Sample records for pseudotachylite solidified melt

  1. The impact pseudotachylitic breccia controversy: Insights from first isotope analysis of Vredefort impact-generated melt rocks (United States)

    Reimold, Wolf Uwe; Hauser, Natalia; Hansen, Bent T.; Thirlwall, Matthew; Hoffmann, Marie


    Besides impact melt rock, several large terrestrial impact structures, notably the Sudbury (Canada) and Vredefort (South Africa) structures, exhibit considerable occurrences of a second type of impact-generated melt rock, so-called pseudotachylitic breccia (previously often termed ;pseudotachylite; - the term today reserved in structural geology for friction melt in shear or fault zones). At the Vredefort Dome, the eroded central uplift of the largest and oldest known terrestrial impact structure, pseudotachylitic breccia is well-exposed, with many massive occurrences of tens of meters width and many hundreds of meters extent. Genesis of these breccias has been discussed variably in terms of melt formation due to friction melting, melting due to decompression after initial shock compression, decompression melting upon formation/collapse of a central uplift, or a combination of these processes. In addition, it was recently suggested that they could have formed by the infiltration of impact melt into the crater floor, coming off a coherent melt sheet and under assimilation of wall rock; even seismic shaking has been invoked. Field evidence for generation of such massive melt bodies by friction on large shear/fault zones is missing. Also, no evidence for the generation of massive pseudotachylitic breccias in rocks of low to moderate shock degree by melting upon pressure release after shock compression has been demonstrated. The efficacy of seismic shaking to achieve sufficient melting as a foundation for massive pseudotachylitic melt generation as typified by the breccias of the Sudbury and Vredefort structures has so far remained entirely speculative. The available petrographic and chemical evidence has, thus, been interpreted to favor either decompression melting (i.e., in situ generation of melt) upon central uplift collapse, or the impact melt infiltration hypothesis. Importantly, all the past clast population and chemical analyses have invariably supported an

  2. Microstructure Control of Columnar-Grained Silicon Substrate Solidified from Silicon Melts Using Gas Pressure

    Directory of Open Access Journals (Sweden)

    Jun-Kyu Lee


    Full Text Available A silicon substrate with the dimensions of 100 × 140 × 0.3 mm was grown directly from liquid silicon with gas pressure. The silicon melt in the sealed melting part was injected into the growth part at applied pressure of 780–850 Torr. The solidified silicon substrate was then transferred by the pull of the cooled dummy bar. A desirable structure with a liquid-solid interface perpendicular to the pulling direction was formed when the mold temperature in the solidification zone of the growth part was much higher than that of the dummy bar, as this technique should be able to overcome thermal loss through the molds and the limited heat flux derived from the very narrow contact area between the silicon melt and the dummy bar. In addition, because the metallic impurities and expansion of volume during solidification are preferably moved to a liquid phase, a high-quality silicon substrate, without defects such as cracks and impurities in the substrate, could be manufactured in the interface structure. The present study reports the experimental findings on a new and direct growth system for obtaining silicon substrates characterized by high quality and productivity, as a candidate for alternate routes for the fabrication of silicon substrates.

  3. Pseudotachylitic breccia in mafic and felsic rocks (United States)

    Kovaleva, Elizaveta; Huber, Matthew S.


    Impact-produced pseudotachylitic breccia (PTB) is abundant in the core of the Vredefort impact structure and was found in many pre-impact lithologies (e.g., Reimold and Colliston, 1994; Gibson et al., 1997). The mechanisms involved in the process of forming this rock remain highly debated, and various authors have discussed many possible models. We investigate PTB from two different rock types: meta-granite and meta-gabbro and test how lithology controls the development of PTB. We also report on clast transport between different lithologies. In the core of the Vredefort impact structure, meta-granite and meta-gabbro are observed in contact with each other, with an extensive set of PTB veins cutting through both lithologies. Microstructural analyses of the PTB veins in thin sections reveals differences between PTBs in meta-granite and meta-gabbro. In granitic samples, PTB often develops along contacts of material with different physical properties, such as a contact with a migmatite or pegmatite vein. Nucleation sites of PTB have features consistent with ductile deformation and shearing, such as sigmoudal-shaped clasts and dragged edges of the veins. Preferential melting of mafic and hydrous minerals takes place (e.g., Reimold and Colliston, 1994; Gibson et al., 2002). Refractory phases remain in the melt as clasts and form reaction rims. In contrast, PTB in meta-gabbro develop in zones with brittle deformation, and do not exploit existing physical contacts. Cataclastic zones develop along the faults and progressively produce ultracataclasites and melt. Thus, PTB veins in meta-gabbro contain fewer clasts. Clasts usually represent multi-phase fragments of host rock and not specific phases. Such fragments often originate from the material trapped between two parallel or horse-tail faults. The lithological control on the development of PTB does not imply that PTB develops independently in different lithologies. We have observed granitic clasts within PTB veins in meta

  4. Carbonate pseudotachylite? from a Miocene extensional detachment, W. Cyclades, Greece. (United States)

    Rice, A. Hugh N.; Grasemann, Bernhard


    Most pseudotachylites, both impact- and fault-related, occur in silicate-rich rocks, typically with 'granitoid' compositions. Examples of melting in carbonate rocks, excluding magmatic sources, are restricted to impact-events, except for a carbonate pseudotachylite in the Canalone Fault, S. Italy (Viganò et al. 2011). Another potential example of carbonate pseudotachylite, shown here, comes from the Miocene-aged W. Cycladic Detachment System, in Greece. Top-SSE ductile to brittle movement on this detachment, with a maximum displacement estimated at tens of kilometers, exhumed of HP-rocks. The carbonate pseudotachylite occurs within an 43 mm thick), consists of dark (hematitic) red, ultra-fine grained unlayered carbonate with up to 40x10 mm rather rounded clasts of earlier generations of cataclasite, many with a quartzite composition. These clasts are fractured and partially separated, with a fine red carbonate matrix. No layering of the matrix or clasts is apparent. The clasts become finer and more abundant towards the boundary with Layer B. Layers B and D (~57 & ~20 mm thick) dominantly comprises protocataclasite with greyish quartz fragments separated by a carbonate matrix along narrow fractures. Zone C and E (~23 m & >15 mm thick) comprise pale pink carbonate-dominated rocks with abundant clasts (+/- quartz fragments) of earlier cataclasite generations. These elongate clasts lie parallel to the overall banding, which is parallel to the ultramylonitic foliation (detachment surface). Smaller clasts are markedly more rounded and comprise carbonate and quartzite material and may have darker (?reaction) rims. No layering is seen in the pale pink groundmass although this is present in some elongate clasts. All layer boundaries are irregular and no principle slip surfaces have been seen. Injection veins from 1 to 9 mm wide and up to at least 100 mm long derive from the central layer (C), cutting the overall layering at a high angle and branching in several places

  5. Studies on uniformity of the active ingredients in acetaminophen suppositories re-solidified after melting under high temperature conditions. (United States)

    Yamamoto, Yoshihisa; Fukami, Toshiro; Koide, Tatsuo; Onuki, Yoshinori; Suzuki, Toyofumi; Katori, Noriko; Tomono, Kazuo


    The target of the present pharmaceutical study was the antipyretic analgesic, acetaminophen; its suppository form is usually split when used in pediatric patients. We focused on the active ingredient uniformity in these products, which were re-solidified after melting under high temperature condition. When sections of the cut surfaces of the seven acetaminophen suppository products (SUP-A-G) commercially available in Japan were visualized by polarized microscopy, acetaminophen crystals that were dispersed in the base were identified. The results of the quantitative determination of agent concentration for each cut portion (mg/g) suggested uniform dispersion of these crystals in the base of each product. The agent concentration in each portion of the suppositories that was re-solidified after melting at high temperatures was measured. Segregation of the active ingredient was observed in four products at a temperature of 40°C for 1 h, while active ingredient uniformity was maintained in the other three products (SUP-C, SUP-F and SUP-G). The latter three products also showed high viscosity at 40°C. At 50°C for 4 h, only the uniformity of the active ingredient in SUP-C was maintained. These results suggest that the uniformity of the active ingredient is lost in some acetaminophen suppositories that were re-solidified after melting under high temperature conditions. The degree of loss varies depending on the product.

  6. Printing low-melting-point alloy ink to directly make a solidified circuit or functional device with a heating pen. (United States)

    Wang, Lei; Liu, Jing


    A new method to directly print out a solidified electronic circuit through low-melting-point metal ink is proposed. A functional pen with heating capability was fabricated. Several typical thermal properties of the alloy ink Bi35In48.6Sn16Zn0.4 were measured and evaluated. Owing to the specifically selected melting point of the ink, which is slightly higher than room temperature, various electronic devices, graphics or circuits can be manufactured in a short period of time and then rapidly solidified by cooling in the surrounding air. The liquid-solid phase change mechanism of the written lines was experimentally characterized using a scanning electron microscope. In order to determine the matching substrate, wettability between the metal ink Bi35In48.6Sn16Zn0.4 and several materials, including mica plate and silicone rubber, was investigated. The resistance-temperature curve of a printed resistor indicated its potential as a temperature control switch. Furthermore, the measured reflection coefficient of a printed double-diamond antenna accords well with the simulated result. With unique merits such as no pollution, no requirement for encapsulation and easy recycling, the present printing approach is an important supplement to current printed electronics and has enormous practical value in the future.

  7. Solidified Structure and Corrosion Behavior of Laser-melt Magnesium Alloy

    Directory of Open Access Journals (Sweden)

    FANG Zhi-hao


    Full Text Available The AZ91D magnesium alloy samples were scanned by millisecond pulse Nd:YAG laser under high pure argon protection. The surface morphology, microstructure and composition of the treated magnesium alloy were studied by X-ray diffraction, optical microscopy, scanning electron microscopy, atomic force microscopy. In addition, the corrosion surface which was corroded using simulated body fluid and the mass fraction of 3.5%NaCl solution was observed and material corrosion rate was calculated. The results show that, at the same corrosion time, compared with the untreated samples, the surface corrosion resistance is improved by the enrichment of Al at the irradiated surface by the joint effect of the combination of refined homogeneous microstructure of α-Mg phase and β-Mg17Al12 phase and the selective vaporization and the chemical composition of base metal in the laser-treated AZ91D alloy; the solidification equation is obtained by calculating the relation between the size of the dendrite cell and the cooling rate in laser melting zone.

  8. Numerical Research on Magnetic Field, Temperature Field and Flow Field During Melting and Directionally Solidifying TiAl Alloys by Electromagnetic Cold Crucible (United States)

    Chen, Ruirun; Yang, Yaohua; Gong, Xue; Guo, Jingjie; Su, Yanqing; Ding, Hongsheng; Fu, Hengzhi


    The electromagnetic cold crucible (EMCC) technique is an effective method to melt and directionally solidify reactive and high-temperature materials without contamination. The temperature field and fluid flow induced by the electromagnetic field are very important for melting and controlling the microstructure. In this article, a 3D EMCC model for calculating the magnetic field in the charges (TiAl alloys) using the T-Ω finite element method was established and verified. Magnetic fields in the charge under different electrical parameters, positions and dimensions of the charge were calculated and analyzed. The calculated results show that the magnetic field concentrates in the skin layer, and the magnetic flux density ( B) increases with increasing of the frequency, charge diameter and current. The maximum B in the charge is affected by the position of the charge in EMCC ( h 1) and the charge height ( h 2), which emerges at the middle of coils ( h c) when the relationship of h c field in the charge. Consequently, the induced uniform electromagnetic stirring weakens the turbulence and improves temperature uniformity in the vicinity of the solid/liquid (S/L) interface, which is beneficial to forming a planar S/L interface during directional solidification. Based on the above conclusions, the TiAlNb alloy was successfully melted with lower power consumption and directionally solidified by the square EMCC.

  9. Microstructure formation and in situ phase identification from undercooled Co-61.8 at.% Si melts solidified on an electromagnetic levitator and an electrostatic levitator

    Energy Technology Data Exchange (ETDEWEB)

    Li Mingjun [National Institute of Advanced Industrial Science and Technology (AIST), Materials Research Institute for Sustainable Development, 2266-98 Shimo-Shidami, Moriyama, Nagoya, Aichi 463-8560 (Japan); Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science (ISAS), Tsukuba Space Centre, ISS Science Project Office, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505 (Japan)], E-mail:; Nagashio, Kosuke [Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science (ISAS), Sagamihara Campus, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 229-8510 (Japan); Ishikawa, Takehiko [Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science (ISAS), Tsukuba Space Centre, ISS Science Project Office, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505 (Japan); Mizuno, Akitoshi; Adachi, Masayoshi; Watanabe, Masahito [Department of Physics, Gakushuin University, 1-5-1 Mejiro, Toshima, Tokyo 171-8588 (Japan); Yoda, Shinichi [Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science (ISAS), Tsukuba Space Centre, ISS Science Project Office, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505 (Japan); Kuribayashi, Kazuhiko [Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science (ISAS), Sagamihara Campus, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 229-8510 (Japan); Katayama, Yoshinori [Japan Atomic Energy Agency (JAEA), 1-1-1 Kouto, Mikazuki, Sayo, Hyogo 679-5148 (Japan)


    Co-61.8 at.% Si (CoSi-CoSi{sub 2}) eutectic alloys were solidified on an electromagnetic levitator (EML) and an electrostatic levitator (ESL) at different undercooling levels. The results indicated that there is only a single recalescence event at low undercooling with the CoSi intermetallic compound as primary phase, which is independent of processing facilities, on either an EML or an ESL. The microstructure, however, is strongly dependent on the processing facility. The interior melt flow behavior in the sphere solidified at the EML differs substantially from that at the ESL, thus yielding different microstructures. On high undercooling, double recalescence takes place regardless of levitation condition. In situ X-ray diffraction of alloys solidified on the EML demonstrates that the CoSi{sub 2} compound becomes the primary phase upon the first recalescence, and the CoSi intermetallic phase crystallizes during the second recalescence. In addition to phase identification, real-time diffraction patterns can also provide additional evidence of the fragmentation of the primary phase and the ripening feature in the subsequent cooling process in the semisolid state. The phase competition between the CoSi and CoSi{sub 2} compounds is discussed when considering the nucleation barrier. The low interfacial energy of the CoSi{sub 2} phase favors a preferential nucleation event over the CoSi phase, which also plays a critical role in non-reciprocity nucleation and thus yields a double recalescence profile at high undercooling.

  10. The influence of melt convection on dendritic spacing of downward unsteady-state directionally solidified Sn-Pb alloys

    Directory of Open Access Journals (Sweden)

    José Eduardo Spinelli


    Full Text Available Microstructures are the strategic link between materials processing and materials behavior. A dendritic structure is the most frequently observed pattern of solidified alloys. The microstructural scales of dendrites, such as primary and secondary arm spacings, control the segregation profiles and the formation of secondary phases within interdendritic regions, determine the properties of cast structures. In this work, the influence of thermosolutal convection on dendrite arm spacings is experimentally examined in the downward vertical unsteady-state directional solidification of Sn-Pb hypoeutectic alloys. The experimental observations are compared not only with the main predictive theoretical models for dendritic spacings but also with experimental results obtained for Sn-Pb alloys solidified vertically upwards. Primary dendritic arm spacings have been affected by the direction of growth, decreasing in conditions of downward vertical solidification when compared with those grown vertically upwards. Further, the unsteady-state lambda1 predictive models did not generate the experimental observations.

  11. Coupling Effects of Melt Treatment and Ultrasonic Treatment on Solidifying Microstructure and Mechanical Performance of Ti44Al6Nb1Cr Alloy (United States)

    Deshuang, Zheng; Ruirun, Chen; Tengfei, Ma; Hongsheng, Ding; Yanqing, Su; Jingjie, Guo; Hengzhi, Fu


    The coupling effects of melt treatment and ultrasonic treatment on the solidifying microstructure and mechanical performance of Ti44Al6Nb1Cr alloy are investigated. During melt treatment, a low superheat degree is beneficial for microstructure refinement, with the lamellar colony size decreasing from 512 to 243 μm, while a low cooling rate leads to the microstructure coarsening as the lamellar colony size enlarges from 458 to 615 μm. After coupling with ultrasonic treatment, under moderate superheat degree and cooling rate, the original coarse lamellar colony size is significantly refined to 56 and 38 μm, the compressive strength is improved by 60.71 and 47.89 pct, and the compressive strain is enlarged by 80.19 and 112.33 pct, respectively. It is found that the ultrasonic refining efficiency is dominated by the melt temperature, and there is an optimum temperature range near the crystallization temperature: a too-high temperature leads to the remelting of crystal nuclei, impairing the refining efficiency, whereas a too-low temperature results in high viscosity, hindering the ultrasonic effects. Under ultrasonic treatment, the melt supercooling is increased, leading to an extended constitutional supercooling region, which will enlarge the crystal nucleation; the solute enrichment is enhanced, forming a quasi-steady state with a higher solution concentration gradient, which improves the crystal growth velocity.

  12. Rapidly solidified Ag-Cu eutectics: A comparative study using drop-tube and melt fluxing techniques (United States)

    Yu, Y.; Mullis, A. M.; Cochrane, R. F.


    A comparative study of rapid solidification of Ag-Cu eutectic alloy processed via melt fluxing and drop-tube techniques is presented. A computational model is used to estimate the cooling rate and undercooling of the free fall droplets as this cannot be determined directly. SEM micrographs show that both materials consist of lamellar and anomalous eutectic structures. However, below the critical undercooling the morphologies of each are different in respect of the distribution and volume of anomalous eutectic. The anomalous eutectic in flux- undercooled samples preferentially forms at cell boundaries around the lamellar eutectic in the cell body. In drop-tube processed samples it tends to distribute randomly inside the droplets and at much smaller volume fractions. That the formation of the anomalous eutectic can, at least in part, be suppressed in the drop-tube is strongly suggestive that the formation of anomalous eutectic occurs via remelting process, which is suppressed by rapid cooling during solidification.

  13. Local melting/solidification during peritectic solidification in a steep temperature gradient: analysis of a directionally solidified Al-25at%Ni (United States)

    Liu, Dongmei; Li, Xinzhong; Su, Yanqing; Rettenmayr, Markus; Guo, Jingjie; Fu, Hengzhi


    Melting of primary Al3Ni2 phase and solidification of Al3Ni peritectic phase during directional solidification of an Al-25at%Ni peritectic alloy have been investigated. In a steep temperature gradient of up to 50 K/mm and at a pulling rate of 20 μm/s, an incomplete coverage of peritectic Al3Ni phase on the surface of the primary Al3Ni2 phase has been observed. Below the peritectic temperature in the presence of the incomplete coverage, melting of primary Al3Ni2 on the one side and solidification to the Al3Ni peritectic phase on the other side proceed swiftly via diffusion through the interphase liquid layer. Theoretical calculations based on an incomplete-coverage-related melting/solidification model are in close agreement with the experimental measurements.

  14. Testing techniques for mechanical characterization of rapidly solidified materials (United States)

    Koch, C. C.


    Mechanical property testing techniques are reviewed for rapidly solidified materials. Mechanical testing of rapidly solidified materials is complicated by the fact that in most cases at least one dimension of the material is very small (less than 100 microns). For some geometries, i.e., powder or thin surface layers, microhardness is the only feasible mechanical test. The ribbon geometry which is obtained by the melt-spinning method, however, has been used for a variety of mechanical property measurements including elastic properties, tensile properties, fracture toughness, creep, and fatigue. These techniques are described with emphasis placed on the precautions required by the restricted geometry of rapidly solidified specimens.

  15. Solidified reverse micellar solutions (SRMS): A novel approach for ...

    African Journals Online (AJOL)

    Solidified reverse micellar solutions (SRMS) are reverse micelles containing lecithin and a triglyceride, for example, SOFTISAN®142, which is hydrogenated coco glyceride. SRMS transform into a lamellar mesophase after melting on contact with water; this transformation enables controlled release of solubilized drugs.

  16. Microstructures in rapidly solidified Ni-Mo alloys (United States)

    Jayaraman, N.; Tewari, S. N.; Hemker, K. J.; Glasgow, T. K.


    Ni-Mo alloys of compositions ranging from pure Ni to Ni-40 at. percent Mo were rapidly solidified by Chill Block Melt Spinning in vacuum and were examined by optical metallography, X-ray diffraction and transmission electron microscopy. Rapid solidification resulted in an extension of molybdenum solubility in nickel from 28 to 37.5 at. percent. A number of different phases and microstructures were seen at different depths (solidification conditions) from the quenched surface of the melt spun ribbons.

  17. Mathematical Modeling of the Melting Rate of Metallic Particles in the Electric Arc Furnace

    National Research Council Canada - National Science Library

    González, O. J. P; Ramírez-Argáez, Marco A; Conejo, A. N


    A computational fluid dynamics model coupled to a lagrangian model of melting/solidifying particles has been developed to describe the melting kinetics of metallic particles in an industrial Electric Arc Furnace (EAF...

  18. New developments in rapidly solidified magnesium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Das, S.K. [Allied-Signal, Inc., Morristown, NJ (United States); Chang, C.F. [Allied-Signal, Inc., Morristown, NJ (United States); Raybould, D. [Allied-Signal, Inc., Morristown, NJ (United States); King, J.F. [Magnesium Elektron Ltd., Manchester (United Kingdom); Thistlethwaite, S. [Magnesium Elektron Ltd., Manchester (United Kingdom)


    In the present paper, we will examine the new developments in the rapidly solidified Mg-Al-Zn-Nd (EA55RS) alloy. We shall first briefly review the process scale-up currently employed for producing rapidly solidified magnesium alloys in large quantities, and then discuss the effect of billet size and processing parameters on the mechanical properties of various mill product forms such as extrusions and sheets. The superplastic behavior of EA55RS extrusions and rolled sheets are also discussed. Finally, some results on magnesium metal-matrix composites using rapidly solidified EA55RS matrix powders and SiC particulates are presented. (orig.)

  19. Characterization of Solidifiers used for Oil Spill Remediation (United States)

    The physical characteristics and chemical composition of oil spill solidifiers were studied, and correlation of these properties with product effectiveness enabled determination of characteristics that are desirable in a good solidifier. The analyses revealed that the commercial...

  20. Direct Numerical Study of a Molten Metal Drop Solidifying on a Cold Plate with Different Wettability

    Directory of Open Access Journals (Sweden)

    Truong V. Vu


    Full Text Available This paper presents a direct numerical simulation of solidification of a molten metal drop on a cold plate with various wettability by an axisymmetric front-tracking method. Because of the plate kept at a temperature below the fusion value of the melt, a thin solid layer forms at the plate and evolves upwards. The numerical results show that the solidifying front is almost flat except near the triple point with a high solidification rate at the beginning and final stages of solidification. Two solid-to-liquid density ratios ρsl = 0.9 (volume change and 1.0 (no change in volume, with two growth angles φ0 = 0° and 12° are considered. The presence of volume change and a non-zero growth angle results in a solidified drop with a conical shape at the top. The focusing issue is the effects of the wettability of the plate in terms of the contact angle φ0. Increasing the contact angle in the range of 45° to 120° increases time for completing solidification, i.e., solidification time. However, it has a minor effect on the conical angle at the top of the solidified drop and the difference between the initial liquid and final solidified heights of the drop. The effects of the density ratio and growth angle are also presented.

  1. Properties of rapidly solidified Al-12.5 Si-1Ni alloy

    Energy Technology Data Exchange (ETDEWEB)

    Tawtik, N.L.; Abdel Hady, E.M.; Bastawros, A.M. [Nat. Res. Centre, Giza (Egypt). Solid State Phys. Dept.


    Rapidly solidified Al-12.5 Si-1 Ni ribbons were prepared by melt spinning. The Si solid solubility was extended to high values as deduced from X-ray diffraction and TEM. This high solubility of Si was found to have significant effects on the various properties of this alloy. High values of electric resistivity was observed which was about four times the fully annealed values. Furthermore rapid solidification improved the tensile strength and the toughness of this alloy as compared with its classically solidified counter part. The relaxation kinetics was followed by isothermal resistivity measurements. The relaxation follows an equation which has the Johnson-Mehl-Avrami (JMA) form. No metastable phase was observed. (orig.)

  2. Thermal gradient analysis of solidifying casting

    Directory of Open Access Journals (Sweden)

    J. Suchoń


    Full Text Available For description of casting solidification and crystallization process the thermal derivative analysis (TDA is commonly used. Besides the process kinetics considered in TDA method to describe the solidification process, the thermal gradient analysis can be also used for this purpose [1, 2]. In conducted studies analysis of thermal gradient distribution inside the solidifying wedge casting was shown which enabled determination of heat flow intensity on casting section.

  3. Microstructure and mechanical properties of rapidly solidified FeAlCr intermetallic compound

    Directory of Open Access Journals (Sweden)

    R. A. Rodríguez‐Díaz


    Full Text Available In this work results regarding microstructural characterization of a melt‐spun intermetallic compound Fe40Al5Cr (% at.produced by rapid solidification employing the melt spinning technique at three different tangential wheel speeds (12, 16 and20 ms‐1 are presented. Melt spun ribbons were characterized by optical and scanning electron microscopy (SEM in order toobserve morphology, grain size, ribbon thickness and also fracture surfaces after tensile tests. EDS coupled to SEM wasemployed to perform punctual and scan line chemical analyses on samples, x‐ray diffraction (XRD was utilized to identify crystalstructure and phases. Transmission electron microscopy (TEM was employed to confirm crystal structure and also tocharacterize nanopores formed in the specimens by vacancy clustering. With regard to mechanical properties, micro hardnessVickers measurements as well as tensile tests at room temperature were applied to the rapidly solidified ribbons.The grain size of rapidly solidified Fe40Al5Cr ribbons suffered a drastic reduction as compared with alloys of the samecomposition produced by conventional melting and casting methods, and in melt‐spun ribbons it decreases as the wheel speedincreases. Punctual and line‐scanning chemical analyses revealed that Cr enters in solid solution in FeAl matrix. Hardnessmeasurements revealed a softening in rapidly solidified FeAlCr ribbons as compared with FeAl alloys and tensile test exhibited a(transgranular + intergranular mode of fracture, reaching up to 3 % of elongation in FeAlCr alloys. The presence of porous(meso and nano were also characterized.

  4. A Study on the Physical Properties and Interfacial Reactions with Cu Substrate of Rapidly Solidified Sn-3.5Ag Lead-Free Solder (United States)

    Ma, Hai-Tao; Wang, Jie; Qu, Lin; Zhao, Ning; Kunwar, A.


    A rapidly solidified Sn-3.5Ag eutectic alloy produced by the melt-spinning technique was used as a sample in this research to investigate the microstructure, thermal properties, solder wettability, and inhibitory effect of Ag3Sn on Cu6Sn5 intermetallic compound (IMC). In addition, an as-cast Sn-3.5Ag solder was prepared as a reference. Rapidly solidified and as-cast Sn-3.5Ag alloys of the same size were soldered at 250°C for 1 s to observe their instant melting characteristics and for 3 s with different cooling methods to study the inhibitory effect of Ag3Sn on Cu6Sn5 IMC. Experimental techniques such as scanning electron microscopy, differential scanning calorimetry, and energy-dispersive spectrometry were used to observe and analyze the results of the study. It was found that rapidly solidified Sn-3.5Ag solder has more uniform microstructure, better wettability, and higher melting rate as compared with the as-cast material; Ag3Sn nanoparticles that formed in the rapidly solidified Sn-3.5Ag solder inhibited the growth of Cu6Sn5 IMC during aging significantly much strongly than in the as-cast material because their number in the rapidly solidified Sn-3.5Ag solder was greater than in the as-cast material with the same soldering process before aging. Among the various alternative lead-free solders, this study focused on comparison between rapidly solidified and as-cast solder alloys, with the former being observed to have better properties.

  5. Effect of hafnium addition on solidifi cation structure of cast Ti-46Al alloys

    Directory of Open Access Journals (Sweden)

    Su Yanqing


    Full Text Available To investigate the effect of hafnium addition on the solidifi cation structure, Ti-46Al alloys with nominal compositions of Ti-46Al-xHf (x = 0, 3, 5, 7 (at.% were arc-melted into small ingots in an argon atmosphere. The characteristics of the macrostructures and microstructures were studied using a linear intercept method, OM, SEM (BSE, XRD and TEM. The results showed that the ingots with Hf have near lamellar microstructure in columnar and dendrite morphology. The hafnium concentration has a strong effect on the columnar spacing refi nement. Increasing Hf from 0 to 7 (at.%, the columnar spacing can be reduced from ~ 1000 to ~ 400 μm. Constitute phases of the ingots are α2, a small amount of B2 and c. Most of the B2 phases, richer in Hf and leaner in Al and Ti, exist on the node of the dendrite core in block shape and a little across the lamellar colonies in stick shape. The c phases exist on the boundaries of lamellar colonies in small cellular shape. There also exists a segregation of Hf on the columnar and dendrite core. Particularly, both the α- and β-phase form from the melt as prior phases. The possible phase sequencing during solidifi cation and solid-state transformations with Hf is given in this paper.

  6. Application of solidifiers for oil spill containment: A review. (United States)

    Motta, Fernanda L; Stoyanov, Stanislav R; Soares, João B P


    The need for new and/or improvement of existing oil spill remediation measures has increased substantially amidst growing public concern with the increased transportation of unconventional crudes, such as diluted bitumen products. Solidifiers may be a very good spill response measure to contain and mitigate the effects of oil discharge incidents, as these interact with the oil to limit hydrocarbon release into air and water, prevent it from adhering onto sediment and debris, and could allow for oil recovery and reuse. Solidifiers change the physical state of the spilled oil from liquid to a coherent mass by chemical interactions between the spilled oil and the solidifier. Currently, the use of solidifiers is limited to small spills near shorelines. To extend their use to large-scale spill containment operations, it is necessary to understand the mechanism of solidifier action and to establish consistent criteria for evaluation of their effectiveness. The research effort to date has been focused mainly on gelators and cross-linking agents, with particularly impressive advancements in the areas of phase-selective polymeric and small-molecule gelators. Substantial research efforts are needed to improve solidifier performance and integrate solidifiers as part of spill response procedures, particularly for acute oil spills involving unconventional petroleum products. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  7. PAHs leaching test for solidified waste

    Energy Technology Data Exchange (ETDEWEB)

    Henzler, R.; Grathwohl, P. [Tuebingen Univ. (Germany). Center for Applied Geoscience


    The treatment of waste materials to allow recycling or safe disposal is a rapidly expanding business, but also subject to increasing public awareness of enviromental issues and tightening of the regularise governing in many countries. One of the most widely used treatment for wastes is stabilisation /solidification using a cement matrix to obtain a monolithic residue. The most common test procedure to assess the risks of contaminant release into water (seepage, surface and groundwater) is the so-called ''tank leaching test'' or ''diffusion test'' (NEN 7345, Mulder et al 2001, Hohberg et al 2000), in which a solidified specimen is leached with water during different periods of time. The tests are usually done at room temperatures between 20 C and 25 C. However, the temperature under natural conditions are lower resulting in lower contaminant release rates. (subsurface temperature: 5 C - 10 C). If the thermodynamics of the contaminant release, especially the activation energy of desorption and diffusion, is known, it is possible to estimate the contaminant release for lower temperatures, e.g. down to groundwater temperatures. In addition the test can be accelerated if performed at high temperatures.

  8. Application of Sorbents and Solidifiers for Oil Spills (United States)

    This guide assists product manufacturers and members of the response community in distinguishing a sorbent from a solidifier for purposes of listing such products on the National Contingency Plan (NCP) Product Schedule and applying them in the field.

  9. Rapid solidification via melt spinning - Equipment and techniques (United States)

    Jech, R. W.; Moore, T. J.; Glasgow, T. K.; Orth, N. W.


    One of the simpler methods available to accomplish rapid solidification processing is free jet melt spinning. With only a modest expenditure of time, effort, and capital, an apparatus suitable for preliminary experimentation can be assembled. Wheel and crucible materials, process atmospheres, crucible design, heating methods, and process parameters and their relationship to melt composition are described. Practical solutions to processing problems, based on 'hands-on' experience, are offered. Alloys with melting points up to 3000 F have been rapidly solidified using the techniques described.

  10. Gas atomization of cobalt ferrite-phosphate melts (United States)

    De Guire, Mark R.; O'Handley, R. C.; Kalonji, G.


    XRD, Moessbauer spectroscopy, and EDXS have been used to characterize a rapidly-solidified (Co,Fe)3O4 spinel generated in a cobalt-iron-phosphate glass matrix by gas atomization of melts. Of the two compositions tested, that containing 20 mol pct P2O5 exhibited randomly-oriented ferrite crystallization whose growth appears to have been diffusion-controlled. Unlike the ferrite, in which the iron has both tetrahedral and octahedral coordination, the iron in the glassy matrix was primarily of distorted-octahedral coordination. Calculations indicate that the cooling rates obtained with oxide melts vary strongly with droplet size, but less strongly with melt temperature.

  11. Gusev Rocks Solidified from Lava (3-D) (United States)


    In recent weeks, as NASA's Mars Exploration Rover Spirit has driven through the basin south of 'Husband Hill,' it has been traversing mainly sand and dune deposits. This week, though, Spirit has been maneuvering along the edge of an arc-shaped feature called 'Lorre Ridge' and has encountered some spectacular examples of basaltic rocks with striking textures. This panoramic camera (Pancam) image shows a group of boulders informally named 'FuYi.' These basaltic rocks were formed by volcanic processes and may be a primary constituent of Lorre Ridge and other interesting landforms in the basin. Spirit first encountered basalts at its landing site two years ago, on a vast plain covered with solidified lava that appeared to have flowed across Gusev Crater. Later, basaltic rocks became rare as Spirit climbed Husband Hill. The basaltic rocks that Spirit is now seeing are interesting because they exhibit many small holes or vesicles, similar to some kinds of volcanic rocks on Earth. Vesicular rocks form when gas bubbles are trapped in lava flows and the rock solidifies around the bubbles. When the gas escapes, it leaves holes in the rock. The quantity of gas bubbles in rocks on Husband Hill varies considerably; some rocks have none and some, such as several here at FuYi, are downright frothy. The change in textures and the location of the basalts may be signs that Spirit is driving along the edge of a lava flow. This lava may be the same as the basalt blanketing the plains of Spirit's landing site, or it may be different. The large size and frothy nature of the boulders around Lorre Ridge might indicate that eruptions once took place at the edge of the lava flow, where the lava interacted with the rocks of the basin floor. Scientists hope to learn more as Spirit continues to investigate these rocks. As Earth approaches the Chinese New Year (The Year of the Dog), the Athena science team decided to use nicknames representing Chinese culture and geography to identify rocks and

  12. Gusev Rocks Solidified from Lava (False Color) (United States)


    In recent weeks, as NASA's Mars Exploration Rover Spirit has driven through the basin south of 'Husband Hill,' it has been traversing mainly sand and dune deposits. This week, though, Spirit has been maneuvering along the edge of an arc-shaped feature called 'Lorre Ridge' and has encountered some spectacular examples of basaltic rocks with striking textures. This panoramic camera (Pancam) image shows a group of boulders informally named 'FuYi.' These basaltic rocks were formed by volcanic processes and may be a primary constituent of Lorre Ridge and other interesting landforms in the basin. Spirit first encountered basalts at its landing site two years ago, on a vast plain covered with solidified lava that appeared to have flowed across Gusev Crater. Later, basaltic rocks became rare as Spirit climbed Husband Hill. The basaltic rocks that Spirit is now seeing are interesting because they exhibit many small holes or vesicles, similar to some kinds of volcanic rocks on Earth. Vesicular rocks form when gas bubbles are trapped in lava flows and the rock solidifies around the bubbles. When the gas escapes, it leaves holes in the rock. The quantity of gas bubbles in rocks on Husband Hill varies considerably; some rocks have none and some, such as several here at FuYi, are downright frothy. The change in textures and the location of the basalts may be signs that Spirit is driving along the edge of a lava flow. This lava may be the same as the basalt blanketing the plains of Spirit's landing site, or it may be different. The large size and frothy nature of the boulders around Lorre Ridge might indicate that eruptions once took place at the edge of the lava flow, where the lava interacted with the rocks of the basin floor. Scientists hope to learn more as Spirit continues to investigate these rocks. As Earth approaches the Chinese New Year (The Year of the Dog), the Athena science team decided to use nicknames representing Chinese culture and geography to identify rocks and

  13. On oscillatory microstructure during cellular growth of directionally solidified Sn-36at.%Ni peritectic alloy (United States)

    Peng, Peng; Li, Xinzhong; Li, Jiangong; Su, Yanqing; Guo, Jingjie


    An oscillatory microstructure has been observed during deep-cellular growth of directionally solidified Sn-36at.%Ni hyperperitectic alloy containing intermetallic compounds with narrow solubility range. This oscillatory microstructure with a dimension of tens of micrometers has been observed for the first time. The morphology of this wave-like oscillatory structure is similar to secondary dendrite arms, and can be observed only in some local positions of the sample. Through analysis such as successive sectioning of the sample, it can be concluded that this oscillatory microstructure is caused by oscillatory convection of the mushy zone during solidification. And the influence of convection on this oscillatory microstructure was characterized through comparison between experimental and calculations results on the wavelength. Besides, the change in morphology of this oscillatory microstructure has been proved to be caused by peritectic transformation during solidification. Furthermore, the melt concentration increases continuously during solidification of intermetallic compounds with narrow solubility range, which helps formation of this oscillatory microstructure.

  14. Microstructure Properties of Rapidly Solidified Al-Zn-Mg-Cu Alloys

    Directory of Open Access Journals (Sweden)

    Emad M. Ahmed


    Full Text Available The Rietveld X-ray diffraction analysis was applied to analyze the weight fraction of precipitation phases and microstructure characterizations of rapidly solidified Al-8Zn-4Mg-xCu, x = 1, 4, 8, and 10 alloys (in wt.%, prepared by melt spun technique. A good agreement between observed and calculated diffraction pattern was obtained and the conventional Rietveld factors (Rp, Rwp, and GOF converged to satisfactory values. Solid solubilities of Zn, Mg, and Cu in α-Al were extended to high values. Besides, metastable Al0.71Zn0.29, intermetallic Al2CuMg, Al2Cu, and CuMgZn phases have been observed for x = 4, 8, and 10 Cu alloys. The crystal structure and microstructure characterizations exhibit strong Cu content dependence.

  15. Parameters of Solidifying Mixtures Transporting at Underground Ore Mining (United States)

    Golik, Vladimir; Dmitrak, Yury


    The article is devoted to the problem of providing mining enterprises with solidifying filling mixtures at underground mining. The results of analytical studies using the data of foreign and domestic practice of solidifying mixtures delivery to stopes are given. On the basis of experimental practice the parameters of transportation of solidifying filling mixtures are given with an increase in their quality due to the effect of vibration in the pipeline. The mechanism of the delivery process and the procedure for determining the parameters of the forced oscillations of the pipeline, the characteristics of the transporting processes, the rigidity of the elastic elements of pipeline section supports and the magnitude of vibrator' driving force are detailed. It is determined that the quality of solidifying filling mixtures can be increased due to the rational use of technical resources during the transportation of mixtures, and as a result the mixtures are characterized by a more even distribution of the aggregate. The algorithm for calculating the parameters of the pipe vibro-transport of solidifying filling mixtures can be in demand in the design of mineral deposits underground mining technology.

  16. Parameters of Solidifying Mixtures Transporting at Underground Ore Mining

    Directory of Open Access Journals (Sweden)

    Golik Vladimir


    Full Text Available The article is devoted to the problem of providing mining enterprises with solidifying filling mixtures at underground mining. The results of analytical studies using the data of foreign and domestic practice of solidifying mixtures delivery to stopes are given. On the basis of experimental practice the parameters of transportation of solidifying filling mixtures are given with an increase in their quality due to the effect of vibration in the pipeline. The mechanism of the delivery process and the procedure for determining the parameters of the forced oscillations of the pipeline, the characteristics of the transporting processes, the rigidity of the elastic elements of pipeline section supports and the magnitude of vibrator’ driving force are detailed. It is determined that the quality of solidifying filling mixtures can be increased due to the rational use of technical resources during the transportation of mixtures, and as a result the mixtures are characterized by a more even distribution of the aggregate. The algorithm for calculating the parameters of the pipe vibro-transport of solidifying filling mixtures can be in demand in the design of mineral deposits underground mining technology.

  17. Low-cost directionally-solidified turbine blades, volume 1 (United States)

    Sink, L. W.; Hoppin, G. S., III; Fujii, M.


    A low cost process of manufacturing high stress rupture strength directionally-solidified high pressure turbine blades was successfully developed for the TFE731-3 Turbofan Engine. The basic processing parameters were established using MAR-M 247 and employing the exothermic directional-solidification process in trial castings of turbine blades. Nickel-based alloys were evaluated as directionally-solidified cast blades. A new turbine blade, disk, and associated components were then designed using previously determined material properties. Engine tests were run and the results were analyzed and compared to the originally established goals. The results showed that the stress rupture strength of exothermically heated, directionally-solidified MAR-M 247 turbine blades exceeded program objectives and that the performance and cost reduction goals were achieved.

  18. Mechanical Properties of a Partially Solidified Cu-Zn Alloy (United States)

    Kasuya, Naoki; Nakazawa, Tomoaki; Matsushita, Akira; Okane, Toshimitsu; Yoshida, Makoto


    For predicting solidification cracking by thermal stress analysis, the mechanical properties in the partially solidified state based on the experimental results are the best hope. However, the Young's modulus has never been investigated for copper alloys. In this study, stress-strain curves of a Cu-Zn alloy in the partially solidified state for various solid fractions were obtained using a specially developed horizontal tensile test device. Furthermore, by removing the load during the tensile test, the spring-back (elastic behavior) was observed and the Young's modulus was obtained.

  19. Solidified reverse micellar solutions (SRMS): A novel approach for ...

    African Journals Online (AJOL)


    lipids based drug delivery systems. Salome Amarachi Chime* and Ikechukwu V. Onyishi. Department of Pharmaceutical Technology and Industrial Pharmacy, University of Nigeria, Nsukka 410001, Nigeria. Accepted 24 December, 2013. Solidified reverse micellar solutions (SRMS) are reverse micelles containing lecithin ...

  20. Site suitability criteria for solidified high level waste repositories

    Energy Technology Data Exchange (ETDEWEB)

    Heckman, R.A.; Holdsworth, T.; Towse, D.F.


    Activities devoted to development of regulations, criteria, and standards for storage of solidified high-level radioactive wastes are reported. The work is summarized in sections on site suitability regulations, risk calculations, geological models, aquifer models, human usage model, climatology model, and repository characteristics. Proposed additional analytical work is also summarized. (JRD)

  1. Undercooling and demixing in rapidly solidified Cu-Co alloys

    DEFF Research Database (Denmark)

    Battezzati, L.; Curiotto, S.; Johnson, Erik


    competition of transformation phenomena, the mechanisms have not been fully disclosed. This contribution reviews such findings with the help of a computer calculation of the phase diagram and extends the present knowledge by presenting new results obtained by rapidly solidifying various Cu–Co compositions...

  2. Application of solidified sea bottom sediments into environmental bioremediation materials

    Directory of Open Access Journals (Sweden)

    Ahmed H.A. Dabwan


    Full Text Available Since dredged sea bottom sediments normally give off a horrible smell, the limitation of disposal places has become a serious problem in Japan. Hence, development of an alternative system to readily treat dredged sea bottom sediments is therefore needed. The development of “value-added” reused products from these sediments offers particular benefits both in terms of resource recovery and protection of the environment. We developed an in situ solidification system for the treatment of sea bottom sediments, the “Hi-Biah-System (HBS”. Firstly, this review deals with solidified sea bottom sediments for the construction of an artificial tidal flat in Ago Bay, Japan. The environmental conditions (pH, oxidation–reduction potential (ORP, acid volatile sulphide (AVS, loss on ignition (LOI, water content (WC, chemical oxygen demand (COD, total organic carbon (TOC, total nitrogen (T-N, chlorophyll a and particle size were then monitored in the constructed tidal flat. The number of benthos individuals and growth of short-necked clams (Ruditapes philippinarum in the artificial tidal flat were also evaluated. The environmental conditions, number of benthos individuals and growth of short-necked clams in the artificial tidal flat were shown to be similar to those observed in a natural tidal flat. Next, the potential use of solidified sea bottom sediments as soil parent material in the germination/growth of seagrass is presented. The soil parent material consisting of solidified sediments obtained using HBS plus soil conditioner and hardener seems to be effective for the germination of Zostera marina. The best growth after six months was observed in plants grown in soil parent material consisting of a mixture of solidified sediments and the sand by weight ration 70:30. The present study may suggest the possible application of solidified sea bottom sediments into growth of other plants.

  3. Activity measurements of Al and Cu in Si-Al-Cu melt at 1273 and 1373 K by the equilibration with molten Pb

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Takeshi [Department of Materials Engineering, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)]. E-mail:; Morita, Kazuki [Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan)


    For the effective control of Al introduction to solidified Si during the solidification refining of Si with the Si-Al-based melt for the solar cell material or the LPE Si film growth processes from the Si-Cu-Al solvent, thermodynamic properties of the Si-Al-Cu melt were investigated at 1273 and 1373 K. Activities of Al and Cu in the Si-Al-Cu melt were measured by the equilibration with molten Pb. Also, the excess Gibbs energy of the melt was studied by the ternary regular solution model. The evaluated thermodynamic properties of the Si-Al-Cu melt indicated that Cu addition to the Si-Al melt brings the smaller activity coefficient of Al and is effective for reducing the Al content of solidified Si from the melt more effectively than its dilution effect for Al.

  4. Melting ice (United States)

    Benedetto, Elmo


    In this brief frontline, we want to describe the well-known fact that, when freshwater ice melts, the freshwater liquid level does not change. In the Italian Ministerial programs, fluid statics is introduced in the three years of middle school (students of 11–13 years) and during the first two years of high school (14–15 years). The Italian textbooks do not clearly explain why the abovementioned phenomenon occurs. The explanations are qualitative and they may lead to misinterpretation. I have noted that the students are very curious about this phenomenon. They sought a demonstration from books and from the web; and when they do not find it they asked me. Moreover, they have allowed me to observe that there are contradictory statements about the melting of icebergs. Some authors claim that they would not raise the sea-level, others say the opposite. Honestly speaking, I had never thought about this phenomenon and in classroom I tried to give them proof, expressing my opinion about the melting of icebergs.

  5. Microstructural observations and thermal stability of a rapidly solidified aluminum-gadolinium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Savage, S.J.; Eliezer, D.; Froes, F.H. (Rapid Solidification Group, Swedish Institute for Metals Research, Drottning Kristinas vag 48, S-114 28 Stockholm (SE))


    Rapid solidification processing has significant potential to extend the use of aluminum alloys to higher temperatures (200/sup 0/C to 350/sup 0/C). In particular, alloys based on Al-Fe-X compositions, where X = Ce or Mo, have been studied in detail. Cerium is representative of the family of rare earth, or lanthanide elements, and forms a number of intermetallic compounds with aluminum. Alloys containing rare earths other than cerium have received little attention, although for several reasons they are considered worthy of study. Rapidly solidified ribbons were prepared from this alloy by the chill block melt spinning technique at a peripheral wheel velocity of 20.4 m/s. A melt temperature of --1300/sup 0/C was used to ensure complete dissolution of all intermetallic particles. The ribbons produced were typically about 100 thick and 2 to 3 mm wide. Standard polishing techniques were used to prepare sections for optical microscopy and microhardness measurements. Room temperature Keller's reagent (diluted to 50 vol pct, in water) was used to etch the samples. Thin foils were prepared for TEM by electropolishing from both sides of the ribbon using the window technique.

  6. Physical mechanism of grain refinement in solidification of undercooled melts

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, M.; Karma, A.; Eckler, K.; Herlach, D.M. (Institut fuer Raumsimulation, Deutsche Forschungsanstalt fuer Luft- und Raumfahrt, D-51140 Koeln (Germany) Physics Department, Northeastern University, Boston, Massachusetts 02115 (United States))


    It is proposed that the widely observed transitions in solidification of undercooled melts from a coarse grained dendritic to a grain refined equiaxed microstructure result from the fragmentation of dendrites by remelting during the period following recalescence where the inter-dendritic melt solidifies. This mechanism is supported by the experimental demonstration in Cu-Ni alloys that the transition undercoolings vary with cooling rate in a way which is relatively well described quantitatively by a simple fragmentation model. The latter also predicts the occurrence of two transitions, both of which are observed.

  7. Microstructure evolution of directionally solidifi ed Sn-16%Sb hyperperitectic alloy

    Directory of Open Access Journals (Sweden)

    Li Shuangming


    Full Text Available The directionally solidifi ed microstructure of Sn-16%Sb hyperperitectic alloy has been investigated at various solidifi cation rates using a high-thermal gradient directional solidifi cation apparatus. The results indicate that the solidifi cation microstructure consists of hard primary intermetallic SnSb phase embedded in a matrix of soft peritectic β-Sn phase. The primary SnSb phase exhibits faceted growth with tetragonal or trigonal shapes. At the same time, the primary SnSb phase is refi ned with an increase in the solidifi cation rate and dispersed more uniformly in the matrix of β-Sn phase. The volume fraction of the SnSb phase fi rstly decreases and then increases when the solidifi cation rate increases in directional solidifi cation of Sn-16%Sb hyperperitectic alloy.

  8. Crystal clear transparent lipstick formulation based on solidified oils. (United States)

    De Clermont-Gallerande, H; Chavardes, V; Zastrow, L


    We have developed a lipstick, the stick of which looks totally transparent. The base, coloured or not, may contain high concentration of actives or fragrances. The present study examines the process of determination of oils and solidifying agents. The selecting criterion include visible spectroscopic measurements to quantify transparency of the formulated product. We have also validated the stick hardness through drop point and breakage measurements. After several investigations, we selected a mixture of oils and solidifying agents. The oil network obtained has been characterized through optical microscopy, transmission electronic microscopy, X-ray diffraction and differential scanning calorimetry. We can show that the final product we obtained is amorphous and its solidity can be explained by chemical bonds formation.

  9. Nickel speciation in cement-stabilized/solidified metal treatment filtercakes

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Amitava, E-mail: [J. Bennett Johnston, Sr., Center for Advanced Microstructures and Devices, Louisiana State University, Baton Rouge, LA 70806, USA (United States); Stegemann, Julia A., E-mail: [Centre for Resource Efficiency & the Environment, Department of Civil, Environmental & Geomatic Engineering, University College London, Chadwick Building, Gower Street, London WC1E 6BT, UK (United Kingdom)


    Highlights: • XAS shows the same Ni speciation in untreated and stabilized/solidified filtercake. • Ni solubility is the same for untreated and stabilized/solidified filtercake. • Leaching is controlled by pH and physical encapsulation for all binders. - Abstract: Cement-based stabilization/solidification (S/S) is used to decrease environmental leaching of contaminants from industrial wastes. In this study, two industrial metal treatment filtercakes were characterized by X-ray diffractometry (XRD), thermogravimetric and differential thermogravimetric analysis (TG/DTG) and Fourier transform infrared (FTIR); speciation of nickel was examined by X-ray absorption (XAS) spectroscopy. Although the degree of carbonation and crystallinity of the two untreated filtercakes differed, α-nickel hydroxide was identified as the primary nickel-containing phase by XRD and nickel K edge XAS. XAS showed that the speciation of nickel in the filtercake was unaltered by treatment with any of five different S/S binder systems. Nickel leaching from the untreated filtercakes and all their stabilized/solidified products, as a function of pH in the acid neutralization capacity test, was essentially complete below pH ∼5, but was 3–4 orders of magnitude lower at pH 8–12. S/S does not respeciate nickel from metal treatment filtercakes and any reduction of nickel leaching by S/S is attributable to pH control and physical mechanisms only. pH-dependent leaching of Cr, Cu and Ni is similar for the wastes and s/s products, except that availability of Cr, Cu and Zn at decreased pH is reduced in matrices containing ground granulated blast furnace slag.

  10. Micro and Macro Segregation in Alloys Solidifying with Equiaxed Morphology (United States)

    Stefanescu, Doru M.; Curreri, Peter A.; Leon-Torres, Jose; Sen, Subhayu


    To understand macro segregation formation in Al-Cu alloys, experiments were run under terrestrial gravity (1g) and under low gravity during parabolic flights (10(exp -2) g). Alloys of two different compositions (2% and 5% Cu) were solidified at two different cooling rates. Systematic microscopic and SEM observations produced microstructural and segregation maps for all samples. These maps may be used as benchmark experiments for validation of microstructure evolution and segregation models. As expected, the macro segregation maps are very complex. When segregation was measured along the central axis of the sample, the highest macro segregation for samples solidified at 1g was obtained for the lowest cooling rate. This behavior is attributed to the longer time available for natural convection and shrinkage flow to affect solute redistribution. In samples solidified under low-g, the highest macro-segregation was obtained at the highest cooling rate. In general, low-gravity solidification resulted in less segregation. To explain the experimental findings, an analytical (Flemings-Nereo) and a numerical model were used. For the numerical model, the continuum formulation was employed to describe the macroscopic transports of mass, energy, and momentum, associated with the microscopic transport phenomena, for a two-phase system. The model proposed considers that liquid flow is driven by thermal and solutal buoyancy, and by solidification shrinkage. The Flemings-Nereo model explains well macro segregation in the initial stages of low-gravity segregation. The numerical model can describe the complex macro segregation pattern and the differences between low- and high-gravity solidification.

  11. On oscillatory microstructure during cellular growth of directionally solidified Sn–36at.%Ni peritectic alloy (United States)

    Peng, Peng; Li, Xinzhong; Li, Jiangong; Su, Yanqing; Guo, Jingjie


    An oscillatory microstructure has been observed during deep-cellular growth of directionally solidified Sn–36at.%Ni hyperperitectic alloy containing intermetallic compounds with narrow solubility range. This oscillatory microstructure with a dimension of tens of micrometers has been observed for the first time. The morphology of this wave-like oscillatory structure is similar to secondary dendrite arms, and can be observed only in some local positions of the sample. Through analysis such as successive sectioning of the sample, it can be concluded that this oscillatory microstructure is caused by oscillatory convection of the mushy zone during solidification. And the influence of convection on this oscillatory microstructure was characterized through comparison between experimental and calculations results on the wavelength. Besides, the change in morphology of this oscillatory microstructure has been proved to be caused by peritectic transformation during solidification. Furthermore, the melt concentration increases continuously during solidification of intermetallic compounds with narrow solubility range, which helps formation of this oscillatory microstructure. PMID:27066761

  12. Primary arm spacing in directionally solidified Pb-10 wt pct Sn alloys (United States)

    Chopra, M. A.; Tewari, S. N.


    The dependence of primary arm spacings on growth speed was investigated for cellular and dendritic arrays in Pb-10 wt percent Sn samples directionally solidified under a constant positive thermal gradient in the melt. The gradient of constitutional supercooling was varied from almost zero (near the break-down of the planar liquid-solid interface at small growth speeds, cellular morphology) to near unity (large growth speeds, dendritic morphology). The spatial arrangements of cells and dendrites, as given by their coordination number, are not very different from each other. It appears that primary arm spacing maxima and the cell to dendrite transition are strongly influenced by the magnitude of the solute partition coefficient. The planar to cellular bifurction is supercritical in Pb-Sn which has a high partition coefficient, as compared to the subcritical behavior reported in Al-Cu and succinonitrile-acetone, both of which have low partition coefficients. The primary arm spacing model due to Hunt agrees with the experimentally observed trend for the whole growth regime. There is a good quantitative agreement at higher grdients of supercooling. However, the model overpredicts the primary arm spacings at low gradients of constitutional supercooling.

  13. Microstructure and Mechanical Properties of a Novel Rapidly Solidified, High-Temperature Al-Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Overman, Nicole R.; Mathaudhu, Suveen; Choi, Jung-Pyung; Roosendaal, Timothy J.; Pitman, Stan G.


    Rapid solidification (RS) processing, as a production method, offers a variety of unique properties based on far-from-equilibrium microstructures obtained through rapid cooling rates. In this study, we seek to investigate the microstructures and properties of a novel Al-alloy specifically designed for high temperature mechanical stability. Synthesis of, AlFe11.4Si1.8V1.6Mn0.9 (wt. %), was performed by two approaches: rotating cup atomization (“shot”) and melt spinning (“flake”). These methods were chosen because of their ability to produce alloys with tailored microstructures due to their inherent differences in cooling rate. The as-solidified precursor materials were microstructurally characterized with electron microscopy. The results show that the higher cooling rate flake material exhibited the formation of nanocrystalline regions as well additional phase morphologies not seen in the shot material. Secondary dendritic branching in the flake material was on the order of 0.1-0.25µm whereas branching in the shot material was 0.5-1.0µm. Consolidated and extruded material from both precursor materials was mechanically evaluated at both ambient and high (300°C) temperature. The consolidated RS flake material is shown to exhibit higher strengths than the shot material. The ultimate tensile strength of the melt spun flake was reported as 544.2MPa at room temperature and 298.0MPa at 300°C. These results forecast the ability to design alloys and processing approaches with unique non-equilibrium microstructures with robust mechanical properties at elevated temperatures.

  14. Filling of recovered mining areas using solidifying backfill

    Directory of Open Access Journals (Sweden)

    Zeman Róbert


    Full Text Available The aim of this article is to explore the possibilities for filling recovered mining areas using solidifying backfill .The article describes the preparation of the backfill (backfill formulation with an eventual application using low quality sands, wastes from treatment plants and ash from power plants etc now to transport it as well as its application in practice. Advantageous and disadvantageous of this method are also mentioned.Several factors must be taken info consideration during the preparation process of the backfill mixture. Firstly, the quantities of each individual component must be constantly regulated. Secondly, the properties of each component must be respected. In addition, the needs of the pipeline transport system and the specific conditions of the recovered area to be filled must also be considered.Hydraulic transport and pneumo-hydraulic pipeline transport are used for handling the backfill. Pumps for transporting the solidifying backfill have to carry out demanding tasks.Due to the physical-mechanical properties of the backfill, only highly powerful pumps can be considered. Piston type pumps such as Abel Simplex and Duplex pumps with capacities of up to 100 m3.h-1 and operating pressures of up to 16 MPa would be suitable.This method has been applied abroad for different purposes. For example, solid backfill was used in the Hamr mine during exploitation of uranium using the room-and-pillar system mining method.In the Ostrava–Karvina Coal field, backfill was used in decontamination work, filling areas in a zone of dangerous deformations and for creating a dividing stratum during thick seam mining.Research info the use of solidifying backfill was also done in the Walsum mine in Germany. The aim of this research was:- to investigate the possibilities of filling a collapsing area in a working face using a solidifying mixture of power plant ash and water,- to verify whether towing pipelines proposed by the DMT corporation would be

  15. Detection of free liquid in containers of solidified radioactive waste (United States)

    Greenhalgh, W.O.

    Nondestructive detection of the presence of free liquid within a sealed enclosure containing solidified waste is accomplished by measuring the levels of waste at two diametrically opposite locations while slowly tilting the enclosure toward one of said locations. When the measured level remains constant at the other location, the measured level at said one location is noted and any measured difference of levels indicates the presence of liquid on the surface of the solifified waste. The absence of liquid in the enclosure is verified when the measured levels at both locations are equal.

  16. Scrap melting model for steel converter founded on interfacial solid/liquid phenomena (United States)

    Kruskopf, Ari; Holappa, Lauri


    The primary goal in steel converter operation is the removal of carbon from the hot metal. This is achieved by blowing oxygen into the melt. The oxidation of carbon produces a lot of heat. To avoid too high temperatures in the melt cold scrap (recycled steel) is charged into the converter. The melting rate is affected by heat and carbon mass transfer. A process model for steel converter is in development. This model is divided into several modules, which are fluid dynamics, heat- and mass-transfer, scrap melting and chemical reactions. This article focuses on the development of the scrap melting module. A numerical model for calculating temperature and carbon concentration in the melt is presented. The melt model is connected with the solid scrap model via solid/liquid interface. The interface model can take into account solidification of iron melt, melting of solidified layer, a situation without such phase changes, and scrap melting. The aim is to predict the melting rate of the scrap including the properties of the hot metal. The model is tested by calculating the melting rates for different scrap thicknesses. All of the stages in the interface model were taking place in the test calculations.

  17. Geochemical evidence of an extraterrestrial component in impact melt breccia from the Paleoproterozoic Dhala impact structure, India (United States)

    Pati, Jayanta Kumar; Qu, Wen Jun; Koeberl, Christian; Reimold, Wolf Uwe; Chakarvorty, Munmun; Schmitt, Ralf Thomas


    The Paleoproterozoic Dhala structure with an estimated diameter of 11 km is a confirmed complex impact structure located in the central Indian state of Madhya Pradesh in predominantly granitic basement (2.65 Ga), in the northwestern part of the Archean Bundelkhand craton. The target lithology is granitic in composition but includes a variety of meta-supracrustal rock types. The impactites and target rocks are overlain by 1.7 Ga sediments of the Dhala Group and the Vindhyan Supergroup. The area was cored in more than 70 locations and the subsurface lithology shows pseudotachylitic breccia, impact melt breccia, suevite, lithic breccias, and postimpact sediments. Despite extensive erosion, the Dhala structure is well preserved and displays nearly all the diagnostic microscopic shock metamorphic features. This study is aimed at identifying the presence of an impactor component in impact melt rock by analyzing the siderophile element concentrations and rhenium-osmium isotopic compositions of four samples of impactites (three melt breccias and one lithic breccia) and two samples of target rock (a biotite granite and a mafic intrusive rock). The impact melt breccias are of granitic composition. In some samples, the siderophile elements and HREE enrichment observed are comparable to the target rock abundances. The Cr versus Ir concentrations indicate the probable admixture of approximately 0.3 wt.% of an extraterrestrial component to the impact melt breccia. The Re and Os abundances and the 187Os/188Os ratio of 0.133 of one melt breccia specimen confirm the presence of an extraterrestrial component, although the impactor type characterization still remains inconclusive.

  18. Effects of leachate concentration on the integrity of solidified clay liners. (United States)

    Xue, Qiang; Zhang, Qian


    This study aimed to evaluate the impact of landfill leachate concentration on the degradation behaviour of solidified clay liners and to propose a viable mechanism for the observed degradation. The results indicated that the unconfined compressive strength of the solidified clay decreased significantly, while the hydraulic conductivity increased with the leachate concentration. The large pore proportion in the solidified clay increased and the sum of medium and micro pore proportions decreased, demonstrating that the effect on the solidified clay was evident after the degradation caused by exposure to landfill leachate. The unconfined compressive strength of the solidified clay decreased with increasing leachate concentration as the leachate changed the compact structure of the solidified clay, which are prone to deformation and fracture. The hydraulic conductivity and the large pore proportion of the solidified clay increased with the increase in leachate concentration. In contrast, the sum of medium and micro pore proportions showed an opposite trend in relation to leachate concentration, because the leachate gradually caused the medium and micro pores to form larger pores. Notably, higher leachate concentrations resulted in a much more distinctive variation in pore proportions. The hydraulic conductivity of the solidified clay was closely related to the size, distribution, and connection of pores. The proportion of the large pores showed a positive correlation with the increase of hydraulic conductivity, while the sum of the proportions of medium and micro pores showed a negative correlation.

  19. Rapidly solidified Mg-Al-Zn-rare earth alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chang, C.F.; Das, S.K.; Raybould, D.


    Among the light metal alloys, magnesium is the lightest structural material except for beryllium, and yet magnesium alloys have not seen extensive use because of their poor strength and corrosion resistance. Rapid solidification technology offers a possible solution to these problems. A number of Mg-Al-Zn alloys containing rare earth (RE) elements (e.g. Ce, Pr, Y, and Nd) have been investigated using rapid solidification processing for possible structural applications. The processing consists of planar flow or jet casting into ribbons, pulverization of ribbon to powder, and consolidation of powder into bulk shapes. The mechanical properties of some of these alloys show attractive combinations of strength, ductility and corrosion resistance. The microstructures of these alloys are correlated with their mechanical properties. The rapidly solidified Mg-Al-Zn-RE alloys show great potential for applications in automotive and aerospace industries. 7 references.

  20. Structure fields in the solidifying cast iron roll

    Directory of Open Access Journals (Sweden)

    W.S. Wołczyński


    Full Text Available Some properties of the rolls depend on the ratio of columnar structure area to equiaxed structure area created during roll solidification. The transition is fundamental phenomenon that can be apply to characterize massive cast iron rolls produced by the casting house. As the first step of simulation, a temperature field for solidifying cast iron roll was created. The convection in the liquid is not comprised since in the first approximation, the convection does not influence the studied occurrence of the (columnar to equiaxed grains transition in the roll. The obtained temperature field allows to study the dynamics of its behavior observed in the middle of the mould thickness. This midpoint of the mould thickness was treated as an operating point for the transition. A full accumulation of the heat in the mould was postulated for the transition. Thus, a plateau at the curve was observed at the midpoint. The range of the plateau existence corresponded to the incubation period , that appeared before fully equiaxed grains formation. At the second step of simulation, behavior of the thermal gradients field was studied. Three ranges within the filed were visible: EC→EC→EC→EC→(tTECtt↔RERCtt↔a/ for the formation of columnar structure (the C – zone: ( and 0>>T&0>>=−>−=REREttGttG.The columnar structure formation was significantly slowed down during incubation period. It resulted from a competition between columnar growth and equiaxed growth expected at that period of time. The 0≈=−=RERCttGttG relationship was postulated to correspond well with the critical thermal gradient, known in the Hunt’s theory. A simulation was performed for the cast iron rolls solidifying as if in industrial condition. Since the incubation divides the roll into two zones: C and E; (the first with columnar structure and the second with fully equiaxed structure some experiments dealing with solidification were made on semi-industrial scale.

  1. Microstructural Quantification of Rapidly Solidified Undercooled D2 Tool Steel (United States)

    Valloton, J.; Herlach, D. M.; Henein, H.; Sediako, D.


    Rapid solidification of D2 tool steel is investigated experimentally using electromagnetic levitation (EML) under terrestrial and reduced gravity conditions and impulse atomization (IA), a drop tube type of apparatus. IA produces powders 300 to 1400 μm in size. This allows the investigation of a large range of cooling rates ( 100 to 10,000 K/s) with a single experiment. On the other hand, EML allows direct measurements of the thermal history, including primary and eutectic nucleation undercoolings, for samples 6 to 7 mm in diameter. The final microstructures at room temperature consist of retained supersaturated austenite surrounded by eutectic of austenite and M7C3 carbides. Rapid solidification effectively suppresses the formation of ferrite in IA, while a small amount of ferrite is detected in EML samples. High primary phase undercoolings and high cooling rates tend to refine the microstructure, which results in a better dispersion of the eutectic carbides. Evaluation of the cell spacing in EML and IA samples shows that the scale of the final microstructure is mainly governed by coarsening. Electron backscattered diffraction (EBSD) analysis of IA samples reveals that IA powders are polycrystalline, regardless of the solidification conditions. EBSD on EML samples reveals strong differences between the microstructure of droplets solidified on the ground and in microgravity conditions. While the former ones are polycrystalline with many different grains, the EML sample solidified in microgravity shows a strong texture with few much larger grains having twinning relationships. This indicates that fluid flow has a strong influence on grain refinement in this system.

  2. Surface precipitation of chromium in rapidly solidified Cu-Cr alloys (United States)

    Bizjak, Milan; Karpe, Blaž; Jakša, Gregor; Kovač, Janez


    Rapidly solidified ribbons of Cu-Cr alloys with 2.27 and 4.20 at.% of chromium were produced using the melt-spinning method. Alloys were analyzed by electron microscopy for complete solubility of Cr in copper matrix. To avoid disturbing effects of Cr phase particles, the kinetics and the sequence of microstructural transformations during heating were analyzed only the sample with 2.27 at.% of chromium with complete Cr solubility in the copper matrix. We then investigated the precipitation process for this alloy that was subsequently heated at a constant rate. The increased solid solubility obtained allowed the extensive precipitation of a Cr-rich phase. The kinetics and the sequence of microstructural changes that occurred during the heating were analyzed using an in situ measurement of the electrical resistance. The quenched microstructure was analyzed at transition points using scanning and transmission electron microscopy. X-ray photoelectron spectroscopy, as a very surface-sensitive method, was applied to study the changes in the chemical composition of the surface for the Cu-Cr alloy ribbons in the temperature range 400-700 °C during an in situ heat treatment in an ultra-high vacuum. The results show a relatively rapid precipitation of chromium to the surface, which starts at 400 °C and is correlated with a change in the microstructure and the electrical resistance. The Cr-precipitation is faster at higher temperatures and follows the parabolic law. The resistivity results for the supersaturated binary alloy were analyzed using the Ozawa method to give an activation energy for the precipitation of 196 ± 10 kJ mol-1.

  3. Microstructure and mechanical properties of a novel rapidly solidified, high-temperature Al-alloy

    Energy Technology Data Exchange (ETDEWEB)

    Overman, N.R., E-mail: [Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352 (United States); Mathaudhu, S.N. [Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352 (United States); University of California, Riverside, 3401 Watkins Dr., Riverside, CA 92521 (United States); Choi, J.P.; Roosendaal, T.J.; Pitman, S. [Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352 (United States)


    Rapid solidification (RS) processing, as a production method, offers a variety of unique properties based on far-from-equilibrium microstructures obtained through rapid cooling rates. In this study, we seek to investigate the microstructures and properties of a novel Al-alloy specifically designed for high temperature mechanical stability. Synthesis of, AlFe{sub 11.4}Si{sub 1.8}V{sub 1.6}Mn{sub 0.9} (wt.%), was performed by two approaches: rotating cup atomization (“shot”) and melt spinning (“flake”). These methods were chosen because of their ability to produce alloys with tailored microstructures due to their inherent differences in cooling rate. The as-solidified precursor materials were microstructurally characterized with electron microscopy. The results show that the higher cooling rate flake material exhibited the formation of nanocrystalline regions as well additional phase morphologies not seen in the shot material. Secondary dendritic branching in the flake material was on the order of 0.1–0.25 μm whereas branching in the shot material was 0.5–1.0 μm. Consolidated and extruded material from both precursor materials was mechanically evaluated at both ambient and high (300 °C) temperature. The consolidated RS flake material is shown to exhibit higher strengths than the shot material. The ultimate tensile strength of the melt spun flake was reported as 544.2 MPa at room temperature and 298.0 MPa at 300 °C. These results forecast the ability to design alloys and processing approaches with unique non-equilibrium microstructures with robust mechanical properties at elevated temperatures. - Highlights: • A novel alloy, AlFe{sub 11.4}Si{sub 1.8}V{sub 1.6}Mn{sub 0.9} was fabricated by rapid solidification. • Room temperature yield strength exceeded 500 MPa. • Elevated temperature (300 °C) yield strength exceeded 275 MPa. • Forging, after extrusion of the alloy resulted in microstructural coarsening. • Decreased strength and ductility was

  4. Vacuum melting and mechanical testing of simulated lunar glasses (United States)

    Carsley, J. E.; Blacic, J. D.; Pletka, B. J.


    Lunar silicate glasses may possess superior mechanical properties compared to terrestrial glasses because the anhydrous lunar environment should prevent hydrolytic weakening of the strong Si-O bonds. This hypothesis was tested by melting, solidifying, and determining the fracture toughness of simulated mare and highlands composition glasses in a high vacuum chamber. The fracture toughness, K(IC), of the resulting glasses was obtained via microindentation techniques. K(IC) increased as the testing environment was changed from air to a vacuum of 10 exp -7 torr. However, this increase in toughness may not result solely from a reduction in the hydrolytic weakening effect; the vacuum-melting process produced both the formation of spinel crystallites on the surfaces of the glass samples and significant changes in the compositions which may have contributed to the improved K(IC).

  5. Lunar Orientale Basin Melt Lake: Depth and Differentiation (United States)

    Vaughan, W. M.; Head, J. W.; Hess, P. C.; Wilson, L.; Neumann, G. A.; Smith, D. E.; Zuber, M. T.


    are better described as magmas carrying cold clasts, assimilation of which rapidly depresses liquid temperature. However, mounting evidence suggests that several large terrestrial impact melt sheets have differentiated (including the Sudbury Igneous Complex, Manicouagan, and Norokweng), and the volume of shock melt produced by an Orientale-size impact is so enormous that huge volumes of melt uncontaminated by clasts during crater excavation and modification seem likely to exist. We develop a simple model to predict the lithologies that might crystallize from the Orientale melt lake and other solidified multi-ring basin impact lakes based on 1) the bulk composition of the melt lake, 2) the operation of melt mixing in the melt lake, and 3) the chemical evolution of the resulting liquids on the An-Fo-Qz ternary. We investigate whether the resulting differentiates could explain puzzling lithologies observed in remotely-sensed data and the lunar sample suite. Young anorthosites could have crystallized from melt sheets. Mg-suite norites and troctolites could form in melt sheets, although their distinctive geochemical signature is hard to reproduce in this context. Mg-spinel lithologies could form from mixing of anorthosite and olivine-rich mantle liquids.

  6. Nonequilibrium solidification in undercooled Ti45Al55 melts (United States)

    Hartmann, H.; Galenko, P. K.; Holland-Moritz, D.; Kolbe, M.; Herlach, D. M.; Shuleshova, O.


    Ti-Al alloys are of high technological interest as light-weight high-performance materials. When produced by solidification from the liquid state, the material properties of as-solidified materials are strongly dependent on the conditions governing the solidification process. Nonequilibrium solidification from the state of an undercooled liquid may result to the formation of metastable solid materials. On the one hand undercooling under special cases may influence the phase selection behavior during solidification, and on the other hand during rapid growth of solid phases in undercooled melts nonequilibrium effects such as solute trapping and disorder trapping may occur. In the present work containerless processing by electromagnetic levitation is used to undercool Ti45Al55 melts deeply below the liquidus temperature. The dendrite growth velocity during the solidification is measured as a function of undercooling by application of a high-speed video camera. In situ diffraction experiments at ESRF in Grenoble and microstructure investigations are performed in order to identify the primary solidified phases. The experimental findings are interpreted within current theoretical models for dendritic growth and solute trapping.

  7. Process for solidifying high-level nuclear waste (United States)

    Ross, Wayne A.


    The addition of a small amount of reducing agent to a mixture of a high-level radioactive waste calcine and glass frit before the mixture is melted will produce a more homogeneous glass which is leach-resistant and suitable for long-term storage of high-level radioactive waste products.

  8. A new technology for concentrating and solidifying liquid LLRW

    Energy Technology Data Exchange (ETDEWEB)

    Newell, N. [TMC, Inc., Portland, OR (United States); Osborn, M.W.; Carey, C.C. [Oregon Health Sciences Univ., Portland, OR (United States)] [and others


    One of the unsolved problem areas of low level radioactive waste management is the radiolabeled material generated by life sciences research and clinical diagnostics. In hundreds of academic, biotechnology, and pharmaceutical institutions, there exists large amounts of both aqueous and organic solutions containing radioactively labeled nucleic acids, proteins, peptides, and their monomeric components. We have invented a generic slurry capable of binding all these compounds, thus making it possible to concentrate and solidify the radioactive molecules into a very small and lightweight material. The slurry can be contained in both large and small disposal plastic devices designed for the size of any particular operation. The savings in disposal costs and convenience of this procedure is a very attractive alternative to the present methods of long and short term storage. Additionally, the slurry can remove radiolabeled biological compounds from organic solvents, thus solving the major problem of {open_quotes}mixed{close_quotes} waste. We are now proceeding with the field application stage for the testing of these devices and anticipate widespread use of the process. We also are exploring the use of the slurry on other types of liquid low level radioactive waste.

  9. Macrostructure evolution in directionally solidified Mg-RE alloys (United States)

    Salgado-Ordorica, M. A.; Punessen, W.; Yi, S.; Bohlen, J.; Kainer, K. U.; Hort, N.

    The use of Rare-Earths (RE) to develop new cast- and wrought-magnesium alloys has acquired increased interest in recent years. The good mechanical properties of Mg-RE alloys at room temperature, and in particular their high strength at relatively high temperatures are at present well-known facts that make them very promising materials for transport applications. In this context, it is necessary to achieve a better understanding of the macro and microstructure evolution of cast Mg-metals directionally solidified. To this end, binary Mg-RE alloys (where RE = Gd, Nd and Y) were cast by permanent mould direct chill casting. This process was performed in a specially optimized laboratory-scale installation in order to ensure the obtention of "clean" ingots, with homogeneous composition and free of porosity and inclusions. A set of different processing conditions was evaluated in order to better control the final microstructure, mainly in terms of grain size, orientation and distribution. The grain selection mechanisms operating during the solidification of these specimens, namely texturization and Columnar to Equiaxed Transition (CET), were characterized and put into relation with the initial composition of the alloy and the imposed cooling conditions.

  10. Experimental Study and Application of Inorganic Solidified Foam Filling Material for Coal Mines

    National Research Council Canada - National Science Library

    Hu Wen; Duo Zhang; Zhijin Yu; Xuezhao Zheng; Shixing Fan; Bin Laiwang


    .... Building an airtight wall is an effective measure for controlling air leakage. A new type of inorganic solidified foam-filled material was developed and its physical and chemical properties were analyzed experimentally...

  11. Location specific solidification microstructure control in electron beam melting of Ti-6Al-4V

    Energy Technology Data Exchange (ETDEWEB)

    Narra, Sneha P.; Cunningham, Ross; Beuth, Jack; Rollett, Anthony D.


    Relationships between prior beta grain size in solidified Ti-6Al-4V and melting process parameters in the Electron Beam Melting (EBM) process are investigated. Samples are built by varying a machine-dependent proprietary speed function to cover the process space. Optical microscopy is used to measure prior beta grain widths and assess the number of prior beta grains present in a melt pool in the raster region of the build. Despite the complicated evolution of beta grain sizes, the beta grain width scales with melt pool width. The resulting understanding of the relationship between primary machine variables and prior beta grain widths is a key step toward enabling the location specific control of as-built microstructure in the EBM process. Control of grain width in separate specimens and within a single specimen is demonstrated.

  12. Effects of intermetallic phases on the electrochemical properties of rapidly-solidified Si-Cr alloys for rechargeable Li-ion batteries (United States)

    Ha, Jeong Ae; Jo, In Joo; Park, Won-Wook; Sohn, Keun Yong


    The microstructures and the electrochemical properties of rapidly-solidified Si-Cr alloys of various compositions were investigated in order to elucidate the effects of intermetallic phases on the cyclic energy capacity of the materials. Rapidly-solidified ribbons of the alloys were prepared by using a melt-spinning process, which is one of the most efficient rapid-solidification processes. The ribbons were fragmented by using a ball-milling process to produce powders of the alloys. To examine the electrochemical characteristics of the alloys, we mixed each of the alloy powders with Ketjenblack®, a conductive material, and a binder dissolved in deionized water and used it to form electrodes. The electrolyte used was 1.5-M LiPF6 dissolved in ethyl carbonate/dimethyl carbonate/fluoroethylene carbonate. The microstructures and the phases of the alloys were analyzed by using scanning electron microscopy, transmission electron microscopy, and X-ray diffraction analyses. The obtained results showed that the microstructures of the rapidly-solidified Si-Cr alloys were composed of Si and CrSi2 phases. Fine Si particles with diameters of 50 - 100 nm were observed in an eutectic constituent while the sizes of the primary Si and CrSi2 phases were relatively larger at 500 - 900 nm. The specific energy capacities ( C) of the Si-Cr alloys decreased linearly with increasing volume fraction ( f) of the CrSi2 phase as follows: C = -1,667 f + 1,978 after the 50th cycle. The Columbic efficiency after the 3rd cycle increased slightly with increasing volume fraction of the CrSi2 phase; this was effective in improving the cycling capacity of the Si particles.

  13. Melt containment member (United States)

    Rieken, Joel R.; Heidloff, Andrew J.


    A tubular melt containment member for transient containment of molten metals and alloys, especially reactive metals and alloys, includes a melt-contacting layer or region that comprises an oxygen-deficient rare earth oxide material that is less reactive as compared to the counterpart stoichiometric rare earth oxide. The oxygen-deficient (sub-stoichiometric) rare earth oxide can comprise oxygen-deficient yttria represented by Y.sub.2O.sub.3-x wherein x is from 0.01 to 0.1. Use of the oxygen-deficient rare earth oxide as the melt-contacting layer or region material reduces reaction with the melt for a given melt temperature and melt contact time.

  14. Gusev Rocks Solidified from Lava (Approximate True Color) (United States)


    In recent weeks, as NASA's Mars Exploration Rover Spirit has driven through the basin south of 'Husband Hill,' it has been traversing mainly sand and dune deposits. This week, though, Spirit has been maneuvering along the edge of an arc-shaped feature called 'Lorre Ridge' and has encountered some spectacular examples of basaltic rocks with striking textures. This panoramic camera (Pancam) image shows a group of boulders informally named 'FuYi.' These basaltic rocks were formed by volcanic processes and may be a primary constituent of Lorre Ridge and other interesting landforms in the basin. Spirit first encountered basalts at its landing site two years ago, on a vast plain covered with solidified lava that appeared to have flowed across Gusev Crater. Later, basaltic rocks became rare as Spirit climbed Husband Hill. The basaltic rocks that Spirit is now seeing are interesting because they exhibit many small holes or vesicles, similar to some kinds of volcanic rocks on Earth. Vesicular rocks form when gas bubbles are trapped in lava flows and the rock solidifies around the bubbles. When the gas escapes, it leaves holes in the rock. The quantity of gas bubbles in rocks on Husband Hill varies considerably; some rocks have none and some, such as several here at FuYi, are downright frothy. The change in textures and the location of the basalts may be signs that Spirit is driving along the edge of a lava flow. This lava may be the same as the basalt blanketing the plains of Spirit's landing site, or it may be different. The large size and frothy nature of the boulders around Lorre Ridge might indicate that eruptions once took place at the edge of the lava flow, where the lava interacted with the rocks of the basin floor. Scientists hope to learn more as Spirit continues to investigate these rocks. As Earth approaches the Chinese New Year (The Year of the Dog), the Athena science team decided to use nicknames representing Chinese culture and geography to identify rocks and

  15. High-pressure phases in shock-induced melt of the unique highly shocked LL6 chondrite Northwest Africa 757 (United States)

    Hu, Jinping; Sharp, Thomas G.


    Northwest Africa 757 is unique in the LL chondrite group because of its abundant shock-induced melt and high-pressure minerals. Olivine fragments entrained in the melt transform partially and completely into ringwoodite. Plagioclase and Ca-phosphate transform to maskelynite, lingunite, and tuite. Two distinct shock-melt crystallization assemblages were studied by FIB-TEM analysis. The first melt assemblage, which includes majoritic garnet, ringwoodite plus magnetite-magnesiowüstite, crystallized at pressures of 20-25 GPa. The other melt assemblage, which consists of clinopyroxene and wadsleyite, solidified at ~15 GPa, suggesting a second veining event under lower pressure conditions. These shock features are similar to those in S6 L chondrites and indicate that NWA 757 experienced an intense impact event, comparable to the impact event that disrupted the L chondrite parent body at 470 Ma.

  16. Three-dimensional solidification and melting using magnetic field control (United States)

    Dulikravich, George S.; Ahuja, Vineet


    A new two-fluid mathematical model for fully three dimensional steady solidification under the influence of an arbitrary acceleration vector and with or without an arbitrary externally applied steady magnetic field have been formulated and integrated numerically. The model includes Joule heating and allows for separate temperature dependent physical properties within the melt and the solid. Latent heat of phase change during melting/solidification was incorporated using an enthalpy method. Mushy region was automatically captured by varying viscosity orders of magnitude between liquidus and solidus temperature. Computational results were obtained for silicon melt solidification in a parallelepiped container cooled from above and from a side. The results confirm that the magnetic field has a profound influence on the solidifying melt flow field thus changing convective heat transfer through the boundaries and the amount and shape of the solid accrued. This suggests that development of a quick-response algorithm for active control of three dimensional solidification is feasible since it would require low strength magnetic fields.

  17. Effect of Laser Power and Scan Speed on Melt Pool Characteristics of Commercially Pure Titanium (CP-Ti) (United States)

    Kusuma, Chandrakanth; Ahmed, Sazzad H.; Mian, Ahsan; Srinivasan, Raghavan


    Selective laser melting (SLM) is an additive manufacturing technique that creates complex parts by selectively melting metal powder layer-by-layer using a laser. In SLM, the process parameters decide the quality of the fabricated component. In this study, single beads of commercially pure titanium (CP-Ti) were melted on a substrate of the same material using an in-house built SLM machine. Multiple combinations of laser power and scan speed were used for single bead fabrication, while the laser beam diameter and powder layer thickness were kept constant. This experimental study investigated the influence of laser power, scan speed, and laser energy density on the melt pool formation, surface morphology, geometry (width and height), and hardness of solidified beads. In addition, the observed unfavorable effect such as inconsistency in melt pool width formation is discussed. The results show that the quality, geometry, and hardness of solidified melt pool are significantly affected by laser power, scanning speed, and laser energy density.

  18. Preparation, Characterization and Properties of Rapidly Solidified Alloys (United States)


    the overlapping melt spots used to refine the surface microstructure. Figure 11. A crystal of the same type as shown in Figure 12, but aligned with a...rows there is a spacing of spots which follows a Fibonacci sequence for some distance until a defect is encountered; normal to the rows we then have...Gaussian. The fit shown corresponds to two overlapping Gaussians (see Table III). Fig. 4. SEM photographs of the edge of a flake with x - 0.20. The

  19. Development of a Fluid-Particle Model in Simulating the Motion of External Solidified Crystals and the Evolution of Defect Bands in High-Pressure Die Casting (United States)

    Bi, Cheng; Xiong, Shoumei; Li, Xiaobo; Guo, Zhipeng


    A numerical fluid-particle model was developed to simulate the motion of external solidified crystals (ESCs) in the melt during the filling process of high-pressure die casting (HPDC). Simulation results on a tensile bar casting with two types of ingates (semi-circle and circle) revealed that for a long time scale the ESCs tended to distribute in a ring pattern around the specimen center, whereas for a short time scale the ESC distribution changed constantly from the ring pattern to either the center pattern or the ring-center pattern. It was proposed that the defect bands would form at these areas where two solidification fronts met (where solidification shrinkage occurred), including one originating from the skin layer of the specimen and the other from the ESC region. Accordingly, three types of defect band patterns, which were commonly observed in HPDC experiment, could be successfully simulated and explained using this model.

  20. Detachment of secondary dendrite arm in a directionally solidified Sn-Ni peritectic alloy under deceleration growth condition (United States)

    Peng, Peng; Li, Xinzhong; Li, Jiangong; Su, Yanqing; Guo, Jingjie; Fu, Hengzhi


    In order to better understand the detachment mechanism of secondary dendrite arm during peritectic solidification, the detachment of secondary dendrite arm from the primary dendrite arms in directionally solidified Sn-36at.%Ni peritectic alloys is investigated at different deceleration rates. Extensive detachment of secondary dendrite arms from primary stem is observed below peritectic reaction temperature TP. And an analytical model is established to characterize the detachment process in terms of the secondary dendrite arm spacing λ2, the root radius of detached arms and the specific surface area (SV) of dendrites. It is found that the detachment mechanism is caused by not only curvature difference between the tips and roots of secondary branches, but also that between the thicker secondary branches and the thinner ones. Besides, this detachment process is significantly accelerated by the temperature gradient zone melting (TGZM) effect during peritectic solidification. It is demonstrated that the reaction constant (f) which is used to characterize the kinetics of peritectic reaction is crucial for the determination of the detachment process. The value of f not only changes with growth rate but also with solidification time at a given deceleration rate. In conclusion, these findings help the better understanding of the detachment mechanism.

  1. The Effects of Externally Solidified Product on Wave Celerity and Quality of Die Cast Products

    Energy Technology Data Exchange (ETDEWEB)

    Carroll Mobley; Yogeshwar Sahai; Jerry Brevick


    The cold chamber die casting process is used to produce essentially all the die cast aluminum products and about 50% of the die cast magnesium products made today. Modeling of the cold chamber die casting process and metallographic observations of cold chamber die cast products indicate that typically 5 to 20% of the shot weight is solidified in the shot sleeve before or during cavity filling. The protion of the resulting die casting which is solidified in the shot sleeve is referred to as externally solidified product, or, when identified as a casting defect, as cold flakes. This project was directed to extending the understanding of the effects of externally solidified product on the cold chamber die casting process and products to enable the production of defect-free die castings and reduce the energy associated with these products. The projected energy savings from controlling the fraction of externally solidified product in die cast components is 40 x 10 Btu through the year 2025.

  2. An Experimental Study on Solidifying Municipal Sewage Sludge through Skeleton Building Using Cement and Coal Gangue

    Directory of Open Access Journals (Sweden)

    Jiankang Yang


    Full Text Available The municipal sewage sludge typically has very high water content and low shear strength. Conventional methods of lime and cement solidification of municipal sewage sludge often suffer high cost, significant drying shrinkage, frequent cracking, high hydraulic conductivity, and low strength. To overcome these shortcomings, in this paper a skeleton-building method was used to solidify municipal sewage sludge in which coal gangue, cement and clay, and fiber were used as skeleton materials, cementation materials, and filling materials, respectively. Comprehensive laboratory tests including cracking, nitrogen adsorption, triaxial shearing, and permeability tests were performed to determine cracking, pore structure, shear strength, and hydraulic conductivity of municipal sewage sludge solidified with different proportions of coal gangue, cement, fiber, and clay. Based upon the experimental results, the mechanisms of the skeleton building using cement and coal gangue were discussed and factors controlling the mechanical and hydraulic behavior of the solidified soils were analyzed at both microscopic and macroscopic levels. Based upon the test results and analyses, recommendations were made for solidifying municipal sewage sludge through skeleton building using cement and coal gangue. The solidified soils have high soil strength, high resistance to cracking, and low hydraulic conductivity which are sufficient for being used as landfill liner.

  3. Dendrite Growth Kinetics in Undercooled Melts of Intermetallic Compounds

    Directory of Open Access Journals (Sweden)

    Dieter M. Herlach


    Full Text Available Solidification needs an undercooling to drive the solidification front. If large undercoolings are achieved, metastable solid materials are solidified from the undercooled melt. Containerless processing provides the conditions to achieve large undercoolings since heterogeneous nucleation on container walls is completely avoided. In the present contribution both electromagnetic and electrostatic levitation are applied. The velocity of rapidly advancing dendrites is measured as a function of undercooling by a High-Speed-Camera. The dendrite growth dynamics is investigated in undercooled melts of intermetallic compounds. The Al50Ni50 alloy is studied with respect to disorder trapping that leads to a disordered superlattice structure if the melt is undercooled beyond a critical undercooling. Disorder trapping is evidenced by in situ energy dispersive diffraction using synchrotron radiation of high intensity to record full diffraction pattern on levitated samples within a short time interval. Experiments on Ni2B using different processing techniques of varying the level of convection reveal convection-induced faceting of rapidly growing dendrites. Eventually, the growth velocity is measured in an undercooled melt of glass forming Cu50Zr50 alloy. A maximum in the growth velocity–undercooling relation is proved. This is understood by the fact that the temperature dependent diffusion coefficient counteracts the thermodynamic driving force for rapid growth if the temperature of the undercooled melt is approaching the temperature regime above the glass transition temperature. The analysis of this result allows for determining the activation energy of atomic attachment kinetics at the solid–liquid interface that is comparable to the activation energy of atomic diffusion as determined by independent measurements of the atomic diffusion in undercooled Cu50Zr50 alloy melt.

  4. Primary Dendrite Arm Spacings in Al-7Si Alloy Directionally Solidified on the International Space Station (United States)

    Angart, Samuel; Lauer, Mark; Poirier, David; Tewari, Surendra; Rajamure, Ravi; Grugel, Richard


    Samples from directionally solidified Al- 7 wt. % Si have been analyzed for primary dendrite arm spacing (lambda) and radial macrosegregation. The alloy was directionally solidified (DS) aboard the ISS to determine the effect of mitigating convection on lambda and macrosegregation. Samples from terrestrial DS-experiments thermal histories are discussed for comparison. In some experiments, lambda was measured in microstructures that developed during the transition from one speed to another. To represent DS in the presence of no convection, the Hunt-Lu model was used to represent diffusion controlled growth under steady-state conditions. By sectioning cross-sections throughout the entire length of a solidified sample, lambda was measured and calculated using the model. During steady-state, there was reasonable agreement between the measured and calculated lambda's in the space-grown samples. In terrestrial samples, the differences between measured and calculated lambda's indicated that the dendritic growth was influenced by convection.

  5. Nanoscale microstructure effects on hydrogen behavior in rapidly solidified aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tashlykova-Bushkevich, Iya I. [Belarusian State University of Informatics and Radioelectronics, Minsk (Belarus)


    The present work summarizes recent progress in the investigation of nanoscale microstructure effects on hydrogen behavior in rapidly solidified aluminum alloys foils produced at exceptionally high cooling rates. We focus here on the potential of modification of hydrogen desorption kinetics in respect to weak and strong trapping sites that could serve as hydrogen sinks in Al materials. It is shown that it is important to elucidate the surface microstructure of the Al alloy foils at the submicrometer scale because rapidly solidified microstructural features affect hydrogen trapping at nanostructured defects. We discuss the profound influence of solute atoms on hydrogen−lattice defect interactions in the alloys. with emphasis on role of vacancies in hydrogen evolution; both rapidly solidified pure Al and conventionally processed aluminum samples are considered.

  6. Leaching of heavy metals from solidified waste using Portland cement and zeolite as a binder. (United States)

    Napia, Chuwit; Sinsiri, Theerawat; Jaturapitakkul, Chai; Chindaprasirt, Prinya


    This study investigated the properties of solidified waste using ordinary Portland cement (OPC) containing synthesized zeolite (SZ) and natural zeolite (NZ) as a binder. Natural and synthesized zeolites were used to partially replace the OPC at rates of 0%, 20%, and 40% by weight of the binder. Plating sludge was used as contaminated waste to replace the binder at rates of 40%, 50% and 60% by weight. A water to binder (w/b) ratio of 0.40 was used for all of the mixtures. The setting time and compressive strength of the solidified waste were investigated, while the leachability of the heavy metals was determined by TCLP. Additionally, XRD, XRF, and SEM were performed to investigate the fracture surface, while the pore size distribution was analyzed with MIP. The results indicated that the setting time of the binders marginally increased as the amount of SZ and NZ increased in the mix. The compressive strengths of the pastes containing 20 and 40wt.% of NZ were higher than those containing SZ. The compressive strengths at 28 days of the SZ solidified waste mixes were 1.2-31.1MPa and those of NZ solidified waste mixes were 26.0-62.4MPa as compared to 72.9MPa of the control mix at the same age. The quality of the solidified waste containing zeolites was better than that with OPC alone in terms of the effectiveness in reducing the leachability. The concentrations of heavy metals in the leachates were within the limits specified by the US EPA. SEM and MIP revealed that the replacement of Portland cement by zeolites increased the total porosity but decreased the average pore size and resulted in the better containment of heavy ions from the solidified waste. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. The Development of Rapidly Solidified Magnesium – Copper Ribbons

    Directory of Open Access Journals (Sweden)

    Pastuszak M.


    Full Text Available The aim of the present work was to plan and carry out an experiment consisting of amorphization of industrial magnesium alloy WE 43 (Mg - 4 Y - 3 RE - 0.5 Zr modified by the copper addition. Investigated alloy modified with 20% of copper was rapidly quenched with the use of melt spinning technique. The effects of cooling rate on the structure and properties of the obtained material were extensively analyzed. The structure and phase analysis of samples were examined using X-ray diffraction method (XRD while the thermal stability of the samples was determined by differential scanning calorimetry (DSC. Microstructure observations were also conducted. The microhardness tests (HV0.02 and corrosion resistance tests were carried out to investigate the properties of the material. Corrosion resistance measurements were held using a typical three-electrode system. As the result of the research, the effect of cooling rate on microstructure and properties of investigated alloy was determined.

  8. Microstructure evolution and thermal stability of rapidly solidified Al-Ni-Co-RE alloy

    Directory of Open Access Journals (Sweden)

    B. Karpe


    Full Text Available In the frame of this work, Al-5Ni-1Co-3RE (RE-Rare Earth (Mischmetal rapidly solidified ribbons were manufactured and analyzed. The morphology of the as-cast structure, as well as the microstructural features were analyzed by transmission electron microscopy (TEM and scanning electron microscopy (SEM. Thermal stability has been investigated by combination of four point scanning electrical resistivity measurement (ER, differential scanning calorimetry (DSC and microhardness measurement. From the results we can conclude, that Al-5Ni-1Co-3RE rapidly solidified alloys have good thermal stability due to very slow coarsening kinetics of precipitated particles.

  9. Estimation of Steel Solidified Layer Thickness, for Continuous Casting Control Purposes

    Directory of Open Access Journals (Sweden)

    Mihai MUNTEANU


    Full Text Available An important goal in continuous casting automation process rest in establishing a proper casting speed being able to assure a compromise between machine productivity and solidified skin cracking protection on the mould level. Contextually, this paper presents new solutions regarding solidified layer thickness estimation for steel continuous casting. The new model starts from actual stadium analysis and propose a solution for analytical model modification, in such a way that the model to approximate solidification dynamics at different casting speeds, using both important parameters for continuous casting process, meaning casting speed and time. A series of results obtained using numeric simulation are presented as a validation for proposed solution.

  10. Melt Cast High Explosives

    Directory of Open Access Journals (Sweden)

    Stanisław Cudziło


    Full Text Available [b]Abstract[/b]. This paper reviews the current state and future developments of melt-cast high explosives. First the compositions, properties and methods of preparation of trinitrotoluene based (TNT conventional mixtures with aluminum, hexogen (RDX or octogen (HMX are described. In the newer, less sensitive explosive formulations, TNT is replaced with dinitroanisole (DNANDNANDNAN and nitrotriazolone (NTONTONTO, nitroguanidine (NG or ammonium perchlorate (AP are the replacement for RDRDX and HMX. Plasticized wax or polymer-based binder systems for melt castable explosives are also included. Hydroxyl terminated polybutadiene (HPTB is the binder of choice, but polyethylene glycol, and polycaprolactone with energetic plasticizers are also used. The most advanced melt-cast explosives are compositions containing energetic thermoplastic elastomers and novel highly energetic compounds (including nitrogen rich molecules in whose particles are nanosized and practically defect-less.[b]Keywords[/b]: melt-cast explosives, detonation parameters


    Directory of Open Access Journals (Sweden)

    L. V. Golubeva


    Full Text Available Summary. Melted butter is made from dairy butter by rendering the fat phase. It has specific taste and aroma, high-calorie content and good assimilability. Defects of butter which appeared during the storage causes by the development of microbiological processes or by the chemical oxidation. On the development of these processes influence quality and composition of fresh butter, its physical structure, content of the increased amount of gas phase and content of heavy metals, storage conditions. Microbiological spoilage of butter occurs generally due to damage of plasma which is good environment for the development of microorganisms. Defects of microbiological origin include: unclean, sour, moldy, yeasty, cheesy, bitter taste. Defects of test and smell chemical origin are formed due to hydrolytic digestion of lipids. It's prevailed at long storage of butter in the conditions of freezing temperatures. It's picked out the following main processes of spoiling: souring, acidifying and sallowness. Often these processes take place simultaneously.It has been investigated melted butter with lactated additive. The latter improves the microbiological and toxicological safety, prolongs the storage condition of the products. Technological efficiency of the additives is achieved by a multilayer products formation from the inactive bound water, preventing microorganisms growth and by the barrier layer with lactate inhibiting hydrolytic reactions. Oil samples were obtained with the batch-type butter maker application, then they were melted and after that lactated additive were supplemented. It has been studied organoleptic and physico-chemical indices of the melted butter samples. The fatty-acid composition of melted butter were studied. Comparative analysis of fatty-acid composition of cow's milk fat and produced melted butter has shown their similarity. Also in the last sample there is increased weight fraction of linoleic and linolenic acids. The obtained

  12. Influence of Short-time Oxidation on Corrosion Properties of Directionally Solidified Superalloys with Different Orientations

    Directory of Open Access Journals (Sweden)

    MA Luo-ning


    Full Text Available In order to investigate the corrosion performance on intersecting and longitudinal surfaces of unoxidized and oxidized directionally solidified superalloys, Ni-base directionally solidified superalloy DZ125 and Co-base directionally solidified superalloy DZ40M were selected. Oxidation behavior on both alloys with different orientations was investigated at 1050℃ at different times, simulating the oxidation process of vanes or blades in service; subsequent electrochemical performance in 3.5%NaCl aqueous solution was studied on two orientations of unoxidized and oxidized alloys, simulating the corrosion process of superalloy during downtime. The results show that grain boundaries and sub-boundaries of directionally solidified superalloys are susceptible to corrosion and thus longitudinal surface with lower area fraction of grain boundaries has higher corrosion resistance. Compared to intersecting surface of alloys, the structure of grain boundaries of longitudinal surface is less conducive to diffusion and thus the oxidation rate on longitudinal surface is lower. Formation of oxide layers on alloys after short-time oxidation provides protective effect and enhances the corrosion resistance.

  13. Evaluation of Carbonation Effects on Cement-Solidified Contaminated Soil Used in Road Subgrade

    Directory of Open Access Journals (Sweden)

    Yundong Zhou


    Full Text Available Cement solidification/stabilization is widely used towards contaminated soil since it has a low price and significant improvement for the structural capacity of soil. To increase the usage of the solidified matrix, cement-solidified contaminated soil was used as road subgrade material. In this study, carbonation effect that reflected the durability on strength characteristics of cement-solidified contaminated soil and the settlement of pavement were evaluated through experimental and numerical analysis, respectively. According to results, compressive strengths of specimens with 1% Pb(II under carbonation and standard curing range from 0.44 MPa to 1.17 MPa and 0.14 MPa to 2.67 MPa, respectively. The relatively low strengths were attributed to immobilization of heavy metal, which consumed part of SiO2, Al2O3, and CaO components in the cement or kaolin and reduced the hydration and pozzolanic reaction materials. This phenomenon further decreased the strength of solidified soils. The carbonation depth of 1% Cu(II or Zn(II contaminated soils was 18 mm, which significantly increased with the increase of curing time and contamination concentration. Furthermore, the finite element calculation results showed that surface settlements decreased with the increase of modulus of subgrade and the distance away from the center. At the center, the pavement settlement was proportional to the level of traffic load.

  14. Periodontal tissue regeneration using enzymatically solidified chitosan hydrogels with or without cell loading

    NARCIS (Netherlands)

    Yan, X.Z.; Beucken, J.J.J.P van den; Cai, X; Yu, N.; Jansen, J.A.; Yang, F.


    This study is aimed to evaluate the in vivo biocompatibility and periodontal regenerative potential of enzymatically solidified chitosan hydrogels with or without incorporated periodontal ligament cells (PDLCs). To this end, chitosan hydrogels, with (n=8; CHIT+CELL) or without (n=8; CHIT)

  15. Micro- and nano-spheres of low melting point metals and alloys, formed by ultrasonic cavitation. (United States)

    Friedman, H; Reich, S; Popovitz-Biro, R; von Huth, P; Halevy, I; Koltypin, Y; Gedanken, A; Porat, Z


    Metals and alloys of low melting points (metals into microspheres that solidify rapidly upon cooling. This method has been applied to seven pure metals (Ga, In, Sn, Bi, Pb, Zn, Hg) and two eutectic alloys of gold (Au-Ge and Au-Si). The morphology and composition of the resulting microspheres were examined by SEM and EDS. Eutectic Au-Si formed also crystalline Au nanoparticles, which were separated and studied by HRTEM. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Nucleation of melting and solidification in confined high aspect ratio thin films (United States)

    Mastandrea, J. P.; Ager, J. W.; Chrzan, D. C.


    Classical nucleation theory is used to consider the solidification of a melt confined between two planar surfaces. The critical nucleus shapes and the associated nucleation energy barriers are computed as a function of the thickness of the film and the film's relevant bulk and interface energies. The analysis is then repeated for the melting transition, and expressions for the depression and elevation of the melting temperature, relative to the thermodynamic bulk melting temperature of the film material, are found. A nucleus morphology diagram is constructed. This diagram presents the lowest energy morphology of the nuclei, as well as melting points, as a function of the system parameters. Using the nucleus morphology diagram, experimental and system parameters that allow for the desired nucleation behavior can be identified. Furthermore, the nucleus morphology diagram illustrates a region of parameter space where the film is predicted to solidify above its thermodynamic bulk melting temperature, a behavior termed presolidification. The theory is used to predict the temperature at which the nucleation of the solid phase and liquid phase is expected for Ge between two glass substrates. Furthermore, a possible route for controlling the orientation of the film is identified. By controlling the growth temperature, certain orientations may not be able to nucleate, thereby reducing the possible number of orientations within a film.

  17. Electrochemical properties of rapidly solidified Si-Ti-Ni(-Cu) base anode for Li-ion rechargeable batteries (United States)

    Kwon, Hye Jin; Sohn, Keun Yong; Park, Won-Wook


    In this study, rapidly solidified Si-Ti-Ni-Cu alloys have been investigated as high capacity anodes for Li-ion secondary batteries. To obtain nano-sized Si particles dispersed in the inactive matrix, the alloy ribbons were fabricated using the melt spinning process. The thin ribbons were pulverized using ball-milling to make a fine powder of ˜ 4 µm average size. Coin-cell assembly was carried out under an argon gas in a glove box, in which pure lithium was used as a counter-electrode. The cells were cycled using the galvanostatic method in the potential range of 0.01 V and 1.5 V vs. Li/Li+. The microstructure and morphology were examined using an x-ray diffractometer, Field-Emission Scanning Electron Microscopy and High Resolution Transmission Electron Microscopy. Among the anode alloys, the Si70Ti15Ni15 electrodes had the highest discharge capacity (974.1 mAh/g) after the 50th cycle, and the Si60Ti16Ni16Cu8 electrode showed the best coulombic efficiency of ˜95.9% in cyclic behavior. It was revealed that the Si7Ni4Ti4 crystal phase coexisting with an amorphous phase, could more efficiently act as a buffer layer than the fully crystallized Si7Ni4Ti4 phase. Consequently, the electrochemical properties of the anode materials pronouncedly improved when the nano-sized primary Si particle was dispersed in the inactive Si7Ni4Ti4-based matrix mixed with an amorphous structure.

  18. Microstructure, biocorrosion and cytotoxicity evaluations of rapid solidified Mg-3Ca alloy ribbons as a biodegradable material. (United States)

    Gu, X N; Li, X L; Zhou, W R; Cheng, Y; Zheng, Y F


    Rapidly solidified (RS) Mg–3Ca alloy ribbons were prepared by the melt-spinning technique at different wheel rotating speeds (15 m s(-1), 30 m s(-1) and 45 m s(-1) with the as-cast Mg–3Ca alloy ingot as a raw material. The RS45 Mg–3Ca alloy ribbon showed a much more fine grain size feature (approximately 200–500 nm) in comparison to the coarse grain size (50–100 μm)of the original as-cast Mg–3Ca alloy ingot. The corrosion electrochemical tests in simulated body fluid indicated that the corrosion rate of the as-cast Mg–3Ca alloy was strongly reduced by the RS procedure and tended to be further decreased with increasing wheel rotating speeds(1.43 mm yr(-1) for RS15, 0.94 mm yr(-1) for RS30 and 0.36 mm yr(-1) for RS45). The RS Mg–3Ca alloy ribbons showed more uniform corrosion morphology compared with the as-cast Mg–3Ca alloy after polarization. The cytotoxicity evaluation revealed that the three experimental as-spun Mg–3Ca alloy ribbon extracts did not induce toxicity to the L-929 cells,whereas the as-cast Mg–3Ca alloy ingot extract did. The L-929 cells showed more improved adhesion on the surfaces of the three as-spun Mg–3Ca alloy ribbons than that of the as-cast Mg–3Ca alloy ingot.


    Directory of Open Access Journals (Sweden)

    Němec L.


    Full Text Available Four aspects of effective glass melting have been defined – namely the fast kinetics of partial melting phenomena, a consideration of the melting phenomena ordering, high utilisation of the melting space, and effective utilisation of the supplied energy. The relations were defined for the specific melting performance and specific energy consumption of the glass melting process which involve the four mentioned aspects of the process and indicate the potentials of effective melting. The quantity “space utilisation” has been treated in more detail as an aspect not considered in practice till this time. The space utilisation was quantitatively defined and its values have been determined for the industrial melting facility by mathematical modelling. The definitions of the specific melting performance and specific energy consumption have been used for assessment of the potential impact of a controlled melt flow and high space utilisation on the melting process efficiency on the industrial scale. The results have shown that even the partial control of the melt flow, leading to the partial increase of the space utilisation, may considerably increase the melting performance, whereas a decrease of the specific energy consumption was determined to be between 10 - 15 %.

  20. Viscosity Measurement for Tellurium Melt (United States)

    Lin, Bochuan; Li, Chao; Ban, Heng; Scripa, Rosalia N.; Su, Ching-Hua; Lehoczky, Sandor L.


    The viscosity of high temperature Te melt was measured using a new technique in which a rotating magnetic field was applied to the melt sealed in a suspended ampoule, and the torque exerted by rotating melt flow on the ampoule wall was measured. Governing equations for the coupled melt flow and ampoule torsional oscillation were solved, and the viscosity was extracted from the experimental data by numerical fitting. The computational result showed good agreement with experimental data. The melt velocity transient initiated by the rotating magnetic field reached a stable condition quickly, allowing the viscosity and electrical conductivity of the melt to be determined in a short period.

  1. Effect of heat treatment on the fracture behaviour of directionally solidified (gamma/gamma-prime)-alpha alloy (United States)

    Sriramamurthy, A. M.; Tewari, S. N.


    An investigation is conducted into the influence of various heat treatments on the work of fracture and its relation to microstructure for a directionally solidified Ni-33Mo-5.7Al (wt pct) (gamma/gamma-prime)-alpha alloy. The jagged crack propagation observed is due to delamination of the ligaments and associated plastic deformation. Fracture behavior is examined with respect to alloy microstructures and load-deflection curves. The four heat-treatment conditions considered are: (1) as-directionally solidified, (2) solutionized, (3) directionally solidified and thermally cycled, and (4) solutionized and thermally cycled.

  2. On the influence of water subcooling and melt jet parameters on debris formation

    Energy Technology Data Exchange (ETDEWEB)

    Manickam, Louis, E-mail:; Kudinov, Pavel; Ma, Weimin; Bechta, Sevostian; Grishchenko, Dmitry


    Highlights: • Melt and water configuration effects on debris formation is studied experimentally. • Melt superheat and water subcooling are most influential compared to jet size. • Melt-water configuration and material properties influence particle fracture rate. • Results are compared with large scale experiments to study effect of spatial scales. - Abstract: Breakup of melt jet and formation of a porous debris bed at the base-mat of a flooded reactor cavity is expected during the late stages of a severe accident in light water reactors. Debris bed coolability is determined by the bed properties including particle size, morphology, bed height and shape as well as decay heat. Therefore understanding of the debris formation phenomena is important for assessment of debris bed coolability. A series of experiments was conducted in MISTEE-Jet facility by discharging binary-oxide mixtures of WO{sub 3}–Bi{sub 2}O{sub 3} and WO{sub 3}–ZrO{sub 2} into water in order to investigate properties of resulting debris. The effect of water subcooling, nozzle diameter and melt superheat was addressed in the tests. Experimental results reveal significant influence of water subcooling and melt superheat on debris size and morphology. Significant differences in size and morphology of the debris at different melt release conditions is attributed to the competition between hydrodynamic fragmentation of liquid melt and thermal fracture of the solidifying melt droplets. The particle fracture rate increases with increased subcooling. Further the results are compared with the data from larger scale experiments to discern the effects of spatial scales. The present work provides data that can be useful for validation of the codes used for the prediction of debris formation phenomena.

  3. Air-assisted liquid–liquid microextraction by solidifying the floating organic droplets for the rapid determination of seven fungicide residues in juice samples

    Energy Technology Data Exchange (ETDEWEB)

    You, Xiangwei [Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101 (China); College of Science, China Agricultural University, Beijing 100193 (China); Xing, Zhuokan [College of Science, China Agricultural University, Beijing 100193 (China); Liu, Fengmao, E-mail: [College of Science, China Agricultural University, Beijing 100193 (China); Zhang, Xu [College of Science, China Agricultural University, Beijing 100193 (China)


    Highlights: • A novel AALLME-SFO method was firstly reported for pesticide residue analysis. • Solvent with low density and proper melting point was used as extraction solvent. • The formation of “cloudy solvent” with a syringe only. • The new method avoided the use of organic dispersive solvent. - Abstract: A novel air assisted liquid–liquid microextraction using the solidification of a floating organic droplet method (AALLME-SFO) was developed for the rapid and simple determination of seven fungicide residues in juice samples, using the gas chromatography with electron capture detector (GC-ECD). This method combines the advantages of AALLME and dispersive liquid–liquid microextraction based on the solidification of floating organic droplets (DLLME-SFO) for the first time. In this method, a low-density solvent with a melting point near room temperature was used as the extraction solvent, and the emulsion was rapidly formed by pulling in and pushing out the mixture of aqueous sample solution and extraction solvent for ten times repeatedly using a 10-mL glass syringe. After centrifugation, the extractant droplet could be easily collected from the top of the aqueous samples by solidifying it at a temperature lower than the melting point. Under the optimized conditions, good linearities with the correlation coefficients (γ) higher than 0.9959 were obtained and the limits of detection (LOD) varied between 0.02 and 0.25 μg L{sup −1}. The proposed method was applied to determine the target fungicides in juice samples and acceptable recoveries ranged from 72.6% to 114.0% with the relative standard deviations (RSDs) of 2.3–13.0% were achieved. Compared with the conventional DLLME method, the newly proposed method will neither require a highly toxic chlorinated solvent for extraction nor an organic dispersive solvent in the application process; hence, it is more environmentally friendly.

  4. Rapid Solidification of Sn-Cu-Al Alloys for High-Reliability, Lead-Free Solder: Part II. Intermetallic Coarsening Behavior of Rapidly Solidified Solders After Multiple Reflows (United States)

    Reeve, Kathlene N.; Choquette, Stephanie M.; Anderson, Iver E.; Handwerker, Carol A.


    Controlling the size, dispersion, and stability of intermetallic compounds in lead-free solder alloys is vital to creating reliable solder joints regardless of how many times the solder joints are melted and resolidified (reflowed) during circuit board assembly. In this article, the coarsening behavior of Cu x Al y and Cu6Sn5 in two Sn-Cu-Al alloys, a Sn-2.59Cu-0.43Al at. pct alloy produced via drip atomization and a Sn-5.39Cu-1.69Al at. pct alloy produced via melt spinning at a 5-m/s wheel speed, was characterized after multiple (1-5) reflow cycles via differential scanning calorimetry between the temperatures of 293 K and 523 K (20 °C and 250 °C). Little-to-no coarsening of the Cu x Al y particles was observed for either composition; however, clustering of Cu x Al y particles was observed. For Cu6Sn5 particle growth, a bimodal size distribution was observed for the drip atomized alloy, with large, faceted growth of Cu6Sn5 observed, while in the melt spun alloy, Cu6Sn5 particles displayed no significant increase in the average particle size, with irregularly shaped, nonfaceted Cu6Sn5 particles observed after reflow, which is consistent with shapes observed in the as-solidified alloys. The link between original alloy composition, reflow undercooling, and subsequent intermetallic coarsening behavior was discussed by using calculated solidification paths. The reflowed microstructures suggested that the heteroepitaxial relationship previously observed between the Cu x Al y and the Cu6Sn5 was maintained for both alloys.

  5. The effect of gravity level on the average primary dendritic spacing of a directionally solidified superalloy (United States)

    Mccay, M. H.; Lee, J. E.; Curreri, P. A.


    The effect of alternating low (0.01 g) and high (1.8 g) gravity force on the primary spacings in the dendrite structure in a directionally solidified Ni-based superalloy (PWA 1480, containing 5 pct Co, 10 pct Cr, 4 pct W, 12 pct Ta, 5 pct Al, 1.5 pct Ti, and the balance Ni) was investigated using samples solidified in a directional solidification furnace aboard the NASA KC-135 aircraft that made a series of low-g parabolas. The cross-section slices for each growth rate were polished and etched with Kallings II, and the primary dendritic arm spacings were measured using the method of Jacobi and Schwerdtfeger (1976). The arm spacings were found to fluctuate with gravity force, increasing as the gravity level decreased, and growing finer as gravity increased.

  6. Functions and requirements document for interim store solidified high-level and transuranic waste

    Energy Technology Data Exchange (ETDEWEB)

    Smith-Fewell, M.A., Westinghouse Hanford


    The functions, requirements, interfaces, and architectures contained within the Functions and Requirements (F{ampersand}R) Document are based on the information currently contained within the TWRS Functions and Requirements database. The database also documents the set of technically defensible functions and requirements associated with the solidified waste interim storage mission.The F{ampersand}R Document provides a snapshot in time of the technical baseline for the project. The F{ampersand}R document is the product of functional analysis, requirements allocation and architectural structure definition. The technical baseline described in this document is traceable to the TWRS function, Interim Store Solidified Waste, and its related requirements, architecture, and interfaces.

  7. Fundamentals of twin-screw extrusion polymer melting: Common pitfalls and how to avoid them (United States)

    Andersen, Paul


    The process for compounding engineered polymer formulations is comprised of several unit operations. These typically include, but are not limited to: feedstock introduction, polymer melt-mixing, distributive/dispersive mixing of minerals/fibers, removal of volatiles, and pressurization for discharge. While each unit operation has an impact on process productivity and the quality of the finished product, polymer melt-mixing has a significantly greater impact than the others. First, it consumes 50, 60 or higher percent of the total system energy. Second, it generates the highest radial as well as particle-particle interactive pressure of any unit operation. Third, the negative impact on the process of any design flaws in the melt-mixing configuration is transmitted downstream to all subsequent unit operations. For example, a melt-mixing design that is too intense may degrade the polymer while one that is too weak may result in excessive breakage of glass fiber being fed downstream due to the polymer solidifying on the glass fiber and subsequently being re-melted. Another example of the impact of an incorrect melt-mixing configuration would be excessive abrasive wear. Adhesive wear is also possible as well as deformation on both barrel wall and screw elements due to high radial forces. Additionally, non-melting material present during the melt-mixing process could be compacted into "briquettes" by the high radial pressure and would have to be dispersed by subsequent downstream unit operations. Other potential issues associated with a non-optimal melting section are pre-mature and incomplete melting. The former is more of a concern with melting of powder feed stock while the latter is more probable with feed stock comprised of a broad range of particle sizes. However, the consequence of both is to convey unmolten polymer beyond the melting section. While this may not be perceived as a significant issue for most processes, it is an issue if the sole purpose of the

  8. Characterization of solidified gas thin film targets via alpha particle energy loss

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, M.C. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Phys. and Astron.; Beer, G.A.; Douglas, J.L.; Knowles, P.E.; Maier, M.; Mason, G.R.; Porcelli, T.A. [Department of Physics and Astronomy, University of Victoria, Victoria, BC, V8W 2Y2 (Canada); Beveridge, J.L.; Marshall, G.M.; Mulhauser, F.; Olin, A. [TRIUMF, Vancouver, BC, V6T 2A3 (Canada); Huber, T.M. [Department of Physics, Gustavus Adolphus College, St.Peter, MN 56082 (United States); Jacot-Guillarmod, R. [Physics Institute, Universite de Fribourg, CH-1700 Fribourg (Switzerland); Kim, S.K. [Department of Physics, Jeonbuk National University, Jeonju City 560-756 (Korea, Republic of); Kunselman, A.R. [Department of Physics, University of Wyoming, Laramie, WY 82071 (United States); Petitjean, C. [Paul Scherrer Institute, CH-5232 Villigen (Switzerland); Zmeskal, J. [Austrian Academy of Sciences, A-1090 Wien (Austria); TRIUMF Collaboration


    A method is reported for measuring the thickness and uniformity of thin films of solidified gas targets. The energy of {alpha} particles traversing the film is measured and the energy loss is converted to thickness using the range. The uniformity is determined by measuring the thickness at different positions with an array of sources. Monte Carlo simulations have been performed to study the film deposition mechanism. Thickness calibrations for a TRIUMF solid hydrogen target system are presented. (orig.).

  9. Melting graft wound syndrome

    Directory of Open Access Journals (Sweden)

    Shiou-Mei Chen


    Full Text Available Melting graft wound syndrome is characterized by progressive epidermal loss from a previously well-taken skin graft, healed burn, or donor site. It may result in considerable morbidity and require prolonged treatment. We report a 23-year-old flame-burned patient with second- to third-degree burns involving more than 70% of the total body surface area, whose condition was complicated with septic shock. The patient presented with erosions and ulcers occurring on previously well-taken skin graft recipient sites over both legs and progressive epidermal loss on donor sites over the back. The patient's presentation was compatible with the diagnosis of melting graft wound syndrome, and we successfully treated the patient with debridement and supportive treatment.

  10. Microstructure and orientation evolution in unidirectional solidified Al–Zn alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhongwei, E-mail:; Wang, Enyuan; Hao, Xiaolei


    Morphological instability and growth orientation evolution during unidirectional solidification of Al–Zn alloys with different pulling speeds were investigated by X-ray diffraction (XRD) and electron back-scatter diffraction (EBSD) in scanning electron microscope (SEM). The experimental results show that, as the pulling speed increases, the primary dendrite spacing becomes smaller gradually and dendrite trunks incline to the heat flow direction perfectly in unidirectional solidified Al–9.8 wt%Zn and Al–89 wt%Zn alloys. However, regardless of the pulling speed in unidirectional solidified Al–Zn alloys under fixed thermal gradient, the regular dendrites with <100> directions of primary trunks and secondary arms in 9.8 wt% Zn composition are replaced by <110> dendrites of primary trunks and secondary arms in 89 wt% Zn composition. In unidirectional solidified Al–32 wt% Zn alloy, cellular, fractal seaweed, and stabilized seaweed structures were observed at high pulling speeds. At a high pulling speed of 1000 µm/s, seaweed structures transform to the columnar dendrites with <110> trunks and <100> arms. The above orientation evolution can be attributed to low anisotropy of solid-liquid interface energy and the seaweed structure is responsible for isotropy of {111} planes.

  11. Investigation of the as-solidified microstructure of an Al–Mg–Si–Cu alloy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kai; Song, Min [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Du, Yong, E-mail: [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Tang, Ying [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Dong, Hongbiao [Department of Engineering, University of Leicester, Leicester LE1 7RH (United Kingdom); Ni, Song [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China)


    Highlights: • AlMgSiCu-Q particles preferentially grow along the solidification direction. • A new orientation relationship between Q particles and α-Al matrix was found. • The solidified microstructure was simulated based on Scheil–Gulliver model. • The effect of solidification on solution and aging processes were analyzed. - Abstract: The as-solidified microstructure of an Al–Mg–Si–Cu alloy was characterized by scanning electron microscopy and transmission electron microscopy. Quaternary Q particles were found to elongate preferentially along the solidification direction of the cylindrical cast ingot, whilst a small number of Si leaf-like particles aggregate mainly along the grain boundaries. The volume fractions of the Q and Si particles are quantitatively measured from electron microscopy images and thermodynamically simulated based on the Scheil–Gulliver solidification model. The results from experimental measurement agree well with those from simulation. The Q particles, which have dendrite-like internal structure and are uniformly distributed within the α-Al grains with a different orientation from that found in the aged alloys, are fast-dissolving and aid the formation of uniform aged microstructures. The aggregation of the Si particles along the grain boundaries in the as-solidified microstructure results in Si-rich boundaries even after a solution treatment, and causes the re-emergence of Si particles in the over-aged microstructure. This phenomenon helps to reduce the width of the precipitate-free zones.

  12. Crystal-Melt Interfaces and Solidification Morphologies in Metals and Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Hoyt, J. J. [Sandia National Laboratories (SNL); Asta, M. [Northwestern University, Evanston; Haxhimali, T. [Northeastern University; Karma, A. [Northeastern University; Napolitano, R. E. [Ames Laboratory; Trivedi, R. [Ames Laboratory; Laird, Brian B. [University of Kansas; Morris, James R [ORNL


    When liquids solidify, the interface between a crystal and its melt often forms branching structures (dendrites), just as frost spreads across a window. The development of a quantitative understanding of dendritic evolution continues to present a major theoretical and experimental challenge within the metallurgical community. This article looks at key parameters that describe the interface-excess free energy and mobility-and discusses how these important properties relate to our understanding of crystal growth and other interfacial phenomena such as wetting and spreading of droplets and nucleation of the solid phase from the melt. in particular, two new simulation methods have emerged for computing the interfacial free energy and its anisotropy: the cleaving technique and the capillary fluctuation method. These are presented, along with methods for extracting the kinetic coefficient and a comparison of the results to several theories of crystal growth rates.

  13. Fundamentals of Melt-Water Interfacial Transport Phenomena: Improved Understanding for Innovative Safety Technologies in ALWRs

    Energy Technology Data Exchange (ETDEWEB)

    M. Anderson; M. Corradini; K.Y. Bank; R. Bonazza; D. Cho


    The interaction and mixing of high-temperature melt and water is the important technical issue in the safety assessment of water-cooled reactors to achieve ultimate core coolability. For specific advanced light water reactor (ALWR) designs, deliberate mixing of the core-melt and water is being considered as a mitigative measure, to assure ex-vessel core coolability. The goal of this work is to provide the fundamental understanding needed for melt-water interfacial transport phenomena, thus enabling the development of innovative safety technologies for advanced LWRs that will assure ex-vessel core coolability. The work considers the ex-vessel coolability phenomena in two stages. The first stage is the melt quenching process and is being addressed by Argonne National Lab and University of Wisconsin in modified test facilities. Given a quenched melt in the form of solidified debris, the second stage is to characterize the long-term debris cooling process and is being addressed by Korean Maritime University in via test and analyses. We then address the appropriate scaling and design methodologies for reactor applications.

  14. Morphology, melting behavior, and non-isothermal crystallization of poly(butylene terephthalate)/poly(ethylene-co-methacrylic acid) blends

    Energy Technology Data Exchange (ETDEWEB)

    Huang, J.-W. [Department of Styling and Cosmetology, Tainan University of Technology, 529 Chung Cheng Rd., Yung Kang City 710, Taiwan (China)], E-mail:; Wen, Y.-L. [Department of Nursing, Meiho Institute of Technology, 23 Ping Kuang Rd., Neipu Hsiang, Pingtung 912, Taiwan (China); Department of Resources Engineering, National Cheng Kung University, No. 1, University Rd., Tainan City 701, Taiwan (China); Kang, C.-C. [R and D Center, Hi-End Polymer Film Co., Ltd. 15-1 Sin Jhong Rd., Sin Ying City 730, Taiwan (China); Yeh, M.-Y. [Department of Chemistry, National Cheng Kung University, No. 1, University Rd., Tainan City 701, Taiwan (China); Sustainable Environment Research Centre, National Cheng Kung University, Taiwan (China); Wen, S.-B. [Department of Nursing, Meiho Institute of Technology, 23 Ping Kuang Rd., Neipu Hsiang, Pingtung 912, Taiwan (China); Department of Resources Engineering, National Cheng Kung University, No. 1, University Rd., Tainan City 701, Taiwan (China)


    The morphology, melting behavior, and non-isothermal crystallization of poly(butylene terephthalate) (PBT) and poly(ethylene-co-methacrylic acid) (PEMA) blends were studied with scanning electron microscopy, X-ray diffraction and differential scanning calorimetry (DSC). PEMA forms immiscible, yet compatible, blends with PBT. Subsequent DSC scans on melt-crystallized samples exhibited two melting endotherms (T{sub mI} and T{sub mII}). The presence of PEMA would facilitate the recrystallization during heating scan and retard PBT molecular chains to form a perfect crystal in cooling crystallization. The dispersion phases of molten PEMA acts as nucleating agents to enhance the crystallization rate of PBT. The solidified PBT could act as nucleating agents to enhance the crystallization of PEMA, but also retard the molecular mobility to reduce crystallization rate. The U* and K{sub g} of Hoffman-Lauritzen theory were also determined by Vyazovkin's methods to support the interpretation.

  15. Fault pseudotachylyte: a coseismic lightning rod (United States)

    Ferre, E. C.; Conder, J. A.; MathanaSekaran, N.; Geissman, J. W.


    of melt during the formation of a pseudotachylite vein. The increase in melt temperature is the most important factor affecting electrical conductivity in the fault plane. When the melt temperature rises from 1300 to 2000K, its electrical conductivity increases about 80 times. This implies that once a continuous pseudotachylite sheet-like vein is formed during an earthquake, the vein has a much higher electrical conductivity than its host-rock. The dramatic increase in electrical conductivity along the pseudotachylite plane might be synchronous with the generation of the coseismic electrical current. Thus, regardless of its origin, any electrical current produced during an earthquake will travel along the pseudotachylite plane which acts as a lightning rod. The magnetization of a solid due to an electrical current results from Biot-Savart law which states that an electrical current generates a magnetic field. The solidification of the pseudotachylite vein does not happen at once but proceeds from the margin inwards as an electrical current may still pass through the conducting pseudotachylite. Therefore, the host-rock of the pseudotachylite vein or its solidified margin can be magnetized by a coseismic current.

  16. Melting the Divide (United States)

    Gibson, S. M.


    Presenting Quaternary Environmental Change to students who fall into Widening Participation criteria at the University of Cambridge, gives a unique opportunity to present academic debate in an approachable and entertaining way. Literally by discussing the melting of our ice caps, melts the divide Cambridge has between its reputation and the reality for the brightest, underprivileged, students. There is a balance between presenting cutting edge research with the need to come across as accessible (and importantly valuable to "learning"). Climate change over the Quaternary lends itself well to this aim. By lecturing groups of potential students through the entire Quaternary in an hour, stopping to discuss how our ancestors interacted with past Interglacials and what are the mechanisms driving change (in generalized terms), you are able to introduce cutting edge research (such as the latest NEEM ice core) to the students. This shows the evolution and importance of higher education and academic research. The lecture leads well onto group discussions (termed "supervisions" in Cambridge), to explore their opinions on the concern for present Anthropogenic Climate Change in relation to Past Climate Change after being presented with images that our ancestors "made it". Here discussion thrives off students saying obvious things (or sarcastic comments!) which quickly can lead into a deep technical discussion on their terms. Such discussions give the students a zest for higher education, simply throwing Ruddiman's (2003) "The Anthroprocene Started Several Thousand Years Ago" at them, questions in a second their concept of Anthropogenic Climate Change. Supervisions lend themselves well to bright, articulate, students and by offering these experiences to students of Widening Participation criteria we quickly melt the divide between the reputation of Cambridge ( and higher education as a whole) and the day to day practice. Higher education is not for the privileged, but a free and

  17. Melting Layer Survey. (United States)


    AFGL Melting Layer study was begun in 1979. Original plans called for a flight program and extensive radar studies. Budget problems and a change in the...etrstlr’nrL, ., (ot-i \\v! A ;uo. 1’.. ,ind (;u(,. V. . t1 97:10 1 inal 1, pov1 to NSIl 1-ide: Grint No. (1A-2!525. ( 5 Ne’% )ork, ppu 410-415. (1...1958) The hail problem , Nubila 1:11-96. (3) 98. Ludlam, R. H. (1980) Clouds and Storms, The Pennsylvania State University Press, University Park

  18. Melting temperature of archaeometallurgical slag

    Directory of Open Access Journals (Sweden)

    Jozef Petrík


    Full Text Available The aim of submitted work is to search the softening and melting temperature of archeometallurgy bloomery and blast furnace slag using high – temperature microscope. The high values of melting temperature of bloomery slag is a result of secondary oxidation of wüstite in the chamber of a microscope. The melting temperature increases with an increase in SiO2 and decreases with increasing basicity of the slag.

  19. Thermodynamics of freezing and melting


    Pedersen, Ulf Rørbæk; Costigliola, Lorenzo; Bailey, Nicholas; Schrøder, Thomas; Dyre, Jeppe C.


    Although the freezing of liquids and melting of crystals are fundamental for many areas of the sciences, even simple properties like the temperature?pressure relation along the melting line cannot be predicted today. Here we present a theory in which properties of the coexisting crystal and liquid phases at a single thermodynamic state point provide the basis for calculating the pressure, density and entropy of fusion as functions of temperature along the melting line, as well as the variatio...

  20. Directionally Solidified Aluminum - 7 wt% Silicon Alloys: Comparison of Earth and International Space Station Processed Samples (United States)

    Grugel, Richard N,; Tewari, Surendra; Rajamure, R. S.; Erdman, Robert; Poirier, David


    Primary dendrite arm spacings of Al-7 wt% Si alloy directionally solidified in low gravity environment of space (MICAST-6 and MICAST-7: Thermal gradient approx. 19 to 26 K/cm, Growth speeds varying from 5 to 50 microns/s show good agreement with the Hunt-Lu model. Primary dendrite trunk diameters of the ISS processed samples show a good fit with a simple analytical model based on Kirkwood s approach, proposed here. Natural convection, a) decreases primary dendrite arm spacing. b) appears to increase primary dendrite trunk diameter.

  1. Solidified self-nanoemulsifying formulation for oral delivery of combinatorial therapeutic regimen

    DEFF Research Database (Denmark)

    Jain, Amit K; Thanki, Kaushik; Jain, Sanyog


    PURPOSE: The present work reports rationalized development and characterization of solidified self-nanoemulsifying drug delivery system for oral delivery of combinatorial (tamoxifen and quercetin) therapeutic regimen. METHODS: Suitable oil for the preparation of liquid SNEDDS was selected based...... formulation revealed 9.63-fold and 8.44-fold higher Caco-2 uptake of tamoxifen and quercetin, respectively in comparison with free drug counterparts. CONCLUSIONS: The developed formulation strategy revealed a great potential for oral delivery of combination drugs having utmost clinical relevance....

  2. Corrosion resistance of rapidly solidified Al-Cu and Al-Si alloys

    Energy Technology Data Exchange (ETDEWEB)

    Girgis, N.N. (Corrosion Dept., Central Metallurgical Research and Development Inst., Helwan (Egypt)); Bastawros, A.M. (Physics Dept., National Research Center, Dokki, Giza (Egypt))


    This work has shown that rapidly solidified AlSi alloy is more resistant than AlCu when exposed in either neutral or acidic chloride solutions. This can be related to Si, metalloid element, which accelerates active dissolution of the alloy surface and causes rapid formation of a passive film and subsequent enrichment of Al in the film. This is in agreement with the views of Naka et al. on the role of metalloid elements, like phosphorus, in promoting the corrosion resistance of amorphous alloys. (orig.)

  3. Pressure transmitting medium Daphne 7474 solidifying at 3.7 GPa at room temperature (United States)

    Murata, Keizo; Yokogawa, Keiichi; Yoshino, Harukazu; Klotz, Stefan; Munsch, Pascal; Irizawa, Akinori; Nishiyama, Mototsugu; Iizuka, Kenzo; Nanba, Takao; Okada, Tahei; Shiraga, Yoshitaka; Aoyama, Shoji


    A pressure transmitting medium named Daphne 7474, which solidifies at Ps=3.7 GPa at room temperature, is presented. The value of Ps increases almost linearly with temperature up to 6.7 GPa at 100 °C. The high pressure realized by a medium at the liquid state allows a higher limit of pressurization, which assures an ideal hydrostatic pressure. We show a volume change against pressure, pressure reduction from room to liquid helium temperature in a clamped piston cylinder cell, pressure distribution and its standard deviation in a diamond anvil cell, and infrared properties, which might be useful for experimental applications.

  4. Determination of performance criteria for high-level solidified nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Heckman, R.A.; Holdsworth, T.


    To minimize radiological risk from the operation of a waste management system, performance limits on volatilization, particulate dispersion, and dissolution characteristics of solidified high level waste must be specified. The results show clearly that the pre-emplacement environs are more limiting in establishing the waste form performance criteria than the post-emplacement environs. Absolute values of expected risk are very sensitive to modeling assumptions. The transportation and interim storage operations appear to be most limiting in determining the performance characteristics required. The expected values of risk do not rely upon the repositories remaining intact over the potentially hazardous lifetime of the waste.

  5. Detached Melt Nucleation during Diffusion Brazing of a Technical Ni-based Superalloy: A Phase-Field Study (United States)

    Böttger, B.; Apel, M.; Laux, B.; Piegert, S.


    Advanced solidification processes like welding, soldering, and brazing are often characterized by their specific solidification conditions. But they also may include different types of melting processes which themselves are strongly influenced by the initial microstructures and compositions of the applied materials and therefore are decisive for the final quality and mechanical properties of the joint. Such melting processes are often not well- understood because - compared to other fields of solidification science - relatively little research has been done on melting by now. Also, regarding microstructure simulation, melting has been strongly neglected in the past, although this process is substantially different from solidification due to the reversed diffusivities of the involved phases. In this paper we present phase-field simulations showing melting, solidification and precipitation of intermetallic phases during diffusion brazing of directionally solidified and heat-treated high-alloyed Ni- based gas turbine blade material using different boron containing braze alloys. Contrary to the common belief, melting of the base material is not always planar and can be further accompanied by detached nucleation and growth of a second liquid phase inside the base material leading to polycrystalline morphologies of the joint after solidification. These findings are consistent with results from brazed laboratory samples, which were characterized by EDX and optical microscopy, and can be explained in terms of specific alloy thermodynamics and inter-diffusion kinetics. Consequences of the gained new understanding for brazing of high- alloyed materials are discussed.

  6. Experimental Study on Melting and Solidification of Phase Change Material Thermal Storage (United States)

    Ambarita, H.; Abdullah, I.; Siregar, C. A.; Siregar, R. E. T.; Ronowikarto, A. D.


    Melting and solidification process of Phase Change Materials (PCMs) are investigated experimentally. The tested PCMs are Paraffin wax and Steric acid which typically used for solar water heater. The objective is to explore the characteristics of the PCM when it is being melted and solidified. The experiments are performed in a glass box. One side of the box wall is heated while the opposite wall is kept constant and other walls are insulated. Temperature of the heated wall are kept constant at 80°C, 85°C, and 90°C, respectively. Every experiment is carried out for 600 minutes. Temperatures are recorded and the melting and solidification processes are pictured by using camera. The results show that the melting process starts from the upper part of the thermal storage. In the solidification process, it starts from the lower part of the thermal storage. As a thermal energy storage, Paraffin wax is better than Steric acid. This is because Paraffin wax can store more energy. At heat source temperature of 90°C, thermal energy stored by Paraffin wax and Stearic acid is 61.84 kJ and 57.39 kJ, respectively. Thus it is better to used Paraffin wax in the solar water heater as thermal energy storage.

  7. Achieving zero waste of municipal incinerator fly ash by melting in electric arc furnaces while steelmaking. (United States)

    Yang, Gordon C C; Chuang, Tsun-Nan; Huang, Chien-Wen


    The main objective of this work was to promote zero waste of municipal incinerator fly ash (MIFA) by full-scale melting in electric arc furnaces (EAFs) of steel mini mills around the world. MIFA, generally, is considered as a hazardous waste. Like in many countries, MIFA in Taiwan is first solidified/stabilized and then landfilled. Due to the scarcity of landfill space, the cost of landfilling increases markedly year by year in Taiwan. This paper presents satisfactory results of treating several hundred tons of MIFA in a full-scale steel mini mill using the approach of "melting MIFA while EAF steelmaking", which is somewhat similar to "molten salt oxidation" process. It was found that this practice yielded many advantages such as (1) about 18wt% of quicklime requirement in EAF steelmaking can be substituted by the lime materials contained in MIFA; (2) MIFA would totally end up as a material in fractions of recyclable EAF dust, oxidized slag and reduced slag; (3) no waste is needed for landfilling; and (4) a capital cost saving through the employment of existing EAFs in steel mini mills instead of building new melting plants for the treatment of MIFA. Thus, it is technically feasible to achieve zero waste of MIFA by the practice of this innovative melting technology. Copyright © 2017 Elsevier Ltd. All rights reserved.


    African Journals Online (AJOL)


    Sep 1, 2015 ... capsule), cylinder (shell and tube heat exchanger) and rectangular enclosure. Khodadadi and. Zhang [21] studied the effect of buoyancy-driven convection on constrained melting of PCM in a spherical container numerically. They showed the rate of melting at the top region of sphere is faster than at the ...

  9. Experimental Investigation of Closed Porosity of Inorganic Solidified Foam Designed to Prevent Coal Fires

    Directory of Open Access Journals (Sweden)

    Yi Lu


    Full Text Available In order to overcome the deficiency of the existing fire control technology and control coal spontaneous combustion by sealing air leakages in coal mines, inorganic solidified foam (ISF with high closed porosity was developed. The effect of sodium dodecyl sulfate (SDS concentration on the porosity of the foams was investigated. The results showed that the optimized closed porosity of the solidified foam was 38.65 wt.% for an SDS concentration of approximately 7.4×10-3 mol/L. Based on observations of the microstructure of the pore walls after solidification, it was inferred that an equilibrium between the hydration process and the drainage process existed. Therefore, the ISF was improved using three different systems. Gelatin can increase the viscosity of the continuous phase to form a viscoelastic film around the air cells, and the SDS + gelatin system can create a mixed surfactant layer at gas/liquid interfaces. The accelerator (AC accelerates the hydration process and coagulation of the pore walls before the end of drainage. The mixed SDS + gelatin + AC systems produced an ISF with a total porosity of 79.89% and a closed porosity of 66.89%, which verified the proposed stabilization mechanism.

  10. Extracellular micro and nanostructures forming the velvet worm solidified adhesive secretion (United States)

    Corrales-Ureña, Yendry Regina; Sanchez, Angie; Pereira, Reinaldo; Rischka, Klaus; Kowalik, Thomas; Vega-Baudrit, José


    The onychophoran Epiperipatus hilkae secrets a sticky slime that solidifies almost immediately upon contact with air and under high humidy environmental condition forming a glassy like material. The general adhesive biochemical composition, the releasing and hardening mechanism have been partially described in literature. In this study, the structural characterization of the extracellular microstructures and nanostructures forming the solid adhesive of the secretion from Epiperipatus hilkae velvet worm is presented. The adhesive secretion is formed by macro-threads, which, in their solid state, are composed of globular particles approximately 700 nm in diameter that are distributed homogeneously throughout the matrix surface, and nanoparticles approximately 70 nm in diameter that and 6 nm in height self-assemble forming fiber-like structures. Nanoparticules with approximately 2 nm heights and others with non roundish forms are also observed. These 70 nm nano particles could be associated to proteins that form high density coverage films with low roughness; suggesting the formation of 2D ordered films. A crystalline and an amorphous phase composes the solidified secretion. The glassy or viscoelastic properties depend on the time in contact with air before being adhered to a solid surface and/or the mechanical stimulus; suggesting a key role of the drying on the hardening process.

  11. Directionally solidified Al2O3/GAP eutectic ceramics by micro-pulling-down method (United States)

    Cao, Xue; Su, Haijun; Guo, Fengwei; Tan, Xi; Cao, Lamei


    We reported a novel route to prepare directionally solidified (DS) Al2O3/GAP eutectic ceramics by micro-pulling-down (μ-PD) method. The eutectic crystallizations, microstructure characters and evolutions, and their mechanical properties were investigated in detail. The results showed that the Al2O3/GAP eutectic composites can be successfully fabricated through μ-PD method, possessed smooth surface, full density and large crystal size (the maximal size: φ90 mm × 20 mm). At the process of Diameter, the as-solidified Al2O3/GAP eutectic presented a combination of "Chinese script" and elongated colony microstructure with complex regular structure. Inside the colonies, the rod-type or lamellar-type eutectic microstructures with ultra-fine GAP surrounded by the Al2O3 matrix were observed. At an appropriate solidificational rate, the binary eutectic exhibited a typical DS irregular eutectic structure of "chinese script" consisting of interpenetrating network of α-Al2O3 and GAP phases without any other phases. Therefore, the interphase spacing was refined to 1-2 µm and the irregular microstructure led to an outstanding vickers hardness of 17.04 GPa and fracture toughness of 6.3 MPa × m1/2 at room temperature.

  12. EPICOR-II: a field leaching test of solidified radioactively loaded ion exchange resin

    Energy Technology Data Exchange (ETDEWEB)

    Davis, E.C.; Marshall, D.S.; Todd, R.A.; Craig, P.M.


    As part of an ongoing research program investigating the disposal of radioactive solid wastes in the environment' the Oak Ridge National Laboratory (ORNL) is participating with Argonne National Laboratory, the Idaho National Engineering Laboratory, and the Nuclear Regulatory Commission in a study of the leachability of solidified EPICOR-II ion-exchange resin under simulated disposal conditions. To simulate disposal, a group of five 2-m/sup 3/ soil lysimeters has been installed in Solid Waste Storage Area Six at ORNL, with each lysimeter containing a small sample of solidified resin at its center. Two solidification techniques are being investigated: a Portland cement and a vinyl ester-styrene treatment. During construction, soil moisture temperature cells were placed in each lysimeter, along with five porous ceramic tubes for sampling water near the waste source. A meteorological station was set up at the study site to monitor climatic conditions (primarily precipitation and air temperature), and a data acquisition system was installed to keep daily records of these meteorological parameters as well as lysimeter soil moisture and temperature conditions. This report documents the first year of the long-term field study and includes discussions of lysimeter installation, calibration of soil moisture probes, installation of the site meteorological station, and the results of the first-quarter sampling for radionuclides in lysimeter leachate. In addition, the data collection and processing system developed for this study is documented, and the results of the first three months of data collection are summarized in Appendix D.

  13. Cryogenic EBSD reveals structure of directionally solidified ice–polymer composite

    Energy Technology Data Exchange (ETDEWEB)

    Donius, Amalie E., E-mail: [Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755 (United States); Department of Materials Science and Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Obbard, Rachel W., E-mail: [Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755 (United States); Burger, Joan N., E-mail: [Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755 (United States); Department of Materials Science and Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Hunger, Philipp M., E-mail: [Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755 (United States); Department of Materials Science and Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Baker, Ian, E-mail: [Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755 (United States); Doherty, Roger D., E-mail: [Department of Materials Science and Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Wegst, Ulrike G.K., E-mail: [Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755 (United States)


    Despite considerable research efforts on directionally solidified or freeze-cast materials in recent years, little fundamental knowledge has been gained that links model with experiment. In this contribution, the cryogenic characterization of directionally solidified polymer solutions illustrates, how powerful cryo-scanning electron microscopy combined with electron backscatter diffraction is for the structural characterization of ice–polymer composite materials. Under controlled sublimation, the freeze-cast polymer scaffold structure is revealed and imaged with secondary electrons. Electron backscatter diffraction fabric analysis shows that the ice crystals, which template the polymer scaffold and create the lamellar structure, have a-axes oriented parallel to the direction of solidification and the c-axes perpendicular to it. These results indicate the great potential of both cryo-scanning electron microscopy and cryo-electron backscatter diffraction in gaining fundamental knowledge of structure–property–processing correlations. - Highlights: • Cryo-SEM of freeze-cast polymer solution reveals an ice-templated structure. • Cryo-EBSD reveals the ice crystal a-axis to parallel the solidification direction. • The honeycomb-like polymer phase favors columnar ridges only on one side. • Combining cryo-SEM with EBSD links solidification theory with experiment.

  14. Relationship between cooling rate and microsegregation in bottom-chilled directionally solidified ductile irons

    Directory of Open Access Journals (Sweden)

    Chang W.S.


    Full Text Available This study explores the relationship between cooling rate and microsegregation of directionally solidified ductile iron. The unidirectional heat transfer system used in this research is made up of a copper mold kept chilled by circulating water and embedded in the bottom of Furan sand mold. Thermocouples are connected to the computer measuring system to record the cooling curves of the castings at a distance of 0, 30, 60 and 90 mm from the chilled copper mold surface. Alloys including Mn, Cr, Cu, Ni and Ti were added to the specimens. Electron microprobe analysis (EPMA was employed to examine distribution of elements between the dendrite arms and nodular graphite. Results show that unidirectional heat transfer affects directly the solidification mode and microstructure of the casting. The cooling curves reveal that local solidification time increases with increasing distance from the chilled copper mold surface. Different solidification rates with corresponding microstructure and element segregation were observed in the same unidirectionally solidified casting. Local solidification time was closely related to element segregation. The effective segregation coefficient (Keff calculated using the Scheil equation was found to vary, according to the stage of solidification. The actual segregation characteristics of complex alloys generally follow the Scheil equation.

  15. Percolation of enriched melts during incremental open-system melting in the spinel field: A REE approach to abyssal peridotites from the Southwest Indian Ridge (United States)

    Brunelli, Daniele; Paganelli, Emanuele; Seyler, Monique


    .Compositional values estimated this way are here designated as “continuous open-system melting” because the equation set allows estimating the compositional effects of a continuous process with continuous addition and extraction of melt in a system in which solid and liquid always coexist. The different case explored next is that of “incremental open-system melting” in which the process progresses by discrete melting pulses in order to reproduce a temporal discontinuous melting process. The equation set is the same as before here applied to the extent of the considered melting step. The exotic melt is added at each single step. At the end of each step melt retained in the residual porosity is assumed to crystallize and its incompatible element content to be instantaneously redistributed in the source before a new melting/melt-influx step occurs. The residual melt solidifies in the source crystallizing clinopyroxene + spinel in the proportion 7:3 (Elthon, 1992); the bulk D is recalculated accordingly. The composition of the residual solid is then CS = CS φc + CL(1 - φc). This configuration leads to a significant divergence from a continuous process when large critical porosities and a large number of steps are accounted for. We consider an end-member case characterised by numerous but small F increments (F = 0.01) until clinopyroxene exhaustion with the aim of representing the case of an extremely discontinuous process.The incremental approach then affects the modal evolution of the system. It is worth noting that the modal clinopyroxene content continuously decreases during melting even if partially compensated by the clinopyroxene crystallized at each step. This leads to average bulk D higher than the continuous model hence a lower concentration of an incompatible tracer in clinopyroxene. We do not discuss here the consequent dilution effect, only remarking that it makes more conservative the estimation of the required enrichment and amount of a given melt in order to

  16. Parametric Study to Determine the Effect of Temperature on Oil Solidifier Performance and the Development of a New Empirical Correlation for Predicting Effectiveness (United States)

    Temperature can play a significant role in the efficacy of solidifiers in removing oil slicks on water. We studied and quantified the effect of temperature on the performance of several solidifiers using 5 different types of oils under a newly developed testing protocol by conduc...

  17. Thermodynamics of freezing and melting

    DEFF Research Database (Denmark)

    Pedersen, Ulf Rørbæk; Costigliola, Lorenzo; Bailey, Nicholas


    Although the freezing of liquids and melting of crystals are fundamental for many areas of the sciences, even simple properties like the temperature–pressure relation along the melting line cannot be predicted today. Here we present a theory in which properties of the coexisting crystal and liquid...... phases at a single thermodynamic state point provide the basis for calculating the pressure, density and entropy of fusion as functions of temperature along the melting line, as well as the variation along this line of the reduced crystalline vibrational mean-square displacement (the Lindemann ratio...

  18. Pore structure and mechanical properties of directionally solidified porous aluminum alloys


    Komissarchuk Olga; Xu Zhengbin; Hao Hai


    Porous aluminum alloys produced by the metal-gas eutectic method or GASAR process need to be performed under a certain pressure of hydrogen, and to carry over melt to a tailor-made apparatus that ensures directional solidification. Hydrogen is driven out of the melt, and then the quasi-cylindrical pores normal to the solidification front are usually formed. In the research, the effects of processing parameters (saturation pressure, solidification pressure, temperature, and holding time) on th...


    Directory of Open Access Journals (Sweden)

    V. Yu. Stetsenko


    Full Text Available On the basis of thermodynamic analysis it is shown that metal melts are the nanostructured systems which consist of phases and atoms nanocrystals. Nanocrystalsmake 97% ofthemeltvolume.

  20. Simulation of electro-slag re-melting process of 120 t large ingot for nuclear power station and its application

    Directory of Open Access Journals (Sweden)

    Liu Xihai


    Full Text Available Further research on metallic materials for the super critical rotator and the main pipe line of a nuclear power station is very important for developing the nuclear power industry. In this study, the mathematical model for 120 t large ingot was established, and the computer program ESR3D was developed to simulate the whole electro-slag re-melting (ESR process. This includes the electrode melting, metallic droplet falling, metal pool forming, metal pool and slag pool rising and moving, installation of top crystallizer, ingot solidifying, etc. The simulated average melting rate of the electrode was in good agreement with that in practical production. The optimized parameters were used to produce 80-120 t large ingots, and the quality of the ingots satisfied the specifications of nuclear power and the super critical generating unit.

  1. Experimental study of directionally solidified ferromagnetic shape memory alloy under multi-field coupling

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yuping, E-mail: [Institute of Geophysics, China Earthquake Administration, Beijing 100081 (China); Chen, Tao; Teng, Yao [Faculty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang 212013 (China); Liu, Bingfei [Airport College, Civil Aviation University of China, Tianjin 300300 (China); Xue, Lijun [Tianjin Key Laboratory of the Design and Intelligent Control of the Advanced Mechatronical System, School of Mechanical Engineering, Tianjin University of Technology, Tianjin 300384 (China)


    Directionally solidified, polycrystalline Ni–Mn–Ga is studied in this paper. The polycrystalline Ni–Mn–Ga samples were cut at different angles to solidification direction. The magnetic field induced strain under constant stress and the temperature-induced strain under constant magnetic field during the loading–unloading cycle were measured. The experimental results show that the mechanical behavior during the loading–unloading cycle of the material is nonlinear and anisotropic. Based on the experimental results, the effects of multi-field coupling factors, such as stress, magnetic field, temperature and cutting angle on the mechanical behaviors were analyzed. Some useful conclusions were obtained, which will provide guidance for practical applications. - Highlights: • The magnetic-induced strains in different directions are tested. • The temperature-induced strains in different directions are tested. • The effects of coupling factors on directional solidification samples are studied.

  2. Experimental study of directionally solidified ferromagnetic shape memory alloy under multi-field coupling (United States)

    Zhu, Yuping; Chen, Tao; Teng, Yao; Liu, Bingfei; Xue, Lijun


    Directionally solidified, polycrystalline Ni-Mn-Ga is studied in this paper. The polycrystalline Ni-Mn-Ga samples were cut at different angles to solidification direction. The magnetic field induced strain under constant stress and the temperature-induced strain under constant magnetic field during the loading-unloading cycle were measured. The experimental results show that the mechanical behavior during the loading-unloading cycle of the material is nonlinear and anisotropic. Based on the experimental results, the effects of multi-field coupling factors, such as stress, magnetic field, temperature and cutting angle on the mechanical behaviors were analyzed. Some useful conclusions were obtained, which will provide guidance for practical applications.

  3. Morphological instability of lamellar structures in directionally solidified Ni-Ni3Si alloys (United States)

    Wei, Lufeng; Zhao, Zhilong; Gao, Jianjun; Cui, Kai; Guo, Jingying; Chen, Sen; Liu, Lin


    The morphological instability of lamellar structures in Ni-Ni3Si eutectic and hypereutectic alloys directionally solidified at low growth rates was investigated. The first instability in large lamellar structures was zigzag instability, which formed curved lamellae. A zigzag pattern was first displayed in three dimensions. The diffusion-limited growth of the Ni3Si phase decreased phase width and spacing, consequently causing zigzag instability. The reduced spacing was observed at λ/λave = 0.9. After zigzag instability, the microstructure of the eutectic alloy turned into a labyrinth structure and lamellar fragmentation. However, in hypereutectic alloys, shape transition from lamellae to rods occurred, in turn, by the broken lamellae or elongated rods to dumbbell-shaped rods, peanut-shaped rods, and circular rods.

  4. Microstructure and property of directionally solidified Ni-Si hypereutectic alloy (United States)

    Cui, Chunjuan; Tian, Lulu; Zhang, Jun; Yu, Shengnan; Liu, Lin; Fu, Hengzhi


    This paper investigates the influence of the solidification rate on the microstructure, solid/liquid interface, and micro-hardness of the directionally solidified Ni-Si hypereutectic alloy. Microstructure of the Ni-Si hypereutectic alloy is refined with the increase of the solidification rate. The Ni-Si hypereutectic composite is mainly composed of α-Ni matrix, Ni-Ni3Si eutectic phase, and metastable Ni31Si12 phase. The solid/liquid interface always keeps planar interface no matter how high the solidification rate is increased. This is proved by the calculation in terms of M-S interface stability criterion. Moreover, the Ni-Si hypereutectic composites present higher micro-hardness as compared with that of the pure Ni3Si compound. This is caused by the formation of the metastable Ni31Si12 phase and NiSi phase during the directional solidification process.

  5. Microstructural Development in Al-Ni Alloys Directionally Solidified under Unsteady-State Conditions (United States)

    Canté, Manuel V.; Spinelli, José E.; Ferreira, Ivaldo L.; Cheung, Noé; Garcia, Amauri


    Three Al-Ni hypoeutectic alloys were directionally solidified under upward unsteady-state heat-flow conditions. Primary ( λ 1) and secondary ( λ 2) dendrite arm spacings were measured along the castings for all alloys and correlated with transient solidification thermal variables. A combined theoretical and experimental approach was used to quantitatively determine such thermal variables, i.e., transient metal/mold heat-transfer coefficients, tip growth rates, thermal gradients, tip cooling rates, and local solidification time. The article also focuses on the dependence of dendrite arm spacings on the alloy solute content. Furthermore, the experimental data concerning the solidification of Al-1.0, 2.5, and 4.7 wt pct Ni alloys are compared with the main predictive dendritic models from the literature.

  6. The correlation between dendritic microstructure and mechanical properties of directionally solidified hypoeutectic Al-Ni alloys (United States)

    Canté, Manuel V.; Spinelli, José E.; Cheung, Noé; Garcia, Amauri


    Al-Ni hypoeutectic alloys were directionally solidified under upward transient heat flow conditions. The aim of the present study is to set up correlations between the as-cast microstructure and the resulting mechanical properties of these alloys. The dependence of primary and secondary dendrite arm spacing on the alloy solute content and on solidification thermal parameters is also analyzed. The results include transient metal/mold heat transfer coefficient, tip growth rate, cooling rate, dendrite arm spacing, ultimate tensile strength, yield tensile strength and elongation. Expressions relating dendrite spacing to solidification thermal parameters and mechanical properties to the scale of the dendritic microstructure have been determined. It was found that the ultimate tensile strength and the yield tensile strength increase with increasing alloy solute content and with decreasing primary and secondary dendrite arm spacing. In contrast, the elongation was found to be independent of both alloy composition and dendritic arrangement.

  7. Importance of microscopy in durability studies of solidified and stabilized contaminated soils (United States)

    Klich, I.; Wilding, L.P.; Drees, L.R.; Landa, E.R.


    Solidification/stabilization (S/S) is recognized by the U.S. EPA as a best demonstrated available technology for the containment of contaminated soils and other hazardous wastes that cannot be destroyed by chemical, thermal, or biological means. Despite the increased use of S/S technologies, little research has been conducted on the weathering and degradation of solidified and stabilized wastes once the treated materials have been buried. Published data to verify the performance and durability of landfilled treated wastes over time are rare. In this preliminary study, optical and electron microscopy (scanning electron microscopy [SEM], transmission electron microscopy [TEM] and electron probe microanalyses [EPMA]) were used to evaluate weathering features associated with metal-bearing contaminated soil that had been solidified and stabilized with Portland cement and subsequently buried on site, stored outdoors aboveground, or achieved in a laboratory warehouse for up to 6 yr. Physical and chemical alteration processes identified include: freeze-thaw cracking, cracking caused by the formation of expansive minerals such as ettringite, carbonation, and the movement of metals from waste aggregates into the cement micromass. Although the extent of degradation after 6 yr is considered slight to moderate, results of this study show that the same environmental concerns that affect the durability of concrete must be considered when evaluating the durability and permanence of the solidification and stabilization of contaminated soils with cement. In addition, such evaluations cannot be based on leaching and chemical analyses alone. The use of all levels of microscopic analyses must be incorporated into studies of the long-term performance of S/S technologies.Solidification/stabilization (S/S) is recognized by the U.S. EPA as a best demonstrated available technology for the containment of contaminated soils and other hazardous wastes that cannot be destroyed by chemical

  8. Leaching behavior and immobilization of heavy metals in solidified/stabilized products. (United States)

    Malviya, Rachana; Chaudhary, Rubina


    Solidification/stabilization (S/S) of hazardous sludge from steel processing plant has been studied. Mechanical strength and leaching behavior test of solidified/stabilized product was performed. Mechanical strength decreases with increase in waste content. Pb, Zn, Cu, Fe and Mn could be considerably immobilized by the solidification/stabilization process. The elements least immobilized were Na, K, and Cl. Leaching of heavy metals in the S/S matrix can be considered as pH dependent and corresponding metal hydroxide solubility controlled process. Geochemical modeling was performed for the prediction of speciation. On the basis of test results, mobility and mechanism of leaching was assessed. Dominant leaching mechanism was surface wash off in the initial stages followed by diffusion for Pb, Zn, Cu, Fe and Mn. Diffusion coefficient was above 11.5 indicating low mobility in the cement matrix.

  9. Dendrite growth morphologies in rapidly solidified Al-4.5wt.%Cu droplets (United States)

    Bedel, M.; Reinhart, G.; Bogno, A.-A.; Nguyen-Thi, H.; Boller, E.; Gandin, Ch-A.; Henein, H.


    The impulse atomization process developed at the University of Alberta (Canada) enables metallic powders to be solidified with controlled process parameters and improved properties. In order to investigate the microstructure morphologies in droplets of Al- 4.5wt.%Cu alloys, three-dimensional reconstructions of several droplets are obtained by using synchrotron X-ray micro-tomography, allowing a visualization of the inner microstructure in three dimensions. The analysis of the reconstructed volumes reveals that a wide range of morphology, from highly branched to “finger-bundle”, can be obtained for different droplets of similar diameter and produced in the same batch. Unexpectedly for this alloy, microstructural features also indicate that the development of the dendrite arms (primary and of higher orders) occurs in most droplets along crystallographic axes, instead of the usual directions observed in conventional casting technologies.

  10. Undercooling of Rapidly Solidified Droplets and Spray Formed Strips of Al-Cu (Sc) (United States)

    Bogno, A.; Natzke, P.; Yin, S.; Henein, H.

    Impulse Atomization (IA) (a single fluid atomization technique) was used to rapidly solidify Al-4.5wt%Cu and Al-4.5wt%Cu-0.4wt%Sc under argon atmosphere. In addition to the IA-generated droplets, the same technique was used to produce strips by Spray Deposition (SD) of the same alloys on a copper substrate with and without oil coating. The rapid solidification microstructures were analyzed using Scanning Electron Microscopy (SEM). From the SEM images, the amount of eutectic and the secondary dendrite arm spacing (SDAS) were measured. These SDAS results lead to the estimation of cooling rate. The eutectic fraction coupled with the metastable extension of the solidus and liquidus lines of Al-Cu (Sc) phase diagram lead to the estimation of primary and eutectic undercoolings. A comparison of the solidification path of the droplets and the strips was done as well as the analysis of the effects of scandium.

  11. Solute redistribution and Rayleigh number in the mushy zone during directional solidifi cation of Inconel 718

    Directory of Open Access Journals (Sweden)

    Wang Ling


    Full Text Available The interdendritic segregation along the mushy zone of directionally solidifi ed superalloy Inconel 718 has been measured by scanning electron microscope (SEM and energy dispersion analysis spectrometry (EDAXtechniques and the corresponding liquid composition profile was presented. The liquid density and Rayleigh number (Ra profi les along the mushy zone were calculated as well. It was found that the liquid density difference increased from top to bottom in the mushy zone and there was no density inversion due to the segregation of Nb and Mo. However carbide formation in the freezing range and the preferred angle of the orientated dendrite array could prompt the fl uid fl ow in the mushy zone although there was no liquid density inversion. The largest relative Rayleigh number appeared at 1,326 篊 for Inconel 718 where the fl uid fl ow most easily occurred.

  12. Evaluation of leaching behavior and immobilization of zinc in cement-based solidified products

    Directory of Open Access Journals (Sweden)

    Krolo Petar


    Full Text Available This study has examined leaching behavior of monolithic stabilized/solidified products contaminated with zinc by performing modified dynamic leaching test. The effectiveness of cement-based stabilization/solidification treatment was evaluated by determining the cumulative release of Zn and diffusion coefficients, De. The experimental results indicated that the cumulative release of Zn decreases as the addition of binder increases. The values of the Zn diffusion coefficients for all samples ranged from 1.210-8 to 1.1610-12 cm2 s-1. The samples with higher amounts of binder had lower De values. The test results showed that cement-based stabilization/solidification treatment was effective in immobilization of electroplating sludge and waste zeolite. A model developed by de Groot and van der Sloot was used to clarify the controlling mechanisms. The controlling leaching mechanism was found to be diffusion for samples with small amounts of waste material, and dissolution for higher waste contents.

  13. Strain hardening and fracture behavior during tension of directionally solidified high-nitrogen austenitic steel (United States)

    Maier, Galina; Astafurova, Elena; Melnikov, Eugene; Moskvina, Valentina; Galchenko, Nina


    The effect of grain orientation relative to tensile load on the strain hardening behavior and fracture mechanism of directionally solidified high-nitrogen steel Fe-20Cr-22Mn-1.5V-0.2C-0.6N (in wt %) was studied. The tensile samples oriented along the longitudinal direction of columnar grains demonstrated the improved mechanical properties compared to specimens with the transversal directions of columnar grains: the values of tensile strength and strain-to-fracture were as high as 1080 MPa and 22%, respectively, for tension along the columnar grains and 870 MPa and 11%, respectively, for the tension transversal to the columnar grains. The change in the grain orientation relative to the tensile load varies a fracture mode of the steel. The fraction of the transgranular fracture was higher in the samples with longitudinal directions of the columnar grains compared to the transversal ones.

  14. Microstructural evolution and corrosion behavior of directionally solidified FeCoNiCrAl high entropy alloy

    Directory of Open Access Journals (Sweden)

    Cui Hongbao


    Full Text Available The FeCoNiCrAl alloys have many potential applications in the fields of structural materials, but few attempts were made to characterize the directional solidification of high entropy alloys. In the present research, the microstructure and corrosion behavior of FeCoNiCrAl high entropy alloy have been investigated under directional solidification. The results show that with increasing solidification rate, the interface morphology of the alloy evolves from planar to cellular and dendritic. The electrochemical experiment results demonstrate that the corrosion products of both non-directionally and directionally solidified FeCoNiCrAl alloys appear as rectangular blocks in phases which Cr and Fe are enriched, while Al and Ni are depleted, suggesting that Al and Ni are dissolved into the NaCl solution. Comparison of the potentiodynamic polarization behaviors between the two differently solidified FeCoNiCrAl high entropy alloys in a 3.5%NaCl solution shows that the corrosion resistance of directionally solidified FeCoNiCrAl alloy is superior to that of the non-directionally solidified FeCoNiCrAl alloy.

  15. Heat Treatment Development for a Rapidly Solidified Heat Resistant Cast Al-Si Alloy (United States)

    Kasprzak, W.; Chen, D. L.; Shaha, S. K.


    Existing heat treatment standards do not properly define tempers for thin-walled castings that solidified with high solidification rates. Recently emerged casting processes such as vacuum high pressure die casting should not require long solution treatment times due to the fine microstructures arising from rapid solidification rates. The heat treatment studies involving rapidly solidified samples with secondary dendrite arm spacing between 10 and 35 μm were conducted for solution times between 30 min and 9 h and temperatures of 510 and 525 °C and for various aging parameters. The metallurgical analysis revealed that an increase in microstructure refinement could enable a reduction of solution time up to 88%. Solution treatment resulted in the dissolution of Al2Cu and Al5Mg8Si6Cu2, while Fe- and TiZrV-based phases remained partially in the microstructure. The highest strength of approximately 351 ± 9.7 and 309 ± 3.4 MPa for the UTS and YS, respectively, was achieved for a 2-step solution treatment at 510 and 525 °C in the T6 peak aging conditions, i.e., 150 °C for 100 h. The T6 temper did not yield dimensionally stable microstructure since exceeding 250 °C during in-service operation could result in phase transformation corresponding to the over-aging reaction. The microstructure refinement had a statistically stronger effect on the alloy strength than the increase in solutionizing time. Additionally, thermal analysis and dilatometer results were presented to assess the dissolution of phases during solution treatment, aging kinetics as well as dimensional stability.

  16. Scaleable Clean Aluminum Melting Systems

    Energy Technology Data Exchange (ETDEWEB)

    Han, Q.; Das, S.K. (Secat, Inc.)


    The project entitled 'Scaleable Clean Aluminum Melting Systems' was a Cooperative Research and Development Agreements (CRADAs) between Oak Ridge National Laboratory (ORNL) and Secat Inc. The three-year project was initially funded for the first year and was then canceled due to funding cuts at the DOE headquarters. The limited funds allowed the research team to visit industrial sites and investigate the status of using immersion heaters for aluminum melting applications. Primary concepts were proposed on the design of furnaces using immersion heaters for melting. The proposed project can continue if the funding agency resumes the funds to this research. The objective of this project was to develop and demonstrate integrated, retrofitable technologies for clean melting systems for aluminum in both the Metal Casting and integrated aluminum processing industries. The scope focused on immersion heating coupled with metal circulation systems that provide significant opportunity for energy savings as well as reduction of melt loss in the form of dross. The project aimed at the development and integration of technologies that would enable significant reduction in the energy consumption and environmental impacts of melting aluminum through substitution of immersion heating for the conventional radiant burner methods used in reverberatory furnaces. Specifically, the program would couple heater improvements with furnace modeling that would enable cost-effective retrofits to a range of existing furnace sizes, reducing the economic barrier to application.

  17. Effect of Build Angle on Surface Properties of Nickel Superalloys Processed by Selective Laser Melting (United States)

    Covarrubias, Ernesto E.; Eshraghi, Mohsen


    Aerospace, automotive, and medical industries use selective laser melting (SLM) to produce complex parts through solidifying successive layers of powder. This additive manufacturing technique has many advantages, but one of the biggest challenges facing this process is the resulting surface quality of the as-built parts. The purpose of this research was to study the surface properties of Inconel 718 alloys fabricated by SLM. The effect of build angle on the surface properties of as-built parts was investigated. Two sets of sample geometries including cube and rectangular artifacts were considered in the study. It was found that, for angles between 15° and 75°, theoretical calculations based on the "stair-step" effect were consistent with the experimental results. Downskin surfaces showed higher average roughness values compared to the upskin surfaces. No significant difference was found between the average roughness values measured from cube and rectangular test artifacts.

  18. Interfacial microstructure and properties of dissimilar steels joined by high energy beam melting processes (United States)

    Carbucicchio, M.; Palombarini, G.; Ciprian, R.; Tosto, S.; Rateo, M.; Sambogna, G.


    Junctions between austenitic and ferritic steels were produced using two different processes involving melting at the contact surfaces: electron beam cladding designed to improve the corrosion resistance of the joined component, and laser beam welding carried out to obtain mechanically resistant joints. Different processing conditions were adopted in order to determine the beam irradiation parameters, such as incident power density and beam translation speed, suitable for any specific application. Solidified and thermally altered zones were investigated by means of different and complementary techniques: X-ray diffraction, Mössbauer spectroscopy, electron probe microanalysis, metallography and microhardness measurements. The effects of the rapid solidification processes on phase composition, microstructure and properties of clads and welds, are presented and discussed.

  19. Methods for Melting Temperature Calculation (United States)

    Hong, Qi-Jun

    Melting temperature calculation has important applications in the theoretical study of phase diagrams and computational materials screenings. In this thesis, we present two new methods, i.e., the improved Widom's particle insertion method and the small-cell coexistence method, which we developed in order to capture melting temperatures both accurately and quickly. We propose a scheme that drastically improves the efficiency of Widom's particle insertion method by efficiently sampling cavities while calculating the integrals providing the chemical potentials of a physical system. This idea enables us to calculate chemical potentials of liquids directly from first-principles without the help of any reference system, which is necessary in the commonly used thermodynamic integration method. As an example, we apply our scheme, combined with the density functional formalism, to the calculation of the chemical potential of liquid copper. The calculated chemical potential is further used to locate the melting temperature. The calculated results closely agree with experiments. We propose the small-cell coexistence method based on the statistical analysis of small-size coexistence MD simulations. It eliminates the risk of a metastable superheated solid in the fast-heating method, while also significantly reducing the computer cost relative to the traditional large-scale coexistence method. Using empirical potentials, we validate the method and systematically study the finite-size effect on the calculated melting points. The method converges to the exact result in the limit of a large system size. An accuracy within 100 K in melting temperature is usually achieved when the simulation contains more than 100 atoms. DFT examples of Tantalum, high-pressure Sodium, and ionic material NaCl are shown to demonstrate the accuracy and flexibility of the method in its practical applications. The method serves as a promising approach for large-scale automated material screening in which

  20. Crust behavior in simultaneous melting and freezing on a submerged flat plate

    Energy Technology Data Exchange (ETDEWEB)

    Ganguli, A.; Bankoff, S.G.


    A theoretical and experimental investigation of the solidification of a flowing liquid onto a melting wall was carried out. In particular, the experimental work involved open channel laminar flow of water over a flat plate of n-decane. The point of interest is the dynamic behavior of the solidified crust, which forms a leading edge by melting. The motion of this leading edge was determined as a function of the water temperature, velocity, decane temperature and outlet weir height. This melting rate was found to be very sensitive to the water temperature and less dependent upon the other parameters. An approximate numerical method, using polynomial temperature profiles with time dependent coefficients, was used to solve the one-dimensional heat conduction model. From this, the dynamic behavior of the crust was predicted as a function of the experimental parameters and the local heat transfer coefficient on the freezing surface, which was later estimated. There is reasonable agreement between the predicted and experimentally observed motions of the leading edge.

  1. Crystal nucleation and dendrite growth of metastable phases in undercooled melts

    Energy Technology Data Exchange (ETDEWEB)

    Herlach, Dieter, E-mail: [Institut fuer Materialphysik im Weltraum, Deutsches Zentrum fuer Luft- und Raumfahrt, D-51170 Koeln (Germany)


    Research highlights: > Homogenous nucleation. > Effects of convection on dendrite growth kinetics. > Description of disorder trapping validated by experiment. - Abstract: An undercooled melt possesses an enhanced free enthalpy that opens up the possibility to crystallize metastable crystalline solids in competition with their stable counterparts. Crystal nucleation selects the crystallographic phase whereas the growth dynamics controls microstructure evolution. We apply containerless processing techniques such as electromagnetic and electrostatic levitation to containerlesss undercool and solidify metallic melts. Owing to the complete avoidance of heterogeneous nucleation on container-walls a large undercooling range becomes accessible with the extra benefit that the freely suspended drop is direct accessible for in situ observation of crystallization far away from equilibrium. Results of investigations of maximum undercoolability on pure zirconium are presented showing the limit of maximum undercoolability set by the onset of homogeneous nucleation. Rapid dendrite growth is measured as a function of undercooling by a high-speed camera and analysed within extended theories of non-equilibrium solidification. In such both supersaturated solid solutions and disordered superlattice structure of intermetallics are formed at high growth velocities. A sharp interface theory of dendrite growth is capable to describe the non-equilibrium solidification phenomena during rapid crystallization of deeply undercooled melts. Eventually, anomalous growth behaviour of Al-rich Al-Ni alloys is presented, which may be caused by forced convection.

  2. Numerical investigation of melting and solidification processes in modified surface layers of metal at induction heating (United States)

    Shchukin, V. G.; Popov, V. N.


    One of the perspective ways to improve the operational properties of parts of machines during induction treatment of their surfaces is the modification of the melt by specially prepared nanoscale particles of refractory compounds (carbides, nitrides, carbonitrides, etc.). This approach allows us to increase the number of crystallization centers and to refine the structural components of the solidified metal. The resulting high dispersity and homogeneity of crystalline grains favorably affect the quality of the treated surfaces. 3D numerical simulation of thermophysical processes in the modification of the surface layer of metal in a moving substrate was carried out. It is assumed that the surface of the substrate is covered with a layer of specially prepared nanoscale particles of a refractory compound, which, upon penetration into the melt, are uniformly distributed in it. The possibility of applying a high-frequency electromagnetic field of high power for heating and melting of a metal (iron) for the purpose of its subsequent modification is investigated. The distribution of electromagnetic energy in the metal is described by empirical formulas. Melting of the metal is considered in the Stefan approximation, and upon solidification it is assumed that all nanoparticles serve as centers for volume-sequential crystallization. Calculations were carried out with the following parameters: specific power p0 = 35 and 40 kW/cm2 at frequency f = 440 and 1200 kHz, the substrate velocity V = 0.5-2.5 cm/s, the nanoparticles' size is 50 nm and concentration Np = 2.0 . 109 cm-3. Based on the results obtained in a quasi-stationary formulation, the distribution of the temperature field, the dimensions of the melting and crystallization zones, the change in the solid fraction in the two-phase zone, the area of the treated substrate surface, depending on the speed of its movement and induction heating characteristics were estimated.

  3. Melting in temperature sensitive suspensions (United States)

    Alsayed, Ahmed M.

    We describe two experimental studies about melting in colloidal systems. In particular we studied melting of 1-dimensional lamellar phases and 3-dimensional colloidal crystals. In the first set of experiments we prepared suspensions composed of rodlike fd virus and the thermosensitive polymer, poly(N-isopropylacrylamide). The phase diagram of this systems is temperature and concentration dependent. Using video microscopy, we directly observed melting of lamellar phases and single lamellae into nematic phase. We found that lamellar phases swell with increasing temperature before melting into the nematic phase. The highly swollen lamellae can be superheated as a result of topological nucleation barriers that slow the formation of the nematic phase. In another set of experiments we prepared colloidal crystals from thermally responsive microgel spheres. The crystals are equilibrium close-packed three-dimensional structures. Upon increasing the temperature slightly above room temperature, particle volume fraction decreased from 0.74 to less than 0.5. Using video microscopy, we observed premelting at grain boundaries and dislocations within bulk colloidal crystals. Premelting is the localized loss of crystalline order at surfaces and defects at sample volume fractions above the bulk melting transition. Particle tracking revealed increased disorder in crystalline regions bordering defects, the amount of which depends on the type of defect, distance from the defect, and particle volume fraction. In total these observations suggest that interfacial free energy is the crucial parameter for premelting in colloidal and in atomic scale crystals.

  4. Lithium diffusion in silicate melts (United States)

    Cunningham, G. J.; Henderson, P.; Lowry, R. K.; Nolan, J.; Reed, S. J. B.; Long, J. V. P.


    The diffusion properties of Li in an andesitic and pitchstone melt have been determined over the temperature range 1300-1400°C. The diffusion data have been fitted to an Arrhenius relationship between log D0 and 1/ T, and give relatively small activation energies of diffusion: 21.4±5.8 kcal mol -1 in the andesite and 20.1±2.8 kcal mol -1 in the pitchstone. Li +, unlike several other cations, shows similar diffusivities in these melt compositions to that in a basaltic melt. Despite the similar ionic radius of Li + to that of Co 2+, the diffusion properties of the two ions are very different from each other.

  5. Formation and growth of crystal defects in directionally solidified multicrystalline silicon for solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ryningen, Birgit


    Included in this thesis are five publications and one report. The common theme is characterisation of directionally solidified multicrystalline silicon for solar cells. Material characterisation of solar cell silicon is naturally closely linked to both the casting process and to the solar cell processing: Many of the material properties are determined by the casting process, and the solar cell processing will to some extend determine which properties will influence the solar cell performance. Solar grade silicon (SoG-Si) made by metallurgical refining route and supplied by Elkem Solar was directionally solidified and subsequently characterised, and a simple solar cell process was applied. Except from some metallic co-precipitates in the top of the ingot, no abnormalities were found, and it is suggested that within the limits of the tests performed in this thesis, the casting and the solar cell processing, rather than the assumed higher impurity content, was the limiting factor. It is suggested in this thesis that the main quality problem in multicrystalline silicon wafers is the existence of dislocation clusters covering large wafer areas. The clusters will reduce the effect of gettering and even if gettering could be performed successfully, the clusters will still reduce the minority carrier mobility and hence the solar cell performance. It has further been pointed out that ingots solidified under seemingly equal conditions might have a pronounced difference in minority carrier lifetime. Ingots with low minority carrier lifetime have high dislocation densities. The ingots with the substantially higher lifetime seem all to be dominated by twins. It is also found a link between a higher undercooling and the ingots dominated by twins. It is suggested that the two types of ingots are subject to different nucleation and crystal growth mechanisms: For the ingots dominated by dislocations, which are over represented, the crystal growth is randomly nucleated at the

  6. The relation between experiments and modeling of rapidly solidified 12Cr-Mo-V stainless steel

    DEFF Research Database (Denmark)

    Pryds, Nini; Hattel, Jesper Henri


    Solidification during melt spinning of a 12Cr-Mo-V stainless steel has been experimentally studied and numerically simulated. The resulting microstructures have been related to the unknown parameter h, i.e. the heat transfer coefficient between the substrate and the melt, by fitting the heat flow...... of metastable austenite as the primary phase near the chill side of the ribbon. Upon quenching to room temperature, this austenite transformed into martensite. At a distance of about 15 mu m from the chill surface, the growth velocity of the solid/liquid interface decreased (

  7. Interplay between temperature gradients field and C - E transformation in solidifying rolls

    Directory of Open Access Journals (Sweden)

    W. Wołczyński


    Full Text Available At first step of simulation a temperature field for solidifying cast steel and cast iron roll has been performed. The calculation does not take into account the convection in the liquid since convection has no influence on the proposed model for the localization of the C-E (columnar to equiaxed grains transformation. However, it allows to study the dynamics of temperature field temporal behavior in the middle of a mould. It is postulated that for the C-E transition a full accumulation of the heat in the mould has been observed (plateau at the T(t curve. The temporal range of plateau existence corresponds to the incubation time for the full equiaxed grains formation. At the second step of simulation temporal behavior of the temperature gradient field has been studied. Three ranges within temperature gradients field have been distinguished for the operating point situated at the middle of mould: a/ for the formation of columnar grains zone, ( and high temperature gradient 0>>T&0//>>∂∂−∂∂∂∂−∂∂>EttEtrTrT. T - temperature, r - roll radius. It is evident that the heat transfer across the mould decides on the temporal appearance of incubation during which the solidification is significantly arrested and competition between columnar and equiaxed growth occurs. Moreover solidification with positive temperature gradient transforms into solidification with negative temperature gradient (locally after the incubation. A simulation has been performed for the cast steel and cast iron rolls solidifying as in industry condition. Since the incubation divides the roll into to parts (first with columnar structure, second with equiaxed structure some experiments dealing with solidification have been made in laboratory scale. Finally, observations of the macrosegregation or microsegregation and phase or structure appearance in the cast iron ingot / roll (made in laboratory has also been done in order to confront them with theoretical predictions

  8. Enhanced Magnetic Properties of Nd15Fe77B8 Alloy Powders Produced by Melt-Spinning Technique (United States)

    Öztürk, Sultan; İcin, Kürşat; Öztürk, Bülent; Topal, Uğur; Odabaşı, Hülya Kaftelen; Göbülük, Metin; Cora, Ömer Necati


    Rapidly solidified Nd15Fe77B8 alloy powders were produced by means of melt-spinning method in high-vacuum atmosphere to achieve improved magnetic and thermal properties. To this goal, a vacuum milling apparatus was designed and constructed to ball-mill the melt-spun powders in a surfactant active atmosphere. Various milling times were experimented to reveal the effect of the milling time on the mean particle size and other size-dependent properties such as magnetism and Curie temperature. Grain structure, cooling rate, and phase structure of the produced powders were also investigated. The Curie points shifted to higher temperatures from the ingot condition to surfactant active ball-milling and the values for Nd15Fe77B8 ingot alloy, melt-spun powders, and surfactant active ball-milled powders were 552 K, 595 K, and 604 K (279 °C, 322 °C, and 331 °C), respectively. It was noted that the surfactant active ball-milling process improved the magnetic and thermal properties of melt-spun Nd15Fe77B8 alloy powders. Compared to relevant literature, the coercivity of powders increased significantly with increasing milling time and decreasing in powder size. The coercivity value as high as 3427 kA m-1 was obtained.

  9. Recovery Phenomenon During Annealing of an As-Rapidly Solidified Al Alloy (United States)

    Yan, Zhigang; Mao, Shuaiying; Lin, Yaojun; Zhang, Yaqi; Wang, Limin


    It has been well documented that recovery occurring in metals/alloys produced via solid-state quenching involves only annihilation of supersaturated vacancies. Interestingly, in the present study, we observed completely different mechanisms underlying recovery during annealing of an Al-Zn-Mg-Cu (7075 Al) alloy processed via liquid-state quenching, i.e., rapid solidification (specifically melt spinning herein). The as-melt-spun alloy consists of refined grains containing tangled dislocations inside the grains. Following annealing at 393 K (120 °C) for 24 hours, refined grain structure was still retained and grain sizes essentially remained unchanged, but subgrains separated by dense dislocation walls were generated at grain interiors, with a much lower density of dislocations at subgrain interiors than that in the as-melt-spun 7075 Al alloy and dislocation arrays inside some subgrains. The microstructural evolution suggests the absence of recrystallization and the occurrence of recovery primarily via the annihilation and rearrangement of dislocations and the formation of subgrains. Based on the stored energy in dislocations in, and the annealing temperature of, the as-melt-spun 7075 Al alloy, the recovery phenomenon was analyzed and discussed in detail.

  10. Comparative Investigation of the Downward and Upward Directionally Solidified Single-Crystal Blades of Superalloy CMSX-4 (United States)

    Wang, Fu; Ma, Dexin; Bogner, Samuel; Bührig-Polaczek, Andreas


    Single-crystal blades of Ni-base superalloys CMSX-4 have been directionally solidified using the downward directional solidification (DWDS) process. The possible benefits of the process were comparatively evaluated with respect to the Bridgman process' results. The DWDS process exhibits good capabilities for casting the single-crystal components. The thermal gradients of this process are approximately seven times higher than those of the Bridgman process. It provides more advantages for solidifying the single-crystal superalloy blades by reducing the casting defects, refining the microstructure, decreasing the size of the γ/ γ' eutectic pools, refining the γ' precipitates, alleviating the degree of the microsegregation, and minimizing the size and volume fraction of the micropores.

  11. A SEM and X-ray study for investigation of solidified/stabilized arsenic-iron hydroxide sludge. (United States)

    Phenrat, Tanapon; Marhaba, Taha F; Rachakornkij, Manaskorn


    Despite the fact that the solidification/stabilization of arsenic containing wastes with Portland cement and lime has an extensively documented history of use, the physical and chemical phenomena as a result of the interaction between arsenic and cement components have not been fully characterized. The study investigates the behavior of synthesized arsenic-iron hydroxide sludge, the by-product of arsenic removal by coagulation with ferric chloride, in solidified/stabilized matrices as well as its binding mechanisms by exploring the cementitious matrices in the micro-scale by scanning electron microscopy equipped with energy dispersive X-ray spectrometer (SEM-EDS). It was revealed that arsenic can be chemically fixed into cementitious environment of the solidified/stabilized matrices by three important immobilization mechanisms; sorption onto C-S-H surface, replacing SO4(2-) of ettringite, and reaction with cement components to form calcium-arsenic compounds, the solubility limiting phases.

  12. Validating predictions made by a thermo-mechanical model of melt segregation in sub-volcanic systems (United States)

    Roele, Katarina; Jackson, Matthew; Morgan, Joanna


    A quantitative understanding of the spatial and temporal evolution of melt distribution in the crust is crucial in providing insights into the development of sub-volcanic crustal stratigraphy and composition. This work aims to relate numerical models that describe the base of volcanic systems with geophysical observations. Recent modelling has shown that the repetitive emplacement of mantle-derived basaltic sills, at the base of the lower crust, acts as a heat source for anatectic melt generation, buoyancy-driven melt segregation and mobilisation. These processes form the lowermost architecture of complex sub-volcanic networks as upward migrating melt produces high melt fraction layers. These 'porosity waves' are separated by zones with high compaction rates and have distinctive polybaric chemical signatures that suggest mixed crust and mantle origins. A thermo-mechanical model produced by Solano et al in 2012 has been used to predict the temperatures and melt fractions of successive high porosity layers within the crust. This model was used as it accounts for the dynamic evolution of melt during segregation and migration through the crust; a significant process that has been neglected in previous models. The results were used to input starting compositions for each of the layers into the rhyolite-MELTS thermodynamic simulation. MELTS then determined the approximate bulk composition of the layers once they had cooled and solidified. The mean seismic wave velocities of the polymineralic layers were then calculated using the relevant Voight-Reuss-Hill mixture rules, whilst accounting for the pressure and temperature dependence of seismic wave velocity. The predicted results were then compared with real examples of reflectivity for areas including the UK, where lower crustal layering is observed. A comparison between the impedance contrasts at compositional boundaries is presented as it confirms the extent to which modelling is able to make predictions that are

  13. Effect of a weak transverse magnetic field on the microstructure in directionally solidified peritectic alloys (United States)

    Li, Xi; Lu, Zhenyuan; Fautrelle, Yves; Gagnoud, Annie; Moreau, Rene; Ren, Zhongming


    Effect of a weak transverse magnetic field on the microstructures in directionally solidified Fe-Ni and Pb-Bi peritectic alloys has been investigated experimentally. The results indicate that the magnetic field can induce the formation of banded and island-like structures and refine the primary phase in peritectic alloys. The above results are enhanced with increasing magnetic field. Furthermore, electron probe micro analyzer (EPMA) analysis reveals that the magnetic field increases the Ni solute content on one side and enhances the solid solubility in the primary phase in the Fe-Ni alloy. The thermoelectric (TE) power difference at the liquid/solid interface of the Pb-Bi peritectic alloy is measured in situ, and the results show that a TE power difference exists at the liquid/solid interface. 3 D numerical simulations for the TE magnetic convection in the liquid are performed, and the results show that a unidirectional TE magnetic convection forms in the liquid near the liquid/solid interface during directional solidification under a transverse magnetic field and that the amplitude of the TE magnetic convection at different scales is different. The TE magnetic convections on the macroscopic interface and the cell/dendrite scales are responsible for the modification of microstructures during directional solidification under a magnetic field.

  14. Tensile behavior of directionally solidified Ni3Al intermetallics with different Al contents and solidification rates (United States)

    Lu, Yun; Gu, Jiho; Kim, Sangshik; Hong, Hyunuk; Choi, Heekyu; Lee, Jehyun


    Despite the excellent high temperature mechanical properties of the Ni3Al intermetallic compound, its application is still limited due to its inherently weak grain boundary. Recent research advances have demonstrated that the tensile ductility can be enhanced by controlling the grain morphology using a directional solidification. In this study, a series of directional solidification experiments were carried out to increase both the tensile ductility and the strength of Ni3Al alloys by arraying either the ductile phase of γ-Ni-rich dendrite fibers or the hard phase of β-NiAl dendrite fibers in the γ'-Ni3Al matrix. The dendrite arm spacing could be controlled by the solidification rate, and the volume fraction of the γ or β phase could be altered by the Al content, ranging from 23 at.% to 27 at.%. With an increasing Al content, the γ dendritic microstructure was transformed into the β dendrite in the γ' matrix, thereby reducing the tensile ductility by increasing the volume fraction of brittle β dendrites in the γ' matrix. With an increasing solidification rate, the dendrite arm spacing decreased and the tensile properties of Ni3Al varied in a complex manner. The microstructural evolution affecting the tensile behavior of directionally solidified Ni3Al alloy specimens with different solidification rates and Al contents is discussed.

  15. Preparation and Stability of Inorganic Solidified Foam for Preventing Coal Fires

    Directory of Open Access Journals (Sweden)

    Botao Qin


    Full Text Available Inorganic solidified foam (ISF is a novel material for preventing coal fires. This paper presents the preparation process and working principle of main installations. Besides, aqueous foam with expansion ratio of 28 and 30 min drainage rate of 13% was prepared. Stability of foam fluid was studied in terms of stability coefficient, by varying water-slurry ratio, fly ash replacement ratio of cement, and aqueous foam volume alternatively. Light microscope was utilized to analyze the dynamic change of bubble wall of foam fluid and stability principle was proposed. In order to further enhance the stability of ISF, different dosage of calcium fluoroaluminate was added to ISF specimens whose stability coefficient was tested and change of hydration products was detected by scanning electron microscope (SEM. The outcomes indicated that calcium fluoroaluminate could enhance the stability coefficient of ISF and compact hydration products formed in cell wall of ISF; naturally, the stability principle of ISF was proved right. Based on above-mentioned experimental contents, ISF with stability coefficient of 95% and foam expansion ratio of 5 was prepared, which could sufficiently satisfy field process requirements on plugging air leakage and thermal insulation.

  16. High-temperature performance evaluation of adirectionally solidified nickel-base superalloy (United States)

    Woodford, D. A.; Stiles, D.


    The application of a new approach, design for performance, for high-temperature alloy development, design analysis, and remaining life assessment, based on short-time high-precision testing, is described in this paper. The material tested was a directionally solidified nickel-base alloy, GTD111. It was found that the creep strength at 850 °C was indeed superior to that of a competitive alloy, IN738, but was not necessarily enhanced by the preferred alignment of grain boundaries and crystal orientation. In contrast, the fracture resistance at 800 °C was improved in the longitudinal direction compared with transverse and diagonal orientations in terms of susceptibility to gas phase embrittlement (GPE) by oxygen. Specimens cut transversely and diagonally to the growth direction were more sensitive to GPE than specimens taken from conventionally cast IN738. The new conceptual framework allows account to be taken of GPE and other embrittling phenomena, which may develop in service, leading to rational life management decisions for gas turbine users. Additionally, straightforward design analysis procedures can be developed from the test data, which for the first time allow separate measurements of creep strength and fracture resistance to be used for performance evaluation.

  17. Massive, solidified bone in the wing of a volant courting bird. (United States)

    Bostwick, Kimberly S; Riccio, Mark L; Humphries, Julian M


    One pervasive morphological feature of tetrapods is the pipe-like, often marrow-filled, structure of the limb or long bones. This 'hollow' form maximizes flexural strength and stiffness with the minimum amount of bony material, and is exemplified by truly hollow (air-filled), or pneumatic, humeri in many modern birds. High-resolution microCT scans of the wings of two male club-winged manakins (Machaeropterus deliciosus) uncovered a notable exception to the hollow-tube rule in terrestrial vertebrates; males exhibited solidified ulnae more than three times the volume of birds of comparable body size, with significantly higher tissue mineral densities. The humeri exhibited similar (but less extreme) modifications. Each of the observed osteological modifications increases the overall mass of the bone, running counter to pervasive weight-reducing optimizations for flight in birds. The club-winged manakin is named for a pair of unique wing feathers found in adult males; these enlarged feathers attach directly to the ulna and resonate to produce a distinctive sound used in courtship displays. Given that the observed modifications probably assist in sound production, the club-winged manakin represents a case in which sexual selection by female choice has generated an ecologically 'costly' forelimb morphology, unique in being specialized for sound production at a presumed cost in flight efficiency.

  18. Building towers, domes, and arches by self-organized solidifying flows (United States)

    Chopin, Julien


    We demonstrate that a wide variety of delicate solid structures from slender towers to arches, and chiral pagodas can be created by simply pouring a mixture of grains and water on a liquid absorbing substrate [Phys. Rev. Lett. 107, 208304 (2011)]. The same suspension poured on a solid substrate would form a featureless puddle or a pile with an angle of repose. However, an absorbing substrate can quickly drain the liquid from the suspension, rapidly causing the solidification of the fluid into a mechanically stable structure. In a dripping regime, successive drops are observed to jam rapidly upon impact literally stacking on top of each other forming slender granular towers. In a jetting regime and using a moving substrate, the jet is found to bounce on and off the substrate forming regular arches. We will discuss the subtle interplay of the incoming flux of the granular suspension, the drainage efficiency of the substrate, and the mechanical properties of the solid structure. The drainage driven jamming of granular suspensions gives a new route to shape cohesive granular materials and, from a broader perspective, demonstrates the potential a solidifying fluid spreading on a substrate to create new morphologies harder to achieve by other techniques. Applications to surface patterning, rheology of dense suspension and mechanics of wet granular materials will be discussed.

  19. Organic semiconductor rubrene thin films deposited by pulsed laser evaporation of solidified solutions (United States)

    Majewska, N.; Gazda, M.; Jendrzejewski, R.; Majumdar, S.; Sawczak, M.; Śliwiński, G.


    Organic semiconductor rubrene (C42H28) belongs to most preferred spintronic materials because of the high charge carrier mobility up to 40 cm2(V·s)-1. However, the fabrication of a defect-free, polycrystalline rubrene for spintronic applications represents a difficult task. We report preparation and properties of rubrene thin films deposited by pulsed laser evaporation of solidified solutions. Samples of rubrene dissolved in aromatic solvents toluene, xylene, dichloromethane and 1,1-dichloroethane (0.23-1% wt) were cooled to temperatures in the range of 16.5-163 K and served as targets. The target ablation was provided by a pulsed 1064 nm or 266 nm laser. For films of thickness up to 100 nm deposited on Si, glass and ITO glass substrates, the Raman and AFM data show presence of the mixed crystalline and amorphous rubrene phases. Agglomerates of rubrene crystals are revealed by SEM observation too, and presence of oxide/peroxide (C42H28O2) in the films is concluded from matrix-assisted laser desorption/ionization time-of-flight spectroscopic analysis.

  20. Multi-scale Constitutive Model of Solidifying Cementitious Composites and Application to Cracking Assessment of a Concrete Structure


    石田, 哲也; 浅本, 晋吾; 前川, 宏一


    A multi-scale constitutive model of solidifying cementitious materials is presented based on a systematic knowledge coupling structural mechanics with chemo-physical phenomena. The model can reasonably simulate time-dependent deformations such as autogenous/drying shrinkage and basic/drying creep in laboratory tests under arbitrary environmental and loading conditions. Shrinkage induced cracking in an actual PRC bridge structure was examined by the analytical system, which reveals that large ...

  1. 46 CFR 153.1108 - Heated prewash for solidifying NLS, high viscosity NLS and required prewashes of NLS whose... (United States)


    ... 46 Shipping 5 2010-10-01 2010-10-01 false Heated prewash for solidifying NLS, high viscosity NLS and required prewashes of NLS whose viscosity exceeds 25 mPa sec at 20 °C: Categories A, B, and C. 153.1108 Section 153.1108 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID,...

  2. The infidelity of melt inclusions? (United States)

    Kent, A. J.


    Melt inclusions provide important information about magmatic systems and represent unique records of magma composition and evolution. However, it is also clear that melt inclusions do not necessarily constitute a petrological 'magic bullet', and potential exists for trapped melt compositions to be modified by a range of inclusion-specific processes. These include trapping of diffusional boundary layers, crystallization of the host mineral after trapping and dissolution of co-trapped minerals during homogenization, diffusional exchange between trapped liquid and the host mineral and external melt, and cryptic alteration of trapped material during weathering or hydrothermal alteration. It clearly important to identify when melt inclusions are unmodified, and which compositional indices represent the most robust sources of petrogenetic information. In this presentation I review and discuss various approaches for evaluating compositions and compositional variations in inclusion suites. An overriding principle is that the variations evident in melt inclusions should be able to be understood in terms of petrological processes that are known, or can be reasonably inferred to also effect bulk magma compositions. One common approach is to base petrological conclusions on species that should be more robust, and many workers use variations in incompatible trace elements for this purpose. However important information may also be obtained from a comparison of variations in melt inclusions and the lavas that host them, and in most cases this comparison is the key to identifying inclusions and suites that are potentially suspect. Comparisons can be made between individual inclusions and lavas, although comparison of average inclusion composition and the host lava, after correction for differences in crystal fractionation, may also be valuable. An important extension of this is the comparison of the variability of different species in inclusions and host lavas. This also provides

  3. Development of methodology to evaluate microbially influenced degradation of cement-solidified low-level radioactive waste forms

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, R.D.; Hamilton, M.A.; Veeh, R.H.; McConnell, J.W. [Idaho National Engineering Lab., Idaho Falls, ID (United States)


    Because of its apparent structural integrity, cement has been widely used in the United States as a binder to solidify Class B and C low-level radioactive waste (LLW). However, the resulting cement preparations are susceptible to failure due to the actions of stress and environment. An environmentally mediated process that could affect cement stability is the action of naturally occurring microorganisms. The US Nuclear Regulatory Commission (NRC), recognizing this eventuality, stated that the effects of microbial action on waste form integrity must be addressed. This paper provides present results from an ongoing program that addresses the effects of microbially influenced degradation (MID) on cement-solidified LLW. Data are provided on the development of an evaluation method using acid-producing bacteria. Results are from work with one type of these bacteria, the sulfur-oxidizing Thiobacillus. This work involved the use of a system in which laboratory- and vendor-manufactured, simulated waste forms were exposed on an intermittent basis to media containing thiobacilli. Testing demonstrated that MID has the potential to severely compromise the structural integrity of ion-exchange resin and evaporator-bottoms waste that is solidified with cement. In addition, it was found that a significant percentage of calcium and other elements were leached from the treated waste forms. Also, the surface pH of the treated specimens decreased to below 2. These conditions apparently contributed to the physical deterioration of simulated waste forms after 60 days of exposure to the thiobacilli.

  4. Magnetism-Structure Correlations during the ε→τ Transformation in Rapidly-Solidified MnAl Nanostructured Alloys

    Directory of Open Access Journals (Sweden)

    Felix Jiménez-Villacorta


    Full Text Available Magnetic and structural aspects of the annealing-induced transformation of rapidly-solidified Mn55Al45 ribbons from the as-quenched metastable antiferromagnetic (AF ε-phase to the target ferromagnetic (FM L10 τ-phase are investigated. The as-solidified material exhibits a majority hexagonal ε-MnAl phase revealing a large exchange bias shift below a magnetic blocking temperature TB~95 K (Hex~13 kOe at 10 K, ascribed to the presence of compositional fluctuations in this antiferromagnetic phase. Heat treatment at a relatively low annealing temperature Tanneal ≈ 568 K (295 °C promotes the nucleation of the metastable L10 τ-MnAl phase at the expense of the parent ε-phase, donating an increasingly hard ferromagnetic character. The onset of the ε→τ transformation occurs at a temperature that is ~100 K lower than that reported in the literature, highlighting the benefits of applying rapid solidification for synthesis of the rapidly-solidified parent alloy.

  5. Evaluation of physical stability and leachability of Portland Pozzolona Cement (PPC) solidified chemical sludge generated from textile wastewater treatment plants

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Hema, E-mail: [TERI University, Plot No. 10, Institutional Area, Vasant Kunj, New Delhi (India); Pandey, Suneel [Centre for Regulatory and Policy Research, The Energy and Resources Institute (TERI), India Habitat Centre, New Delhi (India)


    Highlights: Black-Right-Pointing-Pointer Stabilization/solidification of chemical sludge from textile wastewater treatment plants using Portland Pozzolona Cement (PPC) containing fly ash. Black-Right-Pointing-Pointer Physical engineering (compressive strength and block density) indicates that sludge has potential to be reused for construction purpose after stabilization/solidification. Black-Right-Pointing-Pointer Leaching of heavy metals from stabilized/solidified materials were within stipulated limits. Black-Right-Pointing-Pointer There is a modification of microstructural properties of PPC with sludge addition as indicated by XRD and SEM patterns. - Abstract: The chemical sludge generated from the treatment of textile dyeing wastewater is a hazardous waste as per Indian Hazardous Waste Management rules. In this paper, stabilization/solidification of chemical sludge was carried out to explore its reuse potential in the construction materials. Portland Pozzolona Cement (PPC) was selected as the binder system which is commercially available cement with 10-25% fly ash interground in it. The stabilized/solidified blocks were evaluated in terms of unconfined compressive strength, block density and leaching of heavy metals. The compressive strength (3.62-33.62 MPa) and block density (1222.17-1688.72 kg/m{sup 3}) values as well as the negligible leaching of heavy metals from the stabilized/solidified blocks indicate that there is a potential of its use for structural and non-structural applications.

  6. Magnetism-Structure Correlations during the epsilon ->tau Transformation in Rapidly-Solidified MnAl Nanostructured Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez-Villacorta, F; Marion, JL; Oldham, JT; Daniil, M; Willard, MA; Lewis, LH


    Magnetic and structural aspects of the annealing-induced transformation of rapidly-solidified Mn55Al45 ribbons from the as-quenched metastable antiferromagnetic (AF) epsilon-phase to the target ferromagnetic (FM) L1(0) tau-phase are investigated. The as-solidified material exhibits a majority hexagonal epsilon-MnAl phase revealing a large exchange bias shift below a magnetic blocking temperature T-B similar to 95 K (H-ex similar to 13 kOe at 10 K), ascribed to the presence of compositional fluctuations in this antiferromagnetic phase. Heat treatment at a relatively low annealing temperature T-anneal approximate to 568 K (295 degrees C) promotes the nucleation of the metastable L1(0) tau-MnAl phase at the expense of the parent epsilon-phase, donating an increasingly hard ferromagnetic character. The onset of the epsilon ->tau transformation occurs at a temperature that is similar to 100 K lower than that reported in the literature, highlighting the benefits of applying rapid solidification for synthesis of the rapidly-solidified parent alloy.

  7. Field Evidences for Fault Surface Lubrication by Friction-Induced Melts During Coseismic Slip (United States)

    di Toro, G.; Teza, G.


    Lubrication by friction-induced melts has been proposed as a mechanism for fault weakening during earthquakes. Field evidence for melt lubrication of the fault surfaces is lacking, however, although the andesitic/basaltic composition (i.e. low-viscosity melts) of the matrix of many tectonic pseudotachylytes (solidified friction-induced melts) suggests low dynamic shear strength during coseismic slip. The Gole Larghe Fault Zone is an exhumed seismic source crosscutting the Adamello tonalites (Italian Southern Alps) and is exposed in a glacially polished area. In the fault zone, displacement is partitioned in more than 100 subparallel faults. Fault rocks are an association of pseudotachylytes and cataclasites produced at 6-8 km depth and 250-300 oC. Given the large extent of the outcrop and the large number of structural markers within the tonalites, it has been possible to reproduce the 2D profile (i.e. intersection of the fault surface with the outcrop surface) of 25 different pseudotachylyte-bearing faults and to relate the fault profile with the displacement accommodated by each fault. Two lines of field evidence suggest that shear strength is low during coseismic slip: 1) A maximum shear stress of only 20 MPa has been estimated from the amount of mechanical work converted to heat during coseismic slip to produce the measured volume of pseudotachylyte in single-jerk faults. Although a shear strength of 20 MPa is a minimum estimate since part of the displacement has been accommodated without production of pseudotachylytes, such strengths are very small considering the depth where seismic faulting has occurred. 2) The fractal dimension (measured with a box-counting method) of the 2D profile of pseudotachylyte-bearing faults increases from 1.0 to a constant value of 1.15 with increasing displacement. In experimentally generated friction melts, the fractal dimension of molten surfaces increases from 1.0 to 1.1 when, with increasing slip, a steady state value for the

  8. Basal terraces on melting ice shelves

    National Research Council Canada - National Science Library

    Dutrieux, Pierre; Stewart, Craig; Jenkins, Adrian; Nicholls, Keith W; Corr, Hugh F. J; Rignot, Eric; Steffen, Konrad


    Ocean waters melt the margins of Antarctic and Greenland glaciers, and individual glaciers' responses and the integrity of their ice shelves are expected to depend on the spatial distribution of melt...

  9. Directionally solidified pseudo-binary eutectics of Ni-Cr-/Hf,Zr/ (United States)

    Kim, Y. G.; Ashbrook, R. L.


    This report is concerned with the experimental determination of pseudo binary eutectic compositions and the directional solidification of the Ni-Cr-Hf,Zr, and Ni-Cr-Zr eutectic alloys. To determine unknown eutectics, chemical analyses were made of material bled from near eutectic ingots during incipient melting. Nominal compositions in weight per cent of Ni-18.6Cr-24.0Hf, Ni-19.6Cr-12.8Zr-2.8Hf, and Ni-19.2Cr-14.8Zr formed aligned pseudo-binary eutectic structures. The melting points were about 1270 C. The reinforcing intermetallic phases were identified as noncubic (Ni,Cr)7Hf2 and (Ni,Cr)7(Hf,Zr)2, and face centered cubic (Ni,Cr)5Zr. The volume fraction of the reinforcing phases were about 0.5.

  10. Petrological Geodynamics of Mantle Melting I. AlphaMELTS + Multiphase Flow: Dynamic Equilibrium Melting, Method and Results

    Directory of Open Access Journals (Sweden)

    Massimiliano Tirone


    Full Text Available The complex process of melting in the Earth's interior is studied by combining a multiphase numerical flow model with the program AlphaMELTS which provides a petrological description based on thermodynamic principles. The objective is to address the fundamental question of the effect of the mantle and melt dynamics on the composition and abundance of the melt and the residual solid. The conceptual idea is based on a 1-D description of the melting process that develops along an ideal vertical column where local chemical equilibrium is assumed to apply at some level in space and time. By coupling together the transport model and the chemical thermodynamic model, the evolution of the melting process can be described in terms of melt distribution, temperature, pressure and solid and melt velocities but also variation of melt and residual solid composition and mineralogical abundance at any depth over time. In this first installment of a series of three contributions, a two-phase flow model (melt and solid assemblage is developed under the assumption of complete local equilibrium between melt and a peridotitic mantle (dynamic equilibrium melting, DEM. The solid mantle is also assumed to be completely dry. The present study addresses some but not all the potential factors affecting the melting process. The influence of permeability and viscosity of the solid matrix are considered in some detail. The essential features of the dynamic model and how it is interfaced with AlphaMELTS are clearly outlined. A detailed and explicit description of the numerical procedure should make this type of numerical models less obscure. The general observation that can be made from the outcome of several simulations carried out for this work is that the melt composition varies with depth, however the melt abundance not necessarily always increases moving upwards. When a quasi-steady state condition is achieved, that is when melt abundance does not varies significantly

  11. Filament stretching rheometry of polymer melts

    DEFF Research Database (Denmark)

    Hassager, Ole; Nielsen, Jens Kromann; Rasmussen, Henrik Koblitz


    The Filament Stretching Rheometry (FSR) method developed by Sridhar, McKinley and coworkers for polymer solutions has been extended to be used also for polymer melts. The design of a melt-FSR will be described and differences to conventional melt elongational rheometers will be pointed out. Results...

  12. Investigation of the effect of rapidly solidified braze ribbons on the microstructure of brazed joints (United States)

    Bobzin, K.; Öte, M.; Wiesner, S.; Rochala, P.; Mayer, J.; Aretz, A.; Iskandar, R.; Schwedt, A.


    Shrinkage and warpage due to melting and solidification are crucial for the geometric precision of related components. In order to assure a high geometric precision, the formation of the microstructure in the joint during brazing must be taken into consideration. An extensive interaction can occur between liquid melt and base material, resulting in the formation of distinctive phases. This interaction depends on the parameters of the brazing process. However, the consequences of the interaction between phase formation and process parameters in terms of geometric precision cannot be estimated yet. Insufficient quality of the joint can be a result. In this study, investigations focus on the process of solidification in terms of time dependent diffusion behavior of elements. Therefore, microcrystalline and amorphous braze ribbons based on Ti are produced by rapid solidification and are used for joining. The microstructure of the braze ribbons as well as the melting behavior and phase formation during brazing are considered to be of particular importance for the mechanical properties of the brazed components.

  13. Grain boundary melting in ice


    Thomson, E. S.; Hansen-Goos, Hendrik; Wilen, L. A.; Wettlaufer, J. S.


    We describe an optical scattering study of grain boundary premelting in water ice. Ubiquitous long ranged attractive polarization forces act to suppress grain boundary melting whereas repulsive forces originating in screened Coulomb interactions and classical colligative effects enhance it. The liquid enhancing effects can be manipulated by adding dopant ions to the system. For all measured grain boundaries this leads to increasing premelted film thickness with increasing electrolyte concentr...

  14. Hadron melting and QCD thermodynamics


    Jakovac, A.


    We study in this paper mechanisms of hadron melting based on the spectral representation of hadronic quantum channels, and examine the hadron width dependence of the pressure. The findings are applied to a statistical hadron model of QCD thermodynamics, where hadron masses are distributed by the Hagedorn model and a uniform mechanism for producing hadron widths is assumed. According to this model the hadron - quark gluon plasma transition occurs at $T\\approx 200$-250 MeV, the numerically obse...

  15. The relationship of microstructure to fracture and corrosion behavior of a directionally solidified superalloy (United States)

    Trexler, Matthew D.

    GTD-111 DS is a directionally solidified superalloy currently used in turbine engines. To accurately predict the life of engine components it is essential to examine and characterize the microstructural evolution of the material and its effects on material properties. The as-cast microstructure of GTD-111 is highly inhomogeneous as a result of coring. The current post-casting heat treatments do not effectively eliminate the inhomogeneity. This inhomogeneity affects properties including tensile strength, fracture toughness, fracture path, and corrosion behavior, primarily in terms of the number of grains per specimen. The goal of this work was to link microstructural features to these properties. Quantitative fractography was used to determine that the path of cracks during failure of tensile specimens is influenced by the presence of carbides, which are located in the interdendritic regions of the material as dictated by segregation. The solvus temperature of the precipitate phase, Ni3(Al, Ti), was determined to be 1200°C using traditional metallography, differential thermal analysis, and dilatometry. A heat-treatment was designed to homogenize the microstructure for tensile testing that isolates the carbide by dissolving all of the "eutectic" Ni3(Al, Ti) precipitate phase, which is also found in the interdendritic areas. High temperature oxidation/sulfidation tests were conducted to investigate the corrosion processes involved when GTD-111 DS is utilized in steam and gas combustion turbine engines. The kinetics of corrosion in both oxidizing and sulfidizing atmospheres were determined using thermogravimetric analysis. Additionally, metallography of these samples after TGA revealed a correlation between the presence of grain boundaries and sulfur attack, which led to catastrophic failure of the material under stress-free conditions in a sulfur bearing environment. In summary, this work correlates the inhomogeneous microstructure of GTD-111 DS to tensile fracture

  16. Microstructural evolution of directionally solidified DZ125 superalloy castings with different solidification methods

    Directory of Open Access Journals (Sweden)

    Ge Bingming


    Full Text Available The properties of Ni-base superalloy castings are closely related to the uniformity of their as-cast microstructure, and different solidification methods have serious effect on microstructural uniformity. In this paper, the influences of high rate solidification (HRS process (with or without superheating and liquid metal cooling (LMC process on the microstructure of DZ125 superalloy were investigated. Blade-shape castings were solidified at rates of 40 μm·s-1 to 110 μm·s-1 using HRS process and a comparative experiment was carried out at a rate of 70 μm·s-1 by LMC process. The optical microscope (OM, scanning electron microscope (SEM were used to observe the microstructure and the grain size was analyzed using electron back scattered diffraction (EBSD technique. Results show that for the castings by either HRS or LMC process, the primary dendrite arm spacing and size of γ' precipitates decrease with increasing the withdrawal rate; the dendrites and γ' precipitates at the upper section of the blade are coarser than those in the middle, especially for the HRS castings without high superheating technique. When the withdrawal rate is 70 μm·s-1, the castings by HRS with high superheating technique have the smallest PDAS with fine γ' precipitates; while the size distribution of γ' precipitates is more homogenous in LMC castings, and the number of larger grains in LMC castings is smaller than that in the HRS castings. Moreover, high superheating technique yields smaller grains in the castings. Both the LMC method and HRS with high superheating technique can be used to prepare castings with reduced maximum grain size.

  17. Electron Beam Melting and Refining of Metals: Computational Modeling and Optimization

    Directory of Open Access Journals (Sweden)

    Veliko Donchev


    Full Text Available Computational modeling offers an opportunity for a better understanding and investigation of thermal transfer mechanisms. It can be used for the optimization of the electron beam melting process and for obtaining new materials with improved characteristics that have many applications in the power industry, medicine, instrument engineering, electronics, etc. A time-dependent 3D axis-symmetrical heat model for simulation of thermal transfer in metal ingots solidified in a water-cooled crucible at electron beam melting and refining (EBMR is developed. The model predicts the change in the temperature field in the casting ingot during the interaction of the beam with the material. A modified Pismen-Rekford numerical scheme to discretize the analytical model is developed. These equation systems, describing the thermal processes and main characteristics of the developed numerical method, are presented. In order to optimize the technological regimes, different criteria for better refinement and obtaining dendrite crystal structures are proposed. Analytical problems of mathematical optimization are formulated, discretized and heuristically solved by cluster methods. Using important for the practice simulation results, suggestions can be made for EBMR technology optimization. The proposed tool is important and useful for studying, control, optimization of EBMR process parameters and improving of the quality of the newly produced materials.

  18. Experimental investigation of inhomogeneities, nanoscopic phase separation, and magnetism in arc melted Fe-Cu metals with equal atomic ratio of the constituents

    KAUST Repository

    Hassnain Jaffari, G.


    Composition gradient and phase separation at the nanoscale have been investigated for arc-melted and solidified with equiatomic Fe-Cu. Diffraction studies revealed that Fe and Cu exhibited phase separation with no trace of any mixing. Microscopy studies revealed that immiscible Fe-Cu form dense bulk nanocomposite. The spatial distribution of Fe and Cu showed existence of two distinct regions, i.e., Fe-rich and Cu-rich regions. Fe-rich regions have Cu precipitates of various sizes and different shapes, with Fe forming meshes or channels greater than 100 nm in size. On the other hand, the matrix of Cu-rich regions formed strips with fine strands of nanosized Fe. Macromagnetic response of the system showed ferromagnetic behavior with a magnetic moment being equal to about 2.13 μB/Fe atom and a bulk like negligible value of coercivity over the temperature range of 5–300 K. Anisotropy constant has been calculated from various laws of approach to saturation, and its value is extracted to be equal to 1350 J/m3. Inhomogeneous strain within the Cu and Fe crystallites has been calculated for the (unannealed) sample solidified after arc-melting. Annealed sample also exhibited local inhomogeneity with removal of inhomogeneous strain and no appreciable change in magnetic character. However, for the annealed sample phase separated Fe exhibited homogenous strain.

  19. Measuring melting capacity with calorimetry


    Betten, Linda


    Road salting is an important aspect of winter maintenance. There has been an increase in the usage of salt in later years to keep the road safe and accessible. It is a desire to reduce the amount of salt due to environmental aspects. To achieve better practices for winter maintenance it is necessary to obtain more knowledge about the different properties of salt. The motivation for this thesis is to develop a better method for determining the melting capacity for salt, which is an important p...

  20. Evaluation of Ti(3)Si Phase Stability from Heat-Treated, Rapidly Solidified Ti-Si Alloys


    COSTA, Alex Matos da Silva; de Lima, Gisele Ferreira; Rodrigues,Geovani; NUNES, Carlos Angelo; Coelho,Gilberto Carvalho; Suzuki, Paulo Atsushi


    Ti-base alloys containing significant amounts of silicon have been considered for high temperature structural applications. Thus, information concerning phase stability on the Ti-Si system is fundamental and there are not many investigations covering the phase stability of the Ti(3)Si phase, specially its dependence on oxygen/nitrogen contamination. In this work the stability of this phase has been evaluated through heat-treatment of rapidly solidified Ti-rich Ti-Si alloys at 700 A degrees C ...

  1. Effect of melting conditions on striae in iron-bearing silicate melts

    DEFF Research Database (Denmark)

    Jensen, Martin; Yue, Yuanzheng


    Chemical striae are present in a broad range of glass products, but due to their negative impact on e.g., the optical and mechanical properties, elimination of striae from melts is a key issue in glass technology. By varying melting temperatures, retentions times and redox conditions of an iron......-bearing calciumaluminosilicate melt, we quantify the effect of each of the three melting parameters on the stria content in the melt. The quantification of the stria content in the melt is conducted by means of image analysis on casted melt samples. We find that in comparison to an extension of retention time an increase...... of melt temperature and/or a decrease of viscosity play a more important role in decreasing the stria content. We also demonstrate that the extent of striation is influenced by the crucible materials that causes a change of redox state of the melt, and hence its viscosity. We discuss the effect of other...

  2. Directionally solidified pseudo-binary eutectics of Ni-Cr-(Hf, Zr) (United States)

    Kim, Y. G.; Ashbrook, R. L.


    A pseudo-binary eutectic, in which the intermetallic Ni7Hf2 reinforces the Ni-Cr solid solution phase, was previously predicted in the Ni-Cr-Hf system by a computer analysis. The experimental determination of pseudo binary eutectic compositions and the directional solidification of the Ni-Cr-Hf, Zr, and Ni-Cr-Zr eutectic alloys are discussed. To determine unknown eutectics, chemical analyses were made of material bled from near eutectic ingots during incipient melting. Nominal compositions in weight percent of Ni-18.6Cr-24.0HF, Ni19.6Cr-12.8Zr-2.8Hf, and Ni-19.2Cr-14.8Zr formed aligned pseudo-binary eutectic structures. The melting points were about 1270 C. The reinforcing intermetallic phases were identified as noncubic (Ni,Cr)7Hf2 and (Ni,Cr)7(Hf,Zr)2, and face centered cubic (Ni,Cr)5Zr. The volume fraction of the reinforcing phases were about 0.5.

  3. Additive manufacturing of 316L stainless steel by electron beam melting for nuclear fusion applications (United States)

    Zhong, Yuan; Rännar, Lars-Erik; Liu, Leifeng; Koptyug, Andrey; Wikman, Stefan; Olsen, Jon; Cui, Daqing; Shen, Zhijian


    A feasibility study was performed to fabricate ITER In-Vessel components by one of the metal additive manufacturing methods, Electron Beam Melting® (EBM®). Solid specimens of SS316L with 99.8% relative density were prepared from gas atomized precursor powder granules. After the EBM® process the phase remains as austenite and the composition has practically not been changed. The RCC-MR code used for nuclear pressure vessels provides guidelines for this study and tensile tests and Charpy-V tests were carried out at 22 °C (RT) and 250 °C (ET). This work provides the first set of mechanical and microstructure data of EBM® SS316L for nuclear fusion applications. The mechanical testing shows that the yield strength, ductility and toughness are well above the acceptance criteria and only the ultimate tensile strength of EBM® SS316L is below the RCC-MR code. Microstructure characterizations reveal the presence of hierarchical structures consisting of solidified melt pools, columnar grains and irregular shaped sub-grains. Lots of precipitates enriched in Cr and Mo are observed at columnar grain boundaries while no sign of element segregation is shown at the sub-grain boundaries. Such a unique microstructure forms during a non-equilibrium process, comprising rapid solidification and a gradient 'annealing' process due to anisotropic thermal flow of accumulated heat inside the powder granule matrix. Relations between process parameters, specimen geometry (total building time) and sub-grain structure are discussed. Defects are formed mainly due to the large layer thickness (100 μm) which generates insufficient bonding between a few of the adjacently formed melt pools during the process. Further studies should focus on adjusting layer thickness to improve the strength of EBM® SS316L and optimizing total building time.

  4. Multiscale Models of Melting Arctic Sea Ice (United States)


    Sea ice reflectance or albedo , a key parameter in climate modeling, is primarily determined by melt pond and ice floe configurations. Ice- albedo albedo remains a significant challenge to improving climate models. Our research is focused on obtaining extensive imagery of melt pond...of a plane (water level) with a surface generated by a random Fourier series (representing the snow and ice topography) look very similar to melt

  5. Reuse of cement-solidified municipal incinerator fly ash in cement mortars: physico-mechanical and leaching characteristics. (United States)

    Cinquepalmi, Maria Anna; Mangialardi, Teresa; Panei, Liliana; Paolini, Antonio Evangelista; Piga, Luigi


    The reuse of cement-solidified Municipal Solid Waste Incinerator (MSWI) fly ash (solidified/stabilised (S/S) product) as an artificial aggregate in Portland cement mortars was investigated. The S/S product consisted of a mixture of 48 wt.% washed MSWI fly ash, 20 wt.% Portland cement and 32 wt.% water, aged for 365 days at 20 degrees C and 100% RH. Cement mortars (water/cement weight ratio=0.62) were made with Portland cement, S/S product and natural sand at three replacement levels of sand with S/S product (0%, 10% and 50% by mass). After 28 days of curing at 20 degrees C and 100% RH, the mortar specimens were characterised for their physico-mechanical (porosity, compressive strength) and leaching behaviour. No retardation in strength development, relatively high compressive strengths (up to 36 N/mm2) and low leaching rates of heavy metals (Cr, Cu, Pb and Zn) were always recorded. The leaching data from sequential leach tests on monolithic specimens were successfully elaborated with a pseudo-diffusional model including a chemical retardation factor related to the partial dissolution of contaminant.

  6. Submarine melt rates under Greenland's ice tongues (United States)

    Wilson, Nat; Straneo, Fiametta; Heimbach, Patrick; Cenedese, Claudia


    The few remaining ice tongues (ice-shelf like extensions) of Greenland's glaciers are undergoing rapid changes with potential implications for the stability of the ice sheet. Submarine melting is recognized as a major contributor to mass loss, yet the magnitude and spatial distribution of melt are poorly known or understood. Here, we use high resolution satellite imagery to infer the magnitude and spatial variability of melt rates under Greenland's largest remaining ice tongues: Ryder Glacier, Petermann Glacier and Nioghalvfjerdsbræ (79 North Glacier). We find that submarine plus aerial melt approximately balance the ice flux from the grounded ice sheet for the first two while at Nioghalvfjerdsbræ the total melt flux exceeds the inflow of ice indicating thinning of the ice tongue. We also show that melt rates under the ice tongues vary considerably, exceeding 60 m yr-1 near the grounding zone and decaying rapidly downstream. Channels, likely originating from upstream subglacial channels, give rise to large melt variations across the ice tongues. Using derived melt rates, we test simplified melt parameterizations appropriate for ice sheet models and find the best agreement with those that incorporate ice tongue geometry in the form of depth and slope.

  7. Directionally Solidified NiAl-Based Alloys Studied for Improved Elevated-Temperature Strength and Room-Temperature Fracture Toughness (United States)

    Whittenberger, J. Daniel; Raj, Sai V.; Locci, Ivan E.; Salem, Jonathan A.


    Efforts are underway to replace superalloys used in the hot sections of gas turbine engines with materials possessing better mechanical and physical properties. Alloys based on the intermetallic NiAl have demonstrated potential; however, they generally suffer from low fracture resistance (toughness) at room temperature and from poor strength at elevated temperatures. Directional solidification of NiAl alloyed with both Cr and Mo has yielded materials with useful toughness and elevated-temperature strength values. The intermetallic alloy NiAl has been proposed as an advanced material to extend the maximum operational temperature of gas turbine engines by several hundred degrees centigrade. This intermetallic alloy displays a lower density (approximately 30-percent less) and a higher thermal conductivity (4 to 8 times greater) than conventional superalloys as well as good high-temperature oxidation resistance. Unfortunately, unalloyed NiAl has poor elevated temperature strength (approximately 50 MPa at 1027 C) and low room-temperature fracture toughness (about 5 MPa). Directionally solidified NiAl eutectic alloys are known to possess a combination of high elevated-temperature strength and good room-temperature fracture toughness. Research has demonstrated that a NiAl matrix containing a uniform distribution of very thin Cr plates alloyed with Mo possessed both increased fracture toughness and elevated-temperature creep strength. Although attractive properties were obtained, these alloys were formed at low growth rates (greater than 19 mm/hr), which are considered to be economically unviable. Hence, an investigation was warranted of the strength and toughness behavior of NiAl-(Cr,Mo) directionally solidified at faster growth rates. If the mechanical properties did not deteriorate with increased growth rates, directional solidification could offer an economical means to produce NiAl-based alloys commercially for gas turbine engines. An investigation at the NASA Glenn

  8. Microstructure Evolution and Biodegradation Behavior of Laser Rapid Solidified Mg–Al–Zn Alloy

    Directory of Open Access Journals (Sweden)

    Chongxian He


    Full Text Available The too fast degradation of magnesium (Mg alloys is a major impediment hindering their orthopedic application, despite their superior mechanical properties and favorable biocompatibility. In this study, the degradation resistance of AZ61 (Al 6 wt. %, Zn 1 wt. %, remaining Mg was enhanced by rapid solidification via selective laser melting (SLM. The results indicated that an increase of the laser power was beneficial for enhancing degradation resistance and microhardness due to the increase of relative density and formation of uniformed equiaxed grains. However, too high a laser power led to the increase of mass loss and decrease of microhardness due to coarsened equiaxed grains and a reduced solid solution of Al in the Mg matrix. In addition, immersion tests showed that the apatite increased with the increase of immersion time, which indicated that SLMed AZ61 possessed good bioactivity.

  9. Magnetocaloric properties of rapidly solidified Dy{sub 3}Co alloy ribbons

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez Llamazares, J. L., E-mail:; Flores-Zúñiga, H.; Sánchez-Valdés, C. F. [Instituto Potosino de Investigación Científica y Tecnológica A.C., Camino a la Presa San José 2055 Col. Lomas 4" a, San Luis Potosí, S.L.P. 78216 (Mexico); Álvarez-Alonso, Pablo [Departamento de Electricidad y Electrónica, UPV/EHU, 48940 Leioa (Spain); Lara Rodríguez, G. A. [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, México, D. F. 04510 (Mexico); Fernández-Gubieda, M. L. [Departamento de Electricidad y Electrónica, UPV/EHU, 48940 Leioa (Spain); BC Materials, Camino de Ibaizabal, Edificio 500, Planta 1, Parque Científico y Tecnológico de Zamudio, 48160 Derio (Spain)


    The magnetic and magnetocaloric (MC) properties of melt-spun ribbons of the Dy{sub 3}Co intermetallic compound were investigated. Samples were fabricated in an Ar environment using a homemade melt spinner system at a linear speed of the rotating copper wheel of 40 ms{sup −1}. X-ray diffraction analysis shows that ribbons crystallize into a single-phase with the Fe{sub 3}C-type orthorhombic crystal structure. The M(T) curve measured at 5 mT reveals the occurrence of a transition at 32 K from a first to a second antiferromagnetic (AFM) state and an AFM-to-paramagnetic transition at T{sub N} = 43 K. Furthermore, a metamagnetic transition is observed below T{sub N}, but the magnetization change ΔM is well below the one reported for bulk alloys. Below 12 K, large inverse MC effect and hysteresis losses are observed. This behavior is related to the metamagnetic transition. For a magnetic field change of 5 T (2 T) applied along the ribbon length, the produced ribbons show a peak value of the magnetic entropy change ΔS{sub M}{sup peak} of −6.5 (− 2.1) Jkg{sup −1}K{sup −1} occurring close to T{sub N} with a full-width at half-maximum δT{sub FWHM} of 53 (37) K, and refrigerant capacity RC = 364 (83) Jkg{sup −1} (estimated from the product |ΔS{sub M}{sup peak}| × δT{sub FWHM})

  10. Pore structure and mechanical properties of directionally solidified porous aluminum alloys

    Directory of Open Access Journals (Sweden)

    Komissarchuk Olga


    Full Text Available Porous aluminum alloys produced by the metal-gas eutectic method or GASAR process need to be performed under a certain pressure of hydrogen, and to carry over melt to a tailor-made apparatus that ensures directional solidification. Hydrogen is driven out of the melt, and then the quasi-cylindrical pores normal to the solidification front are usually formed. In the research, the effects of processing parameters (saturation pressure, solidification pressure, temperature, and holding time on the pore structure and porosity of porous aluminum alloys were analyzed. The mechanical properties of Al-Mg alloys were studied by the compressive tests, and the advantages of the porous structure were indicated. By using the GASAR method, pure aluminum, Al-3wt.%Mg, Al-6wt.%Mg and Al-35wt.%Mg alloys with oriented pores have been successfully produced under processing conditions of varying gas pressure, and the relationship between the final pore structure and the solidification pressure, as well as the influences of Mg quantity on the pore size, porosity and mechanical properties of Al-Mg alloy were investigated. The results show that a higher pressure of solidification tends to yield smaller pores in aluminum and its alloys. In the case of Al-Mg alloys, it was proved that with the increasing of Mg amount, the mechanical properties of the alloys sharply deteriorate. However, since Al-3%Mg and Al-6wt.%Mg alloys are ductile metals, their porous samples have greater compressive strength than that of the dense samples due to the existence of pores. It gives the opportunity to use them in industry at the same conditions as dense alloys with savings in weight and material consumption.

  11. Heat Melt Compactor Development Progress (United States)

    Lee, Jeffrey M.; Fisher, John W.; Pace, Gregory


    The status of the Heat Melt Compactor (HMC) development project is reported. HMC Generation 2 (Gen 2) has been assembled and initial testing has begun. A baseline mission use case for trash volume reduction, water recovery, trash sterilization, and the venting of effluent gases and water vapor to space has been conceptualized. A test campaign to reduce technical risks is underway. This risk reduction testing examines the many varied operating scenarios and conditions needed for processing trash during a space mission. The test results along with performance characterization of HMC Gen 2 will be used to prescribe requirements and specifications for a future ISS flight Technology Demonstration. We report on the current status, technical risks, and test results in the context of an ISS vent-to-space Technology Demonstration.

  12. Grain boundary melting in ice (United States)

    Thomson, E. S.; Hansen-Goos, Hendrik; Wettlaufer, J. S.; Wilen, L. A.


    We describe an optical scattering study of grain boundary premelting in water ice. Ubiquitous long ranged attractive polarization forces act to suppress grain boundary melting whereas repulsive forces originating in screened Coulomb interactions and classical colligative effects enhance it. The liquid enhancing effects can be manipulated by adding dopant ions to the system. For all measured grain boundaries this leads to increasing premelted film thickness with increasing electrolyte concentration. Although we understand that the interfacial surface charge densities qs and solute concentrations can potentially dominate the film thickness, we cannot directly measure them within a given grain boundary. Therefore, as a framework for interpreting the data we consider two appropriate qs dependent limits; one is dominated by the colligative effect and other is dominated by electrostatic interactions.

  13. Transition metals in superheat melts (United States)

    Jakes, Petr; Wolfbauer, Michael-Patrick


    A series of experiments with silicate melts doped with transition element oxides was carried out at atmospheric pressures of inert gas at temperatures exceeding liquidus. As predicted from the shape of fO2 buffer curves in T-fO2 diagrams the reducing conditions for a particular oxide-metal pair can be achieved through the T increase if the released oxygen is continuously removed. Experimental studies suggest that transition metals such as Cr or V behave as siderophile elements at temperatures exceeding liquidus temperatures if the system is not buffered by the presence of other oxide of more siderophile element. For example the presence of FeO prevents the reduction of Cr2O3. The sequence of decreasing siderophility of transition elements at superheat conditions (Mo, Ni, Fe, Cr) matches the decreasing degree of depletion of siderophile elements in mantle rocks as compared to chondrites.

  14. Melting and Sintering of Ashes

    DEFF Research Database (Denmark)

    Hansen, Lone Aslaug


    The thesis contains an experimental study of the fusion and sintering of ashes collected during straw and coal/straw co-firing.A laboratory technique for quantitative determination of ash fusion has been developed based on Simultaneous Thermal Analysis (STA). By means of this method the fraction...... of melt in the investigated ashes has been determined as a function of temperature. Ash fusion results have been correlated to the chemical and mineralogical composition of the ashes, to results from a standard ash fusion test and to results from sintering experiments. Furthermore, the ash fusion results...... have been employed in a simple model for prediction of ash deposit formation, the results of which have been compared to ash deposition formation rates measured at the respective boilers.The ash fusion results were found to directly reflect the ash compositional data:a) Fly ashes and deposits from...

  15. Flow-induced morphological instabilities due to temporally-modulated stagnation-point flow. [in single crystals growth by directionally-solidifying interface (United States)

    Merchant, G. J.; Davis, S. H.


    The influence of periodically-modulated planar stagnation-point flow on the morphological stability of a directionally-solidifying interface is presently considered with a view to the effect of unsteady nonparallel flows on single-crystal growth. The modeling of the system assumes that the viscous boundary layer thickness is much greater than that of the solute boundary layer, and that the modulation frequency is much smaller than the strength of plane stagnation-point flow. The solidifying interface is either stabilized or destabilized depending on the ratio of the period of modulation to the solute-diffusion time.

  16. Fractional crystallization of olivine melt inclusion in shock-induced chondritic melt vein (United States)

    Miyahara, M.; El Goresy, A.; Ohtani, E.; Kimura, M.; Ozawa, S.; Nagase, T.; Nishijima, M.


    The formation of ringwoodite, wadsleyite and majorite from their parental low-pressure polymorphs in melt veins in chondritic meteorites is usually interpreted to be the result of shock-induced solid-state phase transformation. Formation and survival of individual mineral melt enclaves in the chondritic high-pressure melt was not considered a viable possibility. We report evidence for melting of individual large olivine fragments entrained in melt veins, their survival as melt enclaves in the chondritic melts and their subsequent fractional crystallization at high-pressures and temperatures. The fractionally crystallized olivine melt enclaves appear to be ubiquitous in chondrites. In contrast, Ca-poor pyroxene fragments in the same veins and Ca-poor pyroxene in chondrules entrained do not show any sign of melting. Texture and compositions of olivine fragments are indicative of fractional crystallization from individual olivine melts alone. Fragments of original unzoned olivine (Fa 24-26) melted, and melts subsequently fractionally crystallized to Mg-rich wadsleyite (Fa 6-10) and Mg-poor ringwoodite (Fa 28-33) with a compositional gap of ≤26 mol% fayalite. In contrast, compositions of ringwoodite and wadsleyite that emerged from solid-sate phase transformations are identical to that of parental olivine thus erasing any source of enigma. The olivine monomineralic melts barely show any signs of mixing with the chondritic liquid prior to or during their individual fractional crystallization. Our findings demonstrate that the formation of high-pressure minerals during shock events in asteroids also results from melting and fractional crystallization from some individual mineral melts that barely mixed with the chondritic melt host, a mechanism previously not recognized or accepted.

  17. Reaction of soda-lime-silica glass melt with water vapour at melting temperatures

    Czech Academy of Sciences Publication Activity Database

    Vernerová, Miroslava; Kloužek, Jaroslav; Němec, Lubomír


    Roč. 416, MAY 15 (2015), s. 21-30 ISSN 0022-3093 R&D Projects: GA TA ČR TA01010844 Institutional support: RVO:67985891 Keywords : glass melt * sulfate * water vapour * bubble nucleation * melt foaming * glass melting Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 1.825, year: 2015

  18. Effect of block composition on thermal properties and melt viscosity of poly[2-(dimethylaminoethyl methacrylate], poly(ethylene oxide and poly(propylene oxide block co-polymers

    Directory of Open Access Journals (Sweden)


    Full Text Available To modify the rheological properties of certain commercial polymers, a set of block copolymers were synthesized through oxyanionic polymerization of 2-(dimethylaminoethyl methacrylate to the chain ends of commercial prepolymers, namely poly(ethylene oxide (PEO, poly(ethylene oxide-block-poly(propylene oxide-block-poly(ethylene oxide (PEO-PPO-PEO, and poly(propylene oxide (PPO. The formed block copolymers were analysed with size exclusion chromatography and nuclear magnetic resonance spectroscopy in order to confirm block formation. Thermal characterization of the resulting polymers was done with differential scanning calorimetry. Thermal transition points were also confirmed with rotational rheometry, which was primarily used to measure melt strength properties of the resulting block co-polymers. It was observed that the synthesised poly[2-(dimethylaminoethyl methacrylate]-block (PDM affected slightly the thermal transition points of crystalline PEO-block but the influence was stronger on amorphous PPO-blocks. Frequency sweeps measured above the melting temperatures for the materials confirmed that the pre-polymers (PEO and PEO-PPO-PEO behave as Newtonian fluids whereas polymers with a PDM block structure exhibit clear shear thinning behaviour. In addition, the PDM block increased the melt viscosity when compared with that one of the pre-polymer. As a final result, it became obvious that pre-polymers modified with PDM were in entangled form, in the melted state as well in the solidified form.

  19. A benchmark initiative on mantle convection with melting and melt segregation (United States)

    Schmeling, Harro; Dannberg, Juliane; Dohmen, Janik; Kalousova, Klara; Maurice, Maxim; Noack, Lena; Plesa, Ana; Soucek, Ondrej; Spiegelman, Marc; Thieulot, Cedric; Tosi, Nicola; Wallner, Herbert


    In recent years a number of mantle convection models have been developed which include partial melting within the asthenosphere, estimation of melt volumes, as well as melt extraction with and without redistribution at the surface or within the lithosphere. All these approaches use various simplifying modelling assumptions whose effects on the dynamics of convection including the feedback on melting have not been explored in sufficient detail. To better assess the significance of such assumptions and to provide test cases for the modelling community we carry out a benchmark comparison. The reference model is taken from the mantle convection benchmark, cases 1a to 1c (Blankenbach et al., 1989), assuming a square box with free slip boundary conditions, the Boussinesq approximation, constant viscosity and Rayleigh numbers of 104 to 10^6. Melting is modelled using a simplified binary solid solution with linearly depth dependent solidus and liquidus temperatures, as well as a solidus temperature depending linearly on depletion. Starting from a plume free initial temperature condition (to avoid melting at the onset time) five cases are investigated: Case 1 includes melting, but without thermal or dynamic feedback on the convection flow. This case provides a total melt generation rate (qm) in a steady state. Case 2 is identical to case 1 except that latent heat is switched on. Case 3 includes batch melting, melt buoyancy (melt Rayleigh number Rm) and depletion buoyancy, but no melt percolation. Output quantities are the Nusselt number (Nu), root mean square velocity (vrms), the maximum and the total melt volume and qm approaching a statistical steady state. Case 4 includes two-phase flow, i.e. melt percolation, assuming a constant shear and bulk viscosity of the matrix and various melt retention numbers (Rt). These cases are carried out using the Compaction Boussinseq Approximation (Schmeling, 2000) or the full compaction formulation. For cases 1 - 3 very good agreement

  20. Purification of tantalum by plasma arc melting (United States)

    Dunn, Paul S.; Korzekwa, Deniece R.


    Purification of tantalum by plasma arc melting. The level of oxygen and carbon impurities in tantalum was reduced by plasma arc melting the tantalum using a flowing plasma gas generated from a gas mixture of helium and hydrogen. The flowing plasma gases of the present invention were found to be superior to other known flowing plasma gases used for this purpose.

  1. Disordering and Melting of Aluminum Surfaces

    DEFF Research Database (Denmark)

    Stoltze, Per; Nørskov, Jens Kehlet; Landman, U.


    We report on a molecular-dynamics simulation of an Al(110) surface using the effective-medium theory to describe the interatomic interactions. The surface region is found to start melting ≅200 K below the bulk melting temperature with a gradual increase in the thickness of the disordered layer as...

  2. Natural melting within a spherical shell (United States)

    Bahrami, Parviz A.


    Fundamental heat transfer experiments were performed on the melting of a phase change medium in a spherical shell. Free expansion of the medium into a void space within the sphere was permitted. A step function temperature jump on the outer shell wall was imposed and the timewise evolution of the melting process and the position of the solid-liquid interface was photographically recorded. Numerical integration of the interface position data yielded information about the melted mass and the energy of melting. It was found that the rate of melting and the heat transfer were significantly affected by the movement of the solid medium to the base of the sphere due to gravity. The energy transfer associated with melting was substantially higher than that predicted by the conduction model. Furthermore, the radio of the measured values of sensible energy in the liquid melt to the energy of melting were nearly proportional to the Stefan number. The experimental results are in agreement with a theory set forth in an earlier paper.

  3. Estimation of melting points of organics. (United States)

    Yalkowsky, Samuel H; Alantary, Doaa


    UPPER (Unified Physical Property Estimation Relationships) is a system of empirical and theoretical relationships that relate twenty physicochemical properties of organic molecules to each other and to chemical structure. Melting point is a key parameter in the UPPER Scheme because it is a determinant of several other properties including vapor pressure, and Solubility. This review describes the first principals calculation of the melting points of organic compounds from structure. The calculation is based on the fact that the melting point, Tm, is equal to the ratio of the heat of melting, ΔHm, to the entropy of melting, ΔSm. The heat of melting is shown to be an additive-constitutive property. However, the entropy of melting is not entirely group additive. It is primarily dependent on molecular geometry, including parameters which reflect the degree of restriction of molecular motion in the crystal to that of the liquid. Symmetry, eccentricity, chirality, flexibility, and hydrogen bonding, each decrease molecular freedom in different ways and thus make different contributions to the total entropy of fusion. The relationships of these entropy determining parameters to chemical structure are used to develop a reasonably accurate means of predicting the melting points over 2000 compounds. Copyright © 2017. Published by Elsevier Inc.

  4. Metallic Recovery and Ferrous Melting Processes

    Energy Technology Data Exchange (ETDEWEB)

    Luis Trueba


    The effects of melting atmosphere and charge material type on the metallic and alloy recovery of ferrous charge materials were investigated in two sets of experiments (Tasks 1 and 2). In addition, thermodynamic studies were performed (Task 3) to determine the suitability of ladle treatment for the production of ductile iron using scrap charge materials high in manganese and sulfur. Task 1--In the first set of experiments, the charge materials investigated were thin steel scrap, thick steel scrap, cast iron scrap, and pig iron in the rusty and clean states. Melting atmospheres in this set of experiments were varied by melting with and without a furnace cover. In this study, it was found that neither covered melting nor melting clean (non-rusty) ferrous charge materials improved the metallic recovery over the recovery experienced with uncovered melting or rusty charge materials. However, the silicon and manganese recoveries were greater with covered melting and clean materials. Silicon and manganese in the molten iron react with oxygen dissolved in the iron from uncovered melting and oxidized iron (surface rust). Silica and manganese silicates are formed which float to the slag decreasing recoveries of silicon and manganese. Cast iron and pig iron had higher metallic recoveries than steel scrap. Carbon recovery was affected by the carbon content of the charge materials, and not by the melting conditions. Irons with higher silicon contents had higher silicon recovery than irons with lower silicon contents. Task 2--In the second set of experiments, briquetted turnings and borings were used to evaluate the effects of briquette cleanliness, carbon additions, and melting atmosphere on metallic and alloy recovery. The melting atmosphere in this set of experiments was varied by melting in air and with an argon atmosphere using the SPAL process. In this set of experiments, carbon additions to the briquettes were found to have the greatest effect on metallic and alloy

  5. The contribution of glacier melt to streamflow

    Energy Technology Data Exchange (ETDEWEB)

    Schaner, Neil; Voisin, Nathalie; Nijssen, Bart; Lettenmaier, D. P.


    Ongoing and projected future changes in glacier extent and water storage globally have lead to concerns about the implications for water supplies. However, the current magnitude of glacier contributions to river runoff is not well known, nor is the population at risk to future glacier changes. We estimate an upper bound on glacier melt contribution to seasonal streamflow by computing the energy balance of glaciers globally. Melt water quantities are computed as a fraction of total streamflow simulated using a hydrology model and the melt fraction is tracked down the stream network. In general, our estimates of the glacier melt contribution to streamflow are lower than previously published values. Nonetheless, we find that globally an estimated 225 (36) million people live in river basins where maximum seasonal glacier melt contributes at least 10% (25%) of streamflow, mostly in the High Asia region.

  6. Nanotexturing of surfaces to reduce melting point.

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Ernest J.; Zubia, David (University of Texas at El Paso El Paso, TX); Mireles, Jose (Universidad Aut%C3%94onoma de Ciudad Ju%C3%94arez Ciudad Ju%C3%94arez, Mexico); Marquez, Noel (University of Texas at El Paso El Paso, TX); Quinones, Stella (University of Texas at El Paso El Paso, TX)


    This investigation examined the use of nano-patterned structures on Silicon-on-Insulator (SOI) material to reduce the bulk material melting point (1414 C). It has been found that sharp-tipped and other similar structures have a propensity to move to the lower energy states of spherical structures and as a result exhibit lower melting points than the bulk material. Such a reduction of the melting point would offer a number of interesting opportunities for bonding in microsystems packaging applications. Nano patterning process capabilities were developed to create the required structures for the investigation. One of the technical challenges of the project was understanding and creating the specialized conditions required to observe the melting and reshaping phenomena. Through systematic experimentation and review of the literature these conditions were determined and used to conduct phase change experiments. Melting temperatures as low as 1030 C were observed.

  7. Are Entangled Polymer Melts Different From Solutions?

    DEFF Research Database (Denmark)

    Huang, Qian; Mednova, Olga; Rasmussen, Henrik K.

    The possible existence of a qualitative difference on extensional steady state viscosity between polymer melts and polymer solutions is still an open question. Recent experiments [1-4] showed the extensional viscosity of both polymer melts and solutions decayed as a function of strain rate...... with an exponent of -0.5. When the strain rate became higher than the order of inverse Rouse time, the polymer solutions showed an upturn [1, 4]. However, in the same regime for polymer melts, the experiments were contrary: some of the experiments showed an upturn [4, 5], while others did not [2, 3]. In order...... to further investigate the extensional steady state viscosity of polymer melts, we carefully synthesized two monodisperse polystyrenes with molar masses of 248 and 484 kg/mole. The start-up and steady uniaxial elongational viscosity have been measured for the two melts using a filament stretching rheometer...

  8. Shape evolution of a melting nonspherical particle. (United States)

    Kintea, Daniel M; Hauk, Tobias; Roisman, Ilia V; Tropea, Cameron


    In this study melting of irregular ice crystals was observed in an acoustic levitator. The evolution of the particle shape is captured using a high-speed video system. Several typical phenomena have been discovered: change of the particle shape, appearance of a capillary flow of the melted liquid on the particle surface leading to liquid collection at the particle midsection (where the interface curvature is smallest), and appearance of sharp cusps at the particle tips. No such phenomena can be observed during melting of spherical particles. An approximate theoretical model is developed which accounts for the main physical phenomena associated with melting of an irregular particle. The agreement between the theoretical predictions for the melting time, for the evolution of the particle shape, and the corresponding experimental data is rather good.

  9. A coupled analysis of fluid flow, heat transfer and deformation behavior of solidifying shell in continuously cast beam blank

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Eui; Yeo, Tae Jung; Oh, Kyu Hwan; Yoon, Jong Kyu [School of Materials Science and Engineering, Seoul Nat`l Univ., Seoul (Korea, Republic of); Han, Heung Nam [Oxford Center for Advanced Materials and Composites, Department of Materials, Univ. of Oxford (United Kingdom)


    A mathematical model for a coupled analysis of fluid flow, heat transfer and deformation behavior in the continuously cast beam blank has been developed. The fluid flow, heat transfer and solidification in the mold region were analyzed with 3-dimensional finite difference method (FDM) based on control volume method. A body fitted coordinate system was introduced for the complex geometry of the beam blank. The effects of turbulence and natural convection of molten steel were taken into account in determining the fluid flow in the strand. The thermo-elasto-plastic deformation behavior in the cast strand and the formation of air gap between the solidifying shell and the mold were analyzed by the finite element method (FEM) using the 2-dimensional slice temperature profile calculated by the FDM. The heat flow between the strand and the mold was evaluated by the coupled analysis between the fluid flow-heat transfer analysis and the thermo-elasto-plastic stress analysis. In order to determine the solid fraction in the mushy zone, the microsegregation of solute element was assessed. The effects of fluid flow on the heat transfer, the solidification of steel and the distribution of shell thickness during the casting of the beam blank were simulated. The deformation behavior of the solidifying shell and the possibility of cracking of the strand were also investigated. The recirculating flows were developed in the regions of the web and the flange tip. The impinging of the inlet flow from the nozzle retarded the growing of solidifying shell in the regions of the fillet and the flange. The air gap between the strand and the mold was formed near the region of the corner of the flange tip. At the initial stage of casting, the probability of the surface cracking was high in the regions of the fillet and the flange tip. After the middle stage of casting, the internal cracking was predicted in the regions of the flange tip, and between the fillet and the flange tip. (author) 38

  10. Volatile diffusion in silicate melts and its effects on melt inclusions

    Directory of Open Access Journals (Sweden)

    P. Scarlato


    Full Text Available A compendium of diffusion measurements and their Arrhenius equations for water, carbon dioxide, sulfur, fluorine, and chlorine in silicate melts similar in composition to natural igneous rocks is presented. Water diffusion in silicic melts is well studied and understood, however little data exists for melts of intermediate to basic compositions. The data demonstrate that both the water concentration and the anhydrous melt composition affect the diffusion coefficient of water. Carbon dioxide diffusion appears only weakly dependent, at most, on the volatilefree melt composition and no effect of carbon dioxide concentration has been observed, although few experiments have been performed. Based upon one study, the addition of water to rhyolitic melts increases carbon dioxide diffusion by orders of magnitude to values similar to that of 6 wt% water. Sulfur diffusion in intermediate to silicic melts depends upon the anhydrous melt composition and the water concentration. In water-bearing silicic melts sulfur diffuses 2 to 3 orders of magnitude slower than water. Chlorine diffusion is affected by both water concentration and anhydrous melt composition; its values are typically between those of water and sulfur. Information on fluorine diffusion is rare, but the volatile-free melt composition exerts a strong control on its diffusion. At the present time the diffusion of water, carbon dioxide, sulfur and chlorine can be estimated in silicic melts at magmatic temperatures. The diffusion of water and carbon dioxide in basic to intermediate melts is only known at a limited set of temperatures and compositions. The diffusion data for rhyolitic melts at 800°C together with a standard model for the enrichment of incompatible elements in front of growing crystals demonstrate that rapid crystal growth, greater than 10-10 ms-1, can significantly increase the volatile concentrations at the crystal-melt interface and that any of that melt trapped

  11. Melting of MORB up to 130 GPa (United States)

    Pradhan, G. K.; Fiquet, G.; Siebert, J.; Auzende, A.; Antonangeli, D.


    Though today Earth's mantle material is predominantly solid, presence of regions of anomalously low seismic wave velocity deep within the mantle, known as ultralow velocity zones (ULVZs), may be indicative of a remnant magma ocean[Labrosse et al., Nature 450, 866, 2007] or an accumulation of subducted oceanic crust. A recent study on peridotite melting [Fiquet et al., Science 329, 1516, 2010] showed that it is possible to melt peridotites at the base of the mantle, thus making the hypothesis of a remnant magma ocean thermodynamically feasible. It is thus important to know about the possible melting of the oceanic lithosphere at the base of the mantle and whether the partial melting products can significantly contribute to ULVZs. Data on the melting curve (solidus) of mid-ocean ridge basalt (MORB), here taken as a proxy of the oceanic crust, exist up to 64 GPa [Hirose et al.,Nature 397, 53, 1999]. Melting temperature at the core mantle boundary, however, is only estimated from extrapolations of low pressure data and composition of the liquids obtained from partial melting have been reported in multi-anvil experiments at pressures up to 27.5 GPa only [Hirose et al.,GCA 66, 2099, 2002]. We have therefore conducted a series of experiments using diamond-anvil cells and laser-heating and determined the melting curve for the MORB between 44 and 130 GPa. Thin (electron transparent) sections of recovered samples (quenched melt) were prepared by Focused Ion Beam (FIB) and further investigated by analytical transmission electron microscopy to check melting/crystallization sequences as well as variations of phase composition as a function of temperature and pressure. Our results also yield strong constraints on the solidus curve of the lower mantle.

  12. Rheology of Melt-bearing Crustal Rocks (United States)

    Rosenberg, C. L.; Medvedev, S.; Handy, M. R.


    A review and reinterpretation of previous experimental data on the deformation of melt-bearing crustal rocks (Rosenberg and Handy, 2005) revealed that the relationship of aggregate strength to melt fraction is non-linear, even if plotted on a linear ordinate and abscissa. At melt fractions, Φ 0.07, the dependence of aggregate strength on Φ is significantly greater than at Φ > 0.07. This melt fraction (Φ= 0.07) marks the transition from a significant increase in the proportion of melt-bearing grain boundaries up to this point to a minor increase thereafter. Therefore, we suggest that the increase of melt-interconnectivity causes the dramatic strength drop between the solidus and a melt fraction of 0.07. A second strength drop occurs at higher melt fractions and corresponds to the breakdown of the solid (crystal) framework, corresponding to the well-known "rheologically critical melt percentage" (RCMP; Arzi, 1978). Although the strength drop at the RCMP is about 4 orders of magnitude, the absolute value of this drop is small compared to the absolute strength of the unmelted aggregate, rendering the RCMP invisible in a linear aggregate strength vs. melt fraction diagram. Predicting the rheological properties and thresholds of melt-bearing crust on the basis of the results and interpretations above is very difficult, because the rheological data base was obtained from experiments performed at undrained conditions in the brittle field. These conditions are unlikely to represent the flow of partially melted crust. The measured strength of most of the experimentally deformed, partially-melted samples corresponds to their maximum differential stress, before the onset of brittle failure, not to their viscous strength during "ductile" (viscous) flow. To overcome these problems, we extrapolated a theoretically-derived flow law for partially melted granite deforming by diffusion-accommodated grain-boundary sliding (Paterson, 2001) and an experimentally-derived flow law for

  13. Amorphous Phase Formation Analysis of Rapidly Solidified CoCr Droplets (United States)

    Bogno, Abdoul-Aziz; Riveros, Carlos; Henein, Hani; Li, Delin


    This paper investigates amorphous phase formation and rapid solidification characteristics of a CoCr alloy. High cooling rate and high undercooling-induced rapid solidification of the alloy was achieved by impulse atomization in helium atmosphere. Two atomization experiments were carried out to generate powders of a wide size range from liquid CoCr at two different temperatures. Amorphous fraction and kinetic crystallization properties of impulse atomized powders were systematically quantified by means of differential scanning calorimetry. In addition, different but complementary characterization tools were used to analyze the powders microstructures. The fraction of amorphous phase within the investigated powders is found to be promoted by high cooling rate or smaller powder size. The critical cooling rate for amorphous phase formation, which is influenced by the oxygen content in the melt, is found to be 3 × 104 K s-1 and corresponds to a 160- µm-diameter powder atomized in helium. Hardness of the powders is found to follow a trend that is described by the Hall-Petch relation when a relatively high fraction of crystalline structures is present and decreases with the fraction of amorphous phase.

  14. Effect of a weak transverse magnetic field on the morphology and orientation of directionally solidified Al-Ni alloys (United States)

    Li, Hanxiao; Fautrelle, Yves; Hou, Long; Du, Dafan; Zhang, Yikun; Ren, Zhongming; Lu, Xionggang; Moreau, Rene; Li, Xi


    The influence of a weak transverse magnetic field on the morphology and orientation of Al3Ni dendrites in directionally solidified Al-12 wt% Ni alloys was investigated. The experimental results indicated that the magnetic field caused segregation. It was also found that the application of a magnetic field decreased the primary dendrite spacing. By means of electronic backscatter diffraction (EBSD) analysis, the orientation of the Al3Ni dendrite was studied. In the case of no magnetic field, the crystal direction of the Al3Ni crystal was oriented along the solidification direction. When a transverse magnetic field was applied, the crystal direction rotated to the magnetic field direction, whereas the crystal direction remained oriented along the solidification direction. The above experimental results are discussed in the context of thermoelectric magnetic convection (TEMC) and crystal anisotropy.

  15. Influence of Growth Rate on Microstructural Length Scales in Directionally Solidified NiAl-Mo Hypo-Eutectic Alloy (United States)

    Zhang, Jianfei; Ma, Xuewei; Ren, Huiping; Chen, Lin; Jin, Zili; Li, Zhenliang; Shen, Jun


    In this article, the Ni-46.1Al-7.8Mo (at.%) alloy was directionally solidified at different growth rates ranging from 15 μm/s to 1000 μm/s under a constant temperature gradient (334 K/cm). The dependence of microstructural length scales on the growth rate was investigated. The results show that, with the growth rate increasing, the primary dendritic arm spacings (PDAS) and secondary dendritic arm spacings (SDAS) decreased. There exists a large distribution range in PDAS under directional solidification conditions at a constant temperature gradient. The average PDAS and SDAS as a function of growth rate can be given as λ1 = 848.8967 V-0.4509 and λ2 = 64.2196 V-0.4140, respectively. In addition, a comparison of our results with the current theoretical models and previous experimental results has also been made.

  16. Effect of Sr content on porosity formation in directionally solidified Al-12.3wt.%Si alloy

    Directory of Open Access Journals (Sweden)

    Liao Hengcheng


    Full Text Available The influence of Sr addition on pore formation in directionally solidified Al-12.3wt.% alloy was investigated using X-ray detection, optical microscope, and SEM-EDX. Results indicate that addition of Sr significantly increases the number density and volume fraction of porosity. The considerable rise in volume fraction of porosity is attributed to the remarkable increase in the numbers of pores formed. It is found that Sr solute in liquid Al-Si alloy can diffuse into the oxide inclusions to form loose oxide aggregations which have more activity as the nucleation sites for porosity. Adding more Sr considerably increases the numbers of active nucleation sites. There is an obvious fluctuation of pore number density during steady state solidification, which is believed to be related to a fluctuation of local hydrogen supersaturation induced by the competition of pore nucleation and growth for hydrogen solute supplement.

  17. Numerical simulation of non-dendritic structure formation in Mg-Al alloy solidified with ultrasonic field. (United States)

    Feng, Xiaohui; Zhao, Fuze; Jia, Hongmin; Li, Yingju; Yang, Yuansheng


    The formation of non-dendritic structure of Mg alloy solidified with ultrasonic treatment was investigated by numerical simulation and experiment. The models of nucleation and crystal growth involved the effects of ultrasonic cavitation and acoustic streaming were built. Based on the models, the grain refinement and the microstructure change from dendrite to non-dendritic structure of a Mg-Al alloy were numerically simulated by cellular automata method. The simulation and experimental results indicated that the ultrasonic cavitation strongly contributes to the grain refinement by improving nucleation, while the acoustic streaming is mainly responsible for the formation of non-dendritic structure. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Viscosity of ring polymer melts

    KAUST Repository

    Pasquino, Rossana


    We have measured the linear rheology of critically purified ring polyisoprenes, polystyrenes, and polyethyleneoxides of different molar masses. The ratio of the zero-shear viscosities of linear polymer melts η0,linear to their ring counterparts η0,ring at isofrictional conditions is discussed as a function of the number of entanglements Z. In the unentangled regime η0,linear/η 0,ring is virtually constant, consistent with the earlier data, atomistic simulations, and the theoretical expectation η0,linear/ η0,ring = 2. In the entanglement regime, the Z-dependence of ring viscosity is much weaker than that of linear polymers, in qualitative agreement with predictions from scaling theory and simulations. The power-law extracted from the available experimental data in the rather limited range 1 < Z < 20, η0,linear/η0,ring ∼ Z 1.2±0.3, is weaker than the scaling prediction (η0,linear/η0,ring ∼ Z 1.6±0.3) and the simulations (η0,linear/ η0,ring ∼ Z2.0±0.3). Nevertheless, the present collection of state-of-the-art experimental data unambiguously demonstrates that rings exhibit a universal trend clearly departing from that of their linear counterparts, and hence it represents a major step toward resolving a 30-year-old problem. © 2013 American Chemical Society.

  19. Solidifying agent and processing of blood used for the larval diet affect screwworm (Diptera: Calliphoridae) life-history parameters. (United States)

    Chaudhury, M F; Skoda, S R; Sagel, A


    Spray-dried whole bovine blood and a sodium polyacrylate polymer gel as a bulking and solidifying agent are among the constituents of the current larval diet for mass rearing screwworm, Cochliomyia hominivorax (Coquerel) (Diptera: Calliphoridae). Locally available, inexpensive dietary materials could reduce rearing cost and address an uncertain commercial supply of spray-dried blood. We compared efficacy of diet prepared from fresh bovine blood after decoagulation with sodium citrate or ethylenediaminetetraacetic acid (EDTA) or after mechanical defibrination, with the diet containing spray-dried blood using either gel or cellulose fiber as the bulking and solidifying agent. Several life-history parameters were compared among insects reared on each of the blood and bulking agent diets combination. Diets containing citrated blood yielded the lightest larval and pupal weights and fewest pupae. EDTA-treated blood with the gel also caused reductions. EDTA-treated blood with fiber yielded screwworms that were heavier and more numerous than those from the diet with citrated blood but lighter than those from the control diet using spray-dried blood. A reduction in percentage of adults emerging from pupae occurred from diets with both bulking agents using citrated blood and the diet using EDTA mixed with the gel bulking agent. As a group, the cellulose-fiber diets performed better than the gel diets. Larval diet did not affect adult longevity, weight of the eggs deposited by the females that emerged or subsequent egg hatch. Parameter measurements of insects from both defibrinated blood diets were similar to those from the spray-dried blood diets, indicating that fresh, defibrinated bovine blood can successfully replace the dry blood in the screwworm rearing medium.

  20. Global distribution of lunar impact melt flows (United States)

    Neish, C. D.; Madden, J.; Carter, L. M.; Hawke, B. R.; Giguere, T.; Bray, V. J.; Osinski, G. R.; Cahill, J. T. S.


    In this study, we analyzed the distribution and properties of 146 craters with impact melt deposits exterior to their rims. Many of these craters were only recently discovered due to their unusual radar properties in the near-global Mini-RF data set. We find that most craters with exterior deposits of impact melt are small, ⩽20 km, and that the smallest craters have the longest melt flows relative to their size. In addition, exterior deposits of impact melt are more common in the highlands than the mare. This may be the result of differing target properties in the highlands and mare, the difference in titanium content, or the greater variation of topography in the highlands. We find that 80% of complex craters and 60% of simple craters have melt directions that are coincident or nearly coincident with the lowest point in their rim, implying that pre-existing topography plays a dominant role in melt emplacement. This is likely due to movement during crater modification (complex craters) or breached crater rims (simple craters). We also find that impact melt flows have very high circular polarization ratios compared to other features on the Moon. This suggests that their surfaces are some of the roughest material on the Moon at the centimeter to decimeter scale, even though they appear smooth at the meter scale.

  1. Melt processed high-temperature superconductors

    CERN Document Server


    The achievement of large critical currents is critical to the applications of high-temperature superconductors. Recent developments have shown that melt processing is suitable for producing high J c oxide superconductors. Using magnetic forces between such high J c oxide superconductors and magnets, a person could be levitated.This book has grown largely out of research works on melt processing of high-temperature superconductors conducted at ISTEC Superconductivity Research Laboratory. The chapters build on melt processing, microstructural characterization, fundamentals of flux pinning, criti

  2. Precipitate Evolution and Strengthening in Supersaturated Rapidly Solidified Al-Sc-Zr Alloys (United States)

    Deane, Kyle; Kampe, S. L.; Swenson, Douglas; Sanders, P. G.


    Because of the low diffusivities of scandium and zirconium in aluminum, trialuminide precipitates containing these elements have been reported to possess excellent thermal stability at temperatures of 573 K (300 °C) and higher. However, the relatively low equilibrium solubilities of these elements in aluminum limit the achievable phase fraction and, in turn, strengthening contributions from these precipitates. One method of circumventing this limitation involves the use of rapid solidification techniques to suppress the initial formation of precipitates in alloys containing higher solute compositions. This work specifically discusses the fabrication of supersaturated Al-Sc, Al-Zr, and Al-Sc-Zr alloys via melt spinning, in which supersaturations of at least 0.55 at. pct Zr and 0.8 at. pct Sc are shown to be attainable through XRD analysis. The resulting ribbons were subjected to a multistep aging heat treatment in order to encourage a core-shell precipitate morphology, the precipitate evolution behavior was monitored with XRD and TEM, and the aging behavior was observed. While aging in these alloys is shown to follow similar trends to conventionally processed materials reported in literature, with phase fraction increasing until higher aging temperatures causing a competing dissolution effect, the onset of precipitation begins at lower temperatures than previously observed and the peak hardnesses occurred at higher temperature steps due to an increased aging time associated with increased solute concentration. Peaking in strength at a higher temperature doesn't necessarily mean an increase in thermal stability, but rather emphasizes the need for intelligently designed heat treatments to take full advantage of the potential strengthening of supersaturated Al-Sc-Zr alloys.

  3. Diffusive loss of argon in response to melt vein formation in polygenetic impact melt breccias (United States)

    Mercer, Cameron M.; Hodges, Kip V.


    Many planetary surfaces in the solar system have experienced prolonged bombardment. With each impact, new rocks can be assembled that incorporate freshly generated impact melts with fragments of older rocks. Some breccias can become polygenetic, containing multiple generations of impact melt products, and can potentially provide important insights into the extensive bombardment history of a region. However, the amount of chronological information that can be extracted from such samples depends on how well the mineral isotopic systems of geochronometers can preserve the ages of individual melt generations without being disturbed by younger events. We model the thermal evolution of impact melt veins and the resulting loss of Ar from K-bearing phases common in impact melt breccias to assess the potential for preserving the 40Ar/39Ar ages of individual melt generations. Our model results demonstrate that millimeter-scale, clast-free melt veins cause significant heating of adjacent host rock minerals and can cause detectable Ar loss in contact zones that are generally thinner than, and at most about the same thickness as, the vein width. The incorporation of cold clasts in melt veins reduces the magnitudes of heating and Ar loss in the host rocks, and Ar loss can be virtually undetectable for sufficiently clast-rich veins. Quantitative evidence of the timing of impacts, as measured with the 40Ar/39Ar method, can be preserved in polygenetic impact melt breccias, particularly for those containing millimeter-scale bodies of clast-bearing melt products.

  4. Al-Fe solid solutions in alloys obtained by melt spinning

    Energy Technology Data Exchange (ETDEWEB)

    Badan, B.; Magrini, M.; Zambon, A. [Univ. di Padova (Italy). Dept. of Mechanical and Management Innovation


    The extension of solid solutions is one of the more claimed effects of solidification under high cooling rates. The possibility to increase, by such technology, the extremely small amount (0,006 at% at 500 C) of iron in aluminum was extensively studied and recently received further attention, owing to the interesting technological properties of Al-Fe alloys. However the rapid quenching from the liquid not only affects the amount of iron retained in solid solution, but also the possible formation of other intermetallic phases, and, more generally, the location of iron atoms retained in the metastable solid solution of aluminum. Different situations of iron atoms have been investigated using XRD, TEM and Moessbauer spectroscopy (MS), but from the interpretation of the results some problems to obtain unambiguous conclusions arise. In any case it seems interesting to clarify the actual extension of solubility of iron in aluminum, in rather concentrated alloys, in which the formation of metastable intermetallic compounds cannot be suppressed. The paper reports MS analysis of Al-Fe (0,1--4 at%) alloys, rapidly solidified by melt spinning.

  5. Effect of metal vaporization behavior on keyhole-mode surface morphology of selective laser melted composites using different protective atmospheres (United States)

    Dai, Donghua; Gu, Dongdong


    A selective laser melting (SLM) physical model of the change from heat conduction to keyhole-mode process is proposed, providing the transformation of the thermal behavior in the SLM process. Both thermo-capillary force and recoil pressure, which are the major driving forces for the molten flow, are incorporated in the formulation. The effect of the protective atmosphere on the thermal behavior, molten pool dynamics, velocity field of the evaporation material and resultant surface morphology has been investigated. It shows that the motion direction of the evaporation material plays a crucial role in the formation of the terminally solidified surface morphology of the SLM-processed part. For the application of N2 protective atmosphere, the evaporation material has a tendency to encounter in the frontier of the laser scan direction, resulting in the stack of molten material and the attendant formation of humps in the top surface. As Ar protective atmosphere is used, the vector direction of the evaporation material is typically upwards, leading to a uniform recoil pressure forced on the free surface and the formation of fine and flat melt pool surface. The surface quality and morphology are experimentally acquired, which are in a good agreement with the results predicted by simulation.

  6. Microstructure and microhardness evolution of melt-spun Al-Si-Cu alloy (United States)

    Ahmed, Emad M.; Ebrahim, M. R.


    Al-11 wt.% Si-11 wt.% Cu (11.29 at.% Si-5.1 at.% Cu) melt was rapidly solidified into ribbons and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and microhardness technique. The Rietveld X-ray diffraction analysis was applied successfully to analyze the microstructure and phase precipitations. The high cooling rate obtained in rapid solidification has a significant influence on the microstructure and microhardness of this alloy. On the basis of the Al peaks shift measured in the XRD scans, a solid solubility extension value of 3.95 at.% Si and 3.54 at.% Cu in α-Al were determined. No XRD peaks of the Si phase have been detected. XRD peaks of the intermetallic Al2Cu phase have been observed clearly with estimated content of 12.6 wt.%. During prolonged annealing process at 350°C/25 h, XRD peaks of the Si phase clearly appeared with estimated content of 8.6 wt.% and, moreover, the Al2Cu phase content increased to 16 wt.%. The estimated crystallite size and micro-strain % of α-Al are 30 nm and 0.056, respectively. The melt-spun wheel side ribbon represents ultra-fine microstructure with particles size less than 1μm and exhibits enhancement of hardness to 241 HV. Hardness has further increased to 291 HV during heat treatment (150°C/12 h). Rapid solidification exhibited a great influence on microstructure and microhardness of the Al-Si-Cu alloy.

  7. Ice-shelf melting around Antarctica

    National Research Council Canada - National Science Library

    Rignot, E; Jacobs, S; Mouginot, J; Scheuchl, B


    We compare the volume flux divergence of Antarctic ice shelves in 2007 and 2008 with 1979 to 2010 surface accumulation and 2003 to 2008 thinning to determine their rates of melting and mass balance...

  8. Investigation of Melting Dynamics of Hafnium Clusters. (United States)

    Ng, Wei Chun; Lim, Thong Leng; Yoon, Tiem Leong


    Melting dynamics of hafnium clusters are investigated using a novel approach based on the idea of the chemical similarity index. Ground state configurations of small hafnium clusters are first derived using Basin-Hopping and Genetic Algorithm in the parallel tempering mode, employing the COMB potential in the energy calculator. These assumed ground state structures are verified by using the Low Lying Structures (LLS) method. The melting process is carried out either by using the direct heating method or prolonged simulated annealing. The melting point is identified by a caloric curve. However, it is found that the global similarity index is much more superior in locating premelting and total melting points of hafnium clusters.

  9. Production of Synthetic Nuclear Melt Glass. (United States)

    Molgaard, Joshua J; Auxier, John D; Giminaro, Andrew V; Oldham, Colton J; Gill, Jonathan; Hall, Howard L


    Realistic surrogate nuclear debris is needed within the nuclear forensics community to test and validate post-detonation analysis techniques. Here we outline a novel process for producing bulk surface debris using a high temperature furnace. The material developed in this study is physically and chemically similar to trinitite (the melt glass produced by the first nuclear test). This synthetic nuclear melt glass is assumed to be similar to the vitrified material produced near the epicenter (ground zero) of any surface nuclear detonation in a desert environment. The process outlined here can be applied to produce other types of nuclear melt glass including that likely to be formed in an urban environment. This can be accomplished by simply modifying the precursor matrix to which this production process is applied. The melt glass produced in this study has been analyzed and compared to trinitite, revealing a comparable crystalline morphology, physical structure, void fraction, and chemical composition.

  10. Melting point of polymers under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Seeger, Andreas [Technische Universitaet Darmstadt, Ernst Berl-Institut fuer Technische und Makromolekulare Chemie, Petersenstr. 20, D-64287 Darmstadt (Germany)], E-mail:; Freitag, Detlef [Friedrich-Alexander-Universitaet, Erlangen-Nuernberg (Germany); Freidel, Frank [Technische Universitaet Darmstadt, Ernst Berl-Institut fuer Technische und Makromolekulare Chemie, Petersenstr. 20, D-64287 Darmstadt (Germany); Luft, Gerhard [Technische Universitaet Darmstadt, Ernst Berl-Institut fuer Technische und Makromolekulare Chemie, Petersenstr. 20, D-64287 Darmstadt (Germany)], E-mail:


    The influence of highly compressed gases on the melting of polyethylene was investigated for nitrogen, helium and ethylene. The impact of the particle size of the polymer and the heating rate on the melting point were also analysed. The melting points were determined with a high pressure differential thermal analysis (HPDTA) apparatus. These measurements were compared with independent measurements, done by high pressure differential scanning calorimetry (HPDSC), without gas. From this experimental data it was possible to calculate the concentration of the gas in the molten polymer phase based on equilibrium thermodynamics. For high density polyethylene (HDPE), a concentration of nitrogen at the polymer melting point of 10.4-35.7 mL(SATP) g(polymer){sup -1}, in the pressure interval of 65-315 MPa, was calculated.

  11. Melting and Freezing of Metal Clusters (United States)

    Aguado, Andrés; Jarrold, Martin F.


    Recent developments allow heat capacities to be measured for size-selected clusters isolated in the gas phase. For clusters with tens to hundreds of atoms, the heat capacities determined as a function of temperature usually have a single peak attributed to a melting transition. The melting temperatures and latent heats show large size-dependent fluctuations. In some cases, the melting temperatures change by hundreds of degrees with the addition of a single atom. Theory has played a critical role in understanding the origin of the size-dependent fluctuations, and in understanding the properties of the liquid-like and solid-like states. In some cases, the heat capacities have extra features (an additional peak or a dip) that reveal a more complex behavior than simple melting. In this article we provide a description of the methods used to measure the heat capacities and provide an overview of the experimental and theoretical results obtained for sodium and aluminum clusters.

  12. ESR melting under constant voltage conditions

    Energy Technology Data Exchange (ETDEWEB)

    Schlienger, M.E.


    Typical industrial ESR melting practice includes operation at a constant current. This constant current operation is achieved through the use of a power supply whose output provides this constant current characteristic. Analysis of this melting mode indicates that the ESR process under conditions of constant current is inherently unstable. Analysis also indicates that ESR melting under the condition of a constant applied voltage yields a process which is inherently stable. This paper reviews the process stability arguments for both constant current and constant voltage operation. Explanations are given as to why there is a difference between the two modes of operation. Finally, constant voltage process considerations such as melt rate control, response to electrode anomalies and impact on solidification will be discussed.

  13. Energy Saving Melting and Revert Reduction Technology (E-SMARRT): Melting Efficiency Improvement

    Energy Technology Data Exchange (ETDEWEB)

    Principal Investigator Kent Peaslee; Co-PI’s: Von Richards, Jeffrey Smith


    Steel foundries melt recycled scrap in electric furnaces and typically consume 35-100% excess energy from the theoretical energy requirement required to pour metal castings. This excess melting energy is multiplied by yield losses during casting and finishing operations resulting in the embodied energy in a cast product typically being three to six times the theoretical energy requirement. The purpose of this research project was to study steel foundry melting operations to understand energy use and requirements for casting operations, define variations in energy consumption, determine technologies and practices that are successful in reducing melting energy and develop new melting techniques and tools to improve the energy efficiency of melting in steel foundry operations.

  14. Uniaxial Elongational viscosity of bidisperse polystyrene melts

    DEFF Research Database (Denmark)

    Nielsen, Jens Kromann; Rasmussen, Henrik K.; Hassager, Ole


    The startup and steady uniaxial elongational viscosity have been measured for three bidisperse polystyrene (PS) melts, consisting of blends of monodisperse PS with molecular weights of 52 kg/mole or 103 kg/mole and 390 kg/mole. The bidisperse melts have a maximum in the steady elongational...... viscosity, of up to a factor of 7 times the Trouton limit of 3 times the zero-shear viscosity....

  15. Terrestrial analogues for lunar impact melt flows (United States)

    Neish, C. D.; Hamilton, C. W.; Hughes, S. S.; Nawotniak, S. Kobs; Garry, W. B.; Skok, J. R.; Elphic, R. C.; Schaefer, E.; Carter, L. M.; Bandfield, J. L.; Osinski, G. R.; Lim, D.; Heldmann, J. L.


    Lunar impact melt deposits have unique physical properties. They have among the highest observed radar returns at S-Band (12.6 cm wavelength), implying that they are rough at the decimeter scale. However, they are also observed in high-resolution optical imagery to be quite smooth at the meter scale. These characteristics distinguish them from well-studied terrestrial analogues, such as Hawaiian pāhoehoe and ´a´ā lava flows. The morphology of impact melt deposits can be related to their emplacement conditions, so understanding the origin of these unique surface properties will help to inform us as to the circumstances under which they were formed. In this work, we seek to find a terrestrial analogue for well-preserved lunar impact melt flows by examining fresh lava flows on Earth. We compare the radar return and high-resolution topographic variations of impact melt flows to terrestrial lava flows with a range of surface textures. The lava flows examined in this work range from smooth Hawaiian pāhoehoe to transitional basaltic flows at Craters of the Moon (COTM) National Monument and Preserve in Idaho to rubbly and spiny pāhoehoe-like flows at the recent eruption at Holuhraun in Iceland. The physical properties of lunar impact melt flows appear to differ from those of all the terrestrial lava flows studied in this work. This may be due to (a) differences in post-emplacement modification processes or (b) fundamental differences in the surface texture of the melt flows due to the melts' unique emplacement and/or cooling environment. Information about the surface properties of lunar impact melt deposits will be critical for future landed missions that wish to sample these materials.

  16. Manufacturing laser glass by continuous melting

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J H; Suratwala, T; krenitsky, S; Takeuchi, K


    A novel, continuous melting process is being used to manufacture meter-sized plates of laser glass at a rate 20-times faster, 5-times cheaper, and with 2-3 times better optical quality than with previous one-at-a-time, ''discontinuous'' technology processes. This new technology for manufacturing laser glass, which is arguably the most difficult continuously-melted optical material ever produced, comes as a result of a $60 million, six-year joint R&D program between government and industry. The glasses manufactured by the new continuous melting process are Nd-doped phosphate-based glasses and are marketed under the product names LG-770 (Schott Glass Technologies) and LHG-8 (Hoya Corporation USA). With this advance in glass manufacturing technology, it is now possible to construct high-energy, high-peak-power lasers for use in fusion energy development, national defense, and basic physics research that would have been impractical to build using the old melting technology. The development of continuously melted laser glass required technological advances that have lead to improvements in the manufacture of other optical glass products as well. For example, advances in forming, annealing, and conditioning steps of the laser glass continuous melting process are now being used in manufacture of other large-size optical glasses.

  17. Ash melting behaviour - status of the standardisation

    Energy Technology Data Exchange (ETDEWEB)

    Hofbauer, H. [Vienna University of Technology, Vienna (Austria). Institute of Chemical Engineering


    The ash melting behaviour is an important property for the thermal utilization of biomass. Experience shows that there exists a extremely wide range of ash melting temperatures for different biofuels which makes it necessary to determine this property very carefully. Low melting ashes can lead to slagging and deposits in different parts of the plant. In consequence a technical specification for the determination of the ash melting behaviour of solid biofuels is necessary to compare the data from different sources. The information of the European Project ''BioNorm'' referring to the ash melting behaviour was used as starting point. Two different methods are identified for this purpose. One method is based on the existing standards used for coal ashes and a novel method based on ''Melt Area Fraction'' has been developed by dk-Teknik. As the latter one is not commonly used by several testing laboratories it was decided to adapt the existing method also for biofuels. (orig.)

  18. Internal Melting and the Shape of Enceladus (United States)

    Collins, Geoffrey; Goodman, J. C.


    If the thermal energy radiating from the south polar area of Enceladus is supplied over a limited area at the base of the ice shell, melting of a localized pool of water is favored over convection if the ice begins in conductive equilibrium. We show through numerical modeling that a melt pool produced by the observed excess heat flux from the south polar region is stable for long periods of time without turning into a global ocean. As the model approaches equilibrium, inflow of ice from the sides of the melt pool and subsequent melting above the center of the thermal source is balanced by freezing around the outside base of the pool. The observed shape of Enceladus can be fit by a differentiated body (core density pit centered on the south pole. Reported deviations from the best fit ellipsoid (high at 50°S, low at the south pole) can also be fit by this model, and are sensitive to the shape of the heating profile applied to the base of the ice shell. The large surface pit at the south pole produced in our model represents contraction of mass toward the center of Enceladus, producing a significant negative gravity anomaly (calculated by integrating gravity over our melting model), which may serve to reorient Enceladus and place the active region at the south pole. The surface subsidence over the localized melt pool may also explain the sudden change in surface geology around the pole, and will produce compression radial to the pole.

  19. Primary crustal melt compositions: Insights into the controls, mechanisms and timing of generation from kinetics experiments and melt inclusions (United States)

    Acosta-Vigil, Antonio; London, David; Morgan, George B.; Cesare, Bernardo; Buick, Ian; Hermann, Jörg; Bartoli, Omar


    We explore the controls, mechanisms and timing of generation of primary melts and their compositions, and show that the novel studies of melt inclusions in migmatites can provide important insights into the processes of crustal anatexis of a particular rock. Partial melting in the source region of granites is dependent on five main processes: (i) supply of heat; (ii) mineral-melt interface reactions associated with the detachment and supply of mineral components to the melt, (iii) diffusion in the melt, (iv) diffusion in minerals, and (v) recrystallization of minerals. As the kinetics of these several processes vary over several orders of magnitude, it is essential to evaluate in Nature which of these processes control the rate of melting, the composition of melts, and the extent to which residue-melt chemical equilibrium is attained under different circumstances. To shed light on these issues, we combine data from experimental and melt inclusion studies. First, data from an extensive experimental program on the kinetics of melting of crustal protoliths and diffusion in granite melt are used to set up the necessary framework that describes how primary melt compositions are established during crustal anatexis. Then, we use this reference frame and compare compositional trends from experiments with the composition of melt inclusions analyzed in particular migmatites. We show that, for the case of El Hoyazo anatectic enclaves in lavas, the composition of glassy melt inclusions provides important information on the nature and mechanisms of anatexis during the prograde suprasolidus history of these rocks, including melting temperatures and reactions, and extent of melt interconnection, melt homogenization and melt-residue equilibrium. Compositional trends in several of the rehomogenized melt inclusions in garnet from migmatites/granulites in anatectic terranes are consistent with diffusion in melt-controlled melting, though trace element compositions of melt inclusions

  20. Wet melting along the Tonga Volcanic Arc (United States)

    Cooper, L. B.; Plank, T.; Arculus, R. J.; Hauri, E. H.; Hall, P.


    Melting in the mantle at convergent margins is driven by water from the subducting slab. Previous work has found a strong role for water-fluxed melting from correlations between the concentration of water in the mantle source, (H2O)o, and the extent of melting beneath backarcs, Fba. Here we explore how wet melting beneath the Lau Backarc Basin relates to that beneath the Tonga Arc, Farc, by providing the first systematic study of water contents in Tonga arc magmas. We have measured volatiles and major and trace elements in melt inclusions, glasses, and whole rocks obtained from recently sampled submarine and subaerial Tonga arc volcanoes. The compositions are varied and range mostly between andesite and basalt/boninite, and least-degassed water contents range from 2 to 5 wt%. We estimate (H2O)o and Farc independently by combining pressure (P) and temperature (T) estimates from an olivine-orthopyroxene-melt thermobarometer with a wet melting productivity model. When P, T, and (H2O)o are known, Farc is uniquely constrained. Results for the volcanoes in the Tonga Arc are bimodal with respect to T: volcanoes located near active backarc spreading centers reflect cooler melting (~1275°C) than those located far from active spreading centers (~1365°C). The cooler primary T’s may result from removal of the heat of fusion during prior melting beneath the Lau backarc, Fba. In the northern portion of the arc, the warmest primary T’s may be due to proximity to the Samoan mantle plume. Farc varies non-systematically along-strike, indicating that Fba is the primary driver of along-arc variability in primary melt compositions. Farc can also be used to calculate the TiO2 concentration of the arc mantle source, (TiO2)o (a proxy for source depletion), which varies monotonically along the Tonga Arc. Arc volcanoes adjacent to the Southern Lau Rifts and Valu Fa Ridge melt mantle with a fertile N-MORB TiO2, while those adjacent to the northern extent of the Eastern Lau Spreading

  1. Melting in the Fe-Ni system (United States)

    Lord, O. T.; Walter, M. J.; Vocadlo, L.; Wood, I. G.; Dobson, D. P.


    The melting temperature of the Fe-rich core alloy at the inner core boundary (ICB) condition of 330 GPa is a key geophysical parameter because it represents an anchor point on the geotherm. An accurate knowledge of the melting curves of candidate alloys is therefore highly desirable. In spite of this, there is still considerable uncertainty in the melting point even of pure Fe at these conditions; estimates range from as low as 4850K based on one laser heated diamond anvil cell (LHDAC) study [1] to as high as 6900K based on recent quantum Monte Carlo calculations [2]. In reality we expect that the bulk core alloy may contain 5-10 wt% Ni (based on cosmochemical and meteoritic arguments) and up to 10 wt% of an as yet undetermined mix of light elements (with Si, S, C and O being the most likely candidates). While some recent studies have looked at the effects of light elements on the melting curve of Fe [e.g.: 3,4] with some of these studies including a small amount of Ni in their starting material, to date there has been no systematic study of melting temperatures in the Fe-Ni system. To address this issue, we have embarked upon just such a study. Using the LHDAC we have determined the melting curve of the pure Ni end-member to 180 GPa, and that of pure Fe to 50 GPa, using perturbations in the power vs. temperature function as the melting criterion [5]. Ar or NaCl were employed as pressure media while temperature was measured using standard spectroradiometric techniques [6]. In the case of Ni, perturbations were observed for both the sample and the Ar medium, allowing us to determine the melting curve of Ar and Ni simultaneously. Our results thus far for Ni and Ar agree closely with all of the available data, while extending the melting curves by a factor of two in pressure. In the case of Fe, our current dataset is also in good agreement with previous studies [2,7]. The agreement of all three melting curves with the literature data as well as other materials

  2. Influence of scan strategy and molten pool configuration on microstructures and tensile properties of selective laser melting additive manufactured aluminum based parts (United States)

    Dai, Donghua; Gu, Dongdong; Zhang, Han; Xiong, Jiapeng; Ma, Chenglong; Hong, Chen; Poprawe, Reinhart


    Selective laser melting additive manufacturing of the AlSi12 material parts through the re-melting of the previously solidified layer using the continuous two layers 90° rotate scan strategy was conducted. The influence of the re-melting behavior and scan strategy on the formation of the ;track-track; and ;layer-layer; molten pool boundaries (MPBs), dimensional accuracy, microstructure feature, tensile properties, microscopic sliding behavior and the fracture mechanism as loaded a tensile force has been studied. It showed that the defects, such as the part distortion, delamination and cracks, were significantly eliminated with the deformation rate less than 1%. The microstructure of a homogeneous distribution of the Si phase, no apparent grain orientation on both sides of the MPBs, was produced in the as-fabricated part, promoting the efficient transition of the load stress. Cracks preferentially initiate at the ;track-track; MPBs when the tensile stress increases to a certain value, resulting in the formation of the cleavage steps along the tensile loading direction. The cracks propagate along the ;layer-layer; MPBs, generating the fine dimples. The mechanical behavior of the SLM-processed AlSi12 parts can be significantly enhanced with the ultimate tensile strength, yield strength and elongation of 476.3 MPa, 315.5 MPa and 6.7%, respectively.

  3. Gravitation- And Conduction-Driven Melting In A Sphere (United States)

    Bahrami, Parviz A.; Wang, Taylor G.


    Simplifying assumptions lead to approximate closed-form solution. Theoretical paper discusses melting of solid sphere in spherical container. Develops mathematical model of melting process, based in part on simplifying assumptions like those used in theories of lubrication and film condensation. Resulting equation for melting speed as function of melting distance solved approximately in closed form.

  4. Pre-melting Behaviour in fcc Metals (United States)

    Pamato, M. G.; Wood, I. G.; Dobson, D. P.; Hunt, S.; Vocadlo, L.


    Although the Earth's core is accepted to be made of an iron-nickel alloy with a few percent of light elements, its exact structure and composition are still unknown. Seismological and mineralogical models in the Earth's inner core do not agree, with mineralogical models derived from ab initiocalculations predicting shear-wave velocities up to 30% greater than seismically observed values. Recent computer simulations revealed that such difference may be explained by a dramatic, non-linear, softening of the elastic constants of Fe prior to melting. Up to date, computer calculations are the only result on pre-melting of direct applicability to the Earth's core and it is essential to systematically investigate such phenomena at inner core pressures and temperatures. Measuring the pressure dependence of pre-melting effects at such conditions and to the required precision is however extremely challenging. Also, pre-melting effects have been observed or suggested to occur in other materials, particularly noble metals, which exhibit large departures from linearity (modulus defects) at elevated temperatures. The aim of this study is to investigate to what extent pre-melting behaviour occurs in the physical properties of other metals at more experimentally tractable conditions. In particular, we report measurements of density and thermal expansion coefficients of both pure and alloyed gold (Au) up to their melting points. Au is an ideal test material since it crystallises in a simple monatomic face-centred structure and has a relatively low melting temperature. Precise measurements of unit cell lattice parameters were performed using a PANalytical X'Pert Pro powder diffractometer, equipped with an incident beam monochromator (giving very high resolution diffraction patterns) and with environmental stages covering the range from 40 K to 1373 K, with a readily achievable temperature resolution of 1K. We will discuss the circumstances under which pre-melting occurs, its

  5. Internal stress-induced melting below melting temperature at high-rate laser heating (United States)

    Hwang, Yong Seok; Levitas, Valery I.


    In this Letter, continuum thermodynamic and phase field approaches (PFAs) predicted internal stress-induced reduction in melting temperature for laser-irradiated heating of a nanolayer. Internal stresses appear due to thermal strain under constrained conditions and completely relax during melting, producing an additional thermodynamic driving force for melting. Thermodynamic melting temperature for Al reduces from 933.67 K for a stress-free condition down to 898.1 K for uniaxial strain and to 920.8 K for plane strain. Our PFA simulations demonstrated barrierless surface-induced melt nucleation below these temperatures and propagation of two solid-melt interfaces toward each other at the temperatures very close to the corresponding predicted thermodynamic equilibrium temperatures for the heating rate Q ≤1.51×1010K/s. At higher heating rates, kinetic superheating competes with a reduction in melting temperature and melting under uniaxial strain occurs at 902.1 K for Q = 1.51 × 1011 K/s and 936.9 K for Q = 1.46 × 1012 K/s.

  6. Internal stress-induced melting below melting temperature at high-rate laser heating

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Yong Seok, E-mail: [Department of Aerospace Engineering, Iowa State University, Ames, Iowa 50011 (United States); Levitas, Valery I., E-mail: [Departments of Aerospace Engineering, Mechanical Engineering, and Material Science and Engineering, Iowa State University, Ames, Iowa 50011 (United States)


    In this Letter, continuum thermodynamic and phase field approaches (PFAs) predicted internal stress-induced reduction in melting temperature for laser-irradiated heating of a nanolayer. Internal stresses appear due to thermal strain under constrained conditions and completely relax during melting, producing an additional thermodynamic driving force for melting. Thermodynamic melting temperature for Al reduces from 933.67 K for a stress-free condition down to 898.1 K for uniaxial strain and to 920.8 K for plane strain. Our PFA simulations demonstrated barrierless surface-induced melt nucleation below these temperatures and propagation of two solid-melt interfaces toward each other at the temperatures very close to the corresponding predicted thermodynamic equilibrium temperatures for the heating rate Q≤1.51×10{sup 10}K/s. At higher heating rates, kinetic superheating competes with a reduction in melting temperature and melting under uniaxial strain occurs at 902.1 K for Q = 1.51 × 10{sup 11 }K/s and 936.9 K for Q = 1.46 × 10{sup 12 }K/s.

  7. Energy Saving Melting and Revert Reduction Technology: Melting Efficiency in Die Casting Operations

    Energy Technology Data Exchange (ETDEWEB)

    David Schwam


    This project addressed multiple aspects of the aluminum melting and handling in die casting operations, with the objective of increasing the energy efficiency while improving the quality of the molten metal. The efficiency of melting has always played an important role in the profitability of aluminum die casting operations. Consequently, die casters need to make careful choices in selecting and operating melting equipment and procedures. The capital cost of new melting equipment with higher efficiency can sometimes be recovered relatively fast when it replaces old melting equipment with lower efficiency. Upgrades designed to improve energy efficiency of existing equipment may be well justified. Energy efficiency is however not the only factor in optimizing melting operations. Melt losses and metal quality are also very important. Selection of melting equipment has to take into consideration the specific conditions at the die casting shop such as availability of floor space, average quantity of metal used as well as the ability to supply more metal during peaks in demand. In all these cases, it is essential to make informed decisions based on the best available data.

  8. Melt electrospinning of biodegradable polyurethane scaffolds (United States)

    Karchin, Ari; Simonovsky, Felix I.; Ratner, Buddy D.; Sanders, Joan E.


    Electrospinning from the melt, in contrast to from solution, is an attractive tissue engineering scaffold manufacturing process as it allows for the formation of small diameter fibers while eliminating potentially cytotoxic solvents. Despite this, there is a dearth of literature on scaffold formation via melt electrospinning. This is likely due to the technical challenges related to the need for a well-controlled high temperature setup and the difficulty in developing an appropriate polymer. In this paper, a biodegradable and thermally stable polyurethane (PU) is described specifically for use in melt electrospinning. Polymer formulations of aliphatic PUs based on (CH2)4-content diisocyanates, polycaprolactone (PCL), 1,4-butanediamine and 1,4-butanediol (BD) were evaluated for utility in the melt electrospinning process. The final polymer formulation, a catalyst-purified PU based on 1,4-butane diisocyanate, PCL and BD in a 4/1/3 molar ratio with a weight-average molecular weight of about 40 kDa, yielded a nontoxic polymer that could be readily electrospun from the melt. Scaffolds electrospun from this polymer contained point bonds between fibers and mechanical properties analogous to many in vivo soft tissues. PMID:21640853

  9. ESR Process Instabilities while Melting Pipe Electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Melgaard, D.K.; Shelmidine, G.J.


    With the demonstration of the viability of using the electroslag remelting process for the decontamination of radionuclides, interest has increased in examining the unique aspects associated with melting steel pipe electrodes. These electrodes consist of several nested pipes, welded concentrically to atop plate. Since these electrodes can be half as dense as a solid electrode, they present unique challenges to the standard algorithms used in controlling the melting process. Naturally the electrode must be driven down at a dramatically increased speed. However, since the heat transfer is greatly influenced and enhanced with the increased area to volume ratio, considerable variation in the melting rate of the pipes has been found. Standard control methods can become unstable as a result of the variation at increased speeds, particularly at shallow immersion depths. The key to good control lies in the understanding of the melting process. Several experiments were conducted to observe the characteristics of the melting using two different control modes. By using a pressure transducer to monitor the pressure inside the pipes, the venting of the air trapped inside the electrode was observed. The measurements reveal that for a considerable amount of time. the pipes are not completely immersed in the slag, allowing the gas inside to escape without the formation of bubbles. This result has implications for the voltage swing as well as for the decontamination reactions.

  10. Preparation of the melting tank for melting magnesite in an electric-arc furnace

    Energy Technology Data Exchange (ETDEWEB)

    Skorodumov, V.V.; Mechev, V.V.; Storozhev, Y.I.; Vlasov, N.M.; Zhilin, G.P.


    An average quantitative evaluation of the effect of the fill of crystalline MgO on the main melting characteristics of magnesite in an OKB-955 electric-arc furnace is shown. The diameter of the electrode discharge was 1050 mm and the melting regime was maintained automatically at a voltage of 95-97 V and a current of 6.8 kA. Melting of various grades of magnesite was carried out. The authors found that when a heat-conducting lining is used in the hearth, the yield of first and second grade periclase from the solid melting products is increased 5%. The fairly significant effectiveness of the use of a heat-conducting layer in the hearth lining of a melting tank is demonstrated. This layer makes it possible to improve the technieconomic characteristics of the process and to upgrade the quality of the periclase.

  11. Determination of molybdenum in plants by vortex-assisted emulsification solidified floating organic drop microextraction and flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Oviedo, Jenny A.; Fialho, Lucimar L.; Nóbrega, Joaquim A., E-mail:


    A fast and sensitive procedure for extraction and preconcentration of molybdenum in plant samples based on solidified floating organic drop microextraction combined with flame atomic absorption spectrometry and discrete nebulization was developed. 8-Hydroxyquinoline (8-HQ) was used as complexing agent. The experimental conditions established were: 0.5% m v{sup −1} of 8-HQ, 60 μL of 1-undecanol as the extractant phase, 2 min vortex extraction time, centrifugation for 2 min at 2000 rpm, 10 min into an ice bath and discrete nebulization by introducing 200 μL of solution. The calibration curve was linear from 0.02 to 4.0 mg L{sup −1} with a limit of detection of 4.9 μg L{sup −1} and an enhancement factor of 67. The relative standard deviations for ten replicate measurements of 0.05 and 1.0 mg L{sup −1} Mo were 6.0 and 14.5%, respectively. The developed procedure was applied for determining molybdenum in corn samples and accuracy was proved using certified reference materials. - Highlights: ► Molybdenum was determined in plants by flame AAS. ► Flame AAS sensitivity was improved using microextraction and discrete nebulization. ► The developed procedure can be easily implemented in routine analysis. ► Green chemistry principles are followed.

  12. Modeling the growth of Byssochlamys fulva and Neosartorya fischeri on solidified apple juice by measuring colony diameter and ergosterol content. (United States)

    Tremarin, Andréia; Longhi, Daniel Angelo; Salomão, Beatriz de Cassia Martins; Aragão, Gláucia Maria Falcão


    Byssochlamys fulva and Neosartorya fischeri are heat-resistant fungi which are a concern to food industries (e.g. apple juice industry) since their growth represents significant economic liabilities. Although the most common method used to assess fungal growth in solid substrates is by measuring the colony's diameter, it is difficult to apply this method to food substrates. Alternatively, ergosterol contents have been used to quantify fungal contamination in some types of food. The current study aimed at modeling the growth of the heat-resistant fungi B. fulva and N. fischeri by measuring the colony diameter and ergosterol content, fitting the Baranyi and Roberts model to the results, and finally establishing a correlation between the parameters of the two analytical methods. Whereas the colony diameter was measured daily, the quantification of ergosterol was performed when the colonies reached diameters of 30, 60, 90, 120 and 150 mm. Results showed that B. fulva and N. fischeri were able to grow successfully on solidified apple juice at 10, 15, 20, 25 and 30 °C, and the Baranyi and Roberts model showed good ability to describe growth data. The correlation curves between the parameters of colony diameter and ergosterol content were obtained with satisfactory statistical indexes. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Surface NH2-rich nanoparticles: Solidifying ionic-liquid electrolytes and improving the performance of dye-sensitized solar cells (United States)

    Fang, Yanyan; Ma, Pin; Fu, Nianqing; Zhou, Xiaowen; Fang, Shibi; Lin, Yuan


    The surface properties of nanoparticles have a significant influence on the properties of the gel electrolytes. Herein, the surface NH2-rich nanoparticle (A-SiO2), with a tightening network, is synthesized by silanizing SiO2 nanoparticles with pre-polymerized aminopropyltriethoxysilane, which is further employed to prepare ionic-liquid gel electrolytes for dye-sensitized solar cells. The addition of a small amount of A-SiO2 can effectively solidify the ionic-liquid, whereas a large number of NH2 groups on the SiO2 surface leads to a large negative shift of the TiO2 conduction band edge, and can react with I3- in the form of a Lewis complex, resulting in an increase in the concentration of I- and a decrease in the concentration of I3- in the electrolyte. In addition, the ionic-liquid gel electrolyte possesses thixotropic behavior, which allows it to easily penetrate into the inner part of the TiO2 mesoporous film. As a result, large improvements of the photovoltage from 695 mV to 785 mV and of the photocurrent from 13.3 mA cm-2 to 14.9 mA cm-2 are achieved. This leads to significant enhancement of the power conversion efficiency, from 6.2% to 8.1%, for the cell with A-SiO2 compared to that of the pristine ionic-liquid electrolyte.

  14. Sensitive determination of cadmium using solidified floating organic drop microextraction-slotted quartz tube-flame atomic absorption spectroscopy. (United States)

    Akkaya, Erhan; Chormey, Dotse Selali; Bakırdere, Sezgin


    In this study, solidified floating organic drop microextraction (SFODME) by 1-undecanol was combined with slotted quartz tube flame atomic absorption spectrometry (SQT-FAAS) for the determination of cadmium at trace levels. Formation of a complex with 4,4'-dimethyl-2,2'-bipyridine facilitated the extraction of cadmium from aqueous solutions. Several chemical variables were optimized in order to obtain high extraction outputs. Parameters such as concentration of the ligand, pH, and amount of buffer solution were optimized to enhance the formation of cadmium complex. The SFODME method was assisted by dispersion of extractor solvent into aqueous solutions using 2-propanol. Under the optimum extraction and instrumental conditions, the limit of detection and limit of quantitation values obtained for cadmium using the combined methods (SFODME-SQT-FAAS) were found to be 0.4 and 1.3 μg L -1 , respectively. Matrix effects on the method were also examined for tap water and wastewater, and spiked recovery results were found to be very satisfactory. Graphical Abstract SFODME-SQT-FAAS system for sensitive determination of cadmium.

  15. Effects of Growth Rates and Compositions on Dendrite Arm Spacings in Directionally Solidified Al-Zn Alloys (United States)

    Acer, Emine; Çadırlı, Emin; Erol, Harun; Kaya, Hasan; Gündüz, Mehmet


    Dendritic spacing can affect microsegregation profiles and also the formation of secondary phases within interdendritic regions, which influences the mechanical properties of cast structures. To understand dendritic spacings, it is important to understand the effects of growth rate and composition on primary dendrite arm spacing ( λ 1) and secondary dendrite arm spacing ( λ 2). In this study, aluminum alloys with concentrations of (1, 3, and 5 wt pct) Zn were directionally solidified upwards using a Bridgman-type directional solidification apparatus under a constant temperature gradient (10.3 K/mm), resulting in a wide range of growth rates (8.3-165.0 μm/s). Microstructural parameters, λ 1 and λ 2 were measured and expressed as functions of growth rate and composition using a linear regression analysis method. The values of λ 1 and λ 2 decreased with increasing growth rates. However, the values of λ 1 increased with increasing concentration of Zn in the Al-Zn alloy, but the values of λ 2 decreased systematically with an increased Zn concentration. In addition, a transition from a cellular to a dendritic structure was observed at a relatively low growth rate (16.5 μm/s) in this study of binary alloys. The experimental results were compared with predictive theoretical models as well as experimental works for dendritic spacing.

  16. High Rate of N2 Fixation by East Siberian Cryophilic Soil Bacteria as Determined by Measuring Acetylene Reduction in Nitrogen-Poor Medium Solidified with Gellan Gum▿ † (United States)

    Hara, Shintaro; Hashidoko, Yasuyuki; Desyatkin, Roman V.; Hatano, Ryusuke; Tahara, Satoshi


    For evaluating N2 fixation of diazotrophic bacteria, nitrogen-poor liquid media supplemented with at least 0.5% sugar and 0.2% agar are widely used for acetylene reduction assays. In such a soft gel medium, however, many N2-fixing soil bacteria generally show only trace acetylene reduction activity. Here, we report that use of a N2 fixation medium solidified with gellan gum instead of agar promoted growth of some gellan-preferring soil bacteria. In a soft gel medium solidified with 0.3% gellan gum under appropriate culture conditions, bacterial microbiota from boreal forest bed soils and some free-living N2-fixing soil bacteria isolated from the microbiota exhibited 10- to 200-fold-higher acetylene reduction than those cultured in 0.2% agar medium. To determine the N2 fixation-activating mechanism of gellan gum medium, qualitative differences in the colony-forming bacterial components from tested soil microbiota were investigated in plate cultures solidified with either agar or gellan gum for use with modified Winogradsky's medium. On 1.5% agar plates, apparently cryophilic bacterial microbiota showed strictly distinguishable microbiota according to the depth of soil in samples from an eastern Siberian Taiga forest bed. Some pure cultures of proteobacteria, such as Pseudomonas fluorescens and Burkholderia xenovorans, showed remarkable acetylene reduction. On plates solidified with 1.0% gellan gum, some soil bacteria, including Luteibacter sp., Janthinobacterium sp., Paenibacillus sp., and Arthrobacter sp., uniquely grew that had not grown in the presence of the same inoculants on agar plates. In contrast, Pseudomonas spp. and Burkholderia spp. were apparent only as minor colonies on the gellan gum plates. Moreover, only gellan gum plates allowed some bacteria, particularly those isolated from the shallow organic soil layer, to actively swarm. In consequence, gellan gum is a useful gel matrix to bring out growth potential capabilities of many soil diazotrophs and

  17. High rate of N2 fixation by East Siberian cryophilic soil bacteria as determined by measuring acetylene reduction in nitrogen-poor medium solidified with gellan gum. (United States)

    Hara, Shintaro; Hashidoko, Yasuyuki; Desyatkin, Roman V; Hatano, Ryusuke; Tahara, Satoshi


    For evaluating N(2) fixation of diazotrophic bacteria, nitrogen-poor liquid media supplemented with at least 0.5% sugar and 0.2% agar are widely used for acetylene reduction assays. In such a soft gel medium, however, many N(2)-fixing soil bacteria generally show only trace acetylene reduction activity. Here, we report that use of a N(2) fixation medium solidified with gellan gum instead of agar promoted growth of some gellan-preferring soil bacteria. In a soft gel medium solidified with 0.3% gellan gum under appropriate culture conditions, bacterial microbiota from boreal forest bed soils and some free-living N(2)-fixing soil bacteria isolated from the microbiota exhibited 10- to 200-fold-higher acetylene reduction than those cultured in 0.2% agar medium. To determine the N(2) fixation-activating mechanism of gellan gum medium, qualitative differences in the colony-forming bacterial components from tested soil microbiota were investigated in plate cultures solidified with either agar or gellan gum for use with modified Winogradsky's medium. On 1.5% agar plates, apparently cryophilic bacterial microbiota showed strictly distinguishable microbiota according to the depth of soil in samples from an eastern Siberian Taiga forest bed. Some pure cultures of proteobacteria, such as Pseudomonas fluorescens and Burkholderia xenovorans, showed remarkable acetylene reduction. On plates solidified with 1.0% gellan gum, some soil bacteria, including Luteibacter sp., Janthinobacterium sp., Paenibacillus sp., and Arthrobacter sp., uniquely grew that had not grown in the presence of the same inoculants on agar plates. In contrast, Pseudomonas spp. and Burkholderia spp. were apparent only as minor colonies on the gellan gum plates. Moreover, only gellan gum plates allowed some bacteria, particularly those isolated from the shallow organic soil layer, to actively swarm. In consequence, gellan gum is a useful gel matrix to bring out growth potential capabilities of many soil

  18. The effect of thermal cycling on the structure and properties of a Co, Cr, Ni-TaC directionally solidified eutectic composite (United States)

    Dunlevey, F. M.; Wallace, J. F.


    The effect of thermal cycling on the structure and properties of a cobalt, chromium, nickel, tantalum carbide directionally solidified eutectic composite is reported. It was determined that the stress rupture properties of the alloy were decreased by the thermal cycling. The loss in stress rupture properties varied with the number of cycles with the loss in properties after about 200 cycles being relatively high. The formation of serrations and the resulting changes in the mechanical properties of the material are discussed.

  19. Scleral melt following Retisert intravitreal fluocinolone implant

    Directory of Open Access Journals (Sweden)

    Georgalas I


    Full Text Available Ilias Georgalas,1 Chrysanthi Koutsandrea,1 Dimitrios Papaconstantinou,1 Dimitrios Mpouritis,1 Petros Petrou1,2 1Ophthalmology Department, University of Athens, Athens, Greece; 2Moorfields Eye Hospital, London, UKAbstract: Intravitreal fluocinolone acetonide implant (Retisert has a high potency, a low solubility, and a very short duration of action in the systemic circulation, enabling the steroid pellet to be small and reducing the risk of systemic side effects. Scleral melt has not been reported as a possible complication of Retisert implant. The authors describe the occurrence of scleral melt 18 months after the implantation of fluocinolone acetonide implant in a 42-year-old Caucasian woman. To the authors’ knowledge, this is the first report of this possible complication.Keywords: Retisert, scleral melt, complication, surgical management

  20. Electrodepositions on Tantalum in Alkali Halide Melts

    DEFF Research Database (Denmark)

    Barner, Jens H. Von; Jensen, Annemette Hindhede; Christensen, Erik


    Surface layers of tantalum metal were electrodeposited on steel from K2TaF7-LiF-NaF-KF melts. With careful control of the oxide contents dense and adherent deposits could be obtained by pulse plating. In NaCl-KCl-NaF-Na2CO3 and NaCl-KCl-Na2CO3 melts carbonate ions seems to be reduced to carbon in...... in a single 4 electron step. By electrolyses at a constant potential of – 1.4 V vs. Pt in a NaCl-KCl-NaF-Na2CO3 melt at 800 oC coherent carbon containing surface layers could be obtained on tantalum substrates, when a CO2 atmosphere was applied...

  1. Examination of solidified and stabilized matrices as a result of solidification and stabilization process of arseniccontaining sludge with portland cement and lime

    Directory of Open Access Journals (Sweden)

    Tanapon Phenrat


    Full Text Available By solidification and stabilization (S/S with Portland cement and lime, it is possible to reduce arsenic concentration in leachate of the arsenic-containing sludge from arsenic removal process by coagulation with ferric chloride. From the initial arsenic concentration in leachate of unsolidified /unstabilized sludge which was around 20.75 mg/L, the arsenic concentrations in leachate of solidified/stabilized waste were reduced to 0.3, 0.58, 1.09, and 1.85 mg/L for the waste-to-binder ratios of 0.15, 0.25, 0.5, and 1, respectively, due tothe formation of insoluble calcium-arsenic compounds. To be more cost effective for the future, alternative uses of these S/S products were also assessed by measurement of compressive strength of the mortar specimens. It was found that the compressive strengths of these matrices were from 28 ksc to 461 ksc. In conclusion, considering compressive strength and leachability of the solidified matrices, some of these solidified/ stabilized products have potential to serve as an interlocking concrete paving block.

  2. Multiscale approach to equilibrating model polymer melts

    DEFF Research Database (Denmark)

    Svaneborg, Carsten; Ali Karimi-Varzaneh, Hossein; Hojdis, Nils


    to be computationally effective at each scale. Density fluctuations in the melt structure above the tube scale are minimized through a Monte Carlo simulated annealing of a lattice polymer model. Subsequently the melt structure below the tube scale is equilibrated via the Rouse dynamics of a force-capped Kremer...... of 15.000 monomers. To validate the equilibration process we study the time evolution of bulk, collective, and single-chain observables at the monomeric, mesoscopic, and macroscopic length scales. Extension of the present method to longer, branched, or polydisperse chains, and/or larger system sizes...

  3. Coordination of Actinides in Silicate Melts


    F. Farges; Brown, G; Wu, Z.


    The structural environments around Th(IV) and U(VI) at concentrations ranging from 90 ppm to 7 wt.% were investigated in glasses and melts of Na di- and trisilicate compositions between 293 and 1550 K using x-ray absorption fine structure (XAFS) spectroscopy. Data for model compounds were collected at temperatures up to 2000 K in order to quantify the magnitude of anharmonic effects. Data for glasses and melts were collected and analyzed considering anharmonic (cumulant-expansion), curved-wav...

  4. Chemical reactions in solvents and melts

    CERN Document Server

    Charlot, G


    Chemical Reactions in Solvents and Melts discusses the use of organic and inorganic compounds as well as of melts as solvents. This book examines the applications in organic and inorganic chemistry as well as in electrochemistry. Organized into two parts encompassing 15 chapters, this book begins with an overview of the general properties and the different types of reactions, including acid-base reactions, complex formation reactions, and oxidation-reduction reactions. This text then describes the properties of inert and active solvents. Other chapters consider the proton transfer reactions in

  5. Bubble Formation in Basalt-like Melts

    DEFF Research Database (Denmark)

    Jensen, Martin; Keding, Ralf; Yue, Yuanzheng


    The effect of the melting temperature on bubble size and bubble formation in an iron bearing calcium aluminosilicate melt is studied by means of in-depth images acquired by optical microscopy. The bubble size distribution and the total bubble volume are determined by counting the number of bubbles...... spectroscopy analysis of gases liberated during heating of the glass reveals that small bubbles contain predominantly CH4, CO and CO2, whereas large bubbles bear N2, SO2 and H2S. The methodology utilised in this work can, besides mapping the bubbles in a glass, be applied to shed light on the sources of bubble...

  6. Melting Efficiency During Plasma Arc Welding (United States)

    McClure, J.C.; Evans, D. M.; Tang, W.; Nunes, A. C.


    A series of partial penetration Variable Polarity Plasma Arc welds were made at equal power but various combinations of current and voltage on 2219 aluminum. Arc Efficiency was measured calorimetrically and ranged between 48% and 66%. Melting efficiency depends on the weld pool shape. Increased current increases the melting efficiency as it increases the depth to width ratio of the weld pool. Higher currents are thought to raise arc pressure and depress the liquid at the bottom of the weld pool causing a more nearly two dimensional heat flow condition.

  7. Determination of melting temperature and temperature melting range for DNA with multi-peak differential melting curves. (United States)

    Lando, Dmitri Y; Fridman, Alexander S; Chang, Chun-Ling; Grigoryan, Inessa E; Galyuk, Elena N; Murashko, Oleg N; Chen, Chun-Chung; Hu, Chin-Kun


    Many factors that change the temperature position and interval of the DNA helix-coil transition often also alter the shape of multi-peak differential melting curves (DMCs). For DNAs with a multi-peak DMC, there is no agreement on the most useful definition for the melting temperature, Tm, and temperature melting width, ΔT, of the entire DNA transition. Changes in Tm and ΔT can reflect unstable variation of the shape of the DMC as well as alterations in DNA thermal stability and heterogeneity. Here, experiments and computer modeling for DNA multi-peak DMCs varying under different factors allowed testing of several methods of defining Tm and ΔT. Indeed, some of the methods give unreasonable "jagged" Tm and ΔT dependences on varying relative concentration of DNA chemical modifications (rb), [Na(+)], and GC content. At the same time, Tm determined as the helix-coil transition average temperature, and ΔT, which is proportional to the average absolute temperature deviation from this temperature, are suitable to characterize multi-peak DMCs. They give smoothly varying theoretical and experimental dependences of Tm and ΔT on rb, [Na(+)], and GC content. For multi-peak DMCs, Tm value determined in this way is the closest to the thermodynamic melting temperature (the helix-coil transition enthalpy/entropy ratio). Copyright © 2015. Published by Elsevier Inc.

  8. Evolution of melt-vapor surface tension in silicic volcanic systems: Experiments with hydrous melts (United States)

    Mangan, M.; Sisson, T.


    We evaluate the melt-vapor surface tension (??) of natural, water-saturated dacite melt at 200 MPa, 950-1055??C, and 4.8-5.7 wt % H2O. We experimentally determine the critical supersaturation pressure for bubble nucleation as a function of dissolved water and then solve for ?? at those conditions using classical nucleation theory. The solutions obtained give dacite melt-vapor surface tensions that vary inversely with dissolved water from 0.042 (??0.003) J m-2 at 5.7 wt% H2O to 0.060 (??0.007) J m-2 at 5.2 wt% H2O to 0.073 (??0.003) J m-2 at 4.8 wt% H2O. Combining our dacite results with data from published hydrous haplogranite and high-silica rhyolite experiments reveals that melt-vapor surface tension also varies inversely with the concentration of mafic melt components (e.g., CaO, FeOtotal, MgO). We develop a thermodynamic context for these observations in which melt-vapor surface tension is represented by a balance of work terms controlled by melt structure. Overall, our results suggest that cooling, crystallization, and vapor exsolution cause systematic changes in ?? that should be considered in dynamic modeling of magmatic processes.

  9. Melting of cross-linked DNA. III. Calculation of differential melting curves. (United States)

    Lando, D Y; Fridman, A S; Krot, V I; Akhrem, A A


    In our previous papers I and II (D. Y. Lando et al, J. Biomol. Struct. Dynam. (1997) v. 15, N1, p. 129-140, p. 141-150), two methods were developed for calculation of melting curves of cross-linked DNA. One of them is based on Poland's and another on the Fixman-Freire approach. In the present communication, III, a new theoretical method is developed for computation of differential melting curves of DNAs cross-linked by anticancer drugs and their inactive analogs. As Poland's approach, the method allows study of the influence of the loop entropy factor, delta(n), on melting behavior (n is the length of a loop in base pairs). However the method is much faster and requires computer time that inherent for the most rapid Fixman-Freire calculation approach. In contrast to the computation procedures described before in communications I and II, the method is suitable for computation of differential melting curves in the case of long DNA chains, arbitrary loop entropy factors of melted regions and arbitrary degree of cross-linking including very low values that occur in vivo after administration of antitumor drugs. The method is also appropriate for DNAs without cross-links. The results of calculation demonstrate that even very low degree of cross-linking alters the DNA differential melting curve. Cross-linking also markedly strengthens the influence of particular function delta(n) upon melting behavior.

  10. Quasi-equilibrium melting of quartzite upon extreme friction (United States)

    Lee, Sung Keun; Han, Raehee; Kim, Eun Jeong; Jeong, Gi Young; Khim, Hoon; Hirose, Takehiro


    The friction on fault planes that controls how rocks slide during earthquakes decreases significantly as a result of complex fault-lubrication processes involving frictional melting. Fault friction has been characterized in terms of the preferential melting of minerals with low melting points--so-called disequilibrium melting. Quartz, which has a high melting temperature of about 1,726 °C and is a major component of crustal rocks, is not expected to melt often during seismic slip. Here we use high-velocity friction experiments on quartzite to show that quartz can melt at temperatures of 1,350 to 1,500 °C. This implies that quartz within a fault plane undergoing rapid friction sliding could melt at substantially lower temperatures than expected. We suggest that depression of the melting temperature is caused by the preferential melting of ultra-fine particles and metastable melting of β-quartz at about 1,400 °C during extreme frictional slip. The results for quartzite are applicable to complex rocks because of the observed prevalence of dynamic grain fragmentation, the preferential melting of smaller grains and the kinetic preference of β-quartz formation during frictional sliding. We postulate that frictional melting of quartz on a fault plane at temperatures substantially below the melting temperature could facilitate slip-weakening and lead to large earthquakes.

  11. Recent Changes in Arctic Sea Ice Melt Onset, Freeze-Up, and Melt Season Length (United States)

    Markus, Thorsten; Stroeve, Julienne C.; Miller, Jeffrey


    In order to explore changes and trends in the timing of Arctic sea ice melt onset and freeze-up and therefore melt season length, we developed a method that obtains this information directly from satellite passive microwave data, creating a consistent data set from 1979 through present. We furthermore distinguish between early melt (the first day of the year when melt is detected) and the first day of continuous melt. A similar distinction is made for the freeze-up. Using this method we analyze trends in melt onset and freeze-up for 10 different Arctic regions. In all regions except for the Sea of Okhotsk, which shows a very slight and statistically insignificant positive trend (O.4 days/decade), trends in melt onset are negative, i.e. towards earlier melt. The trends range from -1.0day/decade for the Bering Sea to -7.3 days/decade for the East Greenland Sea. Except for the Sea of Okhotsk all areas also show a trend towards later autumn freeze onset. The Chukchi/Beaufort Seas and Laptev/East Siberian Seas observe the strongest trends with 7 days/decade. For the entire Arctic, the melt season length has increased by about 20 days over the last 30 years. Largest trends of over 1O days/decade are seen for Hudson Bay, the East Greenland Sea the Laptev/East Siberian Seas, and the Chukchi/Beaufort Seas. Those trends are statistically significant a1 the 99% level.

  12. Effect of Zr Purity and Oxygen Content on the Structure and Mechanical Properties of Melt-Spun and Suction-Cast Cu46Zr42Al7Y5 Alloy

    Directory of Open Access Journals (Sweden)

    Kozieł T.


    Full Text Available The effect of oxygen content in zirconium on the structure and mechanical properties of the Cu46Zr42Al7Y5 alloy, in the form of melt-spun ribbons and suction-cast rods, was investigated. Two types of Zr, rod and crystal bar of different nominal purities and oxygen contents, were used to synthesize the alloy by arc melting. Rapidly solidified ribbons were produced by melt spinning and their amorphous structures were confirmed by X-ray diffractometry (XRD and differential scanning calorimetry (DSC. Bulk samples in the form of rods were cast using a special water-cooled suction casting unit attached to the arc melting system. XRD and DSC studies proved the amorphous structure of the bulk alloy synthesized from low-oxygen Zr and partial crystallization of the same alloy for high-oxygen Zr. In both bulk samples, uniformly distributed crystalline particles were identified as yttrium oxides. Higher mean compressive strength of amorphous alloy was observed. The hardness of amorphous phase was close to 500 HV1 in both bulk alloys, while the hardness of crystalline dendritic areas, observed in the alloy synthesized from high oxygen Zr, was lower by about 50 HV1.

  13. Room-Temperature Indentation Creep and the Mechanical Properties of Rapidly Solidified Sn-Sb-Pb-Cu Alloys (United States)

    Kamal, Mustafa; El-Bediwi, A.; Lashin, A. R.; El-Zarka, A. H.


    In this paper, we study the room-temperature indentation creep and the mechanical properties of Sn-Sb-Pb-Cu alloys. Rapid solidification from melt using the melt-spinning technique is applied to prepare all the alloys. The experimental results show that the magnitude of the creep displacement increases with the increase in both time and applied load, and the stress exponent increases with the increase in the copper content in the alloys which happens primarily due to the existence of the intermetallic compounds SbSn and Cu6Sn5. The calculated values of the stress exponent are in the range of 2.82 to 5.16, which are in good agreement with the values reported for the Sn-Sb-Pb-Cu alloys. We have also studied and analyzed the structure, elastic modulus, and internal friction of the Sn-Sb-Pb-Cu alloys.

  14. Pressure-Induced Melting of Confined Ice

    NARCIS (Netherlands)

    Sotthewes, Kai; Bampoulis, Pantelis; Zandvliet, Henricus J.W.; Lohse, Detlef; Poelsema, B.


    The classic regelation experiment of Thomson in the 1850s deals with cutting an ice cube, followed by refreezing. The cutting was attributed to pressure-induced melting but has been challenged continuously, and only lately consensus emerged by understanding that compression shortens the O:H nonbond

  15. Pressure Melting and Ice Skating / Bunsen Burner

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 5. Pressure Melting and Ice Skating / Bunsen Burner - Revisited. Classroom Volume 1 Issue 5 May 1996 pp 71-78. Fulltext. Click here to view fulltext PDF. Permanent link: Resonance ...

  16. Melt spinnable elastane fibres from segmented copolyetheresteramids

    NARCIS (Netherlands)

    Niesten, M.C.E.J.; Krijgsman, J.; Gaymans, R.J.


    Spandex fibers were obtained by melt spinning segmented copolyetheresteramides with crystallizable aromatic diamide units of uniform length and poly(tetramethyleneoxide) segments. The aramid content was varied from 3 to 22 wt %, and the molecular weight of the polyether segment ranged from 1000 to

  17. Catastrophic failure of polymer melts during extension

    DEFF Research Database (Denmark)

    Rasmussen, Henrik K.


    Numerical flow modeling has been applied to study the break of monodisperse polymer melts during extension. These continuum mechanical based computations are within the ideas of the microstructural ’interchain pressure’ theory. Calculated breaks, a result of small initial sample imperfections, ag...

  18. Electrodepositions on Tantalum in alkali halide melts

    DEFF Research Database (Denmark)

    Barner, Jens H. Von; Jensen, Annemette Hindhede; Christensen, Erik


    in a single 4 electron step. By electrolyses at a constant potential of - 1.4 V vs. Pt in a NaCl-KCl-NaF-Na2CO3 melt at 800 °C coherent carbon containing surface layers could be obtained on tantalum substrates, when a CO2 atmosphere was applied. Copyright © 2012 by The Electrochemical Society....

  19. Record Summer Melt in Greenland in 2010

    NARCIS (Netherlands)

    Tedesco, M.; Fettweis, X.; van den Broeke, M.R.|info:eu-repo/dai/nl/073765643; van de Wal, R.S.W.|info:eu-repo/dai/nl/101899556; Smeets, C.J.P.P.|info:eu-repo/dai/nl/191522236; van de Berg, W.J.|info:eu-repo/dai/nl/304831611; Serreze, M.C.; Box, J.E.


    As Arctic temperatures increase, there is growing concern about the melting of the Greenland ice sheet, which reached a new record during the summer of 2010. Understanding the changing surface mass balance of the Greenland ice sheet requires appreciation of the close links among changes in surface

  20. Arctic Ice Melting: National Security Implications (United States)


    be a curse rather than a good, and under no conditions can it either lead into freedom or constitute a proof for its existence. - Hannah ... Arendt 39 How will the domestic or foreign economic policies of the United States be affected by Arctic ice melting? Increased access to the

  1. Models and observations of Arctic melt ponds (United States)

    Golden, K. M.


    During the Arctic melt season, the sea ice surface undergoes a striking transformation from vast expanses of snow covered ice to complex mosaics of ice and melt ponds. Sea ice albedo, a key parameter in climate modeling, is largely determined by the complex evolution of melt pond configurations. In fact, ice-albedo feedback has played a significant role in the recent declines of the summer Arctic sea ice pack. However, understanding melt pond evolution remains a challenge to improving climate projections. It has been found that as the ponds grow and coalesce, the fractal dimension of their boundaries undergoes a transition from 1 to about 2, around a critical length scale of 100 square meters in area. As the ponds evolve they take complex, self-similar shapes with boundaries resembling space-filling curves. I will outline how mathematical models of composite materials and statistical physics, such as percolation and Ising models, are being used to describe this evolution and predict key geometrical parameters that agree very closely with observations.

  2. Pb isotopes during mingling and melting

    DEFF Research Database (Denmark)

    Waight, Tod Earle; Lesher, Charles E.


    Pb isotopic data are presented for hybrid rocks formed by mingling between mantle-derived tholeiitic magma of the Eocene Miki Fjord macrodike (East Greenland) and melt derived from the adjacent Precambrian basement. Bulk mixing and AFC processes between end-members readily identified in the field...

  3. Investigating evaporation of melting ice particles within a bin melting layer model (United States)

    Neumann, Andrea J.

    Single column models have been used to help develop algorithms for remote sensing retrievals. Assumptions in the single-column models may affect the assumptions of the remote sensing retrievals. Studies of the melting layer that use single column models often assume environments that are near or at water saturation. This study investigates the effects of evaporation upon melting particles to determine whether the assumption of negligible mass loss still holds within subsaturated melting layers. A single column, melting layer model is modified to include the effects of sublimation and evaporation upon the particles. Other changes to the model include switching the order in which the model loops over particle sizes and model layers; including a particle sedimentation scheme; adding aggregation, accretion, and collision and coalescence processes; allowing environmental variables such as the water vapor diffusivity and the Schmidt number to vary with the changes in the environment; adding explicitly calculated particle temperature, changing the particle terminal velocity parameterization; and using a newly-derived effective density-dimensional relationship for use in particle mass calculations. Simulations of idealized melting layer environments show that significant mass loss due to evaporation during melting is possible within subsaturated environments. Short melting distances, accelerating particle fall speeds, and short melting times help constrain the amount of mass lost due to evaporation while melting is occurring, even in subsaturated profiles. Sublimation prior to melting can also be a significant source of mass loss. The trends shown on the particle scale also appear in the bulk distribution parameters such as rainfall rate and ice water content. Simulations incorporating observed melting layer environments show that significant mass loss due to evaporation during the melting process is possible under certain environmental conditions. A profile such as the

  4. Shape Memory Characteristics of Rapidly Solidified Ti-37.8Cu-18.7Ni Alloy Ribbons (United States)

    Ramos, Alana Pereira; de Castro, Walman Benicio

    Amorphization and martensitic transformation (Ms) characteristics of Ti-Ni-Cu alloy ribbons prepared by melt spinning were investigated by means of differential scanning calorimetry and X-ray diffraction. In these experiments particular attention has been paid to change the wheel linear velocity from 21 to 63 m/s. Then the cooling rates of ribbons were controlled. The effect of this cooling rate and alloy composition on martensitic transformation behavior is discussed.

  5. The melting of pulmonary surfactant monolayers. (United States)

    Yan, Wenfei; Biswas, Samares C; Laderas, Ted G; Hall, Stephen B


    Monomolecular films of phospholipids in the liquid-expanded (LE) phase after supercompression to high surface pressures (pi), well above the equilibrium surface pressure (pi(e)) at which fluid films collapse from the interface to form a three-dimensional bulk phase, and in the tilted-condensed (TC) phase both replicate the resistance to collapse that is characteristic of alveolar films in the lungs. To provide the basis for determining which film is present in the alveolus, we measured the melting characteristics of monolayers containing TC dipalmitoyl phosphatidylcholine (DPPC), as well as supercompressed 1-palmitoyl-2-oleoyl phosphatidylcholine and calf lung surfactant extract (CLSE). Films generated by appropriate manipulations on a captive bubble were heated from or =60 degrees C at different constant pi above pi(e). DPPC showed the abrupt expansion expected for the TC-LE phase transition, followed by the contraction produced by collapse. Supercompressed CLSE showed no evidence of the TC-LE expansion, arguing that supercompression did not simply convert the mixed lipid film to TC DPPC. For both DPPC and CLSE, the melting point, taken as the temperature at which collapse began, increased at higher pi, in contrast to 1-palmitoyl-2-oleoyl phosphatidylcholine, for which higher pi produced collapse at lower temperatures. For pi between 50 and 65 mN/m, DPPC melted at 48-55 degrees C, well above the main transition for bilayers at 41 degrees C. At each pi, CLSE melted at temperatures >10 degrees C lower. The distinct melting points for TC DPPC and supercompressed CLSE provide the basis by which the nature of the alveolar film might be determined from the temperature-dependence of pulmonary mechanics.

  6. The melting of subducted banded iron formations (United States)

    Kang, Nathan; Schmidt, Max W.


    Banded iron formations (BIF) were common shelf and ocean basin sediments 3.5-1.8 Ga ago. To understand the fate of these dense rocks upon subduction, the melting relations of carbonated BIF were determined in Fe-Ca-(Mg)-Si-C-O2 at 950-1400 °C, 6 and 10 GPa, oxidizing (fO2 = hematite-magnetite, HM) and moderately reducing (fO2 ∼CO2-graphite/diamond, CCO) conditions. Solidus temperatures under oxidizing conditions are 950-1025 °C with H2O, and 1050-1150 °C anhydrous, but 250-175 °C higher at graphite saturation (values at 6-10 GPa). The combination of Fe3+ and carbonate leads to a strong melting depression. Solidus curves are steep with 17-20 °C/GPa. Near-solidus melts are ferro-carbonatites with ∼22 wt.% FeOtot, ∼48 wt% CO2 and 1-5 wt.% SiO2 at fO2 ∼ HM and ∼49 wt.% FeOtot, ∼20 wt% CO2 and 19-25 wt.% SiO2 at fO2 ∼ CCO . At elevated subduction geotherms, as likely for the Archean, C-bearing BIF could melt out all carbonate around 6 GPa. Fe-rich carbonatites would rise but stagnate gravitationally near the slab/mantle interface until they react with the mantle through Fe-Mg exchange and partial reduction. The latter would precipitate diamond and yield Fe- and C-rich mantle domains, yet, Fe-Mg is expected to diffusively re-equilibrate over Ga time scales. We propose that the oldest subduction derived diamonds stem from BIF derived melts.

  7. Effect of an alkaline environment on the engineering behavior of cement-stabilized/solidified Zn-contaminated soils. (United States)

    Liu, Jingjing; Zha, Fusheng; Deng, Yongfeng; Cui, Kerui; Zhang, Xueqin


    Although the stabilization/solidification method has been widely used for remediation of heavy metal-contaminated soils in recent decades, the engineering behavior and mobility of heavy metal ions under alkaline groundwater conditions are still unclear. Therefore, the unconfined compressive strength test (UCS) combined with toxicity characteristic leaching procedure (TCLP) and general acid neutralization capacity (GANC) was used to investigate the effects of alkalinity (using NaOH to simulate alkalinity in the environment) on the mechanical and leaching characteristics of cement-solidified/stabilized (S/S) Zn-contaminated soils. Moreover, the microstructure was analyzed using the scanning electron microscope (SEM) technology. The results indicated that alkaline environment could accelerate the UCS development compared with specimens without soaking in NaOH solution,, regardless of whether the specimens contained Zn2+ or not. And the UCS varied obviously attributed to the variations of both NaOH concentration and soaking time. Except for the specimens soaked for 90 days, the leached Zn2+ concentrations were higher than that of without soaking. However, the leachability of Zn2+ in all the stabilized specimens is in the regulatory level. ANC results indicated that the Zn2+ leaching behavior can be divided into three stages related to the initial leachate pH. Moreover, SEM results proved that the alkaline environment could actually facilitate the cement hydration process. The results proved in the present paper could be useful in treating the heavy metal-contaminated soils involved in the solidification/stabilization technology under alkaline environment.

  8. Incorporating an extended dendritic growth model into the CAFE model for rapidly solidified non-dilute alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Jie; Wang, Bo [State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200072 (China); Shanghai Engineering Technology Research Center of Special Casting, Shanghai 201605 (China); Zhao, Shunli [Research Institute, Baoshan Iron & Steel Co., Ltd, Shanghai 201900 (China); Wu, Guangxin [State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200072 (China); Shanghai Engineering Technology Research Center of Special Casting, Shanghai 201605 (China); Zhang, Jieyu, E-mail: [State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200072 (China); Shanghai Engineering Technology Research Center of Special Casting, Shanghai 201605 (China); Yang, Zhiliang [State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200072 (China); Shanghai Engineering Technology Research Center of Special Casting, Shanghai 201605 (China)


    We have extended the dendritic growth model first proposed by Boettinger, Coriell and Trivedi (here termed EBCT) for microstructure simulations of rapidly solidified non-dilute alloys. The temperature-dependent distribution coefficient, obtained from calculations of phase equilibria, and the continuous growth model (CGM) were adopted in the present EBCT model to describe the solute trapping behaviors. The temperature dependence of the physical properties, which were not used in previous dendritic growth models, were also considered in the present EBCT model. These extensions allow the present EBCT model to be used for microstructure simulations of non-dilute alloys. The comparison of the present EBCT model with the BCT model proves that the considerations of the distribution coefficient and physical properties are necessary for microstructure simulations, especially for small particles with high undercoolings. Finally, the EBCT model was incorporated into the cellular automaton-finite element (CAFE) model to simulate microstructures of gas-atomized ASP30 high speed steel particles that were then compared with experimental results. Both the simulated and experimental results reveal that a columnar dendritic microstructure preferentially forms in small particles and an equiaxed microstructure forms otherwise. The applications of the present EBCT model provide a convenient way to predict the microstructure of non-dilute alloys. - Highlights: • A dendritic growth model was developed considering non-equilibrium distribution coefficient. • The physical properties with temperature dependence were considered in the extended model. • The extended model can be used to non-dilute alloys and the extensions are necessary in small particles. • Microstructure of ASP30 steel was investigated using the present model and verified by experiment.

  9. Disequilibrium partial melting experiments on the Leedey L6 chondrite: textural controls on melting processes (United States)

    Feldstein, S. N.; Jones, R. H.; Papike, J. J.


    A series of experiments was designed to investigate the textural and compositional changes that take place during disequilibrium partial melting of chondritic material. Chips of the L6 chondrite, Leedey, were heated at 1200 ºC and logfO2 = IW-1 for durations of 1 hour to 21 days. We observed a progression of kinetically-controlled textural changes in melt and restite minerals and changes in the liquidus mineralogy in response to factors such as volatile loss. During the course of the experiments, both olivine and orthopyroxene recrystallized at different times. Rare relict chondrules could still be identified after 21 days. The silicate melts that form are very heterogeneous, in terms of both major and trace element chemistry, reflecting heterogeneity of the localized mineral assemblage, particularly with respect to phosphates and clinopyroxene. Metal-sulfide melts formed in short-duration runs are also heterogeneous. The experimental data are relevant to aspects of the genesis of primitive achondrites such as the acapulcoites. The observed textures are consistent with a model for acapulcoite petrogenesis in which silicate melting was limited to only a few volume % of the chondritic source rock. The experiments are also relevant to the behavior of chondritic material that has been partially melted in an impact environment.

  10. Modeling the summertime evolution of sea-ice melt ponds

    DEFF Research Database (Denmark)

    Lüthje, Mikael; Feltham, D.L.; Taylor, P.D.


    We present a mathematical model describing the summer melting of sea ice. We simulate the evolution of melt ponds and determine area coverage and total surface ablation. The model predictions are tested for sensitivity to the melt rate of unponded ice, enhanced melt rate beneath the melt ponds......, vertical seepage, and horizontal permeability. The model is initialized with surface topographies derived from laser altimetry corresponding to first-year sea ice and multiyear sea ice. We predict that there are large differences in the depth of melt ponds and the area of coverage between the two types...... of ice. We also find that the vertical seepage rate and the melt rate of unponded ice are important in determining the total surface ablation and area covered by melt ponds....

  11. Sea Ice Melt Pond Data from the Canadian Arctic (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains observations of albedo, depth, and physical characteristics of melt ponds on sea ice, taken during the summer of 1994. The melt ponds studied...

  12. Depth and Differentiation of the Orientale Melt Lake (United States)

    Vaughan, W. M.; Head, J. W.; Hess, P. C.; Wilson, L.; Neumann, G. A.; Smith, D. E.; Zuber, M. T.


    We suggest that the central depression of the Orientale basin is an impact melt lake ~15 km deep and model the igneous differentiation of the melt lake. Impact melt differentiates may be represented in remotely-sensed data and the lunar sample suite.

  13. Elongational viscosity of monodisperse and bidisperse polystyrene melts

    DEFF Research Database (Denmark)

    Nielsen, Jens Kromann; Rasmussen, Henrik K.; Hassager, Ole


    The start-up and steady uniaxial elongational viscosity have been measured for two monodisperse polystyrene melts with molecular weights of 52 and 103 kg/mole, and for three bidisperse polystyrene melts. The monodisperse melts show a maximum in the steady elongational viscosity vs. the elongational...

  14. Properties of graphite at melting from multilayer thermodynamic integration

    NARCIS (Netherlands)

    Colonna, F.; Los, J.H.; Fasolino, A.; Meijer, E.J.


    Although the melting of graphite has been experimentally investigated for a long time, there is still much debate on the graphite melting properties, as studies show significant discrepancies. We calculate the melting line by means of LCBOPII, a state-of-the-art interaction potential for carbon. To

  15. Dynamics in Polymer Melts and Nanocomposites (United States)

    Schneider, Gerald

    Intense research has led to substantial progress in the field of polymer melts and nanocomposites, both regarding the fundamental understanding and the relationship to applications. From a fundamental point of view, knowing the microscopic single chain dynamics is important. It may even lead to optimized materials ranging from the classical car tire to battery or fuel cell applications. In polymer melts, different processes, such as diffusion, reptation, contour length fluctuations, etc. occur and determine the macroscopic results, e.g. obtained by rheology. In nanocomposites confinement effects and interactions of chains with surfaces play an important role. High resolution techniques, such as small-angle neutron scattering or neutron spin echo spectroscopy are suited to explore the structure and dynamics of chains. The presentation illuminates the fundamental relationship between the microscopic dynamics and the mesoscopic properties, exploiting different experimental techniques, such as dielectric spectroscopy, rheology, neutron scattering and neutron spin echo spectroscopy.

  16. Detection of structural heterogeneity of glass melts

    DEFF Research Database (Denmark)

    Yue, Yuanzheng


    The structural heterogeneity of both supercooled liquid and molten states of silicate has been studied using calorimetric method. The objects of this study are basaltic glasses and liquids. Two experimental approaches are taken to detect the structural heterogeneity of the liquids. One is the hyp......The structural heterogeneity of both supercooled liquid and molten states of silicate has been studied using calorimetric method. The objects of this study are basaltic glasses and liquids. Two experimental approaches are taken to detect the structural heterogeneity of the liquids. One...... is discussed. The ordered structure of glass melts above the liquidus temperature is indirectly characterized by use of X-ray diffraction method. The new approaches are of importance for monitoring the glass melting and forming process and for improving the physical properties of glasses and glass fibers....

  17. Investigation of nucleation in undercooled metal melts

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Stefan [Institut fuer Materialphysik im Weltraum, Deutsches Zentrum fuer Luft- und Raumfahrt (DLR), 51170 Koeln (Germany); Institut fuer Festkoerperphysik, Ruhr-Universitaet Bochum, 44780 Bochum (Germany); Herlach, Dieter M. [Institut fuer Materialphysik im Weltraum, Deutsches Zentrum fuer Luft- und Raumfahrt (DLR), 51170 Koeln (Germany)


    Containerless processing is an effective tool for undercooling metallic melts far below their equilibrium melting temperatures. By using such levitation techniques the dominating heterogeneous nucleation on container walls is completely eliminated. Furthermore, if the experiments are performed under clean environmental conditions, heterogeneous nucleation on free surfaces is also greatly reduced. In this work both electromagnetic and electrostatic levitation techniques are used for a comparative investigation of nucleation in undercooled metallic metals. In case of electromagnetic levitation samples in a diameter of 7 mm are processed within high purity inert gas atmosphere while in case of electrostatic levitation samples in a diameter of 2 mm are processed in ultra high vacuum. With a modified model by Skripov a statistical analysis of the distribution function of the undercoolings measured in one experiment run consisting of at least 100 undercooling cycles is conducted which provides information about the physical nature of different nucleation mechanism depending on experiment conditions.

  18. Stress Relaxation in Entangled Polymer Melts

    DEFF Research Database (Denmark)

    Hou, Ji-Xuan; Svaneborg, Carsten; Everaers, Ralf


    We present an extensive set of simulation results for the stress relaxation in equilibrium and step-strained bead-spring polymer melts. The data allow us to explore the chain dynamics and the shear relaxation modulus, G(t), into the plateau regime for chains with Z=40 entanglements and into the t......We present an extensive set of simulation results for the stress relaxation in equilibrium and step-strained bead-spring polymer melts. The data allow us to explore the chain dynamics and the shear relaxation modulus, G(t), into the plateau regime for chains with Z=40 entanglements...... excellent agreement for the Likhtman-McLeish theory using the double reptation approximation for constraint release, if we remove the contribution of high-frequency modes to contour length fluctuations of the primitive chain....

  19. 3He melting pressure temperature scale

    DEFF Research Database (Denmark)

    Halperin, W.P.; Archie, C.N.; Richardson, R.C.


    The latent heat for solidification of **3He has been measured along the **3He melting curve between 23 and 1 mK. A temperature scale is established which depends only on measurements of heat, pressure and volume, and on the condition that the entropy of solid **3He approaches R ln 2 at high...... temperatures. The A feature of the melting curve which suggests itself as a thermometric fixed point is found to be T//A equals 2. 75 plus or minus 0. 11 mK. The agreement between this value and independent measurements of T//A, based on nuclear or electronic paramagnetism, Johnson noise thermometry...... or on properties of liquid **3He, is briefly discussed...

  20. Melting of metallic intermediate level waste

    Energy Technology Data Exchange (ETDEWEB)

    Huutoniemi, Tommi; Larsson, Arne; Blank, Eva [Studsvik Nuclear AB, Nykoeping (Sweden)


    This report presents a feasibility study of a melting facility for core components and reactor internals. An overview is given of how such a facility for treatment of intermediate level waste might be designed, constructed and operated and highlights both the possibilities and challenges. A cost estimate and a risk analysis are presented in order to make a conclusion of the technical feasibility of such a facility. Based on the authors' experience in operating a low level waste melting facility, their conclusion is that without technical improvements such a facility is not feasible today. This is based on the cost of constructing and operating such a facility, in conjunction with the radiological risks associated with operation and the uncertain benefits to disposal and long term safety.

  1. Processing metallic glasses by selective laser melting


    Pauly, Simon; Löber, Lukas; Petters, Romy; Stoica, Mihai; Scudino, Sergio; Kühn, Uta; Eckert, Jürgen


    Metallic glasses and their descendants, the so-called bulk metallic glasses (BMGs), can be regarded as frozen liquids with a high resistance to crystallization. The lack of a conventional structure turns them into a material exhibiting near-theoretical strength, low Young's modulus and large elasticity. These unique mechanical properties can be only obtained when the metallic melts are rapidly cooled to bypass the nucleation and growth of crystals. Most of the commonly known and used processi...

  2. Bursting the bubble of melt inclusions (United States)

    Lowenstern, Jacob B.


    Most silicate melt inclusions (MI) contain bubbles, whose significance has been alternately calculated, pondered, and ignored, but rarely if ever directly explored. Moore et al. (2015) analyze the bubbles, as well as their host glasses, and conclude that they often hold the preponderance of CO2 in the MI. Their findings entreat future researchers to account for the presence of bubbles in MI when calculating volatile budgets, saturation pressures, and eruptive flux.

  3. The electrical conductivity of sodium polysulfide melts

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Meihui [Univ. of California, Berkeley, CA (United States)


    The sodium polysulfide melt has been described by a macroscopic model. This model considers the melt to be composed of sodium cations, monosulfide anions, and neutral sulfur solvent. The transport equations of concentrated-solution theory are used to derived the governing equations for this binaryelectrolyte melt model. These equations relate measurable transport properties to fundamental transport parameters. The focus of this research is to measure the electrical conductivity of sodium polysulfide melts and calculate one of fundamental transport parameters from the experimental data. The conductance cells used in the conductivity measurements are axisymmetric cylindrical cells with a microelectrode. The electrode effects, including double-layer capacity, charge transfer resistance, and concentration overpotential, were minimized by the use of the alternating current at an adequately high frequency. The high cell constants of the conductance cells not only enhanced the experimental accuracy but also made the electrode effects negligible. The electrical conductivities of sodium polysulfide Na2S4 and Na2S5 were measured as a function of temperature (range: 300 to 360°C). Variations between experiments were only up to 2%. The values of the Arrhenius activation energy derived from the experimental data are about 33 kJ/mol. The fundamental transport parameter which quantifies the interaction within sodium cations and monosulfide anions are of interest and expected to be positive. Values of it were calculated from the experimental conductivity data and most of them are positive. Some negative values were obtained probably due to the experimental errors of transference number, diffusion coefficient, density or conductivity data.

  4. The electrical conductivity of sodium polysulfide melts

    Energy Technology Data Exchange (ETDEWEB)

    Meihui Wang.


    The sodium polysulfide melt has been described by a macroscopic model. This model considers the melt to be composed of sodium cations, monosulfide anions, and neutral sulfur solvent. The transport equations of concentrated-solution theory are used to derived the governing equations for this binaryelectrolyte melt model. These equations relate measurable transport properties to fundamental transport parameters. The focus of this research is to measure the electrical conductivity of sodium polysulfide melts and calculate one of fundamental transport parameters from the experimental data. The conductance cells used in the conductivity measurements are axisymmetric cylindrical cells with a microelectrode. The electrode effects, including double-layer capacity, charge transfer resistance, and concentration overpotential, were minimized by the use of the alternating current at an adequately high frequency. The high cell constants of the conductance cells not only enhanced the experimental accuracy but also made the electrode effects negligible. The electrical conductivities of sodium polysulfide Na{sub 2}S{sub 4} and Na{sub 2}S{sub 5} were measured as a function of temperature (range: 300 to 360{degree}C). Variations between experiments were only up to 2%. The values of the Arrhenius activation energy derived from the experimental data are about 33 kJ/mol. The fundamental transport parameter which quantifies the interaction within sodium cations and monosulfide anions are of interest and expected to be positive. Values of it were calculated from the experimental conductivity data and most of them are positive. Some negative values were obtained probably due to the experimental errors of transference number, diffusion coefficient, density or conductivity data.

  5. Holographic picture of heavy vector meson melting

    Energy Technology Data Exchange (ETDEWEB)

    Braga, Nelson R.F.; Diles, Saulo [Universidade Federal do Rio de Janeiro, Instituto de Fisica, Rio de Janeiro, RJ (Brazil); Martin Contreras, Miguel Angel [Universidad de los Andes, High Energy Group, Department of Physics, Bogota (Colombia)


    The fraction of heavy vector mesons produced in a heavy ion collision, as compared to a proton-proton collision, serves as an important indication of the formation of a thermal medium, the quark-gluon plasma. This sort of analysis strongly depends on understanding the thermal effects of a medium like the plasma on the states of heavy mesons. In particular, it is crucial to know the temperature ranges where they undergo a thermal dissociation, or melting. AdS/QCD models are know to provide an important tool for the calculation of hadronic masses, but in general are not consistent with the observation that decay constants of heavy vector mesons decrease with excitation level. It has recently been shown that this problem can be overcome using a soft wall background and introducing an extra energy parameter, through the calculation of correlation functions at a finite position of anti-de Sitter space. This approach leads to the evaluation of masses and decay constants of S wave quarkonium states with just one flavor dependent and one flavor independent parameter. Here we extend this more realistic model to finite temperatures and analyze the thermal behavior of the states 1S, 2S and 3S of bottomonium and charmonium. The corresponding spectral function exhibits a consistent picture for the melting of the states where, for each flavor, the higher excitations melt at lower temperatures. We estimate for these six states the energy ranges in which the heavy vector mesons undergo a transition from a well-defined peak in the spectral function to complete melting in the thermal medium. A very clear distinction between the heavy flavors emerges, with the bottomonium state Υ(1S) surviving a deconfinement transition at temperatures much larger than the critical deconfinement temperature of the medium. (orig.)

  6. Entangled Polymer Melts in Extensional Flow

    DEFF Research Database (Denmark)

    Hengeller, Ludovica

    monitor macromolecular chain orientation associated with induced flow fields. This work concerns linear and non-linear rheology of polystyrene melts and solutions coupled with neutron scattering experiments. The aim of this thesis is to investigate theextensional properties of well characterized polymer......, and the particular design of the oven meets the requirement of fast cooling of the sample, so that it can freeze the particularmolecular orientation of the chains at different stages of the stretching or relaxing ofthe sample....

  7. Mixed Finite Element Methods for Melt Migration (United States)

    Taicher, A. L.


    Multi-phase flow arises during partial melting in the earth mantle, where the porosity is small and material has the characteristics of a compacting porous medium. The equations governing multi-phase flow have been specialized to partially molten materials by McKenzie and Fowler. Their model, also called a Darcy-Stokes system, is highly coupled and non-linear. Melt flow is governed by Darcy's Law while the high temperature, ductile creep of the solid matrix is modeled using viscous non-Newtonian Stokes rheology. In addition, the melt and solid pressures are related through a compaction relation. This nearly elliptic mechanical problem is then coupled with both solute transport and thermal evolution according to the enthalpy method developed by Katz. A suitable numerical method must solve the Darcy-Stokes problem in a manner compatible with the transport problem. Moreover, unlike most porous media problems, partially molten materials transition dynamically from non-porous solid to porous medium so must carefully account for the limit of zero porosity. The Darcy-Stokes system for modeling partial melting in the mantle is a novel problem. As far as we know, there currently does not exist a finite element solution in the literature solving these coupled equations. In particular, the mixed finite element method presents a good candidate because it works in both limiting cases: Darcy and incompressible Stokes flow. We present a mixed formulation for the Darcy-Stokes system. Next, we present novel elements of lowest order and compatible with both Darcy and Stokes flow Finally, we present our 2D mixed FEM code result for solving Stokes and Darcy flow as well as the coupled Darcy-Stokes system the mid-ocean ridge or corner flow problem.

  8. Rock melting technology and geothermal drilling (United States)

    Rowley, J. C.


    National awareness of the potential future shortages in energy resources has heightened interest in exploration and utilization of a variety of geothermal energy (GTE) reservoirs. The status of conventional drilling of GTE wells is reviewed briefly and problem areas which lead to higher drilling costs are identified and R and D directions toward solution are suggested. In the immediate future, an expanded program of drilling in GTE formations can benefit from improvements in drilling equipment and technology normally associated with oil or gas wells. Over a longer time period, the new rock-melting drill bits being developed as a part of the Los Alamos Scientific Laboratory's Subterrene Program offer new solutions to a number of problems which frequently hamper GTE drilling, including the most basic problem - high temperature. Two of the most favorable characteristics of rock-melting penetrators are their ability to operate effectively in hot rock and produce glass linings around the hole as an integral part of the drilling process. The technical advantages to be gained by use of rock-melting penetrators are discussed in relation to the basic needs for GTE wells.

  9. Glass forming ability of calcium aluminosilicate melts

    DEFF Research Database (Denmark)

    Moesgaard, Mette; Yue, Yuanzheng


    The glass forming ability (GFA) of two series of calcium aluminosilicate melts is studied by measuring their viscous behavior and crystallization tendency. The first series consists of five compositions on the joining line between the eutectic point of anorthite-wollastonite-tridymite and that of......The glass forming ability (GFA) of two series of calcium aluminosilicate melts is studied by measuring their viscous behavior and crystallization tendency. The first series consists of five compositions on the joining line between the eutectic point of anorthite......-wollastonite-tridymite and that of anorthite-wollastonite-gehlenite. The series includes the eutectic compositions as end members. The second series consists of five compositions on a line parallel to the joining line on the alumina rich side. In the present work, GFA is described in terms of glass stability, i.e., the ability of a glass...... to resist crystallization during reheating. In addition, the fragility index (m) is derived by fitting the viscosity data with the Avramov-Milchev equation. The results show that m is inversely proportional to the glass stability for the two series of melts, implying that m is an indirect measure of GFA...

  10. Melting of orientational degrees of freedom (United States)

    Aznar, A.; Lloveras, P.; Barrio, M.; Tamarit, J.-Ll.


    We use calorimetry and dilatometry under hydrostatic pressure, X-ray powder diffraction and available literature data in a series of composition-related orientationally disordered (plastic) crystals to characterize both the plastic and melting transitions and investigate relationships between associated thermodynamic properties. First, general common trends are identified: (i) The temperature range of stability of the plastic phase T m - T t (where T t and T m are the plastic and melting transition temperatures, respectively) increases with increasing pressure and (ii) both the rate of this increase, d( T m - T t )/ dp, and the entropy change across the plastic transition analyzed as function of the ratio T t / T m are quite independent of the particular compound. However, the dependence of the entropy change at the melting transition on T t / T m at high pressures deviates from the behavior observed at normal pressure for these and other plastic crystals. Second, we find that the usual errors associated with the estimations of second-order contributions in the Clausius-Clapeyron equation are high and thus these terms can be disregarded in practice. Instead, we successfully test the validity of the Clausius-Clapeyron equation at high pressure from direct measurements.

  11. Application of X-ray radioscopic methods for characterization of two-phase phenomena and solidification processes in metallic melts (United States)

    Shevchenko, Natalia; Boden, Stefan; Eckert, Sven; Borin, Dmitry; Heinze, Michael; Odenbach, Stefan


    X-ray attenuation techniques are an important diagnostic tool for investigating liquid metal two-phase flows or solidification studies in metallic alloys. X-ray visualization enables a general, intuitive understanding of flow phenomena or pattern formation in opaque liquid metal systems. Real-time and in-situ observations of the density distribution within thin solidifying samples achieve a spatial resolution of a few microns and contribute significantly to an improved understanding of dendritic growth processes. Moreover, X-ray radioscopy is a useful tool for a non-invasive, in-situ visualization and characterization of gas bubbles in nontransparent melts or for observations of the formation of metal foams. In this paper we consider three different fields of application which are under intensive investigation at HZDR and TUD: the bottom-up solidification of Ga-In alloys under the influence of buoyancy-driven and electromagnetically driven convection, the injection of Ar gas into liquid GaInSn, the study of Al foams with respect to foam formation and the characterization of their internal structure.

  12. Microstructure and phase analyses of melt-spun Si-Ni base anode materials for Li-ion battery (United States)

    Jeon, Sung Min; Song, Jong Jin; Kim, Sun-I.; Kwon, Hye Jin; Sohn, Keun Yong; Park, Won-Wook


    Si-based anode composite materials have been studied to improve the performance and the durability of Li-ion secondary batteries in this study. Si-Ni-Al, Si-Ni-Cu and Si-Ni-Cu-Al base alloys were designed and rapidly solidified at the cooling rate of about 106 °C/sec by optimizing the melt spinning. The ribbons were characterized using FE-SEM equipped with EDS, X-ray diffractometer and HR-TEM. The thin ribbons of Si-Ni-Al alloy consisted of nano-sized Si particles and amorphous matrix, which was regarded as an ideal microstructure for the anode material. At the wheel side of the ribbon, 20-30 nm of Si particles were formed (Zone A); whereas at the air side relatively large Si particles were distributed (Zone B). The Si-Ni-Cu alloy showed coarser Si particles than the Si-Ni-Al alloy, and its matrix consisted of NiSi2, Cu3Si and amorphous structures. Finally, the microstructure of the Si-Ni-Cu-Al alloy strips was composed of coarse Si particles, CuNi, Al4Cu9, NiSi2, and unknown phases, and the size of those Si particles were too large to be used for the anode materials.

  13. Selective aluminum dissolution as a means to observe the microstructure of nanocrystalline intermetallic phases from Al-Fe-Cr-Ti-Ce rapidly solidified alloy. (United States)

    Michalcová, Alena; Vojtěch, Dalibor; Novák, Pavel


    Rapidly solidified aluminum alloys are promising materials with very fine microstructure. The microscopy observation of these materials is complicated due to overlay of fcc-Al matrix and different intermetallic phases. A possible way to solve this problem is to dissolve the Al matrix. By this process powder formed by single intermetallic phase particles is obtained. In this paper a new aqueous based dissolving agent for Al-based alloy is presented. The influence of oxidation agent (FeCl(3)) concentration on quality of extraction process was studied. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Stabilization/solidification of a porous waste by an hydraulic binder. Effects of grain size on the quality of the solidified product. Industrial test; Stabilisation/solidification d`un dechet poreux par un liant hydraulique influence de la granulometrie sur la qualite du produit solidifie, test industriel

    Energy Technology Data Exchange (ETDEWEB)

    Eyraud, P.; Teniere, C. [Groupement de Recherches de Lacq, 64 (France)


    The solidification of a porous and highly reactive waste (a catalyst that has been used for sulfuric acid) by the mean of a hydraulic binder, has been studied. Three different grain size distributions have been tested in order to determine if grinding is required before stabilization/solidification. The solidified waste is then evaluated through the SRETIE protocol. Site tests allowed for the optimization of an industrial scale implementation

  15. Mixed Finite Element Method for Melt Migration (United States)

    Taicher, A. L.; Hesse, M. A.; Arbogast, T.


    Multi-phase flow arises during partial melting in the earth mantle, where the porosity is small and material has the characteristics of a compacting porous medium. The equations governing multi-phase flow have been specialized to partially molten materials by McKenzie and Fowler. Their model, also called a Darcy-Stokes system, is highly coupled and non-linear. Melt flow is governed by Darcy's Law while the high temperature, ductile creep of the solid matrix is modeled using viscous non-Newtonian Stokes rheology. In addition, the melt and solid pressures are related through a compaction relation. This nearly elliptic mechanical problem is then coupled with both solute transport and thermal evolution according to the enthalpy method developed by Katz. A suitable numerical method must solve the Darcy-Stokes problem in a manner compatible with the transport problem. Moreover, unlike most porous media problems, partially molten materials transition dynamically from non-porous solid to porous medium. Therefore, a numerical method must also carefully account for the limit of zero porosity. The Darcy-Stokes system for modeling partial melting in the mantle is a novel problem. As far as we know, there currently does not exist a finite element solution in the literature solving these coupled equations. The finite element framework provides support for additional analysis of error and convergence. Moreover, both mesh refinement and anisotropy are naturally incorporated into finite elements. In particular, the mixed finite element method presents a good candidate because it works in both limiting cases: Darcy and incompressible Stokes flow. Mixed methods also produce discretely conservative fluxes that are required for the transport problem to remains stable without violating conservation of mass. Based preliminary investigations in 1D and derived energy estimates, we present a mixed formulation for the Darcy-Stokes system. Next, using novel elements of lowest order and

  16. Contrasting melt equilibration conditions across Anatolia (United States)

    Reid, Mary; Delph, Jonathan; Schleiffarth, W. Kirk; Cosca, Michael


    The widespread mafic volcanism, elevated crustal temperatures, and plateau-type topography in Central Anatolia, Turkey, could collectively be the result of lithospheric delamination, mantle upwelling, and tectonic escape in response to Arabian-Anatolian plate collision. We used the results from basalt geochemistry and a passive-source broadband seismic experiment obtained as part of an international collaborative effort (Continental Dynamics - Central Anatolia Tectonics) to investigate the crust-mantle structure and melting conditions associated with the Quaternary Hasandag Monogenic Cluster (HMC) south and west of Hasandag volcano. The HMC is unusually mafic, not only for Central Anatolia but globally, enabling meaningful comparisons between geochemical and seismic interpretations of mantle conditions. HMC basalts are characterized by orogenic signatures that could have originated (1) in mantle wedge that, after stagnating because of collision, was remobilized south and upward as a result of rollback of the African slab or, alternatively (2) by piecemeal foundering of residual mantle lithosphere into convecting upper mantle, producing small-scale convection and associated decompression melting. Melt equilibration conditions for the HMC are hot (TP ˜1335-1250˚ C, assuming 1-4 wt.% H2O) and shallow (P = 1.1 to 1.6 GPa), approaching those for MORB. Shear wave velocities are relatively constant at ˜4.1 km/s between the Moho and a depth of ˜45-50 km (˜1.4 GPa; Fig. 6), below which Vs increases with increasing depth. We infer that a melt-perfused mantle lid could be locally present between 40 and 55 km. In contrast to Central Anatolia, estimated equilibration conditions for Western Anatolia and Eastern Anatolia (east of the Inner Tauride Suture) mantle melts are hotter (by ≥60˚ C) and deeper (mostly by 0.6-1.0 GPa). They also have chemical signatures that, unlike Central Anatolia, are similar to those of intraplate basalts. These differences are likely related

  17. Complexation of Sr in aqueous fluids equilibrated with silicate melts: effect of melt and fluid composition (United States)

    Borchert, Manuela; Wilke, Max; Schmidt, Christian; Kvashnina, Kristina


    At crustal conditions, the fluid-melt partitioning of Sr is mainly controlled by the salinity of the fluid and the composition of the melt (Borchert et al., 2010). The data show a sharp increase in the Sr partition coefficient with the alumina saturation index (ASI) to a maximum of 0.3 at an ASI of 1.05. Because fluid-melt partitioning of a given element depends on its complexation in the fluid and its incorporation in the melt, these data imply a change in the Sr speciation at least one of the two phases. For silicate melts, Kohn et al. (1990) found only small changes in the first coordination shell of Sr in a suite of melts with various degrees of polymerization, and argued that incorporation of Sr in the melt should not play a major role in controlling Sr partitioning. For the aqueous fluid, Bai and Koster van Groos (1999) and Webster et al. (1989) suggested a control of the Sr partition coefficient by SrCl2 complexes based on the correlation between partition coefficient and Cl concentration in the fluid after quenching. Both hypotheses cannot explain our partitioning data. Thus, new information on Sr complexation is required. Here, we studied the complexation of Sr in peraluminous or peralkaline melt dissolved in aqueous fluids in-situ at elevated PT conditions using hydrothermal diamond-anvil cells (HDAC) and X-ray absorption near edge structure (XANES) spectroscopy. The starting materials were peraluminous or peralkaline glass and H2O or a chloridic solution. The glass was doped with high concentrations of 5000 or 10000 ppm Sr. We used bulk compositions with 10 to 15 wt.% glass to ensure that the melt was completely dissolved in the fluid at high PT conditions. For qualitative evaluation, we analyzed the starting glasses and various crystalline compounds and standard solutions. The experiments were performed at beamline ID26 at ESRF (Grenoble, France) using a high resolution emission spectrometer and Si(311) monochromator crystals for high resolution and Si

  18. Mantle melting and melt refertilization beneath the Southwest Indian Ridge: Mineral composition of abyssal peridotites (United States)

    Chen, Ling; Zhu, Jihao; Chu, Fengyou; Dong, Yan-hui; Liu, Jiqiang; Li, Zhenggang; Zhu, Zhimin; Tang, Limei


    As one of the slowest spreading ridges of the global ocean ridge system, the Southwest Indian Ridge (SWIR) is characterized by discontinued magmatism. The 53°E segment between the Gallieni fracture zone (FZ) (52°20'E) and the Gazelle FZ (53°30'E) is a typical amagmatic segment (crustal thickness flat or U-type REE patterns, thus cannot be the pure residue of mantle melting. Mineral compositions of the Group 2 peridotites are more depleted than that of peridotites sampled near the Bouvet hot spot (Johnson et al., 1990), implying that the depleted mantle beneath the 53°E segment may be the residue of ancient melting event. This hypothesis is supported by the the low Ol/Opx ratios, coarse grain sizes (>1cm) Opx, and Mg-rich mineral compositions akin to harzburgite xenoliths that sample old continental lithospheric mantle (Kelemen et al., 1998). Melt refertilization model shows that Group 2 peridotites were affected by an enriched low-degree partial melt from the garnet stability field. These results indicate that depleted mantle which experiences ancient melting event are more sensitive to melt refertilization, thus may reduce the melt flux, leading to extremely thin crust at 53°E segment. This research was granted by the National Basic Research Programme of China (973 programme) (grant No. 2013CB429705) and the Fundamental Research Funds of Second Institute of Oceanography, State Oceanic Administration (JG1603, SZ1507). References: Johnson K T M, Dick H J B, Shimizu N. Melting in the oceanic upper mantle: An ion microprobe study of diopsides in abyssal peridotites[J]. Journal of Geophysical Research, 1990, 95(B3):2661-2678. Kelemen P B, Hart S R, Bernstein S. Silica enrichment in the continental upper mantle via melt/rock reaction[J]. Earth & Planetary Science Letters, 1998, 164(1-2):387-406. Zhou H, Dick H J. Thin crust as evidence for depleted mantle supporting the Marion Rise.[J]. Nature, 2013, 494(7436):195-200.

  19. Hydrogen-induced changes in the crystalline structure and mechanical properties of a Zn-Al eutectoid alloy rapidly solidified

    Energy Technology Data Exchange (ETDEWEB)

    Sandoval Jimenez, Alberto; Iturbe Garcia, Jose Luis [Instituto Nacional de Investigaciones Nucleares, Ocoyoacac, Estado de Mexico (Mexico)]. E-mail:;; Negrete Sanchez, Jesus [Universidad Autonoma de San Luis Potosi, San Luis Potosi (Mexico); Torres Villasenor, Gabriel [Instituto de Investigaciones en Materiales, UNAM, Mexico D.F. (Mexico)


    Ribbon fractions of a zinc-aluminum eutectoid (Zn40.8Al%at.) alloy, obtained by rapid solidification using melt spinning technique, were submitted to a thermo-hydrogenation process by periods of 1, 6, 18, 24, 30, and 48 hours, to 200 degrees Celsius and 20 atmospheres. Thermo-hydrogenated samples were analyzed by transmission electron microscopy (TEM). Hydrogen-induced changes were produced, such as microstructure refining, development of crystalline defects, microhardness changes and modification of stable crystalline structures to {alpha}R meta-stable phase at room temperature. [Spanish] Fracciones de tiras de una aleacion eutectoide de zinc-aluminio (Zn40.8Al%at.), obtenidas mediante solidificacion rapida usando la tecnica de melt spinning, se sometieron a un proceso de termohidrogenacion por periodos de 1, 6, 18, 24, 30 y 48 horas, a 200 grados centigrados y 20 atmosferas. Las muestras termohidrogenadas se analizaron por microscopia electronica de transmision (MET). Se produjeron cambios inducidos por hidrogeno, tales como la refinacion de la microestructura, el desarrollo de defectos cristalinos, cambios de microdureza y modificacion de las estructuras cristalinas estables a fase metaestable {alpha}R a temperatura ambiente.

  20. Lessons learnt from FARO/TERMOS corium melt quenching experiments

    Energy Technology Data Exchange (ETDEWEB)

    Magallon, D.; Huhtiniemi, I.; Hohmann, H. [Commission of the European Communities, Ispra (Italy). Joint Research Center


    The influence of melt quantity, melt composition, water depth and initial pressure on quenching is assessed on the basis of seven tests performed in various conditions in the TERMOS vessel of the FARO facility at JRC-Ispra. Tests involved UO{sub 2}-based melt quantities in the range 18-176 kg at a temperature of approximately 3000 K poured into saturated water. The results suggest that erosion of the melt jet column is an efficient contributor to the amount of break-up, and thus quenching, for large pours of corium melt. The presence of Zr metal in the melt induced a much more efficient quenching than in a similar test with no Zr metal, attributed to the oxidation of the Zr. Significant amounts of H{sub 2} were produced also in tests with pure oxidic melts (e.g. about 300 g for 157 kg melt). In the tests at 5.0 and 2.0 MPa good mixing with significant melt break-up and quenching was obtained during the penetration in the water. At 0.5 MPa, good penetration of the melt into the water could still be achieved, but a jump in the vessel pressurisation occurred when the melt contacted the bottom and part (5 kg) of the debris was re-ejected from the water. (author)

  1. Rheological Consequences of Incipient Melting in Crustal Rocks (United States)

    Rosenberg, C. L.


    A review and reinterpretation of older experimental data on the deformation of partially-melted granite reveals a non-linear strength decrease with increasing melt fractions. This decrease is characterised by two sharp discontinuities, each reflecting a dramatic change of strength within a limited range of melt fractions. A first discontinuity is shown by all experiments at melt fractions of approximately 0.07. The strength drop at melt fractions smaller than this discontinuity is the largest over the entire melting range. Hence the greatest weakening occurs well below the well known rheologically critical melt percentage (RCMP). In contrast to previous interpretations, the RCMP is inferred to occur, at melt fractions of 0.4 to 0.6, for crystallising as well as for melting rocks. However, the magnitude of the stress drop at the RCMP is negligible compared to the stress drop at melt fractions RCMP. Hence, very small amounts of melt, eventually too small to be imaged by geophysical methods, may exert a drastic control on large-scale localization of deformation.

  2. On the rheology of crustal rocks containing low melt fractions (United States)

    Rosenberg, C. L.; Handy, M. R.


    A review and reinterpretation of older experimental data on the deformation of partially-melted granite reveals a non-linear strength decrease with increasing melt fractions. This decrease is characterised by two sharp discontinuities, each reflecting a dramatic change of strength within a limited range of melt fractions. A first discontinuity is shown by all experiments at melt fractions between 0.0 and 0.1. The change of strength within this range of melt fractions is the largest over the entire melting range. The second discontinuity occurs at higher melt fractions (0.4 to 0.6) and corresponds to the well known rheologically critical melt percentage (RCMP). In contrast to recent interpretations, we infer that the experimental data do indicate the occurrence of the RCMP, for crystallising as well as for melting rocks. However, the magnitude of the stress drop at the RCMP is negligible compared to the stress drop at melt fractions RCMP, at melt fractions >= 0.4, as proposed by several experimentalists. We suggest that the attainment of a melt fraction of 0.03 to 0.08 will control the large-scale localisation of deformation into partially-melted crustal layers, irrespective of the attainment of the RCMP. If the RCMP is achieved, however, the large-scale deformational response of the crust may not be different than that of a crust containing a melt fraction of 0.1. Instead, the RCMP controls localisation of flow within magmatic bodies, where it effects the internal dynamics of magma chambers.

  3. Zircon saturation in silicate melts: a new and improved model for aluminous and alkaline melts (United States)

    Gervasoni, Fernanda; Klemme, Stephan; Rocha-Júnior, Eduardo R. V.; Berndt, Jasper


    The importance of zircon in geochemical and geochronological studies, and its presence not only in aluminous but also in alkaline rocks, prompted us to think about a new zircon saturation model that can be applied in a wide range of compositions. Therefore, we performed zircon crystallization experiments in a range of compositions and at high temperatures, extending the original zircon saturation model proposed by Watson and Harrison (Earth Planet Sci Lett 64:295-304, 1983) and Boehnke et al. (Chem Geol 351:324-334, 2013). We used our new data and the data from previous studies in peraluminous melts, to describe the solubility of zircon in alkaline and aluminous melts. To this effect, we devised a new compositional parameter called G [ {( {3 \\cdot {{Al}}2 {{O}}3 + {{SiO}}2 )/({{Na}}2 {{O}} + {{K}}2 {{O}} + {{CaO}} + {{MgO}} + {{FeO}}} )} ] (molar proportions), which enables to describe the zircon saturation behaviour in a wide range of rock compositions. Furthermore, we propose a new zircon saturation model, which depends basically on temperature and melt composition, given by (with 1σ errors): ln [ {{Zr}} ] = ( {4.29 ± 0.34} ) - ( {1.35 ± 0.10} ) \\cdot ln G + ( {0.0056 ± 0.0002} ) \\cdot T( °C ) where [Zr] is the Zr concentration of the melt in µg/g, G is the new parameter representing melt composition and T is the temperature in degrees Celsius. The advantages of the new model are its straightforward use, with the G parameter being calculated directly from the molar proportions converted from electron microprobe measurements, the temperature calculated given in degrees Celsius and its applicability in a wider range of rocks compositions. Our results confirm the high zircon solubility in peralkaline rocks and its dependence on composition and temperature. Our new model may be applied in all intermediate to felsic melts from peraluminous to peralkaline compositions.

  4. Modelling komatiitic melt accumulation and segregation in the transition zone (United States)

    Schmeling, H.; Arndt, N.


    Komatiites are probably produced in very hot mantle upwellings or plumes. Under such conditions, melting will take place deep within the upper mantle or even within the mantle transition zone. Due to its compressibility at such pressures, melt might be denser than olivine, but would remain buoyant with respect to a peridotitic mantle both above and below the olivine-wadsleyite phase boundary because of the presence of its higher temperature and denser garnet. We studied the physics of melting and melt segregation within hot upwelling mantle passing through the transition zone, with particular emphasis on the effect of depth-dependent density contrasts between melt and ambient mantle. Assuming a 1D plume, we solved the two-phase flow equations of the melt-matrix system accounting for matrix compaction and porosity-dependent shear and bulk viscosity. We assumed a constant ascent velocity and melt generation rate. In a first model series, the level of neutral buoyancy zneutr is assumed to lie above the depth of onset of melting, i.e. there exists a region where dense melt may lag behind the solid phases within the rising plume. Depending on two non-dimensional numbers (accumulation number Ac, compaction resistance number Cr) we find four regimes: 1) time-dependent melt accumulation in standing porosity waves that scale with the compaction length. The lowermost of these waves broadens with time until a high melt accumulation zone is formed in steady state. During this transient solitary porosity waves may cross the depth of neutral density and escape. 2) steady-state weak melt accumulation near zneutr, 3) no melt accumulation due to small density contrast or, 4) high matrix viscosity. In regime 4 the high mantle viscosity prevents the opening of pore space necessary to accumulate melt. In a second series, the rising mantle crosses the olivine-wadsleyite phase boundary, which imposes a jump in density contrast between melt and ambient mantle. A sharp melt porosity

  5. Interconnection between microstructure and microhardness of directionally solidified binary Al-6wt.%Cu and multicomponent Al-6wt.%Cu-8wt.%Si alloys. (United States)

    Vasconcelos, Angela J; Kikuchi, Rafael H; Barros, André S; Costa, Thiago A; Dias, Marcelino; Moreira, Antonio L; Silva, Adrina P; Rocha, Otávio L


    An experimental study has been carried out to evaluate the microstructural and microhardness evolution on the directionally solidified binary Al-Cu and multicomponent Al-Cu-Si alloys and the influence of Si alloying. For this purpose specimens of Al-6wt.%Cu and Al-6wt.%Cu-8wt.%Si alloys were prepared and directionally solidified under transient conditions of heat extraction. A water-cooled horizontal directional solidification device was applied. A comprehensive characterization is performed including experimental dendrite tip growth rates (VL) and cooling rates (TR) by measuring Vickers microhardness (HV), optical microscopy and scanning electron microscopy with microanalysis performed by energy dispersive spectrometry (SEM-EDS). The results show, for both studied alloys, the increasing of TR and VL reduced the primary dendrite arm spacing (l1) increasing the microhardness. Furthermore, the incorporation of Si in Al-6wt.%Cu alloy to form the Al-6wt.%Cu-8wt.%Si alloy influenced significantly the microstructure and consequently the microhardness but did not affect the primary dendritic growth law. An analysis on the formation of the columnar to equiaxed transition (CET) is also performed and the results show that the occurrence of CET is not sharp, i.e., the CET in both cases occurs in a zone rather than in a parallel plane to the chill wall, where both columnar and equiaxed grains are be able to exist.

  6. Release of radionuclides and chelating agents from cement-solidified decontamination low-level radioactive waste collected from the Peach Bottom Atomic Power Station Unit 3

    Energy Technology Data Exchange (ETDEWEB)

    Akers, D.W.; Kraft, N.C.; Mandler, J.W. [EG and G Idaho, Inc., Idaho Falls, ID (United States)


    As part of a study being performed for the Nuclear Regulatory Commission (NRC), small-scale waste-form specimens were collected during a low oxidation-state transition-metal ion (LOMI)-nitric permanganate (NP)-LOMI solidification performed in October 1989 at the Peach Bottom Atomic Power Station Unit 3. The purpose of this program was to evaluate the performance of cement-solidified decontamination waste to meet the low-level waste stability requirements defined in the NRC`s ``Technical Position on Waste Form,`` Revision 1. The samples were acquired and tested because little data have been obtained on the physical stability of actual cement-solidified decontamination ion-exchange resin waste forms and on the leachability of radionuclides and chelating agents from those waste forms. The Peach Bottom waste-form specimens were subjected to compressive strength, immersion, and leach testing in accordance with the NRC`s ``Technical Position on Waste Form,`` Revision 1. Results of this study indicate that the specimens withstood the compression tests (>500 psi) before and after immersion testing and leaching, and that the leachability indexes for all radionuclides, including {sup 14}C, {sup 99}{Tc}, and {sup 129}I, are well above the leachability index requirement of 6.0, required by the NRC`s ``Technical Position on Waste Form,`` Revision 1.

  7. Compression and immersion tests and leaching of radionuclides, stable metals, and chelating agents from cement-solidified decontamination waste collected from nuclear power stations

    Energy Technology Data Exchange (ETDEWEB)

    Akers, D.W.; Kraft, N.C.; Mandler, J.W. [EG and G Idaho, Inc., Idaho Falls, ID (United States)


    A study was performed for the Nuclear Regulatory Commission (NRC) to evaluate structural stability and leachability of radionuclides, stable metals, and chelating agents from cement-solidified decontamination ion-exchange resin wastes collected from seven commercial boiling water reactors and one pressurized water reactor. The decontamination methods used at the reactors were the Can-Decon, AP/Citrox, Dow NS-1, and LOMI processes. Samples of untreated resin waste and solidified waste forms were subjected to immersion and compressive strength testing. Some waste-form samples were leach-tested using simulated groundwaters and simulated seawater for comparison with the deionized water tests that are normally performed to assess waste-form leachability. This report presents the results of these tests and assesses the effects of the various decontamination methods, waste form formulations, leachant chemical compositions, and pH of the leachant on the structural stability and leachability of the waste forms. Results indicate that releases from intact and degraded waste forms are similar and that the behavior of some radionuclides such as {sup 55}Fe, {sup 60}Co, and {sup 99}Tc were similar. In addition, the leachability indexes are greater than 6.0, which meets the requirement in the NRC`s ``Technical Position on Waste Form,`` Revision 1.

  8. Genome wide application of DNA melting analysis. (United States)

    Jost, Daniel; Everaers, Ralf


    Correspondences between functional and thermodynamic melting properties in a genome are being increasingly employed for ab initio gene finding and for the interpretation of the evolution of genomes. Here we present the first systematic genome wide comparison between biologically coding domains and thermodynamically stable regions. In particular, we develop statistical methods to estimate the reliability of the resulting predictions. Not surprisingly, we find that the success of the approach depends on the difference in GC content between the coding and the non-coding parts of the genome and on the percentage of coding base-pairs in the sequence. These prerequisites vary strongly between species, where we observe no systematic differences between eukaryotes and prokaryotes. We find a number of organisms in which the strong correlation of coding domains and thermodynamically stable regions allows us to identify putative exons or genes to complement existing approaches. In contrast to previous investigations along these lines we have not employed the Poland-Scheraga (PS) model of DNA melting but use the earlier Zimm-Bragg (ZB) model. The Ising-like form of the ZB model can be viewed as an approximation to the PS model, with averaged loop entropies included into the cooperative factor [Formula: see text]. This results in a speed-up by a factor of 20-100 compared to the Fixman-Freire algorithm for the solution of the PS model. We show that for genomic sequences the resulting systematic errors are negligible compared to the parameterization uncertainty of the models. We argue that for limited computing resources, available CPU power is better invested in broadening the statistical base for genomic investigations than in marginal improvements of the description of the physical melting behavior.

  9. Critical porosity of melt segregation during crustal melting: Constraints from zonation of peritectic garnets in a dacite volcano (United States)

    Yu, Xun; Lee, Cin-Ty A.


    The presence of leucogranitic dikes in orogenic belts suggests that partial melting may be an important process in the lower crust of active orogenies. Low seismic velocity and low electrical resistivity zones have been observed in the lower crust of active mountain belts and have been argued to reflect the presence of partial melt in the deep crust, but volcanoes are rare or absent above many of these inferred melt zones. Understanding whether these low velocity zones are melt-bearing, and if so, why they do not commonly erupt, is essential for understanding the thermal and rheologic structure of the crust and its dynamic evolution. Central to this problem is an understanding of how much melt can be stored before it can escape from the crust via compaction and eventually erupt. Experimental and theoretical studies predict trapped melt fractions anywhere from 30%. Here, we examine Mn growth-zoning in peritectic garnets in a Miocene dacite volcano from the ongoing Betic-Rif orogeny in southern Spain to estimate the melt fraction at the time of large-scale melt extraction that subsequently led to eruption. We show that the melt fraction at segregation, corresponding approximately to the critical melt porosity, was ∼30%, implying significant amounts of melt can be stored in the lower crust without draining or erupting. However, seismic velocities in the lower crust beneath active orogenic belts (southern Spain and Tibet) as well as beneath active magmatic zones (e.g., Yellowstone hotspot) correspond to average melt porosities of <10%, suggesting that melt porosities approaching critical values are short-lived or that high melt porosity regions are localized into heterogeneously distributed sills or dikes, which individually cannot be resolved by seismic studies.

  10. Stress Relaxation in Entangled Polymer Melts

    DEFF Research Database (Denmark)

    Hou, Ji-Xuan; Svaneborg, Carsten; Everaers, Ralf


    We present an extensive set of simulation results for the stress relaxation in equilibrium and step-strained bead-spring polymer melts. The data allow us to explore the chain dynamics and the shear relaxation modulus, G(t), into the plateau regime for chains with Z=40 entanglements and into the t...... excellent agreement for the Likhtman-McLeish theory using the double reptation approximation for constraint release, if we remove the contribution of high-frequency modes to contour length fluctuations of the primitive chain....

  11. Pressure-induced melting of micellar crystal

    DEFF Research Database (Denmark)

    Mortensen, K.; Schwahn, D.; Janssen, S.


    Aqueous solutions of triblock copolymers of poly(ethylene oxide) and poly(propylene oxide) aggregate at elevated temperatures into micelles which for polymer concentrations greater-than-or-equal-to 20% make a hard sphere crystallization to a cubic micellar crystal. Structural studies show...... that pressure improves the solvent quality of water, thus resulting in decomposition of the micelles and consequent melting of the micellar crystal. The combined pressure and temperature dependence reveals that in spite of the apparent increase of order on the 100 angstrom length scale upon increasing...

  12. Monitoring the melting of the Arctic (United States)

    Kalaugher, Liz


    Standing on the deck of the icebreaker Amundsen in the Arctic Ocean, I am bathed in blazing June sunshine. The weather has been like this all week since I joined the ship - a research vessel that set sail from Quebec in Canada last summer - as a visiting science journalist. It would be tempting to think that such conditions are typical, but most areas of the Arctic are in fact cloudy for 80% of the time in the spring and summer due to moisture in the air from melting ice and from exposed areas of the ocean.

  13. Homogenization and texture development in rapidly solidified AZ91E consolidated by Shear Assisted Processing and Extrusion (ShAPE)

    Energy Technology Data Exchange (ETDEWEB)

    Overman, N. R.; Whalen, S. A.; Bowden, M. E.; Olszta, M. J.; Kruska, K.; Clark, T.; Stevens, E. L.; Darsell, J. T.; Joshi, V. V.; Jiang, X.; Mattlin, K. F.; Mathaudhu, S. N.


    Shear Assisted Processing and Extrusion (ShAPE) -a novel processing route that combines high shear and extrusion conditions- was evaluated as a processing method to densify melt spun magnesium alloy (AZ91E) flake materials. This study illustrates the microstructural regimes and transitions in crystallographic texture that occur as a result of applying simultaneous linear and rotational shear during extrusion. Characterization of the flake precursor and extruded tube was performed using scanning and transmission electron microscopy, x-ray diffraction and microindentation techniques. Results show a unique transition in the orientation of basal texture development. Despite the high temperatures involved during processing, uniform grain refinement and material homogenization are observed. These results forecast the ability to implement the ShAPE processing approach for a broader range of materials with novel microstructures and high performance.

  14. Melting Process of Clathrate in a Rectangular Cell (United States)

    Chiba, Takashi; Okada, Masashi; Matsumoto, Koji

    In order to clarify the mechanism of heat transfer during melting of a clathrate in rectangular cells, two melting processes, namely, two-dimensional melting process with natural convection from a vertical wall and one-dimensional melting process by heat conduction from an upper horizontal wall, are studied experimentally. The R-141b was used for generating clathrate. One experiment was carried out by melting the clathrate filled into a 150mm high and 100mm wide rectangular cell from a vertical wall. And in the other experiment, the clathrate was melted from the upper horizontal wall of a rectangular cell with 88mm height and 180mm width. The temperature distributions in cells were measured. The melting front was measured by pictures taken on fixed times. The concentration of freon in the melt was measured by gas-chromatography. The following results are obtained. (1) In the melting process, the clathrate decomposes into an emulsion region which is a water-freon mixture and a liquid freon region under the emulsion. (2) Concentration gradient of freon in the emulsion plyas an important role in the natural convection in the melt. The Nusselt number on the heated vertical wall is depressed by the concentration gradients.

  15. Inactivation efficiency and mechanism of UV-TiO2photocatalysis against murine norovirus using a solidified agar matrix. (United States)

    Park, Daseul; Shahbaz, Hafiz Muhammad; Kim, Sun-Hyoung; Lee, Mijin; Lee, Wooseong; Oh, Jong-Won; Lee, Dong-Un; Park, Jiyong


    Human norovirus (HuNoV) is the primary cause of viral gastroenteritis worldwide. Fresh blueberries are among high risk foods associated with norovirus related outbreaks. Therefore, it is important to assess intervention strategies to reduce the risk of foodborne illness. The disinfection efficiency of decontamination methods is difficult to evaluate for fruits and vegetables due to an inconsistent degree of contamination and irregular surface characteristics. The inactivation efficiency and mechanism of murine norovirus 1 (MNV-1, a surrogate for HuNoV) was studied on an experimentally prepared solidified agar matrix (SAM) to simulate blueberries using different wavelengths (A, B, C) of UV light both with and without TiO 2 photocatalysis (TP). MNV-1 was inoculated on exterior and interior of SAM and inactivation efficiencies of different treatments were investigated using a number of assays. Initial inoculum levels of MNV-1 on the SAM surface and interior were 5.2logPFU/mL. UVC with TiO 2 (UVC-TP) achieved the highest level of viral reduction for both externally inoculated and internalized MNV-1. Externally inoculated MNV-1 was reduced to non-detectable levels after UVC-TP treatment for 5min while there was still a 0.9 log viral titer after UVC alone. For internalized MNV-1, 3.2 log and 2.7 log reductions were obtained with UVC-TP and UVC alone treatments for 10min, respectively. The Weibull model was applied to describe the inactivation behavior of MNV-1, and the model showed a good fit to the data. An excellent correlation between the steady-state concentration of OH radicals ([OH] ss ) and viral inactivation was quantified using a para-chlorobenzoic acid (pCBA) probe compound, suggesting that OH radicals produced in the UV-TP reaction were the major species for MNV-1 inactivation. Transmission electron microscopy images showed that the structure of viral particles was completely disrupted with UVC-TP and UVC alone. SDS-PAGE analysis showed that the major capsid

  16. Additive Manufacturing Processes: Selective Laser Melting, Electron Beam Melting and Binder Jetting—Selection Guidelines (United States)

    Konda Gokuldoss, Prashanth; Kolla, Sri; Eckert, Jürgen


    Additive manufacturing (AM), also known as 3D printing or rapid prototyping, is gaining increasing attention due to its ability to produce parts with added functionality and increased complexities in geometrical design, on top of the fact that it is theoretically possible to produce any shape without limitations. However, most of the research on additive manufacturing techniques are focused on the development of materials/process parameters/products design with different additive manufacturing processes such as selective laser melting, electron beam melting, or binder jetting. However, we do not have any guidelines that discuss the selection of the most suitable additive manufacturing process, depending on the material to be processed, the complexity of the parts to be produced, or the design considerations. Considering the very fact that no reports deal with this process selection, the present manuscript aims to discuss the different selection criteria that are to be considered, in order to select the best AM process (binder jetting/selective laser melting/electron beam melting) for fabricating a specific component with a defined set of material properties. PMID:28773031

  17. Additive Manufacturing Processes: Selective Laser Melting, Electron Beam Melting and Binder Jetting-Selection Guidelines. (United States)

    Gokuldoss, Prashanth Konda; Kolla, Sri; Eckert, Jürgen


    Additive manufacturing (AM), also known as 3D printing or rapid prototyping, is gaining increasing attention due to its ability to produce parts with added functionality and increased complexities in geometrical design, on top of the fact that it is theoretically possible to produce any shape without limitations. However, most of the research on additive manufacturing techniques are focused on the development of materials/process parameters/products design with different additive manufacturing processes such as selective laser melting, electron beam melting, or binder jetting. However, we do not have any guidelines that discuss the selection of the most suitable additive manufacturing process, depending on the material to be processed, the complexity of the parts to be produced, or the design considerations. Considering the very fact that no reports deal with this process selection, the present manuscript aims to discuss the different selection criteria that are to be considered, in order to select the best AM process (binder jetting/selective laser melting/electron beam melting) for fabricating a specific component with a defined set of material properties.

  18. Greater-than-bulk melting temperatures explained: Gallium melts Gangnam style (United States)

    Gaston, Nicola; Steenbergen, Krista


    The experimental discovery of superheating in gallium clusters contradicted the clear and well-demonstrated paradigm that the melting temperature of a particle should decrease with its size. However the extremely sensitive dependence of melting temperature on size also goes to the heart of cluster science, and the interplay between the effects of electronic and geometric structure. We have performed extensive first-principles molecular dynamics calculations, incorporating parallel tempering for an efficient exploration of configurational phase space. This is necessary, due to the complicated energy landscape of gallium. In the nanoparticles, melting is preceded by a transitions between phases. A structural feature, referred to here as the Gangnam motif, is found to increase with the latent heat and appears throughout the observed phase changes of this curious metal. We will present our detailed analysis of the solid-state isomers, performed using extensive statistical sampling of the trajectory data for the assignment of cluster structures to known phases of gallium. Finally, we explain the greater-than-bulk melting through analysis of the factors that stabilise the liquid structures.

  19. Synthesis of ammonia using sodium melt. (United States)

    Kawamura, Fumio; Taniguchi, Takashi


    Research into inexpensive ammonia synthesis has increased recently because ammonia can be used as a hydrogen carrier or as a next generation fuel which does not emit CO2. Furthermore, improving the efficiency of ammonia synthesis is necessary, because current synthesis methods emit significant amounts of CO2. To achieve these goals, catalysts that can effectively reduce the synthesis temperature and pressure, relative to those required in the Haber-Bosch process, are required. Although several catalysts and novel ammonia synthesis methods have been developed previously, expensive materials or low conversion efficiency have prevented the displacement of the Haber-Bosch process. Herein, we present novel ammonia synthesis route using a Na-melt as a catalyst. Using this route, ammonia can be synthesized using a simple process in which H2-N2 mixed gas passes through the Na-melt at 500-590 °C under atmospheric pressure. Nitrogen molecules dissociated by reaction with sodium then react with hydrogen, resulting in the formation of ammonia. Because of the high catalytic efficiency and low-cost of this molten-Na catalyst, it provides new opportunities for the inexpensive synthesis of ammonia and the utilization of ammonia as an energy carrier and next generation fuel.

  20. Electrochemical properties of melt spun Si-Cu-Ti-Zr-Ni alloy powders for the anode of Li-ion batteries (United States)

    Bae, Seong Min; Sohn, Keun Yong; Park, Won-Wook


    The Si-Cu-Ti-Zr-Ni alloys of various compositions were prepared using arc-melting under an argon atmosphere, and the alloys were re-melted several times to ensure chemical homogeneity. The alloyed ingots were melt-spun to produce rapidly solidified ribbons under vacuum in order to prevent oxidation. Finely dispersed silicon particles 50-100 nm in diameter mainly consisting of Cu3Si, NiSi2 and TiSi2 phases were formed in the matrices. The alloy ribbons were then fragmented using ball-milling to produce powders. In order to evaluate the electrochemical properties of the alloys, anode electrodes were fabricated by mixing the active alloy materials (80 wt. %) with Ketjenblack® (2 wt. %) as a conductive material and polyamide imide (PAI, 8 wt. %) binder, and the mixtures were dissolved in N-methyl-2-pyrrolidinone (NMP) and SFG6 (10 wt. %). The anode performances of Si-Cu-Ti-Zr-Ni alloy cells were measured in the range 0.01-1.5 V (versus Li/Li+). The results showed that the Si68(Cu47Ti34Zr11Ni8)32 alloy ribbons had the highest specific discharge capacities, and the Si68(Cu40Ti40Zr10Ni10)32 alloy ribbons had relatively stable electrochemical properties and cycle performances due to the very fine microstructure including partially distributed amorphous phase. The matrix phases of the Si-Cu-Ti-Zr-Ni alloy ribbons effectively accommodated the change in Si particle volume during cycling.

  1. Secular evolution of partial melting and melt stagnation during the formation of Godzilla Mullion, Philippine Sea (United States)

    Snow, J. E.; Ohara, Y.; Harigane, Y.; Michibayashi, K.; Hellebrand, E.; von der Handt, A.; Loocke, M.; Ishii, T.


    Godzilla Mullion is a large-scale low angle detachment fault (or OCC, Oceanic Core Complex) formed during backarc spreading in the Parece Vela Rift behind the Mariana arc system. Detachment spreading occurred during the time interval 15-12 Ma, before the Parece Vela Rift became extinct and the locus of back arc spreading in the system shifted to the East, to the Mariana Trough. During this time, the spreading rate varied from ~70-88 mm/year to zero (at extinction). The decline in the spreading rate, should have had profound effects on the thermal structure of the lithosphere in the rift, including include progressive thickening, decreasing degree of partial melting, and increasing melt stagnation. We have combined our preliminary data on mantle peridotite mineral chemistry to form a preliminary test of this hypothesis based on mantle peridotites from (currently) 10 sampling stations along the mullion from the cruises CSS33, KR03-01, KH07-02 and YK09-05. This test is for now based primarily on abyssal peridotite spinel chemistry (Dick and Bullen, 1982; Dick 1989). We can distinguish three distinct regions within the mullion based on spinel chemistry: (1) The Distal GM region, including sites KR03-01-D6, KH07-02-D17 and KH07-02-D7. These have a moderately depleted character, with minimum Cr-numbers between 30 and 40, and few samples with high TiO2 (an indicator of melt impregnation). (2) The Medial GM region, including stations KH07-02-D6, KR03-01-D7, KH07-02-D21 and YK09-05-6K#1142. These have a more fertile character, with minimum Cr-numbers between 14 and 22, and with the exception of KH07-02-21 (which may belong to the next group) little evidence of melt stagnation. (3) The Proximal GM region, including sites KR0301-D9 and D10 and CSS33-D1. These spinels show abundant evidence for melt reaction, including plagioclase pseudomorphs (See abstract by Loocke et al., this session) and pervasively elevated TiO2 contents and Cr-numbers in the spinels. We can interpret

  2. Effect of ash circulation in gasification melting system on concentration and leachability of lead in melting furnace fly ash. (United States)

    Okada, Takashi; Suzuki, Masaru


    In some gasification-melting plants, generated melting furnace fly ash is returned back to the melting furnace for converting the ash to slag. This study investigated the effect of such ash circulation in the gasification-melting system on the concentration and leachability of lead in the melting furnace fly ash. The ash circulation in the melting process was simulated by a thermodynamic calculation, and an elemental analysis and leaching tests were performed on a melting furnace fly ash sample collected from the gasification-melting plant with the ash circulation. It was found that by the ash circulation in the gasification-melting, lead was highly concentrated in the melting furnace fly ash to the level equal to the fly ash from the ash-melting process. The thermodynamic calculation predicted that the lead volatilization by the chlorination is promoted by the ash circulation resulting in the high lead concentration. In addition, the lead extraction from the melting furnace fly ash into a NaOH solution was also enhanced by the ash circulation, and over 90% of lead in the fly ash was extracted in 5 min when using 0.5 mol l(-1) NaOH solution with L/S ratio of 10 at 100 °C. Based on the results, a combination of the gasification-melting with the ash circulation and the NaOH leaching method is proposed for the high efficient lead recovery. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Premixing and steam explosion phenomena in the tests with stratified melt-coolant configuration and binary oxidic melt simulant materials

    Energy Technology Data Exchange (ETDEWEB)

    Kudinov, Pavel, E-mail:; Grishchenko, Dmitry, E-mail:; Konovalenko, Alexander, E-mail:; Karbojian, Aram, E-mail:


    Highlights: • Steam explosion in stratified melt-coolant configuration is studied experimentally. • Different binary oxidic melt simulant materials were used. • Five spontaneous steam explosions were observed. • Instability of melt-coolant interface and formation of premixing layer was observed. • Explosion strength is influenced by melt superheat and water subcooling. - Abstract: Steam explosion phenomena in stratified melt-coolant configuration are considered in this paper. Liquid corium layer covered by water on top can be formed in severe accident scenarios with (i) vessel failure and release of corium melt into a relatively shallow water pool; (ii) with top flooding of corium melt layer. In previous assessments of potential energetics in stratified melt-coolant configuration, it was assumed that melt and coolant are separated by a stable vapor film and there is no premixing prior to the shock wave propagation. This assumption was instrumental for concluding that the amount of energy that can be released in such configuration is not of safety importance. However, several recent experiments carried out in Pouring and Under-water Liquid Melt Spreading (PULiMS) facility with up to 78 kg of binary oxidic corium simulants mixtures have resulted in spontaneous explosions with relatively high conversion ratios (order of one percent). The instability of the melt-coolant interface, melt splashes and formation of premixing layer were observed in the tests. In this work, we present results of experiments carried out more recently in steam explosion in stratified melt-coolant configuration (SES) facility in order to shed some light on the premixing phenomena and assess the influence of the test conditions on the steam explosion energetics.

  4. Applications of nonequilibrium melting concept to damage-accumulation processes

    Energy Technology Data Exchange (ETDEWEB)

    Lam, N.Q.; Okamoto, P.R.


    The authors recent study of crystalline-to-amorphous transformation led to the successful development of a unified thermodynamic description of disorder-induced amorphization and heat-induced melting, based on a generalized version of the Lindemann melting criterion. The generalized criterion requires that the melting temperature of a defective crystal decreases with increasing static atomic disorder. Hence, any crystal can melt at temperatures below the melting point of its perfect crystalline state when driven far from equilibrium by introducing critical amounts of misfitting solute atoms and lattice imperfections, radiation damage, and/or tensile stresses. This conceptual approach to nonequilibrium melting provides new insight into long-standing materials problems such as brittle fracture, embrittlement, and environmentally-induced cracking, for example irradiation-assisted stress corrosion cracking.

  5. A model for tidewater glacier undercutting by submarine melting (United States)

    Slater, D. A.; Nienow, P. W.; Goldberg, D. N.; Cowton, T. R.; Sole, A. J.


    Dynamic change at the marine-terminating margins of the Greenland Ice Sheet may be initiated by the ocean, particularly where subglacial runoff drives vigorous ice-marginal plumes and rapid submarine melting. Here we model submarine melt-driven undercutting of tidewater glacier termini, simulating a process which is key to understanding ice-ocean coupling. Where runoff emerges from broad subglacial channels we find that undercutting has only a weak impact on local submarine melt rate but increases total ablation by submarine melting due to the larger submerged ice surface area. Thus, the impact of melting is determined not only by the melt rate magnitude but also by the slope of the ice-ocean interface. We suggest that the most severe undercutting occurs at the maximum height in the fjord reached by the plume, likely promoting calving of ice above. It remains unclear, however, whether undercutting proceeds sufficiently rapidly to influence calving at Greenland's fastest-flowing glaciers.

  6. Nonlinear response of iceberg side melting to ocean currents (United States)

    FitzMaurice, A.; Cenedese, C.; Straneo, F.


    Icebergs calving into Greenlandic Fjords frequently experience strongly sheared flows over their draft, but the impact of this flow past the iceberg is not fully captured by existing parameterizations. We present a series of novel laboratory experiments to determine the dependence of submarine melting along iceberg sides on a background flow. We show, for the first time, that two distinct regimes of melting exist depending on the flow magnitude and consequent behavior of melt plumes (side-attached or side-detached), with correspondingly different meltwater spreading characteristics. When this velocity dependence is included in melt parameterizations, melt rates estimated for observed icebergs in the attached regime increase, consistent with observed iceberg submarine melt rates. We show that both attached and detached plume regimes are relevant to icebergs observed in a Greenland fjord. Further, depending on the regime, iceberg meltwater may either be confined to a surface layer or distributed over the iceberg draft.

  7. A Model for Scrap Melting in Steel Converter (United States)

    Kruskopf, Ari


    A process model for basic oxygen furnace is in development. The full model will include a 2-D axisymmetric turbulent flow model for iron melt, a steel scrap melting model, and a chemical reaction model. A theoretical basis for scrap melting model is introduced in this paper and an in-house implementation of the model is tested in this article independently from the other parts of the full process model. The model calculates a melting curve for the scrap piece and the heat and carbon mass exchange between the melt and the scrap. A temperature and carbon concentration-dependent material data are used for heat capacity, thermal conductivity, and diffusion coefficient. The equations are discretized into a moving grid, which is uncommon in literature in the context of scrap melting. A good agreement is found between the modeling results and experiments from literature. Also a heat transfer correlation for dimensionless Nusselt number is determined using the numerical results.

  8. Retrograde Melting and Internal Liquid Gettering in Silicon

    Energy Technology Data Exchange (ETDEWEB)

    Hudelson, Steve; Newman, Bonna K.; Bernardis, Sarah; Fenning, David P.; Bertoni, Mariana I.; Marcus, Matthew A.; Fakra, Sirine C.; Lai, Barry; Buonassisi, Tonio


    Retrograde melting (melting upon cooling) is observed in silicon doped with 3d transition metals, via synchrotron-based temperature-dependent X-ray microprobe measurements. Liquid metal-silicon droplets formed via retrograde melting act as efficient sinks for metal impurities dissolved within the silicon matrix. Cooling results in decomposition of the homogeneous liquid phase into solid multiple-metal alloy precipitates. These phenomena represent a novel pathway for engineering impurities in semiconductor-based systems.

  9. Melt generation, crystallization, and extraction beneath segmented oceanic transform faults (United States)

    Gregg, P. M.; Behn, M. D.; Lin, J.; Grove, T. L.


    We examine mantle melting, fractional crystallization, and melt extraction beneath fast slipping, segmented oceanic transform fault systems. Three-dimensional mantle flow and thermal structures are calculated using a temperature-dependent rheology that incorporates a viscoplastic approximation for brittle deformation in the lithosphere. Thermal solutions are combined with the near-fractional, polybaric melting model of Kinzler and Grove (1992a, 1992b, 1993) to determine extents of melting, the shape of the melting regime, and major element melt composition. We investigate the mantle source region of intratransform spreading centers (ITSCs) using the melt migration approach of Sparks and Parmentier (1991) for two end-member pooling models: (1) a wide pooling region that incorporates all of the melt focused to the ITSC and (2) a narrow pooling region that assumes melt will not migrate across a transform fault or fracture zone. Assuming wide melt pooling, our model predictions can explain both the systematic crustal thickness excesses observed at intermediate and fast slipping transform faults as well as the deeper and lower extents of melting observed in the vicinity of several transform systems. Applying these techniques to the Siqueiros transform on the East Pacific Rise we find that both the viscoplastic rheology and wide melt pooling are required to explain the observed variations in gravity inferred crustal thickness. Finally, we show that mantle potential temperature Tp = 1350°C and fractional crystallization at depths of 9-15.5 km fit the majority of the major element geochemical data from the Siqueiros transform fault system.

  10. Are Melt Migration Rates Through the Mantle Universally Rapid? (United States)

    Reagan, M. K.; Sims, K. W.


    Significant enrichments in 226Ra over 230Th have been observed in basalts erupted in nearly all tectonic settings. These enrichments generally are greatest in lavas with low concentrations of U, Th and other incompatible elements, including those from mid-ocean ridges and "depleted" volcanic arcs. Excesses of 226Ra over 230Th in mid-ocean ridge settings are commonly attributed to smaller bulk partition coefficients for Ra with respect to Th during mantle melting, and extraction of ingrown Ra into melts slowly migrating through interconnected pore space. In contrast, 226Ra excesses in basalts from volcanic arcs have been attributed to fluid additions from subducting slabs to the sources of the basalt and rapid (102 - 103y) melt migration to the surface (e.g. Turner et al., 2001). Such rapid melt velocities imply channeled flow rather than diffuse porous flow, and suggest that basalts from other tectonic settings migrate similarly rapidly. Here, we show that the compositions of basalts from both arc and mid-ocean ridge settings indeed can be explained by melting models involving rapid transit times to the surface. Simple fluxed melting models and rapid transfer of melt to the surface explain the U-Th-Ra systematics and incompatible trace element compositions of arc basalts. The U-Th-Ra and trace element data for young MORB from the East Pacific Rise (Sims et al. 2001) and the Siqueiros transform (Lundstrom et al. 1999) are modeled using simple 2-d polybaric melting based on Braun et al. (2000) and rapid melt migration rates. Successful models mix small-degree fractional melts derived from a broad cross-sectional area of mantle at depth with high-degree melts derived from a small cross-sectional area of shallow mantle that is the aged residue of the small degree melt.

  11. Melt flow characteristics in gas-assisted laser cutting

    Indian Academy of Sciences (India)

    We present a study on laser cutting of mild steel with oxygen as an assist gas. We correlate the cut surface quality with the melt film thickness. We estimate the optimum pressure required for melt ejection under laminar flow regime. The thickness of melt film inside the kerf is estimated using mass balance and the shear force ...

  12. Gravity and conduction driven melting in a sphere (United States)

    Bahrami, P. A.; Wang, T. G.


    In the Stefan and Neumann problems fundamentally characterizing melting, unmolten portions of a solid undergoing phase changes within spherical containers are assumed to remain stationary. An approach to these issues that is related to the theories of lubrication and film condensation is presently employed in conjunction with an approximate, closed-form solution of melting within spheres. It is shown that a group of dimensionless parameters containing Prandtl, Archimides and Stefan numbers can describe the melting process. Also given are the results of fundamental heat transfer experiments performed on the melting of a phase-change medium in a spherical shell.

  13. High pressure melting curves of silver, gold and copper

    Directory of Open Access Journals (Sweden)

    Ho Khac Hieu


    Full Text Available In this work, based on the Lindemann's formula of melting and the pressure-dependent Grüneisen parameter, we have investigated the pressure effect on melting temperature of silver, gold and copper metals. The analytical expression of melting temperature as a function of volume compression has been derived. Our results are compared with available experimental data as well as with previous theoretical studies and the good and reasonable agreements are found. We also proposed the potential of this approach on predicting melting of copper at very high pressure.

  14. High pressure melting curves of silver, gold and copper

    Energy Technology Data Exchange (ETDEWEB)

    Hieu, Ho Khac, E-mail: [Research and Development Center for Science and Technology, Duy Tan University, K7/25 Quang Trung, Danang (Viet Nam); Ha, Nguyen Ngoc [VNU-Hanoi University of Science, 334 Nguyen Trai, Hanoi (Viet Nam)


    In this work, based on the Lindemann's formula of melting and the pressure-dependent Grüneisen parameter, we have investigated the pressure effect on melting temperature of silver, gold and copper metals. The analytical expression of melting temperature as a function of volume compression has been derived. Our results are compared with available experimental data as well as with previous theoretical studies and the good and reasonable agreements are found. We also proposed the potential of this approach on predicting melting of copper at very high pressure.

  15. Melt-quenched glasses of metal-organic frameworks

    DEFF Research Database (Denmark)

    Bennett, T.D.; Yue, Yuanzheng; Li, P.


    Crystalline solids dominate the field of metal−organic frameworks (MOFs), with access to the liquid and glass states of matter usually prohibited by relatively low temperatures of thermal decomposition. In this work, we give due consideration to framework chemistry and topology to expand...... the phenomenon of the melting of 3D MOFs, linking crystal chemistry to framework melting temperature and kinetic fragility of the glass-forming liquids. Here we show that melting temperatures can be lowered by altering the chemistry of the crystalline MOF state, which provides a route to facilitate the melting...

  16. Some comments on the rheologically critical melt percentage (United States)

    Takeda, Yoshi-Taka; Obata, Masaaki


    The concept of rheologically critical melt percentage (RCMP) originally proposed by Arzi [Tectonophysics 44 (1978) 173-184] for partially molten granitic rocks is re-examined. It is shown that there is no experimental support to show the presence of RCMP. The published experimental data suggest that the effective viscosity of partially molten granitic rocks is reduced rapidly and continuously with increasing melt fraction. It is also shown that the experimental data may be modeled by means of the upper bound behavior (the Voigt bound) of two-phase material by assuming a melt localization, which implies that there is no partitioning of strain between the solid and the melt.

  17. Slip-rate-dependent melt extraction at oceanic transform faults (United States)

    Bai, Hailong; Montési, Laurent G. J.


    Crustal thickness differences between oceanic transform faults and associated mid-ocean ridges may be explained by melt migration and extraction processes. Slow-slipping transform faults exhibit more positive gravity anomalies than the adjacent spreading centers, indicating relative thin crust in the transform domain, whereas at intermediate-spreading and fast-spreading ridges transform faults are characterized by more negative gravity anomalies than the adjacent spreading centers, indicating thick crust in the transform domain. We present numerical models reproducing these observations and infer that melt can be extracted at fast-slipping transforms, but not at slow-slipping ones. Melt extraction is modeled as a three-step process. (1) Melt moves vertically through buoyancy-driven porous flow enhanced by subvertical dissolution channels. (2) Melt accumulates in and travels along a decompaction channel lining a low-permeability barrier at the base of the thermal boundary layer. (3) Melt is extracted to the surface when it enters a melt extraction zone. A melt extraction width of 2-4 km and a melt extraction depth of 15-20 km are needed to fit the tectonic damages associated with oceanic plate boundaries that reach into the upper mantle. Our conclusions are supported by the different degrees of magmatic activities exhibited at fast-slipping and slow-slipping transforms as reflected in geological features, geochemical signals, and seismic behaviors. We also constrain that the maximum lateral distance of crust-level dike propagation is about 50-70 km.

  18. Hydrogen partition coefficients between nominally anhydrous minerals and basaltic melts (United States)

    Aubaud, Cyril; Hauri, Erik H.; Hirschmann, Marc M.


    We have measured hydrogen partition coefficients between nominally anhydrous minerals (olivine, pyroxenes) and basaltic melts in 13 hydrous melting experiments performed at upper mantle P-T conditions (1-2 GPa and 1230-1380°C). Resulting liquids have 3.1-6.4 wt.% H2O and average mineral/melt partition coefficients as follows: DHol/melt = 0.0017 +/- 0.0005 (n = 9), DHopx/melt = 0.019 +/- 0.004 (n = 8), and DHcpx/melt = 0.023 +/- 0.005 (n = 2). Mineral/mineral partition coefficients are DHol/opx = 0.11 +/- 0.01 (n = 4), DHol/cpx = 0.08 +/- 0.01 (n = 2) and DHcpx/opx = 1.4 +/- 0.3 (n = 1). These measurements confirm that water behaves similarly to Ce during mantle melting (DHperidotite/melt is ~0.009). For mantle water concentrations of 50-200 ppm, the onset of melting is 5-20 km deeper than the dry solidus, less than previous estimates.

  19. Microstructure and magnetization of Y-Ba-Cu-O prepared by melt quenching, partial melting and doping (United States)

    Hojaji, Hamid; Hu, Shouxiang; Michael, Karen A.; Barkatt, Aaron; Thorpe, Arthur N.; Alterescu, Sidney


    Y-Ba-Cu-O samples prepared by means of a variety of melt-based techniques exhibit high values for their magnetic properties compared with those of samples prepared by solid state sintering. These techniques include single-stage partial melting as well as melt quenching followed by a second heat treatment stage, and they have been applied to the stoichiometric 123 composition as well as to formulations containing excess yttrium or other dopants. The structure of these melt-based samples is highly aligned, and the magnetization readings exhibit large anisotropy. At 77 K and magnetic field intensities of about 2 kOe, diamagnetic susceptibilities as high as -14 x 10(exp -3) emu/g were obtained in the cases of melt-quenched samples and remanent magnetization values as high as 10 emu/g for samples prepared by partial melting.

  20. The melt-bearing impactites of the Ritland structure, Norway-Implications for melt formation in small impact craters (United States)

    Kalleson, Elin; Dypvik, Henning; Riis, Fridtjof; Nilsen, Odd


    A melt-bearing impactite unit is preserved in the 2.7 km diameter shallow marine Ritland impact structure. The main exposure of the melt-bearing unit is in an approximately 100 m long cliff about 700 m southwest of the center of the structure. The melt and clast content vary through this maximum 2 m thick unit, so that lithology ranges from impact melt rock to suevite. Stratigraphic variations with respect to the melt content, texture, mineralogy, and geochemistry have been studied in the field, and by laboratory analysis, including thin section microscopy. The base of the melt-bearing unit marks the transition from the underlying lithic basement breccia, and the unit may have been emplaced by an outward flow during the excavation stage. There is an upward development from a melt matrix-dominated lower part, that commonly shows flow structures, to an upper part characterized by more particulate matrix with patchy melt matrix domains, commonly as deformed melt slivers intermingled with small lithic clasts. Melt and lithic fragments in the upper part display a variety of shapes and compositions, some of which possibly represent fallback material from the ejecta cloud. The upper boundary of the melt-bearing impactite unit has been placed where the deposits are mainly clastic, probably representing slump and avalanche deposits from the modification stage. These deposits are therefore considered sedimentary and not impactites, despite the component of small melt fragments and shocked minerals within the lowermost part, which was probably incorporated as the debris moved down the steep crater walls.

  1. Two-Dimensional Melting under Quenched Disorder (United States)

    Deutschländer, Sven; Horn, Tobias; Löwen, Hartmut; Maret, Georg; Keim, Peter


    We study the influence of quenched disorder on the two-dimensional melting behavior of superparamagnetic colloidal particles, using both video microscopy and computer simulations of repulsive parallel dipoles. Quenched disorder is introduced by pinning a fraction of the particles to an underlying substrate. We confirm the occurrence of the Kosterlitz-Thouless-Halperin-Nelson-Young scenario and observe an intermediate hexatic phase. While the fluid-hexatic transition remains largely unaffected by disorder, the hexatic-solid transition shifts to lower temperatures with increasing disorder. This results in a significantly broadened stability range of the hexatic phase. In addition, we observe spatiotemporal critical(like) fluctuations, which are consistent with the continuous character of the phase transitions. Characteristics of first-order transitions are not observed.

  2. Primordial metallic melt in the deep mantle (United States)

    Zhang, Zhou; Dorfman, Susannah M.; Labidi, Jabrane; Zhang, Shuai; Li, Mingming; Manga, Michael; Stixrude, Lars; McDonough, William F.; Williams, Quentin


    Seismic tomography models reveal two large low shear velocity provinces (LLSVPs) that identify large-scale variations in temperature and composition in the deep mantle. Other characteristics include elevated density, elevated bulk sound speed, and sharp boundaries. We show that properties of LLSVPs can be explained by the presence of small quantities (0.3-3%) of suspended, dense Fe-Ni-S liquid. Trapping of metallic liquid is demonstrated to be likely during the crystallization of a dense basal magma ocean, and retention of such melts is consistent with currently available experimental constraints. Calculated seismic velocities and densities of lower mantle material containing low-abundance metallic liquids match the observed LLSVP properties. Small quantities of metallic liquids trapped at depth provide a natural explanation for primitive noble gas signatures in plume-related magmas. Our model hence provides a mechanism for generating large-scale chemical heterogeneities in Earth's early history and makes clear predictions for future tests of our hypothesis.

  3. Reduced energy consumption for melting in foundries

    Energy Technology Data Exchange (ETDEWEB)

    Skov-Hansen, S.


    By improving the gating technology in traditional gating systems it is possible to reduce the amount of metal to be re-melted, and hence reduce the energy consumption for melting in foundries. Traditional gating systems are known for a straight tapered down runner a well base and 90 deg. bends in the runner system. In the streamlined gating systems there are no sharp changes in direction and a large effort is done to confine and control the flow of the molten metal during mould filling. Experiments in real production lines have proven that using streamlined gating systems improves yield by decreasing the poured weight compared to traditional layouts. In a layout for casting of valve housings in a vertically parted mould the weight of the gating system was reduced by 1,1kg which is a 20% weight reduction for the gating system. In a layout for horizontally parted moulds the weight of the gating system has been reduced by 3,7kg which is a weight reduction of 60% for the gating system. The experiments casting valve housings in ductile iron also proved that it is possible to lower the pouring temperature from 1400 deg. C to 1300 deg. C without the risk of cold runs. Glass plate fronted moulds have been used to study the flow of melt during mould filling. These experiments have also been used for studying the flow pattern when ceramic filters are used. The thorough study of the use of filters revealed that the metal passing through the filter is divided into a number of small jets. This proves that filters do not have the claimed positive effect on the flow of metal. The volumes necessary on either side of the filter is not filled till a backpressure is build up and results in formation of pressure shocks when backfilled. These pressure shocks result in more turbulence inside the casting than the same gating system with no filter. Not using filters can mean a reduction in poured weight of 0,6kg. To examine if the experiments using glass plate fronted moulds give

  4. Kinetics of iron oxidation in silicate melts

    Energy Technology Data Exchange (ETDEWEB)

    Magnien, V.; Neuville, D.R.; Cormier, L.; Mysen, B.O.; Pinet, O.; Richet, P


    High-temperature XANES experiments at the Fe K-edge have been used to study the kinetics of iron oxidation in a supercooled melt of Fe-bearing pyroxene composition. These experiments, made just above the glass transition between 600 and 700 deg C, show that variations in relative abundances of ferric and ferrous iron can be determined in situ at such temperatures. The kinetics of iron oxidation do not vary much with temperature down to the glass transition. This suggests that rate-limiting factor in this process is not oxygen diffusion, which is coupled to relaxation of the silicate network, but diffusion of network modifying cations along with a counter flux of electrons. To give a firmer basis to redox determinations made from XANES spectroscopy, the redox state of a series of a samples was first determined from wet chemical, Moessbauer spectroscopy and electron microprobe analyses. (authors)

  5. Antibacterial Titanium Produced Using Selective Laser Melting (United States)

    Macpherson, Andrew; Li, Xiaopeng; McCormick, Paul; Ren, Ling; Yang, Ke; Sercombe, Timothy B.


    Titanium and titanium alloys used in current medical and dental applications do not possess antibacterial properties, and therefore, postoperative infection remains a significant risk. Recently, the addition of silver and copper to conventional biomaterials has been shown to produce a material with good antibacterial properties. In this article, we investigate selective laser melting as a method of producing antibacterial Ti-6Al-4V containing elemental additions of Cu or Ag. The addition of Ag had no effect on the microstructure or strength, but it did result in a 300% increase in the ductility of the alloy. In contrast, the addition of Cu resulted in an increase in strength but in a decrease in ductility, along with a change in the structure of the material. The Cu-containing alloy also showed moderate antibacterial properties and was superior to the Ag-containing alloy.

  6. Low Coherence Interferometry in Selective Laser Melting (United States)

    Neef, A.; Seyda, V.; Herzog, D.; Emmelmann, C.; Schönleber, M.; Kogel-Hollacher, M.

    Selective Laser Melting (SLM) is an additive layer manufacturing technology that offers several advantages compared to conven- tional methods of production such as an increased freedom of design and a toolless production suited for variable lot sizes. Despite these attractive aspects today's state of the art SLM machines lack a holistic process monitoring system that detects and records typical defects during production. A novel sensor concept based on the low coherence interferometry (LCI) was integrated into an SLM production setup. The sensor is mounted coaxially to the processing laser beam and is capable of sampling distances along the optical axis. Measurements during and between the processing of powder layers can reveal crucial topology information which is closely related to the final part quality. The overall potential of the sensor in terms of quality assurance and process control is being discussed. Furthermore fundamental experiments were performed to derive the performance of the system.

  7. Antibacterial Titanium Produced Using Selective Laser Melting (United States)

    Macpherson, Andrew; Li, Xiaopeng; McCormick, Paul; Ren, Ling; Yang, Ke; Sercombe, Timothy B.


    Titanium and titanium alloys used in current medical and dental applications do not possess antibacterial properties, and therefore, postoperative infection remains a significant risk. Recently, the addition of silver and copper to conventional biomaterials has been shown to produce a material with good antibacterial properties. In this article, we investigate selective laser melting as a method of producing antibacterial Ti-6Al-4V containing elemental additions of Cu or Ag. The addition of Ag had no effect on the microstructure or strength, but it did result in a 300% increase in the ductility of the alloy. In contrast, the addition of Cu resulted in an increase in strength but in a decrease in ductility, along with a change in the structure of the material. The Cu-containing alloy also showed moderate antibacterial properties and was superior to the Ag-containing alloy.

  8. Investigation of Melting and Solidification of Thin Polycrystalline Silicon Films via Mixed-Phase Solidification (United States)

    Wang, Ying

    Melting and solidification constitute the fundamental pathways through which a thin-film material is processed in many beam-induced crystallization methods. In this thesis, we investigate and leverage a specific beam-induced, melt-mediated crystallization approach, referred to as Mixed-Phase Solidification (MPS), to examine and scrutinize how a polycrystalline Si film undergoes the process of melting and solidification. On the one hand, we develop a more general understanding as to how such transformations can transpire in polycrystalline films. On the other hand, by investigating how the microstructure evolution is affected by the thermodynamic properties of the system, we experimentally reveal, by examining the solidified microstructure, fundamental information about such properties (i.e., the anisotropy in interfacial free energy). Specifically, the thesis consists of two primary parts: (1) conducting a thorough and extensive investigation of the MPS process itself, which includes a detailed characterization and analysis of the microstructure evolution of the film as it undergoes MPS cycles, along with additional development and refinement of a previously proposed thermodynamic model to describe the MPS melting-and-solidification process; and (2) performing MPS-based experiments that were systematically designed to reveal more information on the anisotropic nature of Si-SiO2 interfacial energy (i.e., sigma Si-SiO2). MPS is a recently developed radiative-beam-based crystallization technique capable of generating Si films with a combination of several sought-after microstructural characteristics. It was conceived, developed, and characterized within our laser crystallization laboratory at Columbia University. A preliminary thermodynamic model was also previously proposed to describe the overall melting and solidification behavior of a polycrystalline Si film during an MPS cycle, wherein the grain-orientation-dependent solid-liquid interface velocity is identified

  9. Proton NMR relaxation in hydrous melts

    Energy Technology Data Exchange (ETDEWEB)

    Braunstein, J.; Bacarella, A.L.; Benjamin, B.M.; Brown, L.L.; Girard, C.


    Pulse and continuous wave NMR measurements are reported for protons in hydrous melts of calcium nitrate at temperatures between -4 and 120/sup 0/C. Although measured in different temperature ranges, spin-lattice (T/sub 1/) and spin-spin (T/sub 2/) relaxation times appear to be nearly equal to each other and proportional to the self-diffusion coefficients of solute metal cations such as Cd/sup 2 +/. At temperatures near 50/sup 0/C, mean Arrhenius coefficients H/sub T/sub 1// (kcal/mol) are 7.9, 7.3, and 4.8, respectively, for melts containing 2.8, 4.0, and 8.0 moles of water per mole of calcium nitrate, compared to 4.6 kcal/mol for pure water. Temperature dependence of T/sub 1/ and T/sub 2/ in Ca(NO/sub 3/)/sub 2/-2.8 H/sub 2/O between -4 and 120/sup 0/C are non-Arrhenius and can be represented by a Fulcher-type equation with a ''zero mobility temperature'' (T/sub 0/) of 225/sup 0/K, close to the value of T/sub 0/ for solute diffusion, electrical conductance and viscosity. Resolution of the relaxation rates into correlation times for intramolecular (rotational) and intermolecular (translational) diffusional motion is discussed in terms of the Bloembergen-Purcell-Pound and more recent models for dipolar relaxation. (auth)

  10. Effect of Ce on Casting Structure of Near-rapidly Solidified Al-Zn-Mg-Cu Alloy

    Directory of Open Access Journals (Sweden)

    HUANG Gao-ren


    Full Text Available Through using XRD,DSC,SEM,EDS and other modern analysis methods, the effects of rare earth element Ce on microstructure and solidification temperature of Al-Zn-Mg-Cu under different cooling rates were studied, the principle of Ce on grain refining and melt cleaning of alloys was analyzed and discussed. The results show that MgZn2 phase and α-Al matrix are the main precipitations, Al,Cu,Mg and other elements dissolve in MgZn2 phase, a new phase Mg(Zn, Cu, Al2 is formed, solute elements in the grain boundary have higher concentration, eutectic reaction takes place between MgZn2 and α-Al, lamellar eutectic structure is generated. The addition of Ce decreases the dendritic arm spacing,reduces the layer spacing between eutectic phases and refines the eutectic structure and the grain significantly, and inhibits the appearance of the impurity phase Al7Cu2Fe in aluminum alloys. The addition of Ce also reduces the precipitation temperature of α-Al matrix and eutectic phase by 6.4℃ and 5.6℃ respectively.

  11. Effect of Growth Rate on Elevated Temperature Plastic Flow and Room Temperature Fracture Toughness of Directionally Solidified NiAl-31Cr-3Mo (United States)

    Whittenberger, J. Daniel; Raj, S. V.; Locci, I. E.; Salem, J. A.


    The eutectic system Ni-33Al-31Cr-3Mo was directionally solidified at rates ranging from 7.6 to 508 mm/h. Samples were examined for microstructure and alloy chemistry, compression tested at 1200 and 1300 K, and subjected to room temperature fracture toughness measurements. Lamellar eutectic grains were formed at 12.7 mm/h; however cellular structures with a radial eutectic pattern developed at faster growth rates. Elevated temperature compression testing between 10(exp -4) to 10(exp -7)/s did not reveal an optimum growth condition, nor did any single growth condition result in a significant fracture toughness advantage. The mechanical behavior, taken together, suggests that Ni-33Al-31Cr-3Mo grown at rates from 25.4 to 254 mm/h will have nominally equivalent properties.

  12. Solidified Floating Organic Drop Microextraction for the Detection of Trace Amount of Lead in Various Samples by Electrothermal Atomic Absorption Spectrometry

    Directory of Open Access Journals (Sweden)

    Oya Aydın Urucu


    Full Text Available A novel method was developed for determination of trace amounts of lead in water and food samples. Solidified floating organic drop microextraction was used to preconcentrate the lead ion. After the analyte was complexed with 1-(2-pyridylazo-2-naphthol, undecanol and acetonitrile were added as extraction and dispersive solvent, respectively. Variables such as pH, volumes of extraction and dispersive solvents, and concentration of chelating agent were optimized. Under the optimum conditions, the detection limit of Pb (II was determined as 0.042 µg L−1 with an enrichment factor of 300. The relative standard deviation is <10%. Accuracy of the developed procedure was evaluated by the analysis of certified reference material of human hair (NCS DC 73347 and wastewater (SPS-WW2 with satisfactory results. The developed procedure was then successfully applied to biscuit and water samples for detection of Pb (II ions.

  13. Experimental investigation of influence of acid rain on leaching and hydraulic characteristics of cement-based solidified/stabilized lead contaminated clay. (United States)

    Du, Yan-Jun; Jiang, Ning-Jun; Shen, Shui-Long; Jin, Fei


    Remediation of contaminated lands in China urban areas is of great concern. Degradation of construction facilities caused by acid rain is a serious environmental pollution issue in China. This paper presents an investigation of the effects of acid rain on leaching and hydraulic properties of cement-based solidified/stabilized lead contaminated soil. Laboratory tests including infiltration test and soaking test are conducted. It is found that the soil hydraulic conductivity decreases with increase in the pore volume of flow of permeant liquids (acid rain and distilled water). The decreasing rate in the case of the acid rain is lower than that in the case of the distilled water. The soaking test results show that pH and the presence of sulfate ions of acid rain have considerable influence on the leached concentrations and leaching rate of calcium. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Microstructural Characterization of a Directionally-Solidified Ni-33 (at. %)Al-31Cr-3Mo Eutectic Alloy as a Function of Withdrawal Rate (United States)

    Raj, S. V.; Locci, I. E.; Whittenberger, J. D.; Salem, J. A.


    The Ni-33 (at. %)Al-3lCr-3Mo eutectic alloy was directionally-solidified (DS) at different rates, V(sub I), varying between 2.5 to 508 mm/ h. Detailed qualitative and quantitative metallographic and chemical analyses were conducted on the directionally-solidified rods. The microstructures consisted of eutectic colonies with parallel lamellar NiAl/(Cr,Mo) plates for solidification rates at and below 12.7 mm/ h. Cellular eutectic microstructures were observed at higher solidification rates, where the plates exhibited a radial pattern. The microstructures were demonstrated to be fairly uniform throughout a 100 mm length of the DS zone by quantitative metallography. The average cell size, bar-d, decreased with increasing growth rate to a value of 125 microns at 508 mm/ h according to the relation bar-d (microns) approx. = 465 V(sup -0.22, sub I), where V(sub I) is in mm/ h. Both the average NiAl plate thickness, bar-Delta(sub NiAl), and the interlamellar spacing, bar-lambda, were observed to be constant for V(sub I) less than or = 50.8 mm/ h but decreased with increasing growth rate above this value as 0.93 bar-Delta(sub NiAl)(microns) = 61.2 V(sup -0.93, sub I) and bar-lambda (microns) = 47.7 V(sup -0.64, sub I), respectively. The present results are detailed on a microstructural map. Keywords Optical microscopy, microstructure, compounds intermetallic, directional solidification

  15. Effects of Microalloying on the Microstructures and Mechanical Properties of Directionally Solidified Ni-33(at.%)Al-31Cr-3Mo Eutectic Alloys Investigated (United States)

    Whittenberger, J. Daniel; Raj, Sai V.; Locci, Ivan E.; Salem, Jonathan A.


    Despite nickel aluminide (NiAl) alloys' attractive combination of oxidation and thermophysical properties, their development as replacements for superalloy airfoils in gas turbine engines has been largely limited by difficulties in developing alloys with an optimum combination of elevated-temperature creep resistance and room-temperature fracture toughness. Alternatively, research has focused on developing directionally solidified NiAl-based in situ eutectic composites composed of NiAl and (Cr,Mo) phases in order to obtain a desirable combination of properties a systematic investigation was undertaken at the NASA Glenn Research Center to examine the effects of small additions of 11 alloying elements (Co, Cu, Fe, Hf, Mn, Nb, Re, Si, Ta, Ti, and Zr) in amounts varying from 0.25 to 1.0 at.% on the elevated-temperature strength and room-temperature fracture toughness of directionally solidified Ni-33Al-31Cr-3Mo eutectic alloy. The alloys were grown at 12.7 mm/hr, where the unalloyed eutectic base alloy exhibited a planar eutectic microstructure. The different microstructures that formed because of these fifth-element additions are included in the table. The additions of these elements even in small amounts resulted in the formation of cellular microstructures, and in some cases, dendrites and third phases were observed. Most of these elemental additions did not improve either the elevated-temperature strength or the room-temperature fracture toughness over that of the base alloy. However, small improvements in the compression strength were observed between 1200 and 1400 K when 0.5 at.% Hf and 0.25 at.% Ti were added to the base alloy. The results of this study suggest that the microalloying of Ni-33Al-31Cr-3Mo will not significantly improve either its elevatedtemperature strength or its room-temperature fracture toughness. Thus, any improvements in these properties must be acquired by changing the processing conditions.

  16. Simultaneously fabrication of free and solidified N, S-doped graphene quantum dots via a facile solvent-free synthesis route for fluorescent detection. (United States)

    Xia, Chang; Hai, Xin; Chen, Xu-Wei; Wang, Jian-Hua


    A facile one-step solvent-free synthesis approach is proposed for the simultaneous fabrication of free and solidified N, S-doped graphene quantum dots (N, S-GQDs) by using citric acid as precursor and L-cysteine as dopant. Graphene nucleus is firstly formed via the intermolecular dehydration of citric acid. N and S are then incorporated into the graphene structure by attacking the margin of graphene nucleus. The cross-linking among the graphene nucleus via the intermolecular condensation leads to the generation of free N, S-GQDs, while the intermolecular amidation between L-cysteine molecules and graphene nucleuses contributes to the solid-state fluorescence graphene quantum dots (SSF-GQDs). The free N, S-GQDs exhibit favorable photoluminescence behaviors such as high fluorescent quantum yield of 74.5%, stable photoluminescence within a wide range of pH and high tolerance to external ionic strength of up to 1.0molL-1 NaCl, making it excellent fluorescence probe for the sensitive detection of Fe3+ with a linear range of 0.01-3μM and a detection limit of 3.3nM. The solidification of GQDs prevents the aggregation of GQDs efficiently and offers the solidified N, S-GQDs yellow-green fluorescence, with a fluorescence quantum yield of 10.6%. This proposed protocol provides a novel avenue to fabricate diverse fluorescent graphene materials for different practical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Al20(+) does melt, albeit above the bulk melting temperature of aluminium. (United States)

    Ojha, Udbhav; Steenbergen, Krista G; Gaston, Nicola


    Employing first principles parallel tempering molecular dynamics in the microcanonical ensemble, we report the presence of a clear solid-liquid-like melting transition in Al20(+) clusters, not found in experiments. The phase transition temperature obtained from the multiple histogram method is 993 K, 60 K above the melting point of aluminium. Root mean squared bond length fluctuation, the velocity auto-correlation function and the corresponding power spectrum further confirm the phase transition from a solid-like to liquid-like phase. Atoms-In-Molecules analysis shows a strong charge segregation between the internal and surface atoms, with negatively charged internal atoms and positive charge at the surface. Analysis of the calculated diffusion coefficients indicates different mobilities of the internal and surface atoms in the solid-like phase, and the differences between the environment of the internal atoms in these clusters with that of the bulk atoms suggest a physical picture for the origin of greater-than-bulk melting temperatures.

  18. Observation of melting conditions in selective laser melting of metals (SLM) (United States)

    Thombansen, U.; Abels, Peter


    Process observation in 3D printing of metals currently is one of the central challenges. Many companies strive to employ this additive manufacturing process in their production chains in order to gain competitive advantages through added flexibility in product design and embedded features. The new degrees of freedom are accompanied with the challenge to manufacture every detail of the product to the predefined specifications. Products with filigree internal structures for example require a perfect build to deliver the performance that was designed into these structures. Melting conditions determine properties such as grain structure and density of the finished part before it is sent to post processing steps. Monitoring of such melting conditions is still a challenge where the use of photodiodes, pyrometry and camera systems contribute to an overall picture that might identify errors or deviations during the build process. Additional considerations must be made to decide if these sensors are applied coaxially or from a lateral perspective. Furthermore, setting parameters of focal plane array (FPA) sensors are discussed and events that are seen in the machine vision image are compared against the pyrometry data. The resume of the experiments suggests the application of multiple sensors to the selective laser melting process (SLM) as they jointly contribute to an identification of events. These events need to be understood in order to establish cause effect relationships in the future.

  19. Joint electroreduction of lanthanum, gadolinium and boron in halide melts

    Directory of Open Access Journals (Sweden)

    Khushkhov KH.B.


    Full Text Available The joint electroreduction of La, Gd and B from chloride-fluoride melts has been studied by cyclic voltametry. Based on the analysis of voltamograms the possibility of electrosynthesis of lanthanum-gadolinium borides from chloride-fluoride melts has been shown.

  20. Deciphering the flow structure of Czochralski melt using Partially ...

    Indian Academy of Sciences (India)

    Sudeep Verma


    Feb 5, 2018 ... Abstract. Czochralski melt flow is an outcome of complex interactions of centrifugal, buoyancy, coriolis and surface tension forces, which act at different length and time scales. As a consequence, the characteristic flow structures that develop in the melt are delineated in terms of recirculating flow cells typical ...

  1. Partial melting of metavolcanics in amphibolite facies regional ...

    Indian Academy of Sciences (India)

    Metavolcanic rocks containing low-Ca amphiboles (gedrite, cummingtonite) and biotite can undergo substantial dehydration-melting. This is likely to be most prominent in Barrovian Facies Series (kyanite-sillimanite) and occurs at the same time as widespread metapelite dehydration- melting. In lower pressure facies series, ...

  2. Levitation-melting technique for metals and alloys (United States)

    Downey, J. W.


    Experimentation resulted in an improved levitation-melting technique for metals and alloys which quickly produces a completly homogeneous melt. Also developed were two levitation coils that permit a wide variety of metals to be levitated in the molten state and a helium quenching method which minimizes contamination and segregation.

  3. Realization of Copper Melting Point for Thermocouple Calibrations

    Directory of Open Access Journals (Sweden)



    Full Text Available Although the temperature stability and uncertainty of the freezing plateau is better than that of the melting plateau in most of the thermometry fixed points, but realization of melting plateaus are easier than that of freezing plateaus for metal fixed points. It will be convenient if the melting points can be used instead of the freezing points in calibration of standard noble metal thermocouples because of easier realization and longer plateau duration of melting plateaus. In this work a comparison between the melting and freezing points of copper (Cu was carried out using standard noble metal thermocouples. Platinum - platinum 10 % rhodium (type S, platinum – 30 % rhodium / platinum 6 % rhodium (type B and platinum - palladium (Pt/Pd thermocouples are used in this study. Uncertainty budget analysis of the melting points and freezing points is presented. The experimental results show that it is possible to replace the freezing point with the melting point of copper cell in the calibration of standard noble metal thermocouples in secondary-level laboratories if the optimal methods of realization of melting points are used.

  4. Use of polydispersity index as control parameter to study melting ...

    Indian Academy of Sciences (India)

    melting/freezing of Lennard-Jones system: Comparison among predictions of bifurcation theory with Lindemann .... a better understanding of the effects of polydispersity on the freezing-melting transition. In essence, we .... We calculate density from the corresponding volume fraction using the relation ρ = 6 /π to plot density ...

  5. Incorporation of Certain Hydrophobic Excipients in the Core of Melt ...

    African Journals Online (AJOL)

    Purpose: A process of melt granulation whereby the drug powder is mixed with a melted wax has been used to modify the dissolution rates of drug particles. The present study investigated how the incorporation of hydrophobic materials (talc or magnesium stearate) in the core of such granules may further retard drug ...

  6. Development of synthetic nuclear melt glass for forensic analysis. (United States)

    Molgaard, Joshua J; Auxier, John D; Giminaro, Andrew V; Oldham, C J; Cook, Matthew T; Young, Stephen A; Hall, Howard L

    A method for producing synthetic debris similar to the melt glass produced by nuclear surface testing is demonstrated. Melt glass from the first nuclear weapon test (commonly referred to as trinitite) is used as the benchmark for this study. These surrogates can be used to simulate a variety of scenarios and will serve as a tool for developing and validating forensic analysis methods.

  7. Effect of stirring on striae in glass melts

    DEFF Research Database (Denmark)

    Jensen, Martin; Yue, Yuanzheng


    Chemical striae have often negative effect on the glass properties, and hence, elimination of striae has been a key issue in glass science and technology. To produce highly homogeneous glasses, it is necessary to stir melts during the melting process. To explore the physical origin of the stria e...

  8. Modified enthalpy method for the simulation of melting and ...

    Indian Academy of Sciences (India)

    face obtained is compared satisfactorily with the experimental results available in literature. Keywords. Melting; enthalpy method; wavy interface; mushy zone constant. 1. Introduction. The study of melting and solidification offers insights in the design of casting, welding, latent thermal energy storage systems, etc., and in the ...

  9. Carbon-Carbon High Melt Coating for Nozzle Extensions Project (United States)

    National Aeronautics and Space Administration — The High Melt Coating system is applied to a carbon-carbon structure and embeds HfC, ZrB2 in the outer layers. ACC High Melt builds on the time tested base material...

  10. The Melting Pot: America Is Lost Without It (United States)


    achieved the very opposite effect in that they have kept Latino immigrants ’ children in Spanish-language instruction and denied them the knowledge of...SUBJECT TERMS Melting Pot, Assimilation, Immigration , Multiculturism 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER...Assimilation, Immigration , Multiculturism CLASSIFICATION: Unclassified America has long been known as a great melting pot in which people of

  11. Size-dependent melting of nanoparticles: Hundred years of ...

    Indian Academy of Sciences (India)

    Thermodynamic model first published in 1909, is being used extensively to understand the size-dependent melting of nanoparticles. Pawlow deduced an expression for the size-dependent melting temperature of small particles based on the thermodynamic model which was then modified and applied to different ...

  12. Vocational Education: Effective a Bridge to Economic Melt Down ...

    African Journals Online (AJOL)

    Economic melt down is not that monies of every country is melting away, but that fewer monies are available for spending and this is due to high rate of depth incurred through lending caused by the federal reserve whose loyalty is believed to firstly lies with bankers, most especially, Wall Street and now is reflected in every ...

  13. Coatings with laser melt injection of ceramic particles

    NARCIS (Netherlands)

    de Hosson, J.T.M.; Ocelik, V.; de Oliveira, U.; Seal, S; Dahotre, NB; Moore, JJ; Suryanarayana, C; Agarwal, A


    The conditions for a successful Laser Melt Injection (LMI) of SiC and WC particles into the melt pool of Al8Si and Ti6Al4V alloys were studied experimentally and theoretically by FEM calculations. The laser employed is a high power Nd:YAG The formation of a relatively thick aluminium oxide layer on

  14. Melting behaviour of lead and bismuth nano-particles in ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Abstract. Nanomaterials are playing an increasingly important role in mod- ern technologies. Interfaces are crucial in nanotechnology. In this study, we have examined the stability of nanoparticles. Major emphasis is on understanding the effect of interfaces on melting. Melting behaviour of nanocrystalline interfaces,.

  15. Size-dependent melting of nanoparticles: Hundred years of ...

    Indian Academy of Sciences (India)

    Nanoparticles; melting; thermodynamic model. PACS Nos 61.46.-w; 36.40.Ei; 82.60.Qr. 1. Introduction. It has been well established both experimentally and theoretically that the melting temperature (Tcm) of nanoparticles depends on the particle size [1–85]. However,. Pawlow in 1909 developed a thermodynamic model [1], ...

  16. Single scan vector prediction in selective laser melting

    NARCIS (Netherlands)

    Wits, Wessel Willems; Bruins, R.; Terpstra, L.; Huls, R.A.; Geijselaers, Hubertus J.M.


    In selective laser melting (SLM) products are built by melting layers of metal powder successively. Optimal process parameters are usually obtained by scanning single vectors and subsequently determining which settings lead to a good compromise between product density and build speed. This paper

  17. Deciphering the flow structure of Czochralski melt using Partially ...

    Indian Academy of Sciences (India)

    Czochralski melt flow is an outcome of complex interactions of centrifugal, buoyancy, coriolis and surface tension forces, which act at different length and time scales. As a consequence, the characteristic flow structures that develop in the melt are delineated in terms of recirculating flow cells typical of rotating ...

  18. Structural controls and mechanisms of diffusion in natural silicate melts (United States)

    Henderson, P.; Nolan, J.; Cunningham, G. C.; Lowry, R. K.


    The diffusion properties of Na, Cs, Ba, Fe and Eu ions have been determined experimentally for a pantellerite melt and of these ions plus Li, Mn and Co in pitchstone melt, using the radiotracer residual-activity method, and narrow platinum capillaries, over the temperature range 1,200 1,400° C. In addition, Eu diffusion in a basaltic and an andesitic melt was determined. Diffusion of all cations follows an Arrhenius relationship, activation energy values being high for diffusion in the pantellerite melt (e.g. Eu: 100 kcal mol-1) except in the case of Na (24.3 kcal mol-1). Activation energies of diffusion in the pitchstone melt are similar to values recorded earlier for andesitic and basaltic melts. The new data are used, along with previously published data for diffusion in other composition melts, to examine the compositional and structural controls on diffusion. The range of diffusivities shows a marked change with melt composition; over two orders of magnitude for a basaltic melt, and nearly four orders for a pantellerite melt (both at 1,300° C). Diffusivity of all cations (except Li and Na) correlates positively with the proportion of network modifying cations. In the case of Li and Na the correlation is negative but the diffusivity of these ions correlates positively with the proportion of Na or of Na + K ions in the bulk melt. Diffusion behaviour in the pantellerite melt departs from the relationships shown by the data for other melt compositions, which could be partly explained by trivalent ions (such as Fe) occupying network forming positions. The diffusivity of alkali metal ions is strongly dependent on ionic radius, but this is not the case with the divalent and trivalent ions; diffusivity of these ions remains relatively constant with change in radius but decreases with increase in ionic charge. A compensation diagram shows four distinct but parallel trends for the majority of the cations in four melt types but the data for Li and Na plot on a separate

  19. Cupolas minimize the energy required to melt ferrous alloys

    Energy Technology Data Exchange (ETDEWEB)

    Draper, A B


    Historically the cupola has been the most effective furnace for melting cast irons. Although its supremacy was challenged by electric melting furnaces in the 1960's, persisting energy scarcity and high cost have encouraged a resurgence of interest in cupola technology. Using the optimum design features of modern cupolas and the best melting practices, they can achieve melting efficiencies of 45% or more based on the energy value of the original coal. In contrast, electric melting only uses 21% of the energy in coal. Despite these facts, many foundrymen fear that there will be problems because of poor metallurgical control if they use cupolas. Yet experience has proven otherwise. In terms of energy conservation and economy it is better to use large cupolas as scrap melters in the steel industry. Yet there is still a deep rooted prejudice against the cupola plus basic oxygen furnace route to steel making.

  20. A multi-component evaporation model for beam melting processes (United States)

    Klassen, Alexander; Forster, Vera E.; Körner, Carolin


    In additive manufacturing using laser or electron beam melting technologies, evaporation losses and changes in chemical composition are known issues when processing alloys with volatile elements. In this paper, a recently described numerical model based on a two-dimensional free surface lattice Boltzmann method is further developed to incorporate the effects of multi-component evaporation. The model takes into account the local melt pool composition during heating and fusion of metal powder. For validation, the titanium alloy Ti-6Al-4V is melted by selective electron beam melting and analysed using mass loss measurements and high-resolution microprobe imaging. Numerically determined evaporation losses and spatial distributions of aluminium compare well with experimental data. Predictions of the melt pool formation in bulk samples provide insight into the competition between the loss of volatile alloying elements from the irradiated surface and their advective redistribution within the molten region.

  1. Melting beneath Greenland outlet glaciers and ice streams (United States)

    Alexander, David; Perrette, Mahé; Beckmann, Johanna


    Basal melting of fast-flowing Greenland outlet glaciers and ice streams due to frictional heating at the ice-bed interface contributes significantly to total glacier mass balance and subglacial meltwater flux, yet modelling this basal melt process in Greenland has received minimal research attention. A one-dimensional dynamic ice-flow model is calibrated to the present day longitudinal profiles of 10 major Greenland outlet glaciers and ice streams (including the Jakobshavn Isbrae, Petermann Glacier and Helheim Glacier) and is validated against published ice flow and surface elevation measurements. Along each longitudinal profile, basal melt is calculated as a function of ice flow velocity and basal shear stress. The basal shear stress is dependent on the effective pressure (difference between ice overburden pressure and water pressure), basal roughness and a sliding parametrization. Model output indicates that where outlet glaciers and ice streams terminate into the ocean with either a small floating ice tongue or no floating tongue whatsoever, the proportion of basal melt to total melt (surface, basal and submarine melt) is 5-10% (e.g. Jakobshavn Isbrae; Daugaard-Jensen Glacier). This proportion is, however, negligible where larger ice tongues lose mass mostly by submarine melt (~1%; e.g. Nioghalvfjerdsfjorden Glacier). Modelled basal melt is highest immediately upvalley of the grounding line, with contributions typically up to 20-40% of the total melt for slippery beds and up to 30-70% for resistant beds. Additionally, modelled grounding line and calving front migration inland for all outlet glaciers and ice streams of hundreds of metres to several kilometres occurs. Including basal melt due to frictional heating in outlet glacier and ice stream models is important for more accurately modelling mass balance and subglacial meltwater flux, and therefore, more accurately modelling outlet glacier and ice stream dynamics and responses to future climate change.

  2. Mechanical and microstructural effect of partial melting of continental crust (United States)

    Fauconnier, Julien; Rosenberg, Claudio; Labrousse, Loïc; Stünitz, Holger; Jolivet, Laurent


    We present a set of experiments done in order to investigate the effect of melt on the strength and the microstructures of crustal rocks. Experiments were conducted in a Griggs-type apparatus with a mixture of 90 vol. % quartz and 10 vol. % biotite at 1 GPa confining pressure and a temperature between 700 and 900 °C. In some experiments, 5 vol. % or 10 vol. % of haplogranitic glass (HPG) powder was added to generate melt in the sample. Above the glass temperature transition (GTT), which occurs at 780 °C, HPG viscosity is 4 orders of magnitude lower than that of quartz and thus the sample strength and microstructures should be similar to those of partially molten sample. We performed a comparative study, in which samples were deformed without melt and without HPG, with HPG, but below the GTT, with HPG above the GTT, and finally with melt generated from biotite breakdown reactions. Samples with HPG above GTT and melt from biotite breakdown have the same microstructures and strength. Our data show that melt has two major consequences on the deformation of quartz-biotite aggregates : (1) while deformation is localized through a network of shear bands in experiments without melt and quartz is deformed by dislocation creep, there is no localization of the deformation with HPG or melt and the sample deformed by melt enhanced grain boundary sliding (2) melt reduces the strength of the sample but this weakening is lower than previously suggested if the long term resistance of the samples ( γ > 2.5 ) instead of peak resistance is taken into account.

  3. Polymer-organoclay nanocomposites by melt processing (United States)

    Cui, Lili


    Polymer-layered silicate nanocomposites based on a variety of polymer matrices and several organoclays were prepared by melt processing. A detailed characterization of the thermal degradation of several commercial and experimental organoclays often used to form polymer nanocomposites was reported. The surfactant type, loading, and purification level of organoclay significantly affect their thermal stability; however, broadly speaking, the results suggest that these differences in thermal stability do not appear to have much effect on the morphology and properties of the nanocomposites formed from them. It seems that the thermal stability of organoclays is not the key factor in organoclay exfoliation in melt processed polymer nanocomposites, since the exfoliation/dispersion process may have been completed on a time scale before the degradation of surfactant progresses to a detrimental level. Polymer nanocomposites have been made from a variety of polymers; however, few matrices have demonstrated the ability to readily exfoliate the organoclay as well as nylon 6, especially for highly hydrophobic materials like polyolefins. Hence, a significant part of this research work was devoted to explore various routes to improve polyolefin-organoclay interactions, and thus, organoclay exfoliation in these systems. Amine grafted polypropylenes and a conventionally used maleic anhydride grafted polypropylene were used as compatibilizers for polypropylene based nanocomposites to improve the organoclay exfoliation. A series of ethylene vinyl acetate copolymers, the polarity of which can be adjusted by varying their vinyl acetate contents, based nanocomposites were prepared as the model system to address the relationship between the polarity of the polymers and their preferences over various organoclay structures. Attempts were made to explore the effect of degree of neutralization of acid groups in ionomers on the morphology and properties of nanocomposites, and it seems that the

  4. Bubble removal and sand dissolution in an electrically heated glass melting channel with defined melt flow examined by mathematical modelling

    Czech Academy of Sciences Publication Activity Database

    Hrbek, L.; Kocourková, P.; Jebavá, Marcela; Cincibusová, P.; Němec, Lubomír


    Roč. 456, JAN 15 (2017), s. 101-113 ISSN 0022-3093 Institutional support: RVO:67985891 Keywords : glass melt flow * mathematical modelling * energy distribution * space utilization * melting performance Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 2.124, year: 2016

  5. Melt volume flow rate and melt flow rate of kenaf fibre reinforced Floreon/magnesium hydroxide biocomposites. (United States)

    Lee, C H; Sapuan, S M; Lee, J H; Hassan, M R


    A study of the melt volume flow rate (MVR) and the melt flow rate (MFR) of kenaf fibre (KF) reinforced Floreon (FLO) and magnesium hydroxide (MH) biocomposites under different temperatures (160-180 °C) and weight loadings (2.16, 5, 10 kg) is presented in this paper. FLO has the lowest values of MFR and MVR. The increment of the melt flow properties (MVR and MFR) has been found for KF or MH insertion due to the hydrolytic degradation of the polylactic acid in FLO. Deterioration of the entanglement density at high temperature, shear thinning and wall slip velocity were the possible causes for the higher melt flow properties. Increasing the KF loadings caused the higher melt flow properties while the higher MH contents created stronger bonding for higher macromolecular chain flow resistance, hence lower melt flow properties were recorded. However, the complicated melt flow behaviour of the KF reinforced FLO/MH biocomposites was found in this study. The high probability of KF-KF and KF-MH collisions was expected and there were more collisions for higher fibre and filler loading causing lower melt flow properties.

  6. Channelling of Melt Above Plumes and Beneath MORs (United States)

    Mueller, K.; Schmeling, H.


    We investigate melt transportation in partially molten rocks under different stress fields above the head of a mantle plume or beneath a spreading mid-oceanic ridge under hydrous and anhydrous conditions. We model such aggregates with the 2D-FD code FDCON [1] by means of a porous deformable matrix with melt under the influence of a given stress field to clarify the following key questions: Could channeling occur in a matrix containing a random melt distribution under a given stress field? Which orientation does it take? Is it possible to achieve a focusing of melt towards a MOR (dykes)? Does applying simple or pure shear to the matrix result in a difference in the formation and orientation of channels? How does the channel instability evolve during finite simple shear? In a deforming partially molten aggregate, weakening of the solid matrix due to the presence of melt creates an instability in which melt is localized by the following mechanism: regions of initially high melt fraction are areas of low viscosity and pressure, so that melt is drawn into these regions from higher pressure surroundings. This further enhances the melt weakening, producing a self-excited localization mechanism [2]. The channeling developing in models with a random melt distribution of 3.5 +/- 0.5% shows that melt is accumulated preferably in inclined channels. For both, simple as well as pure shear, the growth rate is highest for an orientation parallel to the direction of the maximum compressive stress and proportional to applied stress and the reverse of the Melt Retention Number. This also confirms the theoretical growth rate found by Stevenson [2]. In our isothermal models we found that the influence of water reduces the growth rate, in contrast to non-isothermal models of Hall [3]. Under simple shear melt channels evolve from an irregular melt distribution at angles of 45 degrees to the direction of shear. Upon further straining they rotate out of the orientation of maximum growth

  7. Chemical zonation in olivine-hosted melt inclusions (United States)

    Newcombe, M. E.; Fabbrizio, A.; Zhang, Youxue; Ma, C.; Le Voyer, M.; Guan, Y.; Eiler, J. M.; Saal, A. E.; Stolper, E. M.


    Significant zonation in major, minor, trace, and volatile elements has been documented in naturally glassy olivine-hosted melt inclusions from the Siqueiros Fracture Zone and the Galapagos Islands. Components with a higher concentration in the host olivine than in the melt (e.g., MgO, FeO, Cr2O3, and MnO) are depleted at the edges of the zoned melt inclusions relative to their centers, whereas except for CaO, H2O, and F, components with a lower concentration in the host olivine than in the melt (e.g., Al2O3, SiO2, Na2O, K2O, TiO2, S, and Cl) are enriched near the melt inclusion edges. This zonation is due to formation of an olivine-depleted boundary layer in the adjacent melt in response to cooling and crystallization of olivine on the walls of the melt inclusions, concurrent with diffusive propagation of the boundary layer toward the inclusion center. Concentration profiles of some components in the melt inclusions exhibit multicomponent diffusion effects such as uphill diffusion (CaO, FeO) or slowing of the diffusion of typically rapidly diffusing components (Na2O, K2O) by coupling to slow diffusing components such as SiO2 and Al2O3. Concentrations of H2O and F decrease toward the edges of some of the Siqueiros melt inclusions, suggesting either that these components have been lost from the inclusions into the host olivine late in their cooling histories and/or that these components are exhibiting multicomponent diffusion effects. A model has been developed of the time-dependent evolution of MgO concentration profiles in melt inclusions due to simultaneous depletion of MgO at the inclusion walls due to olivine growth and diffusion of MgO in the melt inclusions in response to this depletion. Observed concentration profiles were fit to this model to constrain their thermal histories. Cooling rates determined by a single-stage linear cooling model are 150-13,000 °C h-1 from the liquidus down to ~1,000 °C, consistent with previously determined cooling rates for

  8. Glass Furnace Combustion and Melting Research Facility.

    Energy Technology Data Exchange (ETDEWEB)

    Connors, John J. (PPG Industries, Inc., Pittsburgh, PA); McConnell, John F. (JFM Consulting, Inc., Pittsburgh, PA); Henry, Vincent I. (Henry Technology Solutions, LLC, Ann Arbor, MI); MacDonald, Blake A.; Gallagher, Robert J.; Field, William B. (Lilja Corp., Livermore, CA); Walsh, Peter M.; Simmons, Michael C. (Lilja Corp., Livermore, CA); Adams, Michael E. (Lilja Corp., Rochester, NY); Leadbetter, James M. (A.C. Leadbetter and Son, Inc., Toledo, OH); Tomasewski, Jack W. (A.C. Leadbetter and Son, Inc., Toledo, OH); Operacz, Walter J. (A.C. Leadbetter and Son, Inc., Toledo, OH); Houf, William G.; Davis, James W. (A.C. Leadbetter and Son, Inc., Toledo, OH); Marvin, Bart G. (A.C. Leadbetter and Son, Inc., Toledo, OH); Gunner, Bruce E. (A.C. Leadbetter and Son, Inc., Toledo, OH); Farrell, Rick G. (A.C. Leadbetter and Son, Inc., Toledo, OH); Bivins, David P. (PPG Industries, Inc., Pittsburgh, PA); Curtis, Warren (PPG Industries, Inc., Pittsburgh, PA); Harris, James E. (PPG Industries, Inc., Pittsburgh, PA)


    The need for a Combustion and Melting Research Facility focused on the solution of glass manufacturing problems common to all segments of the glass industry was given high priority in the earliest version of the Glass Industry Technology Roadmap (Eisenhauer et al., 1997). Visteon Glass Systems and, later, PPG Industries proposed to meet this requirement, in partnership with the DOE/OIT Glass Program and Sandia National Laboratories, by designing and building a research furnace equipped with state-of-the-art diagnostics in the DOE Combustion Research Facility located at the Sandia site in Livermore, CA. Input on the configuration and objectives of the facility was sought from the entire industry by a variety of routes: (1) through a survey distributed to industry leaders by GMIC, (2) by conducting an open workshop following the OIT Glass Industry Project Review in September 1999, (3) from discussions with numerous glass engineers, scientists, and executives, and (4) during visits to glass manufacturing plants and research centers. The recommendations from industry were that the melting tank be made large enough to reproduce the essential processes and features of industrial furnaces yet flexible enough to be operated in as many as possible of the configurations found in industry as well as in ways never before attempted in practice. Realization of these objectives, while still providing access to the glass bath and combustion space for optical diagnostics and measurements using conventional probes, was the principal challenge in the development of the tank furnace design. The present report describes a facility having the requirements identified as important by members of the glass industry and equipped to do the work that the industry recommended should be the focus of research. The intent is that the laboratory would be available to U.S. glass manufacturers for collaboration with Sandia scientists and engineers on both precompetitive basic research and the

  9. Why Permafrost Is Thawing, Not Melting (United States)

    Grosse, Guido; Romanovsky, Vladimir; Nelson, Frederick E.; Brown, Jerry; Lewkowicz, Antoni G.


    As global climate change is becoming an increasingly important political and social issue, it is essential for the cryospheric and global change research communities to speak with a single voice when using basic terminology to communicate research results and describe underlying physical processes. Experienced science communicators have highlighted the importance of using the correct terms to communicate research results to the media and general public [e.g., Akasofu, 2008; Hassol, 2008]. The consequences of scientists using improper terminology are at best oversimplification, but they more likely involve misunderstandings of the facts by the public. A glaring example of scientifically incorrect terminology appearing frequently in scientific and public communication relates to reports on the degradation of permafrost. Numerous research papers have appeared in recent years, broadly echoed in the news media, describing the “melting of permafrost,” its effects in the Arctic, and its feedbacks on climate through the carbon cycle. Although permafrost researchers have attempted to distinguish between the appropriate term “permafrost thawing” and the erroneous “permafrost melting” [e.g., van Everdingen, 2005; French, 2002], the latter is still used widely. A Web-based search using the phrase “permafrost melting” reveals hundreds of occurrences, many from highly regarded news and scientific organizations, including Reuters, New Scientist, ABC, The Guardian, Discovery News, Smithsonian magazine, the National Science Foundation, and others.

  10. Featured Image: Experimental Simulation of Melting Meteoroids (United States)

    Kohler, Susanna


    Ever wonder what experimental astronomy looks like? Some days, it looks like this piece of rock in a wind tunnel (click for a betterlook!). In this photo, a piece of agrillite (a terrestrial rock) is exposed to conditions in a plasma wind tunnel as a team of scientists led by Stefan Loehle (Stuttgart University) simulate what happens to a meteoroid as it hurtles through Earths atmosphere. With these experiments, the scientists hope to better understand meteoroid ablation the process by which meteoroids are heated, melt, and evaporateas they pass through our atmosphere so that we can learn more from the meteorite fragments that make it to the ground. In the scientists experiment, the rock samples were exposed to plasma flow until they disintegrated, and this process was simultaneously studied via photography, video, high-speed imaging, thermography, and Echelle emission spectroscopy. To find out what the team learned from these experiments, you can check out the original article below.CitationStefan Loehle et al 2017 ApJ 837 112. doi:10.3847/1538-4357/aa5cb5

  11. Melt extrusion with poorly soluble drugs. (United States)

    Shah, Sejal; Maddineni, Sindhuri; Lu, Jiannan; Repka, Michael A


    Melt extrusion (ME) over recent years has found widespread application as a viable drug delivery option in the drug development process. ME applications include taste masking, solid-state stability enhancement, sustained drug release and solubility enhancement. While ME can result in amorphous or crystalline solid dispersions depending upon several factors, solubility enhancement applications are centered around generating amorphous dispersions, primarily because of the free energy benefits they offer. In line with the purview of the current issue, this review assesses the utility of ME as a means of enhancing solubility of poorly soluble drugs/chemicals. The review describes major processing aspects of ME technology, definition and understanding of the amorphous state, manufacturability, analytical characterization and biopharmaceutical performance testing to better understand the strength and weakness of this formulation strategy for poorly soluble drugs. In addition, this paper highlights the potential advantages of employing a fusion of techniques, including pharmaceutical co-crystals and spray drying/solvent evaporation, facilitating the design of formulations of API exhibiting specific physico-chemical characteristics. Finally, the review presents some successful case studies of commercialized ME based products. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Computational fluid dynamics simulations of a glass melting furnace

    Energy Technology Data Exchange (ETDEWEB)

    Egelja, A.; Lottes, S. A.


    The glass production industry is one of the major users of natural gas in the US, and approximately 75% of the energy produced from natural gas is used in the melting process. Industrial scale glass melting furnaces are large devices, typically 5 or more meters wide, and twice as long. To achieve efficient heat transfer to the glass melt below, the natural gas flame must extend over a large portion of the glass melt. Therefore modern high efficiency burners are not used in these furnaces. The natural gas is injected as a jet, and a jet flame forms in the flow of air entering the furnace. In most current glass furnaces the energy required to melt the batch feed stock is about twice the theoretical requirement. An improved understanding of the heat transfer and two phase flow processes in the glass melt and solid batch mix offers a substantial opportunity for energy savings and consequent emission reductions. The batch coverage form and the heat flux distribution have a strong influence on the glass flow pattern. This flow pattern determines to a significant extent the melting rate and the quality of glass.

  13. Transition in the fractal geometry of Arctic melt ponds

    Directory of Open Access Journals (Sweden)

    C. Hohenegger


    Full Text Available During the Arctic melt season, the sea ice surface undergoes a remarkable transformation from vast expanses of snow covered ice to complex mosaics of ice and melt ponds. Sea ice albedo, a key parameter in climate modeling, is determined by the complex evolution of melt pond configurations. In fact, ice–albedo feedback has played a major role in the recent declines of the summer Arctic sea ice pack. However, understanding melt pond evolution remains a significant challenge to improving climate projections. By analyzing area–perimeter data from hundreds of thousands of melt ponds, we find here an unexpected separation of scales, where pond fractal dimension D transitions from 1 to 2 around a critical length scale of 100 m2 in area. Pond complexity increases rapidly through the transition as smaller ponds coalesce to form large connected regions, and reaches a maximum for ponds larger than 1000 m2, whose boundaries resemble space-filling curves, with D ≈ 2. These universal features of Arctic melt pond evolution are similar to phase transitions in statistical physics. The results impact sea ice albedo, the transmitted radiation fields under melting sea ice, the heat balance of sea ice and the upper ocean, and biological productivity such as under ice phytoplankton blooms.

  14. Seismic Evidence for Possible Slab Melting from Strong Scattering Waves

    Directory of Open Access Journals (Sweden)

    Cheng-Horng Lin


    Full Text Available Slab melting in young and hot subduction zones has been studied using geochemical observations and thermal modelling, but there are few data from seismic studies to confirm slab melting. Also the detailed geometry in the deep part of the melting slab is often ambiguous in that the intraslab earthquakes within the Wadati-Benioff zone are only limited to shallower depths. To improve our understanding of both the seismic features and geometry found in a young and hot subducted slab, I analyzed anomalous moonquake-like seismograms that were generated by an intermediate-depth earthquake recorded in central Japan. For this study, possible reflected (or scattered sources were examined using detailed analyses of particle motions and a grid search for travel-time differences between the direct and later P-waves. The results show that using strong seismic scattering, slab melting is likely occurring in the deeper, flexing part of the subducted Philippine Sea plate. Because the subducted Philippine Sea plate in central Japan is young and therefore hot, partial melting might have taken place to produce abundant melting spots in the subducted slab. Melting spots, identified as ¡§bright spots,¡¨ could efficiently reflect or scatter seismic energy and generate many later phases with large amplitudes.

  15. Primary carbonatite melt from deeply subducted oceanic crust

    Energy Technology Data Exchange (ETDEWEB)

    Walter, M.J.; Bulanova, G.P.; Armstrong, L.S.; Keshav, S.; Blundy, J.D.; Gudfinnesson, G.; Lord, O.T.; Lennie, A.R.; Clark, S.M.; Smith, C.B.; Gobbo, L.


    Partial melting in the Earth's mantle plays an important part in generating the geochemical and isotopic diversity observed in volcanic rocks at the surface. Identifying the composition of these primary melts in the mantle is crucial for establishing links between mantle geochemical 'reservoirs' and fundamental geodynamic processes. Mineral inclusions in natural diamonds have provided a unique window into such deep mantle processes. Here they provide exper8imental and geochemical evidence that silicate mineral inclusions in diamonds from Juina, Brazil, crystallized from primary and evolved carbonatite melts in the mantle transition zone and deep upper mantle. The incompatible trace element abundances calculated for a melt coexisting with a calcium-titanium-silicate perovskite inclusion indicate deep melting of carbonated oceanic crust, probably at transition-zone depths. Further to perovskite, calcic-majorite garnet inclusions record crystallization in the deep upper mantle from an evolved melt that closely resembles estimates of primitive carbonatite on the basis of volcanic rocks. Small-degree melts of subducted crust can be viewed as agents of chemical mass-transfer in the upper mantle and transition zone, leaving a chemical imprint of ocean crust that can possibly endure for billions of years.

  16. Melting temperature of uranium - plutonium mixed oxide fuel

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Tetsuya; Hirosawa, Takashi [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center


    Fuel melting temperature is one of the major thermodynamical properties that is used for determining the design criteria on fuel temperature during irradiation in FBR. In general, it is necessary to evaluate the correlation of fuel melting temperature to confirm that the fuel temperature must be kept below the fuel melting temperature during irradiation at any conditions. The correlations of the melting temperature of uranium-plutonium mixed oxide (MOX) fuel, typical FBR fuel, used to be estimated and formulized based on the measured values reported in 1960`s and has been applied to the design. At present, some experiments have been accumulated with improved experimental techniques. And it reveals that the recent measured melting temperatures does not agree well to the data reported in 1960`s and that some of the 1960`s data should be modified by taking into account of the recent measurements. In this study, the experience of melting temperature up to now are summarized and evaluated in order to make the fuel pin design more reliable. The effect of plutonium content, oxygen to metal ratio and burnup on MOX fuel melting was examined based on the recent data under the UO{sub 2} - PuO{sub 2} - PuO{sub 1.61} ideal solution model, and then formulized. (J.P.N.)

  17. Experiments on melt droplets falling into a water pool

    Energy Technology Data Exchange (ETDEWEB)

    Okkonen, T.; Sehgal, B.R. [Royal Inst. of Tech., Stockholm (Sweden). Div. of Nuclear Power Safety


    This paper presents experimental data and analysis related to melt droplets falling into a water pool. A binary CaO-B{sub 2}O{sub 3} melt mixture is used to study the influence of melt superheat and water subcooling on droplet deformation and fragmentation. For the conditions studied (We {<=} 1000), the surface tension of the melt droplet and the film boiling stability greatly affect the fragmentation behaviour. If the melt temperature is between the liquidus and solidus point (mushy zone) or if the film boiling is stable due to a relatively low subcooling, the droplet deformation and fragmentation are mitigated. This behaviour can be related to the effective Weber number (We) of the melt droplet upon entry into the water pool. Similar phenomena can be expected also for interactions of corium (UO{sub 2}-ZrO{sub 2}) and water, which are characterized by a potentially fast transformation of melt into the mushy zone and by particularly stable film boiling. (author)

  18. Calving on tidewater glaciers amplified by submarine frontal melting

    CERN Document Server

    O'Leary, Martin


    While it has been shown repeatedly that ocean conditions exhibit an important control on the behaviour of grounded tidewater glaciers, modelling studies have focused largely on the effects of basal and surface melting. Here, a finite-element model of stresses near the front of a tidewater glacier is used to investigate the effects of frontal melting on calving, independently of the calving criterion used. Applications of the stress model to idealized scenarios reveal that undercutting of the ice front due to frontal melting can drive calving at up to ten times the mean melt rate. Factors which cause increased frontal melt-driven calving include a strong thermal gradient in the ice, and a concentration of frontal melt at the base of the glacier. These properties are typical of both Arctic and Antarctic tidewater glaciers. The finding that frontal melt near the base is a strong driver of calving leads to the conclusion that water temperatures near the bed of the glacier are critically important to the glacier f...

  19. Research of Snow-Melt Process on a Heated Platform

    Directory of Open Access Journals (Sweden)

    Vasilyev Gregory P.


    Full Text Available The article has shown the results of experimental researches of the snow-melt on a heated platform-near building heat-pump snow-melt platform. The near-building (yard heat pump platforms for snow melt with the area up to 10-15 m2 are a basis of the new ideology of organization of the street cleaning of Moscow from snow in the winter period which supposes the creation in the megalopolis of the «distributed snow-melt system» (DSMS using non-traditional energy sources. The results of natural experimental researches are presented for the estimation of efficiency of application in the climatic conditions of Moscow of heat pumps in the snow-melt systems. The researches were conducted on a model sample of the near-building heat-pump platform which uses the low-potential thermal energy of atmospheric air. The conducted researches have confirmed experimentally in the natural conditions the possibility and efficiency of using of atmospheric air as a source of low-potential thermal energy for evaporation of the snow-melt heat pump systems in the climatic conditions of Moscow. The results of laboratory researches of snow-melt process on a heated horizontal platform are presented. The researches have revealed a considerable dependence of efficiency of the snow-melt process on its piling mode (form-building and the organization of the process of its piling mode (form-building and the organization of the process of its (snow mass heat exchange with the surface of the heated platform. In the process of researches the effect of formation of an «ice dome» under the melting snow mass called by the fact that in case of the thickness of snow loaded on the platform more than 10 cm the water formed from the melting snow while the contact with the heating surface don’t spread on it, but soaks into the snow, wets it due to capillary effect and freezes. The formation of «ice dome» leads to a sharp increase of snow-melt period and decreases the operating

  20. Energy Efficient Glass Melting - The Next Generation Melter

    Energy Technology Data Exchange (ETDEWEB)

    David Rue


    The objective of this project is to demonstrate a high intensity glass melter, based on the submerged combustion melting technology. This melter will serve as the melting and homogenization section of a segmented, lower-capital cost, energy-efficient Next Generation Glass Melting System (NGMS). After this project, the melter will be ready to move toward commercial trials for some glasses needing little refining (fiberglass, etc.). For other glasses, a second project Phase or glass industry research is anticipated to develop the fining stage of the NGMS process.

  1. Tailoring hierarchical structures in selective laser melted materials (United States)

    Olsen, Jon; Zhou, Xin; Zhong, Yuan; Liu, Leifeng; Wang, Dianzheng; Yu, Chenfan; Wang, Yafei; Li, Kailun; Xing, Leilei; Ma, Jing; Cui, Daqing; Liu, Wei; Shen, Zhijian


    With selective laser melting the potential to manufacture a wide variety of geometries from different materials has presented itself. Interest in this technology keeps growing every year, and with that growth a deeper understanding of the process and resulting materials is urgently needed. In this paper we present a short overview of the structural elements that appear during selective laser melting, and explain how to tailor them to achieve specific structures and material properties. Melt-pools, texture and grains, subgrain cells, and inclusions are the elements discussed herein, and tailoring of these elements can have effects on density, and corrosion resistance, as well as mechanical properties in general.

  2. 3D Compressible Melt Transport with Adaptive Mesh Refinement (United States)

    Dannberg, Juliane; Heister, Timo


    Melt generation and migration have been the subject of numerous investigations, but their typical time and length-scales are vastly different from mantle convection, which makes it difficult to study these processes in a unified framework. The equations that describe coupled Stokes-Darcy flow have been derived a long time ago and they have been successfully implemented and applied in numerical models (Keller et al., 2013). However, modelling magma dynamics poses the challenge of highly non-linear and spatially variable material properties, in particular the viscosity. Applying adaptive mesh refinement to this type of problems is particularly advantageous, as the resolution can be increased in mesh cells where melt is present and viscosity gradients are high, whereas a lower resolution is sufficient in regions without melt. In addition, previous models neglect the compressibility of both the solid and the fluid phase. However, experiments have shown that the melt density change from the depth of melt generation to the surface leads to a volume increase of up to 20%. Considering these volume changes in both phases also ensures self-consistency of models that strive to link melt generation to processes in the deeper mantle, where the compressibility of the solid phase becomes more important. We describe our extension of the finite-element mantle convection code ASPECT (Kronbichler et al., 2012) that allows for solving additional equations describing the behaviour of silicate melt percolating through and interacting with a viscously deforming host rock. We use the original compressible formulation of the McKenzie equations, augmented by an equation for the conservation of energy. This approach includes both melt migration and melt generation with the accompanying latent heat effects. We evaluate the functionality and potential of this method using a series of simple model setups and benchmarks, comparing results of the compressible and incompressible formulation and

  3. Impact melts of the Orientale and Imbrium basins (United States)

    Spudis, P.


    The largest impacts on the Moon - those that form the multi-ring basins - can produce thousands of cubic kilometers of melt. This melt is largely concentrated inside the basin, although some is ejected along with the clastic materials that make up the continuous ejecta blanket that surrounds basins. Impact melt is important because it contains information on the crustal target for basins as well as being the most suitable material to date basin-forming events. New geological mapping of the lunar Orientale and Imbrium impact basins has identified likely deposits of both types of impact melt. The Orientale basin (930 km diameter) is well preserved and only partly flooded by later mare basalts. The basin interior melt sheet is represented by the Maunder Formation, a smooth-to-cracked surface unit that covers the innermost basin ring. Study of the composition of the Maunder Fm. as determined by remote sensing shows that it is remarkably uniform both laterally and vertically, with no evidence of differentiation. Surrounding the basin are vast ejecta deposits, most of which are probably made up of clastic material. However, a few isolated deposits contained within basin secondary craters appear melt-like, with low albedo and a cracked surface texture (e.g., Struve L, 20.7° N, 76° W). The larger (1160 km diameter) and slightly older Imbrium basin is mostly filled with mare basalt lava, concealing most of the basin floor. The Imbrium basin exterior shows isolated deposits of melt-like material in several locales, including on the floors of the craters Parrot C (18.5° S, 1.2° E) and Murchison (5.1° N, 0.1° W). These deposits have low albedo and show cracked surfaces, with evidence of ground flow after deposition. Their composition is remarkably similar to highland basaltic impact melts found in the Apollo collections, such as the Apollo 17 impact melts. These features offer the possibility of examining basin impact melt at distances far removed from basin interiors or

  4. Viscosity of Heterogeneous Silicate Melts: A Non-Newtonian Model (United States)

    Liu, Zhuangzhuang; Blanpain, Bart; Guo, Muxing


    The recently published viscosity data of heterogeneous silicate melts with well-documented structure and experimental conditions are critically re-analyzed and tabulated. By using these data, a non-Newtonian viscosity model incorporating solid fraction, solid shape, and shear rate is proposed on the basis of the power-law equation. This model allows calculating the viscosity of the heterogeneous silicate melts with solid fraction up to 34 vol pct. The error between the calculated and measured data is evaluated to be 32 pct, which is acceptable considering the large error in viscosity measurement of the completely liquid silicate melt.

  5. Slab melting and magma formation beneath the southern Cascade arc (United States)

    Walowski, Kristina J.; Wallace, Paul J.; Clynne, Michael A.; Rasmussen, D.J.; Weis, D.


    The processes that drive magma formation beneath the Cascade arc and other warm-slab subduction zones have been debated because young oceanic crust is predicted to largely dehydrate beneath the forearc during subduction. In addition, geochemical variability along strike in the Cascades has led to contrasting interpretations about the role of volatiles in magma generation. Here, we focus on the Lassen segment of the Cascade arc, where previous work has demonstrated across-arc geochemical variations related to subduction enrichment, and H-isotope data suggest that H2O in basaltic magmas is derived from the final breakdown of chlorite in the mantle portion of the slab. We use naturally glassy, olivine-hosted melt inclusions (MI) from the tephra deposits of eight primitive (MgO>7 wt%) basaltic cinder cones to quantify the pre-eruptive volatile contents of mantle-derived melts in this region. The melt inclusions have B concentrations and isotope ratios that are similar to mid-ocean ridge basalt (MORB), suggesting extensive dehydration of the downgoing plate prior to reaching sub-arc depths and little input of slab-derived B into the mantle wedge. However, correlations of volatile and trace element ratios (H2O/Ce, Cl/Nb, Sr/Nd) in the melt inclusions demonstrate that geochemical variability is the result of variable addition of a hydrous subduction component to the mantle wedge. Furthermore, correlations between subduction component tracers and radiogenic isotope ratios show that the subduction component has less radiogenic Sr and Pb than the Lassen sub-arc mantle, which can be explained by melting of subducted Gorda MORB beneath the arc. Agreement between pMELTS melting models and melt inclusion volatile, major, and trace element data suggests that hydrous slab melt addition to the mantle wedge can produce the range in primitive compositions erupted in the Lassen region. Our results provide further evidence that chlorite-derived fluids from the mantle portion of the

  6. A scaling law for impact-induced melt volume (United States)

    Nakajima, M.; Rubie, D. C.; Melosh, H. J.; Jacobson, S. A.; Golabek, G. J.; Nimmo, F.; Morbidelli, A.


    During the late stages of planetary accretion, protoplanets experience a number of giant impacts and extensive mantle melting. Understanding the melt volume is important because it determines elemental abundances in the planetary core and mantle. Here, we develop a scaling law for melt volume based on giant impact simulations using smoothed particle hydrodynamics (SPH) as a function of the total mass, impact angle, impact velocity, and impactor-to-total mass ratio. We find that the law is most sensitive to the impact velocity and angle.

  7. Arctic melt ponds and energy balance in the climate system (United States)

    Sudakov, Ivan


    Elements of Earth's cryosphere, such as the summer Arctic sea ice pack, are melting at precipitous rates that have far outpaced the projections of large scale climate models. Understanding key processes, such as the evolution of melt ponds that form atop Arctic sea ice and control its optical properties, is crucial to improving climate projections. These types of critical phenomena in the cryosphere are of increasing interest as the climate system warms, and are crucial for predicting its stability. In this paper, we consider how geometrical properties of melt ponds can influence ice-albedo feedback and how it can influence the equilibria in the energy balance of the planet.

  8. Volatile loss during homogenization of lunar melt inclusions (United States)

    Ni, Peng; Zhang, Youxue; Guan, Yunbin


    Volatile abundances in lunar mantle are critical factors to consider for constraining the model of Moon formation. Recently, the earlier understanding of a ;dry; Moon has shifted to a fairly ;wet; Moon due to the detection of measurable amount of H2O in lunar volcanic glass beads, mineral grains, and olivine-hosted melt inclusions. The ongoing debate on a ;dry; or ;wet; Moon requires further studies on lunar melt inclusions to obtain a broader understanding of volatile abundances in the lunar mantle. One important uncertainty for lunar melt inclusion studies, however, is whether the homogenization of melt inclusions would cause volatile loss. In this study, a series of homogenization experiments were conducted on olivine-hosted melt inclusions from the sample 74220 to evaluate the possible loss of volatiles during homogenization of lunar melt inclusions. Our results suggest that significant loss of H2O could occur even during minutes of homogenization, while F, Cl and S in the inclusions remain unaffected. We model the trend of H2O loss in homogenized melt inclusions by a diffusive hydrogen loss model. The model can reconcile the observed experimental data well, with a best-fit H diffusivity in accordance with diffusion data explained by the ;slow; mechanism for hydrogen diffusion in olivine. Surprisingly, no significant effect for the low oxygen fugacity on the Moon is observed on the diffusive loss of hydrogen during homogenization of lunar melt inclusions under reducing conditions. Our experimental and modeling results show that diffusive H loss is negligible for melt inclusions of >25 μm radius. As our results mitigate the concern of H2O loss during homogenization for crystalline lunar melt inclusions, we found that H2O/Ce ratios in melt inclusions from different lunar samples vary with degree of crystallization. Such a variation is more likely due to H2O loss on the lunar surface, while heterogeneity in their lunar mantle source is also a possibility. A

  9. Process observation in selective laser melting (SLM) (United States)

    Thombansen, U.; Abels, P.


    In additive manufacturing, the quality of products can be traced by observation of process variables track by track and layer by layer. The stacking of layer wise information can be used to consolidate the entire build up history of a product thus leading to a truly three dimensional quality histogram. The first step that is necessary to achieve such a quality histogram is the acquisition of process measurands that are related to product quality. Successful acquisition of measurements for thermal radiation has been reported in several publications. The authors of such papers report the detection of changes in boundary conditions of the process by observing the thermal radiation of the process. It has been reported that for example a change in laser power has an influence on the thermal emission and that different readings are received for processing a thin powder layer on a solid work piece compared to scanning pure powder in the situation of an overhang structure. A correlation to the underlying reason for the increase in thermal radiation however is mostly related to the experimental setup rather than to in process measurements. This report demonstrates an approach of acquiring and combining synchronous measurements of different physical properties of the process. The coaxial observation system used in the experiments enables the synchronous acquisition of measurements of the thermal emission and the acquisition of images that visualize the surface of the powder bed in the vicinity of the interaction zone. The images are used to monitor the motion of powder particles as they are influenced by the melting process. This amount of particle motion is then correlated to areas of different powder thicknesses. The combination of this information with excessive readings in thermal emission classifies the event to be a situation of noncritical deviation of thermal emission. In fact, this combination of extracted features establishes a first key criterion for an

  10. Melt Fragmentation Characteristics of Metal Fuel with Melt Injection Mass during Initiating Phase of SFR Severe Accidents

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Hyo; Lee, Min Ho; Bang, In Cheol [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of); Jerng, Dong Wook [Chung-Ang Univ., Seoul (Korea, Republic of)


    The PGSFR has adopted the metal fuel for its inherent safety under severe accident conditions. However, this fuel type is not demonstrated clearly yet under the such severe accident conditions. Additional experiments for examining these issues should be performed to support its licensing activities. Under initiating phase of hypothetic core disruptive accident (HCDA) conditions, the molten metal could be better dispersed and fragmented into the coolant channel than in the case of using oxide fuel. This safety strategy provides negative reactivity driven by a good dispersion of melt. If the coolant channel does not sufficient coolability, the severe recriticality would occur within the core region. Thus, it is important to examine the extent of melt fragmentation. The fragmentation behaviors of melt are closely related to a formation of debris shape. Once the debris shape is formed through the fragmentation process, its coolability is determined by the porosity or thermal conductivity of the melt. There were very limited studies for transient irradiation experiments of the metal fuel. These studies were performed by Transient Reactor Test Facility (TREAT) M series tests in U.S. The TREAT M series tests provided basic information of metal fuel performance under transient conditions. The effect of melt injection mass was evaluated in terms of the fragmentation behaviors of melt. These behaviors seemed to be similar between single-pin and multi-pins failure condition. However, the more melt was agglomerated in case of multi-pins failure.

  11. The effect of low temperature thermal annealing on the magnetic properties of Heusler Ni–Mn–Sn melt-spun ribbons

    Energy Technology Data Exchange (ETDEWEB)

    Llamazares, J.L. Sánchez, E-mail: [Instituto Potosino de Investigación Científica y Tecnológica A.C., Camino a la Presa San José 2055, Col. Lomas 4a, San Luis Potosí S.L.P. 78216, México (Mexico); Quintana-Nedelcos, A. [Instituto Potosino de Investigación Científica y Tecnológica A.C., Camino a la Presa San José 2055, Col. Lomas 4a, San Luis Potosí S.L.P. 78216, México (Mexico); Marmara University, Department of Material and Metalurgy Eng., Kadıkoy 34777, Istanbul (Turkey); Ríos-Jara, D. [Instituto Potosino de Investigación Científica y Tecnológica A.C., Camino a la Presa San José 2055, Col. Lomas 4a, San Luis Potosí S.L.P. 78216, México (Mexico); Sánchez-Valdes, C.F. [Instituto Potosino de Investigación Científica y Tecnológica A.C., Camino a la Presa San José 2055, Col. Lomas 4a, San Luis Potosí S.L.P. 78216, México (Mexico); Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, AP 14, Ensenada 22860, Baja California, México (Mexico); and others


    We report the effect of low temperature vacuum annealing (823 K; 550 °C) on the elemental chemical composition, structural phase transition temperatures, phase structure, and magnetic properties of Ni{sub 50.6}Mn{sub 36.3}Sn{sub 13.1} as-solidified ribbons. Their elemental chemical composition, highly oriented columnar-like microstructure and single-phase character (L2{sub 1}-type crystal structure for austenite) remain unchanged after this low temperature annealing. Annealed ribbons show a reduction of interatomic distances which lead to a small change in the characteristic phase transition temperatures (~3–6 K) but to a significant rise of ~73 and 63% in the saturation magnetization of the martensite and austenite phases, respectively, that can be strictly ascribed to the strengthening of ferromagnetic interactions due to the change in interatomic distances. - Highlights: • We study the effect of low temperature annealing on Ni{sub 50.6}Mn{sub 36.3}Sn{sub 13.1} melt-spun ribbons. • Low temperature annealing preserves the crystal structure, composition and microstructure of the ribbons. • Low temperature annealing reduces the cell volume. • The strengthening of the ferromagnetic exchange interaction significant increases σ{sub S}.

  12. Surface Tension and Viscosity of SCN and SCN-acetone Alloys at Melting Points and Higher Temperatures Using Surface Light Scattering Spectrometer (United States)

    Tin, Padetha; deGroh, Henry C., III.


    Succinonitrile has been and is being used extensively in NASA's Microgravity Materials Science and Fluid Physics programs and as well as in several ground-based and microgravity studies including the Isothermal Dendritic Growth Experiment (IDGE). Succinonitrile (SCN) is useful as a model for the study of metal solidification, although it is an organic material, it has a BCC crystal structure and solidifies dendriticly like a metal. It is also transparent and has a low melting point (58.08 C). Previous measurements of succinonitrile (SCN) and alloys of succinonitrile and acetone surface tensions are extremely limited. Using the Surface Light Scattering technique we have determined non invasively, the surface tension and viscosity of SCN and SCN-Acetone Alloys at different temperatures. This relatively new and unique technique has several advantages over the classical methods such as, it is non invasive, has good accuracy and measures the surface tension and viscosity simultaneously. The accuracy of interfacial energy values obtained from this technique is better than 2% and viscosity about 10 %. Succinonitrile and succinonitrile-acetone alloys are well-established model materials with several essential physical properties accurately known - except the liquid/vapor surface tension at different elevated temperatures. We will be presenting the experimentally determined liquid/vapor surface energy and liquid viscosity of succinonitrile and succinonitrile-acetone alloys in the temperature range from their melting point to around 100 C using this non-invasive technique. We will also discuss about the measurement technique and new developments of the Surface Light Scattering Spectrometer.

  13. Primary Dendrite Arm Spacing and Trunk Diameter in Al-7-Weight-Percentage Si Alloy Directionally Solidified Aboard the International Space Station (United States)

    Ghods, M.; Tewari, S. N.; Lauer, M.; Poirier, D. R.; Grugel, R. N.


    Under a NASA-ESA collaborative research project, three Al-7-weight-percentage Si samples (MICAST-6, MICAST-7 and MICAST 2-12) were directionally solidified aboard the International Space Station to determine the effect of mitigating convection on the primary dendrite array. The samples were approximately 25 centimeters in length with a diameter of 7.8 millimeter-diameter cylinders that were machined from [100] oriented terrestrially grown dendritic Al-7Si samples and inserted into alumina ampoules within the Sample Cartridge Assembly (SCA) inserts of the Low Gradient Furnace (LGF). The feed rods were partially remelted in space and directionally solidified to effect the [100] dendrite-orientation. MICAST-6 was grown at 5 microns per second for 3.75 centimeters and then at 50 microns per second for its remaining 11.2 centimeters of its length. MICAST-7 was grown at 20 microns per second for 8.5 centimeters and then at 10 microns per second for 9 centimeters of its remaining length. MICAST2-12 was grown at 40 microns per second for 11 centimeters. The thermal gradient at the liquidus temperature varied from 22 to 14 degrees Kelvin per centimeter during growth of MICAST-6, from 26 to 24 degrees Kelvin per centimeter for MICAST-7 and from 33 to 31 degrees Kelvin per centimeter for MICAST2-12. Microstructures on the transverse sections along the sample length were analyzed to determine nearest-neighbor spacing of the primary dendrite arms and trunk diameters of the primary dendrite-arrays. This was done along the lengths where steady-state growth prevailed and also during the transients associated with the speed-changes. The observed nearest-neighbor spacings during steady-state growth of the MICAST samples show a very good agreement with predictions from the Hunt-Lu primary spacing model for diffusion controlled growth. The observed primary dendrite trunk diameters during steady-state growth of these samples also agree with predictions from a coarsening-based model

  14. Assessment for Melting Temperature Measurement of Nucleic Acid by HRM

    National Research Council Canada - National Science Library

    Jing Wang; Xiaoming Pan; Xingguo Liang


    High resolution melting (HRM), with a high sensitivity to distinguish the nucleic acid species with small variations, has been widely applied in the mutation scanning, methylation analysis, and genotyping...

  15. Modeling the viscosity of silicate melts containing manganese oxide

    Directory of Open Access Journals (Sweden)

    Kim Wan-Yi


    Full Text Available Our recently developed model for the viscosity of silicate melts is applied to describe and predict the viscosities of oxide melts containing manganese oxide. The model requires three pairs of adjustable parameters that describe the viscosities in three systems: pure MnO, MnO-SiO2 and MnO-Al2O3-SiO2. The viscosity of other ternary and multicomponent silicate melts containing MnO is then predicted by the model without any additional adjustable model parameters. Experimental viscosity data are reviewed for melts formed by MnO with SiO2, Al2O3, CaO, MgO, PbO, Na2O and K2O. The deviation of the available experimental data from the viscosities predicted by the model is shown to be within experimental error limits.

  16. Preparation Of Melt Spun Electroconductive Fine Fibres Containing Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Mirjalili Mohammad


    Full Text Available Preparation of electroconductive fine fibres containing carbon nanotubes (CNTs by melt spinning was the main goal of the present study. In this regard, the influence of the main operating parameters such as type of polymer used (polyester, polypropylene and polyamide, type and concentration of the CNTs on conductivity, and mechanical and thermal properties of the melt spun fibres was studied. The conductivity of melt spun fibres was measured based on the method developed by Morton and Hearl. The morphologies of the CNTs–polymer composite fibres were studied by scanning electron microscopy. Thermal behaviours and mechanical properties of the CNTs–polymer composite fibres were investigated using differential scanning calorimetry and tearing tester, respectively. The results reveal that using CNTs had tangible effect on electrical, thermal and mechanical properties of the melt spun fibres. Also, polyamide had a better dispersion of CNTs and correspondingly lower surface resistivity.

  17. Spontaneous corneal melting during pregnancy: a case report. (United States)

    Oh, Joo Youn; Kim, Mee Kum; Park, Joong Shin; Wee, Won Ryang


    Biomechanical changes in the cornea during pregnancy might lead to pathological conditions such as corneal perforation or melting. A 33-year-old Asian female who underwent penetrating keratoplasty in both eyes developed corneal melting in the right eye and marginal keratitis in the left eye in her fifth month of pregnancy. Marginal keratitis in the left eye immediately subsided with topical steroid therapy. However, spontaneous corneal melting progressed in the right eye, despite oral steroid therapy and amniotic membrane transplantation. We performed tectonic penetrating keratoplasty and corneoscleral grafting in the right eye. We advise caution in the ophthalmologic care of pregnant patients who have preexisting corneal thinning disorders or who have undergone multiple corneal surgeries, because physiologic changes during pregnancy might contribute to corneal changes leading to spontaneous melting especially in patients with compromised cornea.

  18. Temperature dependence effect of viscosity on ultrathin lubricant film melting

    Directory of Open Access Journals (Sweden)



    Full Text Available We study the melting of an ultrathin lubricant film under friction between atomically flat surfaces at temperature dependencies of viscosity described by Vogel-Fulcher relationship and by power expression, which are observed experimentally. It is shown that the critical temperature exists in both cases the exceeding of which leads to the melting of lubricant and, as a result, the sliding mode of friction sets in. The values of characteristic parameters of lubricant are defined, which are needed for friction reduction. In the systems, where the Vogel-Fulcher dependence is fulfilled, it is possible to choose the parameters at which the melting of lubricant takes place even at zero temperature of friction surfaces. The deformational defect of the shear modulus is taken into account in describing the lubricant melting according to the mechanism of the first-order transition.

  19. In situ viscosity measurements of albite melt under high pressure

    CERN Document Server

    Funakoshi, K I; Terasaki, H


    The viscosities of albite (NaAlSi sub 3 O sub 8) melt under high pressures have been measured using an x-ray radiography falling sphere method with synchrotron radiation. This method has enabled us to determine the precise sinking velocity directly. Recent experiments of albite melt showed the presence of a viscosity minimum around 5 GPa (Poe et al 1997 Science 276 1245, Mori et al 2000 Earth Planet. Sci. Lett. 175 87). We present the results for albite melt up to 5.2 GPa at 1600 and 1700 deg. C. The viscosity minimum is clearly observed to be around 4.5 GPa, and it might be explained not by the change of the compression mechanism in albite melt but by change of the phase itself.

  20. Rapid ice melting drives Earth's pole to the east

    National Research Council Canada - National Science Library

    Chen, J. L; Wilson, C. R; Ries, J. C; Tapley, B. D


    .... Satellite gravity measurements from the Gravity Recovery and Climate Experiment (GRACE) show that about 90% of this change is due to accelerated melting of polar ice sheets and mountain glaciers and related sea level rise...

  1. Electrochemistry of the Oxofluoro Complexes of Boron in Fluoride Melts

    DEFF Research Database (Denmark)

    Polyakova, L.P.; Bukatova, G.A.; Polyakov, E.G.


    Electrochemical behavior of oxofluoro complexes of boron, synthesized both in situ in FLINAK melt and added into the melt as Na3B3O3F6 compound, was by linear voltammetry within the range of 570-750 oC. It was shown that in lower part of this range the electrochemical reduction of BOF2- complexes...... follows to ECE mechanism. Growth of temperature makes the electrode proecesses more simple. At 700 oC boron reduces to the elemental state in one irreversible step. Values of diffusion coefficient changes in this interval of temperatures according to the equation: lg D= -1,66 - 3219/T with the activation...... energy of 61.6 kJ/mol. Study of the thermal stability of boron containing oxofluoro melts showed that O/B ratio changes in time due to evaporation of BF3. As a result borate complexes emerge in the melt alongside with oxofluoro ones....

  2. Greenland Ice Sheet Melt Characteristics Derived from Passive Microwave Data (United States)

    National Aeronautics and Space Administration — The Greenland ice sheet melt extent data, acquired as part of the NASA Program for Arctic Regional Climate Assessment (PARCA), is a daily (or every other day, prior...

  3. Plastic Melt Waste Compactor Flight Demonstrator Payload (PFDP) Project (United States)

    National Aeronautics and Space Administration — The PMWC Flight Demonstrator Payload is a trash dewatering and volume reduction system that uses heat melt compaction to remove nearly 100% of water from trash while...

  4. Melt Focusing Along Permeability Barriers in Various Tectonic Settings (United States)

    Montesi, L. G.; Hebert, L. B.


    The lithosphere, cold and rigid, acts as a barrier to the migration of melt from sources in the convecting mantle to the surface. In mid-ocean ridge settings in particular, the contrast between the width of the melt production zone at depths, reaching tens to hundreds of kilometer from the ridge axis, and the zone of crustal accretion, only one or two kilometers wide, points to the presence of an efficient focusing mechanism. The development of a zone impermeable to melt, or permeability barrier, at the base of the thermal boundary layer, and transport of melt in a high porosity channel at the base of this barrier provides a reasonable explanation for this focusing. Applied to various segmented and non-segmented mid-ocean ridges like the ultraslow Southwest Indian Ridge and the ultrafast East Pacific Rise at the Siqueiros transform, this process predicts along-strike variations in crustal thickness that compare favorably with observations. Although the concept of permeability barriers has been discussed mainly in the context of mid-ocean ridges, it may apply to other locations where melting in the upper mantle occurs. Permeability barriers form when ascending melt cools and crystallizes as it enters the thermal boundary layer at the base of the lithosphere. Such a setup is present at subduction zones as melts ascending from the mantle wedge interact with the overriding plate. Convection in the wedge introduces thermal gradients that may focus melt roughly to a point above the transition from a coupled to decoupled slab interface. This location is close to where volcanic arcs are observed. Above mantle plumes, a permeability barrier may develop coincident with the lithosphere-asthenosphere boundary, allowing low-degree melts to stall and form a low-velocity layer that has been observed seismically. To date, the hypothesis of a permeability barrier has been thoroughly tested only in the context of mid-ocean ridges. Whether crystallization would be rapid enough in

  5. Spectral albedo of arctic snow during intensive melt period


    O. Meinander; Kazadzis, S.; A. Arola; R. Kivi; Kontu, A.; H. Suokanerva; Aaltonen, V.; T. Manninen; J.-L. Roujean; O. Hautecoeur


    Spectral albedo and water liquid content of intensively melting Arctic snow were measured during the Snow Reflectance Transition Experiment (SNORTEX), in Sodankylä, Finland, in April 2009. The upwelling and downwelling spectral irradiance, measured at 290–550 nm with a double monochromator spectroradiometer, revealed the snow albedo to increase as a function wavelength. At the same time, we found the albedo of melting snow to decrease by ~10%, as a function of time within one day. During four...

  6. Crystallization behavior during melt-processing of ceramic waste forms

    Energy Technology Data Exchange (ETDEWEB)

    Tumurugoti, Priyatham; Sundaram, S.K.; Misture, Scott T. [Kazuo Inamori School of Engineering, The New York State College of Ceramics, Alfred University, Alfred, NY, 14802 (United States); Marra, James C. [Savannah River National Laboratory, Aiken, SC, 29808 (United States); Amoroso, Jake, E-mail: [Savannah River National Laboratory, Aiken, SC, 29808 (United States)


    Multiphase ceramic waste forms based on natural mineral analogs are of great interest for their high chemical durability, radiation resistance, and thermodynamic stability. Melt-processed ceramic waste forms that leverage existing melter technologies will broaden the available disposal options for high-level nuclear waste. This work reports on the crystallization behavior in selected melt-processed ceramics for waste immobilization. The phase assemblage and evolution of hollandite, zirconolite, pyrochlore, and perovskite type structures during melt processing were studied using thermal analysis, x-ray diffraction, and electron microscopy. Samples prepared by melting followed by annealing and quenching were analyzed to determine and measure the progression of the phase assemblage. Samples were melted at 1500 °C and heat-treated at crystallization temperatures of 1285 °C and 1325 °C corresponding to exothermic events identified from differential scanning calorimetry measurements. Results indicate that the selected multiphase composition partially melts at 1500 °C with hollandite coexisting as crystalline phase. Perovskite and zirconolite phases crystallized from the residual melt at temperatures below 1350 °C. Depending on their respective thermal histories, different quenched samples were found to have different phase assemblages including phases such as perovskite, zirconolite and TiO{sub 2.} - Highlights: • Crystallization behavior during melt processing multiphase ceramics was studied. • Phase evolution order upon cooling was hollandite → perovskite → zirconolite → TiO{sub 2}. • Hollandite phases co-exists with a liquid phase at temperatures >1500 °C. • Zirconolite crystallization is complex and involves intermediate phases.

  7. Monitoring Antarctic ice sheet surface melting with TIMESAT algorithm (United States)

    Ye, Y.; Cheng, X.; Li, X.; Liang, L.


    Antarctic ice sheet contributes significantly to the global heat budget by controlling the exchange of heat, moisture, and momentum at the surface-atmosphere interface, which directly influence the global atmospheric circulation and climate change. Ice sheet melting will cause snow humidity increase, which will accelerate the disintegration and movement of ice sheet. As a result, detecting Antarctic ice sheet melting is essential for global climate change research. In the past decades, various methods have been proposed for extracting snowmelt information from multi-channel satellite passive microwave data. Some methods are based on brightness temperature values or a composite index of them, and others are based on edge detection. TIMESAT (Time-series of Satellite sensor data) is an algorithm for extracting seasonality information from time-series of satellite sensor data. With TIMESAT long-time series brightness temperature (SSM/I 19H) is simulated by Double Logistic function. Snow is classified to wet and dry snow with generalized Gaussian model. The results were compared with those from a wavelet algorithm. On this basis, Antarctic automatic weather station data were used for ground verification. It shows that this algorithm is effective in ice sheet melting detection. The spatial distribution of melting areas(Fig.1) shows that, the majority of melting areas are located on the edge of Antarctic ice shelf region. It is affected by land cover type, surface elevation and geographic location (latitude). In addition, the Antarctic ice sheet melting varies with seasons. It is particularly acute in summer, peaking at December and January, staying low in March. In summary, from 1988 to 2008, Ross Ice Shelf and Ronnie Ice Shelf have the greatest interannual variability in amount of melting, which largely determines the overall interannual variability in Antarctica. Other regions, especially Larsen Ice Shelf and Wilkins Ice Shelf, which is in the Antarctic Peninsula

  8. Under-ice melt ponds in the Arctic (United States)

    Smith, Naomi; Flocco, Daniela; Feltham, Daniel


    In the summer months, melt water from the surface of the Arctic sea ice can percolate down through the ice and flow out of its base. This water is relatively warm and fresh compared to the ocean water beneath it, and so it floats between the ice and the oceanic mixed layer, forming pools of melt water called under-ice melt ponds. Double diffusion can lead to the formation of a sheet of ice, which is called a false bottom, at the interface between the fresh water and the ocean. These false bottoms isolate under-ice melt ponds from the ocean below, trapping the fresh water against the sea ice. These ponds and false bottoms have been estimated to cover between 5 and 40% of the base of the sea ice. [Notz et al. Journal of Geophysical Research 2003] We have developed a one-dimensional thermodynamic model of sea ice underlain by an under-ice melt pond and false bottom. Not only has this allowed us to simulate the evolution of under-ice melt ponds over time, identifying an alternative outcome than previously observed in the field, but sensitivity studies have helped us to estimate the impact that these pools of fresh water have on the mass-balance sea ice. We have also found evidence of a possible positive feedback cycle whereby increasingly less ice growth is seen due to the presence of under-ice melt ponds as the Arctic warms. Since the rate of basal ablation is affected by these phenomena, their presence alters the salt and freshwater fluxes from the sea ice into the ocean. We have coupled our under-ice melt pond model to a simple model of the oceanic mixed layer to determine how this affects mixed layer properties such as temperature, salinity, and depth. In turn, this changes the oceanic forcing reaching the sea ice.

  9. Nucleation, Melting Behaviour and Mechanical Properties of Poly(L ...

    African Journals Online (AJOL)

    Compared to the neat PLLA, with the addition of 0.8 % NA, the crystallization temperature (To) increase from 105.88 °C to 125.57 °C and the crystallization enthalpy(ΔHc) increase from 1.379 J g–1 to 31.63 J g–1 at a cooling rate of 1 °C min–1 from melt. In the presence of NA, the melting behaviour of PLLA was affected ...

  10. Constraints from olivine-hosted melt inclusions in primitive magmas


    Jennings, Eleanor S.; Gibson, Sally A.; Maclennan, John; Heinonen, Jussi S.


    We present major and trace element compositions of 154 re-homogenised olivine-hosted melt inclusions found in primitive rocks (picrites and ferropicrites) from the Mesozoic Paraná–Etendeka and Karoo Continental Flood Basalt (CFB) provinces. The major element compositions of the melt inclusions, especially their Fe/Mg ratios, are variable and erratic, and attributed to the re-homogenisation process during sample preparation. In contrast, the trace element compositions of both the picrite and f...

  11. Effect of Melting Techniques on Ductile Iron castings Properties


    Bockus, S.; Dobrovolskis, A.


    The study was designed to investigate the effects of the charge, melting conditions, nodularizing and inoculation on the ductile iron castings properties. Results showed that the temperature and holding time of the melt in an induction furnace and the intensity of spheroidizing effect on the carbon and residual magnesium contents in the ductile iron castings. The same grade of ductile iron may be obtained using different chemical compositions. The castings of ductile iron will be ferritic as-...

  12. Melting Pot Influences on Secondary English Curriculum Policy

    Directory of Open Access Journals (Sweden)

    Allison Skerrett


    Full Text Available This article explores how racial, cultural, and linguistic diversity are addressed in secondary English curriculum policy in Massachusetts, U.S.A. Data are analyzed through theories of the sociology of knowledge and the myth of the United States melting pot. Analysis revealed that curriculum policy privileged Eurocentric literature and the English language and adhered to a melting pot ideology. The article considers how the international educational policy movement toward post-standardization may afford greater responsiveness to diversity.

  13. Active Gripper for Hot Melt Joining of Micro Components


    Rathmann, Sven; Raatz, Annika; Hesselbach, Jürgen


    International audience; Precision assembly of hybrid micro systems requires not only a high precision handling and adjusting of the parts but also a highly accurate and fast bonding technique. In this field adhesive technology is one of the major joining techniques. At the Collaboration Research Center 516, a batch process based on a joining technique using hot melt adhesives was developed. This technique allows the coating of micro components with hot melt in a batch. The coating process is ...

  14. Determination of Reactive Surface Area of Melt Glass

    Energy Technology Data Exchange (ETDEWEB)

    Bourcier,W.L.; Roberts, S.; Smith, D.K.; Hulsey, S.; Newton,L.; Sawvel, A.; Bruton, C.; Papelis, C.; Um, W.; Russell, C. E.; Chapman,J.


    A comprehensive investigation of natural and manmade silicate glasses, and nuclear melt glass was undertaken in order to derive an estimate of glass reactive surface area. Reactive surface area is needed to model release rates of radionuclides from nuclear melt glass in the subsurface. Because of the limited availability of nuclear melt glasses, natural volcanic glass samples were collected which had similar textures and compositions as those of melt glass. A flow-through reactor was used to measure the reactive surface area of the analog glasses in the presence of simplified NTS site ground waters. A measure of the physical surface area of these glasses was obtained using the BET gas-adsorption method. The studies on analog glasses were supplemented by measurement of the surface areas of pieces of actual melt glass using the BET method. The variability of the results reflect the sample preparation and measurement techniques used, as well as textural heterogeneity inherent to these samples. Based on measurements of analog and actual samples, it is recommended that the hydraulic source term calculations employ a range of 0.001 to 0.01 m{sup 2}/g for the reactive surface area of nuclear melt glass.

  15. Solidification microstructures in single-crystal stainless steel melt pools

    Energy Technology Data Exchange (ETDEWEB)

    Sipf, J.B.; Boatner, L.A.; David, S.A.


    Development of microstructure of stationary melt pools of oriented stainless steel single crystals (70%Fe-15%Ni-15%Cr was analyzed. Stationary melt pools were formed by electron-beam and gas-tungsten-arc heating on (001), (011), and (111) oriented planes of the austenitic, fcc-alloy crystals. Characterization and analysis of resulting microstructure was carried out for each crystallographic plane and welding method. Results showed that crystallography which favors ``easy growth`` along the <100> family of directions is a controlling factor in the microstructural formation along with the melt-pool shape. The microstructure was found to depend on the melting method, since each method forms a unique melt-pool shape. These results are used in making a three-dimensional reconstruction of the microstructure for each plane and melting method employed. This investigation also suggests avenues for future research into the microstructural properties of electron-beam welds as well as providing an experimental basis for mathematical models for the prediction of solidification microstructures.

  16. Melting and casting of FeAl-based cast alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K. [Oak Ridge National Lab., TN (United States); Wilkening, D. [Columbia Falls Aluminum Co., Columbia Falls, MT (United States); Liebetrau, J.; Mackey, B. [AFFCO, L.L.C., Anaconda, MT (United States)


    The FeAl-based intermetallic alloys are of great interest because of their low density, low raw material cost, and excellent resistance to high-temperature oxidation, sulfidation, carburization, and molten salts. The applications based on these unique properties of FeAl require methods to melt and cast these alloys into complex-shaped castings and centrifugal cast tubes. This paper addresses the melting-related issues and the effect of chemistry on the microstructure and hardness of castings. It is concluded that the use of the Exo-Melt{trademark} process for melting and the proper selection of the aluminum melt stock can result in porosity-free castings. The FeAl alloys can be melted and cast from the virgin and revert stock. A large variation in carbon content of the alloys is possible before the precipitation of graphite flakes occurs. Titanium is a very potent addition to refine the grain size of castings. A range of complex sand castings and two different sizes of centrifugal cast tubes of the alloy have already been cast.

  17. Experimental evidence for melt partitioning between olivine and orthopyroxene in partially molten harzburgite (United States)

    Miller, Kevin J.; Zhu, Wen-lu; Montési, Laurent G. J.; Gaetani, Glenn A.; Le Roux, Véronique; Xiao, Xianghui


    Observations of dunite channels in ophiolites and uranium series disequilibria in mid-ocean ridge basalt suggest that melt transport in the upper mantle beneath mid-ocean ridges is strongly channelized. We present experimental evidence that spatial variations in mineralogy can also focus melt on the grain scale. This lithologic melt partitioning, which results from differences in the interfacial energies associated with olivine-melt and orthopyroxene-melt boundaries, may complement other melt focusing mechanisms in the upper mantle such as mechanical shear and pyroxene dissolution. We document here lithologic melt partitioning in olivine-/orthopyroxene-basaltic melt samples containing nominal olivine to orthopyroxene ratio of 3 to 2 and melt fractions of 0.02 to 0.20. Experimental samples were imaged using synchrotron-based X-ray microcomputed tomography at a resolution of 700 nm per voxel. By analyzing the local melt fraction distributions associated with olivine and orthopyroxene grains in each sample, we found that the melt partitioning coefficient, i.e., the ratio of melt fraction around olivine to that around orthopyroxene grains, varies between 1.1 and 1.6. The permeability and electrical conductivity of our digital samples were estimated using numerical models and compared to those of samples containing only olivine and basaltic melt. Our results suggest that lithologic melt partitioning and preferential localization of melt around olivine grains might play a role in melt focusing, potentially enhancing average melt ascent velocities.

  18. Columnar-to-Equiaxed Transition and Equiaxed Grain Alignment in Directionally Solidified Ni3Al Alloy Under an Axial Magnetic Field (United States)

    Liu, Huan; Xuan, Weidong; Xie, Xinliang; Li, Chuanjun; Wang, Jiang; Yu, Jianbo; Li, Xi; Zhong, Yunbo; Ren, Zhongming


    The effect of an axial magnetic field on the solidification structure in directionally solidified Ni-21.5Al-0.4Zr-0.1B (at. pct) alloy was investigated. The experimental results indicated that the application of a high magnetic field caused the deformation of dendrites and the occurrence of columnar-to-equiaxed transition (CET). The magnetic field tended to orient the 〈001〉 crystal direction of the equiaxed grains along the magnetic field direction. The bulk solidification experiment under a high magnetic field showed that the crystal exhibited magnetic crystalline anisotropy. Further, the thermoelectric (TE) magnetic force and TE magnetic convention were analyzed by three-dimensional (3-D) numerical simulations. The results showed that the maximum value of TE magnetic force localized in the vicinity of the secondary dendrite arm root, which should be responsible for the dendrite break and CET. Based on the high-temperature creep mechanism, a simple model was proposed to describe the magnetic field intensity needed for CET: B ≥ kG^{ - 1.5} R^{1.25} . The model is in good agreement with the experiment results. The experimental results should be attributed to the combined action of TE magnetic effects and the magnetic moment.

  19. Effects of Withdrawal Rate and Temperature Gradient on the Microstructure Evolution in Directionally Solidified NiAl-36Cr-6Mo Hypereutectic Alloy (United States)

    Shang, Zhao; Shen, Jun; Zhang, Jian-Fei; Wang, Lei; Qin, Ling; Fu, Heng-Zhi


    The effects of withdrawal rate and temperature gradient on the microstructure and growth interface morphology in directionally solidified Ni-29Al-36Cr-6Mo(at.%) hypereutectic alloy were investigated. Under the temperature gradient of 250 K/cm, well-aligned eutectic microstructure with lamellar morphology was obtained at the withdrawal rate of 6 μm/s. When the withdrawal rate was 10 μm/s, the microstructure changed to Cr(Mo) dendrites + eutectic lamellae. With the increasing withdrawal rate, the interdendritic eutectic growth interface changed from planar to cellular, the number of primary Cr(Mo) dendrites became greater, and the microstructure was refined. When the temperature gradient increased to 600 K/cm, the coupled eutectic growth zone of NiAl-Cr(Mo) alloy was expanded; a well-aligned eutectic microstructure could be obtained at higher rate of 10 μm/s. Furthermore, the planar/cellular transition rate of the interdendritic eutectic growth interface increased. Even at the same withdrawal rate, the number of primary Cr(Mo) dendrites was less and the microstructure was finer under the temperature gradient of 600 K/cm.

  20. Novel solidified reverse micellar solution-based mucoadhesive nano lipid gels encapsulating miconazole nitrate-loaded nanoparticles for improved treatment of oropharyngeal candidiasis. (United States)

    Kenechukwu, Franklin Chimaobi; Attama, Anthony Amaechi; Ibezim, Emmanuel Chinedum


    To develop and evaluate solidified-reverse-micellar-solution (SRMS)-based oromucosal nano lipid gels for improved localised delivery of miconazole nitrate (MN). Phospholipon ® 90G and Softisan ® 154 (3:7) were used to prepare SRMS by fusion. Solid lipid nanoparticles (SLNs, 0.25-1.0% w/w MN) formulated with the SRMS by high shear homogenisation were employed to prepare mucoadhesive nano lipid gels. Physicochemical characterisation, drug release in simulated salivary fluid (SSF) (pH 6.8) and anti-candidal activity were carried out. The SLNs were spherical nanoparticles, had mean size of 133.8 ± 6.4 to 393.2 ± 14.5 nm, low polydispersity indices, good encapsulation efficiency (EE) (51.96 ± 2.33-67.12 ± 1.65%) and drug loading (DL) (19.05 ± 2.44-24.93 ± 1.98%). The nano lipid gels were stable, spreadable, pseudoplastic viscoelastic mucoadhesive systems that exhibited better prolonged release and anti-candidal properties than marketed formulation (Daktarin ® oral gel) (p < 0.05). This study has shown that SRMS-based nano lipid gels could be employed to prolong localised oromucosal delivery of MN.

  1. Comparative Study on the Grain Refinement of Al-Si Alloy Solidified under the Impact of Pulsed Electric Current and Travelling Magnetic Field

    Directory of Open Access Journals (Sweden)

    Yunhu Zhang


    Full Text Available It is high of commercial importance to generate the grain refinement in alloys during solidification by means of electromagnetic fields. Two typical patterns of electromagnetic fields, pulsed electric currents (ECP and traveling magnetic field (TMF, are frequently employed to produce the finer equiaxed grains in solidifying alloys. Various mechanisms were proposed to understand the grain refinement in alloys caused by ECP and TMF. In this paper, a comparative study is carried out in the same solidification regime to investigate the grain refinement of Al-7 wt. %Si alloy driven by ECP and TMF. Experimental results show that the application of ECP or TMF can cause the same grain refinement occurrence period, during which the refinement of primary Al continuously occurs. In addition, the related grain refinement mechanisms are reviewed and discussed, which shows the most likely one caused by ECP and TMF is the promoted dendrite fragmentation as the result of the ECP-induced or TMF-induced forced flow. It suggests that the same grain refinement process in alloys is provoked when ECP and TMF are applied in the same solidification regime, respectively.

  2. Optimization of dispersive liquid-phase microextraction based on solidified floating organic drop combined with high-performance liquid chromatography for the analysis of glucocorticoid residues in food. (United States)

    Huang, Yuan; Zheng, Zhiqun; Huang, Liying; Yao, Hong; Wu, Xiao Shan; Li, Shaoguang; Lin, Dandan


    A rapid, simple, cost-effective dispersive liquid-phase microextraction based on solidified floating organic drop (SFOD-LPME) was developed in this study. Along with high-performance liquid chromatography, we used the developed approach to determine and enrich trace amounts of four glucocorticoids, namely, prednisone, betamethasone, dexamethasone, and cortisone acetate, in animal-derived food. We also investigated and optimized several important parameters that influenced the extraction efficiency of SFOD-LPME. These parameters include the extractant species, volumes of extraction and dispersant solvents, sodium chloride addition, sample pH, extraction time and temperature, and stirring rate. Under optimum experimental conditions, the calibration graph exhibited linearity over the range of 1.2-200.0ng/ml for the four analytes, with a reasonable linearity(r 2 : 0.9990-0.9999). The enrichment factor was 142-276, and the detection limits was 0.39-0.46ng/ml (0.078-0.23μg/kg). This method was successfully applied to analyze actual food samples, and good spiked recoveries of over 81.5%-114.3% were obtained. Copyright © 2017. Published by Elsevier B.V.

  3. Standard test method for accelerated leach test for diffusive releases from solidified waste and a computer program to model diffusive, fractional leaching from cylindrical waste forms

    CERN Document Server

    American Society for Testing and Materials. Philadelphia


    1.1 This test method provides procedures for measuring the leach rates of elements from a solidified matrix material, determining if the releases are controlled by mass diffusion, computing values of diffusion constants based on models, and verifying projected long-term diffusive releases. This test method is applicable to any material that does not degrade or deform during the test. 1.1.1 If mass diffusion is the dominant step in the leaching mechanism, then the results of this test can be used to calculate diffusion coefficients using mathematical diffusion models. A computer program developed for that purpose is available as a companion to this test method (Note 1). 1.1.2 It should be verified that leaching is controlled by diffusion by a means other than analysis of the leach test solution data. Analysis of concentration profiles of species of interest near the surface of the solid waste form after the test is recommended for this purpose. 1.1.3 Potential effects of partitioning on the test results can...

  4. Composition, Taste, Aroma, and Antioxidant Activity of Solidified Noncentrifugal Brown Sugars Prepared from Whole Stalk and Separated Pith of Sugarcane (Saccharum officinarum L.). (United States)

    Takahashi, Makoto; Ishmael, Mutanda; Asikin, Yonathan; Hirose, Naoto; Mizu, Masami; Shikanai, Takesi; Tamaki, Hajime; Wada, Koji


    In this study, 2 types of solidified noncentrifugal brown sugars (W-NCS and P-NCS) were prepared from the whole stalk and separated pith, respectively, of raw sugarcane (Saccharum officinarum L.). These products were discriminated in terms of their quality attributes, including color, sugars and minerals composition, taste, aroma, and antioxidant activity. The brown color of P-NCS was clearly different compared with that of W-NCS with a color difference value (ΔE* ) of 9.36. There was no difference in the sugars and minerals composition between the 2 types of sugar, which led to very similar taste profiles. However, P-NCS had a weaker aroma intensity than W-NCS did. Moreover, P-NCS retained more than 60% of the antioxidant activity of W-NCS. The information gleaned from this study might be used to select appropriate end-uses for these 2 types of sugars. © 2016 Institute of Food Technologists®.

  5. Rapid Solidification of Sn-Cu-Al Alloys for High-Reliability, Lead-Free Solder: Part I. Microstructural Characterization of Rapidly Solidified Solders (United States)

    Reeve, Kathlene N.; Choquette, Stephanie M.; Anderson, Iver E.; Handwerker, Carol A.


    Particles of Cu x Al y in Sn-Cu-Al solders have previously been shown to nucleate the Cu6Sn5 phase during solidification. In this study, the number and size of Cu6Sn5 nucleation sites were controlled through the particle size refinement of Cu x Al y via rapid solidification processing and controlled cooling in a differential scanning calorimeter. Cooling rates spanning eight orders of magnitude were used to refine the average Cu x Al y and Cu6Sn5 particle sizes down to submicron ranges. The average particle sizes, particle size distributions, and morphologies in the microstructures were analyzed as a function of alloy composition and cooling rate. Deep etching of the samples revealed the three-dimensional microstructures and illuminated the epitaxial and morphological relationships between the Cu x Al y and Cu6Sn5 phases. Transitions in the Cu6Sn5 particle morphologies from faceted rods to nonfaceted, equiaxed particles were observed as a function of both cooling rate and composition. Initial solidification cooling rates within the range of 103 to 104 °C/s were found to be optimal for realizing particle size refinement and maintaining the Cu x Al y /Cu6Sn5 nucleant relationship. In addition, little evidence of the formation or decomposition of the ternary- β phase in the solidified alloys was noted. Solidification pathways omitting the formation of the ternary- β phase agreed well with observed room temperature microstructures.

  6. Determination of Cadmium by Electrothermal Atomic Absorption Spectrometry after its Separation and Preconcentration by Syringe to Syringe Dispersive Liquid Phase Microextraction-Solidified Floating Organic Drop

    Directory of Open Access Journals (Sweden)

    Mohammad Asadi


    Full Text Available The application of syringe to syringe dispersive liquid phase microextraction-solidified floating organic drop was extended for the separation and preconcentration of trace amounts of cadmium ions from water and cereal samples. The extracted cadmium was quantified by electrothermal atomic absorption spectrometry. Factors affecting the complex formation as well as microextraction efficiency such as the concentration of dithizone as the chelating agent, sample pH, type and volume of the extractant, number of injections, ionic strength and sample volume were optimized. Under optimized conditions, the calibration curve was linear in the range of 1.0-14.0 ng L-1 with the coefficient of determination of 0.9994. The limit of detection and quantification were found to be 0.25 and 0.85 ng L-1, respectively. The inter-day and intra-day precision at two concentration levels (3.0 and 10.0 ng L-1 were in the range of 3.9-9.2%. The accuracy of the developed method was evaluated through recovery experiments and the analysis of certified reference material (SLRS-6.

  7. Speciation of antimony(III) and antimony(V) by electrothermal atomic absorption spectrometry after ultrasound-assisted emulsification of solidified floating organic drop microextraction. (United States)

    Wen, Shengping; Zhu, Xiashi


    A simple, sensitive and efficient method of ultrasound-assisted emulsification of solidified floating organic drop microextraction (USE-SFODME) coupled to electrothermal atomic absorption spectrometry for the speciation of antimony at different oxidation state Sb(III)/Sb(V) in environmental samples was established. In this method, the hydrophobic complex of Sb(III) with sodium diethyldithiocarbamate (DDTC) is extracted by 1-undecanol at pH 9.0, while Sb(V) remains in aqueous phase. Sb(V) content can be calculated by subtracting Sb(III) from the total antimony after reducing Sb(V) to Sb(III) by l-cysteine. Various factors affecting USE-SFODME including pH, extraction solvent and its volume, concentration of DDTC, sonication time, and extraction temperature were investigated. Under the optimized conditions, the calibration curve was linear in the range from 0.05 to 10.0 ng mL(-1), with the limit of detection (3σ) 9.89 ng L(-1) for Sb(III). The relative standard deviation for Sb(III) was 4.5% (n=9, c=1.0 ng mL(-1)). This method was validated against the certified reference materials (GSB 07-1376-2001, GBW07441), and applied to the speciation of antimony in environmental samples (soil and water samples) with satisfactory results. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Inverse steptoes in Las Bombas volcano, as an evidence of explosive volcanism in a solidified lava flow field. Southern Mendoza-Argentina (United States)

    Risso, Corina; Prezzi, Claudia; Orgeira, María Julia; Nullo, Francisco; Margonari, Liliana; Németh, Karoly


    Here we describe the unusual genesis of steptoes in Las Bombas volcano- Llancanelo Volcanic Field (LVF) (Pliocene - Quaternary), Mendoza, Argentina. Typically, a steptoe forms when a lava flow envelops a hill, creating a well-defined stratigraphic relationship between the older hill and the younger lava flow. In the Llancanelo Volcanic Field, we find steptoes formed with an apparent normal stratigraphic relationship but an inverse age-relationship. Eroded remnants of scoria cones occur in ;circular depressions; in the lava field. To express the inverse age-relationship between flow fields and depression-filled cones here we define this landforms as inverse steptoes. Magnetometric analysis supports this inverse age relationship, indicating reverse dipolar magnetic anomalies in the lava field and normal dipolar magnetization in the scoria cones (e.g. La Bombas). Negative Bouguer anomalies calculated for Las Bombas further support the interpretation that the scoria cones formed by secondary fracturing on already solidified basaltic lava flows. Advanced erosion and mass movements in the inner edge of the depressions created a perfectly excavated circular depression enhancing the ;crater-like; architecture of the preserved landforms. Given the unusual genesis of the steptoes in LVF, we prefer the term inverse steptoe for these landforms. The term steptoe is a geomorphological name that has genetic implications, indicating an older hill and a younger lava flow. Here the relationship is reversed.

  9. A novel solidified floating organic drop microextraction method for preconcentration and determination of copper ions by flow injection flame atomic absorption spectrometry in water samples

    Directory of Open Access Journals (Sweden)

    Arpa Şahin Ç.


    Full Text Available A simple, rapid and inexpensive solidified floating organic drop microextraction (SFODME and flow injection flame atomic absorption spectrometric determination (FI-FAAS method for copper was developed. 3-amino-7-dimethylamino-2-methylphenazine (Neutral red, NR was used as the complexing agent. Several factors affecting the microextraction efficiency, such as, pH, NR and sodium dodecylbenzenesulfonate (SDBS concentration, extraction time, stirring rate, and temperature were investigated and optimized. Under optimized experimental conditions an enrichment factor of 541 was obtained for 100 mL of sample solution. The calibration graph was linear in the range of 0.5 – 20.0 ng mL–1 and the limit of detection (3s was 0.18 ng mL–1, the limit of quantification (10s was 0.58 ng mL–1. The relative standard deviation (RSD for 10 replicate measurements of 10 ng mL–1 copper was 2.7%. The developed method was successfully applied to the extraction and determination of copper in different certified reference materials (Estuarine water, Slew 3 and fortified water, TM 23.2 and real water samples and satisfactory results were obtained.

  10. Leaching behavior and effectiveness of curing days (7& 28) of solidified/stabilized fly ash based geopolymer (multi-metal bearing sludge): experimental and modeling study. (United States)

    Chaudhary, Rubina; Khaleb, Divya; Badur, Smita


    This paper presents the study of the immobilization of heavy metals like Pb, Fe, Mn, Cu and Zn by fly ash based geopolymers. The purpose of this study was to investigate the effectiveness of fly ash based geopolymeric solidification/stabilization technology. For S/S of waste, geopolymer as a binding agent was mixed with waste at different ratios. For initial waste characterization, contaminants concentration and some physical waste characterization such as dry density, bulk density, specific gravity, porosity, moisture holding capacity, and moisture content were determined. Waste and geopolymer mixture were cured for 7 and 28 days to study the effect of curing days on the solidified/ stabilized product. Diffusion leaching test was performed on the geopolymers containing industrial sludge to determine the leaching mechanism of binders to entrap the waste constituents within their matrix. Movement of the elements was identified with the help of leachability index. S/S through geopolymer was found to be effective in immobilizing toxic metals present in the sludge. Zn was 100% and other metals like Pb, Fe, Mn and Cu were in the range 80-99% immobilized. The order of fixation of metals was Zn >Cu > Fe > Mn > Pb.

  11. Deep mixing of mantle melts beneath continental flood basalt provinces: Constraints from olivine-hosted melt inclusions in primitive magmas (United States)

    Jennings, Eleanor S.; Gibson, Sally A.; Maclennan, John; Heinonen, Jussi S.


    We present major and trace element compositions of 154 re-homogenised olivine-hosted melt inclusions found in primitive rocks (picrites and ferropicrites) from the Mesozoic Paraná-Etendeka and Karoo Continental Flood Basalt (CFB) provinces. The major element compositions of the melt inclusions, especially their Fe/Mg ratios, are variable and erratic, and attributed to the re-homogenisation process during sample preparation. In contrast, the trace element compositions of both the picrite and ferropicrite olivine-hosted melt inclusions are remarkably uniform and closely reflect those of the host whole-rocks, except in a small subset affected by hydrothermal alteration. The Paraná-Etendeka picrites and ferropicrites are petrogenetically related to the more evolved and voluminous flood basalts, and so we propose that compositional homogeneity at the melt inclusion scale implies that the CFB parental mantle melts were well mixed prior to extensive crystallisation. The incompatible trace element homogeneity of olivine-hosted melt inclusions in Paraná-Etendeka and Karoo primitive magmatic rocks has also been identified in other CFB provinces and contrasts with findings from studies of basalts from mid-ocean ridges (e.g. Iceland and FAMOUS on the Mid Atlantic Ridge), where heterogeneity of incompatible trace elements in olivine-hosted melt inclusions is more pronounced. We suggest that the low variability in incompatible trace element contents of olivine-hosted melt inclusions in near-primitive CFB rocks, and also ocean island basalts associated with moderately thick lithosphere (e.g. Hawaii, Galápagos, Samoa), may reflect mixing along their longer transport pathways during ascent and/or a temperature contrast between the liquidus and the liquid when it arrives in the crust. These thermal paths promote mixing of mantle melts prior to their entrapment by growing olivine crystals in crustal magma chambers. Olivine-hosted melt inclusions of ferropicrites from the Paran

  12. Numerical simulation of hot-melt extrusion processes for amorphous solid dispersions using model-based melt viscosity. (United States)

    Bochmann, Esther S; Steffens, Kristina E; Gryczke, Andreas; Wagner, Karl G


    Simulation of HME processes is a valuable tool for increased process understanding and ease of scale-up. However, the experimental determination of all required input parameters is tedious, namely the melt rheology of the amorphous solid dispersion (ASD) in question. Hence, a procedure to simplify the application of hot-melt extrusion (HME) simulation for forming amorphous solid dispersions (ASD) is presented. The commercial 1D simulation software Ludovic ® was used to conduct (i) simulations using a full experimental data set of all input variables including melt rheology and (ii) simulations using model-based melt viscosity data based on the ASDs glass transition and the physical properties of polymeric matrix only. Both types of HME computation were further compared to experimental HME results. Variation in physical properties (e.g. heat capacity, density) and several process characteristics of HME (residence time distribution, energy consumption) among the simulations and experiments were evaluated. The model-based melt viscosity was calculated by using the glass transition temperature (T g ) of the investigated blend and the melt viscosity of the polymeric matrix by means of a T g -viscosity correlation. The results of measured melt viscosity and model-based melt viscosity were similar with only few exceptions, leading to similar HME simulation outcomes. At the end, the experimental effort prior to HME simulation could be minimized and the procedure enables a good starting point for rational development of ASDs by means of HME. As model excipients, Vinylpyrrolidone-vinyl acetate copolymer (COP) in combination with various APIs (carbamazepine, dipyridamole, indomethacin, and ibuprofen) or polyethylene glycol (PEG 1500) as plasticizer were used to form the ASDs. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Deep mixing of mantle melts beneath continental flood basalt provinces: Constraints from olivine-hosted melt inclusions in primitive magmas


    Jennings, ES; Gibson, Sally Anne; Maclennan, John Campbell; Heinonen, JS


    We present major and trace element compositions of 154 re-homogenised olivine-hosted melt inclusions found in primitive rocks (picrites and ferropicrites) from the Mesozoic Paraná–Etendeka and Karoo Continental Flood Basalt (CFB) provinces. The major element compositions of the melt inclusions, especially their Fe/Mg ratios, are variable and erratic, and attributed to the re-homogenisation process during sample preparation. In contrast, the trace element compositions of both the picrite and f...

  14. Distinguishing snow and ice melt contributions using daily MODIS and a temperature index melt model in the Hunza River basin (United States)

    Rittger, Karl; Brodzik, Mary J.; Racoviteanu, Adina; Barrett, Andrew; Jodha Kalsa, Siri; Armstrong, Richard


    In mountainous regions of High Asia, snow and ice both contribute to streamflow, but few in-situ observations exist that can help distinguish between the two components of melt. Our goal is to develop a melt model that can distinguish between seasonal snow and glacier ice melt at a continental scale. We use a combination of MODIS-derived data sets to distinguish three surface types at daily resolution: 1) exposed glacier ice, 2) snow over ice and 3) snow over land. We use MODICE to map glacier area and then distinguish areas of exposed ice from snow over ice using thresholds on MODIS-derived albedo or grain size products. We map snow over land using the daily MODSCAG fractional snow cover product, and use the time series of three surface types as input to a temperature index melt model. The model outputs melt volumes from exposed glacier ice, snow over ice and snow over land, respectively. To partition the glacier surface into exposed glacier ice versus snow over ice, we threshold MODIS albedo or grain size based on higher-resolution Landsat 8 imagery. During the ablation period, the high elevation mid-latitude snowpack receives intense incoming solar radiation resulting in surface albedo decreases and snow grain growth. We compare differences in modeled melt using two albedo products (Terra Daily Snow Cover algorithm (MOD10A1) and Surface Reflectance BRDF/Albedo (MCD43)) and two grain size products (MODIS Snow Covered Area and Grain Size Model (MODSCAG) and MODIS Dust Radiative Forcing in Snow (MODDRFS)). For the Hunza basin, a sub-basin of the Upper Indus basin, for the years 2001-2004, the modeled melt from exposed glacier ice accounts for: 26-44% (MOD10A1 albedo), 24-32% (MCD43 albedo), 17-28% (MODSCAG grain size) or 23-26% (MODDRFS grain size) of the combined melt from all three surface areas.

  15. Transient induced tungsten melting at the Joint European Torus (JET) (United States)

    Coenen, J. W.; Matthews, G. F.; Krieger, K.; Iglesias, D.; Bunting, P.; Corre, Y.; Silburn, S.; Balboa, I.; Bazylev, B.; Conway, N.; Coffey, I.; Dejarnac, R.; Gauthier, E.; Gaspar, J.; Jachmich, S.; Jepu, I.; Makepeace, C.; Scannell, R.; Stamp, M.; Petersson, P.; Pitts, R. A.; Wiesen, S.; Widdowson, A.; Heinola, K.; Baron-Wiechec, A.; Contributors, JET


    Melting is one of the major risks associated with tungsten (W) plasma-facing components (PFCs) in tokamaks like JET or ITER. These components are designed such that leading edges and hence excessive plasma heat loads deposited at near normal incidence are avoided. Due to the high stored energies in ITER discharges, shallow surface melting can occur under insufficiently mitigated plasma disruption and so-called edge localised modes—power load transients. A dedicated program was carried out at the JET to study the physics and consequences of W transient melting. Following initial exposures in 2013 (ILW-1) of a W-lamella with leading edge, new experiments have been performed on a sloped surface (15{}\\circ slope) during the 2015/2016 (ILW-3) campaign. This new experiment allows significantly improved infrared thermography measurements and thus resolved important issue of power loading in the context of the previous leading edge exposures. The new lamella was monitored by local diagnostics: spectroscopy, thermography and high-resolution photography in between discharges. No impact on the main plasma was observed despite a strong increase of the local W source consistent with evaporation. In contrast to the earlier exposure, no droplet emission was observed from the sloped surface. Topological modifications resulting from the melting are clearly visible between discharges on the photographic images. Melt damage can be clearly linked to the infrared measurements: the emissivity drops in zones where melting occurs. In comparison with the previous leading edge experiment, no runaway melt motion is observed, consistent with the hypothesis that the escape of thermionic electrons emitted from the melt zone is largely suppressed in this geometry, where the magnetic field intersects the surface at lower angles than in the case of perpendicular impact on a leading edge. Utilising both exposures allows us to further test the model of the forces driving melt motion that

  16. Development of solid SEDDS, III: application of Acconon® C-50 and Gelucire® 50/13 as both solidifying and emulsifying agents for medium chain triglycerides

    Directory of Open Access Journals (Sweden)

    Nrupa Patel


    Full Text Available Solid self-emulsifying drug delivery systems (SEDDS for medium chain triglycerides (Captex® 355, ABITEC were developed using stearoyl polyoxyl glycerides (Acconon® C-50, ABITEC and Gelucire® 50/13, Gattefosse as both solidifying and emulsifying agents. Different mixtures of the lipid and each solidifying agent were heated to 65ºC until homogenously mixed clear liquids were formed. Probucol was dissolved as the model drug. The molten mass was then filled into hard gelatin capsules, which upon cooling to room temperature converted to a solid mass inside capsules. The triglyceride could be incorporated into the system to a concentration as high as 80% w/w, still maintaining the solid or semisolid consistency of the system. Powder XRD, DSC, microscopy (cross-polarization and confocal fluorescence techniques, dispersion test and particle size analysis of the solid systems with, and without, drug were conducted to characterize different formulations. The solidifying agents maintained their crystallinity in solid systems, while the lipids were interspersed in between crystalline regions. The drug remained solubilized in the lipid phase. The formulations dispersed almost completely in 2 hours with particle size of the dispersed lipid in the range of 250 to 500 nm when the lipid content in the formulation was up to 50% w/w. Thus, a novel method of developing solid formulations of liquid triglycerides by incorporating lipids in stearoyl polyoxyl glycerides has been developed.

  17. Hot melt extrusion versus spray drying: hot melt extrusion degrades albendazole. (United States)

    Hengsawas Surasarang, Soraya; Keen, Justin M; Huang, Siyuan; Zhang, Feng; McGinity, James W; Williams, Robert O


    The purpose of this study was to enhance the dissolution properties of albendazole (ABZ) by the use of amorphous solid dispersions. Phase diagrams of ABZ-polymer binary mixtures generated from Flory-Huggins theory were used to assess miscibility and processability. Forced degradation studies showed that ABZ degraded upon exposure to hydrogen peroxide and 1 N NaOH at 80 °C for 5 min, and the degradants were albendazole sulfoxide (ABZSX), and ABZ impurity A, respectively. ABZ was chemically stable following exposure to 1 N HCl at 80 °C for one hour. Thermal degradation profiles show that ABZ, with and without Kollidon ® VA 64, degraded at 180 °C and 140 °C, respectively, which indicated that ABZ could likely be processed by thermal processing. Following hot melt extrusion, ABZ degraded up to 97.4%, while the amorphous ABZ solid dispersion was successfully prepared by spray drying. Spray-dried ABZ formulations using various types of acids (methanesulfonic acid, sulfuric acid and hydrochloric acid) and polymers (Kollidon ® VA 64, Soluplus ® and Eudragit ® E PO) were studied. The spray-dried ABZ with methanesulfonic acid and Kollidon ® VA 64 substantially improved non-sink dissolution in acidic media as compared to bulk ABZ (8-fold), physical mixture of ABZ:Kollidon ® VA 64 (5.6-fold) and ABZ mesylate salt (1.6-fold). No degradation was observed in the spray-dried product for up to six months and less than 5% after one-year storage. In conclusion, amorphous ABZ solid dispersions in combination with an acid and polymer can be prepared by spray drying to enhance dissolution and shelf-stability, whereas those made by melt extrusion are degraded.

  18. Dehydration melting of nominally anhydrous mantle: The primacy of partitioning (United States)

    Hirschmann, Marc M.; Tenner, Travis; Aubaud, Cyril; Withers, A. C.


    The onset of dehydration melting of nominally anhydrous peridotite can be calculated by combination of appropriate mineral/melt partition coefficients for H 2O, DHmin/liq, and a parameterization of the influence of the H 2O content of melt on the solidus of peridotite. Thermodynamic models predict that olivine/melt partitioning, DHol/liq, should increase with pressure, and though direct experimental determinations of DHol/liq from 0.5 to 3 GPa do not show the predicted pressure dependence, storage capacity experiments suggest increases in DHol/liq at pressures above 8 GPa and particularly at 12-14 GPa, near the base of the upper mantle. Calculations using experimental values of DHmin/liq and ignoring the likely effect of pressure on DHol/liq indicate that DHperid/liq increases from 0.006 at 1 GPa up to 0.009 at the onset of garnet stability at 2.8 GPa and then diminishes with further increases in pressure owing to decreasing pyroxene mode and decreasing Al in pyroxene. Because these calculations ignore the likely pressure effect on DHol/liq, they represent minima. Incipient partial melts of mantle with 100 ppm H 2O have 1-2 wt.% H 2O from 1 to 5 GPa, and this modest H 2O concentration limits the stability of hydrous partial melts to temperatures approaching the dry solidus. The influence of H 2O on the melting behavior of peridotite can be quantified using a simple cryoscopic approach benchmarked against experiments on hydrous peridotite. Along a mantle adiabat with a potential temperature of 1323 °C, calculations indicate that dehydration partial melting of peridotite with 100 ppm H 2O begins at 80 km, or about 15 km deeper than would be the case for truly dry peridotite. However, decreases in DHperid/liq related to the onset of the stability of garnet mean that mantle modestly enriched in H 2O will begin melting significantly deeper, i.e., at 104 km for 200 ppm H 2O. In the low velocity zone (LVZ) beneath mature (50 Ma) oceanic lithosphere, incipient partial

  19. Antarctic sub-shelf melt rates via SIMPEL (United States)

    Reese, Ronja; Albrecht, Torsten; Winkelmann, Ricarda


    Ocean-induced melting below ice-shelves is currently suspected to be the dominant cause of mass loss from the Antarctic Ice Sheet (e.g. Depoorter et al. 2013). Although thinning of ice shelves does not directly contribute to sea-level rise, it may have a significant indirect impact through the potential of ice shelves to buttress their adjacent ice sheet. Hence, an appropriate representation of sub-shelf melt rates is essential for modelling the evolution of ice sheets with marine terminating outlet glaciers. Due to computational limits of fully-coupled ice and ocean models, sub-shelf melt rates are often parametrized in large-scale or long-term simulations (e.g. Matin et al. 2011, Pollard & DeConto 2012). These parametrizations usually depend on the depth of the ice shelf base or its local slope but do not include the physical processes in ice shelf cavities. Here, we present the Sub Ice shelf Melt Potsdam modEL (SIMPEL) which mimics the first-order large-scale circulation in ice shelf cavities based on an ocean box model (Olbers & Hellmer, 2010), implemented in the Parallel Ice Sheet Model (Bueler & Brown 2009, Winkelmann et al. 2011, In SIMPEL, ocean water is transported at depth towards the grounding line where sub-shelf melt rates are highest, and then rises along the shelf base towards the calving front where refreezing can occur. Melt rates are computed by a description of ice-ocean interaction commonly used in high-resolution models (McPhee 1992, Holland & Jenkins 1999). This enables the model to capture a wide-range of melt rates, comparable to the observed range for Antarctic ice shelves (Rignot et al. 2013).

  20. 7 CFR 58.318 - Butter, frozen or plastic cream melting machines. (United States)


    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Butter, frozen or plastic cream melting machines. 58... Service 1 Equipment and Utensils § 58.318 Butter, frozen or plastic cream melting machines. Shavers, shredders or melting machines used for rapid melting of butter, frozen or plastic cream shall be of...