WorldWideScience

Sample records for pseudoplastic non-newtonian fluid

  1. Using ultrasonic Doppler velocimetry to investigate the mixing of non-Newtonian fluids

    Science.gov (United States)

    Patel, Dineshkumar; Ein-Mozaffari, Farhad; Mehrvar, Mehrab

    2012-12-01

    Mixing is a critical unit operation, which is widely used in chemical and allied industries. Mixing of non-Newtonian fluids is a challenging task due to the complex rheology exhibited by these fluids. Pseudoplastic fluids with yield stress are an important class of non-Newtonian fluids. In this study, we utilized ultrasonic Doppler velocimetry (UDV) to explore the flow field generated by different impellers in the agitation of xanthan gum solutions and pulp suspensions, which are yield-pseudoplastic fluids.

  2. Shock wave mitigation using Newtonian and non-Newtonian fluids

    Science.gov (United States)

    Tao, Xingtian; Colvert, Brendan; Eliasson, Veronica

    2014-11-01

    The effectiveness of a wall of liquid as a blast mitigation device is examined using a shock tube and a custom-designed and -built shock test chamber. High-speed schlieren photography and high-frequency pressure sensors allow measurement during the relevant shock interaction time periods of the liquid-gas interface. The characteristic quantities that reflect these effects include reflected-to-incident shock strength ratio, transmitted-to-incident shock strength ratio, transmitted and reflected impulse, and peak pressure reduction. In particular, the effects of viscous properties of the fluid are considered when using non-Newtonian dilatant and pseudoplastic fluids. Experiments have been performed with both Newtonian and non-Newtonian fluids. The impact of a shock waves on Non-newtonian fluids is compared to that of Newtonian fluids. Experiments show that non-Newtonian fluids have very strong reflection properties, acting like solid walls under the impact of a shock wave. Further work is to be performed to compare quantitatively the properties of Newtonian vs. non-Newtonian fluids.

  3. Journal Bearings Lubrication Aspect Analysis Using Non-Newtonian Fluids

    Directory of Open Access Journals (Sweden)

    Abdessamed Nessil

    2013-01-01

    Full Text Available The aim of this work is related to an analysis of journal bearings lubrication using non-Newtonian fluids which are described by a power-law model. The performance characteristics of the journal bearings are determined for various values of the non-Newtonian power-law index “” which is equal to: 0.9, 1, and 1.1. Obtained numerical results show that for the dilatant fluids (, the load-carrying capacity, the pressure, the temperature, and the frictional force increased while for the pseudo-plastic fluids ( they decreased. The influence of the thermal effects on these characteristics is important at higher values of the flow behavior index “.” Obtained results are compared to those obtained by others. Good agreement is observed between the different results.

  4. Electrokinetics of non-Newtonian fluids: a review.

    Science.gov (United States)

    Zhao, Cunlu; Yang, Chun

    2013-12-01

    This work presents a comprehensive review of electrokinetics pertaining to non-Newtonian fluids. The topic covers a broad range of non-Newtonian effects in electrokinetics, including electroosmosis of non-Newtonian fluids, electrophoresis of particles in non-Newtonian fluids, streaming potential effect of non-Newtonian fluids and other related non-Newtonian effects in electrokinetics. Generally, the coupling between non-Newtonian hydrodynamics and electrostatics not only complicates the electrokinetics but also causes the fluid/particle velocity to be nonlinearly dependent on the strength of external electric field and/or the zeta potential. Shear-thinning nature of liquids tends to enhance electrokinetic phenomena, while shear-thickening nature of liquids leads to the reduction of electrokinetic effects. In addition, directions for the future studies are suggested and several theoretical issues in non-Newtonian electrokinetics are highlighted. © 2013.

  5. Applying Tiab’s direct synthesis technique to dilatant non-Newtonian/Newtonian fluids

    Directory of Open Access Journals (Sweden)

    Javier Andrés Martínez

    2011-08-01

    Full Text Available Non-Newtonian fluids, such as polymer solutions, have been used by the oil industry for many years as fracturing agents and drilling mud. These solutions, which normally include thickened water and jelled fluids, are injected into the formation to enhanced oil recovery by improving sweep efficiency. It is worth noting that some heavy oils behave non-Newtonianly. Non-Newtonian fluids do not have direct proportionality between applied shear stress and shear rate and viscosity varies with shear rate depending on whether the fluid is either pseudoplastic or dilatant. Viscosity decreases as shear rate increases for the former whilst the reverse takes place for dilatants. Mathematical models of conventional fluids thus fail when applied to non-Newtonian fluids. The pressure derivative curve is introduced in this descriptive work for a dilatant fluid and its pattern was observed. Tiab’s direct synthesis (TDS methodology was used as a tool for interpreting pressure transient data to estimate effective permeability, skin factors and non-Newtonian bank radius. The methodology was successfully verified by its application to synthetic examples. Also, comparing it to pseudoplastic behavior, it was found that the radial flow regime in the Newtonian zone of dilatant fluids took longer to form regarding both the flow behavior index and consistency factor.

  6. Theoretical studies of non-Newtonian and Newtonian fluid flow through porous media

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yu-Shu.

    1990-02-01

    A comprehensive theoretical study has been carried out on the flow behavior of both single and multiple phase non-Newtonian fluids in porous media. This work is divided into three parts: development of numerical and analytical solutions; theoretical studies of transient flow of non-Newtonian fluids in porous media; and applications of well test analysis and displacement efficiency evaluation to field problems. A fully implicit, integral finite difference model has been developed for simulation of non-Newtonian and Newtonian fluid flow through porous media. Several commonly-used rheological models of power-law and Bingham plastic non-Newtonian fluids have been incorporated in the simulator. A Buckley-Leverett type analytical solution for one-dimensional, immiscible displacement involving non-Newtonian fluids in porous media has been developed. An integral method is also presented for the study of transient flow of Bingham fluids in porous media. In addition, two well test analysis methods have been developed for analyzing pressure transient tests of power-law and Bingham fluids, respectively. Applications are included to demonstrate this new technology. The physical mechanisms involved in immiscible displacement with non-Newtonian fluids in porous media have been studied using the Buckley-Leverett type analytical solution. In another study, an idealized fracture model has been used to obtain some insights into the flow of a power-law fluid in a double-porosity medium. Transient flow of a general pseudoplastic fluid has been studied numerically. 125 refs., 91 figs., 12 tabs.

  7. Theoretical Studies of Non-Newtonian and Newtonian Fluid Flowthrough Porous Media

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yu -Shu [Univ. of California, Berkeley, CA (United States)

    1990-02-01

    A comprehensive theoretical study has been carried out on the flow behavior of both single and multiple phase non-Newtonian fluids in porous media. This work is divided into three parts: (1) development of numerical and analytical solutions; (2) theoretical studies of transient flow of non-Newtonian fluids in porous media; and (3) applications of well test analysis and displacement efficiency evaluation to field problems. A fully implicit, integral finite difference model has been developed for simulation of non-Newtonian and Newtonian fluid flow through porous media. Several commonly-used rheological models of power-law and Bingham plastic non-Newtonian fluids have been incorporated in the simulator. A Buckley-Leverett type analytical solution for one-dimensional, immiscible displacement involving non-Newtonian fluids in porous media has been developed. Based on this solution, a graphic approach for evaluating non-Newtonian displacement efficiency has been developed. The Buckley-Leverett-Welge theory is extended to flow problems with non-Newtonian fluids. An integral method is also presented for the study of transient flow of Bingham fluids in porous media. In addition, two well test analysis methods have been developed for analyzing pressure transient tests of power-law and Bingham fluids, respectively. Applications are included to demonstrate this new technology. The physical mechanisms involved in immiscible displacement with non-Newtonian fluids in porous media have been studied using the Buckley-Leverett type analytical solution. The results show that this kind of displacement is a complicated process and is determined by the rheological properties of the non-Newtonian fluids and the flow conditions, in addition to relative permeability data. In another study, an idealized fracture model has been used to obtain some insights into the flow of a power-law fluid in a double-porosity medium. For flow at a constant rate, non-Newtonian flow behavior in a fractured

  8. Coupling electrokinetics and rheology: Electrophoresis in non-Newtonian fluids.

    Science.gov (United States)

    Khair, Aditya S; Posluszny, Denise E; Walker, Lynn M

    2012-01-01

    We present a theoretical scheme to calculate the electrophoretic motion of charged colloidal particles immersed in complex (non-Newtonian) fluids possessing shear-rate-dependent viscosities. We demonstrate that this non-Newtonian rheology leads to an explicit shape and size dependence of the electrophoretic velocity of a uniformly charged particle in the thin-Debye-layer regime, in contrast to electrophoresis in Newtonian fluids. This dependence is caused by non-Newtonian stresses in the bulk (electroneutral) fluid outside the Debye layer, whose magnitude is naturally characterized in an electrophoretic Deborah number.

  9. Marangoni convection flow and heat transfer in pseudoplastic non-newtonian nanofluids with radiation effects and heat generation or absorption effects

    Science.gov (United States)

    Lin, Yanhai; Zheng, Liancun; Zhang, Xinxin

    2012-09-01

    This paper presents a numerical investigation on Marangoni convection flow and heat transfer in pseudoplastic non-Newtonian nanofluids with radiation effects and heat generation or absorption effects. The surface tension is assumed to vary linearly with temperature. The governing partial differential equations are reduced to a series of ordinary differential equations using similarity transformations and the solutions are obtained numerically by the shooting method. Four different types of nanoparticles, namely Cu, Al2O3, CuO and TiO2 are considered by using non-Newtonian CMCwater as a base fluid. The effects of the solid volume fraction, the Power-law number, the Radiation coefficient and the heat generation/absorption coefficient on the velocity and temperature fields are analyzed and discussed in detail.

  10. Dynamic characteristics of Non Newtonian fluid Squeeze film damper

    Science.gov (United States)

    Palaksha, C. P.; Shivaprakash, S.; Jagadish, H. P.

    2016-09-01

    The fluids which do not follow linear relationship between rate of strain and shear stress are termed as non-Newtonian fluid. The non-Newtonian fluids are usually categorized as those in which shear stress depends on the rates of shear only, fluids for which relation between shear stress and rate of shear depends on time and the visco inelastic fluids which possess both elastic and viscous properties. It is quite difficult to provide a single constitutive relation that can be used to define a non-Newtonian fluid due to a great diversity found in its physical structure. Non-Newtonian fluids can present a complex rheological behaviour involving shear-thinning, viscoelastic or thixotropic effects. The rheological characterization of complex fluids is an important issue in many areas. The paper analyses the damping and stiffness characteristics of non-Newtonian fluids (waxy crude oil) used in squeeze film dampers using the available literature for viscosity characterization. Damping and stiffness characteristic will be evaluated as a function of shear strain rate, temperature and percentage wax concentration etc.

  11. Analysis of HD Journal Bearings Considering Elastic Deformation and Non-Newtonian Rabinowitsch Fluid Model

    Directory of Open Access Journals (Sweden)

    J. Javorova

    2016-06-01

    Full Text Available The purpose of this paper is to study the performance of a finite length journal bearing, taking into account effects of non-Newtonian Rabinowitsch flow rheology and elastic deformations of the bearing liner. According to the Rabinowitsch fluid model, the cubic-stress constitutive equation is used to account for the non-Newtonian effects of pseudoplastic and dilatant lubricants. Integrating the continuity equation across the film, the nonlinear non-Newtonian Reynolds-type equation is derived. The elasticity part of the problem is solved on the base of Vlassov model of an elastic foundation. The numerical solution of the modified Reynolds equation is carried out by using FDM with over-relaxation technique. The results for steady state bearing performance characteristics have been calculated for various values of nonlinear factor and elasticity parameters. It was concluded that in comparison with the Newtonian lubricants, higher values of film pressure and load carrying capacity have been obtained for dilatant lubricants, while the case was reversed for pseudoplastic lubricants.

  12. Maximum thermal conductance for a micro-channel, utilising Newtonian and non-Newtonian fluid

    Science.gov (United States)

    Stocks, M. D.; Bello-Ochende, T.; Meyer, J. P.

    2014-06-01

    This paper investigates the thermal behaviour of two micro-channel elements cooled by Newtonian and non-Newtonian fluids, with the objective to maximise thermal conductance subject to constraints. This is done firstly for a two-dimensional duct micro-channel and secondly for a three-dimensional complex micro-channel. A numerical model is used to solve the governing equations relating to flow and temperature fields for both cases. The geometric configuration of each cooling channel is optimised for Newtonian and non-Newtonian fluid at a fixed inlet velocity and heat flux. In addition, the effect of porosity on thermal conductance is investigated. It was found, in both cases, that the non-Newtonian fluid characteristics result in a significant variation in thermal conductance as inlet velocity is increased. The characteristics of a dilatant fluid greatly reduce thermal conductance on account of shear thickening on the boundary surface. In contrast, a pseudoplastic fluid shows increased thermal conductance. A comparison of the complex micro-channel and the duct micro-channel shows the improved thermal conductance resulting from greater flow access to the conductive area, achieved by the complex micro-channel.

  13. Numerical solutions for the fluid flow and the heat transfer of viscoplastic-type non-Newtonian fluids

    Science.gov (United States)

    Carmona, A.; Pérez-Segarra, C. D.; Lehmkuhl, O.; Oliva, A.

    2012-11-01

    The aim of this work is to provide numerical solutions for the fluid flow and the heat transfer generated in closed systems containing viscoplastic-type non-Newtonian fluids. A lid driven cavity (LDC) and a differentially heated cavity (DHC) are used as test cases. These numerical solutions can be an appropriate tool for verifying CFD codes which have been developed or adapted to deal with this kind of non-Newtonian fluids. In order to achieve this objective, an in-house CFD code has been implemented and correctly verified by the method of manufactured solutions and by some numerical solutions too. Furthermore, a high-performance CFD code (Termo Fluids S.L.) has been adapted and properly verified, by the corresponding numerical solutions, to deal with this kind of non-Newtonian fluids. The viscoplastic behaviour of certain non-Newtonian fluids will be generated from a viscous stress which has been defined by a potential-type rheological law. The pseudoplastic and dilatant behaviours will be studied. On this matter, the influence of different physical aspects on the numerical simulations will be analysed, e.g. different exponent values in the potential-type rheological law and different values of the non-dimensional numbers. Moreover, the influence of different numerical aspects on the numerical simulations will also be analysed, e.g. unstructured meshes, conservative numerical schemes and more efficient and parallel algorithms and solvers.

  14. Non-Newtonian fluid structure interaction in flexible biomimetic microchannels

    Science.gov (United States)

    Kiran, M.; Dasgupta, Sunando; Chakraborty, Suman

    2017-11-01

    To investigate the complex fluid structure interactions in a physiologically relevant microchannel with deformable wall and non-Newtonian fluid that flows within it, we fabricated cylindrical microchannels of various softness out of PDMS. Experiments to measure the transient pressure drop across the channel were carried out with high sampling frequencies to capture the intricate flow physics. In particular, we showed that the waveforms varies greatly for each of the non-Newtonian and Newtonian cases for both non-deformable and deformable microchannels in terms of the peak amplitude, r.m.s amplitude and the crest factor. In addition, we carried out frequency sweep experiments to evaluate the frequency response of the system. We believe that these results will aid in the design of polymer based microfluidic phantoms for arterial FSI studies, and in particular for studying blood analog fluids in cylindrical microchannels as well as developing frequency specific Lab-on-chip systems for medical diagnostics.

  15. Similarity solutions for flow of non-Newtonian fluids in porous media revisited under parameter uncertainty

    Science.gov (United States)

    Ciriello, Valentina; Di Federico, Vittorio

    2012-07-01

    We analyze the transient motion of a non-Newtonian power-law fluid in a porous medium of infinite extent and given geometry (plane, cylindrical or spherical). The flow in the domain, initially at constant ambient pressure, is induced by fluid withdrawal or injection in the domain origin at prescribed pressure or injection rate. Previous literature work is generalized and expanded, providing a dimensionless formulation suitable for any geometry, and deriving similarity solutions to the nonlinear governing equations valid for pseudoplastic, Newtonian and dilatant fluids. A pressure front propagating with finite velocity is generated when the fluid is pseudoplastic; no such front exists for Newtonian or dilatant fluids. The front rate of advance depends directly on fluid flow behavior index and inversely on medium porosity and domain dimensionality. The effects and relative importance of uncertain input parameters on the model outputs are investigated via Global Sensitivity Analysis by calculating the Sobol' indices of (a) pressure front position and (b) domain pressure, by adopting the Polynomial Chaos Expansion technique. For the selected case study, the permeability is the most influential factor affecting the system responses.

  16. Inclination angle effect on natural convection in a square cavity partially filled with non-Newtonian fluids layer

    Science.gov (United States)

    Alsabery, Ammar I.; Hussain, Salam H.; Saleh, Habibis; Hashim, Ishak

    2015-09-01

    The problem of inclination angle effect on natural convection in a square cavity partially filled with non-Newtonian fluid layer is studied numerically using The Finite Volume Method. Governing equations are solved over wide range of Darcy number (10-5 ≤ Da ≤ 10-1), power-law index(0.6 ≤ n ≤ 1.4), the inclination angle of the cavity (0° ≤ ω ≤ 90°), Rayleigh number (Ra = 105) and porous layer thickness (S = 0.5). The results presented for values of the governing parameters in terms of streamlines in both porous/non-Newtonian fluid-layer, isotherms in both porous/non-Newtonian fluid-layer and average Nusselt number. It is shown that the heat transfer has maximum value when the power-law index is less than one (pseudoplastic fluid), and then decreases remarkably as the power-law index increases. The results have possible applications in heat-removal and heat-storage non-Newtonian fluid-saturated porous systems.

  17. Entropy generation in a pipe due to non-Newtonian fluid flow ...

    Indian Academy of Sciences (India)

    However, a rather simple approach can be introduced to consider the mixture as a single homogeneous continuum. In this case, the mixture of fluid and solid particles behaves like a non-Newtonian fluid (Johnson et al 1991). Considerable research studies were carried out to investigate non-Newtonian fluid flows in pipes.

  18. Experimental investigation of the dynamics of the phase transition boundary in the motion of a heated non-Newtonian fluid in a channel

    Science.gov (United States)

    Basteev, A. V.; Dashkov, A. V.; Kravchenko, O. V.; Repalova, O. N.; Forfutdinov, V. V.

    2010-07-01

    The process of growth of the boundary crystallized phase in the motion of a heated non-Newtonian fluid in a channel with a cold wall has been studied experimentally. As the fluid, polypropylene with pseudoplastic properties was used. Experimental curves of the growth of the wall crystallized phase as a function of time were obtained for different values of the initial fluid melt temperature. The experimental value of the Nusselt number at the solid-liquid interface has been computed.

  19. Non-Newtonian fluid flow in annular pipes and entropy generation ...

    Indian Academy of Sciences (India)

    non-Newtonian parameter, while it is the reverse for the viscosity parame- ter, which is more pronounced in the region close to the annular pipe inner wall. Keywords. Non-Newtonian fluid; third-grade fluid; variable viscosity; entropy; entropy generation number. 1. Introduction. Flow through annular pipes finds application in ...

  20. Conceptual Models of the Climate 2003 Program of Study: Non-Newtonian Geophysical Fluid Dynamics

    National Research Council Canada - National Science Library

    Balmforth, NeiI

    2004-01-01

    Non-Newtonian fluids occur commonly in our world. These fluids, such as toothpaste, saliva, oils, mud and lava, exhibit a number of behaviors that are different from Newtonian fluids and have a number of additional material properties...

  1. Numerical investigation of non-Newtonian fluids in annular ducts with finite aspect ratio using lattice Boltzmann method

    Science.gov (United States)

    Khali, S.; Nebbali, R.; Ameziani, D. E.; Bouhadef, K.

    2013-05-01

    In this work the instability of the Taylor-Couette flow for Newtonian and non-Newtonian fluids (dilatant and pseudoplastic fluids) is investigated for cases of finite aspect ratios. The study is conducted numerically using the lattice Boltzmann method (LBM). In many industrial applications, the apparatuses and installations drift away from the idealized case of an annulus of infinite length, and thus the end caps effect can no longer be ignored. The inner cylinder is rotating while the outer one and the end walls are maintained at rest. The lattice two-dimensional nine-velocity (D2Q9) Boltzmann model developed from the Bhatnagar-Gross-Krook approximation is used to obtain the flow field for fluids obeying the power-law model. The combined effects of the Reynolds number, the radius ratio, and the power-law index n on the flow characteristics are analyzed for an annular space of finite aspect ratio. Two flow modes are obtained: a primary Couette flow (CF) mode and a secondary Taylor vortex flow (TVF) mode. The flow structures so obtained are different from one mode to another. The critical Reynolds number Rec for the passage from the primary to the secondary mode exhibits the lowest value for the pseudoplastic fluids and the highest value for the dilatant fluids. The findings are useful for studies of the swirling flow of non-Newtonians fluids in axisymmetric geometries using LBM. The flow changes from the CF to TVF and its structure switches from the two-cells to four-cells regime for both Newtonian and dilatant fluids. Contrariwise for pseudoplastic fluids, the flow exhibits 2-4-2 structure passing from two-cells to four cells and switches again to the two-cells configuration. Furthermore, the critical Reynolds number presents a monotonic increase with the power-law index n of the non-Newtonian fluid, and as the radius ratio grows, the transition flow regimes tend to appear for higher critical Reynolds numbers.

  2. Applications of Group Theoretical Methods to Non-Newtonian Fluid Flow Models: Survey of Results

    Directory of Open Access Journals (Sweden)

    Taha Aziz

    2017-01-01

    Full Text Available The present review is intended to encompass the applications of symmetry based approaches for solving non-Newtonian fluid flow problems in various physical situations. Works which deal with the fundamental science of non-Newtonian fluids that are analyzed using the Lie group method and conditional symmetries are reviewed. We provide the mathematical modelling, the symmetries deduced, and the solutions obtained for all the models considered. This survey includes, as far as possible, all the articles published until 2015. Only papers published by a process of peer review in archival journals are reviewed and are grouped together according to the specific non-Newtonian models under investigation.

  3. Upper Semicontinuity of Attractors for a Non-Newtonian Fluid under Small Random Perturbations

    Directory of Open Access Journals (Sweden)

    Jianxin Luo

    2014-01-01

    Full Text Available This paper investigates the limiting behavior of attractors for a two-dimensional incompressible non-Newtonian fluid under small random perturbations. Under certain conditions, the upper semicontinuity of the attractors for diminishing perturbations is shown.

  4. Decay of solutions to equations modelling incompressible bipolar non-newtonian fluids

    Directory of Open Access Journals (Sweden)

    Bo-Qing Dong

    2005-11-01

    Full Text Available This article concerns systems of equations that model incompressible bipolar non-Newtonian fluid motion in the whole space $mathbb{R}^n$. Using the improved Fourier splitting method, we prove that a weak solution decays in the $L^2$ norm at the same rate as $(1+t^{-n/4}$ as the time $t$ approaches infinity. Also we obtain optimal $L^2$ error-estimates for Newtonian and Non-Newtonian flows.

  5. A study on the pressure loss coefficient of non-Newtonian fluids in the stenotic tubes

    Energy Technology Data Exchange (ETDEWEB)

    Suh, S.H. [Soong Sil University, Seoul (Korea, Republic of); Yoo, S.S. [Han Kuk Aviation University (Korea, Republic of); Chang, N.I. [Hyosung Heavy Industries and Construction Co., Ltd. (Korea, Republic of)

    1996-05-01

    The pressure loss coefficient of Newtonian and non-Newtonian fluids such as water, aqueous solutions of Carbopol-934 and Separan AP-273 and blood in the stenotic tubes are determined experimentally and numerically. The numerical analyses for flows of non-Newtonian fluids in the stenotic tubes are conducted by the finite element method. The effect of the contraction ratio and the ratio of length to diameter on the pressure drop are investigated by the experiments and numerical analysis. The pressure loss coefficients are significantly dependent upon the Reynolds number in the laminar flow regime. As Reynolds number increases, the pressure loss coefficients of both Newtonian and non-Newtonian fluids decrease in the laminar flow regime. As the ratio of length to diameter increases the maximum pressure loss coefficient increases in the laminar flow regime for both Newtonian and non-Newtonian fluids. Newtonian fuid shows the highest values of pressure loss coefficient and blood the next, followed by Carbopol solution and Separan solution in order. Experimental results are used to verify the numerical analyses for flows of Newtonian and non-Newtonian fluids. Numerical results for the maximum pressure loss coefficient in the stenotic tubes are in fairly good agreement with the experimental results. The relative differences between the numerical and experimental results of the pressure loss coefficients in the laminar flow regime range from 0.5% to 14.8%. (author). 17 refs., 10 figs., 1 tab.

  6. Introducing Non-Newtonian Fluid Mechanics Computations with Mathematica in the Undergraduate Curriculum

    Science.gov (United States)

    Binous, Housam

    2007-01-01

    We study four non-Newtonian fluid mechanics problems using Mathematica[R]. Constitutive equations describing the behavior of power-law, Bingham and Carreau models are recalled. The velocity profile is obtained for the horizontal flow of power-law fluids in pipes and annuli. For the vertical laminar film flow of a Bingham fluid we determine the…

  7. MHD mixed convection analysis in an open channel by obstructed Poiseuille flow of non-Newtonian power law fluid

    Science.gov (United States)

    Rabbi, Khan Md.; Rakib, Tawfiqur; Das, Sourav; Mojumder, Satyajit; Saha, Sourav

    2016-07-01

    This paper demonstrates magneto-hydrodynamic (MHD) mixed convection flow through a channel with a rectangular obstacle at the entrance region using non-Newtonian power law fluid. The obstacle is kept at uniformly high temperature whereas the inlet and top wall of the channel are maintained at a temperature lower than obstacle temperature. Poiseuille flow is implemented as the inlet velocity boundary condition. Grid independency test and code validation are performed to justify the computational accuracy before solving the present problem. Galerkin weighted residual method has been appointed to solve the continuity, momentum and energy equations. The problem has been solved for wide range of pertinent parameters like Richardson number (Ri = 0.1 - 10) at a constant Reynolds number (Re = 100), Hartmann number (Ha = 0 - 100), power index (n = 0.6 - 1.6). The flow and thermal field have been thoroughly discussed through streamline and isothermal lines respectively. The heat transfer performance of the given study has been illustrated by average Nusselt number plots. It is observed that increment of Hartmann number (Ha) tends to decrease the heat transfer rate up to a critical value (Ha = 20) and then let increase the heat transfer performance. Thus maximum heat transfer rate has been recorded for higher Hartmann number and Rayleigh number in case of pseudo-plastic (n = 0.6) non-Newtonian fluid flow.

  8. Learning about Non-Newtonian Fluids in a Student-Driven Classroom

    Science.gov (United States)

    Dounas-Frazer, D. R.; Lynn, J.; Zaniewski, A. M.; Roth, N.

    2013-01-01

    We describe a simple, low-cost experiment and corresponding pedagogical strategies for studying fluids whose viscosities depend on shear rate, referred to as "non-Newtonian fluids." We developed these materials teaching for the Compass Project, an organization that fosters a creative, diverse, and collaborative community of science…

  9. Revisiting Newtonian and Non-Newtonian Fluid Mechanics Using Computer Algebra

    Science.gov (United States)

    Knight, D. G.

    2006-01-01

    This article illustrates how a computer algebra system, such as Maple[R], can assist in the study of theoretical fluid mechanics, for both Newtonian and non-Newtonian fluids. The continuity equation, the stress equations of motion, the Navier-Stokes equations, and various constitutive equations are treated, using a full, but straightforward,…

  10. Analysis of Peristaltic Transport of Non-Newtonian Fluids Through Nonuniform Tubes: Rabinowitsch Fluid Model

    Science.gov (United States)

    Singh, U. P.; Medhavi, Amit; Gupta, R. S.; Bhatt, Siddharth Shankar

    2017-07-01

    Peristaltic transport is an important mechanism of physiological phenomenon and peristaltic pumps. With the advancement of medical science, it has been established that the physiological fluids do not behave like Newtonian fluids. Therefore, in order to understand the behaviour and properties of physiological fluids during peristalsis, selection of appropriate fluid model is of great importance. In the present investigation, properties of peristaltic transport through nonuniform tube have been studied for non-Newtonian fluids using Rabinowitsch fluid model. Theoretical analysis has been presented for long wavelength and low Reynolds number approximation. To analyse various properties of the flow, analytical expressions for velocity, pressure gradient, pressure rise, friction force, and temperature have been obtained. The numerical results for the same have been obtained to present the effect of various physical and flow parameters on fluid velocity, pressure rise, friction force, and temperature. Significant variation of these properties has been observed in the analysis for non-Newtonian nature of the fluid and nonuniformity of the tube.

  11. Non newtonian annular alloy solidification in mould

    Energy Technology Data Exchange (ETDEWEB)

    Moraga, Nelson O.; Garrido, Carlos P. [Universidad de La Serena, Departamento de Ingenieria Mecanica, La Serena (Chile); Castillo, Ernesto F. [Universidad de Santiago de Chile, Departamento de Ingenieria Mecanica, Santiago (Chile)

    2012-08-15

    The annular solidification of an aluminium-silicon alloy in a graphite mould with a geometry consisting of horizontal concentric cylinders is studied numerically. The analysis incorporates the behavior of non-Newtonian, pseudoplastic (n=0.2), Newtonian (n=1), and dilatant (n=1.5) fluids. The fluid mechanics and heat transfer coupled with a transient model of convection diffusion are solved using the finite volume method and the SIMPLE algorithm. Solidification is described in terms of a liquid fraction of a phase change that varies linearly with temperature. The final results make it possible to infer that the fluid dynamics and heat transfer of solidification in an annular geometry are affected by the non-Newtonian nature of the fluid, speeding up the process when the fluid is pseudoplastic. (orig.)

  12. Non Newtonian annular alloy solidification in mould

    Science.gov (United States)

    Moraga, Nelson O.; Castillo, Ernesto F.; Garrido, Carlos P.

    2012-08-01

    The annular solidification of an aluminium-silicon alloy in a graphite mould with a geometry consisting of horizontal concentric cylinders is studied numerically. The analysis incorporates the behavior of non-Newtonian, pseudoplastic ( n = 0.2), Newtonian ( n = 1), and dilatant ( n = 1.5) fluids. The fluid mechanics and heat transfer coupled with a transient model of convection diffusion are solved using the finite volume method and the SIMPLE algorithm. Solidification is described in terms of a liquid fraction of a phase change that varies linearly with temperature. The final results make it possible to infer that the fluid dynamics and heat transfer of solidification in an annular geometry are affected by the non-Newtonian nature of the fluid, speeding up the process when the fluid is pseudoplastic.

  13. Magnetohydrodynamic Peristaltic Flow of a Pseudoplastic Fluid in a Curved Channel

    Science.gov (United States)

    Noreen, Saima; Hayat, Tasawar; Alsaedi, Ahmed

    2013-05-01

    A mathematical model is developed to examine the effects of an induced magnetic field on the peristaltic flow in a curved channel. The non-Newtonian pseudoplastic fluid model is used to depict the combined elastic and viscous properties. The analysis has been carried out in the wave frame of reference, long wavelength and low Reynolds scheme are implemented. A series solution is obtained through perturbation analysis. Results for stream function, pressure gradient, magnetic force function, induced magnetic field, and current density are constructed. The effects of significant parameters on the flow quantities are sketched and discussed.

  14. Multigrid methods for a semilinear PDE in the theory of pseudoplastic fluids

    Science.gov (United States)

    Henson, Van Emden; Shaker, A. W.

    1993-01-01

    We show that by certain transformations the boundary layer equations for the class of non-Newtonian fluids named pseudoplastic can be generalized in the form the vector differential operator(u) + p(x)u(exp -lambda) = 0, where x is a member of the set Omega and Omega is a subset of R(exp n), n is greater than or equal to 1 under the classical conditions for steady flow over a semi-infinite flat plate. We provide a survey of the existence, uniqueness, and analyticity of the solutions for this problem. We also establish numerical solutions in one- and two-dimensional regions using multigrid methods.

  15. A New Kind of Weak Solution of Non-Newtonian Fluid Equation

    Directory of Open Access Journals (Sweden)

    Huashui Zhan

    2017-01-01

    Full Text Available If the non-Newtonian fluid equation with a diffusion coefficient is degenerate on the boundary, the weak solution lacks the regularity to define the trace on the boundary. By introducing a new kind of weak solutions, the stability of the solutions is established without any boundary condition.

  16. MHD free convection flow of a non-Newtonian power-law fluid over ...

    African Journals Online (AJOL)

    In this study, we present a numerical analysis of free convection flow and heat transfer is presented for non-Newtonian power-law fluids with MHD effects over a vertical porous plate, the surface of which is exposed to a constant wall temperature. For analysis, the Continuty, Momentum and Energy equations are solved by ...

  17. Numerical Modelling of Non-Newtonian Fluid in a Rotational Cross-Flow MBR

    DEFF Research Database (Denmark)

    Bentzen, Thomas Ruby; Ratkovich, Nicolas Rios; Rasmussen, Michael R.

    2011-01-01

    . Validation of the CFD model was made against LDA tangential velocity measurements (error less than 8 %) using water a fluid. The shear stress over the membrane surface was inferred from the CFD simulations for water. However, activated sludge is a non-Newtonian liquid, for which the CFD model was modified...

  18. Particle settling in non-Newtonian drilling fluids

    OpenAIRE

    Omland, Tor Henry

    2009-01-01

    PhD thesis in Petroleum engineering Particle settling is relevant for several aspects of drilling and completion operations, and is directly related to safety and operational efficiency. The primary function of particles added to drilling fluids is to provide density stabilizing the wellbore and hinder influx of fluids and gas, causing a kick situation. Keeping the particles suspended in the fluids is also critical to avoid problems such as stuck down hole equipment, poor ce...

  19. A deformable plate interacting with a non-Newtonian fluid in three dimensions

    Science.gov (United States)

    Zhu, Luoding; Yu, Xijun; Liu, Nansheng; Cheng, Yongguang; Lu, Xiyun

    2017-08-01

    We consider a deformable plate interacting with a non-Newtonian fluid flow in three dimensions as a simple model problem for fluid-structure-interaction phenomena in life sciences (e.g., red blood cell interacting with blood flow). A power-law function is used for the constitutive equation of the non-Newtonian fluid. The lattice Boltzmann equation (the D3Q19 model) is used for modeling the fluid flow. The immersed boundary (IB) method is used for modeling the flexible plate and handling the fluid-plate interaction. The plate drag and its scaling are studied; the influences of three dimensionless parameters (power-law exponent, bending modulus, and generalized Reynolds number) are investigated.

  20. Gass-Assisted Displacement of Non-Newtonian Fluids

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz; Eriksson, Torbjörn Gerhard

    2003-01-01

    on diluted solutions of linear polymers, normally referred to as Booger fluids. These fluids have almost constant shear viscosities and elongational viscosities several order of magnitudes larger than the shear viscosities, at high Deborah numbers. The simplest possible model to describe the constitutive......During the resent years several publications (for instance Hyzyak and Koelling, J. Non-Newt. Fluid Mech. 71,73-88 (1997) and Gauri and Koelling, Rheol. Acta, 38, 458-470 (1999)) have concerned gas assisted displacement of viscoelastic fluids (polymer melts and polymeric solutions) contained...... in a circular cylinder. This is a simple model system used to investigate the gas-fluid displacement, as the problem is reduced to an axis-symmetric flow problem. The understanding of this process is relevant for the geometrically much more complex polymer processing operation Gas-assisted injection moulding...

  1. Similarity Solutions for Flow and Heat Transfer of Non-Newtonian Fluid over a Stretching Surface

    OpenAIRE

    Atta Sojoudi; Ali Mazloomi; Saha, Suvash C.; Gu, Y. T.

    2014-01-01

    Similarity solutions are carried out for flow of power law non-Newtonian fluid film on unsteady stretching surface subjected to constant heat flux. Free convection heat transfer induces thermal boundary layer within a semi-infinite layer of Boussinesq fluid. The nonlinear coupled partial differential equations (PDE) governing the flow and the boundary conditions are converted to a system of ordinary differential equations (ODE) using two-parameter groups. This technique reduces the number of ...

  2. Vortex Breakdown under Laminar Flow of Pseudoplastic Fluid

    Science.gov (United States)

    Kadyirov, A. I.; Abaydullin, B. R.

    2017-09-01

    The numerical investigation was carried out to study vortex breakdown for pseudoplastic fluid flow in circular pipe with twisted tape inserts. 0.67%, 1.5% and 3% aqueous solutions of Na-CMC are chosen as a pseudoplastic fluid. The numerical results are compared with available data in literature.

  3. Thermal convection in a nonlinear non-Newtonian magnetic fluid

    OpenAIRE

    Laroze, D.; Pleiner, H.

    2015-01-01

    We report theoretical and numerical results on thermal convection of a magnetic fluid in a viscoelastic carrier liquid. The viscoelastic properties are described by a general nonlinear viscoelastic model that contains as special cases the standard phenomenological constitutive equations for the stress tensor. In order to explore numerically the system we perform a truncated Galerkin expansion obtaining a generalized Lorenz system with ten modes. We find numerically that the system has station...

  4. Thermal convection in a nonlinear non-Newtonian magnetic fluid

    Science.gov (United States)

    Laroze, D.; Pleiner, H.

    2015-09-01

    We report theoretical and numerical results on thermal convection of a magnetic fluid in a viscoelastic carrier liquid. The viscoelastic properties are described by a general nonlinear viscoelastic model that contains as special cases the standard phenomenological constitutive equations for the stress tensor. In order to explore numerically the system we perform a truncated Galerkin expansion obtaining a generalized Lorenz system with ten modes. We find numerically that the system has stationary, periodic and chaotic regimes. We establish phase diagrams to identify the different dynamical regimes as a function of the Rayleigh number and the viscoelastic material parameters.

  5. Similarity Solutions for Flow and Heat Transfer of Non-Newtonian Fluid over a Stretching Surface

    Directory of Open Access Journals (Sweden)

    Atta Sojoudi

    2014-01-01

    Full Text Available Similarity solutions are carried out for flow of power law non-Newtonian fluid film on unsteady stretching surface subjected to constant heat flux. Free convection heat transfer induces thermal boundary layer within a semi-infinite layer of Boussinesq fluid. The nonlinear coupled partial differential equations (PDE governing the flow and the boundary conditions are converted to a system of ordinary differential equations (ODE using two-parameter groups. This technique reduces the number of independent variables by two, and finally the obtained ordinary differential equations are solved numerically for the temperature and velocity using the shooting method. The thermal and velocity boundary layers are studied by the means of Prandtl number and non-Newtonian power index plotted in curves.

  6. Experimental and modeling study of Newtonian and non-Newtonian fluid flow in pore network micromodels.

    Science.gov (United States)

    Perrin, Christian L; Tardy, Philippe M J; Sorbie, Ken S; Crawshaw, John C

    2006-03-15

    The in situ rheology of polymeric solutions has been studied experimentally in etched silicon micromodels which are idealizations of porous media. The rectangular channels in these etched networks have dimensions typical of pore sizes in sandstone rocks. Pressure drop/flow rate relations have been measured for water and non-Newtonian hydrolyzed-polyacrylamide (HPAM) solutions in both individual straight rectangular capillaries and in networks of such capillaries. Results from these experiments have been analyzed using pore-scale network modeling incorporating the non-Newtonian fluid mechanics of a Carreau fluid. Quantitative agreement is seen between the experiments and the network calculations in the Newtonian and shear-thinning flow regions demonstrating that the 'shift factor,'alpha, can be calculated a priori. Shear-thickening behavior was observed at higher flow rates in the micromodel experiments as a result of elastic effects becoming important and this remains to be incorporated in the network model.

  7. ANALYSIS OF MARANGONI CONVECTION OF NON-NEWTONIAN POWER LAW FLUIDS WITH LINEAR TEMPERATURE DISTRIBUTION

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2011-01-01

    Full Text Available The problem of steady, laminar, thermal Marangoni convection flow of non-Newtonian power law fluid along a horizontal surface with variable surface temperature is studied. The partial differential equations are transformed into ordinary differential equations by using a suitable similarity transformation and analytical approximate solutions are obtained by an efficient transformation, asymptotic expansion and Padé approximants technique. The effects of power law index and Marangoni number on velocity and temperature profiles are examined and discussed.

  8. Heat transfer of a non-Newtonian fluid (Carbopol aqueous solution) in transitional pipe flow

    Energy Technology Data Exchange (ETDEWEB)

    Peixinho, J.; Desaubry, C.; Lebouche, M. [LEMTA - Laboratoire d' Energetique et de Mecanique Theorique et Appliquee, 2 Avenue de la foret de Haye, BP 160, 54 504 Vandoeuvre-les-Nancy (France)

    2008-01-15

    An experimental study of the forced convection heat transfer for non-Newtonian fluid flow in a pipe is presented. We focus particularly on the transitional regime. A wall boundary heating condition of heat flux is imposed. The non-Newtonian fluid used is Carbopol (polyacrylic acid) aqueous solutions. Detailed rheology as well as the variation of the rheological parameters with temperature are reported. Newtonian and shear thinning fluids are also tested for comparative purposes. The characterization of the flow and the thermal convection is made via the pressure drop and the wall temperature measurements over a range of Reynolds number from laminar to turbulent regime. Our measurements show that the non-Newtonian character stabilizes the flow, i.e., the critical Reynolds number to transitional flow increases with shear thinning and yield stress. The heat transfer coefficients are given and compared with heat transfer laws for different regime flows. Details when the heat transfer coefficient loses rapidly its local dependence on the Reynolds number are analyzed. (author)

  9. Entropy Generation Analysis of Power-Law Non-Newtonian Fluid Flow Caused by Micropatterned Moving Surface

    Directory of Open Access Journals (Sweden)

    M. H. Yazdi

    2014-01-01

    Full Text Available In the present study, the first and second law analyses of power-law non-Newtonian flow over embedded open parallel microchannels within micropatterned permeable continuous moving surface are examined at prescribed surface temperature. A similarity transformation is used to reduce the governing equations to a set of nonlinear ordinary differential equations. The dimensionless entropy generation number is formulated by an integral of the local rate of entropy generation along the width of the surface based on an equal number of microchannels and no-slip gaps interspersed between those microchannels. The velocity, the temperature, the velocity gradient, and the temperature gradient adjacent to the wall are substituted into this equation resulting from the momentum and energy equations obtained numerically by Dormand-Prince pair and shooting method. Finally, the entropy generation numbers, as well as the Bejan number, are evaluated. It is noted that the presence of the shear thinning (pseudoplastic fluids creates entropy along the surface, with an opposite effect resulting from shear thickening (dilatant fluids.

  10. Hodographic study of non-Newtonian MHD aligned steady plane fluid flows

    Directory of Open Access Journals (Sweden)

    P. V. Nguyen

    1990-01-01

    Full Text Available A study is made of non-Newtonian HHD aligned steady plane fluid flows to find exact solutions for various flow configurations. The equations of motion have been transformed to the hodograph plane. A Legendre-transform function is used to recast the equations in the hodograph plane in terms of this transform function. Solutions for various flow configurations are obtained. Applications are investigated for the fluids of finite and infinite electrical conductivity bringing out the similarities and contrasts in the solutions of these types of fluids.

  11. Free surface flow of a suspension of rigid particles in a non-Newtonian fluid

    DEFF Research Database (Denmark)

    Svec, Oldrich; Skocek, Jan; Stang, Henrik

    2012-01-01

    A numerical framework capable of predicting the free surface flow of a suspension of rigid particles in a non-Newtonian fluid is described. The framework is a combination of the lattice Boltzmann method for fluid flow, the mass tracking algorithm for free surface representation, the immersed...... boundary method for two-way coupled interactions between fluid and rigid particles and an algorithm for the dynamics and mutual interactions of rigid particles. The framework is able to simulate the flow of suspensions at the level of the largest suspended particles and, at the same time, the model is very...

  12. Squeeze film lubrication for non-Newtonian fluids with application to manual medicine.

    Science.gov (United States)

    Chaudhry, Hans; Bukiet, Bruce; Roman, Max; Stecco, Antonio; Findley, Thomas

    2013-01-01

    In this paper, we computed fluid pressure and force on fascia sheets during manual therapy treatments using Squeeze Film Lubrication theory for non-Newtonian fluids. For this purpose, we developed a model valid for three dimensional fluid flow of a non-Newtonian liquid. Previous models considered only one-dimensional flows in two dimensions. We applied this model to compare the one-dimensional flow of HA, considered as a lubricating fluid, around or within the fascia during sliding, vibration, and back-and-forth sliding manipulation treatment techniques. The fluid pressure of HA increases dramatically as fascia is deformed during manual therapies. The fluid force increases more during vertical vibratory manipulation treatment than in constant sliding, and back and forth motion. The variation of fluid pressure/force causes HA to flow near the edges of the fascial area under manipulation in sliding and back and forth motion which may result in greater lubrication. The fluid pressure generated in manual therapy techniques may improve sliding and permit muscles to work more efficiently.

  13. Numerical simulation of the planar extrudate swell of pseudoplastic and viscoelastic fluids with the streamfunction and the VOF methods

    DEFF Research Database (Denmark)

    Comminal, Raphaël; Pimenta, Francisco; Hattel, Jesper H.

    2017-01-01

    , as well as with numerical simulations performed with the open-source rheoTool toolbox in OpenFOAM®. While the simulations of the generalized Newtonian fluids achieved mesh independence for all the methods tested, the flow simulations of the viscoelastic fluids are more sensitive to mesh refinement......Abstract We present an Eulerian free-surface flow solver for incompressible pseudoplastic and viscoelastic non-Newtonian fluids. The free-surface flow solver is based on the streamfunction flow formulation and the volume-of-fluid method. The streamfunction solver computes the vector potential...... of a solenoidal velocity field, which ensures by construction the mass conservation of the solution, and removes the pressure unknown. Pseudoplastic liquids are modelled with a Carreau model. The viscoelastic fluids are governed by differential constitutive models reformulated with the log-conformation approach...

  14. Process viscometry in flows of non-Newtonian fluids using an anchor agitator

    Science.gov (United States)

    Jo, Hae Jin; Jang, Hye Kyeong; Kim, Young Ju; Hwang, Wook Ryol

    2017-11-01

    In this work, we present a viscosity measurement technique for inelastic non-Newtonian fluids directly in flows of anchor agitators that are commonly used in highly viscous fluid mixing particularly with yield stress. A two-blade anchor impeller is chosen as a model flow system and Carbopol 940 solutions and Xanthan gum solutions with various concentrations are investigated as test materials. Following the Metzner-Otto correlation, the effective shear rate constant and the energy dissipation rate constant have been estimated experimentally by establishing (i) the relationship between the power number and the Reynolds number using a reference Newtonian fluid and (ii) the proportionality between the effective shear rate and the impeller speed with a reference non-Newtonian fluid. The effective viscosity that reproduces the same amount of the energy dissipation rate, corresponding to that of Newtonian fluid, has been obtained by measuring torques for various impeller speeds and the accuracy in the viscosity prediction as a function of the shear rate has been compared with the rheological measurement. We report that the process viscometry with the anchor impeller yields viscosity estimation within the relative error of 20% with highly shear-thinning fluids.

  15. A molecular dynamics study of non-Newtonian flows of simple fluids in confined and unconfined geometries

    NARCIS (Netherlands)

    Hartkamp, Remco

    2013-01-01

    Various fluid flow phenomena originate in the dynamics of the atoms that constitute the fluid. Studying fluids as a collection of atoms is key to a better understanding of, for example, non-Newtonian fluid flow behavior. Molecular dynamics (MD) is a very suitable tool for the study of fluids on the

  16. Non-Newtonian fluid flow in an axisymmetric channel with porous wall

    Directory of Open Access Journals (Sweden)

    M. Hosseini

    2013-12-01

    Full Text Available In the present article Optimal Homotopy Asymptotic Method (OHAM is used to obtain the solutions of momentum and heat transfer equations of non-Newtonian fluid flow in an axisymmetric channel with porous wall for turbine cooling applications. Numerical method is used for validity of this analytical method and excellent agreement is observed between the solutions obtained from OHAM and numerical results. Trusting to this validity, effects of some other parameters are discussed. The results show that Nusselt number increases with increase of Reynolds number, Prandtl number and power law index.

  17. Modeling of flow of particles in a non-Newtonian fluid using lattice Boltzmann method

    DEFF Research Database (Denmark)

    Skocek, Jan; Svec, Oldrich; Spangenberg, Jon

    2011-01-01

    is necessary. In this contribution, the model at the scale of aggregates is introduced. The conventional lattice Boltzmann method for fluid flow is enriched with the immersed boundary method with direct forcing to simulate the flow of rigid particles in a non- Newtonian liquid. Basic ingredients of the model...... for computation of effective viscosities. It is shown that the presented model based on well established methods and without any artificial parameters, numerical tricks or modifications provides an efficient tool that can be applied to a range of engineering problems on different length-scales yielding results...

  18. Force effects on rotor of squeeze film damper using Newtonian and non-Newtonian fluid

    Science.gov (United States)

    Dominik, Šedivý; Petr, Ferfecki; Simona, Fialová

    2017-09-01

    This article presents the evaluation of force effects on rotor of squeeze film damper. Rotor is eccentric placed and its motion is translate-circular. The amplitude of rotor motion is smaller than its initial eccentricity. The force effects are calculated from pressure and viscous forces which were gained by using computational modeling. Two types of fluid were considered as filling of damper. First type of fluid is Newtonian (has constant viscosity) and second type is magnetorheological fluid (does not have constant viscosity). Viscosity of non-Newtonian fluid is given using Bingham rheology model. Yield stress is a function of magnetic induction which is described by many variables. The most important variables of magnetic induction are electric current and gap width which is between rotor and stator. Comparison of application two given types of fluids is shown in results.

  19. CFD simulation of gas and non-Newtonian fluid two-phase flow in anaerobic digesters.

    Science.gov (United States)

    Wu, Binxin

    2010-07-01

    This paper presents an Eulerian multiphase flow model that characterizes gas mixing in anaerobic digesters. In the model development, liquid manure is assumed to be water or a non-Newtonian fluid that is dependent on total solids (TS) concentration. To establish the appropriate models for different TS levels, twelve turbulence models are evaluated by comparing the frictional pressure drops of gas and non-Newtonian fluid two-phase flow in a horizontal pipe obtained from computational fluid dynamics (CFD) with those from a correlation analysis. The commercial CFD software, Fluent12.0, is employed to simulate the multiphase flow in the digesters. The simulation results in a small-sized digester are validated against the experimental data from literature. Comparison of two gas mixing designs in a medium-sized digester demonstrates that mixing intensity is insensitive to the TS in confined gas mixing, whereas there are significant decreases with increases of TS in unconfined gas mixing. Moreover, comparison of three mixing methods indicates that gas mixing is more efficient than mixing by pumped circulation while it is less efficient than mechanical mixing.

  20. Pulsatile Non-Newtonian Fluid Flows in a Model Aneurysm with Oscillating Wall

    Directory of Open Access Journals (Sweden)

    Sumaia Parveen Shupti

    2017-11-01

    Full Text Available This research presents a numerical simulation of an unsteady two-dimensional channel flow of Newtonian and some non-Newtonian fluids using the finite-volume method. The walls of the geometry oscillate sinusoidally with time. We have used the Cartesian curvilinear coordinates to handle complex geometries, i.e., arterial stents and bulges and the governing Navier–Stokes equations have been modified accordingly. Physiological pulsatile flow has been used at the inlet to characterize four different non-Newtonian models, i.e., the (i Carreau, (ii Cross, (iii Modified Casson, and (iv Quemada. We have presented the numerical results in terms of wall shear stress (WSS, pressure distribution as well as the streamlines and discussed the hemodynamic behaviors for laminar and laminar to turbulent transitional flow conditions. An increase of wall shear stress and a decrease in wall pressure are significantly observed at the stenosis throat for high Reynolds number and highly stenosed arteries. Likewise, the flow recirculation also increases if the narrowing level and the Reynolds number increases in the dilated region which eventually leads the stream to experience a transition to turbulence at Re = 750. The results for the fluid flow through an aneurysm just after a stenosis with oscillating wall are novel in the literature.

  1. Development of a new continuous process for mixing of complex non-Newtonian fluids

    Science.gov (United States)

    Migliozzi, Simona; Mazzei, Luca; Sochon, Bob; Angeli, Panagiota; Thames Multiphase Team; Coral Project Collaboration

    2017-11-01

    Design of new continuous mixing operations poses many challenges, especially when dealing with highly viscous non-Newtonian fluids. Knowledge of complex rheological behaviour of the working mixture is crucial for development of an efficient process. In this work, we investigate the mixing performance of two different static mixers and the effects of the mixture rheology on the manufacturing of novel non-aqueous-based oral care products using experimental and computational fluid dynamic methods. The two liquid phases employed, i.e. a carbomer suspension in polyethylene glycol and glycerol, start to form a gel when they mix. We studied the structure evolution of the liquid mixture using time-resolved rheometry and we obtained viscosity rheograms at different phase ratios from pressure drop measurements in a customized mini-channel. The numerical results and rheological model were validated with experimental measurements carried out in a specifically designed setup. EPSRS-CORAL.

  2. Free-surface non-Newtonian fluid flow in a round pipe

    Science.gov (United States)

    Borzenko, E. I.; Schrager, G. R.; Yakutenok, V. A.

    2012-03-01

    Free-surface pseudoplastic and viscoplastic fluid flows in a round pipe were studied for the case where the direction of motion coincides with the direction of gravity. Numerical modeling was performed using a technique based on a combination of the SIMPLE algorithm and the method of invariants. Three characteristic filling regimes were found to exist: a complete filling regime, a regime characterized by air-cavity formation on the solid wall, and a jet regime. Critical parameter values separating the regions of existence of these regimes were calculated. The evolution of quasisolid cores was studied for flow of a fluid with an yield point.

  3. A Numerical Study of Mesh Adaptivity in Multiphase Flows with Non-Newtonian Fluids

    Science.gov (United States)

    Percival, James; Pavlidis, Dimitrios; Xie, Zhihua; Alberini, Federico; Simmons, Mark; Pain, Christopher; Matar, Omar

    2014-11-01

    We present an investigation into the computational efficiency benefits of dynamic mesh adaptivity in the numerical simulation of transient multiphase fluid flow problems involving Non-Newtonian fluids. Such fluids appear in a range of industrial applications, from printing inks to toothpastes and introduce new challenges for mesh adaptivity due to the additional ``memory'' of viscoelastic fluids. Nevertheless, the multiscale nature of these flows implies huge potential benefits for a successful implementation. The study is performed using the open source package Fluidity, which couples an unstructured mesh control volume finite element solver for the multiphase Navier-Stokes equations to a dynamic anisotropic mesh adaptivity algorithm, based on estimated solution interpolation error criteria, and conservative mesh-to-mesh interpolation routine. The code is applied to problems involving rheologies ranging from simple Newtonian to shear-thinning to viscoelastic materials and verified against experimental data for various industrial and microfluidic flows. This work was undertaken as part of the EPSRC MEMPHIS programme grant EP/K003976/1.

  4. Studying Radiation and Reaction Effects on Unsteady MHD Non-Newtonian (Walter’s B) Fluid in Porous Medium

    OpenAIRE

    Gamal M. Abdel-Rahman Rashed; Faiza M. N. El-fayez

    2016-01-01

    This paper describes the studied effects of thermal radiation and chemical reaction on unsteady MHD non-Newtonian (obeying Walter’s B model) fluid in porous medium. The resulting problems are solved numerically. Graphical results for various interesting parameters are presented. Also the effects of the different parameters on the skin-friction and the heat fluxes are obtained and discussed numerically.

  5. Viscosity effects in foam drainage: Newtonian and non-newtonian foaming fluids

    Science.gov (United States)

    Safouane, M.; Saint-Jalmes, A.; Bergeron, V.; Langevin, D.

    2006-02-01

    We have studied the drainage of foams made from Newtonian and non-Newtonian solutions of different viscosities. Forced-drainage experiments first show that the behavior of Newtonian solutions and of shear-thinning ones (foaming solutions containing either Carbopol or Xanthan) are identical, provided one considers the actual viscosity corresponding to the shear rate found inside the foam. Second, for these fluids, a drainage regime transition occurs as the bulk viscosity is increased, illustrating a coupling between surface and bulk flow in the channels between bubbles. The properties of this transition appear different from the ones observed in previous works in which the interfacial viscoelasticity was varied. Finally, we show that foams made of solutions containing long flexible PolyEthylene Oxide (PEO) molecules counter-intuitively drain faster than foams made with Newtonian solutions of the same viscosity. Complementary experiments made with fluids having all the same viscosity but different responses to elongational stresses (PEO-based Boger fluids) suggest an important role of the elastic properties of the PEO solutions on the faster drainage.

  6. CFD investigation of turbulence models for mechanical agitation of non-Newtonian fluids in anaerobic digesters.

    Science.gov (United States)

    Wu, Binxin

    2011-02-01

    This study evaluates six turbulence models for mechanical agitation of non-Newtonian fluids in a lab-scale anaerobic digestion tank with a pitched blade turbine (PBT) impeller. The models studied are: (1) the standard k-ɛ model, (2) the RNG k-ɛ model, (3) the realizable k-ɛ model, (4) the standard k-ω model, (5) the SST k-ω model, and (6) the Reynolds stress model. Through comparing power and flow numbers for the PBT impeller obtained from computational fluid dynamics (CFD) with those from the lab specifications, the realizable k-ɛ and the standard k-ω models are found to be more appropriate than the other turbulence models. An alternative method to calculate the Reynolds number for the moving zone that characterizes the impeller rotation is proposed to judge the flow regime. To check the effect of the model setup on the predictive accuracy, both discretization scheme and numerical approach are investigated. The model validation is conducted by comparing the simulated velocities with experimental data in a lab-scale digester from literature. Moreover, CFD simulation of mixing in a full-scale digester with two side-entry impellers is performed to optimize the installation. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Non-Newtonian flow effects on the coalescence and mixing of initially stationary droplets of shear-thinning fluids.

    Science.gov (United States)

    Sun, Kai; Wang, Tianyou; Zhang, Peng; Law, Chung K

    2015-02-01

    The coalescence of two initially stationary droplets of shear-thinning fluids in a gaseous environment is investigated numerically using the lattice Boltzmann method, with particular interest in non-Newtonian flow effects on the internal mixing subsequent to coalescence. Coalescence of equal-sized droplets, with one being Newtonian while the other is non-Newtonian, leads to the non-Newtonian droplet wrapping around the Newtonian one and hence minimal fine-scale mixing. For unequal-sized droplets, mixing is greatly promoted if both droplets are shear-thinning. When only one of the droplets is shear-thinning, the non-Newtonian effect from the smaller droplet is found to be significantly more effective than that from the larger droplet in facilitating internal jetlike mixing. Parametric study with the Carreau-Yasuda model indicates that the phenomena are universal to a wide range of shear-thinning fluids, given that the extent of shear thinning reaches a certain level, and the internal jet tends to be thicker and develops more rapidly with increasing extent of the shear-thinning effect.

  8. On Laminar Flow of Non-Newtonian Fluids in Porous Media

    KAUST Repository

    Fayed, Hassan E.

    2015-10-20

    Flow of generalized Newtonian fluids in porous media can be modeled as a bundle of capillary tubes or a pore-scale network. In general, both approaches rely on the solution of Hagen–Poiseuille equation using power law to estimate the variations in the fluid viscosity due to the applied shear rate. Despite the effectiveness and simplicity, power law tends to provide unrealistic values for the effective viscosity especially in the limits of zero and infinite shear rates. Here, instead of using power law, Carreau model (bubbles, drops, and particles in non-Newtonian fluids. Taylor & Francis Group, New York, 2007) is used to determine the effective viscosity as a function of the shear strain rate. Carreau model can predict accurately the variation in the viscosity at all shear rates and provide more accurate solution for the flow physics in a single pore. Using the results for a single pore, normalized Fanning friction coefficient has been calculated and plotted as a function of the newly defined Reynolds number based on pressure gradient. For laminar flow, the variation in the friction coefficient with Reynolds number has been plotted and scaled. It is observed that generalized Newtonian fluid flows show Newtonian nature up to a certain Reynolds number. At high Reynolds number, deviation from the Newtonian behavior is observed. The main contribution of this paper is to present a closed-form solution for the flow in a single pore using Carreau model, which allows for fast evaluation of the relationship between flux and pressure gradient in an arbitrary pore diameter. In this way, we believe that our development will open the perspectives for using Carreau models in pore-network simulations at low computational costs to obtain more accurate prediction for generalized Newtonian fluid flows in porous media.

  9. Diagnosis at a glance of biological non-Newtonian fluids with Film Interference Flow Imaging (FIFI)

    Science.gov (United States)

    Hidema, R.; Yamada, N.; Furukawa, H.

    2012-04-01

    In the human body, full of biological non-Newtonian fluids exist. For example, synovial fluids exist in our joints, which contain full of biopolymers, such as hyaluronan and mucin. It is thought that these polymers play critical roles on the smooth motion of the joint. Indeed, luck of biopolymers in synovial fluid cause joint pain. Here we study the effects of polymer in thin liquid layer by using an original experimental method called Film Interference Flow Imaging (FIFI). A vertically flowing soap film containing polymers is made as two-dimensional flow to observe turbulence. The thickness of water layer is about 4 μm sandwiched between surfactant mono-layers. The interference pattern of the soap film is linearly related to the flow velocity in the water layer through the change in the thickness of the film. Thus the flow velocity is possibly analyzed by the single image analysis of the interference pattern, that is, FIFI. The grid turbulence was made in the flowing soap films containing the long flexible polymer polyethyleneoxide (PEO, Mw=3.5x106), and rigid polymer hydroxypropyl cellulose (HPC, Mw > 1.0 x106). The decaying process of the turbulence is affected by PEO and HPC at several concentrations. The effects of PEO are sharply seen even at low concentrations, while the effects of HPC are gradually occurred at much higher concentration compared to the PEO. It is assumed that such a difference between PEO and HPC is due to the polymer stretching or polymer orientation under turbulence, which is observed and analyzed by FIFI. We believe the FIFI will be applied in the future to examine biological fluids such as synovial fluids quickly and quantitatively.

  10. Investigation into the Impact and Buffering Characteristics of a Non-Newtonian Fluid Damper: Experiment and Simulation

    Directory of Open Access Journals (Sweden)

    Jingya Sun

    2014-01-01

    Full Text Available Dampers are widely applied to protect devices or human body from severe impact or harmful vibration circumstances. Considering that dampers with low velocity exponent have advantages in energy absorption, they have been widely used in antiseismic structures and shock buffering. Non-Newtonian fluid with strong shear-thinning effect is commonly adopted to achieve this goal. To obtain the damping mechanism and find convenient methods to design the nonlinear fluid damper, in this study, a hydraulic damper is filled with 500,000 cSt silicone oil to achieve a low velocity exponent. Drop hammer test is carried out to experimentally obtain its impact and buffering characteristics. Then a coupling model is built to analyze its damping mechanism, which consists of a model of impact system and a computational fluid dynamics (CFD model. Results from the coupling model can be consistent with the experiment results. Simulation method can help design non-Newtonian fluid dampers more effectively.

  11. Experimental model for non-Newtonian fluid viscosity estimation: Fit to mathematical expressions

    Directory of Open Access Journals (Sweden)

    Guillem Masoliver i Marcos

    2017-01-01

    Full Text Available The  construction  process  of  a  viscometer,  developed  in  collaboration  with  a  final  project  student,  is  here  presented.  It  is  intended  to  be  used  by   first  year's  students  to  know  the  viscosity  as  a  fluid  property, for  both  Newtonian  and  non-Newtonian  flows.  Viscosity  determination  is  crucial  for  the  fluids  behaviour knowledge  related  to  their  reologic  and  physical  properties.  These  have  great  implications  in  engineering aspects  such  as  friction  or  lubrication.  With  the  present  experimental  model  device  three  different fluids are  analyzed  (water,  kétchup  and  a  mixture  with  cornstarch  and  water.  Tangential stress is measured versus velocity in order to characterize all the fluids in different thermal conditions. A mathematical fit process is proposed to be done in order to adjust the results to expected analytical expressions, obtaining good results for these fittings, with R2 greater than 0.88 in any case.

  12. Physics of non-Newtonian fluids and interdisciplinary relations (biology and criminology)

    Science.gov (United States)

    Holubova, R.

    2018-03-01

    The aim of the paper is the presentation of an interdisciplinary topic that allows applying content knowledge in physics, mathematics and biology in real life environment. Students use to play games and view crime scenes but in common they have little knowledge about the science used during crime scene investigation. In this paper the science background of blood spatter analysis is presented—the physics of non-Newtonian fluids, the biology of blood and mathematics—the measurement and calculation of the angle of inpact, the relationship between height and spatter diameter. This topic was choosen according to the analysis of interviews with secondary and high school learners realized at four schools in Moravia, Czech Republic. The topic can be taught at secondary schools so as at a higher level at high schools. Hands-on activities are included. The teaching strategy supports group work. The appropriateness and reasonableness of the topic was checked in the real teaching process and the activities have had a positive feedback.

  13. Multivariable Real-Time Control of Viscosity Curve for a Continuous Production Process of a Non-Newtonian Fluid

    Directory of Open Access Journals (Sweden)

    Roberto Mei

    2018-01-01

    Full Text Available The application of a multivariable predictive controller to the mixing process for the production of a non-Newtonian fluid is discussed in this work. A data-driven model has been developed to describe the dynamic behaviour of the rheological properties of the fluid as a function of the operating conditions using experimental data collected in a pilot plant. The developed model provides a realistic process representation and it is used to test and verify the multivariable controller, which has been designed to maintain viscosity curves of the non-Newtonian fluid within a given region of the viscosity-vs-shear rate plane in presence of process disturbances occurring in the mixing process.

  14. Environmentally Benign Aircraft Anti-icing and Deicing Fluids Based on Cost Effective, Bio-based Ingredients

    Science.gov (United States)

    2012-09-01

    Curve for Glycerin-Water Mixture ........................................................ 9  Figure 5. Non-Newtonian ( Pseudoplastic ) Fluid Behavior...are non-Newtonian ( pseudoplastic ), as shown in Figure 5, while ADFs (Type I fluids, such as EcoFlo) are Newtonian. The shear-thinning behavior...can be broken by molecular motion or shear. This ease of breakage leads to shear-thinning behavior. Figure 5. Non-Newtonian ( Pseudoplastic

  15. Studying Radiation and Reaction Effects on Unsteady MHD Non-Newtonian (Walter’s B Fluid in Porous Medium

    Directory of Open Access Journals (Sweden)

    Gamal M. Abdel-Rahman Rashed

    2016-01-01

    Full Text Available This paper describes the studied effects of thermal radiation and chemical reaction on unsteady MHD non-Newtonian (obeying Walter’s B model fluid in porous medium. The resulting problems are solved numerically. Graphical results for various interesting parameters are presented. Also the effects of the different parameters on the skin-friction and the heat fluxes are obtained and discussed numerically.

  16. Non-Newtonian fluid flow in annular pipes and entropy generation ...

    Indian Academy of Sciences (India)

    Non-Newtonian fluid flow in annular pipes is considered and the entropy generation due to fluid friction and heat transfer in them is formulated. ... Technical Education Faculty, Afyon Kocatepe University, Afyon, Turkey; Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, ...

  17. Numerical analysis of natural convection for non-Newtonian fluid conveying nanoparticles between two vertical parallel plates

    Science.gov (United States)

    Sahebi, S. A. R.; Pourziaei, H.; Feizi, A. R.; Taheri, M. H.; Rostamiyan, Y.; Ganji, D. D.

    2015-12-01

    In this paper, natural convection of non-Newtonian bio-nanofluids flow between two vertical flat plates is investigated numerically. Sodium Alginate (SA) and Sodium Carboxymethyl Cellulose (SCMC) are considered as the base non-Newtonian fluid, and nanoparticles such as Titania ( TiO2 and Alumina ( Al2O3 were added to them. The effective thermal conductivity and viscosity of nanofluids are calculated through Maxwell-Garnetts (MG) and Brinkman models, respectively. A fourth-order Runge-Kutta numerical method (NUM) and three Weighted Residual Methods (WRMs), Collocation (CM), Galerkin (GM) and Least-Square Method (LSM) and Finite-Element Method (FEM), are used to solve the present problem. The influence of some physical parameters such as nanofluid volume friction on non-dimensional velocity and temperature profiles are discussed. The results show that SCMC- TiO2 has higher velocity and temperature values than other nanofluid structures.

  18. Electro-osmosis of non-Newtonian fluids in porous media using lattice Poisson-Boltzmann method.

    Science.gov (United States)

    Chen, Simeng; He, Xinting; Bertola, Volfango; Wang, Moran

    2014-12-15

    Electro-osmosis in porous media has many important applications in various areas such as oil and gas exploitation and biomedical detection. Very often, fluids relevant to these applications are non-Newtonian because of the shear-rate dependent viscosity. The purpose of this study was to investigate the behaviors and physical mechanism of electro-osmosis of non-Newtonian fluids in porous media. Model porous microstructures (granular, fibrous, and network) were created by a random generation-growth method. The nonlinear governing equations of electro-kinetic transport for a power-law fluid were solved by the lattice Poisson-Boltzmann method (LPBM). The model results indicate that: (i) the electro-osmosis of non-Newtonian fluids exhibits distinct nonlinear behaviors compared to that of Newtonian fluids; (ii) when the bulk ion concentration or zeta potential is high enough, shear-thinning fluids exhibit higher electro-osmotic permeability, while shear-thickening fluids lead to the higher electro-osmotic permeability for very low bulk ion concentration or zeta potential; (iii) the effect of the porous medium structure depends significantly on the constitutive parameters: for fluids with large constitutive coefficients strongly dependent on the power-law index, the network structure shows the highest electro-osmotic permeability while the granular structure exhibits the lowest permeability on the entire range of power law indices considered; when the dependence of the constitutive coefficient on the power law index is weaker, different behaviors can be observed especially in case of strong shear thinning. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Mathematical modeling of slope flows with entrainment as flows of non-Newtonian fluids

    Science.gov (United States)

    Zayko, Julia; Eglit, Margarita

    2015-04-01

    Non-Newtonian fluids in which the shear stresses are nonlinear functions of the shear strain rates are used to model slope flows such as snow avalanches, mudflows, debris flows. The entrainment of bottom material is included into the model basing on the assumption that in entraining flows the bed friction is equal to the shear stress of the bottom material (Issler et al, 2011). Unsteady motion down long homogeneous slopes with constant inclines is studied numerically for different flow rheologies and different slope angles. Variation of the velocity profile, increase of the flow depth and velocity due to entrainment as well as the value of the entrainment rate is calculated. Asymptotic formulae for the entrainment rate are derived for unsteady flows of different rheological properties. REFERENCES Chowdhury M., Testik F., 2011. Laboratory testing of mathematical models for high-concentration fluid mud turbidity currents. Ocean Engineering 38, 256-270. Eglit, M.E., Demidov, K.S., 2005. Mathematical modeling of snow entrainment in avalanche motion. Cold Reg. Sci. Technol. 43 (1-2), 10-23. Eglit M. E., Yakubenko A. E., 2012, Mathematical Modeling of slope flows entraining bottom material. Eglit M. E., Yakubenko A. E., 2014, Numerical modeling of slope flows entraining bottom material. Cold Reg. Sci. Technol. 108, 139-148. Issler D, M. Pastor Peréz. 2011. Interplay of entrainment and rheology in snow avalanches; a numerical study. Annals of Glaciology, 52(58), pp.143-147 Kern M. A., Tiefenbacher F., McElwaine J., N., 2004. The rheology of snow in large chute flows. Cold Regions Science and Technology, 39, 181 -192. Naaim, M., Faug, T., Naaim-Bouvet, F., 2003. Dry granular flow modelling including erosion and deposition. Surv. Geophys. 24, 569-585. Naaim, M., Naaim-Bouvet, F., Faug, T., Bouchet, A., 2004. Dense snow avalanche modeling: flow, erosion, deposition and obstacle effects. Cold Reg. Sci. Technol. 39, 193-204. Rougier, J & Kern, M 2010, 'Predicting snow

  20. Effects of variable viscosity and thermal conductivity on unsteady MHD flow of non-Newtonian fluid over a stretching porous sheet

    National Research Council Canada - National Science Library

    Rahman Abdel-Gamal M

    2013-01-01

    The unsteady flow and heat transfer in an incompressible laminar, electrically conducting and non-Newtonian fluid over a non-isothermal stretching sheet with the variation in the viscosity and thermal...

  1. Force acting on a particle in unsteady flow of a pseudoplastic fluid

    Science.gov (United States)

    Bocharov, O. B.; Ignatenko, Ya. S.

    2016-11-01

    The accelerated flow of a pseudoplastic fluid around a quiescent sphere at Reynolds numbers Re = 0-200 and dimensionless acceleration Ga = 10-104 is studied by numerical simulation. It is shown that the analytical expression of the added mass force for an ideal fluid is appropriate for a pseudoplastic fluid. An expression for calculating the hereditary Basset force for a pseudoplastic fluid is proposed.

  2. The influence of pH on gas-liquid mass transfer in non-Newtonian fluids

    OpenAIRE

    Li Shaobai; Fan Jungeng; Xu Shuang; Li Rundong; Luan Jingde

    2017-01-01

    In this study, the effect of pH on the mass transfer of oxygen bubble swarms in non-Newtonian fluids was experimentally studied. The volumetric liquid side mass transfer coefficient (kLa), liquid side mass transfer coefficient (kL), and specific interfacial area (a) were investigated. The pH was regulated by the addition of hydrochloric acid and sodium hydroxide (NaOH). It was found that the kLa increased with the gas flow rate increasing and decreased with the apparent viscosity of the liqui...

  3. Heat Source/Sink in a Magneto-Hydrodynamic Non-Newtonian Fluid Flow in a Porous Medium: Dual Solutions.

    Science.gov (United States)

    Hayat, Tasawar; Awais, Muhammad; Imtiaz, Amna

    2016-01-01

    This communication deals with the properties of heat source/sink in a magneto-hydrodynamic flow of a non-Newtonian fluid immersed in a porous medium. Shrinking phenomenon along with the permeability of the wall is considered. Mathematical modelling is performed to convert the considered physical process into set of coupled nonlinear mathematical equations. Suitable transformations are invoked to convert the set of partial differential equations into nonlinear ordinary differential equations which are tackled numerically for the solution computations. It is noted that dual solutions for various physical parameters exist which are analyzed in detail.

  4. Group solution for an unsteady non-Newtonian Hiemenz flow with variable fluid properties and suction/injection

    Science.gov (United States)

    M. El-Hawary, H.; Mostafa, A. A. Mahmoud; Reda, G. Abdel-Rahman; Abeer, S. Elfeshawey

    2014-09-01

    The theoretic transformation group approach is applied to address the problem of unsteady boundary layer flow of a non-Newtonian fluid near a stagnation point with variable viscosity and thermal conductivity. The application of a two-parameter group method reduces the number of independent variables by two, and consequently the governing partial differential equations with the boundary conditions transformed into a system of ordinary differential equations with the appropriate corresponding conditions. Two systems of ordinary differential equations have been solved numerically using a fourth-order Runge—Kutta algorithm with a shooting technique. The effects of various parameters governing the problem are investigated.

  5. MHD mixed convection analysis of non-Newtonian power law fluid in an open channel with round cavity

    Science.gov (United States)

    Bose, Pritom; Rakib, Tawfiqur; Das, Sourav; Rabbi, Khan Md.; Mojumder, Satyajit

    2017-06-01

    In this study, magneto-hydrodynamic (MHD) mixed convection flow through a channel with a round cavity at bottom wall using non-Newtonian power law fluid is analysed numerically. The cavity is kept at uniformly high temperature whereas rest of the bottom wall is insulated and top wall of the channel is maintained at a temperature lower than cavity temperature. Grid independency test and code validation are performed to justify the computational accuracy before solving the present problem. Galerkin weighted residual method is appointed to solve the continuity, momentum and energy equations. The problem is solved for wide range of pertinent parameters like Rayleigh number (Ra= 103 - 105), Hartmann number (Ha= 0 - 60) and power law index (n= 0.5 - 1.5) at constant Richardson number Ri= 1.0. The flow and thermal field have been thoroughly discussed through streamline and isothermal lines respectively. The heat transfer performance of the given study is illustrated by average Nusselt number plots. Result of this investigation indicates that heat transfer is highest for dilatant fluids at this configuration and they perform better (47% more heat transfer) in absence of magnetic field. The retardation of heat transfer is offset by shear thickening nature of non-Newtonian fluid.

  6. Investigation of heat transfer for cooling turbine disks with a non-Newtonian fluid flow using DRA

    Directory of Open Access Journals (Sweden)

    A.S. Dogonchi

    2015-09-01

    Full Text Available A non-Newtonian viscoelastic fluid flow passes through the porous wall of an axisymmetric channel on a turbine disc for cooling application. The present article solves the couple equations (momentum and heat transfer of a non-Newtonian fluid flow in an axisymmetric channel with a porous wall for turbine cooling applications by using the Duan–Rach Approach (DRA. The precious achievement of the present work is introducing a new and efficient approximate analytical technique that this method allows us to find a solution without using numerical methods to evaluate the undetermined coefficients. The approximate analytical investigation is carried out for different values of the embedding parameters namely: Reynolds number, Prandtl number, injection Reynolds number and power law index. The DRA results indicate that Nusselt number has direct relationship with Reynolds number, Prandtl number and power law index. Also the results were compared with numerical solution in order to verify the accuracy of the proposed method. It is seen that the current results in comparison with the numerical ones are in excellent agreement.

  7. MHD non-Newtonian fluid flow over a slendering stretching sheet in the presence of cross-diffusion effects

    Directory of Open Access Journals (Sweden)

    M. Jayachandra Babu

    2016-09-01

    Full Text Available In this study, we inquired the cross-diffusion effects on the magnetohydrodynamic Williamson fluid flow across a variable thickness stretching sheet by viewing velocity slip. With the aid of Runge-Kutta based shooting process, we resolved the transformed differential equations numerically. The effects of different dimensionless parameters on three usual profiles (velocity, temperature, concentration along with skin friction coefficient, heat transfer rate and mass transfer rate are examined with the support of plots and tables. Dual solutions are exhibited for two cases i.e., Newtonian fluid and non-Newtonian fluid. Results reveal that the Soret and Dufour numbers have drift to control the thermal and concentration boundary layers. We also found a good agreement of the present results by comparing with the published results.

  8. Droplet Dynamics of Newtonian and Inelastic Non-Newtonian Fluids in Confinement

    Directory of Open Access Journals (Sweden)

    Nikolaos Ioannou

    2017-02-01

    Full Text Available Microfluidic droplet technology has been developing rapidly. However, precise control of dynamical behaviour of droplets remains a major hurdle for new designs. This study is to understand droplet deformation and breakup under simple shear flow in confined environment as typically found in microfluidic applications. In addition to the Newtonian–Newtonian system, we consider also both a Newtonian droplet in a non-Newtonian matrix fluid and a non-Newtonian droplet in a Newtonian matrix. The lattice Boltzmann method is adopted to systematically investigate droplet deformation and breakup under a broad range of capillary numbers, viscosity ratios of the fluids, and confinement ratios considering shear-thinning and shear-thickening fluids. Confinement is found to enhance deformation, and the maximum deformation occurs at the viscosity ratio of unity. The droplet orients more towards the flow direction with increasing viscosity ratio or confinement ratio. In addition, it is noticed that the wall effect becomes more significant for confinement ratios larger than 0.4. Finally, for the whole range of Newtonian carrier fluids tested, the critical capillary number above which droplet breakup occurs is only slightly affected by the confinement ratio for a viscosity ratio of unity. Upon increasing the confinement ratio, the critical capillary number increases for the viscosity ratios less than unity, but decreases for the viscosity ratios more than unity.

  9. Acoustic emission associated with the bursting of a gas bubble at the free surface of a non-Newtonian fluid

    Science.gov (United States)

    Divoux, T.; Vidal, V.; Melo, F.; Géminard, J.-C.

    2008-05-01

    We report experimental measurements of the acoustic emission associated with the bursting of a gas bubble at the free surface of a non-Newtonian fluid. On account of the viscoelastic properties of the fluid, the bubble is generally elongated. The associated frequency and duration of the acoustic signal are discussed with regard to the shape of the bubble and successfully accounted for by a simple linear model. The acoustic energy exhibits a high sensitivity to the dynamics of the thin film bursting, which demonstrates that, in practice, it is barely possible to deduce from the acoustic measurements the total amount of energy released by the event. Our experimental findings provide clues for the understanding of the signals from either volcanoes or foams, where one observes respectively, the bursting of giant bubbles at the free surface of lava and bubble bursting avalanches.

  10. Peristaltic Motion of Non-Newtonian Fluid with Heat and Mass Transfer through a Porous Medium in Channel under Uniform Magnetic Field

    Directory of Open Access Journals (Sweden)

    Nabil T. M. Eldabe

    2014-01-01

    Full Text Available This paper is devoted to the study of the peristaltic motion of non-Newtonian fluid with heat and mass transfer through a porous medium in the channel under the effect of magnetic field. A modified Casson non-Newtonian constitutive model is employed for the transport fluid. A perturbation series’ method of solution of the stream function is discussed. The effects of various parameters of interest such as the magnetic parameter, Casson parameter, and permeability parameter on the velocity, pressure rise, temperature, and concentration are discussed and illustrated graphically through a set of figures.

  11. CFD study on rise and deformation characteristics of buoyancy-driven spheroid bubbles in stagnant Carreau model non-Newtonian fluids

    Science.gov (United States)

    Gollakota, Anjani R. K.; Kishore, Nanda

    2017-06-01

    The bubbles are almost ubiquitous in many chemical and processing industries; and many of the polymeric solutions obey non-Newtonian rheological characteristics. Therefore, in this work the rise and deformation characteristics of spheroid bubbles in Carreau model non-Newtonian fluids are numerically investigated using a level set method. To demonstrate the validity of the moving bubble interface, the present simulations are compared with existing numerical and experimental results available in the literature; and for these comparisons, the computational geometries are considered same as reported in corresponding literatures. The present bubble deformation characteristics are satisfactorily agreeing with their literature counterparts. After establishing the validity of the numerical solution procedure, the same method is applied to obtain the deformation characteristics of an air bubble in Carreau model non-Newtonian fluids. Further, the results in terms of the volume fraction images, streamlines, and viscosity profiles around the deforming bubbles are presented as function of the bubble rise time.

  12. Mixed convection boundary layer flows of a non-Newtonian Jeffrey’s fluid from a non-isothermal wedge

    Directory of Open Access Journals (Sweden)

    S. Abdul Gaffar

    2017-06-01

    Full Text Available This article presents the nonlinear, steady state mixed convection boundary layer flow, heat and mass transfer of an incompressible non-Newtonian Jeffrey’s fluid past a non-isothermal wedge. The transformed conservation equations are solved numerically subject to physically appropriate boundary conditions using a versatile, implicit finite-difference Keller box technique. The influence of a number of emerging non-dimensional parameters, namely Deborah number (De, ratio of relaxation to retardation times (λ, pressure gradient parameter (m, Buoyancy ratio parameter (N, mixed convection parameter (λ1, radiation parameter (F and heat generation/absorption parameter (Δ on velocity, temperature and concentration evolution in the boundary layer regime is examined in detail. Also, the effects of these parameters on surface heat transfer rate, mass transfer rate and local skin friction are investigated.

  13. The influence of pH on gas-liquid mass transfer in non-Newtonian fluids

    Directory of Open Access Journals (Sweden)

    Li Shaobai

    2017-01-01

    Full Text Available In this study, the effect of pH on the mass transfer of oxygen bubble swarms in non-Newtonian fluids was experimentally studied. The volumetric liquid side mass transfer coefficient (kLa, liquid side mass transfer coefficient (kL, and specific interfacial area (a were investigated. The pH was regulated by the addition of hydrochloric acid and sodium hydroxide (NaOH. It was found that the kLa increased with the gas flow rate increasing and decreased with the apparent viscosity of the liquid increasing. In the case of pH 7 was attributed to the decomposition of the Xanthan molecular structure by the hydroxyl of NaOH.

  14. Analysis of pressure falloff tests of non-Newtonian power-law fluids in naturally-fractured bounded reservoirs

    Directory of Open Access Journals (Sweden)

    Omotayo Omosebi

    2015-12-01

    This article presents an analytic technique for interpreting pressure falloff tests of non-Newtonian Power-law fluids in wells that are located near boundaries in dual-porosity reservoirs. First, dimensionless pressure solutions are obtained and Stehfest inversion algorithm is used to develop new type curves. Subsequently, long-time analytic solutions are presented and interpretation procedure is proposed using direct synthesis. Two examples, including real field data from a heavy oil reservoir in Colombian eastern plains basin, are used to validate and demonstrate application of this technique. Results agree with conventional type-curve matching procedure. The approach proposed in this study avoids the use of type curves, which is prone to human errors. It provides a better alternative for direct estimation of formation and flow properties from falloff data.

  15. A Conditionally Stable Scheme for a Transient Flow of a Non-Newtonian Fluid Saturating a Porous Medium

    KAUST Repository

    El-Amin, Mohamed

    2012-06-02

    The problem of thermal dispersion effects on unsteady free convection from an isothermal horizontal circular cylinder to a non-Newtonian fluid saturating a porous medium is examined numerically. The Darcy-Brinkman-Forchheimer model is employed to describe the flow field. The thermal diffusivity coefficient has been assumed to be the sum of the molecular diffusivity and the dynamic diffusivity due to mechanical dispersion. The simultaneous development of the momentum and thermal boundary layers are obtained by using finite difference method. The stability conditions are determined for each difference equation. Using an explicit finite difference scheme, solutions at each time-step have been found and then stepped forward in time until reaching steady state solution. Velocity and temperature profiles are shown graphically. It is found that as time approaches infinity, the values of friction factor and heat transfer coefficient approach the steady state values.

  16. A simplified model to evaluate the effect of fluid rheology on non-Newtonian flow in variable aperture fractures

    Science.gov (United States)

    Felisa, Giada; Ciriello, Valentina; Longo, Sandro; Di Federico, Vittorio

    2017-04-01

    Modeling of non-Newtonian flow in fractured media is essential in hydraulic fracturing operations, largely used for optimal exploitation of oil, gas and thermal reservoirs. Complex fluids interact with pre-existing rock fractures also during drilling operations, enhanced oil recovery, environmental remediation, and other natural phenomena such as magma and sand intrusions, and mud volcanoes. A first step in the modeling effort is a detailed understanding of flow in a single fracture, as the fracture aperture is typically spatially variable. A large bibliography exists on Newtonian flow in single, variable aperture fractures. Ultimately, stochastic modeling of aperture variability at the single fracture scale leads to determination of the flowrate under a given pressure gradient as a function of the parameters describing the variability of the aperture field and the fluid rheological behaviour. From the flowrate, a flow, or 'hydraulic', aperture can then be derived. The equivalent flow aperture for non-Newtonian fluids of power-law nature in single, variable aperture fractures has been obtained in the past both for deterministic and stochastic variations. Detailed numerical modeling of power-law fluid flow in a variable aperture fracture demonstrated that pronounced channelization effects are associated to a nonlinear fluid rheology. The availability of an equivalent flow aperture as a function of the parameters describing the fluid rheology and the aperture variability is enticing, as it allows taking their interaction into account when modeling flow in fracture networks at a larger scale. A relevant issue in non-Newtonian fracture flow is the rheological nature of the fluid. The constitutive model routinely used for hydro-fracturing modeling is the simple, two-parameter power-law. Yet this model does not characterize real fluids at low and high shear rates, as it implies, for shear-thinning fluids, an apparent viscosity which becomes unbounded for zero shear rate

  17. Two parameters Lie group analysis and numerical solution of unsteady free convective flow of non-Newtonian fluid

    Directory of Open Access Journals (Sweden)

    M.J. Uddin

    2016-09-01

    Full Text Available The two-dimensional unsteady laminar free convective heat and mass transfer fluid flow of a non-Newtonian fluid adjacent to a vertical plate has been analyzed numerically. The two parameters Lie group transformation method that transforms the three independent variables into a single variable is used to transform the continuity, the momentum, the energy and the concentration equations into a set of coupled similarity equations. The transformed equations have been solved by the Runge–Kutta–Fehlberg fourth-fifth order numerical method with shooting technique. Numerical calculations were carried out for the various parameters entering into the problem. The dimensionless velocity, temperature and concentration profiles were shown graphically and the skin friction, heat and mass transfer rates were given in tables. It is found that friction factor and heat transfer (mass transfer rate for methanol are higher (lower than those of hydrogen and water vapor. Friction factor decreases while heat and mass transfer rate increase as the Prandtl number increases. Friction (heat and mass transfer rate factor of Newtonian fluid is higher (lower than the dilatant fluid.

  18. Finite Element Model of a Two-Phase Non-Newtonian Thixotropic Fluid: Mount St. Helens Lava Dome

    Science.gov (United States)

    Vincent, P.; Zevada, P.

    2011-12-01

    Extrusion of highly viscous lavas that spread laterally and form lava domes in the craters of large volcanoes is associated with significant volcanic hazards. Gas overpressure driven fragmentation of the lava dome or collapse and slumping of marginal sections or the entire mass of the dome can trigger dangerous pyroclastic flows that threaten surrounding populations up to tens of kilometers away. The rate of lava dome growth in the mature state of the dome evolution is often oscillatory. Relatively quiescent episodes are terminated by renewed extrusion and emplacement of exogenous "lobes" or "spines" of lava on the surface of the dome. Emplacement of new lobes is preceded by pressurization of magma in the magmatic conduit that can trigger volcanic eruptions and is preceded by crater floor deformation (e.g. Swanson and Holcombe, 1990). This oscillatory behavior was previously attributed primarily to crystallization kinetics and gas exsolution generating cyclic overpressure build-ups. Analogue modeling of the lava domes has revealed that the oscillatory growth rate can be reproduced by extrusion of isothermal, pseudoplastic and thixotropic plaster of Paris (analogue material for the magma) on a sand layer (analogue material for the unconsolidated deposits of the crater floor). The patterns of dome growth of these models closely correspond to both the 1980-1985 and 2004-2005 growth episodes of Mt. St. Helens lava dome (Swanson and Holcombe, 1990; Major et al., 2005). They also suggest that the oscillatory growth dynamics of the lavas can be explained by the mechanical interaction of the non-Newtonian magma with the frictional and deformable substrate below the lava dome rather than complex crystallization kinetics (e.g. Melnik and Sparks, 1999). In addition, these results suggest that the renewed growth episode of Mt. St. Helens dome in 2006 could be associated with an even higher degree of magma pressurization in the conduit than occurred during the 1980 - 1986

  19. Spin coating of non-Newtonian fluids with a moving front

    Science.gov (United States)

    Charpin, J. P. F.; Lombe, M.; Myers, T. G.

    2007-07-01

    We investigate axisymmetric spin coating of power law and Ellis fluids. The flow is driven by centrifugal force, gravity and surface tension. For power law and Ellis models a single equation for the fluid film height is obtained. For a Newtonian fluid the flux only involves linear derivative terms which allows the flux to be easily split for a numerical scheme. For power law and Ellis models the derivatives appear as nonlinear terms. To overcome this we develop an alternative numerical scheme to solve for the film height. Neglecting surface tension and gravity the power law model shows a central spike which is reduced by the introduction of surface tension and gravity. In certain cases the shear thinning power law model predicts slower spreading than the Newtonian model. The Ellis fluid shows no central spike, even for zero surface tension and the film always spreads further than the Newtonian fluid.

  20. Entropy analysis of convective MHD flow of third grade non-Newtonian fluid over a stretching sheet

    Directory of Open Access Journals (Sweden)

    M.M. Rashidi

    2017-03-01

    Full Text Available The purpose of this article is to study and analyze the convective flow of a third grade non-Newtonian fluid due to a linearly stretching sheet subject to a magnetic field. The dimensionless entropy generation equation is obtained by solving the reduced momentum and energy equations. The momentum and energy equations are reduced to a system of ordinary differential equations by a similarity method. The optimal homotopy analysis method (OHAM is used to solve the resulting system of ordinary differential equations. The effects of the magnetic field, Biot number and Prandtl number on the velocity component and temperature are studied. The results show that the thermal boundary-layer thickness gets decreased with increasing the Prandtl number. In addition, Brownian motion plays an important role to improve thermal conductivity of the fluid. The main purpose of the paper is to study the effects of Reynolds number, dimensionless temperature difference, Brinkman number, Hartmann number and other physical parameters on the entropy generation. These results are analyzed and discussed.

  1. An analytical investigation on unsteady motion of vertically falling spherical particles in non-Newtonian fluid by Collocation Method

    Directory of Open Access Journals (Sweden)

    M. Rahimi-Gorji

    2015-06-01

    Full Text Available An analytical investigation is applied for unsteady motion of a rigid spherical particle in a quiescent shear-thinning power-law fluid. The results were compared with those obtained from Collocation Method (CM and the established Numerical Method (Fourth order Runge–Kutta scheme. It was shown that CM gave accurate results. Collocation Method (CM and Numerical Method are used to solve the present problem. We obtained that the CM which was used to solve such nonlinear differential equation with fractional power is simpler and more accurate than series method such as HPM which was used in some previous works by others but the new method named Akbari-Ganji’s Method (AGM is an accurate and simple method which is slower than CM for solving such problems. The terminal settling velocity—that is the velocity at which the net forces on a falling particle eliminate—for three different spherical particles (made of plastic, glass and steel and three flow behavior index n, in three sets of power-law non-Newtonian fluids was investigated, based on polynomial solution (CM. Analytical results obtained indicated that the time of reaching the terminal velocity in a falling procedure is significantly increased with growing of the particle size that validated with Numerical Method. Further, with approaching flow behavior to Newtonian behavior from shear-thinning properties of flow (n → 1, the transient time to achieving the terminal settling velocity is decreased.

  2. Numerical solution of chemically reactive non-Newtonian fluid flow: Dual stratification

    Science.gov (United States)

    Rehman, Khalil Ur; Malik, M. Y.; Khan, Abid Ali; Zehra, Iffat; Zahri, Mostafa; Tahir, M.

    2017-12-01

    We have found that only a few attempts are available in the literature relatively to the tangent hyperbolic fluid flow induced by stretching cylindrical surfaces. In particular, temperature and concentration stratification effects have not been investigated until now with respect to the tangent hyperbolic fluid model. Therefore, we have considered the tangent hyperbolic fluid flow induced by an acutely inclined cylindrical surface in the presence of both temperature and concentration stratification effects. To be more specific, the fluid flow is attained with the no slip condition, which implies that the bulk motion of the fluid particles is the same as the stretching velocity of a cylindrical surface. Additionally, the flow field situation is manifested with heat generation, mixed convection and chemical reaction effects. The flow partial differential equations give a complete description of the present problem. Therefore, to trace out the solution, a set of suitable transformations is introduced to convert these equations into ordinary differential equations. In addition, a self-coded computational algorithm is executed to inspect the numerical solution of these reduced equations. The effect logs of the involved parameters are provided graphically. Furthermore, the variations of the physical quantities are examined and given with the aid of tables. It is observed that the fluid temperature is a decreasing function of the thermal stratification parameter and a similar trend is noticed for the concentration via the solutal stratification parameter.

  3. Finite Element Modeling of Suspended Particle Migration in Non-Newtonian Fluids

    Energy Technology Data Exchange (ETDEWEB)

    Altobelli, S.; Baer, T.; Mondy, L.; Rao, R.; Stephens, T.

    1999-03-04

    Shear-induced migration of particles is studied during the slow flow of suspensions of spheres (particle volume fraction {phi} = 0.50) in an inelastic but shear-thinning, suspending fluid in flow between counterrotating concentric cylinders, The conditions are such that nonhydrodynamic effects are negligible. The movement of particles away from the high shear rate region is more pronounced than in a Newtonian suspending liquid. We test a continuum constitutive model for the evolution of particle concentration in a flowing suspension proposed by Phillips et al. (1992) by using shear-thinning, suspending fluids. The fluid constitutive equation is Carreau-like in its shear-thinning behavior but also varies with the local particle concentration. The model is compared with the experimental data gathered with nuclear magnetic resonance (NMR) imaging.

  4. Temperature and concentration stratification effects on non-Newtonian fluid flow past a cylindrical surface

    Science.gov (United States)

    Rehman, Khalil Ur; Khan, Abid Ali; Malik, M. Y.; Zehra, Iffat; Ali, Usman

    The theme of present work is to report the numerical solution of mixed convection tangent hyperbolic fluid flow towards stretching cylindrical surface immersed in a double stratified media. The fluid flow is attained through no slip condition. The flow regime characteristics are modelled in terms of partial differential equations. A similarity transformation is used to transform partial differential equations into coupled non-linear ordinary differential equations. A computational algorithm is executed to predict numerical results. The effects of flow controlling parameters namely, mixed convection parameter, thermal stratification and solutal stratification parameters on velocity, temperature and concentration are examined and offered by means of graphical outcomes. It is noticed that in the presence of mixed convection effect both the fluid temperature and concentration are decreasing function of thermal stratification and solutal stratification parameters respectively. The obtained values are certified by developing comparison with existing values and an excellent agreement is observed which confirms the execution of computational algorithm.

  5. Miscible displacement of a non-Newtonian fluid in a capillary tube

    Science.gov (United States)

    Soori, Tejaswi; Ward, Thomas

    2017-11-01

    This talk focuses on experiments conducted to further our understanding of how to displace an aqueous polymer within a capillary tube (diameter range of shear rates and fit the data obtained to the Carreau fluid parameters. Separately we measure the average bulk diffusion coefficient of the aqueous polymer and water in water and aqueous polymer phases respectively. Previous studies on the immiscible displacement of polymers have shown residual film thickness to be dependent on the tube diameter. We will investigate if this is true when the two fluids are miscible in nature. American Chemical Society Petroleum Research Fund.

  6. Group Theoretical Analysis of non-Newtonian Fluid Flow, Heat and Mass Transfer over a Stretching Surface in the Presence of Thermal Radiation

    OpenAIRE

    Muhammad Tufail; Adnan Saeed Butt; Asif Ali

    2016-01-01

    The present article examines the flow, heat and mass transfer of a non-Newtonian fluid known as Casson fluid over a stretching surface in the presence of thermal radiations effects. Lie Group analysis is used to reduce the governing partial differential equations into non-linear ordinary differential equations. These equations are then solved by an analytical technique known as Homotopy Analysis Method (HAM). A comprehensive study of the problem is being made for various parameters i...

  7. Numerical study of flow and heat transfer behaviour of power-law non-Newtonian fluids in rectangular channels

    Energy Technology Data Exchange (ETDEWEB)

    Syrjaelae, S. [VTT Chemical Technology, Espoo (Finland). Polymer and Fibre Technology

    1996-12-31

    This thesis presents numerical studies on the flow and heat transfer behaviour of powerlaw non-Newtonian fluids in rectangular ducts, and in extruder channels of rectangular cross-section. For both applications hydrodynamically and thermally fully developed flows are studied first, and subsequently more realistic situations involving the effects of thermal development, viscous dissipation and temperature-dependent viscosity are considered. All numerical computations are based on the finite element method, and a marching procedure in the streamwise direction is utilized in the thermally developing situations. A salient feature of the present numerical approach is that it employs higher-order elements with quartic polynomial interpolation functions for dependent variables. In all cases studied the numerical procedure adopted yields consistent performance with respect to mesh refinement, and comparisons with available analytical solutions show very good agreement. The influence of different factors, such as shear-thinning, viscous dissipation and temperature-dependent viscosity, is investigated. In the extrusion flow computations the importance of considering the recirculating flow and associated transverse convection is clearly established. (orig.) (30 refs.)

  8. ISPH modelling of landslide generated waves for rigid and deformable slides in Newtonian and non-Newtonian reservoir fluids

    Science.gov (United States)

    Yeylaghi, Shahab; Moa, Belaid; Buckham, Bradley; Oshkai, Peter; Vasquez, Jose; Crawford, Curran

    2017-09-01

    A comprehensive modeling of landslide generated waves using an in-house parallel Incompressible Smoothed Particle Hydrodynamics (ISPH) code is presented in this paper. The study of landslide generated waves is challenging due to the involvement of several complex physical phenomena, such as slide-water interaction, turbulence and complex free surface profiles. A numerical tool that can efficiently calculate both slide motion, impact with the surface and the resulting wave is needed for ongoing study of these phenomena. Mesh-less numerical methods, such as Smoothed Particle Hydrodynamics (SPH), handle the slide motion and the complex free surface profile with ease. In this paper, an in-house parallel explicit ISPH code is used to simulate both subaerial and submarine landslides in 2D and in more realistic 3D applications. Both rigid and deformable slides are used to generate the impulsive waves. A landslide case is simulated where a slide falls into a non-Newtonian reservoir fluid (water-bentonite mixture). A new technique is also proposed to calculate the motion of a rigid slide on an inclined ramp implicitly, without using the prescribed motion in SPH. For all the test cases, results generated from the proposed ISPH method are compared with available experimental data and show good agreement.

  9. Bubble production using a Non-Newtonian fluid in microfluidic flow focusing device

    Science.gov (United States)

    Wang, Yi-Lin; Ward, Thomas; Grant, Christine

    2012-02-01

    We experimentally study the production of micrometer-sized bubbles using microfluidic technology and a flow-focusing geometry. Bubbles are produced by using a mixture containing aqueous polyacrylamide of concentrations ranging from 0.01-0.10% by weight and several solution also containing a sodium-lauryl-sulfate (SLS) surfactant at concentrations ranging 0.01-0.1% by weight. The fluids are driven by controlling the static pressure above a hydrostatic head of the liquid while the disperse phase fluid static pressure is held constant (air). In the absence of surfactant the bubble production is discontinuous. The addition of surfactant stabilizes the bubble production. In each type of experiment, the bubble length l, velocity U and production frequency φ are measured and compared as a function of the inlet pressure ratio. The bubbles exhibit a contraction in their downstream length as a function of the polymer concentration which is investigated.

  10. Study of blades inclination influence of gate impeller with a non-Newtonian fluid of Bingham

    Directory of Open Access Journals (Sweden)

    Rahmani Lakhdar

    2016-01-01

    Full Text Available A large number of chemical operations, biochemical or petrochemical industry is very depending on the rheological fluids nature. In this work, we study the case of highly viscous of viscoplastic fluids in a classical system of agitation: a cylindrical tank with plate bottom without obstacles agitated by gate impeller agitator. We are interested to the laminar, incompressible and isothermal flows. We devote to a numerical approach carried out using an industrial code CFD Fluent 6.3.26 based on the method of finites volumes discretization of Navier - Stokes equations formulated in variables (U.V.P. The threshold of flow related to the viscoplastic behavior is modeled by a theoretical law of Bingham. The results obtained are used to compare between the five configurations suggested of power consumption. We study the influence of inertia by the variation of Reynolds number.

  11. Unsteady nonlinear convective Darcy flow of a non-Newtonian fluid over a rotating vertical cone

    Science.gov (United States)

    Madhu Mohana Raju, A. B.; Raju, G. S. S.; Mallikarjuna, B.

    2017-11-01

    A numerical model on unsteady nonlinear convective flow of a Casson fluid past a vertical rotating cone in a porous medium has been developed. The conservations laws are transformed into non-linear problem using convenient similarity transformations. The resultant equations are solved numerically using Runge-Kutta based shooting technique for the velocity, temperature and concentration distributions, highlighted by physical parameters, Casson fluid parameter, unsteady parameter, non-linear temperature and concentration effects and discussed in detailed with graphical aid. Increasing non-linear temperature and concentration parameters accelerates the tangential velocity while normal and azimuthal velocities are decreased. Temperature and concentration distributions are also decreased as well. This study finds applications in industries like pharmaceutical industries, aerospace technology and polymer production etc.

  12. Numerical Simulations of Planar Extrusion and Fused Filament Fabrication of Non-Newtonian Fluids

    DEFF Research Database (Denmark)

    Comminal, Raphaël Benjamin; Hattel, Jesper Henri; Spangenberg, Jon

    2017-01-01

    In this study, the planar extrudateswelling of power-law and Oldroyd-B fluidsare investigated. Our numerical predictionsare in good agreement with the other resultsavailable in the literature. In addition, asimplified two-dimensional model of fusedfilament fabrication that provides details ofthe ...... flow in the gap between the printinghead and the substrate is presented. Thenumerical simulations use thestreamfunction/log-conformation and thevolume-of-fluid methods....

  13. Numerical Simulations of Planar Extrusion and Fused Filament Fabrication of Non-Newtonian Fluids

    OpenAIRE

    Comminal, Raphaël Benjamin; Hattel, Jesper Henri; Spangenberg, Jon

    2017-01-01

    In this study, the planar extrudateswelling of power-law and Oldroyd-B fluidsare investigated. Our numerical predictionsare in good agreement with the other resultsavailable in the literature. In addition, asimplified two-dimensional model of fusedfilament fabrication that provides details ofthe flow in the gap between the printinghead and the substrate is presented. Thenumerical simulations use thestreamfunction/log-conformation and thevolume-of-fluid methods.

  14. PFG NMR and Bayesian analysis to characterise non-Newtonian fluids

    Science.gov (United States)

    Blythe, Thomas W.; Sederman, Andrew J.; Stitt, E. Hugh; York, Andrew P. E.; Gladden, Lynn F.

    2017-01-01

    Many industrial flow processes are sensitive to changes in the rheological behaviour of process fluids, and there therefore exists a need for methods that provide online, or inline, rheological characterisation necessary for process control and optimisation over timescales of minutes or less. Nuclear magnetic resonance (NMR) offers a non-invasive technique for this application, without limitation on optical opacity. We present a Bayesian analysis approach using pulsed field gradient (PFG) NMR to enable estimation of the rheological parameters of Herschel-Bulkley fluids in a pipe flow geometry, characterised by a flow behaviour index n , yield stress τ0 , and consistency factor k , by analysis of the signal in q -space. This approach eliminates the need for velocity image acquisition and expensive gradient hardware. We investigate the robustness of the proposed Bayesian NMR approach to noisy data and reduced sampling using simulated NMR data and show that even with a signal-to-noise ratio (SNR) of 100, only 16 points are required to be sampled to provide rheological parameters accurate to within 2% of the ground truth. Experimental validation is provided through an experimental case study on Carbopol 940 solutions (model Herschel-Bulkley fluids) using PFG NMR at a 1H resonance frequency of 85.2 MHz; for SNR > 1000, only 8 points are required to be sampled. This corresponds to a total acquisition time of Carbopol 940 we observe a change in rheological characteristics, probably due to shear history-dependent behaviour and the different geometries used. This behaviour highlights the need for online, or inline, rheological characterisation in industrial process applications.

  15. Accelerated Sedimentation Velocity Assessment for Nanowires Stabilized in a Non-Newtonian Fluid.

    Science.gov (United States)

    Chang, Chia-Wei; Liao, Ying-Chih

    2016-12-27

    In this work, the long-term stability of titanium oxide nanowire suspensions was accessed by an accelerated sedimentation with centrifugal forces. Titanium oxide (TiO2) nanoparticle (NP) and nanowire (NW) dispersions were prepared, and their sizes were carefully characterized. To replace the time-consuming visual observation, sedimentation velocities of the TiO2 NP and NW suspensions were measured using an analytical centrifuge. For an aqueous TiO2 NP suspension, the measured sedimentation velocities were linearly dependent on the relative centrifugal forces (RCF), as predicted by the classical Stokes law. A similar linear relationship was also found in the case of TiO2 NW aqueous suspensions. However, NWs preferred to settle parallel to the centrifugal direction under high RCF because of the lower flow resistance along the long axis. Thus, the extrapolated sedimentation velocity under regular gravity can be overestimated. Finally, a stable TiO2 NW suspension was formulated with a shear thinning fluid and showed great stability for weeks using visual observation. A theoretical analysis was deduced with rheological shear-thinning parameters to describe the nonlinear power-law dependence between the measured sedimentation velocities and RCF. The good agreement between the theoretical predictions and measurements suggested that the sedimentation velocity can be properly extrapolated to regular gravity. In summary, this accelerated assessment on a theoretical basis can yield quantitative information about long-term stability within a short time (a few hours) and can be further extended to other suspension systems.

  16. Dual Solutions of Non-Newtonian Casson Fluid Flow and Heat Transfer over an Exponentially Permeable Shrinking Sheet with Viscous Dissipation

    Directory of Open Access Journals (Sweden)

    Aurang Zaib

    2016-01-01

    Full Text Available The two-dimensional boundary layer flow of a non-Newtonian Casson fluid and heat transfer due to an exponentially permeable shrinking sheet with viscous dissipation is investigated. Using similarity transformations, the governing momentum and energy equations are transformed to self-similar nonlinear ODEs and then those are solved numerically by very efficient shooting method. The analysis explores many important aspects of flow and heat transfer of the aforesaid non-Newtonian fluid flow dynamics. For the steady flow of non-Newtonian Casson fluid, more amount of wall mass suction through the porous sheet is required in comparison to that of Newtonian fluid flow. Dual similarity solutions are obtained for velocity and temperature. The viscous dissipation effect has major impact on the heat transfer characteristic. In fact, heat absorption at the surface occurs and it increases due to viscous dissipation. For higher Prandtl number, the temperature inside the boundary layer reduces, but with larger Eckert number (viscous dissipation it is enhanced.

  17. A Finite Difference Scheme for Double-Diffusive Unsteady Free Convection from a Curved Surface to a Saturated Porous Medium with a Non-Newtonian Fluid

    KAUST Repository

    El-Amin, Mohamed

    2011-05-14

    In this paper, a finite difference scheme is developed to solve the unsteady problem of combined heat and mass transfer from an isothermal curved surface to a porous medium saturated by a non-Newtonian fluid. The curved surface is kept at constant temperature and the power-law model is used to model the non-Newtonian fluid. The explicit finite difference method is used to solve simultaneously the equations of momentum, energy and concentration. The consistency of the explicit scheme is examined and the stability conditions are determined for each equation. Boundary layer and Boussinesq approximations have been incorporated. Numerical calculations are carried out for the various parameters entering into the problem. Velocity, temperature and concentration profiles are shown graphically. It is found that as time approaches infinity, the values of wall shear, heat transfer coefficient and concentration gradient at the wall, which are entered in tables, approach the steady state values.

  18. The effect of the inner cylinder rotation on the fluid dynamics of non-Newtonian fluids in concentric and eccentric annuli

    Directory of Open Access Journals (Sweden)

    J. L. Vieira Neto

    2014-12-01

    Full Text Available Helical flow in an annular space occurs during oil drilling operations. The correct prediction of flow of drilling fluid in an annular space between the wellbore wall and the drill pipe is essential to determine the variation in fluid pressure within the wellbore. This paper presents experimental and CFD simulation results of the pressure drop in the flow of non-Newtonian fluids through a concentric annular section and another section with fixed eccentricity (E = 0.75, using aqueous solutions of two distinct polymers (Xanthan Gum and Carboxymethylcellulose. The hydrodynamic behavior in this annular system was analyzed based on the experimental and CFD results, providing important information such as the formation of zones with preferential flows and stagnation regions.

  19. MHD mixed convection flow of power law non-Newtonian fluids over an isothermal vertical wavy plate

    Energy Technology Data Exchange (ETDEWEB)

    Mirzaei Nejad, Mehrzad [Faculty of Mechanical Engineering, University of Guilan, P.O. Box 3756, Rasht (Iran, Islamic Republic of); Javaherdeh, K., E-mail: Javaherdeh@guilan.ac.ir [Faculty of Mechanical Engineering, University of Guilan, P.O. Box 3756, Rasht (Iran, Islamic Republic of); Moslemi, M. [Ayandegan Institute of Higher Education, Tonekabon (Iran, Islamic Republic of)

    2015-09-01

    Mixed convection flow of electrically conducting power law fluids along a vertical wavy surface in the presence of a transverse magnetic field is studied numerically. Prandtl coordinate transformation together with the spline alternating direction implicit method is employed to solve the boundary layer equations. The influences of both flow structure and dominant convection mode on the overall parameters of flow and heat transfer are well discussed. Also, the role of magnetic field in controlling the boundary layers is investigated. The variation of Nusselt number and skin friction coefficient are studied as functions of wavy geometry, magnetic field, buoyancy force and material parameters. Results reveal the interrelation of the contributing factors. - Highlights: • Magnetic field effects undermine the heat transfer for n<1 more markedly. • Magnetic field decreases the values of Nu number and C{sub f} downstream of the plat. • The magnetic field opposes the second harmonic in the curve of Nu number and C{sub f}. • The wavy geometry influences the pseudo-plastic fluids (n<1) more profoundly.

  20. Two-phase coating flows of a non-Newtonian fluid with linearly varying temperature at the boundaries-an exact solution

    Science.gov (United States)

    Khan, Zeeshan; Khan, Muhammad Altaf; Khan, Ilyas; Islam, Saeed; Siddiqui, Nasir

    2017-07-01

    We have explored double-layer-coated fiber optics using two-phase immiscible non-Newtonian fluid as a polymeric material. We have considered two layers, the first layer is assumed of soft material and the second consists of hard material. Resin flows are driven by fast-moving glass fiber and the pressurization at the coating die inlet. Two cases of temperature linearly varying at the boundaries have been discussed. The assumption of fully developed flow of non-Newtonian fluid permits an exact solution to the Navier-Stokes equations. The thickness of the secondary coating resin and the shear stress on the glass fiber, which are two basic output variables of practical concern, have been examined by several input parameters: two geometric parameters, i.e., radius of the glass fiber Rw and radius of the coating die Rd; two operational parameters, i.e., the velocity ratio U and power indices n1,2; the non-Newtonian parameter S1,2; and the nondimensional parameters H and ϕ. The comparison of the present work with published result predicts the close agreement.

  1. Mathematical simulation of a twisted pseudoplastic fluid flow in a cylindrical channel

    Science.gov (United States)

    Matvienko, O. V.; Bazuev, V. P.; Yuzhanova, N. K.

    2011-05-01

    The results of investigations of a pseudoplastic fluid twisted flow in a cylindrical channel are presented. With increase in the shear stresses caused by the flow twisting, the effective viscosity decreases. As a result, in the axial part of the channel a zone of lower pressure is formed which, at smaller flow twisting, leads to the formation of the zone of backward flows.

  2. Investigation of the fluid flow dynamic parameters for Newtonian and non-Newtonian materials: an approach to understanding the fluid flow-like structures within fault zones

    Science.gov (United States)

    Tanaka, H.; Shiomi, Y.; Ma, K.-F.

    2017-11-01

    To understand the fault zone fluid flow-like structure, namely the ductile deformation structure, often observed in the geological field (e.g., Ramsay and Huber The techniques of modern structure geology, vol. 1: strain analysis, Academia Press, London, 1983; Hobbs and Ord Structure geology: the mechanics of deforming metamorphic rocks, Vol. I: principles, Elsevier, Amsterdam, 2015), we applied a theoretical approach to estimate the rate of deformation, the shear stress and the time to form a streak-line pattern in the boundary layer of viscous fluids. We model the dynamics of streak lines in laminar boundary layers for Newtonian and pseudoplastic fluids and compare the results to those obtained via laboratory experiments. The structure of deformed streak lines obtained using our model is consistent with experimental observations, indicating that our model is appropriate for understanding the shear rate, flow time and shear stress based on the profile of deformed streak lines in the boundary layer in Newtonian and pseudoplastic viscous materials. This study improves our understanding of the transportation processes in fluids and of the transformation processes in fluid-like materials. Further application of this model could facilitate understanding the shear stress and time history of the fluid flow-like structure of fault zones observed in the field.[Figure not available: see fulltext.

  3. Simple Flows of Pseudoplastic Fluids Based on Dehaven Model

    Directory of Open Access Journals (Sweden)

    Walicka A.

    2017-12-01

    Full Text Available In this paper three simple flows of visco-plastic fluids of DeHaven type or fluids similar to them are considered. These flows are: Poiseuille flow in a plane channel, Poiseuille flow through a circular pipe and rotating Couette flow between two coaxial cylinders. After presentation DeHaven model it was presented some models of fluids similar to this model. Next it was given the solutions of equations of motion for three flows mentioned above.

  4. Simple Flows of Pseudoplastic Fluids Based on Dehaven Model

    Science.gov (United States)

    Walicka, A.

    2017-12-01

    In this paper three simple flows of visco-plastic fluids of DeHaven type or fluids similar to them are considered. These flows are: Poiseuille flow in a plane channel, Poiseuille flow through a circular pipe and rotating Couette flow between two coaxial cylinders. After presentation DeHaven model it was presented some models of fluids similar to this model. Next it was given the solutions of equations of motion for three flows mentioned above.

  5. Investigation of Non-Newtonian Flow in Anaerobic Digesters

    Science.gov (United States)

    Langner, Jeremy M.

    This thesis examines how the non-Newtonian characteristics of liquid hog manure affect the flow conditions within a steady-flow anaerobic digester. There are three main parts to this thesis. In the first part of this thesis, the physical properties of liquid hog manure and their variation with temperature and solids concentration are experimentally determined. Naturally-settled manure sampled from an outdoor storage lagoon is studied, and density, viscosity, and particle size distribution are measured. Hog manure with total solids concentrations of less than 3.6% exhibits Newtonian behaviour; manure between 3.6% and 6.5% total solids is pseudoplastic, and fits the power law; manure with more than 6.5% total solids exhibits non-Newtonian and time-dependent characteristics. The second part of this thesis investigates the flow of Newtonian and non-Newtonian fluids---represented by tap water and xanthan gum solution, respectively---within four lab-scale reactor geometries, using residence time distribution (RTD) experiments. The effect of reactor geometry, flow rate, and fluid viscosity are evaluated. In the third part of this thesis, flow conditions within lab-scale and pilot-scale anaerobic digester reactors are simulated using three-dimensional modeling techniques. The RTDs of lab-scale reactors as predicted by the 3D numerical models compare well to the experimental results. The 3D models are also validated using data from particle image velocimetry (PIV) experiments. Finally, the viscous properties of liquid hog manure at 3% and 8% total solids are incorporated into the models, and the results are evaluated.

  6. Numerical modelling of cake formation and fluid loss from non-Newtonian muds during drilling using eccentric/concentric drill strings with/without rotation

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, K.A.; Wakeman, R.J.; Chiu, T.W.; Meuric, O.F.J.

    2000-07-01

    This paper describes a numerical procedure for modelling mud cake growth and fluid invasion during drilling. Two three-dimensional finite element programs have been developed, one to model the non-Newtonian flow of the drilling mud in the annulus between the drill string and the borehole wall, and the other to model the non-Newtonian multiphase flow of the fluid base of the mud into the surrounding porous formation. These are integrated into a time-stepping routine and a crossflow microfiltration model is employed to predict the increase in cake thickness at nodes on the borehole wall at each time step. The procedure is applied to the model of a borehole with an eccentric drill string giving the thickness of the cake, the velocity of the permeating fluid and the saturation of the fluid In the surrounding formation at different times. The effects of changing the eccentricity of the drill string and the power law exponent of the mud are also investigated. (author)

  7. Enhanced computational performance of the lattice Boltzmann model for simulating micron- and submicron-size particle flows and non-Newtonian fluid flows

    Science.gov (United States)

    Başağaoğlu, Hakan; Harwell, John R.; Nguyen, Hoa; Succi, Sauro

    2017-04-01

    Significant improvements in the computational performance of the lattice-Boltzmann (LB) model, coded in FORTRAN90, were achieved through application of enhancement techniques. Applied techniques include optimization of array memory layouts, data structure simplification, random number generation outside the simulation thread(s), code parallelization via OpenMP, and intra- and inter-timestep task pipelining. Effectiveness of these optimization techniques was measured on three benchmark problems: (i) transient flow of multiple particles in a Newtonian fluid in a heterogeneous fractured porous domain, (ii) thermal fluctuation of the fluid at the sub-micron scale and the resultant Brownian motion of a particle, and (iii) non-Newtonian fluid flow in a smooth-walled channel. Application of the aforementioned optimization techniques resulted in an average 21 × performance improvement, which could significantly enhance practical uses of the LB models in diverse applications, focusing on the fate and transport of nano-size or micron-size particles in non-Newtonian fluids.

  8. Experimental study of pseudoplastic fluid flows in a square duct of strong curvature

    Science.gov (United States)

    Ma, Kun; Yuan, Shiwei; Chang, Huaijian; Lai, Huanxin

    2014-08-01

    In this paper, laminar and turbulent flows of pseudoplastic fluids (0.1% and 0.2% by weight aqueous solutions of carboxymethylcellulose) in a square duct of strong curvature were measured using an ultrasonic Doppler velocimetry and microphones. Streamwise velocity in cross-sections of the duct and the fluctuating pressure on walls were measured for different flow rates. The velocity contours and their development along the duct were presented and compared with benchmark experiments by Taylor, Whitelaw and Yianneskis (1982) which were for the laminar and turbulent flows of water. The spectra of fluctuating wall pressures were also presented and analyzed. The objective of this paper was to provide a basis for understanding the pseudoplastic fluid flows in curved ducts. The results were also intended for use in the further development of numerical methods and turbulence models for shear-thinning fluids.

  9. On a criterion of incipient motion and entrainment into suspension of a particle from cuttings bed in shear flow of non-Newtonian fluid

    Science.gov (United States)

    Ignatenko, Yaroslav; Bocharov, Oleg; May, Roland

    2017-10-01

    Solids transport is a major issue in high angle wells. Bed-load forms by sediment while transport and accompanied by intermittent contact with stream-bed by rolling, sliding and bouncing. The study presents the results of a numerical simulation of a laminar steady-state flow around a particle at rest and in free motion in a shear flow of Herschel–Bulkley fluid. The simulation was performed using the OpenFOAM open-source CFD package. A criterion for particle incipient motion and entrainment into suspension from cuttings bed (Shields criteria) based on forces and torques balance is discussed. Deflection of the fluid parameters from the ones of Newtonian fluid leads to decreasing of the drag and lift forces and the hydrodynamic moment. Thus, the critical shear stress (Shields parameter) for the considered non-Newtonian fluid must be greater than the one for a Newtonian fluid.

  10. Deforming-Spatial-Domain/Stabilized Space-Time (DSD/SST) method in computation of non-Newtonian fluid flow and heat transfer with moving boundaries

    Science.gov (United States)

    Tian, Fang-Bao; Bharti, Ram P.; Xu, Yuan-Qing

    2014-02-01

    This work presents an extension of the Deforming-Spatial-Domain/Stabilized Space-Time (DSD/SST) method to non-Newtonian fluid flow and heat transfer with moving boundaries. In this method, the variational formulation is written over the space-time domain. Three sets of stabilization parameters are used for the continuity, momentum and thermal energy equations. The more efficient solution for highly non-linear problems is achieved by using the Newton-Raphson iterative method for non-linear terms and the generalized minimal residual method for algebraic equations. This work makes the computations feasible with third-order accuracy in time, which is higher then most versions of the FEM. To validate this method, it is used to solve the well-known benchmark problems such as channel-confined flow, lid-driven cavity, flow around a cylinder, and flow in channel with wavy wall, where the non-Newtonian fluid rheological behaviour is incorporated. In particular, the results in terms of the Nusselt number, wall shear stress (WSS), vorticity fields and streamlines are discussed. It shows that the flow and heat transfer characteristics are quite different if the moving boundaries are taken into account. In summary, this work provides an effective extension of the DSD/SST method to hydrodynamics and heat transfer problems involving complex fluids and moving boundaries.

  11. Numerical investigation of non-Newtonian nanofluid flow in a converging microchannel

    Energy Technology Data Exchange (ETDEWEB)

    Mohsenian, S.; Ramiar, A.; Ranjbar, A. A. [Faculty of Mechanical Engineering, Babol Noshirvani University of Technology, Babol (Iran, Islamic Republic of)

    2017-01-15

    In the present study the flow of non-Newtonian nanofluid through a converging microchannel is investigated numerically. TiO{sub 2} nanoparticles with 10 nm diameter are dispersed in an aqueous solution of 0.5 %.wt Carboxymethyl cellulose (CMC) to produce the nanofluid. Both nanofluid and the base fluid show pseudoplastic behavior. The equations have been solved with finite volume approach using collocated grid. It has been found that by increasing the volume fraction and Reynolds number and the convergence angle, the Nusselt number increases. Also, it has been observed that by increasing convergence angle and decreasing aspect ratio of the channel, the velocity of the channel increases.

  12. The role of the rheological properties of non-newtonian fluids in controlling dispersive mixing in a batch electrophoretic cell with Joule heating

    Directory of Open Access Journals (Sweden)

    M.A. Bosse

    2001-03-01

    Full Text Available The problem of the effect of Joule heating generation on the hydrodynamic profile and the solute transport found in electrophoretic devices is addressed in this article. The research is focused on the following two problems: The first one is centered around the effect of Joule heating on the hydrodynamic velocity profile and it is referred to as "the carrier fluid problem." The other one is related to the effect of Joule heating on the solute transport inside electrophoretic cells and it is referred to as "the solute problem". The hydrodynamic aspects were studied first to yield the velocity profiles required for analysis of the solute transport problem. The velocity profile obtained in this study is analytical and the results are valid for non-Newtonian fluids carriers. To this end, the power-law model was used to study the effect of the rheology of the material in conjunction with the effect of Joule heating generation inside batch electrophoretic devices. This aspect of the research was then effectively used to study the effect of Joule heating generation on the motion of solutes (such as macromolecules under the influence of non-Newtonian carriers. This aspect of the study was performed using an area-averaging approach that yielded analytical results for the effective diffusivity of the device.

  13. The Effect of Heat Transfer and Polymer Concentration on Non-Newtonian Fluid from Pore-Scale Simulation of Rock X-ray Micro-CT

    Directory of Open Access Journals (Sweden)

    Moussa Tembely

    2017-10-01

    Full Text Available Most of the pore-scale imaging and simulations of non-Newtonian fluid are based on the simplifying geometry of network modeling and overlook the fluid rheology and heat transfer. In the present paper, we developed a non-isothermal and non-Newtonian numerical model of the flow properties at pore-scale by simulation of the 3D micro-CT images using a Finite Volume Method (FVM. The numerical model is based on the resolution of the momentum and energy conservation equations. Owing to an adaptive mesh generation technique and appropriate boundary conditions, rock permeability and mobility are accurately computed. A temperature and concentration-dependent power-law viscosity model in line with the experimental measurement of the fluid rheology is adopted. The model is first applied at isothermal condition to 2 benchmark samples, namely Fontainebleau sandstone and Grosmont carbonate, and is found to be in good agreement with the Lattice Boltzmann method (LBM. Finally, at non-isothermal conditions, an effective mobility is introduced that enables to perform a numerical sensitivity study to fluid rheology, heat transfer, and operating conditions. While the mobility seems to evolve linearly with polymer concentration in agreement with a derived theoretical model, the effect of the temperature seems negligible by comparison. However, a sharp contrast is found between carbonate and sandstone under the effect of a constant temperature gradient. Besides concerning the flow index and consistency factor, a master curve is derived when normalizing the mobility for both the carbonate and the sandstone.

  14. Flow characteristics of Newtonian and non-Newtonian fluids in a vessel stirred by a 60° pitched blade impeller

    Directory of Open Access Journals (Sweden)

    Jamshid M. Nouri

    2008-03-01

    Full Text Available Mean and rms velocity characteristics of two Newtonian flows at Reynolds numbers of 12,800 (glycerin solution and 48,000 (water and of a non-Newtonian flow (0.2% CMC solution, at a power number similar to the Newtonian glycerin flow in a mixing vessel stirred by a 60° pitched blade impeller have been measured by laser Doppler velocimetry (LDV. The velocity measurements, resolved over 360° and 1.08° of impeller rotation, showed that the mean flow of the two power number matched glycerin and CMC flows were similar to within 3% of the impeller tip velocity and the turbulence intensities generally lower in the CMC flow by up to 5% of the tip velocity. The calculated mean flow quantities showed similar discharge coefficient and pumping efficiency in all three flows and similar strain rate between the two power number matched glycerin and CMC flows; the strain rate of the higher Reynolds number Newtonian flow was found to be slightly higher. The energy balance around the impeller indicated that the CMC flow dissipated up to 9% more of the total input power and converted 7% less into the turbulence compared to the glycerin flow with the same power input which could lead to less effective mixing processes where the micro-mixing is important.

  15. Computational study of Jeffrey’s non-Newtonian fluid past a semi-infinite vertical plate with thermal radiation and heat generation/absorption

    Directory of Open Access Journals (Sweden)

    S. Abdul Gaffar

    2017-06-01

    Full Text Available The nonlinear, steady state boundary layer flow, heat and mass transfer of an incompressible non-Newtonian Jeffrey’s fluid past a semi-infinite vertical plate is examined in this article. The transformed conservation equations are solved numerically subject to physically appropriate boundary conditions using a versatile, implicit finite-difference Keller box technique. The influence of a number of emerging non-dimensional parameters, namely Deborah number (De, ratio of relaxation to retardation times (λ, Buoyancy ratio parameter (N, suction/injection parameter (fw, Radiation parameter (F, Prandtl number (Pr, Schmidt number (Sc, heat generation/absorption parameter (Δ and dimensionless tangential coordinate (ξ on velocity, temperature and concentration evolution in the boundary layer regime is examined in detail. Also, the effects of these parameters on surface heat transfer rate, mass transfer rate and local skin friction are investigated. This model finds applications in metallurgical materials processing, chemical engineering flow control, etc.

  16. Forced convection heat transfer of power law non-Newtonian fluids between two semi-infinite plates with variable thermal conductivity

    Science.gov (United States)

    Li, Botong; Zhang, Wei; Zhu, Liangliang

    2016-09-01

    This paper presents an investigation of forced convection heat transfer in power-law non-Newtonian fluids between two semi-infinite plates with variable thermal conductivity. Three cases of different thermal conductivity models are considered: (i) thermal conductivity is a constant, (ii) thermal conductivity is a linear function of temperature, (iii) thermal conductivity is a power-law function of temperature gradient (Zheng's model). Governing equations are solved using the finite element method with the ‘ghost’ time introduced to the control equations, which does not affect the results because the velocity and temperature will remain unchanged when the steady state is reached. Results for the solutions of different variable models are presented as well as the analysis of the associated heat transfer characteristics. It is shown that the heat transfer behaviours are strongly dependent on the power-law index (n) in all models. For example, when n 1.

  17. Comparison between the flow of two non-Newtonian fluids over an upper horizontal surface of paraboloid of revolution: Boundary layer analysis

    Directory of Open Access Journals (Sweden)

    O.A. Abegunrin

    2016-09-01

    Full Text Available Boundary layer flow of two non-Newtonian fluids past an upper horizontal surface of a paraboloid of revolution (uhspr in the presence of nonlinear thermal radiation is investigated. A new concept of parameterization is introduced to achieve comparison between the flows of both fluids (i.e. switch momentum governing equation from Williamson fluid to Casson fluid. In this study, it is assumed that buoyancy and stretching at the wall induce Casson and Williamson fluid flow over this kind of surface which is neither a perfect horizontal/vertical nor inclined/cone. Influence of space dependent internal heat source is accommodated in the energy equation. The case of unequal diffusion coefficients of reactants A and B (high concentration of catalyst on uhspr is considered. Since chemical reactant B is of higher concentration at the surface more than the concept described as cubic autocatalytic, the suitable schemes are herein described as isothermal quartic autocatalytic reaction and first order reaction. A suitable similarity transformation is applied to reduce the governing equations to coupled ordinary differential equations. These equations along with the boundary conditions are solved numerically by using Runge-Kutta technique along with shooting method. Comparisons of the effects of some parameters on the flow profiles are illustrated graphically and discussed.

  18. Effects of heat source/sink on magnetohydrodynamic flow and heat transfer of a non-Newtonian power-law fluid on a stretching surface

    Directory of Open Access Journals (Sweden)

    Naikoti Kishan

    2016-01-01

    Full Text Available Non-Newtonian boundary layer flow and heat transfer characteristics over a stretching surface with thermal radiation and slip condition at the surface is analyzed. The flow is subject to a uniform transverse magnetic field. The suitable local similarity transformations are used to transform the non-linear partial differential equations into system of ordinary differential equations. The non-linear ordinary differential equations are linearized by using Quasi-linearization technique. The implicit finite difference scheme has been adopted to solve the obtained coupled ordinary differential equations. The important finding in this communication is the combined effects of Magnetic field parameter M, power law index n, slip parameter l, radiation parameter R, surface temperature parameter g , heat source/sink parameter S, local Eckert number Ec, temperature difference parameter r, generalized local Prandtl number Pr on velocity and temperature profiles and also the skin-friction coefficient -f''(0and heat transfer coefficient -θ'(0 results are discussed. The results pertaining to the present study indicate that as the increase of magnetic field parameter, slip parameter decreases the velocity profiles, where as the temperature profiles increases for both Newtonian and non-Newtonian fluids. The power law index n and heat source/sink parameter decreases the dimensionless velocity and temperature profiles. The effect of radiation parameter, Eckert number leads to increase the dimensionless temperature. It is found that increasing the slip parameter has the effect of decreasing the skin-friction coefficient-f''(0and heat transfer coefficient-θ'(0.With the increase of power law index n is to reduce the skin-friction coefficient and increase the heat transfer coefficient.

  19. Laminar convective heat transfer of non-Newtonian nanofluids with constant wall temperature

    Science.gov (United States)

    Hojjat, M.; Etemad, S. Gh.; Bagheri, R.; Thibault, J.

    2011-02-01

    Nanofluids are obtained by dispersing homogeneously nanoparticles into a base fluid. Nanofluids often exhibit higher heat transfer rate in comparison with the base fluid. In the present study, forced convection heat transfer under laminar flow conditions was investigated experimentally for three types of non-Newtonian nanofluids in a circular tube with constant wall temperature. CMC solution was used as the base fluid and γ-Al2O3, TiO2 and CuO nanoparticles were homogeneously dispersed to create nanodispersions of different concentrations. Nanofluids as well as the base fluid show shear thinning (pseudoplastic) rheological behavior. Results show that the presence of nanoparticles increases the convective heat transfer of the nanodispersions in comparison with the base fluid. The convective heat transfer enhancement is more significant when both the Peclet number and the nanoparticle concentration are increased. The increase in convective heat transfer is higher than the increase caused by the augmentation of the effective thermal conductivity.

  20. An Analysis on Fully Developed Laminar Hear Transfer of Power-Law Non-Newtonian Fluids in Concentric Annuli with Axially Moving Cores (The Case with the Second Kind Thermal Bounadry Condition)

    OpenAIRE

    茂地, 徹; 桃木, 悟; 山口, 朝彦; 東井上, 真哉; Lee, Y.

    1998-01-01

    The fully developed laminar heat transfer of a power-law non-Newtonian fluid in a concentric annulus with an axially moving core was studied analytically. The energy equation together with the fully developed velocity profile obtained in the previous report was numerically solved for the second kind thermal boundary conditions of constant wall heat flux at one wall with the other insulated. The effects of the radius ratio, the relative core velocity and the flow index of a non-Newtonian power...

  1. Simulating single-phase and two-phase non-Newtonian fluid flow of a digital rock scanned at high resolution

    Science.gov (United States)

    Tembely, Moussa; Alsumaiti, Ali M.; Jouini, Mohamed S.; Rahimov, Khurshed; Dolatabadi, Ali

    2017-11-01

    Most of the digital rock physics (DRP) simulations focus on Newtonian fluids and overlook the detailed description of rock-fluid interaction. A better understanding of multiphase non-Newtonian fluid flow at pore-scale is crucial for optimizing enhanced oil recovery (EOR). The Darcy scale properties of reservoir rocks such as the capillary pressure curves and the relative permeability are controlled by the pore-scale behavior of the multiphase flow. In the present work, a volume of fluid (VOF) method coupled with an adaptive meshing technique is used to perform the pore-scale simulation on a 3D X-ray micro-tomography (CT) images of rock samples. The numerical model is based on the resolution of the Navier-Stokes equations along with a phase fraction equation incorporating the dynamics contact model. The simulations of a single phase flow for the absolute permeability showed a good agreement with the literature benchmark. Subsequently, the code is used to simulate a two-phase flow consisting of a polymer solution, displaying a shear-thinning power law viscosity. The simulations enable to access the impact of the consistency factor (K), the behavior index (n), along with the two contact angles (advancing and receding) on the relative permeability.

  2. Structural Optimization of Non-Newtonian Rectifiers

    DEFF Research Database (Denmark)

    Jensen, Kristian Ejlebjærg; Okkels, Fridolin

    When the size of fluidic devices is scaled down, inertial effects start to vanish such that the governing equation becomes linear. Some microfluidic devices rely on the non-linear term related to the inertia of the fluid, and one example is fluid rectifiers (diodes) e.g. related to some micropumps....... In this context it is natural to look for other sources of non-linearity and one possibility is to introduce a non-Newtonian working fluid. Non-Newtonian properties are due to stretching of large particles/molecules in the fluid and this is commonly seen for biological samples in “lab-on-a-chip” systems....... These rectifiers rely on the device geometry for their working mechanism, but on further downscaling the inertial effect vanishes and the governing equation starts to show symmetry properties. These symmetry properties reduce the geometry influence to the point where fluid rectifiers cease to function...

  3. Pulsatile flow of non-Newtonian blood fluid inside stenosed arteries: Investigating the effects of viscoelastic and elastic walls, arteriosclerosis, and polycythemia diseases.

    Science.gov (United States)

    Nejad, A Abbas; Talebi, Z; Cheraghali, D; Shahbani-Zahiri, A; Norouzi, M

    2018-02-01

    In this study, the interaction of pulsatile blood flow with the viscoelastic walls of the axisymmetric artery is numerically investigated for different severities of stenosis. The geometry of artery is modeled by an axisymmetric cylindrical tube with a symmetric stenosis in a two-dimensional case. The effects of stenosis severity on the axial velocity profile, pressure distribution, streamlines, wall shear stress, and wall radial displacement for the viscoelastic artery are also compared to the elastics artery. Furthermore, the effects of atherosclerosis and polycythemia diseases on the hemodynamics and the mechanical behavior of arterial walls are investigated. The pulsatile flow of non-Newtonian blood is simulated inside the viscoelastic artery using the COMSOL Multiphysics software (version 5) and by employing the fluid-structure interaction (FSI) method and the arbitrary Lagrangian-Eulerian (ALE) method. Moreover, finite element method (FEM) is used to solve the governing equations on the unstructured grids. For modeling the non-Newtonian blood fluid and the viscoelastic arterial wall, the modified Casson model, and generalized Maxwell model are used, respectively. According to the results, with stenosis severity increasing from 25% to 75% at the time of maximum volumetric flow rate, the maximum value of axial velocity and its gradient increase 7.9 and 19.6 times, and the maximum wall shear stress of viscoelastic wall increases 24.2 times in the constriction zone. With the progression of the atherosclerosis disease (fivefold growth of arterial elastic modulus), the wall radial displacement of viscoelastic arterial walls decreases nearly 40%. In this study, axial velocity profile, pressure distribution, streamlines, wall radial displacement, and wall shear stress were examined for different percentages of stenosis (25%, 50%, and 75%). The atherosclerosis disease was investigated by the fivefold growth of viscoelastic arterial elastic modulus and polycythemia

  4. NUMERICAL INVESTIGATION OF NON-NEWTONIAN DRILLING FLUIDS DURING THE OCCURRENCE OF A GAS KICK IN A PETROLEUM RESERVOIR

    Directory of Open Access Journals (Sweden)

    F. F. Oliveira

    Full Text Available Abstract In this work, a simplified kick simulator is developed using the ANSYS® CFX software in order to better understand the phenomena called kick. This simulator is based on the modeling of a petroleum well where a gas kick occurs. Dynamic behavior of some variables like pressure, viscosity, density and volume fraction of the fluid is analyzed in the final stretch of the modeled well. In the simulations nine different drilling fluids are used of two rheological categories, Ostwald de Waele, also known as Power-Law, and Bingham fluids, and the results are compared among them. In these comparisons what fluid allows faster or slower invasion of gas is analyzed, as well as how the gas spreads into the drilling fluid. The pressure behavior during the kick process is also compared t. It is observed that, for both fluids, the pressure behavior is similar to a conventional leak in a pipe.

  5. EFFECT OF VARIABLE VISCOSITY AND SUCTION/INJECTION ON THERMAL BOUNDARY LAYER OF A NON-NEWTONIAN POWER-LAW FLUIDS PAST A POWER-LAW STRETCHED SURFACE

    Directory of Open Access Journals (Sweden)

    Rania Fathy

    2010-01-01

    Full Text Available The analysis of laminar boundary layer flow and heat transfer of non-Newtonian fluids over a continuous stretched surface with suction or injection has been presented.The velocity and temperature of the sheet were assumed to vary in a power-law form, that is u = U0xm, and Tw(x = T+ Cxb. The viscosity of the fluid is assumed to be inverse linear function of temperature. The resulting governing boundary-layer equations are highly non-linear and coupled form of partial differential equations and they have been solved numerically by using the Runge-Kutta method and Shooting technique. Velocity and temperature distributions as well as the Nusselt number where studied for two thermal boundary conditions: uniform surface temperature (b = 0 and cooled surface temperature (b = -1, for different parameters: variable viscosity parameter qr, temperature exponent b, blowing parameter d and Prandtl number. The obtained results show that the flow and heat transfer characteristics are significantly influenced by these parameters.

  6. Fully developed flow of non-Newtonian fluids in a straight uniform square duct through porous medium

    Directory of Open Access Journals (Sweden)

    M. Devakar

    2017-06-01

    Full Text Available In this paper, we have studied the flow of incompressible fluids in a straight square duct through the porous medium. The couple stress fluid model and Jeffrey fluid model are considered separately to study the flow properties. The governing partial differential equations have been solved numerically using finite difference method in each case. In both the cases, the variation of different flow parameters on the fluid velocity is illustrated graphically and the numerical results for the volume flow rate have been presented through tables. It is observed that, the velocity and volume flow rate decrease with an increase in couple stress parameter and porosity parameter, while the velocity and volume flow rate increase with an increase in Jeffrey parameter and pressure gradient.

  7. The flow of a non-Newtonian fluid induced due to the oscillations of a porous plate

    Directory of Open Access Journals (Sweden)

    S. Asghar

    2004-01-01

    Full Text Available An analytic solution of the flow of a third-grade fluid on a porous plate is constructed. The porous plate is executing oscillations in its own plane with superimposed injection or suction. An increasing or decreasing velocity amplitude of the oscillating porous plate is also examined. It is also shown that in case of third-grade fluid, a combination of suction/injection and decreasing/increasing velocity amplitude is possible as well. Several limiting situations with their implications are given and discussed.

  8. Simple Navier’s slip boundary condition for the non-Newtonian Lattice Boltzmann fluid dynamics solver

    DEFF Research Database (Denmark)

    Svec, Oldrich; Skoček, Jan

    2013-01-01

    The ability of the Lattice Boltzmann method, as the fluid dynamics solver, to properly simulate macroscopic Navier’s slip boundary condition is investigated. An approximate equation relating the Lattice Boltzmann variable slip boundary condition with the macroscopic Navier’s slip boundary condition...

  9. Using a tracer technique to identify the extent of non-ideal flows in the continuous mixing of non-Newtonian fluids

    Science.gov (United States)

    Patel, D.; Ein-Mozaffari, F.; Mehrvar, M.

    2013-05-01

    The identification of non-ideal flows in a continuous-flow mixing of non-Newtonian fluids is a challenging task for various chemical industries: plastic manufacturing, water and wastewater treatment, and pulp and paper manufacturing. Non-ideal flows such as channelling, recirculation, and dead zones significantly affect the performance of continuous-flow mixing systems. Therefore, the main objective of this paper was to develop an identification protocol to measure non-ideal flows in the continuous-flow mixing system. The extent of non-ideal flows was quantified using a dynamic model that incorporated channelling, recirculation, and dead volume in the mixing vessel. To estimate the dynamic model parameters, the system was excited using a frequency-modulated random binary input by injecting the saline solution (as a tracer) into the fresh feed stream prior to being pumped into the mixing vessel. The injection of the tracer was controlled by a computer-controlled on-off solenoid valve. Using the trace technique, the extent of channelling and the effective mixed volume were successfully determined and used as mixing quality criteria. Such identification procedures can be applied at various areas of chemical engineering in order to improve the mixing quality.

  10. Using a tracer technique to identify the extent of non-ideal flows in the continuous mixing of non-Newtonian fluids

    Directory of Open Access Journals (Sweden)

    Mehrvar M.

    2013-05-01

    Full Text Available The identification of non-ideal flows in a continuous-flow mixing of non-Newtonian fluids is a challenging task for various chemical industries: plastic manufacturing, water and wastewater treatment, and pulp and paper manufacturing. Non-ideal flows such as channelling, recirculation, and dead zones significantly affect the performance of continuous-flow mixing systems. Therefore, the main objective of this paper was to develop an identification protocol to measure non-ideal flows in the continuous-flow mixing system. The extent of non-ideal flows was quantified using a dynamic model that incorporated channelling, recirculation, and dead volume in the mixing vessel. To estimate the dynamic model parameters, the system was excited using a frequency-modulated random binary input by injecting the saline solution (as a tracer into the fresh feed stream prior to being pumped into the mixing vessel. The injection of the tracer was controlled by a computer-controlled on-off solenoid valve. Using the trace technique, the extent of channelling and the effective mixed volume were successfully determined and used as mixing quality criteria. Such identification procedures can be applied at various areas of chemical engineering in order to improve the mixing quality.

  11. Effect of multiple slip on a chemically reactive MHD non-Newtonian nanofluid power law fluid flow over a stretching sheet with microorganism

    Science.gov (United States)

    Basir, Mohammad Faisal Mohd; Ismail, Fazreen Amira; Amirsom, Nur Ardiana; Latiff, Nur Amalina Abdul; Ismail, Ahmad Izani Md.

    2017-04-01

    The effect of multiple slip on a chemically reactive magnetohydrodynamic (MHD) non-Newtonian power law fluid flow over a stretching sheet with microorganism was numerically investigated. The governing partial differential equations were transformed into nonlinear ordinary differential equations using the similarity transformations developed by Lie group analysis. The reduced governing nonlinear ordinary differential equations were then numerically solved using the Runge-Kutta-Fehlberg fourth-fifth order method. Good agreement was found between the present numerical solutions with the existing published results to support the validity and the accuracy of the numerical computations. The influences of the velocity, thermal, mass and microorganism slips, the magnetic field parameter and the chemical reaction parameter on the dimensionless velocity, temperature, nanoparticle volume fraction, microorganism concentration, the distribution of the density of motile microorganisms have been illustrated graphically. The effects of the governing parameters on the physical quantities, namely, the local heat transfer rate, the local mass transfer rate and the local microorganism transfer rate were analyzed and discussed.

  12. Effects of variable viscosity and thermal conductivity on unsteady MHD flow of non-Newtonian fluid over a stretching porous sheet

    Directory of Open Access Journals (Sweden)

    Rahman Abdel-Gamal M.

    2013-01-01

    Full Text Available The unsteady flow and heat transfer in an incompressible laminar, electrically conducting and non-Newtonian fluid over a non-isothermal stretching sheet with the variation in the viscosity and thermal conductivity in a porous medium by the influence of an external transverse magnetic field have been obtained and studied numerically. By using similarity analysis the governing differential equations are transformed into a set of non-linear coupled ordinary differential equations which are solved numerically. Numerical results were presented for velocity and temperature profiles for different parameters of the problem as power law parameter, unsteadiness parameter, radiation parameter, magnetic field parameter, porous medium parameter, temperature buoyancy parameter, Prandtl parameter, modified Eckert parameter, Joule heating parameter , heat source/sink parameter and others. A comparison with previously published work has been carried out and the results are found to be in good agreement. Also the effects of the pertinent parameters on the skin friction and the rate of heat transfer are obtained and discussed numerically and illustrated graphically.

  13. Numerical investigation of MHD free convection flow of a non-Newtonian fluid past an impulsively started vertical plate in the presence of thermal diffusion and radiation absorption

    Directory of Open Access Journals (Sweden)

    M. Umamaheswar

    2016-09-01

    Full Text Available A numerical investigation is carried out on an unsteady MHD free convection flow of a well-known non-Newtonian visco elastic second order Rivlin-Erickson fluid past an impulsively started semi-infinite vertical plate in the presence of homogeneous chemical reaction, thermal radiation, thermal diffusion, radiation absorption and heat absorption with constant mass flux. The presence of viscous dissipation is also considered at the plate under the influence of uniform transverse magnetic field. The flow is governed by a coupled nonlinear system of partial differential equations which are solved numerically by using finite difference method. The effects of various physical parameters on the flow quantities viz. velocity, temperature, concentration, Skin friction, Nusselt number and Sherwood number are studied numerically. The results are discussed with the help of graphs. We observed that the velocity decreases with an increase in magnetic field parameter, Schmidt number, and Prandtl number while it increases with an increase in Grashof number, modified Grashof number, visco-elastic parameter and Soret number. Temperature increases with an increase in radiation absorption parameter, Eckert number and visco-elastic parameter while it decreases with increasing values of radiation parameter, Prandtl number and heat absorption parameter. Concentration increases with increase in Soret number while it decreases with an increase in Schmidt number and chemical reaction parameter.

  14. MHD non-Newtonian fluid flow over a slendering stretching sheet in the presence of cross-diffusion effects

    OpenAIRE

    M. Jayachandra Babu; N. Sandeep

    2016-01-01

    In this study, we inquired the cross-diffusion effects on the magnetohydrodynamic Williamson fluid flow across a variable thickness stretching sheet by viewing velocity slip. With the aid of Runge-Kutta based shooting process, we resolved the transformed differential equations numerically. The effects of different dimensionless parameters on three usual profiles (velocity, temperature, concentration) along with skin friction coefficient, heat transfer rate and mass transfer rate are examined ...

  15. Study on shear-induced thermal conductivity for heat transfer enhancement with non-Newtonian viscoelastic fluids

    Science.gov (United States)

    Lee, Dong-Ryul; Yoon, Hyun-Joong

    2013-09-01

    Shear-induced viscosity and thermal conductivity measurements were performed for viscoelastic fluids. This research was also designed to investigate the extent to which the thermal conductivity of viscoelastic fluids is affected by fluid motion under conditions in which it is known that the viscous properties undergo significant changes, and then the effect of the shear-induced thermal conductivity measured on the convective heat transfer enhancement for a heat exchanger system. It was also found experimentally that the thermal conductivity increased with shear rate for two polyacrylamide solutions of 1000 and 2000 wppm with order of 23%-43% and 17%-21%, respectively, depending on temperature (20-50 °C). The increase in the thermal conductivity with a shear rate was greater for lower concentration polyacrylamide solutions than for higher concentration ones, with a difference of 8%-22% depending on temperature range (20-50 °C). The convective heat transfer enhancement with the shear-induced thermal conductivity in the infinite rectangular duct was of the order of 41%-74% and 41%-52% over the entire temperature range (20-50 °C) of the two polyacrylamide solutions of 1000 and 2000 wppm, respectively.

  16. Shock Wave Solutions for Some Nonlinear Flow Models Arising in the Study of a Non-Newtonian Third Grade Fluid

    Directory of Open Access Journals (Sweden)

    Taha Aziz

    2013-01-01

    Full Text Available This study is based upon constructing a new class of closed-form shock wave solutions for some nonlinear problems arising in the study of a third grade fluid model. The Lie symmetry reduction technique has been employed to reduce the governing nonlinear partial differential equations into nonlinear ordinary differential equations. The reduced equations are then solved analytically, and the shock wave solutions are constructed. The conditions on the physical parameters of the flow problems also fall out naturally in the process of the derivation of the solutions.

  17. Combined effects of Joule heating and chemical reaction on non-Newtonian fluid in double stratified medium: A numerical study

    Science.gov (United States)

    Rehman, Khalil Ur; Khan, Abid Ali; Malik, M. Y.; Pradhan, R. K.

    In present attempt, the mutual interaction of temperature and concentration stratification phenomena is considered in the presence of chemically reactive species and Joule heating subject to Williamson fluid flow yields by an inclined stretching cylindrical surface. Flow field analysis is manifested with both mixed convection and heat generation effects. The prescribed surface temperature and concentration are hypothetical greater in strength as compared to ambient fluid. The physical illustration and corresponding constraints are mathematically modelled in terms of partial differential equations. These differential equations are primarily transmuted into an ordinary differential equations with the aid of appropriate transformation. A computational algorithm (shooting method charted with Runge-Kutta scheme) is executed towards boundary value problem for numerical solution. The physical outcomes due to flow field parameters namely, Eckert number, Weissenberg number, mixed convection, curvature, stratification, solutal stratification, chemical reaction, magnetic field and heat generation parameters on physical quantities are discussed through graphs and tables. Further, the numerical values of the skin friction coefficient, Nusselt and Sherwood numbers are presented through tables. It is noticed that the velocity profile shows decline nature for an inclination while temperature reflects an inciting nature towards Eckert number.

  18. Structural Optimization of non-Newtonian Microfluidics

    DEFF Research Database (Denmark)

    Jensen, Kristian Ejlebjærg; Okkels, Fridolin

    2011-01-01

    We present results for topology optimization of a non-Newtonian rectifier described with a differential constitutive model. The results are novel in the sense that a differential constitutive model has not been combined with topology optimization previously. We find that it is necessary to apply ...... optimization of fluids. We test the method on a microfluidic rectifier and find solutions topologically different from experimentally realized designs....

  19. Flow regime analysis of non-Newtonian duct flows

    Science.gov (United States)

    Speetjens, Michel; Rudman, Murray; Metcalfe, Guy

    2006-01-01

    Reoriented duct flows of generalized Newtonian fluids are an idealization of non-Newtonian fluid flow in industrial in-line mixers. Based on scaling analysis and computation we find that non-Newtonian duct flows have several limit behaviors, in the sense that such flows can become (nearly) independent of one or more of the rheological and dynamical control parameters, simplifying the general flow and mixing problem. These limit flows give several levels of modeling complexity to the full problem of non-Newtonian duct flow. We describe the sets of simplified flow models and their corresponding regions of validity. This flow-model decomposition captures the essential rheological and dynamical characteristics of the reoriented duct flows and enables a more efficient and systematic study and design of flow and mixing of non-Newtonian fluids in ducts. Key aspects of the flow-model decomposition are demonstrated via a specific, but representative, duct flow.

  20. A numerical solution for the entrance region of non-newtonian flow in annuli

    Directory of Open Access Journals (Sweden)

    Maia M.C.A.

    2003-01-01

    Full Text Available Continuity and momentum equations applied to the entrance region of an axial, incompressible, isothermal, laminar and steady flow of a power-law fluid in a concentric annulus, were solved by a finite difference implicit method. The Newtonian case was solved used for validation of the method and then compared to reported results. For the non-Newtonian case a pseudoplastic power-law model was assumed and the equations were transformed to obtain a pseudo-Newtonian system which enabled its solution using the same technique as that used for the Newtonian case. Comparison of the results for entrance length and pressure drop with those available in the literature showed a qualitative similarity, but significant quantitative differences. This can be attributed to the differences in entrance geometries and the definition of asymptotic entrance length.

  1. Heat transfer in non-Newtonian falling liquid film on a horizontal circular cylinder

    Energy Technology Data Exchange (ETDEWEB)

    Ouldhadda, D.; Idrissi, A.Il [Laboratoire d' Energetique, Faculte des Sciences Ben M' Sik, Sidi Othmane Casablanca (Morocco); Asbik, M. [G.M.M.T.N., Faculte des Sciences et Techniques, Boutalamine Errachidia (Morocco)

    2002-08-01

    This study aims to investigate numerically the laminar flow and heat transfer in a pseudoplastic non-Newtonian falling liquid film on a horizontal cylinder for the constant heat flux and isothermal boundary conditions. The inertia terms are taken into account. An implicit finite difference method is carried out to solve the governing boundary layer equations. The effects of operational parameters on the hydrodynamic and heat transfer characteristics are examined and discussed in detail. The results presented show that the local and average Nusselt numbers varies significantly as a function of the concentration of aqueous carboxymethylcellulose (CMC) solutions and the cylinder diameter. Higher concentration of aqueous CMC solutions generate larger heat transfer coefficients. Finally, a comparison with the experimental and numerical results available in the literature for Newtonian fluids shows clearly that the present analysis is reasonably accurate. (orig.)

  2. Solution of the Boundary Layer Equation of the Power-Law Pseudoplastic Fluid Using Differential Transform Method

    OpenAIRE

    Mosayebidorcheh, Sobhan

    2013-01-01

    The boundary layer equation of the pseudoplastic fluid over a flat plate is considered. This equation is a boundary value problem (BVP) with the high nonlinearity and a boundary condition at infinity. To solve such problems, powerful numerical techniques are usually used. Here, through using differential transform method (DTM), the BVP is replaced by two initial value problems (IVP) and then multi-step differential transform method (MDTM) is applied to solve them. The differential equation an...

  3. Numerical analysis of non-Newtonian rheology effect on hydrocyclone flow field

    Directory of Open Access Journals (Sweden)

    Lin Yang

    2015-03-01

    Full Text Available In view of the limitations of the existing Newton fluid effects on the vortex flow mechanism study, numerical analysis of non Newton fluid effects was presented. Using Reynolds stress turbulence model (RSM and mixed multiphase flow model (Mixture of FLUENT (fluid calculation software and combined with the constitutive equation of apparent viscosity of non-Newtonian fluid, the typical non-Newtonian fluid (drilling fluid, polymer flooding sewage and crude oil as medium and Newton flow field (water as medium were compared by quantitative analysis. Based on the research results of water, the effects of non-Newtonian rheology on the key parameters including the combined vortex motion index n and tangential velocity were analyzed. The study shows that: non-Newtonian rheology has a great effect on tangential velocity and n value, and tangential velocity decreases with non-Newtonian increasing. The three kinds of n values (constant segment are: 0.564(water, 0.769(polymer flooding sewage, 0.708(drilling fluid and their variation amplitudes are larger than Newtonian fluid. The same time, non-Newtonian rheology will lead to the phenomenon of turbulent drag reduction in the vortex flow field. Compared with the existing formula calculation results shown, the calculation result of non-Newtonian rheology is most consistent with the simulation result, and the original theory has large deviations. The study provides reference for theory research of non-Newtonian cyclone separation flow field.

  4. Influence of Hall Current and Viscous Dissipation on Pressure Driven Flow of Pseudoplastic Fluid with Heat Generation: A Mathematical Study.

    Directory of Open Access Journals (Sweden)

    Saima Noreen

    Full Text Available In this paper, we study the influence of heat sink (or source on the peristaltic motion of pseudoplastic fluid in the presence of Hall current, where channel walls are non-conducting in nature. Flow analysis has been carried out under the approximations of a low Reynolds number and long wavelength. Coupled equations are solved using shooting method for numerical solution for the axial velocity function, temperature and pressure gradient distributions. We analyze the influence of various interesting parameters on flow quantities. The present study can be considered as a mathematical presentation of the dynamics of physiological organs with stones.

  5. Influence of Hall Current and Viscous Dissipation on Pressure Driven Flow of Pseudoplastic Fluid with Heat Generation: A Mathematical Study.

    Science.gov (United States)

    Noreen, Saima; Qasim, Muhammad

    2015-01-01

    In this paper, we study the influence of heat sink (or source) on the peristaltic motion of pseudoplastic fluid in the presence of Hall current, where channel walls are non-conducting in nature. Flow analysis has been carried out under the approximations of a low Reynolds number and long wavelength. Coupled equations are solved using shooting method for numerical solution for the axial velocity function, temperature and pressure gradient distributions. We analyze the influence of various interesting parameters on flow quantities. The present study can be considered as a mathematical presentation of the dynamics of physiological organs with stones.

  6. Experimental investigation of heat transfer and pressure drop characteristics of non-Newtonian nanofluids flowing in the shell-side of a helical baffle heat exchanger with low-finned tubes

    Science.gov (United States)

    Tan, Yunkai; He, Zhenbin; Xu, Tao; Fang, Xiaoming; Gao, Xuenong; Zhang, Zhengguo

    2017-09-01

    An aqueous solution of Xanthan Gum (XG) at a weight fraction as high as 0.2% was used as the base liquid, the stable MWCNTs-dispersed non-Newtonian nanofluids at different weight factions of MWCNTs was prepared. The base fluid and all nanofluids show pseudoplastic (shear-thinning) rheological behavior. Experiments were performed to compare the shell-side forced convective heat transfer coefficient and pressure drop of non-Newtonian nanofluids to those of non-Newtonian base fluid in an integrally helical baffle heat exchanger with low-finned tubes. The experimental results showed that the enhancement of the convective heat transfer coefficient increases with an increase in the Peclet number and the nanoparticle concentration. For nanofluids with 1.0, 0.5 and 0.2 wt% of multi-walled carbon nanotubes (MWCNTs), the heat transfer coefficients respectively augmented by 24.3, 13.2 and 4.7% on average and the pressure drops become larger than those of the base fluid. The comprehensive thermal performance factor is higher than one and increases with an increasing weight fraction of MWCNTs. A remarkable heat transfer enhancement in the shell side of helical baffle heat exchanger with low-finned tubes can be obtained by adding MWCNTs into XG aqueous solution based on thermal resistance analysis. New correlations have been suggested for the shell-side friction coefficient and the Nusselt numbers of non-Newtonian nanofluids and give very good agreement with experimental data.

  7. Transient Non-Newtonian Screw Flow

    Science.gov (United States)

    Ashrafi, Nariman

    2013-03-01

    The influence of axial flow on the transient response of the pseudoplastic rotating flow is carried out. The fluid is assumed to follow the Carreau-Bird model and mixed boundary conditions are imposed. The four-dimensional low-order dynamical system, resulted from Galerkin projection of the conservation of mass and momentum equations, includes additional nonlinear terms in the velocity components originated from the shear-dependent viscosity. In absence of axial flow the base flow loses its radial flow stability to the vortex structure at a lower critical Taylor number, as the pseudoplasticity increases. The emergence of the vortices corresponds to the onset of a supercritical bifurcation which is also seen in the flow of a linear fluid. However, unlike the Newtonian case, pseudoplastic Taylor vortices lose their stability as the Taylor number reaches a second critical number corresponding to the onset of a Hopf bifurcation. Existence of an axial flow, manifested by a pressure gradient appears to further advance each critical point on the bifurcation diagram. In addition to the simulation of spiral flow, the proposed formulation allows the axial flow to be independent of the main rotating flow. Complete transient flow field together with viscosity maps are also presented.

  8. Variable fluid properties and variable heat flux effects on the flow and heat transfer in a non-Newtonian Maxwell fluid over an unsteady stretching sheet with slip velocity

    Science.gov (United States)

    Ahmed, M. Megahed

    2013-09-01

    The effects of variable fluid properties and variable heat flux on the flow and heat transfer of a non-Newtonian Maxwell fluid over an unsteady stretching sheet in the presence of slip velocity have been studied. The governing differential equations are transformed into a set of coupled non-linear ordinary differential equations and then solved with a numerical technique using appropriate boundary conditions for various physical parameters. The numerical solution for the governing non-linear boundary value problem is based on applying the fourth-order Runge—Kutta method coupled with the shooting technique over the entire range of physical parameters. The effects of various parameters like the viscosity parameter, thermal conductivity parameter, unsteadiness parameter, slip velocity parameter, the Deborah number, and the Prandtl number on the flow and temperature profiles as well as on the local skin-friction coefficient and the local Nusselt number are presented and discussed. Comparison of numerical results is made with the earlier published results under limiting cases.

  9. Inelastic non-Newtonian flow over heterogeneously slippery surfaces

    NARCIS (Netherlands)

    Haase, A. Sander; Wood, Jeffery Alan; Sprakel, Lisette Maria Johanna; Lammertink, Rob G.H.

    2017-01-01

    In this study, we investigated inelastic non-Newtonian fluid flow over heterogeneously slippery surfaces. First, we simulated the flow of aqueous xanthan gum solutions over a bubble mattress, which is a superhydrophobic surface consisting of transversely positioned no-slip walls and no-shear gas

  10. Integral method for analyzing natural convection of non-newtonian ...

    African Journals Online (AJOL)

    An analytical study of natural convection boundary-layer flow along a vertical plate embedded in an anisotropic porous medium saturated by a non-Newtonian fluid has been conducted. The principal axis of permeability ani-sotropy was oriented in oblique direction to the gravity vector. A power-law variation of wall ...

  11. A boundary integral method for two-dimensional (non)-Newtonian drops in slow viscous flow

    NARCIS (Netherlands)

    Toose, E.M.; Geurts, Bernardus J.; Kuerten, Johannes G.M.

    1995-01-01

    A boundary integral method for the simulation of the time-dependent deformation of Newtonian or non-Newtonian drops suspended in a Newtonian fluid is developed. The boundary integral formulation for Stokes flow is used and the non-Newtonian stress is treated as a source term which yields an extra

  12. Solution of the Boundary Layer Equation of the Power-Law Pseudoplastic Fluid Using Differential Transform Method

    Directory of Open Access Journals (Sweden)

    Sobhan Mosayebidorcheh

    2013-01-01

    Full Text Available The boundary layer equation of the pseudoplastic fluid over a flat plate is considered. This equation is a boundary value problem (BVP with the high nonlinearity and a boundary condition at infinity. To solve such problems, powerful numerical techniques are usually used. Here, through using differential transform method (DTM, the BVP is replaced by two initial value problems (IVP and then multi-step differential transform method (MDTM is applied to solve them. The differential equation and its boundary conditions are transformed to a set of algebraic equations, and the Taylor series of solution is calculated in every sub domain. In this solution, there is no need for restrictive assumptions or linearization. Finally, DTM results are compared with the numerical solution of the problem, and a good accuracy of the proposed method is observed.

  13. Mounding of a non-Newtonian jet impinging on a solid substrate.

    Energy Technology Data Exchange (ETDEWEB)

    Schunk, Peter Randall; Grillet, Anne Mary; Roberts, Scott A.; Baer, Thomas A. (Procter & Gamble, Cincinnati, OH); Rao, Rekha Ranjana

    2010-06-01

    When a fluid jet impinges on a solid substrate, a variety of behaviors may occur around the impact region. One example is mounding, where the fluid enters the impact region faster than it can flow away, forming a mound of fluid above the main surface. For some operating conditions, this mound can destabilize and buckle, entraining air in the mound. Other behaviors include submerging flow, where the jet impinges into an otherwise steady pool of liquid, entraining a thin air layer as it enters the pool. This impact region is one of very high shear rates and as such, complex fluids behave very differently than do Newtonian fluids. In this work, we attempt to characterize this range of behavior for Newtonian and non-Newtonian fluids using dimensionless parameters. We model the fluid as a modified Bingham-Carreau-Yasuda fluid, which exhibits the full range of pseudoplastic flow properties throughout the impact region. Additionally, we study viscoelastic effects through the use of the Giesekus model. Both 2-D and 3-D numerical simulations are performed using a variety of finite element method techniques for tracking the jet interface, including Arbitrary Lagrangian Eulerian (ALE), diffuse level sets, and a conformal decomposition finite element method (CDFEM). The presence of shear-thinning characteristics drastically reduces unstable mounding behavior, yet can lead to air entrainment through the submerging flow regime. We construct an operating map to understand for what flow parameters mounding and submerging flows will occur, and how the fluid rheology affects these behaviors. This study has many implications in high-speed industrial bottle filling applications.

  14. Lie group analysis of flow and heat transfer of non-Newtonian ...

    Indian Academy of Sciences (India)

    law nanofluid over a stretching surface under convective boundary conditions and temperature-dependent fluid viscosity has been numerically investigated. The power-law rheology is adopted to describe non-Newtonian characteristics of the ...

  15. Topological mixing study of non-Newtonian duct flows

    Science.gov (United States)

    Speetjens, Michel; Metcalfe, Guy; Rudman, Murray

    2006-10-01

    Tracer advection of non-Newtonian fluids in reoriented duct flows is investigated in terms of coherent structures in the web of tracer paths that determine transport properties geometrically. Reoriented duct flows are an idealization of in-line mixers, encompassing many micro and industrial continuous mixers. The topology of the tracer dynamics of reoriented duct flows is Hamiltonian. As the stretching per reorientation increases from zero, we show that the qualitative route from the integrable state to global chaos and good mixing does not depend on fluid rheology. This is due to a universal symmetry of reoriented duct flows, which we derive, controlling the topology of the tracer web. Symmetry determines where in parameter space global chaos first occurs, while increasing non-Newtonian effects delays the quantitative value of onset. Theory is demonstrated computationally for a representative duct flow, the rotated arc mixing flow.

  16. Jet impingement and primary atomization of non-Newtonian liquids

    Science.gov (United States)

    Mallory, Jennifer A.

    The effect of liquid rheology on the flowfield resulting from non-Newtonian impinging jets was investigated experimentally and analytically. Experimental data were acquired using a unique experimental apparatus developed to examine the jet impingement of non-Newtonian liquids. The analytical modeling was aimed at determining which physical mechanisms transform non-Newtonian impinging jets into a sheet with waves on its surface, how those waves influence sheet fragmentation and subsequent ligament formation, and how those ligaments break up to form drops (primary atomization). Prior to impinging jet measurements, the rheological properties of 0.5 wt.-% CMC-7HF, 1.4 wt.-% CMC-7MF, 0.8 wt.-% CMC-7MF, 0.06 wt.-% CMC-7MF 75 wt.-% glycerin, 1 wt.-% Kappa carrageenan, and 1 wt.-% Agar were determined through the use of rotational and capillary rheometers. Two approaches were used to experimentally measure solid-like gel propellant simulant static surface tension. All liquids exhibited pseudoplastic rheological behavior. At various atomizer geometric and flow parameters sheet instability wavelength, sheet breakup length, ligament diameter, and drop sizes were measured from high-speed video images. Results showed that viscosity dependence on shear rate is not the sole factor that determines atomization likelihood. Instead, a key role is played by the interaction of the gelling agent with the solvent at the molecular level. For instance, despite high jet exit velocities and varying atomizer geometric parameters HPC gel propellant simulants did not atomize. The molecular nature of HPC results in physical entanglement of polymer chains when gelled, which resists liquid breakup and subsequent spray formation. However, atomization was achieved with Agar, which absorbs the water and forms a network around it rather than bonding to it. The measured liquid sheet instability wavelength, sheet breakup length, ligament diameter, and drop sizes were compared to predictions from a

  17. Non-Newtonian particulate flow simulation: A direct-forcing immersed boundary-lattice Boltzmann approach

    Science.gov (United States)

    Amiri Delouei, A.; Nazari, M.; Kayhani, M. H.; Kang, S. K.; Succi, S.

    2016-04-01

    In the current study, a direct-forcing immersed boundary-non-Newtonian lattice Boltzmann method (IB-NLBM) is developed to investigate the sedimentation and interaction of particles in shear-thinning and shear-thickening fluids. In the proposed IB-NLBM, the non-linear mechanics of non-Newtonian particulate flows is detected by combination of the most desirable features of immersed boundary and lattice Boltzmann methods. The noticeable roles of non-Newtonian behavior on particle motion, settling velocity and generalized Reynolds number are investigated by simulating benchmark problem of one-particle sedimentation under the same generalized Archimedes number. The effects of extra force due to added accelerated mass are analyzed on the particle motion which have a significant impact on shear-thinning fluids. For the first time, the phenomena of interaction among the particles, such as Drafting, Kissing, and Tumbling in non-Newtonian fluids are investigated by simulation of two-particle sedimentation and twelve-particle sedimentation. The results show that increasing the shear-thickening behavior of fluid leads to a significant increase in the kissing time. Moreover, the transverse position of particles for shear-thinning fluids during the tumbling interval is different from Newtonian and the shear-thickening fluids. The present non-Newtonian particulate study can be applied in several industrial and scientific applications, like the non-Newtonian sedimentation behavior of particles in food industrial and biological fluids.

  18. Application of shooting method on MHD thermally stratified mixed convection flow of non-Newtonian fluid over an inclined stretching cylinder

    Science.gov (United States)

    Khalil-Ur-Rehman; Malik, M. Y.

    2017-04-01

    An analysis is made to examine the magnetohydrodynamic mixed convection boundary layer flow of Eyring-Powell fluid brought by an inclined stretching cylinder. Flow field analysis is accounted by thermal stratification phenomena. The temperature is assumed to be higher across the surface of cylinder as compared to ambient fluid. The arising mathematical model regarding Eyring-Powell fluid is governed by interesting physical parameters which includes mixed convection parameter, thermal stratification parameter, heat generation/absorption parameter, curvature parameter, fluid parameters, magnetic field parameter and Prandtl number. The numerical solutions are computed through the application of shooting technique conjunction with fifth order Runge-Kutta algorithm. In addition, numeric values for two unlike geometries namely, plate and cylinder for skin friction coefficient and Nusselt number are presented with the aid graphs and some particular cases are discussed. The present study is validated by establishing comparison with previously published works, which sets a benchmark of quality of shooting method.

  19. Soft Sensing of Non-Newtonian Fluid Flow in Open Venturi Channel Using an Array of Ultrasonic Level Sensors-AI Models and Their Validations.

    Science.gov (United States)

    Chhantyal, Khim; Viumdal, Håkon; Mylvaganam, Saba

    2017-10-26

    In oil and gas and geothermal installations, open channels followed by sieves for removal of drill cuttings, are used to monitor the quality and quantity of the drilling fluids. Drilling fluid flow rate is difficult to measure due to the varying flow conditions (e.g., wavy, turbulent and irregular) and the presence of drilling cuttings and gas bubbles. Inclusion of a Venturi section in the open channel and an array of ultrasonic level sensors above it at locations in the vicinity of and above the Venturi constriction gives the varying levels of the drilling fluid in the channel. The time series of the levels from this array of ultrasonic level sensors are used to estimate the drilling fluid flow rate, which is compared with Coriolis meter measurements. Fuzzy logic, neural networks and support vector regression algorithms applied to the data from temporal and spatial ultrasonic level measurements of the drilling fluid in the open channel give estimates of its flow rate with sufficient reliability, repeatability and uncertainty, providing a novel soft sensing of an important process variable. Simulations, cross-validations and experimental results show that feedforward neural networks with the Bayesian regularization learning algorithm provide the best flow rate estimates. Finally, the benefits of using this soft sensing technique combined with Venturi constriction in open channels are discussed.

  20. Soft Sensing of Non-Newtonian Fluid Flow in Open Venturi Channel Using an Array of Ultrasonic Level Sensors—AI Models and Their Validations

    Directory of Open Access Journals (Sweden)

    Khim Chhantyal

    2017-10-01

    Full Text Available In oil and gas and geothermal installations, open channels followed by sieves for removal of drill cuttings, are used to monitor the quality and quantity of the drilling fluids. Drilling fluid flow rate is difficult to measure due to the varying flow conditions (e.g., wavy, turbulent and irregular and the presence of drilling cuttings and gas bubbles. Inclusion of a Venturi section in the open channel and an array of ultrasonic level sensors above it at locations in the vicinity of and above the Venturi constriction gives the varying levels of the drilling fluid in the channel. The time series of the levels from this array of ultrasonic level sensors are used to estimate the drilling fluid flow rate, which is compared with Coriolis meter measurements. Fuzzy logic, neural networks and support vector regression algorithms applied to the data from temporal and spatial ultrasonic level measurements of the drilling fluid in the open channel give estimates of its flow rate with sufficient reliability, repeatability and uncertainty, providing a novel soft sensing of an important process variable. Simulations, cross-validations and experimental results show that feedforward neural networks with the Bayesian regularization learning algorithm provide the best flow rate estimates. Finally, the benefits of using this soft sensing technique combined with Venturi constriction in open channels are discussed.

  1. Technical Report on NETL's Non Newtonian Multiphase Slurry Workshop: A path forward to understanding non-Newtonian multiphase slurry flows

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, Chris [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Garg, Rahul [National Energy Technology Lab. (NETL), Morgantown, WV (United States)

    2013-08-19

    The Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) sponsored a workshop on non-Newtonian multiphase slurry at NETL’s Morgantown campus August 19 and 20, 2013. The objective of this special two-day meeting of 20-30 invited experts from industry, National Labs and academia was to identify and address technical issues associated with handling non-Newtonian multiphase slurries across various facilities managed by DOE. Particular emphasis during this workshop was placed on applications managed by the Office of Environmental Management (EM). The workshop was preceded by two webinars wherein personnel from ORP and NETL provided background information on the Hanford WTP project and discussed the critical design challenges facing this project. In non-Newtonian fluids, viscosity is not constant and exhibits a complex dependence on applied shear stress or deformation. Many applications under EM’s tank farm mission involve non-Newtonian slurries that are multiphase in nature; tank farm storage and handling, slurry transport, and mixing all involve multiphase flow dynamics, which require an improved understanding of the mechanisms responsible for rheological changes in non-Newtonian multiphase slurries (NNMS). To discuss the issues in predicting the behavior of NNMS, the workshop focused on two topic areas: (1) State-of-the-art in non-Newtonian Multiphase Slurry Flow, and (2) Scaling up with Confidence and Ensuring Safe and Reliable Long-Term Operation.

  2. Weakly nonlinear analysis of Rayleigh-Bénard convection in a non-Newtonian fluid between plates of finite conductivity: Influence of shear-thinning effects

    Science.gov (United States)

    Bouteraa, Mondher; Nouar, Chérif

    2015-12-01

    Finite-amplitude thermal convection in a shear-thinning fluid layer between two horizontal plates of finite thermal conductivity is considered. Weakly nonlinear analysis is adopted as a first approach to investigate nonlinear effects. The rheological behavior of the fluid is described by the Carreau model. As a first step, the critical conditions for the onset of convection are computed as a function of the ratio ξ of the thermal conductivity of the plates to the thermal conductivity of the fluid. In agreement with the literature, the critical Rayleigh number Rac and the critical wave number kc decrease from 1708 to 720 and from 3.11 to 0, when ξ decreases from infinity to zero. In the second step, the critical value αc of the shear-thinning degree above which the bifurcation becomes subcritical is determined. It is shown that αc increases with decreasing ξ . The stability of rolls and squares is then investigated as a function of ξ and the rheological parameters. The limit value ξc, below which squares are stable, decreases with increasing shear-thinning effects. This is related to the fact that shear-thinning effects increase the nonlinear interactions between sets of rolls that constitute the square patterns [M. Bouteraa et al., J. Fluid Mech. 767, 696 (2015), 10.1017/jfm.2015.64]. For a significant deviation from the critical conditions, nonlinear convection terms and nonlinear viscous terms become stronger, leading to a further diminution of ξc. The dependency of the heat transfer on ξ and the rheological parameters is reported. It is consistent with the maximum heat transfer principle. Finally, the flow structure and the viscosity field are represented for weakly and highly conducting plates.

  3. Numerical Simulation of Non-Newtonian Core Annular Flow through Rectangle Return Bends

    OpenAIRE

    Fan Jiang; Yun Long; Yijun Wang; Zhenzhang Liu; Conggui Chen

    2016-01-01

    The volume of fluid (VOF) model together with the continuum surface stress (CSS) model is proposed to simulate the core annular of non-Newtonian oil and water flow through the rectangle return bends (∏-bends). A comprehensive investigation is conducted to generate the profiles of volume fraction, pressure and velocity. The influences of oil properties, flow direction, and bend geometric parameters on hydrodynamic of nonNewtonian oil and water core annular flow in ∏-bends are discusse...

  4. The Brownian and Thermophoretic Analysis of the Non-Newtonian Williamson Fluid Flow of Thin Film in a Porous Space over an Unstable Stretching Surface

    Directory of Open Access Journals (Sweden)

    Liaqat Ali

    2017-04-01

    Full Text Available This paper explores Liquid Film Flow of Williamson Fluid over an Unstable Stretching Surface in a Porous Space . The Brownian motion and Thermophoresis effect of the liquid film flow on a stretching sheet have been observed. This research include, to focus on the variation in the thickness of the liquid film in a porous space. The self-similarity variables have been applied to convert the modelled equations into a set of non-linear coupled differential equations. These non-linear differential equations have been treated through an analytical technique known as Homotopy Analysis Method (HAM. The effect of physical non-dimensional parameters like, Eckert Number, Prandtl Number, Porosity Parameter, Brownian Motion Parameter, Unsteadiness Parameter, Schmidt Number, Thermophoresis Parameter, Dimensionless Film Thickness, and Williamson Fluid Constant on the liquid film size are investigated and conferred in this endeavor. The obtained results through HAM are authenticated, from its comparison with numerical (ND-Solve Method. The graphical comparison of these two methods is elaborated. The numerical comparison with absolute errors are also been shown in the tables. The physical and numerical results using h curves for the residuals of the velocity, temperature and concentration profiles are obtained

  5. Numerical study of flow and heat transfer of non-Newtonian Tangent Hyperbolic fluid from a sphere with Biot number effects

    Directory of Open Access Journals (Sweden)

    S. Abdul Gaffar

    2015-12-01

    Full Text Available In this article, we investigate the nonlinear steady boundary layer flow and heat transfer of an incompressible Tangent Hyperbolic fluid from a sphere. The transformed conservation equations are solved numerically subject to physically appropriate boundary conditions using implicit finite-difference Keller Box technique. The numerical code is validated with previous studies. The influence of a number of emerging non-dimensional parameters, namely Weissenberg number (We, power law index (n, Prandtl number (Pr, Biot number (γ and dimensionless tangential coordinate (ξ on velocity and temperature evolution in the boundary layer regime is examined in detail. Furthermore, the effects of these parameters on heat transfer rate and skin friction are also investigated. Validation with earlier Newtonian studies is presented and excellent correlation is achieved. It is found that the velocity, Skin friction and the Nusselt number (heat transfer rate are decreased with increasing Weissenberg number (We, whereas the temperature is increased. Increasing power law index (n increases the velocity and the Nusselt number (heat transfer rate but decreases the temperature and the Skin friction. An increase in the Biot number (γ is observed to increase velocity, temperature, local skin friction and Nusselt number. The study is relevant to chemical materials processing applications.

  6. Inelastic non-Newtonian flow over heterogeneously slippery surfaces

    OpenAIRE

    Haase, A. Sander; Wood, Jeffery Alan; Sprakel, Lisette Maria Johanna; Lammertink, Rob G. H.

    2017-01-01

    In this study, we investigated inelastic non-Newtonian fluid flow over heterogeneously slippery surfaces. First, we simulated the flow of aqueous xanthan gum solutions over a bubble mattress, which is a superhydrophobic surface consisting of transversely positioned no-slip walls and no-shear gas bubbles. The results reveal that for shear-thinning fluids wall slip can be increased significantly, provided that the system is operated in the shear-thinning regime. For a 0.2 wt% xanthan gum soluti...

  7. Air Sparging for Mixing Non-Newtonian Slurries

    Energy Technology Data Exchange (ETDEWEB)

    Bamberger, Judith A.; Enderlin, Carl W.; Tzemos, Spyridon

    2010-01-01

    The mechanics of air sparger systems have been primarily investigated for aqueous-based Newtonian fluids. Tilton et al. (1982) [1] describes the fluid mechanics of air sparging systems in non-Newtonian fluids as having two primary flow regions. A center region surrounding the sparger, referred to as the region of bubbles (ROB), contains upward flow due to the buoyant driving force of the rising bubbles. In an annular region, outside the ROB, referred to as the zone of influence (ZOI), the fluid flow is reversed and is opposed to the direction of bubble rise. Outside the ZOI the fluid is unaffected by the air sparger system. The flow regime in the ROB is often turbulent, and the flow regime in the ZOI is laminar; the flow regime outside the ZOI is quiescent. Tests conducted with shear thinning non-Newtonian fluid in a 34-in. diameter tank showed that the ROB forms an approximately inverted cone that is the envelop of the bubble trajectories. The depth to which the air bubbles reach below the sparger nozzle is a linear function of the air-flow rate. The recirculation time through the ZOI was found to vary proportionally with the inverse square of the sparging air-flow rate. Visual observations of the ROB were made in both water and Carbopol®. The bubbles released from the sparge tube in Carbopol® were larger than those in water

  8. Effects of non-newtonian properties of blood flow on magnetic nanoparticle targeted drug delivery

    Directory of Open Access Journals (Sweden)

    Mobin Haghdel

    2017-04-01

    Full Text Available Objective(s: One applications of nanotechnology is in the area of medicine which is called nanomedicine. Primary instruments in nanomedicine can help us to detect diseases and used for drug delivery to inaccessible areas of human tissues. An important issue in simulating the motion of nanoparticles is modeling blood flow as a Newtonian or non-Newtonian fluid. Sometimes blood flow is simulated as a Newtonian fluid but actually blood has nature of non-Newtonian fluid.  Simulation of targeted drug delivery and motion of nanoparticles in the blood flow as Newtonian and non-Newtonian fluid flow is investigated in this paperMaterials and Methods: In this paper, the blood flow is modeled as both Newtonian and non-Newtonian fluid and the effects of each case on the motion of nanoparticles in blood flow and targeted drug delivery is investigated. The flow is modeled with finite volume method. The particle modeled with discrete phase model.Results: Cross, Herschel-Bulkley and Power-law models are used for simulating the non-Newtonian blood flow. Numerical simulations show that trajectory of nanoparticle’s movement and the required time to pass the vessel by blood flow is variable for different models. According to obtained results, non-Newtonian Power-law and Herschel-Bulkley models have closely similar results but they have significant differences compared with Newtonian model. Conclusion: According to the results, it is preferred in the simulation to model blood flow as a non-Newtonian fluid and uses one of Herschel- Bulkley or Power-law models. Otherwise the simulation is far different from real phenomena.

  9. Effect of the 6PBT stirrer eccentricity and off-bottom clearance on mixing of pseudoplastic fluid in a stirred tank

    Science.gov (United States)

    Luan, Deyu; Zhang, Shengfeng; Wei, Xing; Duan, Zhenya

    The aim of this work is to investigate the effect of the shaft eccentricity on the flow field and mixing characteristics in a stirred tank with the novel stirrer composed of perturbed six-bent-bladed turbine (6PBT). The difference between coaxial and eccentric agitations is studied using computational fluid dynamics (CFD) simulations combined with standard k-ε turbulent equations, that offer a complete image of the three-dimensional flow field. In order to determine the capability of CFD to forecast the mixing process, particle image velocimetry (PIV), which provide an accurate representation of the time-averaged velocity, was used to measure fluid velocity. The test liquid used was 1.25% (wt) xanthan gum solution, a pseudoplastic fluid with a yield stress. The comparison of the experimental and simulated mean flow fields has demonstrated that calculations based on Reynolds-averaged Navier-Stokes equations are suitable for obtaining accurate results. The effects of the shaft eccentricity and the stirrer off-bottom distance on the flow model, mixing time and mixing efficiency were extensively analyzed. It is observed that the microstructure of the flow field has a significant effect on the tracer mixing process. The eccentric agitation can lead to the flow model change and the non-symmetric flow structure, which would possess an obvious superiority of mixing behavior. Moreover, the mixing rate and mixing efficiency are dependent on the shaft eccentricity and the stirrer off-bottom distance, showing the corresponding increase of the eccentricity with the off-bottom distance. The efficient mixing process of pseudoplastic fluid stirred by 6PBT impeller is obtained with the considerably low mixing energy per unit volume when the stirrer off-bottom distance, C, is T/3 and the eccentricity, e, is 0.2. The research results provide valuable references for the improvement of pseudoplastic fluid agitation technology.

  10. Problems in non-Newtonian fluid mechanics

    Science.gov (United States)

    Manero, Octavio

    1980-12-01

    The rheological behavior of industrial liquids such as polymer solutions in complex flow situations and the possibility of predicting this behavior are addressed. Preliminary consideration is given to the rheometrical characterization of several elastico-viscous test solutions. Results of simple shear flow and oscillatory shear flow measurements are shown. These data enable us to choose the most appropriate solutions for our experimental studies. Implicit models of the Oldroyd-Maxwell type are chosen as our constitutive equations to characterize the complex behavior of the liquids considered. These models retain the simplicity necessary to solve complicated flow problems. The numerical method chosen to solve the very complex equations governing the flow of elastic liquids in complex flow situations is discussed. The method is of the generalized conjugate gradient type with incomplete LU-decomposition. This is used to solve the discretized equations using finite differences with central difference formula. The first flow problem considered deals with two unsteady pipe flows. Since experimental data for both are available, we attempt to simulate the experimental results using a conventional perturbation method and a more sophisticated finite difference technique employing the full set of equations. It is concluded that in the vibrating pipe situation the flow must be considered dominated by the axial movement of the pipe. Attention is devoted to the flow of elastic liquids in situations involving abrupt changes in geometry. Associated with this situation is the problem of determining the pressure field and in many publications the pressure solution is not included. The numerical determination of pressure fields in the L-shaped geometry is considered. Experimental pressure drop measurements are described which facilitate a comparison between theory and experiment. The relevant computer program is shown. The problem of the slow flow of elastic liquids past circular cylinders is addressed.

  11. Particle manipulations in non-Newtonian microfluidics: A review.

    Science.gov (United States)

    Lu, Xinyu; Liu, Chao; Hu, Guoqing; Xuan, Xiangchun

    2017-08-15

    Microfluidic devices have been widely used since 1990s for diverse manipulations of particles (a general term of beads, cells, vesicles, drops, etc.) in a variety of applications. Compared to the active manipulation via an externally imposed force field, the passive manipulation of particles exploits the flow-induced intrinsic lift and/or drag to control particle motion with several advantages. Along this direction, inertial microfluidics has received tremendous interest in the past decade due to its capability to handle a large volume of samples at a high throughput. This inertial lift-based approach in Newtonian fluids, however, becomes ineffective and even fails for small particles and/or at low flow rates. Recent studies have demonstrated the potential of elastic lift in non-Newtonian fluids for manipulating particles with a much smaller size and over a much wider range of flow rates. The aim of this article is to provide an overview of the various passive manipulations, including focusing, separation, washing and stretching, of particles that have thus far been demonstrated in non-Newtonian microfluidics. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Analysis of the autonomous problem about coupled active non-Newtonian multi-seepage in sparse medium

    Science.gov (United States)

    Deng, Shuxian; Li, Hongen

    2017-10-01

    The flow field of non-Newtonian fluid in sparse medium was analyzed by computational fluid dynamics (CFD) method. The results show that the axial velocity and radial velocity of the non-Newtonian fluid are larger than those of the Newtonian fluid due to the coupling of the viscosity of the non-Newtonian fluid and the shear rate, and the tangential velocity is less than that of the Newtonian fluid. These differences lead to the difference in the sparse medium Non-Newtonian fluids are of a special nature. The influence of the weight function on the global existence and blasting of the problem is discussed by analyzing the non-Newtonian percolation equation with nonlocal and weighted non-local Dirichlet boundary conditions. According to the non-Newtonian percolation equation, we define the weak solution of the problem and expound the local existence of the weak solution. Then we construct the test function and prove the weak comparison principle by using the Grown well inequality. The overall existence and blasting are analyzed by constructing the upper and lower solutions.

  13. Effect of a Non-Newtonian Load on Signature S2 for Quartz Crystal Microbalance Measurements

    Directory of Open Access Journals (Sweden)

    Jae-Hyeok Choi

    2014-01-01

    Full Text Available The quartz crystal microbalance (QCM is increasingly used for monitoring the interfacial interaction between surfaces and macromolecules such as biomaterials, polymers, and metals. Recent QCM applications deal with several types of liquids with various viscous macromolecule compounds, which behave differently from Newtonian liquids. To properly monitor such interactions, it is crucial to understand the influence of the non-Newtonian fluid on the QCM measurement response. As a quantitative indicator of non-Newtonian behavior, we used the quartz resonator signature, S2, of the QCM measurement response, which has a consistent value for Newtonian fluids. We then modified De Kee’s non-Newtonian three-parameter model to apply it to our prediction of S2 values for non-Newtonian liquids. As a model, we chose polyethylene glycol (PEG400 with the titration of its volume concentration in deionized water. As the volume concentration of PEG400 increased, the S2 value decreased, confirming that the modified De Kee’s three-parameter model can predict the change in S2 value. Collectively, the findings presented herein enable the application of the quartz resonator signature, S2, to verify QCM measurement analysis in relation to a wide range of experimental subjects that may exhibit non-Newtonian behavior, including polymers and biomaterials.

  14. Non-Newtonian Flow-Induced Deformation From Pressurized Cavities in Absorbing Porous Tissues

    Science.gov (United States)

    Ahmed, Aftab; Siddique, Javed

    2017-11-01

    We investigate the behavior of a spherical cavity in a soft biological tissue modeled as a deformable porous material during an injection of non-Newtonian fluid that follows a power law model. Fluid flows into the neighboring tissue due to high cavity pressure where it is absorbed by capillaries and lymphatics at a rate proportional to the local pressure. Power law fluid pressure and displacement of solid in the tissue are computed as function of radial distance and time. Numerical solutions indicate that shear thickening fluids exhibit less fluid pressure and induce small solid deformation as compared to shear thinning fluids. The absorption in the biological tissue increases as a consequence of flow induced deformation for power law fluids. In most cases non-Newtonian results are compared with viscous fluid case to magnify the differences.

  15. Unsteady Non-Newtonian Solver on Unstructured Grid for the Simulation of Blood Flow

    Directory of Open Access Journals (Sweden)

    Guojie Li

    2013-01-01

    Full Text Available Blood is in fact a suspension of different cells with yield stress, shear thinning, and viscoelastic properties, which can be represented by different non-Newtonian models. Taking Casson fluid as an example, an unsteady solver on unstructured grid for non-Newtonian fluid is developed to simulate transient blood flow in complex flow region. In this paper, a steady solver for Newtonian fluid is firstly developed with the discretization of convective flux, diffusion flux, and source term on unstructured grid. For the non-Newtonian characteristics of blood, the Casson fluid is approximated by the Papanastasiou's model and treated as Newtonian fluid with variable viscosity. Then considering the transient property of blood flow, an unsteady non-Newtonian solver based on unstructured grid is developed by introducing the temporal term by first-order upwind difference scheme. Using the proposed solver, the blood flows in carotid bifurcation of hypertensive patients and healthy people are simulated. The result shows that the possibility of the genesis and development of atherosclerosis is increased, because of the increase in incoming flow shock and backflow areas of the hypertensive patients, whose WSS was 20~87.1% lower in outer vascular wall near the bifurcation than that of the normal persons and 3.7~5.5% lower in inner vascular wall downstream the bifurcation.

  16. Lie group analysis of flow and heat transfer of non-Newtonian ...

    Indian Academy of Sciences (India)

    2017-01-09

    Jan 9, 2017 ... Lie group analysis; boundary layer; nanofluid; non-Newtonian power-law fluid; variable viscosity; convective boundary conditions. ... of all these applications, Crane [1] initiated the analyt- ical study of boundary layer flow due to a ... storage, gas turbines, nuclear plants etc. In view of the above applications ...

  17. Unsteady free convection and mass transfer flow of a non-newtonian ...

    African Journals Online (AJOL)

    We study the unsteady free convection and mass transfer of a non-Newtonian fluid past an infinite vertical plate in the presence of thermal diffusion. Closed form analytical solutions are obtained for the concentration and the temperature distributions by means of the Laplace transform technique on the assumption that the ...

  18. Drop impact experiments of non-Newtonian liquids on micro-structured surfaces

    NARCIS (Netherlands)

    Guemas, Marine; Gomez Marin, Alvaro; Lohse, Detlef

    2012-01-01

    The spreading dynamics of Newtonian liquids have been extensively studied in hydrophilic and hydrophobic surfaces and their behaviors have been extensively explored over the last few years. However, the drop impact of non-Newtonian liquids still needs further study. Luu and Forterre (J. Fluid Mech.,

  19. Impinging jet spray formation using non-Newtonian liquids

    Science.gov (United States)

    Rodrigues, Neil S.

    Over the past two decades there has been a heightened interest in implementing gelled propellants for rocket propulsion, especially for hypergolic bi-propellants such as monomethylhydrazine (MMH) and nitrogen tetroxide oxidizer (NTO). Due to the very high level of toxicity of hypergolic liquid rocket propellants, increasing safety is an important area of need for continued space exploration and defense operations. Gelled propellants provide an attractive solution to meeting the requirements for safety, while also potentially improving performance. A gelling agent can be added to liquid propellants exhibiting Newtonian behavior to transform the liquid into a non-Newtonian fluid with some solid-like behavior, i.e. a gel. Non-Newtonian jet impingement is very different from its Newtonian counterpart in terms of fluid flow, atomization, and combustion. This is due to the added agents changing physical properties such as the bulk rheology (viscosity) and interfacial rheology (surface tension). Spray characterization of jet impingement with Newtonian liquids has been studied extensively in existing literature. However, there is a scarcity in literature of studies that consider the spray characterization of jet impingement with gelled propellants. This is a rather critical void since a major tradeoff of utilizing gelled propellants is the difficulty with atomization due to the increased effective viscosity. However, this difficulty can be overcome by using gels that exhibit shear-thinning behavior---viscosity decreases with increasing strain rate. Shear-thinning fluids are ideal because they have the distinct advantage of only flowing easily upon pressure. Thereby, greatly reducing the amount of propellant that could be accidentally leaked during both critical functions such as liftoff or engagement in the battlefield and regular tasks like refilling propellant tanks. This experimental work seeks to help resolve the scarcity in existing literature by providing drop size

  20. Non-Newtonian Comment of Lebesgue Measure in Real Numbers

    Directory of Open Access Journals (Sweden)

    Cenap Duyar

    2017-01-01

    Full Text Available We would like to generalize to non-Newtonian real numbers the usual Lebesgue measure in real numbers. For this purpose, we introduce the Lebesgue measure on open and closed sets in non-Newtonian sense and examine their basic properties.

  1. Non-Newtonian Comment of Lebesgue Measure in Real Numbers

    OpenAIRE

    Duyar, Cenap; Sağır, Birsen

    2017-01-01

    We would like to generalize to non-Newtonian real numbers the usual Lebesgue measure in real numbers. For this purpose, we introduce the Lebesgue measure on open and closed sets in non-Newtonian sense and examine their basic properties.

  2. Numerical study of purely viscous non-Newtonian flow in an abdominal aortic aneurysm.

    Science.gov (United States)

    Marrero, Victor L; Tichy, John A; Sahni, Onkar; Jansen, Kenneth E

    2014-10-01

    It is well known that blood has non-Newtonian properties, but it is generally accepted that blood behaves as a Newtonian fluid at shear rates above 100 s-1. However, in transient conditions, there are times and locations where the shear rate is well below 100 s-1, and it is reasonable to infer that non-Newtonian effects could become important. In this study, purely viscous non-Newtonian (generalized Newtonian) properties of blood are incorporated into the simulation-based framework for cardiovascular surgery planning developed by Taylor et al. (1999, "Predictive Medicine: Computational Techniques in Therapeutic Decision Making," Comput. Aided Surg., 4, pp. 231-247; 1998, "Finite Element Modeling of Blood Flow in Arteries," Comput. Methods Appl. Mech. Eng., 158, pp. 155-196). Equations describing blood flow are solved in a patient-based abdominal aortic aneurysm model under steady and physiological flow conditions. Direct numerical simulation (DNS) is used, and the complex flow is found to be constantly transitioning between laminar and turbulent in both the spatial and temporal sense. It is found for the case simulated that using the non-Newtonian viscosity modifies the solution in subtle ways that yield a mesh-independent solution with fewer degrees of freedom than the Newtonian counterpart. It appears that in regions of separated flow, the lower shear rate produces higher viscosity with the non-Newtonian model, which reduces the associated resolution needs. When considering the real case of pulsatile flow, high shear layers lead to greater unsteadiness in the Newtonian case relative to the non-Newtonian case. This, in turn, results in a tendency for the non-Newtonian model to need fewer computational resources even though it has to perform additional calculations for the viscosity. It is also shown that both viscosity models predict comparable wall shear stress distribution. This work suggests that the use of a non-Newtonian viscosity models may be attractive

  3. Studying mixing in Non-Newtonian blue maize flour suspensions using color analysis.

    Science.gov (United States)

    Trujillo-de Santiago, Grissel; Rojas-de Gante, Cecilia; García-Lara, Silverio; Ballescá-Estrada, Adriana; Alvarez, Mario Moisés

    2014-01-01

    Non-Newtonian fluids occur in many relevant flow and mixing scenarios at the lab and industrial scale. The addition of acid or basic solutions to a non-Newtonian fluid is not an infrequent operation, particularly in Biotechnology applications where the pH of Non-Newtonian culture broths is usually regulated using this strategy. We conducted mixing experiments in agitated vessels using Non-Newtonian blue maize flour suspensions. Acid or basic pulses were injected to reveal mixing patterns and flow structures and to follow their time evolution. No foreign pH indicator was used as blue maize flours naturally contain anthocyanins that act as a native, wide spectrum, pH indicator. We describe a novel method to quantitate mixedness and mixing evolution through Dynamic Color Analysis (DCA) in this system. Color readings corresponding to different times and locations within the mixing vessel were taken with a digital camera (or a colorimeter) and translated to the CIELab scale of colors. We use distances in the Lab space, a 3D color space, between a particular mixing state and the final mixing point to characterize segregation/mixing in the system. Blue maize suspensions represent an adequate and flexible model to study mixing (and fluid mechanics in general) in Non-Newtonian suspensions using acid/base tracer injections. Simple strategies based on the evaluation of color distances in the CIELab space (or other scales such as HSB) can be adapted to characterize mixedness and mixing evolution in experiments using blue maize suspensions.

  4. Studying mixing in Non-Newtonian blue maize flour suspensions using color analysis.

    Directory of Open Access Journals (Sweden)

    Grissel Trujillo-de Santiago

    Full Text Available BACKGROUND: Non-Newtonian fluids occur in many relevant flow and mixing scenarios at the lab and industrial scale. The addition of acid or basic solutions to a non-Newtonian fluid is not an infrequent operation, particularly in Biotechnology applications where the pH of Non-Newtonian culture broths is usually regulated using this strategy. METHODOLOGY AND FINDINGS: We conducted mixing experiments in agitated vessels using Non-Newtonian blue maize flour suspensions. Acid or basic pulses were injected to reveal mixing patterns and flow structures and to follow their time evolution. No foreign pH indicator was used as blue maize flours naturally contain anthocyanins that act as a native, wide spectrum, pH indicator. We describe a novel method to quantitate mixedness and mixing evolution through Dynamic Color Analysis (DCA in this system. Color readings corresponding to different times and locations within the mixing vessel were taken with a digital camera (or a colorimeter and translated to the CIELab scale of colors. We use distances in the Lab space, a 3D color space, between a particular mixing state and the final mixing point to characterize segregation/mixing in the system. CONCLUSION AND RELEVANCE: Blue maize suspensions represent an adequate and flexible model to study mixing (and fluid mechanics in general in Non-Newtonian suspensions using acid/base tracer injections. Simple strategies based on the evaluation of color distances in the CIELab space (or other scales such as HSB can be adapted to characterize mixedness and mixing evolution in experiments using blue maize suspensions.

  5. A two-layered suspension (particle-fluid) model for non-Newtonian fluid flow in a catheterized arterial stenosis with slip condition at the wall of stenosed artery

    Science.gov (United States)

    Ponalagusamy, R.

    2017-05-01

    The primary concern of the present investigation is to study blood flow in a porous catheterized artery with an axially asymmetric and radially symmetric stenosis (constriction). In the present study, blood is characterized as a two-fluid system containing a cell-rich zone of suspension of blood cells described to be a particle-fluid suspension (Jeffrey fluid) and a cell-free plasma (Newtonian fluid) layer near the wall. The systematic expressions for flow characteristics such as fluid phase and particle phase velocities, flow rate, wall shear stress, resistive force, and frictional forces on walls of arterial stenosis and catheter are derived. It is recorded that the wall shear stress, flow resistance, and frictional forces are found to be increased with catheter size, red cell concentration, and slip parameter. When blood obeys the law of constitutive equation of a Jeffrey fluid, the flowing blood experiences lesser wall shear stress, flow resistance and frictional forces as compared to the case of blood being categorized as a Newtonian fluid. The increase in Darcy number, blood rheology as Jeffrey fluid, and the presence of peripheral plasma layer near the wall serves to reduce substantially the values of the flow characteristics (wall shear stress, flow resistance and frictional forces).

  6. Drop impact experiments of non-Newtonian liquids on micro-structured surfaces

    OpenAIRE

    Guémas, Marine; Marin, Alvaro; Lohse, Detlef

    2017-01-01

    The spreading dynamics of Newtonian liquids have been extensively studied in hydrophilic and hydrophobic surfaces and its behavior has been extensively explored over the last years. However, drop impact of Non-Newtonian liquids still needs further study. Luu and Forterre (J. Fluid Mech., 632, 2009) successfully found scaling laws for yield-stress fluids on hydrophilic surfaces. They also uncovered interesting and yet unexplained regimes when the impact was performed on a superhydrophobic surf...

  7. Pulsatile Non-Newtonian Laminar Blood Flows through Arterial Double Stenoses

    Directory of Open Access Journals (Sweden)

    Mir Golam Rabby

    2014-01-01

    Full Text Available The paper presents a numerical investigation of non-Newtonian modeling effects on unsteady periodic flows in a two-dimensional (2D pipe with two idealized stenoses of 75% and 50% degrees, respectively. The governing Navier-Stokes equations have been modified using the Cartesian curvilinear coordinates to handle complex geometries. The investigation has been carried out to characterize four different non-Newtonian constitutive equations of blood, namely, the (i Carreau, (ii Cross, (iii Modified Casson, and (iv Quemada models. The Newtonian model has also been analyzed to study the physics of fluid and the results are compared with the non-Newtonian viscosity models. The numerical results are represented in terms of streamwise velocity, pressure distribution, and wall shear stress (WSS as well as the vorticity, streamlines, and vector plots indicating recirculation zones at the poststenotic region. The results of this study demonstrate a lower risk of thrombogenesis at the downstream of stenoses and inadequate blood supply to different organs of human body in the Newtonian model compared to the non-Newtonian ones.

  8. Inelastic non-Newtonian flow over heterogeneously slippery surfaces

    Science.gov (United States)

    Haase, A. Sander; Wood, Jeffery A.; Sprakel, Lisette M. J.; Lammertink, Rob G. H.

    2017-02-01

    In this study, we investigated inelastic non-Newtonian fluid flow over heterogeneously slippery surfaces. First, we simulated the flow of aqueous xanthan gum solutions over a bubble mattress, which is a superhydrophobic surface consisting of transversely positioned no-slip walls and no-shear gas bubbles. The results reveal that for shear-thinning fluids wall slip can be increased significantly, provided that the system is operated in the shear-thinning regime. For a 0.2 wt% xanthan gum solution with a power-law index of n =0.4 , the numerical results indicate that wall slip can be enhanced 3.2 times when compared to a Newtonian liquid. This enhancement factor was also predicted from a theoretical analysis, which gave an expression for the maximum slip length that can be attained over flat, heterogeneously slippery surfaces. Although this equation was derived for a no-slip/no-shear unit length that is much larger than the typical size of the system, we found that it can also be used to predict the enhancement in the regime where the slip length is proportional to the size of the no-shear region or the bubble width. The results could be coupled to the hydrodynamic development or entrance length of the system, as maximum wall slip is only reached when the fluid flow can fully adapt to the no-slip and no-shear conditions at the wall.

  9. Numerial simulation and experimental study of non-newtonian mixing flow with a free surface

    Directory of Open Access Journals (Sweden)

    M. Dular

    2006-12-01

    Full Text Available The object of this work was to evaluate the capability of numerical simulation to predict different features of non-Newtonian fluid mixing process. A relatively simple impeller (six bladed vane rotor was used for the mixing of carboxymethyl cellulose. A LDA method was used to measure the tangential velocity at two points inside the mixing vessel. Using visualization, a significant vortex above the impeller was observed. The shape of the free surface was determined by a geometrical reconstruction of the images of the illuminated section. Torque on the impeller shaft was measured to determine the characteristics of the fluid. Fluent program package was used for the simulation. The problem is challenging since the effects of non-Newtonian fluid, mixing process and free surface have to be included in the simulation. The comparison between the experimental and numerical results confirms the accuracy of the simulations.

  10. Numerical simulation of the planar extrudate swell of pseudoplastic and viscoelastic fluids with the streamfunction and the VOF methods

    DEFF Research Database (Denmark)

    Comminal, Raphaël; Pimenta, Francisco; Hattel, Jesper H.

    2018-01-01

    , in order to preserve the positive-definiteness of the conformation tensor, and to circumvent the high Weissenberg number problem. The volume fraction of the fluid is advected with a geometric conservative unsplit scheme that preserves a sharp interface representation. For the sake of comparison, we also...

  11. Convective Instability in Ice I with Non-Newtonian Rheology: Application to the Galilean Satellites

    Science.gov (United States)

    Barr, A. C.; Zhong, S.; Pappalardo, R. T.

    2004-01-01

    At the temperatures and stresses associated with the onset of convection in an ice I shell of the Galilean satellites, ice behaves as a non-Newtonian fluid with a viscosity that depends on both temperature and strain rate. The convective stability of a non-Newtonian ice shell can be judged by comparing the Rayleigh number of the shell to a critical value. Previous studies suggest that the critical Rayleigh number for a non-Newtonian fluid depends on the initial conditions in the fluid layer, in addition to the thermal, rheological, and physical properties of the fluid. We seek to extend the existing definition of the critical Rayleigh number for a non-Newtonian, basally heated fluid by quantifying the conditions required to initiate convection in an ice I layer initially in conductive equilibrium. We find that the critical Rayleigh number for the onset of convection in ice I varies as a power (-0.6 to -0.5) of the amplitude of the initial temperature perturbation issued to the layer, when the amplitude of perturbation is less than the rheological temperature scale. For larger-amplitude perturbations, the critical Rayleigh number achieves a constant value. We characterize the critical Rayleigh number as a function of surface temperature of the satellite, melting temperature of ice, and rheological parameters so that our results may be extrapolated for use with other rheologies and for a generic large icy satellite. The values of critical Rayleigh number imply that triggering convection from a conductive equilibrium in a pure ice shell less than 100 km thick in Europa, Ganymede, or Callisto requires a large, localized temperature perturbation of a few kelvins to tens of kelvins to soften the ice and therefore may require tidal dissipation in the ice shell.

  12. On predicting the onset of transient convection in porous media saturated with Non-Newtonian liquid

    Science.gov (United States)

    Tan, K. K.; Pua, S. Y.; Yang, A.

    2017-06-01

    The onset of transient convection in non-Newtonian liquid immersing porous media was simulated using a Computational Fluid Dynamics (CFD) package for the thermal boundary condition of Fixed Surface Temperature (FST). Most of the simulated values of stability criteria were found to be in good agreement with the predicted and theoretical values of transient critical Rayleigh number for non-Newtonian liquid defined by Tan and Thorpe (1992) for power-law fluids. The critical transient Rayleigh numbers for convection in porous media were found to be in good agreement with theoretical values by using apparent viscosity µapp at zero shear. The critical time and critical depth for transient heat conduction were then determined accurately that

  13. Differential Transformation Method for Newtonian and non-Newtonian nanofluids flow analysis: Compared to numerical solution

    OpenAIRE

    Hatami, M.; Jing, D.

    2017-01-01

    In this study, a simple and high accurate series-based method called Differential Transformation Method (DTM) is used for solving the coupled nonlinear differential equations in fluids mechanic problems. The concept of the DTM is briefly introduced, and its application on two different cases, natural convection of a non-Newtonian nanofluid between two vertical plates and Newtonian nanofluid flow between two horizontal plates, has been studied. DTM results are compared with those obtained by a...

  14. Non-Newtonian Momentum Transfer past an Isothermal Stretching Sheet with Applied Suction

    Science.gov (United States)

    Veena, P. H.; Suresh, B.; Pravin, V. K.; Goud, A. M.

    2017-08-01

    The paper discusses the flow of an incompressible non-Newtonian fluid due to stretching of a plane elastic surface in a saturated porous medium in the approximation of boundary layer theory. An exact analytical solution of non-linear MHD momentum equation governing the self-similar flow is given. The skin friction co-efficient decreases with an increase in the visco-elastic parameter k1 and increase in the values of both the magnetic parameter and permeability parameter.

  15. Deformation and breakup of a non-Newtonian slender drop in an extensional flow: inertial effects and stability

    Science.gov (United States)

    Favelukis, Moshe; Lavrenteva, Olga M.; Nir, Avinoam

    2006-09-01

    We consider the deformation and breakup of a non-Newtonian slender drop in a Newtonian liquid, subject to an axisymmetric extensional flow, and the influence of inertia in the continuous phase. The non-Newtonian fluid inside the drop is described by the simple power-law model and the unsteady deformation of the drop is represented by a single partial differential equation. The steady-state problem is governed by four parameters: the capillary number; the viscosity ratio; the external Reynolds number; and the exponent characterizing the power-law model for the non-Newtonian drop. For Newtonian drops, as inertia increases, drop breakup is facilitated. However, for shear thinning drops, the influence of increasing inertia results first in preventing and then in facilitating drop breakup. Multiple stationary solutions were also found and a stability analysis has been performed in order to distinguish between stable and unstable stationary states.

  16. Tribological properties of dry, fluid, and boundary friction

    Science.gov (United States)

    Lyashenko, I. A.

    2011-05-01

    A friction pair is studied under lubricant-free dry friction, hydrodynamic, and boundary lubricant conditions. It is shown that, in dry friction, the number of harmonics in the time dependence of the coordinate of the lower rubbing block decreases with increasing frequency of an applied periodic action until the interacting surfaces stick when a critical frequency is exceeded. The surfaces then move together. The behavior of a friction pair with a lubricant made of a Newtonian fluid, pseudoplastic fluid, or dilatant non-Newtonian fluid is analyzed in the hydrodynamic case. It is found that a pseudoplastic fluid or a boundary lubricant leads a intermittent (stick-slip) friction mode, which is one of the main causes of fracture of rubbing parts, over a wide parametric range.

  17. Non-Newtonian blood flow dynamics in a right internal carotid artery with a saccular aneurysm

    Science.gov (United States)

    Valencia, Alvaro; Zarate, Alvaro; Galvez, Marcelo; Badilla, Lautaro

    2006-02-01

    Flow dynamics plays an important role in the pathogenesis and treatment of cerebral aneurysms. The temporal and spatial variations of wall shear stress in the aneurysm are hypothesized to be correlated with its growth and rupture. In addition, the assessment of the velocity field in the aneurysm dome and neck is important for the correct placement of endovascular coils. This work describes the flow dynamics in a patient-specific model of carotid artery with a saccular aneurysm under Newtonian and non-Newtonian fluid assumptions. The model was obtained from three-dimensional rotational angiography image data and blood flow dynamics was studied under physiologically representative waveform of inflow. The three-dimensional continuity and momentum equations for incompressible and unsteady laminar flow were solved with a commercial software using non-structured fine grid with 283 115 tetrahedral elements. The intra-aneurysmal flow shows complex vortex structure that change during one pulsatile cycle. The effect of the non-Newtonian properties of blood on the wall shear stress was important only in the arterial regions with high velocity gradients, on the aneurysmal wall the predictions with the Newtonian and non-Newtonian blood models were similar.

  18. Slip-Flow and Heat Transfer of a Non-Newtonian Nanofluid in a Microtube

    Science.gov (United States)

    Niu, Jun; Fu, Ceji; Tan, Wenchang

    2012-01-01

    The slip-flow and heat transfer of a non-Newtonian nanofluid in a microtube is theoretically studied. The power-law rheology is adopted to describe the non-Newtonian characteristics of the flow, in which the fluid consistency coefficient and the flow behavior index depend on the nanoparticle volume fraction. The velocity profile, volumetric flow rate and local Nusselt number are calculated for different values of nanoparticle volume fraction and slip length. The results show that the influence of nanoparticle volume fraction on the flow of the nanofluid depends on the pressure gradient, which is quite different from that of the Newtonian nanofluid. Increase of the nanoparticle volume fraction has the effect to impede the flow at a small pressure gradient, but it changes to facilitate the flow when the pressure gradient is large enough. This remarkable phenomenon is observed when the tube radius shrinks to micrometer scale. On the other hand, we find that increase of the slip length always results in larger flow rate of the nanofluid. Furthermore, the heat transfer rate of the nanofluid in the microtube can be enhanced due to the non-Newtonian rheology and slip boundary effects. The thermally fully developed heat transfer rate under constant wall temperature and constant heat flux boundary conditions is also compared. PMID:22615961

  19. A Lagrangian finite element method for the simulation of flow of non-newtonian liquids

    DEFF Research Database (Denmark)

    Hassager, Ole; Bisgaard, C

    1983-01-01

    A Lagrangian method for the simulation of flow of non-Newtonian liquids is implemented. The fluid mechanical equations are formulated in the form of a variational principle, and a discretization is performed by finite elements. The method is applied to the slow of a contravariant convected Maxwell...... liquid around a sphere moving axially in a cylinder. The simulations show that the friction factor for a sphere in a narrow cylinder is a rapidly decreasing function of the Deborah number, while the friction factor for a sphere in a very wide cylinder is not significantly affected by fluid elasticity...

  20. Numerical exploration of a non-Newtonian Carreau fluid flow driven by catalytic surface reactions on an upper horizontal surface of a paraboloid of revolution, buoyancy and stretching at the free stream

    Directory of Open Access Journals (Sweden)

    I.L. Animasaun

    2017-12-01

    Full Text Available Geometrically, the upper pointed surface of an aircraft and bonnet of a car are examples of upper horizontal surfaces of a paraboloid of revolution (uhspr. The motion of these objects strongly depends on the boundary layer that is formed within the immediate space on it. However, each of these surfaces is neither a horizontal/vertical nor cone/wedge and neither a cone nor a wedge. This article presents the motion of 2-dimensional Blasius flow of Carreau fluid on the surface of such object. The case in which the reaction between the Carreau fluid and catalyst at the surface produces significant temperature differences which consequently set up buoyancy-driven flows within the boundary layer is investigated. Single first-order Arrhenius kinetics is adopted to model the reaction on the surface of the catalyst situated on uhspr which initiates the free convection. Suitable similarity variables are applied to non-dimensionalized, parameterized and reduce the governing partial differential equations to a coupled ordinary differential equations (BVP. The BVP is solved numerically using the shooting technique. Temperature distribution in the flow of viscoelastic Carreau fluid is greater than that of a Newtonian fluid. Local heat transfer rate decreases faster when the Carreau fluid is characterized as shear-thinning. Maximum concentration is guaranteed at a small value of power-law index n and large value of thickness parameter. Keywords: Viscoelastic-Carreau fluid, Catalitic surface, Paraboloid of revolution, Numerical method, Uhspr, Boundary layer analysis

  1. Sinking of spherical slablets through a non-Newtonian mantle

    Science.gov (United States)

    Crameri, Fabio; Stegman, Dave; Petersen, Robert; Tackley, Paul

    2014-05-01

    The dominant driving force for plate tectonics is slab pull, in which sinking slabs pull the trailing plate. Forward plate velocities are typically similar in magnitude (7 cm/yr) as estimates for sinking velocities of slabs through the upper mantle. However, these estimates are based on data for slabs that are coherent into the transition zone as well as models that considered the upper mantle to be entirely Newtonian. Dislocation creep in the upper mantle can strongly influence mantle flow, and is likely activated for flow around vertically sinking slabs in the uppermost mantle. Thus, it is possible that in some scenarios, a non-Newtonian mantle will have an influence on plate motions but it is unclear to what degree. To address this question, we investigate how the non-Newtonian rheology modifies the sinking velocities of slablets (spherical, negatively buoyant and highly viscous blobs). The model set-up is similar to a Stokes sphere sinking, but is in 2-D cartesian with temperature-and stress-dependent rheology. For these numerical models, we use the Stag-YY code (e.g., Tackley 2008) and apply a pseudo-free surface using the 'sticky-air' approach (Matsumoto and Tomoda 1983; Schmeling et al, 2008, Crameri et al., 2012). The sinking blob is both highly viscous and compositionally dense, but is the same temperature as the background fluid which eliminates thermal diffusion and associated variations in thermal buoyancy. The model domain is 2x1 or 4x1 and allows enough distance to the sidewalls so that sinking velocities are not influenced by the boundary conditions. We compare our results with those previously obtained for salt diapirs rising through a power-law rheology mantle/crust (Weinberg, 1993; Weinberg and Podladchikov, 1994), which provided both numerical and analytic results. Previous results indicate a speed-up of an order of magnitude is possible. Finally, we then extend the models and analysis to mantle convection systems that include for single

  2. On the Performance of Pivoted Curved Slider Bearings: Rabinowitsch Fluid Model

    Directory of Open Access Journals (Sweden)

    U.P. Singh

    2012-09-01

    Full Text Available The present theoretical analysis is to investigate the effect of nonNewtonian Pseudoplastic & Dilatant lubricants (lubricant blended with viscosity index improver–Rabinowitsch fluid model on the dynamic stiffness and damping characteristics of pivoted curved slider bearings. The modified Reynolds equation has been obtained for steady and damping states of the bearing. To analyze the steady state characteristics and dynamic characteristics, small perturbation theory has been adopted. The results for the steady state bearing performance characteristics (steady state film pressure, load carrying capacity and centre of pressure as well as dynamic stiffness and damping characteristics have been calculated numerically for various values of viscosity index improver using Mathematical 7.0 and it is concluded that these characteristics vary significantly with the non-Newtonian behavior of the fluid consistent with the real nature of the problem.

  3. Simulation of non-Newtonian oil-water core annular flow through return bends

    Science.gov (United States)

    Jiang, Fan; Wang, Ke; Skote, Martin; Wong, Teck Neng; Duan, Fei

    2017-07-01

    The volume of fluid (VOF) model is used together with the continuum surface force (CSF) model to numerically simulate the non-Newtonian oil-water core annular flow across return bends. A comprehensive study is conducted to generate the profiles of pressure, velocity, volume fraction and wall shear stress for different oil properties, flow directions, and bend geometries. It is revealed that the oil core may adhere to the bend wall under certain operating conditions. Through the analysis of the total pressure gradient and fouling angle, suitable bend geometric parameters are identified for avoiding the risk of fouling.

  4. Non-Newtonian Study of Blood Flow in an Abdominal Aortic Aneurysm with a Stabilized Finite Element Method

    Science.gov (United States)

    Marrero, Victor; Sahni, Onkar; Jansen, Kenneth; Tichy, John; Taylor, Charles

    2008-11-01

    In recent years the methods of computational fluid dynamics (CFD) have been applied to the human cardiovascular system to better understand the relationship between arterial blood flow and the disease process, for example in an abdominal aortic aneurysm (AAA). Obviously, the technical challenges associated with such modeling are formidable. Among the many problems to be addressed, in this paper we add yet another complication -- the known non-Newtonian nature of blood. In this preliminary study, we used a patient-based AAA model with rigid walls. The pulsatile nature of the flow and the RCR outflow boundary condition are considered. We use the Carreau-Yasuda model to describe the non-Newtonian viscosity variation. Preliminary results for 200K, 2M, and 8M elements mesh are presented for the Newtonian and non-Newtonian cases. The broad fundamental issue we wish to eventually resolve is whether or not non-Newtonian effects in blood flow are sufficiently strong in unhealthy vessels that they must be addressed in meaningful simulations. Interesting differences during the flow cycle shed light on the problem, but further research is needed.

  5. Effect of scale-up on average shear rates for aerated non-Newtonian liquids in external loop airlift reactors.

    Science.gov (United States)

    Al-Masry

    1999-02-01

    Average shear rates have been estimated experimentally in a 700-dm3 external loop airlift reactor. Aqueous pseudoplastic carboxymethylcellulose and xanthan gum solutions were used to simulate non-Newtonian behavior of biological media. Average shear rates of non-Newtonian solutions were found by analogy with Newtonian glycerol solutions using downcomer liquid velocity as the measurable parameter. Due to the complexity of local shear rate measurement, an average shear rate was assumed to exist and is proportional to superficial gas velocity. The data from this work and those in the literature were used in producing a new correlation for estimating average shear rates as a function of superficial gas velocity, geometry, and dispersion height. Wall shear rates were found to be significant. The ratio of wall shear rates to bulk shear rates were varied from 5% to 40%. Furthermore, it has been found that shear rates generated in airlift loop reactors are lower than those generated in bubble columns. Copyright 1999 John Wiley & Sons, Inc.

  6. Channelled flow of lava with temperature dependent pseudoplastic rheology: condition for tube formation

    Science.gov (United States)

    Filippucci, Marilena; Tallarico, Andrea; Dragoni, Michele

    2010-05-01

    Conditions for crust and tube formation are studied assuming for lava a pseudoplastic rheology dependent on temperature (Sonder, pers. Comm.). The pseudoplasticity is the rheological model which, from recent laboratory studies, better describes the behaviour of basaltic lava (e.g. Sonder et al., 2006). The pseudoplastic rheology belongs to the power law rheology and the constitutive equation for a power law fluid is the following: σij = 2kdot en-1dot eij (1) where k is the fluid consistency, n is the power law exponent and e depends on the second invariant of the deformation rate tensor. For a pseudoplastic fluid we have that n

  7. Turbulence modeling based on non-Newtonian constitutive laws

    Energy Technology Data Exchange (ETDEWEB)

    Mompean, G [Universite Lille 1, Polytech' Lille, LML, CNRS, UMR 8107, F-59655 V. d' Ascq (France); Qiu, X [Department of Mathematics and Physics, Shanghai Institute of Technology, Shanghai 200235 (China); Schmitt, F G [LOG, CNRS, UMR 8187, F-62930 Wimereux (France); Thompson, R, E-mail: gilmar.mompean@polytech-lille.fr [UFF, LMTA, Niteroi RJ24210-240 (Brazil)

    2011-12-22

    This work revisits the analogy between Newtonian turbulence and non-Newtonian laminar flows. Several direct numerical simulations (DNS) data of a plane channel flow, for a large range of Reynolds numbers (180 {<=} Re{sub {tau}} {<=} 2000) were explored. The profiles of mean velocity and second moment quantities were used to extract viscometric functions in the non-Newtonian modeling framework. The Reynolds stress tensor is expressed in terms of a set of basis kinematic tensors based on a projection of a nonlinear framework. The coefficients of the model are given as functions of the intensity of the mean strain tensor. The apparent eddy turbulent viscosity, the first and second normal stress differences are presented as function of the shear rate. One of the advantages of the new algebraic nonlinear power law constitutive equation derived in the paper, is that is only dependent on the mean velocity gradient and can be integrated up to the wall.

  8. Generation of Oil Droplets in a Non-Newtonian Liquid Using a Microfluidic T-Junction

    Directory of Open Access Journals (Sweden)

    Enrico Chiarello

    2015-11-01

    Full Text Available We have compared the formation of oil drops in Newtonian and non-Newtonian fluids in a T-junction microfluidic device. As Newtonian fluids, we used aqueous solutions of glycerol, while as non-Newtonian fluids we prepared aqueous solutions of xanthan, a stiff rod-like polysaccharide, which exhibit strong shear-thinning effects. In the squeezing regime, the formation of oil droplets in glycerol solutions is found to scale with the ratio of the dispersed flow rate to the continuous one and with the capillary number associated to the continuous phase. Switching to xanthan solutions does not seem to significantly alter the droplet formation process. Any quantitative difference with respect to the Newtonian liquid can be accounted for by a suitable choice of the capillary number, corresponding to an effective xanthan viscosity that depends on the flow rates. We have deduced ample variations in the viscosity, on the order of 10 and more, during normal operation conditions of the T-junction. This allowed estimating the actual shear rates experienced by the xanthan solutions, which go from tens to hundreds of s−1.

  9. Controllability of Non-Newtonian Fluids Under Homogeneous Flows

    National Research Council Canada - National Science Library

    Wilson, Lynda M

    2007-01-01

    .... The constitutive models are as follows: the Phan-Thien-Tanner model; the Johnson-Segalman model; and the Doi model. The effect of extensional flow on these models and the effect of shear flow on the Doi model have not been explored previous to this work...

  10. Numerical simulation of pulsatile flow with newtonian and non-newtonian behavior in arterial stenosis

    Directory of Open Access Journals (Sweden)

    MM Movahedi

    2008-03-01

    Full Text Available Background: There is considerable evidence that vascular fluid dynamics plays an important role in the developmentand prevalence of atherosclerosis which is one of the most widespread disease in humans .The onset and prevalence of atherosclerosis hemodynamic parameter are largely affected by geometric parameters. If any obstacle interferes with the blood flow, the above parameters change dramatically. Most of the arterial diseases, such as atherosclerosis, occur in the arteries with complex patterns of fluid flow where the blood dynamics plays an important role. Arterial stenosis mostly occurs in an area with a complex pattern of fluid flow, such as coronary artery, aorta bifurcation, carotid and vessels of lower limbs. During the past three decades, many experimental studies have been performed on the hemodynamic role of the blood in forming sediment in the inner wall of the vessels. It has been shown that forming sediment in the inner wall of vessels depends on the velocity of fluid and also on the amount of wall shear stress.Methods: We have examined the effect on the blood flow of local stenosis in carotid artery in numerical form using the incompressible Navier-Stockes equations. The profile of the velocity in different parts and times in the pulsatile cycle, separation and reattachment points on the wall, the distance stability of flow and also alteration caused by the wall shear stress in entire vessel were shown and compared with two behaviors flow (Newtonian and Non-Newtonian.Finally we describe the influence of the severity of the stenosis on the separation and reattachmentpoints for a Non-Newtonian fuid. Results: In the present study, we have pointed very low and high oscillating WSS (Wall Shear Stress values play a significant role in the development of forming sediment in the inner wall of vessels. Also, we obtain this probability is higher for Newtonian than Non-Newtonian fluid behavior.Conclusion: Based on our results, the

  11. Viscosity of Heterogeneous Silicate Melts: A Non-Newtonian Model

    Science.gov (United States)

    Liu, Zhuangzhuang; Blanpain, Bart; Guo, Muxing

    2017-12-01

    The recently published viscosity data of heterogeneous silicate melts with well-documented structure and experimental conditions are critically re-analyzed and tabulated. By using these data, a non-Newtonian viscosity model incorporating solid fraction, solid shape, and shear rate is proposed on the basis of the power-law equation. This model allows calculating the viscosity of the heterogeneous silicate melts with solid fraction up to 34 vol pct. The error between the calculated and measured data is evaluated to be 32 pct, which is acceptable considering the large error in viscosity measurement of the completely liquid silicate melt.

  12. Direct numerical simulations for non-Newtonian rheology of concentrated particle dispersions.

    Science.gov (United States)

    Iwashita, Takuya; Yamamoto, Ryoichi

    2009-12-01

    The non-Newtonian behavior of a monodisperse concentrated dispersion of spherical particles was investigated using a direct numerical simulation method, which takes into account hydrodynamic interactions and thermal fluctuations accurately. Simulations were performed under steady shear flow with periodic boundary conditions in the three directions. The apparent shear viscosity of the dispersions was calculated at volume fractions ranging from 0.31 to 0.56. Shear-thinning behavior was clearly observed at high volume fractions. The low- and high-limiting viscosities were then estimated from the apparent viscosity by fitting these data into a semiempirical formula. Furthermore, the short-time motions were examined for Brownian particles fluctuating in concentrated dispersions, for which the fluid inertia plays an important role. The mean square displacement was monitored in the vorticity direction at several different Peclet numbers and volume fractions so that the particle diffusion coefficient is determined from the long-time behavior of the mean square displacement. Finally, the relationship between the non-Newtonian viscosity of the dispersions and the structural relaxation of the dispersed Brownian particles is examined.

  13. Simulation of a pulsatile non-Newtonian flow past a stenosed 2D artery with atherosclerosis.

    Science.gov (United States)

    Tian, Fang-Bao; Zhu, Luoding; Fok, Pak-Wing; Lu, Xi-Yun

    2013-09-01

    Atherosclerotic plaque can cause severe stenosis in the artery lumen. Blood flow through a substantially narrowed artery may have different flow characteristics and produce different forces acting on the plaque surface and artery wall. The disturbed flow and force fields in the lumen may have serious implications on vascular endothelial cells, smooth muscle cells, and circulating blood cells. In this work a simplified model is used to simulate a pulsatile non-Newtonian blood flow past a stenosed artery caused by atherosclerotic plaques of different severity. The focus is on a systematic parameter study of the effects of plaque size/geometry, flow Reynolds number, shear-rate dependent viscosity and flow pulsatility on the fluid wall shear stress and its gradient, fluid wall normal stress, and flow shear rate. The computational results obtained from this idealized model may shed light on the flow and force characteristics of more realistic blood flow through an atherosclerotic vessel. Copyright © 2013. Published by Elsevier Ltd.

  14. Numerical study of the non-Newtonian blood flow in a stenosed artery using two rheological models

    Directory of Open Access Journals (Sweden)

    Achaba Louiza

    2016-01-01

    Full Text Available The numerical simulation of blood flow in arteries using non-Newtonian viscosity model, presents two major difficulties; the first one is the choice of an appropriate constitutive equation, because no one model is universally accepted as a reflection of the true behavior of blood viscosity until now. Another difficulty lies in the numerical convergence of the complex scheme solving the highly non-linear set of equations governing the blood motion. In this paper, the pulsatile blood flow through an arterial stenosis has been numerically modeled to evaluate the flow characteristics and the wall shear stress under physiological conditions. The Navier-Stokes equations governing the fluid motion are solved using the finite element method in unsteady two-dimensional case. The behavior of blood is considered as the Generalized Power-law (Gpl and Cross models, where the shear-thinning characteristics of the streaming blood are taken into account. Constants in the constitutive equations of previous models have been obtained by fitting experimental viscosity data. The numerical simulations are performed for a wide range of apparent shear rates (10 s-1-750 s-1 with good convergence of the iterative scheme. Results from the blood flow simulations indicate that non-Newtonian behavior has considerable effects on instantaneous flow patterns. However, it seems that the Gpl model will be slightly better for describing the non-Newtonian characteristics of blood than the Cross model.

  15. Differential Transformation Method for Newtonian and non-Newtonian nanofluids flow analysis: Compared to numerical solution

    Directory of Open Access Journals (Sweden)

    M. Hatami

    2016-06-01

    Full Text Available In this study, a simple and high accurate series-based method called Differential Transformation Method (DTM is used for solving the coupled nonlinear differential equations in fluids mechanic problems. The concept of the DTM is briefly introduced, and its application on two different cases, natural convection of a non-Newtonian nanofluid between two vertical plates and Newtonian nanofluid flow between two horizontal plates, has been studied. DTM results are compared with those obtained by a numerical solution (Fourth-order Runge–Kutta to show the accuracy of the proposed method. Results reveal that DTM is very effective and convenient which can achieve more reliable results compared to other analytical methods in solving some engineering and sciences problems.

  16. Dynamical behaviour of non newtonian spiral blood flow through arterial stenosis

    Science.gov (United States)

    Ali, Mohammad; Mahmudul Hasan, Md.; Alam Maruf, Mahbub

    2017-04-01

    The spiral component of blood flow has both beneficial and detrimental effects in human circulatory system. A numerical investigation is carried out to analyze the effects of spiral blood flow through an axisymmetric three dimensional artery having 75% stenosis at the center. Blood is assumed as a non-Newtonian fluid. Standard k-ω model is used for the simulation with the Reynolds number of 1000. A parabolic velocity profile with spiral flow is used as inlet boundary condition. The peak values of all velocity components are found just after stenosis. But total pressure gradually decreases at downstream. Spiral flow of blood has significant effects on tangential component of velocity. However, the effect is mild for radial and axial velocity components. The peak value of wall shear stress is at the stenosis zone and decreases rapidly in downstream. The effect of spiral flow is significant for turbulent kinetic energy. Detailed investigation and relevant pathological issues are delineated throughout the paper.

  17. Rheological non-Newtonian behaviour of ethylene glycol-based Fe2O3 nanofluids

    Directory of Open Access Journals (Sweden)

    Pastoriza-Gallego María

    2011-01-01

    Full Text Available Abstract The rheological behaviour of ethylene glycol-based nanofluids containing hexagonal scalenohedral-shaped α-Fe2O3 (hematite nanoparticles at 303.15 K and particle weight concentrations up to 25% has been carried out using a cone-plate Physica MCR rheometer. The tests performed show that the studied nanofluids present non-Newtonian shear-thinning behaviour. In addition, the viscosity at a given shear rate is time dependent, i.e. the fluid is thixotropic. Finally, using strain sweep and frequency sweep tests, the storage modulus G', loss modulus G″ and damping factor were determined as a function of the frequency showing viscoelastic behaviour for all samples.

  18. Experimental study of the hydrodynamic interaction between a pair of bubbles ascending in a non-Newtonian liquid

    Science.gov (United States)

    Samano, Diego; Velez, Rodrigo; Zenit, Roberto

    2009-11-01

    We present some experimental results about the interaction of a pair of bubbles ascending in non-Newtonian fluids. A high speed camera was used to follow in-line and off-line rising motion of two bubbles in a Newtonian fluid (a glycerin-water solution), a Boger fluid (aqueous polyacrylamide solution), and a shear-thinning fluid (aqueous xanthan solution). For the case of shear-thinning fluids, the power index, n, affects the tendency of the bubble pair to aggregate. Therefore, in addition to bubble separation, orientation and Reynolds number, the hydrodynamic force depends strongly on the shear-thinning nature of the fluid. Several examples will be shown. For elastic fluids, the Deborah number affects the hydrodynamic interaction. We found that the appearance of the negative wake changes the nature of the interaction substantially. Some examples and comparisons with numerical results will be presented.

  19. Numerical Analyses of the Non-Newtonian Flow Performance and Thermal Effect on a Bearing Coated with a High Tin Content

    Directory of Open Access Journals (Sweden)

    K. Mehala

    2016-12-01

    Full Text Available The hydrodynamic bearings are stressed by severe workings conditions, such as speed, load, and the oil will be increasingly solicit by pressure and shear. The Newtonian behavior is far from being awarded in this case, the most loaded bearings operating at very high speeds; the shear rate of the oil is of higher order. A numerical analysis of the behavior of non-Newtonian fluid for plain cylindrical journal bearing finite dimension coated with antifriction material with a high tin content, for to facilitate the accommodation of the surfaces and save the silk of the shaft in the case of a contact. this analyses is implemented using the code-ANSYS CFX, by solving the energy equation with the finite difference method, considering that laminar regime and the fluid is non Newtonian by using the power law Ostwald model, the coefficient n is equal to 1.25 and for different model such as Bingham, cross and Hereshek-Bulkley model. This study aims to better predict the non-Newtonian behavior of the oil film in bearings operating under more severe conditions. The purpose conducted during this study is to predict the effect of non-Newtonian behavior of the film; the journal bearing operating under severe conditions, the speed of rotation varies from 1000 to 9000 rpm and the bearing working under radial load 2 to 10 kN. Temperature and the pressure within the fluid film assumed non-Newtonian are high, with a coefficient n greater than 1 that is to say for viscoelastic fluids.

  20. Non-Newtonian perspectives on pulsatile blood-analog flows in a 180° curved artery model

    Science.gov (United States)

    van Wyk, Stevin; Prahl Wittberg, Lisa; Bulusu, Kartik V.; Fuchs, Laszlo; Plesniak, Michael W.

    2015-07-01

    Complex, unsteady fluid flow phenomena in the arteries arise due to the pulsations of the heart that intermittently pumps the blood to the extremities of the body. The many different flow waveform variations observed throughout the arterial network are a result of this process and a function of the vessel properties. Large scale secondary flow structures are generated throughout the aortic arch and larger branches of the arteries. An experimental 180° curved artery test section with physiological inflow conditions was used to validate the computational methods implemented in this study. Good agreement of the secondary flow structures is obtained between experimental and numerical studies of a Newtonian blood-analog fluid under steady-state and pulsatile, carotid artery flow rate waveforms. Multiple vortical structures, some of opposite rotational sense to Dean vortices, similar to Lyne-type vortices, were observed to form during the systolic portion of the pulse. Computational tools were used to assess the effect of blood-analog fluid rheology (i.e., Newtonian versus non-Newtonian). It is demonstrated that non-Newtonian, blood-analog fluid rheology results in shear layer instabilities that alter the formation of vortical structures during the systolic deceleration and onwards during diastole. Additional vortices not observed in the Newtonian cases appear at the inside and outside of the bend at various times during the pulsation. The influence of blood-analog shear-thinning viscosity decreases mean pressure losses in contrast to the Newtonian blood analog fluid.

  1. Experimental and Numerical Investigation on Non-Newtonian Nanofluids Flowing in Shell Side of Helical Baffled Heat Exchanger Combined with Elliptic Tubes

    Directory of Open Access Journals (Sweden)

    Ziye Ling

    2017-01-01

    Full Text Available In this paper, an aqueous solution of xanthan gum (XG at a weight fraction as high as 0.2% was elected as the non-Newtonian base liquid, the multi-walled carbon nanotubes (MWCNTs dispersed into non-Newtonian XG aqueous at different weight factions of MWCNTs was prepared. Convection heat transfer of non-Newtonian nanofluids in the shell side of helical baffled heat exchanger combined with elliptic tubes has been investigated experimentally and numerically using single-phase flow model. Results showed that the enhancement of the convective heat transfer coefficient increases with an increase in the Reynolds number and the nanoparticle concentration. For nanofluids with 0.2 wt %, 0.5 wt % and 1.0 wt % MWCNTs, the Nusselt number, respectively, increases by 11%, 21% and 35% on average at the same Reynolds number, while the comprehensive thermal performance factors are 3%–5%, 15%–17% and 24%–26% higher than that of base fluid at the same volume rate. A remarkable heat transfer enhancement can be obtained by adding MWCNTs into XG aqueous solution based on thermal resistance analysis. Correlations have been suggested for the shell-side Nusselt number and friction factor of non-Newtonian nanofluids in the helical baffled heat exchanger with elliptic tubes. Good agreements existed between corrections and experimental data.

  2. Convex functions and some inequalities in terms of the Non-Newtonian Calculus

    Science.gov (United States)

    Unluyol, Erdal; Salas, Seren; Iscan, Imdat

    2017-04-01

    Differentiation and integration are basic operations of calculus and analysis. Indeed, they are many versions of the subtraction and addition operations on numbers, respectively. From 1967 till 1970 Michael Grossman and Robert Katz [1] gave definitions of a new kind of derivative and integral, converting the roles of subtraction and addition into division and multiplication, and thus establish a new calculus, called Non-Newtonian Calculus. So, in this paper, it is investigated to the convex functions and some inequalities in terms of Non-Newtonian Calculus. Then we compare with the Newtonian and Non-Newtonian Calculus.

  3. Planar non-Newtonian confined laminar impinging jets: Hysteresis, linear stability, and periodic flow

    Science.gov (United States)

    Chatterjee, Ajay; Fabris, Drazen

    2017-10-01

    This paper considers the linear stability of confined planar impinging jet flow of a non-Newtonian inelastic fluid. The rheology is shear rate dependent with asymptotic Newtonian behavior in the zero shear limit, and the analysis examines both shear thinning and shear thickening behavior. The planar configuration is such that the width of the inlet nozzle is smaller than the distance from the jet exit to the impinging surface, giving an aspect ratio e = 8 for which two-dimensional time dependent flow is readily manifest. For values of the power-law index n in the range 0.4 ≤n ≤1.1 , the bi-global linear stability of the laminar flow is analyzed for Newtonian Reynolds numbers Re ≲200 . The calculations show that for certain values of n, including the Newtonian value n = 1, the steady flow exhibits multiplicity leading to hysteresis in the primary separation vortex reattachment point and a consequent jump in stability behavior. Even in the absence of hysteresis, relatively small changes in viscosity significantly affect stability characteristics. For Newtonian and mildly shear thinning or shear thickening fluids, an unstable flow shows a decaying perturbation growth rate as Re is increased, and for certain values of n, the flow may be restabilized at a larger Re before eventually becoming unstable again. This decay in the growth rate of the critical antisymmetric mode may be correlated as a function of the reattachment point RP of the primary separation vortex in the underlying steady flow. Representative results are analyzed in detail and discussed in the context of some experimental observations of time-dependent Newtonian impinging flow. The stability results are used to construct the neutral stability curve (n, Re) that displays multiplicity and contains several cusp points associated with flow restabilization and hysteresis. Integration of the full nonlinear equation reveals the structure of the time periodic flow field for both Newtonian and non-Newtonian

  4. Numerical Investigation of Non-Newtonian Flow and Heat Transfer Characteristics in Rectangular Tubes with Protrusions

    Directory of Open Access Journals (Sweden)

    Yonghui Xie

    2015-01-01

    Full Text Available Flow characteristics and heat transfer performances in rectangular tubes with protrusions are numerically investigated in this paper. The thermal heat transfer enhancement of composite structures and flow resistance reduction of non-Newtonian fluid are taken advantage of to obtain a better thermal performance. Protrusion channels coupled with different CMC concentration solutions are studied, and the results are compared with that of smooth channels with water flow. The comprehensive influence of turbulence effects, structural effects, and secondary flow effects on the CMC’s flow in protrusion tubes is extensively investigated. The results indicate that the variation of flow resistance parameters of shear-thinning power-law fluid often shows a nonmonotonic trend, which is different from that of water. It can be concluded that protrusion structure can effectively enhance the heat transfer of CMC solution with low pressure penalty in specific cases. Moreover, for a specific protrusion structure and a fixed flow velocity, there exists an optimal solution concentration showing the best thermal performance.

  5. Non-Newtonian Flow Characteristics of Heavy Oil in the Bohai Bay Oilfield: Experimental and Simulation Studies

    Directory of Open Access Journals (Sweden)

    Xiankang Xin

    2017-10-01

    Full Text Available In this paper, physical experiments and numerical simulations were applied to systematically investigate the non-Newtonian flow characteristics of heavy oil in porous media. Rheological experiments were carried out to determine the rheology of heavy oil. Threshold pressure gradient (TPG measurement experiments performed by a new micro-flow method and flow experiments were conducted to study the effect of viscosity, permeability and mobility on the flow characteristics of heavy oil. An in-house developed novel simulator considering the non-Newtonian flow was designed based on the experimental investigations. The results from the physical experiments indicated that heavy oil was a Bingham fluid with non-Newtonian flow characteristics, and its viscosity-temperature relationship conformed to the Arrhenius equation. Its viscosity decreased with an increase in temperature and a decrease in asphaltene content. The TPG measurement experiments was impacted by the flow rate, and its critical flow rate was 0.003 mL/min. The TPG decreased as the viscosity decreased or the permeability increased and had a power-law relationship with mobility. In addition, the critical viscosity had a range of 42–54 mPa∙s, above which the TPG existed for a given permeability. The validation of the designed simulator was positive and acceptable when compared to the simulation results run in ECLIPSE V2013.1 and Computer Modelling Group (CMG V2012 software as well as when compared to the results obtained during physical experiments. The difference between 0.0005 and 0.0750 MPa/m in the TPG showed a decrease of 11.55% in the oil recovery based on the simulation results, which demonstrated the largely adverse impact the TPG had on heavy oil production.

  6. Non-Newtonian unconfined flow and heat transfer over a heated cylinder using the direct-forcing immersed boundary-thermal lattice Boltzmann method

    Science.gov (United States)

    Amiri Delouei, A.; Nazari, M.; Kayhani, M. H.; Succi, S.

    2014-05-01

    In this study, the immersed boundary-thermal lattice Boltzmann method has been used to simulate non-Newtonian fluid flow over a heated circular cylinder. The direct-forcing algorithm has been employed to couple the off-lattice obstacles and on-lattice fluid nodes. To investigate the effect of boundary sharpness, two different diffuse interface schemes are considered to interpolate the velocity and temperature between the boundary and computational grid points. The lattice Boltzmann equation with split-forcing term is applied to consider the effects of the discrete lattice and the body force to the momentum flux, simultaneously. A method for calculating the Nusselt number based on diffuse interface schemes is developed. The rheological and thermal properties of non-Newtonian fluids are investigated under the different power-law indices and Reynolds numbers. The effect of numerical parameters on the accuracy of the proposed method has been investigated in detail. Results show that the rheological and thermal properties of non-Newtonian fluids in the presence of a heated immersed body can be suitably captured using the immersed boundary thermal lattice Boltzmann method.

  7. Lubrication performances of short journal bearings operating with non-Newtonian ferrofluids

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jaw-Ren [Taoyuan Innovation Inst. of Tech., Jhongli, TW (China). Dept. of Mechanical Engineering; Li, Po-Jui [National Taipei Univ. of Technology, Taipei, TW (China). Dept. of Inst. of Mechatronic Engineering; Hung, Tzu-Chen [National Taipei Univ. of Technology, Taipei, TW (China). Dept. of Mechanical Engineering

    2013-03-15

    The lubrication performances of short journal bearings operating with non-Newtonian ferrofluids have been investigated in the present study. Based upon the ferrofluid model of Shliomis and the micro-continuum theory of Stokes, a two-dimensional modified Reynolds equation is derived by taking into account the effects of rotation of ferromagnetic particles and the effects of non-Newtonian properties. As an application, the short-bearing approximation is illustrated. Comparing with the conventional non-ferrofluid case, the short journal bearings with ferrofluids in the presence of magnetic fields result in a higher load capacity. Comparing with the Newtonian ferrofluid case, the non-Newtonian effects of couple stresses provide an enhancement in the load capacity, as well as a reduction in the friction parameter. The inclusion of non-Newtonian couple stresses signifies an improvement in performance characteristics of ferrofluid journal bearings. (orig.)

  8. Convective heat and mass transfer in a non-Newtonian-flow formation in Couette motion in magnetohydrodynamics with time-varing suction

    Directory of Open Access Journals (Sweden)

    Salama Faiza A.

    2011-01-01

    Full Text Available An analysis is carried out to study the effect of heat and mass transfer on a non-Newtonian-fluid between two infinite parallel walls, one of them moving with a uniform velocity under the action of a transverse magnetic field. The moving wall moves with constant velocity in the direction of fluid flow while the free stream velocity is assumed to follow the exponentially increasing small perturbation law. Time-dependent wall suction is assumed to occur at permeable surface. The governing equations for the flow are transformed into a system of nonlinear ordinary differential equations by perturbation technique and are solved numerically by using the shooting technique with fourth order Runge-Kutta integration scheme. The effect of non-Newtonian parameter, magnetic pressure parameter, Schmidt number, Grashof number and modified Grashof number on velocity, temperature, concentration and the induced magnetic field are discussed. Numerical results are given and illustrated graphically for the considered Problem.

  9. Determination of the diffusion coefficient of salts in non-Newtonian liquids by the Taylor dispersion method

    Energy Technology Data Exchange (ETDEWEB)

    Mey, Paula; Varges, Priscilla R.; Mendes, Paulo R. de Souza [Dept. of Mechanical Engineering. Pontificia Universidade Catolica do RJ (PUC-Rio), RJ (Brazil)], e-mails: prvarges@puc-rio.br, pmendes@puc-rio.br

    2010-07-01

    This research looked for a method to determine the binary diffusion coefficient D of salts in liquids (especially in drilling fluids) not only accurately, but in a reasonable time. We chose to use the Taylor Dispersion Method. This technique has been used for measuring binary diffusion coefficients in gaseous, liquid and supercritical fluids, due to its simplicity and accuracy. In the method, the diffusion coefficient is determined by the analysis of the dispersion of a pulse of soluble material in a solvent flowing laminarly through a tube. This work describes the theoretical basis and the experimental requirements for the application of the Taylor Dispersion Method, emphasizing the description of our experiment. A mathematical formulation for both Newtonian and non-Newtonian fluids is presented. The relevant sources of errors are discussed. The experimental procedure and associated analysis are validated by applying the method in well known systems, such as NaCl in water.D of salts in liquids (especially in drilling fluids) not only accurately, but in a reasonable time. We chose to use the Taylor Dispersion Method. This technique has been used for measuring binary diffusion coefficients in gaseous, liquid and supercritical fluids, due to its simplicity and accuracy. In the method, the diffusion coefficient is determined by the analysis of the dispersion of a pulse of soluble material in a solvent flowing laminarly through a tube. This work describes the theoretical basis and the experimental requirements for the application of the Taylor Dispersion Method, emphasizing the description of our experiment. A mathematical formulation for both Newtonian and non-Newtonian fluids is presented. The relevant sources of errors are discussed. The experimental procedure and associated analysis are validated by applying the method in well known systems, such as NaCl in water. (author)

  10. Point-of-care Devices: Non-Newtonian Whole Blood Behavior and Capillary Flow on Reagent-coated Walls

    Directory of Open Access Journals (Sweden)

    Jean BERTHIER

    2016-08-01

    Full Text Available Most point-of-care (POC and patient self-testing (PST devices are based on the analysis of whole blood taken from a finger prick. Whole blood contains a bountiful of information about the donor’s health. We analyze here two particularities of microsystems for blood analysis: the blood non-Newtonian behavior, and the capillary flow in reagent-coated channels. Capillarity is the most commonly used method to move fluids in portable systems. It is shown first that the capillary flow of blood does not follow the Lucas-Washburn-Rideal law when the capillary flow velocity is small, due to its non-Newtonian rheology and to the formation of rouleaux of RBCs. In a second step, the capillary flow of blood on reagent-coated surfaces is investigated; first experimentally by observing the spreading of a droplet of blood on different reagent-coated substrates; second theoretically and numerically using the general law for spontaneous capillary flows and the Evolver numerical program.

  11. Effects of non-Newtonian power law rheology on mass transport of a neutral solute for electro-osmotic flow in a porous microtube.

    Science.gov (United States)

    Mondal, Sourav; De, Sirshendu

    2013-01-01

    Mass transport of a neutral solute for a power law fluid in a porous microtube under electro-osmotic flow regime is characterized in this study. Combined electro-osmotic and pressure driven flow is conducted herein. An analytical solution of concentration profile within mass transfer boundary layer is derived from the first principle. The solute transport through the porous wall is also coupled with the electro-osmotic flow to predict the solute concentration in the permeate stream. The effects of non-Newtonian rheology and the operating conditions on the permeation rate and permeate solute concentration are analyzed in detail. Both cases of assisting (electro-osmotic and poiseulle flow are in same direction) and opposing flow (the individual flows are in opposite direction) cases are taken care of. Enhancement of Sherwood due to electro-osmotic flow for a non-porous conduit is also quantified. Effects if non-Newtonian rheology on Sherwood number enhancement are observed.

  12. Lie group analysis of flow and heat transfer of non-Newtonian nanofluid over a stretching surface with convective boundary condition

    Science.gov (United States)

    Afify, Ahmed A.; El-Aziz, Mohamed Abd

    2017-02-01

    The steady two-dimensional flow and heat transfer of a non-Newtonian power-law nanofluid over a stretching surface under convective boundary conditions and temperature-dependent fluid viscosity has been numerically investigated. The power-law rheology is adopted to describe non-Newtonian characteristics of the flow. Four different types of nanoparticles, namely copper (Cu), silver (Ag), alumina (Al 2 O 3) and titanium oxide (TiO 2) are considered by using sodium alginate (SA) as the base non-Newtonian fluid. Lie symmetry group transformations are used to convert the boundary layer equations into non-linear ordinary differential equations. The transformed equations are solved numerically by using a shooting method with fourth-order Runge-Kutta integration scheme. The results show that the effect of viscosity on the heat transfer rate is remarkable only for relatively strong convective heating. Moreover, the skin friction coefficient and the rate of heat transfer increase with an increase in Biot number.

  13. A modelling and experimental study of the bubble trajectory in a non-Newtonian crystal suspension

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, N M S [Process Engineering and Light Metals (PELM) Centre, Faculty of Sciences, Engineering and Health, CQUniversity, Rockhampton, QLD 4702 (Australia); Khan, M M K; Rasul, M G, E-mail: m.rasul@cqu.edu.a [School of Engineering and Built Environment, Faculty of Sciences, Engineering and Health, CQUniversity, Rockhampton, QLD 4702 (Australia)

    2010-12-15

    This paper presents an experimental and computational study of air bubbles rising in a massecuite-equivalent non-Newtonian crystal suspension. The bubble trajectory inside the stagnant liquid of a 0.05% xanthan gum crystal suspension was investigated and modelled using the computational fluid dynamics (CFD) model to gain an insight into the bubble flow characteristics. The CFD code FLUENT was used for numerical simulation, and the bubble trajectory calculations were performed through a volume of fluid (VOF) model. The influences of the Reynolds number (Re), the Weber number (We) and the bubble aspect ratio (E) on the bubble trajectory are discussed. The conditions for the bubbles' path oscillations are identified. The experimental results showed that the path instability for the crystal suspension was less rapid than in water. The trajectory analysis indicated that 5.76 mm diameter bubbles followed a zigzag motion in the crystal suspension. Conversely, the smaller bubbles (5.76 mm) followed a path of least horizontal movement and larger bubbles (21.21 mm) produced more spiral motion within the crystal suspension. Path instability occurred for bubbles of 15.63 and 21.21 mm diameter, and they induced both zigzag and spiral trajectories within the crystal suspension. At low Re and We, smaller bubbles (5.76 mm) produced a zigzag trajectory, whereas larger bubbles (15.63 and 21.21 mm) showed both zigzag and spiral trajectories at intermediate and moderately high Re and We in the crystal suspension. The simulation results illustrated that a repeating pattern of swirling vortices was created for smaller bubbles due to the unstable wake and unsteady flow of these bubbles. This is the cause of the smaller bubbles moving in a zigzag way. Larger bubbles showed two counter-rotating trailing vortices at the back of the bubble. These vortices induced a velocity component to the gas-liquid interface and caused a deformation. Hence, the larger bubbles produced a path

  14. A modelling and experimental study of the bubble trajectory in a non-Newtonian crystal suspension

    Science.gov (United States)

    Hassan, N. M. S.; Khan, M. M. K.; Rasul, M. G.

    2010-12-01

    This paper presents an experimental and computational study of air bubbles rising in a massecuite-equivalent non-Newtonian crystal suspension. The bubble trajectory inside the stagnant liquid of a 0.05% xanthan gum crystal suspension was investigated and modelled using the computational fluid dynamics (CFD) model to gain an insight into the bubble flow characteristics. The CFD code FLUENT was used for numerical simulation, and the bubble trajectory calculations were performed through a volume of fluid (VOF) model. The influences of the Reynolds number (Re), the Weber number (We) and the bubble aspect ratio (E) on the bubble trajectory are discussed. The conditions for the bubbles' path oscillations are identified. The experimental results showed that the path instability for the crystal suspension was less rapid than in water. The trajectory analysis indicated that 5.76 mm diameter bubbles followed a zigzag motion in the crystal suspension. Conversely, the smaller bubbles (5.76 mm) followed a path of least horizontal movement and larger bubbles (21.21 mm) produced more spiral motion within the crystal suspension. Path instability occurred for bubbles of 15.63 and 21.21 mm diameter, and they induced both zigzag and spiral trajectories within the crystal suspension. At low Re and We, smaller bubbles (5.76 mm) produced a zigzag trajectory, whereas larger bubbles (15.63 and 21.21 mm) showed both zigzag and spiral trajectories at intermediate and moderately high Re and We in the crystal suspension. The simulation results illustrated that a repeating pattern of swirling vortices was created for smaller bubbles due to the unstable wake and unsteady flow of these bubbles. This is the cause of the smaller bubbles moving in a zigzag way. Larger bubbles showed two counter-rotating trailing vortices at the back of the bubble. These vortices induced a velocity component to the gas-liquid interface and caused a deformation. Hence, the larger bubbles produced a path transition.

  15. Stability analysis of slot-entry hybrid journal bearings operating with non-newtonian lubricant

    Directory of Open Access Journals (Sweden)

    H.C. Garg

    2015-09-01

    Full Text Available This paper presents theoretical investigations of rheological effects of lubricant on stability parameters of various configurations of slot-entry hybrid journal bearing system. FEM has been used to solve Reynolds equation governing flow of lubricant in bearing clearance space along with restrictor flow equation using suitable iterative technique. The non-Newtonian lubricant has been assumed to follow cubic shear stress law. The stability parameters in terms of stiffness coefficients, damping coefficients, threshold speed and whirl frequency of different configurations of slot-entry hybrid journal bearing have been computed and presented for wide range of external load while operating with Newtonian and Non-Newtonian lubricants. The computed results reveal that variation of viscosity due to non-Newtonian behavior of lubricant affects bearing stability quite significantly. The results are presented in graphical form and logical conclusions are drawn to identify best possible configuration from stability point of view.

  16. PREDICTION OF GAS HOLD-UP IN A COMBINED LOOP AIR LIFT FLUIDIZED BED REACTOR USING NEWTONIAN AND NON-NEWTONIAN LIQUIDS

    Directory of Open Access Journals (Sweden)

    Sivakumar Venkatachalam

    2011-09-01

    Full Text Available Many experiments have been conducted to study the hydrodynamic characteristics of column reactors and loop reactors. In this present work, a novel combined loop airlift fluidized bed reactor was developed to study the effect of superficial gas and liquid velocities, particle diameter, fluid properties on gas holdup by using Newtonian and non-Newtonian liquids. Compressed air was used as gas phase. Water, 5% n-butanol, various concentrations of glycerol (60 and 80% were used as Newtonian liquids, and different concentrations of carboxy methyl cellulose aqueous solutions (0.25, 0.6 and 1.0% were used as non-Newtonian liquids. Different sizes of spheres, Bearl saddles and Raschig rings were used as solid phases. From the experimental results, it was found that the increase in superficial gas velocity increases the gas holdup, but it decreases with increase in superficial liquid velocity and viscosity of liquids. Based on the experimental results a correlation was developed to predict the gas hold-up for Newtonian and non-Newtonian liquids for a wide range of operating conditions at a homogeneous flow regime where the superficial gas velocity is approximately less than 5 cm/s

  17. Non-Newtonian hydrodynamics for a dilute granular suspension under uniform shear flow.

    Science.gov (United States)

    Chamorro, Moisés G; Reyes, Francisco Vega; Garzó, Vicente

    2015-11-01

    We study in this work a steady shearing laminar flow with null heat flux (usually called "uniform shear flow") in a gas-solid suspension at low density. The solid particles are modeled as a gas of smooth hard spheres with inelastic collisions while the influence of the surrounding interstitial fluid on the dynamics of grains is modeled by means of a volume drag force, in the context of a rheological model for suspensions. The model is solved by means of three different but complementary routes, two of them being theoretical (Grad's moment method applied to the corresponding Boltzmann equation and an exact solution of a kinetic model adapted to granular suspensions) and the other being computational (Monte Carlo simulations of the Boltzmann equation). Unlike in previous studies on granular sheared suspensions, the collisional moment associated with the momentum transfer is determined in Grad's solution by including all the quadratic terms in the stress tensor. This theoretical enhancement allows for the detection and evaluation of the normal stress differences in the plane normal to the laminar flow. In addition, the exact solution of the kinetic model gives the explicit form of the velocity moments of the velocity distribution function. Comparison between our theoretical and numerical results shows in general a good agreement for the non-Newtonian rheological properties, the kurtosis (fourth velocity moment of the distribution function), and the velocity distribution of the kinetic model for quite strong inelasticity and not too large values of the (scaled) friction coefficient characterizing the viscous drag force. This shows the accuracy of our analytical results that allows us to describe in detail the flow dynamics of the granular sheared suspension.

  18. A method of calculating the thixotropic area of non-Newtonian ...

    African Journals Online (AJOL)

    Thixotropic area is one of the parameters for evaluating the rheology of thixotropic (non-Newtonian) dispersions. A method of determining this parameter has been suggested. This method involves the resolution of a polynomial, which represents the ascending curve of the rheogram. The area under the curve is determined ...

  19. Non-Newtonian behavior and molecular structure of Cooee bitumen under shear flow

    DEFF Research Database (Denmark)

    Lemarchand, Claire; Bailey, Nicholas; Daivis, Peter

    2015-01-01

    The rheology and molecular structure of a model bitumen (Cooee bitumen) under shear are investigated in the non-Newtonian regime using non-equilibrium molecular dynamics simulations. The shear viscosity, normal stress differences, and pressure of the bitumen mixture are computed at different shear...

  20. Further results on non-Newtonian power-law flows past a two-dimensional flat plate with finite length

    Energy Technology Data Exchange (ETDEWEB)

    Pantokartoras, Asterios [Democritus University of Thrace, Xanthi (Greece)

    2013-07-15

    The flow of a non-Newtonian, power-law fluid directed either tangentially or normally to a flat plate of finite length and infinite width (two-dimensional flow) is considered. The problem is investigated numerically using the code ANSYS FLUENT. This problem has been investigated in the past but only for shear-thinning fluids ( n < 1). We extend the investigation for the case of shear-thinning, Newtonian and shear-thickening fluids, covering a wide range of Reynolds numbers (from very low to very high). For low Reynolds numbers and low power-law index ( n < 0.6 ) the drag coefficient obeys the relationship C{sub D} = A/Re , both for tangential and normal flow. Equations for the quantity A have been derived as functions of the power-law index. For normal flow, the drag coefficient tends to become independent of the power-law index, both for shear-thinning and shear-thickening fluids at high Reynolds numbers.

  1. Effect of non-Newtonian characteristics of blood on magnetic targeting in the impermeable micro-vessel

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, Sachin [Department of Mathematics, Indian Institute of Technology Kharagpur, West Bengal (India); Murthy, P.V.S.N., E-mail: pvsnm@maths.iitkgp.ernet.i [Department of Mathematics, Indian Institute of Technology Kharagpur, West Bengal (India); Pradhan, S.C. [Department of Aerospace Engineering, Indian Institute of Technology Kharagpur, West Bengal (India)

    2010-04-15

    In this investigation we consider to extended the work of Furlani and Furlani by taking non-Newtonian fluid model for the blood in the impermeable micro-vessel. The behavior of blood is considered as the Herschel-Bulkley fluid which is more suitable for the micro-vessel of radius 50 mum. The expression for the fluidic force for the carrier particle traversing in the Herschel-Bulkley fluid is obtained first. Several factors that influence the magnetic targeting of the carrier particles in the microvasculature, such as the size of the carrier particle, the volume fraction of embedded magnetic nanoparticles, and the diameter of the micro-vessel are considered in the present problem. An algorithm is given to solve the system of coupled equations for trajectories of the carrier particle in the invasive case. The trajectories of the carrier particles are found in both invasive and noninvasive targeting systems. A comparison is make regarding the trajectories in these cases. Also, a prediction of the capture of therapeutic magnetic nanoparticle in the human microvasculature is made for different radii and volume fractions in both the invasive and noninvasive cases.

  2. Entropy analysis on MHD pseudo-plastic nanofluid flow through a vertical porous channel with convective heating

    OpenAIRE

    Das, S.; Banu, A.S.; Jana, R.N.; Makinde, O.D.

    2015-01-01

    This paper is concerned with the entropy generation in a magnetohydrodynamic (MHD) pseudo-plastic nanofluid flow through a porous channel with convective heating. Three different types of nanoparticles, namely copper, aluminum oxide and titanium dioxide are considered with pseudo-plastic carboxymethyl cellulose (CMC)–water used as base fluids. The governing equations are solved numerically by shooting technique coupled with Runge–Kutta scheme. The effects of the pertinent parameters on the fl...

  3. A comparison of Newtonian and non-Newtonian models for pulsatile blood flow simulations

    Science.gov (United States)

    Husain, Iqbal; Labropulu, Fotini; Langdon, Chris; Schwark, Justin

    2013-04-01

    Mathematical modeling of blood flows in the arteries is an important and challenging problem. This study compares several non-Newtonian blood models with the Newtonian model in simulating pulsatile blood flow through two three-dimensional models of an arterial stenosis and an aneurysm. Four non-Newtonian blood models, namely the Power Law, the Casson, the Carreau, and the Generalized Power Law, as well as the Newtonian model of blood viscosity, are used to investigate the flow effects induced by these different blood constitutive equations. The aim of this study is three-fold: firstly, to investigate the variation in wall shear stress in an artery with a stenosis or aneurysm at different flow rates and degrees of severity; secondly, to compare the various blood models and hence quantify the differences between the models and judge their significance; and lastly, to determine whether the use of the Newtonian blood model is appropriate over a wide range of shear rates.

  4. Influence of convective conditions in radiative peristaltic flow of pseudoplastic nanofluid in a tapered asymmetric channel

    Science.gov (United States)

    Hayat, T.; Iqbal, Rija; Tanveer, Anum; Alsaedi, A.

    2016-06-01

    This paper looks at the influences of magnetohydrodynamics (MHD) and thermal radiation on peristaltic transport of a pseudoplastic nanofluid in a tapered asymmetric channel. The tapered channel walls satisfy convective boundary conditions. The governing equations for the balance of mass, momentum, temperature and volume fraction for pseudoplastic nanofluid are first formulated and then utilized for long wavelength and small Reynolds number considerations. Effects of involved parameters on the flow characteristics have been plotted and examined. It is observed that the heat transfer Biot number shows a dual behavior on the temperature of nanofluid particles whereas the mass transfer Biot number with its increasing values enhances the fluid temperature.

  5. Supersoft symmetry energy encountering non-Newtonian gravity in neutron stars.

    Science.gov (United States)

    Wen, De-Hua; Li, Bao-An; Chen, Lie-Wen

    2009-11-20

    Considering the non-Newtonian gravity proposed in grand unification theories, we show that the stability and observed global properties of neutron stars cannot rule out the supersoft nuclear symmetry energies at suprasaturation densities. The degree of possible violation of the inverse-square law of gravity in neutron stars is estimated using an equation of state of neutron-rich nuclear matter consistent with the available terrestrial laboratory data.

  6. [Effect of pilocarpine chloride on pseudoplastic hydrogel].

    Science.gov (United States)

    Zatloukal, Z

    2003-05-01

    Colloidal aqueous dispersions of 2 to 5% (weight) of hydroxypropylmethylcellulose (HMPC 4000) yield pseudoplastic mucilages and gels. Rotational viscosimetry in the cone-plate arrangement enables rapid and reproducible evaluation of the transitional region between pseudoplastic and plastic deformation, characterized by Herschel-Bulkley equation. To the traditional Ostwald's two-parameter relationship it adds a third one, revealing a deviation from the beginning of the coordinates of the rheogram caused by the limiting yield stress. The obtained equations make it possible not only to estimate apparent and real viscosity, but also the area under the curve of the pseudoplastic rheogram. The actual precondition of integration, however, is the estimation of the limiting yield stress as the shear rate for the zero shear stress. Experimental estimation of the bottom margin for the integration of the area under the curve makes mutual comparability of rheograms possible. At a temperature of 32 degrees C, analysis of variance demonstrated a significant diminution of this area in the presence of about 2% of pilocarpinium chloride.

  7. Conceptual coherence of non-Newtonian worldviews in Force Concept Inventory data

    Science.gov (United States)

    Scott, Terry F.; Schumayer, Dániel

    2017-06-01

    The Force Concept Inventory is one of the most popular and most analyzed multiple-choice concept tests used to investigate students' understanding of Newtonian mechanics. The correct answers poll a set of underlying Newtonian concepts and the coherence of these underlying concepts has been found in the data. However, this inventory was constructed after several years of research into the common preconceptions held by students and using these preconceptions as distractors in the questions. Their sole purpose is to deflect non-Newtonian candidates away from the correct answer. Alternatively, one can argue that the responses could also be treated as polling these preconceptions. In this paper we shift the emphasis of the analysis away from the correlation structure of the correct answers and look at the latent traits underlying the incorrect responses. Our analysis models the data employing exploratory factor analysis, which uses regularities in the data to suggest the existence of underlying structures in the cognitive processing of the students. This analysis allows us to determine whether the data support the claim that there are alternate non-Newtonian worldviews on which students' incorrect responses are based. The existence of such worldviews, and their coherence, could explain the resilience of non-Newtonian preconceptions and would have significant implications to the design of instruction methods. We find that there are indeed coherent alternate conceptions of the world which can be categorized using the results of the research that led to the construction of the Force Concept Inventory.

  8. Influence of convective conditions in radiative peristaltic flow of pseudoplastic nanofluid in a tapered asymmetric channel

    Energy Technology Data Exchange (ETDEWEB)

    Hayat, T. [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Iqbal, Rija [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); Tanveer, Anum, E-mail: qau14@yahoo.com [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); Alsaedi, A. [Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)

    2016-06-15

    This paper looks at the influences of magnetohydrodynamics (MHD) and thermal radiation on peristaltic transport of a pseudoplastic nanofluid in a tapered asymmetric channel. The tapered channel walls satisfy convective boundary conditions. The governing equations for the balance of mass, momentum, temperature and volume fraction for pseudoplastic nanofluid are first formulated and then utilized for long wavelength and small Reynolds number considerations. Effects of involved parameters on the flow characteristics have been plotted and examined. It is observed that the heat transfer Biot number shows a dual behavior on the temperature of nanofluid particles whereas the mass transfer Biot number with its increasing values enhances the fluid temperature. - Highlights: • Mathematical model for peristalsis of pseudoplastic nanofluid is formulated. • Analysis has been made in a tapered asymmetric channel. • Magnetohydrodynamic aspects have been outlined. • Influence of thermal radiation is investigated. • Convective conditions for both heat and mass transfer are present.

  9. Deposition Velocities of Newtonian and Non-Newtonian Slurries in Pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Poloski, Adam P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Adkins, Harold E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Abrefah, John [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Casella, Andrew M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hohimer, Ryan E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Nigl, Franz [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Minette, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Toth, James J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tingey, Joel M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Yokuda, Satoru T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2009-03-01

    correlation used in the WTP design guide has been shown to be inaccurate for Hanford waste feed materials. The use of the Thomas (1979) correlation in the design guide is not conservative—In cases where 100% of the particles are smaller than 74 μm or particles are considered to be homogeneous due to yield stress forces suspending the particles the homogeneous fraction of the slurry can be set to 100%. In such cases, the predicted critical velocity based on the conservative Oroskar and Turian (1980) correlation is reduced to zero and the design guide returns a value from the Thomas (1979) correlation. The measured data in this report show that the Thomas (1979) correlation predictions often fall below that measured experimental values. A non-Newtonian deposition velocity design guide should be developed for the WTP— Since the WTP design guide is limited to Newtonian fluids and the WTP expects to process large quantities of such materials, the existing design guide should be modified address such systems. A central experimental finding of this testing is that the flow velocity required to reach turbulent flow increases with slurry rheological properties due to viscous forces dampening the formation of turbulent eddies. The flow becomes dominated by viscous forces rather than turbulent eddies. Since the turbulent eddies necessary for particle transport are not present, the particles will settle when crossing this boundary called the transitional deposition boundary. This deposition mechanism should be expected and designed for in the WTP.

  10. The thinning of lamellae in surfactant-free foams with non-Newtonian liquid phase

    OpenAIRE

    Brush, L.B.; Roper, S. M.

    2008-01-01

    Thinning rates of liquid lamellae in surfactant-free non-Newtonian gas–liquid foams, appropriate for ceramic or polymer melts and also in metals near the melting point, are derived in two dimensions by matched asymptotic analysis valid at small capillary number. The liquid viscosity is modelled (i) as a power-law function of the shear rate and (ii) by the Ellis law. Equations governing gas–liquid interface dynamics and variations in liquid viscosity are derived within the lamellar, transition...

  11. Computer simulation of MHD blood conveying gold nanoparticles as a third grade non-Newtonian nanofluid in a hollow porous vessel.

    Science.gov (United States)

    Hatami, M; Hatami, J; Ganji, D D

    2014-02-01

    In this paper, heat transfer and flow analysis for a non-Newtonian third grade nanofluid flow in porous medium of a hollow vessel in presence of magnetic field are simulated analytically and numerically. Blood is considered as the base third grade non-Newtonian fluid and gold (Au) as nanoparticles are added to it. The viscosity of nanofluid is considered a function of temperature as Vogel's model. Least Square Method (LSM), Galerkin method (GM) and fourth-order Runge-Kutta numerical method (NUM) are used to solve the present problem. The influences of the some physical parameters such as Brownian motion and thermophoresis parameters on non-dimensional velocity and temperature profiles are considered. The results show that increasing the thermophoresis parameter (N(t)) caused an increase in temperature values in whole domain and an increase in nanoparticles concentration just near the inner wall of vessel. Furthermore by increasing the MHD parameter, velocity profiles decreased due to magnetic field effect. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  12. Empirical Correlations and CFD Simulations of Vertical Two-Phase Gas-Liquid (Newtonian and Non-Newtonian) Flow Compared Against Experimental Data of Void Fraction and Pressure Drop

    DEFF Research Database (Denmark)

    Ratkovich, Nicolas Rios; Bentzen, Thomas Ruby; Majumder, S.K.

    2012-01-01

    measurements, the CFD results and the empirical relationships. In terms of void fraction, for Newtonian and non-Newtonian liquids, the empirical correlations perform much worse than the CFD simulations, error of 48 and 25 %, respectively, against the experimental data. In terms of pressure drop, for Newtonian...... and non-Newtonian liquids, the empirical correlations perform much worse than the CFD simulations, error of 29 and 19 %, respectively, against the experiment data. This shows that CFD can be used to predict relatively well void fraction and pressure drop compared against empirical correlations...... pressure drop using computational fluid dynamics (CFD) and compared directly with experimental measurements and empirical relationships found in literature. A vertical tube of 3.4 m with an internal diameter of 0.1905 m was used. Superficial liquid and gas velocities ranged from 0.32 to 2.34 and from 0...

  13. Very accurate upward continuation to low heights in a test of non-Newtonian theory

    Science.gov (United States)

    Romaides, Anestis J.; Jekeli, Christopher

    1989-01-01

    Recently, gravity measurements were made on a tall, very stable television transmitting tower in order to detect a non-Newtonian gravitational force. This experiment required the upward continuation of gravity from the Earth's surface to points as high as only 600 m above ground. The upward continuation was based on a set of gravity anomalies in the vicinity of the tower whose data distribution exhibits essential circular symmetry and appropriate radial attenuation. Two methods were applied to perform the upward continuation - least-squares solution of a local harmonic expansion and least-squares collocation. Both methods yield comparable results, and have estimated accuracies on the order of 50 microGal or better (1 microGal = 10(exp -8) m/sq s). This order of accuracy is commensurate with the tower gravity measurments (which have an estimated accuracy of 20 microGal), and enabled a definitive detection of non-Newtonian gravity. As expected, such precise upward continuations require very dense data near the tower. Less expected was the requirement of data (though sparse) up to 220 km away from the tower (in the case that only an ellipsoidal reference gravity is applied).

  14. Numerical Well Test Analysis for Polymer Flooding considering the Non-Newtonian Behavior

    Directory of Open Access Journals (Sweden)

    Jia Zhichun

    2015-01-01

    Full Text Available Well test analysis for polymer flooding is different from traditional well test analysis because of the non-Newtonian properties of underground flow and other mechanisms involved in polymer flooding. Few of the present works have proposed a numerical approach of pressure transient analysis which fully considers the non-Newtonian effect of real polymer solution and interprets the polymer rheology from details of pressure transient response. In this study, a two-phase four-component fully implicit numerical model incorporating shear thinning effect for polymer flooding based on PEBI (Perpendicular Bisection grid is developed to study transient pressure responses in polymer flooding reservoirs. Parametric studies are conducted to quantify the effect of shear thinning and polymer concentration on the pressure transient response. Results show that shear thinning effect leads to obvious and characteristic nonsmoothness on pressure derivative curves, and the oscillation amplitude of the shear-thinning-induced nonsmoothness is related to the viscosity change decided by shear thinning effect and polymer concentration. Practical applications are carried out with shut-in data obtained in Daqing oil field, which validates our findings. The proposed method and the findings in this paper show significant importance for well test analysis for polymer flooding and the determination of the polymer in situ rheology.

  15. The Future of Aerospace Propulsion: Visco-elastic non-Newtonian liquids

    Directory of Open Access Journals (Sweden)

    Nicole Arockiam

    2011-01-01

    Full Text Available Aerospace propulsion often involves the spray and combustion of liquids. When a liquid is sprayed, large drops form first, in a process known as primary atomization. Then, each drop breaks up into smaller droplets, in a process known as secondary atomization. This determines final drop sizes, which affect the liquid’s evaporation and mixing rates and ultimately influence combustor efficiency. Little has been published concerning the secondary atomization of visco-elastic non-Newtonian liquids, such as gels. These substances have special potential as aerospace propellants, because they are safer to handle than their Newtonian liquid counterparts, such as water. Additionally, they can be injected at varying rates, allowing for more control than solid propellants. To learn more about the atomization process of these liquids, a liquid drop generator and a high-speed camera were used to create and measure the conditions at which different breakup modes occurred, as well as the time required for the process. These results were compared to experimental and theoretical results for Newtonian liquids. Based on the data, one can conclude that solutions that are more elastic require higher shear forces to break up. In addition, while Newtonian liquids form droplets as they atomize, visco-elastic non-Newtonian solutions form ligaments. As a result, a combustion system utilizing these types of propellants must be capable of generating these forces. It may also be necessary to find a way to transform the ligaments into more spherically-shaped droplets to increase combustion efficiency.

  16. The influence of the non-Newtonian properties of blood on blood-hammer through the posterior cerebral artery.

    Science.gov (United States)

    Tazraei, Pedram; Riasi, Alireza; Takabi, Behrouz

    2015-06-01

    This work investigates a two dimensional numerical analysis of blood hammer through the posterior cerebral artery. The non-Newtonian and usual Newtonian blood models are compared in the case of blood hammer through the posterior cerebral artery to quantify the differences between the models. In this way, a validated CFD simulation is used to study non-Newtonian shear-thinning effects of blood. The governing equations for the modeling of two-dimensional transient flow are solved using a combination of characteristics and central finite difference methods, respectively for the hyperbolic and parabolic parts. Herein, the non-Newtonian viscosity characteristic of blood is incorporated by using the Carreau model. To convert the nonlinear terms available in the characteristics equation into the linear ones, the Newton-Kantorovich method is implemented. The verification and validation of the numerical results are carried out in detail. Hemodynamic characteristics of blood hammer through the posterior cerebral artery are derived with both the Newtonian and non-Newtonian models, and the results are meticulously compared and discussed. The results show that when blood hammer occurs, the non-Newtonian properties greatly influence the velocity and shear stress profiles. At the early stages of blood hammer, there is a 64% difference between magnitudes of wall shear stress in these two models, and the magnitude of the wall shear stress for the shear-thinning blood flow is lower than the Newtonian one. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Hydrodynamics of membrane bioreactors with Newtonian and non-Newtonian fluids

    OpenAIRE

    AL-Shamary, Lamia

    2013-01-01

    Membranbioreaktoren (MBRs) sind eine leistungsfähige Alternative zur biologischen Abwasser-reinigung. Allerdings stellen die hohen Betriebskosten im Vergleich zu herkömmlichen Belebtschlammanlagen einen der wichtigsten Nachteile der MBRs dar. Insbesondere der Energieverbrauch für die Belüftung zur Abreinigung der Deckschicht auf den Membranen ver-ursacht noch erhebliche Kosten, die bis zu 70% der gesamten Energiekosten ausmachen. Deshalb können die größten Energie- und Betriebskosteneinsparun...

  18. Numerical Modeling of the Side Flow in Tape Casting of a Non-Newtonian Fluid

    DEFF Research Database (Denmark)

    Jabbari, Masoud; Hattel, Jesper Henri

    2013-01-01

    One of the most common ways used to produce multilayer ceramics (MLC) is tape casting. In this process, the dried tape thickness is of great interest to control the desired products and applications. One of the parameters that influences the final tape thickness is the side flow factor (a) which...... is mostly measured at the end of the process by a volumetric comparison of the tape which flowed outside the casting width to the tape within the casting width. This phenomenon has not been predicted theoretically yet in the literature. In this study, the flow of (La0.85Sr0.15)0.9MnO3 (LSM) slurry...... in the tape casting process is modeled numerically with ANSYS FLUENT in combination with an Ostwald-de Waele power law constitutive equation. Based on rheometer experiments, the constants in the Ostwald-de Waele power law are identified for the considered LSM material and applied in the numerical modeling...

  19. Shear History Extensional Rheology Experiment II (SHERE II) Microgravity Rheology with Non-Newtonian Polymeric Fluids

    Science.gov (United States)

    Jaishankar, Aditya; Haward, Simon; Hall, Nancy Rabel; Magee, Kevin; McKinley, Gareth

    2012-01-01

    The primary objective of SHERE II is to study the effect of torsional preshear on the subsequent extensional behavior of filled viscoelastic suspensions. Microgravity environment eliminates gravitational sagging that makes Earth-based experiments of extensional rheology challenging. Experiments may serve as an idealized model system to study the properties of lunar regolith-polymeric binder based construction materials. Filled polymeric suspensions are ubiquitous in foods, cosmetics, detergents, biomedical materials, etc.

  20. Entropy generation in non-Newtonian fluid flow in a slider bearing

    Indian Academy of Sciences (India)

    In the present study, entropy production in flow fields due to slider bearings is formulated. ... Department of Mechanical Engineering, Celal Bayar University, 45140 Muradiye, Manisa, Turkey; Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, P O Box 1913, Dhahran 31261, Saudi ...

  1. Entropy generation in non-Newtonian fluid flow in a slider bearing

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    3Technical Education Faculty, Afyon Kocatepe University, Afyon, Turkey e-mail: bsyilbas@kfupm.edu.sa. MS received 18 June 2004; revised 18 October 2004. Abstract. In the present study, entropy production in flow fields due to slider bearings is formulated. The rate of entropy generation is computed for differentfluid.

  2. Validation of computational non-Newtonian fluid model for membrane bioreactor

    DEFF Research Database (Denmark)

    Sørensen, Lasse; Bentzen, Thomas Ruby; Skov, Kristian

    2015-01-01

    Membrane bioreactor (MBR) systems are often considered as the wastewater treatment method of the future due to its high effluent quality. One of the main problems with such systems is a relative large energy consumption, which has led to research in this specific area. A powerful tool for optimiz......Membrane bioreactor (MBR) systems are often considered as the wastewater treatment method of the future due to its high effluent quality. One of the main problems with such systems is a relative large energy consumption, which has led to research in this specific area. A powerful tool...

  3. Physics of Non-Newtonian Fluids and Interdisciplinary Relations (Biology and Criminology)

    Science.gov (United States)

    Holubova, R.

    2018-01-01

    The aim of the paper is the presentation of an interdisciplinary topic that allows applying content knowledge in physics, mathematics and biology in real life environment. Students use to play games and view crime scenes but in common they have little knowledge about the science used during crime scene investigation. In this paper the science…

  4. Entropy generation in a pipe due to non-Newtonian fluid flow ...

    Indian Academy of Sciences (India)

    Author Affiliations. M Pakdemirli1 B S Yilbas2. Department of Mechanical Engineering, Celal Bayar University, Manisa, Turkey; Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, P.O. Box 1913, Dhahran 31261, Saudi Arabia ...

  5. Empirical Correlations and CFD Simulations of Vertical Two-Phase Gas-Liquid (Newtonian and Non-Newtonian) Slug Flow Compared Against Experimental Data of Void Fraction

    DEFF Research Database (Denmark)

    Ratkovich, Nicolas Rios; Majumder, S.K.; Bentzen, Thomas Ruby

    2013-01-01

    agreement was found between the experimental measurements, the CFD results and the empirical relationships. In terms of void fraction for Newtonian and non-Newtonian liquids, the empirical correlations perform much worse than the CFD simulations, errors of 48 and 25%, respectively, against the experimental...... (CFD) and comparing this directly with experimental measurements and empirical relationships found in literature. A vertical tube of 3.4 m with an internal diameter of 0.1905 m was used. The two-phase CFD model was implemented in Star CCM+ using the volume of fluid (VOF) model. A relatively good...... data. This shows that CFD can be used to predict void fraction relatively well for comparison against empirical correlations and they can be used for design and scale-up processes....

  6. Mantle plumes - A boundary layer approach for Newtonian and non-Newtonian temperature-dependent rheologies. [modeling for island chains and oceanic aseismic ridges

    Science.gov (United States)

    Yuen, D. A.; Schubert, G.

    1976-01-01

    Stress is placed on the temperature dependence of both a linear Newtonian rheology and a nonlinear olivine rheology in accounting for narrow mantle flow structures. The boundary-layer theory developed incorporates an arbitrary temperature-dependent power-law rheology for the medium, in order to facilitate the study of mantle plume dynamics under real conditions. Thermal, kinematic, and dynamic structures of mantle plumes are modelled by a two-dimensional natural-convection boundary layer rising in a fluid with a temperature-dependent power-law relationship between shear stress and strain rate. An analytic similarity solution is arrived at for upwelling adjacent to a vertical isothermal stress-free plane. Newtonian creep as a deformation mechanism, thermal anomalies resulting from chemical heterogeneity, the behavior of plumes in non-Newtonian (olivine) mantles, and differences in the dynamics of wet and dry olivine are discussed.

  7. Effects of thermal-diffusion and viscous dissipation on peristaltic flow of micropolar non-Newtonian nanofluid: Application of homotopy perturbation method

    Science.gov (United States)

    Abou-zeid, Mohamed

    In this paper, a study of the peristaltic motion of incompressible micropolar non-Newtonian nanofluid with heat transfer in a two-dimensional asymmetric channel is investigated under long-wavelength assumption. The flow includes radiation and viscous dissipation effects as well as all micropolar fluid parameters. The fundamental equations which govern this flow have been modeled under long-wavelength assumption, and the expressions of velocity and microrotation velocity are obtained in a closed form, while the solutions of both temperature and nanoparticles phenomena are obtained using the homotopy perturbation method (HPM). Also, the skin friction, Nusselt number and Sherwood number are obtained at both lower and upper walls. The results have been discussed graphically to observe the effects the physical parameters of the problem have on the physical quantities.

  8. Non-newtonian flow and pressure drop of pineapple juice in a plate heat exchanger

    Directory of Open Access Journals (Sweden)

    R. A. F. Cabral

    2010-12-01

    Full Text Available The study of non-Newtonian flow in plate heat exchangers (PHEs is of great importance for the food industry. The objective of this work was to study the pressure drop of pineapple juice in a PHE with 50º chevron plates. Density and flow properties of pineapple juice were determined and correlated with temperature (17.4 < T < 85.8ºC and soluble solids content (11.0 < Xs < 52.4 ºBrix. The Ostwald-de Waele (power law model described well the rheological behavior. The friction factor for non-isothermal flow of pineapple juice in the PHE was obtained for diagonal and parallel/side flow. Experimental results were well correlated with the generalized Reynolds number (20 < Re g < 1230 and were compared with predictions from equations from the literature. The mean absolute error for pressure drop prediction was 4% for the diagonal plate and 10% for the parallel plate.

  9. The Non-Newtonian Rheology of Real Magmas: insights into 3D microstructures

    Science.gov (United States)

    Pistone, M.; Caricchi, L.; Ulmer, P.; Reusser, E.; Marone, F.; Burlini, L.

    2010-12-01

    We present high-resolution 3D microstructures of three-phase magmas composed of melt, bubbles and crystals in different proportions deformed at magmatic pressure and temperature conditions. This study aims to constrain the dependence of rheological and physical properties of magmas on the viscosity of the silicate melt, the applied deformation rate, the relative contents of crystals and bubbles and on the interactions between these phases. The starting material is composed of a hydrous haplogranitic melt containing H2O (2.26 wt%) and CO2 (624 ppm) and different proportions of quartz crystals (between 24 and 65 vol%; 63-125 μm in diameter) and bubbles (between 9 and 12 vol%; 5-150 μm in diameter). Experiments were performed in simple shear using a HT-HP internally-heated Paterson-type rock deformation apparatus (Paterson and Olgaard, 2000) at strain rates ranging between 5×10-5 s-1 and 4×10-3 s-1, at a constant pressure of 200 MPa and temperatures ranging between 723 and 1023 K. Synchrotron based X-ray tomographic microscopy performed at the TOMCAT beamline (Stampanoni et al., 2006) at the Swiss Light Source enabled quantitative evaluation of the 3D microstructure. At high temperature and low strain rate conditions the silicate melt behaves as a Newtonian liquid (Webb and Dingwell, 1990). Higher deformation rates and the contemporary presence of gas bubbles and solid crystals make magma rheology more complex and non-Newtonian behaviour occurs. In all experimental runs two different non-Newtonian effects were observed: shear thinning (decrease of viscosity with increasing strain rate) in high crystal-content magmas (55-65 vol% crystals; 9-10 vol% bubbles) and shear thickening (increase of viscosity with increasing strain rate) in magmas at lower degree of crystallinity (24 vol% crystals; 12 vol% bubbles). Both behaviours were observed at intermediate crystal-content (44 vol% crystals; 12 vol% bubbles), with an initial thickening that subsequently gives way to

  10. Turbulent Flow of Saudi Non-Newtonian Crude Oils in a Pipeline Écoulement turbulent de bruts non-newtoniens séoudiens dans une canalisation

    Directory of Open Access Journals (Sweden)

    Hemeidia A. M.

    2006-11-01

    Full Text Available Rheological properties of Saudi Arab-Light, Arab-Berri and Arab-Heavy crude oils were measured with Brookfield Viscometer (LVT Model at temperatures 10, 15, 20, 25, 38, 55 and 70°C. Saudi Arab-Light and Arab-Heavy exhibit non-Newtonian behavior at temperature less than or equal to 20°C, while Saudi Arab-Berri behaves as a non-Newtonian fluid at all temperatures. The main reason for this rheological behavior can be attributed to the thermal and shear histories; the relative amounts of wax and asphaltene content in Saudi crude oils as well. Therefore, Statistical Analysis (t-test was used to check the variability of the change in rheological behavior of Saudi non-Newtonian crude oils at a confidence level of 95%. The evaluation ensured that, all non-Newtonian data were statistically not different and were correlated with power-law model. Under turbulent flow conditions the pipeline design calculations were carried out through a computer program. Les propriétés rhéologiques des bruts séoudiens Arab-Light, Arab-Berri et Arab-Heavy ont été mesurées à l'aide d'un viscomètre Brookfield (modèle LVT à des températures de 10, 15, 20, 25, 38, 55 et 70°C. Les Saudi Arab-Light et Arab-Heavy présentent un comportement non newtonien à des températures égales ou inférieures à 20°C, tandis que le Saudi Arab-Berri se comporte comme un fluide non newtonien à toutes les températures. Ce comportement rhéologique est principalement dû aux historiques thermiques et de cisaillement, de même qu'aux quantités relatives de paraffine et à la teneur en asphaltène des bruts séoudiens. Une analyse statistique (essai t a donc été menée pour vérifier la variabilité des changements de comportement rhéologique des bruts séoudiens non newtoniens à un degré de fiabilité de 95%. Il en est ressorti que toutes les données non newtoniennes étaient statistiquement non différentes et étaient en corrélation avec le modèle de la loi des

  11. On the Application of Viscoelastic & Viscoplastic Constitutive Relations in the CFD Bio-Fluid Simulations

    CERN Document Server

    Akherat, S M Javid Mahmoudzadeh

    2016-01-01

    Considerations on implementation of the stress-strain constitutive relations applied in Computational Fluid dynamics (CFD) simulation of cardiovascular flows have been addressed extensively in the literature. However, the matter is yet controversial. The author suggests that the choice of non-Newtonian models and the consideration of non-Newtonian assumption versus the Newtonian assumption is very application oriented and cannot be solely dependent on the vessel size. In the presented work, where a renal disease patient-specific geometry is used, the non-Newtonian effects manifest insignificant, while the vessel is considered to be medium to small which, according to the literature, suggest a strict use of non-Newtonian formulation. The insignificance of the non-Newtonian effects specially manifests in Wall Shear Stress (WSS) along the walls of the numerical domain, where the differences between Newtonian calculated WSS and non-Newtonian calculated WSS is barely visible.

  12. Entropy Generation in Flow of Highly Concentrated Non-Newtonian Emulsions in Smooth Tubes

    Directory of Open Access Journals (Sweden)

    Rajinder Pal

    2014-10-01

    Full Text Available Entropy generation in adiabatic flow of highly concentrated non-Newtonian emulsions in smooth tubes of five different diameters (7.15–26.54 mm was investigated experimentally. The emulsions were of oil-in-water type with dispersed-phase concentration (Φ ranging from 59.61–72.21% vol. The emulsions exhibited shear-thinning behavior in that the viscosity decreased with the increase in shear rate. The shear-stress (τ versus shear rate (˙γ data of emulsions could be described well by the power-law model: τ=K˙γn. The flow behavior index n was less than 1 and it decreased sharply with the increase in Φ whereas the consistency index K increased rapidly with the increase in Φ . For a given emulsion and tube diameter, the entropy generation rate per unit tube length increased linearly with the increase in the generalized Reynolds number ( Re_n on a log-log scale. For emulsions with Φ ≤65.15 % vol., the entropy generation rate decreased with the increase in tube diameter. A reverse trend in diameter-dependence was observed for the emulsion with Φ of 72.21% vol. New models are developed for the prediction of entropy generation rate in flow of power-law emulsions in smooth tubes. The experimental data shows good agreement with the proposed models.

  13. Rheology of PVC Plastisol: Formation of Immobilized Layer in Pseudoplastic Flow.

    Science.gov (United States)

    Nakajima, N.; Harrell, E. R.

    2001-06-01

    Hoffman in the early 1970s examined mechanism of dilatancy and fracture of plastisol under high-shear conditions. The samples were monodispersed spherical particles of PVC. He discovered formation of immobilized layer in the pseudoplastic flow preceding dilatancy and subsequent destruction of the layer at the fracture. However, his analysis was focused primarily on the mechanism of the fracture, and the mechanism of pseudoplastic flow remains unexplored. The present work begins with analyses of Hoffman's data to show that pseudoplastic flow, i.e., the decrease of viscosity with the increase of shear rate, is a result of the development of the immobilized layer and creation of a mobile layer of low-viscosity fluid. Hoffman took the mobile layer to consist of pure plasticizer. The present work shows that the mobile layer contains PVC particles. The thickness of mobile layer decreases (and the thickness of immobilized layer increases) with the increase of shear rate. The particle concentration and hence viscosity of the mobile layer decrease with the increase of shear rate. Similar analyses of our dynamic viscosity-frequency relationship show that (1) the pseudoplastic behavior is a result of formation of immobilized layer, which grows thicker with the increasing frequency, and (2) the mobile layer contains dispersed particles, the concentration of which decreases with increasing frequency. (3) A presence of coarse particles results in a tighter packing of the immobilized layer and lower viscosity of the mobile layer for a given volume fraction of particles. This explains why the presence and the amount of the coarse particles are important parameters in plastisol formulation. The elastic modulus-frequency relationship is also interpreted with the development of the immobilized layer, giving strain amplification. Copyright 2001 Academic Press.

  14. The Effect of Polymer Content on the Non-Newtonian Behavior of Acetaminophen Suspension

    Science.gov (United States)

    Moghimipour, Eskandar; Kouchak, Maryam; Salimi, Anayatollah; Bahrampour, Saeed; Handali, Somayeh

    2013-01-01

    Acetaminophen is used as an analgesic and antipyretic agent. The aim of the study was evaluation of the effect of different polymers on rheological behavior of acetaminophen suspension. In order to achieve controlled flocculation, sodium chloride was added. Then structural vehicles such as carboxymethyl cellulose (CMC), polyvinyl pyrrolidone (PVP), tragacanth, and magnesium aluminum silicate (Veegum) were evaluated individually and in combination. Physical stability parameters such as sedimentation volume (F), redispersibility (n), and growth of crystals of the suspensions were determined. Also, the rheological properties of formulations were studied. The results of this study showed that the combination of suspending agents had the most physical stability and pseudoplastic behavior with some degree of thixotropy. Viscosity of suspensions was increased by adding NaCl 0.02%. Presence of PVP is necessary for improving rheological behavior of suspensions by NaCl. This may be related to the cross-linking between the carbonyl group in the PVP segment and Na+ ions. PMID:24109512

  15. Uniform electric-field-induced non-Newtonian rheology of a dilute suspension of deformable Newtonian drops

    Science.gov (United States)

    Mandal, Shubhadeep; Chakraborty, Suman

    2017-09-01

    The rheological behavior of a dilute emulsion comprised of neutrally buoyant drops suspended in an immiscible medium under the combined influence of a uniform electric field and simple shear flow is analyzed. Considering the drops and suspending medium as Newtonian and leaky dielectrics, the effective emulsion stress tensor is obtained when the fluid motion is governed by the Stokes equations. The present study takes into account an arbitrarily oriented uniform electric field in the plane of shear flow. A small-deformation analysis is performed to study this coupled electrohydrodynamic problem considering weak imposed shear flow and weak surface charge convection. Analytical expressions are obtained for the effective shear viscosity and normal stress differences of the dilute emulsion. The tilt angle (orientation angle of the applied electric field relative to the direction of shear flow) is found to affect the emulsion rheology. Key results show that the dilute emulsion exhibits non-Newtonian behavior such as shear-rate-dependent effective viscosity and nonzero first and second normal stress differences. In the absence of shape deformation and charge convection, a dilute emulsion displays shear thinning or shear thickening behavior depending on the drop polarization and tilt angle. The effective viscosity of the dilute emulsion can be lower or higher than the viscosity of the suspending medium depending on the electrical property ratios, tilt angle, and relative strength of the electric stress as compared with viscous stress. Surface charge convection significantly affects the electrohydrodynamic flow and thereby modifies the effective viscosity and normal stress differences. The applied electric field significantly affects the drop shape and orientation angle and thereby modifies the effective viscosity and normal stress differences. Both the surface charge convection and shape deformation can increase or decrease the effective viscosity and normal stress

  16. Rheology and thermal budget of lunar basalts: an experimental study and its implications for rille formation of non-Newtonian lavas on the Moon

    Science.gov (United States)

    Sehlke, A.; Whittington, A. G.

    2015-12-01

    the heat capacity of crystal-bearing glasses (representing erodible solid substrate) and the heat released during lava crystallization at different cooling rates measured by differential scanning calorimetry (DSC). The rheological and thermal properties will then be integrated into thermo-mechanical models of rille formation in non-Newtonian lavas on the lunar surface.

  17. Analytical and Numerical Modelling of Newtonian and non-Newtonian Liquid in a Rotational Cross-flow MBR

    DEFF Research Database (Denmark)

    Bentzen, Thomas Ruby; Ratkovich, Nicolas Rios; Madsen, S.

    2012-01-01

    , impellers. Validation of the CFD (computational fluid dynamics) model was made against laser Doppler anemometry (LDA) tangential velocity measurements (error less than 8%) using water as a fluid. The shear stress over the membrane surface was inferred from the CFD simulations for water. However, activated......Fouling is the main bottleneck of the widespread use of MBR systems. One way to decrease and/or control fouling is by process hydrodynamics. This can be achieved by the increase of liquid cross- flow velocity. In rotational cross-flow MBR systems, this is attained by the spinning of, for example...... sludge (AS) is a non-Newtonian liquid, for which the CFD model was modified incorporating the non-Newtonian behaviour of AS. Shear stress and area-weighted average shear stress relationships were made giving error less that 8% compared with the CFD results. An empirical relationship for the area...

  18. Physics of Life: A Model for Non-Newtonian Properties of Living Systems

    Science.gov (United States)

    Zak, Michail

    2010-01-01

    This innovation proposes the reconciliation of the evolution of life with the second law of thermodynamics via the introduction of the First Principle for modeling behavior of living systems. The structure of the model is quantum-inspired: it acquires the topology of the Madelung equation in which the quantum potential is replaced with the information potential. As a result, the model captures the most fundamental property of life: the progressive evolution; i.e. the ability to evolve from disorder to order without any external interference. The mathematical structure of the model can be obtained from the Newtonian equations of motion (representing the motor dynamics) coupled with the corresponding Liouville equation (representing the mental dynamics) via information forces. All these specific non-Newtonian properties equip the model with the levels of complexity that matches the complexity of life, and that makes the model applicable for description of behaviors of ecological, social, and economical systems. Rather than addressing the six aspects of life (organization, metabolism, growth, adaptation, response to stimuli, and reproduction), this work focuses only on biosignature ; i.e. the mechanical invariants of life, and in particular, the geometry and kinematics of behavior of living things. Living things obey the First Principles of Newtonian mechanics. One main objective of this model is to extend the First Principles of classical physics to include phenomenological behavior on living systems; to develop a new mathematical formalism within the framework of classical dynamics that would allow one to capture the specific properties of natural or artificial living systems such as formation of the collective mind based upon abstract images of the selves and non-selves; exploitation of this collective mind for communications and predictions of future expected characteristics of evolution; and for making decisions and implementing the corresponding corrections if

  19. The coextrusion of two incompressible elastico-viscous fluids through a rectangular channel

    Science.gov (United States)

    Jones, R. S.; Thomas, O. D. J.

    1989-05-01

    The slow coextrusion of two non-Newtonian fluids through a rectangular channel is considered. The shape of the interface and the secondary flows are investigated and their dependence on the fluid properties determined.

  20. The Effect of Polymer Content on the Non-Newtonian Behavior of Acetaminophen Suspension

    Directory of Open Access Journals (Sweden)

    Eskandar Moghimipour

    2013-01-01

    Full Text Available Acetaminophen is used as an analgesic and antipyretic agent. The aim of the study was evaluation of the effect of different polymers on rheological behavior of acetaminophen suspension. In order to achieve controlled flocculation, sodium chloride was added. Then structural vehicles such as carboxymethyl cellulose (CMC, polyvinyl pyrrolidone (PVP, tragacanth, and magnesium aluminum silicate (Veegum were evaluated individually and in combination. Physical stability parameters such as sedimentation volume (F, redispersibility (n, and growth of crystals of the suspensions were determined. Also, the rheological properties of formulations were studied. The results of this study showed that the combination of suspending agents had the most physical stability and pseudoplastic behavior with some degree of thixotropy. Viscosity of suspensions was increased by adding NaCl 0.02%. Presence of PVP is necessary for improving rheological behavior of suspensions by NaCl. This may be related to the cross-linking between the carbonyl group in the PVP segment and Na+ ions.

  1. Entropy analysis on MHD pseudo-plastic nanofluid flow through a vertical porous channel with convective heating

    Directory of Open Access Journals (Sweden)

    S. Das

    2015-09-01

    Full Text Available This paper is concerned with the entropy generation in a magnetohydrodynamic (MHD pseudo-plastic nanofluid flow through a porous channel with convective heating. Three different types of nanoparticles, namely copper, aluminum oxide and titanium dioxide are considered with pseudo-plastic carboxymethyl cellulose (CMC–water used as base fluids. The governing equations are solved numerically by shooting technique coupled with Runge–Kutta scheme. The effects of the pertinent parameters on the fluid velocity, temperature, entropy generation, Bejan number as well as the shear stresses at the channel walls are presented graphically and analyzed in detail. It is possible to determine optimum values of magnetic parameter, power-law index, Eckert number and Boit number which lead to a minimum entropy generation rate.

  2. Oxygenation to Bovine Blood in Artificial Heart and Lung Using Vibrating Flow Pump: Experiment and Numerical Analysis Based on Non-Newtonian Model

    Science.gov (United States)

    Shintaku, Hirofumi; Yonemura, Tsubasa; Tsuru, Kazuaki; Isoyama, Takashi; Yambe, Tomoyuki; Kawano, Satoyuki

    In this study, we construct an experimental apparatus for a prototype artificial heart and lung (AHL) by installing hollow fibers into the cylindrical tube of the vibrating flow pump (VFP). The oxygenation characteristics are investigated both by experiments using bovine blood and by numerical analyses based on the computational fluid dynamics. The analyses are carried out at the Reynolds numbers Re ranged from O(1) to O(103), which are determined based on the experimental conditions. The blood flow and the diffusion of oxygen gas are analyzed based on the Newtonian/non-Newtonian, unsteady, incompressible and axisymmetric Navier-Stokes equations, and the advection-diffusion equation. The results show that the oxygenation rate increases in proportion to Re1/3, where the phenomenon corresponds to the decreasing thickness of the concentration boundary layer with Re. Although the effects of the vibrating flow and the rheology of the blood are clearly appeared on the velocity field, their effects on the gas exchange are relatively small at the ranges of prescribed Reynolds numbers. Furthermore, the numerical results in terms of the oxygenation rate are compared with the experimental ones. The basic design data of VFP were accumulated for the development of AHL in the clinical applications.

  3. The LS-STAG immersed boundary method for non-Newtonian flows in irregular geometries: flow of shear-thinning liquids between eccentric rotating cylinders

    Science.gov (United States)

    Botella, Olivier; Ait-Messaoud, Mazigh; Pertat, Adrien; Cheny, Yoann; Rigal, Claire

    2015-04-01

    This paper presents the extension of a well-established immersed boundary/cut-cell method, the LS-STAG method (Cheny and Botella in J Comput Phys 229:1043-1076, 2010), to non-Newtonian flow computations in 2D irregular geometries. One of the distinguished features of our IB method is to use level-set techniques in the cut-cells near the irregular boundary, where accurate discretization is of paramount importance for stability and accuracy of the computations. For this purpose, we present here an accurate discretization of the velocity gradients and shear rate in the cut-cells that fits elegantly in the framework of the velocity-pressure-stress staggered arrangement and the special quadratures developed previously for viscoelastic flows. After assessing the accuracy of the discretization on a benchmark solution for power-law fluids, the LS-STAG code is applied to the flow of various shear-thinning xanthan solutions in a wide-gap, non-coaxial, Taylor-Couette reactor for which rheological characterization, experimental flow measurements (PIV) and FLUENT simulations have recently been performed in our group. Our numerical investigation will give new insight on the flow patterns (onset, size and position of the recirculation zone) and will firmly correlate them to global flow properties such as shear-thinning index, generalized Reynolds number and torque ratio at the cylinders.

  4. Determination of the effective viscosity of non-Newtonian lubricants at the frictional contact. DGMK-project 4583-1

    Energy Technology Data Exchange (ETDEWEB)

    Bartz, W.J.; Reynolds, T.

    1979-01-01

    The effective viscosity of a non-Newtonian oil has been compared with the viscosity of a Newtonian multigrade engine oil according to SAE 20W-50. The viscosity/temperature behaviour of both oils was identical. Using the definition of the effective data of temperature, shear stress and pressure the effective viscosity in the lubricating gap of a steadily loaded journal bearing could be determined. In doing so a very good correlation of the experimental test results with the theoretically calculated data of Sassenfeld/Walther has been obtained.

  5. Electro-osmotic flow of power-law fluid and heat transfer in a micro-channel with effects of Joule heating and thermal radiation

    Science.gov (United States)

    Shit, G. C.; Mondal, A.; Sinha, A.; Kundu, P. K.

    2016-11-01

    A mathematical model has been developed for studying the electro-osmotic flow and heat transfer of bio-fluids in a micro-channel in the presence of Joule heating effects. The flow of bio-fluid is governed by the non-Newtonian power-law fluid model. The effects of thermal radiation and velocity slip condition have been examined in the case of hydrophobic channel. The Poisson-Boltzmann equation governing the electrical double layer field and a body force generated by the applied electric potential field are taken into consideration. The results presented here pertain to the case where the height of the channel is much greater than the thickness of electrical double layer comprising the Stern and diffuse layers. The expressions for flow characteristics such as velocity, temperature, shear stress and Nusselt number have been derived analytically under the purview of the present model. The results estimated on the basis of the data available in the existing scientific literatures are presented graphically. The effects of thermal radiation have an important bearing on the therapeutic procedure of hyperthermia, particularly in understanding the heat transfer in micro-channel in the presence of electric potential. The dimensionless Joule heating parameter has a reducing impact on Nusselt number for both pseudo-plastic and dilatant fluids, nevertheless its impact on Nusselt number is more pronounced for dilatant fluid. Furthermore, the effect of viscous dissipation has a significant role in controlling heat transfer and should not be neglected.

  6. Magmatic Focusing to Mid-Ocean Ridges: The Role of Grain-Size Variability and Non-Newtonian Viscosity

    Science.gov (United States)

    Turner, Andrew J.; Katz, Richard F.; Behn, Mark D.; Keller, Tobias

    2017-12-01

    Melting beneath mid-ocean ridges occurs over a region that is much broader than the zone of magmatic emplacement that forms the oceanic crust. Magma is focused into this zone by lateral transport. This focusing has typically been explained by dynamic pressure gradients associated with corner flow, or by a sublithospheric channel sloping upward toward the ridge axis. Here we discuss a novel mechanism for magmatic focusing: lateral transport driven by gradients in compaction pressure within the asthenosphere. These gradients arise from the covariation of melting rate and compaction viscosity. The compaction viscosity, in previous models, was given as a function of melt fraction and temperature. In contrast, we show that the viscosity variations relevant to melt focusing arise from grain-size variability and non-Newtonian creep. The asthenospheric distribution of melt fraction predicted by our models provides an improved explanation of the electrical resistivity structure beneath one location on the East Pacific Rise. More generally, we find that although grain-size and non-Newtonian viscosity are properties of the solid phase, their effect on melt transport beneath mid-ocean ridges is more profound than their effect on the mantle corner flow.

  7. A mathematical model for a pseudo-plastic welding joint

    OpenAIRE

    Iosifescu, Oana; Juntharee, Pongpol; Licht, Christian; Michaille, Gérard

    2009-01-01

    An elementary situation in welding involves the perfect assembly of two adherents and a strong adhesive occupying a thin layer. The bulk energy density of the hyperelastic adherents grows superlinearly while that of the pseudo-plastic adhesive grows linearly with a stiffness of the order of the inverse of its thickness epsilon. We propose a simplified but accurate model by studying the asymptotic behavior, when epsilon goes to zero, through variational convergence methods: at the limit, the i...

  8. Unsteady Boundary-Layer Flow over Jerked Plate Moving in a Free Stream of Viscoelastic Fluid

    Directory of Open Access Journals (Sweden)

    Sufian Munawar

    2014-01-01

    Full Text Available This study aims to investigate the unsteady boundary-layer flow of a viscoelastic non-Newtonian fluid over a flat surface. The plate is suddenly jerked to move with uniform velocity in a uniform stream of non-Newtonian fluid. Purely analytic solution to governing nonlinear equation is obtained. The solution is highly accurate and valid for all values of the dimensionless time 0≤τ<∞. Flow properties of the viscoelastic fluid are discussed through graphs.

  9. Detection of the onset of Dean instability and effects of the rheological behavior in non-Newotonian fluids

    Energy Technology Data Exchange (ETDEWEB)

    Fellouah, H; Castelain, C; Moctar, A Ould El; Peerhossaini, H [Thermofluids, Complex Flows and Energy Research Group, Laboratoire de Thermocinetique, UMR CNRS 6607, Polytech Nantes, rue Christian Pauc, B.P. 90604, F-44306 NANTES Cedex 3 (France)], E-mail: ahmed.ould-el-moctar@univ-nantes.fr

    2008-11-01

    Start The onset of Dean instability in laminar secondary flow in 180 deg. curved rectangular cross section channel was studied experimentally and numerically in Newtonian and non-Newtonian fluids. The development of the instability was observed; we showed that the Dean vortices develop first in the near wall zone on the concave wall, where the viscosity is weak and the shear rate is high, and than they penetrate the cross-section center characterized by a high viscosity for the pseudoplastic fluids and a solid (unsheared) zone for the yield fluids. Based on the complete formation of the Dean vortices, the critical value of the Dean number decreases with the increase of the power law index and with the decrease of the Bingham number. Contrarily to what is reported in the literature where the instability threshold was usually obtained visually, in this study a new criterion based on the radial gradient of the axial velocity to detect the instability threshold was defined. Comparison was made between numerical and experimental results concerning the instability threshold, obtained with the new criterion. Also, a comparison between the instability threshold using this new criterion and using the visualization technique is presented. We show that the value of the Dean number using the new criterion is comparable for the two studies, numerical and experimental. These values are weaker than those obtained with the visualization technique for the same conditions.

  10. Effects of slip on free convection flow of Casson fluid over an oscillating vertical plate

    National Research Council Canada - National Science Library

    Imran, Muhammad A; Sarwar, Shakila; Imran, Muhammad

    2016-01-01

    .... It is used to characterize the non-Newtonian fluid behavior. By introducing appropriate non-dimensional variables, the resulting equations are solved analytically by using the Laplace transform technique...

  11. Stress Analysis of Mixing of Non-Newtonian Flows in Cylindrical Vessel Induced by Co-Rotating Stirrers

    Directory of Open Access Journals (Sweden)

    Rafique Ahmed Memon

    2013-04-01

    Full Text Available The impacts of rotational velocity and inertia on velocity gradients and stresses are addressed under present study. The non-Newtonian behaviour of inelastic rotating flows is predicted by employing Power law model. A numerical model has been developed for mixing flow within a cylindrical vessel along a couple of stirrers. A time marching FEM (Finite Element Method is employed to predict the required solution. Predicted solutions are presented for minimum to maximum values in terms of contour plots of velocity gradients and shear stresses, over the range. The long term application of this research will be used to improve the design of mixers and processing products. The predicted results are used to generate the capability and are in good agreement with numerical results to the mixer design that will ultimately effect the processing of dough products

  12. Non-Newtonian rheological properties of shearing nematic liquid crystal model systems based on the Gay-Berne potential.

    Science.gov (United States)

    Sarman, Sten; Wang, Yong-Lei; Laaksonen, Aatto

    2015-07-07

    The viscosities and normal stress differences of various liquid crystal model systems based on the Gay-Berne potential have been obtained as functions of the shear rate in the non-Newtonian regime. Various molecular shapes such as regular convex calamitic and discotic ellipsoids and non-convex shapes such as bent core molecules and soft ellipsoid strings have been examined. The isotropic phases were found to be shear thinning with the shear rate dependence of the viscosity following a power law in the same way as alkanes and other non-spherical molecules. The nematic phases turned out to be shear thinning but the logarithm of the viscosity proved to be an approximately linear function of the square root of the shear rate. The normal stress differences were found to display a more or less parabolic dependence on the shear rate in the isotropic phase whereas this dependence was linear at low to intermediate shear rates in the nematic phase.

  13. Convection in Ice I with Composite Newtonian/Non-Newtonian Rheology: Application to the Icy Galilean Satellites

    Science.gov (United States)

    Barr, Amy C.; Pappalardo, Robert T.

    2005-01-01

    Ice I exhibits a complex rheology at temperature and pressure conditions appropriate for the interiors of the outer ice I shells of Europa, Ganymede, and Callisto. We use numerical methods to determine the conditions required to trigger convection in an ice I shell with a stress-, temperature-, and grain-size-dependent rheology measured in laboratory experiments by Goldsby and Kohlstedt [2001] (henceforth GK2001). Triggering convection from an initially conductive ice shell with a non-Newtonian rheology for ice I requires that a finite-amplitude temperature perturbation be issued to the ice shell [2]. Here, we characterize the amplitude and wavelength of temperature perturbation required to initiate convection in the outer ice I shells of Europa, Ganymede, and Callisto using the GK2001 rheology for a range of ice grain sizes.

  14. DETERMINATION OF THE EFFECTIVE RADIAL THERMAL DIFFUSIVITY FOR EVALUATING ENHANCED HEAT TRANSFER IN TUBES UNDER NON-NEWTONIAN LAMINAR FLOW

    Directory of Open Access Journals (Sweden)

    A. O. Morais

    2015-06-01

    Full Text Available AbstractEnhanced heat transfer in tubes under laminar flow conditions can be found in coils or corrugated tubes or in the presence of high wall relative roughness, curves, pipe fittings or mechanical vibration. Modeling these cases can be complex because of the induced secondary flow. A modification of the Graetz problem for non-Newtonian power-law flow is proposed to take into account the augmented heat transfer by the introduction of an effective radial thermal diffusivity. The induced mixing was modeled as an increased radial heat transfer in a straight tube. Three experiments using a coiled tube and a tubular heat exchanger with high relative wall roughness are presented in order to show how this parameter can be obtained. Results were successfully correlated with Reynolds number. This approach can be useful for modeling laminar flow reactors (LFR and tubular heat exchangers available in the chemical and food industries.

  15. Effects of unsteadiness and non-Newtonian rheology on blood flow through a tapered time-variant stenotic artery

    Directory of Open Access Journals (Sweden)

    A. Zaman

    2015-03-01

    Full Text Available A two-dimensional model is used to analyze the unsteady pulsatile flow of blood through a tapered artery with stenosis. The rheology of the flowing blood is captured by the constitutive equation of Carreau model. The geometry of the time-variant stenosis has been used to carry out the present analysis. The flow equations are set up under the assumption that the lumen radius is sufficiently smaller than the wavelength of the pulsatile pressure wave. A radial coordinate transformation is employed to immobilize the effect of the vessel wall. The resulting partial differential equations along with the boundary and initial conditions are solved using finite difference method. The dimensionless radial and axial velocity, volumetric flow rate, resistance impedance and wall shear stress are analyzed for normal and diseased artery with particular focus on variation of these quantities with non-Newtonian parameters.

  16. Group method analysis of mixed convection stagnation-point flow of non-Newtonian nanofluid over a vertical stretching surface

    Science.gov (United States)

    Nabwey, Hossam A.; Boumazgour, Mohamed; Rashad, A. M.

    2017-07-01

    The group method analysis is applied to study the steady mixed convection stagnation-point flow of a non-Newtonian nanofluid towards a vertical stretching surface. The model utilized for the nanofluid incorporates the Brownian motion and thermophoresis effects. Applying the one-parameter transformation group which reduces the number of independent variables by one and thus, the system of governing partial differential equations has been converted to a set of nonlinear ordinary differential equations, and these equations are then computed numerically using the implicit finite-difference scheme. Comparison with previously published studies is executed and the results are found to be in excellent agreement. Results for the velocity, temperature, and the nanoparticle volume fraction profiles as well as the local skin-friction coefficient and local Nusselt number are presented in graphical and tabular forms, and discussed for different values of the governing parameters to show interesting features of the solutions.

  17. Adomian-Hermite-Padé approximation approach to thermal criticality for a reactive third grade fluid flow through porous medium

    Directory of Open Access Journals (Sweden)

    Adesanya Samuel O.

    2016-01-01

    Full Text Available This paper investigates the effect of non-Newtonian material effect on the thermal stability of a reactive fluid flow through a channel saturated with porous medium by using Brinkman model. Approximate solution of the dimensionless nonlinear ordinary differential equation governing the fluid flow is obtained by using Adomian decomposition method together with special Hermite-Pad e approximant. Effects of various non-Newtonian fluid parameters on both the velocity and temperature fields are constructed and discussed.

  18. Properties of steady solutions of a reacting non-Newtonian viscous ...

    African Journals Online (AJOL)

    We revisit an Eyring-powell reacting fluid whose viscosity depends on temperature and the vertical distance, we further assume that the MHD flow satisfies the poiseuille boundary conditions. We show that the velocity field has two solutions corresponding to each solution of the temperature. In particular we show that the ...

  19. Non-Newtonian model study for blood flow through a tapered artery with a stenosis

    Directory of Open Access Journals (Sweden)

    Noreen Sher Akbar

    2016-03-01

    Full Text Available The blood flow through a tapered artery with a stenosis is analyzed, assuming the blood as tangent hyperbolic fluid model. The resulting nonlinear implicit system of partial differential equations is solved analytically with the help of perturbation method. The expressions for shear stress, velocity, flow rate, wall shear stress and longitudinal impedance are obtained. The variations of power law index m, Weissenberg number We, shape of stenosis n and stenosis size δ are discussed different type of tapered arteries.

  20. Topography- and topology-driven spreading of non-Newtonian power-law liquids on a flat and a spherical substrate

    Science.gov (United States)

    Iwamatsu, Masao

    2017-10-01

    The spreading of a cap-shaped spherical droplet of non-Newtonian power-law liquids on a flat and a spherical rough and textured substrate is theoretically studied in the capillary-controlled spreading regime. A droplet whose scale is much larger than that of the roughness of substrate is considered. The equilibrium contact angle on a rough substrate is modeled by the Wenzel and the Cassie-Baxter model. Only the viscous energy dissipation within the droplet volume is considered, and that within the texture of substrate by imbibition is neglected. Then, the energy balance approach is adopted to derive the evolution equation of the contact angle. When the equilibrium contact angle vanishes, the relaxation of dynamic contact angle θ of a droplet obeys a power-law decay θ ˜t-α except for the Newtonian and the non-Newtonian shear-thinning liquid of the Wenzel model on a spherical substrate. The spreading exponent α of the non-Newtonian shear-thickening liquid of the Wenzel model on a spherical substrate is larger than others. The relaxation of the Newtonian liquid of the Wenzel model on a spherical substrate is even faster showing the exponential relaxation. The relaxation of the non-Newtonian shear-thinning liquid of Wenzel model on a spherical substrate is fastest and finishes within a finite time. Thus, the topography (roughness) and the topology (flat to spherical) of substrate accelerate the spreading of droplet.

  1. An Analytical Approach for Analysis of Slider Bearings with Non-Newtonian Lubricants

    Directory of Open Access Journals (Sweden)

    Li-Ming Chu

    2014-01-01

    Full Text Available In this study, a regular perturbation technique is utilized to derive the modified Reynolds equation which is applicable to power-law lubricant. The performance of slider bearings including pressure distributions, velocity distributions, film thickness, load capacity, flow rate, shear force, and friction coefficient is also derived analytically for various ξ, flow indices (n, and outlet film thicknesses (H0. These analytical solutions are clear to find the effects of the operation parameters rather than numerical methods. It can be simply and fast used for engineers. Subsequently, these proposed analytical solutions are used to analyze the lubrication performance of slider bearing with the power-law fluids.

  2. Free Convective Nonaligned Non-Newtonian Flow with Non-linear Thermal Radiation

    Science.gov (United States)

    Rana, S.; Mehmood, R.; Narayana, PV S.; Akbar, N. S.

    2016-12-01

    The present study explores the free convective oblique Casson fluid over a stretching surface with non-linear thermal radiation effects. The governing physical problem is modelled and transformed into a set of coupled non-linear ordinary differential equations by suitable similarity transformation, which are solved numerically with the help of shooting method keeping the convergence control of 10-5 in computations. Influence of pertinent physical parameters on normal, tangential velocity profiles and temperature are expressed through graphs. Physical quantities of interest such as skin friction coefficients and local heat flux are investigated numerically.

  3. Numerical modelling of thermochemically driven fluid flow with non-Newtonian rheology : applied to the earth's lithosphere and mantle

    NARCIS (Netherlands)

    Keken, P.E. van

    1993-01-01

    In the 25 years after the general acceptance of the concept of plate tectonics we have witnessed large progress in observational, laboratory, forward modelling and inversion techniques. These provide a clear view of the immense complexities that are facing us when studying the dynamics of the

  4. Convection instability of non-Newtonian Walter's nanofluid along a vertical layer

    Directory of Open Access Journals (Sweden)

    Galal M. Moatimid

    2017-04-01

    Full Text Available The linear stability of viscoelastic nanofluid layer is investigated. The rheological behavior of the viscoelastic fluid is described through the Walter's model. The normal modes analysis is utilized to treat the equations of motion for stationary and oscillatory convection. The stability analysis resulted in a third-degree dispersion equation with complex coefficients. The Routh–Hurwitz theory is employed to investigate the dispersion relation. The stability criteria divide the plane into several parts of stable/unstable regions. This shows some analogy with the nonlinear stability theory. The relation between the elasticity and the longitudinal wave number is graphically analyzed. The numerical calculations show that viscoelastic flows are more stable than those of the Newtonian ones.

  5. Scaling of plate tectonic convection with pseudoplastic rheology

    Science.gov (United States)

    Korenaga, Jun

    2010-11-01

    The scaling of plate tectonic convection is investigated by simulating thermal convection with pseudoplastic rheology and strongly temperature-dependent viscosity. The effect of mantle melting is also explored with additional depth-dependent viscosity. Heat flow scaling can be constructed with only two parameters, the internal Rayleigh number and the lithospheric viscosity contrast, the latter of which is determined entirely by rheological properties. The critical viscosity contrast for the transition between plate tectonic and stagnant lid convection is found to be proportional to the square root of the internal Rayleigh number. The relation between mantle temperature and surface heat flux on Earth is discussed on the basis of these scaling laws, and the inverse relationship between them, as previously suggested from the consideration of global energy balance, is confirmed by this fully dynamic approach. In the presence of surface water to reduce the effective friction coefficient, the operation of plate tectonics is suggested to be plausible throughout the Earth history.

  6. Preconditioned iterative methods for unsteady non-Newtonian flow between eccentrically rotating cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Gwynllyw, D.Rh.; Phillips, T.N. [Univ. of Wales, Aberystwyth (United Kingdom)

    1994-12-31

    The journal bearing is an essential part of all internal combustion engines as a means of transferring the energy from the piston rods to the rotating crankshaft. It consists essentially of an inner cylinder (the journal), which is part of the crankshaft, and an outer cylinder (the bearing), which is at the end of the piston rod. In general, the two cylinders are eccentric and there is a lubricating film of oil separating the two surfaces. The addition of polymers to mineral (Newtonian) oils to minimize the variation of viscosity with temperature has the added effect of introducing strain-dependent viscosity and elasticity. The physical problem has many complicating features which need to be modelled. It is a fully three-dimensional problem which means that significant computational effort is required to solve the problem numerically. The system is subject to dynamic loading in which the journal is allowed to move under the forces the fluid imparts on it and also any other loads such as that imparted by the engine force. The centre of the journal traces out a nontrivial locus in space. In addition, there is significant deformation of the bearing and journal and extensive cavitation of the oil lubricant. In the present study the authors restrict themselves to the two-dimensional statically loaded problem. In previous work a single domain spectral method was used which employed a bipolar coordinate transformation to map the region between the journal and the bearing onto a rectangle. The flow variables were then approximated on this rectangle using Fourier-Chebyshev expansions. However, to allow for future possible deformation of the journal and bearing surfaces due to increased load in the dynamically loaded case they have decided to use a more versatile spectral element formulation.

  7. Influence of bed material entrainment and non-Newtonian rheology on turbulent geophysical flows dynamics. Numerical study

    Science.gov (United States)

    Eglit, M. E.; Yakubenko, A. E.; Yakubenko, T. A.

    2017-10-01

    This paper deals with the mathematical and numerical modeling of the propagation stage of geophysical gravity-driven flows, such as snow avalanches, mudflows, and rapid landslides. New mathematical models are presented which are based on full, not-depth-averaged equations of mechanics of continuous media. The models account for three important issues: non-Newtonian rheology of the moving material, entrainment of the bed material by the flow, and turbulence. The main objective is to investigate the effect of these three factors on the flow dynamics and on the value of the entrainment rate. To exclude the influence of many other factors, e.g., the complicated slope topography, only the motion down a long uniform slope with a constant inclination angle is studied numerically. Moreover, the entire flow from the front to the rear area was not modeled, but only its middle part where the flow is approximately uniform in length. One of the qualitative results is that in motion along homogeneous slope the mass entrainment increases the flow velocity and depth while the entrainment rate at large time tends to become constant which depends on the physical properties of the flow and the underlying material but not on the current values of the flow velocity and depth.

  8. Micro Droplets of non-Newtonian Solutions in Silicone Oil Flow through a Hydrophobic Micro Cross-Junction

    Science.gov (United States)

    Rostami, B.; Morini, G. L.

    2017-11-01

    In this paper the generation of non-Newtonian droplets of aqueous Xanthan gum solution (0.3, 0.5 wt%) in a silicone oil flow through a micro cross-junction is experimentally analyzed. A commercial glass cross-junction microchip with hydrophobic walls has been employed to study the droplet generation mechanism. The cross-section of the channel is stadium-shaped, the width of the junction varies between 195 to 390 μm while the height of the channel is fixed at 190 μm. Tween 20 (2 wt%), as a surfactant, has been added to the dispersed phase to avoid the coalescence of the droplets and to enhance the droplet formation. With the aim to follow the time evolution of the droplets inside the channel a specific experimental setup has been implemented. The post-processing of the recorded images has been carried out by means of an “in-house” Matlab code. The typical flow patterns obtained by imposing different flow rates at the inlets of the cross-junction have been observed. The effect of the continuous and dispersed phase flow rates as well as the concentration of Xanthan gum solution on the main droplet characteristics has been studied in detail.

  9. Deposition Velocities of Non-Newtonian Slurries in Pipelines: Complex Simulant Testing

    Energy Technology Data Exchange (ETDEWEB)

    Poloski, Adam P.; Bonebrake, Michael L.; Casella, Andrew M.; Johnson, Michael D.; Toth, James J.; Adkins, Harold E.; Chun, Jaehun; Denslow, Kayte M.; Luna, Maria; Tingey, Joel M.

    2009-07-01

    One of the concerns expressed by the External Flowsheet Review Team (EFRT) is about the potential for pipe plugging at the Waste Treatment and Immobilization Plant (WTP). Per the review’s executive summary, “Piping that transports slurries will plug unless it is properly designed to minimize this risk. This design approach has not been followed consistently, which will lead to frequent shutdowns due to line plugging.” To evaluate the potential for plugging, deposition-velocity tests were performed on several physical simulants to determine whether the design approach is conservative. Deposition velocity is defined as the velocity below which particles begin to deposit to form a moving bed of particles on the bottom of a straight horizontal pipe during slurry-transport operations. The deposition velocity depends on the system geometry and the physical properties of the particles and fluid. An experimental program was implemented to test the stability-map concepts presented in WTP-RPT-175 Rev. 01. Two types of simulant were tested. The first type of simulant was similar to the glass-bead simulants discussed in WTP-RPT-175 Rev. 0 ; it consists of glass beads with a nominal particle size of 150 µm in a kaolin/water slurry. The initial simulant was prepared at a target yield stress of approximately 30 Pa. The yield stress was then reduced, stepwise, via dilution or rheological modifiers, ultimately to a level of <1 Pa. At each yield-stress step, deposition-velocity testing was performed. Testing over this range of yield-stress bounds the expected rheological operating window of the WTP and allows the results to be compared to stability-map predictions for this system. The second simulant was a precipitated hydroxide that simulates HLW pretreated sludge from Hanford waste tank AZ-101. Testing was performed in a manner similar to that for the first simulant over a wide range of yield stresses; however, an additional test of net-positive suction-head required (NPSHR

  10. Magnetohydrodynamic Mixed Convection Stagnation-Point Flow of a Power-Law Non-Newtonian Nanofluid towards a Stretching Surface with Radiation and Heat Source/Sink

    Directory of Open Access Journals (Sweden)

    Macha Madhu

    2015-01-01

    Full Text Available Two-dimensional MHD mixed convection boundary layer flow of heat and mass transfer stagnation-point flow of a non-Newtonian power-law nanofluid towards a stretching surface in the presence of thermal radiation and heat source/sink is investigated numerically. The non-Newtonian nanofluid model incorporates the effects of Brownian motion and thermophoresis. The basic transport equations are made dimensionless first and the complete nonlinear differential equations with associated boundary conditions are solved numerically by finite element method (FEM. The numerical calculations for velocity, temperature, and nanoparticles volume fraction profiles for different values of the physical parameters to display the interesting aspects of the solutions are presented graphically and discussed. The skin friction coefficient, the local Nusslet number and the Sherwood number are exhibited and examined. Our results are compatible with the existing results for a special case.

  11. Drop Characteristics of non-Newtonian Impinging Jets at High Generalized Bird-Carreau Jet Reynolds Numbers

    Science.gov (United States)

    Sojka, Paul E.; Rodrigues, Neil S.

    2015-11-01

    The current study investigates the drop characteristics of three Carboxymethylcellulose (CMC) sprays produced by the impingement of two liquid jets. The three water-based solutions used in this work (0.5 wt.-% CMC-7MF, 0.8 wt.-% CMC-7MF, and 1.4 wt.-% CMC-7MF) exhibited strong shear-thinning, non-Newtonian behavior - characterized by the Bird-Carreau rheological model. A generalized Bird-Carreau jet Reynolds number was used as the primary parameter to characterize the drop size and the drop velocity, which were measured using Phase Doppler Anemometry (PDA). PDA optical configuration enabled a drop size measurement range of approximately 2.3 to 116.2 μm. 50,000 drops were measured at each test condition to ensure statistical significance. The arithmetic mean diameter (D10) , Sauter mean diameter (D32) , and mass median diameter (MMD) were used as representative diameters to characterize drop size. The mean axial drop velocity Uz -mean along with its root-mean square Uz -rms were used to characterize drop velocity. Incredibly, measurements for all three CMC liquids and reference DI water sprays seemed to follow a single curve for D32 and MMD drop diameters in the high generalized Bird-Carreau jet Reynolds number range considered in this work (9.21E +03

  12. Onset of Convection in Ice I with Composite Newtonian and Non-Newtonian Rheology: Application to the Icy Galilean Satellites

    Science.gov (United States)

    Barr, A. C.; Pappalardo, R. T.

    2004-01-01

    Ice I exhibits a complex rheology at temperature and pressure conditions appropriate for the interiors of the ice I shells of Europa, Ganymede, and Callisto. We use numerical methods and existing parameterizations of the critical Rayleigh number to determine the conditions required to trigger convection in an ice I shell with the stress-, temperature- and grain size- dependent rheology measured in laboratory experiments by Goldsby and Kohlstedt [2001]. The critical Rayleigh number depends on the ice grain size and the amplitude and wavelength of temperature perturbation issued to an initially conductive ice I shell. If the shells have an assumed uniform grain size less than 0.4 mm, deformation during initial plume growth is accommodated by Newtonian volume diffusion. If the ice grain size is between 0.4 mm and 3 cm, deformation during plume growth is accommodated by weakly non-Newtonian grain boundary sliding, where the critical ice shell thickness for convection depends on the amplitude of temperature perturbation to the _0.5 power. If the ice grain size exceeds 2 cm, convection can not occur in the ice I shells of the Galilean satellites regardless of the amplitude or wavelength of temperature perturbation. If the grain size in a convecting ice I shell evolves to effective values greater than 2 cm, convection will cease. If the ice shell has a grain size large enough to permit flow by dislocation creep, the ice is too stiff to permit convection, even in the thickest possible ice I shell. Consideration of the composite rheology implies that estimates of the grain size in the satellites and knowledge of their initial thermal states are required when judging the convective instability of their ice I shells.

  13. Heat transfer in a stagnation point flow of a second grade fluid over a stretching surface with heat generation/absorption

    Directory of Open Access Journals (Sweden)

    Hazem Ali Attia

    2014-01-01

    Full Text Available The heat transfer in a steady planar stagnation point flow of an incompressible non-Newtonian second grade fluid impinging on a permeable stretching surface with heat generation or absorption is examined. The governing nonlinear momentum and energy equations are solved numerically using finite differences. The influence of the characteristics of the non-Newtonian fluid, the surface stretching velocity, the heat generation/ absorption coefficient, and Prandtl number on both the flow and heat transfer is reported.

  14. Thermal convection of viscoelastic shear-thinning fluids

    Science.gov (United States)

    Albaalbaki, Bashar; Khayat, Roger E.; Ahmed, Zahir U.

    2016-12-01

    The Rayleigh-Bénard convection for non-Newtonian fluids possessing both viscoelastic and shear-thinning behaviours is examined. The Phan-Thien-Tanner (PTT) constitutive equation is implemented to model the non-Newtonian character of the fluid. It is found that while the shear-thinning and viscoelastic effects could annihilate one another for the steady roll flow, presence of both behaviours restricts the roll stability limit significantly compared to the cases when the fluid is either inelastic shear-thinning or purely viscoelastic with constant viscosity.

  15. On boundary layer flow of a sisko fluid over a stretching sheet | Khan ...

    African Journals Online (AJOL)

    In this paper, the steady boundary layer flow of a non-Newtonian fluid over a nonlinear stretching sheet is investigated. The Sisko fluid model, which is combination of power-law and Newtonian fluids in which the fluid may exhibit shear thinning/thickening behaviors, is considered. The boundary layer equations are derived ...

  16. Characterization of the exopolysaccharide produced by a whey ...

    African Journals Online (AJOL)

    behavior showed that the KOP formed non newtonian fluids, indicating that it is a pseudoplastic biopolymer. Although the KOP solutions displayed pseudoplastic behavior, increases in shearing time did not result in significant changes on the apparent viscosity. This indicated that the gum is neither thixotropic nor rheopectic.

  17. Oral perceptual discrimination of viscosity differences for non-newtonian liquids in the nectar- and honey-thick ranges.

    Science.gov (United States)

    Steele, Catriona M; James, David F; Hori, Sarah; Polacco, Rebecca C; Yee, Clemence

    2014-06-01

    Thickened liquids are frequently used in the management of oropharyngeal dysphagia. Previous studies suggest that compression of a liquid bolus between the tongue and the palate in the oral phase of swallowing serves a sensory function, enabling the tuning of motor behavior to match the viscosity of the bolus. However, the field lacks information regarding healthy oral sensory discrimination ability for small differences in liquid viscosity. We undertook to measure oral viscosity discrimination ability for five non-Newtonian xanthan gum-thickened liquids in the nectar- and honey-thick range. Xanthan gum concentration ranged from 0.5 to 0.87 % and increased by an average of 0.1 % between stimuli in the array. This translated to an average apparent viscosity increase of 0.2-fold between adjacent stimuli at 50 reciprocal seconds (/s). A triangle test paradigm was used to study stimulus discrimination in 78 healthy adults in two, sex-balanced age cohorts. Participants were provided 5-ml samples of liquids in sets of three; one liquid differed in xanthan gum concentration from the other two. Participants were required to sample the liquid orally and indicate which sample was perceived to have a different viscosity. A protocol of 20 sets (60 samples) allowed calculation of the minimum difference in xanthan gum concentration detected accurately. On average, participants were able to accurately detect a 0.38-fold increase in xanthan-gum concentration, translating to a 0.67-fold increase in apparent viscosity at 50/s. The data did not suggest the existence of a nonlinear point boundary in apparent viscosity within the range tested. No differences in viscosity discrimination were found between age cohorts or as a function of sex. The data suggest that for xanthan gum-thickened liquids, there may be several increments of detectably different viscosity within the ranges currently proposed for nectar- and honey-thick liquids. If physiological or functional differences in

  18. Transition in the Flow of Power-Law Fluids through Isotropic Porous Media.

    Science.gov (United States)

    Zami-Pierre, F; de Loubens, R; Quintard, M; Davit, Y

    2016-08-12

    We use computational fluid dynamics to explore the creeping flow of power-law fluids through isotropic porous media. We find that the flow pattern is primarily controlled by the geometry of the porous structure rather than by the nonlinear effects in the rheology of the fluid. We further highlight a macroscale transition between a Newtonian and a non-Newtonian regime, which is the signature of a coupling between the viscosity of the fluid and the structure of the porous medium. These complex features of the flow can be condensed into an effective length scale, which defines both the non-Newtonian transition and the Newtonian permeability.

  19. Mathematical modeling for laminar flow of power law fluid in porous media

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Renato A.; Mesquita, Maximilian S. [Universidade Federal do Espirito Santo (UFES), Sao Mateus, ES (Brazil). Centro Universitario Norte do Espirito Santo. Dept. de Engenharias e Computacao

    2010-07-01

    In this paper, the macroscopic equations for laminar power-law fluid flow is obtained for a porous medium starting from traditional equations (Navier-Stokes). Then, the volume averaging is applied in traditional transport equations with the power-law fluid model. This procedure leads to macroscopic transport equations set for non-Newtonian fluid. (author)

  20. Non-Newtonian Blood Flow Simulation of Diastolic Phase in Bileaflet Mechanical Heart Valve Implanted in a Realistic Aortic Root Containing Coronary Arteries.

    Science.gov (United States)

    Hanafizadeh, Pedram; Mirkhani, Nima; Davoudi, Mohammad Reza; Masouminia, Mahtab; Sadeghy, Keyvan

    2016-10-01

    Coronary arteries, which are branched from the sinuses, have tangible effects on the hemodynamic performance of the bileaflet mechanical heart valve (BMHV), especially in the diastolic phase. To better understand this issue, a computer model of ascending aorta including realistic sinus shapes and coronary arteries has been generated in this study in order to investigate the BMHV performance during diastole. Three-dimensional transient numerical analysis is conducted to simulate the diastolic blood flow through the hinges and in coronary arteries under the assumption of non-Newtonian behavior. Results indicate that as blood flows to the coronary arteries mainly during diastole, leakage flow from the hinge and other gaps will change considering the influence of coronary arteries. In addition, BMHV in the case of aortic replacement will increase blood flow rate into the coronary arteries about 100% as the mechanical valve resistance is higher than a native heart valve. Also, it will change the wall shear stress (WSS) distribution and increase coronary artery disease (CAD) potential. It is found out that although less leakage flow reduces the velocity magnitudes through the gaps, the shear stress acting on blood elements with non-Newtonian assumption will be detrimental in the hinge corner at the ventricular side. High WSS of 1800 Pa is observed at beginning of diastole at this region. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  1. Empirical resistive-force theory for slender biological filaments in shear-thinning fluids

    Science.gov (United States)

    Riley, Emily E.; Lauga, Eric

    2017-06-01

    Many cells exploit the bending or rotation of flagellar filaments in order to self-propel in viscous fluids. While appropriate theoretical modeling is available to capture flagella locomotion in simple, Newtonian fluids, formidable computations are required to address theoretically their locomotion in complex, nonlinear fluids, e.g., mucus. Based on experimental measurements for the motion of rigid rods in non-Newtonian fluids and on the classical Carreau fluid model, we propose empirical extensions of the classical Newtonian resistive-force theory to model the waving of slender filaments in non-Newtonian fluids. By assuming the flow near the flagellum to be locally Newtonian, we propose a self-consistent way to estimate the typical shear rate in the fluid, which we then use to construct correction factors to the Newtonian local drag coefficients. The resulting non-Newtonian resistive-force theory, while empirical, is consistent with the Newtonian limit, and with the experiments. We then use our models to address waving locomotion in non-Newtonian fluids and show that the resulting swimming speeds are systematically lowered, a result which we are able to capture asymptotically and to interpret physically. An application of the models to recent experimental results on the locomotion of Caenorhabditis elegans in polymeric solutions shows reasonable agreement and thus captures the main physics of swimming in shear-thinning fluids.

  2. Finite element analysis of heat and mass transfer by MHD mixed convection stagnation-point flow of a non-Newtonian power-law nanofluid towards a stretching surface with radiation

    Directory of Open Access Journals (Sweden)

    Macha Madhu

    2016-07-01

    Full Text Available Magnetohydrodynamic mixed convection boundary layer flow of heat and mass transfer stagnation-point flow of a non-Newtonian power-law nanofluid towards a stretching surface in the presence of thermal radiation is investigated numerically. The non-Newtonian nanofluid model incorporates the effects of Brownian motion and thermophoresis. The basic transport equations are made dimensionless first and the coupled non linear differential equations are solved by finite element method. The numerical calculations for velocity, temperature and concentration profiles for different values of the physical parameters presented graphically and discussed. As well as for skin friction coefficient, local Nusselt and Sherwood numbers exhibited and examined.

  3. Entropy generation as a practical tool of optimisation for non-Newtonian nanofluid flow through a permeable stretching surface using SLM

    Directory of Open Access Journals (Sweden)

    Muhammad Mubashir Bhatti

    2017-01-01

    Full Text Available In this article, entropy generation on non-Newtonian Eyring-Powell nanofluid has been analysed through a permeable stretching sheet. The governing flow problem is based on linear momentum, thermal energy, and nanoparticle concentration equation which are simplified with the help of similarity transformation variables. The resulting coupled nonlinear ordinary differential equations are solved numerically with the help of Successive Linearization method (SLM and Chebyshev Spectral collocation method. The novel characteristics of all the physical parameters are discussed with the help of graphs and tables. The expression for local Nusselt number and local Sherwood number is also taken into account. It is observed that velocity profile increases due to the greater influence of suction parameter. Moreover, Brownian motion and thermophoresis parameter significantly enhance the temperature profile, however Brownian motion parameter shows converse behaviour on nanoparticle concentration profile. Entropy profile acts as an increasing function of all the pertinent parameters.

  4. Fluid Mechanics

    Science.gov (United States)

    Pnueli, David; Gutfinger, Chaim

    1997-01-01

    This text is intended for the study of fluid mechanics at an intermediate level. The presentation starts with basic concepts, in order to form a sound conceptual structure that can support engineering applications and encourage further learning. The presentation is exact, incorporating both the mathematics involved and the physics needed to understand the various phenomena in fluid mechanics. Where a didactical choice must be made between the two, the physics prevails. Throughout the book the authors have tried to reach a balance between exact presentation, intuitive grasp of new ideas, and creative applications of concepts. This approach is reflected in the examples presented in the text and in the exercises given at the end of each chapter. Subjects treated are hydrostatics, viscous flow, similitude and order of magnitude, creeping flow, potential flow, boundary layer flow, turbulent flow, compressible flow, and non-Newtonian flows. This book is ideal for advanced undergraduate students in mechanical, chemical, aerospace, and civil engineering. Solutions manual available.

  5. Traction in elastohydrodynamic line contacts for two synthesized hydrocarbon fluids

    Science.gov (United States)

    Trachman, E. G.; Cheng, H. S.

    1973-01-01

    The paper describes the disk machine designed and constructed for the investigation of the traction in elastohydrodynamic line contacts for two synthesized hydrocarbon fluids. The results of this experimental study are presented and compared with the theoretical predictions of traction according to the thermal and non-Newtonian theory recently presented by the authors.

  6. Compact tension testing of martensitic/pseudoplastic NiTi shape memory alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gollerthan, S. [Institut fuer Werkstoffe, Ruhr-Universitaet Bochum, Universitaetsstrasse 150, D-44801 Bochum (Germany)], E-mail: susanne.gollerthan@rub.de; Herberg, D. [Institut fuer Werkstoffe, Ruhr-Universitaet Bochum, Universitaetsstrasse 150, D-44801 Bochum (Germany); Baruj, A. [TEMADI, Centro Atomico Bariloche, 8400 S.C. Bariloche (Argentina); Eggeler, G. [Institut fuer Werkstoffe, Ruhr-Universitaet Bochum, Universitaetsstrasse 150, D-44801 Bochum (Germany)

    2008-05-25

    NiTi shape memory alloys show unique properties such as pseudoelasticity and the one-way effect, both based on a martensitic phase transformation between a high temperature phase (B2) and a low temperature phase (B19'). When a martensitic, pseudoplastic alloy is subjected to a stress, favourably oriented martensite variants grow. In the present work we study how pseudoplasticity affects the mechanical behaviour of fracture mechanics compact tension (CT) specimens. For this purpose we have scaled down CT specimens of type ASTM Standard E399. We use a smaller specimen for two reasons. (1) NiTi is more expensive than, e.g. structural steel and there is a need to economise specimen material. (2) And more importantly, we need specimen thicknesses which are transparent to high-energy synchrotron radiation because we aim at characterizing microstructural and crystallographic changes in front of cracks. The present work reports mechanical results from fracture mechanics testing of a martensitic, pseudoplastic microstructure. We use approaches from linear elastic fracture mechanics to determine critical stress intensity factors and to obtain estimates on the dimensions of pseudoplastic zones in front of crack tips in martensitic NiTi.

  7. Investigation of pumping mechanism for non-Newtonian blood flow with AC electrothermal forces in a microchannel by hybrid boundary element method and immersed boundary-lattice Boltzmann method.

    Science.gov (United States)

    Ren, Qinlong

    2018-02-10

    Efficient pumping of blood flow in a microfluidic device is essential for rapid detection of bacterial bloodstream infections (BSI) using alternating current (AC) electrokinetics. Compared with AC electroosmosis (ACEO) phenomenon, the advantage of AC electrothermal (ACET) mechanism is its capability of pumping biofluids with high electrical conductivities at a relatively high AC voltage frequency. In the current work, the microfluidic pumping of non-Newtonian blood flow using ACET forces is investigated in detail by modeling its multi-physics process with hybrid boundary element method (BEM) and immersed boundary-lattice Boltzmann method (IB-LBM). The Carreau-Yasuda model is used to simulate the realistic rheological behavior of blood flow. The ACET pumping efficiency of blood flow is studied in terms of different AC voltage magnitudes and frequencies, thermal boundary conditions of electrodes, electrode configurations, channel height, and the channel length per electrode pair. Besides, the effect of rheological behavior on the blood flow velocity is theoretically analyzed by comparing with the Newtonian fluid flow using scaling law analysis under the same physical conditions. The results indicate that the rheological behavior of blood flow and its frequency-dependent dielectric property make the pumping phenomenon of blood flow different from that of the common Newtonian aqueous solutions. It is also demonstrated that using a thermally insulated electrode could enhance the pumping efficiency dramatically. Besides, the results conclude that increasing the AC voltage magnitude is a more economical pumping approach than adding the number of electrodes with the same energy consumption when the Joule heating effect is acceptable. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  8. Stagnation-point flow of the Walters' B' fluid with slip

    Directory of Open Access Journals (Sweden)

    F. Labropulu

    2004-01-01

    Full Text Available The steady two-dimensional stagnation point flow of a non-Newtonian Walters' B' fluid with slip is studied. The fluid impinges on the wall either orthogonally or obliquely. A finite difference technique is employed to obtain solutions.

  9. Engineering fluid mechanics

    CERN Document Server

    Yamaguchi, Hiroshi

    2008-01-01

    This book is intended to serve as a unique and comprehensive textbook for scientists and engineers as well as advanced students in thermo-fluid courses. It provides an intensive monograph essential for understanding dynamics of ideal fluid, Newtonian fluid, non-Newtonian fluid and magnetic fluid. These distinct, yet intertwined subjects are addressed in an integrated manner. It starts with coherent treatment of fundamental continuum mechanics, with an emphasis on the intrinsic angular momentum, by which the concepts of ferrohydrodynamics are progressively built up, and serve as a foundation for later development. Flows of ideal and Newtonian fluids are followed by a detailed presentation of basic continuum equations for applications of fluid engineering, which cover the design and operations of various turbomachines, heat exchangers and flow elements. The study of the deformation and flow of matter, namely rheology, is discussed primarily with regard to the stresses generated during the flow of complex materi...

  10. Physical aspects of nanoparticles in non-Newtonian liquid in the presence of chemically reactive species through parabolic approach

    Directory of Open Access Journals (Sweden)

    Imad Khan

    Full Text Available An article is made to report physical aspects of nanoparticles along with mutual interaction of chemical reaction and mixed convection on boundary layer Eyring Powell fluid flow yields by stretching surface. The fluid flow is engaged due to no slip condition i-e the velocity of particles is directly related to velocity of surface due to stretching. The physical situation within the real concerned constraints is achieved in terms of differential equations as a boundary value problem. To make implementation of numerical algorithm possible partial differential equations are transformed into ordinary differential equations by means of appropriate transformation. Then these constructed ordinary differential equations are solved numerically by using shooting scheme charted with Runge-Kutta algorithm. The effect logs of an involved pertinent flow parameters are explored by way of graphical outcomes. It is observed that in the presence of nanoparticles Eyring-Powell fluid velocity increases for positive values of both thermal Grashof and solutal Grashof numbers. A parabolic curve fitting way of communication is executed to represent the impact of both thermophoresis parameter and Brownian motion parameter on heat and mass transfer rates. It is found that heat transfer rate is decreasing function of thermophoresis parameter but mass transfer rate exhibit an inciting nature towards Brownian motion parameter. Keywords: Eyring-Powell nanofluid model, Parabolic curve fitting, Mixed convection, Chemical reaction

  11. Physical aspects of nanoparticles in non-Newtonian liquid in the presence of chemically reactive species through parabolic approach

    Science.gov (United States)

    Khan, Imad; ur Rehman, Khalil; Malik, M. Y.

    An article is made to report physical aspects of nanoparticles along with mutual interaction of chemical reaction and mixed convection on boundary layer Eyring Powell fluid flow yields by stretching surface. The fluid flow is engaged due to no slip condition i-e the velocity of particles is directly related to velocity of surface due to stretching. The physical situation within the real concerned constraints is achieved in terms of differential equations as a boundary value problem. To make implementation of numerical algorithm possible partial differential equations are transformed into ordinary differential equations by means of appropriate transformation. Then these constructed ordinary differential equations are solved numerically by using shooting scheme charted with Runge-Kutta algorithm. The effect logs of an involved pertinent flow parameters are explored by way of graphical outcomes. It is observed that in the presence of nanoparticles Eyring-Powell fluid velocity increases for positive values of both thermal Grashof and solutal Grashof numbers. A parabolic curve fitting way of communication is executed to represent the impact of both thermophoresis parameter and Brownian motion parameter on heat and mass transfer rates. It is found that heat transfer rate is decreasing function of thermophoresis parameter but mass transfer rate exhibit an inciting nature towards Brownian motion parameter.

  12. Numerical study of shear thickening fluid with discrete particles embedded in a base fluid

    Directory of Open Access Journals (Sweden)

    W Zhu

    2016-09-01

    Full Text Available The Shear Thickening Fluid (STF is a dilatant material, which displays non-Newtonian characteristics in its unique ability to transit from a low viscosity fluid to a high viscosity fluid. The research performed investigates the STF behavior by modeling and simulation of the interaction between the base flow and embedded rigid particles when subjected to shear stress. The model considered the Lagrangian description of the rigid particles and the Eulerian description of fluid flow. The numerical analysis investigated key parameters such as applied flow acceleration, particle distribution and arrangement, volume concentration of particles, particle size, shape and their behavior in a Newtonian and non-Newtonian fluid base. The fluid-particle interaction model showed that the arrangement, size, shape and volume concentration of the particles had a significant effect on the behavior of the STF. Although non-conclusive, the addition of particles in non-Newtonian fluids showed a promising trend of improved shear thickening effects at high shear strain rates.

  13. Variability of hemodynamic parameters using the common viscosity assumption in a computational fluid dynamics analysis of intracranial aneurysms.

    Science.gov (United States)

    Suzuki, Takashi; Takao, Hiroyuki; Suzuki, Takamasa; Suzuki, Tomoaki; Masuda, Shunsuke; Dahmani, Chihebeddine; Watanabe, Mitsuyoshi; Mamori, Hiroya; Ishibashi, Toshihiro; Yamamoto, Hideki; Yamamoto, Makoto; Murayama, Yuichi

    2017-01-01

    In most simulations of intracranial aneurysm hemodynamics, blood is assumed to be a Newtonian fluid. However, it is a non-Newtonian fluid, and its viscosity profile differs among individuals. Therefore, the common viscosity assumption may not be valid for all patients. This study aims to test the suitability of the common viscosity assumption. Blood viscosity datasets were obtained from two healthy volunteers. Three simulations were performed for three different-sized aneurysms, two using measured value-based non-Newtonian models and one using a Newtonian model. The parameters proposed to predict an aneurysmal rupture obtained using the non-Newtonian models were compared with those obtained using the Newtonian model. The largest difference (25%) in the normalized wall shear stress (NWSS) was observed in the smallest aneurysm. Comparing the difference ratio to the NWSS with the Newtonian model between the two Non-Newtonian models, the difference of the ratio was 17.3%. Irrespective of the aneurysmal size, computational fluid dynamics simulations with either the common Newtonian or non-Newtonian viscosity assumption could lead to values different from those of the patient-specific viscosity model for hemodynamic parameters such as NWSS.

  14. Transient Non-Newtonian Blood Flow under Magnetic Targeting Drug Delivery in an Aneurysm Blood Vessel with Porous Walls

    Science.gov (United States)

    Alimohamadi, Haleh; Imani, Mohsen

    2014-11-01

    The present investigation deals with numerical solution of blood flow patterns through an aneurysm artery under the applied magnetic field. Transient extended Navier-Stokes, Brinkman, continuity, and heat conduction equations govern this phenomenon and unsteady pulsatile inlet velocity varies by human heart-beating frequency. Our simulation demonstrates applying 105 magnetic field intensity (MnF) to recirculate flow and increase fluid flux and maximum blood temperature by 62.5x and 3.5%, respectively, in the aneurysm region. It is also shown that the vessel's wall porosity plays an important role in magnetic targeting of drug delivery performance, as this parameter can noticeably change maximum blood temperature and pressure.

  15. EFFECT OF DIFFERENT CONCENTRATIONS OF POWER LAW NON-NEWTONIAN LIQUIDS ON THEIR CRITICAL TURBIDITY AND RHEOLOGY

    OpenAIRE

    Ahmed H. Hadi*, Hussein Y. Mahmood

    2016-01-01

    The turbidity of liquid is very important in high speed camera applications used to record the movement of accelerated solid spherical particles with rotation falling in Newtonian and non – Newtonian liquids. Measurements of turbidity, density, apparent viscosity and fluid rheological properties (flow behavior index n & consistency index K) were taken for different concentrations (0.15, 0.2, 0.25, 0.3 and 0 .4) % w/v of Carboxy methyl Cellulose (CMC), poly – vinyl alcohol (PVA) and CMC – ...

  16. Statistical-mechanical theory of rheology: Lennard-Jones fluids.

    Science.gov (United States)

    Laghaei, Rozita; Eskandari Nasrabad, Afshin; Eu, Byung Chan

    2005-12-15

    The generalized Boltzmann equation for simple dense fluids gives rise to the stress tensor evolution equation as a constitutive equation of generalized hydrodynamics for fluids far removed from equilibrium. It is possible to derive a formula for the non-Newtonian shear viscosity of the simple fluid from the stress tensor evolution equation in a suitable flow configuration. The non-Newtonian viscosity formula derived is applied to calculate the non-Newtonian viscosity as a function of the shear rate by means of statistical mechanics in the case of the Lennard-Jones fluid. For that purpose we have used the density-fluctuation theory for the Newtonian viscosity, the modified free volume theory for the self-diffusion coefficient, and the generic van der Waals equation of state to compute the mean free volume appearing in the modified free volume theory. Monte Carlo simulations are used to calculate the pair-correlation function appearing in the generic van der Waals equation of state and shear viscosity formula. To validate the Newtonian viscosity formula obtained we first have examined the density and temperature dependences of the shear viscosity in both subcritical and supercritical regions and compared them with molecular-dynamic simulation results. With the Newtonian shear viscosity and thermodynamic quantities so computed we then have calculated the shear rate dependence of the non-Newtonian shear viscosity and compared it with molecular-dynamics simulation results. The non-Newtonian viscosity formula is a universal function of the product of reduced shear rate (gamma*) times reduced relaxation time (taue*) that is independent of the material parameters, suggesting a possibility of the existence of rheological corresponding states of reduced density, temperature, and shear rate. When the simulation data are reduced appropriately and plotted against taue*gamma* they are found clustered around the reduced (universal) non-Newtonian viscosity formula. Thus we now

  17. Heat transfer characteristics for the Maxwell fluid flow past an unsteady stretching permeable surface embedded in a porous medium with thermal radiation

    Science.gov (United States)

    Mukhopadhyay, S.; Ranjan De, P.; Layek, G. C.

    2013-05-01

    An unsteady boundary layer flow of a non-Newtonian fluid over a continuously stretching permeable surface in the presence of thermal radiation is investigated. The Maxwell fluid model is used to characterize the non-Newtonian fluid behavior. Similarity solutions for the transformed governing equations are obtained. The transformed boundary layer equations are then solved numerically by the shooting method. The flow features and heat transfer characteristics for different values of the governing parameters (unsteadiness parameter, Maxwell parameter, permeability parameter, suction/blowing parameter, thermal radiation parameter, and Prandtl number) are analyzed and discussed in detail.

  18. The Morphology of Patterning with Pseudoplastic Metal Nanoparticle Fluids during Heat Treatment

    Science.gov (United States)

    Wang, Wen; Su, Yu-Feng; Liu, Chao-Ran; Li, Dong-Xue; Wang, Pan; Duan, Zhi-Yong

    2015-12-01

    Not Available Supported by the National Natural Science Foundation of China under Grant Nos 51175479 and 51475436, and the Education Department of Henan Province under Grant Nos 13A460725 and 2013GGJS-001.

  19. A source-sink model of the generation of plate tectonics from non-Newtonian mantle flow

    Science.gov (United States)

    Bercovici, David

    1995-01-01

    A model of mantle convection which generates plate tectonics requires strain rate- or stress-dependent rheology in order to produce strong platelike flows with weak margins as well as strike-slip deformation and plate spin (i.e., toroidal motion). Here, we employ a simple model of source-sink driven surface flow to determine the form of such a rheology that is appropriate for Earth's present-day plate motions. In this model, lithospheric motion is treated as shallow layer flow driven by sources and sinks which correspond to spreading centers and subduction zones, respectively. Two plate motion models are used to derive the source sink field. As originally implied in the simpler Cartesian version of this model, the classical power law rheologies do not generate platelike flows as well as the hypothetical Whitehead-Gans stick-slip rheology (which incorporates a simple self-lubrication mechanism). None of the fluid rheologies examined, however, produce more than approximately 60% of the original maximum shear. For either plate model, the viscosity fields produced by the power law rheologies are diffuse, and the viscosity lows over strike-slip shear zones or pseudo-margins are not as small as over the prescribed convergent-divergent margins. In contrast, the stick-slip rheology generates very platelike viscosity fields, with sharp gradients at the plate boundaries, and margins with almost uniformly low viscosity. Power law rheologies with high viscosity contrasts, however, lead to almost equally favorable comparisons, though these also yield the least platelike viscosity fields. This implies that the magnitude of toroidal flow and platelike strength distributions are not necessarily related and thus may present independent constraints on the determination of a self-consistent plate-mantle rheology.

  20. Hemodynamic analysis in an idealized artery tree: differences in wall shear stress between Newtonian and non-Newtonian blood models.

    Directory of Open Access Journals (Sweden)

    Jared C Weddell

    Full Text Available Development of many conditions and disorders, such as atherosclerosis and stroke, are dependent upon hemodynamic forces. To accurately predict and prevent these conditions and disorders hemodynamic forces must be properly mapped. Here we compare a shear-rate dependent fluid (SDF constitutive model, based on the works by Yasuda et al in 1981, against a Newtonian model of blood. We verify our stabilized finite element numerical method with the benchmark lid-driven cavity flow problem. Numerical simulations show that the Newtonian model gives similar velocity profiles in the 2-dimensional cavity given different height and width dimensions, given the same Reynolds number. Conversely, the SDF model gave dissimilar velocity profiles, differing from the Newtonian velocity profiles by up to 25% in velocity magnitudes. This difference can affect estimation in platelet distribution within blood vessels or magnetic nanoparticle delivery. Wall shear stress (WSS is an important quantity involved in vascular remodeling through integrin and adhesion molecule mechanotransduction. The SDF model gave a 7.3-fold greater WSS than the Newtonian model at the top of the 3-dimensional cavity. The SDF model gave a 37.7-fold greater WSS than the Newtonian model at artery walls located immediately after bifurcations in the idealized femoral artery tree. The pressure drop across arteries reveals arterial sections highly resistive to flow which correlates with stenosis formation. Numerical simulations give the pressure drop across the idealized femoral artery tree with the SDF model which is approximately 2.3-fold higher than with the Newtonian model. In atherosclerotic lesion models, the SDF model gives over 1 Pa higher WSS than the Newtonian model, a difference correlated with over twice as many adherent monocytes to endothelial cells from the Newtonian model compared to the SDF model.

  1. Dynamic Electroosmotic Flows of Power-Law Fluids in Rectangular Microchannels

    Directory of Open Access Journals (Sweden)

    Cunlu Zhao

    2017-01-01

    Full Text Available Dynamic characteristics of electroosmosis of a typical non-Newtonian liquid in a rectangular microchannel are investigated by using numerical simulations. The non-Newtonian behavior of liquids is assumed to obey the famous power-law model and then the mathematical model is solved numerically by using the finite element method. The results indicate that the non-Newtonian effect produces some noticeable dynamic responses in electroosmotic flow. Under a direct current (DC driving electric field, it is found that the fluid responds more inertly to an external electric field and the steady-state velocity profile becomes more plug-like as the flow behavior index decreases. Under an alternating current (AC driving electric field, the fluid is observed to experience more significant acceleration and the amplitude of oscillating velocity becomes larger as the fluid behavior index decreases. Furthermore, our investigation also shows that electroosmotic flow of power-law fluids under an AC/DC combined driving field is enhanced as compared with that under a pure DC electric field. These dynamic predictions are of practical use for the design of electroosmotically-driven microfluidic devices that analyze and process non-Newtonian fluids such as biofluids and polymeric solutions.

  2. Exact Analysis of the Flow and Heat Transfer of the SA-TiO2 Non-Newtonian Nanofluid Between Two Coaxial Cylinders Through a Porous Medium

    Science.gov (United States)

    Almazmumy, Mariam; Ebaid, Abdelhalim

    2017-08-01

    In this article, the flow and heat transfer of a non-Newtonian nanofluid between two coaxial cylinders through a porous medium has been investigated. The velocity, temperature, and nanoparticles concentration of the present mathematical model are governed by a system of nonlinear ordinary differential equations. The objective of this article is to obtain new exact solutions for the temperature and the nanoparticles concentration and, therefore, compare them with the previous approximate results in the literature. Moreover, the velocity equation has been numerically solved. The effects of the pressure gradient, thermophoresis, third-grade, Brownian motion, and porosity parameters on the included phenomena have been discussed through several tables and plots. It is found that the velocity profile is increased by increasing the pressure gradient parameter, thermophoresis parameter (slightly), third-grade parameter, and Brownian motion parameter (slightly); however, it decreases with an increase in the porosity parameter and viscosity power index. In addition, the temperature and the nanoparticles concentration reduce with the strengthen of the Brownian motion parameter, while they increase by increasing the thermophoresis parameter. Furthermore, the numerical solution and the physical interpretation in the literature for the same problem have been validated with the current exact analysis, where many remarkable differences and errors have been concluded. Therefore, the suggested analysis may be recommended with high trust for similar problems.

  3. Particle migration using local variation of the viscosity (LVOV) model in flow of a non-Newtonian fluid for ceramic tape casting

    DEFF Research Database (Denmark)

    Jabbaribehnam, Mirmasoud; Spangenberg, Jon; Hattel, Jesper Henri

    2016-01-01

    behaviour is assumed in the simulation of the ceramic slurry flow.A local variation of the viscosity (LVOV) model as a function of the particle volume fraction is introduced and taken into account in the advection and the settling of the particles inthe flow field. The results show that using the LVOV model...

  4. Microgravity Fluids for Biology, Workshop

    Science.gov (United States)

    Griffin, DeVon; Kohl, Fred; Massa, Gioia D.; Motil, Brian; Parsons-Wingerter, Patricia; Quincy, Charles; Sato, Kevin; Singh, Bhim; Smith, Jeffrey D.; Wheeler, Raymond M.

    2013-01-01

    Microgravity Fluids for Biology represents an intersection of biology and fluid physics that present exciting research challenges to the Space Life and Physical Sciences Division. Solving and managing the transport processes and fluid mechanics in physiological and biological systems and processes are essential for future space exploration and colonization of space by humans. Adequate understanding of the underlying fluid physics and transport mechanisms will provide new, necessary insights and technologies for analyzing and designing biological systems critical to NASAs mission. To enable this mission, the fluid physics discipline needs to work to enhance the understanding of the influence of gravity on the scales and types of fluids (i.e., non-Newtonian) important to biology and life sciences. In turn, biomimetic, bio-inspired and synthetic biology applications based on physiology and biology can enrich the fluid mechanics and transport phenomena capabilities of the microgravity fluid physics community.

  5. Boundary Layer Equations and Lie Group Analysis of a Sisko Fluid

    Directory of Open Access Journals (Sweden)

    Gözde Sarı

    2012-01-01

    Full Text Available Boundary layer equations are derived for the Sisko fluid. Using Lie group theory, a symmetry analysis of the equations is performed. A partial differential system is transferred to an ordinary differential system via symmetries. Resulting equations are numerically solved. Effects of non-Newtonian parameters on the solutions are discussed.

  6. Complex Fluids and Hydraulic Fracturing.

    Science.gov (United States)

    Barbati, Alexander C; Desroches, Jean; Robisson, Agathe; McKinley, Gareth H

    2016-06-07

    Nearly 70 years old, hydraulic fracturing is a core technique for stimulating hydrocarbon production in a majority of oil and gas reservoirs. Complex fluids are implemented in nearly every step of the fracturing process, most significantly to generate and sustain fractures and transport and distribute proppant particles during and following fluid injection. An extremely wide range of complex fluids are used: naturally occurring polysaccharide and synthetic polymer solutions, aqueous physical and chemical gels, organic gels, micellar surfactant solutions, emulsions, and foams. These fluids are loaded over a wide range of concentrations with particles of varying sizes and aspect ratios and are subjected to extreme mechanical and environmental conditions. We describe the settings of hydraulic fracturing (framed by geology), fracturing mechanics and physics, and the critical role that non-Newtonian fluid dynamics and complex fluids play in the hydraulic fracturing process.

  7. Pertes de charge des fluides non newtoniens thermodependants en écoulement entre deux plaques parallèles

    Science.gov (United States)

    Nguyen, Van Tuan; Lebouche, Michel

    2007-01-01

    In this Note, the pressure drop of non-Newtonian thermodependent fluids flowing between two parallel plates is considered. The effects of different parameters on the evolution of local friction factor are numerically investigated in two heating cases and correlations are proposed to compute the pressure drop. To cite this article: V.T. Nguyen, M. Lebouche, C. R. Mecanique 335 (2007).

  8. Experimental and computational fluid dynamics studies of mixing of complex oral health products

    Science.gov (United States)

    Cortada-Garcia, Marti; Migliozzi, Simona; Weheliye, Weheliye Hashi; Dore, Valentina; Mazzei, Luca; Angeli, Panagiota; ThAMes Multiphase Team

    2017-11-01

    Highly viscous non-Newtonian fluids are largely used in the manufacturing of specialized oral care products. Mixing often takes place in mechanically stirred vessels where the flow fields and mixing times depend on the geometric configuration and the fluid physical properties. In this research, we study the mixing performance of complex non-Newtonian fluids using Computational Fluid Dynamics models and validate them against experimental laser-based optical techniques. To this aim, we developed a scaled-down version of an industrial mixer. As test fluids, we used mixtures of glycerol and a Carbomer gel. The viscosities of the mixtures against shear rate at different temperatures and phase ratios were measured and found to be well described by the Carreau model. The numerical results were compared against experimental measurements of velocity fields from Particle Image Velocimetry (PIV) and concentration profiles from Planar Laser Induced Fluorescence (PLIF).

  9. Modelling rheology of isothermal flow of carboxymethyl-cellulose ...

    African Journals Online (AJOL)

    A carrier fluid flow model of solid-liquid pseudoplastic Non-Newtonian suspension in a horizontal pipe governed by constitutive power law of Ostwald Wan der Waal was found not applicable to the range of experimental shearing rates of the flow regime of CMC-alginate suspension. Therefore, a new model based on the ...

  10. The fluid dynamics of the chocolate fountain

    Science.gov (United States)

    Townsend, Adam K.; Wilson, Helen J.

    2016-01-01

    We consider the fluid dynamics of the chocolate fountain. Molten chocolate is a mildly shear-thinning non-Newtonian fluid. Dividing the flow into three main domains—the pumped flow up the centre, the film flow over each dome, and the freely falling curtain flow between the domes—we generate a wide-ranging study of Newtonian and non-Newtonian fluid mechanics. The central pumped flow is a benchmark to elucidate the effects of shear-thinning. The dome flow can be modelled as a thin-film flow with the leading-order effects being a simple balance of gravity and viscosity. Finally, the curtain flow is analytically intractable but is related to the existing theory of water bells (both inviscid and viscous). In pipe flow, Newtonian fluids exhibit a parabolic velocity profile; shear-thinning makes the profile more blunted. In thin-film flow over the dome, gravitational and viscous effects balance and the dome shape is not important beyond the local slope. We find that the chocolate thins and slows down as it travels down the dome. Finally, in the curtain flow, we predict the shape of the falling sheet for an inviscid fluid, and compare this with the literature to predict the shape for a viscous fluid, having shown that viscous forces are too great to ignore. We also find that the primary effect driving the shape of the curtain (which falls inwards towards the axis of the fountain) is surface tension. We find that the three domains provide excellent introductions to non-Newtonian mechanics, the important mathematical technique of scaling, and how to manipulate existing data to make our own predictions. We also find that the topic generates interest among the public in our engagement work.

  11. Frottements et pertes de pression des fluides non newtoniens dans des conduites non circulaires

    Science.gov (United States)

    Mahfoud, Mohamed; Benhadid, Salah; Lebouché, Michel

    2005-06-01

    The study of fluid flow in a duct requires characteristic parameters of the flow and dimensionless numbers to correlate and compare experimental results. For Newtonian fluids in simple configurations, the definition of the Reynolds number is quite standard, but for non-Newtonian fluid flows in ducts with arbitrary shape of cross section, the dependence of the apparent viscosity with the shear rate requires a generalization of this dimensionless number. This note proposes a general method valid for a large class of non-Newtonian fluids and for all duct shapes. An application is developed for a viscoelastic flow through a rectangular duct. Results obtained in the present investigation are in a good agreement with available correlations. To cite this article: M. Mahfoud et al., C. R. Mecanique 333 (2005).

  12. Global existence and uniqueness of nonlinear evolutionary fluid equations

    CERN Document Server

    Qin, Yuming; Wang, Taige

    2015-01-01

    This book presents recent results on nonlinear evolutionary fluid equations such as the compressible (radiative) magnetohydrodynamics (MHD) equations, compressible viscous micropolar fluid equations, the full non-Newtonian fluid equations and non-autonomous compressible Navier-Stokes equations. These types of partial differential equations arise in many fields of mathematics, but also in other branches of science such as physics and fluid dynamics. This book will be a valuable resource for graduate students and researchers interested in partial differential equations, and will also benefit practitioners in physics and engineering.

  13. Three-dimensional blade coating of complex fluid

    Science.gov (United States)

    Singh, Vachitar; Grimaldi, Emma; Sauret, Alban; Dressaire, Emilie

    2015-11-01

    The application of a layer of non-newtonian fluid on a solid substrate is an important industrial problem involved in polymer or paint coatings, and an everyday life challenge when it comes to spreading peanut butter on a toast. Most experimental and theoretical work has focused on the two-dimensional situation, i.e. the scraping of a fixed blade on a moving substrate to turn a thick layer of liquid into a thin coat. However the spreading of a finite volume of non-newtonian fluid using a blade has received less attention, despite significant practical and fundamental implications. In this study, we investigate experimentally the spreading of a finite volume of a model non-newtonian fluid, carbopol, initially deposited against the fixed blade. As the substrate is translated at constant speed, we characterize the dynamics of spreading and the final shape of the coated layer. We measure and rationalize the influence of the liquid volume, the height and orientation of the blade, and the speed of the substrate on the spreading.

  14. Pore scale simulations for the extension of the Darcy-Forchheimer law to shear thinning fluids

    Science.gov (United States)

    Tosco, Tiziana; Marchisio, Daniele; Lince, Federica; Boccardo, Gianluca; Sethi, Rajandrea

    2014-05-01

    Flow of non-Newtonian fluids through porous media at high Reynolds numbers is often encountered in chemical, pharmaceutical and food as well as petroleum and groundwater engineering and in many other industrial applications (1 - 2). In particular, the use of shear thinning polymeric solutions has been recently proposed to improve colloidal stability of micro- and nanoscale zerovalent iron particles (MZVI and NZVI) for groundwater remediation. In all abovementioned applications, it is of paramount importance to correctly predict the pressure drop resulting from non-Newtonian fluid flow through the porous medium. For small Reynolds numbers, usually up to 1, typical of laboratory column tests, the extended Darcy law is known to be applicable also to non Newtonian fluids, provided that all non-Newtonian effects are lumped together into a proper viscosity parameter (1,3). For higher Reynolds numbers (eg. close to the injection wells) non linearities between pressure drop and flow rate arise, and the Darcy-Forchheimer law holds for Newtonian fluids, while for non-Newtonian fluids, it has been demonstrated that, at least for simple rheological models (eg. power law fluids) a generalized Forchheimer law can be applied, even if the determination of the flow parameters (permeability K, inertial coefficient β, and equivalent viscosity) is not straightforward. This work (co-funded by European Union project AQUAREHAB FP7 - Grant Agreement Nr. 226565) aims at proposing an extended formulation of the Darcy-Forchheimer law also for shear-thinning fluids, and validating it against results of pore-scale simulations via computational fluid dynamics (4). Flow simulations were performed using Fluent 12.0 on four different 2D porous domains for Newtonian and non-Newtonian fluids (Cross, Ellis and Carreau models). The micro-scale flow simulation results are analyzed in terms of 'macroscale' pressure drop between inlet and outlet of the model domain as a function of flow rate. The

  15. a modified power law for determinig flow characteristics of fluid

    African Journals Online (AJOL)

    user

    1986-09-01

    Sep 1, 1986 ... shear-thinning (pseudoplastic) and shear-thickening. (dilatant) tendencies in the blended fluid foods as a manner of testing the modified formula. 2. EXPERIMENTAL. Material: The fluid foods used in this study were honey (H) corn syrup. (CS) and emulsion salad cream (SC) which were numerical materials.

  16. Unsteady Radiative-Convective Boundary-Layer Flow of a Casson Fluid with Variable Thermal Conductivity

    Science.gov (United States)

    Reddy, M. Gnaneswara

    2015-01-01

    The unsteady two-dimensional flow of a non-Newtonian fluid over a stretching surface with the effects of thermal radiation and variable thermal conductivity is investigated. The Casson fluid model is used to characterize the non-Newtonian fluid behavior. First, using a similarity transformation, the governing time-dependent partial differential equations are transformed into coupled nonlinear ordinary differential equations with variable coefficients. Then the transformed equations are solved numerically under appropriate boundary conditions by the shooting method. An exact solution corresponding to the momentum equation for a steady case is found. The obtained numerical results are analyzed as to the effect of the pertinent parameters on the flow and heat transfer characteristics.

  17. Determining temperature limits of drilling fluids

    Energy Technology Data Exchange (ETDEWEB)

    Thuren, J.B.; Chenevert, M.E.; Huang, W.T.W.; Szymanski, E.; Arkeketa, P.

    1979-01-01

    A capillary three tube viscometer has been designed which allows the measurement of rheological properties of time dependent non-Newtonian fluids in laminar flow at high temperture and pressure. The objective of this investigation is to determine the temperature stability of clay-water suspensions containing various drilling fluid additives. The additives studied consisted of viscosifiers, filtrate reducers, and chemical thinners. The temperature range studied is from room temperature to 550{sup 0}F. The system pressure is consistently maintained above the vapor pressure. The Bentonite and water standardized base mud used is equivalent to a 25 ppB fluid. Stabilization of the base mud is necessary to obtain steady state laminar flow conditions and to obtain reliable temperature thinning effects with each temperature interval under investigation. Generally the temperature levels are maintained for one hour until 550{sup 0}F is attained. The last interval is then maintained until system fluid degradation occurs. Rheological measurements are obtained from differential pressure transducers located in a three diameter tube test section and externally at ambient conditions from a Baroid Rotational Viscometer. The power law model for non-Newtonian fluids is used to correlate the data.

  18. New trends in fluid mechanics research. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, F.G. [China Aerospace Corporation, Beijing (China). Science and Technology Council; Li, J.C. (eds.) [Chinese Academy of Science, Beijing (China). Inst. of Mechanics

    2008-07-01

    This volume is the proceedings of the Fifth International Conference on Fluid Mechanics (ICFM-V), the primary forum for the presentation of technological advances and research results in the fields of theoretical, experimental, and computational Fluid Mechanics. Following the previous conferences in Beijing (1987, 1993 and 1998) and Dalian (2004) organized by the Chinese Society of Theoretical and Applied Mechanics, the Scientific Committee for ICFM presents ICFM-V to provide a forum for researchers to exchange original ideas and recent advances in Fluid Mechanics and relevant interdisciplinary subjects. Topics include: flow instability and turbulence, aerodynamics and gas dynamics, hydrodynamics, industrial and environmental fluid mechanics, biofluid mechanics, geophysical fluid mechanics, plasma and magneto-hydrodynamics, multiphase flows, non-Newtonian flows and flows in porous media, flow of reacting fluid, microscale flow and others.The CD-ROM includes all papers presented at the conference in PDF format, including those that were not selected for the book. (orig.)

  19. Two-Fluid Mathematical Models for Blood Flow in Stenosed Arteries: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Sankar DS

    2009-01-01

    Full Text Available The pulsatile flow of blood through stenosed arteries is analyzed by assuming the blood as a two-fluid model with the suspension of all the erythrocytes in the core region as a non-Newtonian fluid and the plasma in the peripheral layer as a Newtonian fluid. The non-Newtonian fluid in the core region of the artery is assumed as a (i Herschel-Bulkley fluid and (ii Casson fluid. Perturbation method is used to solve the resulting system of non-linear partial differential equations. Expressions for various flow quantities are obtained for the two-fluid Casson model. Expressions of the flow quantities obtained by Sankar and Lee (2006 for the two-fluid Herschel-Bulkley model are used to get the data for comparison. It is found that the plug flow velocity and velocity distribution of the two-fluid Casson model are considerably higher than those of the two-fluid Herschel-Bulkley model. It is also observed that the pressure drop, plug core radius, wall shear stress and the resistance to flow are significantly very low for the two-fluid Casson model than those of the two-fluid Herschel-Bulkley model. Hence, the two-fluid Casson model would be more useful than the two-fluid Herschel-Bulkley model to analyze the blood flow through stenosed arteries.

  20. Fluid flow for chemical and process engineers

    CERN Document Server

    Holland, F

    1995-01-01

    This major new edition of a popular undergraduate text covers topics of interest to chemical engineers taking courses on fluid flow. These topics include non-Newtonian flow, gas-liquid two-phase flow, pumping and mixing. It expands on the explanations of principles given in the first edition and is more self-contained. Two strong features of the first edition were the extensive derivation of equations and worked examples to illustrate calculation procedures. These have been retained. A new extended introductory chapter has been provided to give the student a thorough basis to understand the methods covered in subsequent chapters.

  1. Aligned magnetic field effect on unsteady liquid film flow of Casson fluid over a stretching surface

    Science.gov (United States)

    Sailaja, M.; Hemadri Reddy, R.; Saravana, R.; Avinash, K.

    2017-11-01

    The heat and mass transfer in non-Newtonian fluids plays a major role in technology and in nature due to its stress relaxation, shear thinning and thickening properties. In this study, we investigated the heat and mass transfer in unsteady liquid film flow of Casson fluid in the presence of aligned magnetic field, thermophoresis and Brownian moment effects. The transformed governing boundary layer equations are solved numerically by employing shooting technique. Dual solutions are explored for Newtonian and non-Newtonian cases. The impact of pertinent parameters on the flow, thermal and concentration fields are discussed with the assistance of graphical illustrations. The reduced Nusselt number is reported and discussed through tabular results.

  2. Entropy generation due to double diffusive convective flow of Casson fluids over nonlinearity stretching sheets with slip conditions

    Directory of Open Access Journals (Sweden)

    Sameh E. Ahmed

    2017-12-01

    Full Text Available The present paper deals with the effects of slip boundary conditions and chemical reaction on the heat and mass transfer by mixed convective boundary layer flow of a non-Newtonian fluid over a nonlinear stretching sheet. The Casson fluid model is used to characterize the non-Newtonian fluid behavior. First order chemical reactions are considered. Similar solutions are used to convert the partial differential equations governing the problem to ordinary differential equations. The velocity, temperature and concentration profiles are obtained, numerically, using the MATLAB function bvp4c and those are used to compute the entropy generation number. The effect of increasing values of the Casson parameter is found to suppress the velocity field and temperature distribution. But the concentration is enhanced with the increasing of Casson parameter. The viscous dissipation, temperature and concentration irreversibility are determined and discussed in details.

  3. Casson fluid flow and heat transfer past an exponentially porous stretching surface in presence of thermal radiation

    Directory of Open Access Journals (Sweden)

    S. Pramanik

    2014-03-01

    Full Text Available The present paper aims at investigating the boundary layer flow of a non-Newtonian fluid accompanied by heat transfer toward an exponentially stretching surface in presence of suction or blowing at the surface. Casson fluid model is used to characterize the non-Newtonian fluid behavior. Thermal radiation term is incorporated into the equation for the temperature field. With the help of similarity transformations, the governing partial differential equations corresponding to the momentum and heat transfer are reduced to a set of non-linear ordinary differential equations. Numerical solutions of these equations are then obtained. The effect of increasing values of the Casson parameter is seen to suppress the velocity field. But the temperature is enhanced with increasing Casson parameter. Thermal radiation enhances the effective thermal diffusivity and the temperature increases. It is found that the skin-friction coefficient increases with the increase in suction parameter.

  4. Dual solutions of Casson fluid flow over a stretching or shrinking sheet

    Indian Academy of Sciences (India)

    tions in industry. The flow of various non-Newtonian fluids over stretching or shrinking sheets was analysed by Liao (2003), Hayat et al (2008) and Ishak et al (2012). ..... β = 4.0 β = 5.0. Figure 5. Effects of the Casson parameter on the concentration profiles when λ = 0.01,Pr = Df = Sc = Sr = 0.1, c/a = −1.25. case of a Casson ...

  5. Non-Darcy Free Convection of Power-Law Fluids Over a Two-Dimensional Body Embedded in a Porous Medium

    KAUST Repository

    El-Amin, Mohamed

    2010-11-27

    A boundary layer analysis was presented to study the non-Darcy-free convection of a power-law fluid over a non-isothermal two-dimensional body embedded in a porous medium. The Ostwald-de Waele power-law model was used to characterize the non-Newtonian fluid behavior. Similarity solutions were obtained with variations in surface temperature or surface heat flux. In view of the fact that most of the non-Newtonian fluids have large Prandtl numbers, this study was directed toward such fluids. The effects of the porous medium parameters, k1 and k2, body shape parameter, m, and surface thermal variations parameter, p, as well as the power-law index, n, were examined. © 2010 Springer Science+Business Media B.V.

  6. Flow of Oldroyd 8-constant fluid in a scraped surface heat exchanger

    Science.gov (United States)

    Imran, A.; Siddiqui, A. M.; Rana, M. A.

    2016-12-01

    In this work the flow of the Oldroyd 8-constant fluid model in a scraped surface heat exchanger (SSHE) is studied. We have taken the steady incompressible isothermal flow of a fluid around a periodic arrangement of pivoted scraper blades in a channel for a generalized Poiseuille flow, and the flow is modeled using the lubrication-approximation theory (LAT), where as in SSHE the gaps between the blades and the device walls are narrow. Using these approximations we got the non-linear boundary value problem which is solved using the Adomian decomposition method. Expressions for velocity profiles for different regions, flow rates, stream function are obtained. Graphical and tabular representation for the velocity profile and for the different flow parameters involved is also incorporated. Foodstuffs behave as non-Newtonian material, possess shear-thinning and shear-thickening effects, so they are considered for the understanding of non-Newtonian effects inside the SSHE Oldroyd 8-constant fluid model. In addition to food industry this work will also be helpful in pharmaceutical and chemical industries as most of the materials used in the industry are non-Newtonian in nature.

  7. A numerical study of unsteady non-Newtonian Powell-Eyring nanofluid flow over a shrinking sheet with heat generation and thermal radiation

    Directory of Open Access Journals (Sweden)

    T.M. Agbaje

    2017-03-01

    Full Text Available In this paper we investigate the unsteady boundary-layer flow of an incompressible Powell-Eyring nanofluid over a shrinking surface. The effects of heat generation and thermal radiation on the fluid flow are taken into account. Numerical solutions of the nonlinear differential equations that describe the transport processes are obtained using a multi-domain bivariate spectral quasilinearization method. This innovative technique involves coupling bivariate Lagrange interpolation with quasilinearization. The solutions of the resulting system of equations are then obtained in a piecewise manner in a sequence of multiple intervals using the Chebyshev spectral collocation method. A parametric study shows how various parameters influence the flow and heat transfer processes. The validation of the results, and the method used here, has been achieved through a comparison of the current results with previously published results for selected parameter values. In general, an excellent agreement is observed. The results from this study show that the fluid parameters ε and δ reduce the flow velocity and the momentum boundary-layer thickness. The heat generation and thermal radiation parameters are found to enhance both the temperature and thermal boundary-layer thicknesses.

  8. Current research in cavitating fluid films

    Science.gov (United States)

    Brewe, D. E. (Editor); Ball, J. H. (Editor); Khonsari, M. M. (Editor)

    1990-01-01

    A review of the current research of cavitation in fluid films is presented. Phenomena and experimental observations include gaseous cavitation, vapor cavitation, and gas entrainment. Cavitation in flooded, starved, and dynamically loaded journal bearings, as well as squeeze films are reviewed. Observations of cavitation damage in bearings and the possibility of cavitation between parallel plates with microasperities were discussed. The transcavity fluid transport process, meniscus motion and geometry or form of the film during rupture, and reformation were summarized. Performance effects were related to heat transfer models in the cavitated region and hysteresis influence on rotor dynamics coefficients. A number of cavitation algorithms was presented together with solution procedures using the finite difference and finite element methods. Although Newtonian fluids were assumed in most of the discussions, the effect of non-Newtonian fluids on cavitation was also discussed.

  9. An evaluation of interface capturing methods in a VOF based model for multiphase flow of a non-Newtonian ceramic in tape casting

    DEFF Research Database (Denmark)

    Jabbari, Masoud; Bulatova, Regina; Hattel, Jesper Henri

    2014-01-01

    The aim of the present study is to evaluate the different interface capturing methods as well as to find the best approach for flow modeling of the ceramic slurry in the tape casting process. The conventional volume of fluid (VOF) method with three different interpolation methods for interface...... method for the free surface capturing during the flow of a ceramic slurry described by a constitutive power law equation in the tape casting process. First the developed model is tested against well-documented and relevant solutions from literature involving free surface tracking and subsequently...... it is used to investigate the flow of a La0.85Sr0.15MnO3 (LSM) ceramic slurry modeled with the Ostwald de Waele power law. Results of the modeling are compared with corresponding experimental data and good agreement is found. © 2013 Elsevier Inc. All rights reserved....

  10. A Symmetry Particle Method towards Implicit Non‐Newtonian Fluids

    Directory of Open Access Journals (Sweden)

    Yalan Zhang

    2017-02-01

    Full Text Available In this paper, a symmetry particle method, the smoothed particle hydrodynamics (SPH method, is extended to deal with non‐Newtonian fluids. First, the viscous liquid is modeled by a non‐Newtonian fluid flow and the variable viscosity under shear stress is determined by the Carreau‐Yasuda model. Then a pressure correction method is proposed, by correcting density error with individual stiffness parameters for each particle, to ensure the incompressibility of fluid. Finally, an implicit method is used to improve efficiency and stability. It is found that the nonNewtonian behavior can be well displayed in all cases, and the proposed SPH algorithm is stable and efficient.

  11. Flow of a power-law fluid with memory past an infinite plate ...

    African Journals Online (AJOL)

    We examined the flow of a power law fluid with a non-constant relaxation λtb past an infinite plate. When λ is zero the fluid is pseudoplastic and when the power law exponent is 1, the fluid is a Maxwell fluid. It is shown that the problem has a solution when 0 < n ≤ 1. Moreover, we show that momentum penetration ...

  12. Viscous Dissipation Effects on the Motion of Casson Fluid over an Upper Horizontal Thermally Stratified Melting Surface of a Paraboloid of Revolution: Boundary Layer Analysis

    Directory of Open Access Journals (Sweden)

    T. M. Ajayi

    2017-01-01

    Full Text Available The problem of a non-Newtonian fluid flow past an upper surface of an object that is neither a perfect horizontal/vertical nor inclined/cone in which dissipation of energy is associated with temperature-dependent plastic dynamic viscosity is considered. An attempt has been made to focus on the case of two-dimensional Casson fluid flow over a horizontal melting surface embedded in a thermally stratified medium. Since the viscosity of the non-Newtonian fluid tends to take energy from the motion (kinetic energy and transform it into internal energy, the viscous dissipation term is accommodated in the energy equation. Due to the existence of internal space-dependent heat source; plastic dynamic viscosity and thermal conductivity of the non-Newtonian fluid are assumed to vary linearly with temperature. Based on the boundary layer assumptions, suitable similarity variables are applied to nondimensionalized, parameterized and reduce the governing partial differential equations into a coupled ordinary differential equations. These equations along with the boundary conditions are solved numerically using the shooting method together with the Runge-Kutta technique. The effects of pertinent parameters are established. A significant increases in Rex1/2Cfx is guaranteed with St when magnitude of β is large. Rex1/2Cfx decreases with Ec and m.

  13. Structural Optimization of non-Newtonian Microfluidics

    DEFF Research Database (Denmark)

    Jensen, Kristian Ejlebjærg

    2013-01-01

    , and applied the optimization to ideas related to the bistability using a heuristic approach [P4]. This is successful for the most simple ideas, but the most advanced idea seems to call for a stricter methodology. Finally the thesis contains numerical code specific to COMSOL Multiphysics [P1], a commercial...

  14. experimental determination of some thermal properties of raphia ...

    African Journals Online (AJOL)

    NIJOTECH

    C) respectively. The specific heat capacity is from 1.178 to 1.315 (KJ/kg o. C) for moisture content and temperature of 59.77 to 70.06% (W.B) and 50 to 70 ( o. C) respectively. The gum is a non-. Newtonian pseudoplastic fluid and hence its viscosity is determined from the shear rate against shear stress plot. Nomentclature. A.

  15. Studying laminar flows of power-law fluids in the annular channel with eccentricity

    Science.gov (United States)

    Zhigarev, V. A.; Neverov, A. L.; Guzei, D. V.; Pryazhnikov, M. I.

    2017-09-01

    The paper deals with numerical and experimental investigation of non-Newtonian flow of modeling drilling fluids in the annular channel. The Reynolds number was ranged from 100 to 1500. The parameters of the power-law model of drilling fluids were varied within the following ranges: n = 0.43-0.49, K = 0.22-0.89. The eccentricity was changed from 0 to 1. We have measured pressure drop in the annular channel and compared calculations with experimental data, achieving good agreement between calculations and experiment.

  16. Hydromagnetic Blood Flow of Sisko Fluid in a Non-uniform Channel Induced by Peristaltic Wave

    Science.gov (United States)

    Zeeshan, A.; Bhatti, M. M.; Akbar, N. S.; Sajjad, Y.

    2017-07-01

    In this paper, a smooth repetitive oscillating wave traveling down the elastic walls of a non-uniform two-dimensional channels is considered. It is assumed that the fluid is electrically conducting and a uniform magnetic field is perpendicular to flow. The Sisko fluid is grease thick non-Newtonian fluid can be considered equivalent to blood. Taking long wavelength and low Reynolds number, the equations are reduced. The analytical solution of the emerging non-linear differential equation is obtained by employing Homotopy Perturbation Method (HPM). The outcomes for dimensionless flow rate and dimensionless pressure rise have been computed numerically with respect to sundry concerning parameters amplitude ratio ϕ, Hartmann number M, and Sisko fluid parameter b 1. The behaviors for pressure rise and average friction have been discussed in details and displayed graphically. Numerical and graphical comparison of Newtonian and non-Newtonian has also been evaluated for velocity and pressure rise. It is observed that the magnitude of pressure rise is maximum in the middle of the channel whereas for higher values of fluid parameter it increases. Further, it is also found that the velocity profile shows converse behavior along the walls of the channel against multiple values of fluid parameter.

  17. Oil as a design parameter in screw-type engines - use of non-newtonian oils. Pt. 1; Oel als Konstruktionselement in Schraubenmaschinen - Einsatz nicht newtonscher Oele. T. 1

    Energy Technology Data Exchange (ETDEWEB)

    Kauder, K.; Deipenwisch, R. [Dortmund Univ. (Germany). FG Fluidenergiemaschinen

    1998-12-31

    The model of the calculation of the friction losses caused by oil described in this report delivers a starting point for the integration of the design parameter `oil` for oil injected screw-type engines. The use of non newtonian oils with a shear thinning behaviour lead to a decrease of energy consumption over a broad speed range of screw-type compressors. The decrease is mainly caused by the shear indicated lower viscosity in the clearances of the compressor. A difficulty through the use of this oils is the estimation of the conditions in the clearances. The rate of shear in the single clearance is influenced by the relative speed of the boundaries and by the height of the clearance during operation. Up to now only cold heights were used in the model. To improve the quality of the model the clearances of a running screw compressor were measured. The losses which were determined at the screw compressor test plant are the summation of all losses including the losses caused by the power transmission and in the bearings. Experiments at a model rotor test stand make the determination of the friction losses and the losses by the acceleration of the oil in the clearances possible. A better calculation model shall deliver the conditions to describe the influence of the oil on the energy efficiency and to define the optimal oil for every screw compressor. (orig.) [Deutsch] Das beschriebene Modell zur Berechnung der hydraulischen Verluste in der nasslaufenden Schraubenmaschine liefert Ansaetze, um das Oel schon bei der Auslegung der Schraubenkompressoren als Konstruktionselement mit einzubeziehen. Sinnvoll ist die Nutzung eines nicht-newtonschen Oeles immer dann, wenn eine deutliche scherindizierte Viskositaetserniedrigung in dem Schergeschwindigkeitsbereich, der in den Spalten des Schraubenkompressors vorliegt, erreicht werden kann. Beim Einsatz dieser Oele besteht die Schwierigkeit darin, den Schergeschwindigkeitsbereich vorherzubestimmen, der waehrend des Betriebs in dem

  18. Proceedings of the Fifth International Conference on Fluid Mechanics (Shanghai, 2007)

    CERN Document Server

    Zhuang, F. G; New Trends in Fluid Mechanics Research

    2009-01-01

    New Trends in Fluid Mechanics Research is the proceedings of the Fifth International Conference on Fluid Mechanics (ICFM-V); it is the primary forum for the presentation of technological advances and research results in the fields of theoretical, experimental, and computational Fluid Mechanics. Following the previous conferences in Beijing (1987, 1993 and 1998) and Dalian (2004) organized by the Chinese Society of Theoretical and Applied Mechanics, the Scientific Committee for ICFM presents ICFM-V to provide a forum for researchers to exchange original ideas and recent advances in Fluid Mechanics and relevant interdisciplinary subjects. Topics include: flow instability and turbulence, aerodynamics and gas dynamics, hydrodynamics, industrial and environmental fluid mechanics, biofluid mechanics, geophysical fluid mechanics, plasma and magneto-hydrodynamics, multiphase flows, non-Newtonian flows and flows in porous media, flow of reacting fluid, microscale flow and others.

  19. Turbulent characteristics of shear-thinning fluids in recirculating flows

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, A.S. [Inst. Superior de Engenharia do Porto (Portugal). Dept. de Engenharia Quimica; Pinho, F.T. [Centro de Estudos de Fenomenos de Transporte, Departamento de Engenharia Mecanica e Gestao Industrial, Faculdade de Engenharia da Universidade do Porto, Rua dos Bragas, 4050-123 Porto (Portugal)

    2000-03-01

    A miniaturised fibre optic laser-Doppler anemometer was used to carry out a detailed hydrodynamic investigation of the flow downstream of a sudden expansion with 0.1-0.2% by weight shear-thinning aqueous solutions of xanthan gum. Upstream of the sudden expansion the pipe flow was fully-developed and the xanthan gum solutions exhibited drag reduction with corresponding lower radial and tangential normal Reynolds stresses, but higher axial Reynolds stress near the wall and a flatter axial mean velocity profile in comparison with Newtonian flow. The recirculation bubble length was reduced by more than 20% relative to the high Reynolds number Newtonian flow, and this was attributed to the occurrence further upstream of high turbulence for the non-Newtonian solutions, because of advection of turbulence and earlier high turbulence production in the shear layer. Comparisons with the measurements of Escudier and Smith (1999) with similar fluids emphasized the dominating role of inlet turbulence. The present was less anisotropic, and had lower maximum axial Reynolds stresses (by 16%) but higher radial turbulence (20%) than theirs. They reported considerably longer recirculating bubble lengths than we do for similar non-Newtonian fluids and Reynolds numbers. (orig.)

  20. Étude numérique de l'écoulement d'un fluide non newtonien thermodépendant entre deux plaques parallèles

    Science.gov (United States)

    Van Tuan, Nguyen; Lebouche, Michel

    2005-04-01

    In this study, the heat transfer of a non Newtonian thermodependent fluid flowing between two parallel plates is considered. The effects of different parameters on the evolutions of thermal boundary layer and of Nusselt number are numerically investigated in two heating cases and correlations are proposed to compute the heat transfer. To cite this article: N. Van Tuan, M. Lebouche, C. R. Mecanique 333 (2005).

  1. Simultaneous Rotational and Axial Flow of Nonlinear Fluids

    Science.gov (United States)

    Ashrafi, Nariman; Yektapour, Mehdi; Shafahi, Mehdi

    2017-11-01

    An axial flow is introduced to the rotational flow of pseudoplastic fluids in the gap between concentric cylinders. The outer cylinder is fixed while the inner one has simultaneous and independent rotational and translational motions. The fluid follows the Carreau-Bird model and mixed boundary conditions are imposed. The four-dimensional low-order equations resulted from Galerkin projection of the conservation of mass and momentum equations, includes highly non-linear terms in the velocity components. Without axial flow, stability of the base radial flow is lost to the vortex structure at a lower critical Taylor number, with increase of the fluid pseudoplasticity. The vortices imply onset of a supercritical bifurcation which occurs in the rotational flow of linear fluids as well. In contrast to the Newtonian case, pseudoplastic Taylor vortices lose their stability at a second critical Taylor number is reached a second critical number that corresponds to the onset of a Hopf bifurcation. The axial flow, caused by the translational motion of the inner cylinder advance each critical point on the bifurcation diagram. The flow field and viscosity maps are provided for major stability regions.

  2. Statistical mechanics and the physics of fluids

    CERN Document Server

    Tosi, Mario

    This volume collects the lecture notes of a course on statistical mechanics, held at Scuola Normale Superiore di Pisa for third-to-fifth year students in physics and chemistry. Three main themes are covered in the book. The first part gives a compact presentation of the foundations of statistical mechanics and their connections with thermodynamics. Applications to ideal gases of material particles and of excitation quanta are followed by a brief introduction to a real classical gas and to a weakly coupled classical plasma, and by a broad overview on the three states of matter.The second part is devoted to fluctuations around equilibrium and their correlations. Coverage of liquid structure and critical phenomena is followed by a discussion of irreversible processes as exemplified by diffusive motions and by the dynamics of density and heat fluctuations. Finally, the third part is an introduction to some advanced themes: supercooling and the glassy state, non-Newtonian fluids including polymers and liquid cryst...

  3. Spatially modulated thermal convection of viscoelastic fluids.

    Science.gov (United States)

    Kayodé, Séliatou; Khayat, Roger E

    2004-06-01

    The thermal convection of modulated viscoelastic flow is examined in this study. The modulation is assumed to be weak enough for a regular perturbation solution to be implemented. In addition to being more accurate, the second-order perturbation results reveal new physical phenomena that could not be predicted by the first-order analysis. Inertia was found to enhance globally the discrepancies between the first- and the second-order perturbation solution. A comparison between the Newtonian and the non-Newtonian solution is carried out and the influences of inertia, modulation amplitude, and wave number are emphasized. The present results show that elasticity has a marked effect on fluid patterns, especially regarding the roll structure and symmetry. The influence of elasticity is greater for larger Rayleigh number and aspect ratio.

  4. Analysis of Eyring-Powell Fluid in Helical Screw Rheometer

    Directory of Open Access Journals (Sweden)

    A. M. Siddiqui

    2014-01-01

    Full Text Available This paper aims to study the flow of an incompressible, isothermal Eyring-Powell fluid in a helical screw rheometer. The complicated geometry of the helical screw rheometer is simplified by “unwrapping or flattening” the channel, lands, and the outside rotating barrel, assuming the width of the channel is larger as compared to the depth. The developed second order nonlinear differential equations are solved by using Adomian decomposition method. Analytical expressions are obtained for the velocity profiles, shear stresses, shear at wall, force exerted on fluid, volume flow rates, and average velocity. The effect of non-Newtonian parameters, pressure gradients, and flight angle on the velocity profiles is noticed with the help of graphical representation. The observation confirmed the vital role of involved parameters during the extrusion process.

  5. Analysis of Eyring-Powell fluid in helical screw rheometer.

    Science.gov (United States)

    Siddiqui, A M; Haroon, T; Zeb, M

    2014-01-01

    This paper aims to study the flow of an incompressible, isothermal Eyring-Powell fluid in a helical screw rheometer. The complicated geometry of the helical screw rheometer is simplified by "unwrapping or flattening" the channel, lands, and the outside rotating barrel, assuming the width of the channel is larger as compared to the depth. The developed second order nonlinear differential equations are solved by using Adomian decomposition method. Analytical expressions are obtained for the velocity profiles, shear stresses, shear at wall, force exerted on fluid, volume flow rates, and average velocity. The effect of non-Newtonian parameters, pressure gradients, and flight angle on the velocity profiles is noticed with the help of graphical representation. The observation confirmed the vital role of involved parameters during the extrusion process.

  6. An immersed boundary method for two-phase fluids and gels and the swimming of Caenorhabditis elegans through viscoelastic fluids

    Science.gov (United States)

    Lee, Pilhwa; Wolgemuth, Charles

    2016-11-01

    While swimming in Newtonian fluids has been examined extensively, only recently have investigations into microorganism swimming through non-Newtonian fluids and gels been explored. The equations that govern these more complex media are often nonlinear and require computational algorithms to study moderate to large amplitude motions of the swimmer. Here we develop an immersed boundary method for handling fluid-structure interactions in a general two-phase medium, where one phase is a Newtonian fluid and the other phase is viscoelastic. We use this algorithm to investigate the swimming of an undulating, filamentary swimmer in 2D. A novel aspect of our method is that it allows one to specify how forces produced by the swimmer are distributed between the two phases of the fluid. The algorithm is validated by comparison to theoretical predictions for small amplitude swimming in gels and viscoelastic fluids. We show how the swimming velocity depends on material parameters of the fluid and the interaction between the fluid and swimmer. In addition, we simulate the swimming of Caenorhabditis elegans in viscoelastic fluids and find good agreement between the swimming speeds and fluid flows in our simulations and previous experimental measurements. NIH R01 GM072004, NIH P50GM094503.

  7. Settling speed of non-spherical particles in drilling fluid; Velocidade de sedimentacao de particulas nao esfericas em fluidos de perfuracao

    Energy Technology Data Exchange (ETDEWEB)

    Santana, Cesar C.; Laruccia, Moacyr B.; Maidla, Eric E. [Universidade Estadual de Campinas, SP (Brazil)

    1989-07-01

    In this paper, we develop a correlation for the calculation of the drift coefficient of non-spherical particles settling in non-Newtonian fluids, regardless of time. The use of Dimensional Analysis and of a great amount of experimental data covering laminar, intermediary and turbulent regimes brought about a generalized correlation to determine particle settling speed in a sphericity range of 0.5 to 1.0. In contrast to results published by other authors, the correlation developed in this paper does not depend on a particular rheological model of the fluid. (author) 13 refs., 17 figs., 3 tabs.

  8. Lie group analysis of hydromagnetic flow and heat transfer of a power-law fluid over stretching surface with temperature-dependent viscosity and thermal conductivity

    Science.gov (United States)

    El-Aziz, Mohamed Abd; Afify, Ahmed A.

    2016-07-01

    The symmetry group of MHD boundary layer flow and heat transfer of a non-Newtonian power-law fluid over a stretching surface under the effects of variable fluid properties is investigated. The similarity equations with the corresponding boundary conditions are solved numerically by using a shooting method with the fourth order Runge-Kutta integration scheme. Comparisons of the numerical method with the existing results in the literature are made and obtained an excellent agreement. It is observed that the heat transfer rate diminishes with an increase in magnetic parameter and variable thermal conductivity parameter. Further, the opposite influence is found with an increase in variable viscosity parameter.

  9. Substitute fluid examinations for liquid manure

    Science.gov (United States)

    Schrader, Kevin; Riedel, Marco; Eichert, Helmut

    For the farming industry it is essential to use liquid manure as natural fertilizer. Through new agricultural regulation 2015 in Germany the industry must develop new liquid manure spreader systems because the ammonia and methane emission are limited. In a research project the University of Applied Sciences Zwickau and some other industry partners will develop such a new innovative liquid manure spreader. The new liquid manure spreader should use pulsating air to distribute the liquid manure exactly. The pulsating air, which flows through the pipelines, should be analysed at a test station. For examinations at this test station it is important to find another substitute fluid because liquid manure smells strong, is not transparent and is also not homogeneous enough for scientific investigations. Furthermore it is important to ensure that the substitute fluid is, like liquid manure, a non-Newtonian fluid. The substitute fluid must be a shear-thinning substance - this means the viscosity decrease at higher shear rate. Many different samples like soap-water-farragoes, jelly-water-farragoes, agar-water-farragoes, soap-ethanol-farragoes and more are, for the project, examined in regard of their physical properties to find the best substitute fluid. The samples are examined at the rotational viscometer for viscosity at various shear rates and then compared with the viscosity values of liquid manure.

  10. Substitute fluid examinations for liquid manure

    Directory of Open Access Journals (Sweden)

    Schrader Kevin

    2017-01-01

    Full Text Available For the farming industry it is essential to use liquid manure as natural fertilizer. Through new agricultural regulation 2015 in Germany the industry must develop new liquid manure spreader systems because the ammonia and methane emission are limited. In a research project the University of Applied Sciences Zwickau and some other industry partners will develop such a new innovative liquid manure spreader. The new liquid manure spreader should use pulsating air to distribute the liquid manure exactly. The pulsating air, which flows through the pipelines, should be analysed at a test station. For examinations at this test station it is important to find another substitute fluid because liquid manure smells strong, is not transparent and is also not homogeneous enough for scientific investigations. Furthermore it is important to ensure that the substitute fluid is, like liquid manure, a non-Newtonian fluid. The substitute fluid must be a shear-thinning substance - this means the viscosity decrease at higher shear rate. Many different samples like soap-water-farragoes, jelly-water-farragoes, agar-water-farragoes, soap-ethanol-farragoes and more are, for the project, examined in regard of their physical properties to find the best substitute fluid. The samples are examined at the rotational viscometer for viscosity at various shear rates and then compared with the viscosity values of liquid manure.

  11. Rheological behavior and constitutive equations of heterogeneous titanium-bearing molten slag

    Science.gov (United States)

    Jiang, Tao; Liao, De-ming; Zhou, Mi; Zhang, Qiao-yi; Yue, Hong-rui; Yang, Song-tao; Duan, Pei-ning; Xue, Xiang-xin

    2015-08-01

    Experimental studies on the rheological properties of a CaO-SiO2-Al2O3-MgO-TiO2-(TiC) blast furnace (BF) slag system were conducted using a high-temperature rheometer to reveal the non-Newtonian behavior of heterogeneous titanium-bearing molten slag. By measuring the relationships among the viscosity, the shear stress and the shear rate of molten slags with different TiC contents at different temperatures, the rheological constitutive equations were established along with the rheological parameters; in addition, the non-Newtonian fluid types of the molten slags were determined. The results indicated that, with increasing TiC content, the viscosity of the molten slag tended to increase. If the TiC content was less than 2wt%, the molten slag exhibited the Newtonian fluid behavior when the temperature was higher than the critical viscosity temperature of the molten slag. In contrast, the molten slag exhibited the non-Newtonian pseudoplastic fluid characteristic and the shear thinning behavior when the temperature was less than the critical viscosity temperature. However, if the TiC content exceeded 4wt%, the molten slag produced the yield stress and exhibited the Bingham and plastic pseudoplastic fluid behaviors when the temperature was higher and lower than the critical viscosity temperature, respectively. When the TiC content increased further, the yield stress of the molten slag increased and the shear thinning phenomenon became more obvious.

  12. Theoretical and Experimental Investigations of Identifying the Ingredients of an Oil-Water Mixture Based on a Characteristic Fluid Inverse Problem

    Science.gov (United States)

    Zhang, Ji; Yuan, Han; Zhao, Jian; Mei, Ning

    2016-12-01

    To identify the ingredients of an oil-water mixture in petroleum production or petrochemicals process, a method based on a characteristic liquid inverse problem was developed by clarifying its real viscosity and thermal conductivity. A heat transfer and fluid flow model for an oil-water mixture was established for tube flow in this paper. By means of the measured temperature distribution in the tube, the thermal physical properties of the oil-water mixture can be obtained by the governing equations in the model according to their characteristics as a Newtonian or non-Newtonian fluid. The fluid characteristic can be deduced by the rheological properties of the oil-water mixture. Both the Newtonian fluid and non-Newtonian fluid governing equations were established to determine the mixture components. Experiments were also conducted to verify the numerical solutions for the ingredients of the oil-water mixture. The comparison between theoretical solutions and experimental results shows that the maximum error based on the suitable fluid model is 3.11 %, which demonstrated the feasibility of the proposed method for estimating the ingredients of an oil-water mixture.

  13. The Effect of Surface Tension on the Gravity-driven Thin Film Flow of Newtonian and Power-law Fluids

    OpenAIRE

    Hu, Bin; Kieweg, Sarah L.

    2012-01-01

    Gravity-driven thin film flow is of importance in many fields, as well as for the design of polymeric drug delivery vehicles, such as anti-HIV topical microbicides. There have been many prior works on gravity-driven thin films. However, the incorporation of surface tension effect has not been well studied for non-Newtonian fluids. After surface tension effect was incorporated into our 2D (i.e. 1D spreading) power-law model, we found that surface tension effect not only impacted the spreading ...

  14. Rheological evaluation of simulated neutralized current acid waste

    Energy Technology Data Exchange (ETDEWEB)

    Fow, C.L.; McCarthy, D.; Thornton, G.T.

    1986-06-01

    A byproduct of the Purex process is an aqueous waste stream that contains fission products. This waste stream, called current acid waste, is chemically neutralized and stored in double shell tanks on the Hanford Site. This neutralized current acid waste (NCAW) will be transported by pipe to B-Plant, a processing plant on the Hanford Site. Rheological and transport properties of NCAW slurry were evaluated. First, researchers conducted lab rheological evaluations of simulated NCAW. The results of these evaluations were then correlated with classical rheological models and scaled up to predict the performance that is likely to occur in the full-scale system. The NCAW in the tank will either be retrieved as is, i.e., no change in the concentration presently in the tank, or will be slightly concentrated before retrieval. Sluicing may be required to retrieve the solids. Three concentrations of simulated NCAW were evaluated that would simulate the different retrieval options: NCAW in the concentration that is presently in the tank; a slightly concentrated NCAW, called NCAW5.5; and equal parts of NCAW settled solids and water (simulating the sluicing stage), called NCAW1:1. The physical and rheological properties of three samples of each concentration at 25 and 100/sup 0/C were evaluated in the laboratory. The properties displayed by NCAW and NCAW5.5 at 25 and 100/sup 0/C allowed it to be classified as a pseudoplastic non-Newtonian fluid. NCAW1:1 at 25 and 100/sup 0/C displayed properties of a yield-pseudoplastic non-Newtonian fluid. The classical non-Newtonian models for pseudoplastic and yield-pseudoplastic fluids were used with the laboratory data to predict the full-scale pump-pipe network parameters.

  15. Radiative flow of MHD Jeffrey fluid past a stretching sheet with surface slip and melting heat transfer

    Directory of Open Access Journals (Sweden)

    Kalidas Das

    2015-12-01

    Full Text Available The present paper investigates numerically the influence of melting heat transfer and thermal radiation on MHD stagnation point flow of an electrically conducting non-Newtonian fluid (Jeffrey fluid over a stretching sheet with partial surface slip. The governing equations are reduced to non-linear ordinary differential equations by using a similarity transformation and then solved numerically by using Runge–Kutta–Fehlberg method. The effects of pertinent parameters on the flow and heat transfer fields are presented through tables and graphs, and are discussed from the physical point of view. Our analysis revealed that the fluid temperature is higher in case of Jeffrey fluid than that in the case of Newtonian fluid. It is also observed that the wall stress increases with increasing the values of slip parameter but the effect is opposite for the rate of heat transfer at the wall.

  16. Unconfined Unsteady Laminar Flow of a Power-Law Fluid across a Square Cylinder

    Directory of Open Access Journals (Sweden)

    Asterios Pantokratoras

    2016-11-01

    Full Text Available The flow of a non-Newtonian, power-law fluid, directed normally to a horizontal cylinder with square cross-section (two-dimensional flow is considered in the present paper. The problem is investigated numerically with a very large calculation domain in order that the flow could be considered unconfined. The investigation covers the power-law index from 0.1 up to 2 and the Reynolds number ranges from 60 to 160. Over this range of Reynolds numbers the flow is unsteady. It is found that the drag coefficient and the Strouhal number are higher in a confined flow compared to those of an unconfined flow. In addition some flow characteristics are lost in a confined flow. Complete results for the drag coefficient and Strouhal number in the entire shear-thinning and shear-thickening region have been produced. In shear-thinning fluids chaotic structures exist which diminish at higher values of power-law index. This study represents the first investigation of unsteady, non-Newtonian power-law flow past a square cylinder in an unconfined field.

  17. Homogeneous–heterogeneous reactions in stagnation point flow of Casson fluid due to a stretching/shrinking sheet with uniform suction and slip effects

    Directory of Open Access Journals (Sweden)

    Mariam Sheikh

    2017-09-01

    Full Text Available This study deals with the effects of homogeneous–heterogeneous reaction on boundary layer flow of a non-Newtonian fluid near a stagnation point over a porous stretching/shrinking sheet with a constant suction. In this analysis Casson fluid is used to indicate the non-Newtonian fluid behavior by taking diffusion coefficients of both reactant and autocatalysis equal. The basic flow equations in form of partial differential equations are converted into a system of ordinary differential equations and then solved numerically. The influences of physical and fluid parameters on the velocity and concentration profiles are analyzed, presented and discussed through graphs. An increase in fluid velocity slip parameter reduces the magnitude of the velocity as well as increases the concentration in the boundary layer region. Furthermore, a unique solution is possible for all values of the stretching parameter (λ > 0, while in case of shrinking parameter (λ < 0, solutions are possible only for its limited ranges.

  18. Magnetic particle translation as a surrogate measure for synovial fluid mechanics.

    Science.gov (United States)

    Shah, Yash Y; Maldonado-Camargo, Lorena; Patel, Neal S; Biedrzycki, Adam H; Yarmola, Elena G; Dobson, Jon; Rinaldi, Carlos; Allen, Kyle D

    2017-07-26

    The mechanics of synovial fluid vary with disease progression, but are difficult to quantify quickly in a clinical setting due to small sample volumes. In this study, a novel technique to measure synovial fluid mechanics using magnetic nanoparticles is introduced. Briefly, microspheres embedded with superparamagnetic iron oxide nanoparticles, termed magnetic particles, are distributed through a 100μL synovial fluid sample. Then, a permanent magnet inside a protective sheath is inserted into the synovial fluid sample. Magnetic particles translate toward the permanent magnet and the percentage of magnetic particles collected by the magnet in a given time can be related to synovial fluid viscosity. To validate this relationship, magnetic particle translation was demonstrated in three phases. First, magnetic particle translation was assessed in glycerol solutions with known viscosities, demonstrating that as fluid viscosity increased, magnetic particle translation decreased. Next, the relationship between magnetic particle translation and synovial fluid viscosity was assessed using bovine synovial fluid that was progressively degenerated via ultrasonication. Here, particle collection in a given amount of time increased as fluid degenerated, demonstrating that the relationship between particle collection and fluid mechanics holds in non-Newtonian synovial fluid. Finally, magnetic particle translation was used to assess differences between healthy and OA affected joints in equine synovial fluid. Here, particle collection in a given time was higher in OA joints relative to healthy horses (pfluid mechanics in limited volumes of synovial fluid sample. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Electrokinetically modulated peristaltic transport of power-law fluids.

    Science.gov (United States)

    Goswami, Prakash; Chakraborty, Jeevanjyoti; Bandopadhyay, Aditya; Chakraborty, Suman

    2016-01-01

    The electrokinetically modulated peristaltic transport of power-law fluids through a narrow confinement in the form of a deformable tube is investigated. The fluid is considered to be divided into two regions - a non-Newtonian core region (described by the power-law behavior) which is surrounded by a thin wall-adhering layer of Newtonian fluid. This division mimics the occurrence of a wall-adjacent cell-free skimming layer in blood samples typically handled in microfluidic transport. The pumping characteristics and the trapping of the fluid bolus are studied by considering the effect of fluid viscosities, power-law index and electroosmosis. It is found that the zero-flow pressure rise is strongly dependent on the relative viscosity ratio of the near-wall depleted fluid and the core fluid as well as on the power-law index. The effect of electroosmosis on the pressure rise is strongly manifested at lower occlusion values, thereby indicating its importance in transport modulation for weakly peristaltic flow. It is also established that the phenomenon of trapping may be controlled on-the-fly by tuning the magnitude of the electric field: the trapping vanishes as the magnitude of the electric field is increased. Similarly, the phenomenon of reflux is shown to disappear due to the action of the applied electric field. These findings may be applied for the modulation of pumping in bio-physical environments by means of external electric fields. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Non linear thermal radiation effect on Williamson fluid with particle-liquid suspension past a stretching surface

    Science.gov (United States)

    Kumar, K. Ganesh; Rudraswamy, N. G.; Gireesha, B. J.; Manjunatha, S.

    A mathematical analysis of two-phase boundary layer flow and heat transfer of a Williamson fluid with fluid particle suspension over a stretching sheet has been carried out in this paper. The region of temperature jump and nonlinear thermal radiation is considered in the energy transfer process. The principal equations of boundary layer flow and temperature transmission are reformed to a set of non-linear ordinary differential equations under suitable similarity transformations. The transfigured equalities are solved numerically with the help of RKF-45 order method. The effect of influencing parameters on velocity and temperature transfer of fluid is examined and deliberated by plotted graphs and tabulated values. Significances of the mass concentration of dust particle parameter play a key role in controlling flow and thermal behavior of non-Newtonian fluids. Further, the temperature and concern boundary layer girth are declines for increasing values of Williamson parameter.

  1. Analytic solutions of Oldroyd-B fluid with fractional derivatives in a circular duct that applies a constant couple

    Directory of Open Access Journals (Sweden)

    M.B. Riaz

    2016-12-01

    Full Text Available The aim of this article was to analyze the rotational flow of an Oldroyd-B fluid with fractional derivatives, induced by an infinite circular cylinder that applies a constant couple to the fluid. Such kind of problem in the settings of fractional derivatives has not been found in the literature. The solutions are based on an important remark regarding the governing equation for the non-trivial shear stress. The solutions that have been obtained satisfy all imposed initial and boundary conditions and can easily be reduced to the similar solutions corresponding to ordinary Oldroyd-B, fractional/ordinary Maxwell, fractional/ordinary second-grade, and Newtonian fluids performing the same motion. The obtained results are expressed in terms of Newtonian and non-Newtonian contributions. Finally, the influence of fractional parameters on the velocity, shear stress and a comparison between generalized and ordinary fluids is graphically underlined.

  2. The cost of swimming in generalized Newtonian fluids: experiments with C. elegans

    Science.gov (United States)

    Gagnon, D. A.; Arratia, P. E.

    2016-08-01

    Numerous natural processes are contingent on microorganisms' ability to swim through fluids with non-Newtonian rheology. Here, we use the model organism Caenorhabditis elegans and tracking methods to experimentally investigate the dynamics of undulatory swimming in shear-thinning fluids. Theory and simulation have proposed that the cost of swimming, or mechanical power, should be lower in a shear-thinning fluid compared to a Newtonian fluid of the same zero-shear viscosity. We aim to provide an experimental investigation into the cost of swimming in a shear-thinning fluid from (i) an estimate of the mechanical power of the swimmer and (ii) the viscous dissipation rate of the flow field, which should yield equivalent results for a self-propelled low Reynolds number swimmer. We find the cost of swimming in shear-thinning fluids is less than or equal to the cost of swimming in Newtonian fluids of the same zero-shear viscosity; furthermore, the cost of swimming in shear-thinning fluids scales with a fluid's effective viscosity and can be predicted using fluid rheology and simple swimming kinematics. Our results agree reasonably well with previous theoretical predictions and provide a framework for understanding the cost of swimming in generalized Newtonian fluids.

  3. Peristaltic Creeping Flow of Power Law Physiological Fluids through a Nonuniform Channel with Slip Effect

    Directory of Open Access Journals (Sweden)

    M. K. Chaube

    2015-01-01

    Full Text Available A mathematical study on creeping flow of non-Newtonian fluids (power law model through a nonuniform peristaltic channel, in which amplitude is varying across axial displacement, is presented, with slip effects included. The governing equations are simplified by employing the long wavelength and low Reynolds number approximations. The expressions for axial velocity, stream function, pressure gradient, and pressure difference are obtained. Computational and numerical results for velocity profile, pressure gradient, and trapping under the effects of slip parameter, fluid behavior index, angle between the walls, and wave number are discussed with the help of Mathematica graphs. The present model is applicable to study the behavior of intestinal flow (chyme movement from small intestine to large intestine. It is also relevant to simulations of biomimetic pumps conveying hazardous materials, polymers, and so forth.

  4. Fluid dynamics following flow shut-off in bottle filling

    Science.gov (United States)

    Thete, Sumeet; Appathurai, Santosh; Gao, Haijing; Basaran, Osman

    2012-11-01

    Bottle filling is ubiquitous in industry. Examples include filling of bottles with shampoos and cleaners, engine oil and pharmaceuticals. In these examples, fluid flows out of a nozzle to fill bottles in an assembly line. Once the required volume of fluid has flowed out of the nozzle, the flow is shut off. However, an evolving fluid thread or string may remain suspended from the nozzle following flow shut-off and persist. This stringing phenomenon can be detrimental to a bottle filling operation because it can adversely affect line speed and filling accuracy by causing uncertainty in fill volume, product loss and undesirable marring of the bottles' exterior surfaces. The dynamics of stringing are studied numerically primarily by using the 1D, slender-jet approximation of the flow equations. A novel feature entails development and use of a new boundary condition downstream of the nozzle exit to expedite the computations. While the emphasis is on stringing of Newtonian fluids and use of 1D approximations, results will also be presented for situations where (a) the fluids are non-Newtonian and (b) the full set of equations are solved without invoking the 1D approximation. Phase diagrams will be presented that identify conditions for which stringing can be problematic.

  5. Exact Solutions for Unsteady Free Convection Flow of Casson Fluid over an Oscillating Vertical Plate with Constant Wall Temperature

    Directory of Open Access Journals (Sweden)

    Asma Khalid

    2015-01-01

    Full Text Available The unsteady free flow of a Casson fluid past an oscillating vertical plate with constant wall temperature has been studied. The Casson fluid model is used to distinguish the non-Newtonian fluid behaviour. The governing partial differential equations corresponding to the momentum and energy equations are transformed into linear ordinary differential equations by using nondimensional variables. Laplace transform method is used to find the exact solutions of these equations. Expressions for shear stress in terms of skin friction and the rate of heat transfer in terms of Nusselt number are also obtained. Numerical results of velocity and temperature profiles with various values of embedded flow parameters are shown graphically and their effects are discussed in detail.

  6. Influence of heat transfer on Poiseuille flow of MHD Jeffrey fluid through porous medium with slip boundary conditions

    Science.gov (United States)

    Ramesh, K.

    2017-07-01

    In the current article, we have discussed the Poiseuille flow of an incompressible magnetohydrodynamic Jeffrey fluid between parallel plates through homogeneous porous medium using slip boundary conditions under the effect of heat transfer. The equations governing the fluid flow are modeled in Cartesian coordinate system. The energy equation is considered under the effects viscous dissipation and heat generation. Analytical solutions for the velocity and temperature profiles are obtained. The effects of the various involved parameters on the velocity and temperature profiles are studied and the results are presented through the graphs. It is observed from our analysis that, with increase of slip parameter and pressure gradient increase the velocity. The temperature is an increasing function of heat generation parameter, Brinkman number, thermal slip parameter and non-Newtonian fluid parameter.

  7. Interplay between optical, viscous and elastic forces on an optically trapped Brownian particle immersed in a viscoelastic fluid

    CERN Document Server

    Domínguez-García, P; Jeney, Sylvia

    2016-01-01

    We provide a detailed study of the interplay between the different interactions which appear in the Brownian motion of a micronsized sphere immersed in a viscoelastic fluid measured with optical trapping interferometry. To explore a wide range of viscous, elastic and optical forces, we analyze two different viscoelastic solutions at various concentrations, which provide a dynamic polymeric structure surrounding the Brownian sphere. Our experiments show that, depending of the fluid, optical forces, even if small, slightly modify the complex modulus at low frequencies. Based on our findings, we propose an alternative methodology to calibrate this kind of experimental set-up when non-Newtonian fluids are used. Understanding the influence of the optical potential is essential for a correct interpretation of the mechanical properties obtained by optically-trapped probe-based studies of biomaterials and living matter.

  8. PREFACE: XXI Fluid Mechanics Conference

    Science.gov (United States)

    Szmyd, Janusz S.; Fornalik-Wajs, Elzbieta; Jaszczur, Marek

    2014-08-01

    This Conference Volume contains the papers presented at the 21st Fluid Mechanics Conference (XXI FMC) held at AGH - University of Science and Technology in Krakow, Poland, 15-18 June 2014, and accepted for Proceedings published in the Journal of Physics: Conference Series. The Fluid Mechanics Conferences have been taking place every two years since 1974, a total of forty years. The 21st Fluid Mechanics Conference (XXI FMC) is being organized under the auspices of the Polish Academy of Sciences, Committee of Mechanics. The goal of this conference is to provide a forum for the exposure and exchange of ideas, methods and results in fluid mechanics. Conference topics include, but are not limited to Aerodynamics, Atmospheric Science, Bio-Fluids, Combustion and Reacting Flows, Computational Fluid Dynamics, Experimental Fluid Mechanics, Flow Machinery, General Fluid Dynamics, Hydromechanics, Heat and Fluid Flow, Measurement Techniques, Micro- and Nano- Flow, Multi-Phase Flow, Non-Newtonian Fluids, Rotating and Stratified Flows, Turbulence. Within the general subjects of this conference, the Professor Janusz W. Elsner Competition for the best fluid mechanics paper presented during the Conference is organized. Authors holding a M.Sc. or a Ph.D. degree and who are not older than 35 years of age may enter the Competition. Authors with a Ph.D. degree must present individual papers; authors with a M.Sc. degree may present papers with their supervisor as coauthor, including original results of experimental, numerical or analytic research. Six state-of-the-art keynote papers were delivered by world leading experts. All contributed papers were peer reviewed. Recommendations were received from the International Scientific Committee, reviewers and the advisory board. Accordingly, of the 163 eligible extended abstracts submitted, after a review process by the International Scientific Committee, 137 papers were selected for presentation at the 21st Fluid Mechanics Conference, 68

  9. The cost of swimming in generalized Newtonian fluids: Experiments with C. elegans

    CERN Document Server

    Gagnon, David A

    2016-01-01

    Numerous natural processes are contingent on microorganisms' ability to swim through fluids with non-Newtonian rheology. Here, we use the model organism Caenorhabditis elegans and tracking methods to experimentally investigate the dynamics of undulatory swimming in shear-thinning fluids. Theory and simulation have proposed that the cost of swimming, or mechanical power, should be lower in a shear-thinning fluid compared to a Newtonian fluid of the same zero-shear viscosity. We aim to provide an experimental investigation into the cost of swimming in a shear-thinning fluid from (i) an estimate of the mechanical power of the swimmer and (ii) the viscous dissipation rate of the flow field, which should yield equivalent results for a self-propelled low Reynolds number swimmer. We find the cost of swimming in shear-thinning fluids is less than or equal to the cost of swimming in Newtonian fluids of the same zero-shear viscosity; furthermore, the cost of swimming in shear-thinning fluids scales with a fluid's effec...

  10. FDLBM simulation of double-diffusive mixed convection of shear-thinning fluids between two-square concentric duct annuli

    Science.gov (United States)

    Kefayati, GH. R.

    2015-11-01

    Double-diffusive mixed convection of pseudoplastic fluids between two-square concentric duct annuli has been analyzed by FDLBM. Results indicate that the augmentation of Richardson number decreases heat and mass transfer. The fall of the power law index declines heat and mass transfer at Ri = 0.00062 and 0.01. The increase in the size of the adiabatic body enhances the heat and mass transfer in the lid-driven enclosure generally.

  11. Model for the calculation of pressure loss through heavy fuel oil transfer pipelines

    Directory of Open Access Journals (Sweden)

    Hector Luis Laurencio-Alfonso,

    2012-10-01

    Full Text Available Considering the limitations of methodologies and empirical correlations in the evaluation of simultaneous effects produced by viscous and mix strength during the transfer of fluids through pipelines, this article presents the functional relationships that describe the pressure variations for the non-Newtonian fuel oil flowrate. The experimental study was conducted based on a characterization of the rheological behavior of fuel oil and modeling for a pseudoplastic behavior. The resulting model describes temperature changes, viscous friction effects and the effects of blending flow layers; which is therefore the basis of calculation for the selection, evaluation and rationalization of transport of heavy fuel oil by pipelines.

  12. Dynamics of a fluid flow on Mars: lava or mud?

    Science.gov (United States)

    Wilson, L.; Mouginis-Mark, P. J.

    2013-12-01

    We have identified an enigmatic flow in S.W. Cerberus Fossae, Mars. The flow originates from an almost circular pit within a remnant of a yardang at 0.58 degrees N, 155.28 degrees E, within the lower unit of the Medusae Fossae Formation. The flow is ~42 km long and 0.5 to 2.0 km wide. The surface textures of the resulting deposit show that the material flowed in such a way that the various deformation patterns on its surface were generally preserved as it moved, only being distorted or disrupted when the flow encountered major topographic obstacles or was forced to make rapid changes of direction. This observation of a stiff, generally undeformed surface layer overlying a relatively mobile base suggests that, while it was moving, the fluid material flowed in a laminar, and possibly non-Newtonian, fashion. The least-complicated non-Newtonian fluids are Bingham plastics. On this basis we use measurements of flow width, length, thickness and substrate slope obtained from images, a DEM constructed from stereo pairs of Context Camera (CTX) images, and Mars Orbiter Laser Altimeter (MOLA) altimetry points to deduce the rheological properties of the fluid, treating it as both a Newtonian and a Bingham material for comparison. The Newtonian option requires the fluid to have a viscosity close to 100 Pa s and to have flowed everywhere in a turbulent fashion. The Bingham option requires laminar flow, a plastic viscosity close to 1 Pa s, and a yield strength of ~185 Pa. We compare these parameters values with those of various environmental fluids on Earth in an attempt to narrow the range of possible materials forming the martian flow. A mafic to ultramafic lava would fit the Newtonian option but the required turbulence does not seem consistent with the surface textures. The Bingham option satisfies the morphological constraint of laminar motion if the material is a mud flow consisting of ~40% water and ~60% silt-sized silicate solids. Elsewhere on Mars, deposits with similar

  13. 1 Etude thermique expérimentale des suspensions non ...

    African Journals Online (AJOL)

    FAGLA

    Experimental thermal studyof the non-newtonian suspensionsflowingin ahorizontalductwith variable geometry. In the Agri-Food industry, new products, more and more complex for researchers, are put into consumption. This paper presents the results of an experimental study of heating Non-Newtonian and pseudoplastic.

  14. Sensing of fluid viscoelasticity from piezoelectric actuation of cantilever flexural vibration.

    Science.gov (United States)

    Park, Jeongwon; Jeong, Seongbin; Kim, Seung Joon; Park, Junhong

    2015-01-01

    An experimental method is proposed to measure the rheological properties of fluids. The effects of fluids on the vibration actuated by piezoelectric patches were analyzed and used in measuring viscoelastic properties. Fluid-structure interactions induced changes in the beam vibration properties and frequency-dependent variations of the complex wavenumber of the beam structure were used in monitoring these changes. To account for the effects of fluid-structure interaction, fluids were modelled as a simple viscoelastic support at one end of the beam. The measured properties were the fluid's dynamic shear modulus and loss tangent. Using the proposed method, the rheological properties of various non-Newtonian fluids were measured. The frequency range for which reliable viscoelasticity results could be obtained was 10-400 Hz. Viscosity standard fluids were tested to verify the accuracy of the proposed method, and the results agreed well with the manufacturer's reported values. The simple proposed laboratory setup for measurements was flexible so that the frequency ranges of data acquisition were adjustable by changing the beam's mechanical properties.

  15. Numerical simulation of FENE-P viscoelastic fluids flow and heat transfer in grooved channel with rectangular cavities

    Science.gov (United States)

    Filali, Abdelkader; Khezzar, Lyes; Alshehhi, Mohamed Saeed

    2017-08-01

    The forced convection heat transfer for non-Newtonian viscoelastic fluids obeying the FENE-P model in a parallel-plate channel with transverse rectangular cavities is carried out numerically using ANSYS-POLYFLOW code. The flow investigated is assumed to be two-dimensional, incompressible, laminar and steady. The flow behavior and temperature distribution influenced by the re-circulation caused by the variation of cross-section area along the stream wise direction have been studied. The constant heat flux condition has been applied and the effects of the different parameters, such as the aspect ratio of channel cavities (AR = 0.25, 0.5), the Reynolds number ( Re = 25, 250, and 500), the fluid elasticity defined by the Weissenberg number ( We), and the extensibility parameter of the model ( L 2), on heat transfer characteristics have been explored for channels of three successive cavities configuration. Different levels of heat transfer enhancement were obtained and discussed.

  16. Mathematical model of microbicidal flow dynamics and optimization of rheological properties for intra-vaginal drug delivery: Role of tissue mechanics and fluid rheology.

    Science.gov (United States)

    Anwar, Md Rajib; Camarda, Kyle V; Kieweg, Sarah L

    2015-06-25

    Topically applied microbicide gels can provide a self-administered and effective strategy to prevent sexually transmitted infections (STIs). We have investigated the interplay between vaginal tissue elasticity and the yield-stress of non-Newtonian fluids during microbicide deployment. We have developed a mathematical model of tissue deformation driven spreading of microbicidal gels based on thin film lubrication approximation and demonstrated the effect of tissue elasticity and fluid yield-stress on the spreading dynamics. Our results show that both elasticity of tissue and yield-stress rheology of gel are strong determinants of the coating behavior. An optimization framework has been demonstrated which leverages the flow dynamics of yield-stress fluid during deployment to maximize retention while reaching target coating length for a given tissue elasticity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Finite element analysis in fluids; Proceedings of the Seventh International Conference on Finite Element Methods in Flow Problems, University of Alabama, Huntsville, Apr. 3-7, 1989

    Science.gov (United States)

    Chung, T. J. (Editor); Karr, Gerald R. (Editor)

    1989-01-01

    Recent advances in computational fluid dynamics are examined in reviews and reports, with an emphasis on finite-element methods. Sections are devoted to adaptive meshes, atmospheric dynamics, combustion, compressible flows, control-volume finite elements, crystal growth, domain decomposition, EM-field problems, FDM/FEM, and fluid-structure interactions. Consideration is given to free-boundary problems with heat transfer, free surface flow, geophysical flow problems, heat and mass transfer, high-speed flow, incompressible flow, inverse design methods, MHD problems, the mathematics of finite elements, and mesh generation. Also discussed are mixed finite elements, multigrid methods, non-Newtonian fluids, numerical dissipation, parallel vector processing, reservoir simulation, seepage, shallow-water problems, spectral methods, supercomputer architectures, three-dimensional problems, and turbulent flows.

  18. Perturbation Solutions for Hagen-Poiseuille Flow and Heat Transfer of Third-Grade Fluid with Temperature-Dependent Viscosities and Internal Heat Generation

    Directory of Open Access Journals (Sweden)

    B. Y. Ogunmola

    2016-01-01

    Full Text Available Regular perturbation technique is applied to analyze the fluid flow and heat transfer in a pipe containing third-grade fluid with temperature-dependent viscosities and heat generation under slip and no slip conditions. The obtained approximate solutions were used to investigate the effects of slip on the heat transfer characteristics of the laminar flow in a pipe under Reynolds’s and Vogel’s temperature-dependent viscosities. Also, the effects of parameters such as variable viscosity, non-Newtonian parameter, viscous dissipation, and pressure gradient at various values were established. The results of this work were compared with the numerical results found in literature and good agreements were established. The results can be used to advance the analysis and study of the behavior of third-grade fluid flow and steady state heat transfer processes such as those found in coal slurries, polymer solutions, textiles, ceramics, catalytic reactors, and oil recovery applications.

  19. Sensing of fluid viscoelasticity from piezoelectric actuation of cantilever flexural vibration

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jeongwon; Jeong, Seongbin; Kim, Seung Joon; Park, Junhong, E-mail: parkj@hanyang.ac.kr [Department of Mechanical Convergence Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2015-01-15

    An experimental method is proposed to measure the rheological properties of fluids. The effects of fluids on the vibration actuated by piezoelectric patches were analyzed and used in measuring viscoelastic properties. Fluid-structure interactions induced changes in the beam vibration properties and frequency-dependent variations of the complex wavenumber of the beam structure were used in monitoring these changes. To account for the effects of fluid-structure interaction, fluids were modelled as a simple viscoelastic support at one end of the beam. The measured properties were the fluid’s dynamic shear modulus and loss tangent. Using the proposed method, the rheological properties of various non-Newtonian fluids were measured. The frequency range for which reliable viscoelasticity results could be obtained was 10–400 Hz. Viscosity standard fluids were tested to verify the accuracy of the proposed method, and the results agreed well with the manufacturer’s reported values. The simple proposed laboratory setup for measurements was flexible so that the frequency ranges of data acquisition were adjustable by changing the beam’s mechanical properties.

  20. Boundary layer flow and heat transfer to Carreau fluid over a nonlinear stretching sheet

    Directory of Open Access Journals (Sweden)

    Masood Khan

    2015-10-01

    Full Text Available This article studies the Carreau viscosity model (which is a generalized Newtonian model and then use it to obtain a formulation for the boundary layer equations of the Carreau fluid. The boundary layer flow and heat transfer to a Carreau model over a nonlinear stretching surface is discussed. The Carreau model, adequate for many non-Newtonian fluids, is used to characterize the behavior of the fluids having shear thinning properties and fluids with shear thickening properties for numerical values of the power law exponent n. The modeled boundary layer conservation equations are converted to non-linear coupled ordinary differential equations by a suitable transformation. Numerical solution of the resulting equations are obtained by using the Runge-Kutta Fehlberg method along with shooting technique. This analysis reveals many important physical aspects of flow and heat transfer. Computations are performed for different values of the stretching parameter (m, the Weissenberg number (We and the Prandtl number (Pr. The obtained results show that for shear thinning fluid the fluid velocity is depressed by the Weissenberg number while opposite behavior for the shear thickening fluid is observed. A comparison with previously published data in limiting cases is performed and they are in excellent agreement.

  1. The Start Of Ebullition In Quiescent, Yield-Stress Fluids

    Energy Technology Data Exchange (ETDEWEB)

    Reed, G. R.; Sherwood, David J.; Saez, A. Eduardo

    2012-08-30

    Non-Newtonian rheology is typical for the high-level radioactive waste (HLW) slurries processed in the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Hydrogen and other flammable gases are generated in the aqueous phase by radiolytic and chemical reactions. HLW slurries have a capacity for retaining gas characterized by the shear strength holding the bubbles still. The sizes and degassing characteristics of flammable gas bubbles in the HLW slurries expected to be processed by the WTP are important considerations for designing equipment and operating procedures. Slurries become increasingly susceptible to degassing as the bubble concentration increases. This susceptibility and the process of ebullitive bubble enlargement are described here. When disturbed, the fluid undergoes localized flow around neighboring bubbles which are dragged together and coalesce, producing an enlarged bubble. For the conditions considered in this work, bubble size increase is enough to displace the weight required to overcome the fluid shear strength and yield the surroundings. The buoyant bubble ascends and accumulates others within a zone of influence, enlarging by a few orders of magnitude. This process describes how the first bubbles appear on the surface of a 7 Pa shear strength fluid a few seconds after being jarred.

  2. Squeeze flow of a Carreau fluid during sphere impact

    KAUST Repository

    Uddin, J.

    2012-07-19

    We present results from a combined numerical and experimental investigation into the squeeze flow induced when a solid sphere impacts onto a thin, ultra-viscous film of non-Newtonian fluid. We examine both the sphere motion through the liquid as well as the fluid flow field in the region directly beneath the sphere during approach to a solid plate. In the experiments we use silicone oil as the model fluid, which is well-described by the Carreau model. We use high-speed imaging and particle tracking to achieve flow visualisation within the film itself and derive the corresponding velocity fields. We show that the radial velocity either diverges as the gap between the sphere and the wall diminishes (Z tip → 0) or that it reaches a maximum value and then decays rapidly to zero as the sphere comes to rest at a non-zero distance (Z tip = Z min ) away from the wall. The horizontal shear rate is calculated and is responsible for significant viscosity reduction during the approach of the sphere. Our model of this flow, based on lubrication theory, is solved numerically and compared to experimental trials. We show that our model is able to correctly describe the physical features of the flow observed in the experiments.

  3. Newtonian heating effect on unsteady hydromagnetic Casson fluid flow past a flat plate with heat and mass transfer

    Directory of Open Access Journals (Sweden)

    M. Das

    2015-12-01

    Full Text Available The influence of Newtonian heating on heat and mass transfer in unsteady hydromagnetic flow of a Casson fluid past a vertical plate in the presence of thermal radiation and chemical reaction is studied. The Casson fluid model is used to distinguish the non-Newtonian fluid behavior. The fluid flow is induced due to periodic oscillations of the plate along its length and a uniform transverse magnetic field is applied in a direction which is normal to the direction of fluid flow. The partial differential equations governing the flow, heat, and mass transfer are transformed to non-dimensional form using suitable non-dimensional variables which are then solved analytically by using Laplace transform technique. The numerical values of the fluid velocity, fluid temperature, and species concentration are depicted graphically whereas the values of skin-friction, Nusselt number, and Sherwood number are presented in tabular form. It is noticed that the fluid velocity and temperature decrease with increasing values of Casson parameter while concentration decreases with increasing values of chemical reaction parameter and Schmidt number. Such a fluid flow model has several industrial and medical applications such as in glass manufacturing, paper production, purification of crude oil and study of blood flow in the cardiovascular system.

  4. 3D Suspended Polymeric Microfluidics (SPMF3 with Flow Orthogonal to Bending (FOB for Fluid Analysis through Kinematic Viscosity

    Directory of Open Access Journals (Sweden)

    Mostapha Marzban

    2017-10-01

    Full Text Available Measuring of fluid properties such as dynamic viscosity and density has tremendous potential for various applications from physical to biological to chemical sensing. However, it is almost impossible to affect only one of these properties, as dynamic viscosity and density are coupled. Hence, this paper proposes kinematic viscosity as a comprehensive parameter which can be used to study the effect of fluid properties applicable to various fluids from Newtonian fluids, such as water, to non-Newtonian fluids, such as blood. This paper also proposes an ideal microplatform, namely polymeric suspended microfluidics (SPMF3, with flow plane orthogonal to the bending plane of the structure, along with tested results of various fluids covering a wide range of engineering applications. Kinematic viscosity, also called momentum diffusivity, considers changes in both fluid intermolecular forces and molecular inertia that define dynamic viscosity and fluid density, respectively. In this study a 3D suspended polymeric microfluidic system (SPMF3 was employed to detect changes in fluid parameters such as dynamic viscosity and density during fluid processes. Using this innovative design along with theoretical and experimental results, it is shown that, in fluids, the variations of fluid density and dynamic viscosity are not easily comprehensible due to their interconnectivity. Since any change in a fluid will affect both density and dynamic viscosity, measuring both of them is necessary to identify the fluid or process status. Finally, changes in fluid properties were analyzed using simulation and experiments. The experimental results with salt-DI water solution and milk with different fat concentrations as a colloidal fluid show that kinematic viscosity is a comprehensive parameter that can identify the fluids in a unique way using the proposed microplatform.

  5. Effect of Carreau-Yasuda rheological parameters on subcritical Lapwood convection in horizontal porous cavity saturated by shear-thinning fluid

    Science.gov (United States)

    Khechiba, Khaled; Mamou, Mahmoud; Hachemi, Madjid; Delenda, Nassim; Rebhi, Redha

    2017-06-01

    The present study is focused on Lapwood convection in isotropic porous media saturated with non-Newtonian shear thinning fluid. The non-Newtonian rheological behavior of the fluid is modeled using the general viscosity model of Carreau-Yasuda. The convection configuration consists of a shallow porous cavity with a finite aspect ratio and subject to a vertical constant heat flux, whereas the vertical walls are maintained impermeable and adiabatic. An approximate analytical solution is developed on the basis of the parallel flow assumption, and numerical solutions are obtained by solving the full governing equations. The Darcy model with the Boussinesq approximation and energy transport equations are solved numerically using a finite difference method. The results are obtained in terms of the Nusselt number and the flow fields as functions of the governing parameters. A good agreement is obtained between the analytical approximation and the numerical solution of the full governing equations. The effects of the rheological parameters of the Carreau-Yasuda fluid and Rayleigh number on the onset of subcritical convection thresholds are demonstrated. Regardless of the aspect ratio of the enclosure and thermal boundary condition type, the subcritical convective flows are seen to occur below the onset of stationary convection. Correlations are proposed to estimate the subcritical Rayleigh number for the onset of finite amplitude convection as a function of the fluid rheological parameters. Linear stability of the convective motion, predicted by the parallel flow approximation, is studied, and the onset of Hopf bifurcation, from steady convective flow to oscillatory behavior, is found to depend strongly on the rheological parameters. In general, Hopf bifurcation is triggered earlier as the fluid becomes more and more shear-thinning.

  6. Studies on transport phenomena in polymer solutions and suspensions flowing through tubes of tortuous wall geometry

    Science.gov (United States)

    Narayanan, C. M.

    2014-02-01

    Attempts have been made to analyse the momentum and heat transfer characteristics in tortuous flow of non-Newtonian fluids such as suspensions and polymer solutions through tubes of diverging-converging geometry. The results of the study indicate that the transfer coefficients are significantly higher in such systems as compared to the conventional couette flow (through uniform cylindrical tubes). Moreover, the simultaneous increase in pressure drop due to the tortuous wall geometry has been observed to be relatively insignificant. Fluids with different rheological characteristics such as Bingham plastic fluids, pseudoplastic fluids, Ellis model fluids and fluids obeying Reiner-Philippoff rheology have been studied. The specific advantages of these geometries in providing enhanced performance efficiency have been effectively highlighted.

  7. Fluid mechanics aspects of magnetic drug targeting.

    Science.gov (United States)

    Odenbach, Stefan

    2015-10-01

    Experiments and numerical simulations using a flow phantom for magnetic drug targeting have been undertaken. The flow phantom is a half y-branched tube configuration where the main tube represents an artery from which a tumour-supplying artery, which is simulated by the side branch of the flow phantom, branches off. In the experiments a quantification of the amount of magnetic particles targeted towards the branch by a magnetic field applied via a permanent magnet is achieved by impedance measurement using sensor coils. Measuring the targeting efficiency, i.e. the relative amount of particles targeted to the side branch, for different field configurations one obtains targeting maps which combine the targeting efficiency with the magnetic force densities in characteristic points in the flow phantom. It could be shown that targeting efficiency depends strongly on the magnetic field configuration. A corresponding numerical model has been set up, which allows the simulation of targeting efficiency for variable field configuration. With this simulation good agreement of targeting efficiency with experimental data has been found. Thus, the basis has been laid for future calculations of optimal field configurations in clinical applications of magnetic drug targeting. Moreover, the numerical model allows the variation of additional parameters of the drug targeting process and thus an estimation of the influence, e.g. of the fluid properties on the targeting efficiency. Corresponding calculations have shown that the non-Newtonian behaviour of the fluid will significantly influence the targeting process, an aspect which has to be taken into account, especially recalling the fact that the viscosity of magnetic suspensions depends strongly on the magnetic field strength and the mechanical load.

  8. Towards online, continuous monitoring for rheometry of complex fluids.

    Science.gov (United States)

    Rees, Julia M

    2014-04-01

    This paper presents an overview of the developments that have been made towards the design of an inline rheometer that has the capabilities for monitoring in real time the viscous constitutive parameters of non-Newtonian fluids in a pipe flow. This has potential applications for a wide range of fluids, including hydrocolloid solutions and polymer solutions. This is of relevance to many industries, for example the pharmaceutical, lubrication, food and printing industries. The use of mathematical algorithms for inferring rheological parameters from properties of flow field statistics is explored. Particular focus is given to the development of a flow cell rheometer containing a T-junction geometry with the capacity to induce a range of shear rates in the vicinity of the bend, and a distribution of elongational viscosities along the back-wall. Such features create an information-rich flow field that is beneficial for the development of a rheometer with a fast response time that is suitable for commercial purposes. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Modulating protein release profiles by incorporating hyaluronic acid into PLGA microparticles Via a spray dryer equipped with a 3-fluid nozzle

    DEFF Research Database (Denmark)

    Wan, Feng; Maltesen, Morten Jonas; Andersen, Sune Klint

    2014-01-01

    with or without HA were prepared using a spray dryer equipped with a 3-fluid nozzle. The effects of HA on the surface tension and the rheological behavior of the inner feed solution were investigated. The physicochemical properties of the resulting microparticles were characterized using scanning electron...... obtained. Addition of HA in inner feed solutions increased the feed viscosity, but with no influence on the surface tension. All inner feed solutions showed non-Newtonian shear thinning behavior and the rheological properties were not time dependent. The CLSM and XPS analyses suggested a core-shell like......: The present work demonstrates the potential of HA to modulate protein release profile from PLGA microparticle formulations produced via spray drying using 3-fluid nozzle....

  10. Numerical simulation and analysis of power consumption and Metzner-Otto constant for impeller of 6PBT

    Science.gov (United States)

    Luan, Deyu; Chen, Qiao; Zhou, Shenjie

    2014-05-01

    Majority of non-Newtonian fluids are pseudoplastic with shear-thinning property, which means that the viscosity will be different in different parts of the stirred tank. In such mixing process, it is difficult to predict accurately the power consumption and mean shear rate for designing novel impeller. Metzner-Otto method is a widely accepted method to solve these questions in mixing non-Newtonian fluids. As a result, Metzner-Otto constant will become a key factor to achieve an optimum way of economical mixing. In this paper, taking glycerine and xanthan gum solutions as research system, the power consumption, stirred by the impeller composed of perturbed six-bent-bladed turbine (6PBT) with differently geometrical characteristics in a cylindrical vessel, is studied by means of computational fluid dynamics (CFD). The flow is modeled as laminar and a multiple reference frame (MRF) approach is used to solve the discretized equations of motion. In order to determine the capability of CFD to forecast the flow process, the torque test experiment is used to measure the glycerine solution power consumption. The rheological properties of the xanthan gum solutions are determined by a Brookfield rheometer. It is observed that the power consumption predicted by numerical simulation agrees well with those measured using torque experiment method in stirring glycerine solution, which validate the numerical model. Metzner-Otto constant is almost not correlated with the flow behavior index of pseudoplastic fluids. This paper establishes the complete correlations of power constant and Metzner-Otto constant with impeller geometrical characteristics through linear regression analysis, which provides the valuable instructions and references for accurately predicting the power consumption and mean shear rate of pseudoplastic fluids in laminar flow, comparatively.

  11. Suction/Injection Effects on the Swirling Flow of a Reiner-Rivlin Fluid near a Rough Surface

    Directory of Open Access Journals (Sweden)

    Bikash Sahoo

    2015-01-01

    Full Text Available The similarity equations for the Bödewadt flow of a non-Newtonian Reiner-Rivlin fluid, subject to uniform suction/injection, are solved numerically. The conventional no-slip boundary conditions are replaced by corresponding partial slip boundary conditions, owing to the roughness of the infinite stationary disk. The combined effects of surface slip (λ, suction/injection velocity (W, and cross-viscous parameter (L on the momentum boundary layer are studied in detail. It is interesting to find that suction dominates the oscillations in the velocity profiles and decreases the boundary layer thickness significantly. On the other hand, injection has opposite effects on the velocity profiles and the boundary layer thickness.

  12. Analysis of rheological properties of Herschel-Bulkley fluid for pulsating flow of blood in ω-shaped stenosed artery

    Science.gov (United States)

    Abbas, Z.; Shabbir, M. S.; Ali, N.

    2017-10-01

    In the present article, we examined the pulsating flow of blood in the tapered ω-shaped stenosed arterial segment. The Herschel-Bulkley fluid model is used to represent the non-Newtonian characteristics of blood in narrow arteries. The equation governing the present flow is modelled by assuming that the flow is unsteady and one dimensional. Regular perturbation method is used to find the first order expression of various flow variables. The temporal and axial distributions of velocity, wall shear stress, volumetric flux and resistance to the flow are displayed graphically. The effects of various involved parameters on the radius of plug flow region are also discussed. A comparison between the flow of blood in single symmetric and ω-shaped stenotic regions of the arteries is also analyzed.

  13. Magnetohydrodynamic flow of Carreau fluid over a convectively heated surface in the presence of non-linear radiation

    Science.gov (United States)

    Khan, Masood; Hashim; Hussain, M.; Azam, M.

    2016-08-01

    This paper presents a study of the magnetohydrodynamic (MHD) boundary layer flow of a non-Newtonian Carreau fluid over a convectively heated surface. The analysis of heat transfer is further performed in the presence of non-linear thermal radiation. The appropriate transformations are employed to bring the governing equations into dimensionless form. The numerical solutions of the partially coupled non-linear ordinary differential equations are obtained by using the Runge-Kutta Fehlberg integration scheme. The influence of non-dimensional governing parameters on the velocity, temperature, local skin friction coefficient and local Nusselt number is studied and discussed with the help of graphs and tables. Results proved that there is significant decrease in the velocity and the corresponding momentum boundary layer thickness with the growth in the magnetic parameter. However, a quite the opposite is true for the temperature and the corresponding thermal boundary layer thickness.

  14. Effects of induced magnetic field and homogeneous–heterogeneous reactions on stagnation flow of a Casson fluid

    Directory of Open Access Journals (Sweden)

    C.S.K. Raju

    2016-06-01

    Full Text Available In this study, we analyzed the induced magnetic field effect on the stagnation-point flow of a non-Newtonian fluid over a stretching sheet with homogeneous–heterogeneous reactions and non-uniform heat source or sink. The transformed ordinary differential equations are solved numerically using Runge–Kutta and Newton's method. For physical relevance we analyzed the behavior of homogeneous and heterogeneous profiles individually in the presence of induced magnetic field. The effects of different non-dimensional governing parameters on velocity, induced magnetic field, temperature and concentration profiles, along with the skin friction coefficient and local Nusselt number, are discussed and presented through graphs. The results of the present study are validated by comparing with the existed literature. Results indicate that induced magnetic field parameter and stretching ratio parameter have the tendency to enhance the heat transfer rate.

  15. Design and Manufacturing of a Novel Shear Thickening Fluid Composite (STFC) with Enhanced out-of-Plane Properties and Damage Suppression

    Science.gov (United States)

    Pinto, F.; Meo, M.

    2017-06-01

    The ability to absorb a large amount of energy during an impact event without generating critical damages represents a key feature of new generation composite systems. Indeed, the intrinsic layered nature of composite materials allows the embodiment of specific hybrid plies within the stacking sequence that can be exploited to increase impact resistance and damping of the entire structure without dramatic weight increase. This work is based on the development of an impact-resistant hybrid composite obtained by including a thin layer of Non-Newtonian silica based fluid in a carbon fibres reinforced polymer (CFRP) laminate. This hybrid phase is able to respond to an external solicitation by activating an order-disorder transition that thickens the fluid increasing its viscosity, hence dissipating the energy impact without any critical failure. Several Shear Thickening Fluids (STFs) were manufactured by changing the dimensions of the particles that constitute the disperse phase and their concentrations into the continuous phase. The dynamic viscosity of the different STFs was evaluated via rheometric tests, observing both shear thinning and shear thickening effects depending on the concentration of silica particles. The solutions were then embedded as an active layer within the stacking sequence to manufacture the hybrid CFRP laminates with different embedded STFs. Free vibration tests were carried out in order to assess the damping properties of the different laminates, while low velocity impact tests were used to evaluate their impact properties. Results indicate that the presence of the non-Newtonian fluid is able to absorb up to 45 % of the energy during an impact event for impacts at 2.5 m/s depending on the different concentrations and particles dimensions. These results were confirmed via C-Scan analyses to assess the extent of the internal delamination.

  16. Mathematical modelling of nonlinear thermal radiation effects on EMHD peristaltic pumping of viscoelastic dusty fluid through a porous medium duct

    Directory of Open Access Journals (Sweden)

    M.M. Bhatti

    2017-06-01

    Full Text Available Biologically-inspired propulsion systems are currently receiving significant interest in the aerospace sector. Since many spacecraft propulsion systems operate at high temperatures, thermal radiation is important as a mode of heat transfer. Motivated by these developments, in the present article, the influence of nonlinear thermal radiation (via the Rosseland diffusion flux model has been studied on the laminar, incompressible, dissipative EMHD (Electro-magneto-hydrodynamic peristaltic propulsive flow of a non-Newtonian (Jefferys viscoelastic dusty fluid containing solid particles through a porous planar channel. The fluid is electrically-conducting and a constant static magnetic field is applied transverse to the flow direction (channel walls. Slip effects are also included. Magnetic induction effects are neglected. The mathematical formulation is based on continuity, momentum and energy equations with appropriate boundary conditions, which are simplified by neglecting the inertial forces and taking the long wavelength and lubrication approximations. The boundary value problem is then rendered non-dimensional with appropriate variables and the resulting system of reduced ordinary differential equations is solved analytically. The impact of various emerging parameters dictating the non-Newtonian propulsive flow i.e. Prandtl number, radiation parameter, Hartmann number, permeability parameter, Eckert number, particle volume fraction, electric field and slip parameter are depicted graphically. Increasing particle volume fraction is observed to suppress temperature magnitudes. Furthermore the computations demonstrate that an increase in particle volume fraction reduces the pumping rate in retrograde pumping region whereas it causes the opposite effect in the co-pumping region. The trapping mechanism is also visualized with the aid of streamline contour plots. Increasing thermal radiation elevates temperatures. Increasing Hartmann (magnetic body

  17. Effects of overlapping electric double layer on mass transport of a macro-solute across porous wall of a micro/nanochannel for power law fluid.

    Science.gov (United States)

    Bhattacharjee, Saikat; Mondal, Mrinmoy; De, Sirshendu

    2017-05-01

    Effects of overlapping electric double layer and high wall potential on transport of a macrosolute for flow of a power law fluid through a microchannel with porous walls are studied in this work. The electric potential distribution is obtained by coupling the Poisson's equation without considering the Debye-Huckel approximation. The numerical solution shows that the center line potential can be 16% of wall potential at pH 8.5, at wall potential -73 mV and scaled Debye length 0.5. Transport phenomena involving mass transport of a neutral macrosolute is formulated by species advective equation. An analytical solution of Sherwood number is obtained for power law fluid. Effects of fluid rheology are studied in detail. Average Sherwood number is more for a pseudoplastic fluid compared to dilatant upto the ratio of Poiseuille to electroosmotic velocity of 5. Beyond that, the Sherwood number is independent of fluid rheology. Effects of fluid rheology and solute size on permeation flux and concentration of neutral solute are also quantified. More solute permeation occurs as the fluid changes from pseudoplastic to dilatant. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Thermal Marangoni convection in two-phase flow of dusty Casson fluid

    Science.gov (United States)

    Mahanthesh, B.; Gireesha, B. J.

    2018-03-01

    This paper deals with the thermal Marangoni convection effects in magneto-Casson liquid flow through suspension of dust particles. The transpiration cooling aspect is accounted. The surface tension is assumed to be fluctuating linearly with temperature. The fluid and dust particle's temperature of the interface is chosen as a quadratic function of interface arc length. The governing problem is modelled by conservation laws of mass, momentum and energy for fluid and dust particle phase. Stretching transformation technique is utilized to form ordinary differential equations from the partial differential equations. Later, the numerical solutions based on Runge-Kutta-Fehlberg method are established. The momentum and heat transport distributions are focused on the outcome of distinct governing parameters. The results of Nusselt number is also presented and discussed. It is established that the heat transfer rate is higher in the case of dusty non-Newtonian fluid than dusty Newtonian fluid. The rate of heat transfer can be enhanced by suspending dust particles in a base liquid.

  19. Physical principles of fluid-mediated insect attachment - Shouldn’t insects slip?

    Directory of Open Access Journals (Sweden)

    Jan-Henning Dirks

    2014-07-01

    Full Text Available Insects use either hairy or smooth adhesive pads to safely adhere to various kinds of surfaces. Although the two types of adhesive pads are morphologically different, they both form contact with the substrate via a thin layer of adhesive fluid. To model adhesion and friction forces generated by insect footpads often a simple “wet adhesion” model is used, in which two flat undeformable substrates are separated by a continuous layer of fluid. This review summarizes the key physical and tribological principles that determine the adhesion and friction in such a model. Interestingly, such a simple wet-adhesion model falls short in explaining several features of insect adhesion. For example, it cannot predict the observed high static friction forces of the insects, which enable them to cling to vertical smooth substrates without sliding. When taking a closer look at the “classic” attachment model, one can see that it is based on several simplifications, such as rigid surfaces or continuous layers of Newtonian fluids. Recent experiments show that these assumptions are not valid in many cases of insect adhesion. Future tribological models for insect adhesion thus need to incorporate deformable adhesive pads, non-Newtonian properties of the adhesive fluid and/or partially “dry” or solid-like contact between the pad and the substrate.

  20. Physical principles of fluid-mediated insect attachment - Shouldn't insects slip?

    Science.gov (United States)

    Dirks, Jan-Henning

    2014-01-01

    Insects use either hairy or smooth adhesive pads to safely adhere to various kinds of surfaces. Although the two types of adhesive pads are morphologically different, they both form contact with the substrate via a thin layer of adhesive fluid. To model adhesion and friction forces generated by insect footpads often a simple "wet adhesion" model is used, in which two flat undeformable substrates are separated by a continuous layer of fluid. This review summarizes the key physical and tribological principles that determine the adhesion and friction in such a model. Interestingly, such a simple wet-adhesion model falls short in explaining several features of insect adhesion. For example, it cannot predict the observed high static friction forces of the insects, which enable them to cling to vertical smooth substrates without sliding. When taking a closer look at the "classic" attachment model, one can see that it is based on several simplifications, such as rigid surfaces or continuous layers of Newtonian fluids. Recent experiments show that these assumptions are not valid in many cases of insect adhesion. Future tribological models for insect adhesion thus need to incorporate deformable adhesive pads, non-Newtonian properties of the adhesive fluid and/or partially "dry" or solid-like contact between the pad and the substrate.

  1. Water and clay based drilling fluids for oil wells; Fluidos hidroargilosos para perfuracao de pocos de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, R.C.A. de; Amorim, L.V.; Santana, L.N. de L. [Universidade Federal de Campina Grande (UFCG), PB (Brazil)], e-mail: nalealves@hotmail.com

    2008-07-01

    In the onshore drilling of wells are commonly used aqueous fluids containing bentonite clays. However, to perform their functions generally there is the necessity of additives to drilling fluids, like viscositying, filtered reducer and lubricant. Thus, this work aims to develop water and clay base drilling fluids with low solid text, and with polymeric and lubricants additives. Were studied a sample of industrialized sodium bentonite clays, three polymeric compounds in the ternary form and a sample of lubricant, in different concentrations. Were determined the flow curves, the apparent and plastic viscosities, the yield limit and gel force in Fann 35A viscometer, the filtered volume in API filter-press and the lubricity coefficient in Ofite lubricimeter. The results showed that the fluid had pseudoplastic behavior, the polymeric additives adjusts their rheological properties and filtration and the addition of 1% of lubricant is sufficient to improve the lubricity of fluids. (author)

  2. Double-layer optical fiber coating analysis in MHD flow of an elastico-viscous fluid using wet-on-wet coating process

    Science.gov (United States)

    Khan, Zeeshan; Islam, Saeed; Shah, Rehan Ali; Khan, Muhammad Altaf; Bonyah, Ebenezer; Jan, Bilal; Khan, Aurangzeb

    Modern optical fibers require a double-layer coating on the glass fiber in order to provide protection from signal attenuation and mechanical damage. The most important plastic resins used in wires and optical fibers are plastic polyvinyl chloride (PVC) and low and high density polyethylene (LDPE/HDPE), nylon and Polysulfone. One of the most important things which affect the final product after processing is the design of the coating die. In the present study, double-layer optical fiber coating is performed using melt polymer satisfying Oldroyd 8-constant fluid model in a pressure type die with the effect of magneto-hydrodynamic (MHD). Wet-on-wet coating process is applied for double-layer optical fiber coating. The coating process in the coating die is modeled as a simple two-layer Couette flow of two immiscible fluids in an annulus with an assigned pressure gradient. Based on the assumptions of fully developed laminar and MHD flow, the Oldroyd 8-constant model of non-Newtonian fluid of two immiscible resin layers is modeled. The governing nonlinear equations are solved analytically by the new technique of Optimal Homotopy Asymptotic Method (OHAM). The convergence of the series solution is established. The results are also verified by the Adomian Decomposition Method (ADM). The effect of important parameters such as magnetic parameter Mi , the dilatant constant α , the Pseodoplastic constant β , the radii ratio δ , the pressure gradient Ω , the speed of fiber optics V , and the viscosity ratio κ on the velocity profiles, thickness of coated fiber optics, volume flow rate, and shear stress on the fiber optics are investigated. At the end the result of the present work is also compared with the experimental results already available in the literature by taking non-Newtonian parameters tends to zero.

  3. Computational Fluid Dynamics Simulation of Hydrodynamics and Stresses in the PhEur/USP Disintegration Tester Under Fed and Fasted Fluid Characteristics.

    Science.gov (United States)

    Kindgen, Sarah; Wachtel, Herbert; Abrahamsson, Bertil; Langguth, Peter

    2015-09-01

    Disintegration of oral solid dosage forms is a prerequisite for drug dissolution and absorption and is to a large extent dependent on the pressures and hydrodynamic conditions in the solution that the dosage form is exposed to. In this work, the hydrodynamics in the PhEur/USP disintegration tester were investigated using computational fluid dynamics (CFD). Particle image velocimetry was used to validate the CFD predictions. The CFD simulations were performed with different Newtonian and non-Newtonian fluids, representing fasted and fed states. The results indicate that the current design and operating conditions of the disintegration test device, given by the pharmacopoeias, are not reproducing the in vivo situation. This holds true for the hydrodynamics in the disintegration tester that generates Reynolds numbers dissimilar to the reported in vivo situation. Also, when using homogenized US FDA meal, representing the fed state, too high viscosities and relative pressures are generated. The forces acting on the dosage form are too small for all fluids compared to the in vivo situation. The lack of peristaltic contractions, which generate hydrodynamics and shear stress in vivo, might be the major drawback of the compendial device resulting in the observed differences between predicted and in vivo measured hydrodynamics. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  4. Amniotic fluid

    Science.gov (United States)

    ... or movements Too much amniotic fluid is called polyhydramnios . This condition can occur with multiple pregnancies (twins ... development of the fetus. Images Amniocentesis Amniotic fluid Polyhydramnios Amniotic fluid References Burton GJ, Sibley CP, Jauniaux ...

  5. A numerical model for dynamic crustal-scale fluid flow

    Science.gov (United States)

    Sachau, Till; Bons, Paul; Gomez-Rivas, Enrique; Koehn, Daniel

    2015-04-01

    Fluid flow in the crust is often envisaged and modeled as continuous, yet minimal flow, which occurs over large geological times. This is a suitable approximation for flow as long as it is solely controlled by the matrix permeability of rocks, which in turn is controlled by viscous compaction of the pore space. However, strong evidence (hydrothermal veins and ore deposits) exists that a significant part of fluid flow in the crust occurs strongly localized in both space and time, controlled by the opening and sealing of hydrofractures. We developed, tested and applied a novel computer code, which considers this dynamic behavior and couples it with steady, Darcian flow controlled by the matrix permeability. In this dual-porosity model, fractures open depending on the fluid pressure relative to the solid pressure. Fractures form when matrix permeability is insufficient to accommodate fluid flow resulting from compaction, decompression (Staude et al. 2009) or metamorphic dehydration reactions (Weisheit et al. 2013). Open fractures can close when the contained fluid either seeps into the matrix or escapes by fracture propagation: mobile hydrofractures (Bons, 2001). In the model, closing and sealing of fractures is controlled by a time-dependent viscous law, which is based on the effective stress and on either Newtonian or non-Newtonian viscosity. Our simulations indicate that the bulk of crustal fluid flow in the middle to lower upper crust is intermittent, highly self-organized, and occurs as mobile hydrofractures. This is due to the low matrix porosity and permeability, combined with a low matrix viscosity and, hence, fast sealing of fractures. Stable fracture networks, generated by fluid overpressure, are restricted to the uppermost crust. Semi-stable fracture networks can develop in an intermediate zone, if a critical overpressure is reached. Flow rates in mobile hydrofractures exceed those in the matrix porosity and fracture networks by orders of magnitude

  6. Analysis of Third-Grade Fluid in Helical Screw Rheometer

    Directory of Open Access Journals (Sweden)

    M. Zeb

    2013-01-01

    Full Text Available The steady flow of an incompressible, third-grade fluid in helical screw rheometer (HSR is studied by “unwrapping or flattening” the channel, lands, and the outside rotating barrel. The geometry is approximated as a shallow infinite channel, by assuming that the width of the channel is large as compared to the depth. The developed second-order nonlinear coupled differential equations are reduced to single differential equation by using a transformation. Using Adomian decomposition method, analytical expressions are calculated for the the velocity profiles and volume flow rates. The results have been discussed with the help of graphs as well. We observed that the velocity profiles are strongly dependant on non-Newtonian parameter (β~, and with the increase in β~, the velocity profiles increase progressively, which conclude that extrusion process increases with the increase in β~. We also observed that the increase in pressure gradients in x- and z-direction increases the net flow inside the helical screw rheometer, which increases the extrusion process. We noticed that the flow increases as the flight angle increase.

  7. Dynamics of particle sedimentation in viscoelastic fluids: A numerical study on particle chain in two-dimensional narrow channel

    CERN Document Server

    Pan, Tsorng-Whay

    2016-01-01

    In this article we present a numerical method for simulating the sedimentation of circular particles in two-dimensional channel filled with a viscoelastic fluid of FENE-CR type, which is generalized from a domain/distributed Lagrange multiplier method with a factorization approach for Oldroyd-B fluids developed in [J. Non-Newtonian Fluid Mech. 156 (2009) 95]. Numerical results suggest that the polymer extension limit L for the FENE-CR fluid has no effect on the final formation of vertical chain for the cases of two disks and three disks in two-dimensional narrow channel, at least for the values of L considered in this article; but the intermediate dynamics of particle interaction before having a vertical chain can be different for the smaller values of L when increasing the relaxation time. For the cases of six particles sedimenting in FENE-CR type viscoelastic fluid, the formation of chain of 4 to 6 disks does depend on the polymer extension limit L. For the smaller values of L, FENE-CR type viscoelastic flu...

  8. Radiation and chemical reaction effects on MHD Casson fluid flow past an oscillating vertical plate embedded in porous medium

    Directory of Open Access Journals (Sweden)

    Hari R. Kataria

    2016-03-01

    Full Text Available Analytic expression for unsteady free convective hydromagnetic boundary layer Casson fluid flow past an oscillating vertical plate embedded through porous medium in the presence of uniform transverse magnetic field, thermal radiation and chemical reaction is obtained. Both isothermal and ramped wall temperatures are taken into account. The governing equations are solved using Laplace transform technique and the solutions are presented in closed form. The numerical values of Casson fluid velocity, temperature and concentration at the plate are presented graphically for several values of the pertinent parameters. Effect of governing parameters on Skin friction, Nusselt number and Sherwood number is also discussed. Casson parameter γ is inversely proportional to the yield stress and it is observed that for the large value of Casson parameter, the fluid is close to the Newtonian fluid where the velocity is less than the Non-Newtonian fluid. It is seen that velocity increases and Temperature decreases with increase in thermal radiation R. Radiation parameter R signifies the relative contribution of conduction heat transfer to thermal radiation transfer. Concentration decreases tendency with chemical reaction parameter R′.

  9. Thermal radiation effect on a mixed convection flow and heat transfer of the Williamson fluid past an exponentially shrinking permeable sheet with a convective boundary condition

    Science.gov (United States)

    Zaib, A.; Bhattacharyya, K.; Khalid, M.; Shafie, S.

    2017-05-01

    The thermal radiation effect on a steady mixed convective flow with heat transfer of a nonlinear (non-Newtonian) Williamson fluid past an exponentially shrinking porous sheet with a convective boundary condition is investigated numerically. In this study, both an assisting flow and an opposing flow are considered. The governing equations are converted into nonlinear ordinary differential equations by using a suitable transformation. A numerical solution of the problem is obtained by using the Matlab software package for different values of the governing parameters. The results show that dual nonsimilar solutions exist for the opposing flow, whereas the solution for the assisting flow is unique. It is also observed that the dual nonsimilar solutions exist only if a certain amount of mass suction is applied through the porous sheet, which depends on the Williamson parameter, convective parameter, and radiation parameter.

  10. Experimental and computational fluid dynamic studies of mixing for complex oral health products

    Science.gov (United States)

    Garcia, Marti Cortada; Mazzei, Luca; Angeli, Panagiota

    2015-11-01

    Mixing high viscous non-Newtonian fluids is common in the consumer health industry. Sometimes this process is empirical and involves many pilot plants trials which are product specific. The first step to study the mixing process is to build on knowledge on the rheology of the fluids involved. In this research a systematic approach is used to validate the rheology of two liquids: glycerol and a gel formed by polyethylene glycol and carbopol. Initially, the constitutive equation is determined which relates the viscosity of the fluids with temperature, shear rate, and concentration. The key variable for the validation is the power required for mixing, which can be obtained both from CFD and experimentally using a stirred tank and impeller of well-defined geometries at different impeller speeds. A good agreement between the two values indicates a successful validation of the rheology and allows the CFD model to be used for the study of mixing in the complex vessel geometries and increased sizes encountered during scale up.

  11. Computational Fluid Dynamics Analysis of Pulsatile Blood Flow Behavior in Modelled Stenosed Vessels with Different Severities

    Directory of Open Access Journals (Sweden)

    Mohsen Mehrabi

    2012-01-01

    Full Text Available This study focuses on the behavior of blood flow in the stenosed vessels. Blood is modelled as an incompressible non-Newtonian fluid which is based on the power law viscosity model. A numerical technique based on the finite difference method is developed to simulate the blood flow taking into account the transient periodic behaviour of the blood flow in cardiac cycles. Also, pulsatile blood flow in the stenosed vessel is based on the Womersley model, and fluid flow in the lumen region is governed by the continuity equation and the Navier-Stokes equations. In this study, the stenosis shape is cosine by using Tu and Devil model. Comparing the results obtained from three stenosed vessels with 30%, 50%, and 75% area severity, we find that higher percent-area severity of stenosis leads to higher extrapressure jumps and higher blood speeds around the stenosis site. Also, we observe that the size of the stenosis in stenosed vessels does influence the blood flow. A little change on the cross-sectional value makes vast change on the blood flow rate. This simulation helps the people working in the field of physiological fluid dynamics as well as the medical practitioners.

  12. Effects of second-order slip on the flow of a fractional Maxwell MHD fluid

    Directory of Open Access Journals (Sweden)

    Yaqing Liu

    2017-10-01

    Full Text Available The magnetohydrodynamic (MHD flow of a generalized Maxwell fluid induced by a moving plate has been investigated, where the second-order slip between the wall and the fluid in the wall is considered. The fractional calculus approach is used to establish the constitutive relationship model of the non-Newtonian fluid model. Exact analytical solutions for the velocity field and shear stress in terms of Fox H-function are obtained by means of the Laplace transform. The solutions for the generalized Maxwell second-order slip model without magnetic field, the MHD flow of generalized Maxwell flow without slip effects or first-order slip model can be derived as the special cases. Furthermore, the influence of the order of fractional derivative, the magnetic body force, the slip coefficients and power index on the velocity and shear stress are analyzed and discussed in detail. The results show that the velocity corresponding to flows with slip condition is lower than that for flow with non-slip conditions, and the velocity with second-slip condition is lower than that with first-order slip condition.

  13. Rheological evaluation of pretreated cladding removal waste

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, D.; Chan, M.K.C.; Lokken, R.O.

    1986-01-01

    Cladding removal waste (CRW) contains concentrations of transuranic (TRU) elements in the 80 to 350 nCi/g range. This waste will require pretreatment before it can be disposed of as glass or grout at Hanford. The CRW will be pretreated with a rare earth strike and solids removal by centrifugation to segregate the TRU fraction from the non-TRU fraction of the waste. The centrifuge centrate will be neutralized with sodium hydroxide. This neutralized cladding removal waste (NCRW) is expected to be suitable for grouting. The TRU solids removed by centrifugation will be vitrified. The goal of the Rheological Evaluation of Pretreated Cladding Removal Waste Program was to evaluate those rheological and transport properties critical to assuring successful handling of the NCRW and TRU solids streams and to demonstrate transfers in a semi-prototypic pumping environment. This goal was achieved by a combination of laboratory and pilot-scale evaluations. The results obtained during these evaluations were correlated with classical rheological models and scaled-up to predict the performance that is likely to occur in the full-scale system. The Program used simulated NCRW and TRU solid slurries. Rockwell Hanford Operations (Rockwell) provided 150 gallons of simulated CRW and 5 gallons of simulated TRU solid slurry. The simulated CRW was neutralized by Pacific Northwest Laboratory (PNL). The physical and rheological properties of the NCRW and TRU solid slurries were evaluated in the laboratory. The properties displayed by NCRW allowed it to be classified as a pseudoplastic or yield-pseudoplastic non-Newtonian fluid. The TRU solids slurry contained very few solids. This slurry exhibited the properties associated with a pseudoplastic non-Newtonian fluid.

  14. Microgravity Combustion Science and Fluid Physics Experiments and Facilities for the ISS

    Science.gov (United States)

    Lauver, Richard W.; Kohl, Fred J.; Weiland, Karen J.; Zurawski, Robert L.; Hill, Myron E.; Corban, Robert R.

    2001-01-01

    At the NASA Glenn Research Center, the Microgravity Science Program supports both ground-based and flight experiment research in the disciplines of Combustion Science and Fluid Physics. Combustion Science research includes the areas of gas jet diffusion flames, laminar flames, burning of droplets and misting fuels, solids and materials flammability, fire and fire suppressants, turbulent combustion, reaction kinetics, materials synthesis, and other combustion systems. The Fluid Physics discipline includes the areas of complex fluids (colloids, gels, foams, magneto-rheological fluids, non-Newtonian fluids, suspensions, granular materials), dynamics and instabilities (bubble and drop dynamics, magneto/electrohydrodynamics, electrochemical transport, geophysical flows), interfacial phenomena (wetting, capillarity, contact line hydrodynamics), and multiphase flows and phase changes (boiling and condensation, heat transfer, flow instabilities). A specialized International Space Station (ISS) facility that provides sophisticated research capabilities for these disciplines is the Fluids and Combustion Facility (FCF). The FCF consists of the Combustion Integrated Rack (CIR), the Fluids Integrated Rack (FIR) and the Shared Accommodations Rack and is designed to accomplish a large number of science investigations over the life of the ISS. The modular, multiuser facility is designed to optimize the science return within the available resources of on-orbit power, uplink/downlink capacity, crew time, upmass/downmass, volume, etc. A suite of diagnostics capabilities, with emphasis on optical techniques, will be provided to complement the capabilities of the subsystem multiuser or principal investigator-specific experiment modules. The paper will discuss the systems concept, technical capabilities, functionality, and the initial science investigations in each discipline.

  15. Scale Effects in the Flow of a Shear-Thinning Fluid in Rough Fractures

    Science.gov (United States)

    Meheust, Y.; Roques, C.; Le Borgne, T.; Selker, J. S.

    2016-12-01

    The understanding of flow processes involving non-Newtonian fluids in the subsurface is of interest for many engineering applications, from in-situ remediation to enhanced oil recovery. The fluids of interest in such applications (f.e., polymers in remediation) often present shear-thinning properties, i.e., their viscosity decreases as a function of the local shear rate. We investigate how fracture wall roughness impacts the flow of a shear-thinning fluid. Numerical simulations of flow in 3D fracture geometries are carried out by solving a modified Navier-Stokes equation incorporating the Carreau viscous-shear model. The synthetic fractures consist of two rough surfaces which are isotropic self-affine geometries and correlated with each other above a scale which we denote correlation length (see Méheust et al. PAGEOPH 2003). Perfect plastic closing is assumed when the surfaces touch each other. The objective is to test how varying the correlation length impacts the flow behavior, for different degrees of closure, and how this behavior diverges for shear-thinning fluids from what is known for Newtonian fluids. The results from the 3D simulations are also compared to 2D simulations based on the lubrication theory, which we have developed as an extension of the Reynolds equation for Newtonian fluids. We also discuss the implications of our results for the general understanding of the flows of shear-thinning fluids in fractured media and of solute transport by such flows. References:Méheust, Y., & Schmittbuhl, J. (2003). Scale effects related to flow in rough fractures. Pure and Applied Geophysics, 160(5-6), 1023-1050.

  16. Soret and heat generation effects on MHD Casson fluid flow past an oscillating vertical plate embedded through porous medium

    Directory of Open Access Journals (Sweden)

    Hari R. Kataria

    2016-09-01

    Full Text Available Analytical solution of thermal diffusion and heat generation effects on MHD Casson fluid flow past an oscillating vertical plate embedded through porous medium in the presence of thermal radiation and chemical reaction is obtained. Ramped wall temperature with ramped surface concentration, isothermal temperature with ramped surface concentration and isothermal temperature with constant surface concentration are taken into account. The governing non-dimensional equations are solved using Laplace transform technique and the solutions are presented in closed form. In order to get a perfect understanding of the physics of the problem we obtained numerical results using Matlab software and clarified with the help of graphical illustrations. With the help of velocity, temperature and concentration, Skin friction, Nusselt number and Sherwood number are obtained and represent through tabular form. Casson parameter is inversely proportional to the yield stress and it is observed that for the large value of Casson parameter, the fluid is close to the Newtonian fluid where the velocity is less than the non-Newtonian fluid. The intensification in values of Soret number produces a raise in the mass buoyancy force which results an increase in the value of velocity.

  17. Fluid Mechanics.

    Science.gov (United States)

    Drazin, Philip

    1987-01-01

    Outlines the contents of Volume II of "Principia" by Sir Isaac Newton. Reviews the contributions of subsequent scientists to the physics of fluid dynamics. Discusses the treatment of fluid mechanics in physics curricula. Highlights a few of the problems of modern research in fluid dynamics. Shows that problems still remain. (CW)

  18. Fluid Interfaces

    DEFF Research Database (Denmark)

    Hansen, Klaus Marius

    2001-01-01

    Fluid interaction, interaction by the user with the system that causes few breakdowns, is essential to many user interfaces. We present two concrete software systems that try to support fluid interaction for different work practices. Furthermore, we present specificity, generality, and minimality...... as design goals for fluid interfaces....

  19. Effect of rock rheology on fluid leak- off during hydraulic fracturing

    Science.gov (United States)

    Yarushina, V. M.; Bercovici, D.; Oristaglio, M. L.

    2012-04-01

    In this communication, we evaluate the effect of rock rheology on fluid leak­off during hydraulic fracturing of reservoirs. Fluid leak-off in hydraulic fracturing is often nonlinear. The simple linear model developed by Carter (1957) for flow of fracturing fluid into a reservoir has three different regions in the fractured zone: a filter cake on the fracture face, formed by solid additives from the fracturing fluid; a filtrate zone affected by invasion of the fracturing fluid; and a reservoir zone with the original formation fluid. The width of each zone, as well as its permeability and pressure drop, is assumed to remain constant. Physical intuition suggests some straightforward corrections to this classical theory to take into account the pressure dependence of permeability, the compressibility or non-Newtonian rheology of fracturing fluid, and the radial (versus linear) geometry of fluid leak­off from the borehole. All of these refinements, however, still assume that the reservoir rock adjacent to the fracture face is non­deformable. Although the effect of poroelastic stress changes on leak-off is usually thought to be negligible, at the very high fluid pressures used in hydraulic fracturing, where the stresses exceed the rock strength, elastic rheology may not be the best choice. For example, calculations show that perfectly elastic rock formations do not undergo the degree of compaction typically seen in sedimentary basins. Therefore, pseudo-elastic or elastoplastic models are used to fit observed porosity profiles with depth. Starting from balance equations for mass and momentum for fluid and rock, we derive a hydraulic flow equation coupled with a porosity equation describing rock compaction. The result resembles a pressure diffusion equation with the total compressibility being a sum of fluid, rock and pore-space compressibilities. With linear elastic rheology, the bulk formation compressibility is dominated by fluid compressibility. But the possibility

  20. Electro-osmotic flow of couple stress fluids in a micro-channel propagated by peristalsis

    Science.gov (United States)

    Tripathi, Dharmendra; Yadav, Ashu; Anwar Bég, O.

    2017-04-01

    A mathematical model is developed for electro-osmotic peristaltic pumping of a non-Newtonian liquid in a deformable micro-channel. Stokes' couple stress fluid model is employed to represent realistic working liquids. The Poisson-Boltzmann equation for electric potential distribution is implemented owing to the presence of an electrical double layer (EDL) in the micro-channel. Using long wavelength, lubrication theory and Debye-Huckel approximations, the linearized transformed dimensionless boundary value problem is solved analytically. The influence of electro-osmotic parameter (inversely proportional to Debye length), maximum electro-osmotic velocity (a function of external applied electrical field) and couple stress parameter on axial velocity, volumetric flow rate, pressure gradient, local wall shear stress and stream function distributions is evaluated in detail with the aid of graphs. The Newtonian fluid case is retrieved as a special case with vanishing couple stress effects. With increasing the couple stress parameter there is a significant increase in the axial pressure gradient whereas the core axial velocity is reduced. An increase in the electro-osmotic parameter both induces flow acceleration in the core region (around the channel centreline) and it also enhances the axial pressure gradient substantially. The study is relevant in the simulation of novel smart bio-inspired space pumps, chromatography and medical micro-scale devices.

  1. On a difficulty in eigenfunction expansion solutions for the start-up of fluid flow

    Science.gov (United States)

    Christov, Ivan C.

    2015-11-01

    Most mathematics and engineering textbooks describe the process of ``subtracting off'' the steady state of a linear parabolic partial differential equation as a technique for obtaining a boundary-value problem with homogeneous boundary conditions that can be solved by separation of variables (i.e., eigenfunction expansions). While this method produces the correct solution for the start-up of the flow of, e.g., a Newtonian fluid between parallel plates, it can lead to erroneous solutions to the corresponding problem for a class of non-Newtonian fluids. We show that the reason for this is the non-rigorous enforcement of the start-up condition in the textbook approach, which leads to a violation of the principle of causality. Nevertheless, these boundary-value problems can be solved correctly using eigenfunction expansions, and we present the formulation that makes this possible (in essence, an application of Duhamel's principle). The solutions obtained by this new approach are shown to agree identically with those obtained by using the Laplace transform in time only, a technique that enforces the proper start-up condition implicitly (hence, the same error cannot be committed). Supported, in part, by NSF Grant DMS-1104047 and the U.S. DOE (Contract No. DE-AC52-06NA25396) through the LANL/LDRD Program.

  2. Heat Transfer of Viscoelastic Fluid Flow due to Nonlinear Stretching Sheet with Internal Heat Source

    Science.gov (United States)

    Nandeppanavar, M. M.; Siddalingappa, M. N.; Jyoti, H.

    2013-08-01

    In the present paper, a viscoelastic boundary layer flow and heat transfer over an exponentially stretching continuous sheet in the presence of a heat source/sink has been examined. Loss of energy due to viscous dissipation of the non-Newtonian fluid has been taken into account in this study. Approximate analytical local similar solutions of the highly non-linear momentum equation are obtained for velocity distribution by transforming the equation into Riccati-type and then solving this sequentially. Accuracy of the zero-order analytical solutions for the stream function and velocity are verified by numerical solutions obtained by employing the Runge-Kutta fourth order method involving shooting. Similarity solutions of the temperature equation for non-isothermal boundary conditions are obtained in the form of confluent hypergeometric functions. The effect of various physical parameters on the local skin-friction coefficient and heat transfer characteristics are discussed in detail. It is seen that the rate of heat transfer from the stretching sheet to the fluid can be controlled by suitably choosing the values of the Prandtl number Pr and local Eckert number E, local viscioelastic parameter k*1 and local heat source/ sink parameter β*

  3. A couple stress fluid modeling on free convection oscillatory hydromagnetic flow in an inclined rotating channel

    Directory of Open Access Journals (Sweden)

    Sahin Ahmed

    2014-12-01

    Full Text Available This study focuses analytically on the oscillatory hydromagnetic flow of a viscous, incompressible, electrically-conducting, non-Newtonian fluid in an inclined, rotating channel with non-conducting walls, incorporating couple stress effects. The model is then non-dimensionalized with appropriate variables and shown to be controlled by the inverse Ekman number (K2 = 1/Ek, the hydromagnetic body force parameter (M, channel inclination (α, Grashof number (Gr, Prandtl number (Pr, oscillation frequency (ω and time variable (ωT. Analytical solutions are derived using complex variables. Excellent agreement is obtained between both previous and present work. The influence of the governing parameters on the primary velocity, secondary velocity, temperature (θ, primary and secondary flow discharges per unit depth in the channel, and frictional shear stresses due to primary and secondary flow, is studied graphically and using tables. Applications of the study arise in the simulation of the manufacture of electrically-conducting polymeric liquids and hydromagnetic energy systems exploiting rheological working fluids.

  4. Three dimensional peristaltic flow of hyperbolic tangent fluid in non-uniform channel having flexible walls

    Directory of Open Access Journals (Sweden)

    M. Ali Abbas

    2016-03-01

    Full Text Available In this present analysis, three dimensional peristaltic flow of hyperbolic tangent fluid in a non-uniform channel has been investigated. We have considered that the pressure is uniform over the whole cross section and the interial effects have been neglected. For this purpose we consider laminar flow under the assumptions of long wavelength (λ→∞ and creeping flow (Re→0 approximations. The attained highly nonlinear equations are solved with the help of Homotopy perturbation method. The influence of various physical parameters of interest is demonstrated graphically for wall tension, mass characterization, damping nature of the wall, wall rigidity, wall elastance, aspect ratio and the Weissenberg number. In this present investigation we found that the magnitude of the velocity is maximum in the center of the channel whereas it is minimum near the walls. Stream lines are also drawn to discuss the trapping mechanism for all the physical parameters. Comparison has also been presented between Newtonian and non-Newtonian fluid.

  5. Effects of main parameters on rheological properties of oil-coal slurry

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yong-gang; Hao Li-fang; Xiong Chu-an; Sun Xiu-ying [China University of Mining & Technology, Beijing (China). School of Chemical and Environmental Engineering

    2006-09-15

    Oil-coal slurry prepared in coal direct liquefaction is a dispersed solid-liquid suspension system. In this paper, some factors such as solvent properties, solid concentrations and temperatures, which affect viscosity change of oil-coal slurry, were studied. The viscosity of coal slurry was measured using rotary viscometer, and the rheological properties have been investigated. The viscosity and rheological curves were plotted and regressed, respectively. The results show that the coal slurry behaves a pseudoplastic and thixotropic property. The rheological type of coal slurry was ascertained and its rheological equations were educed. The oil-coal slurry changes to non-Newtonian fluid from Newtonian fluid with the increasing of solid concentration. 10 refs., 5 figs., 3 tabs.

  6. Forced convection to laminar flow of liquid egg yolk in circular and annular ducts

    Directory of Open Access Journals (Sweden)

    M. Bernardi

    2009-06-01

    Full Text Available The steady-state heat transfer in laminar flow of liquid egg yolk - an important pseudoplastic fluid food - in circular and concentric annular ducts was experimentally investigated. The average convection heat transfer coefficients, determined by measuring temperatures before and after heating sections with constant temperatures at the tube wall, were used to obtain simple new empirical expressions to estimate the Nusselt numbers for fully established flows at the thermal entrance of the considered geometries. The comparisons with existing correlations for Newtonian and non-Newtonian fluids resulted in excellent agreement. The main contribution of this work is to supply practical and easily applicable correlations, which are, especially for the case of annulus, rather scarce and extensively required in the design of heat transfer operations dealing with similar shear-thinning products. In addition, the experimental results may support existing theoretical analyses.

  7. Second-law analysis of laminar nonnewtonian gravity-driven liquid film along an inclined heated plate with viscous dissipation effect

    Directory of Open Access Journals (Sweden)

    S. Saouli

    2009-06-01

    Full Text Available A second-law analysis of a gravity-driven film of non-Newtonian fluid along an inclined heated plate is investigated. The flow is assumed to be steady, laminar and fully-developed. The upper surface of the liquid film is considered to be free and adiabatic. The effect of heat generation by viscous dissipation is included. Velocity, temperature and entropy generation profiles are presented. The effects of the flow behaviour index, the Brinkman number and the group parameter on velocity, temperature and entropy generation number are discussed. The results show that velocity profile depends largely on the flow behaviour index. They are flat near the free surface for pseudoplastic fluids and linear for dilatant fluids. Temperature profiles are higher for higher flow behaviour index and Brinkman number. The entropy generation number increases with Brinkman number and the group parameter because of the heat generated by the viscous dissipation effect. For pseudoplastic fluids, the irreversibility is dominated by heat transfer, whereas, for dilatant fluids, irreversibility due to fluid friction is more dominant.

  8. The Effect of Surface Tension on the Gravity-driven Thin Film Flow of Newtonian and Power-law Fluids

    Science.gov (United States)

    Hu, Bin; Kieweg, Sarah L.

    2012-01-01

    Gravity-driven thin film flow is of importance in many fields, as well as for the design of polymeric drug delivery vehicles, such as anti-HIV topical microbicides. There have been many prior works on gravity-driven thin films. However, the incorporation of surface tension effect has not been well studied for non-Newtonian fluids. After surface tension effect was incorporated into our 2D (i.e. 1D spreading) power-law model, we found that surface tension effect not only impacted the spreading speed of the microbicide gel, but also had an influence on the shape of the 2D spreading profile. We observed a capillary ridge at the front of the fluid bolus. Previous literature shows that the emergence of a capillary ridge is strongly related to the contact line fingering instability. Fingering instabilities during epithelial coating may change the microbicide gel distribution and therefore impact how well it can protect the epithelium. In this study, we focused on the capillary ridge in 2D flow and performed a series of simulations and showed how the capillary ridge height varies with other parameters, such as surface tension coefficient, inclination angle, initial thickness, and power-law parameters. As shown in our results, we found that capillary ridge height increased with higher surface tension, steeper inclination angle, bigger initial thickness, and more Newtonian fluids. This study provides the initial insights of how to optimize the flow and prevent the appearance of a capillary ridge and fingering instability. PMID:23687391

  9. The Effect of Surface Tension on the Gravity-driven Thin Film Flow of Newtonian and Power-law Fluids.

    Science.gov (United States)

    Hu, Bin; Kieweg, Sarah L

    2012-07-15

    Gravity-driven thin film flow is of importance in many fields, as well as for the design of polymeric drug delivery vehicles, such as anti-HIV topical microbicides. There have been many prior works on gravity-driven thin films. However, the incorporation of surface tension effect has not been well studied for non-Newtonian fluids. After surface tension effect was incorporated into our 2D (i.e. 1D spreading) power-law model, we found that surface tension effect not only impacted the spreading speed of the microbicide gel, but also had an influence on the shape of the 2D spreading profile. We observed a capillary ridge at the front of the fluid bolus. Previous literature shows that the emergence of a capillary ridge is strongly related to the contact line fingering instability. Fingering instabilities during epithelial coating may change the microbicide gel distribution and therefore impact how well it can protect the epithelium. In this study, we focused on the capillary ridge in 2D flow and performed a series of simulations and showed how the capillary ridge height varies with other parameters, such as surface tension coefficient, inclination angle, initial thickness, and power-law parameters. As shown in our results, we found that capillary ridge height increased with higher surface tension, steeper inclination angle, bigger initial thickness, and more Newtonian fluids. This study provides the initial insights of how to optimize the flow and prevent the appearance of a capillary ridge and fingering instability.

  10. MHD Stagnation-Point Flow of Casson Fluid and Heat Transfer over a Stretching Sheet with Thermal Radiation

    Directory of Open Access Journals (Sweden)

    Krishnendu Bhattacharyya

    2013-01-01

    Full Text Available The two-dimensional magnetohydrodynamic (MHD stagnation-point flow of electrically conducting non-Newtonian Casson fluid and heat transfer towards a stretching sheet have been considered. The effect of thermal radiation is also investigated. Implementing similarity transformations, the governing momentum, and energy equations are transformed to self-similar nonlinear ODEs and numerical computations are performed to solve those. The investigation reveals many important aspects of flow and heat transfer. If velocity ratio parameter (B and magnetic parameter (M increase, then the velocity boundary layer thickness becomes thinner. On the other hand, for Casson fluid it is found that the velocity boundary layer thickness is larger compared to that of Newtonian fluid. The magnitude of wall skin-friction coefficient reduces with Casson parameter (β. The velocity ratio parameter, Casson parameter, and magnetic parameter also have major effects on temperature distribution. The heat transfer rate is enhanced with increasing values of velocity ratio parameter. The rate of heat transfer is enhanced with increasing magnetic parameter M for B > 1 and it decreases with M for B < 1. Moreover, the presence of thermal radiation reduces temperature and thermal boundary layer thickness.

  11. Magnetohydrodynamic flow of Carreau fluid over a convectively heated surface in the presence of non-linear radiation

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Masood [Department of Mathematics, Quaid-i-Azam University, Islamabad 44000 (Pakistan); Hashim, E-mail: hashim_alik@yahoo.com [Department of Mathematics, Quaid-i-Azam University, Islamabad 44000 (Pakistan); Hussain, M. [Department of Sciences and Humanities, National University of Computer and Emerging Sciences, Islamabad 44000 (Pakistan); Azam, M. [Department of Mathematics, Quaid-i-Azam University, Islamabad 44000 (Pakistan)

    2016-08-15

    This paper presents a study of the magnetohydrodynamic (MHD) boundary layer flow of a non-Newtonian Carreau fluid over a convectively heated surface. The analysis of heat transfer is further performed in the presence of non-linear thermal radiation. The appropriate transformations are employed to bring the governing equations into dimensionless form. The numerical solutions of the partially coupled non-linear ordinary differential equations are obtained by using the Runge-Kutta Fehlberg integration scheme. The influence of non-dimensional governing parameters on the velocity, temperature, local skin friction coefficient and local Nusselt number is studied and discussed with the help of graphs and tables. Results proved that there is significant decrease in the velocity and the corresponding momentum boundary layer thickness with the growth in the magnetic parameter. However, a quite the opposite is true for the temperature and the corresponding thermal boundary layer thickness. - Highlights: • We investigated the Magnetohydrodynamic flow of Carreau constitutive fluid model. • Impact of non-linear thermal radiation is further taken into account. • Runge-Kutta Fehlberg method is employed to obtain the numerical solutions. • Fluid velocity is higher in case of hydromagnetic flow in comparison with hydrodynamic flow. • The local Nusselt number is a decreasing function of the thermal radiation parameter.

  12. Numerical simulation for Jeffery-Hamel flow and heat transfer of micropolar fluid based on differential evolution algorithm

    Directory of Open Access Journals (Sweden)

    Asmat Ara

    2018-01-01

    Full Text Available This article explores the Jeffery-Hamel flow of an incompressible non-Newtonian fluid inside non-parallel walls and observes the influence of heat transfer in the flow field. The fluid is considered to be micropolar fluid that flows in a convergent/divergent channel. The governing nonlinear partial differential equations (PDEs are converted to nonlinear coupled ordinary differential equations (ODEs with the help of a suitable similarity transformation. The resulting nonlinear analysis is determined analytically with the utilization of the Taylor optimization method based on differential evolution (DE algorithm. In order to understand the flow field, the effects of pertinent parameters such as the coupling parameter, spin gradient viscosity parameter and the Reynolds number have been examined on velocity and temperature profiles. It concedes that the good results can be attained by an implementation of the proposed method. Ultimately, the accuracy of the method is confirmed by comparing the present results with the results obtained by Runge-Kutta method.

  13. MHD flow and heat transfer of an Ostwald–de Waele fluid over an unsteady stretching surface

    Directory of Open Access Journals (Sweden)

    K. Vajravelu

    2014-03-01

    Full Text Available An analysis is carried out to study the effects of variable thermo-physical properties on an unsteady MHD flow and heat transfer of an Ostwald–de Waele fluid over a stretching surface. The thermo-physical properties, namely, viscosity and thermal conductivity of the fluid are assumed to vary with temperature. Using similarity transformation, the governing partial differential equations are converted into coupled, non-linear ordinary differential equations with variable coefficients. The resulting non-linear equations are solved numerically by a second-order finite difference scheme known as the Keller-box method for various values of the pertinent parameters. Also, the numerical results are obtained for special cases and are found to be in good agreement with those of the results available in the literature. Further, the results obtained reveal many interesting behaviors that warrant further study of the equations related to non-Newtonian fluid phenomena, especially the shear-thinning phenomena. Shear thinning reduces the wall shear stress.

  14. Influence of inclined Lorentz forces on boundary layer flow of Casson fluid over an impermeable stretching sheet with heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Abdul Hakeem, A.K., E-mail: abdulhakeem6@gmail.com [Department of Mathematics, Sri Ramakrishna Mission Vidyalaya, College of Arts and Science, Coimbatore 641 020 (India); Renuka, P. [Department of Mathematics, Erode Sengunthar Engineering college, Erode 638 057 (India); Vishnu Ganesh, N.; Kalaivanan, R. [Department of Mathematics, Sri Ramakrishna Mission Vidyalaya, College of Arts and Science, Coimbatore 641 020 (India); Ganga, B. [Department of Mathematics, Providence College for Women, Coonoor 643 104 (India)

    2016-03-01

    The inclined magnetic field effect on the boundary layer flow of a Casson model non-Newtonian fluid over a stretching sheet in the existence of thermal radiation and velocity slip boundary condition is investigated for both prescribed surface temperature and power law of surface heat flux cases. It is assumed that the magnetic field is applied with an aligned angle which varied from 0° to 90°. Both analytical and numerical solutions are obtained for the transformed non-dimensional ODE's using confluent hypergeometric function and fourth order Runge–Kutta method with shooting technique respectively. The combined effects of inclined magnetic field with other pertinent parameters such as Casson parameter, velocity slip parameter, radiation parameter and Prandtl number on velocity profile, temperature profile, local skin friction coefficient, local Nusselt number and non-dimensional wall temperature are discussed through graphs. It is found that the aligned angle plays a vital role in controlling the magnetic field strength on the Casson fluid flow region and the increasing values of aligned angle of the magnetic field lead to decrease the skin friction coefficient and the Nusselt number and increase the non-dimensional wall temperature. - Highlights: • Casson fluid flow in the presence of inclined magnetic field is investigated for the first time. • Aligned angle controls the magnetic field strength on the boundary layer flow region. • The direction of Lorentz force changes according to aligned angle. • An excellent agreement is observed between present analytical and numerical results.

  15. Fluid Dynamics

    DEFF Research Database (Denmark)

    Brorsen, Michael

    These lecture notes are intended mainly for the 7th semester course "Fluid Dynamics" offered by the Study Committee on Civil Engineering, Aalborg University.......These lecture notes are intended mainly for the 7th semester course "Fluid Dynamics" offered by the Study Committee on Civil Engineering, Aalborg University....

  16. Theoretical Exploration of Exponential Heat Source and Thermal Stratification Effects on The Motion of 3-Dimensional Flow of Casson Fluid Over a Low Heat Energy Surface at Initial Unsteady Stage

    Science.gov (United States)

    Sandeep, N.; Animasaun, I. L.

    2017-06-01

    Within the last few decades, experts and scientists dealing with the flow of non-Newtonian fluids (most especially Casson fluid) have confirmed the existence of such flow on a stretchable surface with low heat energy (i.e. absolute zero of temperature). This article presents the motion of a three-dimensional of such fluid. Influence of uniform space dependent internal heat source on the intermolecular forces holding the molecules of Casson fluid is investigated. It is assumed that the stagnation flow was induced by an external force (pressure gradient) together with impulsive. Based on these assumptions, variable thermophysical properties are most suitable; hence modified kinematic viscosity model is presented. The system of governing equations of 3-dimensional unsteady Casson fluid was non-dimensionalized using suitable similarity transformation which unravels the behavior of the flow at full fledge short period. The numerical solution of the corresponding boundary value problem (ODE) was obtained using Runge-Kutta fourth order along with shooting technique. The intermolecular forces holding the molecules of Casson fluid flow in both horizontal directions when magnitude of velocity ratio parameters are greater than unity breaks continuously with an increase in Casson parameter and this leads to an increase in velocity profiles in both directions.

  17. Theoretical Exploration of Exponential Heat Source and Thermal Stratification Effects on The Motion of 3-Dimensional Flow of Casson Fluid Over a Low Heat Energy Surface at Initial Unsteady Stage

    Directory of Open Access Journals (Sweden)

    Sandeep N.

    2017-06-01

    Full Text Available Within the last few decades, experts and scientists dealing with the flow of non-Newtonian fluids (most especially Casson fluid have confirmed the existence of such flow on a stretchable surface with low heat energy (i.e. absolute zero of temperature. This article presents the motion of a three-dimensional of such fluid. Influence of uniform space dependent internal heat source on the intermolecular forces holding the molecules of Casson fluid is investigated. It is assumed that the stagnation flow was induced by an external force (pressure gradient together with impulsive. Based on these assumptions, variable thermophysical properties are most suitable; hence modified kinematic viscosity model is presented. The system of governing equations of 3-dimensional unsteady Casson fluid was non-dimensionalized using suitable similarity transformation which unravels the behavior of the flow at full fledge short period. The numerical solution of the corresponding boundary value problem (ODE was obtained using Runge-Kutta fourth order along with shooting technique. The intermolecular forces holding the molecules of Casson fluid flow in both horizontal directions when magnitude of velocity ratio parameters are greater than unity breaks continuously with an increase in Casson parameter and this leads to an increase in velocity profiles in both directions.

  18. Fluid dynamics of dilatant fluid

    DEFF Research Database (Denmark)

    Nakanishi, Hiizu; Nagahiro, Shin-ichiro; Mitarai, Namiko

    2012-01-01

    A dense mixture of granules and liquid often shows a severe shear thickening and is called a dilatant fluid. We construct a fluid dynamics model for the dilatant fluid by introducing a phenomenological state variable for a local state of dispersed particles. With simple assumptions for an equation...... of the state variable, we demonstrate that the model can describe basic features of the dilatant fluid such as the stress-shear rate curve that represents discontinuous severe shear thickening, hysteresis upon changing shear rate, and instantaneous hardening upon external impact. An analysis of the model...... reveals that the shear thickening fluid shows an instability in a shear flow for some regime and exhibits the shear thickening oscillation (i.e., the oscillatory shear flow alternating between the thickened and the relaxed states). The results of numerical simulations are presented for one- and two...

  19. Magnetic field effect on Poiseuille flow and heat transfer of carbon nanotubes along a vertical channel filled with Casson fluid

    Directory of Open Access Journals (Sweden)

    Sidra Aman

    2017-01-01

    Full Text Available Applications of carbon nanotubes, single walls carbon nanotubes (SWCNTs and multiple walls carbon nanotubes (MWCNTs in thermal engineering have recently attracted significant attention. However, most of the studies on CNTs are either experimental or numerical and the lack of analytical studies limits further developments in CNTs research particularly in channel flows. In this work, an analytical investigation is performed on heat transfer analysis of SWCNTs and MWCNTs for mixed convection Poiseuille flow of a Casson fluid along a vertical channel. These CNTs are suspended in three different types of base fluids (Water, Kerosene and engine Oil. Xue [Phys. B Condens. Matter 368, 302–307 (2005] model has been used for effective thermal conductivity of CNTs. A uniform magnetic field is applied in a transverse direction to the flow as magnetic field induces enhancement in the thermal conductivity of nanofluid. The problem is modelled by using the constitutive equations of Casson fluid in order to characterize the non-Newtonian fluid behavior. Using appropriate non-dimensional variables, the governing equations are transformed into the non-dimensional form, and the perturbation method is utilized to solve the governing equations with some physical conditions. Velocity and temperature solutions are obtained and discussed graphically. Expressions for skin friction and Nusselt number are also evaluated in tabular form. Effects of different parameters such as Casson parameter, radiation parameter and volume fraction are observed on the velocity and temperature profiles. It is found that velocity is reduced under influence of the exterior magnetic field. The temperature of single wall CNTs is found greater than MWCNTs for all the three base fluids. Increase in volume fraction leads to a decrease in velocity of the fluid as the nanofluid become more viscous by adding CNTs.

  20. Magnetic field effect on Poiseuille flow and heat transfer of carbon nanotubes along a vertical channel filled with Casson fluid

    Science.gov (United States)

    Aman, Sidra; Khan, Ilyas; Ismail, Zulkhibri; Salleh, Mohd Zuki; Alshomrani, Ali Saleh; Alghamdi, Metib Said

    2017-01-01

    Applications of carbon nanotubes, single walls carbon nanotubes (SWCNTs) and multiple walls carbon nanotubes (MWCNTs) in thermal engineering have recently attracted significant attention. However, most of the studies on CNTs are either experimental or numerical and the lack of analytical studies limits further developments in CNTs research particularly in channel flows. In this work, an analytical investigation is performed on heat transfer analysis of SWCNTs and MWCNTs for mixed convection Poiseuille flow of a Casson fluid along a vertical channel. These CNTs are suspended in three different types of base fluids (Water, Kerosene and engine Oil). Xue [Phys. B Condens. Matter 368, 302-307 (2005)] model has been used for effective thermal conductivity of CNTs. A uniform magnetic field is applied in a transverse direction to the flow as magnetic field induces enhancement in the thermal conductivity of nanofluid. The problem is modelled by using the constitutive equations of Casson fluid in order to characterize the non-Newtonian fluid behavior. Using appropriate non-dimensional variables, the governing equations are transformed into the non-dimensional form, and the perturbation method is utilized to solve the governing equations with some physical conditions. Velocity and temperature solutions are obtained and discussed graphically. Expressions for skin friction and Nusselt number are also evaluated in tabular form. Effects of different parameters such as Casson parameter, radiation parameter and volume fraction are observed on the velocity and temperature profiles. It is found that velocity is reduced under influence of the exterior magnetic field. The temperature of single wall CNTs is found greater than MWCNTs for all the three base fluids. Increase in volume fraction leads to a decrease in velocity of the fluid as the nanofluid become more viscous by adding CNTs.