GHOLAMI, SAEID; BABOLIAN, ESMAIL; JAVIDI, MOHAMMAD
2016-01-01
This paper presents a new numerical approach to solve single and multiterm time fractional diffusion equations. In this work, the space dimension is discretized to the Gauss$-$Lobatto points. We use the normalized Grunwald approximation for the time dimension and a pseudospectral successive integration matrix for the space dimension. This approach shows that with fewer numbers of points, we can approximate the solution with more accuracy. Some examples with numerical results in tables and fig...
An efficient hybrid pseudospectral/finite-difference scheme for solving the TTI pure P-wave equation
Zhan, Ge
2013-02-19
The pure P-wave equation for modelling and migration in tilted transversely isotropic (TTI) media has attracted more and more attention in imaging seismic data with anisotropy. The desirable feature is that it is absolutely free of shear-wave artefacts and the consequent alleviation of numerical instabilities generally suffered by some systems of coupled equations. However, due to several forward-backward Fourier transforms in wavefield updating at each time step, the computational cost is significant, and thereby hampers its prevalence. We propose to use a hybrid pseudospectral (PS) and finite-difference (FD) scheme to solve the pure P-wave equation. In the hybrid solution, most of the cost-consuming wavenumber terms in the equation are replaced by inexpensive FD operators, which in turn accelerates the computation and reduces the computational cost. To demonstrate the benefit in cost saving of the new scheme, 2D and 3D reverse-time migration (RTM) examples using the hybrid solution to the pure P-wave equation are carried out, and respective runtimes are listed and compared. Numerical results show that the hybrid strategy demands less computation time and is faster than using the PS method alone. Furthermore, this new TTI RTM algorithm with the hybrid method is computationally less expensive than that with the FD solution to conventional TTI coupled equations. © 2013 Sinopec Geophysical Research Institute.
An efficient hybrid pseudospectral/finite-difference scheme for solving the TTI pure P-wave equation
International Nuclear Information System (INIS)
Zhan, Ge; Pestana, Reynam C; Stoffa, Paul L
2013-01-01
The pure P-wave equation for modelling and migration in tilted transversely isotropic (TTI) media has attracted more and more attention in imaging seismic data with anisotropy. The desirable feature is that it is absolutely free of shear-wave artefacts and the consequent alleviation of numerical instabilities generally suffered by some systems of coupled equations. However, due to several forward–backward Fourier transforms in wavefield updating at each time step, the computational cost is significant, and thereby hampers its prevalence. We propose to use a hybrid pseudospectral (PS) and finite-difference (FD) scheme to solve the pure P-wave equation. In the hybrid solution, most of the cost-consuming wavenumber terms in the equation are replaced by inexpensive FD operators, which in turn accelerates the computation and reduces the computational cost. To demonstrate the benefit in cost saving of the new scheme, 2D and 3D reverse-time migration (RTM) examples using the hybrid solution to the pure P-wave equation are carried out, and respective runtimes are listed and compared. Numerical results show that the hybrid strategy demands less computation time and is faster than using the PS method alone. Furthermore, this new TTI RTM algorithm with the hybrid method is computationally less expensive than that with the FD solution to conventional TTI coupled equations. (paper)
Numerical schemes for explosion hazards
International Nuclear Information System (INIS)
Therme, Nicolas
2015-01-01
In nuclear facilities, internal or external explosions can cause confinement breaches and radioactive materials release in the environment. Hence, modeling such phenomena is crucial for safety matters. Blast waves resulting from explosions are modeled by the system of Euler equations for compressible flows, whereas Navier-Stokes equations with reactive source terms and level set techniques are used to simulate the propagation of flame front during the deflagration phase. The purpose of this thesis is to contribute to the creation of efficient numerical schemes to solve these complex models. The work presented here focuses on two major aspects: first, the development of consistent schemes for the Euler equations, then the buildup of reliable schemes for the front propagation. In both cases, explicit in time schemes are used, but we also introduce a pressure correction scheme for the Euler equations. Staggered discretization is used in space. It is based on the internal energy formulation of the Euler system, which insures its positivity and avoids tedious discretization of the total energy over staggered grids. A discrete kinetic energy balance is derived from the scheme and a source term is added in the discrete internal energy balance equation to preserve the exact total energy balance at the limit. High order methods of MUSCL type are used in the discrete convective operators, based solely on material velocity. They lead to positivity of density and internal energy under CFL conditions. This ensures that the total energy cannot grow and we can furthermore derive a discrete entropy inequality. Under stability assumptions of the discrete L8 and BV norms of the scheme's solutions one can prove that a sequence of converging discrete solutions necessarily converges towards the weak solution of the Euler system. Besides it satisfies a weak entropy inequality at the limit. Concerning the front propagation, we transform the flame front evolution equation (the so called
A hybrid scheme for absorbing edge reflections in numerical modeling of wave propagation
Liu, Yang; Sen, Mrinal K.
2010-01-01
We propose an efficient scheme to absorb reflections from the model boundaries in numerical solutions of wave equations. This scheme divides the computational domain into boundary, transition, and inner areas. The wavefields within the inner and boundary areas are computed by the wave equation and the one-way wave equation, respectively. The wavefields within the transition area are determined by a weighted combination of the wavefields computed by the wave equation and the one-way wave equation to obtain a smooth variation from the inner area to the boundary via the transition zone. The results from our finite-difference numerical modeling tests of the 2D acoustic wave equation show that the absorption enforced by this scheme gradually increases with increasing width of the transition area. We obtain equally good performance using pseudospectral and finite-element modeling with the same scheme. Our numerical experiments demonstrate that use of 10 grid points for absorbing edge reflections attains nearly perfect absorption. © 2010 Society of Exploration Geophysicists.
A hybrid scheme for absorbing edge reflections in numerical modeling of wave propagation
Liu, Yang
2010-03-01
We propose an efficient scheme to absorb reflections from the model boundaries in numerical solutions of wave equations. This scheme divides the computational domain into boundary, transition, and inner areas. The wavefields within the inner and boundary areas are computed by the wave equation and the one-way wave equation, respectively. The wavefields within the transition area are determined by a weighted combination of the wavefields computed by the wave equation and the one-way wave equation to obtain a smooth variation from the inner area to the boundary via the transition zone. The results from our finite-difference numerical modeling tests of the 2D acoustic wave equation show that the absorption enforced by this scheme gradually increases with increasing width of the transition area. We obtain equally good performance using pseudospectral and finite-element modeling with the same scheme. Our numerical experiments demonstrate that use of 10 grid points for absorbing edge reflections attains nearly perfect absorption. © 2010 Society of Exploration Geophysicists.
Numerical Schemes for Rough Parabolic Equations
Energy Technology Data Exchange (ETDEWEB)
Deya, Aurelien, E-mail: deya@iecn.u-nancy.fr [Universite de Nancy 1, Institut Elie Cartan Nancy (France)
2012-04-15
This paper is devoted to the study of numerical approximation schemes for a class of parabolic equations on (0,1) perturbed by a non-linear rough signal. It is the continuation of Deya (Electron. J. Probab. 16:1489-1518, 2011) and Deya et al. (Probab. Theory Relat. Fields, to appear), where the existence and uniqueness of a solution has been established. The approach combines rough paths methods with standard considerations on discretizing stochastic PDEs. The results apply to a geometric 2-rough path, which covers the case of the multidimensional fractional Brownian motion with Hurst index H>1/3.
Simple Numerical Schemes for the Korteweg-deVries Equation
International Nuclear Information System (INIS)
McKinstrie, C. J.; Kozlov, M.V.
2000-01-01
Two numerical schemes, which simulate the propagation of dispersive non-linear waves, are described. The first is a split-step Fourier scheme for the Korteweg-de Vries (KdV) equation. The second is a finite-difference scheme for the modified KdV equation. The stability and accuracy of both schemes are discussed. These simple schemes can be used to study a wide variety of physical processes that involve dispersive nonlinear waves
Simple Numerical Schemes for the Korteweg-deVries Equation
Energy Technology Data Exchange (ETDEWEB)
C. J. McKinstrie; M. V. Kozlov
2000-12-01
Two numerical schemes, which simulate the propagation of dispersive non-linear waves, are described. The first is a split-step Fourier scheme for the Korteweg-de Vries (KdV) equation. The second is a finite-difference scheme for the modified KdV equation. The stability and accuracy of both schemes are discussed. These simple schemes can be used to study a wide variety of physical processes that involve dispersive nonlinear waves.
SpF: Enabling Petascale Performance for Pseudospectral Dynamo Models
Jiang, W.; Clune, T.; Vriesema, J.; Gutmann, G.
2013-12-01
Pseudospectral (PS) methods possess a number of characteristics (e.g., efficiency, accuracy, natural boundary conditions) that are extremely desirable for dynamo models. Unfortunately, dynamo models based upon PS methods face a number of daunting challenges, which include exposing additional parallelism, leveraging hardware accelerators, exploiting hybrid parallelism, and improving the scalability of global memory transposes. Although these issues are a concern for most models, solutions for PS methods tend to require far more pervasive changes to underlying data and control structures. Further, improvements in performance in one model are difficult to transfer to other models, resulting in significant duplication of effort across the research community. We have developed an extensible software framework for pseudospectral methods called SpF that is intended to enable extreme scalability and optimal performance. High-level abstractions provided by SpF unburden applications of the responsibility of managing domain decomposition and load balance while reducing the changes in code required to adapt to new computing architectures. The key design concept in SpF is that each phase of the numerical calculation is partitioned into disjoint numerical 'kernels' that can be performed entirely in-processor. The granularity of domain-decomposition provided by SpF is only constrained by the data-locality requirements of these kernels. SpF builds on top of optimized vendor libraries for common numerical operations such as transforms, matrix solvers, etc., but can also be configured to use open source alternatives for portability. SpF includes several alternative schemes for global data redistribution and is expected to serve as an ideal testbed for further research into optimal approaches for different network architectures. In this presentation, we will describe the basic architecture of SpF as well as preliminary performance data and experience with adapting legacy dynamo codes
A numerical scheme for the generalized Burgers–Huxley equation
Directory of Open Access Journals (Sweden)
Brajesh K. Singh
2016-10-01
Full Text Available In this article, a numerical solution of generalized Burgers–Huxley (gBH equation is approximated by using a new scheme: modified cubic B-spline differential quadrature method (MCB-DQM. The scheme is based on differential quadrature method in which the weighting coefficients are obtained by using modified cubic B-splines as a set of basis functions. This scheme reduces the equation into a system of first-order ordinary differential equation (ODE which is solved by adopting SSP-RK43 scheme. Further, it is shown that the proposed scheme is stable. The efficiency of the proposed method is illustrated by four numerical experiments, which confirm that obtained results are in good agreement with earlier studies. This scheme is an easy, economical and efficient technique for finding numerical solutions for various kinds of (nonlinear physical models as compared to the earlier schemes.
A numerical relativity scheme for cosmological simulations
Daverio, David; Dirian, Yves; Mitsou, Ermis
2017-12-01
Cosmological simulations involving the fully covariant gravitational dynamics may prove relevant in understanding relativistic/non-linear features and, therefore, in taking better advantage of the upcoming large scale structure survey data. We propose a new 3 + 1 integration scheme for general relativity in the case where the matter sector contains a minimally-coupled perfect fluid field. The original feature is that we completely eliminate the fluid components through the constraint equations, thus remaining with a set of unconstrained evolution equations for the rest of the fields. This procedure does not constrain the lapse function and shift vector, so it holds in arbitrary gauge and also works for arbitrary equation of state. An important advantage of this scheme is that it allows one to define and pass an adaptation of the robustness test to the cosmological context, at least in the case of pressureless perfect fluid matter, which is the relevant one for late-time cosmology.
Energy Technology Data Exchange (ETDEWEB)
Sato, T; Matsuoka, T [Japan Petroleum Exploration Corp., Tokyo (Japan); Saeki, T [Japan National Oil Corp., Tokyo (Japan). Technology Research Center
1997-05-27
Discussed in this report is a wavefield simulation in the 3-dimensional seismic survey. With the level of the object of exploration growing deeper and the object more complicated in structure, the survey method is now turning 3-dimensional. There are several modelling methods for numerical calculation of 3-dimensional wavefields, such as the difference method, pseudospectral method, and the like, all of which demand an exorbitantly large memory and long calculation time, and are costly. Such methods have of late become feasible, however, thanks to the advent of the parallel computer. As compared with the difference method, the pseudospectral method requires a smaller computer memory and shorter computation time, and is more flexible in accepting models. It outputs the result in fullwave just like the difference method, and does not cause wavefield numerical variance. As the computation platform, the parallel computer nCUBE-2S is used. The object domain is divided into the number of the processors, and each of the processors takes care only of its share so that parallel computation as a whole may realize a very high-speed computation. By the use of the pseudospectral method, a 3-dimensional simulation is completed within a tolerable computation time length. 7 refs., 3 figs., 1 tab.
Conservative numerical schemes for Euler-Lagrange equations
Energy Technology Data Exchange (ETDEWEB)
Vazquez, L. [Universidad Complutense, Madrid (Spain). Dept. de Matematica Aplicada; Jimenez, S. [Universidad Alfonso X El Sabio, Madrid (Spain). Dept. de Matematica Aplicada
1999-05-01
As a preliminary step to study magnetic field lines, the authors seek numerical schemes that reproduce at discrete level the significant feature of the continuous model, based on an underling Lagrangian structure. The resulting scheme give discrete counterparts of the variation law for the energy as well of as the Euler-Lagrange equations and their symmetries.
Liao, Feng; Zhang, Luming; Wang, Shanshan
2018-02-01
In this article, we formulate an efficient and accurate numerical method for approximations of the coupled Schrödinger-Boussinesq (SBq) system. The main features of our method are based on: (i) the applications of a time-splitting Fourier spectral method for Schrödinger-like equation in SBq system, (ii) the utilizations of exponential wave integrator Fourier pseudospectral for spatial derivatives in the Boussinesq-like equation. The scheme is fully explicit and efficient due to fast Fourier transform. The numerical examples are presented to show the efficiency and accuracy of our method.
Numerical analysis of boosting scheme for scalable NMR quantum computation
International Nuclear Information System (INIS)
SaiToh, Akira; Kitagawa, Masahiro
2005-01-01
Among initialization schemes for ensemble quantum computation beginning at thermal equilibrium, the scheme proposed by Schulman and Vazirani [in Proceedings of the 31st ACM Symposium on Theory of Computing (STOC'99) (ACM Press, New York, 1999), pp. 322-329] is known for the simple quantum circuit to redistribute the biases (polarizations) of qubits and small time complexity. However, our numerical simulation shows that the number of qubits initialized by the scheme is rather smaller than expected from the von Neumann entropy because of an increase in the sum of the binary entropies of individual qubits, which indicates a growth in the total classical correlation. This result--namely, that there is such a significant growth in the total binary entropy--disagrees with that of their analysis
A multidimensional pseudospectral method for optimal control of quantum ensembles
International Nuclear Information System (INIS)
Ruths, Justin; Li, Jr-Shin
2011-01-01
In our previous work, we have shown that the pseudospectral method is an effective and flexible computation scheme for deriving pulses for optimal control of quantum systems. In practice, however, quantum systems often exhibit variation in the parameters that characterize the system dynamics. This leads us to consider the control of an ensemble (or continuum) of quantum systems indexed by the system parameters that show variation. We cast the design of pulses as an optimal ensemble control problem and demonstrate a multidimensional pseudospectral method with several challenging examples of both closed and open quantum systems from nuclear magnetic resonance spectroscopy in liquid. We give particular attention to the ability to derive experimentally viable pulses of minimum energy or duration.
Generalized Roe's numerical scheme for a two-fluid model
International Nuclear Information System (INIS)
Toumi, I.; Raymond, P.
1993-01-01
This paper is devoted to a mathematical and numerical study of a six equation two-fluid model. We will prove that the model is strictly hyperbolic due to the inclusion of the virtual mass force term in the phasic momentum equations. The two-fluid model is naturally written under a nonconservative form. To solve the nonlinear Riemann problem for this nonconservative hyperbolic system, a generalized Roe's approximate Riemann solver, is used, based on a linearization of the nonconservative terms. A Godunov type numerical scheme is built, using this approximate Riemann solver. 10 refs., 5 figs,
Dealiased convolutions for pseudospectral simulations
International Nuclear Information System (INIS)
Roberts, Malcolm; Bowman, John C
2011-01-01
Efficient algorithms have recently been developed for calculating dealiased linear convolution sums without the expense of conventional zero-padding or phase-shift techniques. For one-dimensional in-place convolutions, the memory requirements are identical with the zero-padding technique, with the important distinction that the additional work memory need not be contiguous with the input data. This decoupling of data and work arrays dramatically reduces the memory and computation time required to evaluate higher-dimensional in-place convolutions. The memory savings is achieved by computing the in-place Fourier transform of the data in blocks, rather than all at once. The technique also allows one to dealias the n-ary convolutions that arise on Fourier transforming cubic and higher powers. Implicitly dealiased convolutions can be built on top of state-of-the-art adaptive fast Fourier transform libraries like FFTW. Vectorized multidimensional implementations for the complex and centered Hermitian (pseudospectral) cases have already been implemented in the open-source software FFTW++. With the advent of this library, writing a high-performance dealiased pseudospectral code for solving nonlinear partial differential equations has now become a relatively straightforward exercise. New theoretical estimates of computational complexity and memory use are provided, including corrected timing results for 3D pruned convolutions and further consideration of higher-order convolutions.
Adam, A. M. A.; Bashier, E. B. M.; Hashim, M. H. A.; Patidar, K. C.
2017-07-01
In this work, we design and analyze a fitted numerical method to solve a reaction-diffusion model with time delay, namely, a delayed version of a population model which is an extension of the logistic growth (LG) equation for a food-limited population proposed by Smith [F.E. Smith, Population dynamics in Daphnia magna and a new model for population growth, Ecology 44 (1963) 651-663]. Seeing that the analytical solution (in closed form) is hard to obtain, we seek for a robust numerical method. The method consists of a Fourier-pseudospectral semi-discretization in space and a fitted operator implicit-explicit scheme in temporal direction. The proposed method is analyzed for convergence and we found that it is unconditionally stable. Illustrative numerical results will be presented at the conference.
A first generation numerical geomagnetic storm prediction scheme
International Nuclear Information System (INIS)
Akasofu, S.-I.; Fry, C.F.
1986-01-01
Because geomagnetic and auroral disturbances cause significant interference on many electrical systems, it is essential to develop a reliable geomagnetic and auroral storm prediction scheme. A first generation numerical prediction scheme has been developed. The scheme consists of two major computer codes which in turn consist of a large number of subroutine codes and of empirical relationships. First of all, when a solar flare occurs, six flare parameters are determined as the input data set for the first code which is devised to show the simulated propagation of solar wind disturbances in the heliosphere to a distance of 2 a.u. Thus, one can determine the relative location of the propagating disturbances with the Earth's position. The solar wind speed and the three interplanetary magnetic field (IMF) components are then computed as a function of time at the Earth's location or any other desired (space probe) locations. These quantities in turn become the input parameters for the second major code which computes first the power of the solar wind-magnetosphere dynamo as a function of time. The power thus obtained and the three IMF components can be used to compute or infer: the predicted geometry of the auroral oval; the cross-polar cap potential; the two geomagnetic indices AE and Dst; the total energy injection rate into the polar ionosphere; and the atmospheric temperature, etc. (author)
Generalized Pseudospectral Method and Zeros of Orthogonal Polynomials
Directory of Open Access Journals (Sweden)
Oksana Bihun
2018-01-01
Full Text Available Via a generalization of the pseudospectral method for numerical solution of differential equations, a family of nonlinear algebraic identities satisfied by the zeros of a wide class of orthogonal polynomials is derived. The generalization is based on a modification of pseudospectral matrix representations of linear differential operators proposed in the paper, which allows these representations to depend on two, rather than one, sets of interpolation nodes. The identities hold for every polynomial family pνxν=0∞ orthogonal with respect to a measure supported on the real line that satisfies some standard assumptions, as long as the polynomials in the family satisfy differential equations Apν(x=qν(xpν(x, where A is a linear differential operator and each qν(x is a polynomial of degree at most n0∈N; n0 does not depend on ν. The proposed identities generalize known identities for classical and Krall orthogonal polynomials, to the case of the nonclassical orthogonal polynomials that belong to the class described above. The generalized pseudospectral representations of the differential operator A for the case of the Sonin-Markov orthogonal polynomials, also known as generalized Hermite polynomials, are presented. The general result is illustrated by new algebraic relations satisfied by the zeros of the Sonin-Markov polynomials.
Numerical schemes for one-point closure turbulence models
International Nuclear Information System (INIS)
Larcher, Aurelien
2010-01-01
First-order Reynolds Averaged Navier-Stokes (RANS) turbulence models are studied in this thesis. These latter consist of the Navier-Stokes equations, supplemented with a system of balance equations describing the evolution of characteristic scalar quantities called 'turbulent scales'. In so doing, the contribution of the turbulent agitation to the momentum can be determined by adding a diffusive coefficient (called 'turbulent viscosity') in the Navier-Stokes equations, such that it is defined as a function of the turbulent scales. The numerical analysis problems, which are studied in this dissertation, are treated in the frame of a fractional step algorithm, consisting of an approximation on regular meshes of the Navier-Stokes equations by the nonconforming Crouzeix-Raviart finite elements, and a set of scalar convection-diffusion balance equations discretized by the standard finite volume method. A monotone numerical scheme based on the standard finite volume method is proposed so as to ensure that the turbulent scales, like the turbulent kinetic energy (k) and its dissipation rate (ε), remain positive in the case of the standard k - ε model, as well as the k - ε RNG and the extended k - ε - ν 2 models. The convergence of the proposed numerical scheme is then studied on a system composed of the incompressible Stokes equations and a steady convection-diffusion equation, which are both coupled by the viscosities and the turbulent production term. This reduced model allows to deal with the main difficulty encountered in the analysis of such problems: the definition of the turbulent production term leads to consider a class of convection-diffusion problems with an irregular right-hand side belonging to L 1 . Finally, to step towards the unsteady problem, the convergence of the finite volume scheme for a model convection-diffusion equation with L 1 data is proved. The a priori estimates on the solution and on its time derivative are obtained in discrete norms, for
An efficient numerical scheme for the simulation of parallel-plate active magnetic regenerators
DEFF Research Database (Denmark)
Torregrosa-Jaime, Bárbara; Corberán, José M.; Payá, Jorge
2015-01-01
A one-dimensional model of a parallel-plate active magnetic regenerator (AMR) is presented in this work. The model is based on an efficient numerical scheme which has been developed after analysing the heat transfer mechanisms in the regenerator bed. The new finite difference scheme optimally com...... to the fully implicit scheme, the proposed scheme achieves more accurate results, prevents numerical errors and requires less computational effort. In AMR simulations the new scheme can reduce the computational time by 88%....
A New Numerical Scheme for Cosmic-Ray Transport
Jiang, Yan-Fei; Oh, S. Peng
2018-02-01
Numerical solutions of the cosmic-ray (CR) magnetohydrodynamic equations are dogged by a powerful numerical instability, which arises from the constraint that CRs can only stream down their gradient. The standard cure is to regularize by adding artificial diffusion. Besides introducing ad hoc smoothing, this has a significant negative impact on either computational cost or complexity and parallel scalings. We describe a new numerical algorithm for CR transport, with close parallels to two-moment methods for radiative transfer under the reduced speed of light approximation. It stably and robustly handles CR streaming without any artificial diffusion. It allows for both isotropic and field-aligned CR streaming and diffusion, with arbitrary streaming and diffusion coefficients. CR transport is handled explicitly, while source terms are handled implicitly. The overall time step scales linearly with resolution (even when computing CR diffusion) and has a perfect parallel scaling. It is given by the standard Courant condition with respect to a constant maximum velocity over the entire simulation domain. The computational cost is comparable to that of solving the ideal MHD equation. We demonstrate the accuracy and stability of this new scheme with a wide variety of tests, including anisotropic streaming and diffusion tests, CR-modified shocks, CR-driven blast waves, and CR transport in multiphase media. The new algorithm opens doors to much more ambitious and hitherto intractable calculations of CR physics in galaxies and galaxy clusters. It can also be applied to other physical processes with similar mathematical structure, such as saturated, anisotropic heat conduction.
Numerical dissipation and dispersion of the homogenenous and complete flux schemes
Thije Boonkkamp, ten J.H.M.; Anthonissen, M.J.H.
2014-01-01
We analyse numerical dissipation and dispersion of the homogeneous ¿ux (HF) and complete ¿ux (CF) schemes, ¿nite volume methods introduced in [1]. To that purpose we derive the modi¿ed equation of both schemes. We show that the HF scheme suffers from numerical diffusion for dominant advection, which
A new numerical scheme for the simulation of active magnetic regenerators
DEFF Research Database (Denmark)
Torregrosa-Jaime, B.; Engelbrecht, Kurt; Payá, J.
2014-01-01
A 1D model of a parallel-plate active magnetic regenerator (AMR) has been developed based on a new numerical scheme. With respect to the implicit scheme, the new scheme achieves accurate results, minimizes computational time and prevents numerical errors. The model has been used to check the boun...
Numeric Analysis for Relationship-Aware Scalable Streaming Scheme
Directory of Open Access Journals (Sweden)
Heung Ki Lee
2014-01-01
Full Text Available Frequent packet loss of media data is a critical problem that degrades the quality of streaming services over mobile networks. Packet loss invalidates frames containing lost packets and other related frames at the same time. Indirect loss caused by losing packets decreases the quality of streaming. A scalable streaming service can decrease the amount of dropped multimedia resulting from a single packet loss. Content providers typically divide one large media stream into several layers through a scalable streaming service and then provide each scalable layer to the user depending on the mobile network. Also, a scalable streaming service makes it possible to decode partial multimedia data depending on the relationship between frames and layers. Therefore, a scalable streaming service provides a way to decrease the wasted multimedia data when one packet is lost. However, the hierarchical structure between frames and layers of scalable streams determines the service quality of the scalable streaming service. Even if whole packets of layers are transmitted successfully, they cannot be decoded as a result of the absence of reference frames and layers. Therefore, the complicated relationship between frames and layers in a scalable stream increases the volume of abandoned layers. For providing a high-quality scalable streaming service, we choose a proper relationship between scalable layers as well as the amount of transmitted multimedia data depending on the network situation. We prove that a simple scalable scheme outperforms a complicated scheme in an error-prone network. We suggest an adaptive set-top box (AdaptiveSTB to lower the dependency between scalable layers in a scalable stream. Also, we provide a numerical model to obtain the indirect loss of multimedia data and apply it to various multimedia streams. Our AdaptiveSTB enhances the quality of a scalable streaming service by removing indirect loss.
Directory of Open Access Journals (Sweden)
Majid Tavassoli Kajani
2013-01-01
Full Text Available We propose a pseudospectral method for solving the Thomas-Fermi equation which is a nonlinear ordinary differential equation on semi-infinite interval. This approach is based on the rational third-kind Chebyshev pseudospectral method that is indeed a combination of Tau and collocation methods. This method reduces the solution of this problem to the solution of a system of algebraic equations. Comparison with some numerical solutions shows that the present solution is highly accurate.
Comparative study of numerical schemes of TVD3, UNO3-ACM and optimized compact scheme
Lee, Duck-Joo; Hwang, Chang-Jeon; Ko, Duck-Kon; Kim, Jae-Wook
1995-01-01
Three different schemes are employed to solve the benchmark problem. The first one is a conventional TVD-MUSCL (Monotone Upwind Schemes for Conservation Laws) scheme. The second scheme is a UNO3-ACM (Uniformly Non-Oscillatory Artificial Compression Method) scheme. The third scheme is an optimized compact finite difference scheme modified by us: the 4th order Runge Kutta time stepping, the 4th order pentadiagonal compact spatial discretization with the maximum resolution characteristics. The problems of category 1 are solved by using the second (UNO3-ACM) and third (Optimized Compact) schemes. The problems of category 2 are solved by using the first (TVD3) and second (UNO3-ACM) schemes. The problem of category 5 is solved by using the first (TVD3) scheme. It can be concluded from the present calculations that the Optimized Compact scheme and the UN03-ACM show good resolutions for category 1 and category 2 respectively.
Implicit and semi-implicit schemes in the Versatile Advection Code : numerical tests
Tóth, G.; Keppens, R.; Bochev, Mikhail A.
1998-01-01
We describe and evaluate various implicit and semi-implicit time integration schemes applied to the numerical simulation of hydrodynamical and magnetohydrodynamical problems. The schemes were implemented recently in the software package Versatile Advection Code, which uses modern shock capturing
Energy Technology Data Exchange (ETDEWEB)
Park, Ju Yeop; In, Wang Kee; Chun, Tae Hyun; Oh, Dong Seok [Korea Atomic Energy Research Institute, Taejeon (Korea)
2000-02-01
The development of orthogonal 2-dimensional numerical code is made. The present code contains 9 kinds of turbulence models that are widely used. They include a standard k-{epsilon} model and 8 kinds of low Reynolds number ones. They also include 6 kinds of numerical schemes including 5 kinds of low order schemes and 1 kind of high order scheme such as QUICK. To verify the present numerical code, pipe flow, channel flow and expansion pipe flow are solved by this code with various options of turbulence models and numerical schemes and the calculated outputs are compared to experimental data. Furthermore, the discretization error that originates from the use of standard k-{epsilon} turbulence model with wall function is much more diminished by introducing a new grid system than a conventional one in the present code. 23 refs., 58 figs., 6 tabs. (Author)
A Positivity-Preserving Numerical Scheme for Nonlinear Option Pricing Models
Directory of Open Access Journals (Sweden)
Shengwu Zhou
2012-01-01
Full Text Available A positivity-preserving numerical method for nonlinear Black-Scholes models is developed in this paper. The numerical method is based on a nonstandard approximation of the second partial derivative. The scheme is not only unconditionally stable and positive, but also allows us to solve the discrete equation explicitly. Monotone properties are studied in order to avoid unwanted oscillations of the numerical solution. The numerical results for European put option and European butterfly spread are compared to the standard finite difference scheme. It turns out that the proposed scheme is efficient and reliable.
Numerical Comparison of Optimal Charging Schemes for Electric Vehicles
DEFF Research Database (Denmark)
You, Shi; Hu, Junjie; Pedersen, Anders Bro
2012-01-01
of four different charging schemes, namely night charging, night charging with V2G, 24 hour charging and 24 hour charging with V2G, on the basis of real driving data and electricity price of Denmark in 2003. For all schemes, optimal charging plans with 5 minute resolution are derived through the solving...... of a mixed integer programming problem which aims to minimize the charging cost and meanwhile takes into account the users' driving needs and the practical limitations of the EV battery. In the post processing stage, the rainflow counting algorithm is implemented to assess the lifetime usage of a lithium...
International Nuclear Information System (INIS)
Lee, Goung Jin; Kim, Soong Pyung
1990-01-01
In solving the convection-diffusion phenomena, it is common to use central difference scheme or upwind scheme. The central difference scheme has second order accuracy, while the upwind scheme is only first order accurate. However, since the variation rising in the convection-diffusion problem is exponential, central difference scheme ceased to be a good method for anything but extremely small values of Δx. At large values of Δx, which is all one can afford in most practical problems, it is the upwind scheme that gives more reasonable results than the central scheme. But in the conventional upwind scheme, since the accuracy is only first order, false diffusion is somewhat large, and when the real diffusion is smaller than the numerical diffusion, solutions may be very errorneous. So in this paper, a method to reduce the numerical diffusion of upwind scheme is studied. Developed scheme uses same number of nodes as conventional upwind scheme, but it considers the direction of flow more sophistically. As a conclusion, the developed scheme shows very good results. It can reduce false diffusion greatly with the cost of small complexity. Also, algorithm of the developed scheme is presented at appendix. (Author)
Hybrid flux splitting schemes for numerical resolution of two-phase flows
Energy Technology Data Exchange (ETDEWEB)
Flaatten, Tore
2003-07-01
This thesis deals with the construction of numerical schemes for approximating. solutions to a hyperbolic two-phase flow model. Numerical schemes for hyperbolic models are commonly divided in two main classes: Flux Vector Splitting (FVS) schemes which are based on scalar computations and Flux Difference Splitting (FDS) schemes which are based on matrix computations. FVS schemes are more efficient than FDS schemes, but FDS schemes are more accurate. The canonical FDS schemes are the approximate Riemann solvers which are based on a local decomposition of the system into its full wave structure. In this thesis the mathematical structure of the model is exploited to construct a class of hybrid FVS/FDS schemes, denoted as Mixture Flux (MF) schemes. This approach is based on a splitting of the system in two components associated with the pressure and volume fraction variables respectively, and builds upon hybrid FVS/FDS schemes previously developed for one-phase flow models. Through analysis and numerical experiments it is demonstrated that the MF approach provides several desirable features, including (1) Improved efficiency compared to standard approximate Riemann solvers, (2) Robustness under stiff conditions, (3) Accuracy on linear and nonlinear phenomena. In particular it is demonstrated that the framework allows for an efficient weakly implicit implementation, focusing on an accurate resolution of slow transients relevant for the petroleum industry. (author)
Unconditionally energy stable numerical schemes for phase-field vesicle membrane model
Guillén-González, F.; Tierra, G.
2018-02-01
Numerical schemes to simulate the deformation of vesicles membranes via minimizing the bending energy have been widely studied in recent times due to its connection with many biological motivated problems. In this work we propose a new unconditionally energy stable numerical scheme for a vesicle membrane model that satisfies exactly the conservation of volume constraint and penalizes the surface area constraint. Moreover, we extend these ideas to present an unconditionally energy stable splitting scheme decoupling the interaction of the vesicle with a surrounding fluid. Finally, the well behavior of the proposed schemes are illustrated through several computational experiments.
Efficient pseudospectral methods for density functional calculations
International Nuclear Information System (INIS)
Murphy, R. B.; Cao, Y.; Beachy, M. D.; Ringnalda, M. N.; Friesner, R. A.
2000-01-01
Novel improvements of the pseudospectral method for assembling the Coulomb operator are discussed. These improvements consist of a fast atom centered multipole method and a variation of the Head-Gordan J-engine analytic integral evaluation. The details of the methodology are discussed and performance evaluations presented for larger molecules within the context of DFT energy and gradient calculations. (c) 2000 American Institute of Physics
A strong shock tube problem calculated by different numerical schemes
Lee, Wen Ho; Clancy, Sean P.
1996-05-01
Calculated results are presented for the solution of a very strong shock tube problem on a coarse mesh using (1) MESA code, (2) UNICORN code, (3) Schulz hydro, and (4) modified TVD scheme. The first two codes are written in Eulerian coordinates, whereas methods (3) and (4) are in Lagrangian coordinates. MESA and UNICORN codes are both of second order and use different monotonic advection method to avoid the Gibbs phenomena. Code (3) uses typical artificial viscosity for inviscid flow, whereas code (4) uses a modified TVD scheme. The test problem is a strong shock tube problem with a pressure ratio of 109 and density ratio of 103 in an ideal gas. For no mass-matching case, Schulz hydro is better than TVD scheme. In the case of mass-matching, there is no difference between them. MESA and UNICORN results are nearly the same. However, the computed positions such as the contact discontinuity (i.e. the material interface) are not as accurate as the Lagrangian methods.
A strong shock tube problem calculated by different numerical schemes
International Nuclear Information System (INIS)
Lee, W.H.; Clancy, S.P.
1996-01-01
Calculated results are presented for the solution of a very strong shock tube problem on a coarse mesh using (1) MESA code, (2) UNICORN code, (3) Schulz hydro, and (4) modified TVD scheme. The first two codes are written in Eulerian coordinates, whereas methods (3) and (4) are in Lagrangian coordinates. MESA and UNICORN codes are both of second order and use different monotonic advection method to avoid the Gibbs phenomena. Code (3) uses typical artificial viscosity for inviscid flow, whereas code (4) uses a modified TVD scheme. The test problem is a strong shock tube problem with a pressure ratio of 10 9 and density ratio of 10 3 in an ideal gas. For no mass-matching case, Schulz hydro is better than TVD scheme. In the case of mass-matching, there is no difference between them. MESA and UNICORN results are nearly the same. However, the computed positions such as the contact discontinuity (i.e. the material interface) are not as accurate as the Lagrangian methods. copyright 1996 American Institute of Physics
A new scheme to treat the numerical Tcherenkov instability for electromagnetic particle simulations
International Nuclear Information System (INIS)
Assous, F.; Degond, P.; Segre, J.; Degond, P.
1997-10-01
The aim of this paper is to present a new explicit time scheme for electromagnetic particle simulations. The main property of this new scheme, which depends on a parameter, is to reduce and in some cases to suppress numerical instabilities that can appear in this context, and are widely described in the literature. Other numerical properties are also investigated, and a numerical example is finally given to illustrate our purpose. This scheme is expected to be useful in the field of plasma modelling. (authors)
TLC scheme for numerical solution of the transport equation on equilateral triangular meshes
International Nuclear Information System (INIS)
Walters, W.F.
1983-01-01
A new triangular linear characteristic TLC scheme for numerically solving the transport equation on equilateral triangular meshes has been developed. This scheme uses the analytic solution of the transport equation in the triangle as its basis. The data on edges of the triangle are assumed linear as is the source representation. A characteristic approach or nodal approach is used to obtain the analytic solution. Test problems indicate that the new TLC is superior to the widely used DITRI scheme for accuracy
Nuclear Reactor Component Code CUPID-I: Numerical Scheme and Preliminary Assessment Results
International Nuclear Information System (INIS)
Cho, Hyoung Kyu; Jeong, Jae Jun; Park, Ik Kyu; Kim, Jong Tae; Yoon, Han Young
2007-12-01
A component scale thermal hydraulic analysis code, CUPID (Component Unstructured Program for Interfacial Dynamics), is being developed for the analysis of components of a nuclear reactor, such as reactor vessel, steam generator, containment, etc. It adopted three-dimensional, transient, two phase and three-field model. In order to develop the numerical schemes for the three-field model, various numerical schemes have been examined including the SMAC, semi-implicit ICE, SIMPLE, Row Scheme and so on. Among them, the ICE scheme for the three-field model was presented in the present report. The CUPID code is utilizing unstructured mesh for the simulation of complicated geometries of the nuclear reactor components. The conventional ICE scheme that was applied to RELAP5 and COBRA-TF, therefore, were modified for the application to the unstructured mesh. Preliminary calculations for the unstructured semi-implicit ICE scheme have been conducted for a verification of the numerical method from a qualitative point of view. The preliminary calculation results showed that the present numerical scheme is robust and efficient for the prediction of phase changes and flow transitions due to a boiling and a flashing. These calculation results also showed the strong coupling between the pressure and void fraction changes. Thus, it is believed that the semi-implicit ICE scheme can be utilized for transient two-phase flows in a component of a nuclear reactor
Nuclear Reactor Component Code CUPID-I: Numerical Scheme and Preliminary Assessment Results
Energy Technology Data Exchange (ETDEWEB)
Cho, Hyoung Kyu; Jeong, Jae Jun; Park, Ik Kyu; Kim, Jong Tae; Yoon, Han Young
2007-12-15
A component scale thermal hydraulic analysis code, CUPID (Component Unstructured Program for Interfacial Dynamics), is being developed for the analysis of components of a nuclear reactor, such as reactor vessel, steam generator, containment, etc. It adopted three-dimensional, transient, two phase and three-field model. In order to develop the numerical schemes for the three-field model, various numerical schemes have been examined including the SMAC, semi-implicit ICE, SIMPLE, Row Scheme and so on. Among them, the ICE scheme for the three-field model was presented in the present report. The CUPID code is utilizing unstructured mesh for the simulation of complicated geometries of the nuclear reactor components. The conventional ICE scheme that was applied to RELAP5 and COBRA-TF, therefore, were modified for the application to the unstructured mesh. Preliminary calculations for the unstructured semi-implicit ICE scheme have been conducted for a verification of the numerical method from a qualitative point of view. The preliminary calculation results showed that the present numerical scheme is robust and efficient for the prediction of phase changes and flow transitions due to a boiling and a flashing. These calculation results also showed the strong coupling between the pressure and void fraction changes. Thus, it is believed that the semi-implicit ICE scheme can be utilized for transient two-phase flows in a component of a nuclear reactor.
Pseudospectral collocation methods for fourth order differential equations
Malek, Alaeddin; Phillips, Timothy N.
1994-01-01
Collocation schemes are presented for solving linear fourth order differential equations in one and two dimensions. The variational formulation of the model fourth order problem is discretized by approximating the integrals by a Gaussian quadrature rule generalized to include the values of the derivative of the integrand at the boundary points. Collocation schemes are derived which are equivalent to this discrete variational problem. An efficient preconditioner based on a low-order finite difference approximation to the same differential operator is presented. The corresponding multidomain problem is also considered and interface conditions are derived. Pseudospectral approximations which are C1 continuous at the interfaces are used in each subdomain to approximate the solution. The approximations are also shown to be C3 continuous at the interfaces asymptotically. A complete analysis of the collocation scheme for the multidomain problem is provided. The extension of the method to the biharmonic equation in two dimensions is discussed and results are presented for a problem defined in a nonrectangular domain.
Numerical Schemes for Charged Particle Movement in PIC Simulations
International Nuclear Information System (INIS)
Kulhanek, P.
2001-01-01
A PIC model of plasma fibers is developed in the Department of Physics of the Czech Technical University for several years. The program code was written in FORTRAN 95, free-style (without compulsory columns). Fortran compiler and linker were used from Compaq Visual Fortran 6.1A embedded in the Microsoft Development studio GUI. Fully three-dimensional code with periodical boundary conditions was developed. Electromagnetic fields are localized on a grid and particles move freely through this grid. One of the partial problems of the PIC model is the numerical particle solver, which will be discussed in this paper. (author)
Numerical viscosity of entropy stable schemes for systems of conservation laws. Final Report
International Nuclear Information System (INIS)
Tadmor, E.
1985-11-01
Discrete approximations to hyperbolic systems of conservation laws are studied. The amount of numerical viscosity present in such schemes is quantified and related to their entropy stability by means of comparison. To this end conservative schemes which are also entropy conservative are constructed. These entropy conservative schemes enjoy second-order accuracy; moreover, they admit a particular interpretation within the finite-element frameworks, and hence can be formulated on various mesh configurations. It is then shown that conservative schemes are entropy stable if and only if they contain more viscosity than the mentioned above entropy conservative ones
Numerical solution of special ultra-relativistic Euler equations using central upwind scheme
Ghaffar, Tayabia; Yousaf, Muhammad; Qamar, Shamsul
2018-06-01
This article is concerned with the numerical approximation of one and two-dimensional special ultra-relativistic Euler equations. The governing equations are coupled first-order nonlinear hyperbolic partial differential equations. These equations describe perfect fluid flow in terms of the particle density, the four-velocity and the pressure. A high-resolution shock-capturing central upwind scheme is employed to solve the model equations. To avoid excessive numerical diffusion, the considered scheme avails the specific information of local propagation speeds. By using Runge-Kutta time stepping method and MUSCL-type initial reconstruction, we have obtained 2nd order accuracy of the proposed scheme. After discussing the model equations and the numerical technique, several 1D and 2D test problems are investigated. For all the numerical test cases, our proposed scheme demonstrates very good agreement with the results obtained by well-established algorithms, even in the case of highly relativistic 2D test problems. For validation and comparison, the staggered central scheme and the kinetic flux-vector splitting (KFVS) method are also implemented to the same model. The robustness and efficiency of central upwind scheme is demonstrated by the numerical results.
Shock wave interaction with turbulence: Pseudospectral simulations
International Nuclear Information System (INIS)
Buckingham, A.C.
1986-01-01
Shock waves amplify pre-existing turbulence. Shock tube and shock wave boundary layer interaction experiments provide qualitative confirmation. However, shock pressure, temperature, and rapid transit complicate direct measurement. Computational simulations supplement the experimental data base and help isolate the mechanisms responsible. Simulations and experiments, particularly under reflected shock wave conditions, significantly influence material mixing. In these pseudospectral Navier-Stokes simulations the shock wave is treated as either a moving (tracked or fitted) domain boundary. The simulations assist development of code mix models. Shock Mach number and pre-existing turbulence intensity initially emerge as key parameters. 20 refs., 8 figs
Determination of Solution Accuracy of Numerical Schemes as Part of Code and Calculation Verification
Energy Technology Data Exchange (ETDEWEB)
Blottner, F.G.; Lopez, A.R.
1998-10-01
This investigation is concerned with the accuracy of numerical schemes for solving partial differential equations used in science and engineering simulation codes. Richardson extrapolation methods for steady and unsteady problems with structured meshes are presented as part of the verification procedure to determine code and calculation accuracy. The local truncation error de- termination of a numerical difference scheme is shown to be a significant component of the veri- fication procedure as it determines the consistency of the numerical scheme, the order of the numerical scheme, and the restrictions on the mesh variation with a non-uniform mesh. Genera- tion of a series of co-located, refined meshes with the appropriate variation of mesh cell size is in- vestigated and is another important component of the verification procedure. The importance of mesh refinement studies is shown to be more significant than just a procedure to determine solu- tion accuracy. It is suggested that mesh refinement techniques can be developed to determine con- sistency of numerical schemes and to determine if governing equations are well posed. The present investigation provides further insight into the conditions and procedures required to effec- tively use Richardson extrapolation with mesh refinement studies to achieve confidence that sim- ulation codes are producing accurate numerical solutions.
Discussion of the numerical stability of an improved upwinding scheme
International Nuclear Information System (INIS)
Hassan, Y.A.; Kim, J.H.
1986-01-01
The prediction of multidimensional heat transfer and fluid flow problems requires the solution of Navier-Stokes equations. Although the use of upwind approximation for the convection terms removes the potential of nonphysical spatial oscillations, such a procedure is burdened with excessive numerical diffusion. Recently published work by Smith and Hutton presented results for some 20 different candidate methods to estimate the convection terms. The overall conclusion was that none of the methods was totally successful. The more accurate methods exhibited nonphysical spatial oscillations. More recently, a procedure was proposed that alleviates the problem of false diffusion. The purpose of this paper is to present several challenging cases, with various flow orientation, to show that the proposed procedure always circumvents the negative coefficients in the discretization equation such that the influence coefficients cannot become negative. The Smith and Hutton test case has been examined to illustrate the merit of this technique. The results are competitive with a large majority of those examined by Smith and Hutton
Numerical study of read scheme in one-selector one-resistor crossbar array
Kim, Sungho; Kim, Hee-Dong; Choi, Sung-Jin
2015-12-01
A comprehensive numerical circuit analysis of read schemes of a one selector-one resistance change memory (1S1R) crossbar array is carried out. Three schemes-the ground, V/2, and V/3 schemes-are compared with each other in terms of sensing margin and power consumption. Without the aid of a complex analytical approach or SPICE-based simulation, a simple numerical iteration method is developed to simulate entire current flows and node voltages within a crossbar array. Understanding such phenomena is essential in successfully evaluating the electrical specifications of selectors for suppressing intrinsic drawbacks of crossbar arrays, such as sneaky current paths and series line resistance problems. This method provides a quantitative tool for the accurate analysis of crossbar arrays and provides guidelines for developing an optimal read scheme, array configuration, and selector device specifications.
A numerical scheme for the one-dimensional pressureless gases system
Boudin , Laurent; Mathiaud , Julien
2012-01-01
International audience; In this work, we investigate the numerical solving of the one-dimensional pressureless gases system. After briefly recalling the mathematical framework of the duality solutions introduced by Bouchut and James, we point out that the upwind scheme for the density and momentum does not satisfy the one-sided Lipschitz (OSL) condition on the expansion rate required for the duality solutions. Then we build a diffusive scheme which allows to recover the OSL condition by follo...
Numerical study of a hybrid jet impingement/micro-channel cooling scheme
International Nuclear Information System (INIS)
Barrau, Jérôme; Omri, Mohammed; Chemisana, Daniel; Rosell, Joan; Ibañez, Manel; Tadrist, Lounes
2012-01-01
A new hybrid jet impingement/micro-channel cooling scheme is studied numerically for use in high-heat-flux thermal management of electronic and power devices. The device is developed with the objective of improving the temperature uniformity of the cooled object. A numerical model based on the k–ω SST turbulent model is developed and validated experimentally. This model is used to carry out a parametrical characterization of the heat sink. The study shows that variations in key parameters of jet impingement and micro-channel technologies allow for the cooling scheme to obtain a wide range of temperature profiles for the cooled object. - Highlights: ► A new hybrid cooling scheme is numerically studied. ► The cooling scheme combines the benefits of jet impingement and micro-channel flows. ► The numerical model is validated by comparison with experimental results. ► The temperature distribution can be adapted to the needs of the cooled system.
RELAP5 two-phase fluid model and numerical scheme for economic LWR system simulation
International Nuclear Information System (INIS)
Ransom, V.H.; Wagner, R.J.; Trapp, J.A.
1981-01-01
The RELAP5 two-phase fluid model and the associated numerical scheme are summarized. The experience accrued in development of a fast running light water reactor system transient analysis code is reviewed and example of the code application are given
Long-range transmission of pollutants simulated by a two-dimensional pseudospectral dispersion model
International Nuclear Information System (INIS)
Prahm, L.P.; Christensen, O.
1977-01-01
The pseudospectral dispersion model (Christensen and Prahm, 1976) is adapted for simulation of the long-range transmission of sulphur pollutants in the European region, covering an area of about 4000 km x 4000 km. Regional ''background'' concentrations of sulphur oxides are found to be highly dependent on distant sources and to correlate poorly with local source strength during the considered three- and four-day episodes. The simulation is based on emission data, given in squares of about 50 km x 50 km and on synoptic wind fields derived from observed wind velocities of the 850 mb level and the surface level. The two-dimensional model includes a constant vertical mixing depth. Appropriate values for the deposition and the transformation rates of SO 2 and SO/sup 4 are used. The concentration of pollutants computed from the two-dimensional pseudospectral dispersion model reflects the variable meteorological conditions. Computed concentrations are compared with measurements, giving spatial correlations between 0.4 and 0.8 for more than 400 ground-based 24 h mean values, and a spatial correlation of 0.9 for eight aircraft samples averaged over approx.30 min. A discussion of the influence of different sources of error in the model simulation is given. The high numerical accuracy of the pseudospectral model is combined with a modest consumption of CPU computer time. This study is the first application of the pseudospectral dispersion model which compares computed concentrations with measured field data. The model has possible applications as a tool for assessment of the impact of both national and international emission regulation strategies
Nonclassical pseudospectral method for the solution of brachistochrone problem
International Nuclear Information System (INIS)
Alipanah, A.; Razzaghi, M.; Dehghan, M.
2007-01-01
In this paper, nonclassical pseudospectral method is proposed for solving the classic brachistochrone problem. The brachistochrone problem is first formulated as a nonlinear optimal control problem. Properties of nonclassical pseudospectral method are presented, these properties are then utilized to reduce the computation of brachistochrone problem to the solution of algebraic equations. Using this method, the solution to the brachistochrone problem is compared with those in the literature
Numerical schemes for dynamically orthogonal equations of stochastic fluid and ocean flows
International Nuclear Information System (INIS)
Ueckermann, M.P.; Lermusiaux, P.F.J.; Sapsis, T.P.
2013-01-01
The quantification of uncertainties is critical when systems are nonlinear and have uncertain terms in their governing equations or are constrained by limited knowledge of initial and boundary conditions. Such situations are common in multiscale, intermittent and non-homogeneous fluid and ocean flows. The dynamically orthogonal (DO) field equations provide an adaptive methodology to predict the probability density functions of such flows. The present work derives efficient computational schemes for the DO methodology applied to unsteady stochastic Navier–Stokes and Boussinesq equations, and illustrates and studies the numerical aspects of these schemes. Semi-implicit projection methods are developed for the mean and for the DO modes, and time-marching schemes of first to fourth order are used for the stochastic coefficients. Conservative second-order finite-volumes are employed in physical space with new advection schemes based on total variation diminishing methods. Other results include: (i) the definition of pseudo-stochastic pressures to obtain a number of pressure equations that is linear in the subspace size instead of quadratic; (ii) symmetric advection schemes for the stochastic velocities; (iii) the use of generalized inversion to deal with singular subspace covariances or deterministic modes; and (iv) schemes to maintain orthonormal modes at the numerical level. To verify our implementation and study the properties of our schemes and their variations, a set of stochastic flow benchmarks are defined including asymmetric Dirac and symmetric lock-exchange flows, lid-driven cavity flows, and flows past objects in a confined channel. Different Reynolds number and Grashof number regimes are employed to illustrate robustness. Optimal convergence under both time and space refinements is shown as well as the convergence of the probability density functions with the number of stochastic realizations.
A hybrid convection scheme for use in non-hydrostatic numerical weather prediction models
Directory of Open Access Journals (Sweden)
Volker Kuell
2008-12-01
Full Text Available The correct representation of convection in numerical weather prediction (NWP models is essential for quantitative precipitation forecasts. Due to its small horizontal scale convection usually has to be parameterized, e.g. by mass flux convection schemes. Classical schemes originally developed for use in coarse grid NWP models assume zero net convective mass flux, because the whole circulation of a convective cell is confined to the local grid column and all convective mass fluxes cancel out. However, in contemporary NWP models with grid sizes of a few kilometers this assumption becomes questionable, because here convection is partially resolved on the grid. To overcome this conceptual problem we propose a hybrid mass flux convection scheme (HYMACS in which only the convective updrafts and downdrafts are parameterized. The generation of the larger scale environmental subsidence, which may cover several grid columns, is transferred to the grid scale equations. This means that the convection scheme now has to generate a net convective mass flux exerting a direct dynamical forcing to the grid scale model via pressure gradient forces. The hybrid convection scheme implemented into the COSMO model of Deutscher Wetterdienst (DWD is tested in an idealized simulation of a sea breeze circulation initiating convection in a realistic manner. The results are compared with analogous simulations with the classical Tiedtke and Kain-Fritsch convection schemes.
A New Framework to Compare Mass-Flux Schemes Within the AROME Numerical Weather Prediction Model
Riette, Sébastien; Lac, Christine
2016-08-01
In the Application of Research to Operations at Mesoscale (AROME) numerical weather forecast model used in operations at Météo-France, five mass-flux schemes are available to parametrize shallow convection at kilometre resolution. All but one are based on the eddy-diffusivity-mass-flux approach, and differ in entrainment/detrainment, the updraft vertical velocity equation and the closure assumption. The fifth is based on a more classical mass-flux approach. Screen-level scores obtained with these schemes show few discrepancies and are not sufficient to highlight behaviour differences. Here, we describe and use a new experimental framework, able to compare and discriminate among different schemes. For a year, daily forecast experiments were conducted over small domains centred on the five French metropolitan radio-sounding locations. Cloud base, planetary boundary-layer height and normalized vertical profiles of specific humidity, potential temperature, wind speed and cloud condensate were compared with observations, and with each other. The framework allowed the behaviour of the different schemes in and above the boundary layer to be characterized. In particular, the impact of the entrainment/detrainment formulation, closure assumption and cloud scheme were clearly visible. Differences mainly concerned the transport intensity thus allowing schemes to be separated into two groups, with stronger or weaker updrafts. In the AROME model (with all interactions and the possible existence of compensating errors), evaluation diagnostics gave the advantage to the first group.
International Nuclear Information System (INIS)
Prinja, A.K.
1997-01-01
A nonlinear discretization scheme in space and energy, based on the recently developed exponential discontinuous method, is applied to continuous slowing down dominated electron transport (i.e., in the absence of scattering.) Numerical results for dose and charge deposition are obtained and compared against results from the ONELD and ONEBFP codes, and against exact results from an adjoint Monte Carlo code. It is found that although the exponential discontinuous scheme yields strictly positive and monotonic solutions, the dose profile is considerably straggled when compared to results from the linear codes. On the other hand, the linear schemes produce negative results which, furthermore, do not damp effectively in some cases. A general conclusion is that while yielding strictly positive solutions, the exponential discontinuous method does not show the crude cell accuracy for charged particle transport as was apparent for neutral particle transport problems
A numerical scheme for optimal transition paths of stochastic chemical kinetic systems
International Nuclear Information System (INIS)
Liu Di
2008-01-01
We present a new framework for finding the optimal transition paths of metastable stochastic chemical kinetic systems with large system size. The optimal transition paths are identified to be the most probable paths according to the Large Deviation Theory of stochastic processes. Dynamical equations for the optimal transition paths are derived using the variational principle. A modified Minimum Action Method (MAM) is proposed as a numerical scheme to solve the optimal transition paths. Applications to Gene Regulatory Networks such as the toggle switch model and the Lactose Operon Model in Escherichia coli are presented as numerical examples
Development of a moisture scheme for the explicit numerical simulation of moist convection
CSIR Research Space (South Africa)
Bopape, Mary-Jane M
2010-09-01
Full Text Available .kashan.co.za] Development of a moisture scheme for the explicit numerical simulation of moist convection M BOPAPE, F ENGELBRECHT, D RANDALL AND W LANDMAN CSIR Natural Resources and the Environment, PO Box 395, Pretoria, 0001, South Africa Email: mbopape... sigma coordinate model that incorporates moisture effects, so that it can simulate convective clouds and precipitation. moisture terms equivalent to those of the miller and pearce (1974) model are incorporated in the equation set used: ; (1) ; (2...
High-Order Multioperator Compact Schemes for Numerical Simulation of Unsteady Subsonic Airfoil Flow
Savel'ev, A. D.
2018-02-01
On the basis of high-order schemes, the viscous gas flow over the NACA2212 airfoil is numerically simulated at a free-stream Mach number of 0.3 and Reynolds numbers ranging from 103 to 107. Flow regimes sequentially varying due to variations in the free-stream viscosity are considered. Vortex structures developing on the airfoil surface are investigated, and a physical interpretation of this phenomenon is given.
International Nuclear Information System (INIS)
Capdevila, R.; Perez-Segarra, C.D.; Oliva, A.
2010-01-01
In the present work four different spatial numerical schemes have been developed with the aim of reducing the false-scattering of the numerical solutions obtained with the discrete ordinates (DOM) and the finite volume (FVM) methods. These schemes have been designed specifically for unstructured meshes by means of the extrapolation of nodal values of intensity on the studied radiative direction. The schemes have been tested and compared in several 3D benchmark test cases using both structured orthogonal and unstructured grids.
Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity
Bridges, Thomas J.; Reich, Sebastian
2001-06-01
The symplectic numerical integration of finite-dimensional Hamiltonian systems is a well established subject and has led to a deeper understanding of existing methods as well as to the development of new very efficient and accurate schemes, e.g., for rigid body, constrained, and molecular dynamics. The numerical integration of infinite-dimensional Hamiltonian systems or Hamiltonian PDEs is much less explored. In this Letter, we suggest a new theoretical framework for generalizing symplectic numerical integrators for ODEs to Hamiltonian PDEs in R2: time plus one space dimension. The central idea is that symplecticity for Hamiltonian PDEs is directional: the symplectic structure of the PDE is decomposed into distinct components representing space and time independently. In this setting PDE integrators can be constructed by concatenating uni-directional ODE symplectic integrators. This suggests a natural definition of multi-symplectic integrator as a discretization that conserves a discrete version of the conservation of symplecticity for Hamiltonian PDEs. We show that this approach leads to a general framework for geometric numerical schemes for Hamiltonian PDEs, which have remarkable energy and momentum conservation properties. Generalizations, including development of higher-order methods, application to the Euler equations in fluid mechanics, application to perturbed systems, and extension to more than one space dimension are also discussed.
A Discrete Numerical Scheme of Modified Leslie-Gower With Harvesting Model
Directory of Open Access Journals (Sweden)
Riski Nur Istiqomah Dinnullah
2018-05-01
Full Text Available Recently, exploitation of biological resources and the harvesting of two populations or more are widely practiced, such as fishery or foresty. The simplest way to describe the interaction of two species is by using predator prey model, that is one species feeds on another. The Leslie-Gower predator prey model has been studied in many works. In this paper, we use Euler method to discretisize the modified Leslie-Gower with harvesting model. The model consists of two simultanious predator prey equations. We show numerically that this discrete numerical scheme model is dynamically consistent with its continuous model only for relatively small step-size. By using computer simulation software, we show that equlibrium points can be stable, saddles, and unstable. It is shown that the numerical simulations not only illustrate the results, but also show the rich dynamics behaviors of the discrete system.
Building fast well-balanced two-stage numerical schemes for a model of two-phase flows
Thanh, Mai Duc
2014-06-01
We present a set of well-balanced two-stage schemes for an isentropic model of two-phase flows arisen from the modeling of deflagration-to-detonation transition in granular materials. The first stage is to absorb the source term in nonconservative form into equilibria. Then in the second stage, these equilibria will be composed into a numerical flux formed by using a convex combination of the numerical flux of a stable Lax-Friedrichs-type scheme and the one of a higher-order Richtmyer-type scheme. Numerical schemes constructed in such a way are expected to get the interesting property: they are fast and stable. Tests show that the method works out until the parameter takes on the value CFL, and so any value of the parameter between zero and this value is expected to work as well. All the schemes in this family are shown to capture stationary waves and preserves the positivity of the volume fractions. The special values of the parameter 0,1/2,1/(1+CFL), and CFL in this family define the Lax-Friedrichs-type, FAST1, FAST2, and FAST3 schemes, respectively. These schemes are shown to give a desirable accuracy. The errors and the CPU time of these schemes and the Roe-type scheme are calculated and compared. The constructed schemes are shown to be well-balanced and faster than the Roe-type scheme.
Efficient numerical schemes for viscoplastic avalanches. Part 1: The 1D case
Energy Technology Data Exchange (ETDEWEB)
Fernández-Nieto, Enrique D., E-mail: edofer@us.es [Departamento de Matemática Aplicada I, Universidad de Sevilla, E.T.S. Arquitectura, Avda, Reina Mercedes, s/n, 41012 Sevilla (Spain); Gallardo, José M., E-mail: jmgallardo@uma.es [Departamento de Análisis Matemático, Universidad de Málaga, F. Ciencias, Campus Teatinos S/N (Spain); Vigneaux, Paul, E-mail: Paul.Vigneaux@math.cnrs.fr [Unitée de Mathématiques Pures et Appliquées, Ecole Normale Supérieure de Lyon, 46 allée d' Italie, 69364 Lyon Cedex 07 (France)
2014-05-01
This paper deals with the numerical resolution of a shallow water viscoplastic flow model. Viscoplastic materials are characterized by the existence of a yield stress: below a certain critical threshold in the imposed stress, there is no deformation and the material behaves like a rigid solid, but when that yield value is exceeded, the material flows like a fluid. In the context of avalanches, it means that after going down a slope, the material can stop and its free surface has a non-trivial shape, as opposed to the case of water (Newtonian fluid). The model involves variational inequalities associated with the yield threshold: finite-volume schemes are used together with duality methods (namely Augmented Lagrangian and Bermúdez–Moreno) to discretize the problem. To be able to accurately simulate the stopping behavior of the avalanche, new schemes need to be designed, involving the classical notion of well-balancing. In the present context, it needs to be extended to take into account the viscoplastic nature of the material as well as general bottoms with wet/dry fronts which are encountered in geophysical geometries. We derived such schemes and numerical experiments are presented to show their performances.
A faster numerical scheme for a coupled system modeling soil erosion and sediment transport
Le, M.-H.; Cordier, S.; Lucas, C.; Cerdan, O.
2015-02-01
Overland flow and soil erosion play an essential role in water quality and soil degradation. Such processes, involving the interactions between water flow and the bed sediment, are classically described by a well-established system coupling the shallow water equations and the Hairsine-Rose model. Numerical approximation of this coupled system requires advanced methods to preserve some important physical and mathematical properties; in particular, the steady states and the positivity of both water depth and sediment concentration. Recently, finite volume schemes based on Roe's solver have been proposed by Heng et al. (2009) and Kim et al. (2013) for one and two-dimensional problems. In their approach, an additional and artificial restriction on the time step is required to guarantee the positivity of sediment concentration. This artificial condition can lead the computation to be costly when dealing with very shallow flow and wet/dry fronts. The main result of this paper is to propose a new and faster scheme for which only the CFL condition of the shallow water equations is sufficient to preserve the positivity of sediment concentration. In addition, the numerical procedure of the erosion part can be used with any well-balanced and positivity preserving scheme of the shallow water equations. The proposed method is tested on classical benchmarks and also on a realistic configuration.
An efficient numerical progressive diagonalization scheme for the quantum Rabi model revisited
International Nuclear Information System (INIS)
Pan, Feng; Bao, Lina; Dai, Lianrong; Draayer, Jerry P
2017-01-01
An efficient numerical progressive diagonalization scheme for the quantum Rabi model is revisited. The advantage of the scheme lies in the fact that the quantum Rabi model can be solved almost exactly by using the scheme that only involves a finite set of one variable polynomial equations. The scheme is especially efficient for a specified eigenstate of the model, for example, the ground state. Some low-lying level energies of the model for several sets of parameters are calculated, of which one set of the results is compared to that obtained from the Braak’s exact solution proposed recently. It is shown that the derivative of the entanglement measure defined in terms of the reduced von Neumann entropy with respect to the coupling parameter does reach the maximum near the critical point deduced from the classical limit of the Dicke model, which may provide a probe of the critical point of the crossover in finite quantum many-body systems, such as that in the quantum Rabi model. (paper)
Energy Technology Data Exchange (ETDEWEB)
Lee, Won Woong; Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of)
2016-05-15
The existing nuclear system analysis codes such as RELAP5, TRAC, MARS and SPACE use the first-order numerical scheme in both space and time discretization. However, the first-order scheme is highly diffusive and less accurate due to the first order of truncation error. So, the numerical diffusion problem which makes the gradients to be smooth in the regions where the gradients should be steep can occur during the analysis, which often predicts less conservatively than the reality. Therefore, the first-order scheme is not always useful in many applications such as boron solute transport. RELAP7 which is an advanced nuclear reactor system safety analysis code using the second-order numerical scheme in temporal and spatial discretization is being developed by INL (Idaho National Laboratory) since 2011. Therefore, for better predictive performance of the safety of nuclear reactor systems, more accurate nuclear reactor system analysis code is needed for Korea too to follow the global trend of nuclear safety analysis. Thus, this study will evaluate the feasibility of applying the higher-order numerical scheme to the next generation nuclear system analysis code to provide the basis for the better nuclear system analysis code development. The accuracy is enhanced in the spatial second-order scheme and the numerical diffusion problem is alleviated while indicates significantly lower maximum Courant limit and the numerical dispersion issue which produces spurious oscillation and non-physical results in the higher-order scheme. If the spatial scheme is the first order scheme then the temporal second-order scheme provides almost the same result with the temporal firstorder scheme. However, when the temporal second order scheme and the spatial second-order scheme are applied together, the numerical dispersion can occur more severely. For the more in-depth study, the verification and validation of the NTS code built in MATLAB will be conducted further and expanded to handle two
Chen, Huangxin
2017-09-01
In this paper we consider the energy stability estimates for some fully discrete schemes which both consider time and spatial discretizations for the incompressible Navier–Stokes equations. We focus on three kinds of fully discrete schemes, i.e., the linear implicit scheme for time discretization with the finite difference method (FDM) on staggered grids for spatial discretization, pressure-correction schemes for time discretization with the FDM on staggered grids for the solutions of the decoupled velocity and pressure equations, and pressure-stabilization schemes for time discretization with the FDM on staggered grids for the solutions of the decoupled velocity and pressure equations. The energy stability estimates are obtained for the above each fully discrete scheme. The upwind scheme is used in the discretization of the convection term which plays an important role in the design of unconditionally stable discrete schemes. Numerical results are given to verify the theoretical analysis.
International Nuclear Information System (INIS)
Kiefer, B; Bartel, T; Menzel, A
2012-01-01
Several constitutive models for magnetic shape memory alloys (MSMAs) have been proposed in the literature. The implementation of numerical integration schemes, which allow the prediction of constitutive response for general loading cases and ultimately the incorporation of MSMA response into numerical solution algorithms for fully coupled magneto-mechanical boundary value problems, however, has received only very limited attention. In this work, we establish two algorithmic implementations of the internal variable model for MSMAs proposed in (Kiefer and Lagoudas 2005 Phil. Mag. Spec. Issue: Recent Adv. Theor. Mech. 85 4289–329, Kiefer and Lagoudas 2009 J. Intell. Mater. Syst. 20 143–70), where we restrict our attention to pure martensitic variant reorientation to limit complexity. The first updating scheme is based on the numerical integration of the reorientation strain evolution equation and represents a classical predictor–corrector-type general return mapping algorithm. In the second approach, the inequality-constrained optimization problem associated with internal variable evolution is converted into an unconstrained problem via Fischer–Burmeister complementarity functions and then iteratively solved in standard Newton–Raphson format. Simulations are verified by comparison to closed-form solutions for experimentally relevant loading cases. (paper)
A numerical scheme using multi-shockpeakons to compute solutions of the Degasperis-Procesi equation
Directory of Open Access Journals (Sweden)
Hakon A. Hoel
2007-07-01
Full Text Available We consider a numerical scheme for entropy weak solutions of the DP (Degasperis-Procesi equation $u_t - u_{xxt} + 4uu_x = 3u_{x}u_{xx}+ uu_{xxx}$. Multi-shockpeakons, functions of the form $$ u(x,t =sum_{i=1}^n(m_i(t -hbox{sign}(x-x_i(ts_i(te^{-|x-x_i(t|}, $$ are solutions of the DP equation with a special property; their evolution in time is described by a dynamical system of ODEs. This property makes multi-shockpeakons relatively easy to simulate numerically. We prove that if we are given a non-negative initial function $u_0 in L^1(mathbb{R}cap BV(mathbb{R}$ such that $u_{0} - u_{0,x}$ is a positive Radon measure, then one can construct a sequence of multi-shockpeakons which converges to the unique entropy weak solution in $mathbb{R}imes[0,T$ for any $T>0$. From this convergence result, we construct a multi-shockpeakon based numerical scheme for solving the DP equation.
Analyzing numerics of bulk microphysics schemes in community models: warm rain processes
Directory of Open Access Journals (Sweden)
I. Sednev
2012-08-01
Full Text Available Implementation of bulk cloud microphysics (BLK parameterizations in atmospheric models of different scales has gained momentum in the last two decades. Utilization of these parameterizations in cloud-resolving models when timesteps used for the host model integration are a few seconds or less is justified from the point of view of cloud physics. However, mechanistic extrapolation of the applicability of BLK schemes to the regional or global scales and the utilization of timesteps of hundreds up to thousands of seconds affect both physics and numerics.
We focus on the mathematical aspects of BLK schemes, such as stability and positive-definiteness. We provide a strict mathematical definition for the problem of warm rain formation. We also derive a general analytical condition (SM-criterion that remains valid regardless of parameterizations for warm rain processes in an explicit Eulerian time integration framework used to advanced finite-difference equations, which govern warm rain formation processes in microphysics packages in the Community Atmosphere Model and the Weather Research and Forecasting model. The SM-criterion allows for the existence of a unique positive-definite stable mass-conserving numerical solution, imposes an additional constraint on the timestep permitted due to the microphysics (like the Courant-Friedrichs-Lewy condition for the advection equation, and prohibits use of any additional assumptions not included in the strict mathematical definition of the problem under consideration.
By analyzing the numerics of warm rain processes in source codes of BLK schemes implemented in community models we provide general guidelines regarding the appropriate choice of time steps in these models.
A hybrid Eulerian–Lagrangian numerical scheme for solving prognostic equations in fluid dynamics
Directory of Open Access Journals (Sweden)
E. Kaas
2013-11-01
Full Text Available A new hybrid Eulerian–Lagrangian numerical scheme (HEL for solving prognostic equations in fluid dynamics is proposed. The basic idea is to use an Eulerian as well as a fully Lagrangian representation of all prognostic variables. The time step in Lagrangian space is obtained as a translation of irregularly spaced Lagrangian parcels along downstream trajectories. Tendencies due to other physical processes than advection are calculated in Eulerian space, interpolated, and added to the Lagrangian parcel values. A directionally biased mixing amongst neighboring Lagrangian parcels is introduced. The rate of mixing is proportional to the local deformation rate of the flow. The time stepping in Eulerian representation is achieved in two steps: first a mass-conserving Eulerian or semi-Lagrangian scheme is used to obtain a provisional forecast. This forecast is then nudged towards target values defined from the irregularly spaced Lagrangian parcel values. The nudging procedure is defined in such a way that mass conservation and shape preservation is ensured in Eulerian space. The HEL scheme has been designed to be accurate, multi-tracer efficient, mass conserving, and shape preserving. In Lagrangian space only physically based mixing takes place; i.e., the problem of artificial numerical mixing is avoided. This property is desirable in atmospheric chemical transport models since spurious numerical mixing can impact chemical concentrations severely. The properties of HEL are here verified in two-dimensional tests. These include deformational passive transport on the sphere, and simulations with a semi-implicit shallow water model including topography.
Response of multiferroic composites inferred from a fast-Fourier-transform-based numerical scheme
International Nuclear Information System (INIS)
Brenner, Renald; Bravo-Castillero, Julián
2010-01-01
The effective response and the local fields within periodic magneto-electric multiferroic composites are investigated by means of a numerical scheme based on fast Fourier transforms. This computational framework relies on the iterative resolution of coupled series expansions for the magnetic, electric and strain fields. By using an augmented Lagrangian formulation, a simple and robust procedure which makes use of the uncoupled Green operators for the elastic, electrostatics and magnetostatics problems is proposed. Its accuracy is assessed in the cases of laminated and fibrous two-phase composites for which analytical solutions exist
Gilchrist, S. A.; Braun, D. C.; Barnes, G.
2016-12-01
Magnetohydrostatic models of the solar atmosphere are often based on idealized analytic solutions because the underlying equations are too difficult to solve in full generality. Numerical approaches, too, are often limited in scope and have tended to focus on the two-dimensional problem. In this article we develop a numerical method for solving the nonlinear magnetohydrostatic equations in three dimensions. Our method is a fixed-point iteration scheme that extends the method of Grad and Rubin ( Proc. 2nd Int. Conf. on Peaceful Uses of Atomic Energy 31, 190, 1958) to include a finite gravity force. We apply the method to a test case to demonstrate the method in general and our implementation in code in particular.
Glushkov, E. V.; Glushkova, N. V.; Evdokimov, A. A.
2018-01-01
Numerical simulation of traveling wave excitation, propagation, and diffraction in structures with local inhomogeneities (obstacles) is computationally expensive due to the need for mesh-based approximation of extended domains with the rigorous account for the radiation conditions at infinity. Therefore, hybrid numerical-analytic approaches are being developed based on the conjugation of a numerical solution in a local vicinity of the obstacle and/or source with an explicit analytic representation in the remaining semi-infinite external domain. However, in standard finite-element software, such a coupling with the external field, moreover, in the case of multimode expansion, is generally not provided. This work proposes a hybrid computational scheme that allows realization of such a conjugation using a standard software. The latter is used to construct a set of numerical solutions used as the basis for the sought solution in the local internal domain. The unknown expansion coefficients on this basis and on normal modes in the semi-infinite external domain are then determined from the conditions of displacement and stress continuity at the boundary between the two domains. We describe the implementation of this approach in the scalar and vector cases. To evaluate the reliability of the results and the efficiency of the algorithm, we compare it with a semianalytic solution to the problem of traveling wave diffraction by a horizontal obstacle, as well as with a finite-element solution obtained for a limited domain artificially restricted using absorbing boundaries. As an example, we consider the incidence of a fundamental antisymmetric Lamb wave onto surface and partially submerged elastic obstacles. It is noted that the proposed hybrid scheme can also be used to determine the eigenfrequencies and eigenforms of resonance scattering, as well as the characteristics of traveling waves in embedded waveguides.
Numerical solution of the 1D kinetics equations using a cubic reduced nodal scheme
International Nuclear Information System (INIS)
Gomez T, A.M.; Valle G, E. del; Delfin L, A.; Alonso V, G.
2003-01-01
In this work a finite differences technique centered in mesh based on a cubic reduced nodal scheme type finite element to solve the equations of the kinetics 1 D that include the equations corresponding to the concentrations of precursors of delayed neutrons is described. The technique of finite elements used is that of Galerkin where so much the neutron flux as the concentrations of precursors its are spatially approached by means of a three grade polynomial. The matrices of rigidity and of mass that arise during this discretization process are numerically evaluated using the open quadrature non standard of Newton-Cotes and that of Radau respectively. The purpose of the application of these quadratures is the one of to eliminate in the global matrices the couplings among the values of the flow in points of the discretization with the consequent advantages as for the reduction of the order of the matrix associated to the discreet problem that is to solve. As for the time dependent part the classical integration scheme known as Θ scheme is applied. After carrying out the one reordering of unknown and equations it arrives to a reduced system that it can be solved but quickly. With the McKin compute program developed its were solved three benchmark problems and those results are shown for the relative powers. (Author)
Diaz, Manuel A.; Solovchuk, Maxim A.; Sheu, Tony W. H.
2018-06-01
A nonlinear system of partial differential equations capable of describing the nonlinear propagation and attenuation of finite amplitude perturbations in thermoviscous media is presented. This system constitutes a full nonlinear wave model that has been formulated in the conservation form. Initially, this model is investigated analytically in the inviscid limit where it has been found that the resulting flux function fulfills the Lax-Wendroff theorem, and the scheme can match the solutions of the Westervelt and Burgers equations numerically. Here, high-order numerical descriptions of strongly nonlinear wave propagations become of great interest. For that matter we consider finite difference formulations of the weighted essentially non-oscillatory (WENO) schemes associated with explicit strong stability preserving Runge-Kutta (SSP-RK) time integration methods. Although this strategy is known to be computationally demanding, it is found to be effective when implemented to be solved in graphical processing units (GPUs). As we consider wave propagations in unbounded domains, perfectly matching layers (PML) have been also considered in this work. The proposed system model is validated and illustrated by using one- and two-dimensional benchmark test cases proposed in the literature for nonlinear acoustic propagation in homogeneous thermoviscous media.
Numerical scheme of WAHA code for simulation of fast transients in piping systems
International Nuclear Information System (INIS)
Iztok Tiselj
2005-01-01
Full text of publication follows: A research project of the 5. EU program entitled 'Two-phase flow water hammer transients and induced loads on materials and structures of nuclear power plants' (WAHA loads) has been initiated in Fall 2000 and ended in Spring 2004. Numerical scheme used in WAHA code is responsibility of 'Jozef Stefan Institute and is briefly described in the present work. Mathematical model is based on a 6-equation two-fluid model for inhomogeneous non-equilibrium two-phase flow, which can be written in vectorial form as: A δΨ-vector/δt + B δΨ-vector/δx = S-vector. Hyperbolicity of the equations is a prerequisite and is ensured with virtual mass term and interfacial pressure term, however, equations are not unconditionally hyperbolic. Flow-regime map used in WAHA code consists of dispersed, and horizontally stratified flow correlations. The closure laws describe interface heat and mass transfer (condensation model, flashing...), the inter-phase friction, and wall friction. For the modeling of water hammer additional terms due to the pipe elasticity are considered. For the calculation of the thermodynamic state a new set of water properties subroutines was created. Numerical scheme of the WAHA code is based on Godunov characteristic upwind methods. Advanced numerical methods based on high-resolution shock-capturing schemes, which were originally developed for high-speed gas dynamics are used. These schemes produce solutions with a substantially reduced numerical diffusion and allow the accurate modeling of flow discontinuities. Code is using non-conservative variables Ψ-vector = (p, α, ν f , ν g , u f , u g ), however, according to current experience, the non-conservation is not a major problem for the fast transients like water hammers. The following operator splitting is used in the code: 1) Convection and non-relaxation source terms: A δΨ-vector/δt + B δΨ-vector/δx S-vector non relaxation 2) Relaxation (inter-phase exchange) source
Benchmarking and scaling studies of pseudospectral code Tarang ...
Indian Academy of Sciences (India)
Tarang is a general-purpose pseudospectral parallel code for simulating flows involving fluids, magnetohydrodynamics, and Rayleigh–Bénard convection in turbulence and instability regimes. In this paper we present code validation and benchmarking results of Tarang. We performed our simulations on 10243, 20483, and ...
A pseudospectral collocation time-domain method for diffractive optics
DEFF Research Database (Denmark)
Dinesen, P.G.; Hesthaven, J.S.; Lynov, Jens-Peter
2000-01-01
We present a pseudospectral method for the analysis of diffractive optical elements. The method computes a direct time-domain solution of Maxwell's equations and is applied to solving wave propagation in 2D diffractive optical elements. (C) 2000 IMACS. Published by Elsevier Science B.V. All rights...
A new hybrid-Lagrangian numerical scheme for gyrokinetic simulation of tokamak edge plasma
Energy Technology Data Exchange (ETDEWEB)
Ku, S., E-mail: sku@pppl.gov [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States); Hager, R.; Chang, C.S. [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States); Kwon, J.M. [National Fusion Research Institute (Korea, Republic of); Parker, S.E. [University of Colorado Boulder (United States)
2016-06-15
In order to enable kinetic simulation of non-thermal edge plasmas at a reduced computational cost, a new hybrid-Lagrangian δf scheme has been developed that utilizes the phase space grid in addition to the usual marker particles, taking advantage of the computational strengths from both sides. The new scheme splits the particle distribution function of a kinetic equation into two parts. Marker particles contain the fast space-time varying, δf, part of the distribution function and the coarse-grained phase-space grid contains the slow space-time varying part. The coarse-grained phase-space grid reduces the memory-requirement and the computing cost, while the marker particles provide scalable computing ability for the fine-grained physics. Weights of the marker particles are determined by a direct weight evolution equation instead of the differential form weight evolution equations that the conventional delta-f schemes use. The particle weight can be slowly transferred to the phase space grid, thereby reducing the growth of the particle weights. The non-Lagrangian part of the kinetic equation – e.g., collision operation, ionization, charge exchange, heat-source, radiative cooling, and others – can be operated directly on the phase space grid. Deviation of the particle distribution function on the velocity grid from a Maxwellian distribution function – driven by ionization, charge exchange and wall loss – is allowed to be arbitrarily large. The numerical scheme is implemented in the gyrokinetic particle code XGC1, which specializes in simulating the tokamak edge plasma that crosses the magnetic separatrix and is in contact with the material wall.
International Nuclear Information System (INIS)
Zhong Xiaolin; Tatineni, Mahidhar
2003-01-01
The direct numerical simulation of receptivity, instability and transition of hypersonic boundary layers requires high-order accurate schemes because lower-order schemes do not have an adequate accuracy level to compute the large range of time and length scales in such flow fields. The main limiting factor in the application of high-order schemes to practical boundary-layer flow problems is the numerical instability of high-order boundary closure schemes on the wall. This paper presents a family of high-order non-uniform grid finite difference schemes with stable boundary closures for the direct numerical simulation of hypersonic boundary-layer transition. By using an appropriate grid stretching, and clustering grid points near the boundary, high-order schemes with stable boundary closures can be obtained. The order of the schemes ranges from first-order at the lowest, to the global spectral collocation method at the highest. The accuracy and stability of the new high-order numerical schemes is tested by numerical simulations of the linear wave equation and two-dimensional incompressible flat plate boundary layer flows. The high-order non-uniform-grid schemes (up to the 11th-order) are subsequently applied for the simulation of the receptivity of a hypersonic boundary layer to free stream disturbances over a blunt leading edge. The steady and unsteady results show that the new high-order schemes are stable and are able to produce high accuracy for computations of the nonlinear two-dimensional Navier-Stokes equations for the wall bounded supersonic flow
Numerical study of the systematic error in Monte Carlo schemes for semiconductors
Energy Technology Data Exchange (ETDEWEB)
Muscato, Orazio [Univ. degli Studi di Catania (Italy). Dipt. di Matematica e Informatica; Di Stefano, Vincenza [Univ. degli Studi di Messina (Italy). Dipt. di Matematica; Wagner, Wolfgang [Weierstrass-Institut fuer Angewandte Analysis und Stochastik (WIAS) im Forschungsverbund Berlin e.V. (Germany)
2008-07-01
The paper studies the convergence behavior of Monte Carlo schemes for semiconductors. A detailed analysis of the systematic error with respect to numerical parameters is performed. Different sources of systematic error are pointed out and illustrated in a spatially one-dimensional test case. The error with respect to the number of simulation particles occurs during the calculation of the internal electric field. The time step error, which is related to the splitting of transport and electric field calculations, vanishes sufficiently fast. The error due to the approximation of the trajectories of particles depends on the ODE solver used in the algorithm. It is negligible compared to the other sources of time step error, when a second order Runge-Kutta solver is used. The error related to the approximate scattering mechanism is the most significant source of error with respect to the time step. (orig.)
International Nuclear Information System (INIS)
Farhanieh, B.; Amanifard, N.; Ghorbanian, K.
2002-01-01
An unsteady two-dimensional numerical investigation was performed on the viscous flow passing through a multi-blade cascade. A Cartesian finite-volume approach was linked to Van-Leer's and Roe's flux splitting schemes to evaluate inviscid flux terms. To prevent the oscillatory behavior of numerical results and to increase the accuracy, Mon tonic Upstream Scheme for Conservation Laws was added to flux splitting schemes. The Baldwin-Lo max (B L) turbulence model was implemented to solve the turbulent case studies. Implicit solution was also provided using Lower and Upper (L U) decomposition technique to compare with explicit solutions. To validate the numerical procedure, two test cases are prepared and flow over a Na Ca 0012 airfoil was investigated and the pressure coefficients were compared to the reference data. The numerical solver was implemented to study the flow passing over a compressor cascade. The results of various combinations of splitting schemes and the Mon tonic Upstream Scheme for Conventional Laws limiter were compared with each other to find the suitable methods in cascade problems. Finally the convergence histories of implemented schemes were compared to each other to show the behavior of the solver in using various methods before implementation of them in flow instability studies
Brantson, Eric Thompson; Ju, Binshan; Wu, Dan; Gyan, Patricia Semwaah
2018-04-01
This paper proposes stochastic petroleum porous media modeling for immiscible fluid flow simulation using Dykstra-Parson coefficient (V DP) and autocorrelation lengths to generate 2D stochastic permeability values which were also used to generate porosity fields through a linear interpolation technique based on Carman-Kozeny equation. The proposed method of permeability field generation in this study was compared to turning bands method (TBM) and uniform sampling randomization method (USRM). On the other hand, many studies have also reported that, upstream mobility weighting schemes, commonly used in conventional numerical reservoir simulators do not accurately capture immiscible displacement shocks and discontinuities through stochastically generated porous media. This can be attributed to high level of numerical smearing in first-order schemes, oftentimes misinterpreted as subsurface geological features. Therefore, this work employs high-resolution schemes of SUPERBEE flux limiter, weighted essentially non-oscillatory scheme (WENO), and monotone upstream-centered schemes for conservation laws (MUSCL) to accurately capture immiscible fluid flow transport in stochastic porous media. The high-order schemes results match well with Buckley Leverett (BL) analytical solution without any non-oscillatory solutions. The governing fluid flow equations were solved numerically using simultaneous solution (SS) technique, sequential solution (SEQ) technique and iterative implicit pressure and explicit saturation (IMPES) technique which produce acceptable numerical stability and convergence rate. A comparative and numerical examples study of flow transport through the proposed method, TBM and USRM permeability fields revealed detailed subsurface instabilities with their corresponding ultimate recovery factors. Also, the impact of autocorrelation lengths on immiscible fluid flow transport were analyzed and quantified. A finite number of lines used in the TBM resulted into visual
Directory of Open Access Journals (Sweden)
I. C. Ramos
2015-10-01
Full Text Available We present the adaptation to non-free boundary conditions of a pseudospectral method based on the (complex Fourier transform. The method is applied to the numerical integration of the Oberbeck-Boussinesq equations in a Rayleigh-Bénard cell with no-slip boundary conditions for velocity and Dirichlet boundary conditions for temperature. We show the first results of a 2D numerical simulation of dry air convection at high Rayleigh number (. These results are the basis for the later study, by the same method, of wet convection in a solar still. Received: 20 Novembre 2014, Accepted: 15 September 2015; Edited by: C. A. Condat, G. J. Sibona; DOI:http://dx.doi.org/10.4279/PIP.070015 Cite as: I C Ramos, C B Briozzo, Papers in Physics 7, 070015 (2015
Dutta, Sourav; Daripa, Prabir
2015-11-01
Surfactant-polymer flooding is a widely used method of chemical enhanced oil recovery (EOR) in which an array of complex fluids containing suitable and varying amounts of surfactant or polymer or both mixed with water is injected into the reservoir. This is an example of multiphase, multicomponent and multiphysics porous media flow which is characterized by the spontaneous formation of complex viscous fingering patterns and is modeled by a system of strongly coupled nonlinear partial differential equations with appropriate initial and boundary conditions. Here we propose and discuss a modern, hybrid method based on a combination of a discontinuous, multiscale finite element formulation and the method of characteristics to accurately solve the system. Several types of flooding schemes and rheological properties of the injected fluids are used to numerically study the effectiveness of various injection policies in minimizing the viscous fingering and maximizing oil recovery. Numerical simulations are also performed to investigate the effect of various other physical and model parameters such as heterogeneity, relative permeability and residual saturation on the quantities of interest like cumulative oil recovery, sweep efficiency, fingering intensity to name a few. Supported by the grant NPRP 08-777-1-141 from the Qatar National Research Fund (a member of The Qatar Foundation).
Numerical schemes for the hybrid modeling approach of gas-particle turbulent flows
International Nuclear Information System (INIS)
Dorogan, K.
2012-01-01
Hybrid Moments/PDF methods have shown to be well suitable for the description of poly-dispersed turbulent two-phase flows in non-equilibrium which are encountered in some industrial situations involving chemical reactions, combustion or sprays. They allow to obtain a fine enough physical description of the poly-dispersity, non-linear source terms and convection phenomena. However, their approximations are noised with the statistical error, which in several situations may be a source of a bias. An alternative hybrid Moments-Moments/PDF approach examined in this work consists in coupling the Moments and the PDF descriptions, within the description of the dispersed phase itself. This hybrid method could reduce the statistical error and remove the bias. However, such a coupling is not straightforward in practice and requires the development of accurate and stable numerical schemes. The approaches introduced in this work rely on the combined use of the up-winding and relaxation-type techniques. They allow to obtain stable unsteady approximations for a system of partial differential equations containing non-smooth external data which are provided by the PDF part of the model. A comparison of the results obtained using the present method with those of the 'classical' hybrid approach is presented in terms of the numerical errors for a case of a co-current gas-particle wall jet. (author)
Ullah, Asmat; Chen, Wen; Khan, Mushtaq Ahmad
2017-07-01
This paper introduces a fractional order total variation (FOTV) based model with three different weights in the fractional order derivative definition for multiplicative noise removal purpose. The fractional-order Euler Lagrange equation which is a highly non-linear partial differential equation (PDE) is obtained by the minimization of the energy functional for image restoration. Two numerical schemes namely an iterative scheme based on the dual theory and majorization- minimization algorithm (MMA) are used. To improve the restoration results, we opt for an adaptive parameter selection procedure for the proposed model by applying the trial and error method. We report numerical simulations which show the validity and state of the art performance of the fractional-order model in visual improvement as well as an increase in the peak signal to noise ratio comparing to corresponding methods. Numerical experiments also demonstrate that MMAbased methodology is slightly better than that of an iterative scheme.
Energy Technology Data Exchange (ETDEWEB)
Angstmann, C.N.; Donnelly, I.C. [School of Mathematics and Statistics, UNSW Australia, Sydney NSW 2052 (Australia); Henry, B.I., E-mail: B.Henry@unsw.edu.au [School of Mathematics and Statistics, UNSW Australia, Sydney NSW 2052 (Australia); Jacobs, B.A. [School of Computer Science and Applied Mathematics, University of the Witwatersrand, Johannesburg, Private Bag 3, Wits 2050 (South Africa); DST–NRF Centre of Excellence in Mathematical and Statistical Sciences (CoE-MaSS) (South Africa); Langlands, T.A.M. [Department of Mathematics and Computing, University of Southern Queensland, Toowoomba QLD 4350 (Australia); Nichols, J.A. [School of Mathematics and Statistics, UNSW Australia, Sydney NSW 2052 (Australia)
2016-02-15
We have introduced a new explicit numerical method, based on a discrete stochastic process, for solving a class of fractional partial differential equations that model reaction subdiffusion. The scheme is derived from the master equations for the evolution of the probability density of a sum of discrete time random walks. We show that the diffusion limit of the master equations recovers the fractional partial differential equation of interest. This limiting procedure guarantees the consistency of the numerical scheme. The positivity of the solution and stability results are simply obtained, provided that the underlying process is well posed. We also show that the method can be applied to standard reaction–diffusion equations. This work highlights the broader applicability of using discrete stochastic processes to provide numerical schemes for partial differential equations, including fractional partial differential equations.
Mukkavilli, S. K.; Kay, M. J.; Taylor, R.; Prasad, A. A.; Troccoli, A.
2014-12-01
The Australian Solar Energy Forecasting System (ASEFS) project requires forecasting timeframes which range from nowcasting to long-term forecasts (minutes to two years). As concentrating solar power (CSP) plant operators are one of the key stakeholders in the national energy market, research and development enhancements for direct normal irradiance (DNI) forecasts is a major subtask. This project involves comparing different radiative scheme codes to improve day ahead DNI forecasts on the national supercomputing infrastructure running mesoscale simulations on NOAA's Weather Research & Forecast (WRF) model. ASEFS also requires aerosol data fusion for improving accurate representation of spatio-temporally variable atmospheric aerosols to reduce DNI bias error in clear sky conditions over southern Queensland & New South Wales where solar power is vulnerable to uncertainities from frequent aerosol radiative events such as bush fires and desert dust. Initial results from thirteen years of Bureau of Meteorology's (BOM) deseasonalised DNI and MODIS NASA-Terra aerosol optical depth (AOD) anomalies demonstrated strong negative correlations in north and southeast Australia along with strong variability in AOD (~0.03-0.05). Radiative transfer schemes, DNI and AOD anomaly correlations will be discussed for the population and transmission grid centric regions where current and planned CSP plants dispatch electricity to capture peak prices in the market. Aerosol and solar irradiance datasets include satellite and ground based assimilations from the national BOM, regional aerosol researchers and agencies. The presentation will provide an overview of this ASEFS project task on WRF and results to date. The overall goal of this ASEFS subtask is to develop a hybrid numerical weather prediction (NWP) and statistical/machine learning multi-model ensemble strategy that meets future operational requirements of CSP plant operators.
The HIRLAM fast radiation scheme for mesoscale numerical weather prediction models
Rontu, Laura; Gleeson, Emily; Räisänen, Petri; Pagh Nielsen, Kristian; Savijärvi, Hannu; Hansen Sass, Bent
2017-07-01
This paper provides an overview of the HLRADIA shortwave (SW) and longwave (LW) broadband radiation schemes used in the HIRLAM numerical weather prediction (NWP) model and available in the HARMONIE-AROME mesoscale NWP model. The advantage of broadband, over spectral, schemes is that they can be called more frequently within the model, without compromising on computational efficiency. In mesoscale models fast interactions between clouds and radiation and the surface and radiation can be of greater importance than accounting for the spectral details of clear-sky radiation; thus calling the routines more frequently can be of greater benefit than the deterioration due to loss of spectral details. Fast but physically based radiation parametrizations are expected to be valuable for high-resolution ensemble forecasting, because as well as the speed of their execution, they may provide realistic physical perturbations. Results from single-column diagnostic experiments based on CIRC benchmark cases and an evaluation of 10 years of radiation output from the FMI operational archive of HIRLAM forecasts indicate that HLRADIA performs sufficiently well with respect to the clear-sky downwelling SW and longwave LW fluxes at the surface. In general, HLRADIA tends to overestimate surface fluxes, with the exception of LW fluxes under cold and dry conditions. The most obvious overestimation of the surface SW flux was seen in the cloudy cases in the 10-year comparison; this bias may be related to using a cloud inhomogeneity correction, which was too large. According to the CIRC comparisons, the outgoing LW and SW fluxes at the top of atmosphere are mostly overestimated by HLRADIA and the net LW flux is underestimated above clouds. The absorption of SW radiation by the atmosphere seems to be underestimated and LW absorption seems to be overestimated. Despite these issues, the overall results are satisfying and work on the improvement of HLRADIA for the use in HARMONIE-AROME NWP system
Mengaldo, Gianmarco; De Grazia, Daniele; Moura, Rodrigo C.; Sherwin, Spencer J.
2018-04-01
This study focuses on the dispersion and diffusion characteristics of high-order energy-stable flux reconstruction (ESFR) schemes via the spatial eigensolution analysis framework proposed in [1]. The analysis is performed for five ESFR schemes, where the parameter 'c' dictating the properties of the specific scheme recovered is chosen such that it spans the entire class of ESFR methods, also referred to as VCJH schemes, proposed in [2]. In particular, we used five values of 'c', two that correspond to its lower and upper bounds and the others that identify three schemes that are linked to common high-order methods, namely the ESFR recovering two versions of discontinuous Galerkin methods and one recovering the spectral difference scheme. The performance of each scheme is assessed when using different numerical intercell fluxes (e.g. different levels of upwinding), ranging from "under-" to "over-upwinding". In contrast to the more common temporal analysis, the spatial eigensolution analysis framework adopted here allows one to grasp crucial insights into the diffusion and dispersion properties of FR schemes for problems involving non-periodic boundary conditions, typically found in open-flow problems, including turbulence, unsteady aerodynamics and aeroacoustics.
Energy Technology Data Exchange (ETDEWEB)
Amano, Takanobu, E-mail: amano@eps.s.u-tokyo.ac.jp [Department of Earth and Planetary Science, University of Tokyo, 113-0033 (Japan)
2016-11-01
A new multidimensional simulation code for relativistic two-fluid electrodynamics (RTFED) is described. The basic equations consist of the full set of Maxwell’s equations coupled with relativistic hydrodynamic equations for separate two charged fluids, representing the dynamics of either an electron–positron or an electron–proton plasma. It can be recognized as an extension of conventional relativistic magnetohydrodynamics (RMHD). Finite resistivity may be introduced as a friction between the two species, which reduces to resistive RMHD in the long wavelength limit without suffering from a singularity at infinite conductivity. A numerical scheme based on HLL (Harten–Lax–Van Leer) Riemann solver is proposed that exactly preserves the two divergence constraints for Maxwell’s equations simultaneously. Several benchmark problems demonstrate that it is capable of describing RMHD shocks/discontinuities at long wavelength limit, as well as dispersive characteristics due to the two-fluid effect appearing at small scales. This shows that the RTFED model is a promising tool for high energy astrophysics application.
A numerical scheme for a kinetic model for mixtures in the diffusive limit using the moment method
Bondesan , Andrea; Boudin , Laurent; Grec , Bérénice
2018-01-01
In this article, we consider a multi-species kinetic model which leads to the Maxwell-Stefan equations under a standard diffusive scaling (small Knudsen and Mach numbers). We propose a suitable numerical scheme which approximates both the solution of the kinetic model in rarefied regime and the one in the diffusion limit. We prove some a priori estimates (mass conservation and nonnegativity) and well-posedness of the discrete problem. We also present numerical examples where we observe the as...
Sánchez Burillo, Guillermo; Beguería, Santiago; Latorre, Borja; Burguete, Javier
2014-05-01
Debris flows, snow and rock avalanches, mud and earth flows are often modeled by means of a particular realization of the so called shallow water equations (SWE). Indeed, a number of simulation models have been already developed [1], [2], [3], [4], [5], [6], [7]. Debris flow equations differ from shallow water equations in two main aspects. These are (a) strong bed gradient and (b) rheology friction terms that differ from the traditional SWE. A systematic analysis of the numerical solution of the hyperbolic system of equations rising from the shallow water equations with different rheological laws has not been done. Despite great efforts have been done to deal with friction expressions common in hydraulics (such as Manning friction), landslide rheologies are characterized by more complicated expressions that may deal to unphysical solutions if not treated carefully. In this work, a software that solves the time evolution of sliding masses over complex bed configurations is presented. The set of non- linear equations is treated by means of a first order upwind explicit scheme, and the friction contribution to the dynamics is treated with a suited numerical scheme [8]. In addition, the software incorporates various rheological models to accommodate for different flow types, such as the Voellmy frictional model [9] for rock and debris avalanches, or the Herschley-Bulkley model for debris and mud flows. The aim of this contribution is to release this code as a free, open source tool for the simulation of mass movements, and to encourage the scientific community to make use of it. The code uses as input data the friction coefficients and two input files: the topography of the bed and the initial (pre-failure) position of the sliding mass. In addition, another file with the final (post-event) position of the sliding mass, if desired, can be introduced to be compared with the simulation obtained result. If the deposited mass is given, an error estimation is computed by
Wang, Zhiheng
2015-01-01
A simple multidomain Chebyshev pseudo-spectral method is developed for two-dimensional fluid flow and heat transfer over square cylinders. The incompressible Navier-Stokes equations with primitive variables are discretized in several subdomains of the computational domain. The velocities and pressure are discretized with the same order of Chebyshev polynomials, i.e., the PN-PN method. The Projection method is applied in coupling the pressure with the velocity. The present method is first validated by benchmark problems of natural convection in a square cavity. Then the method based on multidomains is applied to simulate fluid flow and heat transfer from square cylinders. The numerical results agree well with the existing results. © Taylor & Francis Group, LLC.
Rößler, Thomas; Stein, Olaf; Heng, Yi; Baumeister, Paul; Hoffmann, Lars
2018-02-01
The accuracy of trajectory calculations performed by Lagrangian particle dispersion models (LPDMs) depends on various factors. The optimization of numerical integration schemes used to solve the trajectory equation helps to maximize the computational efficiency of large-scale LPDM simulations. We analyzed global truncation errors of six explicit integration schemes of the Runge-Kutta family, which we implemented in the Massive-Parallel Trajectory Calculations (MPTRAC) advection module. The simulations were driven by wind fields from operational analysis and forecasts of the European Centre for Medium-Range Weather Forecasts (ECMWF) at T1279L137 spatial resolution and 3 h temporal sampling. We defined separate test cases for 15 distinct regions of the atmosphere, covering the polar regions, the midlatitudes, and the tropics in the free troposphere, in the upper troposphere and lower stratosphere (UT/LS) region, and in the middle stratosphere. In total, more than 5000 different transport simulations were performed, covering the months of January, April, July, and October for the years 2014 and 2015. We quantified the accuracy of the trajectories by calculating transport deviations with respect to reference simulations using a fourth-order Runge-Kutta integration scheme with a sufficiently fine time step. Transport deviations were assessed with respect to error limits based on turbulent diffusion. Independent of the numerical scheme, the global truncation errors vary significantly between the different regions. Horizontal transport deviations in the stratosphere are typically an order of magnitude smaller compared with the free troposphere. We found that the truncation errors of the six numerical schemes fall into three distinct groups, which mostly depend on the numerical order of the scheme. Schemes of the same order differ little in accuracy, but some methods need less computational time, which gives them an advantage in efficiency. The selection of the integration
Pseudospectral modeling and dispersion analysis of Rayleigh waves in viscoelastic media
Zhang, K.; Luo, Y.; Xia, J.; Chen, C.
2011-01-01
Multichannel Analysis of Surface Waves (MASW) is one of the most widely used techniques in environmental and engineering geophysics to determine shear-wave velocities and dynamic properties, which is based on the elastic layered system theory. Wave propagation in the Earth, however, has been recognized as viscoelastic and the propagation of Rayleigh waves presents substantial differences in viscoelastic media as compared with elastic media. Therefore, it is necessary to carry out numerical simulation and dispersion analysis of Rayleigh waves in viscoelastic media to better understand Rayleigh-wave behaviors in the real world. We apply a pseudospectral method to the calculation of the spatial derivatives using a Chebyshev difference operator in the vertical direction and a Fourier difference operator in the horizontal direction based on the velocity-stress elastodynamic equations and relations of linear viscoelastic solids. This approach stretches the spatial discrete grid to have a minimum grid size near the free surface so that high accuracy and resolution are achieved at the free surface, which allows an effective incorporation of the free surface boundary conditions since the Chebyshev method is nonperiodic. We first use an elastic homogeneous half-space model to demonstrate the accuracy of the pseudospectral method comparing with the analytical solution, and verify the correctness of the numerical modeling results for a viscoelastic half-space comparing the phase velocities of Rayleigh wave between the theoretical values and the dispersive image generated by high-resolution linear Radon transform. We then simulate three types of two-layer models to analyze dispersive-energy characteristics for near-surface applications. Results demonstrate that the phase velocity of Rayleigh waves in viscoelastic media is relatively higher than in elastic media and the fundamental mode increases by 10-16% when the frequency is above 10. Hz due to the velocity dispersion of P
Zou, Peng; Cheng, Jiubing
2017-01-01
-difference method, we propose a modified pseudo-spectral method for wave propagation in arbitrary anisotropic media. Compared with an existing remedy of staggered-grid pseudo-spectral method based on stiffness matrix decomposition and a possible alternative using
A Semi-implicit Numerical Scheme for a Two-dimensional, Three-field Thermo-Hydraulic Modeling
International Nuclear Information System (INIS)
Hwang, Moonkyu; Jeong, Jaejoon
2007-07-01
The behavior of two-phase flow is modeled, depending on the purpose, by either homogeneous model, drift flux model, or separated flow model, Among these model, in the separated flow model, the behavior of each flow phase is modeled by its own governing equation, together with the interphase models which describe the thermal and mechanical interactions between the phases involved. In this study, a semi-implicit numerical scheme for two-dimensional, transient, two-fluid, three-field is derived. The work is an extension to the previous study for the staggered, semi-implicit numerical scheme in one-dimensional geometry (KAERI/TR-3239/2006). The two-dimensional extension is performed by specifying a relevant governing equation set and applying the related finite differencing method. The procedure for employing the semi-implicit scheme is also described in detail. Verifications are performed for a 2-dimensional vertical plate for a single-phase and two-phase flows. The calculations verify the mass and energy conservations. The symmetric flow behavior, for the verification problem, also confirms the momentum conservation of the numerical scheme
A hybrid numerical prediction scheme for solar radiation estimation in un-gauged catchments.
Shamim, M. A.; Bray, M.; Ishak, A. M.; Remesan, R.; Han, D.
2009-09-01
The importance of solar radiation on earth's surface is depicted in its wide range of applications in the fields of meteorology, agricultural sciences, engineering, hydrology, crop water requirements, climatic changes and energy assessment. It is quite random in nature as it has to go through different processes of assimilation and dispersion while on its way to earth. Compared to other meteorological parameters, solar radiation is quite infrequently measured, for example, the worldwide ratio of stations collecting solar radiation to those collecting temperature is 1:500 (Badescu, 2008). Researchers, therefore, have to rely on indirect techniques of estimation that include nonlinear models, artificial intelligence (e.g. neural networks), remote sensing and numerical weather predictions (NWP). This study proposes a hybrid numerical prediction scheme for solar radiation estimation in un-gauged catchments. It uses the PSU/NCAR's Mesoscale Modelling system (MM5) (Grell et al., 1995) to parameterise the cloud effect on extraterrestrial radiation by dividing the atmosphere into four layers of very high (6-12 km), high (3-6 km), medium (1.5-3) and low (0-1.5) altitudes from earth. It is believed that various cloud forms exist within each of these layers. An hourly time series of upper air pressure and relative humidity data sets corresponding to all of these layers is determined for the Brue catchment, southwest UK, using MM5. Cloud Index (CI) was then determined using (Yang and Koike, 2002): 1 p?bi [ (Rh - Rh )] ci =------- max 0.0,---------cri dp pbi - ptipti (1- Rhcri) where, pbi and pti represent the air pressure at the top and bottom of each layer and Rhcri is the critical value of relative humidity at which a certain cloud type is formed. Output from a global clear sky solar radiation model (MRM v-5) (Kambezidis and Psiloglu, 2008) is used along with meteorological datasets of temperature and precipitation and astronomical information. The analysis is aided by the
Directory of Open Access Journals (Sweden)
M. T. Johnson
2010-10-01
Full Text Available The ocean-atmosphere flux of a gas can be calculated from its measured or estimated concentration gradient across the air-sea interface and the transfer velocity (a term representing the conductivity of the layers either side of the interface with respect to the gas of interest. Traditionally the transfer velocity has been estimated from empirical relationships with wind speed, and then scaled by the Schmidt number of the gas being transferred. Complex, physically based models of transfer velocity (based on more physical forcings than wind speed alone, such as the NOAA COARE algorithm, have more recently been applied to well-studied gases such as carbon dioxide and DMS (although many studies still use the simpler approach for these gases, but there is a lack of validation of such schemes for other, more poorly studied gases. The aim of this paper is to provide a flexible numerical scheme which will allow the estimation of transfer velocity for any gas as a function of wind speed, temperature and salinity, given data on the solubility and liquid molar volume of the particular gas. New and existing parameterizations (including a novel empirical parameterization of the salinity-dependence of Henry's law solubility are brought together into a scheme implemented as a modular, extensible program in the R computing environment which is available in the supplementary online material accompanying this paper; along with input files containing solubility and structural data for ~90 gases of general interest, enabling the calculation of their total transfer velocities and component parameters. Comparison of the scheme presented here with alternative schemes and methods for calculating air-sea flux parameters shows good agreement in general. It is intended that the various components of this numerical scheme should be applied only in the absence of experimental data providing robust values for parameters for a particular gas of interest.
Johnson, M. T.
2010-10-01
The ocean-atmosphere flux of a gas can be calculated from its measured or estimated concentration gradient across the air-sea interface and the transfer velocity (a term representing the conductivity of the layers either side of the interface with respect to the gas of interest). Traditionally the transfer velocity has been estimated from empirical relationships with wind speed, and then scaled by the Schmidt number of the gas being transferred. Complex, physically based models of transfer velocity (based on more physical forcings than wind speed alone), such as the NOAA COARE algorithm, have more recently been applied to well-studied gases such as carbon dioxide and DMS (although many studies still use the simpler approach for these gases), but there is a lack of validation of such schemes for other, more poorly studied gases. The aim of this paper is to provide a flexible numerical scheme which will allow the estimation of transfer velocity for any gas as a function of wind speed, temperature and salinity, given data on the solubility and liquid molar volume of the particular gas. New and existing parameterizations (including a novel empirical parameterization of the salinity-dependence of Henry's law solubility) are brought together into a scheme implemented as a modular, extensible program in the R computing environment which is available in the supplementary online material accompanying this paper; along with input files containing solubility and structural data for ~90 gases of general interest, enabling the calculation of their total transfer velocities and component parameters. Comparison of the scheme presented here with alternative schemes and methods for calculating air-sea flux parameters shows good agreement in general. It is intended that the various components of this numerical scheme should be applied only in the absence of experimental data providing robust values for parameters for a particular gas of interest.
Directory of Open Access Journals (Sweden)
Andranik Tsakanian
2012-05-01
Full Text Available In particle accelerators a preferred direction, the direction of motion, is well defined. If in a numerical calculation the (numerical dispersion in this direction is suppressed, a quite coarse mesh and moderate computational resources can be used to reach accurate results even for extremely short electron bunches. Several approaches have been proposed in the past decades to reduce the accumulated dispersion error in wakefield calculations for perfectly conducting structures. In this paper we extend the TE/TM splitting algorithm to a new hybrid scheme that allows for wakefield calculations in structures with walls of finite conductivity. The conductive boundary is modeled by one-dimensional wires connected to each boundary cell. A good agreement of the numerical simulations with analytical results and other numerical approaches is obtained.
International Nuclear Information System (INIS)
Wnek, W.J.; Ramshaw, J.D.; Trapp, J.A.; Hughes, E.D.; Solbrig, C.W.
1975-11-01
A mathematical model and a numerical solution scheme for thermal-hydraulic analysis of fuel rod arrays are given. The model alleviates the two major deficiencies associated with existing rod array analysis models, that of a correct transverse momentum equation and the capability of handling reversing and circulatory flows. Possible applications of the model include steady state and transient subchannel calculations as well as analysis of flows in heat exchangers, other engineering equipment, and porous media
Dinesh Kumar, S.; Nageshwar Rao, R.; Pramod Chakravarthy, P.
2017-11-01
In this paper, we consider a boundary value problem for a singularly perturbed delay differential equation of reaction-diffusion type. We construct an exponentially fitted numerical method using Numerov finite difference scheme, which resolves not only the boundary layers but also the interior layers arising from the delay term. An extensive amount of computational work has been carried out to demonstrate the applicability of the proposed method.
Development of Non-staggered, semi-implicit ICE numerical scheme for a two-fluid, three-field model
Energy Technology Data Exchange (ETDEWEB)
Jeong, Jae Jun; Yoon, H. Y.; Bae, S. W
2007-11-15
A pilot code for one-dimensional, transient, two-fluid, three-field model has been developed. In this code, the semi-implicit ICE numerical scheme has been adapted to a 'non-staggered' grid. Using several conceptual problems, the numerical scheme has been verified. The results of the verifications are summarized below: - It was confirmed that the basic pilot code can simulate various flow conditions (such as single-phase liquid flow, two-phase mixture flow, and single-phase vapor flow) and transitions of the flow conditions. A mist flow was not simulated, but it seems that the basic pilot code can simulate mist flow conditions. - The mass and energy conservation was confirmed for single-phase liquid and single-phase vapor flows. - It was confirmed that the inlet pressure and velocity boundary conditions work properly. - It was confirmed that, for single- and two-phase flows, the velocity and temperature of non-existing phase are calculated as intended. The non-staggered, semi-implicit ICE numerical scheme, which has been developed in this study, will be a starting point of a new code development that adopts an unstructured finite volume method.
Numerical Simulations of Reacting Flows Using Asynchrony-Tolerant Schemes for Exascale Computing
Cleary, Emmet; Konduri, Aditya; Chen, Jacqueline
2017-11-01
Communication and data synchronization between processing elements (PEs) are likely to pose a major challenge in scalability of solvers at the exascale. Recently developed asynchrony-tolerant (AT) finite difference schemes address this issue by relaxing communication and synchronization between PEs at a mathematical level while preserving accuracy, resulting in improved scalability. The performance of these schemes has been validated for simple linear and nonlinear homogeneous PDEs. However, many problems of practical interest are governed by highly nonlinear PDEs with source terms, whose solution may be sensitive to perturbations caused by communication asynchrony. The current work applies the AT schemes to combustion problems with chemical source terms, yielding a stiff system of PDEs with nonlinear source terms highly sensitive to temperature. Examples shown will use single-step and multi-step CH4 mechanisms for 1D premixed and nonpremixed flames. Error analysis will be discussed both in physical and spectral space. Results show that additional errors introduced by the AT schemes are negligible and the schemes preserve their accuracy. We acknowledge funding from the DOE Computational Science Graduate Fellowship administered by the Krell Institute.
Solution of Euler unsteady equations using a second order numerical scheme
International Nuclear Information System (INIS)
Devos, J.P.
1992-08-01
In thermal power plants, the steam circuits experience incidents due to the noise and vibration induced by trans-sonic flow. In these configurations, the compressible fluid can be considered the perfect ideal. Euler equations therefore constitute a good model. However, processing of the discontinuities induced by the shockwaves are a particular problem. We give a bibliographical synthesis of the work done on this subject. The research by Roe and Harten leads to TVD (Total Variation Decreasing) type schemes. These second order schemes generate no oscillation and converge towards physically acceptable weak solutions. (author). 12 refs
DEFF Research Database (Denmark)
Hyun, Jaeyub; Kook, Junghwan; Wang, Semyung
2015-01-01
) as a basis vector. The proposed AQSRV-based model reduction scheme has the following two representative features: (1) Multiple frequency subintervals and (2) Adaptive selection of the subinterval information (i.e., the proper number and location of the center frequencies) and basis vector at each subinterval...
Development of a moisture scheme for the explicit numerical simulation of moist convection
CSIR Research Space (South Africa)
Bopape, Mary-Jane M
2010-09-01
Full Text Available . The aim of this study is to add a moisture scheme to the NSM. As a first step a simple model that is equivalent to the first pressure-coordinate nonhydrostatic model used to simulate cumulonimbus clouds in 1974 is developed. The equation set that includes...
E.J. Spee (Edwin); P.M. de Zeeuw (Paul); J.G. Verwer (Jan); J.G. Blom (Joke); W. Hundsdorfer (Willem)
1996-01-01
textabstractAtmospheric air quality modeling relies in part on numerical simulation. Required numerical simulations are often hampered by lack of computer capacity and computational speed. This problem is most severe in the field of global modeling where transport and exchange of trace constituents
Implementation of a gust front head collapse scheme in the WRF numerical model
Lompar, Miloš; Ćurić, Mladjen; Romanic, Djordje
2018-05-01
Gust fronts are thunderstorm-related phenomena usually associated with severe winds which are of great importance in theoretical meteorology, weather forecasting, cloud dynamics and precipitation, and wind engineering. An important feature of gust fronts demonstrated through both theoretical and observational studies is the periodic collapse and rebuild of the gust front head. This cyclic behavior of gust fronts results in periodic forcing of vertical velocity ahead of the parent thunderstorm, which consequently influences the storm dynamics and microphysics. This paper introduces the first gust front pulsation parameterization scheme in the WRF-ARW model (Weather Research and Forecasting-Advanced Research WRF). The influence of this new scheme on model performances is tested through investigation of the characteristics of an idealized supercell cumulonimbus cloud, as well as studying a real case of thunderstorms above the United Arab Emirates. In the ideal case, WRF with the gust front scheme produced more precipitation and showed different time evolution of mixing ratios of cloud water and rain, whereas the mixing ratios of ice and graupel are almost unchanged when compared to the default WRF run without the parameterization of gust front pulsation. The included parameterization did not disturb the general characteristics of thunderstorm cloud, such as the location of updraft and downdrafts, and the overall shape of the cloud. New cloud cells in front of the parent thunderstorm are also evident in both ideal and real cases due to the included forcing of vertical velocity caused by the periodic collapse of the gust front head. Despite some differences between the two WRF simulations and satellite observations, the inclusion of the gust front parameterization scheme produced more cumuliform clouds and seem to match better with real observations. Both WRF simulations gave poor results when it comes to matching the maximum composite radar reflectivity from radar
Hajarolasvadi, Setare; Elbanna, Ahmed E.
2017-11-01
The finite difference (FD) and the spectral boundary integral (SBI) methods have been used extensively to model spontaneously-propagating shear cracks in a variety of engineering and geophysical applications. In this paper, we propose a new modelling approach in which these two methods are combined through consistent exchange of boundary tractions and displacements. Benefiting from the flexibility of FD and the efficiency of SBI methods, the proposed hybrid scheme will solve a wide range of problems in a computationally efficient way. We demonstrate the validity of the approach using two examples for dynamic rupture propagation: one in the presence of a low-velocity layer and the other in which off-fault plasticity is permitted. We discuss possible potential uses of the hybrid scheme in earthquake cycle simulations as well as an exact absorbing boundary condition.
International Nuclear Information System (INIS)
Li, R.
2012-01-01
The aim of this research dissertation is at studying natural and mixed convections of fluid flows, and to develop and validate numerical schemes for interface tracking in order to treat incompressible and immiscible fluid flows, later. In a first step, an original numerical method, based on Finite Volume discretizations, is developed for modeling low Mach number flows with large temperature gaps. Three physical applications on air flowing through vertical heated parallel plates were investigated. We showed that the optimum spacing corresponding to the peak heat flux transferred from an array of isothermal parallel plates cooled by mixed convection is smaller than those for natural or forced convections when the pressure drop at the outlet keeps constant. We also proved that mixed convection flows resulting from an imposed flow rate may exhibit unexpected physical solutions; alternative model based on prescribed total pressure at inlet and fixed pressure at outlet sections gives more realistic results. For channels heated by heat flux on one wall only, surface radiation tends to suppress the onset of re-circulations at the outlet and to unify the walls temperature. In a second step, the mathematical model coupling the incompressible Navier-Stokes equations and the Level-Set method for interface tracking is derived. Improvements in fluid volume conservation by using high order discretization (ENO-WENO) schemes for the transport equation and variants of the signed distance equation are discussed. (author)
Numerical Investigation of a Novel Wiring Scheme Enabling Simple and Accurate Impedance Cytometry
Directory of Open Access Journals (Sweden)
Federica Caselli
2017-09-01
Full Text Available Microfluidic impedance cytometry is a label-free approach for high-throughput analysis of particles and cells. It is based on the characterization of the dielectric properties of single particles as they flow through a microchannel with integrated electrodes. However, the measured signal depends not only on the intrinsic particle properties, but also on the particle trajectory through the measuring region, thus challenging the resolution and accuracy of the technique. In this work we show via simulation that this issue can be overcome without resorting to particle focusing, by means of a straightforward modification of the wiring scheme for the most typical and widely used microfluidic impedance chip.
A high-order solver for aerodynamic flow simulations and comparison of different numerical schemes
Mikhaylov, Sergey; Morozov, Alexander; Podaruev, Vladimir; Troshin, Alexey
2017-11-01
An implementation of high order of accuracy Discontinuous Galerkin method is presented. Reconstruction is done for the conservative variables. Gradients are calculated using the BR2 method. Coordinate transformations are done by serendipity elements. In computations with schemes of order higher than 2, curvature of the mesh lines is taken into account. A comparison with finite volume methods is performed, including WENO method with linear weights and single quadrature point on a cell side. The results of the following classical tests are presented: subsonic flow around a circular cylinder in an ideal gas, convection of two-dimensional isentropic vortex, and decay of the Taylor-Green vortex.
Keslerová, Radka; Trdlička, David
2015-09-01
This work deals with the numerical modelling of steady flows of incompressible viscous and viscoelastic fluids through the three dimensional channel with T-junction. The fundamental system of equations is the system of generalized Navier-Stokes equations for incompressible fluids. This system is based on the system of balance laws of mass and momentum for incompressible fluids. Two different mathematical models for the stress tensor are used for simulation of Newtonian and Oldroyd-B fluids flow. Numerical solution of the described models is based on cetral finite volume method using explicit Runge-Kutta time integration.
Global communication schemes for the numerical solution of high-dimensional PDEs
DEFF Research Database (Denmark)
Hupp, Philipp; Heene, Mario; Jacob, Riko
2016-01-01
The numerical treatment of high-dimensional partial differential equations is among the most compute-hungry problems and in urgent need for current and future high-performance computing (HPC) systems. It is thus also facing the grand challenges of exascale computing such as the requirement...
A three–step discretization scheme for direct numerical solution of ...
African Journals Online (AJOL)
In this paper, a three-step discretization (numerical) formula is developed for direct integration of second-order initial value problems in ordinary differential equations. The development of the method and analysis of its basic properties adopt Taylor series expansion and Dahlquist stability test methods. The results show that ...
Non-hydrostatic semi-elastic hybrid-coordinate SISL extension of HIRLAM. Part I: numerical scheme
Rõõm, Rein; Männik, Aarne; Luhamaa, Andres
2007-10-01
Two-time-level, semi-implicit, semi-Lagrangian (SISL) scheme is applied to the non-hydrostatic pressure coordinate equations, constituting a modified Miller-Pearce-White model, in hybrid-coordinate framework. Neutral background is subtracted in the initial continuous dynamics, yielding modified equations for geopotential, temperature and logarithmic surface pressure fluctuation. Implicit Lagrangian marching formulae for single time-step are derived. A disclosure scheme is presented, which results in an uncoupled diagnostic system, consisting of 3-D Poisson equation for omega velocity and 2-D Helmholtz equation for logarithmic pressure fluctuation. The model is discretized to create a non-hydrostatic extension to numerical weather prediction model HIRLAM. The discretization schemes, trajectory computation algorithms and interpolation routines, as well as the physical parametrization package are maintained from parent hydrostatic HIRLAM. For stability investigation, the derived SISL model is linearized with respect to the initial, thermally non-equilibrium resting state. Explicit residuals of the linear model prove to be sensitive to the relative departures of temperature and static stability from the reference state. Relayed on the stability study, the semi-implicit term in the vertical momentum equation is replaced to the implicit term, which results in stability increase of the model.
European Workshop on High Order Nonlinear Numerical Schemes for Evolutionary PDEs
Beaugendre, Héloïse; Congedo, Pietro; Dobrzynski, Cécile; Perrier, Vincent; Ricchiuto, Mario
2014-01-01
This book collects papers presented during the European Workshop on High Order Nonlinear Numerical Methods for Evolutionary PDEs (HONOM 2013) that was held at INRIA Bordeaux Sud-Ouest, Talence, France in March, 2013. The central topic is high order methods for compressible fluid dynamics. In the workshop, and in this proceedings, greater emphasis is placed on the numerical than the theoretical aspects of this scientific field. The range of topics is broad, extending through algorithm design, accuracy, large scale computing, complex geometries, discontinuous Galerkin, finite element methods, Lagrangian hydrodynamics, finite difference methods and applications and uncertainty quantification. These techniques find practical applications in such fields as fluid mechanics, magnetohydrodynamics, nonlinear solid mechanics, and others for which genuinely nonlinear methods are needed.
Burke, Jan
2010-08-01
Phase-shifting Fizeau interferometry on spherical surfaces is impaired by phase-shift errors increasing with the numerical aperture, unless a custom optical set-up or wavelength shifting is used. This poses a problem especially for larger numerical apertures, and requires good error tolerance of the phase-shift method used; but it also constitutes a useful testing facility for phase-shift formulae, because a vast range of phase-shift intervals can be tested in a single measurement. In this paper I show how the "characteristic polynomials" method can be used to generate a phase-shifting method for the actual numerical aperture, and analyse residual cyclical phase errors by comparing a phase map from an interferogram with a few fringes to a phase mpa from a nulled fringe. Unrelated to the phase-shift miscalibration, thirdharmonic error fringes are found. These can be dealt with by changing the nominal phase shift from 90°/step to 60°/step and re-tailoring the evaluation formula for third-harmonic rejection. The residual error has the same frequency as the phase-shift signal itself, and can be removed by averaging measurements. Some interesting features of the characteristic polynomials for the averaged formulae emerge, which also shed some light on the mechanism that generates cyclical phase errors.
Some Comments on the Behavior of the RELAP5 Numerical Scheme at Very Small Time Steps
International Nuclear Information System (INIS)
Tiselj, Iztok; Cerne, Gregor
2000-01-01
The behavior of the RELAP5 code at very short time steps is described, i.e., δt [approximately equal to] 0.01 δx/c. First, the property of the RELAP5 code to trace acoustic waves with 'almost' second-order accuracy is demonstrated. Quasi-second-order accuracy is usually achieved for acoustic waves at very short time steps but can never be achieved for the propagation of nonacoustic temperature and void fraction waves. While this feature may be beneficial for the simulations of fast transients describing pressure waves, it also has an adverse effect: The lack of numerical diffusion at very short time steps can cause typical second-order numerical oscillations near steep pressure jumps. This behavior explains why an automatic halving of the time step, which is used in RELAP5 when numerical difficulties are encountered, in some cases leads to the failure of the simulation.Second, the integration of the stiff interphase exchange terms in RELAP5 is studied. For transients with flashing and/or rapid condensation as the main phenomena, results strongly depend on the time step used. Poor accuracy is achieved with 'normal' time steps (δt [approximately equal to] δx/v) because of the very short characteristic timescale of the interphase mass and heat transfer sources. In such cases significantly different results are predicted with very short time steps because of the more accurate integration of the stiff interphase exchange terms
A pseudospectral matrix method for time-dependent tensor fields on a spherical shell
International Nuclear Information System (INIS)
Brügmann, Bernd
2013-01-01
We construct a pseudospectral method for the solution of time-dependent, non-linear partial differential equations on a three-dimensional spherical shell. The problem we address is the treatment of tensor fields on the sphere. As a test case we consider the evolution of a single black hole in numerical general relativity. A natural strategy would be the expansion in tensor spherical harmonics in spherical coordinates. Instead, we consider the simpler and potentially more efficient possibility of a double Fourier expansion on the sphere for tensors in Cartesian coordinates. As usual for the double Fourier method, we employ a filter to address time-step limitations and certain stability issues. We find that a tensor filter based on spin-weighted spherical harmonics is successful, while two simplified, non-spin-weighted filters do not lead to stable evolutions. The derivatives and the filter are implemented by matrix multiplication for efficiency. A key technical point is the construction of a matrix multiplication method for the spin-weighted spherical harmonic filter. As example for the efficient parallelization of the double Fourier, spin-weighted filter method we discuss an implementation on a GPU, which achieves a speed-up of up to a factor of 20 compared to a single core CPU implementation
Mapped Chebyshev Pseudo-Spectral Method for Dynamic Aero-Elastic Problem of Limit Cycle Oscillation
Im, Dong Kyun; Kim, Hyun Soon; Choi, Seongim
2018-05-01
A mapped Chebyshev pseudo-spectral method is developed as one of the Fourier-spectral approaches and solves nonlinear PDE systems for unsteady flows and dynamic aero-elastic problem in a given time interval, where the flows or elastic motions can be periodic, nonperiodic, or periodic with an unknown frequency. The method uses the Chebyshev polynomials of the first kind for the basis function and redistributes the standard Chebyshev-Gauss-Lobatto collocation points more evenly by a conformal mapping function for improved numerical stability. Contributions of the method are several. It can be an order of magnitude more efficient than the conventional finite difference-based, time-accurate computation, depending on the complexity of solutions and the number of collocation points. The method reformulates the dynamic aero-elastic problem in spectral form for coupled analysis of aerodynamics and structures, which can be effective for design optimization of unsteady and dynamic problems. A limit cycle oscillation (LCO) is chosen for the validation and a new method to determine the LCO frequency is introduced based on the minimization of a second derivative of the aero-elastic formulation. Two examples of the limit cycle oscillation are tested: nonlinear, one degree-of-freedom mass-spring-damper system and two degrees-of-freedom oscillating airfoil under pitch and plunge motions. Results show good agreements with those of the conventional time-accurate simulations and wind tunnel experiments.
International Nuclear Information System (INIS)
Lode, Axel U.J.
2013-01-01
This thesis explores the quantum many-body tunneling dynamics of open ultracold bosonic systems with the recently developed multiconfigurational time-dependent Hartree for bosons (MCTDHB) method. The capabilities of MCTDHB to provide solutions to the full time-dependent many-body problem are assessed in a benchmark using the analytically solvable harmonic interaction Hamiltonian and a generalization of it with time-dependent both one- and two-body potentials. In a comparison with numerically exact MCTDHB results, it is shown that e.g. lattice methods fail qualitatively to describe the tunneling dynamics. A model assembling the many-body physics of the process from basic simultaneously happening single-particle processes is derived and verified with a numerically exact MCTDHB description. The generality of the model is demonstrated even for strong interactions and large particle numbers. The ejection of the bosons from the source occurs with characteristic velocities. These velocities are defined by the chemical potentials of systems with different particle numbers which are converted to kinetic energy. The tunneling process is accompanied by fragmentation: the ejected bosons lose their coherence with the source and among each other. It is shown that the various aspects of the tunneling dynamics' can be controlled well with the interaction and the potential threshold.
International Nuclear Information System (INIS)
Saha Ray, S.; Patra, A.
2012-01-01
Highlights: ► In this paper fractional neutron point kinetic equation has been analyzed. ► The numerical solution for fractional neutron point kinetic equation is obtained. ► Explicit Finite Difference Method has been applied. ► Supercritical reactivity, critical reactivity and subcritical reactivity analyzed. ► Comparison between fractional and classical neutron density is presented. - Abstract: In the present article, a numerical procedure to efficiently calculate the solution for fractional point kinetics equation in nuclear reactor dynamics is investigated. The Explicit Finite Difference Method is applied to solve the fractional neutron point kinetic equation with the Grunwald–Letnikov (GL) definition (). Fractional Neutron Point Kinetic Model has been analyzed for the dynamic behavior of the neutron motion in which the relaxation time associated with a variation in the neutron flux involves a fractional order acting as exponent of the relaxation time, to obtain the best operation of a nuclear reactor dynamics. Results for neutron dynamic behavior for subcritical reactivity, supercritical reactivity and critical reactivity and also for different values of fractional order have been presented and compared with the classical neutron point kinetic (NPK) equation as well as the results obtained by the learned researchers .
Energy Technology Data Exchange (ETDEWEB)
Lode, Axel U.J.
2013-06-03
This thesis explores the quantum many-body tunneling dynamics of open ultracold bosonic systems with the recently developed multiconfigurational time-dependent Hartree for bosons (MCTDHB) method. The capabilities of MCTDHB to provide solutions to the full time-dependent many-body problem are assessed in a benchmark using the analytically solvable harmonic interaction Hamiltonian and a generalization of it with time-dependent both one- and two-body potentials. In a comparison with numerically exact MCTDHB results, it is shown that e.g. lattice methods fail qualitatively to describe the tunneling dynamics. A model assembling the many-body physics of the process from basic simultaneously happening single-particle processes is derived and verified with a numerically exact MCTDHB description. The generality of the model is demonstrated even for strong interactions and large particle numbers. The ejection of the bosons from the source occurs with characteristic velocities. These velocities are defined by the chemical potentials of systems with different particle numbers which are converted to kinetic energy. The tunneling process is accompanied by fragmentation: the ejected bosons lose their coherence with the source and among each other. It is shown that the various aspects of the tunneling dynamics' can be controlled well with the interaction and the potential threshold.
Johnson, M. T.
2010-02-01
The transfer velocity determines the rate of exchange of a gas across the air-water interface for a given deviation from Henry's law equilibrium between the two phases. In the thin film model of gas exchange, which is commonly used for calculating gas exchange rates from measured concentrations of trace gases in the atmosphere and ocean/freshwaters, the overall transfer is controlled by diffusion-mediated films on either side of the air-water interface. Calculating the total transfer velocity (i.e. including the influence from both molecular layers) requires the Henry's law constant and the Schmidt number of the gas in question, the latter being the ratio of the viscosity of the medium and the molecular diffusivity of the gas in the medium. All of these properties are both temperature and (on the water side) salinity dependent and extensive calculation is required to estimate these properties where not otherwise available. The aim of this work is to standardize the application of the thin film approach to flux calculation from measured and modelled data, to improve comparability, and to provide a numerical framework into which future parameter improvements can be integrated. A detailed numerical scheme is presented for the calculation of the gas and liquid phase transfer velocities (ka and kw respectively) and the total transfer velocity, K. The scheme requires only basic physical chemistry data for any gas of interest and calculates K over the full range of temperatures, salinities and wind-speeds observed in and over the ocean. Improved relationships for the wind-speed dependence of ka and for the salinity-dependence of the gas solubility (Henry's law) are derived. Comparison with alternative schemes and methods for calculating air-sea flux parameters shows good agreement in general but significant improvements under certain conditions. The scheme is provided as a downloadable program in the supplementary material, along with input files containing molecular
An hp symplectic pseudospectral method for nonlinear optimal control
Peng, Haijun; Wang, Xinwei; Li, Mingwu; Chen, Biaosong
2017-01-01
An adaptive symplectic pseudospectral method based on the dual variational principle is proposed and is successfully applied to solving nonlinear optimal control problems in this paper. The proposed method satisfies the first order necessary conditions of continuous optimal control problems, also the symplectic property of the original continuous Hamiltonian system is preserved. The original optimal control problem is transferred into a set of nonlinear equations which can be solved easily by Newton-Raphson iterations, and the Jacobian matrix is found to be sparse and symmetric. The proposed method, on one hand, exhibits exponent convergence rates when the number of collocation points are increasing with the fixed number of sub-intervals; on the other hand, exhibits linear convergence rates when the number of sub-intervals is increasing with the fixed number of collocation points. Furthermore, combining with the hp method based on the residual error of dynamic constraints, the proposed method can achieve given precisions in a few iterations. Five examples highlight the high precision and high computational efficiency of the proposed method.
An Adaptive Pseudospectral Method for Fractional Order Boundary Value Problems
Directory of Open Access Journals (Sweden)
Mohammad Maleki
2012-01-01
Full Text Available An adaptive pseudospectral method is presented for solving a class of multiterm fractional boundary value problems (FBVP which involve Caputo-type fractional derivatives. The multiterm FBVP is first converted into a singular Volterra integrodifferential equation (SVIDE. By dividing the interval of the problem to subintervals, the unknown function is approximated using a piecewise interpolation polynomial with unknown coefficients which is based on shifted Legendre-Gauss (ShLG collocation points. Then the problem is reduced to a system of algebraic equations, thus greatly simplifying the problem. Further, some additional conditions are considered to maintain the continuity of the approximate solution and its derivatives at the interface of subintervals. In order to convert the singular integrals of SVIDE into nonsingular ones, integration by parts is utilized. In the method developed in this paper, the accuracy can be improved either by increasing the number of subintervals or by increasing the degree of the polynomial on each subinterval. Using several examples including Bagley-Torvik equation the proposed method is shown to be efficient and accurate.
International Nuclear Information System (INIS)
Li, Fu; Zhu, Shi-Yao; Zhang, Jun-Xiang
2015-01-01
Recently, the direct counterfactual communication protocol, proposed by Salih et al (2013 Phys. Rev. Lett. 110 170502) using a single photon source under ideal conditions (no dissipation, no phase fluctuation and an infinite number of beam splitters), has attracted much interest from a broad range of scientists. In order to put the direct communication protocol into a realistic framework, we numerically simulate the effect of the dissipation and the phase fluctuation with a finite number of beam splitters. Our calculation shows that the dissipation and phase fluctuation will dramatically decrease the reliability and the efficiency of communication, and even corrupt the communication. To counteract the negative effect of dissipation, we propose the balanced dissipation method, which substantially improves the reliability of the protocol at the expense of decreasing communication efficiency. Meanwhile, our theoretical derivation shows that the reliability and efficiency of communication are independent of the input state: a single photon state or a coherent state. (paper)
Li, Fu; Zhang, Jun-Xiang; Zhu, Shi-Yao
2015-06-01
Recently, the direct counterfactual communication protocol, proposed by Salih et al (2013 Phys. Rev. Lett. 110 170502) using a single photon source under ideal conditions (no dissipation, no phase fluctuation and an infinite number of beam splitters), has attracted much interest from a broad range of scientists. In order to put the direct communication protocol into a realistic framework, we numerically simulate the effect of the dissipation and the phase fluctuation with a finite number of beam splitters. Our calculation shows that the dissipation and phase fluctuation will dramatically decrease the reliability and the efficiency of communication, and even corrupt the communication. To counteract the negative effect of dissipation, we propose the balanced dissipation method, which substantially improves the reliability of the protocol at the expense of decreasing communication efficiency. Meanwhile, our theoretical derivation shows that the reliability and efficiency of communication are independent of the input state: a single photon state or a coherent state.
Energy Technology Data Exchange (ETDEWEB)
Ohsuga, Ken; Takahashi, Hiroyuki R. [National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo 181-8588 (Japan)
2016-02-20
We develop a numerical scheme for solving the equations of fully special relativistic, radiation magnetohydrodynamics (MHDs), in which the frequency-integrated, time-dependent radiation transfer equation is solved to calculate the specific intensity. The radiation energy density, the radiation flux, and the radiation stress tensor are obtained by the angular quadrature of the intensity. In the present method, conservation of total mass, momentum, and energy of the radiation magnetofluids is guaranteed. We treat not only the isotropic scattering but also the Thomson scattering. The numerical method of MHDs is the same as that of our previous work. The advection terms are explicitly solved, and the source terms, which describe the gas–radiation interaction, are implicitly integrated. Our code is suitable for massive parallel computing. We present that our code shows reasonable results in some numerical tests for propagating radiation and radiation hydrodynamics. Particularly, the correct solution is given even in the optically very thin or moderately thin regimes, and the special relativistic effects are nicely reproduced.
International Nuclear Information System (INIS)
Girardin, Mathieu
2014-01-01
Two-phase flows in Pressurized Water Reactors belong to a wide range of Mach number flows. Computing accurate approximate solutions of those flows may be challenging from a numerical point of view as classical finite volume methods are too diffusive in the low Mach regime. In this thesis, we are interested in designing and studying some robust numerical schemes that are stable for large time steps and accurate even on coarse meshes for a wide range of flow regimes. An important feature is the strategy to construct those schemes. We use a mixed implicit-explicit strategy based on an operator splitting to solve fast and slow phenomena separately. Then, we introduce a modification of a Suliciu type relaxation scheme to improve the accuracy of the numerical scheme in some regime of interest. Two approaches have been used to assess the ability of our numerical schemes to deal with a wide range of flow regimes. The first approach, based on the asymptotic preserving property, has been used for the gas dynamics equations with stiff source terms. The second approach, based on the all-regime property, has been used for the gas dynamics equations and the homogeneous two-phase flows models HRM and HEM in the low Mach regime. We obtained some robustness and stability properties for our numerical schemes. In particular, some discrete entropy inequalities are shown. Numerical evidences, in 1D and in 2D on unstructured meshes, assess the gain in term of accuracy and CPU time of those asymptotic preserving and all-regime numerical schemes in comparison with classical finite volume methods. (author) [fr
Directory of Open Access Journals (Sweden)
A. R. Appadu
2013-01-01
for which the Reynolds number is 2 or 4. Some errors are computed, namely, the error rate with respect to the L1 norm, dispersion, and dissipation errors. We have both dissipative and dispersive errors, and this indicates that the methods generate artificial dispersion, though the partial differential considered is not dispersive. It is seen that the Lax-Wendroff and NSFD are quite good methods to approximate the 1D advection-diffusion equation at some values of k and h. Two optimisation techniques are then implemented to find the optimal values of k when h=0.02 for the Lax-Wendroff and NSFD schemes, and this is validated by numerical experiments.
A domain decomposition method for pseudo-spectral electromagnetic simulations of plasmas
International Nuclear Information System (INIS)
Vay, Jean-Luc; Haber, Irving; Godfrey, Brendan B.
2013-01-01
Pseudo-spectral electromagnetic solvers (i.e. representing the fields in Fourier space) have extraordinary precision. In particular, Haber et al. presented in 1973 a pseudo-spectral solver that integrates analytically the solution over a finite time step, under the usual assumption that the source is constant over that time step. Yet, pseudo-spectral solvers have not been widely used, due in part to the difficulty for efficient parallelization owing to global communications associated with global FFTs on the entire computational domains. A method for the parallelization of electromagnetic pseudo-spectral solvers is proposed and tested on single electromagnetic pulses, and on Particle-In-Cell simulations of the wakefield formation in a laser plasma accelerator. The method takes advantage of the properties of the Discrete Fourier Transform, the linearity of Maxwell’s equations and the finite speed of light for limiting the communications of data within guard regions between neighboring computational domains. Although this requires a small approximation, test results show that no significant error is made on the test cases that have been presented. The proposed method opens the way to solvers combining the favorable parallel scaling of standard finite-difference methods with the accuracy advantages of pseudo-spectral methods
International Nuclear Information System (INIS)
Li Li; Zhang Xinlu; Chen Lixue
2008-01-01
In this paper, we predict and numerically demonstrate the intrinsic intensity bistability, spectra bistability and chromatic switching of visible-infrared emission in Tm 3+ single-doped systems that are pumped by the photon avalanche scheme at 648 nm. Based on the coupled rate equation theory, the evolutions of the populations at various Tm 3+ energy levels, emission spectra and fluorescence intensity versus pump excitation are numerically investigated in detail. The results show that intrinsic optical bistability (IOB) associated with emission spectra and luminescence intensity takes place in the vicinity of the avalanche threshold (∼10 kW cm -2 ). When the pump excitation rises above the switching threshold (∼17.5 kW cm -2 ), the chromatic switching between the infrared (1716 nm) and the visible blue (452/469 nm) spectra can be performed. Moreover, the influences of system parameters on IOB and the origin of chromatic switching are discussed. These unique characteristics of Tm 3+ -doped systems would lead to the new possibility of the development of pump-controlled all-solid-state luminescence switches and optical bistability switches.
International Nuclear Information System (INIS)
Boyd, John P.; Rangan, C.; Bucksbaum, P.H.
2003-01-01
The Fourier-sine-with-mapping pseudospectral algorithm of Fattal et al. [Phys. Rev. E 53 (1996) 1217] has been applied in several quantum physics problems. Here, we compare it with pseudospectral methods using Laguerre functions and rational Chebyshev functions. We show that Laguerre and Chebyshev expansions are better suited for solving problems in the interval r in R set of [0,∞] (for example, the Coulomb-Schroedinger equation), than the Fourier-sine-mapping scheme. All three methods give similar accuracy for the hydrogen atom when the scaling parameter L is optimum, but the Laguerre and Chebyshev methods are less sensitive to variations in L. We introduce a new variant of rational Chebyshev functions which has a more uniform spacing of grid points for large r, and gives somewhat better results than the rational Chebyshev functions of Boyd [J. Comp. Phys. 70 (1987) 63
Directory of Open Access Journals (Sweden)
Shun Takahashi
2014-01-01
Full Text Available A computational code adopting immersed boundary methods for compressible gas-particle multiphase turbulent flows is developed and validated through two-dimensional numerical experiments. The turbulent flow region is modeled by a second-order pseudo skew-symmetric form with minimum dissipation, while the monotone upstream-centered scheme for conservation laws (MUSCL scheme is employed in the shock region. The present scheme is applied to the flow around a two-dimensional cylinder under various freestream Mach numbers. Compared with the original MUSCL scheme, the minimum dissipation enabled by the pseudo skew-symmetric form significantly improves the resolution of the vortex generated in the wake while retaining the shock capturing ability. In addition, the resulting aerodynamic force is significantly improved. Also, the present scheme is successfully applied to moving two-cylinder problems.
Chen, Huangxin; Sun, Shuyu; Zhang, Tao
2017-01-01
In this paper we consider the energy stability estimates for some fully discrete schemes which both consider time and spatial discretizations for the incompressible Navier–Stokes equations. We focus on three kinds of fully discrete schemes, i
Weisman, Andrew L.
Electronic structure calculation is an essential approach for determining the structure and function of molecules and is therefore of critical interest to physics, chemistry, and materials science. Of the various algorithms for calculating electronic structure, the pseudospectral method is among the fastest. However, the trade-off for its speed is more up-front programming and testing, and as a result, applications using the pseudospectral method currently lag behind those using other methods. In Part I of this dissertation, we first advance the pseudospectral method by optimizing it for an important application, polarized Raman spectroscopy, which is a well-established tool used to characterize molecular properties. This is an application of particular importance because often the easiest and most economical way to obtain the polarized Raman spectrum of a material is to simulate it; thus, utilization of the pseudospectral method for this purpose will accelerate progress in the determination of molecular properties. We demonstrate that our implementation of Raman spectroscopy using the pseudospectral method results in spectra that are just as accurate as those calculated using the traditional analytic method, and in the process, we derive the most comprehensive formulation to date of polarized Raman intensity formulas, applicable to both crystalline and isotropic systems. Next, we apply our implementation to determine the orientations of crystalline oligothiophenes -- a class of materials important in the field of organic electronics -- achieving excellent agreement with experiment and demonstrating the general utility of polarized Raman spectroscopy for the determination of crystal orientation. In addition, we derive from first-principles a method for using polarized Raman spectra to establish unambiguously whether a uniform region of a material is crystalline or isotropic. Finally, we introduce free, open-source software that allows a user to determine any of a
International Nuclear Information System (INIS)
Kong Linghua; Hong Jialin; Liu Ruxun
2008-01-01
In this paper, we propose a family of symplectic structure-preserving numerical methods for the coupled Klein-Gordon-Schroedinger (KGS) system. The Hamiltonian formulation is constructed for the KGS. We discretize the Hamiltonian system in space first with a family of canonical difference methods which convert an infinite-dimensional Hamiltonian system into a finite-dimensional one. Next, we discretize the finite-dimensional system in time by a midpoint rule which preserves the symplectic structure of the original system. The conservation laws of the schemes are analyzed in succession, including the charge conservation law and the residual of energy conservation law, etc. We analyze the truncation errors and global errors of the numerical solutions for the schemes to end the theoretical analysis. Extensive numerical tests show the accordance between the theoretical and numerical results
The interior of axisymmetric and stationary black holes: Numerical and analytical studies
International Nuclear Information System (INIS)
Ansorg, Marcus; Hennig, Joerg
2011-01-01
We investigate the interior hyperbolic region of axisymmetric and stationary black holes surrounded by a matter distribution. First, we treat the corresponding initial value problem of the hyperbolic Einstein equations numerically in terms of a single-domain fully pseudo-spectral scheme. Thereafter, a rigorous mathematical approach is given, in which soliton methods are utilized to derive an explicit relation between the event horizon and an inner Cauchy horizon. This horizon arises as the boundary of the future domain of dependence of the event horizon. Our numerical studies provide strong evidence for the validity of the universal relation A + A - (8πJ) 2 where A + and A - are the areas of event and inner Cauchy horizon respectively, and J denotes the angular momentum. With our analytical considerations we are able to prove this relation rigorously.
Wang, Hua; Tao, Guo; Shang, Xue-Feng; Fang, Xin-Ding; Burns, Daniel R.
2013-12-01
In acoustic logging-while-drilling (ALWD) finite difference in time domain (FDTD) simulations, large drill collar occupies, most of the fluid-filled borehole and divides the borehole fluid into two thin fluid columns (radius ˜27 mm). Fine grids and large computational models are required to model the thin fluid region between the tool and the formation. As a result, small time step and more iterations are needed, which increases the cumulative numerical error. Furthermore, due to high impedance contrast between the drill collar and fluid in the borehole (the difference is >30 times), the stability and efficiency of the perfectly matched layer (PML) scheme is critical to simulate complicated wave modes accurately. In this paper, we compared four different PML implementations in a staggered grid finite difference in time domain (FDTD) in the ALWD simulation, including field-splitting PML (SPML), multiaxial PML(MPML), non-splitting PML (NPML), and complex frequency-shifted PML (CFS-PML). The comparison indicated that NPML and CFS-PML can absorb the guided wave reflection from the computational boundaries more efficiently than SPML and M-PML. For large simulation time, SPML, M-PML, and NPML are numerically unstable. However, the stability of M-PML can be improved further to some extent. Based on the analysis, we proposed that the CFS-PML method is used in FDTD to eliminate the numerical instability and to improve the efficiency of absorption in the PML layers for LWD modeling. The optimal values of CFS-PML parameters in the LWD simulation were investigated based on thousands of 3D simulations. For typical LWD cases, the best maximum value of the quadratic damping profile was obtained using one d 0. The optimal parameter space for the maximum value of the linear frequency-shifted factor ( α 0) and the scaling factor ( β 0) depended on the thickness of the PML layer. For typical formations, if the PML thickness is 10 grid points, the global error can be reduced to <1
International Nuclear Information System (INIS)
Georges, Gabriel
2016-01-01
High Energy Density Physics (HEDP) flows are multi-material flows characterized by strong shock waves and large changes in the domain shape due to rare faction waves. Numerical schemes based on the Lagrangian formalism are good candidates to model this kind of flows since the computational grid follows the fluid motion. This provides accurate results around the shocks as well as a natural tracking of multi-material interfaces and free-surfaces. In particular, cell-centered Finite Volume Lagrangian schemes such as GLACE (Godunov-type Lagrangian scheme Conservative for total Energy) and EUCCLHYD (Explicit Unstructured Cell-Centered Lagrangian Hydrodynamics) provide good results on both the modeling of gas dynamics and elastic-plastic equations. The work produced during this PhD thesis is in continuity with the work of Maire and Nkonga [JCP, 2009] for the hydrodynamic part and the work of Kluth and Despres [JCP, 2010] for the hyper elasticity part. More precisely, the aim of this thesis is to develop robust and accurate methods for the 3D extension of the EUCCLHYD scheme with a second-order extension based on MUSCL (Monotonic Upstream-centered Scheme for Conservation Laws) and GRP (Generalized Riemann Problem) procedures. A particular care is taken on the preservation of symmetries and the monotonicity of the solutions. The scheme robustness and accuracy are assessed on numerous Lagrangian test cases for which the 3D extensions are very challenging. (author) [fr
Pagan Munoz, R.; Hornikx, M.C.J.
The wave-based Fourier Pseudospectral time-domain (Fourier-PSTD) method was shown to be an effective way of modeling outdoor acoustic propagation problems as described by the linearized Euler equations (LEE), but is limited to real-valued frequency independent boundary conditions and predominantly
OpenPSTD : The open source implementation of the pseudospectral time-domain method
Krijnen, T.; Hornikx, M.C.J.; Borkowski, B.
2014-01-01
An open source implementation of the pseudospectral time-domain method for the propagation of sound is presented, which is geared towards applications in the built environment. Being a wavebased method, PSTD captures phenomena like diffraction, but maintains efficiency in processing time and memory
OpenPSTD : The open source pseudospectral time-domain method for acoustic propagation
Hornikx, M.C.J.; Krijnen, T.F.; van Harten, L.
2016-01-01
An open source implementation of the Fourier pseudospectral time-domain (PSTD) method for computing the propagation of sound is presented, which is geared towards applications in the built environment. Being a wave-based method, PSTD captures phenomena like diffraction, but maintains efficiency in
Directory of Open Access Journals (Sweden)
T. Chourushi
2017-01-01
Full Text Available Viscoelastic fluids due to their non-linear nature play an important role in process and polymer industries. These non-linear characteristics of fluid, influence final outcome of the product. Such processes though look simple are numerically challenging to study, due to the loss of numerical stability. Over the years, various methodologies have been developed to overcome this numerical limitation. In spite of this, numerical solutions are considered distant from accuracy, as first-order upwind-differencing scheme (UDS is often employed for improving the stability of algorithm. To elude this effect, some works been reported in the past, where high-resolution-schemes (HRS were employed and Deborah number was varied. However, these works are limited to creeping flows and do not detail any information on the numerical stability of HRS. Hence, this article presents the numerical study of high shearing contraction flows, where stability of HRS are addressed in reference to fluid elasticity. Results suggest that all HRS show some order of undue oscillations in flow variable profiles, measured along vertical lines placed near contraction region in the upstream section of domain, at varied elasticity number E≈5. Furthermore, by E, a clear relationship between numerical stability of HRS and E was obtained, which states that the order of undue oscillations in flow variable profiles is directly proportional to E.
Energy Technology Data Exchange (ETDEWEB)
López, R., E-mail: ralope1@ing.uc3m.es; Lecuona, A., E-mail: lecuona@ing.uc3m.es; Nogueira, J., E-mail: goriba@ing.uc3m.es; Vereda, C., E-mail: cvereda@ing.uc3m.es
2017-03-15
Highlights: • A two-phase flows numerical algorithm with high order temporal schemes is proposed. • Transient solutions route depends on the temporal high order scheme employed. • ESDIRK scheme for two-phase flows events exhibits high computational performance. • Computational implementation of the ESDIRK scheme can be done in a very easy manner. - Abstract: An extension for 1-D transient two-phase flows of the SIMPLE-ESDIRK method, initially developed for incompressible viscous flows by Ijaz is presented. This extension is motivated by the high temporal order of accuracy demanded to cope with fast phase change events. This methodology is suitable for boiling heat exchangers, solar thermal receivers, etc. The methodology of the solution consist in a finite volume staggered grid discretization of the governing equations in which the transient terms are treated with the explicit first stage singly diagonally implicit Runge-Kutta (ESDIRK) method. It is suitable for stiff differential equations, present in instant boiling or condensation processes. It is combined with the semi-implicit pressure linked equations algorithm (SIMPLE) for the calculation of the pressure field. The case of study consists of the numerical reproduction of the Bartolomei upward boiling pipe flow experiment. The steady-state validation of the numerical algorithm is made against these experimental results and well known numerical results for that experiment. In addition, a detailed study reveals the benefits over the first order Euler Backward method when applying 3rd and 4th order schemes, making emphasis in the behaviour when the system is subjected to periodic square wave wall heat function disturbances, concluding that the use of the ESDIRK method in two-phase calculations presents remarkable accuracy and computational advantages.
Non-hydrostatic semi-elastic hybrid-coordinate SISL extension of HIRLAM. Part I: numerical scheme
Rõõm, Rein; Männik, Aarne; Luhamaa, Andres
2007-01-01
Two-time-level, semi-implicit, semi-Lagrangian (SISL) scheme is applied to the non-hydrostatic pressure coordinate equations, constituting a modified Miller–Pearce–White model, in hybrid-coordinate framework. Neutral background is subtracted in the initial continuous dynamics, yielding modified equations for geopotential, temperature and logarithmic surface pressure fluctuation. Implicit Lagrangian marching formulae for single time-step are derived. A disclosure scheme is presented, which res...
Zhu, Jun; Shu, Chi-Wang
2017-11-01
A new class of high order weighted essentially non-oscillatory (WENO) schemes (Zhu and Qiu, 2016, [50]) is applied to solve Euler equations with steady state solutions. It is known that the classical WENO schemes (Jiang and Shu, 1996, [23]) might suffer from slight post-shock oscillations. Even though such post-shock oscillations are small enough in magnitude and do not visually affect the essentially non-oscillatory property, they are truly responsible for the residue to hang at a truncation error level instead of converging to machine zero. With the application of this new class of WENO schemes, such slight post-shock oscillations are essentially removed and the residue can settle down to machine zero in steady state simulations. This new class of WENO schemes uses a convex combination of a quartic polynomial with two linear polynomials on unequal size spatial stencils in one dimension and is extended to two dimensions in a dimension-by-dimension fashion. By doing so, such WENO schemes use the same information as the classical WENO schemes in Jiang and Shu (1996) [23] and yield the same formal order of accuracy in smooth regions, yet they could converge to steady state solutions with very tiny residue close to machine zero for our extensive list of test problems including shocks, contact discontinuities, rarefaction waves or their interactions, and with these complex waves passing through the boundaries of the computational domain.
Zou, Peng
2017-05-10
Staggering grid is a very effective way to reduce the Nyquist errors and to suppress the non-causal ringing artefacts in the pseudo-spectral solution of first-order elastic wave equations. However, the straightforward use of a staggered-grid pseudo-spectral method is problematic for simulating wave propagation when the anisotropy level is greater than orthorhombic or when the anisotropic symmetries are not aligned with the computational grids. Inspired by the idea of rotated staggered-grid finite-difference method, we propose a modified pseudo-spectral method for wave propagation in arbitrary anisotropic media. Compared with an existing remedy of staggered-grid pseudo-spectral method based on stiffness matrix decomposition and a possible alternative using the Lebedev grids, the rotated staggered-grid-based pseudo-spectral method possesses the best balance between the mitigation of artefacts and efficiency. A 2D example on a transversely isotropic model with tilted symmetry axis verifies its effectiveness to suppress the ringing artefacts. Two 3D examples of increasing anisotropy levels demonstrate that the rotated staggered-grid-based pseudo-spectral method can successfully simulate complex wavefields in such anisotropic formations.
Benchmarking and scaling studies of pseudospectral code Tarang for turbulence simulations
VERMA, MAHENDRA K
2013-09-21
Tarang is a general-purpose pseudospectral parallel code for simulating flows involving fluids, magnetohydrodynamics, and Rayleigh–Bénard convection in turbulence and instability regimes. In this paper we present code validation and benchmarking results of Tarang. We performed our simulations on 10243, 20483, and 40963 grids using the HPC system of IIT Kanpur and Shaheen of KAUST. We observe good ‘weak’ and ‘strong’ scaling for Tarang on these systems.
Benchmarking and scaling studies of pseudospectral code Tarang for turbulence simulations
VERMA, MAHENDRA K; CHATTERJEE, ANANDO; REDDY, K SANDEEP; YADAV, RAKESH K; PAUL, SUPRIYO; CHANDRA, MANI; Samtaney, Ravi
2013-01-01
Tarang is a general-purpose pseudospectral parallel code for simulating flows involving fluids, magnetohydrodynamics, and Rayleigh–Bénard convection in turbulence and instability regimes. In this paper we present code validation and benchmarking results of Tarang. We performed our simulations on 10243, 20483, and 40963 grids using the HPC system of IIT Kanpur and Shaheen of KAUST. We observe good ‘weak’ and ‘strong’ scaling for Tarang on these systems.
International Nuclear Information System (INIS)
Xing, Changhu; Folsom, Charles; Jensen, Colby; Ban, Heng; Marshall, Douglas W
2014-01-01
As an important factor affecting the accuracy of thermal conductivity measurement, systematic (bias) error in the guarded comparative axial heat flow (cut-bar) method was mostly neglected by previous researches. This bias is primarily due to the thermal conductivity mismatch between sample and meter bars (reference), which is common for a sample of unknown thermal conductivity. A correction scheme, based on finite element simulation of the measurement system, was proposed to reduce the magnitude of the overall measurement uncertainty. This scheme was experimentally validated by applying corrections on four types of sample measurements in which the specimen thermal conductivity is much smaller, slightly smaller, equal and much larger than that of the meter bar. As an alternative to the optimum guarding technique proposed before, the correction scheme can be used to minimize the uncertainty contribution from the measurement system with non-optimal guarding conditions. It is especially necessary for large thermal conductivity mismatches between sample and meter bars. (paper)
International Nuclear Information System (INIS)
Boukadida, T.
1988-01-01
The compatibility between accuracy and stability of the quasilinear equations is studied. Three stuations are analyzed: the discontinuous P-1 approximation of the first order quasilinear equation, the two dimensional version of the Lax-Friedrichs scheme and the coupling of modes in a plasma. For the one dimensional case, the proposed scheme matches the available data. In the two dimensional case, tests to show the explosion condition are performed. This investigation can be applied in laser-matter interactions, nonlinear optics and in many fields of physics [fr
Ersoy, Mehmet; Lakkis, Omar; Townsend, Philip
2016-04-01
The flow of water in rivers and oceans can, under general assumptions, be efficiently modelled using Saint-Venant's shallow water system of equations (SWE). SWE is a hyperbolic system of conservation laws (HSCL) which can be derived from a starting point of incompressible Navier-Stokes. A common difficulty in the numerical simulation of HSCLs is the conservation of physical entropy. Work by Audusse, Bristeau, Perthame (2000) and Perthame, Simeoni (2001), proposed numerical SWE solvers known as kinetic schemes (KSs), which can be shown to have desirable entropy-consistent properties, and are thus called well-balanced schemes. A KS is derived from kinetic equations that can be integrated into the SWE. In flood risk assessment models the SWE must be coupled with other equations describing interacting meteorological and hydrogeological phenomena such as rain and groundwater flows. The SWE must therefore be appropriately modified to accommodate source and sink terms, so kinetic schemes are no longer valid. While modifications of SWE in this direction have been recently proposed, e.g., Delestre (2010), we depart from the extant literature by proposing a novel model that is "entropy-consistent" and naturally extends the SWE by respecting its kinetic formulation connections. This allows us to derive a system of partial differential equations modelling flow of a one-dimensional river with both a precipitation term and a groundwater flow model to account for potential infiltration and recharge. We exhibit numerical simulations of the corresponding kinetic schemes. These simulations can be applied to both real world flood prediction and the tackling of wider issues on how climate and societal change are affecting flood risk.
Directory of Open Access Journals (Sweden)
M. Boumaza
2015-07-01
Full Text Available Transient convection heat transfer is of fundamental interest in many industrial and environmental situations, as well as in electronic devices and security of energy systems. Transient fluid flow problems are among the more difficult to analyze and yet are very often encountered in modern day technology. The main objective of this research project is to carry out a theoretical and numerical analysis of transient convective heat transfer in vertical flows, when the thermal field is due to different kinds of variation, in time and space of some boundary conditions, such as wall temperature or wall heat flux. This is achieved by the development of a mathematical model and its resolution by suitable numerical methods, as well as performing various sensitivity analyses. These objectives are achieved through a theoretical investigation of the effects of wall and fluid axial conduction, physical properties and heat capacity of the pipe wall on the transient downward mixed convection in a circular duct experiencing a sudden change in the applied heat flux on the outside surface of a central zone.
Direct Numerical Simulation of Turbulent Flow Over Complex Bathymetry
Yue, L.; Hsu, T. J.
2017-12-01
Direct numerical simulation (DNS) is regarded as a powerful tool in the investigation of turbulent flow featured with a wide range of time and spatial scales. With the application of coordinate transformation in a pseudo-spectral scheme, a parallelized numerical modeling system was created aiming at simulating flow over complex bathymetry with high numerical accuracy and efficiency. The transformed governing equations were integrated in time using a third-order low-storage Runge-Kutta method. For spatial discretization, the discrete Fourier expansion was adopted in the streamwise and spanwise direction, enforcing the periodic boundary condition in both directions. The Chebyshev expansion on Chebyshev-Gauss-Lobatto points was used in the wall-normal direction, assuming there is no-slip on top and bottom walls. The diffusion terms were discretized with a Crank-Nicolson scheme, while the advection terms dealiased with the 2/3 rule were discretized with an Adams-Bashforth scheme. In the prediction step, the velocity was calculated in physical domain by solving the resulting linear equation directly. However, the extra terms introduced by coordinate transformation impose a strict limitation to time step and an iteration method was applied to overcome this restriction in the correction step for pressure by solving the Helmholtz equation. The numerical solver is written in object-oriented C++ programing language utilizing Armadillo linear algebra library for matrix computation. Several benchmarking cases in laminar and turbulent flow were carried out to verify/validate the numerical model and very good agreements are achieved. Ongoing work focuses on implementing sediment transport capability for multiple sediment classes and parameterizations for flocculation processes.
A soil-canopy scheme for use in a numerical model of the atmosphere: 1D stand-alone model
Kowalczyk, E. A.; Garratt, J. R.; Krummel, P. B.
We provide a detailed description of a soil-canopy scheme for use in the CSIRO general circulation models (GCMs) (CSIRO-4 and CSIRO-9), in the form of a one-dimensional stand-alone model. In addition, the paper documents the model's ability to simulate realistic surface fluxes by comparison with mesoscale model simulations (involving more sophisticated soil and boundary-layer treatments) and observations, and the diurnal range in surface quantities, including extreme maximum surface temperatures. The sensitivity of the model to values of the surface resistance is also quantified. The model represents phase 1 of a longer-term plan to improve the atmospheric boundary layer (ABL) and surface schemes in the CSIRO GCMs.
STRANGE ATTRACTORS ON PSEUDOSPECTRAL SOLUTIONS FOR DISSIPATIVE ZAKHAROV EQUATIONS
Institute of Scientific and Technical Information of China (English)
马书清; 常谦顺
2004-01-01
In this paper, the pseudospcctral method to solve the dissipative Zakharov equations is used. Its convergence is proved by priori estinates. The existence of the global attractors and the estimates of dimension are presented. A class of steady state solutions is also disscussed. The numerical results show that if the steady state solutions satisfy some special conditions, they become unstable and limit cycles and strange attractors will occur for very small perturbations.The largest Lyapunov exponent and analysis of the lincarized system are applied to explain these phenomena.
International Nuclear Information System (INIS)
Zhou, Lei; Luo, Kai Hong; Qin, Wenjin; Jia, Ming; Shuai, Shi Jin
2015-01-01
Highlights: • MUSCL differencing scheme in LES method is used to investigate liquid fuel spray and combustion process. • Using MUSCL can accurately capture the gas phase velocity distribution and liquid spray features. • Detailed chemistry mechanism with a parallel algorithm was used to calculate combustion process. • Increasing oxygen concentration can decrease ignition delay time and flame LOL. - Abstract: The accuracy of large eddy simulation (LES) for turbulent combustion depends on suitably implemented numerical schemes and chemical mechanisms. In the original KIVA3V code, finite difference schemes such as QSOU (Quasi-second-order upwind) and PDC (Partial Donor Cell Differencing) cannot achieve good results or even computational stability when using coarse grids due to large numerical diffusion. In this paper, the MUSCL (Monotone Upstream-centered Schemes for Conservation Laws) differencing scheme is implemented into KIVA3V-LES code to calculate the convective term. In the meantime, Lu’s n-heptane reduced 58-species mechanisms (Lu, 2011) is used to calculate chemistry with a parallel algorithm. Finally, improved models for spray injection are also employed. With these improvements, the KIVA3V-LES code is renamed as KIVALES-CP (Chemistry with Parallel algorithm) in this study. The resulting code was used to study the gas–liquid two phase jet and combustion under various diesel engine-like conditions in a constant volume vessel. The results show that using the MUSCL scheme can accurately capture the spray shape and fuel vapor penetration using even a coarse grid, in comparison with the Sandia experimental data. Similarly good results are obtained for three single-component fuels, i-Octane (C8H18), n-Dodecanese (C12H26), and n-Hexadecane (C16H34) with very different physical properties. Meanwhile the improved methodology is able to accurately predict ignition delay and flame lift-off length (LOL) under different oxygen concentrations from 10% to 21
Meneguz, Elena; Thomson, David; Witham, Claire; Kusmierczyk-Michulec, Jolanta
2015-04-01
NAME is a Lagrangian atmospheric dispersion model used by the Met Office to predict the dispersion of both natural and man-made contaminants in the atmosphere, e.g. volcanic ash, radioactive particles and chemical species. Atmospheric convection is responsible for transport and mixing of air resulting in a large exchange of heat and energy above the boundary layer. Although convection can transport material through the whole troposphere, convective clouds have a small horizontal length scale (of the order of few kilometres). Therefore, for large-scale transport the horizontal scale on which the convection exists is below the global NWP resolution used as input to NAME and convection must be parametrized. Prior to the work presented here, the enhanced vertical mixing generated by non-resolved convection was reproduced by randomly redistributing Lagrangian particles between the cloud base and cloud top with probability equal to 1/25th of the NWP predicted convective cloud fraction. Such a scheme is essentially diffusive and it does not make optimal use of all the information provided by the driving meteorological model. To make up for these shortcomings and make the parametrization more physically based, the convection scheme has been recently revised. The resulting version, presented in this paper, is now based on the balance equation between upward, entrainment and detrainment fluxes. In particular, upward mass fluxes are calculated with empirical formulas derived from Cloud Resolving Models and using the NWP convective precipitation diagnostic as closure. The fluxes are used to estimate how many particles entrain, move upward and detrain. Lastly, the scheme is completed by applying a compensating subsidence flux. The performance of the updated convection scheme is benchmarked against available observational data of passive tracers. In particular, radioxenon is a noble gas that can undergo significant long range transport: this study makes use of observations of
International Nuclear Information System (INIS)
Alonso-Vargas, G.
1991-01-01
A computer program has been developed which uses a technique of synthetic acceleration by diffusion by analytical schemes. Both in the diffusion equation as in that of transport, analytical schemes were used which allowed a substantial time saving in the number of iterations required by source iteration method to obtain the K e ff. The program developed ASD (Synthetic Diffusion Acceleration) by diffusion was written in FORTRAN and can be executed on a personal computer with a hard disc and mathematical O-processor. The program is unlimited as to the number of regions and energy groups. The results obtained by the ASD program for K e ff is nearly completely concordant with those of obtained utilizing the ANISN-PC code for different analytical type problems in this work. The ASD program allowed obtention of an approximate solution of the neutron transport equation with a relatively low number of internal reiterations with good precision. One of its applications would be in the direct determinations of axial distribution neutronic flow in a fuel assembly as well as in the obtention of the effective multiplication factor. (Author)
A hybrid radial basis function-pseudospectral method for thermal convection in a 3-D spherical shell
Wright, G. B.
2010-07-01
A novel hybrid spectral method that combines radial basis function (RBF) and Chebyshev pseudospectral methods in a "2 + 1" approach is presented for numerically simulating thermal convection in a 3-D spherical shell. This is the first study to apply RBFs to a full 3-D physical model in spherical geometry. In addition to being spectrally accurate, RBFs are not defined in terms of any surface-based coordinate system such as spherical coordinates. As a result, when used in the lateral directions, as in this study, they completely circumvent the pole issue with the further advantage that nodes can be "scattered" over the surface of a sphere. In the radial direction, Chebyshev polynomials are used, which are also spectrally accurate and provide the necessary clustering near the boundaries to resolve boundary layers. Applications of this new hybrid methodology are given to the problem of convection in the Earth\\'s mantle, which is modeled by a Boussinesq fluid at infinite Prandtl number. To see whether this numerical technique warrants further investigation, the study limits itself to an isoviscous mantle. Benchmark comparisons are presented with other currently used mantle convection codes for Rayleigh number (Ra) 7 × 10^{3} and 10^{5}. Results from a Ra = 10^{6} simulation are also given. The algorithmic simplicity of the code (mostly due to RBFs) allows it to be written in less than 400 lines of MATLAB and run on a single workstation. We find that our method is very competitive with those currently used in the literature. Copyright 2010 by the American Geophysical Union.
J.K. Hoogland (Jiri); C.D.D. Neumann
2000-01-01
textabstractIn this article we present a new approach to the numerical valuation of derivative securities. The method is based on our previous work where we formulated the theory of pricing in terms of tradables. The basic idea is to fit a finite difference scheme to exact solutions of the pricing
Numerical bifurcation analysis of a class of nonlinear renewal equations
Breda, Dimitri; Diekmann, Odo; Liessi, Davide; Scarabel, Francesca
2016-01-01
We show, by way of an example, that numerical bifurcation tools for ODE yield reliable bifurcation diagrams when applied to the pseudospectral approximation of a one-parameter family of nonlinear renewal equations. The example resembles logistic-and Ricker-type population equations and exhibits
International Nuclear Information System (INIS)
Herbst, Christian; Herbst, Jirada; Leppert, Joerg; Ohlenschlaeger, Oliver; Goerlach, Matthias; Ramachandran, Ramadurai
2009-01-01
An approach for the efficient implementation of RN n ν symmetry-based pulse schemes that are often employed for recoupling and decoupling of nuclear spin interactions in biological solid state NMR investigations is demonstrated at high magic-angle spinning frequencies. RF pulse sequences belonging to the RN n ν symmetry involve the repeated application of the pulse sandwich {R φ R -φ }, corresponding to a propagator U RF = exp(-i4φI z ), where φ = πν/N and R is typically a pulse that rotates the nuclear spins through 180 o about the x-axis. In this study, broadband, phase-modulated 180 o pulses of constant amplitude were employed as the initial 'R' element and the phase-modulation profile of this 'R' element was numerically optimised for generating RN n ν symmetry-based pulse schemes with satisfactory magnetisation transfer characteristics. At representative MAS frequencies, RF pulse sequences were implemented for achieving 13 C- 13 C double-quantum dipolar recoupling and through bond scalar coupling mediated chemical shift correlation and evaluated via numerical simulations and experimental measurements. The results from these investigations are presented here
Directory of Open Access Journals (Sweden)
Buscaglia Gustavo C.
2001-01-01
Full Text Available A new numerical approach is proposed to alleviate the computational cost of solving non-linear non-uniform homogenized problems. The article details the application of the proposed approach to lubrication problems with roughness effects. The method is based on a two-parameter Taylor expansion of the implicit dependence of the homogenized coefficients on the average pressure and on the local value of the air gap thickness. A fourth-order Taylor expansion provides an approximation that is accurate enough to be used in the global problem solution instead of the exact dependence, without introducing significant errors. In this way, when solving the global problem, the solution of local problems is simply replaced by the evaluation of a polynomial. Moreover, the method leads naturally to Newton-Raphson nonlinear iterations, that further reduce the cost. The overall efficiency of the numerical methodology makes it feasible to apply rigorous homogenization techniques in the analysis of compressible fluid contact considering roughness effects. Previous work makes use of an heuristic averaging technique. Numerical comparison proves that homogenization-based methods are superior when the roughness is strongly anisotropic and not aligned with the flow direction.
Mihailovic, Dragutin T.; Lazic, Jelena; Leśny, Jacek; Olejnik, Janusz; Lalic, Branislava; Kapor, Darko; Cirisan, Ana
2010-05-01
Numerical simulations and tests with the recently redesigned land-air parameterization scheme (LAPS) are presented. In all experiments, supported either by one-point micrometeorological, 1D or 3D simulations, the attention has been directed to: (1) comparison of simulation outputs, expressing the energy transfer over and through heterogeneous and non-heterogeneous surfaces, versus observations and (2) analysis of uncertainties occurring in the solution of the energy balance equation at the land-air interface. To check the proposed method for aggregation of albedo, "propagating hole" sensitivity tests with LAPS over a sandstone rock grid cell have been performed with the forcing meteorological data for July 17, 1999 in Baxter site, Philadelphia (USA). Micrometeorological and biophysical measurements from the surface experiments conducted over crops and apple orchard in Serbia, Poland, Austria and France were used to test the operation of LAPS in calculating surface fluxes and canopy environment temperatures within and above plant covers of different densities. In addition, sensitivity tests with single canopy covers over the Central Europe region and comparison against the observations taken from SYNOP data using 3D simulations were made. Validation of LAPS performances over a solid surface has been done by comparison of 2 m air temperature observations against 5-day simulations over the Sahara Desert rocky ground using 3D model. To examine how realistically the LAPS simulates surface processes over a heterogeneous surface, we compared the air temperature measured at 2 m and that predicted by the 1D model with the LAPS as the surface scheme. Finally, the scheme behaviour over urban surface was tested by runs over different parts of a hypothetical urban area. The corresponding 1D simulations were carried out with an imposed meteorological dataset collected during HAPEX-MOBILHY experiment at Caumont (France). The quantities predicted by the LAPS compare well with the
International Nuclear Information System (INIS)
Naymeh, L.
2013-01-01
The method of characteristics is a flexible and efficient method solving the transport equation. It has been largely used in two dimension calculations because it enables to study complex geometries and it has a good time/precision ratio. However, despite a great improvement in storage capacities and computing power, a direct three dimension calculation is still unreachable. In the following work, we introduce and analyze several modifications of the method of characteristics (MOC) in order to reduce the memory usage as well as calculation burden. This document aims at studying a higher order spatial approximation for the flux. It steps away from the classical method (constant MOC) by introducing an increase of details of the representation of the flux, which may enable to reduce the size of the grid while keeping a good precision. Numerical results tested on benchmarks show an improvement of time/precision ratio. Regarding the memory storage, the number of trajectories has an influence on the amount of data to be stored. Hence, we study a tracking method based on local tracks defined for all sub-domains having the same geometry. Redundancies happening in a reactor core suggest an important reduction of required memory. Two tracking methods have been studied, the first one being a non-uniform tracking method including sub-domain discontinuities and the other being a method based on periodic and continuous trajectories for a sub-domain to another. (author) [fr
Semi-Numerical Studies of the Three-Meter Spherical Couette Experiment Utilizing Data Assimilation
Burnett, Sarah; Rojas, Ruben; Perevalov, Artur; Lathrop, Daniel; Ide, Kayo; Schaeffer, Nathanael
2017-11-01
The model of the Earth's magnetic field has been investigated in recent years through experiments and numerical models. At the University of Maryland, experimental studies are implemented in a three-meter spherical Couette device filled with liquid sodium. The inner and outer spheres of this apparatus mimic the planet's inner core and core-mantle boundary, respectively. These experiments incorporate high velocity flows with Reynolds numbers 108 . In spherical Couette geometry, the numerical scheme applied to this work features finite difference methods in the radial direction and pseudospectral spherical harmonic transforms elsewhere. Adding to the numerical model, data assimilation integrates the experimental outer-layer magnetic field measurements. This semi-numerical model can then be compared to the experimental results as well as forecasting magnetic field changes. Data assimilation makes it possible to get estimates of internal motions of the three-meter experiment that would otherwise be intrusive or impossible to obtain in experiments or too computationally expensive with a purely numerical code. If we can provide accurate models of the three-meter device, it is possible to attempt to model the geomagnetic field. We gratefully acknowledge the support of NSF Grant No. EAR1417148 & DGE1322106.
Semi-Numerical Studies of the Three-Meter Spherical Couette Experiment Utilizing Data Assimilation
Burnett, S. C.; Rojas, R.; Perevalov, A.; Lathrop, D. P.
2017-12-01
The model of the Earth's magnetic field has been investigated in recent years through experiments and numerical models. At the University of Maryland, experimental studies are implemented in a three-meter spherical Couette device filled with liquid sodium. The inner and outer spheres of this apparatus mimic the planet's inner core and core-mantle boundary, respectively. These experiments incorporate high velocity flows with Reynolds numbers 108. In spherical Couette geometry, the numerical scheme applied to this work features finite difference methods in the radial direction and pseudospectral spherical harmonic transforms elsewhere [Schaeffer, N. G3 (2013)]. Adding to the numerical model, data assimilation integrates the experimental outer-layer magnetic field measurements. This semi-numerical model can then be compared to the experimental results as well as forecasting magnetic field changes. Data assimilation makes it possible to get estimates of internal motions of the three-meter experiment that would otherwise be intrusive or impossible to obtain in experiments or too computationally expensive with a purely numerical code. If we can provide accurate models of the three-meter device, it is possible to attempt to model the geomagnetic field. We gratefully acknowledge the support of NSF Grant No. EAR1417148 & DGE1322106.
International Nuclear Information System (INIS)
Shin, J. K.; Choi, Y. D.
1992-01-01
QUICKER scheme has several attractive properties. However, under highly convective conditions, it produces overshoots and possibly some oscillations on each side of steps in the dependent variable when the flow is convected at an angle oblique to the grid line. Fortunately, it is possible to modify the QUICKER scheme using non-linear and linear functional relationship. Details of the development of polynomial upwinding scheme are given in this paper, where it is seen that this non-linear scheme has also third order accuracy. This polynomial upwinding scheme is used as the basis for the SHARPER and SMARTER schemes. Another revised scheme was developed by partial modification of QUICKER scheme using CDS and UPWIND schemes (QUICKUP). These revised schemes are tested at the well known bench mark flows, Two-Dimensional Pure Convection Flows in Oblique-Step, Lid Driven Cavity Flows and Buoyancy Driven Cavity Flows. For remain absolutely monotonic without overshoot and oscillation. QUICKUP scheme is more accurate than any other scheme in their relative accuracy. In high Reynolds number Lid Driven Catity Flow, SMARTER and SHARPER schemes retain lower computational cost than QUICKER and QUICKUP schemes, but computed velocity values in the revised schemes produced less predicted values than QUICKER scheme which is strongly effected by overshoot and undershoot values. Also, in Buoyancy Driven Cavity Flow, SMARTER, SHARPER and QUICKUP schemes give acceptable results. (Author)
International Nuclear Information System (INIS)
Herbst, Christian; Herbst, Jirada; Kirschstein, Anika; Leppert, Joerg; Ohlenschlaeger, Oliver; Goerlach, Matthias; Ramachandran, Ramadurai
2009-01-01
The CN n ν class of RF pulse schemes, commonly employed for recoupling and decoupling of nuclear spin interactions in magic angle spinning solid state NMR studies of biological systems, involves the application of a basic 'C' element corresponding to an RF cycle with unity propagator. In this study, the design of CN n ν symmetry-based RF pulse sequences for achieving 13 C- 13 C double-quantum dipolar recoupling and through bond scalar coupling mediated 13 C- 13 C chemical shift correlation has been examined at high MAS frequencies employing broadband, constant-amplitude, phase-modulated basic 'C' elements. The basic elements were implemented as a sandwich of a small number of short pulses of equal duration with each pulse characterised by an RF phase value. The phase-modulation profile of the 'C' element was optimised numerically so as to generate efficient RF pulse sequences. The performances of the sequences were evaluated via numerical simulations and experimental measurements and are presented here
Directory of Open Access Journals (Sweden)
Humin Lei
2017-01-01
Full Text Available An adaptive mesh iteration method based on Hermite-Pseudospectral is described for trajectory optimization. The method uses the Legendre-Gauss-Lobatto points as interpolation points; then the state equations are approximated by Hermite interpolating polynomials. The method allows for changes in both number of mesh points and the number of mesh intervals and produces significantly smaller mesh sizes with a higher accuracy tolerance solution. The derived relative error estimate is then used to trade the number of mesh points with the number of mesh intervals. The adaptive mesh iteration method is applied successfully to the examples of trajectory optimization of Maneuverable Reentry Research Vehicle, and the simulation experiment results show that the adaptive mesh iteration method has many advantages.
On the formulation and numerical simulation of distributed-order fractional optimal control problems
Zaky, M. A.; Machado, J. A. Tenreiro
2017-11-01
In a fractional optimal control problem, the integer order derivative is replaced by a fractional order derivative. The fractional derivative embeds implicitly the time delays in an optimal control process. The order of the fractional derivative can be distributed over the unit interval, to capture delays of distinct sources. The purpose of this paper is twofold. Firstly, we derive the generalized necessary conditions for optimal control problems with dynamics described by ordinary distributed-order fractional differential equations (DFDEs). Secondly, we propose an efficient numerical scheme for solving an unconstrained convex distributed optimal control problem governed by the DFDE. We convert the problem under consideration into an optimal control problem governed by a system of DFDEs, using the pseudo-spectral method and the Jacobi-Gauss-Lobatto (J-G-L) integration formula. Next, we present the numerical solutions for a class of optimal control problems of systems governed by DFDEs. The convergence of the proposed method is graphically analyzed showing that the proposed scheme is a good tool for the simulation of distributed control problems governed by DFDEs.
International Nuclear Information System (INIS)
Kim, Jong Tae; Ha, Kwang Soon; Kim, Hwan Yeol; Park, Rae Joon; Song, Jin Ho
2010-01-01
, unsteady turbulence models based on filtered or volume-averaged governing equations have been applied for the turbulent natural convection heat transfer. Tran et al. used large eddy simulation (LES) for the analysis of molten corium coolability. The numerical instability is related to a gravitational force of the molten corium. A staggered grid method on an orthogonal structured grid is used to prohibit a pressure oscillation in the numerical solution. But it is impractical to use the structured grid for a partially filled spherical pool, a cone-type pool or triangular pool. An unstructured grid is an alternative for the nonrectangular pools. In order to remove the checkerboard- like pressure oscillation on the unstructured grid, some special interpolation scheme is required. In order to evaluate in-vessel coolability of the molten corium for a pressurized water reactor (PWR), thermo-hydraulic analysis code LILAC had been developed. LILAC has a capability of multi-layered conjugate heat transfer with melt solidification. A solution domain can be 2-dimensional, axisymmetric, and 3-dimensional. LILAC is based on the unstructured mesh technology to discretized non-rectangular pool geometry. Because of too limited man-power to maintain the code, it becomes more and more difficult to implement new physical and numerical models in the code along with increased complication of the code. Recently, open source CFD code OpenFOAM has been released and applied to many academic and engineering areas. OpenFOAM is based on the very similar numerical schemes to the LILAC code. It has many physical and numerical models for multi-physics analysis. And because it is based on object-oriented programming, it is known that new models can be easily implemented and is very fast with a lower possibility of coding errors. This is a very attractive feature for the development, validation and maintenance of an analysis code. On the contrary to commercial CFD codes, it is possible to modify and add
International Nuclear Information System (INIS)
Angelini, O.
2010-01-01
The two-phase flow in porous media is a complex phenomenon and which relate to many industrial problems. EDF works on the feasibility and the safety of a storage in deep geologic layer of nuclear waste. In this domain the simulation of the two-phase flow in porous media is particularly important in at least three domains: first of all during the phase of ventilation of the galleries of the storage which could de-saturate the rock and so modify its properties, but also during the phase of re-saturation of the materials and finally during the arrival of the water on the metal parts contained in the storage which will then involve phenomena of corrosion and a hydrogen release. In this context, EDF wishes to obtain robust numerical methods without restrictive condition on the mesh. This work is dedicated at first to the development of the finite volume scheme SUSHI (Scheme Using Stabilization and Hybrid Interfaces) in the code of mechanics of EDF, Code Aster in order to simulate the two-phase flow in porous media. This scheme was developed in 2D and in 3D. At the same time a new formulation which allows to simulate in a uniform way the flows in saturated and unsaturated porous media for miscible and immiscible problems is proposed. Various studies simulating difficulties related to the problems of the storage of nuclear waste in deep geological layers were study. We can quote the study of a bi-material which advances the capillary re-balancing of a material by an other one possessing properties and initial very heterogeneous conditions in saturation. We will also quote the study of the injection of hydrogen in an porous media initially saturated in pure water which is proposed by the benchmark 'two-phase Flow' proposed by the GNR MOMAS. This study had for objective to bring to light the good treatment of the appearance of a phase in a saturated porous media and thus the relevance of our new formulation to study with a way unified a problem of saturated flow and a
International Nuclear Information System (INIS)
Piran, T.
1982-01-01
There are many recent developments in numerical relativity, but there remain important unsolved theoretical and practical problems. The author reviews existing numerical approaches to solution of the exact Einstein equations. A framework for classification and comparison of different numerical schemes is presented. Recent numerical codes are compared using this framework. The discussion focuses on new developments and on currently open questions, excluding a review of numerical techniques. (Auth.)
International Nuclear Information System (INIS)
Boyd, John P.
2003-01-01
If the dispersion in a nonlinear hyperbolic wave equation is weak in the sense that the frequency ω(k) of cos(kx) is bounded as k→∞, it is common that (i) travelling waves exist up to a limiting amplitude with wave-breaking for higher amplitudes, and (ii) the limiting wave has a corner, that is, a discontinuity in slope. Because 'corner' waves are not smooth, standard numerical methods converge poorly as the number of grid points is increased. However, the corner wave is important because, at least in some systems, it is the attractor for all large amplitude initial conditions. Here we devise a Legendre-pseudospectral method which is uncorrupted by the singularity. The symmetric (u(X)=u(-X)) wave can be computed on an interval spanning only half the spatial period; since u is smooth on this domain which does not include the corner except as an endpoint, all numerical difficulties are avoided. A key step is to derive an extra boundary condition which uniquely identifies the corner wave. With both the grid point values of u(x) and phase speed c as unknowns, the discretized equations, imposing three boundary conditions on a second order differential equation, are solved by a Newton-Raphson iteration. Although our method is illustrated by the so-called 'Whitham's equation', u t +uu x =∫Du dx ' where D is a very general linear operator, the ideas are widely applicable
Hornikx, Maarten; Dragna, Didier
2015-07-01
The Fourier pseudospectral time-domain method is an efficient wave-based method to model sound propagation in inhomogeneous media. One of the limitations of the method for atmospheric sound propagation purposes is its restriction to a Cartesian grid, confining it to staircase-like geometries. A transform from the physical coordinate system to the curvilinear coordinate system has been applied to solve more arbitrary geometries. For applicability of this method near the boundaries, the acoustic velocity variables are solved for their curvilinear components. The performance of the curvilinear Fourier pseudospectral method is investigated in free field and for outdoor sound propagation over an impedance strip for various types of shapes. Accuracy is shown to be related to the maximum grid stretching ratio and deformation of the boundary shape and computational efficiency is reduced relative to the smallest grid cell in the physical domain. The applicability of the curvilinear Fourier pseudospectral time-domain method is demonstrated by investigating the effect of sound propagation over a hill in a nocturnal boundary layer. With the proposed method, accurate and efficient results for sound propagation over smoothly varying ground surfaces with high impedances can be obtained.
PSpectRe: a pseudo-spectral code for (P)reheating
International Nuclear Information System (INIS)
Easther, Richard; Finkel, Hal; Roth, Nathaniel
2010-01-01
PSpectRe is a C++ program that uses Fourier-space pseudo-spectral methods to evolve interacting scalar fields in an expanding universe. PSpectRe is optimized for the analysis of parametric resonance in the post-inflationary universe and provides an alternative to finite differencing codes, such as Defrost and LatticeEasy. PSpectRe has both second- (Velocity-Verlet) and fourth-order (Runge-Kutta) time integrators. Given the same number of spatial points and/or momentum modes, PSpectRe is not significantly slower than finite differencing codes, despite the need for multiple Fourier transforms at each timestep, and exhibits excellent energy conservation. Further, by computing the post-resonance equation of state, we show that in some circumstances PSpectRe obtains reliable results while using substantially fewer points than a finite differencing code. PSpectRe is designed to be easily extended to other problems in early-universe cosmology, including the generation of gravitational waves during phase transitions and pre-inflationary bubble collisions. Specific applications of this code will be described in future work
openPSTD: The open source pseudospectral time-domain method for acoustic propagation
Hornikx, Maarten; Krijnen, Thomas; van Harten, Louis
2016-06-01
An open source implementation of the Fourier pseudospectral time-domain (PSTD) method for computing the propagation of sound is presented, which is geared towards applications in the built environment. Being a wave-based method, PSTD captures phenomena like diffraction, but maintains efficiency in processing time and memory usage as it allows to spatially sample close to the Nyquist criterion, thus keeping both the required spatial and temporal resolution coarse. In the implementation it has been opted to model the physical geometry as a composition of rectangular two-dimensional subdomains, hence initially restricting the implementation to orthogonal and two-dimensional situations. The strategy of using subdomains divides the problem domain into local subsets, which enables the simulation software to be built according to Object-Oriented Programming best practices and allows room for further computational parallelization. The software is built using the open source components, Blender, Numpy and Python, and has been published under an open source license itself as well. For accelerating the software, an option has been included to accelerate the calculations by a partial implementation of the code on the Graphical Processing Unit (GPU), which increases the throughput by up to fifteen times. The details of the implementation are reported, as well as the accuracy of the code.
Hybrid Fourier pseudospectral/discontinuous Galerkin time-domain method for wave propagation
Pagán Muñoz, Raúl; Hornikx, Maarten
2017-11-01
The Fourier Pseudospectral time-domain (Fourier PSTD) method was shown to be an efficient way of modelling acoustic propagation problems as described by the linearized Euler equations (LEE), but is limited to real-valued frequency independent boundary conditions and predominantly staircase-like boundary shapes. This paper presents a hybrid approach to solve the LEE, coupling Fourier PSTD with a nodal Discontinuous Galerkin (DG) method. DG exhibits almost no restrictions with respect to geometrical complexity or boundary conditions. The aim of this novel method is to allow the computation of complex geometries and to be a step towards the implementation of frequency dependent boundary conditions by using the benefits of DG at the boundaries, while keeping the efficient Fourier PSTD in the bulk of the domain. The hybridization approach is based on conformal meshes to avoid spatial interpolation of the DG solutions when transferring values from DG to Fourier PSTD, while the data transfer from Fourier PSTD to DG is done utilizing spectral interpolation of the Fourier PSTD solutions. The accuracy of the hybrid approach is presented for one- and two-dimensional acoustic problems and the main sources of error are investigated. It is concluded that the hybrid methodology does not introduce significant errors compared to the Fourier PSTD stand-alone solver. An example of a cylinder scattering problem is presented and accurate results have been obtained when using the proposed approach. Finally, no instabilities were found during long-time calculation using the current hybrid methodology on a two-dimensional domain.
Chourushi, T.
2017-01-01
Viscoelastic fluids due to their non-linear nature play an important role in process and polymer industries. These non-linear characteristics of fluid, influence final outcome of the product. Such processes though look simple are numerically challenging to study, due to the loss of numerical stability. Over the years, various methodologies have been developed to overcome this numerical limitation. In spite of this, numerical solutions are considered distant from accuracy, as first-order upwin...
A numerical study of adaptive space and time discretisations for Gross–Pitaevskii equations
Thalhammer, Mechthild; Abhau, Jochen
2012-01-01
As a basic principle, benefits of adaptive discretisations are an improved balance between required accuracy and efficiency as well as an enhancement of the reliability of numerical computations. In this work, the capacity of locally adaptive space and time discretisations for the numerical solution of low-dimensional nonlinear Schrödinger equations is investigated. The considered model equation is related to the time-dependent Gross–Pitaevskii equation arising in the description of Bose–Einstein condensates in dilute gases. The performance of the Fourier-pseudo spectral method constrained to uniform meshes versus the locally adaptive finite element method and of higher-order exponential operator splitting methods with variable time stepsizes is studied. Numerical experiments confirm that a local time stepsize control based on a posteriori local error estimators or embedded splitting pairs, respectively, is effective in different situations with an enhancement either in efficiency or reliability. As expected, adaptive time-splitting schemes combined with fast Fourier transform techniques are favourable regarding accuracy and efficiency when applied to Gross–Pitaevskii equations with a defocusing nonlinearity and a mildly varying regular solution. However, the numerical solution of nonlinear Schrödinger equations in the semi-classical regime becomes a demanding task. Due to the highly oscillatory and nonlinear nature of the problem, the spatial mesh size and the time increments need to be of the size of the decisive parameter 0Fourier pseudo-spectral and the finite element method. Nevertheless, for smaller parameter values locally adaptive time discretisations facilitate to determine the time stepsizes sufficiently small in order that the numerical approximation captures correctly the behaviour of the analytical solution. Further illustrations for Gross–Pitaevskii equations with a focusing nonlinearity or a sharp Gaussian as initial condition, respectively
Directory of Open Access Journals (Sweden)
N. V. Kantartzis
2012-10-01
Full Text Available A generalized conformal time-domain method with adjustable spectral accuracy is introduced in this paper for the consistent analysis of large-scale electromagnetic compatibility problems. The novel 3-D hybrid schemes blend a stencil-optimized finite-volume time-domain and a multimodal Fourier-Chebyshev pseudo-spectral time-domain algorithm that split the overall space into smaller and flexible areas. A key asset is that both techniques are updated independently and interconnected by robust boundary conditions. Also, combining a family of spatial derivative approximators with controllable precision in general curvilinear coordinates, the proposed method launches a conformal field flux formulation to derive electromagnetic quantities in regions with fine details. For advanced grid reliability at dissimilar media interfaces, dispersion-reduced adaptive operators, which assign the proper weights to each spatial increment, are developed. So, the resulting discretization yields highly rigorous and computationally affordable simulations, devoid of lattice errors. Numerical results, addressing detailed comparisons of various realistic applications with reference or measurement data verify our methodology and reveal its significant applicability.
International Nuclear Information System (INIS)
Silva, R.S.; Galeao, A.C.; Carmo, E.G.D. do
1989-07-01
In this paper a new finite element model is constructed combining an r- refinement scheme with the CCAU method. The new formulation gives better approximation for boundary and internal layers compared to the standard CCAU, without increasing computer codes. (author) [pt
Simulation of seismograms in a 2-D viscoelastic Earth by pseudospectral methods
Energy Technology Data Exchange (ETDEWEB)
Carcione, Jose M [Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), Trieste (Italy); Helle, Hans B [Norsk Hydro a.s., 0 and E Research Centre, Bergen (Norway); Seriani, Geza [Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), Trieste (Italy); Plasencia Linares, Milton P [Facultad de Ciencias Astronomicas y Geofisicas, Universidad Nacional de La Plata, La Plata (Argentina)
2005-04-15
Using an improved global pseudospectral modeling algorithm we synthesize seismograms generated by oceanic and continental earthquakes. Attention is given to attenuation, to explicit modeling of boundary conditions at the ocean-bottom interface, simulation of the Rayleigh window and interface-wave propagation. The algorithm is based on Fourier and Chebyshev differential operators and a domain-decomposition technique - one grid for the fluid and another grid for the solid. Wave propagation in the oceanic and continent crusts and mantle is modeled by using a viscoelastic stress-strain relation based on memory variables. The main physical phenomena associated with an ocean-crust system are modeled, including Scholte waves, leaking Rayleigh waves, dispersive modes, and the Rayleigh-window phenomenon due to a minimum in the reflection coefficient of the ocean bottom, which has not been simulated with direct methods. In particular, we model Rayleigh modes (mainly the M11 mode), and coupled Rayleigh-Scholte waves, for which the dispersion relation is solved in simple cases. Also, we model the effects of random. [Spanish] El algoritmo de modulacion seudoespectral es mejorado y aplicado a la simulacion de sismogramas generados por sismos oceanicos y continentales, como atencion a la atenuacion y a la modelacion explicita de condiciones a la frontera en el fondo oceanico y a la simulacion de la ventana de Rayleigh y la propagacion en interfases. El algoritmo se basa en los operadores diferenciales de Fourier y de Chebyshev con una tecnica de decomposicion de dominios, una malla para el fluido y otra para el solido. Para la propagacion se usa una relacion de esfuerzo-deformacion basada en variables de memoria. Entre los fenomenos modelados se incluyen las ondas de Scholte, las ondas evanescentes de Rayleigh y los modos dispersivos, asi como la ventana de Rayleigh, un minimo del coeficiente de reflexion en el fondo oceanico que nunca ha sido simulado con metodos directos. Hemos
Borisov, S. P.; Kudryavtsev, A. N.
2017-10-01
Linear and nonlinear stages of the instability of a plane detonation wave (DW) and the subsequent process of formation of cellular detonation structure are investigated. A simple model with one-step irreversible chemical reaction is used. The linear analysis is employed to predict the DW front structure at the early stages of its formation. An emerging eigenvalue problem is solved with a global method using a Chebyshev pseudospectral method and the LAPACK software library. A local iterative shooting procedure is used for eigenvalue refinement. Numerical simulations of a propagation of a DW in plane and rectangular channels are performed with a shock capturing WENO scheme of 5th order. A special method of a computational domain shift is implemented in order to maintain the DW in the domain. It is shown that the linear analysis gives certain predictions about the DW structure that are in agreement with the numerical simulations of early stages of DW propagation. However, at later stages, a merger of detonation cells occurs so that their number is approximately halved. Computations of DW propagation in a square channel reveal two different types of spatial structure of the DW front, "rectangular" and "diagonal" types. A spontaneous transition from the rectangular to diagonal type of structure is observed during propagation of the DW.
International Nuclear Information System (INIS)
Kearfott, K.J.; Han, S.; Wagner, E.C.; Samei, E.; Wang, C.-K.C.
2000-01-01
A new method is described to determine the depth-dose distribution in low-LET radiation fields using a thick thermoluminescent dosimeter (TLD) with a pulsed laser-heating scheme to obtain TL glow output. The computational simulation entails heat conduction and glow curve production processes. An iterative algorithm is used to obtain the dose distribution in the detector. The simulation results indicate that the method can predict the shallow and deep dose in various radiation fields with relative errors less than 20%
International Nuclear Information System (INIS)
Gerasimov, A.S.
1975-01-01
A numerical diagram is suggested of minimizing a period of xenon transient process in the reactor without any limitation of xenon-135 concentration. The problem is solved with a computer in a point model. Pontryagin's maximum principle is used so as to check optimization of the transient process
Scaling of a Fast Fourier Transform and a pseudo-spectral fluid solver up to 196608 cores
Chatterjee, Anando G.
2017-11-04
In this paper we present scaling results of a FFT library, FFTK, and a pseudospectral code, Tarang, on grid resolutions up to 81923 grid using 65536 cores of Blue Gene/P and 196608 cores of Cray XC40 supercomputers. We observe that communication dominates computation, more so on the Cray XC40. The computation time scales as Tcomp∼p−1, and the communication time as Tcomm∼n−γ2 with γ2 ranging from 0.7 to 0.9 for Blue Gene/P, and from 0.43 to 0.73 for Cray XC40. FFTK, and the fluid and convection solvers of Tarang exhibit weak as well as strong scaling nearly up to 196608 cores of Cray XC40. We perform a comparative study of the performance on the Blue Gene/P and Cray XC40 clusters.
Scaling of a Fast Fourier Transform and a pseudo-spectral fluid solver up to 196608 cores
Chatterjee, Anando G.; Verma, Mahendra K.; Kumar, Abhishek; Samtaney, Ravi; Hadri, Bilel; Khurram, Rooh Ul Amin
2017-01-01
In this paper we present scaling results of a FFT library, FFTK, and a pseudospectral code, Tarang, on grid resolutions up to 81923 grid using 65536 cores of Blue Gene/P and 196608 cores of Cray XC40 supercomputers. We observe that communication dominates computation, more so on the Cray XC40. The computation time scales as Tcomp∼p−1, and the communication time as Tcomm∼n−γ2 with γ2 ranging from 0.7 to 0.9 for Blue Gene/P, and from 0.43 to 0.73 for Cray XC40. FFTK, and the fluid and convection solvers of Tarang exhibit weak as well as strong scaling nearly up to 196608 cores of Cray XC40. We perform a comparative study of the performance on the Blue Gene/P and Cray XC40 clusters.
Energy Technology Data Exchange (ETDEWEB)
Gomez T, A.M.; Valle G, E. del [IPN-ESFM, 07738 Mexico D.F. (Mexico); Delfin L, A.; Alonso V, G. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)] e-mail: armagotorres@aol.com
2003-07-01
In this work a finite differences technique centered in mesh based on a cubic reduced nodal scheme type finite element to solve the equations of the kinetics 1 D that include the equations corresponding to the concentrations of precursors of delayed neutrons is described. The technique of finite elements used is that of Galerkin where so much the neutron flux as the concentrations of precursors its are spatially approached by means of a three grade polynomial. The matrices of rigidity and of mass that arise during this discretization process are numerically evaluated using the open quadrature non standard of Newton-Cotes and that of Radau respectively. The purpose of the application of these quadratures is the one of to eliminate in the global matrices the couplings among the values of the flow in points of the discretization with the consequent advantages as for the reduction of the order of the matrix associated to the discreet problem that is to solve. As for the time dependent part the classical integration scheme known as {theta} scheme is applied. After carrying out the one reordering of unknown and equations it arrives to a reduced system that it can be solved but quickly. With the McKin compute program developed its were solved three benchmark problems and those results are shown for the relative powers. (Author)
Amezcua, Javier
This dissertation deals with aspects of sequential data assimilation (in particular ensemble Kalman filtering) and numerical weather forecasting. In the first part, the recently formulated Ensemble Kalman-Bucy (EnKBF) filter is revisited. It is shown that the previously used numerical integration scheme fails when the magnitude of the background error covariance grows beyond that of the observational error covariance in the forecast window. Therefore, we present a suitable integration scheme that handles the stiffening of the differential equations involved and doesn't represent further computational expense. Moreover, a transform-based alternative to the EnKBF is developed: under this scheme, the operations are performed in the ensemble space instead of in the state space. Advantages of this formulation are explained. For the first time, the EnKBF is implemented in an atmospheric model. The second part of this work deals with ensemble clustering, a phenomenon that arises when performing data assimilation using of deterministic ensemble square root filters in highly nonlinear forecast models. Namely, an M-member ensemble detaches into an outlier and a cluster of M-1 members. Previous works may suggest that this issue represents a failure of EnSRFs; this work dispels that notion. It is shown that ensemble clustering can be reverted also due to nonlinear processes, in particular the alternation between nonlinear expansion and compression of the ensemble for different regions of the attractor. Some EnSRFs that use random rotations have been developed to overcome this issue; these formulations are analyzed and their advantages and disadvantages with respect to common EnSRFs are discussed. The third and last part contains the implementation of the Robert-Asselin-Williams (RAW) filter in an atmospheric model. The RAW filter is an improvement to the widely popular Robert-Asselin filter that successfully suppresses spurious computational waves while avoiding any distortion
Numerical resolution of the Navier-Stokes equations for a low Mach number by a spectral method
International Nuclear Information System (INIS)
Frohlich, Jochen
1990-01-01
The low Mach number approximation of the Navier-Stokes equations, also called isobar, is an approximation which is less restrictive than the one due to Boussinesq. It permits strong density variations while neglecting acoustic phenomena. We present a numerical method to solve these equations in the unsteady, two dimensional case with one direction of periodicity. The discretization uses a semi-implicit finite difference scheme in time and a Fourier-Chebycheff pseudo-spectral method in space. The solution of the equations of motion is based on an iterative algorithm of Uzawa type. In the Boussinesq limit we obtain a direct method. A first application is concerned with natural convection in the Rayleigh-Benard setting. We compare the results of the low Mach number equations with the ones in the Boussinesq case and consider the influence of variable fluid properties. A linear stability analysis based on a Chebychev-Tau method completes the study. The second application that we treat is a case of isobaric combustion in an open domain. We communicate results for the hydrodynamic Darrieus-Landau instability of a plane laminar flame front. [fr
A conservative Fourier pseudospectral algorithm for a coupled nonlinear Schrödinger system
International Nuclear Information System (INIS)
Cai Jia-Xiang; Wang Yu-Shun
2013-01-01
We derive a new method for a coupled nonlinear Schrödinger system by using the square of first-order Fourier spectral differentiation matrix D 1 instead of traditional second-order Fourier spectral differentiation matrix D 2 to approximate the second derivative. We prove the proposed method preserves the charge and energy conservation laws exactly. In numerical tests, we display the accuracy of numerical solution and the role of the nonlinear coupling parameter in cases of soliton collisions. Numerical experiments also exhibit the excellent performance of the method in preserving the charge and energy conservation laws. These numerical results verify that the proposed method is both a charge-preserving and an energy-preserving algorithm
CANONICAL BACKWARD DIFFERENTIATION SCHEMES FOR ...
African Journals Online (AJOL)
This paper describes a new nonlinear backward differentiation schemes for the numerical solution of nonlinear initial value problems of first order ordinary differential equations. The schemes are based on rational interpolation obtained from canonical polynomials. They are A-stable. The test problems show that they give ...
DEFF Research Database (Denmark)
van Leeuwen, Theo
2013-01-01
This chapter presents a framework for analysing colour schemes based on a parametric approach that includes not only hue, value and saturation, but also purity, transparency, luminosity, luminescence, lustre, modulation and differentiation.......This chapter presents a framework for analysing colour schemes based on a parametric approach that includes not only hue, value and saturation, but also purity, transparency, luminosity, luminescence, lustre, modulation and differentiation....
2013-08-01
discontinuities in mass. The dry mass of the stage was ejected after stage burnout resulting in a discontinuity in the state of mass necessitating a...seconds after liftoff to avoid numerical difficulties in the equations of motion at zero velocity and ends at stage 1 burnout ; as the booster vehicle...0.6 0.8 1 0 0.5 1 S ca le V el o ci ty 0.2 0.4 0.6 0.8 1 0 0.5 1 S ca le γ Scale Time Original GPOPS Figure 5. Booster Velocity and Flight Path
A numerical study of adaptive space and time discretisations for Gross-Pitaevskii equations.
Thalhammer, Mechthild; Abhau, Jochen
2012-08-15
As a basic principle, benefits of adaptive discretisations are an improved balance between required accuracy and efficiency as well as an enhancement of the reliability of numerical computations. In this work, the capacity of locally adaptive space and time discretisations for the numerical solution of low-dimensional nonlinear Schrödinger equations is investigated. The considered model equation is related to the time-dependent Gross-Pitaevskii equation arising in the description of Bose-Einstein condensates in dilute gases. The performance of the Fourier-pseudo spectral method constrained to uniform meshes versus the locally adaptive finite element method and of higher-order exponential operator splitting methods with variable time stepsizes is studied. Numerical experiments confirm that a local time stepsize control based on a posteriori local error estimators or embedded splitting pairs, respectively, is effective in different situations with an enhancement either in efficiency or reliability. As expected, adaptive time-splitting schemes combined with fast Fourier transform techniques are favourable regarding accuracy and efficiency when applied to Gross-Pitaevskii equations with a defocusing nonlinearity and a mildly varying regular solution. However, the numerical solution of nonlinear Schrödinger equations in the semi-classical regime becomes a demanding task. Due to the highly oscillatory and nonlinear nature of the problem, the spatial mesh size and the time increments need to be of the size of the decisive parameter [Formula: see text], especially when it is desired to capture correctly the quantitative behaviour of the wave function itself. The required high resolution in space constricts the feasibility of numerical computations for both, the Fourier pseudo-spectral and the finite element method. Nevertheless, for smaller parameter values locally adaptive time discretisations facilitate to determine the time stepsizes sufficiently small in order that
Numerical solution of the radionuclide transport equation
International Nuclear Information System (INIS)
Hadermann, J.; Roesel, F.
1983-11-01
A numerical solution of the one-dimensional geospheric radionuclide chain transport equation based on the pseudospectral method is developed. The advantages of this approach are flexibility in incorporating space and time dependent migration parameters, arbitrary boundary conditions and solute rock interactions as well as efficiency and reliability. As an application the authors investigate the impact of non-linear sorption isotherms on migration in crystalline rock. It is shown that non-linear sorption, in the present case a Freundlich isotherm, may reduce concentration at the geosphere outlet by orders of magnitude provided the migration time is comparable or larger than the half-life of the nuclide in question. The importance of fixing dispersivity within the continuum approach is stressed. (Auth.)
Testing the accuracy and stability of spectral methods in numerical relativity
International Nuclear Information System (INIS)
Boyle, Michael; Lindblom, Lee; Pfeiffer, Harald P.; Scheel, Mark A.; Kidder, Lawrence E.
2007-01-01
The accuracy and stability of the Caltech-Cornell pseudospectral code is evaluated using the Kidder, Scheel, and Teukolsky (KST) representation of the Einstein evolution equations. The basic 'Mexico City tests' widely adopted by the numerical relativity community are adapted here for codes based on spectral methods. Exponential convergence of the spectral code is established, apparently limited only by numerical roundoff error or by truncation error in the time integration. A general expression for the growth of errors due to finite machine precision is derived, and it is shown that this limit is achieved here for the linear plane-wave test
Additive operator-difference schemes splitting schemes
Vabishchevich, Petr N
2013-01-01
Applied mathematical modeling isconcerned with solving unsteady problems. This bookshows how toconstruct additive difference schemes to solve approximately unsteady multi-dimensional problems for PDEs. Two classes of schemes are highlighted: methods of splitting with respect to spatial variables (alternating direction methods) and schemes of splitting into physical processes. Also regionally additive schemes (domain decomposition methods)and unconditionally stable additive schemes of multi-component splitting are considered for evolutionary equations of first and second order as well as for sy
Boson expansion theory in the seniority scheme
International Nuclear Information System (INIS)
Tamura, T.; Li, C.; Pedrocchi, V.G.
1985-01-01
A boson expansion formalism in the seniority scheme is presented and its relation with number-conserving quasiparticle calculations is elucidated. Accuracy and convergence are demonstrated numerically. A comparative discussion with other related approaches is given
A rational function based scheme for solving advection equation
International Nuclear Information System (INIS)
Xiao, Feng; Yabe, Takashi.
1995-07-01
A numerical scheme for solving advection equations is presented. The scheme is derived from a rational interpolation function. Some properties of the scheme with respect to convex-concave preserving and monotone preserving are discussed. We find that the scheme is attractive in surpressinging overshoots and undershoots even in the vicinities of discontinuity. The scheme can also be easily swicthed as the CIP (Cubic interpolated Pseudo-Particle) method to get a third-order accuracy in smooth region. Numbers of numerical tests are carried out to show the non-oscillatory and less diffusive nature of the scheme. (author)
Electrical Injection Schemes for Nanolasers
DEFF Research Database (Denmark)
Lupi, Alexandra; Chung, Il-Sug; Yvind, Kresten
2014-01-01
Three electrical injection schemes based on recently demonstrated electrically pumped photonic crystal nanolasers have been numerically investigated: 1) a vertical p-i-n junction through a post structure; 2) a lateral p-i-n junction with a homostructure; and 3) a lateral p-i-n junction....... For this analysis, the properties of different schemes, i.e., electrical resistance, threshold voltage, threshold current, and internal efficiency as energy requirements for optical interconnects are compared and the physics behind the differences is discussed....
A fast resonance interference treatment scheme with subgroup method
International Nuclear Information System (INIS)
Cao, L.; He, Q.; Wu, H.; Zu, T.; Shen, W.
2015-01-01
A fast Resonance Interference Factor (RIF) scheme is proposed to treat the resonance interference effects between different resonance nuclides. This scheme utilizes the conventional subgroup method to evaluate the self-shielded cross sections of the dominant resonance nuclide in the heterogeneous system and the hyper-fine energy group method to represent the resonance interference effects in a simplified homogeneous model. In this paper, the newly implemented scheme is compared to the background iteration scheme, the Resonance Nuclide Group (RNG) scheme and the conventional RIF scheme. The numerical results show that the errors of the effective self-shielded cross sections are significantly reduced by the fast RIF scheme compared with the background iteration scheme and the RNG scheme. Besides, the fast RIF scheme consumes less computation time than the conventional RIF schemes. The speed-up ratio is ~4.5 for MOX pin cell problems. (author)
Liu, Meilin; Bagci, Hakan
2011-01-01
A discontinuous Galerkin finite element method (DG-FEM) with a highly-accurate time integration scheme is presented. The scheme achieves its high accuracy using numerically constructed predictor-corrector integration coefficients. Numerical results
Energy Technology Data Exchange (ETDEWEB)
Sidler, Rolf, E-mail: rsidler@gmail.com [Center for Research of the Terrestrial Environment, University of Lausanne, CH-1015 Lausanne (Switzerland); Carcione, José M. [Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), Borgo Grotta Gigante 42c, 34010 Sgonico, Trieste (Italy); Holliger, Klaus [Center for Research of the Terrestrial Environment, University of Lausanne, CH-1015 Lausanne (Switzerland)
2013-02-15
We present a novel numerical approach for the comprehensive, flexible, and accurate simulation of poro-elastic wave propagation in 2D polar coordinates. An important application of this method and its extensions will be the modeling of complex seismic wave phenomena in fluid-filled boreholes, which represents a major, and as of yet largely unresolved, computational problem in exploration geophysics. In view of this, we consider a numerical mesh, which can be arbitrarily heterogeneous, consisting of two or more concentric rings representing the fluid in the center and the surrounding porous medium. The spatial discretization is based on a Chebyshev expansion in the radial direction and a Fourier expansion in the azimuthal direction and a Runge–Kutta integration scheme for the time evolution. A domain decomposition method is used to match the fluid–solid boundary conditions based on the method of characteristics. This multi-domain approach allows for significant reductions of the number of grid points in the azimuthal direction for the inner grid domain and thus for corresponding increases of the time step and enhancements of computational efficiency. The viability and accuracy of the proposed method has been rigorously tested and verified through comparisons with analytical solutions as well as with the results obtained with a corresponding, previously published, and independently benchmarked solution for 2D Cartesian coordinates. Finally, the proposed numerical solution also satisfies the reciprocity theorem, which indicates that the inherent singularity associated with the origin of the polar coordinate system is adequately handled.
Multiuser switched diversity scheduling schemes
Shaqfeh, Mohammad; Alnuweiri, Hussein M.; Alouini, Mohamed-Slim
2012-01-01
Multiuser switched-diversity scheduling schemes were recently proposed in order to overcome the heavy feedback requirements of conventional opportunistic scheduling schemes by applying a threshold-based, distributed, and ordered scheduling mechanism. The main idea behind these schemes is that slight reduction in the prospected multiuser diversity gains is an acceptable trade-off for great savings in terms of required channel-state-information feedback messages. In this work, we characterize the achievable rate region of multiuser switched diversity systems and compare it with the rate region of full feedback multiuser diversity systems. We propose also a novel proportional fair multiuser switched-based scheduling scheme and we demonstrate that it can be optimized using a practical and distributed method to obtain the feedback thresholds. We finally demonstrate by numerical examples that switched-diversity scheduling schemes operate within 0.3 bits/sec/Hz from the ultimate network capacity of full feedback systems in Rayleigh fading conditions. © 2012 IEEE.
Multiuser switched diversity scheduling schemes
Shaqfeh, Mohammad
2012-09-01
Multiuser switched-diversity scheduling schemes were recently proposed in order to overcome the heavy feedback requirements of conventional opportunistic scheduling schemes by applying a threshold-based, distributed, and ordered scheduling mechanism. The main idea behind these schemes is that slight reduction in the prospected multiuser diversity gains is an acceptable trade-off for great savings in terms of required channel-state-information feedback messages. In this work, we characterize the achievable rate region of multiuser switched diversity systems and compare it with the rate region of full feedback multiuser diversity systems. We propose also a novel proportional fair multiuser switched-based scheduling scheme and we demonstrate that it can be optimized using a practical and distributed method to obtain the feedback thresholds. We finally demonstrate by numerical examples that switched-diversity scheduling schemes operate within 0.3 bits/sec/Hz from the ultimate network capacity of full feedback systems in Rayleigh fading conditions. © 2012 IEEE.
Generalization of binary tensor product schemes depends upon four parameters
International Nuclear Information System (INIS)
Bashir, R.; Bari, M.; Mustafa, G.
2018-01-01
This article deals with general formulae of parametric and non parametric bivariate subdivision scheme with four parameters. By assigning specific values to those parameters we get some special cases of existing tensor product schemes as well as a new proposed scheme. The behavior of schemes produced by the general formulae is interpolating, approximating and relaxed. Approximating bivariate subdivision schemes produce some other surfaces as compared to interpolating bivariate subdivision schemes. Polynomial reproduction and polynomial generation are desirable properties of subdivision schemes. Capability of polynomial reproduction and polynomial generation is strongly connected with smoothness, sum rules, convergence and approximation order. We also calculate the polynomial generation and polynomial reproduction of 9-point bivariate approximating subdivision scheme. Comparison of polynomial reproduction, polynomial generation and continuity of existing and proposed schemes has also been established. Some numerical examples are also presented to show the behavior of bivariate schemes. (author)
Parallelization of a numerical simulation code for isotropic turbulence
International Nuclear Information System (INIS)
Sato, Shigeru; Yokokawa, Mitsuo; Watanabe, Tadashi; Kaburaki, Hideo.
1996-03-01
A parallel pseudospectral code which solves the three-dimensional Navier-Stokes equation by direct numerical simulation is developed and execution time, parallelization efficiency, load balance and scalability are evaluated. A vector parallel supercomputer, Fujitsu VPP500 with up to 16 processors is used for this calculation for Fourier modes up to 256x256x256 using 16 processors. Good scalability for number of processors is achieved when number of Fourier mode is fixed. For small Fourier modes, calculation time of the program is proportional to NlogN which is ideal complexity of calculation for 3D-FFT on vector parallel processors. It is found that the calculation performance decreases as the increase of the Fourier modes. (author)
Analysis of central and upwind compact schemes
International Nuclear Information System (INIS)
Sengupta, T.K.; Ganeriwal, G.; De, S.
2003-01-01
Central and upwind compact schemes for spatial discretization have been analyzed with respect to accuracy in spectral space, numerical stability and dispersion relation preservation. A von Neumann matrix spectral analysis is developed here to analyze spatial discretization schemes for any explicit and implicit schemes to investigate the full domain simultaneously. This allows one to evaluate various boundary closures and their effects on the domain interior. The same method can be used for stability analysis performed for the semi-discrete initial boundary value problems (IBVP). This analysis tells one about the stability for every resolved length scale. Some well-known compact schemes that were found to be G-K-S and time stable are shown here to be unstable for selective length scales by this analysis. This is attributed to boundary closure and we suggest special boundary treatment to remove this shortcoming. To demonstrate the asymptotic stability of the resultant schemes, numerical solution of the wave equation is compared with analytical solution. Furthermore, some of these schemes are used to solve two-dimensional Navier-Stokes equation and a computational acoustic problem to check their ability to solve problems for long time. It is found that those schemes, that were found unstable for the wave equation, are unsuitable for solving incompressible Navier-Stokes equation. In contrast, the proposed compact schemes with improved boundary closure and an explicit higher-order upwind scheme produced correct results. The numerical solution for the acoustic problem is compared with the exact solution and the quality of the match shows that the used compact scheme has the requisite DRP property
Numerical Simulation of Freak Waves Based on the Four-Order Nonlinear Schr(o)dinger Equation
Institute of Scientific and Technical Information of China (English)
ZHANG Yun-qiu; ZHANG Ning-chuan; PEI Yu-guo
2007-01-01
A numerical wave model based on the modified four-order nonlinear Schrodinger (NLS) equation in deep water is developed to simulate freak waves. A standard split-step, pseudo-spectral method is used to solve NLS equation. The validation of the model is firstly verified, and then the simulation of freak waves is performed by changing sideband conditions. Results show that freak waves entirely consistent with the definition in the evolution of wave trains are obtained. The possible occurrence mechanism of freak waves is discussed and the relevant characteristics are also analyzed.
Sman, van der R.G.M.
2006-01-01
In the special case of relaxation parameter = 1 lattice Boltzmann schemes for (convection) diffusion and fluid flow are equivalent to finite difference/volume (FD) schemes, and are thus coined finite Boltzmann (FB) schemes. We show that the equivalence is inherent to the homology of the
Homogenization scheme for acoustic metamaterials
Yang, Min
2014-02-26
We present a homogenization scheme for acoustic metamaterials that is based on reproducing the lowest orders of scattering amplitudes from a finite volume of metamaterials. This approach is noted to differ significantly from that of coherent potential approximation, which is based on adjusting the effective-medium parameters to minimize scatterings in the long-wavelength limit. With the aid of metamaterials’ eigenstates, the effective parameters, such as mass density and elastic modulus can be obtained by matching the surface responses of a metamaterial\\'s structural unit cell with a piece of homogenized material. From the Green\\'s theorem applied to the exterior domain problem, matching the surface responses is noted to be the same as reproducing the scattering amplitudes. We verify our scheme by applying it to three different examples: a layered lattice, a two-dimensional hexagonal lattice, and a decorated-membrane system. It is shown that the predicted characteristics and wave fields agree almost exactly with numerical simulations and experiments and the scheme\\'s validity is constrained by the number of dominant surface multipoles instead of the usual long-wavelength assumption. In particular, the validity extends to the full band in one dimension and to regimes near the boundaries of the Brillouin zone in two dimensions.
Numerical simulations of turbulent heat transfer in a channel at Prandtl numbers higher than 100
International Nuclear Information System (INIS)
Bergant, R.; Tiselj, I.
2005-01-01
During the last years, many attempts have been made to extend turbulent heat transfer at low Prandtl numbers to high Prandtl numbers in the channel based on a very accurate pseudo-spectral code of direct numerical simulation (DNS). DNS describes all the length and time scales for velocity and temperature fields, which are different when Prandtl number is not equal to 1. DNS can be used at low Reynolds (Re τ =150. Very similar approach as for Pr=5.4 was done for numerical simulations at Pr=100 and Pr=200. Comparison was made with results of temperature fields performed on 9-times finer numerical grid, however without damping of the highest Fourier coefficients. The results of mean temperature profiles show no differences larger than statistical uncertainties (∼1%), while slightly larger differences are seen for temperature fluctuations. (author)
Birkhoffian Symplectic Scheme for a Quantum System
International Nuclear Information System (INIS)
Su Hongling
2010-01-01
In this paper, a classical system of ordinary differential equations is built to describe a kind of n-dimensional quantum systems. The absorption spectrum and the density of the states for the system are defined from the points of quantum view and classical view. From the Birkhoffian form of the equations, a Birkhoffian symplectic scheme is derived for solving n-dimensional equations by using the generating function method. Besides the Birkhoffian structure-preserving, the new scheme is proven to preserve the discrete local energy conservation law of the system with zero vector f. Some numerical experiments for a 3-dimensional example show that the new scheme can simulate the general Birkhoffian system better than the implicit midpoint scheme, which is well known to be symplectic scheme for Hamiltonian system. (general)
The development of efficient numerical time-domain modeling methods for geophysical wave propagation
Zhu, Lieyuan
This Ph.D. dissertation focuses on the numerical simulation of geophysical wave propagation in the time domain including elastic waves in solid media, the acoustic waves in fluid media, and the electromagnetic waves in dielectric media. This thesis shows that a linear system model can describe accurately the physical processes of those geophysical waves' propagation and can be used as a sound basis for modeling geophysical wave propagation phenomena. The generalized stability condition for numerical modeling of wave propagation is therefore discussed in the context of linear system theory. The efficiency of a series of different numerical algorithms in the time-domain for modeling geophysical wave propagation are discussed and compared. These algorithms include the finite-difference time-domain method, pseudospectral time domain method, alternating directional implicit (ADI) finite-difference time domain method. The advantages and disadvantages of these numerical methods are discussed and the specific stability condition for each modeling scheme is carefully derived in the context of the linear system theory. Based on the review and discussion of these existing approaches, the split step, ADI pseudospectral time domain (SS-ADI-PSTD) method is developed and tested for several cases. Moreover, the state-of-the-art stretched-coordinate perfect matched layer (SCPML) has also been implemented in SS-ADI-PSTD algorithm as the absorbing boundary condition for truncating the computational domain and absorbing the artificial reflection from the domain boundaries. After algorithmic development, a few case studies serve as the real-world examples to verify the capacities of the numerical algorithms and understand the capabilities and limitations of geophysical methods for detection of subsurface contamination. The first case is a study using ground penetrating radar (GPR) amplitude variation with offset (AVO) for subsurface non-aqueous-liquid (NAPL) contamination. The
Numerical methods for incompressible viscous flows with engineering applications
Rose, M. E.; Ash, R. L.
1988-01-01
A numerical scheme has been developed to solve the incompressible, 3-D Navier-Stokes equations using velocity-vorticity variables. This report summarizes the development of the numerical approximation schemes for the divergence and curl of the velocity vector fields and the development of compact schemes for handling boundary and initial boundary value problems.
Hybrid undulator numerical optimization
Energy Technology Data Exchange (ETDEWEB)
Hairetdinov, A.H. [Kurchatov Institute, Moscow (Russian Federation); Zukov, A.A. [Solid State Physics Institute, Chernogolovka (Russian Federation)
1995-12-31
3D properties of the hybrid undulator scheme arc studied numerically using PANDIRA code. It is shown that there exist two well defined sets of undulator parameters which provide either maximum on-axis field amplitude or minimal higher harmonics amplitude of the basic undulator field. Thus the alternative between higher field amplitude or pure sinusoidal field exists. The behavior of the undulator field amplitude and harmonics structure for a large set of (undulator gap)/(undulator wavelength) values is demonstrated.
Scheme Program Documentation Tools
DEFF Research Database (Denmark)
Nørmark, Kurt
2004-01-01
are separate and intended for different documentation purposes they are related to each other in several ways. Both tools are based on XML languages for tool setup and for documentation authoring. In addition, both tools rely on the LAML framework which---in a systematic way---makes an XML language available...... as named functions in Scheme. Finally, the Scheme Elucidator is able to integrate SchemeDoc resources as part of an internal documentation resource....
Conservative Semidiscrete Difference Schemes for Timoshenko Systems
Júnior, D. S. Almeida
2014-01-01
We present a parameterized family of finite-difference schemes to analyze the energy properties for linearly elastic constant-coefficient Timoshenko systems considering shear deformation and rotatory inertia. We derive numerical energies showing the positivity, and the energy conservation property and we show how to avoid a numerical anomaly known as locking phenomenon on shear force. Our method of proof relies on discrete multiplier techniques.
Energy Technology Data Exchange (ETDEWEB)
D' Ambros, Alder C.; Vitorassi, Pedro H.; Franco, Admilson T.; Morales, Rigoberto E.M. [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil); Matins, Andre Leibsohn [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES). Tecnologia de Engenharia de Perfuracao
2008-07-01
The success of oil well drilling process depends on the correct prediction of the velocities and stresses fields inside the gap between the drill string and the rock formation. Using CFD is possible to predict the behavior of the drilling fluid flow along the annular space, from the bottom to the top of the well. Commonly the drilling fluid is modeled as a Herschel-Bulkley fluid. An alternative is to employ a non-linear viscoelastic model, like the one developed by Phan-Thien-Tanner (PTT). In the present work the PTT constitutive equation is used to model the drilling fluid flow along the annular space. Thus, this work investigates the influence of the Deborah number on the laminar flow pattern through the numerical solution of the equations formed by the coupled velocity-pressure-stress fields. The results are analyzed and validated against the analytical solution for the fully developed annular pipe flow. The relation between the Deborah number (De) and the entry length is investigated, along with the influence of high values of Deborah number on the friction factor, stress and velocity fields. (author)
Multiresolution signal decomposition schemes
J. Goutsias (John); H.J.A.M. Heijmans (Henk)
1998-01-01
textabstract[PNA-R9810] Interest in multiresolution techniques for signal processing and analysis is increasing steadily. An important instance of such a technique is the so-called pyramid decomposition scheme. This report proposes a general axiomatic pyramid decomposition scheme for signal analysis
Khabaza, I M
1960-01-01
Numerical Analysis is an elementary introduction to numerical analysis, its applications, limitations, and pitfalls. Methods suitable for digital computers are emphasized, but some desk computations are also described. Topics covered range from the use of digital computers in numerical work to errors in computations using desk machines, finite difference methods, and numerical solution of ordinary differential equations. This book is comprised of eight chapters and begins with an overview of the importance of digital computers in numerical analysis, followed by a discussion on errors in comput
Shibata, Masaru
2016-01-01
This book is composed of two parts: First part describes basics in numerical relativity, that is, the formulations and methods for a solution of Einstein's equation and general relativistic matter field equations. This part will be helpful for beginners of numerical relativity who would like to understand the content of numerical relativity and its background. The second part focuses on the application of numerical relativity. A wide variety of scientific numerical results are introduced focusing in particular on the merger of binary neutron stars and black holes.
Directory of Open Access Journals (Sweden)
R. Sitharthan
2016-09-01
Full Text Available This paper aims at modelling an electronically coupled distributed energy resource with an adaptive protection scheme. The electronically coupled distributed energy resource is a microgrid framework formed by coupling the renewable energy source electronically. Further, the proposed adaptive protection scheme provides a suitable protection to the microgrid for various fault conditions irrespective of the operating mode of the microgrid: namely, grid connected mode and islanded mode. The outstanding aspect of the developed adaptive protection scheme is that it monitors the microgrid and instantly updates relay fault current according to the variations that occur in the system. The proposed adaptive protection scheme also employs auto reclosures, through which the proposed adaptive protection scheme recovers faster from the fault and thereby increases the consistency of the microgrid. The effectiveness of the proposed adaptive protection is studied through the time domain simulations carried out in the PSCAD⧹EMTDC software environment.
Analysis and improvement for the performance of Baptista's cryptographic scheme
International Nuclear Information System (INIS)
Wei Jun; Liao Xiaofeng; Wong, K.W.; Zhou Tsing; Deng Yigui
2006-01-01
Based on Baptista's chaotic cryptosystem, we propose a secure and robust chaotic cryptographic scheme after investigating the problems found in this cryptosystem as well as its variants. In this proposed scheme, a subkey array generated from the key and the plaintext is adopted to enhance the security. Some methods are introduced to increase the efficiency. Theoretical analyses and numerical simulations indicate that the proposed scheme is secure and efficient for practical use
Threshold Signature Schemes Application
Directory of Open Access Journals (Sweden)
Anastasiya Victorovna Beresneva
2015-10-01
Full Text Available This work is devoted to an investigation of threshold signature schemes. The systematization of the threshold signature schemes was done, cryptographic constructions based on interpolation Lagrange polynomial, elliptic curves and bilinear pairings were examined. Different methods of generation and verification of threshold signatures were explored, the availability of practical usage of threshold schemes in mobile agents, Internet banking and e-currency was shown. The topics of further investigation were given and it could reduce a level of counterfeit electronic documents signed by a group of users.
Age-of-Air, Tape Recorder, and Vertical Transport Schemes
Lin, S.-J.; Einaudi, Franco (Technical Monitor)
2000-01-01
A numerical-analytic investigation of the impacts of vertical transport schemes on the model simulated age-of-air and the so-called 'tape recorder' will be presented using an idealized 1-D column transport model as well as a more realistic 3-D dynamical model. By comparing to the 'exact' solutions of 'age-of-air' and the 'tape recorder' obtainable in the 1-D setting, useful insight is gained on the impacts of numerical diffusion and dispersion of numerical schemes used in global models. Advantages and disadvantages of Eulerian, semi-Lagrangian, and Lagrangian transport schemes will be discussed. Vertical resolution requirement for numerical schemes as well as observing systems for capturing the fine details of the 'tape recorder' or any upward propagating wave-like structures can potentially be derived from the 1-D analytic model.
Scheme for achieving coherent perfect absorption by anisotropic metamaterials
Zhang, Xiujuan; Wu, Ying
2017-01-01
in conjunction with retrieval method to determine practical metamaterial absorbers. The scheme is scalable to frequencies and applicable to various incident angles. Numerical simulations show that perfect absorption is achieved in the designed absorbers over a
DEFF Research Database (Denmark)
Pötz, Katharina Anna; Haas, Rainer; Balzarova, Michaela
2013-01-01
of schemes that can be categorized on focus areas, scales, mechanisms, origins, types and commitment levels. Research limitations/implications – The findings contribute to conceptual and empirical research on existing models to compare and analyse CSR standards. Sampling technique and depth of analysis limit......Purpose – The rise of CSR followed a demand for CSR standards and guidelines. In a sector already characterized by a large number of standards, the authors seek to ask what CSR schemes apply to agribusiness, and how they can be systematically compared and analysed. Design....../methodology/approach – Following a deductive-inductive approach the authors develop a model to compare and analyse CSR schemes based on existing studies and on coding qualitative data on 216 CSR schemes. Findings – The authors confirm that CSR standards and guidelines have entered agribusiness and identify a complex landscape...
Energy Technology Data Exchange (ETDEWEB)
Willcock, J J; Lumsdaine, A; Quinlan, D J
2008-08-19
Tabled execution is a generalization of memorization developed by the logic programming community. It not only saves results from tabled predicates, but also stores the set of currently active calls to them; tabled execution can thus provide meaningful semantics for programs that seemingly contain infinite recursions with the same arguments. In logic programming, tabled execution is used for many purposes, both for improving the efficiency of programs, and making tasks simpler and more direct to express than with normal logic programs. However, tabled execution is only infrequently applied in mainstream functional languages such as Scheme. We demonstrate an elegant implementation of tabled execution in Scheme, using a mix of continuation-passing style and mutable data. We also show the use of tabled execution in Scheme for a problem in formal language and automata theory, demonstrating that tabled execution can be a valuable tool for Scheme users.
Numerical Hydrodynamics in General Relativity
Directory of Open Access Journals (Sweden)
Font José A.
2003-01-01
Full Text Available The current status of numerical solutions for the equations of ideal general relativistic hydrodynamics is reviewed. With respect to an earlier version of the article, the present update provides additional information on numerical schemes, and extends the discussion of astrophysical simulations in general relativistic hydrodynamics. Different formulations of the equations are presented, with special mention of conservative and hyperbolic formulations well-adapted to advanced numerical methods. A large sample of available numerical schemes is discussed, paying particular attention to solution procedures based on schemes exploiting the characteristic structure of the equations through linearized Riemann solvers. A comprehensive summary of astrophysical simulations in strong gravitational fields is presented. These include gravitational collapse, accretion onto black holes, and hydrodynamical evolutions of neutron stars. The material contained in these sections highlights the numerical challenges of various representative simulations. It also follows, to some extent, the chronological development of the field, concerning advances on the formulation of the gravitational field and hydrodynamic equations and the numerical methodology designed to solve them.
Numerical modelling of multicomponent LNAPL dissolution kinetics ...
Indian Academy of Sciences (India)
subsequent removal of free phase liquid, still the organic compounds are present .... Since the flow through porous media is mainly restricted to the pore space ..... initial and boundary conditions for the numerical scheme are given in table 2.
Evaluating statistical cloud schemes
Grützun, Verena; Quaas, Johannes; Morcrette , Cyril J.; Ament, Felix
2015-01-01
Statistical cloud schemes with prognostic probability distribution functions have become more important in atmospheric modeling, especially since they are in principle scale adaptive and capture cloud physics in more detail. While in theory the schemes have a great potential, their accuracy is still questionable. High-resolution three-dimensional observational data of water vapor and cloud water, which could be used for testing them, are missing. We explore the potential of ground-based re...
Gamma spectrometry; level schemes
International Nuclear Information System (INIS)
Blachot, J.; Bocquet, J.P.; Monnand, E.; Schussler, F.
1977-01-01
The research presented dealt with: a new beta emitter, isomer of 131 Sn; the 136 I levels fed through the radioactive decay of 136 Te (20.9s); the A=145 chain (β decay of Ba, La and Ce, and level schemes for 145 La, 145 Ce, 145 Pr); the A=47 chain (La and Ce, β decay, and the level schemes of 147 Ce and 147 Pr) [fr
International Nuclear Information System (INIS)
2002-04-01
This scheme defines the objectives relative to the renewable energies and the rational use of the energy in the framework of the national energy policy. It evaluates the needs and the potentialities of the regions and preconizes the actions between the government and the territorial organizations. The document is presented in four parts: the situation, the stakes and forecasts; the possible actions for new measures; the scheme management and the regional contributions analysis. (A.L.B.)
Siegler, Robert S.; Braithwaite, David W.
2016-01-01
In this review, we attempt to integrate two crucial aspects of numerical development: learning the magnitudes of individual numbers and learning arithmetic. Numerical magnitude development involves gaining increasingly precise knowledge of increasing ranges and types of numbers: from non-symbolic to small symbolic numbers, from smaller to larger…
Bright, William
In most languages encountered by linguists, the numerals, considered as a paradigmatic set, constitute a morpho-syntactic problem of only moderate complexity. The Indo-Aryan language family of North India, however, presents a curious contrast. The relatively regular numeral system of Sanskrit, as it has developed historically into the modern…
Mono-implicit Runge Kutta schemes for singularly perturbed delay differential equations
Rihan, Fathalla A.; Al-Salti, Nasser S.
2017-09-01
In this paper, we adapt Mono-Implicit Runge-Kutta schemes for numerical approximations of singularly perturbed delay differential equations. The schemes are developed to reduce the computational cost of the fully implicit method which combine the accuracy of implicit method and efficient implementation. Numerical stability properties of the schemes are investigated. Numerical simulations are provided to show the effectiveness of the method for both stiff and non-stiff initial value problems.
Rao, G Shanker
2006-01-01
About the Book: This book provides an introduction to Numerical Analysis for the students of Mathematics and Engineering. The book is designed in accordance with the common core syllabus of Numerical Analysis of Universities of Andhra Pradesh and also the syllabus prescribed in most of the Indian Universities. Salient features: Approximate and Numerical Solutions of Algebraic and Transcendental Equation Interpolation of Functions Numerical Differentiation and Integration and Numerical Solution of Ordinary Differential Equations The last three chapters deal with Curve Fitting, Eigen Values and Eigen Vectors of a Matrix and Regression Analysis. Each chapter is supplemented with a number of worked-out examples as well as number of problems to be solved by the students. This would help in the better understanding of the subject. Contents: Errors Solution of Algebraic and Transcendental Equations Finite Differences Interpolation with Equal Intervals Interpolation with Unequal Int...
Numerical investigation of sixth order Boussinesq equation
Kolkovska, N.; Vucheva, V.
2017-10-01
We propose a family of conservative finite difference schemes for the Boussinesq equation with sixth order dispersion terms. The schemes are of second order of approximation. The method is conditionally stable with a mild restriction τ = O(h) on the step sizes. Numerical tests are performed for quadratic and cubic nonlinearities. The numerical experiments show second order of convergence of the discrete solution to the exact one.
Operator theory and numerical methods
Fujita, H; Suzuki, T
2001-01-01
In accordance with the developments in computation, theoretical studies on numerical schemes are now fruitful and highly needed. In 1991 an article on the finite element method applied to evolutionary problems was published. Following the method, basically this book studies various schemes from operator theoretical points of view. Many parts are devoted to the finite element method, but other schemes and problems (charge simulation method, domain decomposition method, nonlinear problems, and so forth) are also discussed, motivated by the observation that practically useful schemes have fine mathematical structures and the converses are also true. This book has the following chapters: 1. Boundary Value Problems and FEM. 2. Semigroup Theory and FEM. 3. Evolution Equations and FEM. 4. Other Methods in Time Discretization. 5. Other Methods in Space Discretization. 6. Nonlinear Problems. 7. Domain Decomposition Method.
Electrical injection schemes for nanolasers
DEFF Research Database (Denmark)
Lupi, Alexandra; Chung, Il-Sug; Yvind, Kresten
2013-01-01
The performance of injection schemes among recently demonstrated electrically pumped photonic crystal nanolasers has been investigated numerically. The computation has been carried out at room temperature using a commercial semiconductor simulation software. For the simulations two electrical...... of 3 InGaAsP QWs on an InP substrate has been chosen for the modeling. In the simulations the main focus is on the electrical and optical properties of the nanolasers i.e. electrical resistance, threshold voltage, threshold current and wallplug efficiency. In the current flow evaluation the lowest...... threshold current has been achieved with the lateral electrical injection through the BH; while the lowest resistance has been obtained from the current post structure even though this model shows a higher current threshold because of the lack of carrier confinement. Final scope of the simulations...
An Energy Decaying Scheme for Nonlinear Dynamics of Shells
Bottasso, Carlo L.; Bauchau, Olivier A.; Choi, Jou-Young; Bushnell, Dennis M. (Technical Monitor)
2000-01-01
A novel integration scheme for nonlinear dynamics of geometrically exact shells is developed based on the inextensible director assumption. The new algorithm is designed so as to imply the strict decay of the system total mechanical energy at each time step, and consequently unconditional stability is achieved in the nonlinear regime. Furthermore, the scheme features tunable high frequency numerical damping and it is therefore stiffly accurate. The method is tested for a finite element spatial formulation of shells based on mixed interpolations of strain tensorial components and on a two-parameter representation of director rotations. The robustness of the, scheme is illustrated with the help of numerical examples.
Scott, L Ridgway
2011-01-01
Computational science is fundamentally changing how technological questions are addressed. The design of aircraft, automobiles, and even racing sailboats is now done by computational simulation. The mathematical foundation of this new approach is numerical analysis, which studies algorithms for computing expressions defined with real numbers. Emphasizing the theory behind the computation, this book provides a rigorous and self-contained introduction to numerical analysis and presents the advanced mathematics that underpin industrial software, including complete details that are missing from most textbooks. Using an inquiry-based learning approach, Numerical Analysis is written in a narrative style, provides historical background, and includes many of the proofs and technical details in exercises. Students will be able to go beyond an elementary understanding of numerical simulation and develop deep insights into the foundations of the subject. They will no longer have to accept the mathematical gaps that ex...
Comparison of several numerical schemes applied to advection equations
Czech Academy of Sciences Publication Activity Database
Sokol, Zbyněk
1999-01-01
Roč. 125, - (1999), s. 213-224 ISSN 0035-9009 R&D Projects: GA ČR GA205/97/0843; GA AV ČR KSK1042603 Institutional research plan: CEZ:AV0Z3042911 Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 2.185, year: 1999
Scheme for achieving coherent perfect absorption by anisotropic metamaterials
Zhang, Xiujuan
2017-02-22
We propose a unified scheme to achieve coherent perfect absorption of electromagnetic waves by anisotropic metamaterials. The scheme describes the condition on perfect absorption and offers an inverse design route based on effective medium theory in conjunction with retrieval method to determine practical metamaterial absorbers. The scheme is scalable to frequencies and applicable to various incident angles. Numerical simulations show that perfect absorption is achieved in the designed absorbers over a wide range of incident angles, verifying the scheme. By integrating these absorbers, we further propose an absorber to absorb energy from two coherent point sources.
Towards Symbolic Encryption Schemes
DEFF Research Database (Denmark)
Ahmed, Naveed; Jensen, Christian D.; Zenner, Erik
2012-01-01
, namely an authenticated encryption scheme that is secure under chosen ciphertext attack. Therefore, many reasonable encryption schemes, such as AES in the CBC or CFB mode, are not among the implementation options. In this paper, we report new attacks on CBC and CFB based implementations of the well......Symbolic encryption, in the style of Dolev-Yao models, is ubiquitous in formal security models. In its common use, encryption on a whole message is specified as a single monolithic block. From a cryptographic perspective, however, this may require a resource-intensive cryptographic algorithm......-known Needham-Schroeder and Denning-Sacco protocols. To avoid such problems, we advocate the use of refined notions of symbolic encryption that have natural correspondence to standard cryptographic encryption schemes....
Energy Technology Data Exchange (ETDEWEB)
Placidi, M.; Jung, J. -Y.; Ratti, A.; Sun, C.
2014-07-25
This paper describes beam distribution schemes adopting a novel implementation based on low amplitude vertical deflections combined with horizontal ones generated by Lambertson-type septum magnets. This scheme offers substantial compactness in the longitudinal layouts of the beam lines and increased flexibility for beam delivery of multiple beam lines on a shot-to-shot basis. Fast kickers (FK) or transverse electric field RF Deflectors (RFD) provide the low amplitude deflections. Initially proposed at the Stanford Linear Accelerator Center (SLAC) as tools for beam diagnostics and more recently adopted for multiline beam pattern schemes, RFDs offer repetition capabilities and a likely better amplitude reproducibility when compared to FKs, which, in turn, offer more modest financial involvements both in construction and operation. Both solutions represent an ideal approach for the design of compact beam distribution systems resulting in space and cost savings while preserving flexibility and beam quality.
Preliminary analysis of four numerical models for calculating the mesoscale transport of Kr-85
Energy Technology Data Exchange (ETDEWEB)
Pepper, D W; Cooper, R E [Du Pont de Nemours (E.I.) and Co., Aiken, SC (USA). Savannah River Lab.
1983-01-01
A performance study of four numerical algorithms for multi-dimensional advection-diffusion prediction on mesoscale grids has been made. Dispersion from point and distributed sources and a simulation of a continuous source are compared with analytical solutions to assess relative accuracy. Model predictions are then compared with actual measurements of Kr-85 emitted from the Savannah River Plant (SRP). The particle-in-cell and method of moments algorithms exhibit superior accuracy in modeling single source releases. For modeling distributed sources, algorithms based on the pseudospectral and finite element interpolation concepts exhibit comparable accuracy. The method of moments is felt to be the best overall performer, although all the models appear to be relatively close in accuracy.
New analytic unitarization schemes
International Nuclear Information System (INIS)
Cudell, J.-R.; Predazzi, E.; Selyugin, O. V.
2009-01-01
We consider two well-known classes of unitarization of Born amplitudes of hadron elastic scattering. The standard class, which saturates at the black-disk limit includes the standard eikonal representation, while the other class, which goes beyond the black-disk limit to reach the full unitarity circle, includes the U matrix. It is shown that the basic properties of these schemes are independent of the functional form used for the unitarization, and that U matrix and eikonal schemes can be extended to have similar properties. A common form of unitarization is proposed interpolating between both classes. The correspondence with different nonlinear equations are also briefly examined.
Forcing scheme in pseudopotential lattice Boltzmann model for multiphase flows.
Li, Q; Luo, K H; Li, X J
2012-07-01
The pseudopotential lattice Boltzmann (LB) model is a widely used multiphase model in the LB community. In this model, an interaction force, which is usually implemented via a forcing scheme, is employed to mimic the molecular interactions that cause phase segregation. The forcing scheme is therefore expected to play an important role in the pseudoepotential LB model. In this paper, we aim to address some key issues about forcing schemes in the pseudopotential LB model. First, theoretical and numerical analyses will be made for Shan-Chen's forcing scheme [Shan and Chen, Phys. Rev. E 47, 1815 (1993)] and the exact-difference-method forcing scheme [Kupershtokh et al., Comput. Math. Appl. 58, 965 (2009)]. The nature of these two schemes and their recovered macroscopic equations will be shown. Second, through a theoretical analysis, we will reveal the physics behind the phenomenon that different forcing schemes exhibit different performances in the pseudopotential LB model. Moreover, based on the analysis, we will present an improved forcing scheme and numerically demonstrate that the improved scheme can be treated as an alternative approach to achieving thermodynamic consistency in the pseudopotential LB model.
WENO schemes for balance laws with spatially varying flux
International Nuclear Information System (INIS)
Vukovic, Senka; Crnjaric-Zic, Nelida; Sopta, Luka
2004-01-01
In this paper we construct numerical schemes of high order of accuracy for hyperbolic balance law systems with spatially variable flux function and a source term of the geometrical type. We start with the original finite difference characteristicwise weighted essentially nonoscillatory (WENO) schemes and then we create new schemes by modifying the flux formulations (locally Lax-Friedrichs and Roe with entropy fix) in order to account for the spatially variable flux, and by decomposing the source term in order to obtain balance between numerical approximations of the flux gradient and of the source term. We apply so extended WENO schemes to the one-dimensional open channel flow equations and to the one-dimensional elastic wave equations. In particular, we prove that in these applications the new schemes are exactly consistent with steady-state solutions from an appropriately chosen subset. Experimentally obtained orders of accuracy of the extended and original WENO schemes are almost identical on a convergence test. Other presented test problems illustrate the improvement of the proposed schemes relative to the original WENO schemes combined with the pointwise source term evaluation. As expected, the increase in the formal order of accuracy of applied WENO reconstructions in all the tests causes visible increase in the high resolution properties of the schemes
High Order Semi-Lagrangian Advection Scheme
Malaga, Carlos; Mandujano, Francisco; Becerra, Julian
2014-11-01
In most fluid phenomena, advection plays an important roll. A numerical scheme capable of making quantitative predictions and simulations must compute correctly the advection terms appearing in the equations governing fluid flow. Here we present a high order forward semi-Lagrangian numerical scheme specifically tailored to compute material derivatives. The scheme relies on the geometrical interpretation of material derivatives to compute the time evolution of fields on grids that deform with the material fluid domain, an interpolating procedure of arbitrary order that preserves the moments of the interpolated distributions, and a nonlinear mapping strategy to perform interpolations between undeformed and deformed grids. Additionally, a discontinuity criterion was implemented to deal with discontinuous fields and shocks. Tests of pure advection, shock formation and nonlinear phenomena are presented to show performance and convergence of the scheme. The high computational cost is considerably reduced when implemented on massively parallel architectures found in graphic cards. The authors acknowledge funding from Fondo Sectorial CONACYT-SENER Grant Number 42536 (DGAJ-SPI-34-170412-217).
Numerical Simulations of X-Ray Free Electron Lasers (XFEL)
Antonelli, Paolo; Athanassoulis, Agissilaos; Huang, Zhongyi; Markowich, Peter A.
2014-01-01
and approximations has attracted increased attention. In this model the electrons move under a rapidly oscillating electromagnetic field, and the convergence of the problem to an effective time-averaged one is examined. We use an operator splitting pseudospectral
Designing synchronization schemes for chaotic fractional-order unified systems
International Nuclear Information System (INIS)
Wang Junwei; Zhang Yanbin
2006-01-01
Synchronization in chaotic fractional-order differential systems is studied both theoretically and numerically. Two schemes are designed to achieve chaos synchronization of so-called unified chaotic systems and the corresponding numerical algorithms are established. Some sufficient conditions on synchronization are also derived based on the Laplace transformation theory. Computer simulations are used for demonstration
A Note on Symplectic, Multisymplectic Scheme in Finite Element Method
Institute of Scientific and Technical Information of China (English)
GUO Han-Ying; JI Xiao-Mei; LI Yu-Qi; WU Ke
2001-01-01
We find that with uniform mesh, the numerical schemes derived from finite element method can keep a preserved symplectic structure in one-dimensional case and a preserved multisymplectic structure in two-dimensional case respectively. These results are in fact the intrinsic reason why the numerical experiments show that such finite element algorithms are accurate in practice.``
Numerical simulation of laser resonators
International Nuclear Information System (INIS)
Yoo, J. G.; Jeong, Y. U.; Lee, B. C.; Rhee, Y. J.; Cho, S. O.
2004-01-01
We developed numerical simulation packages for laser resonators on the bases of a pair of integral equations. Two numerical schemes, a matrix formalism and an iterative method, were programmed for finding numeric solutions to the pair of integral equations. The iterative method was tried by Fox and Li, but it was not applicable for high Fresnel numbers since the numerical errors involved propagate and accumulate uncontrollably. In this paper, we implement the matrix method to extend the computational limit further. A great number of case studies are carried out with various configurations of stable and unstable r;esonators to compute diffraction losses, phase shifts, intensity distributions and phases of the radiation fields on mirrors. Our results presented in this paper show not only a good agreement with the results previously obtained by Fox and Li, but also the legitimacy of our numerical procedures for high Fresnel numbers.
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 2. Electronic Commerce - Payment Schemes. V Rajaraman. Series Article Volume 6 Issue 2 February 2001 pp 6-13. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/006/02/0006-0013 ...
Ronald, R.; Smith, S.J.; Elsinga, M.; Eng, O.S.; Fox O'Mahony, L.; Wachter, S.
2012-01-01
Contractual saving schemes for housing are institutionalised savings programmes normally linked to rights to loans for home purchase. They are diverse types as they have been developed differently in each national context, but normally fall into categories of open, closed, compulsory, and ‘free
Alternative reprocessing schemes evaluation
International Nuclear Information System (INIS)
1979-02-01
This paper reviews the parameters which determine the inaccessibility of the plutonium in reprocessing plants. Among the various parameters, the physical and chemical characteristics of the materials, the various processing schemes and the confinement are considered. The emphasis is placed on that latter parameter, and the advantages of an increased confinement in the socalled PIPEX reprocessing plant type are presented
Introduction to association schemes
Seidel, J.J.
1991-01-01
The present paper gives an introduction to the theory of association schemes, following Bose-Mesner (1959), Biggs (1974), Delsarte (1973), Bannai-Ito (1984) and Brouwer-Cohen-Neumaier (1989). Apart from definitions and many examples, also several proofs and some problems are included. The paragraphs
Reaction schemes of immunoanalysis
International Nuclear Information System (INIS)
Delaage, M.; Barbet, J.
1991-01-01
The authors apply a general theory for multiple equilibria to the reaction schemes of immunoanalysis, competition and sandwich. This approach allows the manufacturer to optimize the system and provide the user with interpolation functions for the standard curve and its first derivative as well, thus giving access to variance [fr
Alternative health insurance schemes
DEFF Research Database (Denmark)
Keiding, Hans; Hansen, Bodil O.
2002-01-01
In this paper, we present a simple model of health insurance with asymmetric information, where we compare two alternative ways of organizing the insurance market. Either as a competitive insurance market, where some risks remain uninsured, or as a compulsory scheme, where however, the level...... competitive insurance; this situation turns out to be at least as good as either of the alternatives...
TVD schemes in one and two space dimensions
International Nuclear Information System (INIS)
Leveque, R.J.; Goodman, J.B.; New York Univ., NY)
1985-01-01
The recent development of schemes which are second order accurate in smooth regions has made it possible to overcome certain difficulties which used to arise in numerical computations of discontinuous solutions of conservation laws. The present investigation is concerned with scalar conservation laws, taking into account the employment of total variation diminishing (TVD) schemes. The concept of a TVD scheme was introduced by Harten et al. (1976). Harten et al. first constructed schemes which are simultaneously TVD and second order accurate on smooth solutions. In the present paper, a summary is provided of recently conducted work in this area. Attention is given to TVD schemes in two space dimensions, a second order accurate TVD scheme in one dimension, and the entropy condition and spreading of rarefaction waves. 19 references
Chu, Chunlei; Stoffa, Paul L.; Seif, Roustam
2009-01-01
We present two Lax‐Wendroff type high‐order time stepping schemes and apply them to solving the 3D elastic wave equation. The proposed schemes have the same format as the Taylor series expansion based schemes, only with modified temporal extrapolation coefficients. We demonstrate by both theoretical analysis and numerical examples that the modified schemes significantly improve the stability conditions.
Brezinski, C
2012-01-01
Numerical analysis has witnessed many significant developments in the 20th century. This book brings together 16 papers dealing with historical developments, survey papers and papers on recent trends in selected areas of numerical analysis, such as: approximation and interpolation, solution of linear systems and eigenvalue problems, iterative methods, quadrature rules, solution of ordinary-, partial- and integral equations. The papers are reprinted from the 7-volume project of the Journal of Computational and Applied Mathematics on '/homepage/sac/cam/na2000/index.html<
Numerical simulation of pulse-tube refrigerators
Lyulina, I.A.; Mattheij, R.M.M.; Tijsseling, A.S.; Waele, de A.T.A.M.
2004-01-01
A new numerical model has been introduced to study steady oscillatory heat and mass transfer in the tube section of a pulse-tube refrigerator. Conservation equations describing compressible gas flow in the tube are solved numerically, using high resolution schemes. The equation of conservation of
Baker, John G.
2009-01-01
Recent advances in numerical relativity have fueled an explosion of progress in understanding the predictions of Einstein's theory of gravity, General Relativity, for the strong field dynamics, the gravitational radiation wave forms, and consequently the state of the remnant produced from the merger of compact binary objects. I will review recent results from the field, focusing on mergers of two black holes.
A new multi-symplectic scheme for the generalized Kadomtsev-Petviashvili equation
Li, Haochen; Sun, Jianqiang
2012-09-01
We propose a new scheme for the generalized Kadomtsev-Petviashvili (KP) equation. The multi-symplectic conservation property of the new scheme is proved. Back error analysis shows that the new multi-symplectic scheme has second order accuracy in space and time. Numerical application on studying the KPI equation and the KPII equation are presented in detail.
MIMO transmit scheme based on morphological perceptron with competitive learning.
Valente, Raul Ambrozio; Abrão, Taufik
2016-08-01
This paper proposes a new multi-input multi-output (MIMO) transmit scheme aided by artificial neural network (ANN). The morphological perceptron with competitive learning (MP/CL) concept is deployed as a decision rule in the MIMO detection stage. The proposed MIMO transmission scheme is able to achieve double spectral efficiency; hence, in each time-slot the receiver decodes two symbols at a time instead one as Alamouti scheme. Other advantage of the proposed transmit scheme with MP/CL-aided detector is its polynomial complexity according to modulation order, while it becomes linear when the data stream length is greater than modulation order. The performance of the proposed scheme is compared to the traditional MIMO schemes, namely Alamouti scheme and maximum-likelihood MIMO (ML-MIMO) detector. Also, the proposed scheme is evaluated in a scenario with variable channel information along the frame. Numerical results have shown that the diversity gain under space-time coding Alamouti scheme is partially lost, which slightly reduces the bit-error rate (BER) performance of the proposed MP/CL-NN MIMO scheme. Copyright © 2016 Elsevier Ltd. All rights reserved.
On Converting Secret Sharing Scheme to Visual Secret Sharing Scheme
Directory of Open Access Journals (Sweden)
Wang Daoshun
2010-01-01
Full Text Available Abstract Traditional Secret Sharing (SS schemes reconstruct secret exactly the same as the original one but involve complex computation. Visual Secret Sharing (VSS schemes decode the secret without computation, but each share is m times as big as the original and the quality of the reconstructed secret image is reduced. Probabilistic visual secret sharing (Prob.VSS schemes for a binary image use only one subpixel to share the secret image; however the probability of white pixels in a white area is higher than that in a black area in the reconstructed secret image. SS schemes, VSS schemes, and Prob. VSS schemes have various construction methods and advantages. This paper first presents an approach to convert (transform a -SS scheme to a -VSS scheme for greyscale images. The generation of the shadow images (shares is based on Boolean XOR operation. The secret image can be reconstructed directly by performing Boolean OR operation, as in most conventional VSS schemes. Its pixel expansion is significantly smaller than that of VSS schemes. The quality of the reconstructed images, measured by average contrast, is the same as VSS schemes. Then a novel matrix-concatenation approach is used to extend the greyscale -SS scheme to a more general case of greyscale -VSS scheme.
Self-adjusting entropy-stable scheme for compressible Euler equations
Institute of Scientific and Technical Information of China (English)
程晓晗; 聂玉峰; 封建湖; LuoXiao-Yu; 蔡力
2015-01-01
In this work, a self-adjusting entropy-stable scheme is proposed for solving compressible Euler equations. The entropy-stable scheme is constructed by combining the entropy conservative flux with a suitable diffusion operator. The entropy has to be preserved in smooth solutions and be dissipated at shocks. To achieve this, a switch function, based on entropy variables, is employed to make the numerical diffusion term added around discontinuities automatically. The resulting scheme is still entropy-stable. A number of numerical experiments illustrating the robustness and accuracy of the scheme are presented. From these numerical results, we observe a remarkable gain in accuracy.
Four-level conservative finite-difference schemes for Boussinesq paradigm equation
Kolkovska, N.
2013-10-01
In this paper a two-parametric family of four level conservative finite difference schemes is constructed for the multidimensional Boussinesq paradigm equation. The schemes are explicit in the sense that no inner iterations are needed for evaluation of the numerical solution. The preservation of the discrete energy with this method is proved. The schemes have been numerically tested on one soliton propagation model and two solitons interaction model. The numerical experiments demonstrate that the proposed family of schemes has second order of convergence in space and time steps in the discrete maximal norm.
Self-adjusting entropy-stable scheme for compressible Euler equations
International Nuclear Information System (INIS)
Cheng Xiao-Han; Nie Yu-Feng; Cai Li; Feng Jian-Hu; Luo Xiao-Yu
2015-01-01
In this work, a self-adjusting entropy-stable scheme is proposed for solving compressible Euler equations. The entropy-stable scheme is constructed by combining the entropy conservative flux with a suitable diffusion operator. The entropy has to be preserved in smooth solutions and be dissipated at shocks. To achieve this, a switch function, which is based on entropy variables, is employed to make the numerical diffusion term be automatically added around discontinuities. The resulting scheme is still entropy-stable. A number of numerical experiments illustrating the robustness and accuracy of the scheme are presented. From these numerical results, we observe a remarkable gain in accuracy. (paper)
Selectively strippable paint schemes
Stein, R.; Thumm, D.; Blackford, Roger W.
1993-03-01
In order to meet the requirements of more environmentally acceptable paint stripping processes many different removal methods are under evaluation. These new processes can be divided into mechanical and chemical methods. ICI has developed a paint scheme with intermediate coat and fluid resistant polyurethane topcoat which can be stripped chemically in a short period of time with methylene chloride free and phenol free paint strippers.
On usage of CABARET scheme for tracer transport in INM ocean model
International Nuclear Information System (INIS)
Diansky, Nikolay; Kostrykin, Sergey; Gusev, Anatoly; Salnikov, Nikolay
2010-01-01
The contemporary state of ocean numerical modelling sets some requirements for the numerical advection schemes used in ocean general circulation models (OGCMs). The most important requirements are conservation, monotonicity and numerical efficiency including good parallelization properties. Investigation of some advection schemes shows that one of the best schemes satisfying the criteria is CABARET scheme. 3D-modification of the CABARET scheme was used to develop a new transport module (for temperature and salinity) for the Institute of Numerical Mathematics ocean model (INMOM). Testing of this module on some common benchmarks shows a high accuracy in comparison with the second-order advection scheme used in the INMOM. This new module was incorporated in the INMOM and experiments with the modified model showed a better simulation of oceanic circulation than its previous version.
A modified symplectic PRK scheme for seismic wave modeling
Liu, Shaolin; Yang, Dinghui; Ma, Jian
2017-02-01
A new scheme for the temporal discretization of the seismic wave equation is constructed based on symplectic geometric theory and a modified strategy. The ordinary differential equation in terms of time, which is obtained after spatial discretization via the spectral-element method, is transformed into a Hamiltonian system. A symplectic partitioned Runge-Kutta (PRK) scheme is used to solve the Hamiltonian system. A term related to the multiplication of the spatial discretization operator with the seismic wave velocity vector is added into the symplectic PRK scheme to create a modified symplectic PRK scheme. The symplectic coefficients of the new scheme are determined via Taylor series expansion. The positive coefficients of the scheme indicate that its long-term computational capability is more powerful than that of conventional symplectic schemes. An exhaustive theoretical analysis reveals that the new scheme is highly stable and has low numerical dispersion. The results of three numerical experiments demonstrate the high efficiency of this method for seismic wave modeling.
Boudin , Laurent; Mathiaud , Julien
2012-01-01
In this work, we discuss some numerical properties of the viscous numerical scheme introduced in [Boudin, Mathiaud, NMPDE 2012] to solve the one-dimensional pressureless gases system, and study in particular, from a computational viewpoint, its asymptotic behavior when the viscosity parameter used in the scheme becomes smaller.
Scalable Nonlinear Compact Schemes
Energy Technology Data Exchange (ETDEWEB)
Ghosh, Debojyoti [Argonne National Lab. (ANL), Argonne, IL (United States); Constantinescu, Emil M. [Univ. of Chicago, IL (United States); Brown, Jed [Univ. of Colorado, Boulder, CO (United States)
2014-04-01
In this work, we focus on compact schemes resulting in tridiagonal systems of equations, specifically the fifth-order CRWENO scheme. We propose a scalable implementation of the nonlinear compact schemes by implementing a parallel tridiagonal solver based on the partitioning/substructuring approach. We use an iterative solver for the reduced system of equations; however, we solve this system to machine zero accuracy to ensure that no parallelization errors are introduced. It is possible to achieve machine-zero convergence with few iterations because of the diagonal dominance of the system. The number of iterations is specified a priori instead of a norm-based exit criterion, and collective communications are avoided. The overall algorithm thus involves only point-to-point communication between neighboring processors. Our implementation of the tridiagonal solver differs from and avoids the drawbacks of past efforts in the following ways: it introduces no parallelization-related approximations (multiprocessor solutions are exactly identical to uniprocessor ones), it involves minimal communication, the mathematical complexity is similar to that of the Thomas algorithm on a single processor, and it does not require any communication and computation scheduling.
Nakamura, T
1993-01-01
In GR13 we heard many reports on recent. progress as well as future plans of detection of gravitational waves. According to these reports (see the report of the workshop on the detection of gravitational waves by Paik in this volume), it is highly probable that the sensitivity of detectors such as laser interferometers and ultra low temperature resonant bars will reach the level of h ~ 10—21 by 1998. in this level we may expect the detection of the gravitational waves from astrophysical sources such as coalescing binary neutron stars once a year or so. Therefore the progress in numerical relativity is urgently required to predict the wave pattern and amplitude of the gravitational waves from realistic astrophysical sources. The time left for numerical relativists is only six years or so although there are so many difﬁculties in principle as well as in practice.
Efficient Scheme for Chemical Flooding Simulation
Directory of Open Access Journals (Sweden)
Braconnier Benjamin
2014-07-01
Full Text Available In this paper, we investigate an efficient implicit scheme for the numerical simulation of chemical enhanced oil recovery technique for oil fields. For the sake of brevity, we only focus on flows with polymer to describe the physical and numerical models. In this framework, we consider a black oil model upgraded with the polymer modeling. We assume the polymer only transported in the water phase or adsorbed on the rock following a Langmuir isotherm. The polymer reduces the water phase mobility which can change drastically the behavior of water oil interfaces. Then, we propose a fractional step technique to resolve implicitly the system. The first step is devoted to the resolution of the black oil subsystem and the second to the polymer mass conservation. In such a way, jacobian matrices coming from the implicit formulation have a moderate size and preserve solvers efficiency. Nevertheless, the coupling between the black-oil subsystem and the polymer is not fully resolved. For efficiency and accuracy comparison, we propose an explicit scheme for the polymer for which large time step is prohibited due to its CFL (Courant-Friedrichs-Levy criterion and consequently approximates accurately the coupling. Numerical experiments with polymer are simulated : a core flood, a 5-spot reservoir with surfactant and ions and a 3D real case. Comparisons are performed between the polymer explicit and implicit scheme. They prove that our polymer implicit scheme is efficient, robust and resolves accurately the coupling physics. The development and the simulations have been performed with the software PumaFlow [PumaFlow (2013 Reference manual, release V600, Beicip Franlab].
Liu, Meilin
2011-07-01
A discontinuous Galerkin finite element method (DG-FEM) with a highly-accurate time integration scheme is presented. The scheme achieves its high accuracy using numerically constructed predictor-corrector integration coefficients. Numerical results show that this new time integration scheme uses considerably larger time steps than the fourth-order Runge-Kutta method when combined with a DG-FEM using higher-order spatial discretization/basis functions for high accuracy. © 2011 IEEE.
Two split cell numerical methods for solving 2-D non-equilibrium radiation transport equations
International Nuclear Information System (INIS)
Feng Tinggui
2004-11-01
Two numerically positive methods, the step characteristic integral method and subcell balance method, for solving radiative transfer equations on quadrilateral grids are presented. Numerical examples shows that the schemes presented are feasible on non-rectangle grid computation, and that the computing results by the schemes presented are comparative to that by the discrete ordinate diamond scheme on rectangle grid. (author)
Pressure correction schemes for compressible flows
International Nuclear Information System (INIS)
Kheriji, W.
2011-01-01
This thesis is concerned with the development of semi-implicit fractional step schemes, for the compressible Navier-Stokes equations; these schemes are part of the class of the pressure correction methods. The chosen spatial discretization is staggered: non conforming mixed finite elements (Crouzeix-Raviart or Rannacher-Turek) or the classic MA C scheme. An upwind finite volume discretization of the mass balance guarantees the positivity of the density. The positivity of the internal energy is obtained by discretizing the internal energy balance by an upwind finite volume scheme and b y coupling the discrete internal energy balance with the pressure correction step. A special finite volume discretization on dual cells is performed for the convection term in the momentum balance equation, and a renormalisation step for the pressure is added to the algorithm; this ensures the control in time of the integral of the total energy over the domain. All these a priori estimates imply the existence of a discrete solution by a topological degree argument. The application of this scheme to Euler equations raises an additional difficulty. Indeed, obtaining correct shocks requires the scheme to be consistent with the total energy balance, property which we obtain as follows. First of all, a local discrete kinetic energy balance is established; it contains source terms winch we somehow compensate in the internal energy balance. The kinetic and internal energy equations are associated with the dual and primal meshes respectively, and thus cannot be added to obtain a total energy balance; its continuous counterpart is however recovered at the limit: if we suppose that a sequence of discrete solutions converges when the space and time steps tend to 0, we indeed show, in 1D at least, that the limit satisfies a weak form of the equation. These theoretical results are comforted by numerical tests. Similar results are obtained for the baro-tropic Navier-Stokes equations. (author)
Convergent Difference Schemes for Hamilton-Jacobi equations
Duisembay, Serikbolsyn
2018-05-07
In this thesis, we consider second-order fully nonlinear partial differential equations of elliptic type. Our aim is to develop computational methods using convergent difference schemes for stationary Hamilton-Jacobi equations with Dirichlet and Neumann type boundary conditions in arbitrary two-dimensional domains. First, we introduce the notion of viscosity solutions in both continuous and discontinuous frameworks. Next, we review Barles-Souganidis approach using monotone, consistent, and stable schemes. In particular, we show that these schemes converge locally uniformly to the unique viscosity solution of the first-order Hamilton-Jacobi equations under mild assumptions. To solve the scheme numerically, we use Euler map with some initial guess. This iterative method gives the viscosity solution as a limit. Moreover, we illustrate our numerical approach in several two-dimensional examples.
Optimized difference schemes for multidimensional hyperbolic partial differential equations
Directory of Open Access Journals (Sweden)
Adrian Sescu
2009-04-01
Full Text Available In numerical solutions to hyperbolic partial differential equations in multidimensions, in addition to dispersion and dissipation errors, there is a grid-related error (referred to as isotropy error or numerical anisotropy that affects the directional dependence of the wave propagation. Difference schemes are mostly analyzed and optimized in one dimension, wherein the anisotropy correction may not be effective enough. In this work, optimized multidimensional difference schemes with arbitrary order of accuracy are designed to have improved isotropy compared to conventional schemes. The derivation is performed based on Taylor series expansion and Fourier analysis. The schemes are restricted to equally-spaced Cartesian grids, so the generalized curvilinear transformation method and Cartesian grid methods are good candidates.
Numerical and symbolic scientific computing
Langer, Ulrich
2011-01-01
The book presents the state of the art and results and also includes articles pointing to future developments. Most of the articles center around the theme of linear partial differential equations. Major aspects are fast solvers in elastoplasticity, symbolic analysis for boundary problems, symbolic treatment of operators, computer algebra, and finite element methods, a symbolic approach to finite difference schemes, cylindrical algebraic decomposition and local Fourier analysis, and white noise analysis for stochastic partial differential equations. Further numerical-symbolic topics range from
Yasas, F M
1977-01-01
In response to a United Nations resolution, the Mobile Training Scheme (MTS) was set up to provide training to the trainers of national cadres engaged in frontline and supervisory tasks in social welfare and rural development. The training is innovative in its being based on an analysis of field realities. The MTS team consisted of a leader, an expert on teaching methods and materials, and an expert on action research and evaluation. The country's trainers from different departments were sent to villages to work for a short period and to report their problems in fulfilling their roles. From these grass roots experiences, they made an analysis of the job, determining what knowledge, attitude and skills it required. Analysis of daily incidents and problems were used to produce indigenous teaching materials drawn from actual field practice. How to consider the problems encountered through government structures for policy making and decisions was also learned. Tasks of the students were to identify the skills needed for role performance by job analysis, daily diaries and project histories; to analyze the particular community by village profiles; to produce indigenous teaching materials; and to practice the role skills by actual role performance. The MTS scheme was tried in Nepal in 1974-75; 3 training programs trained 25 trainers and 51 frontline workers; indigenous teaching materials were created; technical papers written; and consultations were provided. In Afghanistan the scheme was used in 1975-76; 45 participants completed the training; seminars were held; and an ongoing Council was created. It is hoped that the training program will be expanded to other countries.
Two-level schemes for the advection equation
Vabishchevich, Petr N.
2018-06-01
The advection equation is the basis for mathematical models of continuum mechanics. In the approximate solution of nonstationary problems it is necessary to inherit main properties of the conservatism and monotonicity of the solution. In this paper, the advection equation is written in the symmetric form, where the advection operator is the half-sum of advection operators in conservative (divergent) and non-conservative (characteristic) forms. The advection operator is skew-symmetric. Standard finite element approximations in space are used. The standard explicit two-level scheme for the advection equation is absolutely unstable. New conditionally stable regularized schemes are constructed, on the basis of the general theory of stability (well-posedness) of operator-difference schemes, the stability conditions of the explicit Lax-Wendroff scheme are established. Unconditionally stable and conservative schemes are implicit schemes of the second (Crank-Nicolson scheme) and fourth order. The conditionally stable implicit Lax-Wendroff scheme is constructed. The accuracy of the investigated explicit and implicit two-level schemes for an approximate solution of the advection equation is illustrated by the numerical results of a model two-dimensional problem.
Quantum messages with signatures forgeable in arbitrated quantum signature schemes
International Nuclear Information System (INIS)
Kim, Taewan; Choi, Jeong Woon; Jho, Nam-Su; Lee, Soojoon
2015-01-01
Even though a method to perfectly sign quantum messages has not been known, the arbitrated quantum signature scheme has been considered as one of the good candidates. However, its forgery problem has been an obstacle to the scheme becoming a successful method. In this paper, we consider one situation, which is slightly different from the forgery problem, that we use to check whether at least one quantum message with signature can be forged in a given scheme, although all the messages cannot be forged. If there are only a finite number of forgeable quantum messages in the scheme, then the scheme can be secured against the forgery attack by not sending forgeable quantum messages, and so our situation does not directly imply that we check whether the scheme is secure against the attack. However, if users run a given scheme without any consideration of forgeable quantum messages, then a sender might transmit such forgeable messages to a receiver and in such a case an attacker can forge the messages if the attacker knows them. Thus it is important and necessary to look into forgeable quantum messages. We show here that there always exists such a forgeable quantum message-signature pair for every known scheme with quantum encryption and rotation, and numerically show that there are no forgeable quantum message-signature pairs that exist in an arbitrated quantum signature scheme. (paper)
Adaptive transmission schemes for MISO spectrum sharing systems
Bouida, Zied
2013-06-01
We propose three adaptive transmission techniques aiming to maximize the capacity of a multiple-input-single-output (MISO) secondary system under the scenario of an underlay cognitive radio network. In the first scheme, namely the best antenna selection (BAS) scheme, the antenna maximizing the capacity of the secondary link is used for transmission. We then propose an orthogonal space time bloc code (OSTBC) transmission scheme using the Alamouti scheme with transmit antenna selection (TAS), namely the TAS/STBC scheme. The performance improvement offered by this scheme comes at the expense of an increased complexity and delay when compared to the BAS scheme. As a compromise between these schemes, we propose a hybrid scheme using BAS when only one antenna verifies the interference condition and TAS/STBC when two or more antennas are illegible for communication. We first derive closed-form expressions of the statistics of the received signal-to-interference-and-noise ratio (SINR) at the secondary receiver (SR). These results are then used to analyze the performance of the proposed techniques in terms of the average spectral efficiency, the average number of transmit antennas, and the average bit error rate (BER). This performance is then illustrated via selected numerical examples. © 2013 IEEE.
Calatroni, Luca
2013-08-01
We present directional operator splitting schemes for the numerical solution of a fourth-order, nonlinear partial differential evolution equation which arises in image processing. This equation constitutes the H -1-gradient flow of the total variation and represents a prototype of higher-order equations of similar type which are popular in imaging for denoising, deblurring and inpainting problems. The efficient numerical solution of this equation is very challenging due to the stiffness of most numerical schemes. We show that the combination of directional splitting schemes with implicit time-stepping provides a stable and computationally cheap numerical realisation of the equation.
Calatroni, Luca; Dü ring, Bertram; Schö nlieb, Carola-Bibiane
2013-01-01
We present directional operator splitting schemes for the numerical solution of a fourth-order, nonlinear partial differential evolution equation which arises in image processing. This equation constitutes the H -1-gradient flow of the total variation and represents a prototype of higher-order equations of similar type which are popular in imaging for denoising, deblurring and inpainting problems. The efficient numerical solution of this equation is very challenging due to the stiffness of most numerical schemes. We show that the combination of directional splitting schemes with implicit time-stepping provides a stable and computationally cheap numerical realisation of the equation.
Bonus schemes and trading activity
Pikulina, E.S.; Renneboog, L.D.R.; ter Horst, J.R.; Tobler, P.N.
2014-01-01
Little is known about how different bonus schemes affect traders' propensity to trade and which bonus schemes improve traders' performance. We study the effects of linear versus threshold bonus schemes on traders' behavior. Traders buy and sell shares in an experimental stock market on the basis of
Mukhadiyev, Nurzhan
2017-05-01
velocity drift. Also, dynamic inlet control was implemented which retained flame inside of a domain even at very high fuel consumption fluctuations. Last part of this work was to implement pseudospectral method into KARFS. Direct numerical simulations performed previously are targeting real engines and turbines conditions as an ultimate goal. These targeted simulations are prohibitively computationally expensive. This work suggested and implemented into KARFS a pseudospectral method for reacting turbulent flows, as an attempt to decrease computational cost. Approximately four times computational CPU hours savings were achieved.
DEFF Research Database (Denmark)
Juhl, Hans Jørn; Stacey, Julia
2001-01-01
. In the spring of 2001 MAPP carried out an extensive consumer study with special emphasis on the Nordic environmentally friendly label 'the swan'. The purpose was to find out how much consumers actually know and use various labelling schemes. 869 households were contacted and asked to fill in a questionnaire...... it into consideration when I go shopping. The respondent was asked to pick the most suitable answer, which described her use of each label. 29% - also called 'the labelling blind' - responded that they basically only knew the recycling label and the Government controlled organic label 'Ø-mærket'. Another segment of 6...
International Nuclear Information System (INIS)
Grashilin, V.A.; Karyshev, Yu.Ya.
1982-01-01
A 6-cycle scheme of step motor is described. The block-diagram and the basic circuit of the step motor control are presented. The step motor control comprises a pulse shaper, electronic commutator and power amplifiers. The step motor supply from 6-cycle electronic commutator provides for higher reliability and accuracy than from 3-cycle commutator. The control of step motor work is realised by the program given by the external source of control signals. Time-dependent diagrams for step motor control are presented. The specifications of the step-motor is given
Novel communication scheme based on chaotic Roessler circuits
International Nuclear Information System (INIS)
GarcIa-Lopez, J H; Jaimes-Reategui, R; Pisarchik, A N; MurguIa-Hernandez, A; Medina-Gutierrez, C; Valdivia-Hernadez, R; Villafana-Rauda, E
2005-01-01
We present a novel synchronization scheme for secure communication with two chaotic unidirectionally coupled Roessler circuits. The circuits are synchronized via one of the variables, while a signal is transmitted through another variable. We show that this scheme allows more stable communications. The system dynamics is studied numerically and experimentally in a wide range of a control parameter. The possibility of secure communications with an audio signal is demonstrated
IR subtraction schemes. Integrating the counterterms at NNLO in QCD
Energy Technology Data Exchange (ETDEWEB)
Bolzoni, Paolo; Somogyi, Gabor
2010-06-15
We briefly review a subtraction scheme for computing radiative corrections to QCD jet cross sections that can be defined at any order in perturbation theory. Hereafter we discuss the computational methods used to evaluate analytically and numerically the integrated counterterms arising from such a subtraction scheme. Basically these methods the Mellin-Barnes (MB) representations technique together with the harmonic summation and the sector decomposition. (orig.)
IR subtraction schemes. Integrating the counterterms at NNLO in QCD
International Nuclear Information System (INIS)
Bolzoni, Paolo; Somogyi, Gabor
2010-06-01
We briefly review a subtraction scheme for computing radiative corrections to QCD jet cross sections that can be defined at any order in perturbation theory. Hereafter we discuss the computational methods used to evaluate analytically and numerically the integrated counterterms arising from such a subtraction scheme. Basically these methods the Mellin-Barnes (MB) representations technique together with the harmonic summation and the sector decomposition. (orig.)
Numerical modelling of GPR electromagnetic fields for locating burial sites
Directory of Open Access Journals (Sweden)
Carcione José M.
2017-01-01
Full Text Available Ground-penetrating radar (GPR is commonly used for locating burial sites. In this article, we acquired radargrams at a site where a domestic pig cadaver was buried. The measurements were conducted with the ProEx System GPR manufactured by the Swedish company Mala Geoscience with an antenna of 500MHz. The event corresponding to the pig can be clearly seen in the measurements. In order to improve the interpretation, the electromagnetic field is compared to numerical simulations computed with the pseudo-spectral Fourier method. A geological model has been defined on the basis of assumed electromagnetic properties (permittivity, conductivity and magnetic permeability. The results, when compared with the GPR measurements, show a dissimilar amplitude behaviour, with a stronger reflection event from the bottom of the pit. We have therefore performed another simulation by decreasing the electrical conductivity of the body very close to that of air. The comparison improved, showing more reflections, which could be an indication that the body contains air or has been degraded to a certain extent that the electrical resistivity has greatly increased.
Numerical Simulations of X-Ray Free Electron Lasers (XFEL)
Antonelli, Paolo
2014-11-04
We study a nonlinear Schrödinger equation which arises as an effective single particle model in X-ray free electron lasers (XFEL). This equation appears as a first principles model for the beam-matter interactions that would take place in an XFEL molecular imaging experiment in [A. Fratalocchi and G. Ruocco, Phys. Rev. Lett., 106 (2011), 105504]. Since XFEL are more powerful by several orders of magnitude than more conventional lasers, the systematic investigation of many of the standard assumptions and approximations has attracted increased attention. In this model the electrons move under a rapidly oscillating electromagnetic field, and the convergence of the problem to an effective time-averaged one is examined. We use an operator splitting pseudospectral method to investigate numerically the behavior of the model versus that of its time-averaged version in complex situations, namely the energy subcritical/mass supercritical case and in the presence of a periodic lattice. We find the time-averaged model to be an effective approximation, even close to blowup, for fast enough oscillations of the external field. This work extends previous analytical results for simpler cases [P. Antonelli, A. Athanassoulis, H. Hajaiej, and P. Markowich, Arch. Ration. Mech. Anal., 211 (2014), pp. 711--732].
Direct Numerical Simulation of heat transfer in a turbulent flume
International Nuclear Information System (INIS)
Bergant, R.; Tiselj, I.
2001-01-01
Direct Numerical Simulation (DNS) can be used for the description of turbulent heat transfer in the fluid at low Reynolds numbers. DNS means precise solving of Navier-Stoke's equations without any extra turbulent models. DNS should be able to describe all relevant length scales and time scales in observed turbulent flow. The largest length scale is actually dimension of system and the smallest length and time scale is equal to Kolmogorov scale. In the present work simulations of fully developed turbulent velocity and temperature fields were performed in a turbulent flume (open channel) with pseudo-spectral approach at Reynolds number 2670 (friction Reynolds number 171) and constant Prandtl number 5.4, considering the fluid temperature as a passive scalar. Two ideal thermal boundary conditions were taken into account on the heated wall. The first one was an ideal isothermal boundary condition and the second one an ideal isoflux boundary condition. We observed different parameters like mean temperature and velocity, fluctuations of temperature and velocity, and auto-correlation functions.(author)
Direct numerical simulation of stratified gas-liquid flow
International Nuclear Information System (INIS)
Lombardi, P.; De Angelis, V.; Banerjee, S.
1996-01-01
Interactions through an interface between two turbulent flows play an important role in many environmental and industrial problems, e.g. in determining the coupling fluxes of heat mass and momentum, between the ocean and atmosphere, and in the design of gas-liquid contractors for the chemical industry, as well as in determining interactions between phases in nuclear transients that are accompanied by system voiding e.g. LOCAs. Here, the Direct Numerical Simulation (DNS) of the interaction of two turbulent fluids through a flat interface has been simulated. The flow and the temperature fields are computed using a pseudospectral method. This study shows that shear stress at the interface correlates well with the heat flux. Extensive analysis of the near interface turbulence structure has been performed using quadrant analysis. From this it is clear that gas-side sweeps dominate over the high shear stress regions. This suggests that simple parameterizations based on sweep frequency may be adequate for predictions of scalar transport rates
A positive and entropy-satisfying finite volume scheme for the Baer–Nunziato model
Energy Technology Data Exchange (ETDEWEB)
Coquel, Frédéric, E-mail: frederic.coquel@cmap.polytechnique.fr [CMAP, École Polytechnique CNRS, UMR 7641, Route de Saclay, F-91128 Palaiseau cedex (France); Hérard, Jean-Marc, E-mail: jean-marc.herard@edf.fr [EDF-R& D, Département MFEE, 6 Quai Watier, F-78401 Chatou Cedex (France); Saleh, Khaled, E-mail: saleh@math.univ-lyon1.fr [Université de Lyon, CNRS UMR 5208, Université Lyon 1, Institut Camille Jordan, 43 bd 11 novembre 1918, F-69622 Villeurbanne cedex (France)
2017-02-01
We present a relaxation scheme for approximating the entropy dissipating weak solutions of the Baer–Nunziato two-phase flow model. This relaxation scheme is straightforwardly obtained as an extension of the relaxation scheme designed in for the isentropic Baer–Nunziato model and consequently inherits its main properties. To our knowledge, this is the only existing scheme for which the approximated phase fractions, phase densities and phase internal energies are proven to remain positive without any restrictive condition other than a classical fully computable CFL condition. For ideal gas and stiffened gas equations of state, real values of the phasic speeds of sound are also proven to be maintained by the numerical scheme. It is also the only scheme for which a discrete entropy inequality is proven, under a CFL condition derived from the natural sub-characteristic condition associated with the relaxation approximation. This last property, which ensures the non-linear stability of the numerical method, is satisfied for any admissible equation of state. We provide a numerical study for the convergence of the approximate solutions towards some exact Riemann solutions. The numerical simulations show that the relaxation scheme compares well with two of the most popular existing schemes available for the Baer–Nunziato model, namely Schwendeman–Wahle–Kapila's Godunov-type scheme and Tokareva–Toro's HLLC scheme . The relaxation scheme also shows a higher precision and a lower computational cost (for comparable accuracy) than a standard numerical scheme used in the nuclear industry, namely Rusanov's scheme. Finally, we assess the good behavior of the scheme when approximating vanishing phase solutions.
A positive and entropy-satisfying finite volume scheme for the Baer-Nunziato model
Coquel, Frédéric; Hérard, Jean-Marc; Saleh, Khaled
2017-02-01
We present a relaxation scheme for approximating the entropy dissipating weak solutions of the Baer-Nunziato two-phase flow model. This relaxation scheme is straightforwardly obtained as an extension of the relaxation scheme designed in [16] for the isentropic Baer-Nunziato model and consequently inherits its main properties. To our knowledge, this is the only existing scheme for which the approximated phase fractions, phase densities and phase internal energies are proven to remain positive without any restrictive condition other than a classical fully computable CFL condition. For ideal gas and stiffened gas equations of state, real values of the phasic speeds of sound are also proven to be maintained by the numerical scheme. It is also the only scheme for which a discrete entropy inequality is proven, under a CFL condition derived from the natural sub-characteristic condition associated with the relaxation approximation. This last property, which ensures the non-linear stability of the numerical method, is satisfied for any admissible equation of state. We provide a numerical study for the convergence of the approximate solutions towards some exact Riemann solutions. The numerical simulations show that the relaxation scheme compares well with two of the most popular existing schemes available for the Baer-Nunziato model, namely Schwendeman-Wahle-Kapila's Godunov-type scheme [39] and Tokareva-Toro's HLLC scheme [44]. The relaxation scheme also shows a higher precision and a lower computational cost (for comparable accuracy) than a standard numerical scheme used in the nuclear industry, namely Rusanov's scheme. Finally, we assess the good behavior of the scheme when approximating vanishing phase solutions.
Packet reversed packet combining scheme
International Nuclear Information System (INIS)
Bhunia, C.T.
2006-07-01
The packet combining scheme is a well defined simple error correction scheme with erroneous copies at the receiver. It offers higher throughput combined with ARQ protocols in networks than that of basic ARQ protocols. But packet combining scheme fails to correct errors when the errors occur in the same bit locations of two erroneous copies. In the present work, we propose a scheme that will correct error if the errors occur at the same bit location of the erroneous copies. The proposed scheme when combined with ARQ protocol will offer higher throughput. (author)
International Nuclear Information System (INIS)
Ma Hai-Qiang; Wei Ke-Jin; Yang Jian-Hui; Li Rui-Xue; Zhu Wu
2014-01-01
We present a full quantum network scheme using a modified BB84 protocol. Unlike other quantum network schemes, it allows quantum keys to be distributed between two arbitrary users with the help of an intermediary detecting user. Moreover, it has good expansibility and prevents all potential attacks using loopholes in a detector, so it is more practical to apply. Because the fiber birefringence effects are automatically compensated, the scheme is distinctly stable in principle and in experiment. The simple components for every user make our scheme easier for many applications. The experimental results demonstrate the stability and feasibility of this scheme. (general)
Jacques, Ian
1987-01-01
This book is primarily intended for undergraduates in mathematics, the physical sciences and engineering. It introduces students to most of the techniques forming the core component of courses in numerical analysis. The text is divided into eight chapters which are largely self-contained. However, with a subject as intricately woven as mathematics, there is inevitably some interdependence between them. The level of difficulty varies and, although emphasis is firmly placed on the methods themselves rather than their analysis, we have not hesitated to include theoretical material when we consider it to be sufficiently interesting. However, it should be possible to omit those parts that do seem daunting while still being able to follow the worked examples and to tackle the exercises accompanying each section. Familiarity with the basic results of analysis and linear algebra is assumed since these are normally taught in first courses on mathematical methods. For reference purposes a list of theorems used in the t...
Energy Technology Data Exchange (ETDEWEB)
Touma, Rony [Department of Computer Science & Mathematics, Lebanese American University, Beirut (Lebanon); Zeidan, Dia [School of Basic Sciences and Humanities, German Jordanian University, Amman (Jordan)
2016-06-08
In this paper we extend a central finite volume method on nonuniform grids to the case of drift-flux two-phase flow problems. The numerical base scheme is an unstaggered, non oscillatory, second-order accurate finite volume scheme that evolves a piecewise linear numerical solution on a single grid and uses dual cells intermediately while updating the numerical solution to avoid the resolution of the Riemann problems arising at the cell interfaces. We then apply the numerical scheme and solve a classical drift-flux problem. The obtained results are in good agreement with corresponding ones appearing in the recent literature, thus confirming the potential of the proposed scheme.
New advection schemes for free surface flows
International Nuclear Information System (INIS)
Pavan, Sara
2016-01-01
The purpose of this thesis is to build higher order and less diffusive schemes for pollutant transport in shallow water flows or 3D free surface flows. We want robust schemes which respect the main mathematical properties of the advection equation with relatively low numerical diffusion and apply them to environmental industrial applications. Two techniques are tested in this work: a classical finite volume method and a residual distribution technique combined with a finite element method. For both methods we propose a decoupled approach since it is the most advantageous in terms of accuracy and CPU time. Concerning the first technique, a vertex-centred finite volume method is used to solve the augmented shallow water system where the numerical flux is computed through an Harten-Lax-Van Leer-Contact Riemann solver. Starting from this solution, a decoupled approach is formulated and is preferred since it allows to compute with a larger time step the advection of a tracer. This idea was inspired by Audusse, E. and Bristeau, M.O. [13]. The Monotonic Upwind Scheme for Conservation Law, combined with the decoupled approach, is then used for the second order extension in space. The wetting and drying problem is also analysed and a possible solution is presented. In the second case, the shallow water system is entirely solved using the finite element technique and the residual distribution method is applied to the solution of the tracer equation, focusing on the case of time-dependent problems. However, for consistency reasons the resolution of the continuity equation must be considered in the numerical discretization of the tracer. In order to get second order schemes for unsteady cases a predictor-corrector scheme is used in this work. A first order but less diffusive version of the predictor-corrector scheme is also introduced. Moreover, we also present a new locally semi-implicit version of the residual distribution method which, in addition to good properties in
Finite-difference schemes for anisotropic diffusion
Energy Technology Data Exchange (ETDEWEB)
Es, Bram van, E-mail: es@cwi.nl [Centrum Wiskunde and Informatica, P.O. Box 94079, 1090GB Amsterdam (Netherlands); FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, Association EURATOM-FOM (Netherlands); Koren, Barry [Eindhoven University of Technology (Netherlands); Blank, Hugo J. de [FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, Association EURATOM-FOM (Netherlands)
2014-09-01
In fusion plasmas diffusion tensors are extremely anisotropic due to the high temperature and large magnetic field strength. This causes diffusion, heat conduction, and viscous momentum loss, to effectively be aligned with the magnetic field lines. This alignment leads to different values for the respective diffusive coefficients in the magnetic field direction and in the perpendicular direction, to the extent that heat diffusion coefficients can be up to 10{sup 12} times larger in the parallel direction than in the perpendicular direction. This anisotropy puts stringent requirements on the numerical methods used to approximate the MHD-equations since any misalignment of the grid may cause the perpendicular diffusion to be polluted by the numerical error in approximating the parallel diffusion. Currently the common approach is to apply magnetic field-aligned coordinates, an approach that automatically takes care of the directionality of the diffusive coefficients. This approach runs into problems at x-points and at points where there is magnetic re-connection, since this causes local non-alignment. It is therefore useful to consider numerical schemes that are tolerant to the misalignment of the grid with the magnetic field lines, both to improve existing methods and to help open the possibility of applying regular non-aligned grids. To investigate this, in this paper several discretization schemes are developed and applied to the anisotropic heat diffusion equation on a non-aligned grid.
Power corrections in the N-jettiness subtraction scheme
Energy Technology Data Exchange (ETDEWEB)
Boughezal, Radja [High Energy Physics Division, Argonne National Laboratory,Argonne, IL 60439 (United States); Liu, Xiaohui [Department of Physics, Beijing Normal University,Beijing, 100875 (China); Center of Advanced Quantum Studies, Beijing Normal University,Beijing, 100875 (China); Center for High-Energy Physics, Peking University,Beijing, 100871 (China); Maryland Center for Fundamental Physics, University of Maryland,College Park, MD 20742 (United States); Petriello, Frank [Department of Physics & Astronomy, Northwestern University,Evanston, IL 60208 (United States); High Energy Physics Division, Argonne National Laboratory,Argonne, IL 60439 (United States)
2017-03-30
We discuss the leading-logarithmic power corrections in the N-jettiness subtraction scheme for higher-order perturbative QCD calculations. We compute the next-to-leading order power corrections for an arbitrary N-jet process, and we explicitly calculate the power correction through next-to-next-to-leading order for color-singlet production for both qq̄ and gg initiated processes. Our results are compact and simple to implement numerically. Including the leading power correction in the N-jettiness subtraction scheme substantially improves its numerical efficiency. We discuss what features of our techniques extend to processes containing final-state jets.
International Nuclear Information System (INIS)
Botchorishvili, Ramaz; Pironneau, Olivier
2003-01-01
We develop here a new class of finite volume schemes on unstructured meshes for scalar conservation laws with stiff source terms. The schemes are of equilibrium type, hence with uniform bounds on approximate solutions, valid in cell entropy inequalities and exact for some equilibrium states. Convergence is investigated in the framework of kinetic schemes. Numerical tests show high computational efficiency and a significant advantage over standard cell centered discretization of source terms. Equilibrium type schemes produce accurate results even on test problems for which the standard approach fails. For some numerical tests they exhibit exponential type convergence rate. In two of our numerical tests an equilibrium type scheme with 441 nodes on a triangular mesh is more accurate than a standard scheme with 5000 2 grid points
A Modified Computational Scheme for the Stochastic Perturbation Finite Element Method
Directory of Open Access Journals (Sweden)
Feng Wu
Full Text Available Abstract A modified computational scheme of the stochastic perturbation finite element method (SPFEM is developed for structures with low-level uncertainties. The proposed scheme can provide second-order estimates of the mean and variance without differentiating the system matrices with respect to the random variables. When the proposed scheme is used, it involves finite analyses of deterministic systems. In the case of one random variable with a symmetric probability density function, the proposed computational scheme can even provide a result with fifth-order accuracy. Compared with the traditional computational scheme of SPFEM, the proposed scheme is more convenient for numerical implementation. Four numerical examples demonstrate that the proposed scheme can be used in linear or nonlinear structures with correlated or uncorrelated random variables.
Modified Aggressive Packet Combining Scheme
International Nuclear Information System (INIS)
Bhunia, C.T.
2010-06-01
In this letter, a few schemes are presented to improve the performance of aggressive packet combining scheme (APC). To combat error in computer/data communication networks, ARQ (Automatic Repeat Request) techniques are used. Several modifications to improve the performance of ARQ are suggested by recent research and are found in literature. The important modifications are majority packet combining scheme (MjPC proposed by Wicker), packet combining scheme (PC proposed by Chakraborty), modified packet combining scheme (MPC proposed by Bhunia), and packet reversed packet combining (PRPC proposed by Bhunia) scheme. These modifications are appropriate for improving throughput of conventional ARQ protocols. Leung proposed an idea of APC for error control in wireless networks with the basic objective of error control in uplink wireless data network. We suggest a few modifications of APC to improve its performance in terms of higher throughput, lower delay and higher error correction capability. (author)
Transmission usage cost allocation schemes
International Nuclear Information System (INIS)
Abou El Ela, A.A.; El-Sehiemy, R.A.
2009-01-01
This paper presents different suggested transmission usage cost allocation (TCA) schemes to the system individuals. Different independent system operator (ISO) visions are presented using the proportional rata and flow-based TCA methods. There are two proposed flow-based TCA schemes (FTCA). The first FTCA scheme generalizes the equivalent bilateral exchanges (EBE) concepts for lossy networks through two-stage procedure. The second FTCA scheme is based on the modified sensitivity factors (MSF). These factors are developed from the actual measurements of power flows in transmission lines and the power injections at different buses. The proposed schemes exhibit desirable apportioning properties and are easy to implement and understand. Case studies for different loading conditions are carried out to show the capability of the proposed schemes for solving the TCA problem. (author)
The Relationship between Nonconservative Schemes and Initial Values of Nonlinear Evolution Equations
Institute of Scientific and Technical Information of China (English)
林万涛
2004-01-01
For the nonconservative schemes of the nonlinear evolution equations, taking the one-dimensional shallow water wave equation as an example, the necessary conditions of computational stability are given.Based on numerical tests, the relationship between the nonlinear computational stability and the construction of difference schemes, as well as the form of initial values, is further discussed. It is proved through both theoretical analysis and numerical tests that if the construction of difference schemes is definite, the computational stability of nonconservative schemes is decided by the form of initial values.
Madhulatha, A.; Rajeevan, M.
2018-02-01
Main objective of the present paper is to examine the role of various parameterization schemes in simulating the evolution of mesoscale convective system (MCS) occurred over south-east India. Using the Weather Research and Forecasting (WRF) model, numerical experiments are conducted by considering various planetary boundary layer, microphysics, and cumulus parameterization schemes. Performances of different schemes are evaluated by examining boundary layer, reflectivity, and precipitation features of MCS using ground-based and satellite observations. Among various physical parameterization schemes, Mellor-Yamada-Janjic (MYJ) boundary layer scheme is able to produce deep boundary layer height by simulating warm temperatures necessary for storm initiation; Thompson (THM) microphysics scheme is capable to simulate the reflectivity by reasonable distribution of different hydrometeors during various stages of system; Betts-Miller-Janjic (BMJ) cumulus scheme is able to capture the precipitation by proper representation of convective instability associated with MCS. Present analysis suggests that MYJ, a local turbulent kinetic energy boundary layer scheme, which accounts strong vertical mixing; THM, a six-class hybrid moment microphysics scheme, which considers number concentration along with mixing ratio of rain hydrometeors; and BMJ, a closure cumulus scheme, which adjusts thermodynamic profiles based on climatological profiles might have contributed for better performance of respective model simulations. Numerical simulation carried out using the above combination of schemes is able to capture storm initiation, propagation, surface variations, thermodynamic structure, and precipitation features reasonably well. This study clearly demonstrates that the simulation of MCS characteristics is highly sensitive to the choice of parameterization schemes.
Accuracy of spectral and finite difference schemes in 2D advection problems
DEFF Research Database (Denmark)
Naulin, V.; Nielsen, A.H.
2003-01-01
In this paper we investigate the accuracy of two numerical procedures commonly used to solve 2D advection problems: spectral and finite difference (FD) schemes. These schemes are widely used, simulating, e.g., neutral and plasma flows. FD schemes have long been considered fast, relatively easy...... that the accuracy of FD schemes can be significantly improved if one is careful in choosing an appropriate FD scheme that reflects conservation properties of the nonlinear terms and in setting up the grid in accordance with the problem....
Parallel S/sub n/ iteration schemes
International Nuclear Information System (INIS)
Wienke, B.R.; Hiromoto, R.E.
1986-01-01
The iterative, multigroup, discrete ordinates (S/sub n/) technique for solving the linear transport equation enjoys widespread usage and appeal. Serial iteration schemes and numerical algorithms developed over the years provide a timely framework for parallel extension. On the Denelcor HEP, the authors investigate three parallel iteration schemes for solving the one-dimensional S/sub n/ transport equation. The multigroup representation and serial iteration methods are also reviewed. This analysis represents a first attempt to extend serial S/sub n/ algorithms to parallel environments and provides good baseline estimates on ease of parallel implementation, relative algorithm efficiency, comparative speedup, and some future directions. The authors examine ordered and chaotic versions of these strategies, with and without concurrent rebalance and diffusion acceleration. Two strategies efficiently support high degrees of parallelization and appear to be robust parallel iteration techniques. The third strategy is a weaker parallel algorithm. Chaotic iteration, difficult to simulate on serial machines, holds promise and converges faster than ordered versions of the schemes. Actual parallel speedup and efficiency are high and payoff appears substantial
Ferrofluids: Modeling, numerical analysis, and scientific computation
Tomas, Ignacio
This dissertation presents some developments in the Numerical Analysis of Partial Differential Equations (PDEs) describing the behavior of ferrofluids. The most widely accepted PDE model for ferrofluids is the Micropolar model proposed by R.E. Rosensweig. The Micropolar Navier-Stokes Equations (MNSE) is a subsystem of PDEs within the Rosensweig model. Being a simplified version of the much bigger system of PDEs proposed by Rosensweig, the MNSE are a natural starting point of this thesis. The MNSE couple linear velocity u, angular velocity w, and pressure p. We propose and analyze a first-order semi-implicit fully-discrete scheme for the MNSE, which decouples the computation of the linear and angular velocities, is unconditionally stable and delivers optimal convergence rates under assumptions analogous to those used for the Navier-Stokes equations. Moving onto the much more complex Rosensweig's model, we provide a definition (approximation) for the effective magnetizing field h, and explain the assumptions behind this definition. Unlike previous definitions available in the literature, this new definition is able to accommodate the effect of external magnetic fields. Using this definition we setup the system of PDEs coupling linear velocity u, pressure p, angular velocity w, magnetization m, and magnetic potential ϕ We show that this system is energy-stable and devise a numerical scheme that mimics the same stability property. We prove that solutions of the numerical scheme always exist and, under certain simplifying assumptions, that the discrete solutions converge. A notable outcome of the analysis of the numerical scheme for the Rosensweig's model is the choice of finite element spaces that allow the construction of an energy-stable scheme. Finally, with the lessons learned from Rosensweig's model, we develop a diffuse-interface model describing the behavior of two-phase ferrofluid flows and present an energy-stable numerical scheme for this model. For a
Towards a multigrid scheme in SU(2) lattice gauge theory
International Nuclear Information System (INIS)
Gutbrod, F.
1992-12-01
The task of constructing a viable updating multigrid scheme for SU(2) lattice gauge theory is discussed in connection with the classical eigenvalue problem. For a nonlocal overrelaxation Monte Carlo update step, the central numerical problem is the search for the minimum of a quadratic approximation to the action under nonlocal constraints. Here approximate eigenfunctions are essential to reduce the numerical work, and these eigenfunctions are to be constructed with multigrid techniques. A simple implementation on asymmetric lattices is described, where the grids are restricted to 3-dimensional hyperplanes. The scheme is shown to be moderately successful in the early stages of the updating history (starting from a cold configuration). The main results of another, less asymmetric scheme are presented briefly. (orig.)
Analysis of synchronous digital-modulation schemes for satellite communication
Takhar, G. S.; Gupta, S. C.
1975-01-01
The multipath communication channel for space communications is modeled as a multiplicative channel. This paper discusses the effects of multiplicative channel processes on the symbol error rate for quadrature modulation (QM) digital modulation schemes. An expression for the upper bound on the probability of error is derived and numerically evaluated. The results are compared with those obtained for additive channels.
Secret data embedding scheme modifying the frequency of ...
Indian Academy of Sciences (India)
such as banking, e-commerce, e-signature, distance learning, e-government ... received a growing attention in conjunction with the new tools and methods ... Essential points of the image processing and data embedding are clarified in the next section. ..... The proposed scheme's numerical performance is shown in table 6.
Coordinated renewable energy support schemes
DEFF Research Database (Denmark)
Morthorst, P.E.; Jensen, S.G.
2006-01-01
. The first example covers countries with regional power markets that also regionalise their support schemes, the second countries with separate national power markets that regionalise their support schemes. The main findings indicate that the almost ideal situation exists if the region prior to regionalising...
Numerical determination of transmission probabilities in cylindrical geometry
International Nuclear Information System (INIS)
Queiroz Bogado Leite, S. de.
1989-11-01
Efficient methods for numerical calculation of transmission probabilities in cylindrical geometry are presented. Relative errors of the order of 10 -5 or smaller are obtained using analytical solutions and low order quadrature integration schemes. (author) [pt
Numerical analysis of choked converging nozzle flows with surface ...
Indian Academy of Sciences (India)
numerically investigated by means of a recent computational model that ..... dependent nonlinear formulations, where the solution scheme is most likely to face with .... boundary and geometric conditions, to (15–16), also proves the validity.
Nonoscillatory shock capturing scheme using flux limited dissipation
International Nuclear Information System (INIS)
Jameson, A.
1985-01-01
A method for modifying the third order dissipative terms by the introduction of flux limiters is proposed. The first order dissipative terms can then be eliminated entirely, and in the case of a scalar conservation law the scheme is converted into a total variation diminishing scheme provided that an appropriate value is chosen for the dissipative coefficient. Particular attention is given to: (1) the treatment of the scalar conservation law; (2) the treatment of the Euler equations for inviscid compressible flow; (3) the boundary conditions; and (4) multistage time stepping and multigrid schemes. Numerical results for transonic flows suggest that a central difference scheme augmented by flux limited dissipative terms can lead to an effective nonoscillatory shock capturing method. 20 references
Linear source approximation scheme for method of characteristics
International Nuclear Information System (INIS)
Tang Chuntao
2011-01-01
Method of characteristics (MOC) for solving neutron transport equation based on unstructured mesh has already become one of the fundamental methods for lattice calculation of nuclear design code system. However, most of MOC codes are developed with flat source approximation called step characteristics (SC) scheme, which is another basic assumption for MOC. A linear source (LS) characteristics scheme and its corresponding modification for negative source distribution were proposed. The OECD/NEA C5G7-MOX 2D benchmark and a self-defined BWR mini-core problem were employed to validate the new LS module of PEACH code. Numerical results indicate that the proposed LS scheme employs less memory and computational time compared with SC scheme at the same accuracy. (authors)
Progress with multigrid schemes for hypersonic flow problems
International Nuclear Information System (INIS)
Radespiel, R.; Swanson, R.C.
1995-01-01
Several multigrid schemes are considered for the numerical computation of viscous hypersonic flows. For each scheme, the basic solution algorithm employs upwind spatial discretization with explicit multistage time stepping. Two-level versions of the various multigrid algorithms are applied to the two-dimensional advection equation, and Fourier analysis is used to determine their damping properties. The capabilities of the multigrid methods are assessed by solving three different hypersonic flow problems. Some new multigrid schemes based on semicoarsening strategies are shown to be quite effective in relieving the stiffness caused by the high-aspect-ratio cells required to resolve high Reynolds number flows. These schemes exhibit good convergence rates for Reynolds numbers up to 200 X 10 6 and Mach numbers up to 25. 32 refs., 31 figs., 1 tab
Efficient scheme for parametric fitting of data in arbitrary dimensions.
Pang, Ning-Ning; Tzeng, Wen-Jer; Kao, Hisen-Ching
2008-07-01
We propose an efficient scheme for parametric fitting expressed in terms of the Legendre polynomials. For continuous systems, our scheme is exact and the derived explicit expression is very helpful for further analytical studies. For discrete systems, our scheme is almost as accurate as the method of singular value decomposition. Through a few numerical examples, we show that our algorithm costs much less CPU time and memory space than the method of singular value decomposition. Thus, our algorithm is very suitable for a large amount of data fitting. In addition, the proposed scheme can also be used to extract the global structure of fluctuating systems. We then derive the exact relation between the correlation function and the detrended variance function of fluctuating systems in arbitrary dimensions and give a general scaling analysis.
Investigation on the MOC with a linear source approximation scheme in three-dimensional assembly
International Nuclear Information System (INIS)
Zhu, Chenglin; Cao, Xinrong
2014-01-01
Method of characteristics (MOC) for solving neutron transport equation has already become one of the fundamental methods for lattice calculation of nuclear design code system. At present, MOC has three schemes to deal with the neutron source of the transport equation: the flat source approximation of the step characteristics (SC) scheme, the diamond difference (DD) scheme and the linear source (LS) characteristics scheme. The MOC for SC scheme and DD scheme need large storage space and long computing time when they are used to calculate large-scale three-dimensional neutron transport problems. In this paper, a LS scheme and its correction for negative source distribution were developed and added to DRAGON code. This new scheme was compared with the SC scheme and DD scheme which had been applied in this code. As an open source code, DRAGON could solve three-dimensional assembly with MOC method. Detailed calculation is conducted on two-dimensional VVER-1000 assembly under three schemes of MOC. The numerical results indicate that coarse mesh could be used in the LS scheme with the same accuracy. And the LS scheme applied in DRAGON is effective and expected results are achieved. Then three-dimensional cell problem and VVER-1000 assembly are calculated with LS scheme and SC scheme. The results show that less memory and shorter computational time are employed in LS scheme compared with SC scheme. It is concluded that by using LS scheme, DRAGON is able to calculate large-scale three-dimensional problems with less storage space and shorter computing time
Micromagnetic simulations with thermal noise: Physical and numerical aspects
Energy Technology Data Exchange (ETDEWEB)
Martinez, E. [Dept. de Ingenieria Electromecanica, Universidad de Burgos, Plaza Misael Banuelos, s/n, E-09001, Burgos (Spain)]. E-mail: emvecino@ubu.es; Lopez-Diaz, L. [Dept. de Fisica Aplicada, Universidad Salamanca, Plaza de la Merced s/n, Salamanca E-37008 (Spain); Torres, L. [Dept. de Fisica Aplicada, Universidad Salamanca, Plaza de la Merced s/n, Salamanca E-37008 (Spain); Garcia-Cervera, C.J. [Department of Mathematics, University of California, Santa Barbara, CA 93106 (United States)
2007-09-15
Langevin dynamics treats finite temperature effects in micromagnetics framework by adding a thermal fluctuation field to the local effective field. Several works have addressed that the numerical results depend on the cell size used to split the ferromagnetic samples on the nanoscale regime. In this short paper, we analyze a thermally perturbed micromagnetic problem by using an implicit unconditionally stable numerical scheme to integrate the Langevin equation at room temperature. The obtained micromagnetic results for several cell sizes inside the validity range of the micromagnetic formalism, indicate that the addressed cell size dependence could be associated to numerical limitations of the commonly used numerical schemes.
Micromagnetic simulations with thermal noise: Physical and numerical aspects
International Nuclear Information System (INIS)
Martinez, E.; Lopez-Diaz, L.; Torres, L.; Garcia-Cervera, C.J.
2007-01-01
Langevin dynamics treats finite temperature effects in micromagnetics framework by adding a thermal fluctuation field to the local effective field. Several works have addressed that the numerical results depend on the cell size used to split the ferromagnetic samples on the nanoscale regime. In this short paper, we analyze a thermally perturbed micromagnetic problem by using an implicit unconditionally stable numerical scheme to integrate the Langevin equation at room temperature. The obtained micromagnetic results for several cell sizes inside the validity range of the micromagnetic formalism, indicate that the addressed cell size dependence could be associated to numerical limitations of the commonly used numerical schemes
Asynchronous Channel-Hopping Scheme under Jamming Attacks
Directory of Open Access Journals (Sweden)
Yongchul Kim
2018-01-01
Full Text Available Cognitive radio networks (CRNs are considered an attractive technology to mitigate inefficiency in the usage of licensed spectrum. CRNs allow the secondary users (SUs to access the unused licensed spectrum and use a blind rendezvous process to establish communication links between SUs. In particular, quorum-based channel-hopping (CH schemes have been studied recently to provide guaranteed blind rendezvous in decentralized CRNs without using global time synchronization. However, these schemes remain vulnerable to jamming attacks. In this paper, we first analyze the limitations of quorum-based rendezvous schemes called asynchronous channel hopping (ACH. Then, we introduce a novel sequence sensing jamming attack (SSJA model in which a sophisticated jammer can dramatically reduce the rendezvous success rates of ACH schemes. In addition, we propose a fast and robust asynchronous rendezvous scheme (FRARS that can significantly enhance robustness under jamming attacks. Our numerical results demonstrate that the performance of the proposed scheme vastly outperforms the ACH scheme when there are security concerns about a sequence sensing jammer.
An improved anonymous authentication scheme for roaming in ubiquitous networks.
Lee, Hakjun; Lee, Donghoon; Moon, Jongho; Jung, Jaewook; Kang, Dongwoo; Kim, Hyoungshick; Won, Dongho
2018-01-01
With the evolution of communication technology and the exponential increase of mobile devices, the ubiquitous networking allows people to use our data and computing resources anytime and everywhere. However, numerous security concerns and complicated requirements arise as these ubiquitous networks are deployed throughout people's lives. To meet the challenge, the user authentication schemes in ubiquitous networks should ensure the essential security properties for the preservation of the privacy with low computational cost. In 2017, Chaudhry et al. proposed a password-based authentication scheme for the roaming in ubiquitous networks to enhance the security. Unfortunately, we found that their scheme remains insecure in its protection of the user privacy. In this paper, we prove that Chaudhry et al.'s scheme is vulnerable to the stolen-mobile device and user impersonation attacks, and its drawbacks comprise the absence of the incorrect login-input detection, the incorrectness of the password change phase, and the absence of the revocation provision. Moreover, we suggest a possible way to fix the security flaw in Chaudhry et al's scheme by using the biometric-based authentication for which the bio-hash is applied in the implementation of a three-factor authentication. We prove the security of the proposed scheme with the random oracle model and formally verify its security properties using a tool named ProVerif, and analyze it in terms of the computational and communication cost. The analysis result shows that the proposed scheme is suitable for resource-constrained ubiquitous environments.
An improved anonymous authentication scheme for roaming in ubiquitous networks.
Directory of Open Access Journals (Sweden)
Hakjun Lee
Full Text Available With the evolution of communication technology and the exponential increase of mobile devices, the ubiquitous networking allows people to use our data and computing resources anytime and everywhere. However, numerous security concerns and complicated requirements arise as these ubiquitous networks are deployed throughout people's lives. To meet the challenge, the user authentication schemes in ubiquitous networks should ensure the essential security properties for the preservation of the privacy with low computational cost. In 2017, Chaudhry et al. proposed a password-based authentication scheme for the roaming in ubiquitous networks to enhance the security. Unfortunately, we found that their scheme remains insecure in its protection of the user privacy. In this paper, we prove that Chaudhry et al.'s scheme is vulnerable to the stolen-mobile device and user impersonation attacks, and its drawbacks comprise the absence of the incorrect login-input detection, the incorrectness of the password change phase, and the absence of the revocation provision. Moreover, we suggest a possible way to fix the security flaw in Chaudhry et al's scheme by using the biometric-based authentication for which the bio-hash is applied in the implementation of a three-factor authentication. We prove the security of the proposed scheme with the random oracle model and formally verify its security properties using a tool named ProVerif, and analyze it in terms of the computational and communication cost. The analysis result shows that the proposed scheme is suitable for resource-constrained ubiquitous environments.
Directory of Open Access Journals (Sweden)
Asad Rehman
Full Text Available An upwind space-time conservation element and solution element (CE/SE scheme is extended to numerically approximate the dusty gas flow model. Unlike central CE/SE schemes, the current method uses the upwind procedure to derive the numerical fluxes through the inner boundary of conservation elements. These upwind fluxes are utilized to calculate the gradients of flow variables. For comparison and validation, the central upwind scheme is also applied to solve the same dusty gas flow model. The suggested upwind CE/SE scheme resolves the contact discontinuities more effectively and preserves the positivity of flow variables in low density flows. Several case studies are considered and the results of upwind CE/SE are compared with the solutions of central upwind scheme. The numerical results show better performance of the upwind CE/SE method as compared to the central upwind scheme. Keywords: Dusty gas flow, Solid particles, Upwind schemes, Rarefaction wave, Shock wave, Contact discontinuity
Feedback options in nonlinear numerical finance
DEFF Research Database (Denmark)
Hugger, Jens; Mashayekhi, Sima
2012-01-01
on an infinite slab is presented and boundary values on a bounded domain are derived. This bounded, nonlinear, 2 dimensional initial-boundary value problem is solved numerically using a number of standard finite difference schemes and the methods incorporated in the symbolic software Maple™....
Towards the ultimate variance-conserving convection scheme
International Nuclear Information System (INIS)
Os, J.J.A.M. van; Uittenbogaard, R.E.
2004-01-01
In the past various arguments have been used for applying kinetic energy-conserving advection schemes in numerical simulations of incompressible fluid flows. One argument is obeying the programmed dissipation by viscous stresses or by sub-grid stresses in Direct Numerical Simulation and Large Eddy Simulation, see e.g. [Phys. Fluids A 3 (7) (1991) 1766]. Another argument is that, according to e.g. [J. Comput. Phys. 6 (1970) 392; 1 (1966) 119], energy-conserving convection schemes are more stable i.e. by prohibiting a spurious blow-up of volume-integrated energy in a closed volume without external energy sources. In the above-mentioned references it is stated that nonlinear instability is due to spatial truncation rather than to time truncation and therefore these papers are mainly concerned with the spatial integration. In this paper we demonstrate that discretized temporal integration of a spatially variance-conserving convection scheme can induce non-energy conserving solutions. In this paper the conservation of the variance of a scalar property is taken as a simple model for the conservation of kinetic energy. In addition, the derivation and testing of a variance-conserving scheme allows for a clear definition of kinetic energy-conserving advection schemes for solving the Navier-Stokes equations. Consequently, we first derive and test a strictly variance-conserving space-time discretization for the convection term in the convection-diffusion equation. Our starting point is the variance-conserving spatial discretization of the convection operator presented by Piacsek and Williams [J. Comput. Phys. 6 (1970) 392]. In terms of its conservation properties, our variance-conserving scheme is compared to other spatially variance-conserving schemes as well as with the non-variance-conserving schemes applied in our shallow-water solver, see e.g. [Direct and Large-eddy Simulation Workshop IV, ERCOFTAC Series, Kluwer Academic Publishers, 2001, pp. 409-287
hybrid modulation scheme fo rid modulation scheme fo dulation
African Journals Online (AJOL)
eobe
control technique is done through simulations and ex control technique .... HYBRID MODULATION SCHEME FOR CASCADED H-BRIDGE INVERTER CELLS. C. I. Odeh ..... and OR operations. Referring to ... MATLAB/SIMULINK environment.
A High-Accuracy Linear Conservative Difference Scheme for Rosenau-RLW Equation
Directory of Open Access Journals (Sweden)
Jinsong Hu
2013-01-01
Full Text Available We study the initial-boundary value problem for Rosenau-RLW equation. We propose a three-level linear finite difference scheme, which has the theoretical accuracy of Oτ2+h4. The scheme simulates two conservative properties of original problem well. The existence, uniqueness of difference solution, and a priori estimates in infinite norm are obtained. Furthermore, we analyze the convergence and stability of the scheme by energy method. At last, numerical experiments demonstrate the theoretical results.
An Implicit Scheme of Lattice Boltzmann Method for Sine-Gordon Equation
International Nuclear Information System (INIS)
Hui-Lin, Lai; Chang-Feng, Ma
2008-01-01
We establish an implicit scheme of lattice Boltzmann method for simulating the sine-Gordon equation, which can be transformed into the explicit one, so the computation of the scheme is simple. Moreover, the parameter θ of the implicit scheme is independent of the relaxation time, which makes the model more flexible. The numerical results show that this method is very effective. (fundamental areas of phenomenology (including applications))
Ford, Neville J.; Connolly, Joseph A.
2009-07-01
We give a comparison of the efficiency of three alternative decomposition schemes for the approximate solution of multi-term fractional differential equations using the Caputo form of the fractional derivative. The schemes we compare are based on conversion of the original problem into a system of equations. We review alternative approaches and consider how the most appropriate numerical scheme may be chosen to solve a particular equation.
A Hybrid DGTD-MNA Scheme for Analyzing Complex Electromagnetic Systems
Li, Peng; Jiang, Li-Jun; Bagci, Hakan
2015-01-01
lumped circuit elements, the standard Newton-Raphson method is applied at every time step. Additionally, a local time-stepping scheme is developed to improve the efficiency of the hybrid solver. Numerical examples consisting of EM systems loaded
On a Stable and Consistent Finite Difference Scheme for a Time ...
African Journals Online (AJOL)
NJABS
established time independent Schrodinger Wave Equation (SWE). To develop the stability criterion .... the rate at which signals in the numerical scheme travel will be faster than their real world counterparts and this unrealistic expectation leads ...
TE/TM alternating direction scheme for wake field calculation in 3D
Energy Technology Data Exchange (ETDEWEB)
Zagorodnov, Igor [Institut fuer Theorie Elektromagnetischer Felder (TEMF), Technische Universitaet Darmstadt, Schlossgartenstrasse 8, D-64289 Darmstadt (Germany)]. E-mail: zagor@temf.de; Weiland, Thomas [Institut fuer Theorie Elektromagnetischer Felder (TEMF), Technische Universitaet Darmstadt, Schlossgartenstrasse 8, D-64289 Darmstadt (Germany)
2006-03-01
In the future, accelerators with very short bunches will be used. It demands developing new numerical approaches for long-time calculation of electromagnetic fields in the vicinity of relativistic bunches. The conventional FDTD scheme, used in MAFIA, ABCI and other wake and PIC codes, suffers from numerical grid dispersion and staircase approximation problem. As an effective cure of the dispersion problem, a numerical scheme without dispersion in longitudinal direction can be used as it was shown by Novokhatski et al. [Transition dynamics of the wake fields of ultrashort bunches, TESLA Report 2000-03, DESY, 2000] and Zagorodnov et al. [J. Comput. Phys. 191 (2003) 525]. In this paper, a new economical conservative scheme for short-range wake field calculation in 3D is presented. As numerical examples show, the new scheme is much more accurate on long-time scale than the conventional FDTD approach.
International Nuclear Information System (INIS)
Fedon-Magnaud, C.; Hennart, J.P.; Lautard, J.J.
1983-03-01
An unified formulation of non conforming finite elements with quadrature formula and simple nodal scheme is presented. The theoretical convergence is obtained for the previous scheme when the mesh is refined. Numerical tests are provided in order to bear out the theorical results
Numerical Modelling of Electrical Discharges
International Nuclear Information System (INIS)
Durán-Olivencia, F J; Pontiga, F; Castellanos, A
2014-01-01
The problem of the propagation of an electrical discharge between a spherical electrode and a plane has been solved by means of finite element methods (FEM) using a fluid approximation and assuming weak ionization and local equilibrium with the electric field. The numerical simulation of this type of problems presents the usual difficulties of convection-diffusion-reaction problems, in addition to those associated with the nonlinearities of the charged species velocities, the formation of steep gradients of the electric field and particle densities, and the coexistence of very different temporal scales. The effect of using different temporal discretizations for the numerical integration of the corresponding system of partial differential equations will be here investigated. In particular, the so-called θ-methods will be used, which allows to implement implicit, semi-explicit and fully explicit schemes in a simple way
Numerical simulation of fire vortex
Barannikova, D. D.; Borzykh, V. E.; Obukhov, A. G.
2018-05-01
The article considers the numerical simulation of the swirling flow of air around the smoothly heated vertical cylindrical domain in the conditions of gravity and Coriolis forces action. The solutions of the complete system of Navie-Stocks equations are numerically solved at constant viscosity and heat conductivity factors. Along with the proposed initial and boundary conditions, these solutions describe the complex non-stationary 3D flows of viscous compressible heat conducting gas. For various instants of time of the initial flow formation stage using the explicit finite-difference scheme the calculations of all gas dynamics parameters, that is density, temperature, pressure and three velocity components of gas particles, have been run. The current instant lines corresponding to the trajectories of the particles movement in the emerging flow have been constructed. A negative direction of the air flow swirling occurred in the vertical cylindrical domain heating has been defined.
Decoupled Scheme for Time-Dependent Natural Convection Problem II: Time Semidiscreteness
Directory of Open Access Journals (Sweden)
Tong Zhang
2014-01-01
stability and the corresponding optimal error estimates are presented. Furthermore, a decoupled numerical scheme is proposed by decoupling the nonlinear terms via temporal extrapolation; optimal error estimates are established. Finally, some numerical results are provided to verify the performances of the developed algorithms. Compared with the coupled numerical scheme, the decoupled algorithm not only keeps good accuracy but also saves a lot of computational cost. Both theoretical analysis and numerical experiments show the efficiency and effectiveness of the decoupled method for time-dependent natural convection problem.
Good governance for pension schemes
Thornton, Paul
2011-01-01
Regulatory and market developments have transformed the way in which UK private sector pension schemes operate. This has increased demands on trustees and advisors and the trusteeship governance model must evolve in order to remain fit for purpose. This volume brings together leading practitioners to provide an overview of what today constitutes good governance for pension schemes, from both a legal and a practical perspective. It provides the reader with an appreciation of the distinctive characteristics of UK occupational pension schemes, how they sit within the capital markets and their social and fiduciary responsibilities. Providing a holistic analysis of pension risk, both from the trustee and the corporate perspective, the essays cover the crucial role of the employer covenant, financing and investment risk, developments in longevity risk hedging and insurance de-risking, and best practice scheme administration.
Optimum RA reactor fuelling scheme
International Nuclear Information System (INIS)
Strugar, P.; Nikolic, V.
1965-10-01
Ideal reactor refueling scheme can be achieved only by continuous fuel elements movement in the core, which is not possible, and thus approximations are applied. One of the possible approximations is discontinuous movement of fuel elements groups in radial direction. This enables higher burnup especially if axial exchange is possible. Analysis of refueling schemes in the RA reactor core and schemes with mixing the fresh and used fuel elements show that 30% higher burnup can be achieved by applying mixing, and even 40% if reactivity due to decrease in experimental space is taken into account. Up to now, mean burnup of 4400 MWd/t has been achieved, and the proposed fueling scheme with reduction of experimental space could achieve mean burnup of 6300 MWd/t which means about 25 Mwd/t per fuel channel [sr
A Novel Iris Segmentation Scheme
Directory of Open Access Journals (Sweden)
Chen-Chung Liu
2014-01-01
Full Text Available One of the key steps in the iris recognition system is the accurate iris segmentation from its surrounding noises including pupil, sclera, eyelashes, and eyebrows of a captured eye-image. This paper presents a novel iris segmentation scheme which utilizes the orientation matching transform to outline the outer and inner iris boundaries initially. It then employs Delogne-Kåsa circle fitting (instead of the traditional Hough transform to further eliminate the outlier points to extract a more precise iris area from an eye-image. In the extracted iris region, the proposed scheme further utilizes the differences in the intensity and positional characteristics of the iris, eyelid, and eyelashes to detect and delete these noises. The scheme is then applied on iris image database, UBIRIS.v1. The experimental results show that the presented scheme provides a more effective and efficient iris segmentation than other conventional methods.
Breeding schemes in reindeer husbandry
Directory of Open Access Journals (Sweden)
Lars Rönnegård
2003-04-01
Full Text Available The objective of the paper was to investigate annual genetic gain from selection (G, and the influence of selection on the inbreeding effective population size (Ne, for different possible breeding schemes within a reindeer herding district. The breeding schemes were analysed for different proportions of the population within a herding district included in the selection programme. Two different breeding schemes were analysed: an open nucleus scheme where males mix and mate between owner flocks, and a closed nucleus scheme where the males in non-selected owner flocks are culled to maximise G in the whole population. The theory of expected long-term genetic contributions was used and maternal effects were included in the analyses. Realistic parameter values were used for the population, modelled with 5000 reindeer in the population and a sex ratio of 14 adult females per male. The standard deviation of calf weights was 4.1 kg. Four different situations were explored and the results showed: 1. When the population was randomly culled, Ne equalled 2400. 2. When the whole population was selected on calf weights, Ne equalled 1700 and the total annual genetic gain (direct + maternal in calf weight was 0.42 kg. 3. For the open nucleus scheme, G increased monotonically from 0 to 0.42 kg as the proportion of the population included in the selection programme increased from 0 to 1.0, and Ne decreased correspondingly from 2400 to 1700. 4. In the closed nucleus scheme the lowest value of Ne was 1300. For a given proportion of the population included in the selection programme, the difference in G between a closed nucleus scheme and an open one was up to 0.13 kg. We conclude that for mass selection based on calf weights in herding districts with 2000 animals or more, there are no risks of inbreeding effects caused by selection.
A literature survey on numerical heat transfer
Shih, T. M.
1982-12-01
Technical papers in the area of numerical heat transfer published from 1977 through 1981 are reviewed. The journals surveyed include: (1) ASME Journal of Heat Transfer, (2) International Journal of Heat and Mass Transfer, (3) AIAA Journal, (4) Numerical Heat Transfer, (5) Computers and Fluids, (6) International Journal for Numerical Methods in Engineering, (7) SIAM Journal of Numerical Analysis, and (8) Journal of Computational Physics. This survey excludes experimental work in heat transfer and numerical schemes that are not applied to equations governing heat transfer phenomena. The research work is categorized into the following areas: (A) conduction, (B) boundary-layer flows, (C) momentum and heat transfer in cavities, (D) turbulent flows, (E) convection around cylinders and spheres or within annuli, (F) numerical convective instability, (G) radiation, (H) combustion, (I) plumes, jets, and wakes, (J) heat transfer in porous media, (K) boiling, condensation, and two-phase flows, (L) developing and fully developed channel flows, (M) combined heat and mass transfer, (N) applications, (O) comparison and properties of numerical schemes, and (P) body-fitted coordinates and nonuniform grids.
A Multiserver Biometric Authentication Scheme for TMIS using Elliptic Curve Cryptography.
Chaudhry, Shehzad Ashraf; Khan, Muhammad Tawab; Khan, Muhammad Khurram; Shon, Taeshik
2016-11-01
Recently several authentication schemes are proposed for telecare medicine information system (TMIS). Many of such schemes are proved to have weaknesses against known attacks. Furthermore, numerous such schemes cannot be used in real time scenarios. Because they assume a single server for authentication across the globe. Very recently, Amin et al. (J. Med. Syst. 39(11):180, 2015) designed an authentication scheme for secure communication between a patient and a medical practitioner using a trusted central medical server. They claimed their scheme to extend all security requirements and emphasized the efficiency of their scheme. However, the analysis in this article proves that the scheme designed by Amin et al. is vulnerable to stolen smart card and stolen verifier attacks. Furthermore, their scheme is having scalability issues along with inefficient password change and password recovery phases. Then we propose an improved scheme. The proposed scheme is more practical, secure and lightweight than Amin et al.'s scheme. The security of proposed scheme is proved using the popular automated tool ProVerif.
A secure communication scheme using projective chaos synchronization
International Nuclear Information System (INIS)
Li Zhigang; Xu Daolin
2004-01-01
Most secure communication schemes using chaotic dynamics are based on identical synchronization. In this paper, we show the possibility of secure communication using projective synchronization (PS). The unpredictability of the scaling factor in projective synchronization can additionally enhance the security of communication. It is also showed that the scaling factor can be employed to improve the robustness against noise contamination. The feasibility of the communication scheme in high-dimensional chaotic systems, such as the hyperchaotic Roessler system, is demonstrated. Numerical results show the success in transmitting a sound signal through chaotic systems
Fourier analysis of finite element preconditioned collocation schemes
Deville, Michel O.; Mund, Ernest H.
1990-01-01
The spectrum of the iteration operator of some finite element preconditioned Fourier collocation schemes is investigated. The first part of the paper analyses one-dimensional elliptic and hyperbolic model problems and the advection-diffusion equation. Analytical expressions of the eigenvalues are obtained with use of symbolic computation. The second part of the paper considers the set of one-dimensional differential equations resulting from Fourier analysis (in the tranverse direction) of the 2-D Stokes problem. All results agree with previous conclusions on the numerical efficiency of finite element preconditioning schemes.
Discontinuous nodal schemes applied to the bidimensional neutron transport equation
International Nuclear Information System (INIS)
Delfin L, A.; Valle G, E. Del; Hennart B, J.P.
1996-01-01
In this paper several strong discontinuous nodal schemes are described, starting from the one that has only two interpolation parameters per cell to the one having ten. Their application to the spatial discretization of the neutron transport equation in X-Y geometry is also described, giving, for each one of the nodal schemes, the approximation for the angular neutron flux that includes the set of interpolation parameters and the corresponding polynomial space. Numerical results were obtained for several test problems presenting here the problem with the highest degree of difficulty and their comparison with published results 1,2 . (Author)
Numerical Methods for the Design and Analysis of Photonic Crystal Fibres
DEFF Research Database (Denmark)
Roberts, John
2008-01-01
The numerical methods available for calculating the electromagnetic mode properties of photonic crystal fibres are reviewed. The preferred schemes for analyzing TIR guiding and band gap guiding fibres are contrasted.......The numerical methods available for calculating the electromagnetic mode properties of photonic crystal fibres are reviewed. The preferred schemes for analyzing TIR guiding and band gap guiding fibres are contrasted....
Numerical determination of axisymmetric toroidal magnetohydrodynamic equilibria
International Nuclear Information System (INIS)
Johnson, J.L.; Dalhed, H.E.; Greene, J.M.
1978-07-01
Numerical schemes for the determination of stationary axisymmetric toroidal equilibria appropriate for modeling real experimental devices are given. Iterative schemes are used to solve the elliptic nonlinear partial differential equation for the poloidal flux function psi. The principal emphasis is on solving the free boundary (plasma-vacuum interface) equilibrium problem where external current-carrying toroidal coils support the plasma column, but fixed boundary (e.g., conducting shell) cases are also included. The toroidal current distribution is given by specifying the pressure and either the poloidal current or the safety factor profiles as functions of psi. Examples of the application of the codes to tokamak design at PPPL are given
Auction dynamics: A volume constrained MBO scheme
Jacobs, Matt; Merkurjev, Ekaterina; Esedoǧlu, Selim
2018-02-01
We show how auction algorithms, originally developed for the assignment problem, can be utilized in Merriman, Bence, and Osher's threshold dynamics scheme to simulate multi-phase motion by mean curvature in the presence of equality and inequality volume constraints on the individual phases. The resulting algorithms are highly efficient and robust, and can be used in simulations ranging from minimal partition problems in Euclidean space to semi-supervised machine learning via clustering on graphs. In the case of the latter application, numerous experimental results on benchmark machine learning datasets show that our approach exceeds the performance of current state-of-the-art methods, while requiring a fraction of the computation time.
Rehman, Asad; Ali, Ishtiaq; Qamar, Shamsul
An upwind space-time conservation element and solution element (CE/SE) scheme is extended to numerically approximate the dusty gas flow model. Unlike central CE/SE schemes, the current method uses the upwind procedure to derive the numerical fluxes through the inner boundary of conservation elements. These upwind fluxes are utilized to calculate the gradients of flow variables. For comparison and validation, the central upwind scheme is also applied to solve the same dusty gas flow model. The suggested upwind CE/SE scheme resolves the contact discontinuities more effectively and preserves the positivity of flow variables in low density flows. Several case studies are considered and the results of upwind CE/SE are compared with the solutions of central upwind scheme. The numerical results show better performance of the upwind CE/SE method as compared to the central upwind scheme.
A well-balanced scheme for Ten-Moment Gaussian closure equations with source term
Meena, Asha Kumari; Kumar, Harish
2018-02-01
In this article, we consider the Ten-Moment equations with source term, which occurs in many applications related to plasma flows. We present a well-balanced second-order finite volume scheme. The scheme is well-balanced for general equation of state, provided we can write the hydrostatic solution as a function of the space variables. This is achieved by combining hydrostatic reconstruction with contact preserving, consistent numerical flux, and appropriate source discretization. Several numerical experiments are presented to demonstrate the well-balanced property and resulting accuracy of the proposed scheme.
The same number of optimized parameters scheme for determining intermolecular interaction energies
DEFF Research Database (Denmark)
Kristensen, Kasper; Ettenhuber, Patrick; Eriksen, Janus Juul
2015-01-01
We propose the Same Number Of Optimized Parameters (SNOOP) scheme as an alternative to the counterpoise method for treating basis set superposition errors in calculations of intermolecular interaction energies. The key point of the SNOOP scheme is to enforce that the number of optimized wave...... as numerically. Numerical results for second-order Møller-Plesset perturbation theory (MP2) and coupled-cluster with single, double, and approximate triple excitations (CCSD(T)) show that the SNOOP scheme in general outperforms the uncorrected and counterpoise approaches. Furthermore, we show that SNOOP...
A subgrid parameterization scheme for precipitation
Directory of Open Access Journals (Sweden)
S. Turner
2012-04-01
Full Text Available With increasing computing power, the horizontal resolution of numerical weather prediction (NWP models is improving and today reaches 1 to 5 km. Nevertheless, clouds and precipitation formation are still subgrid scale processes for most cloud types, such as cumulus and stratocumulus. Subgrid scale parameterizations for water vapor condensation have been in use for many years and are based on a prescribed probability density function (PDF of relative humidity spatial variability within the model grid box, thus providing a diagnosis of the cloud fraction. A similar scheme is developed and tested here. It is based on a prescribed PDF of cloud water variability and a threshold value of liquid water content for droplet collection to derive a rain fraction within the model grid. Precipitation of rainwater raises additional concerns relative to the overlap of cloud and rain fractions, however. The scheme is developed following an analysis of data collected during field campaigns in stratocumulus (DYCOMS-II and fair weather cumulus (RICO and tested in a 1-D framework against large eddy simulations of these observed cases. The new parameterization is then implemented in a 3-D NWP model with a horizontal resolution of 2.5 km to simulate real cases of precipitating cloud systems over France.
Extended lattice Boltzmann scheme for droplet combustion.
Ashna, Mostafa; Rahimian, Mohammad Hassan; Fakhari, Abbas
2017-05-01
The available lattice Boltzmann (LB) models for combustion or phase change are focused on either single-phase flow combustion or two-phase flow with evaporation assuming a constant density for both liquid and gas phases. To pave the way towards simulation of spray combustion, we propose a two-phase LB method for modeling combustion of liquid fuel droplets. We develop an LB scheme to model phase change and combustion by taking into account the density variation in the gas phase and accounting for the chemical reaction based on the Cahn-Hilliard free-energy approach. Evaporation of liquid fuel is modeled by adding a source term, which is due to the divergence of the velocity field being nontrivial, in the continuity equation. The low-Mach-number approximation in the governing Navier-Stokes and energy equations is used to incorporate source terms due to heat release from chemical reactions, density variation, and nonluminous radiative heat loss. Additionally, the conservation equation for chemical species is formulated by including a source term due to chemical reaction. To validate the model, we consider the combustion of n-heptane and n-butanol droplets in stagnant air using overall single-step reactions. The diameter history and flame standoff ratio obtained from the proposed LB method are found to be in good agreement with available numerical and experimental data. The present LB scheme is believed to be a promising approach for modeling spray combustion.
Nonlinear secret image sharing scheme.
Shin, Sang-Ho; Lee, Gil-Je; Yoo, Kee-Young
2014-01-01
Over the past decade, most of secret image sharing schemes have been proposed by using Shamir's technique. It is based on a linear combination polynomial arithmetic. Although Shamir's technique based secret image sharing schemes are efficient and scalable for various environments, there exists a security threat such as Tompa-Woll attack. Renvall and Ding proposed a new secret sharing technique based on nonlinear combination polynomial arithmetic in order to solve this threat. It is hard to apply to the secret image sharing. In this paper, we propose a (t, n)-threshold nonlinear secret image sharing scheme with steganography concept. In order to achieve a suitable and secure secret image sharing scheme, we adapt a modified LSB embedding technique with XOR Boolean algebra operation, define a new variable m, and change a range of prime p in sharing procedure. In order to evaluate efficiency and security of proposed scheme, we use the embedding capacity and PSNR. As a result of it, average value of PSNR and embedding capacity are 44.78 (dB) and 1.74t⌈log2 m⌉ bit-per-pixel (bpp), respectively.
On the numerical simulation of tracer flows in porous media
International Nuclear Information System (INIS)
Aquino, J.; Pereira, F.; Amaral Souto, H.P.; Francisco, A.S.
2007-01-01
We discuss in detail a new Lagrangian, locally conservative procedure which has been proposed for the numerical solution of linear transport problems in porous media. The new scheme is computationally efficient, virtually free of numerical diffusion, and can be applied to investigate numerically the time evolution of radionuclide contaminant plumes. Results of two-dimensional simulations of tracer flows will be presented to show the influence on the computed solutions of distinct interpolation functions for evaluating the velocity field at any position of the physical domain, as required by the Lagrangian scheme. (author)
Al Jarro, Ahmed; Salem, Mohamed; Bagci, Hakan; Benson, Trevor; Sewell, Phillip D.; Vuković, Ana
2012-01-01
An explicit marching-on-in-time (MOT) scheme for solving the time domain volume integral equation is presented. The proposed method achieves its stability by employing, at each time step, a corrector scheme, which updates/corrects fields computed by the explicit predictor scheme. The proposedmethod is computationally more efficient when compared to the existing filtering techniques used for the stabilization of explicit MOT schemes. Numerical results presented in this paper demonstrate that the proposed method maintains its stability even when applied to the analysis of electromagnetic wave interactions with electrically large structures meshed using approximately half a million discretization elements.
Al Jarro, Ahmed
2012-11-01
An explicit marching-on-in-time (MOT) scheme for solving the time domain volume integral equation is presented. The proposed method achieves its stability by employing, at each time step, a corrector scheme, which updates/corrects fields computed by the explicit predictor scheme. The proposedmethod is computationally more efficient when compared to the existing filtering techniques used for the stabilization of explicit MOT schemes. Numerical results presented in this paper demonstrate that the proposed method maintains its stability even when applied to the analysis of electromagnetic wave interactions with electrically large structures meshed using approximately half a million discretization elements.
A perturbational h4 exponential finite difference scheme for the convective diffusion equation
International Nuclear Information System (INIS)
Chen, G.Q.; Gao, Z.; Yang, Z.F.
1993-01-01
A perturbational h 4 compact exponential finite difference scheme with diagonally dominant coefficient matrix and upwind effect is developed for the convective diffusion equation. Perturbations of second order are exerted on the convective coefficients and source term of an h 2 exponential finite difference scheme proposed in this paper based on a transformation to eliminate the upwind effect of the convective diffusion equation. Four numerical examples including one- to three-dimensional model equations of fluid flow and a problem of natural convective heat transfer are given to illustrate the excellent behavior of the present exponential schemes. Besides, the h 4 accuracy of the perturbational scheme is verified using double precision arithmetic
Application of the symplectic finite-difference time-domain scheme to electromagnetic simulation
International Nuclear Information System (INIS)
Sha, Wei; Huang, Zhixiang; Wu, Xianliang; Chen, Mingsheng
2007-01-01
An explicit fourth-order finite-difference time-domain (FDTD) scheme using the symplectic integrator is applied to electromagnetic simulation. A feasible numerical implementation of the symplectic FDTD (SFDTD) scheme is specified. In particular, new strategies for the air-dielectric interface treatment and the near-to-far-field (NFF) transformation are presented. By using the SFDTD scheme, both the radiation and the scattering of three-dimensional objects are computed. Furthermore, the energy-conserving characteristic hold for the SFDTD scheme is verified under long-term simulation. Numerical results suggest that the SFDTD scheme is more efficient than the traditional FDTD method and other high-order methods, and can save computational resources
A second-order iterative implicit-explicit hybrid scheme for hyperbolic systems of conservation laws
International Nuclear Information System (INIS)
Dai, Wenlong; Woodward, P.R.
1996-01-01
An iterative implicit-explicit hybrid scheme is proposed for hyperbolic systems of conservation laws. Each wave in a system may be implicitly, or explicitly, or partially implicitly and partially explicitly treated depending on its associated Courant number in each numerical cell, and the scheme is able to smoothly switch between implicit and explicit calculations. The scheme is of Godunov-type in both explicit and implicit regimes, is in a strict conservation form, and is accurate to second-order in both space and time for all Courant numbers. The computer code for the scheme is easy to vectorize. Multicolors proposed in this paper may reduce the number of iterations required to reach a converged solution by several orders for a large time step. The feature of the scheme is shown through numerical examples. 38 refs., 12 figs
Comparison of reactivity estimation performance between two extended Kalman filtering schemes
International Nuclear Information System (INIS)
Peng, Xingjie; Cai, Yun; Li, Qing; Wang, Kan
2016-01-01
Highlights: • The performances of two EKF schemes using different Jacobian matrices are compared. • Numerical simulations are used for the validation and comparison of these two EKF schemes. • The simulation results show that the EKF scheme adopted by this paper performs better than the one adopted by previous literatures. - Abstract: The extended Kalman filtering (EKF) technique has been utilized in the estimation of reactivity which is a significantly important parameter to indicate the status of the nuclear reactor. In this paper, the performances of two EKF schemes using different Jacobian matrices are compared. Numerical simulations are used for the validation and comparison of these two EKF schemes, and the results show that the Jacobian matrix obtained directly from the discrete-time state model performs better than the one which is the discretization form of the Jacobian matrix obtained from the continuous-time state model.
Consistent forcing scheme in the cascaded lattice Boltzmann method
Fei, Linlin; Luo, Kai Hong
2017-11-01
In this paper, we give an alternative derivation for the cascaded lattice Boltzmann method (CLBM) within a general multiple-relaxation-time (MRT) framework by introducing a shift matrix. When the shift matrix is a unit matrix, the CLBM degrades into an MRT LBM. Based on this, a consistent forcing scheme is developed for the CLBM. The consistency of the nonslip rule, the second-order convergence rate in space, and the property of isotropy for the consistent forcing scheme is demonstrated through numerical simulations of several canonical problems. Several existing forcing schemes previously used in the CLBM are also examined. The study clarifies the relation between MRT LBM and CLBM under a general framework.
A reduced feedback proportional fair multiuser scheduling scheme
Shaqfeh, Mohammad
2011-12-01
Multiuser switched-diversity scheduling schemes were recently proposed in order to overcome the heavy feedback requirements of conventional opportunistic scheduling schemes by applying a threshold-based, distributed and ordered scheduling mechanism. A slight reduction in the prospected multiuser diversity gains is an acceptable trade-off for great savings in terms of required channel-state-information feedback messages. In this work, we propose a novel proportional fair multiuser switched-diversity scheduling scheme and we demonstrate that it can be optimized using a practical and distributed method to obtain the per-user feedback thresholds. We demonstrate by numerical examples that our reduced feedback proportional fair scheduler operates within 0.3 bits/sec/Hz from the achievable rates by the conventional full feedback proportional fair scheduler in Rayleigh fading conditions. © 2011 IEEE.
Consistent forcing scheme in the cascaded lattice Boltzmann method.
Fei, Linlin; Luo, Kai Hong
2017-11-01
In this paper, we give an alternative derivation for the cascaded lattice Boltzmann method (CLBM) within a general multiple-relaxation-time (MRT) framework by introducing a shift matrix. When the shift matrix is a unit matrix, the CLBM degrades into an MRT LBM. Based on this, a consistent forcing scheme is developed for the CLBM. The consistency of the nonslip rule, the second-order convergence rate in space, and the property of isotropy for the consistent forcing scheme is demonstrated through numerical simulations of several canonical problems. Several existing forcing schemes previously used in the CLBM are also examined. The study clarifies the relation between MRT LBM and CLBM under a general framework.
A General Symbolic PDE Solver Generator: Beyond Explicit Schemes
Directory of Open Access Journals (Sweden)
K. Sheshadri
2003-01-01
Full Text Available This paper presents an extension of our Mathematica- and MathCode-based symbolic-numeric framework for solving a variety of partial differential equation (PDE problems. The main features of our earlier work, which implemented explicit finite-difference schemes, include the ability to handle (1 arbitrary number of dependent variables, (2 arbitrary dimensionality, and (3 arbitrary geometry, as well as (4 developing finite-difference schemes to any desired order of approximation. In the present paper, extensions of this framework to implicit schemes and the method of lines are discussed. While C++ code is generated, using the MathCode system for the implicit method, Modelica code is generated for the method of lines. The latter provides a preliminary PDE support for the Modelica language. Examples illustrating the various aspects of the solver generator are presented.
Signal multiplexing scheme for LINAC
International Nuclear Information System (INIS)
Sujo, C.I.; Mohan, Shyam; Joshi, Gopal; Singh, S.K.; Karande, Jitendra
2004-01-01
For the proper operation of the LINAC some signals, RF (radio frequency) as well as LF (low frequency) have to be available at the Master Control Station (MCS). These signals are needed to control, calibrate and characterize the RF fields in the resonators. This can be achieved by proper multiplexing of various signals locally and then routing the selected signals to the MCS. A multiplexing scheme has been designed and implemented, which will allow the signals from the selected cavity to the MCS. High isolation between channels and low insertion loss for a given signal are important issues while selecting the multiplexing scheme. (author)
Capacity-achieving CPM schemes
Perotti, Alberto; Tarable, Alberto; Benedetto, Sergio; Montorsi, Guido
2008-01-01
The pragmatic approach to coded continuous-phase modulation (CPM) is proposed as a capacity-achieving low-complexity alternative to the serially-concatenated CPM (SC-CPM) coding scheme. In this paper, we first perform a selection of the best spectrally-efficient CPM modulations to be embedded into SC-CPM schemes. Then, we consider the pragmatic capacity (a.k.a. BICM capacity) of CPM modulations and optimize it through a careful design of the mapping between input bits and CPM waveforms. The s...
International Nuclear Information System (INIS)
Kriventsev, Vladimir
2000-09-01
Most of thermal hydraulic processes in nuclear engineering can be described by general convection-diffusion equations that are often can be simulated numerically with finite-difference method (FDM). An effective scheme for finite-difference discretization of such equations is presented in this report. The derivation of this scheme is based on analytical solutions of a simplified one-dimensional equation written for every control volume of the finite-difference mesh. These analytical solutions are constructed using linearized representations of both diffusion coefficient and source term. As a result, the Efficient Finite-Differencing (EFD) scheme makes it possible to significantly improve the accuracy of numerical method even using mesh systems with fewer grid nodes that, in turn, allows to speed-up numerical simulation. EFD has been carefully verified on the series of sample problems for which either analytical or very precise numerical solutions can be found. EFD has been compared with other popular FDM schemes including novel, accurate (as well as sophisticated) methods. Among the methods compared were well-known central difference scheme, upwind scheme, exponential differencing and hybrid schemes of Spalding. Also, newly developed finite-difference schemes, such as the the quadratic upstream (QUICK) scheme of Leonard, the locally analytic differencing (LOAD) scheme of Wong and Raithby, the flux-spline scheme proposed by Varejago and Patankar as well as the latest LENS discretization of Sakai have been compared. Detailed results of this comparison are given in this report. These tests have shown a high efficiency of the EFD scheme. For most of sample problems considered EFD has demonstrated the numerical error that appeared to be in orders of magnitude lower than that of other discretization methods. Or, in other words, EFD has predicted numerical solution with the same given numerical error but using much fewer grid nodes. In this report, the detailed
Plasma simulation with the Differential Algebraic Cubic Interpolated Propagation scheme
Energy Technology Data Exchange (ETDEWEB)
Utsumi, Takayuki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
1998-03-01
A computer code based on the Differential Algebraic Cubic Interpolated Propagation scheme has been developed for the numerical solution of the Boltzmann equation for a one-dimensional plasma with immobile ions. The scheme advects the distribution function and its first derivatives in the phase space for one time step by using a numerical integration method for ordinary differential equations, and reconstructs the profile in phase space by using a cubic polynomial within a grid cell. The method gives stable and accurate results, and is efficient. It is successfully applied to a number of equations; the Vlasov equation, the Boltzmann equation with the Fokker-Planck or the Bhatnagar-Gross-Krook (BGK) collision term and the relativistic Vlasov equation. The method can be generalized in a straightforward way to treat cases such as problems with nonperiodic boundary conditions and higher dimensional problems. (author)
Projection scheme for a reflected stochastic heat equation with additive noise
Higa, Arturo Kohatsu; Pettersson, Roger
2005-02-01
We consider a projection scheme as a numerical solution of a reflected stochastic heat equation driven by a space-time white noise. Convergence is obtained via a discrete contraction principle and known convergence results for numerical solutions of parabolic variational inequalities.
An integration scheme for stiff solid-gas reactor models
Directory of Open Access Journals (Sweden)
Bjarne A. Foss
2001-04-01
Full Text Available Many dynamic models encounter numerical integration problems because of a large span in the dynamic modes. In this paper we develop a numerical integration scheme for systems that include a gas phase, and solid and liquid phases, such as a gas-solid reactor. The method is based on neglecting fast dynamic modes and exploiting the structure of the algebraic equations. The integration method is suitable for a large class of industrially relevant systems. The methodology has proven remarkably efficient. It has in practice performed excellent and been a key factor for the success of the industrial simulator for electrochemical furnaces for ferro-alloy production.
Constructing space difference schemes which satisfy a cell entropy inequality
Merriam, Marshal L.
1989-01-01
A numerical methodology for solving convection problems is presented, using finite difference schemes which satisfy the second law of thermodynamics on a cell-by-cell basis in addition to the usual conservation laws. It is shown that satisfaction of a cell entropy inequality is sufficient, in some cases, to guarantee nonlinear stability. Some details are given for several one-dimensional problems, including the quasi-one-dimensional Euler equations applied to flow in a nozzle.
International Nuclear Information System (INIS)
Ardisson, Claire; Ardisson, Gerard.
1976-01-01
A 165 Ho level scheme was constructed which led to the interpretation of sixty γ rays belonging to the decay of 165 Dy. A new 702.9keV level was identified to be the 5/2 - member of the 1/2 ) 7541{ Nilsson orbit. )] [fr
Homogenization scheme for acoustic metamaterials
Yang, Min; Ma, Guancong; Wu, Ying; Yang, Zhiyu; Sheng, Ping
2014-01-01
the scattering amplitudes. We verify our scheme by applying it to three different examples: a layered lattice, a two-dimensional hexagonal lattice, and a decorated-membrane system. It is shown that the predicted characteristics and wave fields agree almost
New practicable Siberian Snake schemes
International Nuclear Information System (INIS)
Steffen, K.
1983-07-01
Siberian Snake schemes can be inserted in ring accelerators for making the spin tune almost independent of energy. Two such schemes are here suggested which lend particularly well to practical application over a wide energy range. Being composed of horizontal and vertical bending magnets, the proposed snakes are designed to have a small maximum beam excursion in one plane. By applying in this plane a bending correction that varies with energy, they can be operated at fixed geometry in the other plane where most of the bending occurs, thus avoiding complicated magnet motion or excessively large magnet apertures that would otherwise be needed for large energy variations. The first of the proposed schemes employs a pair of standard-type Siberian Snakes, i.e. of the usual 1st and 2nd kind which rotate the spin about the longitudinal and the transverse horizontal axis, respectively. The second scheme employs a pair of novel-type snakes which rotate the spin about either one of the horizontal axes that are at 45 0 to the beam direction. In obvious reference to these axes, they are called left-pointed and right-pointed snakes. (orig.)
Nonlinear Secret Image Sharing Scheme
Directory of Open Access Journals (Sweden)
Sang-Ho Shin
2014-01-01
efficiency and security of proposed scheme, we use the embedding capacity and PSNR. As a result of it, average value of PSNR and embedding capacity are 44.78 (dB and 1.74tlog2m bit-per-pixel (bpp, respectively.
Institute of Scientific and Technical Information of China (English)
PING Fan; TANG Xi-ba; YIN Lei
2016-01-01
According to the characteristics of organized cumulus convective precipitation in China,a cumulus parameterization scheme suitable for describing the organized convective precipitation in East Asia is presented and modified.The Kain-Fristch scheme is chosen as the scheme to be modified based on analyses and comparisons of simulated precipitation in East Asia by several commonly-used mesoscale parameterization schemes.A key dynamic parameter to dynamically control the cumulus parameterization is then proposed to improve the Kain-Fristch scheme.Numerical simulations of a typhoon case and a Mei-yu front rainfall case are carried out with the improved scheme,and the results show that the improved version performs better than the original in simulating the track and intensity of the typhoons,as well as the distribution of Mei-yu front precipitation.
On the integration scheme along a trajectory for the characteristics method
International Nuclear Information System (INIS)
Le Tellier, Romain; Hebert, Alain
2006-01-01
The issue of the integration scheme along a trajectory which appears for all tracking-based transport methods is discussed from the point of view of the method of characteristics. The analogy with the discrete ordinates method in slab geometry is highlighted along with the practical limitation in transposing high-order S N schemes to a trajectory-based method. We derived an example of such a transposition starting from the linear characteristic scheme. This new scheme is compared with the standard flat-source approximation of the step characteristic scheme and with the diamond differencing scheme. The numerical study covers a 1D analytical case, 2D one-group critical and fixed-source benchmarks and finally a realistic multigroup calculation on a BWR-MOX assembly
Space-Time Transformation in Flux-form Semi-Lagrangian Schemes
Directory of Open Access Journals (Sweden)
Peter C. Chu Chenwu Fan
2010-01-01
Full Text Available With a finite volume approach, a flux-form semi-Lagrangian (TFSL scheme with space-time transformation was developed to provide stable and accurate algorithm in solving the advection-diffusion equation. Different from the existing flux-form semi-Lagrangian schemes, the temporal integration of the flux from the present to the next time step is transformed into a spatial integration of the flux at the side of a grid cell (space for the present time step using the characteristic-line concept. The TFSL scheme not only keeps the good features of the semi-Lagrangian schemes (no Courant number limitation, but also has higher accuracy (of a second order in both time and space. The capability of the TFSL scheme is demonstrated by the simulation of the equatorial Rossby-soliton propagation. Computational stability and high accuracy makes this scheme useful in ocean modeling, computational fluid dynamics, and numerical weather prediction.
Numerical Optimization in Microfluidics
DEFF Research Database (Denmark)
Jensen, Kristian Ejlebjærg
2017-01-01
Numerical modelling can illuminate the working mechanism and limitations of microfluidic devices. Such insights are useful in their own right, but one can take advantage of numerical modelling in a systematic way using numerical optimization. In this chapter we will discuss when and how numerical...... optimization is best used....
Methods of numerical relativity
International Nuclear Information System (INIS)
Piran, T.
1983-01-01
Numerical Relativity is an alternative to analytical methods for obtaining solutions for Einstein equations. Numerical methods are particularly useful for studying generation of gravitational radiation by potential strong sources. The author reviews the analytical background, the numerical analysis aspects and techniques and some of the difficulties involved in numerical relativity. (Auth.)
Auzinger, Winfried; Hofstä tter, Harald; Ketcheson, David I.; Koch, Othmar
2016-01-01
We present a number of new contributions to the topic of constructing efficient higher-order splitting methods for the numerical integration of evolution equations. Particular schemes are constructed via setup and solution of polynomial systems for the splitting coefficients. To this end we use and modify a recent approach for generating these systems for a large class of splittings. In particular, various types of pairs of schemes intended for use in adaptive integrators are constructed.
Auzinger, Winfried
2016-07-28
We present a number of new contributions to the topic of constructing efficient higher-order splitting methods for the numerical integration of evolution equations. Particular schemes are constructed via setup and solution of polynomial systems for the splitting coefficients. To this end we use and modify a recent approach for generating these systems for a large class of splittings. In particular, various types of pairs of schemes intended for use in adaptive integrators are constructed.
Numerical solutions of the Vlasov equation
International Nuclear Information System (INIS)
Satofuka, Nobuyuki; Morinishi, Koji; Nishida, Hidetoshi
1985-01-01
A numerical procedure is derived for the solutions of the one- and two-dimensional Vlasov-Poisson system equations. This numerical procedure consists of the phase space discretization and the integration of the resulting set of ordinary differential equations. In the phase space discretization, derivatives with respect to the phase space variable are approximated by a weighted sum of the values of the distribution function at properly chosen neighboring points. Then, the resulting set of ordinary differential equations is solved by using an appropriate time integration scheme. The results for linear Landau damping, nonlinear Landau damping and counter-streaming plasmas are investigated and compared with those of the splitting scheme. The proposed method is found to be very accurate and efficient. (author)
Compact tokamak reactors part 2 (numerical results)
International Nuclear Information System (INIS)
Wiley, J.C.; Wootton, A.J.; Ross, D.W.
1996-01-01
The authors describe a numerical optimization scheme for fusion reactors. The particular application described is to find the smallest copper coil spherical tokamak, although the numerical scheme is sufficiently general to allow many other problems to be solved. The solution to the steady state energy balance is found by first selecting the fixed variables. The range of all remaining variables is then selected, except for the temperature. Within the specified ranges, the temperature which satisfies the power balance is then found. Tests are applied to determine that remaining constraints are satisfied, and the acceptable results then stored. Results are presented for a range of auxiliary current drive efficiencies and different scaling relationships; for the range of variables chosen the machine encompassing volume increases or remains approximately unchanged as the aspect ratio is reduced
ADER discontinuous Galerkin schemes for general-relativistic ideal magnetohydrodynamics
Fambri, F.; Dumbser, M.; Köppel, S.; Rezzolla, L.; Zanotti, O.
2018-03-01
We present a new class of high-order accurate numerical algorithms for solving the equations of general-relativistic ideal magnetohydrodynamics in curved spacetimes. In this paper we assume the background spacetime to be given and static, i.e. we make use of the Cowling approximation. The governing partial differential equations are solved via a new family of fully-discrete and arbitrary high-order accurate path-conservative discontinuous Galerkin (DG) finite-element methods combined with adaptive mesh refinement and time accurate local timestepping. In order to deal with shock waves and other discontinuities, the high-order DG schemes are supplemented with a novel a-posteriori subcell finite-volume limiter, which makes the new algorithms as robust as classical second-order total-variation diminishing finite-volume methods at shocks and discontinuities, but also as accurate as unlimited high-order DG schemes in smooth regions of the flow. We show the advantages of this new approach by means of various classical two- and three-dimensional benchmark problems on fixed spacetimes. Finally, we present a performance and accuracy comparisons between Runge-Kutta DG schemes and ADER high-order finite-volume schemes, showing the higher efficiency of DG schemes.
Nonstandard approximation schemes for lower dimensional quantum field theories
International Nuclear Information System (INIS)
Fitzpatrick, D.A.
1981-01-01
The purpose of this thesis has been to apply two different nonstandard approximation schemes to a variety of lower-dimensional schemes. In doing this, we show their applicability where (e.g., Feynman or Rayleigh-Schroedinger) approximation schemes are inapplicable. We have applied the well-known mean-field approximation scheme by Guralnik et al. to general lower dimensional theories - the phi 4 field theory in one dimension, and the massive and massless Thirring models in two dimensions. In each case, we derive a bound-state propagator and then expand the theory in terms of the original and bound-state propagators. The results obtained can be compared with previously known results thereby show, in general, reasonably good convergence. In the second half of the thesis, we develop a self-consistent quantum mechanical approximation scheme. This can be applied to any monotonic polynomial potential. It has been applied in detail to the anharmonic oscillator, and the results in several analytical domains are very good, including extensive tables of numerical results
A more accurate scheme for calculating Earth's skin temperature
Tsuang, Ben-Jei; Tu, Chia-Ying; Tsai, Jeng-Lin; Dracup, John A.; Arpe, Klaus; Meyers, Tilden
2009-02-01
The theoretical framework of the vertical discretization of a ground column for calculating Earth’s skin temperature is presented. The suggested discretization is derived from the evenly heat-content discretization with the optimal effective thickness for layer-temperature simulation. For the same level number, the suggested discretization is more accurate in skin temperature as well as surface ground heat flux simulations than those used in some state-of-the-art models. A proposed scheme (“op(3,2,0)”) can reduce the normalized root-mean-square error (or RMSE/STD ratio) of the calculated surface ground heat flux of a cropland site significantly to 2% (or 0.9 W m-2), from 11% (or 5 W m-2) by a 5-layer scheme used in ECMWF, from 19% (or 8 W m-2) by a 5-layer scheme used in ECHAM, and from 74% (or 32 W m-2) by a single-layer scheme used in the UCLA GCM. Better accuracy can be achieved by including more layers to the vertical discretization. Similar improvements are expected for other locations with different land types since the numerical error is inherited into the models for all the land types. The proposed scheme can be easily implemented into state-of-the-art climate models for the temperature simulation of snow, ice and soil.
An improved anonymous authentication scheme for roaming in ubiquitous networks
Lee, Hakjun; Lee, Donghoon; Moon, Jongho; Jung, Jaewook; Kang, Dongwoo; Kim, Hyoungshick
2018-01-01
With the evolution of communication technology and the exponential increase of mobile devices, the ubiquitous networking allows people to use our data and computing resources anytime and everywhere. However, numerous security concerns and complicated requirements arise as these ubiquitous networks are deployed throughout people’s lives. To meet the challenge, the user authentication schemes in ubiquitous networks should ensure the essential security properties for the preservation of the privacy with low computational cost. In 2017, Chaudhry et al. proposed a password-based authentication scheme for the roaming in ubiquitous networks to enhance the security. Unfortunately, we found that their scheme remains insecure in its protection of the user privacy. In this paper, we prove that Chaudhry et al.’s scheme is vulnerable to the stolen-mobile device and user impersonation attacks, and its drawbacks comprise the absence of the incorrect login-input detection, the incorrectness of the password change phase, and the absence of the revocation provision. Moreover, we suggest a possible way to fix the security flaw in Chaudhry et al’s scheme by using the biometric-based authentication for which the bio-hash is applied in the implementation of a three-factor authentication. We prove the security of the proposed scheme with the random oracle model and formally verify its security properties using a tool named ProVerif, and analyze it in terms of the computational and communication cost. The analysis result shows that the proposed scheme is suitable for resource-constrained ubiquitous environments. PMID:29505575
An efficient shock-capturing scheme for simulating compressible homogeneous mixture flow
Energy Technology Data Exchange (ETDEWEB)
Dang, Son Tung; Ha, Cong Tu; Park, Warn Gyu [School of Mechanical Engineering, Pusan National University, Busan (Korea, Republic of); Jung, Chul Min [Advanced Naval Technology CenterNSRDI, ADD, Changwon (Korea, Republic of)
2016-09-15
This work is devoted to the development of a procedure for the numerical solution of Navier-Stokes equations for cavitating flows with and without ventilation based on a compressible, multiphase, homogeneous mixture model. The governing equations are discretized on a general structured grid using a high-resolution shock-capturing scheme in conjunction with appropriate limiters to prevent the generation of spurious solutions near shock waves or discontinuities. Two well-known limiters are examined, and a new limiter is proposed to enhance the accuracy and stability of the numerical scheme. A sensitivity analysis is first conducted to determine the relative influences of various model parameters on the solution. These parameters are adopted for the computation of water flows over a hemispherical body, conical body and a divergent/convergent nozzle. Finally, numerical calculations of ventilated supercavitating flows over a hemispherical cylinder body with a hot propulsive jet are conducted to verify the capabilities of the numerical scheme.
An efficient shock-capturing scheme for simulating compressible homogeneous mixture flow
International Nuclear Information System (INIS)
Dang, Son Tung; Ha, Cong Tu; Park, Warn Gyu; Jung, Chul Min
2016-01-01
This work is devoted to the development of a procedure for the numerical solution of Navier-Stokes equations for cavitating flows with and without ventilation based on a compressible, multiphase, homogeneous mixture model. The governing equations are discretized on a general structured grid using a high-resolution shock-capturing scheme in conjunction with appropriate limiters to prevent the generation of spurious solutions near shock waves or discontinuities. Two well-known limiters are examined, and a new limiter is proposed to enhance the accuracy and stability of the numerical scheme. A sensitivity analysis is first conducted to determine the relative influences of various model parameters on the solution. These parameters are adopted for the computation of water flows over a hemispherical body, conical body and a divergent/convergent nozzle. Finally, numerical calculations of ventilated supercavitating flows over a hemispherical cylinder body with a hot propulsive jet are conducted to verify the capabilities of the numerical scheme
Numerical Analysis of Dusty-Gas Flows
Saito, T.
2002-02-01
This paper presents the development of a numerical code for simulating unsteady dusty-gas flows including shock and rarefaction waves. The numerical results obtained for a shock tube problem are used for validating the accuracy and performance of the code. The code is then extended for simulating two-dimensional problems. Since the interactions between the gas and particle phases are calculated with the operator splitting technique, we can choose numerical schemes independently for the different phases. A semi-analytical method is developed for the dust phase, while the TVD scheme of Harten and Yee is chosen for the gas phase. Throughout this study, computations are carried out on SGI Origin2000, a parallel computer with multiple of RISC based processors. The efficient use of the parallel computer system is an important issue and the code implementation on Origin2000 is also described. Flow profiles of both the gas and solid particles behind the steady shock wave are calculated by integrating the steady conservation equations. The good agreement between the pseudo-stationary solutions and those from the current numerical code validates the numerical approach and the actual coding. The pseudo-stationary shock profiles can also be used as initial conditions of unsteady multidimensional simulations.
Construction of Low Dissipative High Order Well-Balanced Filter Schemes for Non-Equilibrium Flows
Wang, Wei; Yee, H. C.; Sjogreen, Bjorn; Magin, Thierry; Shu, Chi-Wang
2009-01-01
The goal of this paper is to generalize the well-balanced approach for non-equilibrium flow studied by Wang et al. [26] to a class of low dissipative high order shock-capturing filter schemes and to explore more advantages of well-balanced schemes in reacting flows. The class of filter schemes developed by Yee et al. [30], Sjoegreen & Yee [24] and Yee & Sjoegreen [35] consist of two steps, a full time step of spatially high order non-dissipative base scheme and an adaptive nonlinear filter containing shock-capturing dissipation. A good property of the filter scheme is that the base scheme and the filter are stand alone modules in designing. Therefore, the idea of designing a well-balanced filter scheme is straightforward, i.e., choosing a well-balanced base scheme with a well-balanced filter (both with high order). A typical class of these schemes shown in this paper is the high order central difference schemes/predictor-corrector (PC) schemes with a high order well-balanced WENO filter. The new filter scheme with the well-balanced property will gather the features of both filter methods and well-balanced properties: it can preserve certain steady state solutions exactly; it is able to capture small perturbations, e.g., turbulence fluctuations; it adaptively controls numerical dissipation. Thus it shows high accuracy, efficiency and stability in shock/turbulence interactions. Numerical examples containing 1D and 2D smooth problems, 1D stationary contact discontinuity problem and 1D turbulence/shock interactions are included to verify the improved accuracy, in addition to the well-balanced behavior.
A numerical solution for a class of time fractional diffusion equations with delay
Directory of Open Access Journals (Sweden)
Pimenov Vladimir G.
2017-09-01
Full Text Available This paper describes a numerical scheme for a class of fractional diffusion equations with fixed time delay. The study focuses on the uniqueness, convergence and stability of the resulting numerical solution by means of the discrete energy method. The derivation of a linearized difference scheme with convergence order O(τ2−α+ h4 in L∞-norm is the main purpose of this study. Numerical experiments are carried out to support the obtained theoretical results.
Numerical simulations for radiation hydrodynamics. 2: Transport limit
International Nuclear Information System (INIS)
Dai, W.W.; Woodward, P.R.
2000-01-01
A finite difference scheme is proposed for two-dimensional radiation hydrodynamical equations in the transport limit. The scheme is of Godunov-type, in which the set of time-averaged flux needed in the scheme is calculated through Riemann problems solved. In the scheme, flow signals are explicitly treated, while radiation signals are implicitly treated. Flow fields and radiation fields are updated simultaneously. An iterative approach is proposed to solve the set of nonlinear algebraic equations arising from the implicitness of the scheme. The sweeping method used in the scheme significantly reduces the number of iterations or computer CPU time needed. A new approach to further accelerate the convergence is proposed, which further reduces the number of iterations needed by more than one order. No matter how many cells radiation signals propagate in one time step, only an extremely small number of iterations are needed in the scheme, and each iteration costs only about 0.8% of computer CPU time which is needed for one time step of a second order accurate and fully explicit scheme. Two-dimensional problems are treated through a dimensionally split technique. Therefore, iterations for solving the set of algebraic equations are carried out only in each one-dimensional sweep. Through numerical examples it is shown that the scheme keeps the principle advantages of Godunov schemes for flow motion. In the time scale of flow motion numerical results are the same as those obtained from a second order accurate and fully explicit scheme. The acceleration of the convergence proposed in this paper may be directly applied to other hyperbolic systems. This study is important for laser fusion and astrophysics
High-Order Hyperbolic Residual-Distribution Schemes on Arbitrary Triangular Grids
Mazaheri, Alireza; Nishikawa, Hiroaki
2015-01-01
In this paper, we construct high-order hyperbolic residual-distribution schemes for general advection-diffusion problems on arbitrary triangular grids. We demonstrate that the second-order accuracy of the hyperbolic schemes can be greatly improved by requiring the scheme to preserve exact quadratic solutions. We also show that the improved second-order scheme can be easily extended to third-order by further requiring the exactness for cubic solutions. We construct these schemes based on the LDA and the SUPG methodology formulated in the framework of the residual-distribution method. For both second- and third-order-schemes, we construct a fully implicit solver by the exact residual Jacobian of the second-order scheme, and demonstrate rapid convergence of 10-15 iterations to reduce the residuals by 10 orders of magnitude. We demonstrate also that these schemes can be constructed based on a separate treatment of the advective and diffusive terms, which paves the way for the construction of hyperbolic residual-distribution schemes for the compressible Navier-Stokes equations. Numerical results show that these schemes produce exceptionally accurate and smooth solution gradients on highly skewed and anisotropic triangular grids, including curved boundary problems, using linear elements. We also present Fourier analysis performed on the constructed linear system and show that an under-relaxation parameter is needed for stabilization of Gauss-Seidel relaxation.
Parker, Jeffrey B.
2018-05-01
Zonal flows have been observed to appear spontaneously from turbulence in a number of physical settings. A complete theory for their behavior is still lacking. Recently, a number of studies have investigated the dynamics of zonal flows using quasilinear (QL) theories and the statistical framework of a second-order cumulant expansion (CE2). A geometrical-optics (GO) reduction of CE2, derived under an assumption of separation of scales between the fluctuations and the zonal flow, is studied here numerically. The reduced model, CE2-GO, has a similar phase-space mathematical structure to the traditional wave-kinetic equation, but that wave-kinetic equation has been shown to fail to preserve enstrophy conservation and to exhibit an ultraviolet catastrophe. CE2-GO, in contrast, preserves nonlinear conservation of both energy and enstrophy. We show here how to retain these conservation properties in a pseudospectral simulation of CE2-GO. We then present nonlinear simulations of CE2-GO and compare with direct simulations of quasilinear (QL) dynamics. We find that CE2-GO retains some similarities to QL. The partitioning of energy that resides in the zonal flow is in good quantitative agreement between CE2-GO and QL. On the other hand, the length scale of the zonal flow does not follow the same qualitative trend in the two models. Overall, these simulations indicate that CE2-GO provides a simpler and more tractable statistical paradigm than CE2, but CE2-GO is missing important physics.
High-order asynchrony-tolerant finite difference schemes for partial differential equations
Aditya, Konduri; Donzis, Diego A.
2017-12-01
Synchronizations of processing elements (PEs) in massively parallel simulations, which arise due to communication or load imbalances between PEs, significantly affect the scalability of scientific applications. We have recently proposed a method based on finite-difference schemes to solve partial differential equations in an asynchronous fashion - synchronization between PEs is relaxed at a mathematical level. While standard schemes can maintain their stability in the presence of asynchrony, their accuracy is drastically affected. In this work, we present a general methodology to derive asynchrony-tolerant (AT) finite difference schemes of arbitrary order of accuracy, which can maintain their accuracy when synchronizations are relaxed. We show that there are several choices available in selecting a stencil to derive these schemes and discuss their effect on numerical and computational performance. We provide a simple classification of schemes based on the stencil and derive schemes that are representative of different classes. Their numerical error is rigorously analyzed within a statistical framework to obtain the overall accuracy of the solution. Results from numerical experiments are used to validate the performance of the schemes.
Support Schemes and Ownership Structures
DEFF Research Database (Denmark)
Ropenus, Stephanie; Schröder, Sascha Thorsten; Costa, Ana
, Denmark, France and Portugal. Another crucial aspect for the diffusion of the mCHP technology is possible ownership structures. These may range from full consumer ownership to ownership by utilities and energy service companies, which is discussed in Section 6. Finally, a conclusion (Section 7) wraps up......In recent years, fuel cell based micro‐combined heat and power has received increasing attention due to its potential contribution to energy savings, efficiency gains, customer proximity and flexibility in operation and capacity size. The FC4Home project assesses technical and economic aspects...... of support scheme simultaneously affects risk and technological development, which is the focus of Section 4. Subsequent to this conceptual overview, Section 5 takes a glance at the national application of support schemes for mCHP in practice, notably in the three country cases of the FC4Home project...
[PICS: pharmaceutical inspection cooperation scheme].
Morénas, J
2009-01-01
The pharmaceutical inspection cooperation scheme (PICS) is a structure containing 34 participating authorities located worldwide (October 2008). It has been created in 1995 on the basis of the pharmaceutical inspection convention (PIC) settled by the European free trade association (EFTA) in1970. This scheme has different goals as to be an international recognised body in the field of good manufacturing practices (GMP), for training inspectors (by the way of an annual seminar and experts circles related notably to active pharmaceutical ingredients [API], quality risk management, computerized systems, useful for the writing of inspection's aide-memoires). PICS is also leading to high standards for GMP inspectorates (through regular crossed audits) and being a room for exchanges on technical matters between inspectors but also between inspectors and pharmaceutical industry.
Project financing renewable energy schemes
International Nuclear Information System (INIS)
Brandler, A.
1993-01-01
The viability of many Renewable Energy projects is critically dependent upon the ability of these projects to secure the necessary financing on acceptable terms. The principal objective of the study was to provide an overview to project developers of project financing techniques and the conditions under which project finance for Renewable Energy schemes could be raised, focussing on the potential sources of finance, the typical project financing structures that could be utilised for Renewable Energy schemes and the risk/return and security requirements of lenders, investors and other potential sources of financing. A second objective is to describe the appropriate strategy and tactics for developers to adopt in approaching the financing markets for such projects. (author)
Network Regulation and Support Schemes
DEFF Research Database (Denmark)
Ropenus, Stephanie; Schröder, Sascha Thorsten; Jacobsen, Henrik
2009-01-01
-in tariffs to market-based quota systems, and network regulation approaches, comprising rate-of-return and incentive regulation. National regulation and the vertical structure of the electricity sector shape the incentives of market agents, notably of distributed generators and network operators......At present, there exists no explicit European policy framework on distributed generation. Various Directives encompass distributed generation; inherently, their implementation is to the discretion of the Member States. The latter have adopted different kinds of support schemes, ranging from feed....... This article seeks to investigate the interactions between the policy dimensions of support schemes and network regulation and how they affect the deployment of distributed generation. Firstly, a conceptual analysis examines how the incentives of the different market agents are affected. In particular...
Distance labeling schemes for trees
DEFF Research Database (Denmark)
Alstrup, Stephen; Gørtz, Inge Li; Bistrup Halvorsen, Esben
2016-01-01
We consider distance labeling schemes for trees: given a tree with n nodes, label the nodes with binary strings such that, given the labels of any two nodes, one can determine, by looking only at the labels, the distance in the tree between the two nodes. A lower bound by Gavoille et al. [Gavoille...... variants such as, for example, small distances in trees [Alstrup et al., SODA, 2003]. We improve the known upper and lower bounds of exact distance labeling by showing that 1/4 log2(n) bits are needed and that 1/2 log2(n) bits are sufficient. We also give (1 + ε)-stretch labeling schemes using Theta...
Small-scale classification schemes
DEFF Research Database (Denmark)
Hertzum, Morten
2004-01-01
Small-scale classification schemes are used extensively in the coordination of cooperative work. This study investigates the creation and use of a classification scheme for handling the system requirements during the redevelopment of a nation-wide information system. This requirements...... classification inherited a lot of its structure from the existing system and rendered requirements that transcended the framework laid out by the existing system almost invisible. As a result, the requirements classification became a defining element of the requirements-engineering process, though its main...... effects remained largely implicit. The requirements classification contributed to constraining the requirements-engineering process by supporting the software engineers in maintaining some level of control over the process. This way, the requirements classification provided the software engineers...
Cambridge community Optometry Glaucoma Scheme.
Keenan, Jonathan; Shahid, Humma; Bourne, Rupert R; White, Andrew J; Martin, Keith R
2015-04-01
With a higher life expectancy, there is an increased demand for hospital glaucoma services in the United Kingdom. The Cambridge community Optometry Glaucoma Scheme (COGS) was initiated in 2010, where new referrals for suspected glaucoma are evaluated by community optometrists with a special interest in glaucoma, with virtual electronic review and validation by a consultant ophthalmologist with special interest in glaucoma. 1733 patients were evaluated by this scheme between 2010 and 2013. Clinical assessment is performed by the optometrist at a remote site. Goldmann applanation tonometry, pachymetry, monoscopic colour optic disc photographs and automated Humphrey visual field testing are performed. A clinical decision is made as to whether a patient has glaucoma or is a suspect, and referred on or discharged as a false positive referral. The clinical findings, optic disc photographs and visual field test results are transmitted electronically for virtual review by a consultant ophthalmologist. The number of false positive referrals from initial referral into the scheme. Of the patients, 46.6% were discharged at assessment and a further 5.7% were discharged following virtual review. Of the patients initially discharged, 2.8% were recalled following virtual review. Following assessment at the hospital, a further 10.5% were discharged after a single visit. The COGS community-based glaucoma screening programme is a safe and effective way of evaluating glaucoma referrals in the community and reducing false-positive referrals for glaucoma into the hospital system. © 2014 Royal Australian and New Zealand College of Ophthalmologists.
New schemes for particle accelerators
International Nuclear Information System (INIS)
Nishida, Y.
1985-01-01
In the present paper, the authors propose new schemes for realizing the v/sub p/xB accelerator, by using no plasma system for producing the strong longitudinal waves. The first method is to use a grating for obtaining extended interaction of an electron beam moving along the grating surface with light beam incident also along the surface. Here, the light beam propagates obliquely to the grating grooves for producing strong electric field, and the electron beam propagates in parallel to the light beam. The static magnetic field is applied perpendicularly to the grating surface. In the present system, the beam interacts synchronously with the p-polarized wave which has the electric field be parallel to the grating surface. Another conventional scheme is to use a delay circuit. Here, the light beam propagates obliquely between a pair of array of conductor fins or slots. The phase velocity of the spatial harmonics in the y-direction (right angle to the array of slots) is slower than the speed of light. With the aid of powerful laser light or microwave source, it should be possible to miniaturise linacs by using the v/sub p/xB effect and schemes proposed here
Variable flavor scheme for final state jets
International Nuclear Information System (INIS)
Pietrulewicz, P.
2014-01-01
In this thesis I describe a setup to treat mass effects from secondary radiation of heavy quark pairs in inclusive hard scattering processes with various dynamical scales. The resulting variable flavor number scheme (VFNS) generalizes a well-known scheme for massive initial state quarks which has been developed for deep inelastic scattering (DIS) in the classical region 1 - x ⁓ O(1) and which will be also discussed here. The setup incorporated in the formalism of Soft-Collinear Effective Theory (SCET) consistently takes into account the effects of massive quark loops and allows to deal with all hierarchies between the mass scale and the involved kinematic scales corresponding to collinear and soft radiation. It resums all large logarithms due to flavor number dependent evolution, achieves both decoupling for very large masses and the correct massless behavior for very small masses, and provides a continuous description in between. In the bulk of this work I will concentrate on DIS in the endpoint region x → 1 serving mainly as a showcase for the concepts and on the thrust distribution for e + e - -collisions in the dijet limit as a phenomenologically relevant example for an event shape. The computations of the corrections to the structures in the factorization theorems are described explicitly for the singular terms at O(α s 2 C F T F ) arising from secondary radiation of massive quarks through gluon splitting. Apart from the soft function for thrust, which requires a dedicated calculation, these results are directly obtained from the corresponding results for the radiation of a massive gauge boson with vector coupling at O(α s ) with the help of dispersion relations, and most of the relevant conceptual and technical issues can be dealt with already at this level. Finally, to estimate the impact of the corrections I carry out a numerical analysis for secondary massive bottom and top quarks on thrust distributions at different center-of-mass energies
A Memory Efficient Network Encryption Scheme
El-Fotouh, Mohamed Abo; Diepold, Klaus
In this paper, we studied the two widely used encryption schemes in network applications. Shortcomings have been found in both schemes, as these schemes consume either more memory to gain high throughput or low memory with low throughput. The need has aroused for a scheme that has low memory requirements and in the same time possesses high speed, as the number of the internet users increases each day. We used the SSM model [1], to construct an encryption scheme based on the AES. The proposed scheme possesses high throughput together with low memory requirements.
An Arbitrated Quantum Signature Scheme without Entanglement*
International Nuclear Information System (INIS)
Li Hui-Ran; Luo Ming-Xing; Peng Dai-Yuan; Wang Xiao-Jun
2017-01-01
Several quantum signature schemes are recently proposed to realize secure signatures of quantum or classical messages. Arbitrated quantum signature as one nontrivial scheme has attracted great interests because of its usefulness and efficiency. Unfortunately, previous schemes cannot against Trojan horse attack and DoS attack and lack of the unforgeability and the non-repudiation. In this paper, we propose an improved arbitrated quantum signature to address these secure issues with the honesty arbitrator. Our scheme takes use of qubit states not entanglements. More importantly, the qubit scheme can achieve the unforgeability and the non-repudiation. Our scheme is also secure for other known quantum attacks . (paper)
The Impact of Microphysical Schemes on Hurricane Intensity and Track
Tao, Wei-Kuo; Shi, Jainn Jong; Chen, Shuyi S.; Lang, Stephen; Lin, Pay-Liam; Hong, Song-You; Peters-Lidard, Christa; Hou, Arthur
2011-01-01
During the past decade, both research and operational numerical weather prediction models [e.g. the Weather Research and Forecasting Model (WRF)] have started using more complex microphysical schemes originally developed for high-resolution cloud resolving models (CRMs) with 1-2 km or less horizontal resolutions. WRF is a next-generation meso-scale forecast model and assimilation system. It incorporates a modern software framework, advanced dynamics, numerics and data assimilation techniques, a multiple moveable nesting capability, and improved physical packages. WRF can be used for a wide range of applications, from idealized research to operational forecasting, with an emphasis on horizontal grid sizes in the range of 1-10 km. The current WRF includes several different microphysics options. At NASA Goddard, four different cloud microphysics options have been implemented into WRF. The performance of these schemes is compared to those of the other microphysics schemes available in WRF for an Atlantic hurricane case (Katrina). In addition, a brief review of previous modeling studies on the impact of microphysics schemes and processes on the intensity and track of hurricanes is presented and compared against the current Katrina study. In general, all of the studies show that microphysics schemes do not have a major impact on track forecasts but do have more of an effect on the simulated intensity. Also, nearly all of the previous studies found that simulated hurricanes had the strongest deepening or intensification when using only warm rain physics. This is because all of the simulated precipitating hydrometeors are large raindrops that quickly fall out near the eye-wall region, which would hydrostatically produce the lowest pressure. In addition, these studies suggested that intensities become unrealistically strong when evaporative cooling from cloud droplets and melting from ice particles are removed as this results in much weaker downdrafts in the simulated
Numerical method for solving the three-dimensional time-dependent neutron diffusion equation
International Nuclear Information System (INIS)
Khaled, S.M.; Szatmary, Z.
2005-01-01
A numerical time-implicit method has been developed for solving the coupled three-dimensional time-dependent multi-group neutron diffusion and delayed neutron precursor equations. The numerical stability of the implicit computation scheme and the convergence of the iterative associated processes have been evaluated. The computational scheme requires the solution of large linear systems at each time step. For this purpose, the point over-relaxation Gauss-Seidel method was chosen. A new scheme was introduced instead of the usual source iteration scheme. (author)
Godunov-type schemes for hydrodynamic and magnetohydrodynamic modeling
International Nuclear Information System (INIS)
Vides-Higueros, Jeaniffer
2014-01-01
The main objective of this thesis concerns the study, design and numerical implementation of finite volume schemes based on the so-Called Godunov-Type solvers for hyperbolic systems of nonlinear conservation laws, with special attention given to the Euler equations and ideal MHD equations. First, we derive a simple and genuinely two-Dimensional Riemann solver for general conservation laws that can be regarded as an actual 2D generalization of the HLL approach, relying heavily on the consistency with the integral formulation and on the proper use of Rankine-Hugoniot relations to yield expressions that are simple enough to be applied in the structured and unstructured contexts. Then, a comparison between two methods aiming to numerically maintain the divergence constraint of the magnetic field for the ideal MHD equations is performed and we show how the 2D Riemann solver can be employed to obtain robust divergence-Free simulations. Next, we derive a relaxation scheme that incorporates gravity source terms derived from a potential into the hydrodynamic equations, an important problem in astrophysics, and finally, we review the design of finite volume approximations in curvilinear coordinates, providing a fresher view on an alternative discretization approach. Throughout this thesis, numerous numerical results are shown. (author) [fr
Peng, Qiujin; Qiao, Zhonghua; Sun, Shuyu
2017-01-01
In this paper, we present two second-order numerical schemes to solve the fourth order parabolic equation derived from a diffuse interface model with Peng-Robinson Equation of state (EOS) for pure substance. The mass conservation, energy decay property, unique solvability and L-infinity convergence of these two schemes are proved. Numerical results demonstrate the good approximation of the fourth order equation and confirm reliability of these two schemes.
Peng, Qiujin
2017-09-18
In this paper, we present two second-order numerical schemes to solve the fourth order parabolic equation derived from a diffuse interface model with Peng-Robinson Equation of state (EOS) for pure substance. The mass conservation, energy decay property, unique solvability and L-infinity convergence of these two schemes are proved. Numerical results demonstrate the good approximation of the fourth order equation and confirm reliability of these two schemes.
Understanding the types of fraud in claims to South African medical schemes.
Legotlo, T G; Mutezo, A
2018-03-28
Medical schemes play a significant role in funding private healthcare in South Africa (SA). However, the sector is negatively affected by the high rate of fraudulent claims. To identify the types of fraudulent activities committed in SA medical scheme claims. A cross-sectional qualitative study was conducted, adopting a case study strategy. A sample of 15 employees was purposively selected from a single medical scheme administration company in SA. Semi-structured interviews were conducted to collect data from study participants. A thematic analysis of the data was done using ATLAS.ti software (ATLAS.ti Scientific Software Development, Germany). The study population comprised the 17 companies that administer medical schemes in SA. Data were collected from 15 study participants, who were selected from the medical scheme administrator chosen as a case study. The study found that medical schemes were defrauded in numerous ways. The perpetrators of this type of fraud include healthcare service providers, medical scheme members, employees, brokers and syndicates. Medical schemes are mostly defrauded by the submission of false claims by service providers and syndicates. Fraud committed by medical scheme members encompasses the sharing of medical scheme benefits with non-members (card farming) and non-disclosure of pre-existing conditions at the application stage. The study concluded that perpetrators of fraud have found several ways of defrauding SA medical schemes regarding claims. Understanding and identifying the types of fraud events facing medical schemes is the initial step towards establishing methods to mitigate this risk. Future studies should examine strategies to manage fraudulent medical scheme claims.
Zwanenburg, Philip; Nadarajah, Siva
2016-02-01
The aim of this paper is to demonstrate the equivalence between filtered Discontinuous Galerkin (DG) schemes and the Energy Stable Flux Reconstruction (ESFR) schemes, expanding on previous demonstrations in 1D [1] and for straight-sided elements in 3D [2]. We first derive the DG and ESFR schemes in strong form and compare the respective flux penalization terms while highlighting the implications of the fundamental assumptions for stability in the ESFR formulations, notably that all ESFR scheme correction fields can be interpreted as modally filtered DG correction fields. We present the result in the general context of all higher dimensional curvilinear element formulations. Through a demonstration that there exists a weak form of the ESFR schemes which is both discretely and analytically equivalent to the strong form, we then extend the results obtained for the strong formulations to demonstrate that ESFR schemes can be interpreted as a DG scheme in weak form where discontinuous edge flux is substituted for numerical edge flux correction. Theoretical derivations are then verified with numerical results obtained from a 2D Euler testcase with curved boundaries. Given the current choice of high-order DG-type schemes and the question as to which might be best to use for a specific application, the main significance of this work is the bridge that it provides between them. Clearly outlining the similarities between the schemes results in the important conclusion that it is always less efficient to use ESFR schemes, as opposed to the weak DG scheme, when solving problems implicitly.
Forcing scheme analysis for the axisymmetric lattice Boltzmann method under incompressible limit.
Zhang, Liangqi; Yang, Shiliang; Zeng, Zhong; Chen, Jie; Yin, Linmao; Chew, Jia Wei
2017-04-01
Because the standard lattice Boltzmann (LB) method is proposed for Cartesian Navier-Stokes (NS) equations, additional source terms are necessary in the axisymmetric LB method for representing the axisymmetric effects. Therefore, the accuracy and applicability of the axisymmetric LB models depend on the forcing schemes adopted for discretization of the source terms. In this study, three forcing schemes, namely, the trapezium rule based scheme, the direct forcing scheme, and the semi-implicit centered scheme, are analyzed theoretically by investigating their derived macroscopic equations in the diffusive scale. Particularly, the finite difference interpretation of the standard LB method is extended to the LB equations with source terms, and then the accuracy of different forcing schemes is evaluated for the axisymmetric LB method. Theoretical analysis indicates that the discrete lattice effects arising from the direct forcing scheme are part of the truncation error terms and thus would not affect the overall accuracy of the standard LB method with general force term (i.e., only the source terms in the momentum equation are considered), but lead to incorrect macroscopic equations for the axisymmetric LB models. On the other hand, the trapezium rule based scheme and the semi-implicit centered scheme both have the advantage of avoiding the discrete lattice effects and recovering the correct macroscopic equations. Numerical tests applied for validating the theoretical analysis show that both the numerical stability and the accuracy of the axisymmetric LB simulations are affected by the direct forcing scheme, which indicate that forcing schemes free of the discrete lattice effects are necessary for the axisymmetric LB method.
A cubic B-spline Galerkin approach for the numerical simulation of the GEW equation
Directory of Open Access Journals (Sweden)
S. Battal Gazi Karakoç
2016-02-01
Full Text Available The generalized equal width (GEW wave equation is solved numerically by using lumped Galerkin approach with cubic B-spline functions. The proposed numerical scheme is tested by applying two test problems including single solitary wave and interaction of two solitary waves. In order to determine the performance of the algorithm, the error norms L2 and L∞ and the invariants I1, I2 and I3 are calculated. For the linear stability analysis of the numerical algorithm, von Neumann approach is used. As a result, the obtained findings show that the presented numerical scheme is preferable to some recent numerical methods.
Wang, Chenyu; Xu, Guoai
2017-01-01
Remote user authentication is the first step to guarantee the security of online services. Online services grow rapidly and numerous remote user authentication schemes were proposed with high capability and efficiency. Recently, there are three new improved remote user authentication schemes which claim to be resistant to various attacks. Unfortunately, according to our analysis, these schemes all fail to achieve some critical security goals. This paper demonstrates that they all suffer from ...
Xing, Yanyuan; Yan, Yubin
2018-03-01
Gao et al. [11] (2014) introduced a numerical scheme to approximate the Caputo fractional derivative with the convergence rate O (k 3 - α), 0 equation is sufficiently smooth, Lv and Xu [20] (2016) proved by using energy method that the corresponding numerical method for solving time fractional partial differential equation has the convergence rate O (k 3 - α), 0 equation has low regularity and in this case the numerical method fails to have the convergence rate O (k 3 - α), 0 quadratic interpolation polynomials. Based on this scheme, we introduce a time discretization scheme to approximate the time fractional partial differential equation and show by using Laplace transform methods that the time discretization scheme has the convergence rate O (k 3 - α), 0 0 for smooth and nonsmooth data in both homogeneous and inhomogeneous cases. Numerical examples are given to show that the theoretical results are consistent with the numerical results.
Upwind differencing scheme for the equations of ideal magnetohydrodynamics
International Nuclear Information System (INIS)
Brio, M.; Wu, C.C.
1988-01-01
Recently, upwind differencing schemes have become very popular for solving hyperbolic partial differential equations, especially when discontinuities exist in the solutions. Among many upwind schemes successfully applied to the problems in gas dynamics, Roe's method stands out for its relative simplicity and clarity of the underlying physical model. In this paper, an upwind differencing scheme of Roe-type for the MHD equations is constructed. In each computational cell, the problem is first linearized around some averaged state which preserves the flux differences. Then the solution is advanced in time by computing the wave contributions to the flux at the cell interfaces. One crucial task of the linearization procedure is the construction of a Roe matrix. For the special case γ = 2, a Roe matrix in the form of a mean value Jacobian is found, and for the general case, a simple averaging procedure is introduced. All other necessary ingredients of the construction, which include eigenvalues, and a complete set of right eigenvectors of the Roe matrix and decomposition coefficients are presented. As a numerical example, we chose a coplanar MHD Riemann problem. The problem is solved by the newly constructed second-order upwind scheme as well as by the Lax-Friedrichs, the Lax-Wendroff, and the flux-corrected transport schemes. The results demonstrate several advantages of the upwind scheme. In this paper, we also show that the MHD equations are nonconvex. This is a contrast to the general belief that the fast and slow waves are like sound waves in the Euler equations. As a consequence, the wave structure becomes more complicated; for example, compound waves consisting of a shock and attached to it a rarefaction wave of the same family can exist in MHD. copyright 1988 Academic Press, Inc
Decoupling schemes for the SSC Collider
International Nuclear Information System (INIS)
Cai, Y.; Bourianoff, G.; Cole, B.; Meinke, R.; Peterson, J.; Pilat, F.; Stampke, S.; Syphers, M.; Talman, R.
1993-05-01
A decoupling system is designed for the SSC Collider. This system can accommodate three decoupling schemes by using 44 skew quadrupoles in the different configurations. Several decoupling schemes are studied and compared in this paper
Renormalization scheme-invariant perturbation theory
International Nuclear Information System (INIS)
Dhar, A.
1983-01-01
A complete solution to the problem of the renormalization scheme dependence of perturbative approximants to physical quantities is presented. An equation is derived which determines any physical quantity implicitly as a function of only scheme independent variables. (orig.)
Wireless Broadband Access and Accounting Schemes
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
In this paper, we propose two wireless broadband access and accounting schemes. In both schemes, the accounting system adopts RADIUS protocol, but the access system adopts SSH and SSL protocols respectively.
Directory of Open Access Journals (Sweden)
Peng Jiang
2013-01-01
Full Text Available The authors attempt to construct the exact finite-difference schemes for linear stochastic differential equations with constant coefficients. The explicit solutions to Itô and Stratonovich linear stochastic differential equations with constant coefficients are adopted with the view of providing exact finite-difference schemes to solve them. In particular, the authors utilize the exact finite-difference schemes of Stratonovich type linear stochastic differential equations to solve the Kubo oscillator that is widely used in physics. Further, the authors prove that the exact finite-difference schemes can preserve the symplectic structure and first integral of the Kubo oscillator. The authors also use numerical examples to prove the validity of the numerical methods proposed in this paper.
DEFF Research Database (Denmark)
Fasano, Andrea; Rasmussen, Henrik K.
2017-01-01
A third order accurate, in time and space, finite element scheme for the numerical simulation of three- dimensional time-dependent flow of the molecular stress function type of fluids in a generalized formu- lation is presented. The scheme is an extension of the K-BKZ Lagrangian finite element me...
Numerical vs. turbulent diffusion in geophysical flow modelling
International Nuclear Information System (INIS)
D'Isidoro, M.; Maurizi, A.; Tampieri, F.
2008-01-01
Numerical advection schemes induce the spreading of passive tracers from localized sources. The effects of changing resolution and Courant number are investigated using the WAF advection scheme, which leads to a sub-diffusive process. The spreading rate from an instantaneous source is compared with the physical diffusion necessary to simulate unresolved turbulent motions. The time at which the physical diffusion process overpowers the numerical spreading is estimated, and is shown to reduce as the resolution increases, and to increase as the wind velocity increases.
Tightly Secure Signatures From Lossy Identification Schemes
Abdalla , Michel; Fouque , Pierre-Alain; Lyubashevsky , Vadim; Tibouchi , Mehdi
2015-01-01
International audience; In this paper, we present three digital signature schemes with tight security reductions in the random oracle model. Our first signature scheme is a particularly efficient version of the short exponent discrete log-based scheme of Girault et al. (J Cryptol 19(4):463–487, 2006). Our scheme has a tight reduction to the decisional short discrete logarithm problem, while still maintaining the non-tight reduction to the computational version of the problem upon which the or...
Optimal Sales Schemes for Network Goods
DEFF Research Database (Denmark)
Parakhonyak, Alexei; Vikander, Nick
consumers simultaneously, serve them all sequentially, or employ any intermediate scheme. We show that the optimal sales scheme is purely sequential, where each consumer observes all previous sales before choosing whether to buy himself. A sequential scheme maximizes the amount of information available...
THROUGHPUT ANALYSIS OF EXTENDED ARQ SCHEMES
African Journals Online (AJOL)
PUBLICATIONS1
ABSTRACT. Various Automatic Repeat Request (ARQ) schemes have been used to combat errors that befall in- formation transmitted in digital communication systems. Such schemes include simple ARQ, mixed mode ARQ and Hybrid ARQ (HARQ). In this study we introduce extended ARQ schemes and derive.
Arbitrated quantum signature scheme with message recovery
International Nuclear Information System (INIS)
Lee, Hwayean; Hong, Changho; Kim, Hyunsang; Lim, Jongin; Yang, Hyung Jin
2004-01-01
Two quantum signature schemes with message recovery relying on the availability of an arbitrator are proposed. One scheme uses a public board and the other does not. However both schemes provide confidentiality of the message and a higher efficiency in transmission
Hierarchical Markov Model in Life Insurance and Social Benefit Schemes
Directory of Open Access Journals (Sweden)
Jiwook Jang
2018-06-01
Full Text Available We explored the effect of the jump-diffusion process on a social benefit scheme consisting of life insurance, unemployment/disability benefits, and retirement benefits. To do so, we used a four-state Markov chain with multiple decrements. Assuming independent state-wise intensities taking the form of a jump-diffusion process and deterministic interest rates, we evaluated the prospective reserves for this scheme in which the individual is employed at inception. We then numerically demonstrated the state of the reserves for the scheme under jump-diffusion and non-jump-diffusion settings. By decomposing the reserve equation into five components, our numerical illustration indicated that an extension of the retirement age has a spillover effect that would increase government expenses for other social insurance programs. We also conducted sensitivity analyses and examined the total-reserves components by changing the relevant parameters of the transition intensities, which are the average jump-size parameter, average jump frequency, and diffusion parameters of the chosen states, with figures provided. Our computation revealed that the total reserve is most sensitive to changes in average jump frequency.
Cluster synchronization for directed community networks via pinning partial schemes
International Nuclear Information System (INIS)
Hu Cheng; Jiang Haijun
2012-01-01
Highlights: ► Cluster synchronization for directed community networks is proposed by pinning partial schemes. ► Each community is considered as a whole. ► Several novel pinning criteria are derived based on the information of communities. ► A numerical example with simulation is provided. - Abstract: In this paper, we focus on driving a class of directed networks to achieve cluster synchronization by pinning schemes. The desired cluster synchronization states are no longer decoupled orbits but a set of un-decoupled trajectories. Each community is considered as a whole and the synchronization criteria are derived based on the information of communities. Several pinning schemes including feedback control and adaptive strategy are proposed to select controlled communities by analyzing the information of each community such as indegrees and outdegrees. In all, this paper answers several challenging problems in pinning control of directed community networks: (1) What communities should be chosen as controlled candidates? (2) How many communities are needed to be controlled? (3) How large should the control gains be used in a given community network to achieve cluster synchronization? Finally, an example with numerical simulations is given to demonstrate the effectiveness of the theoretical results.
Ulku, Huseyin Arda; Bagci, Hakan; Michielssen, Eric
2012-01-01
An explicit yet stable marching-on-in-time (MOT) scheme for solving the time domain magnetic field integral equation (TD-MFIE) is presented. The stability of the explicit scheme is achieved via (i) accurate evaluation of the MOT matrix elements using closed form expressions and (ii) a PE(CE) m type linear multistep method for time marching. Numerical results demonstrate the accuracy and stability of the proposed explicit MOT-TD-MFIE solver. © 2012 IEEE.
International Nuclear Information System (INIS)
Bouard, Anne de; Debussche, Arnaud
2006-01-01
In this article we analyze the error of a semidiscrete scheme for the stochastic nonlinear Schrodinger equation with power nonlinearity. We consider supercritical or subcritical nonlinearity and the equation can be either focusing or defocusing. Allowing sufficient spatial regularity we prove that the numerical scheme has strong order 1/2 in general and order 1 if the noise is additive. Furthermore, we also prove that the weak order is always 1
International Nuclear Information System (INIS)
Chen, H.-H.; Chen, C.-S.; Lee, C.-I
2009-01-01
This paper investigates the synchronization of unidirectional and bidirectional coupled unified chaotic systems. A balanced coupling coefficient control method is presented for global asymptotic synchronization using the Lyapunov stability theorem and a minimum scheme with no constraints/constraints. By using the result of the above analysis, the balanced coupling coefficients are then designed to achieve the chaos synchronization of linearly coupled unified chaotic systems. The feasibility and effectiveness of the proposed chaos synchronization scheme are verified via numerical simulations.
Ulku, Huseyin Arda
2012-09-01
An explicit yet stable marching-on-in-time (MOT) scheme for solving the time domain magnetic field integral equation (TD-MFIE) is presented. The stability of the explicit scheme is achieved via (i) accurate evaluation of the MOT matrix elements using closed form expressions and (ii) a PE(CE) m type linear multistep method for time marching. Numerical results demonstrate the accuracy and stability of the proposed explicit MOT-TD-MFIE solver. © 2012 IEEE.
Arbitrary Dimension Convection-Diffusion Schemes for Space-Time Discretizations
Energy Technology Data Exchange (ETDEWEB)
Bank, Randolph E. [Univ. of California, San Diego, CA (United States); Vassilevski, Panayot S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Zikatanov, Ludmil T. [Bulgarian Academy of Sciences, Sofia (Bulgaria)
2016-01-20
This note proposes embedding a time dependent PDE into a convection-diffusion type PDE (in one space dimension higher) with singularity, for which two discretization schemes, the classical streamline-diffusion and the EAFE (edge average finite element) one, are investigated in terms of stability and error analysis. The EAFE scheme, in particular, is extended to be arbitrary order which is of interest on its own. Numerical results, in combined space-time domain demonstrate the feasibility of the proposed approach.
Guo, Jianqiang; Wang, Wansheng
2014-01-01
This paper deals with the numerical analysis of nonlinear Black-Scholes equation with transaction costs. An unconditionally stable and monotone splitting method, ensuring positive numerical solution and avoiding unstable oscillations, is proposed. This numerical method is based on the LOD-Backward Euler method which allows us to solve the discrete equation explicitly. The numerical results for vanilla call option and for European butterfly spread are provided. It turns out that the proposed scheme is efficient and reliable.
Numerical Modeling of Ablation Heat Transfer
Ewing, Mark E.; Laker, Travis S.; Walker, David T.
2013-01-01
A unique numerical method has been developed for solving one-dimensional ablation heat transfer problems. This paper provides a comprehensive description of the method, along with detailed derivations of the governing equations. This methodology supports solutions for traditional ablation modeling including such effects as heat transfer, material decomposition, pyrolysis gas permeation and heat exchange, and thermochemical surface erosion. The numerical scheme utilizes a control-volume approach with a variable grid to account for surface movement. This method directly supports implementation of nontraditional models such as material swelling and mechanical erosion, extending capabilities for modeling complex ablation phenomena. Verifications of the numerical implementation are provided using analytical solutions, code comparisons, and the method of manufactured solutions. These verifications are used to demonstrate solution accuracy and proper error convergence rates. A simple demonstration of a mechanical erosion (spallation) model is also provided to illustrate the unique capabilities of the method.
An adjoint-based scheme for eigenvalue error improvement
International Nuclear Information System (INIS)
Merton, S.R.; Smedley-Stevenson, R.P.; Pain, C.C.; El-Sheikh, A.H.; Buchan, A.G.
2011-01-01
A scheme for improving the accuracy and reducing the error in eigenvalue calculations is presented. Using a rst order Taylor series expansion of both the eigenvalue solution and the residual of the governing equation, an approximation to the error in the eigenvalue is derived. This is done using a convolution of the equation residual and adjoint solution, which is calculated in-line with the primal solution. A defect correction on the solution is then performed in which the approximation to the error is used to apply a correction to the eigenvalue. The method is shown to dramatically improve convergence of the eigenvalue. The equation for the eigenvalue is shown to simplify when certain normalizations are applied to the eigenvector. Two such normalizations are considered; the rst of these is a fission-source type of normalisation and the second is an eigenvector normalisation. Results are demonstrated on a number of demanding elliptic problems using continuous Galerkin weighted nite elements. Moreover, the correction scheme may also be applied to hyperbolic problems and arbitrary discretization. This is not limited to spatial corrections and may be used throughout the phase space of the discrete equation. The applied correction not only improves fidelity of the calculation, it allows assessment of the reliability of numerical schemes to be made and could be used to guide mesh adaption algorithms or to automate mesh generation schemes. (author)
An early separation scheme for the LHC luminosity upgrade
Sterbini, G
2010-01-01
The present document is organized in five chapters. In the first chapter the framework of the study is described, developing the motivations, the goals and the requirements for the LHC Luminosity Upgrade. We analyze the need for the crossing angle and its impact on the peak luminosity of the collider. After having introduced the Early Separation Scheme, we explain how it may overcome some limitations of the present machine. We compare the nominal LHC crossing scheme with the proposed one underlining its potential in terms of performance and its issues with respect to the integration in the detectors. An analysis of the integrated magnetic field required is given. In the second chapter we introduce one of the most powerful aspect of the scheme: the luminosity leveling. After the description of the physical model adopted, we compare the results of its analytical and numerical solutions. All the potential improvement due to the Early Separation Scheme are shown on the luminosity plane (peak luminosity versus int...
Charge-conserving FEM-PIC schemes on general grids
International Nuclear Information System (INIS)
Campos Pinto, M.; Jund, S.; Salmon, S.; Sonnendruecker, E.
2014-01-01
Particle-In-Cell (PIC) solvers are a major tool for the understanding of the complex behavior of a plasma or a particle beam in many situations. An important issue for electromagnetic PIC solvers, where the fields are computed using Maxwell's equations, is the problem of discrete charge conservation. In this article, we aim at proposing a general mathematical formulation for charge-conserving finite-element Maxwell solvers coupled with particle schemes. In particular, we identify the finite-element continuity equations that must be satisfied by the discrete current sources for several classes of time-domain Vlasov-Maxwell simulations to preserve the Gauss law at each time step, and propose a generic algorithm for computing such consistent sources. Since our results cover a wide range of schemes (namely curl-conforming finite element methods of arbitrary degree, general meshes in two or three dimensions, several classes of time discretization schemes, particles with arbitrary shape factors and piecewise polynomial trajectories of arbitrary degree), we believe that they provide a useful roadmap in the design of high-order charge-conserving FEM-PIC numerical schemes. (authors)
Improvements and validation of the linear surface characteristics scheme
International Nuclear Information System (INIS)
Santandrea, S.; Jaboulay, J.C.; Bellier, P.; Fevotte, F.; Golfier, H.
2009-01-01
In this paper we present the last improvements of the recently proposed linear surface (LS) characteristics scheme for unstructured meshes. First we introduce a new numerical tracking technique, specifically adapted to the LS method, which tailors transverse integration weights to take into account the geometrical discontinuities that appear along the pipe affected to every trajectory in classical characteristics schemes. Another development allows using the volumetric flux variation of the LS method to re-compute step-wise constant fluxes to be used in other parts of a computational scheme. This permits to take greater advantage of the higher precision of the LS method without necessarily conceiving specialized theories for all the modular functionalities of a spectral code such as APOLLO2. Moreover we present a multi-level domain decomposition method for solving the synthetic acceleration operator that is used to accelerate the free iterations for the LS method. We discuss all these new developments by illustrating some benchmarks results obtained with the LS method. This is done by detailed comparisons with Monte-Carlo calculations. In particular we show that the new method can be used not only as a reference tool, but also inside a suitable industrial calculation scheme
Amin, Ruhul; Islam, S K Hafizul; Biswas, G P; Khan, Muhammad Khurram; Kumar, Neeraj
2015-11-01
In the last few years, numerous remote user authentication and session key agreement schemes have been put forwarded for Telecare Medical Information System, where the patient and medical server exchange medical information using Internet. We have found that most of the schemes are not usable for practical applications due to known security weaknesses. It is also worth to note that unrestricted number of patients login to the single medical server across the globe. Therefore, the computation and maintenance overhead would be high and the server may fail to provide services. In this article, we have designed a medical system architecture and a standard mutual authentication scheme for single medical server, where the patient can securely exchange medical data with the doctor(s) via trusted central medical server over any insecure network. We then explored the security of the scheme with its resilience to attacks. Moreover, we formally validated the proposed scheme through the simulation using Automated Validation of Internet Security Schemes and Applications software whose outcomes confirm that the scheme is protected against active and passive attacks. The performance comparison demonstrated that the proposed scheme has lower communication cost than the existing schemes in literature. In addition, the computation cost of the proposed scheme is nearly equal to the exiting schemes. The proposed scheme not only efficient in terms of different security attacks, but it also provides an efficient login, mutual authentication, session key agreement and verification and password update phases along with password recovery.
Chao, Luo
2015-11-01
In this paper, a novel digital secure communication scheme is firstly proposed. Different from the usual secure communication schemes based on chaotic synchronization, the proposed scheme employs asynchronous communication which avoids the weakness of synchronous systems and is susceptible to environmental interference. Moreover, as to the transmission errors and data loss in the process of communication, the proposed scheme has the ability to be error-checking and error-correcting in real time. In order to guarantee security, the fractional-order complex chaotic system with the shifting of order is utilized to modulate the transmitted signal, which has high nonlinearity and complexity in both frequency and time domains. The corresponding numerical simulations demonstrate the effectiveness and feasibility of the scheme.
Distributed Group-Based Mobility Management Scheme in Wireless Body Area Networks
Directory of Open Access Journals (Sweden)
Moneeb Gohar
2017-01-01
Full Text Available For group-based mobility management in 6LoWPAN-based wireless body area networks (WBAN, some schemes using the Proxy Mobile IPv6 (PMIP have been proposed. However, the existing PMIP-based mobility schemes tend to induce large registration delay and handover delay. To overcome such limitations, we propose a new distributed group-based mobility management scheme, in which the Local Mobility Anchor (LMA function is implemented by each Mobile Access Gateway (MAG and the handover operation is performed between two neighboring MAGs without the help of LMA. Besides, each MAG maintains the information of the group of mobile sensors and aggregates the Authentication-Authorization-Accounting (AAA query messages for a group of mobile sensors as a “single” message to decrease the control overhead. By numerical analysis, it is shown that the proposed scheme can reduce the registration and handover delays, compared to the existing PMIP-based mobility schemes.
Statistical and Geometrical Way of Model Selection for a Family of Subdivision Schemes
Institute of Scientific and Technical Information of China (English)
Ghulam MUSTAFA
2017-01-01
The objective of this article is to introduce a generalized algorithm to produce the m-point n-ary approximating subdivision schemes (for any integer m,n ≥ 2).The proposed algorithm has been derived from uniform B-spline blending functions.In particular,we study statistical and geometrical/traditional methods for the model selection and assessment for selecting a subdivision curve from the proposed family of schemes to model noisy and noisy free data.Moreover,we also discuss the deviation of subdivision curves generated by proposed family of schemes from convex polygonal curve.Furthermore,visual performances of the schemes have been presented to compare numerically the Gibbs oscillations with the existing family of schemes.
TE/TM scheme for computation of electromagnetic fields in accelerators
International Nuclear Information System (INIS)
Zagorodnov, Igor; Weiland, Thomas
2005-01-01
We propose a new two-level economical conservative scheme for short-range wake field calculation in three dimensions. The scheme does not have dispersion in the longitudinal direction and is staircase free (second order convergent). Unlike the finite-difference time domain method (FDTD), it is based on a TE/TM like splitting of the field components in time. Additionally, it uses an enhanced alternating direction splitting of the transverse space operator that makes the scheme computationally as effective as the conventional FDTD method. Unlike the FDTD ADI and low-order Strang methods, the splitting error in our scheme is only of fourth order. As numerical examples show, the new scheme is much more accurate on the long-time scale than the conventional FDTD approach
Analysis of an Adaptive P-Persistent MAC Scheme for WLAN Providing Delay Fairness
Yen, Chih-Ming; Chang, Chung-Ju; Chen, Yih-Shen; Huang, Ching Yao
The paper proposes and analyzes an adaptive p-persistent-based (APP) medium access control (MAC) scheme for IEEE 802.11 WLAN. The APP MAC scheme intends to support delay fairness for every station in each access, denoting small delay variance. It differentiates permission probabilities of transmission for stations which are incurred with various packet delays. This permission probability is designed as a function of the numbers of retransmissions and re-backoffs so that stations with larger packet delay are endowed with higher permission probability. Also, the scheme is analyzed by a Markov-chain analysis, where the collision probability, the system throughput, and the average delay are successfully obtained. Numerical results show that the proposed APP MAC scheme can attain lower mean delay and higher mean throughput. In the mean time, simulation results are given to justify the validity of the analysis, and also show that the APP MAC scheme can achieve more delay fairness than conventional algorithms.
El-Amin, Mohamed
2012-01-01
The problem of coupled structural deformation with two-phase flow in porous media is solved numerically using cellcentered finite difference (CCFD) method. In order to solve the system of governed partial differential equations, the implicit pressure explicit saturation (IMPES) scheme that governs flow equations is combined with the the implicit displacement scheme. The combined scheme may be called IMplicit Pressure-Displacement Explicit Saturation (IMPDES). The pressure distribution for each cell along the entire domain is given by the implicit difference equation. Also, the deformation equations are discretized implicitly. Using the obtained pressure, velocity is evaluated explicitly, while, using the upwind scheme, the saturation is obtained explicitly. Moreover, the stability analysis of the present scheme has been introduced and the stability condition is determined.
Transitions between neutral mesons in multiquark schemes
International Nuclear Information System (INIS)
Volkov, G.G.; Liparteliani, A.G.; Monich, V.A.; Nikitin, Y.P.
1981-01-01
A six-quark scheme based on the gauge group SU(2)/sub L/ x U(1) is used to obtain expressions for the amplitudes of the transitions K 0 bold-arrow-left-right K-bar 0 , D 0 bold-arrow-left-right D-bar 0 , B 0 bold-arrow-left-right B-bar 0 , B/sub S/ 0 bold-arrow-left-right B-bar/sub S/ 0 , T 0 bold-arrow-left-right T-bar 0 , and T/sub C/ 0 bold-arrow-left-right T-bar/sub C/ 0 for finite 4-momenta of the external lines of the Feynman box diagrams. An estimate is made of the degree of applicability of the approximation of vanishingly small 4-momenta of the valence quarks which form the neutral mesons such as the K 0 and K-bar 0 mesons. Constraints are found on the parameters of the unitary matrix of the weak charged currents for arbitrary values of the t-quark mass. Estimates are given of the numerical values of the mixing and CP-violation parameters for neutral systems such as the K 0 --K-bar 0 system
REMINDER: Saved Leave Scheme (SLS)
2003-01-01
Transfer of leave to saved leave accounts Under the provisions of the voluntary saved leave scheme (SLS), a maximum total of 10 days'* annual and compensatory leave (excluding saved leave accumulated in accordance with the provisions of Administrative Circular No 22B) can be transferred to the saved leave account at the end of the leave year (30 September). We remind you that unused leave of all those taking part in the saved leave scheme at the closure of the leave year accounts is transferred automatically to the saved leave account on that date. Therefore, staff members have no administrative steps to take. In addition, the transfer, which eliminates the risk of omitting to request leave transfers and rules out calculation errors in transfer requests, will be clearly shown in the list of leave transactions that can be consulted in EDH from October 2003 onwards. Furthermore, this automatic leave transfer optimizes staff members' chances of benefiting from a saved leave bonus provided that they ar...
Quantum Secure Communication Scheme with W State
International Nuclear Information System (INIS)
Wang Jian; Zhang Quan; Tang Chaojng
2007-01-01
We present a quantum secure communication scheme using three-qubit W state. It is unnecessary for the present scheme to use alternative measurement or Bell basis measurement. Compared with the quantum secure direct communication scheme proposed by Cao et al. [H.J. Cao and H.S. Song, Chin. Phys. Lett. 23 (2006) 290], in our scheme, the detection probability for an eavesdropper's attack increases from 8.3% to 25%. We also show that our scheme is secure for a noise quantum channel.
Labeling schemes for bounded degree graphs
DEFF Research Database (Denmark)
Adjiashvili, David; Rotbart, Noy Galil
2014-01-01
We investigate adjacency labeling schemes for graphs of bounded degree Δ = O(1). In particular, we present an optimal (up to an additive constant) log n + O(1) adjacency labeling scheme for bounded degree trees. The latter scheme is derived from a labeling scheme for bounded degree outerplanar...... graphs. Our results complement a similar bound recently obtained for bounded depth trees [Fraigniaud and Korman, SODA 2010], and may provide new insights for closing the long standing gap for adjacency in trees [Alstrup and Rauhe, FOCS 2002]. We also provide improved labeling schemes for bounded degree...
A Suboptimal Scheme for Multi-User Scheduling in Gaussian Broadcast Channels
Zafar, Ammar; Alouini, Mohamed-Slim; Shaqfeh, Mohammad
2014-01-01
This work proposes a suboptimal multi-user scheduling scheme for Gaussian broadcast channels which improves upon the classical single user selection, while considerably reducing complexity as compared to the optimal superposition coding with successful interference cancellation. The proposed scheme combines the two users with the maximum weighted instantaneous rate using superposition coding. The instantaneous rate and power allocation are derived in closed-form, while the long term rate of each user is derived in integral form for all channel distributions. Numerical results are then provided to characterize the prospected gains of the proposed scheme.
A Suboptimal Scheme for Multi-User Scheduling in Gaussian Broadcast Channels
Zafar, Ammar
2014-05-28
This work proposes a suboptimal multi-user scheduling scheme for Gaussian broadcast channels which improves upon the classical single user selection, while considerably reducing complexity as compared to the optimal superposition coding with successful interference cancellation. The proposed scheme combines the two users with the maximum weighted instantaneous rate using superposition coding. The instantaneous rate and power allocation are derived in closed-form, while the long term rate of each user is derived in integral form for all channel distributions. Numerical results are then provided to characterize the prospected gains of the proposed scheme.
Positivity-preserving space-time CE/SE scheme for high speed flows
Shen, Hua
2017-03-02
We develop a space-time conservation element and solution element (CE/SE) scheme using a simple slope limiter to preserve the positivity of the density and pressure in computations of inviscid and viscous high-speed flows. In general, the limiter works with all existing CE/SE schemes. Here, we test the limiter on a central Courant number insensitive (CNI) CE/SE scheme implemented on hybrid unstructured meshes. Numerical examples show that the proposed limiter preserves the positivity of the density and pressure without disrupting the conservation law; it also improves robustness without losing accuracy in solving high-speed flows.
International Nuclear Information System (INIS)
Silva, Filipe da; Pinto, Martin Campos; Després, Bruno; Heuraux, Stéphane
2015-01-01
This work analyzes the stability of the Yee scheme for non-stationary Maxwell's equations coupled with a linear current model with density fluctuations. We show that the usual procedure may yield unstable scheme for physical situations that correspond to strongly magnetized plasmas in X-mode (TE) polarization. We propose to use first order clustered discretization of the vectorial product that gives back a stable coupling. We validate the schemes on some test cases representative of direct numerical simulations of X-mode in a magnetic fusion plasma including turbulence
A Temporal Domain Decomposition Algorithmic Scheme for Large-Scale Dynamic Traffic Assignment
Directory of Open Access Journals (Sweden)
Eric J. Nava
2012-03-01
This paper presents a temporal decomposition scheme for large spatial- and temporal-scale dynamic traffic assignment, in which the entire analysis period is divided into Epochs. Vehicle assignment is performed sequentially in each Epoch, thus improving the model scalability and confining the peak run-time memory requirement regardless of the total analysis period. A proposed self-turning scheme adaptively searches for the run-time-optimal Epoch setting during iterations regardless of the characteristics of the modeled network. Extensive numerical experiments confirm the promising performance of the proposed algorithmic schemes.
Modeling and Performance Analysis for Cell Access and Handoff Schemes in Two-Tier Cellular Networks
Directory of Open Access Journals (Sweden)
Kyungkoo Jun
2014-01-01
Full Text Available We investigate the effects of handoff on system performance in two-tier cellular networks. Two of the main performance metrics are new call blocking probability and handoff drop rate. We develop analytical models to evaluate the performance of two different handoff schemes. One scheme considers only femto-to-macrocell handoff while the other is bidirectional including macro-to-femtocell handoff. Our model is more elaborate than existing ones which have not considered the mobility of mobile stations. Numerical results show that the bidirectional scheme performs better than the femto-to-macrocell handoff as it achieves lower blocking probability and drop rate.
Positivity-preserving space-time CE/SE scheme for high speed flows
Shen, Hua; Parsani, Matteo
2017-01-01
We develop a space-time conservation element and solution element (CE/SE) scheme using a simple slope limiter to preserve the positivity of the density and pressure in computations of inviscid and viscous high-speed flows. In general, the limiter works with all existing CE/SE schemes. Here, we test the limiter on a central Courant number insensitive (CNI) CE/SE scheme implemented on hybrid unstructured meshes. Numerical examples show that the proposed limiter preserves the positivity of the density and pressure without disrupting the conservation law; it also improves robustness without losing accuracy in solving high-speed flows.
Discrete conservation laws and the convergence of long time simulations of the mkdv equation
Gorria, C.; Alejo, M. A.; Vega, L.
2013-02-01
Pseudospectral collocation methods and finite difference methods have been used for approximating an important family of soliton like solutions of the mKdV equation. These solutions present a structural instability which make difficult to approximate their evolution in long time intervals with enough accuracy. The standard numerical methods do not guarantee the convergence to the proper solution of the initial value problem and often fail by approaching solutions associated to different initial conditions. In this frame the numerical schemes that preserve the discrete invariants related to some conservation laws of this equation produce better results than the methods which only take care of a high consistency order. Pseudospectral spatial discretization appear as the most robust of the numerical methods, but finite difference schemes are useful in order to analyze the rule played by the conservation of the invariants in the convergence.
Towards standard testbeds for numerical relativity
International Nuclear Information System (INIS)
Alcubierre, Miguel; Allen, Gabrielle; Bona, Carles; Fiske, David; Goodale, Tom; Guzman, F Siddhartha; Hawke, Ian; Hawley, Scott H; Husa, Sascha; Koppitz, Michael; Lechner, Christiane; Pollney, Denis; Rideout, David; Salgado, Marcelo; Schnetter, Erik; Seidel, Edward; Shinkai, Hisa-aki; Shoemaker, Deirdre; Szilagyi, Bela; Takahashi, Ryoji; Winicour, Jeff
2004-01-01
In recent years, many different numerical evolution schemes for Einstein's equations have been proposed to address stability and accuracy problems that have plagued the numerical relativity community for decades. Some of these approaches have been tested on different spacetimes, and conclusions have been drawn based on these tests. However, differences in results originate from many sources, including not only formulations of the equations, but also gauges, boundary conditions, numerical methods and so on. We propose to build up a suite of standardized testbeds for comparing approaches to the numerical evolution of Einstein's equations that are designed to both probe their strengths and weaknesses and to separate out different effects, and their causes, seen in the results. We discuss general design principles of suitable testbeds, and we present an initial round of simple tests with periodic boundary conditions. This is a pivotal first step towards building a suite of testbeds to serve the numerical relativists and researchers from related fields who wish to assess the capabilities of numerical relativity codes. We present some examples of how these tests can be quite effective in revealing various limitations of different approaches, and illustrating their differences. The tests are presently limited to vacuum spacetimes, can be run on modest computational resources and can be used with many different approaches used in the relativity community
Towards standard testbeds for numerical relativity
Energy Technology Data Exchange (ETDEWEB)
Alcubierre, Miguel [Inst. de Ciencias Nucleares, Univ. Nacional Autonoma de Mexico, Apartado Postal 70-543, Mexico Distrito Federal 04510 (Mexico); Allen, Gabrielle; Goodale, Tom; Guzman, F Siddhartha; Hawke, Ian; Husa, Sascha; Koppitz, Michael; Lechner, Christiane; Pollney, Denis; Rideout, David [Max-Planck-Inst. fuer Gravitationsphysik, Albert-Einstein-Institut, 14476 Golm (Germany); Bona, Carles [Departament de Fisica, Universitat de les Illes Balears, Ctra de Valldemossa km 7.5, 07122 Palma de Mallorca (Spain); Fiske, David [Dept. of Physics, Univ. of Maryland, College Park, MD 20742-4111 (United States); Hawley, Scott H [Center for Relativity, Univ. of Texas at Austin, Austin, Texas 78712 (United States); Salgado, Marcelo [Inst. de Ciencias Nucleares, Univ. Nacional Autonoma de Mexico, Apartado Postal 70-543, Mexico Distrito Federal 04510 (Mexico); Schnetter, Erik [Inst. fuer Astronomie und Astrophysik, Universitaet Tuebingen, 72076 Tuebingen (Germany); Seidel, Edward [Max-Planck-Inst. fuer Gravitationsphysik, Albert-Einstein-Inst., 14476 Golm (Germany); Shinkai, Hisa-aki [Computational Science Div., Inst. of Physical and Chemical Research (RIKEN), Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Shoemaker, Deirdre [Center for Radiophysics and Space Research, Cornell Univ., Ithaca, NY 14853 (United States); Szilagyi, Bela [Dept. of Physics and Astronomy, Univ. of Pittsburgh, Pittsburgh, PA 15260 (United States); Takahashi, Ryoji [Theoretical Astrophysics Center, Juliane Maries Vej 30, 2100 Copenhagen, (Denmark); Winicour, Jeff [Max-Planck-Inst. fuer Gravitationsphysik, Albert-Einstein-Institut, 14476 Golm (Germany)
2004-01-21
In recent years, many different numerical evolution schemes for Einstein's equations have been proposed to address stability and accuracy problems that have plagued the numerical relativity community for decades. Some of these approaches have been tested on different spacetimes, and conclusions have been drawn based on these tests. However, differences in results originate from many sources, including not only formulations of the equations, but also gauges, boundary conditions, numerical methods and so on. We propose to build up a suite of standardized testbeds for comparing approaches to the numerical evolution of Einstein's equations that are designed to both probe their strengths and weaknesses and to separate out different effects, and their causes, seen in the results. We discuss general design principles of suitable testbeds, and we present an initial round of simple tests with periodic boundary conditions. This is a pivotal first step towards building a suite of testbeds to serve the numerical relativists and researchers from related fields who wish to assess the capabilities of numerical relativity codes. We present some examples of how these tests can be quite effective in revealing various limitations of different approaches, and illustrating their differences. The tests are presently limited to vacuum spacetimes, can be run on modest computational resources and can be used with many different approaches used in the relativity community.
A new numerical approximation of the fractal ordinary differential equation
Atangana, Abdon; Jain, Sonal
2018-02-01
The concept of fractal medium is present in several real-world problems, for instance, in the geological formation that constitutes the well-known subsurface water called aquifers. However, attention has not been quite devoted to modeling for instance, the flow of a fluid within these media. We deem it important to remind the reader that the concept of fractal derivative is not to represent the fractal sharps but to describe the movement of the fluid within these media. Since this class of ordinary differential equations is highly complex to solve analytically, we present a novel numerical scheme that allows to solve fractal ordinary differential equations. Error analysis of the method is also presented. Application of the method and numerical approximation are presented for fractal order differential equation. The stability and the convergence of the numerical schemes are investigated in detail. Also some exact solutions of fractal order differential equations are presented and finally some numerical simulations are presented.
BOOK REVIEW: Introduction to 3+1 Numerical Relativity
Gundlach, Carsten
2008-11-01
This is the first major textbook on the methods of numerical relativity. The selection of material is based on what is known to work reliably in astrophysical applications and would therefore be considered by many as the 'mainstream' of the field. This means spacelike slices, the BSSNOK or harmonic formulation of the Einstein equations, finite differencing for the spacetime variables, and high-resolution shock capturing methods for perfect fluid matter. (Arguably, pseudo-spectral methods also belong in this category, at least for elliptic equations, but are not covered in this book.) The account is self-contained, and comprehensive within its chosen scope. It could serve as a primer for the growing number of review papers on aspects of numerical relativity published in Living Reviews in Relativity (LRR). I will now discuss the contents by chapter. Chapter 1, an introduction to general relativity, is clearly written, but may be a little too concise to be used as a first text on this subject at postgraduate level, compared to the textbook by Schutz or the first half of Wald's book. Chapter 2 contains a good introduction to the 3+1 split of the field equations in the form mainly given by York. York's pedagogical presentation (in a 1979 conference volume) is still up to date, but Alcubierre makes a clearer distinction between the geometric split and its form in adapted coordinates, as well as filling in some derivations. Chapter 3 on initial data is close to Cook's 2001 LRR, but is beautifully unified by an emphasis on how different choices of conformal weights suit different purposes. Chapter 4 on gauge conditions covers a topic on which no review paper exists, and which is spread thinly over many papers. The presentation is both detailed and unified, making this an excellent resource also for experts. The chapter reflects the author's research interests while remaining canonical. Chapter 5 covers hyperbolic reductions of the field equations. Alcubierre's excellent