidate without priming RSV-specific T cells and immunopathology. Respiratory syncytial virus (RSV) is a major cause of respiratory tract illness and morbidity in children. Hence, there is a need to develop an effective vaccine against this virus. In this article, the authors engineered chimeric influenza virus to express RSV neutralizing epitopes. The positive findings in in-vivo experiments provide a beginning for future clinical trials and perhaps eventual product realization. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Exposure to Cigarette Smoke Inhibits the Pulmonary T-Cell Response to Influenza Virus and Mycobacterium tuberculosis▿

    Science.gov (United States)

    Feng, Yan; Kong, Ying; Barnes, Peter F.; Huang, Fang-Fang; Klucar, Peter; Wang, Xisheng; Samten, Buka; Sengupta, Mayami; Machona, Bruce; Donis, Ruben; Tvinnereim, Amy R.; Shams, Homayoun

    2011-01-01

    Smoking is associated with increased susceptibility to tuberculosis and influenza. However, little information is available on the mechanisms underlying this increased susceptibility. Mice were left unexposed or were exposed to cigarette smoke and then infected with Mycobacterium tuberculosis by aerosol or influenza A by intranasal infection. Some mice were given a DNA vaccine encoding an immunogenic M. tuberculosis protein. Gamma interferon (IFN-γ) production by T cells from the lungs and spleens was measured. Cigarette smoke exposure inhibited the lung T-cell production of IFN-γ during stimulation in vitro with anti-CD3, after vaccination with a construct expressing an immunogenic mycobacterial protein, and during infection with M. tuberculosis and influenza A virus in vivo. Reduced IFN-γ production was mediated through the decreased phosphorylation of transcription factors that positively regulate IFN-γ expression. Cigarette smoke exposure increased the bacterial burden in mice infected with M. tuberculosis and increased weight loss and mortality in mice infected with influenza virus. This study provides the first demonstration that cigarette smoke exposure directly inhibits the pulmonary T-cell response to M. tuberculosis and influenza virus in a physiologically relevant animal model, increasing susceptibility to both pathogens. PMID:20974820

  12. Repeated influenza vaccination for preventing severe and fatal influenza infection in older adults: a multicentre case–control study

    Science.gov (United States)

    Casado, Itziar; Domínguez, Ángela; Toledo, Diana; Chamorro, Judith; Astray, Jenaro; Egurrola, Mikel; Fernández-Sierra, María Amelia; Martín, Vicente; Morales-Suárez-Varela, María; Godoy, Pere; Castilla, Jesús

    2018-01-01

    BACKGROUND: The effectiveness of repeated vaccination for influenza to prevent severe cases remains unclear. We evaluated the effectiveness of influenza vaccination on preventing admissions to hospital for influenza and reducing disease severity. METHODS: We conducted a case–control study in 20 hospitals in Spain during the 2013/14 and 2014/15 influenza seasons. Community-dwelling adults aged 65 years or older who were admitted to hospital for laboratory-confirmed influenza were matched with inpatient controls by sex, age, hospital and admission date. The effectiveness of vaccination in the current and 3 previous seasons in preventing influenza was estimated for inpatients with nonsevere influenza and for those with severe influenza who were admitted to intensive care units (ICUs) or who died. RESULTS: We enrolled 130 inpatients with severe and 598 with nonsevere influenza who were matched to 333 and 1493 controls, respectively. Compared with patients who were unvaccinated in the current and 3 previous seasons, adjusted effectiveness of influenza vaccination in the current and any previous season was 31% (95% confidence interval [CI] 13%–46%) in preventing admission to hospital for nonsevere influenza, 74% (95% CI 42%–88%) in preventing admissions to ICU and 70% (95% CI 34%–87%) in preventing death. Vaccination in the current season only had no significant effect on cases of severe influenza. Among inpatients with influenza, vaccination in the current and any previous season reduced the risk of severe outcomes (adjusted odds ratio 0.45, 95% CI 0.26–0.76). INTERPRETATION: Among older adults, repeated vaccination for influenza was twice as effective in preventing severe influenza compared with nonsevere influenza in patients who were admitted to hospital, which is attributable to the combination of the number of admissions to hospital for influenza that were prevented and reduced disease severity. These results reinforce recommendations for annual

  13. Risk factors for reported influenza and influenza-like symptoms in patients with rheumatoid arthritis.

    Science.gov (United States)

    Dirven, L; Huizinga, T W J; Allaart, C F

    2012-10-01

    To determine the prevalence and predictors of influenza and influenza-like symptoms in patients with rheumatoid arthritis (RA). Questionnaires were sent to patients registered as having RA and they were asked to fill in per month any period and details of influenza-like symptoms and vaccination. An experienced rheumatologist assessed the level of disease activity and use of anti-rheumatic medication. The prevalence of reported influenza (fever > 38°C, headache, muscle soreness, and coughing and/or dyspnoea) and influenza-like symptoms was determined and risk factors were identified by logistic regression analysis. Of the 1692 patients approached, 783 (46%) patients were eligible for follow-up. Fifty per cent of the patients reported influenza-like symptoms, 5.9% had symptoms suggesting influenza, and 74% reported vaccination. The prevalence of influenza and influenza-like symptoms per month ranged from 0.0% to 2.3% and from 10.4% to 19.7%, respectively. Anti-tumour necrosis factors (anti-TNFs) [odds ratio (OR) 2.4, 95% confidence interval (CI) 1.2-4.8] and body mass index (BMI) (OR 1.06, 95% CI 1.0-1.1) were independently associated with symptoms of influenza. A trend was found for patients not in remission, patients using leflunomide, and patients with previous lung conditions. Independent risk factors of influenza-like symptoms were age (OR 0.98, 95% CI 0.97-0.99), female gender (OR 1.8, 95% CI 1.3-2.5), influenza vaccination (OR 1.6, 95% CI 1.1-2.4), and previous lung condition (OR 1.7, 95% CI 1.2-2.4). In 2009-2010, the prevalence of reported influenza in patients with RA was 5.9%. Patients using anti-TNFs and with higher BMI seemed to be more at risk for influenza symptoms. Milder upper respiratory tract infections were reported more often by females, younger patients, and those vaccinated against influenza or with previous lung conditions.

  14. Uptake of the Influenza Vaccination in Pregnancy

    LENUS (Irish Health Repository)

    Crosby, DA

    2016-09-01

    Influenza is caused by a highly infectious RNA virus, which usually occurs in a seasonal pattern with epidemics in the winter months. The objective of this study was to determine the uptake of the influenza vaccine in a pregnant population and ascertain the reasons why some women did not receive it. A prospective cohort study was conducted over a two-week period in January 2016 in the National Maternity Hospital Dublin, a tertiary referral maternity hospital delivering over 9000 infants per year. There were 504 women studied over the 2-week period. Overall, 197(39.1%) women received the vaccine at a mean gestational age 20.9 weeks (SD 7.0). Given the increased rates of influenza in the community and the associated implications for mother and infant, it is important that pregnant women are educated regarding the risks of influenza in pregnancy and encourage this cohort to be vaccinated.

  15. Diagnosis and Treatment of Influenza in Children

    Directory of Open Access Journals (Sweden)

    M. S. Savenkova

    2016-01-01

    Full Text Available The article presents data on influenza epidemiology, pathogenesis, classification, clinical variants, diagnosis. Given the variety of antiviral drugs, highlighted the most relevant and used in pediatric patients, depending on age and mixed-flow options viral infections.

  16. Potent peptidic fusion inhibitors of influenza virus

    Energy Technology Data Exchange (ETDEWEB)

    Kadam, Rameshwar U.; Juraszek, Jarek; Brandenburg, Boerries; Buyck, Christophe; Schepens, Wim B. G.; Kesteleyn, Bart; Stoops, Bart; Vreeken, Rob J.; Vermond, Jan; Goutier, Wouter; Tang, Chan; Vogels, Ronald; Friesen, Robert H. E.; Goudsmit, Jaap; van Dongen, Maria J. P.; Wilson, Ian A.

    2017-09-28

    Influenza therapeutics with new targets and mechanisms of action are urgently needed to combat potential pandemics, emerging viruses, and constantly mutating strains in circulation. We report here on the design and structural characterization of potent peptidic inhibitors of influenza hemagglutinin. The peptide design was based on complementarity-determining region loops of human broadly neutralizing antibodies against the hemagglutinin (FI6v3 and CR9114). The optimized peptides exhibit nanomolar affinity and neutralization against influenza A group 1 viruses, including the 2009 H1N1 pandemic and avian H5N1 strains. The peptide inhibitors bind to the highly conserved stem epitope and block the low pH–induced conformational rearrangements associated with membrane fusion. These peptidic compounds and their advantageous biological properties should accelerate the development of new small molecule– and peptide-based therapeutics against influenza virus.

  17. NNDSS - Table II. Giardiasis to Haemophilus influenza

    Data.gov (United States)

    U.S. Department of Health & Human Services — NNDSS - Table II. Giardiasis to Haemophilus influenza - 2017. In this Table, provisional cases of selected notifiable diseases (≥1,000 cases reported during the...

  18. Features of Influenza Season 2016 in Children

    Directory of Open Access Journals (Sweden)

    S.O. Kramariov

    2016-03-01

    Full Text Available In 47 children with influenza A/H1N1 pd California 2009, who were hospitalized in the clinic of the department of pediatric infectious diseases of the National medical university named after O.O. Bohomolets — Kyiv municipal children’s clinical hospital of infectious diseases in January-February 2016, we have found no features of the clinical picture, characteristic of this influenza strain in this season. In most pediatric patients, the disease occurs in moderate form. Among the complications of influenza in children, more common are pneumonia and encephalitis reaction in the form of seizures. Underlying diseases of the respiratory, cardiovascular, endocrine and nervous systems and atopic dermatitis are adverse prognostic signs of the course of influenza A/H1N1 pd California in children 2009 in season 2016.

  19. NNDSS - Table II. Giardiasis to Haemophilus influenza

    Data.gov (United States)

    U.S. Department of Health & Human Services — NNDSS - Table II. Giardiasis to Haemophilus influenza - 2014. In this Table, all conditions with a 5-year average annual national total of more than or equals 1,000...

  20. NNDSS - Table II. Giardiasis to Haemophilus influenza

    Data.gov (United States)

    U.S. Department of Health & Human Services — NNDSS - Table II. Giardiasis to Haemophilus influenza - 2018. In this Table, provisional cases of selected notifiable diseases (≥1,000 cases reported during the...

  1. NNDSS - Table II. Giardiasis to Haemophilus influenza

    Data.gov (United States)

    U.S. Department of Health & Human Services — NNDSS - Table II. Giardiasis to Haemophilus influenza - 2016. In this Table, provisional* cases of selected†notifiable diseases (≥1,000 cases reported during the...

  2. NNDSS - Table II. Giardiasis to Haemophilus influenza

    Data.gov (United States)

    U.S. Department of Health & Human Services — NNDSS - Table II. Giardiasis to Haemophilus influenza - 2015.In this Table, provisional cases of selected notifiable diseases (≥1,000 cases reported during the...

  3. Secondary Bacterial Infections Associated with Influenza Pandemics

    Directory of Open Access Journals (Sweden)

    Denise E. Morris

    2017-06-01

    Full Text Available Lower and upper respiratory infections are the fourth highest cause of global mortality (Lozano et al., 2012. Epidemic and pandemic outbreaks of respiratory infection are a major medical concern, often causing considerable disease and a high death toll, typically over a relatively short period of time. Influenza is a major cause of epidemic and pandemic infection. Bacterial co/secondary infection further increases morbidity and mortality of influenza infection, with Streptococcus pneumoniae, Haemophilus influenzae, and Staphylococcus aureus reported as the most common causes. With increased antibiotic resistance and vaccine evasion it is important to monitor the epidemiology of pathogens in circulation to inform clinical treatment and development, particularly in the setting of an influenza epidemic/pandemic.

  4. Montana 2006 Avian Influenza Surveillance Project Report

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — During the summer of 2006, the U.S. Department of Agriculture (USDA) and the U.S. Fish and Wildlife Service (USFWS) initiated a nationwide avian influenza...

  5. A computational framework for influenza antigenic cartography.

    Directory of Open Access Journals (Sweden)

    Zhipeng Cai

    2010-10-01

    Full Text Available Influenza viruses have been responsible for large losses of lives around the world and continue to present a great public health challenge. Antigenic characterization based on hemagglutination inhibition (HI assay is one of the routine procedures for influenza vaccine strain selection. However, HI assay is only a crude experiment reflecting the antigenic correlations among testing antigens (viruses and reference antisera (antibodies. Moreover, antigenic characterization is usually based on more than one HI dataset. The combination of multiple datasets results in an incomplete HI matrix with many unobserved entries. This paper proposes a new computational framework for constructing an influenza antigenic cartography from this incomplete matrix, which we refer to as Matrix Completion-Multidimensional Scaling (MC-MDS. In this approach, we first reconstruct the HI matrices with viruses and antibodies using low-rank matrix completion, and then generate the two-dimensional antigenic cartography using multidimensional scaling. Moreover, for influenza HI tables with herd immunity effect (such as those from Human influenza viruses, we propose a temporal model to reduce the inherent temporal bias of HI tables caused by herd immunity. By applying our method in HI datasets containing H3N2 influenza A viruses isolated from 1968 to 2003, we identified eleven clusters of antigenic variants, representing all major antigenic drift events in these 36 years. Our results showed that both the completed HI matrix and the antigenic cartography obtained via MC-MDS are useful in identifying influenza antigenic variants and thus can be used to facilitate influenza vaccine strain selection. The webserver is available at http://sysbio.cvm.msstate.edu/AntigenMap.

  6. Prospects for broadly protective influenza vaccines.

    Science.gov (United States)

    Treanor, John Jay

    2015-11-27

    The development of vaccines that could provide broad protection against antigenically variant influenza viruses has long been the ultimate prize in influenza research. Recent developments have pushed us closer to this goal, and such vaccines may now be within reach. This brief review outlines the current approaches to broadly protective vaccines, and the probable hurdles and roadblocks to achieving this goal. Copyright © 2015 American Journal of Preventive Medicine. Published by Elsevier Ltd.. All rights reserved.

  7. Nosocomial influenza: encouraging insights and future challenges.

    Science.gov (United States)

    Vanhems, Philippe; Bénet, Thomas; Munier-Marion, Elodie

    2016-08-01

    The prevalence and incidence of viral nosocomial influenza infections in healthcare settings are underestimated. Nosocomial influenza outbreaks are frequent, and control remains challenging in acute care and long-term healthcare settings. This review examines recent publications on the determinants of nosocomial influenza prevention and control. Nosocomial influenza outbreaks occur in various healthcare settings, especially among the frail and elderly. The correct diagnosis is commonly missed because a substantial proportion of asymptomatic cases can transmit infections. Rapid diagnosis will facilitate rapid identification of cases and the implementation of control measures but needs confirmation in some circumstances, such as the description of transmission chains. Links between patients and healthcare personnel (HCP) have been well explored by phylogenetic virus characterization and need additional refinement and study. The preventive role of HCP vaccination in influenza incidence among patients should be investigated further in various settings to take into account different strategies for vaccination (i.e. voluntary or mandatory vaccination policies). Indeed, in Europe, influenza vaccination remains modest, whereas in North America hospitals and some states and provinces are now mandating influenza vaccination among HCP. The variability of vaccine effectiveness by seasonal epidemics is also an important consideration for control strategies. When influenza cases occur in the community, the risk of transmission and nosocomial cases increase in healthcare settings requiring vigilance among staff. Surveillance and early warning systems should be encouraged. Outbreak control needs appropriate identification of cases and transmission chains, and rapid implementation of control measures. Vaccination policies in conjunction with appropriate infection control measures could reduce virus spreading in hospitals. HCP vaccination coverage must be improved.

  8. Epidemic mechanisms of type A influenza.

    Science.gov (United States)

    Hope-Simpson, R E

    1979-08-01

    The antigenic varieties of influenza A virus isolated from 1968 to 1976 in a surveillance of a small, rather remote population were similar to those from England and Wales as a whole, despite frequent antigenic changes during the period. Household studies in the first two H3N2 influenza A epidemics found low attack rates within households, a high proportion (70%) of affected households with only one case of influenza, similar distributions of affected households in the two epidemics by the number of cases of influenza and similar distributions of the influenza cases by the day of their onset in the household outbreak. No serial interval could be demonstrated by cumulating household outbreaks. More than one minor variant was causing influenza contemporaneously in the same villages in several seasons, and different variants were on one occasion found on successive days in bedfellows. The regular occurrence of epidemics in winter was often accompanied by the disappearance of the epidemic variants and their replacement, after a virus-free interval, by new variants. These epidemiological findings seem best interpreted on the following tentative hypothesis. Influenza A sufferers do not transmit the virus during their illness; instead it rapidly becomes latent in their tissues so that they become symptomless carrier-hosts and develop specific immunity. Next season an extraneous seasonally mediated stimulus reactivates the latent virus residues so that the carrier-host becomes briefly infectious, though symptomless. Antigenic drift occurs because particles reconstituted to be identical with the progenitor virus cannot escape the specific immunity it has provoked in the carrier host. He can shed only mutants also determined by the progenitor virus. From the assortment of mutants shed by the carrier-host, his non-immune companions select that (those) which is best fitted to survive, and it rapidly causes influenzal illness. Epidemics consist largely or entirely of such

  9. A computational framework for influenza antigenic cartography.

    Science.gov (United States)

    Cai, Zhipeng; Zhang, Tong; Wan, Xiu-Feng

    2010-10-07

    Influenza viruses have been responsible for large losses of lives around the world and continue to present a great public health challenge. Antigenic characterization based on hemagglutination inhibition (HI) assay is one of the routine procedures for influenza vaccine strain selection. However, HI assay is only a crude experiment reflecting the antigenic correlations among testing antigens (viruses) and reference antisera (antibodies). Moreover, antigenic characterization is usually based on more than one HI dataset. The combination of multiple datasets results in an incomplete HI matrix with many unobserved entries. This paper proposes a new computational framework for constructing an influenza antigenic cartography from this incomplete matrix, which we refer to as Matrix Completion-Multidimensional Scaling (MC-MDS). In this approach, we first reconstruct the HI matrices with viruses and antibodies using low-rank matrix completion, and then generate the two-dimensional antigenic cartography using multidimensional scaling. Moreover, for influenza HI tables with herd immunity effect (such as those from Human influenza viruses), we propose a temporal model to reduce the inherent temporal bias of HI tables caused by herd immunity. By applying our method in HI datasets containing H3N2 influenza A viruses isolated from 1968 to 2003, we identified eleven clusters of antigenic variants, representing all major antigenic drift events in these 36 years. Our results showed that both the completed HI matrix and the antigenic cartography obtained via MC-MDS are useful in identifying influenza antigenic variants and thus can be used to facilitate influenza vaccine strain selection. The webserver is available at http://sysbio.cvm.msstate.edu/AntigenMap.

  10. Influenza forecasting with Google Flu Trends.

    Science.gov (United States)

    Dugas, Andrea Freyer; Jalalpour, Mehdi; Gel, Yulia; Levin, Scott; Torcaso, Fred; Igusa, Takeru; Rothman, Richard E

    2013-01-01

    We developed a practical influenza forecast model based on real-time, geographically focused, and easy to access data, designed to provide individual medical centers with advanced warning of the expected number of influenza cases, thus allowing for sufficient time to implement interventions. Secondly, we evaluated the effects of incorporating a real-time influenza surveillance system, Google Flu Trends, and meteorological and temporal information on forecast accuracy. Forecast models designed to predict one week in advance were developed from weekly counts of confirmed influenza cases over seven seasons (2004-2011) divided into seven training and out-of-sample verification sets. Forecasting procedures using classical Box-Jenkins, generalized linear models (GLM), and generalized linear autoregressive moving average (GARMA) methods were employed to develop the final model and assess the relative contribution of external variables such as, Google Flu Trends, meteorological data, and temporal information. A GARMA(3,0) forecast model with Negative Binomial distribution integrating Google Flu Trends information provided the most accurate influenza case predictions. The model, on the average, predicts weekly influenza cases during 7 out-of-sample outbreaks within 7 cases for 83% of estimates. Google Flu Trend data was the only source of external information to provide statistically significant forecast improvements over the base model in four of the seven out-of-sample verification sets. Overall, the p-value of adding this external information to the model is 0.0005. The other exogenous variables did not yield a statistically significant improvement in any of the verification sets. Integer-valued autoregression of influenza cases provides a strong base forecast model, which is enhanced by the addition of Google Flu Trends confirming the predictive capabilities of search query based syndromic surveillance. This accessible and flexible forecast model can be used by

  11. Reassortment patterns in Swine influenza viruses.

    Directory of Open Access Journals (Sweden)

    Hossein Khiabanian

    Full Text Available Three human influenza pandemics occurred in the twentieth century, in 1918, 1957, and 1968. Influenza pandemic strains are the results of emerging viruses from non-human reservoirs to which humans have little or no immunity. At least two of these pandemic strains, in 1957 and in 1968, were the results of reassortments between human and avian viruses. Also, many cases of swine influenza viruses have reportedly infected humans, in particular, the recent H1N1 influenza virus of swine origin, isolated in Mexico and the United States. Pigs are documented to allow productive replication of human, avian, and swine influenza viruses. Thus it has been conjectured that pigs are the "mixing vessel" that create the avian-human reassortant strains, causing the human pandemics. Hence, studying the process and patterns of viral reassortment, especially in pigs, is a key to better understanding of human influenza pandemics. In the last few years, databases containing sequences of influenza A viruses, including swine viruses, collected since 1918 from diverse geographical locations, have been developed and made publicly available. In this paper, we study an ensemble of swine influenza viruses to analyze the reassortment phenomena through several statistical techniques. The reassortment patterns in swine viruses prove to be similar to the previous results found in human viruses, both in vitro and in vivo, that the surface glycoprotein coding segments reassort most often. Moreover, we find that one of the polymerase segments (PB1, reassorted in the strains responsible for the last two human pandemics, also reassorts frequently.

  12. Epidemiology of the 2012 influenza season in Victoria, Australia

    Directory of Open Access Journals (Sweden)

    James Fielding

    2013-08-01

    Full Text Available Objective: To assess the magnitude and severity of the 2012 influenza season in Victoria, Australia using surveillance data from five sources. Methods: Data from influenza notifications, sentinel general practices, a sentinel hospital network, a sentinel locum service and strain typing databases for 2012 were descriptively analysed. Results: Influenza and influenza-like illness activity was moderate compared to previous years, although a considerable increase in notified laboratory-confirmed influenza was observed. Type A influenza comprised between 83% and 87% of cases from the general practitioners, hospitals and notifiable surveillance data. Influenza A/H3 was dominant in July and August, and most tested isolates were antigenically similar to the A/Perth/16/2009 virus used in the vaccine. There was a smaller peak of influenza type B in September. No tested viruses were resistant to any neuraminidase inhibitor antivirals. Higher proportions of type A/H3, hospitalized cases and those with a comorbid condition indicated for influenza vaccination were aged 65 years or older. Influenza vaccination coverage among influenza-like illness patients was 24% in sentinel general practices and 50% in hospitals. Discussion: The 2012 influenza season in Victoria was average compared to previous years, with an increased dominance of A/H3 accompanied by increases in older and hospitalized cases. Differences in magnitude and the epidemiological profile of cases detected by the different data sources demonstrate the importance of using a range of surveillance data to assess the relative severity of influenza seasons.

  13. Reverse Genetics Approaches for the Development of Influenza Vaccines

    Science.gov (United States)

    Nogales, Aitor; Martínez-Sobrido, Luis

    2016-01-01

    Influenza viruses cause annual seasonal epidemics and occasional pandemics of human respiratory disease. Influenza virus infections represent a serious public health and economic problem, which are most effectively prevented through vaccination. However, influenza viruses undergo continual antigenic variation, which requires either the annual reformulation of seasonal influenza vaccines or the rapid generation of vaccines against potential pandemic virus strains. The segmented nature of influenza virus allows for the reassortment between two or more viruses within a co-infected cell, and this characteristic has also been harnessed in the laboratory to generate reassortant viruses for their use as either inactivated or live-attenuated influenza vaccines. With the implementation of plasmid-based reverse genetics techniques, it is now possible to engineer recombinant influenza viruses entirely from full-length complementary DNA copies of the viral genome by transfection of susceptible cells. These reverse genetics systems have provided investigators with novel and powerful approaches to answer important questions about the biology of influenza viruses, including the function of viral proteins, their interaction with cellular host factors and the mechanisms of influenza virus transmission and pathogenesis. In addition, reverse genetics techniques have allowed the generation of recombinant influenza viruses, providing a powerful technology to develop both inactivated and live-attenuated influenza vaccines. In this review, we will summarize the current knowledge of state-of-the-art, plasmid-based, influenza reverse genetics approaches and their implementation to provide rapid, convenient, safe and more effective influenza inactivated or live-attenuated vaccines. PMID:28025504

  14. Epidemiological and Virological Characterization of Influenza B Virus Infections.

    Directory of Open Access Journals (Sweden)

    Sivan Sharabi

    Full Text Available While influenza A viruses comprise a heterogeneous group of clinically relevant influenza viruses, influenza B viruses form a more homogeneous cluster, divided mainly into two lineages: Victoria and Yamagata. This divergence has complicated seasonal influenza vaccine design, which traditionally contained two seasonal influenza A virus strains and one influenza B virus strain. We examined the distribution of the two influenza B virus lineages in Israel, between 2011-2014, in hospitalized and in non-hospitalized (community influenza B virus-infected patients. We showed that influenza B virus infections can lead to hospitalization and demonstrated that during some winter seasons, both influenza B virus lineages circulated simultaneously in Israel. We further show that the influenza B virus Yamagata lineage was dominant, circulating in the county in the last few years of the study period, consistent with the anti-Yamagata influenza B virus antibodies detected in the serum samples of affected individuals residing in Israel in the year 2014. Interestingly, we found that elderly people were particularly vulnerable to Yamagata lineage influenza B virus infections.

  15. siRNA for Influenza Therapy

    Directory of Open Access Journals (Sweden)

    Sailen Barik

    2010-07-01

    Full Text Available Influenza virus is one of the most prevalent and ancient infections in humans. About a fifth of world's population is infected by influenza virus annually, leading to high morbidity and mortality, particularly in infants, the elderly and the immunocompromised. In the US alone, influenza outbreaks lead to roughly 30,000 deaths each year. Current vaccines and anti-influenza drugs are of limited use due to high mutation rate of the virus and side effects. In recent years, RNA interference, triggered by synthetic short interfering RNA (siRNA, has rapidly evolved as a potent antiviral regimen. Properly designed siRNAs have been shown to function as potent inhibitors of influenza virus replication. The siRNAs outperform traditional small molecule antivirals in a number of areas, such as ease of design, modest cost, and fast turnaround. Although specificity and tissue delivery remain major bottlenecks in the clinical applications of RNAi in general, intranasal application of siRNA against respiratory viruses including, but not limited to influenza virus, has experienced significant success and optimism, which is reviewed here.

  16. siRNA for Influenza Therapy.

    Science.gov (United States)

    Barik, Sailen

    2010-07-01

    Influenza virus is one of the most prevalent and ancient infections in humans. About a fifth of world's population is infected by influenza virus annually, leading to high morbidity and mortality, particularly in infants, the elderly and the immunocompromised. In the US alone, influenza outbreaks lead to roughly 30,000 deaths each year. Current vaccines and anti-influenza drugs are of limited use due to high mutation rate of the virus and side effects. In recent years, RNA interference, triggered by synthetic short interfering RNA (siRNA), has rapidly evolved as a potent antiviral regimen. Properly designed siRNAs have been shown to function as potent inhibitors of influenza virus replication. The siRNAs outperform traditional small molecule antivirals in a number of areas, such as ease of design, modest cost, and fast turnaround. Although specificity and tissue delivery remain major bottlenecks in the clinical applications of RNAi in general, intranasal application of siRNA against respiratory viruses including, but not limited to influenza virus, has experienced significant success and optimism, which is reviewed here.

  17. Innate Immune Sensing and Response to Influenza

    Science.gov (United States)

    Pulendran, Bali; Maddur, Mohan S.

    2015-01-01

    Influenza viruses pose a substantial threat to human and animal health worldwide. Recent studies in mouse models have revealed an indispensable role for the innate immune system in defense against influenza virus. Recognition of the virus by innate immune receptors in a multitude of cell types activates intricate signaling networks, functioning to restrict viral replication. Downstream effector mechanisms include activation of innate immune cells and, induction and regulation of adaptive immunity. However, uncontrolled innate responses are associated with exaggerated disease, especially in pandemic influenza virus infection. Despite advances in the understanding of innate response to influenza in the mouse model, there is a large knowledge gap in humans, particularly in immunocom-promised groups such as infants and the elderly. We propose here, the need for further studies in humans to decipher the role of innate immunity to influenza virus, particularly at the site of infection. These studies will complement the existing work in mice and facilitate the quest to design improved vaccines and therapeutic strategies against influenza. PMID:25078919

  18. I costi dell’influenza in Italia

    Directory of Open Access Journals (Sweden)

    C. Lucioni

    2001-03-01

    Full Text Available The influenza is an acute viral infection that strikes respiratory tract and its diffusion is characteristic of epidemic and pandemic reoccurence. Globally the influenza represents, for the entity of its social impact (measurable in terms of morbility, hospitalization and mortality, a heavy healt care problem. In Italy the estimated incidence is 10-15%: the influenza is the third death cause for infectiuos disease, after AIDS and tubercolosis. This study is based on the Studio 606, the first italian study that allow us to pass from the presumptive phase to the observational one. The Studio 606 has been projected and realized by the Società Italiana di Medicina Generale (SIMG, involving about 200 general practitioners (MMG in two sample region, Lombardia and Puglia. The study has been developed between December the 15th, 1998 and March the 15th, 1999. The influenza causes especially indirect costs: most of people affected with influenza doesn’t go to work for about five days and these absences create an average cost per capita of £558.000. This indirect cost represents 87% of total average cost of one single influenza event.

  19. AVIAN INFLUENZA A/H5N1

    Directory of Open Access Journals (Sweden)

    Milena Veselinovic

    2007-10-01

    Full Text Available The World Health Organization (WHO regards avian influenza A/H5N1 as a global public health threat with pandemic potential. Between 2003 and October 12, 2007, WHO registered 331 laboratory-confirmed cases (202 fatal of human H5N1 infection. Human-to-human transmission has not been recorded yet. In the possible future, H5N1 pandemic, primary viral pneumonia would be the dominant clinical feature. Compli-cations include the development of acute respiratory distress syndrome, renal and multiorgan failure. The characteristic laboratory findings are lymphopenia, with the alteration of CD4+/CD8+ index, thrombocytopenia and ’’cytokine storm’’. Specimens for laboratory diagnosis include pharyngeal swabs, nasal swabs, tracheal aspirate (or bronchoalveolar lavage and serum (acute and convalescent. Virus isolation by cell culture is considered the "gold standard" of influenza diagnostics. Identification of infected cells is performed by direct or indirect immunofluorescence (DFA, IFA, enzyme-linked immunoassays (EIA or PCR-based methods. Mchip, a microarray which enables the detection and subtypisation based on M gene segment, is the recent breakthrough in H5N1 diagnostics. WHO Rapid Advice Guideline Panel on avian influenza, formed in 2006, defined the guidelines for chemoprophylaxis and therapy of human H5N1 infection. The most promissing primary treatment is oseltamivir. Vigorous antiviral activity against all subtypes of both A and B influenca viruses has been confirmed by in vitro studies. WHO has identified the antigenic and genetic characteristics of the viruses