WorldWideScience

Sample records for pseudomonas syringae alginate

  1. Contribution of alginate and levan production to biofilm formation by Pseudomonas syringae

    DEFF Research Database (Denmark)

    Laue, H.; Schenk, A.; Li, H.

    2006-01-01

    formation, biofilms of Pseudomonas syringae strains with different EPS patterns were compared. The mucoid strain PG4180.muc, which produces levan and alginate, and its levan- and/or alginate-deficient derivatives all formed biofilms in the wells of microtitre plates and in flow chambers. Confocal laser...

  2. Extracytoplasmic function sigma factors in Pseudomonas syringae

    DEFF Research Database (Denmark)

    Kiil, Kristoffer; Oguiza, J.A.; Ussery, D.W.

    2005-01-01

    Genome analyses of the plant pathogens Pseudomonas syringae pv. tomato DC3000, pv. syringae B728a and pv. phaseolicola 1448A reveal fewer extracytoplasmic function (ECF) sigma factors than in related Pseudomonads with different lifestyles. We highlight the presence of a P. syringae-specific ECF s...... sigma factor that is an interesting target for future studies because of its potential role in the adaptation of P. syringae to its specialized phytopathogenic lifestyle....

  3. Exopolysaccharides Produced by Phytopathogenic Pseudomonas syringae Pathovars in Infected Leaves of Susceptible Hosts

    Science.gov (United States)

    Fett, William F.; Dunn, Michael F.

    1989-01-01

    Bacterial exopolysaccharide (EPS) was extracted from infected leaves of several host plants inoculated with phytopathogenic strains of Pseudomonas syringae pathovars. Extraction was by a facilitated diffusion procedure or by collection of intercellular fluid using a centrifugation method. The extracted EPS was purified and characterized. All bacterial pathogens which induced watersoaked lesions on their host leaves, a characteristic of most members of this bacterial group, were found to produce alginic acid (a polymer consisting of varying ratios of mannuronic and guluronic acids). Only trace amounts of bacterial EPS could be isolated from leaves inoculated with a pathovar (pv. syringae) which does not induce the formation of lesions with a watersoaked appearance. Guluronic acid was either present in very low amounts or absent in the alginic acid preparations. All bacterial alginates were acetylated (7-11%). Levan (a fructan) was apparently not produced as an EPS in vivo by any of the pathogens tested. PMID:16666545

  4. New strategies for genetic engineering Pseudomonas syringae using recombination

    Science.gov (United States)

    Here we report that DNA oligonucleotides (oligos) introduced directly into bacteria by electroporation can recombine with the bacterial chromosome. This phenomenon was identified in Pseudomonas syringae and we subsequently found that Escherichia coli, Salmonella typhimurium and Shigella flexneri are...

  5. Regulation of phytotoxin production in Pseudomonas syringae pv. tabaci

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, L.M.; Ghosh, S.; Knight, T.J.; Unkefer, P.J. (Los Alamos National Lab., NM (United States))

    1991-05-01

    Pseudomonas syringae pv. tabaci, a pathogen of tobacco, is capable of colonizing the rhizosphere of many plants. This pathogen excretes tabtoxinine-{beta}-lactam (T{beta}L), an active site directed, irreversible inhibitor of glutamine synthetase. T{beta}L is produced in planta, in the rhizosphere, and under certain culture conditions. However, the factors which regulated T{beta}L production in these environments are unknown. As a first step in characterizing T{beta}L synthesis by P. syringae pv. tabaci, the authors have determined the effects of root exudates and various nutrients on production of T{beta}L by P. syringae pv. tabaci PT113.

  6. 40 CFR 180.1261 - Xanthomonas campestris pv. vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages.

    Science.gov (United States)

    2010-07-01

    ... and Pseudomonas syringae pv. tomato specific Bacteriophages. 180.1261 Section 180.1261 Protection of.... vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages. An exemption from the requirement of... syringae pv. tomato specific bacteriophages in or on pepper and tomato. ...

  7. Differentiation of Pseudomonas syringae Pathovars Originating from Stone Fruits

    Directory of Open Access Journals (Sweden)

    Katarina Gašić

    2012-01-01

    Full Text Available Due to an overlapping host range, similar symptomatology and many common characteristics,Pseudomonas syringae pathovars originating from stone fruits can easily be misidentified.In order to select tests for rapid and efficient differentiation of P. s. pvs. syringae,morsprunorum and persicae, we studied the suitability and differentiating potential ofsome standard bacteriological and molecular methods. Differentiation of the strains wasperformed using LOPAT, GATTa and ice nucleation tests, nutrient sucrose broth growthand utilization of various carbon sources. PCR method enabled the detection of toxin-producinggenes: syrB and syrD in P. s. pv. syringae, and cfl gene in P. s. pv. morsprunorum race1. Syringomycin production by pv. syringae was confirmed in bioassay using Geotrichumcandidum, Saccharomyces cerevisiae and Rhodotorula pilimanae as indicator organisms.Pathogenicity test on lemon and immature nectarine fruits, as well as on string bean pods,showed different intensity of reaction of the inoculated material which could separate pv.syringae from the other two pathovars. PCR-based repetitive sequences, Rep-PCR withREP, ERIC and BOX primers revealed different genetic profiles within P. syringae pathovars.

  8. Resistant and susceptible responses in alfalfa (Medicago sativa) to bacterial stem blight caused by Pseudomonas syringae pv. syringae

    Science.gov (United States)

    Bacterial stem blight caused by Pseudomonas syringae pv. syringae is a common disease of alfalfa (Medicago sativa L.) in the central and western U.S. and has been reported in Australia and Europe. The disease is not always recognized because symptoms are often associated with frost damage. Two culti...

  9. HOPM1 mediated disease resistance to Pseudomonas syringae in Arabidopsis

    Science.gov (United States)

    He, Sheng Yang [Okemos, MI; Nomura, Kinya [East Lansing, MI

    2011-11-15

    The present invention relates to compositions and methods for enhancing plant defenses against pathogens. More particularly, the invention relates to enhancing plant immunity against bacterial pathogens, wherein HopM1.sub.1-300 mediated protection is enhanced, such as increased protection to Pseudomonas syringae pv. tomato DC3000 HopM1 and/or there is an increase in activity of an ATMIN associated plant protection protein, such as ATMIN7. Reagents of the present invention further provide a means of studying cellular trafficking while formulations of the present inventions provide increased pathogen resistance in plants.

  10. Induction of Callose Deposition in Tobacco (Nicotiana tabacum by Bacterial Lipopolysaccharide Pseudomonas syringae pv. tabaci and Pseudomonas syringae pv. glycinea

    Directory of Open Access Journals (Sweden)

    Pipit Marianingsih

    2014-12-01

    Full Text Available Lipopolysaccharide (LPS is a major component of outer-membrane gram-negative bacteria, and it can act as a Pathogen-Associated Molecular Pattern (PAMP for perception of pathogens by plants. LPS can be recognized by plants, triggering certain plant defense-related responses, including callose deposition. This study investigated induction of callose deposition by bacterial LPS in tobacco. Tobacco leaves were infiltrated with 400 μg/mL and 800 μg/mL LPS extracted from Pseudomonas syringae pv. tabaci (Pta and Pseudomonas syringae pv. glycinea (Pgl and incubated for 24 h or 48 h. To detect callose deposition, tobacco leaves were cleared in lactophenol solution, stained with aniline blue, and visualized by fluorescence microscopy. Results showed that LPS from Pgl induced more callose deposition in tobacco leaves than did that from Pta. In addition, a Pearson correlation test revealed that incubation period was the most significant factor in callose deposition, followed by the type of LPS bacteria. However, LPS concentration was not significantly corelated to callose deposition in tobacco leaves.

  11. Pseudomonas syringae pv. tabaci in papaya seedlings Pseudomonas syringae pv. tabaci em plântulas de mamoeiro

    Directory of Open Access Journals (Sweden)

    Luís Otávio S. Beriam

    2006-03-01

    Full Text Available The natural occurrence of Pseudomonas syringae pv. tabaci causing leaf spot symptoms in papaya seedlings is reported. The pathogen was identified through biochemical, physiological, serological, and molecular assays and artificial inoculations in papaya plants. It was also shown that the strains were pathogenic to bean and tobacco plants. The restriction patterns obtained with Afa I, Alu I, Dde I, Hae III, Hpa II, Hinf I, Sau 3A I and Taq I of the PCR-RFLP of 16S-23S DNAr were identical to the P. s. pv. tabaci patterns. Primers corresponding to hrpL gene of P. syringae were also tested and the results grouped the papaya strains with P s. pv. tabaci. Bacterial strains were deposited at Coleção de Culturas IBSBF, Instituto Biológico, Campinas, Brazil, under access numbers 1687 and 1822.É relatada a ocorrência natural de Pseudomonas syringae pv. tabaci causando sintomas de lesões foliares em plântulas de mamoeiro. O patógeno foi identificado por meio de testes bioquímicos, fisiológicos, serológicos e moleculares, além de ensaios de patogenicidade em plantas de mamoeiro, feijoeiro e fumo. Os padrões de restrição obtidos com as enzimas Afa I, Alu I, Dde I, Hae III, Hpa II, Hinf I, Sal 3A I e Taq I, utilizando-se a técnica de PCR-RLFP da região espaçadora 16S-23S do DNA ribossômico, foram idênticos àqueles apresentados para P. s. pv. tabaci. Primers correspondentes ao gene hrpL de P. syringae foram também testados e os resultados obtidos permitiram agrupar as linhagens isoladas de mamão com P. s. pv. tabaci. Linhagens bacterianas estão depositadas na coleção de culturas IBSBF, Instituto Biológico, Campinas, sob n. 1687 e 1822.

  12. Characterization of the phytopathogen Pseudomonas syringae pathovar ribicola NCPPB 963.

    Science.gov (United States)

    Charnock, C

    1998-01-01

    In 1939, a bacterial spot caused severe defoliation of Ribes aureum (Golden Currant) The causal agent is now recognized as Pseudomonas syringae pathovar ribicola. This communication extends the phenotype of the only identified strain of P. syringae pv. ribicola, which is reminiscent of those of other pathovars, and provides a molecular biological characterization. A minimum size of 5.55 Mb for the bacterial genome was obtained using pulsed-field electrophoresis. The SDS-PAGE outer-membrane profile contained seven major bands, and has obvious similarities to that of P. aeruginosa. SDS-PAGE of concentrated mid-log phase culture supernatants revealed large amounts of a single, cryptic 24.0 kD protein. The amino acid composition and 57 residues in the N-terminus of this protein. were determined. The protein sequence was nearly identical to the translation of a region of unknown function in the P. aeruginosa genome. Extensive similarity in N-terminal sequence, composition and subunit size to a secreted hydrophilic Vibrio cholerae protein of unknown function was also found. Neither protein has been directly associated with disease development.

  13. Contribution of nitrate assimilation to the fitness of Pseudomonas syringae pv. syringae B728a on plants.

    Science.gov (United States)

    Parangan-Smith, Audrey; Lindow, Steven

    2013-01-01

    The ability of Pseudomonas syringae pv. syringae to use nitrate as a nitrogen source in culture and on leaves was assessed. Substantial amounts of leaf surface nitrate were detected directly and by use of a bioreporter of nitrate on bean plants grown with a variety of nitrogen sources. While a nitrate reductase mutant, P. syringae ΔnasB, exhibited greatly reduced growth in culture with nitrate as the sole nitrogen source, it exhibited population sizes similar to those of the wild-type strain on leaves. However, the growth of the ΔnasB mutant was much less than that of the wild-type strain when cultured in bean leaf washings supplemented with glucose, suggesting that P. syringae experiences primarily carbon-limited and only secondarily nitrogen-limited growth on bean leaves. Only a small proportion of the cells of a green fluorescent protein (GFP)-based P. syringae nitrate reductase bioreporter, LK2(pOTNas4), exhibited fluorescence on leaves. This suggests that only a subset of cells experience high nitrate levels or that nitrate assimilation is repressed by the presence of ammonium or other nitrogenous compounds in many leaf locations. While only a subpopulation of P. syringae consumes nitrate at a given time on the leaves, the ability of those cells to consume this resource would be strongly beneficial to those cells, especially in environments in which nitrate is the most abundant form of nitrogen.

  14. Homeopathic Treatment of Arabidopsis thaliana Plants Infected with Pseudomonas syringae

    Directory of Open Access Journals (Sweden)

    Devika Shah-Rossi

    2009-01-01

    Full Text Available Homeopathic basic research is still in the screening phase to identify promising model systems that are adapted to the needs and peculiarities of homeopathic medicine and pharmacy. We investigated the potential of a common plant-pathogen system, Arabidopsis thaliana infected with the virulent bacteria Pseudomonas syringae, regarding its response towards a homeopathic treatment. A. thaliana plants were treated with homeopathic preparations before and after infection. Outcome measure was the number of P. syringae bacteria in the leaves of A. thaliana, assessed in randomized and blinded experiments. After a screening of 30 homeopathic preparations, we investigated the effect of Carbo vegetabilis 30x, Magnesium phosphoricum 30x, Nosode 30x, Biplantol (a homeopathic complex remedy, and Biplantol 30x on the infection rate in five or six independent experiments in total. The screening yielded significant effects for four out of 30 tested preparations. In the repeated experimental series, only the homeopathic complex remedy Biplantol induced a significant reduction of the infection rate (p = 0.01; effect size, d = 0.38. None of the other four repeatedly tested preparations (Carbo vegetabilis 30x, Magnesium phosphoricum 30x, Nosode 30x, Biplantol 30x yielded significant effects in the overall evaluation. This phytopathological model yielded a small to medium effect size and thus might be of interest for homeopathic basic research after further improvement. Compared to Bion (a common SAR inducer used as positive control, the magnitude of the treatment effect of Biplantol was about 50%. Thus, homeopathic formulations might have a potential for the treatment of plant diseases after further optimization. However, the ecological impact should be investigated more closely before widespread application.

  15. Anaerobic production of alginate by Pseudomonas aeruginosa: alginate restricts diffusion of oxygen.

    OpenAIRE

    Hassett, D J

    1996-01-01

    Pseudomonas aeruginosa produced alginate and elevated algD (encoding GDPmannose 6-dehydrogenase) transcription under strict anaerobic conditions, especially when using nitrate as a terminal electron acceptor. Purified alginate added to bacterial suspensions caused a decrease in growth, suggesting that alginate contributes to oxygen limitation for the organism and likely for patients afflicted with the inherited autosomal disease cystic fibrosis.

  16. Pseudomonas syringae pv. syringae uses proteasome inhibitor syringolin A to colonize from wound infection sites.

    Directory of Open Access Journals (Sweden)

    Johana C Misas-Villamil

    2013-03-01

    Full Text Available Infection of plants by bacterial leaf pathogens at wound sites is common in nature. Plants defend wound sites to prevent pathogen invasion, but several pathogens can overcome spatial restriction and enter leaf tissues. The molecular mechanisms used by pathogens to suppress containment at wound infection sites are poorly understood. Here, we studied Pseudomonas syringae strains causing brown spot on bean and blossom blight on pear. These strains exist as epiphytes that can cause disease upon wounding caused by hail, sand storms and frost. We demonstrate that these strains overcome spatial restriction at wound sites by producing syringolin A (SylA, a small molecule proteasome inhibitor. Consequently, SylA-producing strains are able to escape from primary infection sites and colonize adjacent tissues along the vasculature. We found that SylA diffuses from the primary infection site and suppresses acquired resistance in adjacent tissues by blocking signaling by the stress hormone salicylic acid (SA. Thus, SylA diffusion creates a zone of SA-insensitive tissue that is prepared for subsequent colonization. In addition, SylA promotes bacterial motility and suppresses immune responses at the primary infection site. These local immune responses do not affect bacterial growth and were weak compared to effector-triggered immunity. Thus, SylA facilitates colonization from wounding sites by increasing bacterial motility and suppressing SA signaling in adjacent tissues.

  17. A Mathematical model to investigate quorum sensing regulation and its heterogenecity in pseudomonas syringae on leaves

    Science.gov (United States)

    The bacterium Pseudomonas syringae is a plant-pathogen, which through quorum sensing (QS), controls virulence. In this paper, by means of mathematical modeling, we investigate QS of this bacterium when living on leaf surfaces. We extend an existing stochastic model for the formation of Pseudomonas s...

  18. Pseudomonas syringae Catalases Are Collectively Required for Plant Pathogenesis

    Science.gov (United States)

    Guo, Ming; Block, Anna; Bryan, Crystal D.; Becker, Donald F.

    2012-01-01

    The bacterial pathogen Pseudomonas syringae pv. tomato DC3000 must detoxify plant-produced hydrogen peroxide (H2O2) in order to survive in its host plant. Candidate enzymes for this detoxification include the monofunctional catalases KatB and KatE and the bifunctional catalase-peroxidase KatG of DC3000. This study shows that KatG is the major housekeeping catalase of DC3000 and provides protection against menadione-generated endogenous H2O2. In contrast, KatB rapidly and substantially accumulates in response to exogenous H2O2. Furthermore, KatB and KatG have nonredundant roles in detoxifying exogenous H2O2 and are required for full virulence of DC3000 in Arabidopsis thaliana. Therefore, the nonredundant ability of KatB and KatG to detoxify plant-produced H2O2 is essential for the bacteria to survive in plants. Indeed, a DC3000 catalase triple mutant is severely compromised in its ability to grow in planta, and its growth can be partially rescued by the expression of katB, katE, or katG. Interestingly, our data demonstrate that although KatB and KatG are the major catalases involved in the virulence of DC3000, KatE can also provide some protection in planta. Thus, our results indicate that these catalases are virulence factors for DC3000 and are collectively required for pathogenesis. PMID:22797762

  19. Soil water flow is a source of the plant pathogen Pseudomonas syringae in subalpine headwaters.

    OpenAIRE

    Monteil, Caroline; LAFOLIE, Francois; Laurent, Jimmy; Clement, Jean-Christophe; Simler, Roland; Travi, Yves

    2014-01-01

    The air-borne plant pathogenic bacterium Pseudomonas syringae is ubiquitous in headwaters, snowpack and precipitation where its populations are genetically and phenotypically diverse. Here, we assessed its population dynamics during snowmelt in headwaters of the French Alps. We revealed a continuous and significant transport of P. syringae by these waters in which the population density is correlated with water chemistry. Via in situ observations and laboratory experiments, we validated that ...

  20. Housekeeping Gene Sequencing and Multilocus Variable-Number Tandem-Repeat Analysis To Identify Subpopulations within Pseudomonas syringae pv. maculicola and Pseudomonas syringae pv. tomato That Correlate with Host Specificity

    Science.gov (United States)

    Gironde, S.

    2012-01-01

    Pseudomonas syringae pv. maculicola causes bacterial spot on Brassicaceae worldwide, and for the last 10 years severe outbreaks have been reported in the Loire Valley, France. P. syringae pv. maculicola resembles P. syringae pv. tomato in that it is also pathogenic for tomato and causes the same types of symptoms. We used a collection of 106 strains of P. syringae to characterize the relationships between P. syringae pv. maculicola and related pathovars, paying special attention to P. syringae pv. tomato. Phylogenetic analysis of gyrB and rpoD gene sequences showed that P. syringae pv. maculicola, which causes diseases in Brassicaceae, forms six genetic lineages within genomospecies 3 of P. syringae strains as defined by L. Gardan et al. (Int. J. Syst. Bacteriol. 49[Pt 2]:469–478, 1999), whereas P. syringae pv. tomato forms two distinct genetic lineages. A multilocus variable-number tandem-repeat (VNTR) analysis (MLVA) conducted with eight minisatellite loci confirmed the genetic structure obtained with rpoD and gyrB sequence analyses. These results provide promising tools for fine-scale epidemiological studies on diseases caused by P. syringae pv. maculicola and P. syringae pv. tomato. The two pathovars had distinct host ranges; only P. syringae pv. maculicola strains were pathogenic for Brassicaceae. A subpopulation of P. syringae pv. maculicola strains that are pathogenic for Pto-expressing tomato plants were shown to lack avrPto1 and avrPtoB or to contain a disrupted avrPtoB homolog. Taking phylogenetic and pathological features into account, our data suggest that the DC3000 strain belongs to P. syringae pv. maculicola. This study shows that P. syringae pv. maculicola and P. syringae pv. tomato appear multiclonal, as they did not diverge from a single common ancestral group within the ancestral P. syringae genomospecies 3, and suggests that pathovar specificity within P. syringae may be due to independent genetic events. PMID:22389364

  1. Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function

    DEFF Research Database (Denmark)

    Hentzer, Morten; Teitzel, G.M.; Balzer, G.J.

    2001-01-01

    During the course of chronic cystic fibrosis (CF) infections, Pseudomonas aeruginosa undergoes a conversion to a mucoid phenotype, which is characterized by overproduction of the exopolysaccharide alginate. Chronic P. aeruginosa infections involve surface-attached, highly antibiotic-resistant com...

  2. First report of mixed infection by Pseudomonas syringae pathovars garcae and tabaci on coffee plantations

    OpenAIRE

    Lucas Mateus Rivero Rodrigues; Gustavo Hiroshi Sera; Oliveiro Guerreiro Filho; Luis Otavio Saggion Beriam; Irene Maria Gatti de Almeida

    2017-01-01

    ABSTRACT The bacterial-halo-blight (Pseudomonas syringae pv. garcae) is disseminated by the main coffee areas in the producing states of Brazil. On the other hand, the disease bacterial-leaf-spot (Pseudomonas syringae pv. tabaci) was reported only once in coffee seedlings in a sample collected in the State of São Paulo. In mid-2015, samples of coffee leaves with symptoms of foliar lesions surrounded by yellow halo, were collected in coffee plantations in the State of Paraná and fluorescent ba...

  3. First report of mixed infection by Pseudomonas syringae pathovars garcae and tabaci on coffee plantations

    Directory of Open Access Journals (Sweden)

    Lucas Mateus Rivero Rodrigues

    2017-08-01

    Full Text Available ABSTRACT The bacterial-halo-blight (Pseudomonas syringae pv. garcae is disseminated by the main coffee areas in the producing states of Brazil. On the other hand, the disease bacterial-leaf-spot (Pseudomonas syringae pv. tabaci was reported only once in coffee seedlings in a sample collected in the State of São Paulo. In mid-2015, samples of coffee leaves with symptoms of foliar lesions surrounded by yellow halo, were collected in coffee plantations in the State of Paraná and fluorescent bacteria producing or not brown pigment in culture medium were isolated and determined as belonging to the Group I of P. syringae. Through biochemical, serological and pathogenicity tests, the pathogens were identified as P. syringae pv. garcae and P. syringae pv. tabaci, with prevalence of isolates belonging to pathovar tabaci and, as well as in certain samples, it was identified simultaneous infection by both etiological agents. Then, this is the first report of associated occurrence of garcae and tabaci pathovars of P. syringae and of the incidence of “bacterial-leaf-spot” under field conditions and in the State of Paraná.

  4. Alginate Biosynthesis Factories in Pseudomonas fluorescens: Localization and Correlation with Alginate Production Level

    Science.gov (United States)

    Maleki, Susan; Almaas, Eivind; Zotchev, Sergey; Valla, Svein

    2015-01-01

    Pseudomonas fluorescens is able to produce the medically and industrially important exopolysaccharide alginate. The proteins involved in alginate biosynthesis and secretion form a multiprotein complex spanning the inner and outer membranes. In the present study, we developed a method by which the porin AlgE was detected by immunogold labeling and transmission electron microscopy. Localization of the AlgE protein was found to depend on the presence of other proteins in the multiprotein complex. No correlation was found between the number of alginate factories and the alginate production level, nor were the numbers of these factories affected in an algC mutant that is unable to produce the precursor needed for alginate biosynthesis. Precursor availability and growth phase thus seem to be the main determinants for the alginate production rate in our strain. Clustering analysis demonstrated that the alginate multiprotein complexes were not distributed randomly over the entire outer cell membrane surface. PMID:26655760

  5. Plant signal molecules activate the syrB gene, which is required for syringomycin production by Pseudomonas syringae pv. syringae.

    Science.gov (United States)

    Mo, Y Y; Gross, D C

    1991-01-01

    The syrB gene is required for syringomycin production by Pseudomonas syringae pv. syringae and full virulence during plant pathogenesis. Strain B3AR132 containing a syrB::lacZ fusion was used to detect transcriptional activation of the syrB gene in syringomycin minimal medium by plant metabolites with signal activity. Among 34 plant phenolic compounds tested, arbutin, phenyl-beta-D-glucopyranoside, and salicin were shown to be strong inducers of syrB, giving rise to approximately 1,200 U of beta-galactosidase activity at 100 microM; esculin and helicin were moderate inducers, with about 250 to 400 U of beta-galactosidase activity at 100 microM. Acetosyringone and flavonoids that serve as signal molecules in Agrobacterium and Rhizobium species, respectively, did not induce the syrB::lacZ fusion. All syrB inducers were phenolic glucosides and none of the aglucone derivatives were active, suggesting that the beta-glycosidic linkage was necessary for signal activity. Phenyl-beta-D-galactopyranoside containing galactose substituted for glucose in the beta-glycosidic linkage also lacked inducer activity. Phenolic signal activity was enhanced two- to fivefold by specific sugars common to plant tissues, including D-fructose, D-mannose, and sucrose. The effect of sugars on syrB induction was most noticeable at low concentrations of phenolic glucoside (i.e., 1 to 10 microM), indicating that sugars such as D-fructose increase the sensitivity of P. syringae pv. syringae to the phenolic plant signal. Besides induction of syrB, syringomycin biosynthesis by parental strain B3A-R was induced to yield over 250 U of toxin by the additions of arbutin and D-fructose to syringomycin minimal medium. These data indicate that syringomycin production by most strains of P. syringae pv. syringae is modulated by the perception of two classes of plant signal molecules and transduced to the transcriptional apparatus of syringomycin (syr) genes such as syrB. PMID:1885550

  6. Inhibition of apoptic cell death induced by Pseudomonas syringae pv. Tabaci and mycotoxin fumonisin B1

    NARCIS (Netherlands)

    Iakimova, E.T.; Batchvorova, R.; Kapchina, V.; Popov, T.; Atanassov, A.; Woltering, E.J.

    2004-01-01

    The impact of programmed cell death (PCD) inhibitors on lesion formation and biochemical events in transgenic (ttr line) and non-transgenic (Nevrokop 1164) tobacco infected with Pseudomonas syringae pv. tabaci was tested. Programmed cell death in tomato cell culture was induced by Fumonisin B1 (FUM)

  7. Occurrence of Pseudomonas syringae pv. actinidiae in Jin Tao kiwi plants in Italy

    Directory of Open Access Journals (Sweden)

    G.M. Balestra

    2009-09-01

    Full Text Available During 2007–2008 bacterial canker caused damage in Jin Tao cv. kiwi (Actinidia chinensis plants grown in northern and central Italy. A bacterial population was repeatedly isolated from these plants. Based on morphological, physiological, biochemical and molecular tests, the causal agent was identified as Pseudomonas syringae pv. actinidiae (epidemiology and control strategies are discussed.

  8. Comparison of the complete genome sequences of Pseudomonas syringae pv. syringae B728a and pv. tomato DC3000

    Energy Technology Data Exchange (ETDEWEB)

    Feil, H; Feil, W S; Chain, P; Larimer, F; DiBartolo, G; Copeland, A; Lykidis, A; Trong, S; Nolan, M; Goltsman, E; Thiel, J; Malfatti, S; Loper, J E; Lapidus, A; Detter, J C; Land, M; Richardson, P M; Kyrpides, N C; Ivanova, N; Lindow, S E

    2005-07-14

    The complete genomic sequence of Pseudomonas syringae pathovar syringae B728a (Pss B728a), has been determined and is compared with that of Pseudomonas syringae pv. tomato DC3000 (Pst DC3000). The two pathovars of this economically important species of plant pathogenic bacteria differ in host range and other interactions with plants, with Pss having a more pronounced epiphytic stage of growth and higher abiotic stress tolerance and Pst DC3000 having a more pronounced apoplastic growth habitat. The Pss B728a genome (6.1 megabases) contains a circular chromosome and no plasmid, whereas the Pst DC3000 genome is 6.5 mbp in size, composed of a circular chromosome and two plasmids. While a high degree of similarity exists between the two sequenced Pseudomonads, 976 protein-encoding genes are unique to Pss B728a when compared to Pst DC3000, including large genomic islands likely to contribute to virulence and host specificity. Over 375 repetitive extragenic palindromic sequences (REPs) unique to Pss B728a when compared to Pst DC3000 are widely distributed throughout the chromosome except in 14 genomic islands, which generally had lower GC content than the genome as a whole. Content of the genomic islands vary, with one containing a prophage and another the plasmid pKLC102 of P. aeruginosa PAO1. Among the 976 genes of Pss B728a with no counterpart in Pst DC3000 are those encoding for syringopeptin (SP), syringomycin (SR), indole acetic acid biosynthesis, arginine degradation, and production of ice nuclei. The genomic comparison suggests that several unique genes for Pss B728a such as ectoine synthase, DNA repair, and antibiotic production may contribute to epiphytic fitness and stress tolerance of this organism.

  9. Pseudomonas syringae enhances herbivory by suppressing the reactive oxygen burst in Arabidopsis.

    Science.gov (United States)

    Groen, Simon C; Humphrey, Parris T; Chevasco, Daniela; Ausubel, Frederick M; Pierce, Naomi E; Whiteman, Noah K

    2016-01-01

    Plant-herbivore interactions have evolved in the presence of plant-colonizing microbes. These microbes can have important third-party effects on herbivore ecology, as exemplified by drosophilid flies that evolved from ancestors feeding on plant-associated microbes. Leaf-mining flies in the genus Scaptomyza, which is nested within the paraphyletic genus Drosophila, show strong associations with bacteria in the genus Pseudomonas, including Pseudomonas syringae. Adult females are capable of vectoring these bacteria between plants and larvae show a preference for feeding on P. syringae-infected leaves. Here we show that Scaptomyza flava larvae can also vector P. syringae to and from feeding sites, and that they not only feed more, but also develop faster on plants previously infected with P. syringae. Our genetic and physiological data show that P. syringae enhances S. flava feeding on infected plants at least in part by suppressing anti-herbivore defenses mediated by reactive oxygen species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Information Management of Genome Enabled Data Streams for Pseudomonas syringae on the Pseudomonas-Plant Interaction (PPI Website

    Directory of Open Access Journals (Sweden)

    Magdalen Lindeberg

    2011-11-01

    Full Text Available Genome enabled research has led to a large and ever-growing body of data on Pseudomonas syringae genome variation and characteristics, though systematic capture of this information to maximize access by the research community remains a significant challenge. Major P. syringae data streams include genome sequence data, newly identified type III effectors, biological characterization data for type III effectors, and regulatory feature characterization. To maximize data access, the Pseudomonas-Plant Interaction (PPI website [1] is primarily focused on categorization of type III effectors and curation of effector functional data represented in the Hop database and Pseudomonas-Plant Interaction Resource, respectively. The PPI website further serves as a conduit for incorporation of new genome characterization data into the annotation records at NCBI and other data repositories, and clearinghouse for additional data sets and updates in response to the evolving needs of the research community.

  11. Genome Sequences of Two Pseudomonas syringae pv. tomato Race 1 Strains, Isolated from Tomato Fields in California

    OpenAIRE

    Thapa, Shree P.; Coaker, Gitta

    2016-01-01

    Pseudomonas syringae pv. tomato race 1 strains have evolved to overcome genetic resistance in tomato. Here, we present the draft genome sequences of two race 1 P.?syringae pv. tomato strains, A9 and 407, isolated from diseased tomato plants in California.

  12. Bacterial canker of plum caused by Pseudomonas syringae pathovars, as a serious threat for plum production in the Netherlands

    NARCIS (Netherlands)

    Wenneker, M.; Janse, J.D.; Bruine, de A.; Vink, P.; Pham, K.T.K.

    2012-01-01

    In the Netherlands, bacterial canker of plum trees (Prunus domestica) caused by Pseudomonas syringae pathovars syringae and morsprunorum is a recent and serious problem. The trunks of the affected plum trees are girdled by cankers resulting in relatively sudden death of the trees 1 to 4 years after

  13. Effects of ambroxol on alginate of mature Pseudomonas aeruginosa biofilms.

    Science.gov (United States)

    Li, Fang; Yu, Jialin; Yang, Hua; Wan, Zhenyan; Bai, Dan

    2008-07-01

    Biofilm-forming bacteria Pseudomonas aeruginosa is a common pathogen in mechanically ventilated newborns, which can cause life-threatening infections. Alginate of mucoid Pseudomonas aeruginosa biofilms is considered an important virulence factor which contributes to the resistance to antibiotics. Traditionally, ambroxol is widely used in newborns with lung problems as a mucolytic agent and antioxidant agent as well. And there are few studies that demonstrated the anti-biofilm activity of ambroxol. In this study, we found that ambroxol can affect the structure of mucoid Pseudomonas aeruginosa biofilms. Further, we found that ambroxol reduces the production of alginate, the expression of the important genes and the activity of key enzyme guanosine diphospho-D-mannose dehydrogenase (GDP-mannose dehydrogenase; GMD) which were involved in alginate biosynthesis.

  14. Characterization of five ECF sigma factors in the genome of Pseudomonas syringae pv. syringae B728a.

    Directory of Open Access Journals (Sweden)

    Poulami Basu Thakur

    Full Text Available Pseudomonas syringae pv. syringae B728a, a bacterial pathogen of bean, utilizes large surface populations and extracellular signaling to initiate a fundamental change from an epiphytic to a pathogenic lifestyle. Extracytoplasmic function (ECF sigma (σ factors serve as important regulatory factors in responding to various environmental signals. Bioinformatic analysis of the B728a genome revealed 10 ECF sigma factors. This study analyzed deletion mutants of five previously uncharacterized ECF sigma factor genes in B728a, including three FecI-type ECF sigma factors (ECF5, ECF6, and ECF7 and two ECF sigma factors placed in groups ECF11 and ECF18. Transcriptional profiling by qRT-PCR analysis of ECF sigma factor mutants was used to measure expression of their associated anti-sigma and outer membrane receptor proteins, and expression of genes associated with production of extracellular polysaccharides, fimbriae, glycine betaine and syringomycin. Notably, the B728aΔecf7 mutant displayed reduced swarming and had decreased expression of CupC fimbrial genes. Growth and pathogenicity assays, using a susceptible bean host, revealed that none of the tested sigma factor genes are required for in planta growth and lesion formation.

  15. Spatial and temporal dynamics of primary and secondary metabolism in Phaseolus vulgaris challenged by Pseudomonas syringae.

    Science.gov (United States)

    Pérez-Bueno, María Luisa; Pineda, Mónica; Díaz-Casado, Elena; Barón, Matilde

    2015-01-01

    Many defense mechanisms contribute to the plant immune system against pathogens, involving the regulation of different processes of the primary and secondary metabolism. At the same time, pathogens have evolved mechanisms to hijack the plant defense in order to establish the infection and proliferate. Localization and timing of the host response are essential to understand defense mechanisms and resistance to pathogens (Rico et al. 2011). Imaging techniques, such as fluorescence imaging and thermography, are a very valuable tool providing spatial and temporal information about a series of plant processes. In this study, bean plants challenged with two pathovars of Pseudomonas syringae have been investigated. Pseudomonas syringae pv. phaseolicola 1448A and P. syringae pv. tomato DC3000 elicit a compatible and incompatible interaction in bean, respectively. Both types of host-pathogen interaction triggered different changes in the activity of photosynthesis and the secondary metabolism. We conclude that the combined analysis of leaf temperature, chlorophyll fluorescence and green fluorescence emitted by phenolics allows to discriminate compatible from incompatible P. syringae-Phaseolus vulgaris interactions in very early times of the infection, prior to the development of symptoms. These can constitute disease signatures that would allow an early identification of emerging plagues in crops. © 2014 Scandinavian Plant Physiology Society.

  16. Bacteriocin Typing of Some Turkish Isolates of Pseudomonas syringae pv. phaseolicola

    OpenAIRE

    Güven, Kıymet

    2000-01-01

    Eighty-six Pseudomonas syringae pv. phaseolicola isolates collected from different bean growing areas in Eskişehir were typed for the production of bacteriocin.All the isolates tested produced bacteriocin and 24 bacteriosin groups were determined. No correlation was found between the bacteriocin groups and geographical origin. Authentic isolates of the bacterium representing 3 different races were also tested for bacteriocin production and bacteriocin types did not correlate with the races.

  17. Thermo-regulation of genes mediating motility and plant interactions in Pseudomonas syringae.

    Directory of Open Access Journals (Sweden)

    Kevin L Hockett

    Full Text Available Pseudomonas syringae is an important phyllosphere colonist that utilizes flagellum-mediated motility both as a means to explore leaf surfaces, as well as to invade into leaf interiors, where it survives as a pathogen. We found that multiple forms of flagellum-mediated motility are thermo-suppressed, including swarming and swimming motility. Suppression of swarming motility occurs between 28° and 30 °C, which coincides with the optimal growth temperature of P. syringae. Both fliC (encoding flagellin and syfA (encoding a non-ribosomal peptide synthetase involved in syringafactin biosynthesis were suppressed with increasing temperature. RNA-seq revealed 1440 genes of the P. syringae genome are temperature sensitive in expression. Genes involved in polysaccharide synthesis and regulation, phage and IS elements, type VI secretion, chemosensing and chemotaxis, translation, flagellar synthesis and motility, and phytotoxin synthesis and transport were generally repressed at 30 °C, while genes involved in transcriptional regulation, quaternary ammonium compound metabolism and transport, chaperone/heat shock proteins, and hypothetical genes were generally induced at 30 °C. Deletion of flgM, a key regulator in the transition from class III to class IV gene expression, led to elevated and constitutive expression of fliC regardless of temperature, but did not affect thermo-regulation of syfA. This work highlights the importance of temperature in the biology of P. syringae, as many genes encoding traits important for plant-microbe interactions were thermo-regulated.

  18. Comparative genomics reveals genes significantly associated with woody hosts in the plant pathogen Pseudomonas syringae.

    Science.gov (United States)

    Nowell, Reuben W; Laue, Bridget E; Sharp, Paul M; Green, Sarah

    2016-12-01

    The diversification of lineages within Pseudomonas syringae has involved a number of adaptive shifts from herbaceous hosts onto various species of tree, resulting in the emergence of highly destructive diseases such as bacterial canker of kiwi and bleeding canker of horse chestnut. This diversification has involved a high level of gene gain and loss, and these processes are likely to play major roles in the adaptation of individual lineages onto their host plants. In order to better understand the evolution of P. syringae onto woody plants, we have generated de novo genome sequences for 26 strains from the P. syringae species complex that are pathogenic on a range of woody species, and have looked for statistically significant associations between gene presence and host type (i.e. woody or herbaceous) across a phylogeny of 64 strains. We have found evidence for a common set of genes associated with strains that are able to colonize woody plants, suggesting that divergent lineages have acquired similarities in genome composition that may form the genetic basis of their adaptation to woody hosts. We also describe in detail the gain, loss and rearrangement of specific loci that may be functionally important in facilitating this adaptive shift. Overall, our analyses allow for a greater understanding of how gene gain and loss may contribute to adaptation in P. syringae. © 2016 The Authors. Molecular Plant Pathology published by British Society for Plant Pathology and John Wiley & Sons Ltd.

  19. BOX-PCR-based identification of bacterial species belonging to Pseudomonas syringae: P. viridiflava group

    Directory of Open Access Journals (Sweden)

    Abi S.A. Marques

    2008-01-01

    Full Text Available The phenotypic characteristics and genetic fingerprints of a collection of 120 bacterial strains, belonging to Pseudomonas syringae sensu lato group, P. viridiflava and reference bacteria were evaluated, with the aim of species identification. The numerical analysis of 119 nutritional characteristics did not show patterns that would help with identification. Regarding the genetic fingerprinting, the results of the present study supported the observation that BOX-PCR seems to be able to identify bacterial strains at species level. After numerical analyses of the bar-codes, all pathovars belonging to each one of the nine described genomospecies were clustered together at a distance of 0.72, and could be separated at genomic species level. Two P. syringae strains of unknown pathovars (CFBP 3650 and CFBP 3662 and the three P. syringae pv. actinidiae strains were grouped in two extra clusters and might eventually constitute two new species. This genomic species clustering was particularly evident for genomospecies 4, which gathered P. syringae pvs. atropurpurea, coronafaciens, garçae, oryzae, porri, striafaciens, and zizaniae at a noticeably low distance.

  20. Fungicidal activities and mechanisms of action of Pseudomonas syringae pv. syringae lipodepsipeptide syringopeptins 22A and 25A

    Directory of Open Access Journals (Sweden)

    Mekki F. Bensaci

    2011-10-01

    Full Text Available The plant-associated bacterium Pseudomonas syringae pv. syringae simultaneously produces two classes of metabolites: the small cyclic lipodepsinonapeptides such as the syringomycins and the larger cyclic lipodepsipeptide syringopeptins SP22 or SP25. The syringomycins inhibit a broad spectrum of fungi (but particularly yeasts by lipid-dependent membrane interaction. The syringopeptins are phytotoxic and inhibitory to Gram positive bacteria. In this study, the fungicidal activities of two major syringopeptins, SP22A and SP25A, and their mechanisms of action were investigated and compared to those of syringomycin E. SP22A and SP25A were observed to inhibit the fungal yeasts Saccharomyces cerevisiae and Candida albicans although less effectively than syringomycin E. S. cerevisiae mutants defective in ergosterol and sphingolipid biosyntheses were less susceptible to SP22A and SP25A but the relative inhibitory capabilities of SRE vs. SP22A and SP25A were maintained. Similar differences were observed for capabilities to cause cellular K+ and Ca2+ fluxes in S. cerevisiae. Interestingly, in phospholipid bilayers the syringopeptins are found to induce larger macroscopic ionic conductances than syringomycin E but form single channels with similar properties. These findings suggest that the syringopeptins target the yeast plasma membrane, and, like syringomycin E, employ a lipid-dependent channel forming mechanism of action. The differing degrees of growth inhibition by these lipodepsipeptides may be explained by differences in their hydrophobicity. The more hydrophobic SP22A and SP25A might interact more strongly with the yeast cell wall that would create a selective barrier for their incorporation into the plasma membrane.

  1. Resistant and susceptible responses in alfalfa (Medicago sativa) to bacterial stem blight caused by Pseudomonas syringae pv. syringae.

    Science.gov (United States)

    Nemchinov, Lev G; Shao, Jonathan; Lee, Maya N; Postnikova, Olga A; Samac, Deborah A

    2017-01-01

    Bacterial stem blight caused by Pseudomonas syringae pv. syringae is a common disease of alfalfa (Medicago sativa L). Little is known about host-pathogen interactions and host defense mechanisms. Here, individual resistant and susceptible plants were selected from cultivars Maverick and ZG9830 and used for transcript profiling at 24 and 72 hours after inoculation (hai) with the isolate PssALF3. Bioinformatic analysis revealed a number of differentially expressed genes (DEGs) in resistant and susceptible genotypes. Although resistant plants from each cultivar produced a hypersensitive response, transcriptome analyses indicated that they respond differently at the molecular level. The number of DEGs was higher in resistant plants of ZG9830 at 24 hai than in Maverick, suggesting that ZG9830 plants had a more rapid effector triggered immune response. Unique up-regulated genes in resistant ZG9830 plants included genes encoding putative nematode resistance HSPRO2-like proteins, orthologs for the rice Xa21 and soybean Rpg1-b resistance genes, and TIR-containing R genes lacking both NBS and LRR domains. The suite of R genes up-regulated in resistant Maverick plants had an over-representation of R genes in the CC-NBS-LRR family including two genes for atypical CCR domains and a putative ortholog of the Arabidopsis RPM1 gene. Resistance in both cultivars appears to be mediated primarily by WRKY family transcription factors and expression of genes involved in protein phosphorylation, regulation of transcription, defense response including synthesis of isoflavonoids, and oxidation-reduction processes. These results will further the identification of mechanisms involved in resistance to facilitate selection of parent populations and development of commercial varieties.

  2. Resistant and susceptible responses in alfalfa (Medicago sativa to bacterial stem blight caused by Pseudomonas syringae pv. syringae.

    Directory of Open Access Journals (Sweden)

    Lev G Nemchinov

    Full Text Available Bacterial stem blight caused by Pseudomonas syringae pv. syringae is a common disease of alfalfa (Medicago sativa L. Little is known about host-pathogen interactions and host defense mechanisms. Here, individual resistant and susceptible plants were selected from cultivars Maverick and ZG9830 and used for transcript profiling at 24 and 72 hours after inoculation (hai with the isolate PssALF3. Bioinformatic analysis revealed a number of differentially expressed genes (DEGs in resistant and susceptible genotypes. Although resistant plants from each cultivar produced a hypersensitive response, transcriptome analyses indicated that they respond differently at the molecular level. The number of DEGs was higher in resistant plants of ZG9830 at 24 hai than in Maverick, suggesting that ZG9830 plants had a more rapid effector triggered immune response. Unique up-regulated genes in resistant ZG9830 plants included genes encoding putative nematode resistance HSPRO2-like proteins, orthologs for the rice Xa21 and soybean Rpg1-b resistance genes, and TIR-containing R genes lacking both NBS and LRR domains. The suite of R genes up-regulated in resistant Maverick plants had an over-representation of R genes in the CC-NBS-LRR family including two genes for atypical CCR domains and a putative ortholog of the Arabidopsis RPM1 gene. Resistance in both cultivars appears to be mediated primarily by WRKY family transcription factors and expression of genes involved in protein phosphorylation, regulation of transcription, defense response including synthesis of isoflavonoids, and oxidation-reduction processes. These results will further the identification of mechanisms involved in resistance to facilitate selection of parent populations and development of commercial varieties.

  3. Genomic Distribution and Divergence of Levansucrase-Coding Genes in Pseudomonas syringae

    Directory of Open Access Journals (Sweden)

    Matthias S. Ullrich

    2012-02-01

    Full Text Available In the plant pathogenic bacterium, Pseudomonas syringae, the exopolysaccharide levan is synthesized by extracellular levansucrase (Lsc, which is encoded by two conserved 1,296-bp genes termed lscB and lscC in P. syringae strain PG4180. A third gene, lscA, is homologous to the 1,248-bp lsc gene of the bacterium Erwinia amylovora, causing fire blight. However, lscA is not expressed in P. syringae strain PG4180. Herein, PG4180 lscA was shown to be expressed from its native promoter in the Lsc-deficient E. amylovora mutant, Ea7/74-LS6, suggesting that lscA might be closely related to the E. amylovora lsc gene. Nucleotide sequence analysis revealed that lscB and lscC homologs in several P. syringae strains are part of a highly conserved 1.8-kb region containing the ORF, flanked by 450-452-bp and 49-51-bp up- and downstream sequences, respectively. Interestingly, the 450-452-bp upstream sequence, along with the initial 48-bp ORF sequence encoding for the N-terminal 16 amino acid residues of Lsc, were found to be highly similar to the respective sequence of a putatively prophage-borne glycosyl hydrolase-encoding gene in several P. syringae genomes. Minimal promoter regions of lscB and lscC were mapped in PG4180 by deletion analysis and were found to be located in similar positions upstream of lsc genes in three P. syringae genomes. Thus, a putative 498-500-bp promoter element was identified, which possesses the prophage-associated com gene and DNA encoding common N-terminal sequences of all 1,296-bp Lsc and two glycosyl hydrolases. Since the gene product of the non-expressed 1,248-bp lscA is lacking this conserved N-terminal region but is otherwise highly homologous to those of lscB and lscC, it was concluded that lscA might have been the ancestral lsc gene in E. amylovora and P. syringae. Our data indicated that its highly expressed paralogs in P. syringae are probably derived from subsequent recombination events initiated by insertion of the 498

  4. Survival and electrotransformation of Pseudomonas syringae strains under simulated cloud-like conditions.

    Science.gov (United States)

    Blanchard, Laurine S; Monin, Anaïs; Ouertani, Hounaïda; Touaibia, Lamia; Michel, Elisa; Buret, François; Simonet, Pascal; Morris, Cindy E; Demanèche, Sandrine

    2017-05-01

    To diversify their genetic material, and thereby allow adaptation to environmental disturbances and colonization of new ecological niches, bacteria use various evolutionary processes, including the acquisition of new genetic material by horizontal transfer mechanisms such as conjugation, transduction and transformation. Electrotransformation mediated by lightning-related electrical phenomena may constitute an additional gene-transfer mechanism occurring in nature. The presence in clouds of bacteria such as Pseudomonas syringae capable of forming ice nuclei that lead to precipitation, and that are likely to be involved in triggering lightning, led us to postulate that natural electrotransformation in clouds may contribute to the adaptive potential of these bacteria. Here, we quantify the survival rate of 10 P. syringae strains in liquid and icy media under such electrical pulses and their capacity to acquire exogenous DNA. In comparison to two other bacteria (Pseudomonas sp. N3 and Escherichia coli TOP10), P. syringae CC0094 appears to be best adapted for survival and for genetic electrotransformation under these conditions, which suggests that this bacterium would be able to survive and to get a boost in its adaptive potential while being transported in clouds and falling back to Earth with precipitation from storms. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. The life history of Pseudomonas syringae: linking agriculture to earth system processes.

    Science.gov (United States)

    Morris, Cindy E; Monteil, Caroline L; Berge, Odile

    2013-01-01

    The description of the ecology of Pseudomonas syringae is moving away from that of a ubiquitous epiphytic plant pathogen to one of a multifaceted bacterium sans frontières in fresh water and other ecosystems linked to the water cycle. Discovery of the aquatic facet of its ecology has led to a vision of its life history that integrates spatial and temporal scales spanning billions of years and traversing catchment basins, continents, and the planet and that confronts the implication of roles that are potentially conflicting for agriculture (as a plant pathogen and as an actor in processes leading to rain and snowfall). This new ecological perspective has also yielded insight into epidemiological phenomena linked to disease emergence. Overall, it sets the stage for the integration of more comprehensive contexts of ecology and evolutionary history into comparative genomic analyses to elucidate how P. syringae subverts the attack and defense responses of the cohabitants of the diverse environments it occupies.

  6. Suppression of plant defense responses by extracellular metabolites from Pseudomonas syringae pv. tabaci in Nicotiana benthamiana.

    Science.gov (United States)

    Lee, Seonghee; Yang, Dong Sik; Uppalapati, Srinivasa Rao; Sumner, Lloyd W; Mysore, Kirankumar S

    2013-04-18

    Pseudomonas syringae pv. tabaci (Pstab) is the causal agent of wildfire disease in tobacco plants. Several pathovars of Pseudomonas syringae produce a phytotoxic extracellular metabolite called coronatine (COR). COR has been shown to suppress plant defense responses. Interestingly, Pstab does not produce COR but still actively suppresses early plant defense responses. It is not clear if Pstab produces any extracellular metabolites that actively suppress early defense during bacterial pathogenesis. We found that the Pstab extracellular metabolite extracts (Pstab extracts) remarkably suppressed stomatal closure and nonhost hypersensitive response (HR) cell death induced by a nonhost pathogen, P. syringae pv. tomato T1 (Pst T1), in Nicotiana benthamiana. We also found that the accumulation of nonhost pathogens, Pst T1 and P. syringae pv. glycinea (Psgly), was increased in N. benthamiana plants upon treatment with Pstab extracts . The HR cell death induced by Pathogen-Associated Molecular Pattern (INF1), gene-for-gene interaction (Pto/AvrPto and Cf-9/AvrCf-9) and ethanol was not delayed or suppressed by Pstab extracts. We performed metabolite profiling to investigate the extracellular metabolites from Pstab using UPLC-qTOF-MS and identified 49 extracellular metabolites from the Pstab supernatant culture. The results from gene expression profiling of PR-1, PR-2, PR-5, PDF1.2, ABA1, COI1, and HSR203J suggest that Pstab extracellular metabolites may interfere with SA-mediated defense pathways. In this study, we found that Pstab extracts suppress plant defense responses such as stomatal closure and nonhost HR cell death induced by the nonhost bacterial pathogen Pst T1 in N. benthamiana.

  7. AtMIN7 mediated disease resistance to Pseudomonas syringae in Arabidopsis

    Science.gov (United States)

    He, Sheng Yang [Okemos, MI; Nomura, Kinya [East Lansing, MI

    2011-07-26

    The present invention relates to compositions and methods for enhancing plant defenses against pathogens. More particularly, the invention relates to enhancing plant immunity against bacterial pathogens, wherein AtMIN7 mediated protection is enhanced and/or there is a decrease in activity of an AtMIN7 associated virulence protein such as a Pseudomonas syringae pv. tomato DC3000 HopM1. Reagents of the present invention provide a means of studying cellular trafficking while formulations of the present inventions provide increased pathogen resistance in plants.

  8. Pseudomonas syringae evades host Immunity by degrading flagellin monomers with alkaline protease AprA

    OpenAIRE

    Pel, M.J.C.; Dijken, A.J.H. van; Bardoel, B.W.; Seidl, M.F.; Ent, S. van der; van Strijp, J. A. G.

    2014-01-01

    Bacterial flagellin molecules are strong inducers of innate immune responses in both mammals and plants. The opportunistic pathogen Pseudomonas aeruginosa secretes an alkaline protease called AprA that degrades flagellin monomers. Here, we show that AprA is widespread among a wide variety of bacterial species. In addition, we investigated the role of AprA in virulence of the bacterial plant athogen P. syringae pv. tomato DC3000. The AprA-deficient DC3000 ΔaprA knockout mutant was significantl...

  9. Yersiniabactin production by Pseudomonas syringae and Escherichia coli, and description of a second yersiniabactin locus evolutionary group.

    Science.gov (United States)

    Bultreys, Alain; Gheysen, Isabelle; de Hoffmann, Edmond

    2006-06-01

    The siderophore and virulence factor yersiniabactin is produced by Pseudomonas syringae. Yersiniabactin was originally detected by high-pressure liquid chromatography (HPLC); commonly used PCR tests proved ineffective. Yersiniabactin production in P. syringae correlated with the possession of irp1 located in a predicted yersiniabactin locus. Three similarly divergent yersiniabactin locus groups were determined: the Yersinia pestis group, the P. syringae group, and the Photorhabdus luminescens group; yersiniabactin locus organization is similar in P. syringae and P. luminescens. In P. syringae pv. tomato DC3000, the locus has a high GC content (63.4% compared with 58.4% for the chromosome and 60.1% and 60.7% for adjacent regions) but it lacks high-pathogenicity-island features, such as the insertion in a tRNA locus, the integrase, and insertion sequence elements. In P. syringae pv. tomato DC3000 and pv. phaseolicola 1448A, the locus lies between homologues of Psyr_2284 and Psyr_2285 of P. syringae pv. syringae B728a, which lacks the locus. Among tested pseudomonads, a PCR test specific to two yersiniabactin locus groups detected a locus in genospecies 3, 7, and 8 of P. syringae, and DNA hybridization within P. syringae also detected a locus in the pathovars phaseolicola and glycinea. The PCR and HPLC methods enabled analysis of nonpathogenic Escherichia coli. HPLC-proven yersiniabactin-producing E. coli lacked modifications found in irp1 and irp2 in the human pathogen CFT073, and it is not clear whether CFT073 produces yersiniabactin. The study provides clues about the evolution and dispersion of yersiniabactin genes. It describes methods to detect and study yersiniabactin producers, even where genes have evolved.

  10. Arabidopsis cysteine-rich receptor-like kinase 45 positively regulates disease resistance to Pseudomonas syringae.

    Science.gov (United States)

    Zhang, Xiujuan; Han, Xiaomin; Shi, Rui; Yang, Guanyu; Qi, Liwang; Wang, Ruigang; Li, Guojing

    2013-12-01

    Arabidopsis cysteine-rich receptor-like protein kinase 45 (CRK45) was found to be involved in ABA signaling in Arabidopsis thaliana previously. Here, we reported that it also positively regulates disease resistance. The CRK45 overexpression plants increased expression of the defense genes, and enhanced resistance to Pseudomonas syringae whereas the crk45 mutant were more sensitive to P. syringae and weakened expression of the defense genes, compared to the wild type. We also found that treatment with P. syringae leads to a declined expression of CRK45 in the npr1 mutant and the NahG transgenic plants. At the same time, significantly decreased expression of CRK45 transcript in the wrky70 mutant than that in the wild type was also detected. Our results suggested that CRK45 acted as a positive regulator in Arabidopsis disease resistance, and was regulated downstream of NPR1 and WRKY70 at the transcriptional level. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  11. HopW1 from Pseudomonas syringae disrupts the actin cytoskeleton to promote virulence in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Yongsung Kang

    2014-06-01

    Full Text Available A central mechanism of virulence of extracellular bacterial pathogens is the injection into host cells of effector proteins that modify host cellular functions. HopW1 is an effector injected by the type III secretion system that increases the growth of the plant pathogen Pseudomonas syringae on the Columbia accession of Arabidopsis. When delivered by P. syringae into plant cells, HopW1 causes a reduction in the filamentous actin (F-actin network and the inhibition of endocytosis, a known actin-dependent process. When directly produced in plants, HopW1 forms complexes with actin, disrupts the actin cytoskeleton and inhibits endocytosis as well as the trafficking of certain proteins to vacuoles. The C-terminal region of HopW1 can reduce the length of actin filaments and therefore solubilize F-actin in vitro. Thus, HopW1 acts by disrupting the actin cytoskeleton and the cell biological processes that depend on actin, which in turn are needed for restricting P. syringae growth in Arabidopsis.

  12. Immunomodulation by the Pseudomonas syringae HopZ type III effector family in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Jennifer D Lewis

    Full Text Available Pseudomonas syringae employs a type III secretion system to inject 20-30 different type III effector (T3SE proteins into plant host cells. A major role of T3SEs is to suppress plant immune responses and promote bacterial infection. The YopJ/HopZ acetyltransferases are a superfamily of T3SEs found in both plant and animal pathogenic bacteria. In P. syringae, this superfamily includes the evolutionarily diverse HopZ1, HopZ2 and HopZ3 alleles. To investigate the roles of the HopZ family in immunomodulation, we generated dexamethasone-inducible T3SE transgenic lines of Arabidopsis for HopZ family members and characterized them for immune suppression phenotypes. We show that all of the HopZ family members can actively suppress various facets of Arabidopsis immunity in a catalytic residue-dependent manner. HopZ family members can differentially suppress the activation of mitogen-activated protein (MAP kinase cascades or the production of reactive oxygen species, whereas all members can promote the growth of non-virulent P. syringae. Localization studies show that four of the HopZ family members containing predicted myristoylation sites are localized to the vicinity of the plasma membrane while HopZ3 which lacks the myristoylation site is at least partially nuclear localized, suggesting diversification of immunosuppressive mechanisms. Overall, we demonstrate that despite significant evolutionary diversification, all HopZ family members can suppress immunity in Arabidopsis.

  13. Biocontrol activity of Paenibacillus polymyxa AC-1 against Pseudomonas syringae and its interaction with Arabidopsis thaliana.

    Science.gov (United States)

    Hong, Chi Eun; Kwon, Suk Yoon; Park, Jeong Mee

    2016-04-01

    Paenibacillus polymyxa AC-1 (AC-1) is a plant growth-promoting rhizobacterium (PGPR) that has been used as a soil inoculant for biocontrol of plant pathogenic fungi and to promote plant growth. In this study, we examine the effects of AC-1 on the bacterial phytopathogen Pseudomonas syringae and internal colonization of AC-1 by counting bacterial populations that colonize plants. AC-1 inhibited the growth of both P. syringae pv. tomato DC3000 (Pst) and P. syringae pv. tabaci (Pta) in a concentration-dependent manner in in vitro assays. Upon treatment of AC-1 dropping at root tip of axenically grown Arabidopsis, we found that most of the AC-1 was detected in interior of leaves of Arabidiopsis plants rather than roots after 5 days post infection, indicating systemic spreading of AC-1 occur. We examined further AC-1 colonization patterns in Arabidopsis mutants deficient in phytohormone signaling pathways. These results indicated that abscisic acid (ABA) and jasmonic acid (JA) signaling pathways positively and negatively contributed, respectively, to AC-1 colonization of leaves, whereas epiphytic accumulation of AC-1 around root tissues was not affected. This study shows that AC-1 is an effective biocontrol agent to suppress P. syringae growth, possibly owing to its colonization patterns as a leaf-inhabiting endophyte. The results showed in this work will help to expand our understanding of the mode of action of AC-1 as a biological control agent and consequently, its application in agriculture. Copyright © 2016 Elsevier GmbH. All rights reserved.

  14. Functional analysis of Arabidopsis WRKY25 transcription factor in plant defense against Pseudomonas syringae.

    Science.gov (United States)

    Zheng, Zuyu; Mosher, Stephen L; Fan, Baofang; Klessig, Daniel F; Chen, Zhixiang

    2007-01-10

    A common feature of plant defense responses is the transcriptional regulation of a large number of genes upon pathogen infection or treatment with pathogen elicitors. A large body of evidence suggests that plant WRKY transcription factors are involved in plant defense including transcriptional regulation of plant host genes in response to pathogen infection. However, there is only limited information about the roles of specific WRKY DNA-binding transcription factors in plant defense. We analyzed the role of the WRKY25 transcription factor from Arabidopsis in plant defense against the bacterial pathogen Pseudomonas syringae. WRKY25 protein recognizes the TTGACC W-box sequences and its translational fusion with green fluorescent protein is localized to the nucleus. WRKY25 expression is responsive to general environmental stress. Analysis of stress-induced WRKY25 in the defense signaling mutants npr1, sid2, ein2 and coi1 further indicated that this gene is positively regulated by the salicylic acid (SA) signaling pathway and negatively regulated by the jasmonic acid signaling pathway. Two independent T-DNA insertion mutants for WRKY25 supported normal growth of a virulent strain of P. syringae but developed reduced disease symptoms after infection. By contrast, Arabidopsis constitutively overexpressing WRKY25 supported enhanced growth of P. syringae and displayed increased disease symptom severity as compared to wild-type plants. These WRKY25-overexpressing plants also displayed reduced expression of the SA-regulated PR1 gene after the pathogen infection, despite normal levels of free SA. The nuclear localization and sequence-specific DNA-binding activity support that WRKY25 functions as a transcription factor. Based on analysis of both T-DNA insertion mutants and transgenic overexpression lines, stress-induced WRKY25 functions as a negative regulator of SA-mediated defense responses to P. syringae. This proposed role is consistent with the recent finding that WRKY25

  15. Dynamic evolution of pathogenicity revealed by sequencing and comparative genomics of 19 Pseudomonas syringae isolates.

    Directory of Open Access Journals (Sweden)

    David A Baltrus

    2011-07-01

    Full Text Available Closely related pathogens may differ dramatically in host range, but the molecular, genetic, and evolutionary basis for these differences remains unclear. In many Gram- negative bacteria, including the phytopathogen Pseudomonas syringae, type III effectors (TTEs are essential for pathogenicity, instrumental in structuring host range, and exhibit wide diversity between strains. To capture the dynamic nature of virulence gene repertoires across P. syringae, we screened 11 diverse strains for novel TTE families and coupled this nearly saturating screen with the sequencing and assembly of 14 phylogenetically diverse isolates from a broad collection of diseased host plants. TTE repertoires vary dramatically in size and content across all P. syringae clades; surprisingly few TTEs are conserved and present in all strains. Those that are likely provide basal requirements for pathogenicity. We demonstrate that functional divergence within one conserved locus, hopM1, leads to dramatic differences in pathogenicity, and we demonstrate that phylogenetics-informed mutagenesis can be used to identify functionally critical residues of TTEs. The dynamism of the TTE repertoire is mirrored by diversity in pathways affecting the synthesis of secreted phytotoxins, highlighting the likely role of both types of virulence factors in determination of host range. We used these 14 draft genome sequences, plus five additional genome sequences previously reported, to identify the core genome for P. syringae and we compared this core to that of two closely related non-pathogenic pseudomonad species. These data revealed the recent acquisition of a 1 Mb megaplasmid by a sub-clade of cucumber pathogens. This megaplasmid encodes a type IV secretion system and a diverse set of unknown proteins, which dramatically increases both the genomic content of these strains and the pan-genome of the species.

  16. Dynamic evolution of pathogenicity revealed by sequencing and comparative genomics of 19 Pseudomonas syringae isolates.

    Science.gov (United States)

    Baltrus, David A; Nishimura, Marc T; Romanchuk, Artur; Chang, Jeff H; Mukhtar, M Shahid; Cherkis, Karen; Roach, Jeff; Grant, Sarah R; Jones, Corbin D; Dangl, Jeffery L

    2011-07-01

    Closely related pathogens may differ dramatically in host range, but the molecular, genetic, and evolutionary basis for these differences remains unclear. In many Gram- negative bacteria, including the phytopathogen Pseudomonas syringae, type III effectors (TTEs) are essential for pathogenicity, instrumental in structuring host range, and exhibit wide diversity between strains. To capture the dynamic nature of virulence gene repertoires across P. syringae, we screened 11 diverse strains for novel TTE families and coupled this nearly saturating screen with the sequencing and assembly of 14 phylogenetically diverse isolates from a broad collection of diseased host plants. TTE repertoires vary dramatically in size and content across all P. syringae clades; surprisingly few TTEs are conserved and present in all strains. Those that are likely provide basal requirements for pathogenicity. We demonstrate that functional divergence within one conserved locus, hopM1, leads to dramatic differences in pathogenicity, and we demonstrate that phylogenetics-informed mutagenesis can be used to identify functionally critical residues of TTEs. The dynamism of the TTE repertoire is mirrored by diversity in pathways affecting the synthesis of secreted phytotoxins, highlighting the likely role of both types of virulence factors in determination of host range. We used these 14 draft genome sequences, plus five additional genome sequences previously reported, to identify the core genome for P. syringae and we compared this core to that of two closely related non-pathogenic pseudomonad species. These data revealed the recent acquisition of a 1 Mb megaplasmid by a sub-clade of cucumber pathogens. This megaplasmid encodes a type IV secretion system and a diverse set of unknown proteins, which dramatically increases both the genomic content of these strains and the pan-genome of the species. © 2011 Baltrus et al.

  17. Differential inactivation of alfalfa nodule glutamine synthetases by tabtoxinine-. beta. -lactam. [Pseudomonas syringae

    Energy Technology Data Exchange (ETDEWEB)

    Knight, T.J.; Unkefer, P.J.

    1987-04-01

    The presence of the pathogen Pseudomonas syringae pv. tabaci within the rhizosphere of nodulated alfalfa plants results in an increase in N/sub 2/-fixation potential and growth, but a 40-50% decrease in nodule glutamine synthetase (GS) activity, as compared to nodulated control plants. Tabtoxinine-..beta..-Lactam an exocellular toxin produced by Pseudomonas syringae pv tabaci irreversibly inhibits glutamine synthetase. Partial purification of nodule GS by DEAE-cellulose chromatography reveals two enzyme forms are present (GS/sub n1/ and GS/sub n2/). In vitro inactivation of the two glutamine synthetases associated with the nodule indicates a differential sensitivity to T-..beta..-L. The nodule specific GS/sub n1/ is much less sensitive to T-..beta..-L than the GS/sub n2/ enzyme, which was found to coelute with the root enzyme (GS/sub r/). However, both GS/sub n1/ and GS/sub n2/ are rapidly inactivated by methionine sulfoximine, another irreversible inhibitor of GS.

  18. A Boolean model of the Pseudomonas syringae hrp regulon predicts a tightly regulated system.

    Directory of Open Access Journals (Sweden)

    Daniel MacLean

    Full Text Available The Type III secretion system (TTSS is a protein secretion machinery used by certain gram-negative bacterial pathogens of plants and animals to deliver effector molecules to the host and is at the core of the ability to cause disease. Extensive molecular and biochemical study has revealed the components and their interactions within this system but reductive approaches do not consider the dynamical properties of the system as a whole. In order to gain a better understanding of these dynamical behaviours and to create a basis for the refinement of the experimentally derived knowledge we created a Boolean model of the regulatory interactions within the hrp regulon of Pseudomonas syringae pathovar tomato strain DC3000 Pseudomonas syringae. We compared simulations of the model with experimental data and found them to be largely in accordance, though the hrpV node shows some differences in state changes to that expected. Our simulations also revealed interesting dynamical properties not previously predicted. The model predicts that the hrp regulon is a biologically stable two-state system, with each of the stable states being strongly attractive, a feature indicative of selection for a tightly regulated and responsive system. The model predicts that the state of the GacS/GacA node confers control, a prediction that is consistent with experimental observations that the protein has a role as master regulator. Simulated gene "knock out" experiments with the model predict that HrpL is a central information processing point within the network.

  19. WHOP, a Genomic Region Associated With Woody Hosts in the Pseudomonas syringae Complex Contributes to the Virulence and Fitness of Pseudomonas savastanoi pv. savastanoi in Olive Plants.

    Science.gov (United States)

    Caballo-Ponce, Eloy; van Dillewijn, Pieter; Wittich, Regina Michaela; Ramos, Cayo

    2017-02-01

    Bacteria from the Pseudomonas syringae complex belonging to phylogroups 1 and 3 (PG1 and PG3, respectively) isolated from woody hosts share a genomic region herein referred to as WHOP (from woody host and Pseudomonas spp.), which is absent in strains infecting herbaceous organs. In this work, we show that this region is also encoded in P. syringae pv. actinidifoliorum (PG1) and six additional members of PG3, namely, Pseudomonas savastanoi pv. retacarpa, three P. syringae pathovars, Pseudomonas meliae, and Pseudomonas amygdali. Partial conservation of the WHOP occurs in only a few PG2 strains. In P. savastanoi pv. savastanoi NCPPB 3335, the WHOP region is organized into four operons and three independently transcribed genes. While the antABC and catBCA operons mediate the catabolism of anthranilate and catechol, respectively, the ipoABC operon confers oxygenase activity to aromatic compounds. The deletion of antABC, catBCA, or ipoABC in NCPPB 3335 caused reduced virulence in woody olive plants without affecting knot formation in nonwoody plants; catBCA, dhoAB, and PSA3335_3206 (encoding a putative aerotaxis receptor) were also required for the full fitness of this strain exclusively in woody olive plants. Overall, this study sheds light on the evolution and adaptation of bacteria from the P. syringae complex to woody hosts and highlights the enzymatic activities encoded within the WHOP region that are essential for this process.

  20. The conserved hypothetical protein PSPTO_3957 is essential for virulence in the plant pathogen Pseudomonas syringae pv. tomato DC3000

    Science.gov (United States)

    The plant pathogen Pseudomonas syringae accounts for substantial crop losses and is considered an important agricultural issue. Although many genes involved in interactions of this pathogen with hosts have been identified and characterized, little is known about processes involving bacterial metabol...

  1. Atmospheric CO2 alters resistance of arabidopsis to Pseudomonas syringae by affecting abscisic acid accumulation and stomatal responsiveness to coronatine

    NARCIS (Netherlands)

    Zhou, Yeling; Vroegop-Vos, Irene; Schuurink, Robert C; Pieterse, Corné M.J.; Van Wees, Saskia C.M.

    2017-01-01

    Atmospheric CO2 influences plant growth and stomatal aperture. Effects of high or low CO2 levels on plant disease resistance are less well understood. Here, resistance of Arabidopsis thaliana against the foliar pathogen Pseudomonas syringae pv. tomato DC3000 (Pst) was investigated at three different

  2. The role of crop waste and soil in Pseudomonas syringae pathovar porri infection of leek (Allium porrum)

    NARCIS (Netherlands)

    Overbeek, van L.S.; Nijhuis, E.H.; Koenraadt, H.; Visser, J.H.M.

    2010-01-01

    Pseudomonas syringae pv. porri, the causal agent of bacterial blight of leek, is a current threat for leek (Allium porrum) production in the Netherlands. The roles of post-harvest crop waste and plant invasion from soil in leek plant infection was investigated with the purpose to gain better

  3. Conductimetric detection of Pseudomonas syringae pathover pisi in pea seeds and soft rot Erwinia spp. on potato tubers

    NARCIS (Netherlands)

    Fraaije, B.

    1996-01-01


    Pea bacterial blight and potato blackleg are diseases caused by Pseudomonas syringae pv. pisi ( Psp ) and soft rot Erwinia spp., respectively. The primary source of inoculum for these bacteria is

  4. New insights into Pseudomonas fluorescens alginate biosynthesis relevant for the establishment of an efficient production process for microbial alginates.

    Science.gov (United States)

    Maleki, Susan; Mærk, Mali; Hrudikova, Radka; Valla, Svein; Ertesvåg, Helga

    2017-07-25

    Alginate denotes a family of linear polysaccharides with a wide range of industrial and pharmaceutical applications. Presently, all commercially available alginates are manufactured from brown algae. However, bacterial alginates have advantages with regard to compositional homogeneity and reproducibility. In order to be able to design bacterial strains that are better suited for industrial alginate production, defining limiting factors for alginate biosynthesis is of vital importance. Our group has been studying alginate biosynthesis in Pseudomonas fluorescens using several complementary approaches. Alginate is synthesised and transported out of the cell by a multiprotein complex spanning from the inner to the outer membrane. We have developed an immunogold labelling procedure in which the porin AlgE, as a part of this alginate factory, could be detected by transmission electron microscopy. No time-dependent correlation between the number of such factories on the cell surface and alginate production level was found in alginate-producing strains. Alginate biosynthesis competes with the central carbon metabolism for the key metabolite fructose 6-phosphate. In P. fluorescens, glucose, fructose and glycerol, are metabolised via the Entner-Doudoroff and pentose phosphate pathways. Mutational analysis revealed that disruption of the glucose 6-phosphate dehydrogenase gene zwf-1 resulted in increased alginate production when glycerol was used as carbon source. Furthermore, alginate-producing P. fluorescens strains cultivated on glucose experience acid stress due to the simultaneous production of alginate and gluconate. The combined results from our studies strongly indicate that the availability of fructose 6-phosphate and energy requires more attention in further research aimed at the development of an optimised alginate production process. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Self-protection of Pseudomonas syringae pv. tabaci from its toxin, tabtoxinine-. beta. -lactam

    Energy Technology Data Exchange (ETDEWEB)

    Knight, T.J.; Durbin, R.D.; Langston-Unkefer, P.J.

    1987-05-01

    An extracellular toxin, tabtoxinine-..beta..-lactam (T..beta..L), is produced by Pseudomonas syringae pv. tabaci. This toxin irreversibly inhibits its target, glutamine synthetase; yet P. syringae pv. tabaci retains significant amounts of glutamine synthetase activity during toxin production in culture. As part of our investigation of the self-protection of P. syringae pv. tabaci, the authors compared the effects of T..beta..L on Tox/sup +/ (T..beta..L-producing, insensitive to T..beta..L) and Tox/sup -/ (T..beta..L nonproducing, sensitive to T..lambda..) strains. The extent of protection afforded to the Tox/sup -/ strain when induced to adenylylate glutamine synthetase was tested. It was concluded that an additional protection mechanism was required. A detoxification activity was found in the Tox/sup +/ strain which opens the epsilon-lactam ring to T..beta..L to produce the inactive, open-chain form, tabtoxinine. Whole cells of the Tox/sup +/ strain incubated for 24 h with (/sup 14/C)T..beta..L (0.276 ..mu..mol/3 x 10/sup 10/ cells) contained (/sup 14/C)tabtoxinine (0.056 ..mu..mol), and the medium contained T..beta..L (0.226 ..mu..mol). Extracts of spheroplasts of the Tox/sup +/ stain also converted T..beta..L to tabtoxinine, whereas extracts of the Tox/sup -/ strain did not alter T..beta..L. The conversion was time dependent and stoichiometric and was destroyed by boiling for 30 min or by the addition of 5mM EDTA. Penicillin, a possible substrate and competitive inhibitor of this lactamase activity, inhibited the conversion of T..lambda.. to tabtoxinine. Periplasmic fluid did not catalyze the conversion of T..beta..L.

  6. Early events in the pathogenicity of Pseudomonas syringae on Nicotiana benthamiana.

    Science.gov (United States)

    Hann, Dagmar R; Rathjen, John P

    2007-02-01

    Conserved microbial molecules known as PAMPs (pathogen-associated molecular patterns) elicit defence responses in plants through extracellular receptor proteins. One important PAMP is the flagellin protein derived from motile bacteria. We show here that the solanaceous species Nicotiana benthamiana perceives the flagellin proteins of both pathogenic and non-host species of Pseudomonas syringae. The response to flagellin required a gene closely related to that encoding the Arabidopsis thaliana flagellin receptor that we designated NbFls2. In addition, silencing of NbFls2 led to increased growth of compatible, non-host and non-pathogenic strains of P. syringae. Thus, flagellin perception restricts growth of P. syringae strains on N. benthamiana. Pathogenic bacteria secrete effector proteins into the plant cell to enhance virulence. We tested the ability of several unrelated effectors to suppress PAMP-mediated defences. The effector proteins AvrPto and AvrPtoB, but not AvrRps4, suppressed all responses tested including the hypersensitive response induced by non-host flagellins and the oomycete elicitor INF1. Strikingly, transient expression of avrPto or avrPtoB stimulated the growth of non-pathogenic Agrobacterium tumefaciensin planta, suggesting that multiplication of this species is also restricted by PAMP perception. Unexpectedly, AvrPtoB but not AvrPto required the defence-associated genes Rar1, Sgt1 and Eds1 for suppression. This observation separates the respective mechanisms of the two effectors, and suggests that AvrPtoB may target the defence machinery directly for its suppressive effect.

  7. Bacteria in the leaf ecosystem with emphasis on Pseudomonas syringae-a pathogen, ice nucleus, and epiphyte.

    Science.gov (United States)

    Hirano, S S; Upper, C D

    2000-09-01

    The extremely large number of leaves produced by terrestrial and aquatic plants provide habitats for colonization by a diversity of microorganisms. This review focuses on the bacterial component of leaf microbial communities, with emphasis on Pseudomonas syringae-a species that participates in leaf ecosystems as a pathogen, ice nucleus, and epiphyte. Among the diversity of bacteria that colonize leaves, none has received wider attention than P. syringae, as it gained notoriety for being the first recombinant organism (Ice(-) P. syringae) to be deliberately introduced into the environment. We focus on P. syringae to illustrate the attractiveness and somewhat unique opportunities provided by leaf ecosystems for addressing fundamental questions of microbial population dynamics and mechanisms of plant-bacterium interactions. Leaf ecosystems are dynamic and ephemeral. The physical environment surrounding phyllosphere microbes changes continuously with daily cycles in temperature, radiation, relative humidity, wind velocity, and leaf wetness. Slightly longer-term changes occur as weather systems pass. Seasonal climatic changes impose still a longer cycle. The physical and physiological characteristics of leaves change as they expand, mature, and senesce and as host phenology changes. Many of these factors influence the development of populations of P. syringae upon populations of leaves. P. syringae was first studied for its ability to cause disease on plants. However, disease causation is but one aspect of its life strategy. The bacterium can be found in association with healthy leaves, growing and surviving for many generations on the surfaces of leaves as an epiphyte. A number of genes and traits have been identified that contribute to the fitness of P. syringae in the phyllosphere. While still in their infancy, such research efforts demonstrate that the P. syringae-leaf ecosystem is a particularly attractive system with which to bridge the gap between what is known

  8. Comprehensive analysis of draft genomes of two closely related Pseudomonas syringae phylogroup 2b strains infecting mono and dicotyledon host plants

    Science.gov (United States)

    In recent years, the damage caused by bacterial pathogens to major crops has been increasing worldwide. Pseudomonas syringae is a widespread bacterial species that infects almost all major crops. Different P. syringae strains use a wide range of biochemical mechanisms, including phytotoxins and effe...

  9. Clarification of Taxonomic Status within the Pseudomonas syringae Species Group Based on a Phylogenomic Analysis

    Directory of Open Access Journals (Sweden)

    Margarita Gomila

    2017-12-01

    Full Text Available The Pseudomonas syringae phylogenetic group comprises 15 recognized bacterial species and more than 60 pathovars. The classification and identification of strains is relevant for practical reasons but also for understanding the epidemiology and ecology of this group of plant pathogenic bacteria. Genome-based taxonomic analyses have been introduced recently to clarify the taxonomy of the whole genus. A set of 139 draft and complete genome sequences of strains belonging to all species of the P. syringae group available in public databases were analyzed, together with the genomes of closely related species used as outgroups. Comparative genomics based on the genome sequences of the species type strains in the group allowed the delineation of phylogenomic species and demonstrated that a high proportion of strains included in the study are misclassified. Furthermore, representatives of at least 7 putative novel species were detected. It was also confirmed that P. ficuserectae, P. meliae, and P. savastanoi are later synonyms of P. amygdali and that “P. coronafaciens” should be revived as a nomenspecies.

  10. The hygroscopic biosurfactant syringafactin produced by Pseudomonas syringae enhances fitness on leaf surfaces during fluctuating humidity.

    Science.gov (United States)

    Burch, Adrien Y; Zeisler, Viktoria; Yokota, Kenji; Schreiber, Lukas; Lindow, Steven E

    2014-07-01

    Biosurfactant production by bacteria on leaf surfaces is poorly documented, and its role in this habitat has not been explored. Therefore, we investigated the production and fitness benefits of syringafactin by Pseudomonas syringae pv. syringae B728a on leaves. Syringafactin largely adsorbed to the waxy leaf cuticle both when topically applied and when produced by cells on plants. Syringafactin increased the rate of diffusion of water across isolated cuticles and attracted water to hydrophobic surfaces exposed to high relative humidity due to its hygroscopic properties. While a wild-type and syringafactin mutant exhibited similar fitness on bean leaves incubated in static conditions, the fitness of the wild-type strain was higher under fluctuating humidity conditions typical of field conditions. When co-inoculated onto either the host plant bean or the non-host plant romaine lettuce, the proportion of viable wild-type cells recovered from plants relative to that of a mutant unable to produce syringafactin increased 10% over 10 days. The number of disease lesions incited by the wild-type strain on bean was also significantly higher than that of the syringafactin mutant. The production of hygroscopic biosurfactants on waxy leaf surfaces apparently benefits bacteria by both attracting moisture and facilitating access to nutrients. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  11. Transcriptome Analysis of Kiwifruit in Response to Pseudomonas syringae pv. actinidiae Infection

    Directory of Open Access Journals (Sweden)

    Tao Wang

    2018-01-01

    Full Text Available Kiwifruit bacterial canker caused by Pseudomonas syringae pv. actinidiae (Psa has brought about a severe threat to the kiwifruit industry worldwide since its first outbreak in 2008. Studies on other pathovars of P. syringae are revealing the pathogenesis of these pathogens, but little about the mechanism of kiwifruit bacterial canker is known. In order to explore the species-specific interaction between Psa and kiwifruit, we analyzed the transcriptomic profile of kiwifruit infected by Psa. After 48 h, 8255 differentially expressed genes were identified, including those involved in metabolic process, secondary metabolites metabolism and plant response to stress. Genes related to biosynthesis of terpens were obviously regulated, indicating terpens may play roles in suppressing the growth of Psa. We identified 283 differentially expressed resistant genes, of which most U-box domain containing genes were obviously up regulated. Expression of genes involved in plant immunity was detected and some key genes showed differential expression. Our results suggest that Psa induced defense response of kiwifruit, including PAMP (pathogen/microbe-associated molecular patterns-triggered immunity, effector-triggered immunity and hypersensitive response. Metabolic process was adjusted to adapt to these responses and production of secondary metabolites may be altered to suppress the growth of Psa.

  12. Evading plant immunity: feedback control of the T3SS in Pseudomonas syringae

    Science.gov (United States)

    Waite, Christopher; Schumacher, Jörg; Jovanovic, Milija; Bennett, Mark; Buck, Martin

    2017-01-01

    Microbes are responsible for over 10% of the global yield losses in staple crops such as wheat, rice, and maize. Understanding the decision-making strategies that enable bacterial plant pathogens to evade the host immune system and cause disease is essential for managing their ever growing threat to food security. Many utilise the needle-like type III secretion system (T3SS) to suppress plant immunity, by injecting effector proteins that inhibit eukaryotic signalling pathways into the host cell cytoplasm. Plants can in turn evolve resistance to specific pathogens via recognition and blocking of the T3SS effectors, so leading to an ongoing co-evolutionary ‘arms race’ between pathogen and host pairs. The extracytoplasmic function sigma factor HrpL co-ordinates the expression of the T3SS regulon in the leaf-dwelling Pseudomonas syringae and similar pathogens. Recently, we showed that association of HrpL with a target promoter directly adjacent to the hrpL gene imposes negative autogenous control on its own expression level due to overlapping regulatory elements. Our results suggest that by down-regulating T3SS function, this fine-tuning mechanism enables P. syringae to minimise effector-mediated elicitation of plant immunity. PMID:28435841

  13. Abscisic acid-cytokinin antagonism modulates resistance against pseudomonas syringae in Tobacco

    DEFF Research Database (Denmark)

    Grosskinsky, Dominik Kilian; van der Graaff, Eric; Roitsch, Thomas Georg

    2014-01-01

    Phytohormones are known as essential regulators of plant defenses, with ethylene, jasmonic acid, and salicylic acid as the central immunity backbone, while other phytohormones have been demonstrated to interact with this. Only recently, a function of the classic phytohormone cytokinin in plant...... immunity has been described in Arabidopsis, rice, and tobacco. Although interactions of cytokinins with salicylic acid and auxin have been indicated, the complete network of cytokinin interactions with other immunity-relevant phytohormones is not yet understood. Therefore, we studied the interaction...... of kinetin and abscisic acid as a negative regulator of plant immunity to modulate resistance in tobacco against Pseudomonas syringae. By analyzing infection symptoms, pathogen proliferation, and accumulation of the phytoalexin scopoletin as a key mediator of kinetin-induced resistance in tobacco...

  14. Assessment of strains of Pseudomonas syringae pv. tomato from Tanzania for resistance to copper and streptomycin

    DEFF Research Database (Denmark)

    Shenge, K.C.; Wydra, K.; Mabagala, M.B.

    2008-01-01

    different ecological conditions in the country. After isolation and identification, the P. s. pv. tomato strains were grown on King's medium B (KB) amended with 20% copper sulphate (w/v). The strains were also assessed for resistance to antibiotics. Results indicated that there was widespread resistance......Fifty-six strains of Pseudomonas syringae pv. tomato (P.s. pv. tomato) were collected from tomato-producing areas in Tanzania and assessed for resistance to copper and antibiotics. The collection was done from three tomato-producing regions (Morogoro, Arusha and Iringa), representing three...... of the P. s. pv. tomato strains to copper sulphate. The highest level of resistance was recorded from the Arusha region (Northern Tanzania), 83.3% of the P. s. pv. tomato strains from that region showed resistance to copper sulphate. This was followed by Iringa region (Southern Tanzania), from where...

  15. Functional analysis of Arabidopsis WRKY25 transcription factor in plant defense against Pseudomonas syringae

    Directory of Open Access Journals (Sweden)

    Klessig Daniel F

    2007-01-01

    Full Text Available Abstract Background A common feature of plant defense responses is the transcriptional regulation of a large number of genes upon pathogen infection or treatment with pathogen elicitors. A large body of evidence suggests that plant WRKY transcription factors are involved in plant defense including transcriptional regulation of plant host genes in response to pathogen infection. However, there is only limited information about the roles of specific WRKY DNA-binding transcription factors in plant defense. Results We analyzed the role of the WRKY25 transcription factor from Arabidopsis in plant defense against the bacterial pathogen Pseudomonas syringae. WRKY25 protein recognizes the TTGACC W-box sequences and its translational fusion with green fluorescent protein is localized to the nucleus. WRKY25 expression is responsive to general environmental stress. Analysis of stress-induced WRKY25 in the defense signaling mutants npr1, sid2, ein2 and coi1 further indicated that this gene is positively regulated by the salicylic acid (SA signaling pathway and negatively regulated by the jasmonic acid signaling pathway. Two independent T-DNA insertion mutants for WRKY25 supported normal growth of a virulent strain of P. syringae but developed reduced disease symptoms after infection. By contrast, Arabidopsis constitutively overexpressing WRKY25 supported enhanced growth of P. syringae and displayed increased disease symptom severity as compared to wild-type plants. These WRKY25-overexpressing plants also displayed reduced expression of the SA-regulated PR1 gene after the pathogen infection, despite normal levels of free SA. Conclusion The nuclear localization and sequence-specific DNA-binding activity support that WRKY25 functions as a transcription factor. Based on analysis of both T-DNA insertion mutants and transgenic overexpression lines, stress-induced WRKY25 functions as a negative regulator of SA-mediated defense responses to P. syringae. This

  16. Phosphatidylcholine synthesis is essential for HrpZ harpin secretion in plant pathogenic Pseudomonas syringae and non-pathogenic Pseudomonas sp. 593.

    Science.gov (United States)

    Xiong, Min; Long, Deliang; He, Huoguang; Li, Yang; Li, Yadong; Wang, Xingguo

    2014-01-01

    Pseudomonas syringae pv. syringae van Hall is important phytopathogenic bacterium of stone fruit trees, and able to elicit hypersensitive response (HR) in nonhost plants. The HrpZ, secreted via type III secretion system (T3SS) to the extracellular space of the plant, is a T3SS-dependent protein and a sole T3SS effector able to induce the host defense response outside host cells. We deleted the phosphatidylcholine synthase gene (pcs) of P. syringae pv. syringae van Hall CFCC 1336, and found that the 1336 pcs(-) mutant was unable to synthesize phosphatidylcholine and elicit a typical HR in soybean. Further studies showed that the 1336 pcs(-) mutant was unable to secrete HrpZ harpin but could express HrpZ protein in cytoplasm as effectively as the wild type. To confirm if phosphatidylcholine affects HrpZ harpin secretion, we introduced the hrpZ gene into the soil-dwelling bacterium Pseudomonas sp. 593 and the 593 pcs(-) mutant, which were unable to express HrpZ harpin and elicit HR in tobacco or soybean. Western blotting and HR assay showed that the 593H not only secreted HrpZ harpin but also caused a strong HR in tobacco and soybean. In contrast, the 593 pcs(-)H only expressed HrpZ protein in its cytoplasm at the wild type level, but did not secrete HrpZ harpin or elicit HR reaction. Our results demonstrate that phosphatidylcholine is essential for the secretion of HrpZ harpin in P. syringae pv. syringae van Hall and other Pseudomonas strains. Copyright © 2013 Elsevier GmbH. All rights reserved.

  17. Pathovars of Pseudomonas syringae Causing Bacterial Brown Spot and Halo Blight in Phaseolus vulgaris L. Are Distinguishable by Ribotyping

    Science.gov (United States)

    González, Ana J.; Landeras, Elena; Mendoza, M. Carmen

    2000-01-01

    Ribotyping was evaluated as a method to differentiate between Pseudomonas syringae pv. phaseolicola and pv. syringae strains causing bacterial brown spot and halo blight diseases in Phaseolus vulgaris L. Ribotyping, with restriction enzymes BglI and SalI and using the Escherichia coli rrnB operon as the probe, differentiated 11 and 14 ribotypes, respectively, and a combination of data from both procedures yielded 19 combined ribotypes. Cluster analysis of the combined ribotypes differentiated the pathovars phaseolicola and syringae, as well as different clonal lineages within these pathovars. The potential of ribotyping to screen for correlations between lineages and factors such as geographical region and/or bean varieties is also reported. PMID:10653764

  18. Inhibitory effect of Thymus vulgaris and Origanum vulgare essential oils on virulence factors of phytopathogenic Pseudomonas syringae strains.

    Science.gov (United States)

    Carezzano, M E; Sotelo, J P; Primo, E; Reinoso, E B; Paletti Rovey, M F; Demo, M S; Giordano, W F; Oliva, M de Las M

    2017-07-01

    Pseudomonas syringae is a phytopathogenic bacterium that causes lesions in leaves during the colonisation process. The damage is associated with production of many virulence factors, such as biofilm and phytotoxins. The essential oils of Thymus vulgaris (thyme) and Origanum vulgare (oregano) have been demonstrated to inhibit P. syringae. The aim of this study was to investigate the effects of T. vulgaris and O. vulgare essential oils on production of virulence factors of phytopathogenic P. syringae strains, including anti-biofilm and anti-toxins activities. The broth microdilution method was used for determination of MIC and biofilm inhibition assays. Coronatine, syringomycin and tabtoxin were pheno- and genotypically evaluated. Both oils showed good inhibitory activity against P. syringae, with MIC values from 1.43 to 11.5 mg·ml -1 for thyme and 5.8 to 11.6 mg·ml -1 for oregano. Biofilm formation, production of coronatine, syringomycin and tabtoxin were inhibited by thyme and oregano essential oil in most strains. The results presented here are promising, demonstrating the bactericidal activity and reduction of virulence factor production after treatment with thyme and oregano oil, providing insight into how they exert their antibacterial activity. These natural products could be considered in the future for the control of diseases caused by P. syringae. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.

  19. Ice nucleators, bacterial cells and Pseudomonas syringae in precipitation at Jungfraujoch

    Science.gov (United States)

    Stopelli, Emiliano; Conen, Franz; Guilbaud, Caroline; Zopfi, Jakob; Alewell, Christine; Morris, Cindy E.

    2017-03-01

    Ice nucleation is a means by which the deposition of an airborne microorganism can be accelerated under favourable meteorological conditions. Analysis of 56 snow samples collected at the high-altitude observatory Jungfraujoch (3580 m a.s.l.) revealed an order-of-magnitude-larger dynamic range of ice-nucleating particles active at -8 °C (INPs-8) compared to the total number of bacterial cells (of which on average 60 % was alive). This indicates a shorter atmospheric residence time for INPs-8. Furthermore, concentrations of INPs-8 decreased much faster, with an increasing fraction of water precipitated from the air mass prior to sampling, than the number of total bacterial cells. Nevertheless, at high wind speeds (> 50 km h-1) the ratio of INPs-8 to total bacterial cells largely remained in a range between 10-2 and 10-3, independent of prior precipitation, likely because of recent injections of particles in regions upwind. Based on our field observations, we conclude that ice nucleators travel shorter legs of distance with the atmospheric water cycle than the majority of bacterial cells. A prominent ice-nucleating bacterium, Pseudomonas syringae, has been previously supposed to benefit from this behaviour as a means to spread via the atmosphere and to colonise new host plants. Therefore, we targeted this bacterium with a selective cultivation approach. P. syringae was successfully isolated for the first time at such an altitude in 3 of 13 samples analysed. Colony-forming units of this species constituted a minor fraction (10-4) of the numbers of INPs-8 in these samples. Overall, our findings expand the geographic range of habitats where this bacterium has been found and corroborate theories on its robustness in the atmosphere and its propensity to spread to colonise new habitats.

  20. Defense Responses in Two Ecotypes of Lotus japonicus against Non-Pathogenic Pseudomonas syringae

    Science.gov (United States)

    Bordenave, Cesar D.; Escaray, Francisco J.; Menendez, Ana B.; Serna, Eva; Carrasco, Pedro; Ruiz, Oscar A.; Gárriz, Andrés

    2013-01-01

    Lotus japonicus is a model legume broadly used to study many important processes as nitrogen fixing nodule formation and adaptation to salt stress. However, no studies on the defense responses occurring in this species against invading microorganisms have been carried out at the present. Understanding how this model plant protects itself against pathogens will certainly help to develop more tolerant cultivars in economically important Lotus species as well as in other legumes. In order to uncover the most important defense mechanisms activated upon bacterial attack, we explored in this work the main responses occurring in the phenotypically contrasting ecotypes MG-20 and Gifu B-129 of L. japonicus after inoculation with Pseudomonas syringae DC3000 pv. tomato. Our analysis demonstrated that this bacterial strain is unable to cause disease in these accessions, even though the defense mechanisms triggered in these ecotypes might differ. Thus, disease tolerance in MG-20 was characterized by bacterial multiplication, chlorosis and desiccation at the infiltrated tissues. In turn, Gifu B-129 plants did not show any symptom at all and were completely successful in restricting bacterial growth. We performed a microarray based analysis of these responses and determined the regulation of several genes that could play important roles in plant defense. Interestingly, we were also able to identify a set of defense genes with a relative high expression in Gifu B-129 plants under non-stress conditions, what could explain its higher tolerance. The participation of these genes in plant defense is discussed. Our results position the L. japonicus-P. syringae interaction as a interesting model to study defense mechanisms in legume species. PMID:24349460

  1. E-2-hexenal promotes susceptibility to Pseudomonas syringae by activating jasmonic acid pathways in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Alessandra eScala

    2013-04-01

    Full Text Available Green Leaf Volatiles (GLVs are C6-molecules - alcohols, aldehydes and esters - produced by plants upon herbivory or during pathogen infection. Exposure to this blend of volatiles induces defence-related responses in neighboring undamaged plants, thus assigning a role to GLVs in regulating plant defences. Here we compared Arabidopsis thaliana ecotype Ler with a hydroperoxide lyase line, hpl1, unable to synthesize GLVs, for susceptibility to Pseudomonas syringae pv. tomato (DC3000. We found that the growth of DC3000 was significantly reduced in the hpl1 mutant. This phenomenon correlated with lower jasmonic acid (JA levels and higher salicylic acid (SA levels in the hpl1 mutant. Furthermore, upon infection, the JA-responsive genes VSP2 and LEC were only slightly or not induced, respectively, in hpl1. This suggests that the reduced growth of DC3000 in hpl1 plants is due to the constraint of JA-dependent responses. Treatment of hpl1 plants with E-2-hexenal, one of the more reactive GLVs, prior to infection with DC3000, resulted in increased growth of DC3000 in hpl1, thus complementing this mutant. Interestingly, the growth of DC3000 also increased in Ler plants treated with E-2-hexenal. This stronger growth was not dependent on the JA-signaling component MYC2, but on ORA59, an integrator of JA and ethylene signaling pathways, and on the production of coronatine by DC3000. GLVs may have multiple effects on plant-pathogen interactions, in this case reducing resistance to P. syringae via JA and ORA59.

  2. Apoplastic peroxidases are required for salicylic acid-mediated defense against Pseudomonas syringae.

    Science.gov (United States)

    Mammarella, Nicole D; Cheng, Zhenyu; Fu, Zheng Qing; Daudi, Arsalan; Bolwell, G Paul; Dong, Xinnian; Ausubel, Frederick M

    2015-04-01

    Reactive oxygen species (ROS) generated by NADPH oxidases or apoplastic peroxidases play an important role in the plant defense response. Diminished expression of at least two Arabidopsis thaliana peroxidase encoding genes, PRX33 (At3g49110) and PRX34 (At3g49120), as a consequence of anti-sense expression of a heterologous French bean peroxidase gene (asFBP1.1), were previously shown to result in reduced levels of ROS following pathogen attack, enhanced susceptibility to a variety of bacterial and fungal pathogens, and reduced levels of callose production and defense-related gene expression in response to the microbe associated molecular pattern (MAMP) molecules flg22 and elf26. These data demonstrated that the peroxidase-dependent oxidative burst plays an important role in the elicitation of pattern-triggered immunity (PTI). Further work reported in this paper, however, shows that asFBP1.1 antisense plants are not impaired in all PTI-associated responses. For example, some but not all flg22-elicited genes are induced to lower levels by flg22 in asFPB1.1, and callose deposition in asFPB1.1 is similar to wild-type following infiltration with a Pseudomonas syringae hrcC mutant or with non-host P. syringae pathovars. Moreover, asFPB1.1 plants did not exhibit any apparent defect in their ability to mount a hypersensitive response (HR). On the other hand, salicylic acid (SA)-mediated activation of PR1 was dramatically impaired in asFPB1.1 plants. In addition, P. syringae-elicited expression of many genes known to be SA-dependent was significantly reduced in asFBP1.1 plants. Consistent with this latter result, in asFBP1.1 plants the key regulator of SA-mediated responses, NPR1, showed both dramatically decreased total protein abundance and a failure to monomerize, which is required for its translocation into the nucleus. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Early Arabidopsis root hair growth stimulation by pathogenic strains of Pseudomonas syringae.

    Science.gov (United States)

    Pecenková, Tamara; Janda, Martin; Ortmannová, Jitka; Hajná, Vladimíra; Stehlíková, Zuzana; Žárský, Viktor

    2017-09-01

    Selected beneficial Pseudomonas spp. strains have the ability to influence root architecture in Arabidopsis thaliana by inhibiting primary root elongation and promoting lateral root and root hair formation. A crucial role for auxin in this long-term (1week), long-distance plant-microbe interaction has been demonstrated. Arabidopsis seedlings were cultivated in vitro on vertical plates and inoculated with pathogenic strains Pseudomonas syringae pv. maculicola (Psm) and P. syringae pv. tomato DC3000 (Pst), as well as Agrobacterium tumefaciens (Atu) and Escherichia coli (Eco). Root hair lengths were measured after 24 and 48h of direct exposure to each bacterial strain. Several Arabidopsis mutants with impaired responses to pathogens, impaired ethylene perception and defects in the exocyst vesicle tethering complex that is involved in secretion were also analysed. Arabidopsis seedling roots infected with Psm or Pst responded similarly to when infected with plant growth-promoting rhizobacteria; root hair growth was stimulated and primary root growth was inhibited. Other plant- and soil-adapted bacteria induced similar root hair responses. The most compromised root hair growth stimulation response was found for the knockout mutants exo70A1 and ein2. The single immune pathways dependent on salicylic acid, jasmonic acid and PAD4 are not directly involved in root hair growth stimulation; however, in the mutual cross-talk with ethylene, they indirectly modify the extent of the stimulation of root hair growth. The Flg22 peptide does not initiate root hair stimulation as intact bacteria do, but pretreatment with Flg22 prior to Psm inoculation abolished root hair growth stimulation in an FLS2 receptor kinase-dependent manner. These early response phenomena are not associated with changes in auxin levels, as monitored with the pDR5::GUS auxin reporter. Early stimulation of root hair growth is an effect of an unidentified component of living plant pathogenic bacteria. The root

  4. Cytokinin production by Pseudomonas fluorescens G20-18 determines biocontrol activity against Pseudomonas syringae in Arabidopsis.

    Science.gov (United States)

    Großkinsky, Dominik K; Tafner, Richard; Moreno, María V; Stenglein, Sebastian A; García de Salamone, Inés E; Nelson, Louise M; Novák, Ondřej; Strnad, Miroslav; van der Graaff, Eric; Roitsch, Thomas

    2016-03-17

    Plant beneficial microbes mediate biocontrol of diseases by interfering with pathogens or via strengthening the host. Although phytohormones, including cytokinins, are known to regulate plant development and physiology as well as plant immunity, their production by microorganisms has not been considered as a biocontrol mechanism. Here we identify the ability of Pseudomonas fluorescens G20-18 to efficiently control P. syringae infection in Arabidopsis, allowing maintenance of tissue integrity and ultimately biomass yield. Microbial cytokinin production was identified as a key determinant for this biocontrol effect on the hemibiotrophic bacterial pathogen. While cytokinin-deficient loss-of-function mutants of G20-18 exhibit impaired biocontrol, functional complementation with cytokinin biosynthetic genes restores cytokinin-mediated biocontrol, which is correlated with differential cytokinin levels in planta. Arabidopsis mutant analyses revealed the necessity of functional plant cytokinin perception and salicylic acid-dependent defence signalling for this biocontrol mechanism. These results demonstrate microbial cytokinin production as a novel microbe-based, hormone-mediated concept of biocontrol. This mechanism provides a basis to potentially develop novel, integrated plant protection strategies combining promotion of growth, a favourable physiological status and activation of fine-tuned direct defence and abiotic stress resilience.

  5. Features of air masses associated with the deposition of Pseudomonas syringae and Botrytis cinerea by rain and snowfall.

    Science.gov (United States)

    Monteil, Caroline L; Bardin, Marc; Morris, Cindy E

    2014-11-01

    Clarifying the role of precipitation in microbial dissemination is essential for elucidating the processes involved in disease emergence and spread. The ecology of Pseudomonas syringae and its presence throughout the water cycle makes it an excellent model to address this issue. In this study, 90 samples of freshly fallen rain and snow collected from 2005-2011 in France were analyzed for microbiological composition. The conditions favorable for dissemination of P. syringae by this precipitation were investigated by (i) estimating the physical properties and backward trajectories of the air masses associated with each precipitation event and by (ii) characterizing precipitation chemistry, and genetic and phenotypic structures of populations. A parallel study with the fungus Botrytis cinerea was also performed for comparison. Results showed that (i) the relationship of P. syringae to precipitation as a dissemination vector is not the same for snowfall and rainfall, whereas it is the same for B. cinerea and (ii) the occurrence of P. syringae in precipitation can be linked to electrical conductivity and pH of water, the trajectory of the air mass associated with the precipitation and certain physical conditions of the air mass (i.e. temperature, solar radiation exposure, distance traveled), whereas these predictions are different for B. cinerea. These results are pertinent to understanding microbial survival, emission sources and atmospheric processes and how they influence microbial dissemination.

  6. Indole-3-acetaldehyde dehydrogenase-dependent auxin synthesis contributes to virulence of Pseudomonas syringae strain DC3000.

    Directory of Open Access Journals (Sweden)

    Sheri A McClerklin

    2018-01-01

    Full Text Available The bacterial pathogen Pseudomonas syringae modulates plant hormone signaling to promote infection and disease development. P. syringae uses several strategies to manipulate auxin physiology in Arabidopsis thaliana to promote pathogenesis, including its synthesis of indole-3-acetic acid (IAA, the predominant form of auxin in plants, and production of virulence factors that alter auxin responses in the host; however, the role of pathogen-derived auxin in P. syringae pathogenesis is not well understood. Here we demonstrate that P. syringae strain DC3000 produces IAA via a previously uncharacterized pathway and identify a novel indole-3-acetaldehyde dehydrogenase, AldA, that functions in IAA biosynthesis by catalyzing the NAD-dependent formation of IAA from indole-3-acetaldehyde (IAAld. Biochemical analysis and solving of the 1.9 Å resolution x-ray crystal structure reveal key features of AldA for IAA synthesis, including the molecular basis of substrate specificity. Disruption of aldA and a close homolog, aldB, lead to reduced IAA production in culture and reduced virulence on A. thaliana. We use these mutants to explore the mechanism by which pathogen-derived auxin contributes to virulence and show that IAA produced by DC3000 suppresses salicylic acid-mediated defenses in A. thaliana. Thus, auxin is a DC3000 virulence factor that promotes pathogenicity by suppressing host defenses.

  7. Genome, Proteome and Structure of a T7-Like Bacteriophage of the Kiwifruit Canker Phytopathogen Pseudomonas Syringae pv. Actinidiae

    Directory of Open Access Journals (Sweden)

    Rebekah A. Frampton

    2015-06-01

    Full Text Available Pseudomonas syringae pv. actinidiae is an economically significant pathogen responsible for severe bacterial canker of kiwifruit (Actinidia sp.. Bacteriophages infecting this phytopathogen have potential as biocontrol agents as part of an integrated approach to the management of bacterial canker, and for use as molecular tools to study this bacterium. A variety of bacteriophages were previously isolated that infect P. syringae pv. actinidiae, and their basic properties were characterized to provide a framework for formulation of these phages as biocontrol agents. Here, we have examined in more detail φPsa17, a phage with the capacity to infect a broad range of P. syringae pv. actinidiae strains and the only member of the Podoviridae in this collection. Particle morphology was visualized using cryo-electron microscopy, the genome was sequenced, and its structural proteins were analysed using shotgun proteomics. These studies demonstrated that φPsa17 has a 40,525 bp genome, is a member of the T7likevirus genus and is closely related to the pseudomonad phages φPSA2 and gh-1. Eleven structural proteins (one scaffolding were detected by proteomics and φPsa17 has a capsid of approximately 60 nm in diameter. No genes indicative of a lysogenic lifecycle were identified, suggesting the phage is obligately lytic. These features indicate that φPsa17 may be suitable for formulation as a biocontrol agent of P. syringae pv. actinidiae.

  8. Defence responses of arabidopsis thaliana to infection by pseudomonas syringae are regulated by the circadian clock

    KAUST Repository

    Bhardwaj, Vaibhav

    2011-10-31

    The circadian clock allows plants to anticipate predictable daily changes in abiotic stimuli, such as light; however, whether the clock similarly allows plants to anticipate interactions with other organisms is unknown. Here we show that Arabidopsis thaliana (Arabidopsis) has circadian clock-mediated variation in resistance to the virulent bacterial pathogen Pseudomonas syringae pv. tomato DC3000 (Pst DC3000), with plants being least susceptible to infection in the subjective morning. We suggest that the increased resistance to Pst DC3000 observed in the morning in Col-0 plants results from clock-mediated modulation of pathogen associated molecular pattern (PAMP)-triggered immunity. Analysis of publicly available microarray data revealed that a large number of Arabidopsis defence-related genes showed both diurnal- and circadian-regulation, including genes involved in the perception of the PAMP flagellin which exhibit a peak in expression in the morning. Accordingly, we observed that PAMP-triggered callose deposition was significantly higher in wild-type plants inoculated with Pst DC3000 hrpA in the subjective morning than in the evening, while no such temporal difference was evident in arrhythmic plants. Our results suggest that PAMP-triggered immune responses are modulated by the circadian clock and that temporal regulation allows plants to anticipate and respond more effectively to pathogen challenges in the daytime. © 2011 Bhardwaj et al.

  9. Identification, Cloning, and Characterization of l-Phenylserine Dehydrogenase from Pseudomonas syringae NK-15

    Directory of Open Access Journals (Sweden)

    Sakuko Ueshima

    2010-01-01

    Full Text Available The gene encoding d-phenylserine dehydrogenase from Pseudomonas syringae NK-15 was identified, and a 9,246-bp nucleotide sequence containing the gene was sequenced. Six ORFs were confirmed in the sequenced region, four of which were predicted to form an operon. A homology search of each ORF predicted that orf3 encoded l-phenylserine dehydrogenase. Hence, orf3 was cloned and overexpressed in Escherichia coli cells and recombinant ORF3 was purified to homogeneity and characterized. The purified ORF3 enzyme showed l-phenylserine dehydrogenase activity. The enzymological properties and primary structure of l-phenylserine dehydrogenase (ORF3 were quite different from those of d-phenylserine dehydrogenase previously reported. l-Phenylserine dehydrogenase catalyzed the NAD+-dependent oxidation of the β-hydroxyl group of l-β-phenylserine. l-Phenylserine and l-threo-(2-thienylserine were good substrates for l-phenylserine dehydrogenase. The genes encoding l-phenylserine dehydrogenase and d-phenylserine dehydrogenase, which is induced by phenylserine, are located in a single operon. The reaction products of both enzymatic reactions were 2-aminoacetophenone and CO2.

  10. The Italian inter-laboratory study on the detection of Pseudomonas syringae pv. actinide

    Directory of Open Access Journals (Sweden)

    Stefania LORETI

    2014-05-01

    Full Text Available A severe form of bacterial canker of kiwifruit, caused by Pseudomonas syringae pv. actinidiae (Psa, has been detected in all the main areas of cultivation of kiwifruit (Actinidia deliciosa and A. chinensis. Since 2010 several research groups have been assessing methods and procedures to detect and identify Psa, both from symptomatic and symptomless host material. In 2011, a study to compare Psa diagnostic methods was performed with reference to Psa strains and related pathovars, and with plant extracts or DNA obtained from healthy and naturally infected leaves, pollen or wood. The study revealed the strengths and the weaknesses of the assessed methods. The procedure included screening tests for Psa detection and for identification of Psa colonies. The methods assessed were bacterial isolation on generic and semi-selective media, PCR analysis (single, duplex and rep-PCR assay, the latter for identification only. The results highlighted the best performance of semi-selective with respect the generic media; the usefulness of the direct-PCR as screening tests for Psa detection; and the greater specificity of duplex-PCR and sensitivity of simple-PCR. The use of semi-selective medium for isolation and of two PCR-based methods - in parallel - for Psa detection are suggested. Both rep-PCR and duplex-PCR, were found to be specific, and are recommended as an identification test for this pathogen.

  11. Resistance Inducers Modulate Pseudomonas syringae pv. Tomato Strain DC3000 Response in Tomato Plants

    Science.gov (United States)

    Scalschi, Loredana; Camañes, Gemma; Llorens, Eugenio; Fernández-Crespo, Emma; López, María M.; García-Agustín, Pilar; Vicedo, Begonya

    2014-01-01

    The efficacy of hexanoic acid (Hx) as an inducer of resistance in tomato plants against Pseudomonas syringae pv. tomato DC3000 was previously demonstrated, and the plant response was characterized. Because little is known about the reaction of the pathogen to this effect, the goal of the present work was to determine whether the changes in the plant defence system affect the pathogen behaviour. This work provides the first demonstration of the response of the pathogen to the changes observed in plants after Hx application in terms of not only the population size but also the transcriptional levels of genes involved in quorum sensing establishment and pathogenesis. Therefore, it is possible that Hx treatment attenuates the virulence and survival of bacteria by preventing or diminishing the appearance of symptoms and controlling the growth of the bacteria in the mesophyll. It is interesting to note that the gene transcriptional changes in the bacteria from the treated plants occur at the same time as the changes in the plants. Hx is able to alter bacteria pathogenesis and survival only when it is applied as a resistance inducer because the changes that it promotes in plants affect the bacteria. PMID:25244125

  12. Crystal structures of Pseudomonas syringae pv. tomato DC3000 quinone oxidoreductase and its complex with NADPH

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Xiaowei [National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101 (China); Graduate University of the Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Hongmei; Gao, Yu; Li, Mei [National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101 (China); Chang, Wenrui, E-mail: wrchang@sun5.ibp.ac.cn [National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101 (China)

    2009-12-18

    Zeta-crystallin-like quinone oxidoreductase is NAD(P)H-dependent and catalyzes one-electron reduction of certain quinones to generate semiquinone. Here we present the crystal structures of zeta-crystallin-like quinone oxidoreductase from Pseudomonas syringae pv. tomato DC3000 (PtoQOR) and its complexes with NADPH determined at 2.4 and 2.01 A resolutions, respectively. PtoQOR forms as a homologous dimer, each monomer containing two domains. In the structure of the PtoQOR-NADPH complex, NADPH locates in the groove between the two domains. NADPH binding causes obvious conformational changes in the structure of PtoQOR. The putative substrate-binding site of PtoQOR is wider than that of Escherichia coli and Thermus thermophilus HB8. Activity assays show that PtoQOR has weak 1,4-benzoquinone catalytic activity, and very strong reduction activity towards large substrates such as 9,10-phenanthrenequinone. We propose a model to explain the conformational changes which take place during reduction reactions catalyzed by PtoQOR.

  13. Layered basal defenses underlie non-host resistance of Arabidopsis to Pseudomonas syringae pv. phaseolicola.

    Science.gov (United States)

    Ham, Jong Hyun; Kim, Min Gab; Lee, Sang Yeol; Mackey, David

    2007-08-01

    Arabidopsis is a non-host for Pseudomonas syringae pv. phaseolicola NPS3121 (Pph), a bacterial pathogen of bean. Pph does not induce a hypersensitive response in Arabidopsis. Here we show that Arabidopsis instead resists Pph with multi-layered basal defense. Our approach was: (i) to identify defense readouts induced by Pph; (ii) to determine whether mutations in known Arabidopsis defense genes disrupt Pph-induced defense signaling; (iii) to determine whether heterologous type III effectors from pathogens of Arabidopsis suppress Pph-induced defense signaling, and (iv) to ascertain how basal defenses contribute to resistance against Pph by individually or multiply disrupting defense signaling pathways with mutations and heterologous type III effectors. We demonstrate that Pph elicits a minimum of three basal defense-signaling pathways in Arabidopsis. These pathways have unique readouts, including PR-1 protein accumulation and morphologically distinct types of callose deposition. Further, they require distinct defense genes, including PMR4, RAR1, SID2, NPR1, and PAD4. Finally, they are suppressed differentially by heterologous type III effectors, including AvrRpm1 and HopM1. Pph growth is enhanced only when multiple defense pathways are disrupted. For example, mutation of NPR1 or SID2 combined with the action of AvrRpm1 and HopM1 renders Arabidopsis highly susceptible to Pph. Thus, non-host resistance of Arabidopsis to Pph is based on multiple, individually effective layers of basal defense.

  14. The effect of alginate lyase on the gentamicin resistance of Pseudomonas aeruginosa in mucoid biofilms.

    Science.gov (United States)

    Germoni, L A P; Bremer, P J; Lamont, I L

    2016-07-01

    Pseudomonas aeruginosa can secrete large amounts of alginate during chronic infections and this has been associated with high resistance to antibiotics. The major aim of this study was to investigate whether degradation of extracellular alginate by alginate lyase would increase the sensitivity of Ps. aeruginosa to gentamicin, an aminoglycoside antibiotic. Degradation of alginate from Ps. aeruginosa was monitored using a spectrometric assay. Alginate lyase depolymerized alginate, but calcium and zinc cations at concentrations found in the cystic fibrosis lung reduced enzyme activity. Biofilms formed on agar were partially degraded by alginate lyase, but staining with crystal violet showed that the biomass of biofilms grown in liquid was not significantly affected by the enzyme. Viability testing showed that the sensitivity to gentamicin of biofilm bacteria and of bacteria released from biofilms was unaffected by alginate lyase. Our results show that at least under the conditions used here alginate lyase does not affect gentamicin resistance of Ps. aeruginosa. Our study indicates that alginate does not contribute to resistance to gentamicin and so does not provide support for the concept of treating patients with alginate lyase in order to increase the antibiotic sensitivity of Ps. aeruginosa. © 2016 The Society for Applied Microbiology.

  15. Impact of alginate-producing Pseudomonas aeruginosa on alveolar macrophage apoptotic cell clearance

    Science.gov (United States)

    Poirier, Christophe; Serban, Karina A.

    2014-01-01

    Pseudomonas aeruginosa infection is a hallmark of lung disease in cystic fibrosis. Acute infection with P. aeruginosa profoundly inhibits alveolar macrophage clearance of apoptotic cells (efferocytosis) via direct effect of virulence factors. During chronic infection, P. aeruginosa evades host defense by decreased virulence, which includes the production or, in the case of mucoidy, overproduction of alginate. The impact of alginate on innate immunity, in particular on macrophage clearance of apoptotic cells is not known. We hypothesized that P. aeruginosa strains that exhibit reduced virulence impair macrophage clearance of apoptotic cells and we investigated if the polysaccharide alginate produced by mucoid P. aeruginosa is sufficient to inhibit alveolar macrophage efferocytosis. Rat alveolar or human peripheral blood monocyte (THP-1)-derived macrophages cell lines were exposed in vitro to exogenous alginate or to wild type or alginate-overproducing mucoid P. aeruginosa prior to challenge with apoptotic human Jurkat T-lymphocytes. The importance of LPS contamination and that of structural integrity of alginate polymers was tested using alginate of different purities and alginate lyase, respectively. Alginate inhibited alveolar macrophage efferocytosis in a dose- and time-dependent manner. This effect was augmented but not exclusively attributed to lipopolysaccharide (LPS) present in alginates. Alginate-producing P. aeruginosa inhibited macrophage efferocytosis by more than 50%. Although alginate lyase did not significantly restore efferocytosis in the presence of exogenous alginate, it had a marked beneficial effect on efferocytosis of alveolar macrophages exposed to mucoid P. aeruginosa. Despite decreased virulence, mucoid P. aeruginosa may contribute to ongoing airway inflammation through significant inhibition of alveolar clearance of apoptotic cells and debris. The mechanism by which mucoid bacteria inhibit efferocytosis may involve alginate production and

  16. Genome-wide DNA binding pattern of two-component system response regulator RhpR in Pseudomonas syringae

    Directory of Open Access Journals (Sweden)

    Tianhong Zhou

    2015-06-01

    Full Text Available Although Pseudomonas syringae uses the two-component system RhpRS to modulate the expression of type III secretion system (T3SS genes and pathogenicity, the molecular mechanisms and the regulon of RhpRS have yet to be fully demonstrated. We have performed a genome-wide analysis of RhpR binding to DNA prepared from P. syringae pv. phaseolicola in order to identify candidate direct targets of RhpR-mediated transcriptional regulation, as described in our recent article [1]. The data are available from NCBI Gene Expression Omnibus (GEO with the accession number GSE58533. Here we describe the detailed methods and data analyses of our RhpR ChIP-seq dataset.

  17. Structure of microcin B-like compounds produced by Pseudomonas syringae and species specificity of their antibacterial action.

    Science.gov (United States)

    Metelev, Mikhail; Serebryakova, Marina; Ghilarov, Dmitry; Zhao, Youfu; Severinov, Konstantin

    2013-09-01

    Escherichia coli microcin B (Ec-McB) is a posttranslationally modified antibacterial peptide containing multiple oxazole and thiazole heterocycles and targeting the DNA gyrase. We have found operons homologous to the Ec-McB biosynthesis-immunity operon mcb in recently sequenced genomes of several pathovars of the plant pathogen Pseudomonas syringae, and we produced two variants of P. syringae microcin B (Ps-McB) in E. coli by heterologous expression. Like Ec-McB, both versions of Ps-McB target the DNA gyrase, but unlike Ec-McB, they are active against various species of the Pseudomonas genus, including human pathogen P. aeruginosa. Through analysis of Ec-McB/Ps-McB chimeras, we demonstrate that three centrally located unmodified amino acids of Ps-McB are sufficient to determine activity against Pseudomonas, likely by allowing specific recognition by a transport system that remains to be identified. The results open the way for construction of McB-based antibacterial molecules with extended spectra of biological activity.

  18. Disruption of the carA gene in Pseudomonas syringae results in reduced fitness and alters motility.

    Science.gov (United States)

    Butcher, Bronwyn G; Chakravarthy, Suma; D'Amico, Katherine; Stoos, Kari Brossard; Filiatrault, Melanie J

    2016-08-24

    Pseudomonas syringae infects diverse plant species and is widely used in the study of effector function and the molecular basis of disease. Although the relationship between bacterial metabolism, nutrient acquisition and virulence has attracted increasing attention in bacterial pathology, there is limited knowledge regarding these studies in Pseudomonas syringae. The aim of this study was to investigate the function of the carA gene and the small RNA P32, and characterize the regulation of these transcripts. Disruption of the carA gene (ΔcarA) which encodes the predicted small chain of carbamoylphosphate synthetase, resulted in arginine and pyrimidine auxotrophy in Pseudomonas syringae pv. tomato DC3000. Complementation with the wild type carA gene was able to restore growth to wild-type levels in minimal medium. Deletion of the small RNA P32, which resides immediately upstream of carA, did not result in arginine or pyrimidine auxotrophy. The expression of carA was influenced by the concentrations of both arginine and uracil in the medium. When tested for pathogenicity, ΔcarA showed reduced fitness in tomato as well as Arabidopsis when compared to the wild-type strain. In contrast, mutation of the region encoding P32 had minimal effect in planta. ΔcarA also exhibited reduced motility and increased biofilm formation, whereas disruption of P32 had no impact on motility or biofilm formation. Our data show that carA plays an important role in providing arginine and uracil for growth of the bacteria and also influences other factors that are potentially important for growth and survival during infection. Although we find that the small RNA P32 and carA are co-transcribed, P32 does not play a role in the phenotypes that carA is required for, such as motility, cell attachment, and virulence. Additionally, our data suggests that pyrimidines may be limited in the apoplastic space of the plant host tomato.

  19. Pseudomonas syringae evades host immunity by degrading flagellin monomers with alkaline protease AprA.

    Science.gov (United States)

    Pel, Michiel J C; van Dijken, Anja J H; Bardoel, Bart W; Seidl, Michael F; van der Ent, Sjoerd; van Strijp, Jos A G; Pieterse, Corné M J

    2014-07-01

    Bacterial flagellin molecules are strong inducers of innate immune responses in both mammals and plants. The opportunistic pathogen Pseudomonas aeruginosa secretes an alkaline protease called AprA that degrades flagellin monomers. Here, we show that AprA is widespread among a wide variety of bacterial species. In addition, we investigated the role of AprA in virulence of the bacterial plant pathogen P. syringae pv. tomato DC3000. The AprA-deficient DC3000 ΔaprA knockout mutant was significantly less virulent on both tomato and Arabidopsis thaliana. Moreover, infiltration of A. thaliana Col-0 leaves with DC3000 ΔaprA evoked a significantly higher level of expression of the defense-related genes FRK1 and PR-1 than did wild-type DC3000. In the flagellin receptor mutant fls2, pathogen virulence and defense-related gene activation did not differ between DC3000 and DC3000 ΔaprA. Together, these results suggest that AprA of DC3000 is important for evasion of recognition by the FLS2 receptor, allowing wild-type DC3000 to be more virulent on its host plant than AprA-deficient DC3000 ΔaprA. To provide further evidence for the role of DC3000 AprA in host immune evasion, we overexpressed the AprA inhibitory peptide AprI of DC3000 in A. thaliana to counteract the immune evasive capacity of DC3000 AprA. Ectopic expression of aprI in A. thaliana resulted in an enhanced level of resistance against wild-type DC3000, while the already elevated level of resistance against DC3000 ΔaprA remained unchanged. Together, these results indicate that evasion of host immunity by the alkaline protease AprA is important for full virulence of strain DC3000 and likely acts by preventing flagellin monomers from being recognized by its cognate immune receptor.

  20. Multilayered Regulation of Ethylene Induction Plays a Positive Role in Arabidopsis Resistance against Pseudomonas syringae.

    Science.gov (United States)

    Guan, Rongxia; Su, Jianbin; Meng, Xiangzong; Li, Sen; Liu, Yidong; Xu, Juan; Zhang, Shuqun

    2015-09-01

    Ethylene, a key phytohormone involved in plant-pathogen interaction, plays a positive role in plant resistance against fungal pathogens. However, its function in plant bacterial resistance remains unclear. Here, we report a detailed analysis of ethylene induction in Arabidopsis (Arabidopsis thaliana) in response to Pseudomonas syringae pv tomato DC3000 (Pst). Ethylene biosynthesis is highly induced in both pathogen/microbe-associated molecular pattern (PAMP)-triggered immunity and effector-triggered immunity (ETI), and the induction is potentiated by salicylic acid (SA) pretreatment. In addition, Pst actively suppresses PAMP-triggered ethylene induction in a type III secretion system-dependent manner. SA potentiation of ethylene induction is dependent mostly on MITOGEN-ACTIVATED PROTEIN KINASE6 (MPK6) and MPK3 and their downstream ACS2 and ACS6, two type I isoforms of 1-aminocyclopropane-1-carboxylic acid synthases (ACSs). ACS7, a type III ACS whose expression is enhanced by SA pretreatment, is also involved. Pst expressing the avrRpt2 effector gene (Pst-avrRpt2), which is capable of triggering ETI, induces a higher level of ethylene production, and the elevated portion is dependent on SALICYLIC ACID INDUCTION DEFICIENT2 and NONEXPRESSER OF PATHOGENESIS-RELATED GENE1, two key players in SA biosynthesis and signaling. High-order ACS mutants with reduced ethylene induction are more susceptible to both Pst and Pst-avrRpt2, demonstrating a positive role of ethylene in plant bacterial resistance mediated by both PAMP-triggered immunity and ETI. © 2015 American Society of Plant Biologists. All Rights Reserved.

  1. Differential secretome analysis of Pseudomonas syringae pv tomato using gel-free MS proteomics

    Directory of Open Access Journals (Sweden)

    Jörg eSchumacher

    2014-07-01

    Full Text Available The plant pathogen Pseudomonas syringae pv. tomato (DC3000 causes virulence by delivering effector proteins into host plant cells through its type three secretion system (T3SS. In response to the plant environment DC3000 expresses hypersensitive response and pathogenicity genes (hrp. Pathogenesis depends on the ability of the pathogen to manipulate the plant metabolism and to inhibit plant immunity, which depends to a large degree on the plant’s capacity to recognise both pathogen and microbial determinants (PAMP/MAMP-triggered immunity. We have developed and employed MS-based shotgun and targeted proteomics to (i elucidate the extracellular and secretome composition of DC3000 and (ii evaluate temporal features of the assembly of the T3SS and the secretion process together with its dependence of pH. The proteomic screen, under hrp inducing in vitro conditions, of extracellular and cytoplasmatic fractions indicated the segregated presence of not only T3SS implicated proteins such as HopK1, HrpK1, HrpA1 and Avrpto1, but also of proteins not usually associated with the T3SS or with pathogenicity. Using multiple reaction monitoring MS (MRM-MS to quantify HrpA1 and Avrpto1, we found that HrpA1 is rapidly expressed, at a strict pH-dependent rate and is post-translationally processed extracellularly. These features appear to not interfere with rapid Avrpto1 expression and secretion but may suggest some temporal post-translational regulatory mechanism of the T3SS assembly. The high specificity and sensitivity of the MRM-MS approach should provide a powerful tool to measure secretion and translocation in infected tissues.

  2. Functional analysis of the protein encoded by the virulence gene psvA of Pseudomonas syringae pv. eriobotryae

    OpenAIRE

    Kamiunten, Hiroshi; Sakamaki, Ikuko; Matsuo, Mitsuhiro

    2011-01-01

    The Pseudomonas syringae pv. eriobotryae (Pse) virulence gene psvA, (2193 bp), has been isolated but not been functionally characterized. The psvA gene was divided into two parts; the N-terninal region (psvAN, nucleotides (nt) 1-1386), and the C-terminal region (psvAC, nt 1387-2193). Functional analysis of the proteins encoded by psvAN and psvAC was carried out. The PsvAC shows sequence similarity to the Ulp1 endopeptidase family, which includes small ubiquitin-like modifier (SUMO) proteases....

  3. Extensive Field Survey, Laboratory and Greenhouse Studies Reveal Complex Nature of Pseudomonas syringae-Associated Hazelnut Decline in Central Italy.

    Science.gov (United States)

    Lamichhane, Jay Ram; Bartoli, Claudia; Varvaro, Leonardo

    2016-01-01

    Pseudomonas avellanae (Pav) has been reported as the causal agent of bacterial decline and bacterial canker of hazelnut in Italy and Greece, respectively. Both hazelnut diseases were reported to be similar in terms of symptoms, severity and persistence. In this study, we found that both symptomatic and asymptomatic trees in the field were colonized by Pav. Multilocus Sequence Typing (MLST) analysis showed that Pav strains isolated during this study in Italy belong to the P. syringae phylogroup 1 and they are closely related to Pav strains previously isolated in Greece from hazelnut bacterial canker. On the other hand, strains isolated in earlier studies from hazelnut decline in Italy belong to both phylogroup 1 and 2 of P. syringae. Both phylogroup 1 strains of P. syringae from Greece and Italy are different than strains isolated in this study in terms of their capacity to excrete fluorescent pigments on different media. Despite the same plant genotype and cropping practices adopted, the incidence of hazelnut decline ranged from nearly 0 to 91% across our study sites. No disease developed on plants inoculated with Pav through wounding while leaf scar inoculations produced only mild disease symptoms. Based on our results and the previously reported correlation between pedo-climatic conditions and hazelnut decline, we conclude that hazelnut decline in central Italy could be incited by a combination of predisposing (adverse pedo-climatic conditions) and contributing factors (Pav). Because this is a true decline different from "bacterial canker" described in Greece, we refer to it as hazelnut decline (HD).

  4. Arabidopsis heterotrimeric G-proteins play a critical role in host and nonhost resistance against Pseudomonas syringae pathogens.

    Directory of Open Access Journals (Sweden)

    Seonghee Lee

    Full Text Available Heterotrimeric G-proteins have been proposed to be involved in many aspects of plant disease resistance but their precise role in mediating nonhost disease resistance is not well understood. We evaluated the roles of specific subunits of heterotrimeric G-proteins using knock-out mutants of Arabidopsis Gα, Gβ and Gγ subunits in response to host and nonhost Pseudomonas pathogens. Plants lacking functional Gα, Gβ and Gγ1Gγ2 proteins displayed enhanced bacterial growth and disease susceptibility in response to host and nonhost pathogens. Mutations of single Gγ subunits Gγ1, Gγ2 and Gγ3 did not alter bacterial disease resistance. Some specificity of subunit usage was observed when comparing host pathogen versus nonhost pathogen. Overexpression of both Gα and Gβ led to reduced bacterial multiplication of nonhost pathogen P. syringae pv. tabaci whereas overexpression of Gβ, but not of Gα, resulted in reduced bacterial growth of host pathogen P. syringae pv. maculicola, compared to wild-type Col-0. Moreover, the regulation of stomatal aperture by bacterial pathogens was altered in Gα and Gβ mutants but not in any of the single or double Gγ mutants. Taken together, these data substantiate the critical role of heterotrimeric G-proteins in plant innate immunity and stomatal modulation in response to P. syringae.

  5. Effector-triggered and pathogen-associated molecular pattern-triggered immunity differentially contribute to basal resistance to Pseudomonas syringae.

    Science.gov (United States)

    Zhang, Jie; Lu, Haibin; Li, Xinyan; Li, Yan; Cui, Haitao; Wen, Chi-Kuang; Tang, Xiaoyan; Su, Zhen; Zhou, Jian-Min

    2010-07-01

    Pathogens induce pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI) in plants. PAMPs are microbial molecules recognized by host plants as nonself signals, whereas pathogen effectors are evolved to aid in parasitism but are sometimes recognized by specific intracellular resistance proteins. In the absence of detectable ETI determining classical incompatible interactions, basal resistance exists during compatible and nonhost interactions. What triggers the basal resistance has remained elusive. Here, we provide evidence that ETI contributes to basal resistance during both compatible and nonhost Arabidopsis-Pseudomonas syringae interactions. Mutations in RAR1 and NDR1, two genes required for ETI, compromise basal resistance in both compatible and nonhost interactions. Complete nonhost resistance to P. syringae pv. tabaci required a functional type III secretion system. PTI appears to play a greater role in nonhost resistance than basal resistance during compatible interactions, because abrogation of PTI compromises basal resistance during nonhost but not compatible interactions. Strikingly, simultaneous abrogation of ETI and flagellin-induced PTI rendered plants completely susceptible to the nonadapted bacterium P. syringae pv. tabaci, indicating that ETI and PTI act synergistically during nonhost resistance. Thus, both nonhost resistance and basal resistance to virulent bacteria can be unified under PTI and ETI.

  6. Biocontrol of postharvest decay using a new strain of Pseudomonas syringae CPA-5 in different cultivars of pome fruits

    Directory of Open Access Journals (Sweden)

    C. NUNES

    2008-12-01

    Full Text Available Epiphytic micro-organisms isolated from fruits and leaves surfaces of apples from different orchards were screened for antagonistic activity against Penicillium expansum. From all micro-organisms tested the new strain CPA-5 of Pseudomonas syringae, isolated from organic orchard, was selected. This strain was very effective against Botrytis cinerea, P. expansum and Rhizopus stolonifer at various antagonist and pathogen concentrations on ‘Golden Delicious’ apple, and ‘Blanquilla’, ‘Rocha’ and ‘Conference’ pear. Under cold storage conditions and in semi-commercial trials P. syringae (CPA-5 significantly reduced development of P. expansum and B. cinerea on ‘Golden Delicious’ apple, and ‘Blanquilla’ and ‘Rocha’ pears. Control of P. expansum equal to the fungicide imazalil was obtained with CPA-5 at 108cfu ml–1 on ‘Gold Delicious’ apple and ‘Rocha’ pear. The populations of P. syringae CPA-5 increased more than 100-fold during the first 50 days, and then remained stable on apple, and slightly decreased on pears. This indicates the high capacity of this antagonist to colonize wound surfaces of pome fruits under cold storage conditions.;

  7. The stealth episome: suppression of gene expression on the excised genomic island PPHGI-1 from Pseudomonas syringae pv. phaseolicola.

    Directory of Open Access Journals (Sweden)

    Scott A C Godfrey

    2011-03-01

    Full Text Available Pseudomonas syringae pv. phaseolicola is the causative agent of halo blight in the common bean, Phaseolus vulgaris. P. syringae pv. phaseolicola race 4 strain 1302A contains the avirulence gene avrPphB (syn. hopAR1, which resides on PPHGI-1, a 106 kb genomic island. Loss of PPHGI-1 from P. syringae pv. phaseolicola 1302A following exposure to the hypersensitive resistance response (HR leads to the evolution of strains with altered virulence. Here we have used fluorescent protein reporter systems to gain insight into the mobility of PPHGI-1. Confocal imaging of dual-labelled P. syringae pv. phaseolicola 1302A strain, F532 (dsRFP in chromosome and eGFP in PPHGI-1, revealed loss of PPHGI-1::eGFP encoded fluorescence during plant infection and when grown in vitro on extracted leaf apoplastic fluids. Fluorescence-activated cell sorting (FACS of fluorescent and non-fluorescent PPHGI-1::eGFP F532 populations showed that cells lost fluorescence not only when the GI was deleted, but also when it had excised and was present as a circular episome. In addition to reduced expression of eGFP, quantitative PCR on sub-populations separated by FACS showed that transcription of other genes on PPHGI-1 (avrPphB and xerC was also greatly reduced in F532 cells harbouring the excised PPHGI-1::eGFP episome. Our results show how virulence determinants located on mobile pathogenicity islands may be hidden from detection by host surveillance systems through the suppression of gene expression in the episomal state.

  8. Antimicrobial Effects of a Hexapetide KCM21 against Pseudomonas syringae pv. tomato DC3000 and Clavibacter michiganensis subsp. michiganensis

    Directory of Open Access Journals (Sweden)

    Jeahyuk Choi

    2014-09-01

    Full Text Available Antimicrobial peptides (AMPs are small but effective cationic peptides with variable length. In previous study, four hexapeptides were identified that showed antimicrobial activities against various phytopathogenic bacteria. KCM21, the most effective antimicrobial peptide, was selected for further analysis to understand its modes of action by monitoring inhibitory effects of various cations, time-dependent antimicrobial kinetics, and observing cell disruption by electron microscopy. The effects of KCM21 on Gram-negative strain, Pseudomonas syringae pv. tomato DC3000 and Gram-positive strain, Clavibacter michiganensis subsp. michiganensis were compared. Treatment with divalent cations such as Ca²⁺ and Mg²⁺ inhibited the bactericidal activities of KCM21 significantly against P. syringae pv. tomato DC3000. The bactericidal kinetic study showed that KCM21 killed both bacteria rapidly and the process was faster against C. michiganensis subsp. michiganensis. The electron microscopic analysis revealed that KCM21 induced the formation of micelles and blebs on the surface of P. syringae pv. tomato DC3000 cells, while it caused cell rupture against C. michiganensis subsp. michiganensis cells. The outer membrane alteration and higher sensitivity to Ca²⁺ suggest that KCM21 interact with the outer membrane of P. syringae pv. tomato DC3000 cells during the process of killing, but not with C. michiganensis subsp. michiganensis cells that lack outer membrane. Considering that both strains had similar sensitivity to KCM21 in LB medium, outer membrane could not be the main target of KCM21, instead common compartments such as cytoplasmic membrane or internal macromolecules might be a possible target(s of KCM21.

  9. Effects of Botrytis cinerea and Pseudomonas syringae infection on the antioxidant profile of Mesembryanthemum crystallinum C3/CAM intermediate plant.

    Science.gov (United States)

    Libik-Konieczny, Marta; Surówka, Ewa; Kuźniak, Elżbieta; Nosek, Michał; Miszalski, Zbigniew

    2011-07-01

    Mesembryathemum crystallinum plants performing C(3) or CAM (crassulacean acid metabolism) appear to be highly resistant to Botrytis cinerea as well as to Pseudomonas syringae. Fungal hyphae growth was restricted to 48h post-inoculation (hpi) in both metabolic types and morphology of hyphae differed between those growing in C(3) and CAM plants. Growth of bacteria was inhibited significantly 24 hpi in both C(3) and CAM plants. B. cinerea and P. syringae infection led to an increase in the concentration of H(2)O(2) in C(3) plants 3 hpi, while a decrease in H(2)O(2) content was observed in CAM performing plants. The concentration of H(2)O(2) returned to the control level 24 and 48 hpi. Changes in H(2)O(2) content corresponded with the activity of guaiacol peroxidase (POD), mostly 3 hpi. We noted that its activity decreased significantly in C(3) plants and increased in CAM plants in response to inoculation with both pathogens. On the contrary, changes in the activity of CAT did not correlate with H(2)O(2) level. It increased significantly after interaction of C(3) plants with B. cinerea or P. syringae, but in CAM performing plants, the activity of this enzyme was unchanged. Inoculation with B. cinerea or P. syringae led to an increase in the total SOD activity in C(3) plants while CAM plants did not exhibit changes in the total SOD activity after interaction with both pathogens. In conclusion, the pathogen-induced changes in H(2)O(2) content and in SOD, POD and CAT activities in M. crystallinum leaves, were related to the photosynthetic metabolism type of the stressed plants rather than to the lifestyle of the invading pathogen. Copyright © 2011 Elsevier GmbH. All rights reserved.

  10. Characterization of novel bacteriophages for biocontrol of bacterial blight in leek caused by Pseudomonas syringae pv. porri

    Directory of Open Access Journals (Sweden)

    Sofie eRombouts

    2016-03-01

    Full Text Available Pseudomonas syringae pv. porri, the causative agent of bacterial blight in leek (Allium porrum, is increasingly frequent causing problems in leek cultivation. Because of the current lack of control measures, novel bacteriophages were isolated to control this pathogen using phage therapy. Five novel phages were isolated from infected fields in Flanders (vB_PsyM_KIL1, vB_PsyM_KIL2, vB_PsyM_KIL3, vB_PsyM_KIL4 and vB_PsyM_KIL5, and were complemented with one selected host range mutant phage (vB_PsyM_KIL3b. Genome analysis of the phages revealed genome sizes between 90 and 94 kb and an average GC-content of 44.8%. Phylogenomic networking classified them into a novel clade, named the ‘KIL-like viruses’, related to the Felixounalikevirus genus, together with phage phiPsa374 from Pseudomonas syringae pv. actinidiae. In vitro characterization demonstrated the stability and lytic potential of these phages. Host range analysis confirmed heterogeneity within P. syringae pv. porri, leading to the development of a phage cocktail with a range that covers the entire set of 41 strains tested. Specific bio-assays demonstrated the in planta efficacy of phages vB_PsyM_KIL1, vB_PsyM_KIL2, vB_PsyM_KIL3 and vB_PsyM_KIL3b. In addition, two parallel field trial experiments on three locations using a phage cocktail of the six phages showed variable results. In one trial, symptom development was attenuated. These data suggest some potential for phage therapy in controlling bacterial blight of leek, pending optimization of formulation and application methods.

  11. Auxin promotes susceptibility to Pseudomonas syringae via a mechanism independent of suppression of salicylic acid-mediated defenses.

    Science.gov (United States)

    Mutka, Andrew M; Fawley, Stephen; Tsao, Tiffany; Kunkel, Barbara N

    2013-06-01

    Auxin is a key plant growth regulator that also impacts plant-pathogen interactions. Several lines of evidence suggest that the bacterial plant pathogen Pseudomonas syringae manipulates auxin physiology in Arabidopsis thaliana to promote pathogenesis. Pseudomonas syringae strategies to alter host auxin biology include synthesis of the auxin indole-3-acetic acid (IAA) and production of virulence factors that alter auxin responses in host cells. The application of exogenous auxin enhances disease caused by P. syringae strain DC3000. This is hypothesized to result from antagonism between auxin and salicylic acid (SA), a major regulator of plant defenses, but this hypothesis has not been tested in the context of infected plants. We further investigated the role of auxin during pathogenesis by examining the interaction of auxin and SA in the context of infection in plants with elevated endogenous levels of auxin. We demonstrated that elevated IAA biosynthesis in transgenic plants overexpressing the YUCCA 1 (YUC1) auxin biosynthesis gene led to enhanced susceptibility to DC3000. Elevated IAA levels did not interfere significantly with host defenses, as effector-triggered immunity was active in YUC1-overexpressing plants, and we observed only minor effects on SA levels and SA-mediated responses. Furthermore, a plant line carrying both the YUC1-overexpression transgene and the salicylic acid induction deficient 2 (sid2) mutation, which impairs SA synthesis, exhibited additive effects of enhanced susceptibility from both elevated auxin levels and impaired SA-mediated defenses. Thus, in IAA overproducing plants, the promotion of pathogen growth occurs independently of suppression of SA-mediated defenses. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  12. Transposon insertion libraries for the characterization of mutants from the kiwifruit pathogen Pseudomonas syringae pv. actinidiae

    Science.gov (United States)

    Mesarich, Carl H.; Rees-George, Jonathan; Gardner, Paul P.; Ghomi, Fatemeh Ashari; Gerth, Monica L.; Andersen, Mark T.; Rikkerink, Erik H. A.; Fineran, Peter C.

    2017-01-01

    Pseudomonas syringae pv. actinidiae (Psa), the causal agent of kiwifruit canker, is one of the most devastating plant diseases of recent times. We have generated two mini-Tn5-based random insertion libraries of Psa ICMP 18884. The first, a ‘phenotype of interest’ (POI) library, consists of 10,368 independent mutants gridded into 96-well plates. By replica plating onto selective media, the POI library was successfully screened for auxotrophic and motility mutants. Lipopolysaccharide (LPS) biosynthesis mutants with ‘Fuzzy-Spreader’-like morphologies were also identified through a visual screen. The second, a ‘mutant of interest’ (MOI) library, comprises around 96,000 independent mutants, also stored in 96-well plates, with approximately 200 individuals per well. The MOI library was sequenced on the Illumina MiSeq platform using Transposon-Directed Insertion site Sequencing (TraDIS) to map insertion sites onto the Psa genome. A grid-based PCR method was developed to recover individual mutants, and using this strategy, the MOI library was successfully screened for a putative LPS mutant not identified in the visual screen. The Psa chromosome and plasmid had 24,031 and 1,236 independent insertion events respectively, giving insertion frequencies of 3.65 and 16.6 per kb respectively. These data suggest that the MOI library is near saturation, with the theoretical probability of finding an insert in any one chromosomal gene estimated to be 97.5%. However, only 47% of chromosomal genes had insertions. This surprisingly low rate cannot be solely explained by the lack of insertions in essential genes, which would be expected to be around 5%. Strikingly, many accessory genes, including most of those encoding type III effectors, lacked insertions. In contrast, 94% of genes on the Psa plasmid had insertions, including for example, the type III effector HopAU1. These results suggest that some chromosomal sites are rendered inaccessible to transposon insertion, either

  13. Transcriptome changes in the phenylpropanoid pathway of Glycine max in response to Pseudomonas syringae infection

    Directory of Open Access Journals (Sweden)

    Gonzalez Delkin O

    2006-11-01

    Full Text Available Abstract Background Reports of plant molecular responses to pathogenic infections have pinpointed increases in activity of several genes of the phenylpropanoid pathway leading to the synthesis of lignin and flavonoids. The majority of those findings were derived from single gene studies and more recently from several global gene expression analyses. We undertook a global transcriptional analysis focused on the response of genes of the multiple branches of the phenylpropanoid pathway to infection by the Pseudomonas syringae pv. glycinea with or without the avirulence gene avrB to characterize more broadly the contribution of the multiple branches of the pathway to the resistance response in soybean. Transcript abundance in leaves was determined from analysis of soybean cDNA microarray data and hybridizations to RNA blots with specific gene probes. Results The majority of the genes surveyed presented patterns of increased transcript accumulation. Some increased rapidly, 2 and 4 hours after inoculation, while others started to accumulate slowly by 8 – 12 hours. In contrast, transcripts of a few genes decreased in abundance 2 hours post inoculation. Most interestingly was the opposite temporal fluctuation in transcript abundance between early responsive genes in defense (CHS and IFS1 and F3H, the gene encoding a pivotal enzyme in the synthesis of anthocyanins, proanthocyanidins and flavonols. F3H transcripts decreased rapidly 2 hours post inoculation and increased during periods when CHS and IFS transcripts decreased. It was also determined that all but one (CHS4 family member genes (CHS1, CHS2, CHS3, CHS5, CHS6 and CHS7/8 accumulated higher transcript levels during the defense response provoked by the avirulent pathogen challenge. Conclusion Based on the mRNA profiles, these results show the strong bias that soybean has towards increasing the synthesis of isoflavonoid phytoalexins concomitant with the down regulation of genes required for the

  14. Identification of the CvsSR regulon in Pseudomonas syringae reveals overlap with the Type-III secretion and AlgU regulons

    Science.gov (United States)

    Pseudomonas syringae pv. tomato DC3000 (Pto) lives epiphytically and endophytically during its infection cycle. Two-component systems (TCSs) and extracytoplasmic function (ECF) sigma factors are used by Pto to sense environmental changes within the leaf apoplast during pathogenesis. The TCS, CvsSR i...

  15. Role of nucleotide excision repair and photoreactivation in the solar UVB radiation survival of Pseudomonas syringae pv. syringae B728a.

    Science.gov (United States)

    Gunasekera, T S; Sundin, G W

    2006-05-01

    To assess the role of DNA repair and photoreactivation in the solar radiation survival of the plant pathogen and leaf surface epiphyte Pseudomonas syringae pv. syringae (Pss). Mutants of Pss B728a, with insertional mutations within the nucleotide excision repair gene uvrA, photolyase gene phr, or uvrA phr double mutants, were constructed to examine the importance of individual repair mechanisms in solar UV radiation (UVR) survival. The survival of either the uvrA mutant or the phr mutant was reduced by approx. 10(2)-fold following exposure to a dose of 4.5 kJ m(-2) solar UVB (290-320 nm wavelengths) while the uvrA phr double mutant was reduced >10(6)-fold by the same dose. We constructed a transcriptional fusion between the Pss recA promoter and gfp to examine the induction of the SOS response in wild-type and mutant strains. Initiation of the recA mediated SOS response was more rapid and peaked at higher levels in mutant strains suggesting both increased DNA damage in mutant strains and also that photoreactivation and nucleotide excision repair remove DNA damage as it is incurred which is reflected in a delay of recA expression. Visualization of expression of B728a cells containing the recA::gfp reporter on UVB-irradiated bean leaves highlighted the movement of cells to intercellular spaces over time and that SOS induction was detectable when leaves were irradiated 48 h following leaf inoculation. This study indicated that solar UVB is detrimental to Pss B728a, DNA repair mechanisms play an important role in strain survival and expression of the SOS regulon on leaf surfaces contributes to survival of UVR-exposed cells during plant colonization. This work links previous laboratory-based UVR analyses with solar UVB dose-response analyses and highlights the role of photoreactivation in delaying induction of the SOS response following solar irradiation. Knowledge of population dynamics following direct solar irradiation will enhance our understanding of the biology of

  16. A conformational landscape for alginate secretion across the outer membrane of Pseudomonas aeruginosa

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Jingquan [Trinity College, Dublin (Ireland); Rouse, Sarah L. [University of Oxford, South Parks Road, Oxford (United Kingdom); Li, Dianfan; Pye, Valerie E.; Vogeley, Lutz; Brinth, Alette R.; El Arnaout, Toufic [Trinity College, Dublin (Ireland); Whitney, John C.; Howell, P. Lynne [The Hospital for Sick Children, Toronto, Ontario (Canada); University of Toronto, Toronto, Ontario (Canada); Sansom, Mark S. P. [University of Oxford, South Parks Road, Oxford (United Kingdom); Caffrey, Martin, E-mail: martin.caffrey@tcd.ie [Trinity College, Dublin (Ireland)

    2014-08-01

    Crystal structures of the β-barrel porin AlgE reveal a mechanism whereby alginate is exported from P. aeruginosa for biofilm formation. The exopolysaccharide alginate is an important component of biofilms produced by Pseudomonas aeruginosa, a major pathogen that contributes to the demise of cystic fibrosis patients. Alginate exits the cell via the outer membrane porin AlgE. X-ray structures of several AlgE crystal forms are reported here. Whilst all share a common β-barrel constitution, they differ in the degree to which loops L2 and T8 are ordered. L2 and T8 have been identified as an extracellular gate (E-gate) and a periplasmic gate (P-gate), respectively, that reside on either side of an alginate-selectivity pore located midway through AlgE. Passage of alginate across the membrane is proposed to be regulated by the sequential opening and closing of the two gates. In one crystal form, the selectivity pore contains a bound citrate. Because citrate mimics the uronate monomers of alginate, its location is taken to highlight a route through AlgE taken by alginate as it crosses the pore. Docking and molecular-dynamics simulations support and extend the proposed transport mechanism. Specifically, the P-gate and E-gate are flexible and move between open and closed states. Citrate can leave the selectivity pore bidirectionally. Alginate docks stably in a linear conformation through the open pore. To translate across the pore, a force is required that presumably is provided by the alginate-synthesis machinery. Accessing the open pore is facilitated by complex formation between AlgE and the periplasmic protein AlgK. Alginate can thread through a continuous pore in the complex, suggesting that AlgK pre-orients newly synthesized exopolysaccharide for delivery to AlgE.

  17. One-step purification and characterization of alginate lyase from a clinical Pseudomonas aeruginosa with destructive activity on bacterial biofilm.

    Science.gov (United States)

    Ghadam, Parinaz; Akhlaghi, Fatemeh; Ali, Ahya Abdi

    2017-05-01

    Pseudomonas aeruginosa is a Gram-negative and aerobic rod bacterium that displays mucoid and non-mucoid phenotype. Mucoid strains secrete alginate, which is the main agent of biofilms in chronic P. aeruginosa infections, show high resistance to antibiotics; consequently, the biological disruption of mucoid P. aeruginosa biofilms is an attractive area of study for researchers. Alginate lyase gene (algl) is a member of alginate producing operon which by glycosidase activity produces primer for other enzymes in this cluster. Also this activity can destroy the extracellular alginate; therefore this enzyme participates in alginate production and destruction pathway. Alginate lyase causes detachment of a biofilm by reducing its adhesion to the surfaces, and increases phagocytosis and antibiotic susceptibility. In this study, alginate lyase was purified in just one step and its properties were investigated. The purification was done by affinity chromatography, analysed by SDS-PAGE, and its effect on P. aeruginosa biofilms was surveyed by micro titer plate assay and SEM. The substrate specificity of the enzyme was determined by PCR. Alginate lyase from isolate 48 was purified in one step. It is more thermally resistant than alginate lyase from Pseudomonas aeruginosa PAO1 and poly M, poly G and poly MG alginate were the substrate of this enzyme. Moreover, it has an eradication effect on biofilms from P. aeruginosa 48 and PAO1. In this study an alginate lyase with many characteristics suitable in medicine such as thermal stability, effective on poly M alginate, and bacterial biofilm destructive was introduced and purified.

  18. Comparative study on the in vitro effects of Pseudomonas aeruginosa and seaweed alginates on human gut microbiota.

    Directory of Open Access Journals (Sweden)

    Shaofeng Bai

    Full Text Available Alginates pertain to organic polysaccharides that have been extensively used in food- and medicine-related industries. The present study obtained alginates from an alginate overproducing Pseudomonas aeruginosa PAO1 mutant by screening transposon mutagenesis libraries. The interaction between bacterial and seaweed alginates and gut microbiota were further studied by using an in vitro batch fermentation system. Thin-layer chromatography (TLC analysis indicated that both bacterial and seaweed alginates can be completely degraded by fecal bacteria isolated from study volunteers, indicating that a minor structural difference between bacterial and seaweed alginates (O-acetylation and lack of G-G blocks didn't affect the digestion of alginates by human microbiota. Although, the digestion of bacterial and seaweed alginates was attributed to different Bacteroides xylanisolvens strains, they harbored similar alginate lyase genes. Genus Bacteroides with alginate-degrading capability were enriched in growth medium containing bacterial or seaweed alginates after in vitro fermentation. Short-chain fatty acid (SCFA production in both bacterial and seaweed alginates was also comparable, but was significantly higher than the same medium using starch. In summary, the present study has isolated an alginate-overproducing P. aeruginosa mutant strain. Both seaweed and bacterial alginates were degraded by human gut microbiota, and their regulatory function on gut microbiota was similar.

  19. Alginate-modifying enzymes: Biological roles and biotechnological uses

    Directory of Open Access Journals (Sweden)

    Helga eErtesvåg

    2015-05-01

    Full Text Available Alginate denotes a group of industrially important 1-4-linked biopolymers composed of the C-5-epimers β-D-mannuronic acid (M and α-L-guluronic acid (G. The polysaccharide is manufactured from brown algae where it constitutes the main structural cell wall polymer. The physical properties of a given alginate molecule, e.g. gel-strength, water-binding capacity, viscosity and biocompatibility, are determined by polymer length, the relative amount and distribution of G residues and the acetyl content, all of which are controlled by alginate modifying enzymes. Alginate has also been isolated from some bacteria belonging to the genera Pseudomonas and Azotobacter, and bacterially synthesized alginate may be O-acetylated at O-2 and/or O-3. Initially, alginate is synthesized as polymannuronic acid, and some M residues are subsequently epimerized to G residues. In bacteria a mannuronan C-5-epimerase (AlgG and an alginate acetylase (AlgX are integral parts of the protein complex necessary for alginate polymerisation and export. All alginate-producing bacteria use periplasmic alginate lyases to remove alginate molecules aberrantly released to the periplasm. Alginate lyases are also produced by organisms that utilize alginate as carbon source. Most alginate-producing organisms encode more than one mannuronan C-5 epimerase, each introducing its specific pattern of G residues. Acetylation protects against further epimerization and from most alginate lyases. One enzyme with alginate deacetylase activity from Pseudomonas syringae has been reported. Functional and structural studies reveal that alginate lyases and epimerases have related enzyme mechanisms and catalytic sites. Alginate lyases are now utilized as tools for alginate characterization. Secreted epimerases have been shown to function well in vitro, and have been engineered further in order to obtain enzymes that can provide alginates with new and desired properties for use in medical and

  20. Extensive Field Survey, Laboratory and Greenhouse Studies Reveal Complex Nature of Pseudomonas syringae-Associated Hazelnut Decline in Central Italy

    Science.gov (United States)

    Lamichhane, Jay Ram; Bartoli, Claudia; Varvaro, Leonardo

    2016-01-01

    Pseudomonas avellanae (Pav) has been reported as the causal agent of bacterial decline and bacterial canker of hazelnut in Italy and Greece, respectively. Both hazelnut diseases were reported to be similar in terms of symptoms, severity and persistence. In this study, we found that both symptomatic and asymptomatic trees in the field were colonized by Pav. Multilocus Sequence Typing (MLST) analysis showed that Pav strains isolated during this study in Italy belong to the P. syringae phylogroup 1 and they are closely related to Pav strains previously isolated in Greece from hazelnut bacterial canker. On the other hand, strains isolated in earlier studies from hazelnut decline in Italy belong to both phylogroup 1 and 2 of P. syringae. Both phylogroup 1 strains of P. syringae from Greece and Italy are different than strains isolated in this study in terms of their capacity to excrete fluorescent pigments on different media. Despite the same plant genotype and cropping practices adopted, the incidence of hazelnut decline ranged from nearly 0 to 91% across our study sites. No disease developed on plants inoculated with Pav through wounding while leaf scar inoculations produced only mild disease symptoms. Based on our results and the previously reported correlation between pedo-climatic conditions and hazelnut decline, we conclude that hazelnut decline in central Italy could be incited by a combination of predisposing (adverse pedo-climatic conditions) and contributing factors (Pav). Because this is a true decline different from “bacterial canker” described in Greece, we refer to it as hazelnut decline (HD). PMID:26840951

  1. Extensive Field Survey, Laboratory and Greenhouse Studies Reveal Complex Nature of Pseudomonas syringae-Associated Hazelnut Decline in Central Italy.

    Directory of Open Access Journals (Sweden)

    Jay Ram Lamichhane

    Full Text Available Pseudomonas avellanae (Pav has been reported as the causal agent of bacterial decline and bacterial canker of hazelnut in Italy and Greece, respectively. Both hazelnut diseases were reported to be similar in terms of symptoms, severity and persistence. In this study, we found that both symptomatic and asymptomatic trees in the field were colonized by Pav. Multilocus Sequence Typing (MLST analysis showed that Pav strains isolated during this study in Italy belong to the P. syringae phylogroup 1 and they are closely related to Pav strains previously isolated in Greece from hazelnut bacterial canker. On the other hand, strains isolated in earlier studies from hazelnut decline in Italy belong to both phylogroup 1 and 2 of P. syringae. Both phylogroup 1 strains of P. syringae from Greece and Italy are different than strains isolated in this study in terms of their capacity to excrete fluorescent pigments on different media. Despite the same plant genotype and cropping practices adopted, the incidence of hazelnut decline ranged from nearly 0 to 91% across our study sites. No disease developed on plants inoculated with Pav through wounding while leaf scar inoculations produced only mild disease symptoms. Based on our results and the previously reported correlation between pedo-climatic conditions and hazelnut decline, we conclude that hazelnut decline in central Italy could be incited by a combination of predisposing (adverse pedo-climatic conditions and contributing factors (Pav. Because this is a true decline different from "bacterial canker" described in Greece, we refer to it as hazelnut decline (HD.

  2. Characterization of Novel Bacteriophages for Biocontrol of Bacterial Blight in Leek Caused by Pseudomonas syringae pv. porri.

    Science.gov (United States)

    Rombouts, Sofie; Volckaert, Anneleen; Venneman, Sofie; Declercq, Bart; Vandenheuvel, Dieter; Allonsius, Camille N; Van Malderghem, Cinzia; Jang, Ho B; Briers, Yves; Noben, Jean P; Klumpp, Jochen; Van Vaerenbergh, Johan; Maes, Martine; Lavigne, Rob

    2016-01-01

    Pseudomonas syringae pv. porri, the causative agent of bacterial blight in leek (Allium porrum), is increasingly frequent causing problems in leek cultivation. Because of the current lack of control measures, novel bacteriophages were isolated to control this pathogen using phage therapy. Five novel phages were isolated from infected fields in Flanders (vB_PsyM_KIL1, vB_PsyM_KIL2, vB_PsyM_KIL3, vB_PsyM_KIL4, and vB_PsyM_KIL5), and were complemented with one selected host range mutant phage (vB_PsyM_KIL3b). Genome analysis of the phages revealed genome sizes between 90 and 94 kb and an average GC-content of 44.8%. Phylogenomic networking classified them into a novel clade, named the "KIL-like viruses," related to the Felixounalikevirus genus, together with phage phiPsa374 from P. syringae pv. actinidiae. In vitro characterization demonstrated the stability and lytic potential of these phages. Host range analysis confirmed heterogeneity within P. syringae pv. porri, leading to the development of a phage cocktail with a range that covers the entire set of 41 strains tested. Specific bio-assays demonstrated the in planta efficacy of phages vB_PsyM_KIL1, vB_PsyM_KIL2, vB_PsyM_KIL3, and vB_PsyM_KIL3b. In addition, two parallel field trial experiments on three locations using a phage cocktail of the six phages showed variable results. In one trial, symptom development was attenuated. These data suggest some potential for phage therapy in controlling bacterial blight of leek, pending optimization of formulation and application methods.

  3. Dynamics of membrane potential variation and gene expression induced by Spodoptera littoralis, Myzus persicae, and Pseudomonas syringae in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Irene Bricchi

    Full Text Available BACKGROUND: Biotic stress induced by various herbivores and pathogens invokes plant responses involving different defense mechanisms. However, we do not know whether different biotic stresses share a common response or which signaling pathways are involved in responses to different biotic stresses. We investigated the common and specific responses of Arabidopsis thaliana to three biotic stress agents: Spodoptera littoralis, Myzus persicae, and the pathogen Pseudomonas syringae. METHODOLOGY/PRINCIPAL FINDINGS: We used electrophysiology to determine the plasma membrane potential (V(m and we performed a gene microarray transcriptome analysis on Arabidopsis upon either herbivory or bacterial infection. V(m depolarization was induced by insect attack; however, the response was much more rapid to S. littoralis (30 min -2 h than to M. persicae (4-6 h. M. persicae differentially regulated almost 10-fold more genes than by S. littoralis with an opposite regulation. M. persicae modulated genes involved in flavonoid, fatty acid, hormone, drug transport and chitin metabolism. S. littoralis regulated responses to heat, transcription and ion transport. The latest Vm depolarization (16 h was found for P. syringae. The pathogen regulated responses to salicylate, jasmonate and to microorganisms. Despite this late response, the number of genes differentially regulated by P. syringae was closer to those regulated by S. littoralis than by M. persicae. CONCLUSIONS/SIGNIFICANCE: Arabidopsis plasma membranes respond with a V(m depolarization at times depending on the nature of biotic attack which allow setting a time point for comparative genome-wide analysis. A clear relationship between V(m depolarization and gene expression was found. At V(m depolarization timing, M. persicae regulates a wider array of Arabidopsis genes with a clear and distinct regulation than S. littoralis. An almost completely opposite regulation was observed between the aphid and the pathogen

  4. Cytokinins mediate resistance against Pseudomonas syringae in tobacco through increased antimicrobial phytoalexin synthesis independent of salicylic acid signaling.

    Science.gov (United States)

    Grosskinsky, Dominik K; Naseem, Muhammad; Abdelmohsen, Usama Ramadan; Plickert, Nicole; Engelke, Thomas; Griebel, Thomas; Zeier, Jürgen; Novák, Ondrej; Strnad, Miroslav; Pfeifhofer, Hartwig; van der Graaff, Eric; Simon, Uwe; Roitsch, Thomas

    2011-10-01

    Cytokinins are phytohormones that are involved in various regulatory processes throughout plant development, but they are also produced by pathogens and known to modulate plant immunity. A novel transgenic approach enabling autoregulated cytokinin synthesis in response to pathogen infection showed that cytokinins mediate enhanced resistance against the virulent hemibiotrophic pathogen Pseudomonas syringae pv tabaci. This was confirmed by two additional independent transgenic approaches to increase endogenous cytokinin production and by exogenous supply of adenine- and phenylurea-derived cytokinins. The cytokinin-mediated resistance strongly correlated with an increased level of bactericidal activities and up-regulated synthesis of the two major antimicrobial phytoalexins in tobacco (Nicotiana tabacum), scopoletin and capsidiol. The key role of these phytoalexins in the underlying mechanism was functionally proven by the finding that scopoletin and capsidiol substitute in planta for the cytokinin signal: phytoalexin pretreatment increased resistance against P. syringae. In contrast to a cytokinin defense mechanism in Arabidopsis (Arabidopsis thaliana) based on salicylic acid-dependent transcriptional control, the cytokinin-mediated resistance in tobacco is essentially independent from salicylic acid and differs in pathogen specificity. It is also independent of jasmonate levels, reactive oxygen species, and high sugar resistance. The novel function of cytokinins in the primary defense response of solanaceous plant species is rather mediated through a high phytoalexin-pathogen ratio in the early phase of infection, which efficiently restricts pathogen growth. The implications of this mechanism for the coevolution of host plants and cytokinin-producing pathogens and the practical application in agriculture are discussed.

  5. Constitutive Activity of the Arabidopsis MAP Kinase 3 Confers Resistance to Pseudomonas syringae and Drives Robust Immune Responses

    KAUST Repository

    Lang, Julien

    2017-08-02

    Mitogen Activated Protein Kinases (MAPKs) are known to be important mediators of plant responses to biotic and abiotic stresses. In a recent report, we enlarged the understanding of the Arabidopsis thaliana MPK3 functions showing that the expression of a constitutively active (CA) form of the protein led to auto-immune phenotypes. CA-MPK3 plants are dwarf and display defense responses that are characterized by the accumulation of salicylic acid and phytoalexins as well as by the upregulation of several defense genes. Consistently with these data, we present here results demonstrating that, compared to wild type controls, CA-MPK3 plants are more resistant to the hemibiotrophic pathogen Pseudomonas syringae DC3000. Based on our previous work, we also discuss the mechanisms of robust plant immunity controlled by sustained MPK3 activity, focusing especially on the roles of disease resistance proteins.

  6. Bigger is not always better: transmission and fitness burden of ∼1MB Pseudomonas syringae megaplasmid pMPPla107.

    Science.gov (United States)

    Romanchuk, Artur; Jones, Corbin D; Karkare, Kedar; Moore, Autumn; Smith, Brian A; Jones, Chelsea; Dougherty, Kevin; Baltrus, David A

    2014-05-01

    Horizontal gene transfer (HGT) is a widespread process that enables the acquisition of genes and metabolic pathways in single evolutionary steps. Previous reports have described fitness costs of HGT, but have largely focused on the acquisition of relatively small plasmids. We have previously shown that a Pseudomonas syringae pv. lachrymans strain recently acquired a cryptic megaplasmid, pMPPla107. This extrachromosomal element contributes hundreds of new genes to P. syringae and increases total genomic content by approximately 18%. However, this early work did not directly explore transmissibility, stability, or fitness costs associated with acquisition of pMPPla107. Here, we show that pMPPla107 is self-transmissible across a variety of diverse pseudomonad strains, on both solid agar and within shaking liquid cultures, with conjugation dependent on a type IV secretion system. To the best of our knowledge, this is the largest self-transmissible megaplasmid known outside of Sinorhizobium. This megaplasmid can be lost from all novel hosts although the rate of loss depends on medium type and genomic background. However, in contrast, pMPPla107 is faithfully maintained within the original parent strain (Pla107) even under direct negative selection during laboratory assays. These results suggest that Pla107 specific stabilizing mutations have occurred either on this strain's chromosome or within the megaplasmid. Lastly, we demonstrate that acquisition of pMPPla107 by strains other than Pla107 imparts severe (20%) fitness costs under competitive conditions in vitro. We show that pMPPla107 is capable of transmitting and maintaining itself across multiple Pseudomonas species, rendering it one of the largest conjugative elements discovered to date. The relative stability of pMPPla107, coupled with extensive fitness costs, makes it a tractable model system for investigating evolutionary and genetic mechanisms of megaplasmid maintenance and a unique testing ground to explore

  7. Pseudomonas syringae pv. actinidiae from recent outbreaks of kiwifruit bacterial canker belong to different clones that originated in China.

    Directory of Open Access Journals (Sweden)

    Margi I Butler

    Full Text Available A recently emerged plant disease, bacterial canker of kiwifruit (Actinidia deliciosa and A. chinensis, is caused by Pseudomonas syringae pv. actinidiae (PSA. The disease was first reported in China and Japan in the 1980s. A severe outbreak of PSA began in Italy in 2008 and has spread to other European countries. PSA was found in both New Zealand and Chile in 2010. To study the evolution of the pathogen and analyse the transmission of PSA between countries, genomes of strains from China and Japan (where the genus Actinidia is endemic, Italy, New Zealand and Chile were sequenced. The genomes of PSA strains are very similar. However, all strains from New Zealand share several single nucleotide polymorphisms (SNPs that distinguish them from all other PSA strains. Similarly, all the PSA strains from the 2008 Italian outbreak form a distinct clonal group and those from Chile form a third group. In addition to the rare SNPs present in the core genomes, there is abundant genetic diversity in a genomic island that is part of the accessory genome. The island from several Chinese strains is almost identical to the island present in the New Zealand strains. The island from a different Chinese strain is identical to the island present in the strains from the recent Italian outbreak. The Chilean strains of PSA carry a third variant of this island. These genomic islands are integrative conjugative elements (ICEs. Sequencing of these ICEs provides evidence of three recent horizontal transmissions of ICE from other strains of Pseudomonas syringae to PSA. The analyses of the core genome SNPs and the ICEs, combined with disease history, all support the hypothesis of an independent Chinese origin for both the Italian and the New Zealand outbreaks and suggest the Chilean strains also originate from China.

  8. Pseudomonas syringae pv. actinidiae from recent outbreaks of kiwifruit bacterial canker belong to different clones that originated in China.

    Science.gov (United States)

    Butler, Margi I; Stockwell, Peter A; Black, Michael A; Day, Robert C; Lamont, Iain L; Poulter, Russell T M

    2013-01-01

    A recently emerged plant disease, bacterial canker of kiwifruit (Actinidia deliciosa and A. chinensis), is caused by Pseudomonas syringae pv. actinidiae (PSA). The disease was first reported in China and Japan in the 1980s. A severe outbreak of PSA began in Italy in 2008 and has spread to other European countries. PSA was found in both New Zealand and Chile in 2010. To study the evolution of the pathogen and analyse the transmission of PSA between countries, genomes of strains from China and Japan (where the genus Actinidia is endemic), Italy, New Zealand and Chile were sequenced. The genomes of PSA strains are very similar. However, all strains from New Zealand share several single nucleotide polymorphisms (SNPs) that distinguish them from all other PSA strains. Similarly, all the PSA strains from the 2008 Italian outbreak form a distinct clonal group and those from Chile form a third group. In addition to the rare SNPs present in the core genomes, there is abundant genetic diversity in a genomic island that is part of the accessory genome. The island from several Chinese strains is almost identical to the island present in the New Zealand strains. The island from a different Chinese strain is identical to the island present in the strains from the recent Italian outbreak. The Chilean strains of PSA carry a third variant of this island. These genomic islands are integrative conjugative elements (ICEs). Sequencing of these ICEs provides evidence of three recent horizontal transmissions of ICE from other strains of Pseudomonas syringae to PSA. The analyses of the core genome SNPs and the ICEs, combined with disease history, all support the hypothesis of an independent Chinese origin for both the Italian and the New Zealand outbreaks and suggest the Chilean strains also originate from China.

  9. Origin of the Outbreak in France of Pseudomonas syringae pv. actinidiae Biovar 3, the Causal Agent of Bacterial Canker of Kiwifruit, Revealed by a Multilocus Variable-Number Tandem-Repeat Analysis.

    Science.gov (United States)

    Cunty, A; Cesbron, S; Poliakoff, F; Jacques, M-A; Manceau, C

    2015-10-01

    The first outbreaks of bacterial canker of kiwifruit caused by Pseudomonas syringae pv. actinidiae biovar 3 were detected in France in 2010. P. syringae pv. actinidiae causes leaf spots, dieback, and canker that sometimes lead to the death of the vine. P. syringae pv. actinidifoliorum, which is pathogenic on kiwi as well, causes only leaf spots. In order to conduct an epidemiological study to track the spread of the epidemics of these two pathogens in France, we developed a multilocus variable-number tandem-repeat (VNTR) analysis (MLVA). MLVA was conducted on 340 strains of P. syringae pv. actinidiae biovar 3 isolated in Chile, China, France, Italy, and New Zealand and on 39 strains of P. syringae pv. actinidifoliorum isolated in Australia, France, and New Zealand. Eleven polymorphic VNTR loci were identified in the genomes of P. syringae pv. actinidiae biovar 3 ICMP 18744 and of P. syringae pv. actinidifoliorum ICMP 18807. MLVA enabled the structuring of P. syringae pv. actinidiae biovar 3 and P. syringae pv. actinidifoliorum strains in 55 and 16 haplotypes, respectively. MLVA and discriminant analysis of principal components revealed that strains isolated in Chile, China, and New Zealand are genetically distinct from P. syringae pv. actinidiae strains isolated in France and in Italy, which appear to be closely related at the genetic level. In contrast, no structuring was observed for P. syringae pv. actinidifoliorum. We developed an MLVA scheme to explore the diversity within P. syringae pv. actinidiae biovar 3 and to trace the dispersal routes of epidemic P. syringae pv. actinidiae biovar 3 in Europe. We suggest using this MLVA scheme to trace the dispersal routes of P. syringae pv. actinidiae at a global level. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  10. NudC Nudix hydrolase from Pseudomonas syringae, but not its counterpart from Pseudomonas aeruginosa, is a novel regulator of intracellular redox balance required for growth, motility and biofilm formation.

    Science.gov (United States)

    Modzelan, Marta; Kujawa, Martyna; Głąbski, Krzysztof; Jagura-Burdzy, Grażyna; Kraszewska, Elzbieta

    2014-09-01

    Nudix pyrophosphatases, ubiquitous in all organisms, have not been well studied. Recent implications that some of them may be involved in response to stress and in pathogenesis indicate that they play important biological functions. We have investigated NudC Nudix proteins from the plant pathogen Pseudomonas syringae pv. tomato str. DC3000 and from the human pathogen Pseudomonas aeruginosa PAO1161. We found that these homologous enzymes are homodimeric and in vitro preferentially hydrolyse NADH. The P. syringae mutant strain deficient in NudC accumulated NADH and displayed significant defects in growth, motility and biofilm formation. The wild type copy of the nudC gene with its cognate promoter delivered in trans into the nudC mutant restored its fitness. However, introduction of the P. syringae nudC gene under the control of the strong tacp promoter into either P. syringae or P. aeruginosa cells had a toxic effect on both strains. Opposite to P. syringae NudC, the P. aeruginosa NudC deficiency as well as its overproduction had no visible impact on cells. Moreover, P. aeruginosa NudC does not compensate the lack of its counterpart in the P. syringae mutant. These results indicate that NudC from P. syringae, but not from P. aeruginosa is vital for bacteria. © 2014 John Wiley & Sons Ltd.

  11. Catalytic Mechanism and Mode of Action of the Periplasmic Alginate Epimerase AlgG

    NARCIS (Netherlands)

    Wolfram, Francis; Kitova, Elena N.; Robinson, Howard; Walvoort, Marthe T. C.; Codee, Jeroen D. C.; Klassen, John S.; Howell, P. Lynne

    2014-01-01

    Background: The alginate epimerase AlgG converts mannuronate to its C5 epimer guluronate at the polymer level. Results: The structure of Pseudomonas syringae AlgG has been determined, and the protein has been functionally characterized. Conclusion: His(319) acts as the catalytic base, whereas

  12. Light Regulation of Swarming Motility in Pseudomonas syringae Integrates Signaling Pathways Mediated by a Bacteriophytochrome and a LOV Protein

    Science.gov (United States)

    Wu, Liang; McGrane, Regina S.; Beattie, Gwyn A.

    2013-01-01

    ABSTRACT The biological and regulatory roles of photosensory proteins are poorly understood for nonphotosynthetic bacteria. The foliar bacterial pathogen Pseudomonas syringae has three photosensory protein-encoding genes that are predicted to encode the blue-light-sensing LOV (light, oxygen, or voltage) histidine kinase (LOV-HK) and two red/far-red-light-sensing bacteriophytochromes, BphP1 and BphP2. We provide evidence that LOV-HK and BphP1 form an integrated network that regulates swarming motility in response to multiple light wavelengths. The swarming motility of P. syringae B728a deletion mutants indicated that LOV-HK positively regulates swarming motility in response to blue light and BphP1 negatively regulates swarming motility in response to red and far-red light. BphP2 does not detectably regulate swarming motility. The histidine kinase activity of each LOV-HK and BphP1 is required for this regulation based on the loss of complementation upon mutation of residues key to their kinase activity. Surprisingly, mutants lacking both lov and bphP1 were similar in motility to a bphP1 single mutant in blue light, indicating that the loss of bphP1 is epistatic to the loss of lov and also that BphP1 unexpectedly responds to blue light. Moreover, whereas expression of bphP1 did not alter motility under blue light in a bphP1 mutant, it reduced motility in a mutant lacking lov and bphP1, demonstrating that LOV-HK positively regulates motility by suppressing negative regulation by BphP1. These results are the first to show cross talk between the LOV protein and phytochrome signaling pathways in bacteria, and the similarity of this regulatory network to that of photoreceptors in plants suggests a possible common ancestry. PMID:23760465

  13. The Arabidopsis thaliana non-specific phospholipase C2 is involved in the response to Pseudomonas syringae attack.

    Science.gov (United States)

    Krcková, Zuzana; Kocourková, Daniela; Danek, Michal; Brouzdová, Jitka; Pejchar, Premysl; Janda, Martin; Pokotylo, Igor; Ott, Peter G; Valentová, Olga; Martinec, Jan

    2017-12-29

    The non-specific phospholipase C (NPC) is a new member of the plant phospholipase family that reacts to abiotic environmental stresses, such as phosphate deficiency, high salinity, heat and aluminium toxicity, and is involved in root development, silicon distribution and brassinolide signalling. Six NPC genes (NPC1-NPC6) are found in the Arabidopsis genome. The NPC2 isoform has not been experimentally characterized so far. The Arabidopsis NPC2 isoform was cloned and heterologously expressed in Escherichia coli. NPC2 enzyme activity was determined using fluorescent phosphatidylcholine as a substrate. Tissue expression and subcellular localization were analysed using GUS- and GFP-tagged NPC2. The expression patterns of NPC2 were analysed via quantitative real-time PCR. Independent homozygous transgenic plant lines overexpressing NPC2 under the control of a 35S promoter were generated, and reactive oxygen species were measured using a luminol-based assay. The heterologously expressed protein possessed phospholipase C activity, being able to hydrolyse phosphatidylcholine to diacylglycerol. NPC2 tagged with GFP was predominantly localized to the Golgi apparatus in Arabidopsis roots. The level of NPC2 transcript is rapidly altered during plant immune responses and correlates with the activation of multiple layers of the plant defence system. Transcription of NPC2 decreased substantially after plant infiltration with Pseudomonas syringae, flagellin peptide flg22 and salicylic acid treatments and expression of the effector molecule AvrRpm1. The decrease in NPC2 transcript levels correlated with a decrease in NPC2 enzyme activity. NPC2-overexpressing mutants showed higher reactive oxygen species production triggered by flg22. This first experimental characterization of NPC2 provides new insights into the role of the non-specific phospholipase C protein family. The results suggest that NPC2 is involved in the response of Arabidopsis to P. syringae attack.

  14. Extensive remodeling of the Pseudomonas syringae pv. avellanae type III secretome associated with two independent host shifts onto hazelnut

    Directory of Open Access Journals (Sweden)

    O’Brien Heath E

    2012-07-01

    Full Text Available Abstract Background Hazelnut (Corylus avellana decline disease in Greece and Italy is caused by the convergent evolution of two distantly related lineages of Pseudomonas syringae pv. avellanae (Pav. We sequenced the genomes of three Pav isolates to determine if their convergent virulence phenotype had a common genetic basis due to either genetic exchange between lineages or parallel evolution. Results We found little evidence for horizontal transfer (recombination of genes between Pav lineages, but two large genomic islands (GIs have been recently acquired by one of the lineages. Evolutionary analyses of the genes encoding type III secreted effectors (T3SEs that are translocated into host cells and are important for both suppressing and eliciting defense responses show that the two Pav lineages have dramatically different T3SE profiles, with only two shared putatively functional T3SEs. One Pav lineage has undergone unprecedented secretome remodeling, including the acquisition of eleven new T3SEs and the loss or pseudogenization of 15, including five of the six core T3SE families that are present in the other Pav lineage. Molecular dating indicates that divergence within both of the Pav lineages predates their observation in the field. This suggest that both Pav lineages have been cryptically infecting hazelnut trees or wild relatives for many years, and that the emergence of hazelnut decline in the 1970s may have been due to changes in agricultural practice. Conclusions These data show that divergent lineages of P. syringae can converge on identical disease etiology on the same host plant using different virulence mechanisms and that dramatic shifts in the arsenal of T3SEs can accompany disease emergence.

  15. Iron-Regulated Expression of Alginate Production, Mucoid Phenotype, and Biofilm Formation by Pseudomonas aeruginosa

    Science.gov (United States)

    Wiens, Jacinta R.; Vasil, Adriana I.; Schurr, Michael J.; Vasil, Michael L.

    2014-01-01

    ABSTRACT Pseudomonas aeruginosa strains of non-cystic fibrosis (non-CF) origin do not produce significant amounts of extracellular alginate and are nonmucoid. In CF, such isolates can become mucoid through mutation of one of the genes (mucA, mucB, mucC, or mucD) that produce regulatory factors that sequester AlgU, required for increased expression of alginate genes. Mutation of the muc genes in the nonmucoid PAO1, PA14, PAKS-1, and Ps388 strains led to increased levels of extracellular alginate and an obvious mucoid phenotype, but only under iron-limiting growth conditions (≤5 µM), not under iron-replete conditions (≥10 µM). In contrast, >50% of P. aeruginosa isolates from chronic CF pulmonary infections expressed increased levels of alginate and mucoidy both under iron-limiting and iron-replete conditions (i.e., iron-constitutive phenotype). No single iron regulatory factor (e.g., Fur, PvdS) was associated with this loss of iron-regulated alginate expression and mucoidy in these CF isolates. However, the loss of only pyoverdine production, or its uptake, abrogated the ability of P. aeruginosa to produce a robust biofilm that represents the Psl-type of biofilm. In contrast, we show that mutation of the pyoverdine and pyochelin biosynthesis genes and the pyoverdine receptor (FpvA) lead to iron-constitutive expression of the key alginate biosynthesis gene, algD, and an explicitly mucoid phenotype in both iron-limiting and iron-replete conditions. These data indicate that alginate production and mucoidy, in contrast to other types of biofilms produced by P. aeruginosa, are substantially enhanced under iron limitation. These results also have compelling implications in relation to the use of iron chelators in the treatment of P. aeruginosa CF infections. PMID:24496793

  16. One-step purification and characterization of alginate lyase from a clinical Pseudomonas aeruginosa with destructive activity on bacterial biofilm

    Directory of Open Access Journals (Sweden)

    Parinaz Ghadam

    2017-05-01

    Full Text Available Objective(s: Pseudomonas aeruginosais a Gram-negative and aerobic rod bacterium that displays mucoid and non-mucoid phenotype. Mucoid strains secrete alginate, which is the main agent of biofilms in chronic P. aeruginosa infections, show high resistance to antibiotics; consequently, the biological disruption of mucoid P. aeruginosa biofilms is an attractive area of study for researchers. Alginate lyase gene (algl is a member of alginate producing operon which by glycosidase activity produces primer for other enzymes in this cluster. Also this activity can destroy the extracellular alginate; therefore this enzyme participates in alginate production and destruction pathway. Alginate lyase causes detachment of a biofilm by reducing its adhesion to the surfaces, and increases phagocytosis and antibiotic susceptibility. In this study, alginate lyase was purified in just one step and its properties were investigated. Materials and Methods: The purification was done by affinity chromatography, analysed by SDS-PAGE, and its effect on P. aeruginosa biofilms was surveyed by micro titer plate assay and SEM. The substrate specificity of the enzyme was determined by PCR. Results: Alginate lyase from isolate 48 was purified in one step. It is more thermally resistant than alginate lyase from Pseudomonas aeruginosa PAO1 and poly M, poly G and poly MG alginate were the substrate of this enzyme. Moreover, it has an eradication effect on biofilms from P. aeruginosa 48 and PAO1. Conclusion: In this study an alginate lyase with many characteristics suitable in medicine such as thermal stability, effective on poly M alginate, and bacterial biofilm destructive was introduced and purified.

  17. Comparative genomic analysis of two-component regulatory proteins in Pseudomonas syringae

    DEFF Research Database (Denmark)

    Lavin, J.L.; Kiil, Kristoffer; Resano, O.

    2007-01-01

    requires a complex array of TCS proteins to cope with diverse plant hosts, host responses, and environmental conditions. Results: Based on the genomic data, pattern searches with Hidden Markov Model (HMM) profiles have been used to identify putative HKs and RRs. The genomes of Psy B728a, Pto DC3000 and Pph...... (Pph) 1448A have been recently sequenced providing a major resource for comparative genomic analysis. A mechanism commonly found in bacteria for signal transduction is the two-component system (TCS), which typically consists of a sensor histidine kinase (HK) and a response regulator (RR). P. syringae...... 1448A were found to contain a large number of genes encoding TCS proteins, and a core of complete TCS proteins were shared between these genomes: 30 putative TCS clusters, 11 orphan HKs, 33 orphan RRs, and 16 hybrid HKs. A close analysis of the distribution of genes encoding TCS proteins revealed...

  18. The ECF sigma factor, PSPTO_1043, in Pseudomonas syringae pv. tomato DC3000 is induced by oxidative stress and regulates genes involved in oxidative stress response.

    Science.gov (United States)

    Butcher, Bronwyn G; Bao, Zhongmeng; Wilson, Janet; Stodghill, Paul; Swingle, Bryan; Filiatrault, Melanie; Schneider, David; Cartinhour, Samuel

    2017-01-01

    The bacterial plant pathogen Pseudomonas syringae adapts to changes in the environment by modifying its gene expression profile. In many cases, the response is mediated by the activation of extracytoplasmic function (ECF) sigma factors that direct RNA polymerase to transcribe specific sets of genes. In this study we focus on PSPTO_1043, one of ten ECF sigma factors in P. syringae pv. tomato DC3000 (DC3000). PSPTO_1043, together with PSPTO_1042, encode an RpoERsp/ChrR-like sigma/anti-sigma factor pair. Although this gene pair is unique to the P. syringae group among the pseudomonads, homologous genes can be found in photosynthetic genera such as Rhodospirillum, Thalassospira, Phaeospirillum and Parvibaculum. Using ChIP-Seq, we detected 137 putative PSPTO_1043 binding sites and identified a likely promoter motif. We characterized 13 promoter candidates, six of which regulate genes that appear to be found only in P. syringae. PSPTO_1043 responds to the presence of singlet oxygen (1O2) and tert-butyl hydroperoxide (tBOOH) and several of the genes regulated by PSPTO_1043 appear to be involved in response to oxidative stress.

  19. Silencing and heterologous expression of ppo-2 indicate a specific function of a single polyphenol oxidase isoform in resistance of dandelion (Taraxacum officinale) against Pseudomonas syringae pv. tomato.

    Science.gov (United States)

    Richter, Carolin; Dirks, Mareike E; Gronover, Christian Schulze; Prüfer, Dirk; Moerschbacher, Bruno M

    2012-02-01

    Dandelion (Taraxacum officinale) possesses an unusually high degree of disease resistance. As this plant exhibits high polyphenol oxidase (PPO) activity and PPO have been implicated in resistance against pests and pathogens, we analyzed the potential involvement of five PPO isoenzymes in the resistance of dandelion against Botrytis cinerea and Pseudomonas syringae pv. tomato. Only one PPO (ppo-2) was induced during infection, and ppo-2 promoter and β-glucuronidase marker gene fusions revealed strong induction of the gene surrounding lesions induced by B. cinerea. Specific RNAi silencing reduced ppo-2 expression only, and concomitantly increased plant susceptibility to P. syringae pv. tomato. At 4 days postinoculation, P. syringae pv. tomato populations were strongly increased in the ppo-2 RNAi lines compared with wild-type plants. When the dandelion ppo-2 gene was expressed in Arabidopsis thaliana, a plant having no PPO gene, active protein was formed and protein extracts of the transgenic plants exhibited substrate-dependent antimicrobial activity against P. syringae pv. tomato. These results clearly indicate a strong contribution of a specific, single PPO isoform to disease resistance. Therefore, we propose that specific PPO isoenzymes be included in a new family of pathogenesis-related (PR) proteins.

  20. Atmospheric CO2 Alters Resistance of Arabidopsis to Pseudomonas syringae by Affecting Abscisic Acid Accumulation and Stomatal Responsiveness to Coronatine.

    Science.gov (United States)

    Zhou, Yeling; Vroegop-Vos, Irene; Schuurink, Robert C; Pieterse, Corné M J; Van Wees, Saskia C M

    2017-01-01

    Atmospheric CO2 influences plant growth and stomatal aperture. Effects of high or low CO2 levels on plant disease resistance are less well understood. Here, resistance of Arabidopsis thaliana against the foliar pathogen Pseudomonas syringae pv. tomato DC3000 (Pst) was investigated at three different CO2 levels: high (800 ppm), ambient (450 ppm), and low (150 ppm). Under all conditions tested, infection by Pst resulted in stomatal closure within 1 h after inoculation. However, subsequent stomatal reopening at 4 h, triggered by the virulence factor coronatine (COR), occurred only at ambient and high CO2, but not at low CO2. Moreover, infection by Pst was reduced at low CO2 to the same extent as infection by mutant Pst cor(-) . Under all CO2 conditions, the ABA mutants aba2-1 and abi1-1 were as resistant to Pst as wild-type plants under low CO2, which contained less ABA. Moreover, stomatal reopening mediated by COR was dependent on ABA. Our results suggest that reduced ABA levels at low CO2 contribute to the observed enhanced resistance to Pst by deregulation of virulence responses. This implies that enhanced ABA levels at increasing CO2 levels may have a role in weakening plant defense.

  1. The hrp pathogenicity island of Pseudomonas syringae pv. tomato DC3000 is induced by plant phenolic acids.

    Science.gov (United States)

    Lee, Jun Seung; Ryu, Hye Ryun; Cha, Ji Young; Baik, Hyung Suk

    2015-10-01

    Plants produce a wide array of antimicrobial compounds, such as phenolic compounds, to combat microbial pathogens. The hrp PAI is one of the major virulence factors in the plant pathogen, Pseudomonas syringae. A major role of hrp PAI is to disable the plant defense system during bacterial invasion. We examined the influence of phenolic compounds on hrp PAI gene expression at low and high concentrations. There was approximately 2.5 times more hrpA and hrpZ mRNA in PtoDC3000 that was grown in minimal media (MM) supplemented with 10 -M of ortho-coumaric acid than in PtoDC3000 grown in MM alone. On the other hand, a significantly lower amount of hrpA mRNA was observed in bacteria grown in MM supplemented with a high concentration of phenolic compounds. To determine the regulation pathway for hrp PAI gene expression, we performed qRTPCR using gacS, gacA, and hrpS deletion mutants.

  2. Decreased abundance of type III secretion system-inducing signals in Arabidopsis mkp1 enhances resistance against Pseudomonas syringae

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Jeffrey C.; Wan, Ying; Kim, Young-Mo; Pasa-Tolic, Ljiljana; Metz, Thomas O.; Peck, Scott C.

    2014-04-21

    Many phytopathogenic bacteria use a type III secretion system (T3SS) to inject defense-suppressing effector proteins into host cells. Genes encoding the T3SS are induced at the start of infection, yet host signals that initiate T3SS gene expression are poorly understood. Here we identify several plant-derived metabolites that induce the T3SS in the bacterial pathogen Pseudomonas syringae pv tomato DC3000. In addition, we report that mkp1 (mapk phosphatase 1), an Arabidopsis mutant that is more resistant to bacterial infection, produces decreased levels of these T3SS-inducing metabolites. Consistent with the observed decrease in these metabolites, T3SS effector delivery by DC3000 was impaired in mkp1. Addition of the bioactive metabolites to the mkp1-DC3000 interaction fully restored T3SS effector delivery and suppressed enhanced resistance in mkp1. Together, these results demonstrate that DC3000 perceives multiple signals derived from plants to initiate their virulence program, and reveal a new layer of molecular communication between plants and these pathogenic bacteria.

  3. The kiwifruit emerging pathogen Pseudomonas syringae pv. actinidiae does not produce AHLs but possesses three luxR solos.

    Directory of Open Access Journals (Sweden)

    Hitendra Kumar Patel

    Full Text Available Pseudomonas syringae pv. actinidiae (Psa is an emerging phytopathogen causing bacterial canker disease in kiwifruit plants worldwide. Quorum sensing (QS gene regulation plays important roles in many different bacterial plant pathogens. In this study we analyzed the presence and possible role of N-acyl homoserine lactone (AHL quorum sensing in Psa. It was established that Psa does not produce AHLs and that a typical complete LuxI/R QS system is absent in Psa strains. Psa however possesses three putative luxR solos designated here as PsaR1, PsaR2 and PsaR3. PsaR2 belongs to the sub-family of LuxR solos present in many plant associated bacteria (PAB that binds and responds to yet unknown plant signal molecules. PsaR1 and PsaR3 are highly similar to LuxRs which bind AHLs and are part of the canonical LuxI/R AHL QS systems. Mutation in all the three luxR solos of Psa showed reduction of in planta survival and also showed additive effect if more than one solo was inactivated in double mutants. Gene promoter analysis revealed that the three solos are not auto-regulated and investigated their possible role in several bacterial phenotypes.

  4. Atmospheric CO2 Alters Resistance of Arabidopsis to Pseudomonas syringae by Affecting Abscisic Acid Accumulation and Stomatal Responsiveness to Coronatine

    Directory of Open Access Journals (Sweden)

    Yeling Zhou

    2017-05-01

    Full Text Available Atmospheric CO2 influences plant growth and stomatal aperture. Effects of high or low CO2 levels on plant disease resistance are less well understood. Here, resistance of Arabidopsis thaliana against the foliar pathogen Pseudomonas syringae pv. tomato DC3000 (Pst was investigated at three different CO2 levels: high (800 ppm, ambient (450 ppm, and low (150 ppm. Under all conditions tested, infection by Pst resulted in stomatal closure within 1 h after inoculation. However, subsequent stomatal reopening at 4 h, triggered by the virulence factor coronatine (COR, occurred only at ambient and high CO2, but not at low CO2. Moreover, infection by Pst was reduced at low CO2 to the same extent as infection by mutant Pst cor-. Under all CO2 conditions, the ABA mutants aba2-1 and abi1-1 were as resistant to Pst as wild-type plants under low CO2, which contained less ABA. Moreover, stomatal reopening mediated by COR was dependent on ABA. Our results suggest that reduced ABA levels at low CO2 contribute to the observed enhanced resistance to Pst by deregulation of virulence responses. This implies that enhanced ABA levels at increasing CO2 levels may have a role in weakening plant defense.

  5. A Non-targeted Metabolomics Approach Unravels the VOCs Associated with the Tomato Immune Response against Pseudomonas syringae

    Directory of Open Access Journals (Sweden)

    María Pilar López-Gresa

    2017-07-01

    Full Text Available Volatile organic compounds (VOCs emitted by plants are secondary metabolites that mediate the plant interaction with pathogens and herbivores. These compounds may perform direct defensive functions, i.e., acting as antioxidant, antibacterial, or antifungal agents, or indirectly by signaling the activation of the plant’s defensive responses. Using a non-targeted GC-MS metabolomics approach, we identified the profile of the VOCs associated with the differential immune response of the Rio Grande tomato leaves infected with either virulent or avirulent strains of Pseudomonas syringae DC3000 pv. tomato. The VOC profile of the tomato leaves infected with avirulent bacteria is characterized by esters of (Z-3-hexenol with acetic, propionic, isobutyric or butyric acids, and several hydroxylated monoterpenes, e.g., linalool, α-terpineol, and 4-terpineol, which defines the profile of an immunized plant response. In contrast, the same tomato cultivar infected with the virulent bacteria strain produced a VOC profile characterized by monoterpenes and SA derivatives. Interestingly, the differential VOCs emission correlated statistically with the induction of the genes involved in their biosynthetic pathway. Our results extend plant defense system knowledge and suggest the possibility for generating plants engineered to over-produce these VOCs as a complementary strategy for resistance.

  6. Pollen as a possible pathway for the dissemination of Pseudomonas syringae pv. actinide and bacterial canker of kiwifruit

    Directory of Open Access Journals (Sweden)

    Rodanthi TONTOU

    2014-09-01

    Full Text Available Pollen collected in a kiwifruit orchard with symptoms of bacterial canker and naturally contaminated by Pseudomonas syringae pv. actinidiae (Psa, was used to pollinate an experimental orchard, in order to confirm its role, under commercial orchard conditions, in disseminating the pathogen and, possibly, contributing to disease spread. A pollen lot, certified free from Psa, was used with the same methods as a control. Two pollination techniques were used: dusting (dry pollen and spraying (pollen suspension in water. The orchard was monitored during 2 years from experimental pollination, with regular sampling of flowers, fruits, leaves, and vines, to check for Psa as an epiphyte or endophyte, and for bacterial canker symptoms. Psa was recovered from flowers, fruitlets and leaves during the first season, mainly in plots where contaminated pollen had been sprayed in water suspension. From early August until harvesting time (mid-October, Psa detection was possible only on leaves. No symptoms developed during the first season after pollination. No endophytic Psa was detected in pruned vines in the following winter. During the second season, detection and isolation of Psa was erratic, but direct isolation was achieved from four plots. During the second season after pollination, typical leaf symptoms were observed on a few vines, and Psa was isolated and identified. Our results suggest that Psa could be disseminated via contaminated kiwifruit pollen as a pathway for spread of bacterial canker. However, further pollination experiments are needed to establish, beyond any doubt, whether contaminated pollen may contribute to possible disease outbreaks.

  7. A Strobilurin Fungicide Enhances the Resistance of Tobacco against Tobacco Mosaic Virus and Pseudomonas syringae pv tabaci1

    Science.gov (United States)

    Herms, Stefan; Seehaus, Kai; Koehle, Harald; Conrath, Uwe

    2002-01-01

    The strobilurin class of fungicides comprises a variety of synthetic plant-protecting compounds with broad-spectrum antifungal activity. In the present study, we demonstrate that a strobilurin fungicide, F 500 (Pyraclostrobin), enhances the resistance of tobacco (Nicotiana tabacum cv Xanthi nc) against infection by either tobacco mosaic virus (TMV) or the wildfire pathogen Pseudomonas syringae pv tabaci. F 500 was also active at enhancing TMV resistance in NahG transgenic tobacco plants unable to accumulate significant amounts of the endogenous inducer of enhanced disease resistance, salicylic acid (SA). This finding suggests that F 500 enhances TMV resistance in tobacco either by acting downstream of SA in the SA signaling mechanism or by functioning independently of SA. The latter assumption is the more likely because in infiltrated leaves, F 500 did not cause the accumulation of SA-inducible pathogenesis-related (PR)-1 proteins that often are used as conventional molecular markers for SA-induced disease resistance. However, accumulation of PR-1 proteins and the associated activation of the PR-1 genes were elicited upon TMV infection of tobacco leaves and both these responses were induced more rapidly in F 500-pretreated plants than in the water-pretreated controls. Taken together, our results suggest that F 500, in addition to exerting direct antifungal activity, may also protect plants by priming them for potentiated activation of subsequently pathogen-induced cellular defense responses. PMID:12226492

  8. A strobilurin fungicide enhances the resistance of tobacco against tobacco mosaic virus and Pseudomonas syringae pv tabaci.

    Science.gov (United States)

    Herms, Stefan; Seehaus, Kai; Koehle, Harald; Conrath, Uwe

    2002-09-01

    The strobilurin class of fungicides comprises a variety of synthetic plant-protecting compounds with broad-spectrum antifungal activity. In the present study, we demonstrate that a strobilurin fungicide, F 500 (Pyraclostrobin), enhances the resistance of tobacco (Nicotiana tabacum cv Xanthi nc) against infection by either tobacco mosaic virus (TMV) or the wildfire pathogen Pseudomonas syringae pv tabaci. F 500 was also active at enhancing TMV resistance in NahG transgenic tobacco plants unable to accumulate significant amounts of the endogenous inducer of enhanced disease resistance, salicylic acid (SA). This finding suggests that F 500 enhances TMV resistance in tobacco either by acting downstream of SA in the SA signaling mechanism or by functioning independently of SA. The latter assumption is the more likely because in infiltrated leaves, F 500 did not cause the accumulation of SA-inducible pathogenesis-related (PR)-1 proteins that often are used as conventional molecular markers for SA-induced disease resistance. However, accumulation of PR-1 proteins and the associated activation of the PR-1 genes were elicited upon TMV infection of tobacco leaves and both these responses were induced more rapidly in F 500-pretreated plants than in the water-pretreated controls. Taken together, our results suggest that F 500, in addition to exerting direct antifungal activity, may also protect plants by priming them for potentiated activation of subsequently pathogen-induced cellular defense responses.

  9. The Identification of Genes Important in Pseudomonas syringae pv. phaseolicola Plant Colonisation Using In Vitro Screening of Transposon Libraries.

    Directory of Open Access Journals (Sweden)

    Bharani Manoharan

    Full Text Available The bacterial plant pathogen Pseudomonas syringae pv. phaseolicola (Pph colonises the surface of common bean plants before moving into the interior of plant tissue, via wounds and stomata. In the intercellular spaces the pathogen proliferates in the apoplastic fluid and forms microcolonies (biofilms around plant cells. If the pathogen can suppress the plant's natural resistance response, it will cause halo blight disease. The process of resistance suppression is fairly well understood, but the mechanisms used by the pathogen in colonisation are less clear. We hypothesised that we could apply in vitro genetic screens to look for changes in motility, colony formation, and adhesion, which are proxies for infection, microcolony formation and cell adhesion. We made transposon (Tn mutant libraries of Pph strains 1448A and 1302A and found 106/1920 mutants exhibited alterations in colony morphology, motility and biofilm formation. Identification of the insertion point of the Tn identified within the genome highlighted, as expected, a number of altered motility mutants bearing mutations in genes encoding various parts of the flagellum. Genes involved in nutrient biosynthesis, membrane associated proteins, and a number of conserved hypothetical protein (CHP genes were also identified. A mutation of one CHP gene caused a positive increase in in planta bacterial growth. This rapid and inexpensive screening method allows the discovery of genes important for in vitro traits that can be correlated to roles in the plant interaction.

  10. Genome-wide identification of transcriptional start sites in the plant pathogen Pseudomonas syringae pv. tomato str. DC3000.

    Directory of Open Access Journals (Sweden)

    Melanie J Filiatrault

    Full Text Available RNA-Seq has provided valuable insights into global gene expression in a wide variety of organisms. Using a modified RNA-Seq approach and Illumina's high-throughput sequencing technology, we globally identified 5'-ends of transcripts for the plant pathogen Pseudomonas syringae pv. tomato str. DC3000. A substantial fraction of 5'-ends obtained by this method were consistent with results obtained using global RNA-Seq and 5'RACE. As expected, many 5'-ends were positioned a short distance upstream of annotated genes. We also captured 5'-ends within intergenic regions, providing evidence for the expression of un-annotated genes and non-coding RNAs, and detected numerous examples of antisense transcription, suggesting additional levels of complexity in gene regulation in DC3000. Importantly, targeted searches for sequence patterns in the vicinity of 5'-ends revealed over 1200 putative promoters and other regulatory motifs, establishing a broad foundation for future investigations of regulation at the genomic and single gene levels.

  11. Elicitation of Induced Resistance against Pectobacterium carotovorum and Pseudomonas syringae by Specific Individual Compounds Derived from Native Korean Plant Species

    Directory of Open Access Journals (Sweden)

    Choong-Min Ryu

    2013-10-01

    Full Text Available Plants have developed general and specific defense mechanisms for protection against various enemies. Among the general defenses, induced resistance has distinct characteristics, such as broad-spectrum resistance and long-lasting effectiveness. This study evaluated over 500 specific chemical compounds derived from native Korean plant species to determine whether they triggered induced resistance against Pectobacterium carotovorum supsp. carotovorum (Pcc in tobacco (Nicotiana tabacum and Pseudomonas syringae pv. tomato (Pst in Arabidopsis thaliana. To select target compound(s with direct and indirect (volatile effects, a new Petri-dish-based in vitro disease assay system with four compartments was developed. The screening assay showed that capsaicin, fisetin hydrate, jaceosidin, and farnesiferol A reduced the disease severity significantly in tobacco. Of these four compounds, capsaicin and jaceosidin induced resistance against Pcc and Pst, which depended on both salicylic acid (SA and jasmonic acid (JA signaling, using Arabidopsis transgenic and mutant lines, including npr1 and NahG for SA signaling and jar1 for JA signaling. The upregulation of the PR2 and PDF1.2 genes after Pst challenge with capsaicin pre-treatment indicated that SA and JA signaling were primed. These results demonstrate that capsaicin and jaceosidin can be effective triggers of strong induced resistance against both necrotrophic and biotrophic plant pathogens.

  12. Tissue-specific changes of glutamine synthetase activity in oats after rhizosphere infestation by Pseudomonas syringae pv. tabaci. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Knight, T.J. [Univ. of Southern Maine, Portland, ME (United States); Temple, S.; Sengupta-Gopalan, C. [New Mexico State Univ., Las Curces, NM (United States)] [and others

    1996-05-15

    Oats (Avena sativa L. lodi) tolerant of rhizosphere infestation by Pseudomonas syringae pv. tabaci when challenged by the pathogen experience tissue-specific alterations of ammonia assimilatory capabilities. Altered ammonia assimilatory potentials between root and leaf tissue result from selective inactivation of glutamine synthetase (GS) by the toxin Tabtoxinine-B-lactam (TBL). Root GS is sensitive and leaf GSs are resistant to TBL inactivation. With prolonged challenge by the pathogen root GS activity decreases but leaf GS specific activity increase. Higher leaf GS activity is due to decreased rates of degradation rather than increased GS synthesis. Higher leaf GS activity and elevated levels of GS polypeptide appear to result from a limited interaction between GS and TBL leading to the accumulation of a less active but more stable GS holoenzyme. Tolerant challenged oats besides surviving rhizosphere infestation, experience enhanced growth. A strong correlation exists between leaf GS activity and whole plant fresh weight, suggesting that tissue-specific changes in ammonia assimilatory capability provides the plant a more efficient mechanism for uptake and utilization of nitrogen.

  13. [Incidence of alginate-coding gene in carbapenem-resistant Pseudomonas aeruginosa strains].

    Science.gov (United States)

    Bogiel, Tomasz; Kwiecińska-Piróg, Joanna; Kozuszko, Sylwia; Gospodarek, Eugenia

    2011-01-01

    Pseudomonas aeruginosa rods are one of the most common isolated opportunistic nosocomial pathogens. Strains usually are capable to secret a capsule-like polysaccharide called alginate important for evasion of host defenses, especially during chronic pulmonary disease of patients with cystic fibrosis. Most genes for alginate biosynthesis and lysis are encoded by the operon. The aim of our study was to evaluate the incidence of algD sequence, generally use for alginate-coding gene detection, in 120 P. aeruginosa strains resistant to carbapenems. All isolates were obtained in the Department of Clinical Microbiology University Hospital no. 1 of dr A. Jurasz Collegium Medicum of L. Rydygier in Bydgoszcz Nicolaus Copernicus University in Toruń. Examined strains demonstrated resistance to carbenicillin (90,0%), ticarcillin (89,2%) and ticarcillin clavulanate (86,7%). All strains were susceptible to colistin. The majority of examined strains was susceptible to ceftazidime and cefepime (40,8% each) and norfloxacin (37,5%). Presence of algD gene - noted in 112 (93,3%) strains proves that not every strain is capable to produce alginate. It was also found out that differences in algD genes incidence in case of different clinical material that strains were isolated from were not statistically important.

  14. Variation in extragenic repetitive DNA sequences in Pseudomonas syringae and potential use of modified REP primers in the identification of closely related isolates

    Directory of Open Access Journals (Sweden)

    Elif Çepni

    2012-01-01

    Full Text Available In this study, Pseudomonas syringe pathovars isolated from olive, tomato and bean were identified by species-specific PCR and their genetic diversity was assessed by repetitive extragenic palindromic (REP-PCR. Reverse universal primers for REP-PCR were designed by using the bases of A, T, G or C at the positions of 1, 4 and 11 to identify additional polymorphism in the banding patterns. Binding of the primers to different annealing sites in the genome revealed additional fingerprint patterns in eight isolates of P. savastanoi pv. savastanoi and two isolates of P. syringae pv. tomato. The use of four different bases in the primer sequences did not affect the PCR reproducibility and was very efficient in revealing intra-pathovar diversity, particularly in P. savastanoi pv. savastanoi. At the pathovar level, the primer BOX1AR yielded shared fragments, in addition to five bands that discriminated among the pathovars P. syringae pv. phaseolicola, P. savastanoi pv. savastanoi and P. syringae pv. tomato. REP-PCR with a modified primer containing C produced identical bands among the isolates in a pathovar but separated three pathovars more distinctly than four other primers. Although REP-and BOX-PCRs have been successfully used in the molecular identification of Pseudomonas isolates from Turkish flora, a PCR based on inter-enterobacterial repetitive intergenic concensus (ERIC sequences failed to produce clear banding patterns in this study.

  15. Pseudomonas syringae evades host Immunity by degrading flagellin monomers with alkaline protease AprA

    NARCIS (Netherlands)

    Pel, M.J.C.; Van Dijken, A.J.H.; Bardoel, B.W.; Seidl, M.F; Van der Ent, S.; Van Strijp, J.A.G.

    2014-01-01

    Bacterial flagellin molecules are strong inducers of innate immune responses in both mammals and plants. The opportunistic pathogen Pseudomonas aeruginosa secretes an alkaline protease called AprA that degrades flagellin monomers. Here, we show that AprA is widespread among a wide variety of

  16. Pseudomonas syringae evades host immunity by degrading flagellin monomers with alkaline protease AprA

    NARCIS (Netherlands)

    Pel, Michiel J C; van Dijken, Anja J H; Bardoel, Bart W; Seidl, Michael F; van der Ent, Sjoerd; van Strijp, Jos A G; Pieterse, Corné M J

    Bacterial flagellin molecules are strong inducers of innate immune responses in both mammals and plants. The opportunistic pathogen Pseudomonas aeruginosa secretes an alkaline protease called AprA that degrades flagellin monomers. Here, we show that AprA is widespread among a wide variety of

  17. Activation Mechanism and Cellular Localization of Membrane-Anchored Alginate Polymerase in Pseudomonas aeruginosa.

    Science.gov (United States)

    Moradali, M Fata; Ghods, Shirin; Rehm, Bernd H A

    2017-05-01

    The exopolysaccharide alginate, produced by the opportunistic human pathogen Pseudomonas aeruginosa, confers a survival advantage to the bacterium by contributing to the formation of characteristic biofilms during infection. Membrane-anchored proteins Alg8 (catalytic subunit) and Alg44 (copolymerase) constitute the alginate polymerase that is being activated by the second messenger molecule bis-(3', 5')-cyclic dimeric GMP (c-di-GMP), but the mechanism of activation remains elusive. To shed light on the c-di-GMP-mediated activation of alginate polymerization in vivo, an in silico structural model of Alg8 fused to the c-di-GMP binding PilZ domain informed by the structure of cellulose synthase, BcsA, was developed. This structural model was probed by site-specific mutagenesis and different cellular levels of c-di-GMP. Results suggested that c-di-GMP-mediated activation of alginate polymerization involves amino acids residing at two loops, including H323 (loop A) and T457 and E460 (loop B), surrounding the catalytic site in the predicted model. The activities of the respective Alg8 variants suggested that c-di-GMP-mediated control of substrate access to the catalytic site of Alg8 is dissimilar to the known activation mechanism of BcsA. Alg8 variants responded differently to various c-di-GMP levels, while MucR imparted c-di-GMP for activation of alginate polymerase. Furthermore, we showed that Alg44 copolymerase constituted a stable dimer, with its periplasmic domains required for protein localization and alginate polymerization and modification. Superfolder green fluorescent protein (GFP) fusions of Alg8 and Alg44 showed a nonuniform, punctate, and patchy arrangement of both proteins surrounding the cell. Overall, this study provides insights into the c-di-GMP-mediated activation of alginate polymerization while assigning functional roles to Alg8 and Alg44, including their subcellular localization and distribution.IMPORTANCE The exopolysaccharide alginate is an

  18. Virulence determinants of Pseudomonas syringae strains isolated from grasses in the context of a small type III effector repertoire

    DEFF Research Database (Denmark)

    Dudnik, Alexey; Dudler, Robert

    2014-01-01

    derivative that inhibits the eukaryotic proteasome. In strains colonizing dicotyledonous plants, the compound was demonstrated to suppress the salicylic-acid-dependent defense pathway. Here, we analyze virulence factors of three strains colonizing wheat (Triticum aestivum): P. syringae pathovar syringae (Psy...

  19. Early Arabidopsis root hair growth stimulation by pathogenic strains of Pseudomonas syringae

    Czech Academy of Sciences Publication Activity Database

    Pečenková, Tamara; Janda, Martin; Ortmannová, Jitka; Hajná, Vladimíra; Stehlíková, Zuzana; Žárský, Viktor

    2017-01-01

    Roč. 120, č. 3 (2017), s. 437-446 ISSN 0305-7364 R&D Projects: GA ČR(CZ) GA15-14886S; GA ČR GA14-09685S Institutional support: RVO:61389030 Keywords : Arabidopsis * dde2/ein2/pad4/sid2 * exocyst * Flg22 * Pseudomonas * Root hair * vesicle trafficking Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.041, year: 2016

  20. Pseudomonas aeruginosa Aggregate Formation in an Alginate Bead Model System Exhibits In Vivo-Like Characteristics.

    Science.gov (United States)

    Sønderholm, Majken; Kragh, Kasper Nørskov; Koren, Klaus; Jakobsen, Tim Holm; Darch, Sophie E; Alhede, Maria; Jensen, Peter Østrup; Whiteley, Marvin; Kühl, Michael; Bjarnsholt, Thomas

    2017-05-01

    Alginate beads represent a simple and highly reproducible in vitro model system for diffusion-limited bacterial growth. In this study, alginate beads were inoculated with Pseudomonas aeruginosa and followed for up to 72 h. Confocal microscopy revealed that P. aeruginosa formed dense clusters similar in size to in vivo aggregates observed ex vivo in cystic fibrosis lungs and chronic wounds. Bacterial aggregates primarily grew in the bead periphery and decreased in size and abundance toward the center of the bead. Microsensor measurements showed that the O2 concentration decreased rapidly and reached anoxia ∼100 μm below the alginate bead surface. This gradient was relieved in beads supplemented with NO3- as an alternative electron acceptor allowing for deeper growth into the beads. A comparison of gene expression profiles between planktonic and alginate-encapsulated P. aeruginosa confirmed that the bacteria experienced hypoxic and anoxic growth conditions. Furthermore, alginate-encapsulated P. aeruginosa exhibited a lower respiration rate than the planktonic counterpart and showed a high tolerance toward antibiotics. The inoculation and growth of P. aeruginosa in alginate beads represent a simple and flexible in vivo-like biofilm model system, wherein bacterial growth exhibits central features of in vivo biofilms. This was observed by the formation of small cell aggregates in a secondary matrix with O2-limited growth, which was alleviated by the addition of NO3- as an alternative electron acceptor, and by reduced respiration rates, as well as an enhanced tolerance to antibiotic treatment.IMPORTANCEPseudomonas aeruginosa has been studied intensively for decades due to its involvement in chronic infections, such as cystic fibrosis and chronic wounds, where it forms biofilms. Much research has been dedicated to biofilm formation on surfaces; however, in chronic infections, most biofilms form small aggregates of cells not attached to a surface, but embedded in host

  1. Arabidopsis HARMLESS TO OZONE LAYER protein methylates a glucosinolate breakdown product and functions in resistance to Pseudomonas syringae pv. maculicola.

    Science.gov (United States)

    Nagatoshi, Yukari; Nakamura, Tatsuo

    2009-07-17

    Almost all of the chlorine-containing gas emitted from natural sources is methyl chloride (CH(3)Cl), which contributes to the destruction of the stratospheric ozone layer. Tropical and subtropical plants emit substantial amounts of CH(3)Cl. A gene involved in CH(3)Cl emission from Arabidopsis was previously identified and designated HARMLESS TO OZONE LAYER (hereafter AtHOL1) based on the mutant phenotype. Our previous studies demonstrated that AtHOL1 and its homologs, AtHOL2 and AtHOL3, have S-adenosyl-l-methionine-dependent methyltransferase activities. However, the physiological functions of AtHOLs have yet to be elucidated. In the present study, our comparative kinetic analyses with possible physiological substrates indicated that all of the AtHOLs have low activities toward chloride. AtHOL1 was highly reactive to thiocyanate (NCS(-)), a pseudohalide, synthesizing methylthiocyanate (CH(3)SCN) with a very high k(cat)/K(m) value. We demonstrated in vivo that substantial amounts of NCS(-) were synthesized upon tissue damage in Arabidopsis and that NCS(-) was largely derived from myrosinase-mediated hydrolysis of glucosinolates. Analyses with the T-DNA insertion Arabidopsis mutants (hol1, hol2, and hol3) revealed that only hol1 showed increased sensitivity to NCS(-) in medium and a concomitant lack of CH(3)SCN synthesis upon tissue damage. Bacterial growth assays indicated that the conversion of NCS(-) into CH(3)SCN dramatically increased antibacterial activities against Arabidopsis pathogens that normally invade the wound site. Furthermore, hol1 seedlings showed an increased susceptibility toward an Arabidopsis pathogen, Pseudomonas syringae pv. maculicola. Here we propose that AtHOL1 is involved in glucosinolate metabolism and defense against phytopathogens. Moreover, CH(3)Cl synthesized by AtHOL1 could be considered a byproduct of NCS(-) metabolism.

  2. Genomic and Gene-Expression Comparisons among Phage-Resistant Type-IV Pilus Mutants of Pseudomonas syringae pathovar phaseolicola.

    Directory of Open Access Journals (Sweden)

    Mark Sistrom

    Full Text Available Pseudomonas syringae pv. phaseolicola (Pph is a significant bacterial pathogen of agricultural crops, and phage Φ6 and other members of the dsRNA virus family Cystoviridae undergo lytic (virulent infection of Pph, using the type IV pilus as the initial site of cellular attachment. Despite the popularity of Pph/phage Φ6 as a model system in evolutionary biology, Pph resistance to phage Φ6 remains poorly characterized. To investigate differences between phage Φ6 resistant Pph strains, we examined genomic and gene expression variation among three bacterial genotypes that differ in the number of type IV pili expressed per cell: ordinary (wild-type, non-piliated, and super-piliated. Genome sequencing of non-piliated and super-piliated Pph identified few mutations that separate these genotypes from wild type Pph--and none present in genes known to be directly involved in type IV pilus expression. Expression analysis revealed that 81.1% of gene ontology (GO terms up-regulated in the non-piliated strain were down-regulated in the super-piliated strain. This differential expression is particularly prevalent in genes associated with respiration--specifically genes in the tricarboxylic acid cycle (TCA cycle, aerobic respiration, and acetyl-CoA metabolism. The expression patterns of the TCA pathway appear to be generally up and down-regulated, in non-piliated and super-piliated Pph respectively. As pilus retraction is mediated by an ATP motor, loss of retraction ability might lead to a lower energy draw on the bacterial cell, leading to a different energy balance than wild type. The lower metabolic rate of the super-piliated strain is potentially a result of its loss of ability to retract.

  3. Multilayered Regulation of Ethylene Induction Plays a Positive Role in Arabidopsis Resistance against Pseudomonas syringae1[OPEN

    Science.gov (United States)

    Guan, Rongxia; Su, Jianbin; Meng, Xiangzong; Li, Sen; Liu, Yidong; Xu, Juan; Zhang, Shuqun

    2015-01-01

    Ethylene, a key phytohormone involved in plant-pathogen interaction, plays a positive role in plant resistance against fungal pathogens. However, its function in plant bacterial resistance remains unclear. Here, we report a detailed analysis of ethylene induction in Arabidopsis (Arabidopsis thaliana) in response to Pseudomonas syringae pv tomato DC3000 (Pst). Ethylene biosynthesis is highly induced in both pathogen/microbe-associated molecular pattern (PAMP)-triggered immunity and effector-triggered immunity (ETI), and the induction is potentiated by salicylic acid (SA) pretreatment. In addition, Pst actively suppresses PAMP-triggered ethylene induction in a type III secretion system-dependent manner. SA potentiation of ethylene induction is dependent mostly on MITOGEN-ACTIVATED PROTEIN KINASE6 (MPK6) and MPK3 and their downstream ACS2 and ACS6, two type I isoforms of 1-aminocyclopropane-1-carboxylic acid synthases (ACSs). ACS7, a type III ACS whose expression is enhanced by SA pretreatment, is also involved. Pst expressing the avrRpt2 effector gene (Pst-avrRpt2), which is capable of triggering ETI, induces a higher level of ethylene production, and the elevated portion is dependent on SALICYLIC ACID INDUCTION DEFICIENT2 and NONEXPRESSER OF PATHOGENESIS-RELATED GENE1, two key players in SA biosynthesis and signaling. High-order ACS mutants with reduced ethylene induction are more susceptible to both Pst and Pst-avrRpt2, demonstrating a positive role of ethylene in plant bacterial resistance mediated by both PAMP-triggered immunity and ETI. PMID:26265775

  4. Protection of Arabidopsis thaliana against Leaf-Pathogenic Pseudomonas syringae by Sphingomonas Strains in a Controlled Model System ▿ †

    Science.gov (United States)

    Innerebner, Gerd; Knief, Claudia; Vorholt, Julia A.

    2011-01-01

    Diverse bacterial taxa live in association with plants without causing deleterious effects. Previous analyses of phyllosphere communities revealed the predominance of few bacterial genera on healthy dicotyl plants, provoking the question of whether these commensals play a particular role in plant protection. Here, we tested two of them, Methylobacterium and Sphingomonas, with respect to their ability to diminish disease symptom formation and the proliferation of the foliar plant pathogen Pseudomonas syringae pv. tomato DC3000 on Arabidopsis thaliana. Plants were grown under gnotobiotic conditions in the absence or presence of the potential antagonists and then challenged with the pathogen. No effect of Methylobacterium strains on disease development was observed. However, members of the genus Sphingomonas showed a striking plant-protective effect by suppressing disease symptoms and diminishing pathogen growth. A survey of different Sphingomonas strains revealed that most plant isolates protected A. thaliana plants from developing severe disease symptoms. This was not true for Sphingomonas strains isolated from air, dust, or water, even when they reached cell densities in the phyllosphere comparable to those of the plant isolates. This suggests that plant protection is common among plant-colonizing Sphingomonas spp. but is not a general trait conserved within the genus Sphingomonas. The carbon source profiling of representative isolates revealed differences between protecting and nonprotecting strains, suggesting that substrate competition plays a role in plant protection by Sphingomonas. However, other mechanisms cannot be excluded at this time. In conclusion, the ability to protect plants as shown here in a model system may be an unexplored, common trait of indigenous Sphingomonas spp. and may be of relevance under natural conditions. PMID:21421777

  5. Arabidopsis AtERF15 positively regulates immunity against Pseudomonas syringae pv. tomato DC3000 and Botrytis cinerea

    Directory of Open Access Journals (Sweden)

    Huijuan eZhang

    2015-09-01

    Full Text Available Upon pathogen infection, activation of immune response requires effective transcriptional reprogramming that regulates inducible expression of a large set of defense genes. A number of ethylene-responsive factor transcription factors have been shown to play critical roles in regulating immune responses in plants. In the present study, we explored the functions of Arabidopsis AtERF15 in immune responses against Pseudomonas syringae pv. tomato (Pst DC3000, a (hemibiotrophic bacterial pathogen, and Botrytis cinerea, a necrotrophic fungal pathogen. Expression of AtERF15 was induced by infection of Pst DC3000 and B. cinerea and by treatments with salicylic acid (SA and methyl jasmonate. Biochemical assays demonstrated that AtERF15 is a nucleus-localized transcription activator. The AtERF15-overexpressing (AtERF15-OE plants displayed enhanced resistance while the AtERF15-RNAi plants exhibited decreased resistance against Pst DC3000 and B. cinerea. Meanwhile, Pst DC3000- or B. cinerea-induced expression of defense genes was upregulated in AtERF15-OE plants but downregulated in AtERF15-RNAi plants, as compared to the expression in wild type plants. In response to infection with B. cinerea, the AtERF15-OE plants accumulated less reactive oxygen species (ROS while the AtERF15-RNAi plants accumulated more ROS. The flg22- and chitin-induced oxidative burst was abolished and expression levels of the pattern-triggered immunity-responsive genes AtFRK1 and AtWRKY53 were suppressed in AtER15-RNAi plants upon treatment with flg22 or chitin. Furthermore, SA-induced defense response was also partially impaired in the AtERF15-RNAi plants. These data demonstrate that AtERF15 is a positive regulator of multiple layers of the immune responses in Arabidopsis.

  6. Modeling and mapping the current and future distribution of Pseudomonas syringae pv. actinidiae under climate change in China.

    Science.gov (United States)

    Wang, Rulin; Li, Qing; He, Shisong; Liu, Yuan; Wang, Mingtian; Jiang, Gan

    2018-01-01

    Bacterial canker of kiwifruit caused by Pseudomonas syringae pv. actinidiae (Psa) is a major threat to the kiwifruit industry throughout the world and accounts for substantial economic losses in China. The aim of the present study was to test and explore the possibility of using MaxEnt (maximum entropy models) to predict and analyze the future large-scale distribution of Psa in China. Based on the current environmental factors, three future climate scenarios, which were suggested by the fifth IPCC report, and the current distribution sites of Psa, MaxEnt combined with ArcGIS was applied to predict the potential suitable areas and the changing trend of Psa in China. The jackknife test and correlation analysis were used to choose dominant climatic factors. The receiver operating characteristic curve (ROC) drawn by MaxEnt was used to evaluate the accuracy of the simulation. The results showed that under current climatic conditions, the area from latitude 25° to 36°N and from longitude 101° to 122°E is the primary potential suitable area of Psa in China. The highly suitable area (with suitability between 66 and 100) was mainly concentrated in Northeast Sichuan, South Shaanxi, most of Chongqing, West Hubei and Southwest Gansu and occupied 4.94% of land in China. Under different future emission scenarios, both the areas and the centers of the suitable areas all showed differences compared with the current situation. Four climatic variables, i.e., maximum April temperature (19%), mean temperature of the coldest quarter (14%), precipitation in May (11.5%) and minimum temperature in October (10.8%), had the largest impact on the distribution of Psa. The MaxEnt model is potentially useful for forecasting the future adaptive distribution of Psa under climate change, and it provides important guidance for comprehensive management.

  7. Comparative genomics of Pseudomonas syringae pathovar tomato reveals novel chemotaxis pathways associated with motility and plant pathogenicity

    Directory of Open Access Journals (Sweden)

    Christopher R. Clarke

    2016-10-01

    Full Text Available The majority of bacterial foliar plant pathogens must invade the apoplast of host plants through points of ingress, such as stomata or wounds, to replicate to high population density and cause disease. How pathogens navigate plant surfaces to locate invasion sites remains poorly understood. Many bacteria use chemical-directed regulation of flagellar rotation, a process known as chemotaxis, to move towards favorable environmental conditions. Chemotactic sensing of the plant surface is a potential mechanism through which foliar plant pathogens home in on wounds or stomata, but chemotactic systems in foliar plant pathogens are not well characterized. Comparative genomics of the plant pathogen Pseudomonas syringae pathovar tomato (Pto implicated annotated chemotaxis genes in the recent adaptations of one Pto lineage. We therefore characterized the chemosensory system of Pto. The Pto genome contains two primary chemotaxis gene clusters, che1 and che2. The che2 cluster is flanked by flagellar biosynthesis genes and similar to the canonical chemotaxis gene clusters of other bacteria based on sequence and synteny. Disruption of the primary phosphorelay kinase gene of the che2 cluster, cheA2, eliminated all swimming and surface motility at 21 °C but not 28 °C for Pto. The che1 cluster is located next to Type IV pili biosynthesis genes but disruption of cheA1 has no observable effect on twitching motility for Pto. Disruption of cheA2 also alters in planta fitness of the pathogen with strains lacking functional cheA2 being less fit in host plants but more fit in a non-host interaction.

  8. An in vitro study of the anti-biofilm properties of proanthocyanidin and chitosan in Pseudomonas syringae pv. papulans

    Science.gov (United States)

    Song, Kai

    Biofilm-forming bacteria are a form of planktonic microorganisms that can become resistant against conventional antibiotics. Because they are difficult to eradicate, biofilm-forming bacteria are extremely problematic for the medical industry areas. Thus, materials that can distort biofilm structure would be helpful for eliminating chronic infection and decreasing bacterial resistance. The primary objective of this study is to evaluate the anti-biofilm effect of two bio-derived substances, proanthocyanidin and chitosan. Proanthocyanidins are secondary plant metabolites that are reported to have antibiotic and antioxidant functions. Chitosan (poly [beta-(1, 4)-amino-2-deoxy-beta-D-glucose]) is a deacetylated derivative of chitin, which is abundant in the exoskeleton of crustaceans and insects. It is reported to be a suitable substitute for conventional fungicides and can enhance the proanthocyanidin content in plants when used as an agrochemical. Chitosan-tripolyphosphate (TPP) nanoparticles, which have good neutral water solubility and are nanoscale in size, can be used as carriers for gene and drug therapy and are thus favorable to be tested as a treatment method against bacterial biofilms. In this study, the anti-biofilm and antibacterial properties of proanthocyanidin, chitosan-TPP nanoparticles and proanthocyanidins-loaded chitosan-TPP nanoparticles were tested using the model plant bacterium, Pseudomonas syringae pv. papulans (Psp), a pathogen isolated from infected apples. At a lower concentration (1 mg/mL and 2.5 mg/mL), both chitosan nanoparticles and proanthocyanidins can postpone the formation of biofilms and eventually disrupted part of the biofilm. While higher concentration (above 5 mg/mL) of chitosan nanoparticles or proanthocyanidins can eliminate most of the biofilm in this study. PAC-loaded chitosan nanoparticles also can also distort biofilms. Both proanthocyanidins and chitosan-TPP nanoparticle showed a mild antibacterial property. PAC

  9. Allelic variation in two distinct Pseudomonas syringae flagellin epitopes modulates the strength of plant immune responses but not bacterial motility

    Science.gov (United States)

    Clarke, Christopher R.; Chinchilla, Delphine; Hind, Sarah R.; Taguchi, Fumiko; Miki, Ryuji; Ichinose, Yuki; Martin, Gregory B.; Leman, Scotland; Felix, Georg; Vinatzer, Boris A.

    2013-01-01

    Summary The bacterial flagellin (FliC) epitopes flg22 and flgII-28 are microbe-associated molecular patterns (MAMPs). While flg22 is recognized by many plant species via the pattern recognition receptor FLS2, neither the flgII-28 receptor nor the extent of flgII-28 recognition by different plant families is known.Here we tested the significance of flgII-28 as a MAMP and the importance of allelic diversity in flg22 and flgII-28 in plant–pathogen interactions using purified peptides and a Pseudomonas syringae ΔfliC mutant complemented with different fliC alleles.Plant genotype and allelic diversity in flg22 and flgII-28 were found to significantly affect the plant immune response but not bacterial motility. Recognition of flgII-28 is restricted to a number of Solanaceous species. While the flgII-28 peptide does not trigger any immune response in Arabidopsis, mutations in both flg22 and flgII-28 have FLS2-dependent effects on virulence. However, expression of a tomato allele of FLS2 does not confer to Nicotiana benthamiana the ability to detect flgII-28 and tomato plants silenced for FLS2 are not altered in flgII-28 recognition.Therefore, MAMP diversification is an effective pathogen virulence strategy and flgII-28 appears to be perceived by a yet unidentified receptor in the Solanaceae although it has an FLS2-dependent virulence effect in Arabidopsis. PMID:23865782

  10. The predicted protein product of a pathogenicity locus from Pseudomonas syringae pv. phaseolicola is homologous to a highly conserved domain of several procaryotic regulatory proteins.

    OpenAIRE

    Grimm, C.; Panopoulos, N J

    1989-01-01

    A ca. 20-kilobase (kb) region (hrp) that controls the interaction of Pseudomonas syringae pv. phaseolicola with its host (pathogenicity) and nonhost plants (hypersensitive reaction) was previously cloned and partially characterized. In this study we defined the limits and determined the nucleotide sequence of a hrp locus (hrpS), located near the right end of the hrp cluster. The largest open reading frame (ORF302) in hrpS has a coding capacity for a 302-amino-acid polypeptide. The predicted a...

  11. Transcriptional profile of Pseudomonas syringae pv. phaseolicola NPS3121 in response to tissue extracts from a susceptible Phaseolus vulgaris L. cultivar

    Directory of Open Access Journals (Sweden)

    Martínez-Antonio Agustino

    2009-12-01

    Full Text Available Abstract Background Pseudomonas syringae pv. phaseolicola is a Gram-negative plant-pathogenic bacterium that causes "halo blight" disease of beans (Phaseolus vulgaris L.. This disease affects both foliage and pods, and is a major problem in temperate areas of the world. Although several bacterial genes have been determined as participants in pathogenesis, the overall process still remains poorly understood, mainly because the identity and function of many of the genes are largely unknown. In this work, a genomic library of P. syringae pv. phaseolicola NPS3121 was constructed and PCR amplification of individual fragments was carried out in order to print a DNA microarray. This microarray was used to identify genes that are differentially expressed when bean leaf extracts, pod extracts or apoplastic fluid were added to the growth medium. Results Transcription profiles show that 224 genes were differentially expressed, the majority under the effect of bean leaf extract and apoplastic fluid. Some of the induced genes were previously known to be involved in the first stages of the bacterial-plant interaction and virulence. These include genes encoding type III secretion system proteins and genes involved in cell-wall degradation, phaseolotoxin synthesis and aerobic metabolism. On the other hand, most repressed genes were found to be involved in the uptake and metabolism of iron. Conclusion This study furthers the understanding of the mechanisms involved, responses and the metabolic adaptation that occurs during the interaction of P. syringae pv. phaseolicola with a susceptible host plant.

  12. Phenol biodegradation by immobilized Pseudomonas putida FNCC-0071 cells in alginate beads

    Science.gov (United States)

    Hakim, Lukman Nul; Rochmadi, Sutijan

    2017-06-01

    Phenol is one of industrial liquid waste which is harmful to the environment, so it must be degraded. It can be degraded by immobilized Pseudomonas putida FNCC-0071 cells. It needs the kinetics and mass transfer data to design this process which can be estimated by the proposed dynamic model in this study. This model involves simultaneous diffusion and reaction in the alginate bead and liquid bulk. The preliminary stage of phenol biodegradation process was acclimatization cells. This is the stage where cells were acclimated to phenol as carbon source (substrate). Then the acclimated cells were immobilized in alginate beads by extrusion method. The variation of the initial phenol concentration in the solution is 350 to 850 ppm where 60 g alginate bead contained by cells loaded into its solution in reactor batch, so then biodegradation occurs. In this study, the average radius of alginate bead was 0.152 cm. The occurred kinetic reaction process can be explained by Blanch kinetic model with the decreasing of parameter μmax' while the increasing values of initial phenol concentration in the same time, but the parameters KM, KM', and kt were increasing by the rising values of initial phenol concentration. The value of the parameter β is almost zero. Effective diffusivity of phenol and cells are 1.11 × 10-5±4.5% cm2 s-1 and 1.39 × 10-7± 0.04% cm2 s-1. The partition coefficient of phenol and cells are 0.39 ± 15% and 2.22 ± 18%.

  13. Allele-specific virulence attenuation of the Pseudomonas syringae HopZ1a type III effector via the Arabidopsis ZAR1 resistance protein.

    Science.gov (United States)

    Lewis, Jennifer D; Wu, Ronald; Guttman, David S; Desveaux, Darrell

    2010-04-01

    Plant resistance (R) proteins provide a robust surveillance system to defend against potential pathogens. Despite their importance in plant innate immunity, relatively few of the approximately 170 R proteins in Arabidopsis have well-characterized resistance specificity. In order to identify the R protein responsible for recognition of the Pseudomonas syringae type III secreted effector (T3SE) HopZ1a, we assembled an Arabidopsis R gene T-DNA Insertion Collection (ARTIC) from publicly available Arabidopsis thaliana insertion lines and screened it for plants lacking HopZ1a-induced immunity. This reverse genetic screen revealed that the Arabidopsis R protein HOPZ-activated resistance 1 (ZAR1; At3g50950) is required for recognition of HopZ1a in Arabidopsis. ZAR1 belongs to the coiled-coil (CC) class of nucleotide binding site and leucine-rich repeat (NBS-LRR) containing R proteins; however, the ZAR1 CC domain phylogenetically clusters in a clade distinct from other related Arabidopsis R proteins. ZAR1-mediated immunity is independent of several genes required by other R protein signaling pathways, including NDR1 and RAR1, suggesting that ZAR1 possesses distinct signaling requirements. The closely-related T3SE protein, HopZ1b, is still recognized by zar1 Arabidopsis plants indicating that Arabidopsis has evolved at least two independent R proteins to recognize the HopZ T3SE family. Also, in Arabidopsis zar1 plants HopZ1a promotes P. syringae growth indicative of an ancestral virulence function for this T3SE prior to the evolution of recognition by the host resistance protein ZAR1. Our results demonstrate that the Arabidopsis resistance protein ZAR1 confers allele-specific recognition and virulence attenuation of the Pseudomonas syringae T3SE protein HopZ1a.

  14. Allele-specific virulence attenuation of the Pseudomonas syringae HopZ1a type III effector via the Arabidopsis ZAR1 resistance protein.

    Directory of Open Access Journals (Sweden)

    Jennifer D Lewis

    2010-04-01

    Full Text Available Plant resistance (R proteins provide a robust surveillance system to defend against potential pathogens. Despite their importance in plant innate immunity, relatively few of the approximately 170 R proteins in Arabidopsis have well-characterized resistance specificity. In order to identify the R protein responsible for recognition of the Pseudomonas syringae type III secreted effector (T3SE HopZ1a, we assembled an Arabidopsis R gene T-DNA Insertion Collection (ARTIC from publicly available Arabidopsis thaliana insertion lines and screened it for plants lacking HopZ1a-induced immunity. This reverse genetic screen revealed that the Arabidopsis R protein HOPZ-activated resistance 1 (ZAR1; At3g50950 is required for recognition of HopZ1a in Arabidopsis. ZAR1 belongs to the coiled-coil (CC class of nucleotide binding site and leucine-rich repeat (NBS-LRR containing R proteins; however, the ZAR1 CC domain phylogenetically clusters in a clade distinct from other related Arabidopsis R proteins. ZAR1-mediated immunity is independent of several genes required by other R protein signaling pathways, including NDR1 and RAR1, suggesting that ZAR1 possesses distinct signaling requirements. The closely-related T3SE protein, HopZ1b, is still recognized by zar1 Arabidopsis plants indicating that Arabidopsis has evolved at least two independent R proteins to recognize the HopZ T3SE family. Also, in Arabidopsis zar1 plants HopZ1a promotes P. syringae growth indicative of an ancestral virulence function for this T3SE prior to the evolution of recognition by the host resistance protein ZAR1. Our results demonstrate that the Arabidopsis resistance protein ZAR1 confers allele-specific recognition and virulence attenuation of the Pseudomonas syringae T3SE protein HopZ1a.

  15. A draft genome sequence and functional screen reveals the repertoire of type III secreted proteins of Pseudomonas syringae pathovar tabaci 11528

    Directory of Open Access Journals (Sweden)

    Dangl Jeffery L

    2009-08-01

    Full Text Available Abstract Background Pseudomonas syringae is a widespread bacterial pathogen that causes disease on a broad range of economically important plant species. Pathogenicity of P. syringae strains is dependent on the type III secretion system, which secretes a suite of up to about thirty virulence 'effector' proteins into the host cytoplasm where they subvert the eukaryotic cell physiology and disrupt host defences. P. syringae pathovar tabaci naturally causes disease on wild tobacco, the model member of the Solanaceae, a family that includes many crop species as well as on soybean. Results We used the 'next-generation' Illumina sequencing platform and the Velvet short-read assembly program to generate a 145X deep 6,077,921 nucleotide draft genome sequence for P. syringae pathovar tabaci strain 11528. From our draft assembly, we predicted 5,300 potential genes encoding proteins of at least 100 amino acids long, of which 303 (5.72% had no significant sequence similarity to those encoded by the three previously fully sequenced P. syringae genomes. Of the core set of Hrp Outer Proteins that are conserved in three previously fully sequenced P. syringae strains, most were also conserved in strain 11528, including AvrE1, HopAH2, HopAJ2, HopAK1, HopAN1, HopI, HopJ1, HopX1, HrpK1 and HrpW1. However, the hrpZ1 gene is partially deleted and hopAF1 is completely absent in 11528. The draft genome of strain 11528 also encodes close homologues of HopO1, HopT1, HopAH1, HopR1, HopV1, HopAG1, HopAS1, HopAE1, HopAR1, HopF1, and HopW1 and a degenerate HopM1'. Using a functional screen, we confirmed that hopO1, hopT1, hopAH1, hopM1', hopAE1, hopAR1, and hopAI1' are part of the virulence-associated HrpL regulon, though the hopAI1' and hopM1' sequences were degenerate with premature stop codons. We also discovered two additional HrpL-regulated effector candidates and an HrpL-regulated distant homologue of avrPto1. Conclusion The draft genome sequence facilitates the

  16. An insight into the photodynamic approach versus copper formulations in the control of Pseudomonas syringae pv. actinidiae in kiwi plants.

    Science.gov (United States)

    Jesus, Vânia; Martins, Diana; Branco, Tatiana; Valério, Nádia; Neves, Maria G P M S; Faustino, Maria A F; Reis, Luís; Barreal, Esther; Gallego, Pedro P; Almeida, Adelaide

    2017-12-15

    In the last decade, the worldwide production of kiwi fruit has been highly affected by Pseudomonas syringae pv. actinidiae (Psa), a phytopathogenic bacterium; this has led to severe economic losses that are seriously affecting the kiwi fruit trade. The available treatments for this disease are still scarce, with the most common involving frequently spraying the orchards with copper derivatives, in particular cuprous oxide (Cu2O). However, these copper formulations should be avoided due to their high toxicity; therefore, it is essential to search for new approaches for controlling Psa. Antimicrobial photodynamic therapy (aPDT) may be an alternative approach to inactivate Psa. aPDT consists in the use of a photosensitizer molecule (PS) that absorbs light and by transference of the excess of energy or electrons to molecular oxygen forms highly reactive oxygen species (ROS) that can affect different molecular targets, thus being very unlikely to lead to the development of microbe resistance. The aim of the present study was to evaluate the effectiveness of aPDT to photoinactivate Psa, using the porphyrin Tetra-Py+-Me and different light intensities. The degree of inactivation of Psa was assessed using the PS at 5.0 μM under low irradiance (4.0 mW cm-2). Afterward, ex vivo experiments, using artificially contaminated kiwi leaves, were conducted with a PS at 50 μM under 150 mW cm-2 and sunlight irradiation. A reduction of 6 log in the in vitro assays after 90 min of irradiation was observed. In the ex vivo tests, the decrease was lower, approximately 1.8 log reduction at an irradiance of 150 mW cm-2, 1.2 log at 4.0 mW cm-2, and 1.5 log under solar radiation. However, after three successive cycles of treatment under 150 mW cm-2, a 4 log inactivation was achieved. No negative effects were observed on leaves after treatment. Assays using Cu2O were also performed at the recommended concentration by law (50 g h L-1) and at concentrations 10 times lower, in which at

  17. A genetic screen reveals Arabidopsis stomatal and/or apoplastic defenses against Pseudomonas syringae pv. tomato DC3000.

    Directory of Open Access Journals (Sweden)

    Weiqing Zeng

    2011-10-01

    Full Text Available Bacterial infection of plants often begins with colonization of the plant surface, followed by entry into the plant through wounds and natural openings (such as stomata, multiplication in the intercellular space (apoplast of the infected tissues, and dissemination of bacteria to other plants. Historically, most studies assess bacterial infection based on final outcomes of disease and/or pathogen growth using whole infected tissues; few studies have genetically distinguished the contribution of different host cell types in response to an infection. The phytotoxin coronatine (COR is produced by several pathovars of Pseudomonas syringae. COR-deficient mutants of P. s. tomato (Pst DC3000 are severely compromised in virulence, especially when inoculated onto the plant surface. We report here a genetic screen to identify Arabidopsis mutants that could rescue the virulence of COR-deficient mutant bacteria. Among the susceptible to coronatine-deficient Pst DC3000 (scord mutants were two that were defective in stomatal closure response, two that were defective in apoplast defense, and four that were defective in both stomatal and apoplast defense. Isolation of these three classes of mutants suggests that stomatal and apoplastic defenses are integrated in plants, but are genetically separable, and that COR is important for Pst DC3000 to overcome both stomatal guard cell- and apoplastic mesophyll cell-based defenses. Of the six mutants defective in bacterium-triggered stomatal closure, three are defective in salicylic acid (SA-induced stomatal closure, but exhibit normal stomatal closure in response to abscisic acid (ABA, and scord7 is compromised in both SA- and ABA-induced stomatal closure. We have cloned SCORD3, which is required for salicylic acid (SA biosynthesis, and SCORD5, which encodes an ATP-binding cassette (ABC protein, AtGCN20/AtABCF3, predicted to be involved in stress-associated protein translation control. Identification of SCORD5 begins to

  18. Membrane-anchored MucR mediates nitrate-dependent regulation of alginate production in Pseudomonas aeruginosa

    KAUST Repository

    Wang, Yajie

    2015-04-29

    Alginates exhibit unique material properties suitable for medical and industrial applications. However, if produced by Pseudomonas aeruginosa, it is an important virulence factor in infection of cystic fibrosis patients. The alginate biosynthesis machinery is activated by c-di-GMP imparted by the inner membrane protein, MucR. Here, it was shown that MucR impairs alginate production in response to nitrate in P. aeruginosa. Subsequent site-specific mutagenesis of MucR revealed that the second MHYT sensor motif (MHYT II, amino acids 121–124) of MucR sensor domain was involved in nitrate sensing. We also showed that both c-di-GMP synthesizing and degrading active sites of MucR were important for alginate production. Although nitrate and deletion of MucR impaired alginate promoter activity and global c-di-GMP levels, alginate yields were not directly correlated with alginate promoter activity or c-di-GMP levels, suggesting that nitrate and MucR modulate alginate production at a post-translational level through a localized pool of c-di-GMP. Nitrate increased pel promoter activity in the mucR mutant while in the same mutant the psl promoter activity was independent of nitrate. Nitrate and deletion of mucR did not impact on swarming motility but impaired attachment to solid surfaces. Nitrate and deletion of mucR promoted the formation of biofilms with increased thickness, cell density, and survival. Overall, this study provided insight into the functional role of MucR with respect to nitrate-mediated regulation of alginate biosynthesis. © 2015 Springer-Verlag Berlin Heidelberg

  19. Influence of infection of soybean seeds with Peronospora manshurica and Pseudomonas syringae pv. glycinea on protein, oil and fatty acids content

    Directory of Open Access Journals (Sweden)

    J. Marcinkowska

    2013-12-01

    Full Text Available The effect of soybean seed infection by Peronospora manshurica and Pseudomonas syringae pv. glycinea on the chemical content of some soybean lines and varieties susceptible to both pathogens was estimated. The amount of protein and oil was determined for soybean seed samples collected from two different localities in 1980. In P. manshurica oospore-encrusted seeds protein content was higher and oil content lower than in healthy ones. It could be seen especially in samples of the 'Acme' variety cultivated in both localities. Seed infection by P. syringae pv. glycinea occasionally influenced the protein, oil and fatty acid content as compared with the control. This was noted only in single cases. Analysis of fatty acid composition demonstrated a higher free fatty acid content in soybean seed infected by P. manshurica. These results showed undoubtedly the influence of pathogens, specially seed-borne fungi on the chemical soybean seed composition. This analysis can be an introduction for more detailed investigations on the effect of these or other pathogens on soybean seed yield quality.

  20. Arabidopsis GH3-LIKE DEFENSE GENE 1 is required for accumulation of salicylic acid, activation of defense responses and resistance to Pseudomonas syringae.

    Science.gov (United States)

    Jagadeeswaran, Guru; Raina, Surabhi; Acharya, Biswa R; Maqbool, Shahina B; Mosher, Stephen L; Appel, Heidi M; Schultz, Jack C; Klessig, Daniel F; Raina, Ramesh

    2007-07-01

    In Arabidopsis, the GH3-like gene family consists of 19 members, several of which have been shown to adenylate the plant hormones jasmonic acid, indole acetic acid and salicylic acid (SA). In some cases, this adenylation has been shown to catalyze hormone conjugation to amino acids. Here we report molecular characterization of the GH3-LIKE DEFENSE GENE 1 (GDG1), a member of the GH3-like gene family, and show that GDG1 is an important component of SA-mediated defense against the bacterial pathogen Pseudomonas syringae. Expression of GDG1 is induced earlier and to a higher level in response to avirulent pathogens compared to virulent pathogens. gdg1 null mutants are compromised in several pathogen defense responses, including activation of defense genes and resistance against virulent and avirulent bacterial pathogens. Accumulation of free and glucoside-conjugated SA (SAG) in response to pathogen infection is compromised in gdg1 mutants. All defense-related phenotypes of gdg1 can be rescued by external application of SA, suggesting that gdg1 mutants are defective in the SA-mediated defense pathway(s) and that GDG1 functions upstream of SA. Our results suggest that GDG1 contributes to both basal and resistance gene-mediated inducible defenses against P. syringae (and possibly other pathogens) by playing a critical role in regulating the levels of pathogen-inducible SA. GDG1 is allelic to the PBS3 (avrPphB susceptible) gene.

  1. Molecular basis of a microbe-mediated enhancement of symbiotic N/sub 2/-fixation. [Rhizobium meliloti; Pseudomonas syringae pv. tabaci

    Energy Technology Data Exchange (ETDEWEB)

    Unkefer, P.J.; Knight, T.J.

    1987-04-01

    Improvement of biological nitrogen fixation represents a potential source of both increased food production and decreased dependence on costly chemical fertilizer. They report the results of an investigation of the molecular basis of a unique, microbial-mediated mechanism for increased growth and nitrogen fixation rates in alfalfa. Inoculation of alfalfa plants with both Rhizobium meliloti and Pseudomonas syringae pv tabaci provides increased growth and N/sub 2/-fixation rates of alfalfa. Tabaci produces tabtoxinine-..beta..-lactam (T..beta..L), an exocellular product and glutamine synthetase (GS) inhibitor. The association of this pathogen with nodulating alfalfa plants appears to alter the normal regulation of nitrogen fixation such that nitrogenase activity is stimulated and GS activity is inhibited. Studies of the soluble amino acids in these nodules and the activities of the ammonia assimilatory enzymes indicate alternative pathways of ammonia assimilation are being employed.

  2. Thienopyrimidine-type compounds protect Arabidopsis plants against the hemibiotrophic fungal pathogen Colletotrichum higginsianum and bacterial pathogen Pseudomonas syringae pv. maculicola.

    Science.gov (United States)

    Narusaka, Mari; Narusaka, Yoshihiro

    2017-03-04

    Plant activators activate systemic acquired resistance-like defense responses or induced systemic resistance, and thus protect plants from pathogens. We screened a chemical library composed of structurally diverse small molecules. We isolated six plant immune-inducing thienopyrimidine-type compounds and their analogous compounds. It was observed that the core structure of thienopyrimidine plays a role in induced resistance in plants. Furthermore, we highlight the protective effect of thienopyrimidine-type compounds against both hemibiotrophic fungal pathogen, Colletotrichum higginsianum, and bacterial pathogen, Pseudomonas syringae pv. maculicola, in Arabidopsis thaliana. We suggest that thienopyrimidine-type compounds could be potential lead compounds as novel plant activators, and can be useful and effective agrochemicals against various plant diseases.

  3. Antibacterial Activity of Cinnamaldehyde and Estragole Extracted from Plant Essential Oils against Pseudomonas syringae pv. actinidiae Causing Bacterial Canker Disease in Kiwifruit

    Science.gov (United States)

    Song, Yu-Rim; Choi, Min-Seon; Choi, Geun-Won; Park, Il-Kwon; Oh, Chang-Sik

    2016-01-01

    Pseudomonas syringae pv. actinidiae (Psa) causes bacterial canker disease in kiwifruit. Antibacterial activity of plant essential oils (PEOs) originating from 49 plant species were tested against Psa by a vapor diffusion and a liquid culture assays. The five PEOs from Pimenta racemosa, P. dioica, Melaleuca linariifolia, M. cajuputii, and Cinnamomum cassia efficiently inhibited Psa growth by either assays. Among their major components, estragole, eugenol, and methyl eugenol showed significant antibacterial activity by only the liquid culture assay, while cinnamaldehyde exhibited antibacterial activity by both assays. The minimum inhibitory concentrations (MICs) of estragole and cinnamaldehyde by the liquid culture assay were 1,250 and 2,500 ppm, respectively. The MIC of cinnamaldehyde by the vapor diffusion assay was 5,000 ppm. Based on the formation of clear zones or the decrease of optical density caused by these compounds, they might kill the bacterial cells and this feature might be useful for managing the bacterial canker disease in kiwifruit. PMID:27493612

  4. Antibacterial Activity of Cinnamaldehyde and Estragole Extracted from Plant Essential Oils against Pseudomonas syringae pv. actinidiae Causing Bacterial Canker Disease in Kiwifruit

    Directory of Open Access Journals (Sweden)

    Yu-Rim Song

    2016-08-01

    Full Text Available Pseudomonas syringae pv. actinidiae (Psa causes bacterial canker disease in kiwifruit. Antibacterial activity of plant essential oils (PEOs originating from 49 plant species were tested against Psa by a vapor diffusion and a liquid culture assays. The five PEOs from Pimenta racemosa, P. dioica, Melaleuca linariifolia, M. cajuputii, and Cinnamomum cassia efficiently inhibited Psa growth by either assays. Among their major components, estragole, eugenol, and methyl eugenol showed significant antibacterial activity by only the liquid culture assay, while cinnamaldehyde exhibited antibacterial activity by both assays. The minimum inhibitory concentrations (MICs of estragole and cinnamaldehyde by the liquid culture assay were 1,250 and 2,500 ppm, respectively. The MIC of cinnamaldehyde by the vapor diffusion assay was 5,000 ppm. Based on the formation of clear zones or the decrease of optical density caused by these compounds, they might kill the bacterial cells and this feature might be useful for managing the bacterial canker disease in kiwifruit.

  5. Development of SCAR markers for rapid and specific detection of Pseudomonas syringae pv. morsprunorum races 1 and 2, using conventional and real-time PCR.

    Science.gov (United States)

    Kałużna, Monika; Albuquerque, Pedro; Tavares, Fernando; Sobiczewski, Piotr; Puławska, Joanna

    2016-04-01

    Specific primers were developed to detect the causal agent of stone fruit bacterial canker using conventional and real-time polymerase chain reaction (PCR) methods. PCR melting profile (PCR MP) used for analysis of diversity of Pseudomonas syringae strains, allowed to pinpoint the amplified fragments specific for P. syringae pv. morsprunorum race 1 (Psm1) and race 2 (Psm2), which were sequenced. Using obtained data, specific sequence characterised amplified region (SCAR) primers were designed. Conventional and real-time PCRs, using genomic DNA isolated from different bacterial strains belonging to the Pseudomonas genus, confirmed the specificity of selected primers. Additionally, the specificity of the selected DNA regions for Psm1 and Psm2 was confirmed by dot blot hybridisation. Conventional and real-time PCR assays enabled accurate detection of Psm1 and Psm2 in pure cultures and in plant material. For conventional PCR, the detection limits were the order of magnitude ~10(0) cfu/reaction for Psm1 and 10(1) cfu/reaction for Psm2 in pure cultures, while in plant material were 10(0)-10(1) cfu/reaction using primers for Psm1 and 3 × 10(2) cfu/reaction using primers for Psm2. Real-time PCR assays with SYBR Green I showed a higher limit of detection (LOD) - 10(0) cfu/reaction in both pure culture and in plant material for each primer pairs designed, which corresponds to 30-100 and 10-50 fg of DNA of Psm1 and Psm2, respectively. To our knowledge, this is the first PCR-based method for detection of the causal agents of bacterial canker of stone fruit trees.

  6. Molecular characterization of Pseudomonas syringae pv. tomato isolates from Tanzania

    DEFF Research Database (Denmark)

    Shenge, K.C.; Stephan, D.; Mabagala, R. B.

    2008-01-01

    pathogenicity assays on tomato, carbon source utilization by the Biolog Microplate system, polymerase chain reaction and restriction fragment length polymorphism (RFLP) analysis. All the P. syringae pv. tomato isolates produced bacterial speck symptoms on susceptible tomato (cv. ‘Tanya') seedlings. Metabolic...... fingerprinting profiles revealed diversity among the isolates, forming several clusters. Some geographic differentiation was observed in principal component analysis, with isolates from Arusha region being more diverse than those from Iringa and Morogoro regions. The Biolog system was efficient....... syringae pv. tomato isolates in Tanzania that differ significantly from those used to create the Biolog database. RFLP analysis showed that the isolates were highly conserved in their hrpZ gene. The low level of genomic diversity within the pathogen in Tanzania shows that there is a possibility to use...

  7. Transgenic expression of antimicrobial peptide D2A21 confers resistance to diseases incited by Pseudomonas syringae pv. tabaci and Xanthomonas citri, but not Candidatus Liberibacter asiaticus.

    Directory of Open Access Journals (Sweden)

    Guixia Hao

    Full Text Available Citrus Huanglongbing (HLB associated with 'Candidatus Liberibacter asiaticus' (Las and citrus canker disease incited by Xanthomonas citri are the most devastating citrus diseases worldwide. To control citrus HLB and canker disease, we previously screened over forty antimicrobial peptides (AMPs in vitro for their potential application in genetic engineering. D2A21 was one of the most active AMPs against X. citri, Agrobacterium tumefaciens and Sinorhizobium meliloti with low hemolysis activity. Therefore, we conducted this work to assess transgenic expression of D2A21 peptide to achieve citrus resistant to canker and HLB. We generated a construct expressing D2A21 and initially transformed tobacco as a model plant. Transgenic tobacco expressing D2A21 was obtained by Agrobacterium-mediated transformation. Successful transformation and D2A21 expression was confirmed by molecular analysis. We evaluated disease development incited by Pseudomonas syringae pv. tabaci in transgenic tobacco. Transgenic tobacco plants expressing D2A21 showed remarkable disease resistance compared to control plants. Therefore, we performed citrus transformations with the same construct and obtained transgenic Carrizo citrange. Gene integration and gene expression in transgenic plants were determined by PCR and RT-qPCR. Transgenic Carrizo expressing D2A21 showed significant canker resistance while the control plants showed clear canker symptoms following both leaf infiltration and spray inoculation with X. citri 3213. Transgenic Carrizo plants were challenged for HLB evaluation by grafting with Las infected rough lemon buds. Las titer was determined by qPCR in the leaves and roots of transgenic and control plants. However, our results showed that transgenic plants expressing D2A21 did not significantly reduce Las titer compared to control plants. We demonstrated that transgenic expression of D2A21 conferred resistance to diseases incited by P. syringae pv. tabaci and X. citri

  8. Cytokinins Mediate Resistance against Pseudomonas syringae in Tobacco through Increased Antimicrobial Phytoalexin Synthesis Independent of Salicylic Acid Signaling1[W][OA

    Science.gov (United States)

    Großkinsky, Dominik K.; Naseem, Muhammad; Abdelmohsen, Usama Ramadan; Plickert, Nicole; Engelke, Thomas; Griebel, Thomas; Zeier, Jürgen; Novák, Ondřej; Strnad, Miroslav; Pfeifhofer, Hartwig; van der Graaff, Eric; Simon, Uwe; Roitsch, Thomas

    2011-01-01

    Cytokinins are phytohormones that are involved in various regulatory processes throughout plant development, but they are also produced by pathogens and known to modulate plant immunity. A novel transgenic approach enabling autoregulated cytokinin synthesis in response to pathogen infection showed that cytokinins mediate enhanced resistance against the virulent hemibiotrophic pathogen Pseudomonas syringae pv tabaci. This was confirmed by two additional independent transgenic approaches to increase endogenous cytokinin production and by exogenous supply of adenine- and phenylurea-derived cytokinins. The cytokinin-mediated resistance strongly correlated with an increased level of bactericidal activities and up-regulated synthesis of the two major antimicrobial phytoalexins in tobacco (Nicotiana tabacum), scopoletin and capsidiol. The key role of these phytoalexins in the underlying mechanism was functionally proven by the finding that scopoletin and capsidiol substitute in planta for the cytokinin signal: phytoalexin pretreatment increased resistance against P. syringae. In contrast to a cytokinin defense mechanism in Arabidopsis (Arabidopsis thaliana) based on salicylic acid-dependent transcriptional control, the cytokinin-mediated resistance in tobacco is essentially independent from salicylic acid and differs in pathogen specificity. It is also independent of jasmonate levels, reactive oxygen species, and high sugar resistance. The novel function of cytokinins in the primary defense response of solanaceous plant species is rather mediated through a high phytoalexin-pathogen ratio in the early phase of infection, which efficiently restricts pathogen growth. The implications of this mechanism for the coevolution of host plants and cytokinin-producing pathogens and the practical application in agriculture are discussed. PMID:21813654

  9. Functional Characterization of Key Residues in Regulatory Proteins HrpG and HrpV of Pseudomonas syringae pv. tomato DC3000.

    Science.gov (United States)

    Jovanovic, Milija; Waite, Christopher; James, Ellen; Synn, Nicholas; Simpson, Timothy; Kotta-Loizou, Ioly; Buck, Martin

    2017-08-01

    The plant pathogen Pseudomonas syringae pv. tomato DC3000 uses a type III secretion system (T3SS) to transfer effector proteins into the host. The expression of T3SS proteins is controlled by the HrpL σ factor. Transcription of hrpL is σ(54)-dependent and bacterial enhancer-binding proteins HrpR and HrpS coactivate the hrpL promoter. The HrpV protein imposes negative control upon HrpR and HrpS through direct interaction with HrpS. HrpG interacts with HrpV and relieves such negative control. The sequence alignments across Hrp group I-type plant pathogens revealed conserved HrpV and HrpG amino acids. To establish structure-function relationships in HrpV and HrpG, either truncated or alanine substitution mutants were constructed. Key functional residues in HrpV and HrpG are found within their C-terminal regions. In HrpG, L101 and L105 are indispensable for the ability of HrpG to directly interact with HrpV and suppress HrpV-dependent negative regulation of HrpR and HrpS. In HrpV, L108 and G110 are major determinants for interactions with HrpS and HrpG. We propose that mutually exclusive binding of HrpS and HrpG to the same binding site of HrpV governs a transition from negative control to activation of the HrpRS complex leading to HrpL expression and pathogenicity of P. syringae.

  10. The presence of INA proteins on the surface of single cells of Pseudomonas syringae R10.79 isolated from rain

    Science.gov (United States)

    Šantl-Temkiv, Tina; Ling, Meilee; Holm, Stine; Finster, Kai; Boesen, Thomas

    2016-04-01

    One of the important open questions in atmospheric ice nucleation is the impact of bioaerosols on the ice content of mix phase clouds (DeMott and Prenni 2010). Biogenic ice nuclei have a unique capacity of facilitating ice formation at temperatures between -1 and -10 °C. The model biogenic ice nuclei are produced by a few species of plant-surface bacteria, such as Pseudomonas syringae, that are commonly transported through the atmosphere. These bacterial species have highly specialized proteins, the so-called ice nucleation active (INA) proteins, which are exposed at the outer membrane surface of the cell where they promote ice particle formation. The mechanisms behind the onset of INA protein synthesis in single bacterial cells are not well understood. We performed a laboratory study in order to (i) investigate the presence of INA proteins on single bacterial cells and (ii) understand the conditions that induce INA protein production. We previously isolated an INA-positive strain of Pseudomonas syringae from rain samples collected in Denmark. Bacterial cells initiated ice nucleation activity at temperatures ≤-2°C and the cell fragments at temperatures ≤-8°C (Šantl-Temkiv et al 2015). We determined the amino-acid sequence of the INA protein and used the sequence to produce custom-made antibodies (GenScript, Germany). These antibodies were used to specifically stain and visualize the INA protein on the surfaces of single cells, which can then be quantified by a technique called flow cytometry. The synthesis of INA proteins by individual cells was followed during a batch growth experiment. An unusually high proportion of cells that were adapting to the new conditions prior to growth produced INA proteins (~4.4% of all cells). A smaller fraction of actively growing cells was carrying INA proteins (~1.2 % of all cells). The cells that stopped growing due to unfavorable conditions had the lowest fraction of cells carrying INA proteins (~0.5 % of all cells). To

  11. The Arabidopsis thaliana cysteine-rich receptor-like kinase CRK20 modulates host responses to Pseudomonas syringae pv. tomato DC3000 infection

    KAUST Repository

    Ederli, Luisa

    2011-10-01

    In plants, the cysteine-rich repeat kinases (CRKs) are a sub-family of receptor-like protein kinases that contain the DUF26 motif in their extracellular domains. It has been shown that in Arabidopsis thaliana, CRK20 is transcriptionally induced by pathogens, salicylic acid and ozone (O3). However, its role in responses to biotic and abiotic stress remains to be elucidated. To determine the function of CRK20 in such responses, two CRK20 loss-of-function mutants, crk20-1 and crk20-2, were isolated from public collections of Arabidopsis T-DNA tagged lines and examined for responses to O3 and Pseudomonas syringae pv. tomato (Pst) DC3000. crk20-1 and crk20-2 showed similar O3 sensitivities and no differences in the expression of defense genes when compared with the wild-type. However, pathogen growth was significantly reduced, while there were no differences in the induction of salicylic acid related defense genes or salicylic acid accumulation. Furthermore, correlation analysis of CRK20 gene expression suggests that it has a role in the control of H2O and/or nutrient transport. We therefore propose that CRK20 promotes conditions that are favorable for Pst DC3000 growth in Arabidopsis, possibly through the regulation of apoplastic homeostasis, and consequently, of the environment of this biotrophic pathogen. © 2011 Elsevier GmbH.

  12. Gaseous 3-pentanol primes plant immunity against a bacterial speck pathogen, Pseudomonas syringae pv. tomato via salicylic acid and jasmonic acid-dependent signaling pathways in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Geun Cheol eSong

    2015-10-01

    Full Text Available 3-Pentanol is an active organic compound produced by plants and is a component of emitted insect sex pheromones. A previous study reported that drench application of 3-pentanol elicited plant immunity against microbial pathogens and an insect pest in crop plants. Here, we evaluated whether 3-pentanol and the derivatives 1-pentanol and 2-pentanol induced plant systemic resistance using the in vitro I-plate system. Exposure of Arabidopsis seedlings to 10 M and 100 nM 3-pentanol evaporate elicited an immune response to Pseudomonas syringae pv. tomato DC3000. We performed quantitative real-time PCR to investigate the 3-pentanol-mediated Arabidopsis immune responses by determining Pathogenesis-Related (PR gene expression levels associated with defense signaling through SA, JA, and ethylene signaling pathways. The results show that exposure to 3-pentanol and subsequent pathogen challenge upregulated PDF1.2 and PR1 expression. Selected Arabidopsis mutants confirmed that the 3-pentanol-mediated immune response involved salicylic acid (SA and jasmonic acid (JA signaling pathways and the NPR1 gene. Taken together, this study indicates that gaseous 3-pentanol triggers induced resistance in Arabidopsis by priming SA and JA signaling pathways. To our knowledge, this is the first report that a volatile compound of an insect sex pheromone triggers plant systemic resistance against a bacterial pathogen.

  13. Plant innate immunity induced by flagellin suppresses the hypersensitive response in non-host plants elicited by Pseudomonas syringae pv. averrhoi.

    Science.gov (United States)

    Wei, Chia-Fong; Hsu, Shih-Tien; Deng, Wen-Ling; Wen, Yu-Der; Huang, Hsiou-Chen

    2012-01-01

    A new pathogen, Pseudomonas syringae pv. averrhoi (Pav), which causes bacterial spot disease on carambola was identified in Taiwan in 1997. Many strains of this pathovar have been isolated from different locations and several varieties of hosts. Some of these strains, such as HL1, are nonmotile and elicit a strong hypersensitive response (HR) in nonhost tobacco leaves, while other strains, such as PA5, are motile and elicit a weak HR. Based on the image from a transmission electron microscope, the results showed that HL1 is flagellum-deficient and PA5 has normal flagella. Here we cloned and analyzed the fliC gene and glycosylation island from Pav HL1 and PA5. The amino acid sequences of FliC from HL1 and PA5 are identical to P. s. pvs. tabaci (Pta), glycinea and phaseolicola and share very high similarity with other pathovars of P. syringae. In contrast to the flagellin mutant PtaΔfliC, PA5ΔfliC grows as well as wild type in the host plant, but it elicits stronger HR than wild type does in non-host plants. Furthermore, the purified Pav flagellin, but not the divergent flagellin from Agrobacterium tumefaciens, is able to impair the HR induced by PA5ΔfliC. PA5Δfgt1 possessing nonglycosylated flagella behaved as its wild type in both bacterial growth in host and HR elicitation. Flagellin was infiltrated into tobacco leaves either simultaneously with flagellum-deficient HL1 or prior to the inoculation of wild type HL1, and both treatments impaired the HR induced by HL1. Moreover, the HR elicited by PA5 and PA5ΔfliC was enhanced by the addition of cycloheximide, suggesting that the flagellin is one of the PAMPs (pathogen-associated molecular patterns) contributed to induce the PAMP-triggered immunity (PTI). Taken together, the results shown in this study reveal that flagellin in Pav is capable of suppressing HR via PTI induction during an incompatible interaction.

  14. Plant innate immunity induced by flagellin suppresses the hypersensitive response in non-host plants elicited by Pseudomonas syringae pv. averrhoi.

    Directory of Open Access Journals (Sweden)

    Chia-Fong Wei

    Full Text Available A new pathogen, Pseudomonas syringae pv. averrhoi (Pav, which causes bacterial spot disease on carambola was identified in Taiwan in 1997. Many strains of this pathovar have been isolated from different locations and several varieties of hosts. Some of these strains, such as HL1, are nonmotile and elicit a strong hypersensitive response (HR in nonhost tobacco leaves, while other strains, such as PA5, are motile and elicit a weak HR. Based on the image from a transmission electron microscope, the results showed that HL1 is flagellum-deficient and PA5 has normal flagella. Here we cloned and analyzed the fliC gene and glycosylation island from Pav HL1 and PA5. The amino acid sequences of FliC from HL1 and PA5 are identical to P. s. pvs. tabaci (Pta, glycinea and phaseolicola and share very high similarity with other pathovars of P. syringae. In contrast to the flagellin mutant PtaΔfliC, PA5ΔfliC grows as well as wild type in the host plant, but it elicits stronger HR than wild type does in non-host plants. Furthermore, the purified Pav flagellin, but not the divergent flagellin from Agrobacterium tumefaciens, is able to impair the HR induced by PA5ΔfliC. PA5Δfgt1 possessing nonglycosylated flagella behaved as its wild type in both bacterial growth in host and HR elicitation. Flagellin was infiltrated into tobacco leaves either simultaneously with flagellum-deficient HL1 or prior to the inoculation of wild type HL1, and both treatments impaired the HR induced by HL1. Moreover, the HR elicited by PA5 and PA5ΔfliC was enhanced by the addition of cycloheximide, suggesting that the flagellin is one of the PAMPs (pathogen-associated molecular patterns contributed to induce the PAMP-triggered immunity (PTI. Taken together, the results shown in this study reveal that flagellin in Pav is capable of suppressing HR via PTI induction during an incompatible interaction.

  15. Pseudomonas aeruginosa Alginate Overproduction Promotes Coexistence with Staphylococcus aureus in a Model of Cystic Fibrosis Respiratory Infection

    Directory of Open Access Journals (Sweden)

    Dominique H. Limoli

    2017-03-01

    Full Text Available While complex intra- and interspecies microbial community dynamics are apparent during chronic infections and likely alter patient health outcomes, our understanding of these interactions is currently limited. For example, Pseudomonas aeruginosa and Staphylococcus aureus are often found to coinfect the lungs of patients with cystic fibrosis (CF, yet these organisms compete under laboratory conditions. Recent observations that coinfection correlates with decreased health outcomes necessitate we develop a greater understanding of these interbacterial interactions. In this study, we tested the hypothesis that P. aeruginosa and/or S. aureus adopts phenotypes that allow coexistence during infection. We compared competitive interactions of P. aeruginosa and S. aureus isolates from mono- or coinfected CF patients employing in vitro coculture models. P. aeruginosa isolates from monoinfected patients were more competitive toward S. aureus than P. aeruginosa isolates from coinfected patients. We also observed that the least competitive P. aeruginosa isolates possessed a mucoid phenotype. Mucoidy occurs upon constitutive activation of the sigma factor AlgT/U, which regulates synthesis of the polysaccharide alginate and dozens of other secreted factors, including some previously described to kill S. aureus. Here, we show that production of alginate in mucoid strains is sufficient to inhibit anti-S. aureus activity independent of activation of the AlgT regulon. Alginate reduces production of siderophores, 2-heptyl-4-hydroxyquinolone-N-oxide (HQNO, and rhamnolipids—each required for efficient killing of S. aureus. These studies demonstrate alginate overproduction may be an important factor driving P. aeruginosa coinfection with S. aureus.

  16. Colony morphology and transcriptome profiling of Pseudomonas putida KT2440 and its mutants deficient in alginate or all EPS synthesis under controlled matric potentials

    DEFF Research Database (Denmark)

    Gülez, Gamze; Altintas, Ali; Fazli, Mustafa

    2014-01-01

    Pseudomonas putida is a versatile bacterial species adapted to soil and its fluctuations. Like many other species living in soil, P. putida often faces water limitation. Alginate, an exopolysaccharide (EPS) produced by P. putida, is known to create hydrated environments and alleviate the effect...... of water limitation. In addition to alginate, P. putida is capable of producing cellulose (bcs), putida exopolysaccharide a (pea), and putida exopolysaccharide b (peb). However, unlike alginate, not much is known about their roles under water limitation. Hence, in this study we examined the role...... of different EPS components under mild water limitation. To create environmentally realistic water limited conditions as observed in soil, we used the Pressurized Porous Surface Model. Our main hypothesis was that under water limitation and in the absence of alginate other exopolysaccharides would be more...

  17. Pseudomonas aeruginosa alginate is refractory to Th1 immune response and impedes host immune clearance in a mouse model of acute lung infection

    DEFF Research Database (Denmark)

    Song, Zhijun; Wu, Hong; Ciofu, Oana

    2003-01-01

    . The effect of alginate production on pathogenicity was investigated by using an acute lung infection mouse model that compared a non-mucoid P. aeruginosa strain, PAO1, to its constitutive alginate-overproducing derivative, Alg(+) PAOmucA22, and an alginate-defective strain, Alg(-) PAOalgD. Bacterial......Pseudomonas aeruginosa is an opportunistic respiratory pathogen that accounts for most of the morbidity and mortality in cystic fibrosis (CF) patients. In CF-affected lungs, the bacteria undergo conversion from a non-mucoid to a non-tractable mucoid phenotype, due to overproduction of alginate...... suspensions were instilled into the left bronchus and examined 24 and 48 h post-infection. The highest bacterial loads and the most severe lung pathology were observed with strain Alg(-) PAOalgD at 24 h post-infection, which may have been due to an increase in expression of bacterial elastase by the mutant...

  18. The Arabidopsis thaliana lectin receptor kinase LecRK-I.9 is required for full resistance to Pseudomonas syringae and affects jasmonate signalling.

    Science.gov (United States)

    Balagué, Claudine; Gouget, Anne; Bouchez, Olivier; Souriac, Camille; Haget, Nathalie; Boutet-Mercey, Stéphanie; Govers, Francine; Roby, Dominique; Canut, Hervé

    2017-09-01

    On microbial attack, plants can detect invaders and activate plant innate immunity. For the detection of pathogen molecules or cell wall damage, plants employ receptors that trigger the activation of defence responses. Cell surface proteins that belong to large families of lectin receptor kinases are candidates to function as immune receptors. Here, the function of LecRK-I.9 (At5g60300), a legume-type lectin receptor kinase involved in cell wall-plasma membrane contacts and in extracellular ATP (eATP) perception, was studied through biochemical, gene expression and reverse genetics approaches. In Arabidopsis thaliana, LecRK-I.9 expression is rapidly, highly and locally induced on inoculation with avirulent strains of Pseudomonas syringae pv. tomato (Pst). Two allelic lecrk-I.9 knock-out mutants showed decreased resistance to Pst. Conversely, over-expression of LecRK-I.9 led to increased resistance to Pst. The analysis of defence gene expression suggests an alteration of both the salicylic acid (SA) and jasmonic acid (JA) signalling pathways. In particular, LecRK-I.9 expression during plant-pathogen interaction was dependent on COI1 (CORONATINE INSENSITIVE 1) and JAR1 (JASMONATE RESISTANT 1) components, and JA-responsive transcription factors (TFs) showed altered levels of expression in plants over-expressing LecRK-I.9. A similar misregulation of these TFs was obtained by JA treatment. This study identified LecRK-I.9 as necessary for full resistance to Pst and demonstrated its involvement in the control of defence against pathogens through a regulation of JA signalling components. The role of LecRK-I.9 is discussed with regard to the potential molecular mechanisms linking JA signalling to cell wall damage and/or eATP perception. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  19. The Arabidopsis lectin receptor kinase LecRK-V.5 represses stomatal immunity induced by Pseudomonas syringae pv. tomato DC3000.

    Directory of Open Access Journals (Sweden)

    Marie Desclos-Theveniau

    2012-02-01

    Full Text Available Stomata play an important role in plant innate immunity by limiting pathogen entry into leaves but molecular mechanisms regulating stomatal closure upon pathogen perception are not well understood. Here we show that the Arabidopsis thaliana L-type lectin receptor kinase-V.5 (LecRK-V.5 negatively regulates stomatal immunity. Loss of LecRK-V.5 function increased resistance to surface inoculation with virulent bacteria Pseudomonas syringae pv tomato DC3000. Levels of resistance were not affected after infiltration-inoculation, suggesting that LecRK-V.5 functions at an early defense stage. By contrast, lines overexpressing LecRK-V.5 were more susceptible to Pst DC3000. Enhanced resistance in lecrk-V.5 mutants was correlated with constitutive stomatal closure, while increased susceptibility phenotypes in overexpression lines were associated with early stomatal reopening. Lines overexpressing LecRK-V.5 also demonstrated a defective stomatal closure after pathogen-associated molecular pattern (PAMP treatments. LecRK-V.5 is rapidly expressed in stomatal guard cells after bacterial inoculation or treatment with the bacterial PAMP flagellin. In addition, lecrk-V.5 mutants guard cells exhibited constitutive accumulation of reactive oxygen species (ROS and inhibition of ROS production opened stomata of lecrk-V.5. LecRK-V.5 is also shown to interfere with abscisic acid-mediated stomatal closure signaling upstream of ROS production. These results provide genetic evidences that LecRK-V.5 negatively regulates stomatal immunity upstream of ROS biosynthesis. Our data reveal that plants have evolved mechanisms to reverse bacteria-mediated stomatal closure to prevent long-term effect on CO(2 uptake and photosynthesis.

  20. The Pseudomonas syringae type III effector AvrRpm1 induces significant defenses by activating the Arabidopsis nucleotide-binding leucine-rich repeat protein RPS2.

    Science.gov (United States)

    Kim, Min Gab; Geng, Xueqing; Lee, Sang Yeol; Mackey, David

    2009-02-01

    Plant disease resistance (R) proteins recognize potential pathogens expressing corresponding avirulence (Avr) proteins through 'gene-for-gene' interactions. RPM1 is an Arabidopsis R-protein that triggers a robust defense response upon recognizing the Pseudomonas syringae effector AvrRpm1. Avr-proteins of phytopathogenic bacteria include type III effector proteins that are often capable of enhancing virulence when not recognized by an R-protein. In rpm1 plants, AvrRpm1 suppresses basal defenses induced by microbe-associated molecular patterns. Here, we show that expression of AvrRpm1 in rpm1 plants induced PR-1, a classical defense marker, and symptoms including chlorosis and necrosis. PR-1 expression and symptoms were reduced in plants with mutations in defense signaling genes (pad4, sid2, npr1, rar1, and ndr1) and were strongly reduced in rpm1 rps2 plants, indicating that AvrRpm1 elicits defense signaling through the Arabidopsis R-protein, RPS2. Bacteria expressing AvrRpm1 grew more on rpm1 rps2 than on rpm1 plants. Thus, independent of its classical 'gene-for-gene' activation of RPM1, AvrRpm1 also induces functionally relevant defenses that are dependent on RPS2. Finally, AvrRpm1 suppressed host defenses and promoted the growth of type III secretion mutant bacteria equally well in rps2 and RPS2 plants, indicating that virulence activity of over-expressed AvrRpm1 predominates over defenses induced by weak activation of RPS2.

  1. Tomato Sl3-MMP, a member of the Matrix metalloproteinase family, is required for disease resistance against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000.

    Science.gov (United States)

    Li, Dayong; Zhang, Huijuan; Song, Qiuming; Wang, Lu; Liu, Shixia; Hong, Yongbo; Huang, Lei; Song, Fengming

    2015-06-14

    Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases. MMPs have been characterized in detail in mammals and shown to play key roles in many physiological and pathological processes. Although MMPs in some plant species have been identified, the function of MMPs in biotic stress responses remains elusive. A total of five MMP genes were identified in tomato genome. qRT-PCR analysis revealed that expression of Sl-MMP genes was induced with distinct patterns by infection of Botrytis cinerea and Pseudomonas syringae pv. tomato (Pst) DC3000 and by treatment with defense-related hormones such as salicylic acid, jasmonic acid and ethylene precursor 1-amino cyclopropane-1-carboxylic acid. Virus-induced gene silencing (VIGS)-based knockdown of individual Sl-MMPs and disease assays indicated that silencing of Sl3-MMP resulted in reduced resistance to B. cinerea and Pst DC3000, whereas silencing of other four Sl-MMPs did not affect the disease resistance against these two pathogens. The Sl3-MMP-silenced tomato plants responded with increased accumulation of reactive oxygen species and alerted expression of defense genes after infection of B. cinerea. Transient expression of Sl3-MMP in leaves of Nicotiana benthamiana led to an enhanced resistance to B. cinerea and upregulated expression of defense-related genes. Biochemical assays revealed that the recombinant mature Sl3-MMP protein had proteolytic activities in vitro with distinct preferences for specificity of cleavage sites. The Sl3-MMP protein was targeted onto the plasma membrane of plant cells when transiently expressed in onion epidermal cells. VIGS-based knockdown of Sl3-MMP expression in tomato and gain-of-function transient expression of Sl3-MMP in N. benthamiana demonstrate that Sl3-MMP functions as a positive regulator of defense response against B. cinerea and Pst DC3000.

  2. Overexpression of Nictaba-Like Lectin Genes from Glycine max Confers Tolerance towards Pseudomonas syringae Infection, Aphid Infestation and Salt Stress in Transgenic Arabidopsis Plants

    Directory of Open Access Journals (Sweden)

    Sofie Van Holle

    2016-10-01

    Full Text Available Plants have evolved a sophisticated immune system that allows them to recognize invading pathogens by specialized receptors. Carbohydrate-binding proteins or lectins are part of this immune system and especially the lectins that reside in the nucleocytoplasmic compartment are known to be implicated in biotic and abiotic stress responses. The class of Nictaba-like lectins (NLL groups all proteins with homology to the tobacco (Nicotiana tabacum lectin, known as a stress-inducible lectin. Here we focus on two Nictaba homologs from soybean (Glycine max, referred to as GmNLL1 and GmNLL2. Confocal laser scanning microscopy of fusion constructs with the green fluorescent protein either transiently expressed in Nicotiana benthamiana leaves or stably transformed in tobacco BY-2 suspension cells revealed a nucleocytoplasmic localization for the GmNLLs under study. RT-qPCR analysis of the transcript levels for the Nictaba-like lectins in soybean demonstrated that the genes are expressed in several tissues throughout the development of the plant. Furthermore, it was shown that salt treatment, Phytophthora sojae infection and Aphis glycines infestation trigger the expression of particular NLL genes. Stress experiments with Arabidopsis lines overexpressing the NLLs from soybean yielded an enhanced tolerance of the plant towards bacterial infection (Pseudomonas syringae, insect infestation (Myzus persicae and salinity. Our data showed a better performance of the transgenic lines compared to wild type plants, indicating that the NLLs from soybean are implicated in the stress response. These data can help to further elucidate the physiological importance of the Nictaba-like lectins from soybean, which can ultimately lead to the design of crop plants with a better tolerance to changing environmental conditions.

  3. Natural variation for responsiveness to flg22, flgII-28, and csp22 and Pseudomonas syringae pv. tomato in heirloom tomatoes.

    Directory of Open Access Journals (Sweden)

    Selvakumar Veluchamy

    Full Text Available Tomato (Solanum lycopersicum L. is susceptible to many diseases including bacterial speck caused by Pseudomonas syringae pv. tomato. Bacterial speck disease is a serious problem worldwide in tomato production areas where moist conditions and cool temperatures occur. To enhance breeding of speck resistant fresh-market tomato cultivars we identified a race 0 field isolate, NC-C3, of P. s. pv. tomato in North Carolina and used it to screen a collection of heirloom tomato lines for speck resistance in the field. We observed statistically significant variation among the heirloom tomatoes for their response to P. s. pv. tomato NC-C3 with two lines showing resistance approaching a cultivar that expresses the Pto resistance gene, although none of the heirloom lines have Pto. Using an assay that measures microbe-associated molecular pattern (MAMP-induced production of reactive oxygen species (ROS, we investigated whether the heirloom lines showed differential responsiveness to three bacterial-derived peptide MAMPs: flg22 and flgII-28 (from flagellin and csp22 (from cold shock protein. Significant differences were observed for MAMP responsiveness among the lines, although these differences did not correlate strongly with resistance or susceptibility to bacterial speck disease. The identification of natural variation for MAMP responsiveness opens up the possibility of using a genetic approach to identify the underlying loci and to facilitate breeding of cultivars with enhanced disease resistance. Towards this goal, we discovered that responsiveness to csp22 segregates as a single locus in an F2 population of tomato.

  4. Pseudomonas aeruginosa Alginate Overproduction Promotes Coexistence with Staphylococcus aureus in a Model of Cystic Fibrosis Respiratory Infection.

    Science.gov (United States)

    Limoli, Dominique H; Whitfield, Gregory B; Kitao, Tomoe; Ivey, Melissa L; Davis, Michael R; Grahl, Nora; Hogan, Deborah A; Rahme, Laurence G; Howell, P Lynne; O'Toole, George A; Goldberg, Joanna B

    2017-03-21

    While complex intra- and interspecies microbial community dynamics are apparent during chronic infections and likely alter patient health outcomes, our understanding of these interactions is currently limited. For example, Pseudomonas aeruginosa and Staphylococcus aureus are often found to coinfect the lungs of patients with cystic fibrosis (CF), yet these organisms compete under laboratory conditions. Recent observations that coinfection correlates with decreased health outcomes necessitate we develop a greater understanding of these interbacterial interactions. In this study, we tested the hypothesis that P. aeruginosa and/or S. aureus adopts phenotypes that allow coexistence during infection. We compared competitive interactions of P. aeruginosa and S. aureus isolates from mono- or coinfected CF patients employing in vitro coculture models. P. aeruginosa isolates from monoinfected patients were more competitive toward S. aureus than P. aeruginosa isolates from coinfected patients. We also observed that the least competitive P. aeruginosa isolates possessed a mucoid phenotype. Mucoidy occurs upon constitutive activation of the sigma factor AlgT/U, which regulates synthesis of the polysaccharide alginate and dozens of other secreted factors, including some previously described to kill S. aureus Here, we show that production of alginate in mucoid strains is sufficient to inhibit anti-S. aureus activity independent of activation of the AlgT regulon. Alginate reduces production of siderophores, 2-heptyl-4-hydroxyquinolone-N-oxide (HQNO), and rhamnolipids-each required for efficient killing of S. aureus These studies demonstrate alginate overproduction may be an important factor driving P. aeruginosa coinfection with S. aureusIMPORTANCE Numerous deep-sequencing studies have revealed the microbial communities present during respiratory infections in cystic fibrosis (CF) patients are diverse, complex, and dynamic. We now face the challenge of determining

  5. Alginate production affects Pseudomonas aeruginosa biofilm development and architecture, but is not essential for biofilm formation

    DEFF Research Database (Denmark)

    Stapper, A.P.; Narasimhan, G.; Oman, D.E.

    2004-01-01

    -overproducing (mucA22) and alginate-defective (algD) variants in order to discern the role of alginate in biofilm formation. These strains, PAO1, Alg(+) PAOmucA22 and Alg(-) PAOalgD, tagged with green fluorescent protein, were grown in a continuous flow cell system to characterize the developmental cycles...... of their biofilm formation using confocal laser scanning microscopy. Biofilm Image Processing (BIP) and Community Statistics (COMSTAT) software programs were used to provide quantitative measurements of the two-dimensional biofilm images. All three strains formed distinguishable biofilm architectures, indicating...... that the production of alginate is not critical for biofilm formation. Observation over a period of 5 days indicated a three-stage development pattern consisting of initiation, establishment and maturation. Furthermore, this study showed that phenotypically distinguishable biofilms can be quantitatively...

  6. A Proposal for a Genome Similarity-Based Taxonomy for Plant-Pathogenic Bacteria that Is Sufficiently Precise to Reflect Phylogeny, Host Range, and Outbreak Affiliation Applied to Pseudomonas syringae sensu lato as a Proof of Concept.

    Science.gov (United States)

    Vinatzer, Boris A; Weisberg, Alexandra J; Monteil, Caroline L; Elmarakeby, Haitham A; Sheppard, Samuel K; Heath, Lenwood S

    2017-01-01

    Taxonomy of plant pathogenic bacteria is challenging because pathogens of different crops often belong to the same named species but current taxonomy does not provide names for bacteria below the subspecies level. The introduction of the host range-based pathovar system in the 1980s provided a temporary solution to this problem but has many limitations. The affordability of genome sequencing now provides the opportunity for developing a new genome-based taxonomic framework. We already proposed to name individual bacterial isolates based on pairwise genome similarity. Here, we expand on this idea and propose to use genome similarity-based codes, which we now call life identification numbers (LINs), to describe and name bacterial taxa. Using 93 genomes of Pseudomonas syringae sensu lato, LINs were compared with a P. syringae genome tree whereby the assigned LINs were found to be informative of a majority of phylogenetic relationships. LINs also reflected host range and outbreak association for strains of P. syringae pathovar actinidiae, a pathovar for which many genome sequences are available. We conclude that LINs could provide the basis for a new taxonomic framework to address the shortcomings of the current pathovar system and to complement the current taxonomic system of bacteria in general.

  7. The hrpZ gene of Pseudomonas syringae pv. phaseolicola enhances resistance to rhizomania disease in transgenic Nicotiana benthamiana and sugar beet.

    Directory of Open Access Journals (Sweden)

    Ourania I Pavli

    Full Text Available To explore possible sources of transgenic resistance to the rhizomania-causing Beet necrotic yellow vein virus (BNYVV, Nicotiana benthamiana plants were constructed to express the harpin of Pseudomonas syringae pv. phaseolicola (HrpZ(Psph. The HrpZ protein was expressed as an N-terminal fusion to the PR1 signal peptide (SP/HrpZ to direct harpin accumulation to the plant apoplast. Transgene integration was verified by mPCR in all primary transformants (T0, while immunoblot analysis confirmed that the protein HrpZ(Psph was produced and the signal peptide was properly processed. Neither T0 plants nor selfed progeny (T1 showed macroscopically visible necrosis or any other macroscopic phenotypes. However, plants expressing the SP/HrpZ(Psph showed increased vigor and grew faster in comparison with non-transgenic control plants. Transgenic resistance was assessed after challenge inoculation with BNYVV on T1 progeny by scoring of disease symptoms and by DAS-ELISA at 20 and 30 dpi. Transgenic and control lines showed significant differences in terms of the number of plants that became infected, the timing of infection and the disease symptoms displayed. Plants expressing the SP/HrpZ(Psph developed localized leaf necrosis in the infection area and had enhanced resistance upon challenge with BNYVV. In order to evaluate the SP/HrpZ-based resistance in the sugar beet host, A. rhizogenes-mediated root transformation was exploited as a transgene expression platform. Upon BNYVV inoculation, transgenic sugar beet hairy roots showed high level of BNYVV resistance. In contrast, the aerial non-transgenic parts of the same seedlings had virus titers that were comparable to those of the seedlings that were untransformed or transformed with wild type R1000 cells. These findings indicate that the transgenically expressed SP/HrpZ protein results in enhanced rhizomania resistance both in a model plant and sugar beet, the natural host of BNYVV. Possible molecular

  8. Conjugation of alginate to a synthetic peptide containing T- and B-cell epitopes as an induction for protective immunity against Pseudomonas aeruginosa.

    Science.gov (United States)

    Farjaha, Ali; Owlia, Parviz; Siadat, Seyed Davar; Mousavi, Seyed Fazlollah; Shafieeardestani, Mehdi

    2014-12-20

    Pseudomonas aeruginosa is a major cause of respiratory tract infections worldwide, particularly in hospitalized patients with immunosuppressed conditions and cystic fibrosis (CF). Excessive use of antibiotics means that there is currently resistance among bacterial infections to many drugs. Vaccination is a strategy that can reduce mortality and morbidity rates in infections such as those caused by P. aeruginosa. Alginate has a critical role in such infections and affects pathogenicity of the bacterium. In this work, the bioinformatics approach was used to design and synthesis a carrier peptide (ERRANAVRDVLVNEY), derived from OMP F P. aeruginosa. This peptide contained both B- and T-cell epitopes based on prediction models. Conjugation of alginate to carrier peptide was performed and then analyzed by Fourier transform infrared spectroscopy (FTIR). Results of this study on mice showed that the conjugate elicited anti-alginate-IgG that were not detected after immunization with naive alginate. The effect of the antibodies to alginate conjugate was evaluated as highly opsonic and showed moderate to high-level killing activity against two mucoid strains. IgG1 was also dominant among IgG subclasses. Mice vaccinated with the conjugate vaccine survived lethal challenges (2 ×LD 50). Furthermore, using an acute pneumonia model of infection in mice, determined that levels of P. aeruginosa in mice were significantly reduced in the vaccinated group. Thus, tests confirmed ability of this conjugate to elicit protective and opsonophagocytic antibodies that candidate our vaccine for further studies.

  9. Bactérias endofíticas no controle e inibição in vitro de Pseudomonas syringae pv tomato, agente da pinta bacteriana do tomateiro Control with endophytic bacteria and in vitro inhibition of Pseudomonas syringae pv tomato, agent of bacterial speck of tomato

    Directory of Open Access Journals (Sweden)

    Juliana Resende Campos Silva

    2008-08-01

    Full Text Available Para avaliar o potencial de 53 isolados de bactérias endofíticas no controle da pinta bacteriana do tomateiro (Lycopersicum esculentum Mill., realizaram-se seleções massais em casa-de-vegetação e a seguir foi avaliado, in vitro, o antagonismo desses isolados sobre a bactéria desafiante Pseudomonas syringae pv. tomato (Pst. A inoculação das bactérias endofíticas foi feita por microbiolização das sementes de tomate cv. Santa Clara e da desafiante (Pst por pulverização. Aos 7, 14 e 21 dias após a inoculação da Pst, foram realizadas as avaliações da severidade da pinta bacteriana, bem como da altura das plantas. As espécies e os isolados bacterianos mais eficazes na redução da severidade da pinta bacteriana foram: Acinetobacter johnsonii (isolado 10, Bacillus pumilus (isolados 3, 12, 20, 39, 51, Paenibacillus macerans (isolados 37 e 47, PIM 11, Bacillus sphaericus (isolado 45, B. amyloliquefaciens (isolado 50, TOM 2, TOM 24 e Staphylococcus aureus (isolado 18. Mais de 50% dos isolados eficazes na redução da severidade foram da espécie Bacillus pumilus. Das espécies endofíticas mais eficazes na redução da severidade da pinta bacteriana, Bacillus pumilus e B. amyloliquefaciens inibiram também o crescimento da Pst in vitro.Vários dos isolados promoveram também o crescimento das plantas.To asses the potential of fifty three isolates of endophytic bacteria on the control of Pseudomonas syringae pv. tomato (Pst in tomato (Lycopersicum esculentum Mill., several screening were done in greenhouse followed by in vitro studies on antagonism of those isolates to Pst. The inoculation of endophytic bacteria was done by microbiolization of tomato cv Santa Clara seeds. The challenging bacterium (Pst inoculation was done by spraying. At 7, 14 and 21 days after Pst inoculation the assessment of bacterial speck severity was done, and height of plants was also measured. The most efficient endophytic species and isolates in reducing

  10. Impact of higher alginate expression on deposition of Pseudomonas aeruginosa in radial stagnation point flow and reverse osmosis systems.

    Science.gov (United States)

    Herzberg, Moshe; Rezene, Tesfalem Zere; Ziemba, Christopher; Gillor, Osnat; Mathee, Kalai

    2009-10-01

    Extracellular polymeric substances (EPS) have major impact on biofouling of reverse osmosis (RO) membranes. On one hand, EPS can reduce membrane permeability and on the other, EPS production by the primary colonizers may influence their deposition and attachment rate and subsequently affect the biofouling propensity of the membrane. The role of bacterial exopolysaccharides in bacterial deposition followed by the biofouling potential of an RO membrane was evaluated using an alginate overproducing (mucoid) Pseudomonas aeruginosa. The mucoid P. aeruginosa PAOmucA22 was compared with its isogenic nonmucoid prototypic parent PAO1 microscopically in a radial stagnation point flow (RSPF) system for their bacterial deposition characteristics. Then, biofouling potential of PAO1 and PAOmucA22 was determined in a crossflow rectangular plate-and-frame membrane cell, in which the strains were cultivated on a thin-film composite, polyamide, flat RO membrane coupon (LFC-1) under laminar flow conditions. In the RSPF system, the observed deposition rate of the mucoid strain was between 5- and 10-fold lower than of the wild type using either synthetic wastewater medium (with ionic strength of 14.7 mM and pH 7.4) or 15 mM KCl solution (pH of 6.2). The slower deposition rate of the mucoid strain is explained by 5- to 25-fold increased hydrophilicity of the mucoid strain as compared to the isogenic wild type, PAO1. Corroborating with these results, a significant delay in the onset of biofouling of the RO membrane was observed when the mucoid strain was used as the membrane colonizer, in which the observed time for the induced permeate flux decline was delayed (ca. 2-fold). In conclusion, the lower initial cell attachment of the mucoid strain decelerated biofouling of the RO membrane. Bacterial deposition and attachment is a critical step in biofilm formation and governed by intimate interactions between outer membrane proteins of the bacteria and the surface. Shielding these

  11. The role of fluoroquinolones in the promotion of alginate synthesis and antibiotic resistance in Pseudomonas aeruginosa.

    Science.gov (United States)

    Piña, S E; Mattingly, S J

    1997-08-01

    Treatment of nonmucoid Pseudomonas aeruginosa with gyrase inhibitors such as ciprofloxacin, norfloxacin, and ofloxacin, which target the A subunit of topoisomerase II, resulted in 100% conversion to the mucoid phenotype. However, antibiotics that partially inhibited growth and macromolecular synthesis (DNA, RNA, protein, or peptidoglycan) of nonmucoid isolates in a gluconate-limited chemostat culture system did not promote conversion to mucoid subpopulations. An increase in resistance was observed in populations that expressed the mucoid phenotype. Both mucoid conversion and antibiotic resistance were completely reversible when ciprofloxacin pressure was withdrawn, but only partially reversible by the removal of norfloxacin and ofloxacin. Thus, these experiments indicate that in the presence of some fluoroquinolones, a conditional response resulting in mucoid conversion and antibiotic resistance may occur.

  12. Gene-scrambling mutagenesis: generation and analysis of insertional mutations in the alginate regulatory region of Pseudomonas aeruginosa.

    Science.gov (United States)

    Mohr, C D; Deretic, V

    1990-11-01

    A novel method for random mutagenesis of targeted chromosomal regions in Pseudomona aeruginosa was developed. This method can be used with a cloned DNA fragment of indefinite size that contains a putative gene of interest. Cloned DNA is digested to produce small fragments that are then randomly reassembled into long DNA inserts by using cosmid vectors and lambda packaging reaction. This DNA is then transferred into P. aeruginosa and forced into the chromosome via homologous recombination, producing in a single step a random set of insertional mutants along a desired region of the chromosome. Application of this method to extend the analysis of the alginate regulatory region, using a cloned 6.2-kb fragment with the algR gene and the previously uncharacterized flanking regions, produced several insertional mutations. One mutation was obtained in algR, a known transcriptional regulatory of mucoidy in P. aeruginosa. The null mutation of algR was generated in a mucoid derivative of the standard genetic strain PAO responsive to different environmental factors. This mutation was used to demonstrate that the algR gene product was not essential for the regulation of its promoters. Additional insertions were obtained in regions downstream and upstream of algR. A mutation that did not affect mucoidy was generated in a gene located 1 kb upstream of algR. This gene was transcribed in the direction opposite that of algR transcription and encoded a polypeptide of 47 kDa. Partial nucleotide sequence analysis revealed strong homology of its predicted gene product with the human and yeast argininosuccinate lyases. An insertion downstream of algR produced a strain showing reduced induction of mucoidy in response to growth on nitrate as the nitrogen source.

  13. Pseudomonas aeruginosa biofilms exposed to imipenem exhibit changes in global gene expression and beta-lactamase and alginate production

    DEFF Research Database (Denmark)

    Bagge, Niels; Schuster, Martin; Hentzer, Morten

    2004-01-01

    . As expected, the most strongly induced gene was ampC, which codes for chromosomal beta-lactamase. We also found that genes coding for alginate biosynthesis were induced by exposure to imipenem. Alginate production is correlated to the development of impaired lung function, and P. aeruginosa strains isolated...... from chronically colonized lungs of CF patients are nearly always mucoid due to the overproduction of alginate. Exposure to subinhibitory concentrations of imipenem caused structural changes in the biofilm, e.g., an increased biofilm volume. Increased levels of alginate production may be an unintended...

  14. Pseudomnas syringae – a Pathogen of Fruit Trees in Serbia

    Directory of Open Access Journals (Sweden)

    Veljko Gavrilović

    2009-01-01

    Full Text Available Data about symptomatology, pathogenicity and bacteriological characteristics of Pseudomonas syringae, and PCR methods for fast and reliable detection of the pathogen are given in this paper. P. syringae has been experimentaly proved as a pathogen of pear, apple, apricot, plum cherry, and raspberry, and pathogen strains have also been isolated from necrotic peach buds. Two pathogen varieties, syringae and morsprunorum, were found in our research in Serbia, the former being dominant on fruit trees.The most reliable method for detection of this bacteria is PCR, using BOX and REP primers. This method has also revealed significant differences among the strains originating from fruit trees in Serbia. Thus, it was proved that the population of P. syringae in Serbia is heterogeneous, which is very important for future epidemiologocal studies. Control of this pathogen includes mechanical, cultural and chemical measures, but integrated approach is very important for sustainable control.

  15. Screening for resistance against Pseudomonas syringae in rice-FOX Arabidopsis lines identified a putative receptor-like cytoplasmic kinase gene that confers resistance to major bacterial and fungal pathogens in Arabidopsis and rice.

    Science.gov (United States)

    Dubouzet, Joseph G; Maeda, Satoru; Sugano, Shoji; Ohtake, Miki; Hayashi, Nagao; Ichikawa, Takanari; Kondou, Youichi; Kuroda, Hirofumi; Horii, Yoko; Matsui, Minami; Oda, Kenji; Hirochika, Hirohiko; Takatsuji, Hiroshi; Mori, Masaki

    2011-05-01

    Approximately 20,000 of the rice-FOX Arabidopsis transgenic lines, which overexpress 13,000 rice full-length cDNAs at random in Arabidopsis, were screened for bacterial disease resistance by dip inoculation with Pseudomonas syringae pv. tomato DC3000 (Pst DC3000). The identities of the overexpressed genes were determined in 72 lines that showed consistent resistance after three independent screens. Pst DC3000 resistance was verified for 19 genes by characterizing other independent Arabidopsis lines for the same genes in the original rice-FOX hunting population or obtained by reintroducing the genes into ecotype Columbia by floral dip transformation. Thirteen lines of these 72 selections were also resistant to the fungal pathogen Colletotrichum higginsianum. Eight genes that conferred resistance to Pst DC3000 in Arabidopsis have been introduced into rice for overexpression, and transformants were evaluated for resistance to the rice bacterial pathogen, Xanthomonas oryzae pv. oryzae. One of the transgenic rice lines was highly resistant to Xanthomonas oryzae pv. oryzae. Interestingly, this line also showed remarkably high resistance to Magnaporthe grisea, the fungal pathogen causing rice blast, which is the most devastating rice disease in many countries. The causal rice gene, encoding a putative receptor-like cytoplasmic kinase, was therefore designated as BROAD-SPECTRUM RESISTANCE 1. Our results demonstrate the utility of the rice-FOX Arabidopsis lines as a tool for the identification of genes involved in plant defence and suggest the presence of a defence mechanism common between monocots and dicots. © 2010 The Authors. Plant Biotechnology Journal © 2010 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  16. Characterization of quorum sensing-controlled transcriptional regulator MarR and Rieske (2Fe-2S) cluster-containing protein (Orf5), which are involved in resistance to environmental stresses in Pseudomonas syringae pv. tabaci 6605.

    Science.gov (United States)

    Taguchi, Fumiko; Inoue, Yuko; Suzuki, Tomoko; Inagaki, Yoshishige; Yamamoto, Mikihiro; Toyoda, Kazuhiro; Noutoshi, Yoshiteru; Shiraishi, Tomonori; Ichinose, Yuki

    2015-05-01

    Pseudomonas syringae pv. tabaci 6605 (Pta6605) produces acyl homoserine lactones (AHLs), quorum sensing (QS) molecules that are indispensable for virulence in host tobacco infection. Genome-wide transcriptional profiling of several QS-defective mutants revealed that the expression of the genes encoding the MarR family transcriptional regulator (MarR) and a Rieske 2Fe-2S cluster-containing protein (Orf5) located adjacent to psyI, a gene encoding AHL synthetase, are significantly repressed. Exogenous application of AHL recovered the expression of both marR and orf5 genes in the ΔpsyI mutant, indicating that AHL positively regulates the expression of these genes. To investigate the role of these genes in the virulence of Pta6605, ΔmarR and Δorf5 mutants were generated. Both mutants showed decreased swimming and swarming motilities, decreased survival ability under oxidative and nitrosative stresses and, consequently, reduced virulence on host tobacco plants. Transmission electron micrographs showed that the structure of the cell membranes of ΔmarR and Δorf5 mutants was severely damaged. Furthermore, not only the ratio of dead cells, but also the amount of flagella, extracellular DNA and protein released into the culture supernatant, was significantly increased in both mutants, indicating that the disruption of marR and orf5 genes might induce structural changes in the membrane and cell lysis. Because both mutants showed partly similar expression profiles, both gene products might be involved in the same regulatory cascades that are required for QS-dependent survival under environmentally stressed conditions. © 2014 BSPP AND JOHN WILEY & SONS LTD.

  17. TaNAC1 acts as a negative regulator of stripe rust resistance in wheat, enhances susceptibility to Pseudomonas syringae, and promotes lateral root development in transgenic Arabidopsis thaliana.

    Science.gov (United States)

    Wang, Fengtao; Lin, Ruiming; Feng, Jing; Chen, Wanquan; Qiu, Dewen; Xu, Shichang

    2015-01-01

    Plant-specific NAC transcription factors (TFs) constitute a large family and play important roles in regulating plant developmental processes and responses to environmental stresses, but only some of them have been investigated for effects on disease reaction in cereal crops. Virus-induced gene silencing (VIGS) is an effective strategy for rapid functional analysis of genes in plant tissues. In this study, TaNAC1, encoding a new member of the NAC1 subgroup, was cloned from bread wheat and characterized. It is a TF localized in the cell nucleus, and contains an activation domain in its C-terminal. TaNAC1 was strongly expressed in wheat roots and was involved in responses to infection by the obligate pathogen Puccinia striiformis f. sp. tritici and defense-related hormone treatments such as salicylic acid (SA), methyl jasmonate, and ethylene. Knockdown of TaNAC1 with barley stripe mosaic virus-induced gene silencing (BSMV-VIGS) enhanced stripe rust resistance. TaNAC1-overexpression in Arabidopsis thaliana plants gave enhanced susceptibility, attenuated systemic-acquired resistance to Pseudomonas syringae DC3000, and promoted lateral root development. Jasmonic acid-signaling pathway genes PDF1.2 and ORA59 were constitutively expressed in transgenic plants. TaNAC1 overexpression suppressed the expression levels of resistance-related genes PR1 and PR2 involved in SA signaling and AtWRKY70, which functions as a connection node between the JA- and SA-signaling pathways. Collectively, TaNAC1 is a novel NAC member of the NAC1 subgroup, negatively regulates plant disease resistance, and may modulate plant JA- and SA-signaling defense cascades.

  18. TaNAC1 acts as a negative regulator of stripe rust resistance in wheat, enhances susceptibility to Pseudomonas syringae, and promotes lateral root development in transgenic Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Fengtao eWang

    2015-02-01

    Full Text Available Plant-specific NAC transcription factors constitute a large family and play important roles in regulating plant developmental processes and responses to environmental stresses, but only some of them have been investigated for effects on disease reaction in cereal crops. Virus-induced gene silencing (VIGS is an effective strategy for rapid functional analysis of genes in plant tissues. In this study, TaNAC1, encoding a new member of the NAC1 subgroup, was cloned from bread wheat and characterized. It is a transcription factor localized in the cell nucleus, and contains an activation domain in its C-terminal. TaNAC1 was strongly expressed in wheat roots and was involved in responses to infection by the obligate pathogen Puccinia striiformis f. sp. tritici and defense-related hormone treatments such as salicylic acid, methyl jasmonate and ethylene. Knockdown of TaNAC1 with barley stripe mosaic virus-induced gene silencing (BSMV-VIGS enhanced stripe rust resistance. TaNAC1-overexpression in Arabidopsis plants gave enhanced susceptibility, attenuated systemic-acquired resistance to Pseudomonas syringae DC3000, and promoted lateral root development. Jasmonic acid-signaling pathway genes PDF1.2 and ORA59 were constitutively expressed in transgenic plants. TaNAC1 overexpression suppressed the expression levels of resistance-related genes PR1 and PR2 involved in SA signaling and AtWRKY70, which functions as a connection node between the JA- and SA-signaling pathways. Collectively, TaNAC1 is a novel NAC member of the NAC1 subgroup, negatively regulates plant disease resistance, and may modulate plant JA- and SA-signaling defense cascades.

  19. Imposed glutathione-mediated redox switch modulates the tobacco wound-induced protein kinase and salicylic acid-induced protein kinase activation state and impacts on defence against Pseudomonas syringae

    Science.gov (United States)

    Matern, Sanja; Peskan-Berghoefer, Tatjana; Gromes, Roland; Kiesel, Rebecca Vazquez; Rausch, Thomas

    2015-01-01

    The role of the redox-active tripeptide glutathione in plant defence against pathogens has been studied extensively; however, the impact of changes in cellular glutathione redox potential on signalling processes during defence reactions has remained elusive. This study explored the impact of elevated glutathione content on the cytosolic redox potential and on early defence signalling at the level of mitogen-activated protein kinases (MAPKs), as well as on subsequent defence reactions, including changes in salicylic acid (SA) content, pathogenesis-related gene expression, callose depositions, and the hypersensitive response. Wild-type (WT) Nicotiana tabacum L. and transgenic high-glutathione lines (HGL) were transformed with the cytosol-targeted sensor GRX1-roGFP2 to monitor the cytosolic redox state. Surprisingly, HGLs displayed an oxidative shift in their cytosolic redox potential and an activation of the tobacco MAPKs wound-induced protein kinase (WIPK) and SA-induced protein kinase (SIPK). This activation occurred in the absence of any change in free SA content, but was accompanied by constitutively increased expression of several defence genes. Similarly, rapid activation of MAPKs could be induced in WT tobacco by exposure to either reduced or oxidized glutathione. When HGL plants were challenged with adapted or non-adapted Pseudomonas syringae pathovars, the cytosolic redox shift was further amplified and the defence response was markedly increased, showing a priming effect for SA and callose; however, the initial and transient hyperactivation of MAPK signalling was attenuated in HGLs. The results suggest that, in tobacco, MAPK and SA signalling may operate independently, both possibly being modulated by the glutathione redox potential. Possible mechanisms for redox-mediated MAPK activation are discussed. PMID:25628332

  20. Simultaneous interaction of Arabidopsis thaliana with Bradyrhizobium Sp. strain ORS278 and Pseudomonas syringae pv. tomato DC3000 leads to complex transcriptome changes.

    Science.gov (United States)

    Cartieaux, Fabienne; Contesto, Céline; Gallou, Adrien; Desbrosses, Guilhem; Kopka, Joachim; Taconnat, Ludivine; Renou, Jean-Pierre; Touraine, Bruno

    2008-02-01

    Induced systemic resistance (ISR) is a process elicited by telluric microbes, referred to as plant growth-promoting rhizobacteria (PGPR), that protect the host plant against pathogen attacks. ISR has been defined from studies using Pseudomonas strains as the biocontrol agent. Here, we show for the first time that a photosynthetic Bradyrhizobium sp. strain, ORS278, also exhibits the ability to promote ISR in Arabidopsis thaliana, indicating that the ISR effect may be a widespread ability. To investigate the molecular bases of this response, we performed a transcriptome analysis designed to reveal the changes in gene expression induced by the PGPR, the pathogen alone, or by both. The results confirm the priming pattern of ISR described previously, meaning that a set of genes, of which the majority was predicted to be influenced by jasmonic acid or ethylene, was induced upon pathogen attack when plants were previously colonized by PGPR. The analysis and interpretation of transcriptome data revealed that 12-oxo-phytodienoic acid, an intermediate of the jasmonic acid biosynthesis pathway, is likely to be an actor in the signaling cascade involved in ISR. In addition, we show that the PGPR counterbalanced the pathogen-induced changes in expression of a series of genes.

  1. Biodegradation of tetrahydrofuran by Pseudomonas oleovorans DT4 immobilized in calcium alginate beads impregnated with activated carbon fiber: mass transfer effect and continuous treatment.

    Science.gov (United States)

    Chen, Dong-Zhi; Fang, Jun-Yi; Shao, Qian; Ye, Jie-Xu; Ouyang, Du-Juan; Chen, Jian-Meng

    2013-07-01

    A novel entrapment matrix, calcium alginate (CA) coupled with activated carbon fiber (ACF), was prepared to immobilize Pseudomonas oleovorans DT4 for degrading tetrahydrofuran (THF). The addition of 1.5% ACF increased the adsorption capacity of the immobilized bead, thus resulting in an enhanced average removal rate of 30.3mg/(Lh). The synergism between adsorption and biodegradation was observed in the hybrid CA-ACF beads instead of in the system comprising CA beads and freely suspended ACF. The effective diffusion coefficient of the CA-ACF bead was not significantly affected by bead size, but the bead's value of 1.14×10(-6)cm(2)/s (for the bead diameter of 0.4 cm) was larger than that of the CA bead by almost one order of magnitude based on the intraparticle diffusion-reaction kinetics analysis. Continuous treatment of the THF-containing wastewater was succeeded by CA-ACF immobilized cells in a packed-bed reactor for 54 d with a >90% removal efficiency. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Virus-induced Gene Silencing-based Functional Analyses Revealed the Involvement of Several Putative Trehalose-6-Phosphate Synthase/Phosphatase Genes in Disease Resistance against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000 in Tomato

    Directory of Open Access Journals (Sweden)

    Huijuan Zhang

    2016-08-01

    Full Text Available Trehalose and its metabolism have been demonstrated to play important roles in control of plant growth, development and stress responses. However, direct genetic evidence supporting the functions of trehalose and its metabolism in defense response against pathogens is lacking. In the present study, genome-wide characterization of putative trehalose-related genes identified 11 SlTPSs for trehalose-6-phosphate synthase, 8 SlTPPs for trehalose-6-phosphate phosphatase and one SlTRE1 for trehalase in tomato genome. Nine SlTPSs, 4 SlTPPs and SlTRE1 were selected for functional analyses to explore their involvement in tomato disease resistance. Some selected SlTPSs, SlTPPs and SlTRE1 responded with distinct expression induction patterns to Botrytis cinerea and Pseudomonas syringae pv. tomato (Pst DC3000 as well as to defense signaling hormones (e.g. salicylic acid, jasmonic acid and a precursor of ethylene. Virus-induced gene silencing-mediated silencing of SlTPS3, SlTPS4 or SlTPS7 led to deregulation of ROS accumulation and attenuated the expression of defense-related genes upon pathogen infection and thus deteriorated the resistance against B. cinerea or Pst DC3000. By contrast, silencing of SlTPS5 or SlTPP2 led to an increased expression of the defense-related genes upon pathogen infection and conferred an increased resistance against Pst DC3000. Silencing of SlTPS3, SlTPS4, SlTPS5, SlTPS7 or SlTPP2 affected trehalose level in tomato plants with or without infection of B. cinerea or Pst DC3000. These results demonstrate that SlTPS3, SlTPS4, SlTPS5, SlTPS7 and SlTPP2 play roles in resistance against B. cinerea and Pst DC3000, implying the importance of trehalose and tis metabolism in regulation of defense response against pathogens in tomato.

  3. Modulation of behaviour and virulence of a high alginate expressing Pseudomonas aeruginosa strain from cystic fibrosis by oral commensal bacterium Streptococcus anginosus.

    Directory of Open Access Journals (Sweden)

    Richard D Waite

    Full Text Available Cystic fibrosis (CF airways harbour complex and dynamic polymicrobial communities that include many oral bacteria. Despite increased knowledge of CF airway microbiomes the interaction between established CF pathogens and other resident microbes and resulting impact on disease progression is poorly understood. Previous studies have demonstrated that oral commensal streptococci of the Anginosus group (AGS can establish chronic pulmonary infections and become numerically dominant in CF sputa indicating that they play an important role in CF microbiome dynamics. In this study a strain of Pseudomonas aeruginosa (DWW2 of the mucoid alginate overproducing phenotype associated with chronic CF airway infection and a strain of the oral commensal AGS species Streptococcus anginosus (3a from CF sputum were investigated for their ability to co-exist and their responses to biofilm co-culture. Bacteria in biofilms were quantified, pyocyanin expression by DWW2 was measured and the effect of AGS strain 3a on reversion of DWW2 to a non-mucoidal phenotype investigated. The virulence of DWW2, 3a and colony variant phenotypes of DWW2 in mono- and co-culture were compared in a Galleria mellonella infection model. Co-culture biofilms were formed in normoxic, hypercapnic (10% CO2 and anoxic atmospheres with the streptococcus increasing in number in co-culture, indicating that these bacteria would be able to co-exist and thrive within the heterogeneous microenvironments of the CF airway. The streptococcus caused increased pyocyanin expression by DWW2 and colony variants by stimulating reversion of the mucoid phenotype to the high pyocyanin expressing non-mucoid phenotype. The latter was highly virulent in the infection model with greater virulence when in co-culture with the streptococcus. The results of this study demonstrate that the oral commensal S. anginosus benefits from interaction with P. aeruginosa of the CF associated mucoid phenotype and modulates the

  4. Kinetics studies of p-cresol biodegradation by using Pseudomonas putida in batch reactor and in continuous bioreactor packed with calcium alginate beads.

    Science.gov (United States)

    Mathur, A K; Bala, Shashi; Majumder, C B; Sarkar, S

    2010-01-01

    Present study deals with the biodegradation of p-cresol by using Pseudomonas putida in a batch reactor and a continuous bioreactor packed with calcium alginate beads. The maximum specific growth rate of 0.8121 h(-1) was obtained at 200 mg L(-1) concentration of p-cresol in batch reactor. The maximum p-cresol degradation rate was obtained 6.598 mg L(-1) h(-1) at S(o)=200 mg L(-1) and 62.8 mg L(-1) h(-1) at S(o)=500 mg L(-1) for batch reactor and a continuous bioreactor, respectively. The p-cresol degradation rate of continuous bioreactor was 9 to 10-fold higher than those of the batch reactor. It shows that the continuous bioreactor could tolerate a higher concentration of p-cresol. A Haldane model was also used for p-cresol inhibition in batch reactor and a modified equation similar to Haldane model for continuous bioreactor. The Haldane parameters were obtained as µ(max) 0.3398 h(-1), K(s) 110.9574 mg L(-1), and K(I) 497.6169 mg L(-1) in batch reactor. The parameters used in continuous bioreactor were obtained as D(max) 91.801 mg L(-1) h(-1), K(s) 131.292 mg L(-1), and K(I) 1217.7 mg L(-1). The value K(I) of continuous bioreactor is approximately 2.5 times higher than the batch reactor. Higher K(I) value of continuous bioreactor indicates P. putida can grow at high range of p-cresol concentration. The ability of tolerance of higher p-cresol concentrations may be one reason for biofilm attachment on the packed bed in the continuous operation.

  5. Colony morphology and transcriptome profiling of Pseudomonas putida KT2440 and its mutants deficient in alginate or all EPS synthesis under controlled matric potentials

    DEFF Research Database (Denmark)

    Gülez, Gamze; Altintas, Ali; Fazli, Mustafa

    2014-01-01

    of water limitation. In addition to alginate, P. putida is capable of producing cellulose (bcs), putida exopolysaccharide a (pea), and putida exopolysaccharide b (peb). However, unlike alginate, not much is known about their roles under water limitation. Hence, in this study we examined the role...... active to maintain homeostasis. To test our hypothesis, we investigated colony morphologies and whole genome transcriptomes of P. putida KT2440 wild type and its mutants deficient in synthesis of either alginate or all known EPS. Overall our results support that alginate is an important exopolysaccharide...

  6. Les traits d'histoire de vie de la bactérie phytopathogène et glaçogène Pseudomonas syringae: un lien entre l'agriculture et les processus atmosphériques de la Terre

    OpenAIRE

    Morris, Cindy E.

    2014-01-01

    La bactérie ubiquiste Pseudomonas syringae a la capacité assez unique de rompre la surfusion d’eau à des températures avoisinant 0°C. Cette capacité lui permet être acteur dans le changement de phase d’eau et de participer au cycle d’eau. A travers sa présence dans l’atmosphère en tant qu’aérosol provenant des surfaces des feuilles, elle entre en contact avec les gouttes d’eau dans les nuages où elle déclenche la prise en glace nécessaire pour la formation des précipitations. Piégé dans les ...

  7. Characteristics of Bacterial Strains from Pseudomonas Genera Isolated from Diseased Plum Trees

    Directory of Open Access Journals (Sweden)

    Veljko Gavrilović

    2008-01-01

    Full Text Available Characteristics of Pseudomonas syringae strains isolated from diseased plum trees are presented is this paper. Based on pathogenic, biochemical and physiological characteristics, isolated starins were divided into two groups: First group of strains, isolated from diseased plum branches with symptoms of suden decay, was simillar to Pseudomonas syringae pv. syringae; second group of strains, isolated from necrotic flower buds on plum trees, exhibited characteristics simillar to Pseudomonas syringae pv. morsprunorum. In addition, phytopathogenic fungi belonging to genera Phomopsis, Botryosphaeria and Leucostoma, were also isolated from diseased plum trees. Further study of these pathogens and their role in the epidemiology of suden plum trees decay is in progress.

  8. Pseudomonas aeruginosa aggregate formation in an alginate bead model system exhibits In Vivo-like characteristics

    DEFF Research Database (Denmark)

    Sønderholm, Majken; Kragh, Kasper Nørskov; Koren, Klaus

    2017-01-01

    and reached anoxia ∼100 μm below the alginate bead surface. This gradient was relieved in beads supplemented with NO3− as an alternative electron acceptor allowing for deeper growth into the beads. A comparison of gene expression profiles between planktonic and alginate-encapsulated P. aeruginosa confirmed...... that the bacteria experienced hypoxic and anoxic growth conditions. Furthermore, alginate-encapsulated P. aeruginosa exhibited a lower respiration rate than the planktonic counterpart and showed a high tolerance toward antibiotics. The inoculation and growth of P. aeruginosa in alginate beads represent a simple...... and flexible in vivo-like biofilm model system, wherein bacterial growth exhibits central features of in vivo biofilms. This was observed by the formation of small cell aggregates in a secondary matrix with O2-limited growth, which was alleviated by the addition of NO3− as an alternative electron acceptor...

  9. Diversity of small RNAs expressed in Pseudomonas species

    DEFF Research Database (Denmark)

    Gomez-Lozano, Mara; Marvig, Rasmus Lykke; Molina-Santiago, Carlos

    2015-01-01

    RNA sequencing (RNA-seq) has revealed several hundreds of previously undetected small RNAs (sRNAs) in all bacterial species investigated, including strains of Pseudomonas aeruginosa, Pseudomonas putida and Pseudomonas syringae. Nonetheless, only little is known about the extent of conservation of...

  10. Enhanced symbiotic nitrogen fixation with P. syringae pv tabaci

    Energy Technology Data Exchange (ETDEWEB)

    Langston-Unkefer, P.J.; Knight, T.J. (Los Alamos National Lab., NM (USA) New Mexico State Univ., Las Cruces (USA)); Sengupta-Gopalan, C. (New Mexico State Univ., Las Cruces (USA))

    1989-04-01

    Infestation of legumes such as alfalfa and soybeans with the plant pathogen Pseudomonas syringae pv. tabaci is accompanied by increased plant growth, nodulation, overall nitrogen fixation, and total assimilated nitrogen. These effects are observed only in plants infested with Tox{sup +} pathogen; the toxin is tabtoxinine-{beta}-lactam, an active site-directed irreversible inhibitor of glutamine synthetase. The key to the legumes survival of this treatment is the insensitivity of the nodule-specific form of glutamine synthetase to the toxin. As expected, significant changes are observed in ammonia assimilation in these plants. The biochemical and molecular biological consequences of this treatment are being investigated.

  11. Comparative analysis of metabolic networks provides insight into the evolution of plant pathogenic and nonpathogenic lifestyles in Pseudomonas.

    Science.gov (United States)

    Mithani, Aziz; Hein, Jotun; Preston, Gail M

    2011-01-01

    Plant pathogenic pseudomonads such as Pseudomonas syringae colonize plant surfaces and tissues and have been reported to be nutritionally specialized relative to nonpathogenic pseudomonads. We performed comparative analyses of metabolic networks reconstructed from genome sequence data in order to investigate the hypothesis that P. syringae has evolved to be metabolically specialized for a plant pathogenic lifestyle. We used the metabolic network comparison tool Rahnuma and complementary bioinformatic analyses to compare the distribution of 1,299 metabolic reactions across nine genome-sequenced strains of Pseudomonas, including three strains of P. syringae. The two pathogenic Pseudomonas species analyzed, P. syringae and the opportunistic human pathogen P. aeruginosa, each displayed a high level of intraspecies metabolic similarity compared with nonpathogenic Pseudomonas. The three P. syringae strains lacked a significant number of reactions predicted to be present in all other Pseudomonas strains analyzed, which is consistent with the hypothesis that P. syringae is adapted for growth in a nutritionally constrained environment. Pathway predictions demonstrated that some of the differences detected in metabolic network comparisons could account for differences in amino acid assimilation ability reported in experimental analyses. Parsimony analysis and reaction neighborhood approaches were used to model the evolution of metabolic networks and amino acid assimilation pathways in pseudomonads. Both methods supported a model of Pseudomonas evolution in which the common ancestor of P. syringae had experienced a significant number of deletion events relative to other nonpathogenic pseudomonads. We discuss how the characteristic metabolic features of P. syringae could reflect adaptation to a pathogenic lifestyle.

  12. Alginate oligosaccharides

    DEFF Research Database (Denmark)

    Falkeborg, Mia; Cheong, Ling-Zhi; Gianfico, Carlo

    2014-01-01

    the presence of the conjugated alkene acid structure formed during enzymatic depolymerization. According to the resonance hybrid theory, the parent radicals of AOs are delocalized through allylic rearrangement, and as a consequence, the reactive intermediates are stabilized. AOs were weak ferrous ion chelators....... This work demonstrated that AOs obtained from a facile enzymatic treatment of abundant alginate is an excellent natural antioxidant, which may find applications in the food industry....

  13. A complex multilevel attack on Pseudomonas aeruginosa algT/U expression and AlgT/U activity results in the loss of alginate production

    DEFF Research Database (Denmark)

    Sautter, Robert; Ramos, Damaris; Schneper, Lisa

    2012-01-01

    Infection by the opportunistic pathogen Pseudomonas aeruginosa is a leading cause of morbidity and mortality seen in cystic fibrosis (CF) patients. This is mainly due to the genotypic and phenotypic changes of the bacteria that cause conversion from a typical nonmucoid to a mucoid form in the CF...... off mechanism has been mapped to the algT/U locus, and the molecular basis for this conversion was partially attributed to mutations in the algT/U gene itself. To further characterize molecular changes resulting in the unstable phenotype, an isogenic PAO1 derivative that is constitutively Alg+ due...... carrying algT/U (Group A). The remaining sap mutants were not (Group B). The members of Group B fall into two subsets: one similar to PAO1, and another comparable to PDO300. Sequence analysis of the algT/U and mucA genes in Group A shows that mucA22 is intact, whereas algT/U contains mutations. Genetic...

  14. Coating of alginate capsules

    OpenAIRE

    Hadjialirezaei, Soosan

    2013-01-01

    Alginate is a popular candidate for encapsulation of cells due to the formation of gels with divalent ions under physiological conditions. Stable alginate gels can be formed by the selection of alginates with a high content of guluronic acid (G) and gelling in a mixture of calcium and barium. These alginate gels have been proposed as immune protective barriers for the transplantation of human pancreatic islets (insulin producing cells) for the treatment of type 1 diabetes where the alginate g...

  15. Bacterial alginate production: an overview of its biosynthesis and potential industrial production.

    Science.gov (United States)

    Urtuvia, Viviana; Maturana, Nataly; Acevedo, Fernando; Peña, Carlos; Díaz-Barrera, Alvaro

    2017-10-07

    Alginate is a linear polysaccharide that can be used for different applications in the food and pharmaceutical industries. These polysaccharides have a chemical structure composed of subunits of (1-4)-β-D-mannuronic acid (M) and its C-5 epimer α-L-guluronic acid (G). The monomer composition and molecular weight of alginates are known to have effects on their properties. Currently, these polysaccharides are commercially extracted from seaweed but can also be produced by Azotobacter vinelandii and Pseudomonas spp. as an extracellular polymer. One strategy to produce alginates with different molecular weights and with reproducible physicochemical characteristics is through the manipulation of the culture conditions during fermentation. This mini-review provides a comparative analysis of the metabolic pathways and molecular mechanisms involved in alginate polymerization from A. vinelandii and Pseudomonas spp. Different fermentation strategies used to produce alginates at a bioreactor laboratory scale are described.

  16. Genome-wide analysis of bacterial determinants of plant growth promotion and induced systemic resistance by Pseudomonas fluorescens

    NARCIS (Netherlands)

    Cheng, Xu; Etalo, Desalegn W.; van de Mortel, Judith E.; Dekkers, Ester; Nguyen, Linh; Medema, Marnix H; Raaijmakers, Jos M.

    2017-01-01

    Pseudomonas fluorescens strain SS101 (Pf.SS101) promotes growth of Arabidopsis thaliana, enhances greening and lateral root formation, and induces systemic resistance (ISR) against the bacterial pathogen Pseudomonas syringae pv. tomato (Pst). Here, targeted and untargeted approaches were adopted to

  17. Characterization of AlgMsp, an alginate lyase from Microbulbifer sp. 6532A.

    Directory of Open Access Journals (Sweden)

    Steven M Swift

    Full Text Available Alginate is a polysaccharide produced by certain seaweeds and bacteria that consists of mannuronic acid and guluronic acid residues. Seaweed alginate is used in food and industrial chemical processes, while the biosynthesis of bacterial alginate is associated with pathogenic Pseudomonas aeruginosa. Alginate lyases cleave this polysaccharide into short oligo-uronates and thus have the potential to be utilized for both industrial and medicinal applications. An alginate lyase gene, algMsp, from Microbulbifer sp. 6532A, was synthesized as an E.coli codon-optimized clone. The resulting 37 kDa recombinant protein, AlgMsp, was expressed, purified and characterized. The alginate lyase displayed highest activity at pH 8 and 0.2 M NaCl. Activity of the alginate lyase was greatest at 50°C; however the enzyme was not stable over time when incubated at 50°C. The alginate lyase was still highly active at 25°C and displayed little or no loss of activity after 24 hours at 25°C. The activity of AlgMsp was not dependent on the presence of divalent cations. Comparing activity of the lyase against polymannuronic acid and polyguluronic acid substrates showed a higher turnover rate for polymannuronic acid. However, AlgMSP exhibited greater catalytic efficiency with the polyguluronic acid substrate. Prolonged AlgMsp-mediated degradation of alginate produced dimer, trimer, tetramer, and pentamer oligo-uronates.

  18. Comparison of the complete genome sequences of Pseudomonassyringae pv. syringae B728a and pv. tomato DC3000.

    Energy Technology Data Exchange (ETDEWEB)

    Feil, Helene; Feil, William S.; Chain, Patrick; Larimer, Frank; DiBartolo, Genevieve; Copeland, Alex; Lykidis, Athanasios; Trong,Stephen; Nolan, Matt; Goltsman, Eugene; Thiel, James; Malfatti,Stephanie; Loper, Joyce E.; Lapidus, Alla; Detter, John C.; Land, Miriam; Richardson, Paul M.; Kyrpides, Nikos C.; Ivanova, Natalia; Lindow, StevenE.

    2005-04-01

    The complete genomic sequence of Pseudomonas syringaepathovar syringae B728a (Pss B728a), has been determined and is comparedwith that of Pseudomonas syringae pv. tomato DC3000 (Pst DC3000). Thesetwo pathovars of this economically important species of plant pathogenicbacteria differ in host range and apparent patterns of interaction withplants, with Pss having a more pronounced epiphytic stage of growth andhigher abiotic stress tolerance and Pst DC3000 having a more pronouncedapoplastic growth habitat. The Pss B728a genome (6.1 megabases) containsa circular chromosome and no plasmid, whereas the Pst DC3000 genome is6.5 mbp in size, composed of a circular chromosome and two plasmids.While a high degree of similarity exists between the two sequencedPseudomonads, 976 protein-encoding genes are unique to Pss B728a whencompared to Pst DC3000, including large genomic islands likely tocontribute to virulence and host specificity. Over 375 repetitiveextragenic palindromic sequences (REPs) unique to Pss B728a when comparedto Pst DC3000 are widely distributed throughout the chromosome except in14 genomic islands, which generally had lower GC content than the genomeas a whole. Content of the genomic islands vary, with one containing aprophage and another the plasmid pKLC102 of P. aeruginosa PAO1. Among the976 genes of Pss B728a with no counterpart in Pst DC3000 are thoseencoding for syringopeptin (SP), syringomycin (SR), indole acetic acidbiosynthesis, arginine degradation, and production of ice nuclei. Thegenomic comparison suggests that several unique genes for Pss B728a suchas ectoine synthase, DNA repair, and antibiotic production may contributeto epiphytic fitness and stress tolerance of this organism. Pseudomonassyringae, a member of the gamma subgroup of the Proteobacteria, is awidespread bacterial pathogen of many plant species. The species P.syringae is subdivided into approximately 50 pathovars based onpathogenicity and host range. P. syringae is capable of

  19. Preparation methods of alginate nanoparticles

    NARCIS (Netherlands)

    Paques, J.P.; Linden, van der E.; Rijn, van C.J.M.; Sagis, L.M.C.

    2014-01-01

    This article reviews available methods for the formation of alginate nano-aggregates, nanocapsules and nanospheres. Primarily, alginate nanoparticles are being prepared by two methods. In the “complexation method”, complex formation on the interface of an oil droplet is used to form alginate

  20. [Pseudomonas genus bacteria on weeds].

    Science.gov (United States)

    Gvozdiak, R I; Iakovleva, L M; Pasichnik, L A; Shcherbina, T N; Ogorodnik, L E

    2005-01-01

    It has been shown in the work that the weeds (couch-grass and ryegrass) may be affected by bacterial diseases in natural conditions, Pseudomonas genus bacteria being their agents. The isolated bacteria are highly-aggressive in respect of the host-plant and a wide range of cultivated plants: wheat, rye, oats, barley, apple-tree and pear-tree. In contrast to highly aggressive bacteria isolated from the affected weeds, bacteria-epi phytes isolated from formally healthy plants (common amaranth, orache, flat-leaved spurge, field sow thistle, matricary, common coltsfoot, narrow-leaved vetch) and identified as P. syringae pv. coronafaciens, were characterized by weak aggression. A wide range of ecological niches of bacteria evidently promote their revival and distribution everywhere in nature.

  1. Screening of alginate lyase-excreting microorganisms from the surface of brown algae.

    Science.gov (United States)

    Wang, Mingpeng; Chen, Lei; Zhang, Zhaojie; Wang, Xuejiang; Qin, Song; Yan, Peisheng

    2017-12-01

    Alginate lyase is a biocatalyst that degrades alginate to produce oligosaccharides, which have many bioactive functions and could be used as renewable biofuels. Here we report a simple and sensitive plate assay for screening alginate lyase-excreting microorganisms from brown algae. Brown algae Laminaria japonica, Sargassum horneri and Sargassum siliquatrum were cultured in sterile water. Bacteria growing on the surface of seaweeds were identified and their capacity of excreting alginate lyase was analyzed. A total of 196 strains were recovered from the three different algae samples and 12 different bacterial strains were identified capable of excreting alginate lyases. Sequence analysis of the 16S rRNA gene revealed that these alginate lyase-excreting strains belong to eight genera: Paenibacillus (4/12), Bacillus (2/12), Leclercia (1/12), Isoptericola (1/12), Planomicrobium (1/12), Pseudomonas (1/12), Lysinibacillus (1/12) and Sphingomonas (1/12). Further analysis showed that the LJ-3 strain (Bacillus halosaccharovorans) had the highest enzyme activity. To our best knowledge, this is the first report regarding alginate lyase-excreting strains in Paenibacillus, Planomicrobium and Leclercia. We believe that our method used in this study is relatively easy and reliable for large-scale screening of alginate lyase-excreting microorganisms.

  2. First report of the crucifer pathogen Pseudomonas cannabina pv. alisalensis causing bacterial blight on radish (Raphanus sativus) in Germany

    Science.gov (United States)

    Pseudomonas cannabina pv. alisalensis is a severe pathogen of crucifers across the U.S. We compared a strain isolated from diseased radish (Raphanus sativus) in Germany to pathotypes and additional strains of P. cannabina pv. alisalensis and P. syringae pv. maculicola. We demonstrated that the patho...

  3. 21 CFR 184.1187 - Calcium alginate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium alginate. 184.1187 Section 184.1187 Food... Specific Substances Affirmed as GRAS § 184.1187 Calcium alginate. (a) Calcium alginate (CAS Reg. No. 9005.... Calcium alginate is prepared by the neutralization of purified alginic acid with appropriate pH control...

  4. 21 CFR 184.1610 - Potassium alginate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium alginate. 184.1610 Section 184.1610 Food... Specific Substances Affirmed as GRAS § 184.1610 Potassium alginate. (a) Potassium alginate (CAS Reg. No... algae. Potassium alginate is prepared by the neutralization of purified alginic acid with appropriate pH...

  5. Quantification of alginate by aggregation induced by calcium ions and fluorescent polycations.

    Science.gov (United States)

    Zheng, Hewen; Korendovych, Ivan V; Luk, Yan-Yeung

    2016-01-01

    For quantification of polysaccharides, including heparins and alginates, the commonly used carbazole assay involves hydrolysis of the polysaccharide to form a mixture of UV-active dye conjugate products. Here, we describe two efficient detection and quantification methods that make use of the negative charges of the alginate polymer and do not involve degradation of the targeted polysaccharide. The first method utilizes calcium ions to induce formation of hydrogel-like aggregates with alginate polymer; the aggregates can be quantified readily by staining with a crystal violet dye. This method does not require purification of alginate from the culture medium and can measure the large amount of alginate that is produced by a mucoid Pseudomonas aeruginosa culture. The second method employs polycations tethering a fluorescent dye to form suspension aggregates with the alginate polyanion. Encasing the fluorescent dye in the aggregates provides an increased scattering intensity with a sensitivity comparable to that of the conventional carbazole assay. Both approaches provide efficient methods for monitoring alginate production by mucoid P. aeruginosa. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Alginate Production from Alternative Carbon Sources and Use of Polymer Based Adsorbent in Heavy Metal Removal

    Directory of Open Access Journals (Sweden)

    Çiğdem Kıvılcımdan Moral

    2016-01-01

    Full Text Available Alginate is a biopolymer composed of mannuronic and guluronic acids. It is harvested from marine brown algae; however, alginate can also be synthesized by some bacterial species, namely, Azotobacter and Pseudomonas. Use of pure carbohydrate sources for bacterial alginate production increases its cost and limits the chance of the polymer in the industrial market. In order to reduce the cost of bacterial alginate production, molasses, maltose, and starch were utilized as alternative low cost carbon sources in this study. Results were promising in the case of molasses with the maximum 4.67 g/L of alginate production. Alginates were rich in mannuronic acid during early fermentation independent of the carbon sources while the highest guluronic acid content was obtained as 68% in the case of maltose. The polymer was then combined with clinoptilolite, which is a natural zeolite, to remove copper from a synthetic wastewater. Alginate-clinoptilolite beads were efficiently adsorbed copper up to 131.6 mg Cu2+/g adsorbent at pH 4.5 according to the Langmuir isotherm model.

  7. Structural Basis for Alginate Secretion Across the Bacterial Outer Membrane

    Energy Technology Data Exchange (ETDEWEB)

    J Whitney; I Hay; C Li; P Eckford; H Robinson; M Amaya; L Wood; D Ohman; C Bear; et al.

    2011-12-31

    Pseudomonas aeruginosa is the predominant pathogen associated with chronic lung infection among cystic fibrosis patients. During colonization of the lung, P. aeruginosa converts to a mucoid phenotype characterized by the overproduction of the exopolysaccharide alginate. Secretion of newly synthesized alginate across the outer membrane is believed to occur through the outer membrane protein AlgE. Here we report the 2.3 {angstrom} crystal structure of AlgE, which reveals a monomeric 18-stranded {beta}-barrel characterized by a highly electropositive pore constriction formed by an arginine-rich conduit that likely acts as a selectivity filter for the negatively charged alginate polymer. Interestingly, the pore constriction is occluded on either side by extracellular loop L2 and an unusually long periplasmic loop, T8. In halide efflux assays, deletion of loop T8 ({Delta}T8-AlgE) resulted in a threefold increase in anion flux compared to the wild-type or {Delta}L2-AlgE supporting the idea that AlgE forms a transport pathway through the membrane and suggesting that transport is regulated by T8. This model is further supported by in vivo experiments showing that complementation of an algE deletion mutant with {Delta}T8-AlgE impairs alginate production. Taken together, these studies support a mechanism for exopolysaccharide export across the outer membrane that is distinct from the Wza-mediated translocation observed in canonical capsular polysaccharide export systems.

  8. Structural basis for alginate secretion across the bacterial outer membrane

    Energy Technology Data Exchange (ETDEWEB)

    Whitney, J.C.; Robinson, H.; Hay, I. D.; Li, C.; Eckford, P. D. W.; Amaya, M. F.; Wood, L. F.; Ohman, D. E.; Bear, C. E.; Rehm, B. H.; Howell, P. L.

    2011-08-09

    Pseudomonas aeruginosa is the predominant pathogen associated with chronic lung infection among cystic fibrosis patients. During colonization of the lung, P. aeruginosa converts to a mucoid phenotype characterized by the overproduction of the exopolysaccharide alginate. Secretion of newly synthesized alginate across the outer membrane is believed to occur through the outer membrane protein AlgE. Here we report the 2.3 {angstrom} crystal structure of AlgE, which reveals a monomeric 18-stranded {beta}-barrel characterized by a highly electropositive pore constriction formed by an arginine-rich conduit that likely acts as a selectivity filter for the negatively charged alginate polymer. Interestingly, the pore constriction is occluded on either side by extracellular loop L2 and an unusually long periplasmic loop, T8. In halide efflux assays, deletion of loop T8 ({Delta}T8-AlgE) resulted in a threefold increase in anion flux compared to the wild-type or {Delta}L2-AlgE supporting the idea that AlgE forms a transport pathway through the membrane and suggesting that transport is regulated by T8. This model is further supported by in vivo experiments showing that complementation of an algE deletion mutant with {Delta}T8-AlgE impairs alginate production. Taken together, these studies support a mechanism for exopolysaccharide export across the outer membrane that is distinct from the Wza-mediated translocation observed in canonical capsular polysaccharide export systems.

  9. Effects of atmospheric conditions on ice nucleation activity of Pseudomonas

    Directory of Open Access Journals (Sweden)

    C. Glaux

    2012-11-01

    Full Text Available Although ice nuclei from bacterial origin are known to be efficient at the highest temperatures known for ice catalysts, quantitative data are still needed to assess their role in cloud processes. Here we studied the effects of three typical cloud conditions (i acidic pH (ii NO2 and O3 exposure and (iii UV-A exposure on the ice nucleation activity (INA of four Pseudomonas strains. Three of the Pseudomonas syringae strains were isolated from cloud water and the phyllosphere and Pseudomonas fluorescens strain CGina-01 was isolated from Antarctic glacier ice melt. Among the three conditions tested, acidic pH caused the most significant effects on INA likely due to denaturation of the ice nucleation protein complex. Exposure to NO2 and O3 gases had no significant or only weak effects on the INA of two P. syringae strains whereas the INA of P. fluorescens CGina-01 was significantly affected. The INA of the third P. syringae strain showed variable responses to NO2 and O3 exposure. These differences in the INA of different Pseudomonas suggest that the response to atmospheric conditions could be strain-specific. After UV-A exposure, a substantial loss of viability of all four strains was observed whereas their INA decreased only slightly. This corroborates the notion that under certain conditions dead bacterial cells can maintain their INA. Overall, the negative effects of the three environmental factors on INA were more significant at the warmer temperatures. Our results suggest that in clouds where temperatures are near 0 °C, the importance of bacterial ice nucleation in precipitation processes could be reduced by some environmental factors.

  10. Vegetative propagation of Syringa vulgaris L. in vitro.

    NARCIS (Netherlands)

    Pierik, R.L.M.; Steegmans, H.H.M.; Elias, A.A.; Stiekema, O.T.J.; Velde, van der A.J.

    1988-01-01

    Excised shoot tips from adult Syringa vulgaris L. plants were rejuvenated by repeated subculturing in vitro. The number of subcultures required to rejuvenate the shoots was strongly dependent on the age and genotype of the plant material. Three rootstocks (K8, A2 and A3) and 5 cultivars

  11. Microbial alginate production, modification and its applications

    Science.gov (United States)

    Hay, Iain D; Rehman, Zahid Ur; Moradali, M Fata; Wang, Yajie; Rehm, Bernd H A

    2013-01-01

    Alginate is an important polysaccharide used widely in the food, textile, printing and pharmaceutical industries for its viscosifying, and gelling properties. All commercially produced alginates are isolated from farmed brown seaweeds. These algal alginates suffer from heterogeneity in composition and material properties. Here, we will discuss alginates produced by bacteria; the molecular mechanisms involved in their biosynthesis; and the potential to utilize these bacterially produced or modified alginates for high-value applications where defined material properties are required. PMID:24034361

  12. Effect of osmotic stress on plant growth promoting Pseudomonas spp.

    Science.gov (United States)

    Sandhya, V; Ali, Sk Z; Venkateswarlu, B; Reddy, Gopal; Grover, Minakshi

    2010-10-01

    In this study we isolated and screened drought tolerant Pseudomonas isolates from arid and semi arid crop production systems of India. Five isolates could tolerate osmotic stress up to -0.73 MPa and possessed multiple PGP properties such as P-solubilization, production of phytohormones (IAA, GA and cytokinin), siderophores, ammonia and HCN however under osmotic stress expression of PGP traits was low compared to non-stressed conditions. The strains were identified as Pseudomonas entomophila, Pseudomonas stutzeri, Pseudomonas putida, Pseudomonas syringae and Pseudomonas monteilli respectively on the basis of 16S rRNA gene sequence analysis. Osmotic stress affected growth pattern of all the isolates as indicated by increased mean generation time. An increase level of intracellular free amino acids, proline, total soluble sugars and exopolysaccharides was observed under osmotic stress suggesting bacterial response to applied stress. Further, strains GAP-P45 and GRFHYTP52 showing higher levels of EPS and osmolytes (amino acids and proline) accumulation under stress as compared to non-stress conditions, also exhibited higher expression of PGP traits under stress indicating a relationship between stress response and expression of PGP traits. We conclude that isolation and screening of indigenous, stress adaptable strains possessing PGP traits can be a method for selection of efficient stress tolerant PGPR strains.

  13. Imunomodulator Activity of Alginate Oligosaccharides from Alginate Sargassum crassifolium

    Directory of Open Access Journals (Sweden)

    Subaryono Subaryono

    2017-04-01

    Full Text Available Alginate oligosaccharides (AOS are oligosaccharides produced from depolimerization of the alginate polymer, and is reported to have various biological activities. The study aims is to determine the effect of AOSproduction conditions and their effects on products and its activities as an immunomodulatory compound. Production of alginate oligosaccharides (AOS enzymatically carried out with the help of alginate lyase enzyme produced from the bacterium Bacillus megaterium S245. Variation of incubation time is 2, 4, 6 and 8 hours at concentrations of alginate lyase enzyme addition of 25, 50, 75 and 100U. Treatment of enzyme concentration and the duration of incubation in the production of AOS produces a degree of polymerization (DP 2-7. In vitro activity test showed AOS is have ability to induce cell proliferation of human lymphocytes.This type of cell lymphocytes proliferation induced by AOS is a CD 8 cells or cytotoxic T cell and non cell CD4 / CD8. AOS production conditions with the addition of alginate lyase enzyme 50 U and incubation period 2 hours has produce AOS with the highest index of lymphocyte proliferation  117.6+3.6% or an increase of 43.24% compared to the native alginat polymer.

  14. Alginate immobilized enrichment culture for atrazine degradation in soil and water system.

    Science.gov (United States)

    Kumar, Anup; Nain, Lata; Singh, Neera

    2017-04-03

    An atrazine degrading enrichment culture, a consortium of bacteria of genus Bacillus along with Pseudomonas and Burkholderia, was immobilized in sodium alginate and was used to study atrazine degradation in mineral salts medium (MSM), soil and wastewater effluent. Sodium alginate immobilized consortium, when stored at room temperature (24 ± 5°C), was effective in degrading atrazine in MSM up to 90 days of storage. The survival of bacteria in alginate beads, based on colony formation unit (CFU) counts, suggested survival up to 90 days and population counts decreased to 1/5 th on 120 days. Comparison of atrazine degrading ability of the freely suspended enrichment culture and immobilized culture suggested that the immobilized culture took longer time for complete degradation of atrazine as a lag phase of 2 days was observed in the MSM inoculated with alginate immobilized culture. The free cells resulted in complete degradation of atrazine within 6 days, while immobilized cells took 10 days for 100% atrazine degradation. Further, immobilized cultures were able to degrade atrazine in soil and wastewater effluent. Alginate beads were stable and effective in degrading atrazine till 3rd transfer and disintegrated thereafter. The study suggested that immobilized enrichment culture, due to its better storage and application, can be used to degrade atrazine in soil water system.

  15. 21 CFR 582.7724 - Sodium alginate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium alginate. 582.7724 Section 582.7724 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... alginate. (a) Product. Sodium alginate. (b) Conditions of use. This substance is generally recognized as...

  16. 21 CFR 582.7133 - Ammonium alginate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ammonium alginate. 582.7133 Section 582.7133 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Ammonium alginate. (a) Product. Ammonium alginate. (b) Conditions of use. This substance is generally...

  17. 21 CFR 582.7187 - Calcium alginate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium alginate. 582.7187 Section 582.7187 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium alginate. (a) Product. Calcium alginate. (b) Conditions of use. This substance is generally...

  18. 21 CFR 582.7610 - Potassium alginate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium alginate. 582.7610 Section 582.7610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Potassium alginate. (a) Product. Potassium alginate. (b) Conditions of use. This substance is generally...

  19. 21 CFR 184.1011 - Alginic acid.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Alginic acid. 184.1011 Section 184.1011 Food and... Substances Affirmed as GRAS § 184.1011 Alginic acid. (a) Alginic acid is a colloidal, hydrophilic.../code_of_federal_regulations/ibr_locations.html. (c) In accordance with § 184.1(b)(2), the ingredient is...

  20. 21 CFR 184.1133 - Ammonium alginate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ammonium alginate. 184.1133 Section 184.1133 Food... Specific Substances Affirmed as GRAS § 184.1133 Ammonium alginate. (a) Ammonium alginate (CAS Reg. No. 9005... accordance with § 184.1(b)(2), the ingredient is used in food only within the following specific limitations...

  1. Efficient functionalization of alginate biomaterials.

    Science.gov (United States)

    Dalheim, Marianne Ø; Vanacker, Julie; Najmi, Maryam A; Aachmann, Finn L; Strand, Berit L; Christensen, Bjørn E

    2016-02-01

    Peptide coupled alginates obtained by chemical functionalization of alginates are commonly used as scaffold materials for cells in regenerative medicine and tissue engineering. We here present an alternative to the commonly used carbodiimide chemistry, using partial periodate oxidation followed by reductive amination. High and precise degrees of substitution were obtained with high reproducibility, and without formation of by-products. A protocol was established using l-Tyrosine methyl ester as a model compound and the non-toxic pic-BH3 as the reducing agent. DOSY was used to indirectly verify covalent binding and the structure of the product was further elucidated using NMR spectroscopy. The coupling efficiency was to some extent dependent on alginate composition, being most efficient on mannuronan. Three different bioactive peptide sequences (GRGDYP, GRGDSP and KHIFSDDSSE) were coupled to 8% periodate oxidized alginate resulting in degrees of substitution between 3.9 and 6.9%. Cell adhesion studies of mouse myoblasts (C2C12) and human dental stem cells (RP89) to gels containing various amounts of GRGDSP coupled alginate demonstrated the bioactivity of the material where RP89 cells needed higher peptide concentrations to adhere. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Water flow induced transport of Pseudomonas fluorescens cells through soil columns as affected by inoculant treatment

    NARCIS (Netherlands)

    Hekman, W.E.; Heijnen, C.E.; Trevors, J.T.; Elsas, van J.D.

    1994-01-01

    Water flow induced transport of Pseudomonas fluorescens cells through soil columns was measured as affected by the inoculant treatment. Bacterial cells were introduced into the topsoil of columns, either encapsulated in alginate beads of different types or mixed with bentonite clay in concentrations

  3. Cytokinin production by Pseudomonas fluorescens G20-18 determines biocontrol activity against Pseudomonas syringae in Arabidopsis

    Czech Academy of Sciences Publication Activity Database

    Grosskinsky, D. K.; Tafner, R.; Moreno, M. V.; Stenglein, S. A.; Garcia de Salamone, I. E.; Nelson, L. M.; Novák, Ondřej; Strnad, Miroslav; van der Graaff, E.; Roitsch, Thomas

    2016-01-01

    Roč. 6, MAR 17 (2016), s. 23310 ISSN 2045-2322 R&D Projects: GA MŠk(CZ) LO1204; GA ČR GA15-22322S; GA MŠk(CZ) LO1415 Institutional support: RVO:61389030 ; RVO:67179843 Keywords : GROWTH-PROMOTING RHIZOBACTERIA * PLANT -GROWTH * SALICYLIC-ACID Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.259, year: 2016

  4. E-2-hexenal promotes susceptibility to Pseudomonas syringae by activating jasmonic acid pathways in Arabidopsis.

    NARCIS (Netherlands)

    Scala, A.; Mirabella, R.; Mugo, C.; Matsui, K.; Haring, M.A.; Schuurink, R.C.

    2013-01-01

    Green leaf volatiles (GLVs) are C6-molecules - alcohols, aldehydes, and esters - produced by plants upon herbivory or during pathogen infection. Exposure to this blend of volatiles induces defense-related responses in neighboring undamaged plants, thus assigning a role to GLVs in regulating plant

  5. The metabolic transition during disease following infection of Arabidopsis thaliana by Pseudomonas syringae pv. tomato

    National Research Council Canada - National Science Library

    Ward, Jane L; Forcat, Silvia; Beckmann, Manfred; Bennett, Mark; Miller, Sonia J; Baker, John M; Hawkins, Nathaniel D; Vermeer, Cornelia P; Lu, Chuan; Lin, Wanchang; Truman, William M; Beale, Michael H; Draper, John; Mansfield, John W; Grant, Murray

    2010-01-01

    ... suppress basal and effector-triggered immune responses. In this study, we examined the metabolic changes associated with establishment of disease using analytical techniques that interrogated a range of chemistries...

  6. Role of Exopolysaccharides in Pseudomonas aeruginosa Biofilm Formation and Architecture ▿ †

    Science.gov (United States)

    Ghafoor, Aamir; Hay, Iain D.; Rehm, Bernd H. A.

    2011-01-01

    Pseudomonas aeruginosa is an opportunistic human pathogen and has been established as a model organism to study bacterial biofilm formation. At least three exopolysaccharides (alginate, Psl, and Pel) contribute to the formation of biofilms in this organism. Here mutants deficient in the production of one or more of these polysaccharides were generated to investigate how these polymers interactively contribute to biofilm formation. Confocal laser scanning microscopy of biofilms formed in flow chambers showed that mutants deficient in alginate biosynthesis developed biofilms with a decreased proportion of viable cells than alginate-producing strains, indicating a role of alginate in viability of cells in biofilms. Alginate-deficient mutants showed enhanced extracellular DNA (eDNA)-containing surface structures impacting the biofilm architecture. PAO1 ΔpslA Δalg8 overproduced Pel, and eDNA showing meshwork-like structures presumably based on an interaction between both polymers were observed. The formation of characteristic mushroom-like structures required both Psl and alginate, whereas Pel appeared to play a role in biofilm cell density and/or the compactness of the biofilm. Mutants producing only alginate, i.e., mutants deficient in both Psl and Pel production, lost their ability to form biofilms. A lack of Psl enhanced the production of Pel, and the absence of Pel enhanced the production of alginate. The function of Psl in attachment was independent of alginate and Pel. A 30% decrease in Psl promoter activity in the alginate-overproducing MucA-negative mutant PDO300 suggested inverse regulation of both biosynthesis operons. Overall, this study demonstrated that the various exopolysaccharides and eDNA interactively contribute to the biofilm architecture of P. aeruginosa. PMID:21666010

  7. 3D Cell Culture in Alginate Hydrogels.

    Science.gov (United States)

    Andersen, Therese; Auk-Emblem, Pia; Dornish, Michael

    2015-03-24

    This review compiles information regarding the use of alginate, and in particular alginate hydrogels, in culturing cells in 3D. Knowledge of alginate chemical structure and functionality are shown to be important parameters in design of alginate-based matrices for cell culture. Gel elasticity as well as hydrogel stability can be impacted by the type of alginate used, its concentration, the choice of gelation technique (ionic or covalent), and divalent cation chosen as the gel inducing ion. The use of peptide-coupled alginate can control cell-matrix interactions. Gelation of alginate with concomitant immobilization of cells can take various forms. Droplets or beads have been utilized since the 1980s for immobilizing cells. Newer matrices such as macroporous scaffolds are now entering the 3D cell culture product market. Finally, delayed gelling, injectable, alginate systems show utility in the translation of in vitro cell culture to in vivo tissue engineering applications. Alginate has a history and a future in 3D cell culture. Historically, cells were encapsulated in alginate droplets cross-linked with calcium for the development of artificial organs. Now, several commercial products based on alginate are being used as 3D cell culture systems that also demonstrate the possibility of replacing or regenerating tissue.

  8. Synthesis of multiple Pseudomonas aeruginosa biofilm matrix exopolysaccharides is post-transcriptionally regulated.

    Science.gov (United States)

    Ma, Luyan; Wang, Juan; Wang, Shiwei; Anderson, Erin M; Lam, Joseph S; Parsek, Matthew R; Wozniak, Daniel J

    2012-08-01

    Exopolysaccharide is a critical biofilm matrix component, yet little is known about how the synthesis of multiple exopolysaccharides is regulated. Pseudomonas aeruginosa can produce several biofilm matrix exopolysaccharides that include alginate, Psl and Pel. Here we demonstrated that AlgC, a key enzyme that provides sugar precursors for the synthesis of alginate and lipopolysaccharides (LPS) is also required for both Psl and Pel production. We showed that forced-synthesis of Psl in alginate-producing mucoid bacteria reduced alginate production but this was not due to transcription of the alginate biosynthesis-operon. Likewise, when either alginate or Psl were overproduced, levels of B-band LPS decreased. Induction of Pel resulted in a reduction of Psl levels. Because the effects of reduced exopolysaccharide synthesis when another is overproduced didn't appear to be regulated at the transcriptional level, this suggests that the biosynthesis pathways of Psl, Pel, alginate, and LPS compete for common sugar precursors. As AlgC is the only enzyme that provides precursors for each of these exopolysaccharides, we propose that AlgC is a key checkpoint enzyme that coordinates the total amount of exopolysaccharide biosynthesis by controlling sugar precursor pool. Our data also provide a plausible strategy that P.aeruginosa utilizes to modulate its biofilm matrix exopolysaccharides. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  9. Perfluorinated alginate for cellular encapsulation.

    Science.gov (United States)

    Gattás-Asfura, Kerim M; Fraker, Christopher A; Stabler, Cherie L

    2012-08-01

    Molecules of pentadecafluorooctanoyl chloride (PFC) were grafted onto alginate (Alg) using a linear poly(ethylene glycol) linker and amide bonds. The resulting Alg-PFC material was characterized by proton nuclear magnetic resonance and infrared spectroscopies. The degree of PFC functionalization significantly influenced the physical and chemical properties of Alg-PFC, particularly when the resulting polymer was ionically crosslinked into hydrogels. Alg-PFC hydrogel beads fabricated via Ba(2+) crosslinking were found to match the permeability properties of control alginate beads, except upon swelling over time in culture media. When used to encapsulate MIN6 cells, a beta cell line, Alg-PFC beads demonstrated enhanced cell proliferation over alginate control beads. These results indicate that Alg-PFC hydrogels retain some of the PFC's biological-relevant benefits, such as enhancement of mass transport and bioinertness, to enhance cellular viability within alginate three-dimensional hydrogel environments. We envision these functionalized hydrogels to be particularly useful in the encapsulation of cells with a high metabolic demand, such as pancreatic islets. Copyright © 2012 Wiley Periodicals, Inc.

  10. Thermostable Alginate degrading enzymes and their methods of use

    NARCIS (Netherlands)

    Hreggvidsson, Gudmundur Oli; Jonsson, Oskar W.J.; Bjornsdottir, Bryndis; Fridjonsson, Hedinn O; Altenbuchner, Josef; Watzlawick, Hildegard; Dobruchowska, Justyna; Kamerling, Johannis

    2015-01-01

    The present invention relates to the identification, production and use of thermostable alginate lyase enzymes that can be used to partially degrade alginate to yield oligosaccharides or to give complete degradation of alginate to yield (unsaturated) mono-uronates.

  11. Rheological characterization of an injectable alginate gel system

    OpenAIRE

    Larsen, Benjamin E; Bjørnstad, Jorunn; Pettersen, Erik O; Tønnesen, Hanne H; Melvik, Jan E

    2015-01-01

    Background This work investigates a general method for producing alginate gel matrices using an internal mode of gelation that depends solely on soluble alginate and alginate/gelling ion particles. The method involves the formulation of two-component kits comprised of soluble alginate and insoluble alginate/gelling ion particles. Gelling kinetics, elastic and Young’s moduli were investigated for selected parameters with regard to soluble alginate guluronate content, molecul...

  12. Alginate Microbeads for Cell and Protein Delivery.

    Science.gov (United States)

    Somo, Sami I; Khanna, Omaditya; Brey, Eric M

    2017-01-01

    Alginate hydrogels have been used for a broad variety of medical applications. The ability to assemble alginate gels at neutral pH and mild temperatures makes alginate a promising choice for the encapsulation and delivery of cells and proteins. This chapter covers the basics of cell encapsulation and protein delivery using two different variations of alginate microbeads, single layered and multilayer systems. The first section describes a method for encapsulating cells within alginate microbeads coated with a permselective polymer layer. The second section describes a multilayer alginate microbead system that allows simultaneous encapsulation of cells and delivery of growth factors. The primary goal of the systems described is for encapsulation of islets as a treatment for type I diabetes. However, these microbeads can be used for a broad variety of applications in tissue engineering, cell encapsulation, and regenerative medicine.

  13. Vaccination promotes TH1-like inflammation and survival in chronic Pseudomonas aeruginosa pneumonia in rats

    DEFF Research Database (Denmark)

    Johansen, H K; Hougen, H P; Cryz, S J

    1995-01-01

    In a rat model of chronic Pseudomonas aeruginosa lung infection mimicking cystic fibrosis (CF) we studied whether the inflammatory response could be altered by vaccination. Rats were immunized with either a depolymerized alginate toxin A conjugate (D-ALG toxin A), purified alginate, an O-polysacc......In a rat model of chronic Pseudomonas aeruginosa lung infection mimicking cystic fibrosis (CF) we studied whether the inflammatory response could be altered by vaccination. Rats were immunized with either a depolymerized alginate toxin A conjugate (D-ALG toxin A), purified alginate, an O......-polysaccharide toxin A conjugate, or sterile saline. After challenge none of the rats immunized with D-ALG toxin A died, in contrast to the other two vaccine groups combined (p = 0.03). A significant reduction in the severity of the macroscopic lung inflammation was seen in rats immunized with D-ALG toxin A, compared...... with the other three groups (p = 0.009). The histopathologic response in the control rats was dominated by numerous polymorphonuclear leukocytes (PMN) surrounding the alginate beads. In contrast, the histopathologic response in rats immunized with D-ALG toxin A changed within the first week after challenge from...

  14. Effect of the alginate composition on the biocompatibility of alginate-polylysine microcapsules

    NARCIS (Netherlands)

    DeVos, P; DeHaan, B; VanSchilfgaarde, R

    Alginate-polylysine (PLL) capsules are commonly applied for immunoprotection of endocrine tissues. Alginate is composed of mannuronic acid (M) and guluronic acid (G). Different types of alginate have different ratios of G to M, but little is known of the influence of these differences on

  15. Alginate encapsulated nanoparticle-microorganism system for trichloroethylene remediation

    Science.gov (United States)

    Shanbhogue, Sai Sharanya

    Nanoscale zero-valent iron (NZVI) particles were encapsulated in calcium alginate capsules for application in environmental remediation. TCE degradation rates for encapsulated and bare NZVI were similar indicating no adverse effects of encapsulation on degradation kinetics. Microorganisms were separately encapsulated and used along with encapsulated NZVI and co-encapsulated in calcium alginate capsules. Batch experiments were performed to test the efficacy of the combined iron-Pseudomonas sp. (PpF1) system. The combined system removed 100% TCE over the first three hours of the experiment followed by 70% TCE removal post TCE re-dosing. Complete reduction of TCE was achieved by NZVI between 0--3 h and the second phase of treatment (3--36 h) was mostly achieved by microorganisms. Experiments conducted with co-encapsulated NZVI-D.BAV1 achieved 100% TCE removal. During the first three hours of the experiment 100% TCE removal was achieved by NZVI, and 100% removal was achieved post re-dosing where D.BAV1 accomplished the treatment.

  16. Pseudomonas aeruginosa in Healthcare Settings

    Science.gov (United States)

    ... Sepsis Sharps Safety - CDC Transplant Safety Vaccine Safety Pseudomonas aeruginosa in Healthcare Settings Recommend on Facebook Tweet Share ... aeruginosa . Pseudomonas aeruginosa What types of infections does Pseudomonas aeruginosa cause? Serious Pseudomonas infections usually occur in people ...

  17. Engineering alginate as bioink for bioprinting.

    Science.gov (United States)

    Jia, Jia; Richards, Dylan J; Pollard, Samuel; Tan, Yu; Rodriguez, Joshua; Visconti, Richard P; Trusk, Thomas C; Yost, Michael J; Yao, Hai; Markwald, Roger R; Mei, Ying

    2014-10-01

    Recent advances in three-dimensional (3-D) printing offer an excellent opportunity to address critical challenges faced by current tissue engineering approaches. Alginate hydrogels have been used extensively as bioinks for 3-D bioprinting. However, most previous research has focused on native alginates with limited degradation. The application of oxidized alginates with controlled degradation in bioprinting has not been explored. Here, a collection of 30 different alginate hydrogels with varied oxidation percentages and concentrations was prepared to develop a bioink platform that can be applied to a multitude of tissue engineering applications. The authors systematically investigated the effects of two key material properties (i.e. viscosity and density) of alginate solutions on their printabilities to identify a suitable range of material properties of alginates to be applied to bioprinting. Further, four alginate solutions with varied biodegradability were printed with human adipose-derived stem cells (hADSCs) into lattice-structured, cell-laden hydrogels with high accuracy. Notably, these alginate-based bioinks were shown to be capable of modulating proliferation and spreading of hADSCs without affecting the structure integrity of the lattice structures (except the highly degradable one) after 8days in culture. This research lays a foundation for the development of alginate-based bioink for tissue-specific tissue engineering applications. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. Antibiotic penetration and bacterial killing in a Pseudomonas aeruginosa biofilm model

    DEFF Research Database (Denmark)

    Cao, Bao; Christophersen, Lars; Thomsen, Kim

    2015-01-01

    OBJECTIVES: Treating biofilm infections successfully is a challenge. We hypothesized that biofilms may be considered as independent compartments with particular pharmacokinetics. We therefore studied the pharmacokinetics and pharmacodynamics of tobramycin in a seaweed alginate-embedded biofilm...... model. METHODS: Seaweed alginate beads containing Pseudomonas aeruginosa were cultured in LB medium, sampled at day 1, 3, 5 or 7 and examined for the effect of treatment with tobramycin for 30 min. Treated beads were homogenized and the number of cfu was determined. The antibiotic concentration...

  19. Novel mouse model of chronic Pseudomonas aeruginosa lung infection mimicking cystic fibrosis

    DEFF Research Database (Denmark)

    Hoffmann, Nadine; Rasmussen, Thomas Bovbjerg; Jensen, Peter Østrup

    2005-01-01

    Pseudomonas aeruginosa causes a chronic infection in the lungs of cystic fibrosis (CF) patients by establishing an alginate-containing biofilm. The infection has been studied in several animal models; however, most of the models required artificial embedding of the bacteria. We present here a new...... pulmonary mouse model without artificial embedding. The model is based on a stable mucoid CF sputum isolate (NH57388A) with hyperproduction of alginate due to a deletion in mucA and functional N-acylhomoserine lactone (AHL)-based quorum-sensing systems. Chronic lung infection could be established in both CF...

  20. Non-Invasive Evaluation of Alginate/Poly-L-lysine/Alginate Microcapsules by Magnetic Resonance Microscopy

    OpenAIRE

    Constantinidis, Ioannis; Grant, Samuel C.; Celper, Susanne; Gauffin-Holmberg, Isabel; Agering, Kristina; Oca-Cossio, Jose A.; Bui, Jonathan D.; Flint, Jeremy; Hamaty, Christine; Simpson, Nicholas E.; Blackband, Stephen J.

    2007-01-01

    In this report, we present data to demonstrate the utility of 1H MR microscopy to noninvasively examine alginate/poly-L-lysine/alginate (APA) microcapsules. Specifically, high-resolution images were used to visualize and quantify the poly-L-lysine (PLL) layer, and monitor temporal changes in the alginate gel microstructure during a month long in vitro culture. The thickness of the alginate/PLL layer was quantified to be 40.6±6.2 μm regardless of the alginate composition used to generate the b...

  1. Radiation degradation of alginate and some results of biological effect of degraded alginate on plants

    Energy Technology Data Exchange (ETDEWEB)

    Hien, N.Q.; Hai, L.; Luan, L.Q.; Hanh, T.T. [Nuclear Research Institute, Dalat (Viet Nam); Nagasawa, Naotsugu; Yoshii, Fumio; Makuuchi, Keizo; Kume, Tamikazu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2000-03-01

    Radiation degradation yields (Gd) of alginate in aqueous solution with different concentration were determined by viscometry method. The relationship between Gd and the alginate concentration was found out as: Gd=33.5 x C{sup -0.68}, with C% (w/v) and dry alginate referred to C=100%. An empirical equation for preparing degraded alginate with the desired low viscometry average molecular weight (Mv) by radiation was proposed. Alginate extracted directly horn seaweed'Sagassum, degraded by radiation was used for field experiments and results of the biological effect on plants (tea, carrot, chrysanthemum) were presented. (author)

  2. Players over the Surface: Unraveling the Role of Exopolysaccharides in Zinc Biosorption by Fluorescent Pseudomonas Strain Psd.

    Science.gov (United States)

    Upadhyay, Anamika; Kochar, Mandira; Rajam, Manchikatla V; Srivastava, Sheela

    2017-01-01

    Fluorescent Pseudomonas strain Psd is a soil isolate, possessing multiple plant growth promoting (PGP) properties and biocontrol potential. In addition, the strain also possesses high Zn2+ biosorption capability. In this study, we have investigated the role exopolysaccharides (EPS) play in Zn2+ biosorption. We have identified that alginates are the prime components contributing to Zn2+ biosorption. Deletion of the alg8 gene, which codes for a sub-unit of alginate polymerase, led to a significant reduction in EPS production by the organism. We have also demonstrated that the increased alginate production in response to Zn2+ exposure leads to improved biofilm formation by the strain. In the alg8 deletion mutant, however, biofilm formation was severely compromised. Further, we have studied the functional implications of Zn2+ biosorption by Pseudomonas strain Psd by demonstrating the effect on the PGP and biocontrol potential of the strain.

  3. Crystal structure of bacterial cell-surface alginate-binding protein with an M75 peptidase motif

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Yukie; Ochiai, Akihito [Laboratory of Basic and Applied Molecular Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan); Mikami, Bunzo [Laboratory of Applied Structural Biology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan); Hashimoto, Wataru [Laboratory of Basic and Applied Molecular Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan); Murata, Kousaku, E-mail: kmurata@kais.kyoto-u.ac.jp [Laboratory of Basic and Applied Molecular Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan)

    2011-02-18

    Research highlights: {yields} Bacterial alginate-binding Algp7 is similar to component EfeO of Fe{sup 2+} transporter. {yields} We determined the crystal structure of Algp7 with a metal-binding motif. {yields} Algp7 consists of two helical bundles formed through duplication of a single bundle. {yields} A deep cleft involved in alginate binding locates around the metal-binding site. {yields} Algp7 may function as a Fe{sup 2+}-chelated alginate-binding protein. -- Abstract: A gram-negative Sphingomonas sp. A1 directly incorporates alginate polysaccharide into the cytoplasm via the cell-surface pit and ABC transporter. A cell-surface alginate-binding protein, Algp7, functions as a concentrator of the polysaccharide in the pit. Based on the primary structure and genetic organization in the bacterial genome, Algp7 was found to be homologous to an M75 peptidase motif-containing EfeO, a component of a ferrous ion transporter. Despite the presence of an M75 peptidase motif with high similarity, the Algp7 protein purified from recombinant Escherichia coli cells was inert on insulin B chain and N-benzoyl-Phe-Val-Arg-p-nitroanilide, both of which are substrates for a typical M75 peptidase, imelysin, from Pseudomonas aeruginosa. The X-ray crystallographic structure of Algp7 was determined at 2.10 A resolution by single-wavelength anomalous diffraction. Although a metal-binding motif, HxxE, conserved in zinc ion-dependent M75 peptidases is also found in Algp7, the crystal structure of Algp7 contains no metal even at the motif. The protein consists of two structurally similar up-and-down helical bundles as the basic scaffold. A deep cleft between the bundles is sufficiently large to accommodate macromolecules such as alginate polysaccharide. This is the first structural report on a bacterial cell-surface alginate-binding protein with an M75 peptidase motif.

  4. Disinfectant Efficacy of 0.525% Sodium Hypochlorite and Epimax on Alginate Impression Material.

    Science.gov (United States)

    Choudhury, Gopal Krishna; Chitumalla, Rajkiran; Manual, Litto; Rajalbandi, Santosh Kumar; Chauhan, Mahinder Singh; Talukdar, Pratim

    2018-01-01

    Species of Streptococcus, Escherichia coli, Staphylococcus, Actinomyces, Pseudomonas, Klebsiella, and Candida are commonly seen in the oral cavity. Impression materials are commonly contaminated with microorganisms. The present study was conducted to assess the disinfection efficacy of Epimax and 0.525% sodium hypochlorite on alginate impression over a period of 10 minutes. This study was conducted in the Department of Prosthodontics in the year 2015. An alginate impression material was prepared. For each bacteria species, 15 samples were used. Out of 15 samples, 3 were used by 0.525% sodium hypochlorite for disinfection for 5 minutes and 3 others for 10 minutes. Similarly, 3 samples were used by Epimax for 5 minutes and other 3 for 10 minutes. Three samples were used as controls. Each sample was polluted with Candida albicans, Pseudomonas aeruginosa, and Staphylococcus aureus strains. There was no statistical difference in P. aeruginosa and C. albicans after 5 minutes, whereas S. aureus showed significant difference (p < 0.05). Epimax was found to be more effective in removing S. aureus as compared with other disinfectants. Both Epimax and 0.525% sodium hypochlorite did not show significant difference against P. aeruginosa and C. albicans, whereas significant difference was found between both agents against S. aureus (p < 0.05). It was seen that Epimax eliminated S. aureus after 5 minutes and P. aeruginosa after 10 minutes and 99.8% C. albicans after 10 minutes. About 0.525% sodium hypochlorite eliminated 99.1% of C. albicans after 10 minutes, whereas 98.5 and 99% of S. aureus and P. aeruginosa were eliminated after 10 minutes respectively. Both Epimax and 0.525% sodium hypochlorite can disinfect the alginate impression material against C. albicans, P. aeruginosa, and S. aureus strains. However, Epimax was found to be more effective against S. aureus as compared with 0.525% sodium hypochlorite. Efficacy of disinfection of sodium hypo-chlorite and Epimax on

  5. Chronic Pseudomonas aeruginosa lung infection in normal and athymic rats

    DEFF Research Database (Denmark)

    Johansen, H K; Espersen, F; Pedersen, S S

    1993-01-01

    We have compared a chronic lung infection with Pseudomonas aeruginosa embedded in alginate beads in normal and athymic rats with an acute infection with free live P. aeruginosa bacteria. The following parameters were observed and described: mortality, macroscopic and microscopic pathologic changes......, and antibody responses. The rats challenged with P. aeruginosa alginate beads experienced a generally more severe lung pathology and the antibody responses were more homogeneous with less dispersion as compared to the rats having free live P. aeruginosa bacteria. In general, manifestations were more severe...... in the athymic rats compared to the normal rats. It is, however, notable that the athymic rats developed similar microscopic lung manifestations as the normal rats when given a large number of P. aeruginosa in the beads, with dense accumulation of neutrophil granulocytes and microcolonies comparable...

  6. Formulation of Sodium Alginate Nanospheres Containing ...

    African Journals Online (AJOL)

    Purpose: The aim of this work was to formulate sodium alginate nanospheres of amphotericin B by controlled gellification method and to evaluate the role of the nanospheres as a “passive carrier” in targeted antifungal therapy. Methods: Sodium alginate nanospheres of amphotericin B were prepared by controlled ...

  7. Drying and Rehydration of Calcium Alginate Gels

    NARCIS (Netherlands)

    Vreeker, R.; Li, L.; Fang, Y.; Appelqvist, I.; Mendes, E.

    2008-01-01

    In this paper, we study the rehydration properties of air-dried calcium alginate gel beads. Rehydration is shown to depend on alginate source (i.e. mannuronic to guluronic acid ratio) and the salt concentration in the rehydration medium. Rehydration curves are described adequately by the empirical

  8. Engineering alginate for intervertebral disc repair

    NARCIS (Netherlands)

    Bron, Johannes L.; Vonk, Lucienne A.; Smit, Theodoor H.; Koenderink, Gijsje H.

    2011-01-01

    Alginate is frequently studied as a scaffold for intervertebral disc (IVD) repair, since it closely mimics mechanical and cell-adhesive properties of the nucleus pulposus (NP) of the IVD. The aim of this study was to assess the relation between alginate concentration and scaffold stiffness and find

  9. Technological Advance for Alginate Production in Mexico

    Directory of Open Access Journals (Sweden)

    Hernández-Carmona G.

    2012-04-01

    Full Text Available Alginates are polysaccharides extracted from brown seaweeds. They are used in food industry, pharmaceutical, textile, among other, because of their properties to give high viscous solution and gel forming. This review describes the optimized process at pilot plant level for alginate production. The process includes washing the algae with HCl at pH 4, extraction of the alginate in Na2CO3 solution at pH 10 and heating to 80oC, dilution of the paste and filtrate with a vacuum rotary filter. Alginate precipitation is carried out by adding CaCl2 filtration. The fibers obtained are treated with HCl to obtain alginic acid. The product is neutralized with Na2CO3 to obtain sodium alginate. The product is dried with hot air, milled, and screened at different mesh sizes. We described the different products obtained and their physical and chemical properties. Finally, costs and barriers found that limit the alginate production at commercial level in Mexico are discussed, including the lack of the industrial design, the international cost of the alginates, the policy to give the seaweeds beds concessions, and the role of the investors.

  10. Preparation of Alginate Gel Beads Containing Metformin ...

    African Journals Online (AJOL)

    A new emulsion gelation method was used to prepare gel beads for a highly water-soluble drug metformin hydrochloride using sodium alginate as the polymer. The gel beads containing oil was prepared by gently mixing or homogenizing oil and water phase containing sodium alginate which was then extruded into calcium ...

  11. Method Designed To Detect Alginate-Degrading Bacteria

    OpenAIRE

    Kitamikado, Manabu; Yamaguchi, Kuniko; Tseng, Chao-Huang; Okabe, Bun'Ichi

    1990-01-01

    A simple turbidimetric method was developed to detect alginate degradation. Bacteria were grown in alginate-containing media, and culture fluids were mixed with an acidic albumin solution. Failure to develop a white turbidity indicated an alginate degrader. The method showed alginate degradation by Vibrio alginolyticus ATCC 17749, in contrast to prior descriptions.

  12. Papel de una región cromosómica de Pseudomonas savastanoi pv. savastanoi NCPPB 3335 en la virulencia en plantas de olivo lignificadas

    OpenAIRE

    Caballo-Ponce, Eloy; van Dillewijn, Pieter; Wittich, Regina Michaela; Ramos Rodríguez, Cayo

    2014-01-01

    El genoma del patógeno de olivo Pseudomonas savastanoi pv. savastanoi (Psv) NCPPB 3335 (58.1% G+C) presenta una región cromosómica de aproximadamente 15 kb, denominada VR8 (60.4% G+C), ausente en los genomas de todos los patovares secuenciados del complejo Pseudomonas syringae que infectan plantas herbáceas, pero presente en los patovares patógenos de plantas leñosas. El análisis de esta región mediante retrotranscipción (RT)-PCR reveló la existencia de 4 posibles operones y el gen AER-1900 (...

  13. Pseudomonas aeruginosa biofilms in cystic fibrosis

    DEFF Research Database (Denmark)

    Høiby, Niels; Ciofu, Oana; Bjarnsholt, Thomas

    2010-01-01

    of mutations, slow growth and adaptation of the bacteria to the conditions in the lungs, and to antibiotic therapy. Low bacterial metabolic activity and increase of doubling times of the bacterial cells in CF lungs are responsible for some of the tolerance to antibiotics. Conventional resistance mechanisms......, such as chromosomal ß-lactamase, upregulated efflux pumps, and mutations of antibiotic target molecules in the bacteria, also contribute to the survival of P. aeruginosa biofilms. Biofilms can be prevented by early aggressive antibiotic prophylaxis or therapy, and they can be treated by chronic suppressive therapy.......The persistence of chronic Pseudomonas aeruginosa lung infections in cystic fibrosis (CF) patients is due to biofilm-growing mucoid (alginate-producing) strains. A biofilm is a structured consortium of bacteria, embedded in a self-produced polymer matrix consisting of polysaccharide, protein...

  14. Encapsulation of Autoinducer Sensing Reporter Bacteria in Reinforced Alginate-Based Microbeads.

    Science.gov (United States)

    Li, Ping; Müller, Mareike; Chang, Matthew Wook; Frettlöh, Martin; Schönherr, Holger

    2017-07-12

    Quorum sensing, in which bacteria communities use signaling molecules for inter- and intracellular communication, has been intensively studied in recent decades. In order to fabricate highly sensitive easy-to-handle point of care biosensors that detect quorum sensing molecules, we have developed, as is reported here, reporter bacteria loaded alginate-methacrylate (alginate-MA) hydrogel beads. The alginate-MA beads, which were obtained by electrostatic extrusion, were reinforced by photo-cross-linking to increase stability and thereby to reduce bacteria leaching. In these beads the genetically engineered fluorescent reporter bacterium Escherichia coli pTetR-LasR-pLuxR-GFP (E. coli pLuxR-GFP) was encapsulated, which responds to the autoinducer N-(3-oxododecanoyl)homoserine lactone secreted by Pseudomonas aeruginosa. After encapsulation in alginate-MA hydrogel beads with diameters in the range of 100-300 μm that were produced by an electrostatic extrusion method and rapid photo-cross-linking, the E. coli pLuxR-GFP were found to possess a high degree of viability and sensing activity. The encapsulated bacteria could proliferate inside the hydrogel beads, when exposed to bacteria culture medium. In media containing the autoinducer N-(3-oxododecanoyl)homoserine lactone, the encapsulated reporter bacteria responded with a strong fluorescence signal due to an increased green fluorescent protein (GFP) expression. A prototype dipstick type sensor developed here underlines the potential of encapsulation of viable and functional reporter bacteria inside reinforced alginate-methacrylate hydrogel beads for whole cell sensors for bacteria detection.

  15. Methods of detecting and controlling mucoid Pseudomonas biofilm production

    Science.gov (United States)

    Yu, Hongwei D. (Inventor); Qiu, Dongru (Inventor)

    2013-01-01

    Compositions and methods for detecting and controlling the conversion to mucoidy in Pseudomonas aeruginosa are disclosed. The present invention provides for detecting the switch from nonmucoid to mucoid state of P. aeruginosa by measuring mucE expression or MucE protein levels. The interaction between MucE and AlgW controls the switch to mucoidy in wild type P. aeruginosa. Also disclosed is an alginate biosynthesis heterologous expression system for use in screening candidate substances that inhibit conversion to mucoidy.

  16. Azithromycin blocks quorum sensing and alginate polymer formation and increases the sensitivity to serum and stationary growth phase killing of P. aeruginosa and attenuates chronic P. aeruginosa lung infection in Cftr -/--mice

    DEFF Research Database (Denmark)

    Hoffmann, N.; Lee, Bao le ri; Hentzer, Morten

    2007-01-01

    The consequences of O-acetylated alginate-producing Pseudomonas aeruginosa biofilms in the lungs of chronically infected cystic fibrosis (CF) patients are tolerance to both antibiotic treatments and effects on the innate and the adaptive defense mechanisms. In clinical trials, azithromycin (AZM...

  17. Pseudomonas aeruginosa PAO1 exopolysaccharides are important for mixed species biofilm community development and stress tolerance.

    Science.gov (United States)

    Periasamy, Saravanan; Nair, Harikrishnan A S; Lee, Kai W K; Ong, Jolene; Goh, Jie Q J; Kjelleberg, Staffan; Rice, Scott A

    2015-01-01

    Pseudomonas aeruginosa PAO1 produces three polysaccharides, alginate, Psl, and Pel that play distinct roles in attachment and biofilm formation for monospecies biofilms. Considerably less is known about their role in the development of mixed species biofilm communities. This study has investigated the roles of alginate, Psl, and Pel during biofilm formation of P. aeruginosa in a defined and experimentally informative mixed species biofilm community, consisting of P. aeruginosa, Pseudomonas protegens, and Klebsiella pneumoniae. Loss of the Psl polysaccharide had the biggest impact on the integration of P. aeruginosa in the mixed species biofilms, where the percent composition of the psl mutant was significantly lower (0.06%) than its wild-type (WT) parent (2.44%). In contrast, loss of the Pel polysaccharide had no impact on mixed species biofilm development. Loss of alginate or its overproduction resulted in P. aeruginosa representing 8.4 and 18.11%, respectively, of the mixed species biofilm. Dual species biofilms of P. aeruginosa and K. pneumoniae were not affected by loss of alginate, Pel, or Psl, while the mucoid P. aeruginosa strain achieved a greater biomass than its parent strain. When P. aeruginosa was grown with P. protegens, loss of the Pel or alginate polysaccharides resulted in biofilms that were not significantly different from biofilms formed by the WT PAO1. In contrast, overproduction of alginate resulted in biofilms that were comprised of 35-40% of P. aeruginosa, which was significantly higher than the WT (5-20%). Loss of the Psl polysaccharide significantly reduced the percentage composition of P. aeruginosa in dual species biofilms with P. protegens (<1%). Loss of the Psl polysaccharide significantly disrupted the communal stress resistance of the three species biofilms. Thus, the polysaccharide composition of an individual species significantly impacts mixed species biofilm development and the emergent properties of such communities.

  18. Pseudomonas aeruginosa PAO1 exopolysaccharides are important for mixed species biofilm community development and stress tolerance

    Directory of Open Access Journals (Sweden)

    Saravanan ePeriasamy

    2015-08-01

    Full Text Available Pseudomonas aeruginosa PAO1 produces three polysaccharides, alginate, Psl and Pel that play distinct roles in attachment and biofilm formation for monospecies biofilms. Considerably less is known about their role in the development of mixed species biofilm communities. This study has investigated the roles of alginate, Psl and Pel during biofilm formation of P. aeruginosa in a defined and experimentally informative mixed species biofilm community, consisting of P. aeruginosa, Pseudomonas protegens and Klebsiella pneumoniae. Loss of the Psl polysaccharide had the biggest impact on the integration of P. aeruginosa in the mixed species biofilms, where the percent composition of the psl mutant was significantly lower (0.06% than its wild-type parent (2.44%. In contrast, loss of the Pel polysaccharide had no impact on mixed species biofilm development. Loss of alginate or its overproduction resulted in P. aeruginosa representing 8.4% and 18.11%, respectively, of the mixed species biofilm. Dual species biofilms of P. aeruginosa and K. pneumoniae were not affected by loss of alginate, Pel or Psl, while the mucoid P. aeruginosa strain achieved a greater biomass than its parent strain. When P. aeruginosa was grown with P. protegens, loss of the Pel or alginate polysaccharides resulted in biofilms that were not significantly different from biofilms formed by the wild-type PAO1. In contrast, overproduction of alginate resulted in biofilms that were comprised of 35-40% of P. aeruginosa, which was significantly higher than the wild-type (5-20%. Loss of the Psl polysaccharide significantly reduced the percentage composition of P. aeruginosa in dual species biofilms with P. protegens (<1%. Loss of the Psl polysaccharide significantly disrupted the communal stress resistance of the three species biofilms. Thus, the polysaccharide composition of an individual species significantly impacts mixed species biofilm development and the emergent properties of such

  19. Absence of phosphatidylcholine in bacterial membranes facilitates translocation of Sec-dependent β-lactamase AmpC from cytoplasm to periplasm in two Pseudomonas strains.

    Science.gov (United States)

    Liu, Xin; Sun, Yufang; Cao, Fang; Xiong, Min; Yang, Sheng; Li, Yang; Yu, Xuejing; Li, Yadong; Wang, Xingguo

    2017-05-01

    Phosphatidylcholine (PC) is a rare membrane lipid in bacteria but crucial for virulence of various plant and animal pathogens. The pcs- mutant lacking PC in bacterial membranes of Pseudomonas syringae pv. syringae van Hall 1336 displayed more ampicillin resistance. Ampicillin susceptibility tests gave an IC50 (half maximal inhibitory concentration) of 52 mg/ml for Pseudomonas syringae pv. syringae van Hall 1336, 53 mg/ml for the complemented strain 1336 RM (pcs-/+) and 90 mg/ml for the 1336 pcs- mutant. Activity assay of β-lactamase in periplasmic extracts gave 0.050 U/mg for the 1336 wild type, 0.052 U/mg for the 1336RM (pcs-/+), 0.086 U/mg for the 1336 pcs- mutant. Analysis by western blotting showed that the content of AmpC enzyme was markedly different in periplasmic extracts between the wild-type and pcs- mutant strains. Reverse transcriptase PCR also showed that the presence or absence of PC in bacterial membranes did not affect the transcription of ampC gene. The phenotype of the pcs- mutant was able to be recovered to the wild type by introducing a wild-type pcs gene into the pcs- mutant. Similar results were also obtained from the soil-dwelling bacterium Pseudomonas sp. 593. Our results demonstrate that the absence of PC in bacterial membranes facilitates the translocation of Sec-dependent β-lactamase AmpC from cytoplasm to periplasm, and the enhanced ampicillin-resistance in the pcs- strains mainly comes from effective translocation of AmpC via Sec-pathway. Copyright © 2016. Published by Elsevier Ltd.

  20. Encapsulation of cells in alginate gels.

    Science.gov (United States)

    Sánchez, Pello; Hernández, Rosa María; Pedraz, José Luis; Orive, Gorka

    2013-01-01

    Cell microencapsulation is based on the immobilization of cells for continuous release of therapeutics. This approach has been tested in the treatment of many diseases and several clinical trials have been performed. Factors such as the choice of cells to be encapsulated, the biomaterial used, and the procedure for carrying out the capsules are important issues when implementing this technology.This book chapter makes a comprehensive description of alginate, the most frequently employed biomaterial, passing by its structure, the extraction and treatment, and finishing with the process of gelation. It also describes the various modifications that can be carried out to allow the interaction between the alginate and the integrin receptors of encapsulated cells. The main microencapsulation technologies are presented as well as how 100 μm alginate-Poly-L-Lysine-alginate microcapsules can be fabricated with Flow-focusing technology.

  1. [Progress of alginate-based biomedical materials].

    Science.gov (United States)

    Wei, Xiaojuan; Xi, Tingfei; Gu, Qisheng; Zheng, Yufeng

    2013-08-01

    To review the current situation of alginate-based biomedical materials, especially focus on the clinical strategies and research progress in the clinical applications and point out several key issues that should be concerned about. Based on extensive investigation of domestic and foreign alginate-based biomedical materials research and related patent, literature, and medicine producted, the paper presented the comprehensive analysis of its research and development, application status, and then put forward several new research directions which should be focused on. Alginate-based biomedical materials have been widely used in clinical field with a number of patients, but mainly in the fields of wound dressings and dental impression. Heart failure treatment, embolization, tissue engineering, and stem cells culture are expected to become new directions of research and products development. Development of alginate-based new products has good clinical feasibility and necessity, but a lot of applied basic researches should be carried out in the further investigations.

  2. Alginate dressing as a donor site haemostat.

    OpenAIRE

    Groves, A. R.; Lawrence, J. C.

    1986-01-01

    An alginate fibre dressing has been used to reduce blood loss from skin graft donor sites. Significant haemostasis has been achieved in the immediate post surgery phase and no adverse reactions observed.

  3. Stability of alginate microbead properties in vitro

    Science.gov (United States)

    Moya, Monica L.; Morley, Michael; Khanna, Omaditya; Opara, Emmanuel C.

    2013-01-01

    Alginate microbeads have been investigated clinically for a number of therapeutic interventions, including drug delivery for treatment of ischemic tissues, cell delivery for tissue regeneration, and islet encapsulation as a therapy for type I diabetes. The physical properties of the microbeads play an important role in regulating cell behavior, protein release, and biological response following implantation. In this research alginate microbeads were synthesized, varying composition (mannuronic acid to guluronic acid ratio), concentration of alginate and needle gauge size. Following synthesis, the size, volume fraction, and morphometry of the beads were quantified. In addition, these properties were monitored over time in vitro in the presence of varying calcium levels in the microenvironment. The initial volume available for solute diffusion increased with alginate concentration and mannuronic (M) acid content, and bead diameter decreased with M content but increased with needle diameter. Interestingly, microbeads eroded completely in saline in less than 3 weeks regardless of synthesis conditions much faster than what has been observed in vivo. However, microbead stability was increased by the addition of calcium in the culture medium. Beads synthesized with low alginate concentration and high G content exhibited a more rapid change in physical properties even in the presence of calcium. These data suggest that temporal variations in the physical characteristics of alginate microbeads can occur in vitro depending on synthesis conditions and microbead environment. The results presented here will assist in optimizing the design of the materials for clinical application in drug delivery and cell therapy. PMID:22350778

  4. Comparative Genomic Analyses of Multiple Pseudomonas Strains Infecting Corylus avellana Trees Reveal the Occurrence of Two Genetic Clusters with Both Common and Distinctive Virulence and Fitness Traits.

    Directory of Open Access Journals (Sweden)

    Simone Marcelletti

    Full Text Available The European hazelnut (Corylus avellana is threatened in Europe by several pseudomonads which cause symptoms ranging from twig dieback to tree death. A comparison of the draft genomes of nine Pseudomonas strains isolated from symptomatic C. avellana trees was performed to identify common and distinctive genomic traits. The thorough assessment of genetic relationships among the strains revealed two clearly distinct clusters: P. avellanae and P. syringae. The latter including the pathovars avellanae, coryli and syringae. Between these two clusters, no recombination event was found. A genomic island of approximately 20 kb, containing the hrp/hrc type III secretion system gene cluster, was found to be present without any genomic difference in all nine pseudomonads. The type III secretion system effector repertoires were remarkably different in the two groups, with P. avellanae showing a higher number of effectors. Homologue genes of the antimetabolite mangotoxin and ice nucleation activity clusters were found solely in all P. syringae pathovar strains, whereas the siderophore yersiniabactin was only present in P. avellanae. All nine strains have genes coding for pectic enzymes and sucrose metabolism. By contrast, they do not have genes coding for indolacetic acid and anti-insect toxin. Collectively, this study reveals that genomically different Pseudomonas can converge on the same host plant by suppressing the host defence mechanisms with the use of different virulence weapons. The integration into their genomes of a horizontally acquired genomic island could play a fundamental role in their evolution, perhaps giving them the ability to exploit new ecological niches.

  5. In vitro and in vivo evaluation of alginate and alginate- chitosan ...

    African Journals Online (AJOL)

    Keywords: Alginate, Beads, Chitosan, Metformin, Diabetes, In vivo study. Tropical ... Diabetes, and the American Diabetes. Association as the first line therapy for Type 2 diabetes [2,3]. Following oral administration, the drug is mainly absorbed from the upper small intestine ..... HCl-loaded fenugreek seed mucilage alginate.

  6. Production of Alginate Oligosaccharides (AOS as Prebiotic Ingredients through by Alginate lyase enzyme

    Directory of Open Access Journals (Sweden)

    Fahriza Sri Afni

    2017-04-01

    Full Text Available Prebiotics is indigestible foods that can not be digested but can stimulate the growth and activity of bacteria in the digestive tract effecting human health. Alginate oligosaccharides (AOS can be used as a source of prebiotic. That compounds can be produced enzymatically by cutting long chain alginates using alginate lyase. The aim of this study was to produce alginate lyase enzyme then producing Alginate oligosaccharides (AOS as a prebiotic ingredients. The alginate lyase enzyme can be produced from Bacillus megaterium bacteria using a discontinuous fermentor. The enzyme was  optimum temperature of 45°C and an optimum pH of 7.0. Alginate oligosaccharides production was performed with the addition of different enzyme concentrations 25, 50, 75, and 100 U. The result of the addition of enzyme (25, 50,75 U showed that the value of polymerization degrees (DP were between 4-5. However, the addition of enzyme (100 U was in the range of  DP 3-4. Bacterial probiotic growth test results of Bifidobacteria and Lactobacillus showed that 1% added AOS media were able to increase the growth of probiotic bacteria compared to themedia without addition of AOS. The addition Alginate lyase activity of 50 U in AOS production is the best treatment of both probiotic bacteria.

  7. PLGA/alginate composite microspheres for hydrophilic protein delivery

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Peng [Department of Anatomy and Cell Biology, University of Saskatchewan, S7N5E5 (Canada); Division of Biomedical Engineering, University of Saskatchewan, S7N5A9 (Canada); Chen, X.B. [Department of Mechanical Engineering, University of Saskatchewan, S7N5A9 (Canada); Division of Biomedical Engineering, University of Saskatchewan, S7N5A9 (Canada); Schreyer, David J., E-mail: david.schreyer@usask.ca [Department of Anatomy and Cell Biology, University of Saskatchewan, S7N5E5 (Canada); Division of Biomedical Engineering, University of Saskatchewan, S7N5A9 (Canada)

    2015-11-01

    Poly(lactic-co-glycolic acid) (PLGA) microspheres and PLGA/alginate composite microspheres were prepared by a novel double emulsion and solvent evaporation technique and loaded with bovine serum albumin (BSA) or rabbit anti-laminin antibody protein. The addition of alginate and the use of a surfactant during microsphere preparation increased the encapsulation efficiency and reduced the initial burst release of hydrophilic BSA. Confocal laser scanning microcopy (CLSM) of BSA-loaded PLGA/alginate composite microspheres showed that PLGA, alginate, and BSA were distributed throughout the depths of microspheres; no core/shell structure was observed. Scanning electron microscopy revealed that PLGA microspheres erode and degrade more quickly than PLGA/alginate composite microspheres. When loaded with anti-laminin antibody, the function of released antibody was well preserved in both PLGA and PLGA/alginate composite microspheres. The biocompatibility of PLGA and PLGA/alginate microspheres were examined using four types of cultured cell lines, representing different tissue types. Cell survival was variably affected by the inclusion of alginate in composite microspheres, possibly due to the sensitivity of different cell types to excess calcium that may be released from the calcium cross-linked alginate. - Highlights: • A double emulsion technique is used to prepare protein-loaded PLGA or PLGA/alginate microspheres. • PLGA, alginate and protein are distributed evenly within microsphere structure. • Addition of alginate improves loading efficiency and slows degradation and protein release. • PLGA/alginate microspheres have favorable biocompatibility.

  8. Pseudomonas savastanoi pv. savastanoi: some like it knot.

    Science.gov (United States)

    Ramos, Cayo; Matas, Isabel M; Bardaji, Leire; Aragón, Isabel M; Murillo, Jesús

    2012-12-01

    Pseudomonas savastanoi pv. savastanoi is the causal agent of olive (Olea europaea) knot disease and an unorthodox member of the P. syringae complex, causing aerial tumours instead of the foliar necroses and cankers characteristic of most members of this complex. Olive knot is present wherever olive is grown; although losses are difficult to assess, it is assumed that olive knot is one of the most important diseases of the olive crop. The last century witnessed a large number of scientific articles describing the biology, epidemiology and control of this pathogen. However, most P. savastanoi pv. savastanoi strains are highly recalcitrant to genetic manipulation, which has effectively prevented the pathogen from benefitting from the scientific progress in molecular biology that has elevated the foliar pathogens of the P. syringae complex to supermodels. A number of studies in recent years have made significant advances in the biology, ecology and genetics of P. savastanoi pv. savastanoi, paving the way for the molecular dissection of its interaction with other nonpathogenic bacteria and their woody hosts. The selection of a genetically pliable model strain was soon followed by the development of rapid methods for virulence assessment with micropropagated olive plants and the analysis of cellular interactions with the plant host. The generation of a draft genome of strain NCPPB 3335 and the closed sequence of its three native plasmids has allowed for functional and comparative genomic analyses for the identification of its pathogenicity gene complement. This includes 34 putative type III effector genes and genomic regions, shared with other pathogens of woody hosts, which encode metabolic pathways associated with the degradation of lignin-derived compounds. Now, the time is right to explore the molecular basis of the P. savastanoi pv. savastanoi-olive interaction and to obtain insights into why some pathovars like it necrotic and why some like it knot

  9. Monocyte Profiles in Critically Ill Patients With Pseudomonas Aeruginosa Sepsis

    Science.gov (United States)

    2017-02-02

    Pseudomonas Infections; Pseudomonas Septicemia; Pseudomonas; Pneumonia; Pseudomonal Bacteraemia; Pseudomonas Urinary Tract Infection; Pseudomonas Gastrointestinal Tract Infection; Sepsis; Sepsis, Severe; Critically Ill

  10. Primera detección en España de necrosis bacteriana de la dipladenia y caracterización fenotípica de su agente causal (Pseudomonas savastanoi)

    OpenAIRE

    Caballo-Ponce, Eloy; Ramos, Cayo

    2017-01-01

    La dipladenia (género Mandevilla) es una planta nativa de Suramérica con un creciente interés en el sector ornamental, cuyo mercado anual está estimado en 300-400 millones de euros. Las infecciones causadas por Pseudomonas savastanoi, una de las diez especies integrantes del complejo Pseudomonas syringae, suponen una importante amenaza para este mercado. La necrosis bacteriana de la dipladenia, provocada por P. savastanoi, se caracteriza por la aparición de manchas necróticas r...

  11. Pengaruh Waktu Pengisian Cetakan Alginate Terhadap Ketepatan Model Hasil Cetakan

    OpenAIRE

    Suhailatun Nasifah Rangkuti

    2008-01-01

    Bahan cetak alginate sampai sekarang masih banyak digunakan di Kedokteran Gigi dengan alasan penanganannya mudah, alat yang dipergunakan relatif sederhana, elastis, cukup akurat dan relatif lebih murah. Umumnya komposisi alginate terdiri dari polasturn alginate, diatomaceus earth, zinc oxide, kalsium sulfaty potasium sulfat, sodium fo&fat, glikol serta bahan pewangi. Tiap komponen mempunyai fungsi tertentu dan mempengaruhi sifat-sifat bahan cetak alginate. Dalam pemanipulasian bahan ...

  12. Versatile click alginate hydrogels crosslinked via tetrazine–norbornene chemistry

    OpenAIRE

    Desai, Rajiv; Koshy, Sandeep Tharian; Hilderbrand, Scott A.; Mooney, David J.; Joshi, Neel S.

    2015-01-01

    Alginate hydrogels are well-characterized, biologically inert materials that are used in many biomedical applications for the delivery of drugs, proteins, and cells. Unfortunately, canonical covalently crosslinked alginate hydrogels are formed using chemical strategies that can be biologically harmful due to their lack of chemoselectivity. In this work we introduce tetrazine and norbornene groups to alginate polymer chains and subsequently form covalently crosslinked click alginate hydrogels ...

  13. An effect of alginate on the stability of LDH nanosheets in aqueous solution and preparation of alginate/LDH nanocomposites.

    Science.gov (United States)

    Kang, Hongliang; Shu, Yang; Li, Zhuang; Guan, Bo; Peng, Shunjin; Huang, Yong; Liu, Ruigang

    2014-01-16

    Nanosheets under 10nm in thickness are obtained by exfoliating layered double hydroxide (LDH) in formamide. The LDH nanosheets are dispersed and stabilized in an alginate aqueous solution after removing formamide by water washing and ultracentrifugation. During the water washing stage LDH nanosheets can be prevented from restacking by electrostatic stabilization of the surface of LDH sheets through the adsorption of alginate. Alginate/LDH nanocomposites can be prepared by drying the dispersion, and sandwich-like structures in the nanocomposites are formed with two alginate layers contained between two LDH sheets. LDH nanosheets in the dried alginate/LDH nanocomposites can be re-dispersed in water. The thermal stability of alginate in the nanocomposite is increased by LDH. Alginate membranes containing this layered nanocomposite can be prepared. The addition of LDH into the alginate matrix leads to an increase in the mechanical properties of the nanocomposite. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Development of Alginate/Chitosan Microparticles for Dust Mite ...

    African Journals Online (AJOL)

    Erah

    Conclusion: This study indicates that alginate and alginate-coated chitosan microparticles are safe and can be further developed for mucosal ... properties. Additionally, chitosan micro/nanoparticles can be easily prepared by ionic ... obstacles is by coating an acid-resistant polymer, such as sodium alginate, onto the.

  15. Falsirhodobacter sp. alg1 Harbors Single Homologs of Endo and Exo-Type Alginate Lyases Efficient for Alginate Depolymerization

    OpenAIRE

    Mori, Tetsushi; Takahashi, Mami; Tanaka, Reiji; Miyake, Hideo; Shibata, Toshiyuki; Chow, Seinen; Kuroda, Kouichi; Ueda, Mitsuyoshi; Takeyama, Haruko

    2016-01-01

    Alginate-degrading bacteria play an important role in alginate degradation by harboring highly efficient and unique alginolytic genes. Although the general mechanism for alginate degradation by these bacteria is fairly understood, much is still required to fully exploit them. Here, we report the isolation of a novel strain, Falsirhodobacter sp. alg1, the first report for an alginate-degrading bacterium from the family Rhodobacteraceae. Genome sequencing reveals that strain alg1 harbors a prim...

  16. Alginate Lyases from Alginate-Degrading Vibrio splendidus 12B01 Are Endolytic

    Science.gov (United States)

    Badur, Ahmet H.; Jagtap, Sujit Sadashiv; Yalamanchili, Geethika; Lee, Jung-Kul; Zhao, Huimin

    2015-01-01

    Alginate lyases are enzymes that degrade alginate through β-elimination of the glycosidic bond into smaller oligomers. We investigated the alginate lyases from Vibrio splendidus 12B01, a marine bacterioplankton species that can grow on alginate as its sole carbon source. We identified, purified, and characterized four polysaccharide lyase family 7 alginates lyases, AlyA, AlyB, AlyD, and AlyE, from V. splendidus 12B01. The four lyases were found to have optimal activity between pH 7.5 and 8.5 and at 20 to 25°C, consistent with their use in a marine environment. AlyA, AlyB, AlyD, and AlyE were found to exhibit a turnover number (kcat) for alginate of 0.60 ± 0.02 s−1, 3.7 ± 0.3 s−1, 4.5 ± 0.5 s−1, and 7.1 ± 0.2 s−1, respectively. The Km values of AlyA, AlyB, AlyD, and AlyE toward alginate were 36 ± 7 μM, 22 ± 5 μM, 60 ± 2 μM, and 123 ± 6 μM, respectively. AlyA and AlyB were found principally to cleave the β-1,4 bonds between β-d-mannuronate and α-l-guluronate and subunits; AlyD and AlyE were found to principally cleave the α-1,4 bonds involving α-l-guluronate subunits. The four alginate lyases degrade alginate into longer chains of oligomers. PMID:25556193

  17. Biochemical Characteristics and Variable Alginate-Degrading Modes of a Novel Bifunctional Endolytic Alginate Lyase.

    Science.gov (United States)

    Cheng, Yuanyuan; Wang, Dandan; Gu, Jingyan; Li, Junge; Liu, Huihui; Li, Fuchuan; Han, Wenjun

    2017-12-01

    Bifunctional alginate lyases can efficiently degrade alginate comprised of mannuronate (M) and guluronate (G), but their substrate-degrading modes have not been thoroughly elucidated to date. In this study, we present Aly1 as a novel bifunctional endolytic alginate lyase of the genus Flammeovirga The recombinant enzyme showed optimal activity at 50°C and pH 6.0. The enzyme produced unsaturated disaccharide (UDP2) and trisaccharide fractions as the final main alginate digests. Primary substrate preference tests and further structure identification of various size-defined final oligosaccharide products demonstrated that Aly1 is a bifunctional alginate lyase and prefers G to M. Tetrasaccharide-size fractions are the smallest substrates, and M, G, and UDP2 fractions are the minimal product types. Remarkably, Aly1 can vary its substrate-degrading modes in accordance with the terminus types, molecular sizes, and M/G contents of alginate substrates, producing a series of small size-defined saturated oligosaccharide products from the nonreducing ends of single or different saturated sugar chains and yielding unsaturated products in distinct but restricted patterns. The action mode changes can be partially inhibited by fluorescent labeling at the reducing ends of oligosaccharide substrates. Deletion of the noncatalytic region (NCR) of Aly1 caused weak changes of biochemical characteristics but increased the degradation proportions of small size-defined saturated M-enriched oligosaccharide substrates and unsaturated tetrasaccharide fractions without any size changes of degradable oligosaccharides, thereby enhancing the M preference and enzyme activity. Therefore, our results provided insight into the variable action mode of a novel bifunctional endolytic alginate lyase to inform accurate enzyme use.IMPORTANCE The elucidated endolytic alginate lyases usually degrade substrates into various size-defined unsaturated oligosaccharide products (≥UDP2), and exolytic enzymes

  18. Pseudomonas Lipopeptide Biosurfactants

    DEFF Research Database (Denmark)

    Bonnichsen, Lise

    Pseudomonas lipopetide biosurfactants are amphiphilic molecules with a broad range of natural functions. Due to their surface active properties, it has been suggested that Pseudomonas lipopetides potentially play a role in biodegradation of hydrophobic compounds and have essential functions...... in biofilm formation, however, detailed studies of these roles have not yet been carried out. The overall aim of this PhD project was therefore to elucidate in more depth the roles played by Pseudomonas lipopetides in pollutant biodegradation and biofilm formation. This study investigated the effect...... of the Pseudomonas lipopeptides belonging to different structural groups on important biodegradation parameters, mainly; solubilization and emulsification of hydrophobic pollutants (alkanes and PAHs) and increase of cell surface hydrophobicity of bacterial degraders. Ultimately, it was tested if these parameters led...

  19. Storage duration effect on deformation recovery of repacked alginates

    Directory of Open Access Journals (Sweden)

    Siti Sunarintyas

    2009-09-01

    Full Text Available Background: Manufacturers supply alginate impression materials as a powder that is packaged in bulk and in individual container. Some Indonesian dental suppliers often repackage the bulk alginate into individual plastic packages which are not tied tightly and stored in the display room without air conditioner. It is known that critical factors to the shelf life of alginate includer avoidance of moisture contamination which may lead to premature setting of the alginate and avoidance of high temperature which may cause depolymerization of the alginate. Purpose: The aim of this study was to determine storage duration effect of repacked alginates on deformation recovery. Methods: Two brands of alginates (Tulip®TU, and Aroma Fine DF III®AF were repacked into 120 plastic containers. The samples were stored in room condition (temperature 29° C ± 1° C, relative humidity 60% ± 10% for 1, 2, 3, 4 and 5 weeks. The alginates setting time and recovery from deformation were measured according to the ANSI/ADA specification number 18 (ISO 1563. result: The results revealed that there was decreased setting time during 5 weeks but there was slight decreased in deformation recovery after 3 weeks storage. The ANOVA showed there was no significant difference of alginates deformation recovery among the storage times (p > 0.05. Conclusion: Storage duration of repacked alginates in plastic containers during 5 weeks in room condition do not influence the alginate deformation recovery.

  20. Physicochemical properties of marine collagen-alginate biomaterial

    Science.gov (United States)

    Soon, K. S.; Hii, S. L.; Wong, C. L.; Leong, L. K.; Woo, K. K.

    2017-12-01

    Collagen base biomaterials are widely applied in the field of tissue engineering. However, these fibrous proteins in animal connective tissues are insufficient to fulfill the mechanical properties for such applications. Therefore, alginate as a natural polysaccharide was incorporated. In this study, Smooth wolf herring skins was collected from the local fish ball processing industry for collagen extraction using acid solubilisation method. On the other hand, alginate from brown seaweed (Sargassum polycystum) was extracted with calcium carbonate at 50 °C. The composite films of different collagen and alginate ratio were prepared by lyophilisation with pure collagen film as control. The effects of alginate on swelling behaviour, porosity, collagenase degradation and tensile strength of the composite films were investigated. Swelling behaviour increased with alginate content, 50 % alginate film achieved 1254.75 % swelling after 24 h. All composite films achieved more than 80 % porosity except the film with 80 % collagen (65.41 %). Porosity was highest in 100 % alginate (94.30 %). Highest tensile strength (1585.87 kPa) and young modulus (27.05 MPa) was found in 50 % alginate film. In addition, resistance to collagenase degradation was improved with alginate content, lowest degradation rate was determined in 80 % alginate film. Results indicated alginate is efficient in improving some mechanical properties of the composite film.

  1. In vitro and in vivo evaluation of alginate and alginate- chitosan ...

    African Journals Online (AJOL)

    chitosan (AL-CS) beads for oral application and to evaluate their in vitro .... gelling medium at room temperature [18,19]. After filtration, the beads were also ..... metformin HCl through incorporation into stomach specific floating alginate beads.

  2. Usefulness of Alginate Lyases Derived from Marine Organisms for the Preparation of Alginate Oligomers with Various Bioactivities.

    Science.gov (United States)

    Takeshita, S; Oda, T

    Alginate-degrading enzyme, alginate lyase, catalyzes the cleavage of glycosidic 1-4 O-linkages between uronic acid residues of alginate by a β-elimination reaction leaving a 4-deoxy-l-erythro-hex-4-ene pyranosyluronate as nonreducing terminal end. The enzymes from a wide variety of sources such as marine molluscs, seaweeds, and marine bacteria have been discovered and studied not only from a point of view of enzymological interest of enzyme itself but also for elucidation of fine chemical structure of alginate, structure-activity relationship of alginate, and biological activities and physicochemical features of the enzymatic digestion products. Based on the substrate specificities, alginate lyases are classified into three groups: poly(β-d-mannuronate) lyase, poly(α-l-guluronate) lyase, and bifunctional alginate lyase, which are specific to mannuronate, guluronate, and both uronic acid residues, respectively. We have studied enzymological aspects of these three types of alginate lyases, and bioactivities of enzymatically digested alginate oligomers. In this chapter, we described the purification and characterization of three types of alginate lyases from different marine origins and overviewed the bioactivities of alginate oligomers. © 2016 Elsevier Inc. All rights reserved.

  3. Self-disinfecting Alginate vs Conventional Alginate: Effect on Surface Hardness of Gypsum Cast-An in vitro Study.

    Science.gov (United States)

    Madhavan, Ranjith; George, Navia; Thummala, Niharika R; Ravi, S V; Nagpal, Ajay

    2017-11-01

    For the construction of any dental prosthesis, accurate impressions are necessary. Hence, we undertook the present study to evaluate and compare the surface hardness of gypsum casts poured from impressions made using conventional alginate and self-disinfecting alginate. A total of 30 impressions of stainless steel die were made, out of which 15 impressions were made with conventional alginate and 15 were made with self-disinfecting alginate and poured using Type III dental stone. Thirty stone specimens were subjected for hardness testing. Data were analyzed using independent samples t-test to compare the mean surface hardness. Difference in surface hardness was statistically insignificant (p > 0.05). Surface hardness of gypsum casts poured using impressions made from self-disinfecting alginate and conventional alginates were comparable. Self-disinfecting alginates may be employed in clinical practice as safe and effective materials to overcome the infection control issues without compromising on the properties of the material.

  4. Evaluación de rutas alternativas de síntesis de IAA en el complejo Pseudomonas syringae.

    OpenAIRE

    Pintado, Adrián; Pérez-Martínez, Isabel; Ramos, Cayo

    2016-01-01

    El ácido indol-3-acético (IAA) es una fitohormona perteneciente al grupo de las auxinas cuya producción está ampliamente distribuida entre bacterias asociadas a plantas. El IAA está implicado, entre otros procesos, en proliferación celular y maduración de las plantas. Además, se ha descrito el papel de esta hormona en la regulación de la expresión génica en bacterias. En bacterias fitopatógenas, se han descrito varias rutas de síntesis de IAA, siendo la mejor caracterizada la r...

  5. Effect of overexpressing rsmA from Pseudomonas aeruginosa on virulence of select phytotoxin-producing strains of P. syringae

    Science.gov (United States)

    The GacS/GacA two-component system functions mechanistically in conjunction with the global post-transcriptional regulator RsmA to allow pseudomonads and other bacteria to adapt to changing environmental stimuli. Analysis of this Gac/Rsm signal transduction pathway in phytotoxin-producing pathovars...

  6. Comparative genomics of pseudomonas syringae pathovar tomato reveals novel chemotaxis pathways associated with motility and plant pathogenicity

    Science.gov (United States)

    The majority of bacterial foliar plant pathogens must invade the apoplast of host plants through points of ingress, such as stomata or wounds, replicate to high population density and cause disease. How pathogens navigate plant surfaces to locate invasion sites remains poorly understood. Many bacter...

  7. Dual regulation role of GH3.5 in salicylic acid and auxin signaling during Arabidopsis-Pseudomonas syringae interaction.

    Science.gov (United States)

    Zhang, Zhongqin; Li, Qun; Li, Zhimiao; Staswick, Paul E; Wang, Muyang; Zhu, Ying; He, Zuhua

    2007-10-01

    Salicylic acid (SA) plays a central role in plant disease resistance, and emerging evidence indicates that auxin, an essential plant hormone in regulating plant growth and development, is involved in plant disease susceptibility. GH3.5, a member of the GH3 family of early auxin-responsive genes in Arabidopsis (Arabidopsis thaliana), encodes a protein possessing in vitro adenylation activity on both indole-3-acetic acid (IAA) and SA. Here, we show that GH3.5 acts as a bifunctional modulator in both SA and auxin signaling during pathogen infection. Overexpression of the GH3.5 gene in an activation-tagged mutant gh3.5-1D led to elevated accumulation of SA and increased expression of PR-1 in local and systemic tissues in response to avirulent pathogens. In contrast, two T-DNA insertional mutations of GH3.5 partially compromised the systemic acquired resistance associated with diminished PR-1 expression in systemic tissues. The gh3.5-1D mutant also accumulated high levels of free IAA after pathogen infection and impaired different resistance-gene-mediated resistance, which was also observed in the GH3.6 activation-tagged mutant dfl1-D that impacted the auxin pathway, indicating an important role of GH3.5/GH3.6 in disease susceptibility. Furthermore, microarray analysis showed that the SA and auxin pathways were simultaneously augmented in gh3.5-1D after infection with an avirulent pathogen. The SA pathway was amplified by GH3.5 through inducing SA-responsive genes and basal defense components, whereas the auxin pathway was derepressed through up-regulating IAA biosynthesis and down-regulating auxin repressor genes. Taken together, our data reveal novel regulatory functions of GH3.5 in the plant-pathogen interaction.

  8. Development of sodium alginate and konkoli gumgrafted ...

    African Journals Online (AJOL)

    This experiment is a continuation of our effort to develop a blend membrane of sodium alginate and “konkoli” gum-g-polyacrylamide (KG-g-PAAm) for bioremediation of wastewater. The effect of graft reaction conditions on the percentage graft yield in the graft copolymerization was investigated. It was observed that grafting ...

  9. An effective device for generating alginate microcapsules

    Directory of Open Access Journals (Sweden)

    Tatiana A.B. Bressel

    2008-01-01

    Full Text Available An alternative approach to somatic gene therapy is to deliver the therapeutic protein by implanting genetically modified cells that could overexpress the gene of interest. Microencapsulation devices were designed to protect cells from host rejection and prevent the foreign cells from spreading while allowing protein secretion. Alginate microcapsules form a semi-permeable structure that is suitable for in vivo injection. In this study, we report an effective laboratory protocol for producing calcium alginate microcapsules, following optimization of uniformly shaped and sized particles containing viable cells. Encapsulation of baby hamster kidney (BHK cells in alginate microcapsules was performed using a simple device consisting of a cylinder of compressed air and a peristaltic pump. A cell suspension flow of 100 mL h-1 and an air jet flow of 10 L min-1 produced the best uniformity of microcapsule size and shape. Cells maintained viability in culture for 4 weeks without any signs of necrosis, and protein diffusion was observed during this period. Our results clearly demonstrated that microisolation of BHK cells in alginate using a simple assembly device could provide an environment that is capable of preserving live cells. In addition, encapsulated cells under the conditions described were able to secrete an active enzyme even after four weeks, thus becoming potentially compatible with therapeutic protein delivery.

  10. Rusip with Alginate Addition as Seasoning

    Directory of Open Access Journals (Sweden)

    Dyah Koesoemawardani

    2017-02-01

    Full Text Available AbstractRusip was a fermented food of fish that have a distinctive aroma so that potential to be developed into instant seasoning. This research was aimed to optimize powder processing of rusip with the addition of alginate. The treatments were concentration of alginate (5% , 10% , 15% and 20% w/w and the heating temperature (50oC, 60oC , 70oC and 80oC. Data was analyzed using advanced test Honestly Significant Difference (HSD at 5% level. The results showed that the best rusip powder was alginate 5% with heating at 50oC and 70°C . The character were 5.98% and 7.57% water content; pH 5.69 and 5.85; 7.77% and 8.77% salt content; 28% and 27.65% protein content, respectively. This study proves that the addition of alginate 5% (w/w, heating at a temperature of 50oC and 70°C can trap volatile compounds formed during fermentation in rusip processing into powder.

  11. Biomolecular Mechanisms of Pseudomonas aeruginosa and Escherichia coli Biofilm Formation.

    Science.gov (United States)

    Laverty, Garry; Gorman, Sean P; Gilmore, Brendan F

    2014-07-18

    Pseudomonas aeruginosa and Escherichia coli are the most prevalent Gram-negative biofilm forming medical device associated pathogens, particularly with respect to catheter associated urinary tract infections. In a similar manner to Gram-positive bacteria, Gram-negative biofilm formation is fundamentally determined by a series of steps outlined more fully in this review, namely adhesion, cellular aggregation, and the production of an extracellular polymeric matrix. More specifically this review will explore the biosynthesis and role of pili and flagella in Gram-negative adhesion and accumulation on surfaces in Pseudomonas aeruginosa and Escherichia coli. The process of biofilm maturation is compared and contrasted in both species, namely the production of the exopolysaccharides via the polysaccharide synthesis locus (Psl), pellicle Formation (Pel) and alginic acid synthesis in Pseudomonas aeruginosa, and UDP-4-amino-4-deoxy-l-arabinose and colonic acid synthesis in Escherichia coli. An emphasis is placed on the importance of the LuxR homologue sdiA; the luxS/autoinducer-II; an autoinducer-III/epinephrine/norepinephrine and indole mediated Quorum sensing systems in enabling Gram-negative bacteria to adapt to their environments. The majority of Gram-negative biofilms consist of polysaccharides of a simple sugar structure (either homo- or heteropolysaccharides) that provide an optimum environment for the survival and maturation of bacteria, allowing them to display increased resistance to antibiotics and predation.

  12. Biomolecular Mechanisms of Pseudomonas aeruginosa and Escherichia coli Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Garry Laverty

    2014-07-01

    Full Text Available Pseudomonas aeruginosa and Escherichia coli are the most prevalent Gram-negative biofilm forming medical device associated pathogens, particularly with respect to catheter associated urinary tract infections. In a similar manner to Gram-positive bacteria, Gram-negative biofilm formation is fundamentally determined by a series of steps outlined more fully in this review, namely adhesion, cellular aggregation, and the production of an extracellular polymeric matrix. More specifically this review will explore the biosynthesis and role of pili and flagella in Gram-negative adhesion and accumulation on surfaces in Pseudomonas aeruginosa and Escherichia coli. The process of biofilm maturation is compared and contrasted in both species, namely the production of the exopolysaccharides via the polysaccharide synthesis locus (Psl, pellicle Formation (Pel and alginic acid synthesis in Pseudomonas aeruginosa, and UDP-4-amino-4-deoxy-l-arabinose and colonic acid synthesis in Escherichia coli. An emphasis is placed on the importance of the LuxR homologue sdiA; the luxS/autoinducer-II; an autoinducer-III/epinephrine/norepinephrine and indole mediated Quorum sensing systems in enabling Gram-negative bacteria to adapt to their environments. The majority of Gram-negative biofilms consist of polysaccharides of a simple sugar structure (either homo- or heteropolysaccharides that provide an optimum environment for the survival and maturation of bacteria, allowing them to display increased resistance to antibiotics and predation.

  13. Biomolecular Mechanisms of Pseudomonas aeruginosa and Escherichia coli Biofilm Formation

    Science.gov (United States)

    Laverty, Garry; Gorman, Sean P.; Gilmore, Brendan F.

    2014-01-01

    Pseudomonas aeruginosa and Escherichia coli are the most prevalent Gram-negative biofilm forming medical device associated pathogens, particularly with respect to catheter associated urinary tract infections. In a similar manner to Gram-positive bacteria, Gram-negative biofilm formation is fundamentally determined by a series of steps outlined more fully in this review, namely adhesion, cellular aggregation, and the production of an extracellular polymeric matrix. More specifically this review will explore the biosynthesis and role of pili and flagella in Gram-negative adhesion and accumulation on surfaces in Pseudomonas aeruginosa and Escherichia coli. The process of biofilm maturation is compared and contrasted in both species, namely the production of the exopolysaccharides via the polysaccharide synthesis locus (Psl), pellicle Formation (Pel) and alginic acid synthesis in Pseudomonas aeruginosa, and UDP-4-amino-4-deoxy-l-arabinose and colonic acid synthesis in Escherichia coli. An emphasis is placed on the importance of the LuxR homologue sdiA; the luxS/autoinducer-II; an autoinducer-III/epinephrine/norepinephrine and indole mediated Quorum sensing systems in enabling Gram-negative bacteria to adapt to their environments. The majority of Gram-negative biofilms consist of polysaccharides of a simple sugar structure (either homo- or heteropolysaccharides) that provide an optimum environment for the survival and maturation of bacteria, allowing them to display increased resistance to antibiotics and predation. PMID:25438014

  14. Discovery of a Novel Alginate Lyase from Nitratiruptor sp. SB155-2 Thriving at Deep-sea Hydrothermal Vents and Identification of the Residues Responsible for Its Heat Stability*

    Science.gov (United States)

    Inoue, Akira; Anraku, Moe; Nakagawa, Satoshi; Ojima, Takao

    2016-01-01

    Extremophiles are expected to represent a source of enzymes having unique functional properties. The hypothetical protein NIS_0185, termed NitAly in this study, was identified as an alginate lyase-homolog protein in the genomic database of ϵ-Proteobacteria Nitratiruptor sp. SB155-2, which was isolated from deep-sea hydrothermal vents at a water depth of 1,000 m. Among the characterized alginate lyases in the polysaccharide lyase family 7 (PL-7), the amino acid sequence of NitAly showed the highest identity (39%) with that of red alga Pyropia yezoensis alginate lyase PyAly. Recombinant NitAly (rNitAly) was successfully expressed in Escherichia coli. Purified rNitAly degraded alginate in an endolytic manner. Among alginate block types, polyM was preferable to polyG and polyMG as a substrate, and its end degradation products were mainly tri-, tetra-, and penta-saccharides. The optimum temperature and pH values were 70 °C and around 6, respectively. A high concentration of NaCl (0.8–1.4 m) was required for maximum activity. In addition, a 50% loss of activity was observed after incubation at 67 °C for 30 min. Heat stability was decreased in the presence of 5 mm DTT, and Cys-80 and Cys-232 were identified as the residues responsible for heat stability but not lyase activity. Introducing two cysteines into PyAly based on homology modeling using Pseudomonas aeruginosa alginate lyase PA1167 as the template enhanced its heat stability. Thus, NitAly is a functional alginate lyase, with its unique optimum conditions adapted to its environment. These insights into the heat stability of NitAly could be applied to improve that of other PL-7 alginate lyases. PMID:27231344

  15. Discovery of a Novel Alginate Lyase from Nitratiruptor sp. SB155-2 Thriving at Deep-sea Hydrothermal Vents and Identification of the Residues Responsible for Its Heat Stability.

    Science.gov (United States)

    Inoue, Akira; Anraku, Moe; Nakagawa, Satoshi; Ojima, Takao

    2016-07-22

    Extremophiles are expected to represent a source of enzymes having unique functional properties. The hypothetical protein NIS_0185, termed NitAly in this study, was identified as an alginate lyase-homolog protein in the genomic database of ϵ-Proteobacteria Nitratiruptor sp. SB155-2, which was isolated from deep-sea hydrothermal vents at a water depth of 1,000 m. Among the characterized alginate lyases in the polysaccharide lyase family 7 (PL-7), the amino acid sequence of NitAly showed the highest identity (39%) with that of red alga Pyropia yezoensis alginate lyase PyAly. Recombinant NitAly (rNitAly) was successfully expressed in Escherichia coli Purified rNitAly degraded alginate in an endolytic manner. Among alginate block types, polyM was preferable to polyG and polyMG as a substrate, and its end degradation products were mainly tri-, tetra-, and penta-saccharides. The optimum temperature and pH values were 70 °C and around 6, respectively. A high concentration of NaCl (0.8-1.4 m) was required for maximum activity. In addition, a 50% loss of activity was observed after incubation at 67 °C for 30 min. Heat stability was decreased in the presence of 5 mm DTT, and Cys-80 and Cys-232 were identified as the residues responsible for heat stability but not lyase activity. Introducing two cysteines into PyAly based on homology modeling using Pseudomonas aeruginosa alginate lyase PA1167 as the template enhanced its heat stability. Thus, NitAly is a functional alginate lyase, with its unique optimum conditions adapted to its environment. These insights into the heat stability of NitAly could be applied to improve that of other PL-7 alginate lyases. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Characteristics of blooming and pollen in flowers of two Syringa species (f. Oleaceae

    Directory of Open Access Journals (Sweden)

    Bożena Denisow

    2014-01-01

    Full Text Available The observations were conducted in long-term sequence studies in the years 2006, 2009, 2013, in the Lublin area, Poland (51o 16’ N, 22o 30’ E. The flowering phenology, diurnal pattern of blooming, pollen production and insect visitation to the shrubs of Syringa oblata Lindl. var. dilatata (Nakai Rehd. and S. meyeri ‘Palibin’ Schn. were examined. Syringa oblata var. dilatata and S. meyeri ‘Palibin’ blo- omed from the mid May till mid June. The species are characteristic of early morning diurnal pattern of blooming, with approx. of 60% of daily instalment of flowers opened before 9.00 (GMT + 2h. Both species studied had the corolla tube 2-fold deeper during the pollen shedding phase compared to bud stage (mean = 14.9 mm ± 3.2 SD vs. 7.8 mm ± 2.8. No species effect was found for the size of anthers, for the mass of pollen produced in anthers and for the pollen viability. A constant number of 2 stamens in the flowers of Syringa species entailed the pollen yield was derivative mainly to the number of developed flowers. Therefore significant differences were noted for the pollen yield between individual shrubs (mean 0.9 kg for S. meyeri ‘Palibin’, and 8.1 kg/ha for S. oblata var. dilatata . The Syringa oblata var. dilatata and S. meyeri ‘Palibin’ due to their attractive flowering period, and the abundance of blooming are suitable for different ornamental designs in urban areas. Unfortunately, despite the entomophilous flower traits, the insect visitors appeared sporadically.

  17. Adsorption of CO2 by alginate immobilized zeolite beads

    Science.gov (United States)

    Suratman, A.; Kunarti, E. S.; Aprilita, N. H.; Pamurtya, I. C.

    2017-03-01

    Immobilized zeolit in alginate beads for adsorption of CO2 was developed. Alginate immobilized zeolit beads was generated by dropping the mixture of Na-alginate and zeolite solution into Ca2+ solution. The adsorption efficacy such as the influence of contact time, mass of zeolite, flowrate of CO2, and mass of adsorbent was evaluated. The adsorption of CO2 onto alginate immobilized zeolit beads was investigated by performing both equilibrium and kinetic batch test. Bead was characterized by FTIR and SEM. Alginate immobilized zeolit beads demonstrated significantly higher sorption efficacy compared to plain alginate beads and zeolite with 0.25 mmol CO2 adsorbed /g adsorbent. Optimum condition was achieved with mass composition of alginate:zeolite (3:1), flowrate 50 mL/min for 20 minutes. The alginate immobilized zeolit beads showed that adsorption of CO2 followed Freundlich isotherm and pseudo second order kinetic model. Adsorption of CO2 onto alginate immobilized zeolite beads is a physisorption with adsorption energy of 6.37 kJ/mol. This results indicates that the alginate immobilized zeolit beads can be used as promising adsorbents for CO2.

  18. Produção de alginato por microrganismos Alginate production by microorganisms

    Directory of Open Access Journals (Sweden)

    José Miguel Müller

    2011-01-01

    Full Text Available O alginato é um copolímero linear constituído de unidades de ácidos α-L-gulurônicos e β-D-manurônicos e é extensamente utilizado devido as suas propriedades espessantes, estabilizantes e gelificantes. Estas características fazem com que este biopolímero encontre aplicações na indústria de alimentos, na indústria têxtil e de papel, em cosméticos e na área farmacêutica e médica. Atualmente para este conjunto de aplicações sua principal fonte são algas marrons, entretanto, o alginato pode ser obtido a partir de biossíntese, utilizando-se microrganismos do gênero Pseudomonas e Azotobacter. A produção bacteriana de alginato apresenta-se como uma alternativa interessante e sua produção por microrganismos, além de possibilitar a produção de biopolímeros de alta qualidade com características específicas e pré-determinadas, irá diminuir o impacto ambiental nas regiões em que as algas marinhas das quais é extraído são coletadas. Nos últimos anos, vários estudos relacionados à produção de alginato por microrganismos foram realizados com o objetivo de avaliar sua produção e rota metabólica de biossíntese, para caracterizar o material produzido e para determinar as potencialidades de aplicação deste novo material. O rápido desenvolvimento de aplicações do alginato na área médica e farmacêutica, bem como a descoberta de propriedades imunológicas únicas deste material tem aumentado o interesse no desenvolvimento de processos para produzi-lo. Neste artigo são abordados aspectos relacionados à produção e as características do alginato bacteriano e também reportadas às potencialidades e aplicações inovadoras nas quais este material vem sendo utilizado.Alginate is a linear copolymer consisting of units of α-L-guluronic and β-D-mannuronic acid which is widely used due to its thickening, stabilizing and gelling properties. These characteristics mean that it has many applications in the food

  19. Alginate-polylysine-alginate microcapsules: effect of size reduction on capsule properties.

    Science.gov (United States)

    Strand, B L; Gåserød, O; Kulseng, B; Espevik, T; Skjåk-Baek, G

    2002-01-01

    Alginate-polylysine-alginate capsules containing insulin-producing cells have been used as a bio-artificial pancreas in the treatment of diabetes mellitus. In a search for microcapsules with improved diffusion characteristics, a high voltage system was developed that produces 250,000 beads/min with a diameter of 160 microm +/- 3-5%. The diameter of the beads could be varied between 160-700 microm depending on the needle diameter and construction, the voltage, the distance between the electrodes and the flow of alginate solution. Ca-alginate beads with diameters of 200 and 500 microm were produced by the high voltage electrostatic system. The 200 microm beads were sensitive to poly-L-lysine (PLL) exposure and had to be washed in ion-free solution to avoid collapse. The 200 microm beads swelled more than the 500 microm beads in the washing and PLL treatment. Also, the porosity of the capsules changed with size, but capsules impermeable to tumour necrosis factor (TNF) could be made by exchanging PLL with poly-D-lysine (PDL) for the 500 microm beads. The 200 microm beads were impermeable to IgG after PLL exposure. Islets of Langerhans were encapsulated in alginate-PLL-alginate capsules and evaluated by measuring protruding islets and insulin production. Islets in microcapsules made by the high voltage electrostatic system did not function differently from islets in larger microcapsules made by an air jet system. In conclusion, alginate capsules made by a high voltage electrostatic system enable large-scale production of small capsules with a narrow size distribution that can meet the functional properties of larger capsules by small changes in the encapsulation procedure.

  20. Falsirhodobacter sp. alg1 Harbors Single Homologs of Endo and Exo-Type Alginate Lyases Efficient for Alginate Depolymerization.

    Science.gov (United States)

    Mori, Tetsushi; Takahashi, Mami; Tanaka, Reiji; Miyake, Hideo; Shibata, Toshiyuki; Chow, Seinen; Kuroda, Kouichi; Ueda, Mitsuyoshi; Takeyama, Haruko

    2016-01-01

    Alginate-degrading bacteria play an important role in alginate degradation by harboring highly efficient and unique alginolytic genes. Although the general mechanism for alginate degradation by these bacteria is fairly understood, much is still required to fully exploit them. Here, we report the isolation of a novel strain, Falsirhodobacter sp. alg1, the first report for an alginate-degrading bacterium from the family Rhodobacteraceae. Genome sequencing reveals that strain alg1 harbors a primary alginate degradation pathway with only single homologs of an endo- and exo-type alginate lyase, AlyFRA and AlyFRB, which is uncommon among such bacteria. Subsequent functional analysis showed that both enzymes were extremely efficient to depolymerize alginate suggesting evolutionary interests in the acquirement of these enzymes. The exo-type alginate lyase, AlyFRB in particular could depolymerize alginate without producing intermediate products making it a highly efficient enzyme for the production of 4-deoxy-L-erythro-5-hexoseulose uronic acid (DEH). Based on our findings, we believe that the discovery of Falsirhodobacter sp. alg1 and its alginolytic genes hints at the potentiality of a more diverse and unique population of alginate-degrading bacteria.

  1. Sodium alginate and gum acacia hydrogels of ZnO nanoparticles show wound healing effect on fibroblast cells.

    Science.gov (United States)

    Raguvaran, R; Manuja, Balvinder K; Chopra, Meenu; Thakur, Rajesh; Anand, Taruna; Kalia, Anu; Manuja, Anju

    2017-03-01

    An ideal biomaterial for wound dressing applications should possess antibacterial and anti-inflammatory properties without any toxicity to the host cells while providing the maximum healing activity. Zinc oxide nanoparticles (ZnONPs) possess antimicrobial activity and enhance wound healing, but the questions regarding their safety arise before application to the biological systems. We synthesized ZnONPs-loaded-sodium alginate-gum acacia hydrogels (SAGA-ZnONPs) by cross linking hydroxyl groups of the polymers sodium alginate and gum acacia with the aldehyde group of gluteradehyde. Here, we report the wound healing properties of sodium alginate/gum acacia/ZnONPs, circumventing the toxicity of ZnONPs simultaneously. We demonstrated the concentration-dependent zones of inhibition in treated cultures of Pseudomonas aerigunosa and Bacillus cereus and biocompatability on peripheral blood mononuclear/fibroblast cells. SAGA-ZnONPs hydrogels showed a healing effect at a low concentration of ZnONPs using sheep fibroblast cells. Our findings suggest that high concentrations of ZnONPs were toxic to cells but SAGA-ZnONPs hydrogels significantly reduced the toxicity and preserved the beneficial antibacterial and healing effect. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Accelerated aerobic granulation using alternating feed loadings: alginate-like exopolysaccharides.

    Science.gov (United States)

    Yang, Ya-Chun; Liu, Xiang; Wan, Chunli; Sun, Supu; Lee, Duu-Jong

    2014-11-01

    Alginate-like exopolysaccharides (ALE) likely contribute markedly to strength of aerobic granules. This study cultivated aerobic granules from propionate wastewaters using strategies with different organic loading rates (OLRs) (4.4-17.4 kg/m(3)-d). When the OLR increased suddenly, the constituent cells (Pseudomonas, Clostridium, Thauera and Arthrobacter) were stimulated to secret extracellular cyclic diguanylate (c-di-GMP) and produced excess ALE, which formed a large quantity of sticky materials that served as the precursor of aerobic granules. Formation of excess ALE was the prerequisite for accelerated granulation. Conversely, this study observed no enrichment of poly guluronic acid blocks in ALE during granulation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Diffusion Retardation by Binding of Tobramycin in an Alginate Biofilm Model

    DEFF Research Database (Denmark)

    Cao, Bao; Christophersen, Lars; Kolpen, Mette

    2016-01-01

    Microbial cells embedded in a self-produced extracellular biofilm matrix cause chronic infections, e. g. by Pseudomonas aeruginosa in the lungs of cystic fibrosis patients. The antibiotic killing of bacteria in biofilms is generally known to be reduced by 100–1000 times relative to planktonic...... to be uniformly distributed throughout the volume of the alginate bead. The power-law appears to be a consequence of binding to a multitude of different binding sites. In a diffusion model these results are shown to produce pronounced retardation of the penetration of tobramycin into the biofilm. This filtering...... of the free tobramycin concentration inside biofilm beads is expected to aid in augmenting the survival probability of bacteria residing in the biofilm....

  4. [Diagnostic value of alginate test in gastroesophageal reflux disease].

    Science.gov (United States)

    Bordin, D S; Masharova, A A; Droxzdov, V N; Firsova, L D; Kozhurina, T S

    2010-01-01

    To evaluate the diagnostic accuracy of single dose of gaviscon (the alginates test) in detecting gastroesophageal reflux disease (GERD) in patients with heartburn symptoms. 123 patients (male 46, female 77, age 43.6 +/- 15.5 years) with symptoms suggestive of GERD were investigated. Symptom response to the alginates test compared in GERD positive and GERD negative patients according traditional diagnostic criteria of GERD (upper endoscopy, 24-hr pH-monitoring, esophageal manometry, response to treatment with PPIs). Of 91 (78.9%) patients with positive alginates test, 87 were classified as GERD positive and 4 as GERD negative. Of 32 (26%) patients with negative alginates test, 29 were GERD negative and 3 GERD positive. The results providing a sensitivity of alginates test of 96.7% and a specificity of 87.7%. The alginates test is sensitive and specific for diagnosing GERD in patients with typical GERD symptoms.

  5. Radiation protection by ascorbic acid in sodium alginate solutions

    Energy Technology Data Exchange (ETDEWEB)

    Aliste, A.J.; Mastro, N.L. Del [Center of Radiation Technology, IPEN/CNEN/SP, University City, 05508-000 Sao Paulo (Brazil)]. E-mail: ajaliste@ipen.br

    2004-07-01

    Alginates are gelling hydrocolloids extracted from brown seaweed used widely in the nourishing and pharmaceutical industries. As alginic acid gellification retard food entrance in the stomach alginate is an additive used in diets. The objective of this work was to study the protective action of the ascorbic acid in alginate solutions against the action of {sup 60} Co gamma radiation. One % (w/v) solutions of alginate had been used and concentrations of ascorbic acid varied from 0 to 2.5% (w/v). The solutions were irradiated with doses up to 10 kGy. Viscosity/dose relationship and the p H of the solutions at 25 Centigrade were determined. Ascorbic acid behaved as an antioxidant against radiation oxidative shock in this model system of an irradiated viscous solution. Besides its radiation protective role on alginate solutions ascorbic acid promoted a viscosity increase in the range of concentrations employed. (Author)

  6. Cytotoxicity, Bactericidal, and Antioxidant Activity of Sodium Alginate Hydrosols Treated with Direct Electric Current

    Directory of Open Access Journals (Sweden)

    Żaneta Król

    2017-03-01

    Full Text Available The aim of the study was to investigate the effect of using direct electric current (DC of 0, 200, and 400 mA for five minutes on the physiochemical properties, cytotoxicity, antibacterial, and antioxidant activity of sodium alginate hydrosols with different sodium chloride concentrations. The pH, oxidation-reduction potential (ORP, electrical conductivity (EC, and available chlorine concentration (ACC were measured. The effect of sodium alginate hydrosols treated with DC on Staphylococcus aureus, Listeria monocytogenes, Bacillus cereus, Micrococcus luteus, Escherichia coli, Salmonella enteritidis, Yersinia enterocolitica, Pseudomonas fluorescence, and RAW 264.7 and L929 cells was investigated. Subsequently, the antioxidant properties of hydrosols were evaluated by determining the scavenging ability of 1,1-diphenyl-2-picrylhydrazyl free radical (DPPH and ferric reducing antioxidant power (FRAP. The results have shown that after applying 400 mA in hydrosol samples with 0.1% and 0.2% NaCl all tested bacteria were inactivated. The ACC concentration of C400 samples with NaCl was equal to 13.95 and 19.71 mg/L, respectively. The cytotoxicity analysis revealed that optimized electric field conditions and the addition of sodium chloride allow for the avoidance of toxicity effects on normal cells without disturbing the antibacterial effects. Due to the presence of oxidizing substances, the DPPH of variants treated with DC was lower than the DPPH of control samples.

  7. Polyelectroylte complex composed of chitosan and sodium alginate for wound dressing application.

    Science.gov (United States)

    Kim, H J; Lee, H C; Oh, J S; Shin, B A; Oh, C S; Park, R D; Yang, K S; Cho, C S

    1999-01-01

    Drug-impregnated polyelectrolyte complex (PEC) sponge composed of chitosan and sodium alginate was prepared for wound dressing application. The morphological structure of this wound dressing was observed to be composed of a dense skin outer layer and a porous cross-section layer by scanning electron microscopy (SEM). Equilibrium water content and release of silver sulfadiazine (AgSD) could be controlled by the number of repeated in situ PEC reactions between chitosan and sodium alginate. The release of AgSD from AgSD-impregnated PEC wound dressing in PBS buffer (PH = 7.4) was dependent on the number of repeated in situ complex formations for the wound dressing. The antibacterial capacity of AgSD-impregnated wound dressing was examined in agar plate against Pseudomonas aeruginosa and Staphylococcus aureus. From the behavior of antimicrobial release and the suppression of bacterial proliferation, it is thought that the PEC wound dressing containing antimicrobial agents could protect the wound surfaces from bacterial invasion and effectively suppress bacterial proliferation. In the cytotoxicity test, cellular damage was reduced by the controlled released of AgSD from the sponge matrix of AgSD-medicated wound dressing. In vivo tests showed that granulation tissue formation and wound contraction for the AgSD plus dihydroepiandrosterone (DHEA) impregnated PEC wound dressing were faster than any other groups.

  8. Variations in Calcium and Alginate Ions Concentration in Relation to the Properties of Calcium Alginate Nanoparticles

    Directory of Open Access Journals (Sweden)

    Hamed Daemi

    2013-05-01

    Full Text Available Alginate belongs to a group of natural polymers called polysaccharides. They have carboxylic functional groups beside hydroxyls which are common in all polysaccharides. These materials show interesting properties due to theirfunctional groups. One of these properties is the ability of this polymer as a suitable carrier of protecting and transferring drugs and biomolecules. The particle sizes of these polymers are very important for their applications, so different techniques were used for preparation of these materials. In this way polymeric nanoparticles of calcium alginate which are excellent carriers in drug delivery systems were prepared by addition of calcium chloride solution to dilute solution of sodium alginate. Investigation of the size and distribution of nanoparticles were analyzed by SEM method. The concentration effects of both alginate and calcium ions on the size and distribution of  nanoparticles were studied in this research. Results showed that the size of nanoparticles obviously decreased with decreasing polymeric alginate concentration because of lower active sites in polymer chain. On the other hand, thesize and distribution of nanoparticles are significantly improved with increase of calcium cation concentrations. The mean particle size 40-70 nm and spherical shape are the main characteristics of the prepared nanoparticles.

  9. Alginate Encapsulation of Human Hepatocytes and Assessment of Microbeads.

    Science.gov (United States)

    Mitry, Ragai R; Jitraruch, Suttiruk; Iansante, Valeria; Dhawan, Anil

    2017-01-01

    Alginate encapsulation of cells is an attractive technique in which alginate becomes polymerized entrapping the cells. The structure of formed microbeads/microcapsules is semipermeable as it allows oxygen and nutrients to go in, and waste products and other materials produced by the cells to go out. Here, we describe basic protocols for alginate encapsulation of human hepatocytes and methods for assessing the microbeads produced.

  10. Pseudomonas cichorii as the causal agent of midrib rot, an emerging disease of greenhouse-grown butterhead lettuce in Flanders.

    Science.gov (United States)

    Cottyn, Bart; Heylen, Kim; Heyrman, Jeroen; Vanhouteghem, Katrien; Pauwelyn, Ellen; Bleyaert, Peter; Van Vaerenbergh, Johan; Höfte, Monica; De Vos, Paul; Maes, Martine

    2009-05-01

    Bacterial midrib rot of greenhouse-grown butterhead lettuce (Lactuca sativa L. var. capitata) is an emerging disease in Flanders (Belgium) and fluorescent pseudomonads are suspected to play an important role in the disease. Isolations from infected lettuces, collected from 14 commercial greenhouses in Flanders, yielded 149 isolates that were characterized polyphasically, which included morphological characteristics, pigmentation, pathogenicity tests by both injection and spraying of lettuce, LOPAT characteristics, FAME analysis, BOX-PCR fingerprinting, 16S rRNA and rpoB gene sequencing, as well as DNA-DNA hybridization. Ninety-eight isolates (66%) exhibited a fluorescent pigmentation and were associated with the genus Pseudomonas. Fifty-five of them induced an HR+ (hypersensitive reaction in tobacco leaves) response. The other 43 fluorescent isolates were most probably saprophytic bacteria and about half of them were able to cause rot on potato tuber slices. BOX-PCR genomic fingerprinting was used to assess the genetic diversity of the Pseudomonas midrib rot isolates. The delineated BOX-PCR patterns matched quite well with Pseudomonas morphotypes defined on the basis of colony appearance and variation in fluorescent pigmentation. 16S rRNA and rpoB gene sequence analyses allowed most of the fluorescent isolates to be allocated to Pseudomonas, and they belonged to either the Pseudomonas fluorescens group, Pseudomonas putida group, or the Pseudomonas cichorii/syringae group. In particular, the isolates allocated to this latter group constituted the vast majority of HR+ isolates and were identified as P. cichorii by DNA-DNA hybridization. They were demonstrated by spray-inoculation tests on greenhouse-grown lettuce to induce the midrib rot disease and could be re-isolated from lesions of inoculated plants. Four HR+ non-fluorescent isolates associated with one sample that showed an atypical midrib rot were identified as Dickeya sp.

  11. PLGA/alginate composite microspheres for hydrophilic protein delivery.

    Science.gov (United States)

    Zhai, Peng; Chen, X B; Schreyer, David J

    2015-11-01

    Poly(lactic-co-glycolic acid) (PLGA) microspheres and PLGA/alginate composite microspheres were prepared by a novel double emulsion and solvent evaporation technique and loaded with bovine serum albumin (BSA) or rabbit anti-laminin antibody protein. The addition of alginate and the use of a surfactant during microsphere preparation increased the encapsulation efficiency and reduced the initial burst release of hydrophilic BSA. Confocal laser scanning microcopy (CLSM) of BSA-loaded PLGA/alginate composite microspheres showed that PLGA, alginate, and BSA were distributed throughout the depths of microspheres; no core/shell structure was observed. Scanning electron microscopy revealed that PLGA microspheres erode and degrade more quickly than PLGA/alginate composite microspheres. When loaded with anti-laminin antibody, the function of released antibody was well preserved in both PLGA and PLGA/alginate composite microspheres. The biocompatibility of PLGA and PLGA/alginate microspheres were examined using four types of cultured cell lines, representing different tissue types. Cell survival was variably affected by the inclusion of alginate in composite microspheres, possibly due to the sensitivity of different cell types to excess calcium that may be released from the calcium cross-linked alginate. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Versatile click alginate hydrogels crosslinked via tetrazine-norbornene chemistry.

    Science.gov (United States)

    Desai, Rajiv M; Koshy, Sandeep T; Hilderbrand, Scott A; Mooney, David J; Joshi, Neel S

    2015-05-01

    Alginate hydrogels are well-characterized, biologically inert materials that are used in many biomedical applications for the delivery of drugs, proteins, and cells. Unfortunately, canonical covalently crosslinked alginate hydrogels are formed using chemical strategies that can be biologically harmful due to their lack of chemoselectivity. In this work we introduce tetrazine and norbornene groups to alginate polymer chains and subsequently form covalently crosslinked click alginate hydrogels capable of encapsulating cells without damaging them. The rapid, bioorthogonal, and specific click reaction is irreversible and allows for easy incorporation of cells with high post-encapsulation viability. The swelling and mechanical properties of the click alginate hydrogel can be tuned via the total polymer concentration and the stoichiometric ratio of the complementary click functional groups. The click alginate hydrogel can be modified after gelation to display cell adhesion peptides for 2D cell culture using thiol-ene chemistry. Furthermore, click alginate hydrogels are minimally inflammatory, maintain structural integrity over several months, and reject cell infiltration when injected subcutaneously in mice. Click alginate hydrogels combine the numerous benefits of alginate hydrogels with powerful bioorthogonal click chemistry for use in tissue engineering applications involving the stable encapsulation or delivery of cells or bioactive molecules. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Microencapsulation of probiotics using sodium alginate

    Directory of Open Access Journals (Sweden)

    Mariana de Araújo Etchepare

    2015-07-01

    Full Text Available The consumption of probiotics is constantly growing due to the numerous benefits conferred on the health of consumers. In this context, Microencapsulation is a technology that favors the viability of probiotic cultures in food products, mainly by the properties of protection against adverse environmental conditions and controlled release. Currently there are different procedures for microencapsulation using polymers of various types of natural and synthetic origin. The use of sodium alginate polymers is one of the largest potential application in the encapsulation of probiotics because of their versatility, biocompatibility and toxicity exemption. The aim of this review is to present viable encapsulation techniques of probiotics with alginate, emphasizing the internal ionic gelation and external ionic gelation, with the possibility of applying, as well as promising for improving these techniques.

  14. Amphiphilic Alginates for Marine Antifouling Applications.

    Science.gov (United States)

    Jakobi, Victoria; Schwarze, Jana; Finlay, John A; Nolte, Kim A; Spöllmann, Stephan; Becker, Hans-Werner; Clare, Anthony S; Rosenhahn, Axel

    2018-02-12

    Amphiphilic polymers are promising candidates for novel fouling-release coatings for marine applications. We grafted amphiphilic alginates with fluorinated side chains to glass and silicon substrates and characterized the obtained films by contact angle goniometry, spectroscopic ellipsometry, XPS, and ATR-FTIR. The potential to inhibit protein attachment was tested against four different proteins, and intermediate fluorine loadings showed the strongest reduction with respect to hydrophobic, aliphatic controls. A similar trend was observed in dynamic attachment experiments using Navicula perminuta diatoms and settlement experiments with zoospores of the green algae Ulva linza. The results indicate that amphiphilic alginates are promising natural and renewable biomacromolecules that could be included in future protective coating technologies.

  15. Covalent stabilization of alginate hydrogel beads via Staudinger ligation: Assessment of poly(ethylene glycol) and alginate cross-linkers

    OpenAIRE

    Gattás-Asfura, Kerim M.; Fraker, Christopher A.; Stabler, Cherie L.

    2011-01-01

    Cellular encapsulation within alginate hydrogel capsules has broad applications in tissue engineering. In seeking to improve the inherent instability of ionically cross-linked alginate hydrogels, we previously demonstrated the covalent stabilization of Ba2+ cross-linked alginate-azide beads via chemoselective Staudinger ligation using a 1-methyl-2-diphenylphosphino-terephthalate (MDT) terminated poly(ethylene glycol) linker. In this study, we functionalized variant PEG, linear and branched, a...

  16. Characterization of the biocontrol activity of pseudomonas fluorescens strain X reveals novel genes regulated by glucose.

    Directory of Open Access Journals (Sweden)

    Gerasimos F Kremmydas

    Full Text Available Pseudomonas fluorescens strain X, a bacterial isolate from the rhizosphere of bean seedlings, has the ability to suppress damping-off caused by the oomycete Pythium ultimum. To determine the genes controlling the biocontrol activity of strain X, transposon mutagenesis, sequencing and complementation was performed. Results indicate that, biocontrol ability of this isolate is attributed to gcd gene encoding glucose dehydrogenase, genes encoding its co-enzyme pyrroloquinoline quinone (PQQ, and two genes (sup5 and sup6 which seem to be organized in a putative operon. This operon (named supX consists of five genes, one of which encodes a non-ribosomal peptide synthase. A unique binding site for a GntR-type transcriptional factor is localized upstream of the supX putative operon. Synteny comparison of the genes in supX revealed that they are common in the genus Pseudomonas, but with a low degree of similarity. supX shows high similarity only to the mangotoxin operon of Ps. syringae pv. syringae UMAF0158. Quantitative real-time PCR analysis indicated that transcription of supX is strongly reduced in the gcd and PQQ-minus mutants of Ps. fluorescens strain X. On the contrary, transcription of supX in the wild type is enhanced by glucose and transcription levels that appear to be higher during the stationary phase. Gcd, which uses PQQ as a cofactor, catalyses the oxidation of glucose to gluconic acid, which controls the activity of the GntR family of transcriptional factors. The genes in the supX putative operon have not been implicated before in the biocontrol of plant pathogens by pseudomonads. They are involved in the biosynthesis of an antimicrobial compound by Ps. fluorescens strain X and their transcription is controlled by glucose, possibly through the activity of a GntR-type transcriptional factor binding upstream of this putative operon.

  17. Alginate-Collagen Fibril Composite Hydrogel

    Directory of Open Access Journals (Sweden)

    Mahmoud Baniasadi

    2015-02-01

    Full Text Available We report on the synthesis and the mechanical characterization of an alginate-collagen fibril composite hydrogel. Native type I collagen fibrils were used to synthesize the fibrous composite hydrogel. We characterized the mechanical properties of the fabricated fibrous hydrogel using tensile testing; rheometry and atomic force microscope (AFM-based nanoindentation experiments. The results show that addition of type I collagen fibrils improves the rheological and indentation properties of the hydrogel.

  18. Inhibition of Pseudomonas aeruginosa virulence: characterization of the AprA-AprI interface and species selectivity.

    Science.gov (United States)

    Bardoel, Bart W; van Kessel, Kok P M; van Strijp, Jos A G; Milder, Fin J

    2012-01-20

    Pseudomonas aeruginosa secretes the virulence factor alkaline protease (AprA) to enhance its survival. AprA cleaves one of the key microbial recognition molecules, monomeric flagellin, and thereby diminishes Toll-like receptor 5 activation. In addition, AprA degrades host proteins such as complement proteins and cytokines. P. aeruginosa encodes a highly potent inhibitor of alkaline protease (AprI) that is solely located in the periplasm where it is presumed to protect periplasmic proteins against secreted AprA. We set out to study the enzyme-inhibitor interactions in more detail in order to provide a basis for future drug development. Structural and mutational studies reveal that the conserved N-terminal residues of AprI occupy the protease active site and are essential for inhibitory activity. We constructed peptides mimicking the N-terminus of AprI; however, these were incapable of inhibiting AprA-mediated flagellin cleavage. Furthermore, we expressed and purified AprI of P. aeruginosa and the homologous (37% sequence identity) AprI of Pseudomonas syringae, which remarkably show species specificity for their cognate protease. Exchange of the first five N-terminal residues between AprI of P. syringae and P. aeruginosa did not affect the observed specificity, whereas exchange of only six residues located at the AprI surface that contacts the protease did abolish specificity. These findings are elementary steps toward the design of molecules derived from the natural inhibitor of the virulence factor AprA and their use in therapeutic applications in Pseudomonas and other Gram-negative infections. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. PENGARUH APLIKASI PSEUDOMONAS FLUORESCENS P60 TERHADAP MUTU PATOLOGIS, MUTU FISIOLOGIS, DAN PERTUMBUHAN BIBIT PADI IR 64

    Directory of Open Access Journals (Sweden)

    Lisa Navitasari

    2014-08-01

    Full Text Available Effect of Pseudomonas fluorescens P60 on pathological and physiological quality and growth of rice IR 64  seedlings. The research objectives were (1 detection and identification of seed-borne pathogens of IR 64 rice, (2 testing Pseudomonas fluorescents P60 in inhibiting the in vitro growth of seed-borne pathogens colonies, (3 testing P. fluorescents P60 for pathological and physiological seed quality, and (4 testing P. fluorescents P60 on the growth of seedlings in the greenhouse. The results showed that some seed-borne pathogens can be found both on farmers’ IR 64 rice and factory’s; they were Aspergillus flavus, Alternaria padwickii, Pseudomonas glumae, and P. syringae. Application of P. flourescens P60 was able to inhibit the in vitrogrowth of colonies of all seed-borne pathogens, except P. syringae.  Related to pathological quality, the effect of P. flourescens P60 on percentage of seed-borne pathogens attack did not significantly different from that of benomil but smaller than distilled water. On the physiological quality of seeds, treatment of P. flourescens P60 has the same effect with benomil and distilled water, with  germination rate was more than 80%. In the greenhouse study,treatment of seed immersion time  in P. flourescens P60 suspension showed that the effect of immersion time as long as15 minutes and 25 minutes on  seedling height, root length, and seedling dry weightdid not significantly different. were. However, 25 minutes immersion time resulted in fresh seedling weight and root dry weight higher than that of 15 minutes immersion time.

  20. The compartmented alginate fibres optimisation for bitumen rejuvenator encapsulation

    NARCIS (Netherlands)

    Tabaković, Amir; Copuroglu, O.; Post, W.; Garcia Espallargas, Santiago J.; Schlangen, H.E.J.G.

    2017-01-01

    This article presents development of a novel self-healing technology for asphalt pavements, where asphalt binder rejuvenator is encapsulated within the compartmented alginate fibres. The key objective of the study was to optimise the compartmented alginate fibre design, i.e., maximising amount of

  1. Comparison Of The Dimensional Stability Of Alginate Impressions ...

    African Journals Online (AJOL)

    Objective: To determine and compare the dimensional stability of alginate impressions disinfected with Sodium hypochlorite using the spray and immersion methods. Methodology: Alginate impressions of a master model of truncated metal cones were made and disinfected with 1% sodium hypochlorite constituted from ...

  2. Alginate Nanospheres Prepared by Internal or External Gelation with Nanoparticles

    NARCIS (Netherlands)

    Paques, J.P.

    2015-01-01

    Alginate is a biodegradable polymer that can be used for the formation of nanospheres with applications in food, biomedicine, and biotechnology. Alginate gels in mild conditions, and does not require organic solvents for the formation of nanospheres. This makes them ideal for entrapment of sensitive

  3. Properties of advanced (reduced) graphene oxide-alginate biopolymer films

    NARCIS (Netherlands)

    Vilcinskas, K.

    2016-01-01

    In this work, properties of Calcium alginate-reduced graphene oxide and Barium alginate‐reduced graphene oxide composite films are explored. In addition, the properties of the divalent metal ion-cross-linked alginate composite films are compared to the analogous properties of uncross‐linked Sodium

  4. A Controlled Drug-Delivery Experiment Using Alginate Beads

    Science.gov (United States)

    Farrell, Stephanie; Vernengo, Jennifer

    2012-01-01

    This paper describes a simple, cost-effective experiment which introduces students to drug delivery and modeling using alginate beads. Students produce calcium alginate beads loaded with drug and measure the rate of release from the beads for systems having different stir rates, geometries, extents of cross-linking, and drug molecular weight.…

  5. Alginate derivatization: a review of chemistry, properties and applications.

    Science.gov (United States)

    Pawar, Siddhesh N; Edgar, Kevin J

    2012-04-01

    Alginates have become an extremely important family of polysaccharides because of their utility in preparing hydrogels at mild pH and temperature conditions, suitable for sensitive biomolecules like proteins and nucleic acids, and even for living cells such as islets of Langerhans. In addition, the complex monosaccharide sequences of alginates, and our growing ability to create controlled sequences by the action of isolated epimerases upon the alginate precursor poly(mannuronic acid), create remarkable opportunities for understanding the relationship of properties to sequence in natural alginates (control of monosaccharide sequence being perhaps the greatest synthetic challenge in polysaccharide chemistry). There is however a trend in recent years to create "value-added" alginates, by performing derivatization reactions on the polysaccharide backbone. For example, chemical derivatization may enable alginates to achieve enhanced hydroxyapatite (HAP) nucleation and growth, heparin-like anticoagulation properties, improved cell-surface interactions, degradability, or tuning of the hydrophobic-hydrophilic balance for optimum drug release. The creation of synthetic derivatives therefore has the potential to empower the next generation of applications for alginates. Herein we review progress towards controlled synthesis of alginate derivatives, and the properties and applications of these derivatives. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. A novel wound dressing material—fibrin–chitosan–sodium alginate ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 35; Issue 7. A novel wound dressing material — fibrin–chitosan–sodium alginate composite sheet ... FTIR spectrum confirmed the interaction between amino groups of chitosan, fibrin and sodium alginate and SEM studies revealed composite nature of the material.

  7. 21 CFR 172.858 - Propylene glycol alginate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Propylene glycol alginate. 172.858 Section 172.858... CONSUMPTION Multipurpose Additives § 172.858 Propylene glycol alginate. The food additive propylene glycol... information required by the act: (1) The name of the additive, “propylene glycol alginate” or “propylene...

  8. Composition dependent properties of graphene (oxide)-alginate biopolymer nanocomposites

    NARCIS (Netherlands)

    Vilcinskas, K.; Jansen, K.M.B.; Mulder, F.M.; Picken, S.J.; Koper, G.J.M.

    2016-01-01

    We report on the thermal, electrical, and mechanical properties of alginate biopolymer nanocomposites prepared by solution casting with various amounts of graphene oxide (GO) or reduced GO (rGO). Our data shows that the thermal stability of alginate nanocomposites can be improved by the

  9. Alginate-based hybrid aerogel microparticles for mucosal drug delivery.

    Science.gov (United States)

    Gonçalves, V S S; Gurikov, P; Poejo, J; Matias, A A; Heinrich, S; Duarte, C M M; Smirnova, I

    2016-10-01

    The application of biopolymer aerogels as drug delivery systems (DDS) has gained increased interest during the last decade since these structures have large surface area and accessible pores allowing for high drug loadings. Being biocompatible, biodegradable and presenting low toxicity, polysaccharide-based aerogels are an attractive carrier to be applied in pharmaceutical industry. Moreover, some polysaccharides (e.g. alginate and chitosan) present mucoadhesive properties, an important feature for mucosal drug delivery. This feature allows to extend the contact of DDS with biological membranes, thereby increasing the absorption of drugs through the mucosa. Alginate-based hybrid aerogels in the form of microparticles (aerogel microparticles were obtained for alginate, hybrid alginate/pectin and alginate/κ-carrageenan aerogels, presenting high specific surface area (370-548m(2)g(-1)) and mucoadhesive properties. The microparticles were loaded with ketoprofen via adsorption from its solution in sc-CO2, and with quercetin via supercritical anti-solvent precipitation. Loading of ketoprofen was in the range between 17 and 22wt% whereas quercetin demonstrated loadings of 3.1-5.4wt%. Both the drugs were present in amorphous state. Loading procedure allowed the preservation of antioxidant activity of quercetin. Release of both drugs from alginate/κ-carrageenan aerogel was slightly faster compared to alginate/pectin. The results indicate that alginate-based aerogel microparticles can be viewed as promising matrices for mucosal drug delivery applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. [Phytochemical and pharmacological progress on peeled stem of Syringa pinnatifolia, a Mongolian folk medicine].

    Science.gov (United States)

    Su, Guo-zhu; Chen, Jie; Cao, Yuan; Bai, Rui-feng; Chen, Su-yi-le; Tu, Peng-fei; Chai, Xing-yun

    2015-11-01

    The peeled stem of Syringa pinnatifolia is a Mongolia folk medicine, mainly distributed in Helan mountain, inner Mongolia and Ningxia provinces of China. It has been used for the treatment of cardiopalmus, angina pectoris, and cardiopulmonary diseases for a long history. Contemporary research revealed the presence of major lignans, sesquitepenes, and essential oils, and showed myocardial ischemia related diseases. This review summarizes the plant origins, taxonomic disputes, phytochemical and pharmacological research progress, hopefully to provide reference for full medicinal utilization, clarification of biological effective substance, and drug development.

  11. Applications of Alginate-Based Bioinks in 3D Bioprinting

    Science.gov (United States)

    Axpe, Eneko; Oyen, Michelle L.

    2016-01-01

    Three-dimensional (3D) bioprinting is on the cusp of permitting the direct fabrication of artificial living tissue. Multicellular building blocks (bioinks) are dispensed layer by layer and scaled for the target construct. However, only a few materials are able to fulfill the considerable requirements for suitable bioink formulation, a critical component of efficient 3D bioprinting. Alginate, a naturally occurring polysaccharide, is clearly the most commonly employed material in current bioinks. Here, we discuss the benefits and disadvantages of the use of alginate in 3D bioprinting by summarizing the most recent studies that used alginate for printing vascular tissue, bone and cartilage. In addition, other breakthroughs in the use of alginate in bioprinting are discussed, including strategies to improve its structural and degradation characteristics. In this review, we organize the available literature in order to inspire and accelerate novel alginate-based bioink formulations with enhanced properties for future applications in basic research, drug screening and regenerative medicine. PMID:27898010

  12. [PROGRESS OF ALGINATE DERIVATIVES BASED ON BIOMEDICAL MATERIALS].

    Science.gov (United States)

    Wei, Xiaojuan; Gu, Qisheng; Wang, Qingsheng; Xiao, Jimin

    2015-04-01

    To summarize the current research status of alginate derivatives based on biomedical materials, and analyze several key points as novel clinical products. The general preparation and application methods of alginate derivatives based on biomedical materials at home and abroad were reviewed. The present status and problems were analyzed. The derivation methods to prepare alginate derivatives include crosslink, sulfation, biological factors derivatization, hydrophobic modification, and graft copolymerization. With excellent bionic performance of structure and properties, many alginate derivatives are available for tissue engineering scaffolds, artificial organs, and drug delivery systems etc. However, more systematic applied basic research data should be collected and statistically analyzed for risk managements. Alginate derivatives have good feasibility as novel medical products, meanwhile, systematic evaluation and verification should be executed for their safety, effectiveness, and suitability.

  13. Synthesis and antimicrobial properties of Zn-mineralized alginate nanocomposites.

    Science.gov (United States)

    Malagurski, Ivana; Levic, Steva; Pantic, Milena; Matijasevic, Danka; Mitric, Miodrag; Pavlovic, Vladimir; Dimitrijevic-Brankovic, Suzana

    2017-06-01

    New bioactive and antimicrobial biomaterials were produced by alginate-mediated biomineralization with Zn-mineral phase. The synthesis procedure is simple, cost-effective and resulted in two different Zn-mineralized alginate nanocomposites, Zn-carbonate/Zn-alginate and Zn-phosphate/Zn-alginate. The presence of Zn-mineral phase and its type, have significantly affected nanocomposite morphology, stability, total metallic loading and potential to release Zn(II) in physiological environment. Antimicrobial experiments showed that both types of Zn-mineralized nanocomposites exhibit strong antimicrobial effect against Escherichia coli, Staphylococcus aureus and Candida albicans. These results suggest that alginate biomineralization, where minerals are salts of essential metallic ions like Zn(II), represents a good strategy for designing multifunctional biomaterials for potential biomedical applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. One Pot Synthesis and Characterization of Alginate Stabilized Semiconductor Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sundarrajan, Parani; Eswaran, Prabakaran; Marimuthu, Alexander; Subhadra, Lakshmi Baddireddi; Kannaiyan, Pandian [Univ., of Madras, Chennai (India)

    2012-10-15

    Uniform and well dispersed metal sulfide semiconductor nanoparticles incorporated into matrices of alginate biopolymer are prepared by using a facile in situ method. The reaction was accomplished by impregnation of alginate with divalent metal ions followed by reaction with thioacetamide. XRD analysis showed that the nanoparticles incorporated in the polymer matrix were of cubic structure with the average particle diameter of 1.8 to 4.8 nm. Field emission scanning electron microscopy and high resolution transmission electron microscopy images indicated that the particles were well dispersed and distributed uniformly in the matrices of alginate polymer. FT-IR spectra confirmed the presence of alginate in the nanocomposite. The crystalline nature and thermal stability of the alginate polymer was found to be influenced by the nature of the divalent metal ions used for the synthesis. The proposed method is considered to be a simple and greener approach for large scale synthesis of uniform sized nanoparticles.

  15. Biodegradable Nanocomposite Films Based on Sodium Alginate and Cellulose Nanofibrils

    Directory of Open Access Journals (Sweden)

    B. Deepa

    2016-01-01

    Full Text Available Biodegradable nanocomposite films were prepared by incorporation of cellulose nanofibrils (CNF into alginate biopolymer using the solution casting method. The effects of CNF content (2.5, 5, 7.5, 10 and 15 wt % on mechanical, biodegradability and swelling behavior of the nanocomposite films were determined. The results showed that the tensile modulus value of the nanocomposite films increased from 308 to 1403 MPa with increasing CNF content from 0% to 10%; however, it decreased with further increase of the filler content. Incorporation of CNF also significantly reduced the swelling percentage and water solubility of alginate-based films, with the lower values found for 10 wt % in CNF. Biodegradation studies of the films in soil confirmed that the biodegradation time of alginate/CNF films greatly depends on the CNF content. The results evidence that the stronger intermolecular interaction and molecular compatibility between alginate and CNF components was at 10 wt % in CNF alginate films.

  16. Population Structure of Pseudomonas aeruginosa

    National Research Council Canada - National Science Library

    Lutz Wiehlmann; Gerd Wagner; Nina Cramer; Benny Siebert; Peter Gudowius; Gracia Morales; Thilo Köhler; Christian van Delden; Christian Weinel; Peter Slickers; Burkhard Tümmler

    2007-01-01

    The metabolically versatile Gram-negative bacterium Pseudomonas aeruginosa inhabits terrestrial, aquatic, animal-, human-, and plant-host-associated environments and is an important causative agent...

  17. Preparation and Biochemical Property of Penicillin G Amidase-Loaded Alginate and Alginate/Chitosan Hydrogel Beads.

    Science.gov (United States)

    Nupur, Neh; Ashish, EmptyYN Y; Debnath, Mira

    2016-01-01

    Penicillin G amidase (PGA) (EC 3.5.1.11) are enzymes that are mainly involved in the synthesis of semi-synthetic }-lactam antibiotics. Soluble PGA is costly and lacks long term operational stability. We revised most of the patents related to Penicillin G amidase (PGA) immobilization in the section "Recent Patents on Immobilized Penicillin G Amidase". The aim of this work was to study comparative biochemical property of PGA enzyme immobilized in two hydro-gel beads - Ca-alginate and alginate+chitosan hybrid and morphologically characterised by SEM. PGA immobilized in alginate+chitosan hybrid bead shows high pH and thermal stability. Km, Vmax and Effectiveness factor (1) value of free PGA were 56.19 mg/ml, 1.786 U/ml and 1, respectively. These parameters for PGA immobilized alginate beads were 64.84 mg/ml, 0.781U/ml and 0.437, respectively and for PGA immobilized alginate+chitosan hybrid beads were 87.08 mg/ml, 0.622 U/ml and 0.348, respectively. Immobilized PGA on alginate+chitosan hybrid beads gave the highest thermal stability, reusability and storage stability than alginate immobilized PGA. The entrapment of PGA on alginate+chitosan hybrid beads revealed several advantages and could be used in 6APA (6- aminopenicillanic acid) production.

  18. Comparison of some biochemical properties of artichoke polyphenol oxidase entrapped in alginate-carrageenan and alginate gels.

    Science.gov (United States)

    Yagar, Hulya; Kocaturk, Selin

    2014-08-01

    Polyphenol oxidase (PPO, EC.1.14.18.1) isolated from artichoke (Cynara scolymus) was entrapped within alginate and alginate+ carrageenan beads, and the catecholase and cresolase activities of both entrapped enzymes were determined. Some properties of these immobilized enzymes such as optimum pH and temperature, kinetic parameters (Km and Vmax), thermal, and storage stability were determined and compared to each other. The highest catecholase activity was observed in alginate gel (370 U/g bead) while the highest cresolase activity was in alginate+ carrageenan gel (90 U/g bead). For catecholase and cresolase activities, optimum pHs of alginate and alginate+ carrageenan beads were determined to be 7.0 and 4.0, respectively. Optimum temperatures for catecholase activity were determined to be 40°C for both entrapped enzymes. These values for cresolase activity were 30°C and 20°C, respectively. Immobilized artichoke PPOs greatly preserved their thermal stability which exists anyway. The catalytic efficiency value (Vmax/Km) of the alginate beads is approximately high as two-and-a-half folds of that of alginate+κ-carrageenan beads for cresolase activity. These values were very close for catecholase activity. Immobilized beads saved their both activities after 30 days of storage at 4°C.

  19. Adhesion of nonmotile Pseudomonas aeruginosa on "soft" polyelectrolyte layer in a radial stagnation point flow system: measurements and model predictions.

    Science.gov (United States)

    de Kerchove, Alexis J; Weroński, Paweł; Elimelech, Menachem

    2007-11-20

    Prediction of bacterial deposition rates onto substrates in natural aquatic systems is quite challenging because of the inherent complexity of such systems. In this study, we compare experimental deposition kinetics of nonmotile bacteria (Pseudomonas aeruginosa) on an alginate-coated substrate in a radial stagnation point flow (RSPF) system to predictions based on DLVO theory. The "softness" of the surface layer of the bacteria and alginate-coated substrate was considered in the calculations of their electrokinetic surface properties, and the relevance of both the classical zeta potential and the outer surface potential as surrogates for surface potential was investigated. Independent of the used electrical potentials, we showed that significant discrepancies exist between theory and experiments. Analysis of microscopic images in the RSPF system has demonstrated, for the first time, that irreversible deposition of particles or cells entrapped in the secondary energy minimum can occur on the alginate layer, despite the hydrodynamic forces resulting from the radial flow in the RSPF system. It is suggested that polymeric structures associated with the surface of the particle/cell and the alginate-coated substrate are responsible for the transition between the secondary minimum and primary energy well. This mode of deposition is likely to be important in the deposition of microorganisms in complex aquatic systems.

  20. Sorbsan calcium alginate fibre dressings in footcare.

    Science.gov (United States)

    Fraser, R; Gilchrist, T

    1983-07-01

    This report outlines the successful application of Sorbsan-calcium alginate fibre dressings in footcare. This biomaterial has been found in clinical trials to have quite outstanding merit and can be used for sinus drainage and in the treatment of fissures, hypergranulation tissue, interdigital maceration, heloma molle and other lesions. Sorbsan bonds with and aids natural healing scabs and effects drainage of moist sites thus assisting in creating an environment conducive to the healing process. Similar promise has been demonstrated for this material in ongoing trials in hospitals in Sunderland where Sorbsan has been used effectively in the treatment of diabetic and trophic ulcers.

  1. Synthesis and evaluation of dual crosslinked alginate microbeads.

    Science.gov (United States)

    Somo, Sami I; Langert, Kelly; Yang, Chin-Yu; Vaicik, Marcella K; Ibarra, Veronica; Appel, Alyssa A; Akar, Banu; Cheng, Ming-Huei; Brey, Eric M

    2018-01-01

    Alginate hydrogels have been investigated for a broad variety of medical applications. The ability to assemble hydrogels at neutral pH and mild temperatures makes alginate a popular choice for the encapsulation and delivery of cells and proteins. Alginate has been studied extensively for the delivery of islets as a treatment for type 1 diabetes. However, poor stability of the encapsulation systems after implantation remains a challenge. In this paper, alginate was modified with 2-aminoethyl methacrylate hydrochloride (AEMA) to introduce groups that can be photoactivated to generate covalent bonds. This enabled formation of dual crosslinked structure upon exposure to ultraviolet light following initial ionic crosslinking into bead structures. The degree of methacrylation was varied and in vitro stability, long term swelling, and cell viability examined. At low levels of the methacrylation, the beads could be formed by first ionic crosslinks followed by exposure to ultraviolet light to generate covalent bonds. The methacrylated alginate resulted in more stable beads and cells were viable following encapsulation. Alginate microbeads, ionic (unmodified) and dual crosslinked, were implanted into a rat omentum pouch model. Implantation was performed with a local injection of 100 µl of 50 µg/ml of Lipopolysaccharide (LPS) to stimulate a robust inflammatory challenge in vivo. Implants were retrieved at 1 and 3 weeks for analysis. The unmodified alginate microbeads had all failed by week 1, whereas the dual-crosslinked alginate microbeads remained stable up through 3 weeks. The modified alginate microbeads may provide a more stable alternative to current alginate-based systems for cell encapsulation. Alginate, a naturally occurring polysaccharide, has been used for cell encapsulation to prevent graft rejection of cell transplants for people with type I diabetes. Although some success has been observed in clinical trials, the lack of reproducibility and failure to

  2. Ca2+ released from calcium alginate gels can promote inflammatory responses in vitro and in vivo

    OpenAIRE

    Chan, Gail; Mooney, David J.

    2013-01-01

    In general, alginate hydrogels are considered to be biologically inert and are commonly used for biomedical purposes that require minimum inflammation. However, Ca2+, which is commonly used to crosslink alginate, is a critical second messenger in immune cell signaling, and little has been done to understand its effect on immune cell fate when delivered as a component of alginate gels. We found that dendritic cells (DCs) encapsulated in Ca2+-crosslinked alginate (calcium alginate) secreted at ...

  3. Ambroxol interferes with Pseudomonas aeruginosa quorum sensing.

    Science.gov (United States)

    Lu, Qi; Yu, Jialin; Yang, Xiqiang; Wang, Jiarong; Wang, Lijia; Lin, Yayin; Lin, Lihua

    2010-09-01

    The mucolytic agent ambroxol has been reported to interfere with the formation of Pseudomonas aeruginosa-derived biofilms in addition to reducing alginate production by undefined mechanisms. Since quorum sensing is a key regulator of virulence and biofilm formation, we examined the effects of ambroxol on P. aeruginosa PAO1 wild-type bacterial clearance rates, adhesion profiles and biofilm formation compared with the quorum sensing-deficient, double-mutant strains DeltalasR DeltarhlR and DeltalasI DeltarhlI. Data presented in this report demonstrated that ambroxol treatment reduced survival rates of the double-mutant strains compared with the wild-type strain in a dose-dependent manner even though the double-mutants had increased adhesion in the presence of ambroxol compared with the wild-type strain. The PAO1 wild-type strain produced a significantly thicker biofilm (21.64+/-0.57 microm) compared with the biofilms produced by the DeltalasR DeltarhlR (7.36+/-0.2 microm) and DeltalasI DeltarhlI (6.62+/-0.31 microm) isolates. Ambroxol treatment reduced biofilm thickness, increased areal porosity, and decreased the average diffusion distance and textual entropy of wild-type and double-mutant strains. However, compared with the double-mutant strains, the changes observed for the wild-type strain were more clearly defined. Finally, ambroxol exhibited significant antagonistic quorum-sensing properties, suggesting that it could be adapted for use clinically in the treatment of cystic fibrosis and to reduce biofilm formation and in the colonisation of indwelling devices. Copyright (c) 2010 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  4. Pseudomonas aeruginosa Biofilms

    DEFF Research Database (Denmark)

    Alhede, Maria; Bjarnsholt, Thomas; Givskov, Michael

    2014-01-01

    The opportunistic gram-negative bacterium Pseudomonas aeruginosa is implicated in many chronic infections and is readily isolated from chronic wounds, medical devices, and the lungs of cystic fibrosis patients. P. aeruginosa is believed to persist in the host organism due to its capacity to form...... biofilms, which protect the aggregated, biopolymer-embedded bacteria from the detrimental actions of antibiotic treatments and host immunity. A key component in the protection against innate immunity is rhamnolipid, which is a quorum sensing (QS)-regulated virulence factor. QS is a cell-to-cell signaling...

  5. A commensal streptococcus hijacks a Pseudomonas aeruginosa exopolysaccharide to promote biofilm formation.

    Directory of Open Access Journals (Sweden)

    Jessica A Scoffield

    2017-04-01

    Full Text Available Pseudomonas aeruginosa causes devastating chronic pulmonary infections in cystic fibrosis (CF patients. Although the CF airway is inhabited by diverse species of microorganisms interlaced within a biofilm, many studies focus on the sole contribution of P. aeruginosa pathogenesis in CF morbidity. More recently, oral commensal streptococci have been identified as cohabitants of the CF lung, but few studies have explored the role these bacteria play within the CF biofilm. We examined the interaction between P. aeruginosa and oral commensal streptococci within a dual species biofilm. Here we report that the CF P. aeruginosa isolate, FRD1, enhances biofilm formation and colonization of Drosophila melanogaster by the oral commensal Streptococcus parasanguinis. Moreover, production of the P. aeruginosa exopolysaccharide, alginate, is required for the promotion of S. parasanguinis biofilm formation and colonization. However, P. aeruginosa is not promoted in the dual species biofilm. Furthermore, we show that the streptococcal adhesin, BapA1, mediates alginate-dependent enhancement of the S. parasanguinis biofilm in vitro, and BapA1 along with another adhesin, Fap1, are required for the in vivo colonization of S. parasanguinis in the presence of FRD1. Taken together, our study highlights a new association between streptococcal adhesins and P. aeruginosa alginate, and reveals a mechanism by which S. parasanguinis potentially colonizes the CF lung and interferes with the pathogenesis of P. aeruginosa.

  6. A commensal streptococcus hijacks a Pseudomonas aeruginosa exopolysaccharide to promote biofilm formation.

    Science.gov (United States)

    Scoffield, Jessica A; Duan, Dingyu; Zhu, Fan; Wu, Hui

    2017-04-01

    Pseudomonas aeruginosa causes devastating chronic pulmonary infections in cystic fibrosis (CF) patients. Although the CF airway is inhabited by diverse species of microorganisms interlaced within a biofilm, many studies focus on the sole contribution of P. aeruginosa pathogenesis in CF morbidity. More recently, oral commensal streptococci have been identified as cohabitants of the CF lung, but few studies have explored the role these bacteria play within the CF biofilm. We examined the interaction between P. aeruginosa and oral commensal streptococci within a dual species biofilm. Here we report that the CF P. aeruginosa isolate, FRD1, enhances biofilm formation and colonization of Drosophila melanogaster by the oral commensal Streptococcus parasanguinis. Moreover, production of the P. aeruginosa exopolysaccharide, alginate, is required for the promotion of S. parasanguinis biofilm formation and colonization. However, P. aeruginosa is not promoted in the dual species biofilm. Furthermore, we show that the streptococcal adhesin, BapA1, mediates alginate-dependent enhancement of the S. parasanguinis biofilm in vitro, and BapA1 along with another adhesin, Fap1, are required for the in vivo colonization of S. parasanguinis in the presence of FRD1. Taken together, our study highlights a new association between streptococcal adhesins and P. aeruginosa alginate, and reveals a mechanism by which S. parasanguinis potentially colonizes the CF lung and interferes with the pathogenesis of P. aeruginosa.

  7. Ferric Uptake Regulator Fur Is Conditionally Essential in Pseudomonas aeruginosa.

    Science.gov (United States)

    Pasqua, Martina; Visaggio, Daniela; Lo Sciuto, Alessandra; Genah, Shirley; Banin, Ehud; Visca, Paolo; Imperi, Francesco

    2017-11-15

    In Pseudomonas aeruginosa, the ferric uptake regulator (Fur) protein controls both metabolism and virulence in response to iron availability. Differently from other bacteria, attempts to obtain fur deletion mutants of P. aeruginosa failed, leading to the assumption that Fur is an essential protein in this bacterium. By investigating a P. aeruginosa conditional fur mutant, we demonstrate that Fur is not essential for P. aeruginosa growth in liquid media, biofilm formation, and pathogenicity in an insect model of infection. Conversely, Fur is essential for growth on solid media since Fur-depleted cells are severely impaired in colony formation. Transposon-mediated random mutagenesis experiments identified pyochelin siderophore biosynthesis as a major cause of the colony growth defect of the conditional fur mutant, and deletion mutagenesis confirmed this evidence. Impaired colony growth of pyochelin-proficient Fur-depleted cells does not depend on oxidative stress, since Fur-depleted cells do not accumulate higher levels of reactive oxygen species (ROS) and are not rescued by antioxidant agents or overexpression of ROS-detoxifying enzymes. Ectopic expression of pch genes revealed that pyochelin production has no inhibitory effects on a fur deletion mutant of Pseudomonas syringae pv. tabaci, suggesting that the toxicity of the pch locus in Fur-depleted cells involves a P. aeruginosa-specific pathway(s).IMPORTANCE Members of the ferric uptake regulator (Fur) protein family are bacterial transcriptional repressors that control iron uptake and storage in response to iron availability, thereby playing a crucial role in the maintenance of iron homeostasis. While fur null mutants of many bacteria have been obtained, Fur appears to be essential in Pseudomonas aeruginosa for still unknown reasons. We obtained Fur-depleted P. aeruginosa cells by conditional mutagenesis and showed that Fur is dispensable for planktonic growth, while it is required for colony formation. This is

  8. The compartmented alginate fibres optimisation for bitumen rejuvenator encapsulation

    Directory of Open Access Journals (Sweden)

    Amir Tabaković

    2017-08-01

    Full Text Available This article presents development of a novel self-healing technology for asphalt pavements, where asphalt binder rejuvenator is encapsulated within the compartmented alginate fibres. The key objective of the study was to optimise the compartmented alginate fibre design, i.e., maximising amount of rejuvenator encapsulated within the fibre. The results demonstrate that optimum rejuvenator content in the alginate fibre is of 70:30 rejuvenator/alginate ratio. The fibres are of sufficient thermal and mechanical strength to survive harsh asphalt mixing and compaction processes. Furthermore, results illustrate that zeer open asfalt beton (ZOAB asphalt mix containing 5% of 70:30 rejuvenator/alginate ratio compartmented alginate fibres has higher strength, stiffness and better healing properties in comparison to the control asphalt mix, i.e., mix without fibres, and mix containing fibres with lower rejuvenator content. These results show that compartmented alginate fibres encapsulating bitumen rejuvenator present a promising new approach for the development of self-healing asphalt pavement systems.

  9. Replication arrest is a major threat to growth at low temperature in Antarctic Pseudomonas syringae Lz4W.

    Science.gov (United States)

    Sinha, Anurag K; Pavankumar, Theetha L; Kamisetty, Srinivasulu; Mittal, Pragya; Ray, Malay K

    2013-08-01

    Chromosomal damage was detected previously in the recBCD mutants of the Antarctic bacterium Pseudomonas syringae Lz4W, which accumulated linear chromosomal DNA leading to cell death and growth inhibition at 4°C. RecBCD protein generally repairs DNA double-strand breaks by RecA-dependent homologous recombination pathway. Here we show that ΔrecA mutant of P. syringae is not cold-sensitive. Significantly, inactivation of additional DNA repair genes ruvAB rescued the cold-sensitive phenotype of ΔrecBCD mutant. The ΔrecA and ΔruvAB mutants were UV-sensitive as expected. We propose that, at low temperature DNA replication encounters barriers leading to frequent replication fork (RF) arrest and fork reversal. RuvAB binds to the reversed RFs (RRFs) having Holliday junction-like structures and resolves them upon association with RuvC nuclease to cause linearization of the chromosome, a threat to cell survival. RecBCD prevents this by degrading the RRFs, and facilitates replication re-initiation. This model is consistent with our observation that low temperature-induced DNA lesions do not evoke SOS response in P. syringae. Additional studies show that two other repair genes, radA (encoding a RecA paralogue) and recF are not involved in providing cold resistance to the Antarctic bacterium. © 2013 John Wiley & Sons Ltd.

  10. Controlled Electrospray Generation of Nonspherical Alginate Microparticles.

    Science.gov (United States)

    Jeyhani, Morteza; Mak, Sze Yi; Sammut, Stephen; Shum, Ho Cheung; Hwang, Dae Kun; Tsai, Scott S H

    2017-12-11

    Electrospraying is a technique used to generate microparticles in a high throughput manner. For biomedical applications, a biocompatible electrosprayed material is often desirable. Using polymers, such as alginate hydrogels, makes it possible to create biocompatible and biodegradable microparticles that can be used for cell encapsulation, to be employed as drug carriers, and for use in 3D cell culturing. Evidence in the literature suggests that the morphology of the biocompatible microparticles is relevant in controlling the dynamics of the microparticles in drug delivery and 3D cell culturing applications. Yet, most electrospray-based techniques only form spherical microparticles, and there is currently no widely adopted technique for producing nonspherical microparticles at a high throughput. Here, we demonstrate the generation of nonspherical biocompatible alginate microparticles by electrospraying, and control the shape of the microparticles by varying experimental parameters such as chemical concentration and the distance between the electrospray tip and the particle-solidification bath. Importantly, we show that these changes to the experimental setup enable the synthesis of different shaped particles, and the systematic change in parameters, such as chemical concentration, result in monotonic changes to the particle aspect ratio. We expect that these results will find utility in many biomedical applications that require biocompatible microparticles of specific shapes. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Alginate based scaffolds for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Valente, J.F.A.; Valente, T.A.M. [CICS-UBI - Centro de Investigacao em Ciencias da Saude, Faculdade de Ciencias da Saude, Universidade da Beira Interior, Covilha (Portugal); Alves, P.; Ferreira, P. [CIEPQPF, Departamento de Engenharia Quimica, Universidade de Coimbra, Polo II, Pinhal de Marrocos, 3030-290 Coimbra (Portugal); Silva, A. [Centro de Ciencia e Tecnologia Aeroespaciais, Universidade da Beira Interior, Covilha (Portugal); Correia, I.J., E-mail: icorreia@ubi.pt [CICS-UBI - Centro de Investigacao em Ciencias da Saude, Faculdade de Ciencias da Saude, Universidade da Beira Interior, Covilha (Portugal)

    2012-12-01

    The design and production of scaffolds for bone tissue regeneration is yet unable to completely reproduce the native bone properties. In the present study new alginate microparticle and microfiber aggregated scaffolds were produced to be applied in this area of regenerative medicine. The scaffolds' mechanical properties were characterized by thermo mechanical assays. Their morphological characteristics were evaluated by isothermal nitrogen adsorption and scanning electron microscopy. The density of both types of scaffolds was determined by helium pycnometry and mercury intrusion porosimetry. Furthermore, scaffolds' cytotoxic profiles were evaluated in vitro by seeding human osteoblast cells in their presence. The results obtained showed that scaffolds have good mechanical and morphological properties compatible with their application as bone substitutes. Moreover, scaffold's biocompatibility was confirmed by the observation of cell adhesion and proliferation after 5 days of being seeded in their presence and by non-radioactive assays. - Highlights: Black-Right-Pointing-Pointer Design and production of scaffolds for bone tissue regeneration. Black-Right-Pointing-Pointer Microparticle and microfiber alginate scaffolds were produced through a particle aggregation technique; Black-Right-Pointing-Pointer Scaffolds' mechanically and biologically properties were characterized through in vitro studies;.

  12. Quantitative Assessment of Islets of Langerhans Encapsulated in Alginate

    Science.gov (United States)

    Johnson, Amy S.; O'Sullivan, Esther; D'Aoust, Laura N.; Omer, Abdulkadir; Bonner-Weir, Susan; Fisher, Robert J.; Weir, Gordon C.

    2011-01-01

    Improved methods have recently been developed for assessing islet viability and quantity in human islet preparations for transplantation, and these measurements have proven useful for predicting transplantation outcome. The objectives of this study were to adapt these methods for use with microencapsulated islets, to verify that they provide meaningful quantitative measurements, and to test them with two model systems: (1) barium alginate and (2) barium alginate containing a 70% (w/v) perfluorocarbon (PFC) emulsion, which presents challenges to use of these assays and is of interest in its own right as a means for reducing oxygen supply limitations to encapsulated tissue. Mitochondrial function was assessed by oxygen consumption rate measurements, and the analysis of data was modified to account for the increased solubility of oxygen in the PFC-alginate capsules. Capsules were dissolved and tissue recovered for nuclei counting to measure the number of cells. Capsule volume was determined from alginate or PFC content and used to normalize measurements. After low oxygen culture for 2 days, islets in normal alginate lost substantial viable tissue and displayed necrotic cores, whereas most of the original oxygen consumption rate was recovered with PFC alginate, and little necrosis was observed. All nuclei were recovered with normal alginate, but some nuclei from nonrespiring cells were lost with PFC alginate. Biocompatibility tests revealed toxicity at the islet periphery associated with the lipid emulsion used to provide surfactants during the emulsification process. We conclude that these new assay methods can be applied to islets encapsulated in materials as complex as PFC-alginate. Measurements made with these materials revealed that enhancement of oxygen permeability of the encapsulating material with a concentrated PFC emulsion improves survival of encapsulated islets under hypoxic conditions, but reformulation of the PFC emulsion is needed to reduce toxicity

  13. Quantitative assessment of islets of Langerhans encapsulated in alginate.

    Science.gov (United States)

    Johnson, Amy S; O'Sullivan, Esther; D'Aoust, Laura N; Omer, Abdulkadir; Bonner-Weir, Susan; Fisher, Robert J; Weir, Gordon C; Colton, Clark K

    2011-04-01

    Improved methods have recently been developed for assessing islet viability and quantity in human islet preparations for transplantation, and these measurements have proven useful for predicting transplantation outcome. The objectives of this study were to adapt these methods for use with microencapsulated islets, to verify that they provide meaningful quantitative measurements, and to test them with two model systems: (1) barium alginate and (2) barium alginate containing a 70% (w/v) perfluorocarbon (PFC) emulsion, which presents challenges to use of these assays and is of interest in its own right as a means for reducing oxygen supply limitations to encapsulated tissue. Mitochondrial function was assessed by oxygen consumption rate measurements, and the analysis of data was modified to account for the increased solubility of oxygen in the PFC-alginate capsules. Capsules were dissolved and tissue recovered for nuclei counting to measure the number of cells. Capsule volume was determined from alginate or PFC content and used to normalize measurements. After low oxygen culture for 2 days, islets in normal alginate lost substantial viable tissue and displayed necrotic cores, whereas most of the original oxygen consumption rate was recovered with PFC alginate, and little necrosis was observed. All nuclei were recovered with normal alginate, but some nuclei from nonrespiring cells were lost with PFC alginate. Biocompatibility tests revealed toxicity at the islet periphery associated with the lipid emulsion used to provide surfactants during the emulsification process. We conclude that these new assay methods can be applied to islets encapsulated in materials as complex as PFC-alginate. Measurements made with these materials revealed that enhancement of oxygen permeability of the encapsulating material with a concentrated PFC emulsion improves survival of encapsulated islets under hypoxic conditions, but reformulation of the PFC emulsion is needed to reduce toxicity.

  14. Draft genome sequence analysis of a Pseudomonas putida W15Oct28 strain with antagonistic activity to Gram-positive and Pseudomonas sp. pathogens.

    Directory of Open Access Journals (Sweden)

    Lumeng Ye

    Full Text Available Pseudomonas putida is a member of the fluorescent pseudomonads known to produce the yellow-green fluorescent pyoverdine siderophore. P. putida W15Oct28, isolated from a stream in Brussels, was found to produce compound(s with antimicrobial activity against the opportunistic pathogens Staphylococcus aureus, Pseudomonas aeruginosa, and the plant pathogen Pseudomonas syringae, an unusual characteristic for P. putida. The active compound production only occurred in media with low iron content and without organic nitrogen sources. Transposon mutants which lost their antimicrobial activity had the majority of insertions in genes involved in the biosynthesis of pyoverdine, although purified pyoverdine was not responsible for the antagonism. Separation of compounds present in culture supernatants revealed the presence of two fractions containing highly hydrophobic molecules active against P. aeruginosa. Analysis of the draft genome confirmed the presence of putisolvin biosynthesis genes and the corresponding lipopeptides were found to contribute to the antimicrobial activity. One cluster of ten genes was detected, comprising a NAD-dependent epimerase, an acetylornithine aminotransferase, an acyl CoA dehydrogenase, a short chain dehydrogenase, a fatty acid desaturase and three genes for a RND efflux pump. P. putida W15Oct28 genome also contains 56 genes encoding TonB-dependent receptors, conferring a high capacity to utilize pyoverdines from other pseudomonads. One unique feature of W15Oct28 is also the presence of different secretion systems including a full set of genes for type IV secretion, and several genes for type VI secretion and their VgrG effectors.

  15. Optimization of alginate purification using polyvinylidene difluoride membrane filtration: Effects on immunogenicity and biocompatibility of three-dimensional alginate scaffolds.

    Science.gov (United States)

    Sondermeijer, Hugo P; Witkowski, Piotr; Woodland, David; Seki, Tetsunori; Aangenendt, Frank J; van der Laarse, Arnoud; Itescu, Silviu; Hardy, Mark A

    2016-10-01

    Sodium alginate is an effective biomaterial for tissue engineering applications. Non-purified alginate is contaminated with protein, lipopolysaccharide, DNA, and RNA, which could elicit adverse immunological reactions. We developed a purification protocol to generate biocompatible alginate based on (a) activated charcoal treatment, (b) use of hydrophobic membrane filtration (we used hydrophobic polyvinylidene difluoride membranes to remove organic contaminants), (c) dialysis, and finally (d) ethanol precipitation. Using this approach, we could omit pre-treatment with chloroform and significantly reduce the quantities of reagents used. Purification resulted in reduction of residual protein by 70% down to 0.315 mg/g, DNA by 62% down to 1.28 µg/g, and RNA by 61% down to less than 10 µg/g, respectively. Lipopolysaccharide levels were reduced by >90% to less than 125 EU/g. Purified alginate did not induce splenocyte proliferation in vitro. Three-dimensional scaffolds generated from purified alginate did not elicit a significant foreign body reaction, fibrotic overgrowth, or macrophage infiltration 4 weeks after implantation. This study describes a simplified and economical alginate purification method that results in alginate purity, which meets clinically useful criteria. © The Author(s) 2016.

  16. Encapsulation of liquid smoke flavoring in ca-alginate and ca-alginate-chitosan beads.

    Science.gov (United States)

    Petzold, Guillermo; Gianelli, María Pia; Bugueño, Graciela; Celan, Raymond; Pavez, Constanza; Orellana, Patricio

    2014-01-01

    Encapsulation is a technique used in foods that may protect some compounds with sensory impact, in particular flavoring as liquid smoke. We used the dripping method, obtaining two different layers for encapsulation of liquid smoke: calcium alginate and calcium alginate-chitosan. The results show that the load capacity of liquid smoke encapsulation reached values above 96 %. The beads exhibit syneresis at room temperature, but in opposite side, refrigeration temperature stabilizes the hydrogel of beads, allowing the samples loss weight less than 3 % after 72 h. Heated capsules with liquid smoke released several volatile compounds in the headspace and may identify 66 compounds. Among these volatile compounds, phenols derivatives can be considered sensory descriptors to contribute to the specific flavor of smoke. We conclude that the dripping method is highly efficient to encapsulate liquid smoke and released several volatile compounds, although it is necessary to minimize syneresis at room temperature.

  17. A Phytoanticipin Derivative, Sodium Houttuyfonate, Induces in Vitro Synergistic Effects with Levofloxacin against Biofilm Formation by Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Jing Shao

    2012-09-01

    Full Text Available Antibiotic resistance has become the main deadly factor in infections, as bacteria can protect themselves by hiding in a self-constructed biofilm. Consequently, more attention is being paid to the search for “non-antibiotic drugs” to solve this problem. Phytoanticipins, the natural antibiotics from plants, could be a suitable alternative, but few works on this aspect have been reported. In this study, a preliminary study on the synergy between sodium houttuyfonate (SH and levofloxacin (LFX against the biofilm formation of Pseudomonas aeruginosa was performed. The minimal inhibitory concentrations (MIC of LFX and SH, anti-biofilm formation and synergistic effect on Pseudomonas aeruginosa, and quantification of alginate were determined by the microdilution method, crystal violet (CV assay, checkerboard method, and hydroxybiphenyl colorimetry. The biofilm morphology of Pseudomonas aeruginosa was observed by fluorescence microscope and scanning electric microscope (SEM. The results showed that: (i LFX and SH had an obvious synergistic effect against Pseudomonas aeruginosa with MIC values of 0.25 μg/mL and 128 μg/mL, respectively; (ii ½ × MIC SH combined with 2 × MIC LFX could suppress the biofilm formation of Pseudomonas aeruginosa effectively, with up to 73% inhibition; (iii the concentration of alginate decreased dramatically by a maximum of 92% after treatment with the combination of antibiotics; and (iv more dead cells by fluorescence microscope and more removal of extracellular polymeric structure (EPS by SEM were observed after the combined treatment of LFX and SH. Our experiments demonstrate the promising future of this potent antimicrobial agent against biofilm-associated infections.

  18. Engineered yeast whole-cell biocatalyst for direct degradation of alginate from macroalgae and production of non-commercialized useful monosaccharide from alginate.

    Science.gov (United States)

    Takagi, Toshiyuki; Yokoi, Takahiro; Shibata, Toshiyuki; Morisaka, Hironobu; Kuroda, Kouichi; Ueda, Mitsuyoshi

    2016-02-01

    Alginate is a major component of brown macroalgae. In macroalgae, an endolytic alginate lyase first degrades alginate into oligosaccharides. These oligosaccharides are further broken down into monosaccharides by an exolytic alginate lyase. In this study, genes encoding various alginate lyases derived from alginate-assimilating marine bacterium Saccharophagus degradans were isolated, and their enzymes were displayed using the yeast cell surface display system. Alg7A-, Alg7D-, and Alg18J-displaying yeasts showed endolytic alginate lyase activity. On the other hand, Alg7K-displaying yeast showed exolytic alginate lyase activity. Alg7A, Alg7D, Alg7K, and Alg18J, when displayed on yeast cell surface, demonstrated both polyguluronate lyase and polymannuronate lyase activities. Additionally, polyguluronic acid could be much easily degraded by Alg7A, Alg7K, and Alg7D than polymannuronic acid. In contrast, polymannuronic acid could be much easily degraded by Alg18J than polyguluronic acid. We further constructed yeasts co-displaying endolytic and exolytic alginate lyases. Degradation efficiency by the co-displaying yeasts were significantly higher than single alginate lyase-displaying yeasts. Alg7A/Alg7K co-displaying yeast had maximum alginate degrading activity, with production of 1.98 g/L of reducing sugars in a 60-min reaction. This system developed, along with our findings, will contribute to the efficient utilization and production of useful and non-commercialized monosaccharides from alginate by Saccharomyces cerevisiae.

  19. Preparation and microscopy examination of alginate-poly-L-lysine-alginate microcapsules.

    Science.gov (United States)

    Fu, Hong-Xing; Li, Hui; Wu, Lan-Lan; Zhao, Ying-Zheng; Xu, Yan-Yan; Zhu, Yan-Lin; Xue, Shen-Liu; Wang, Da-Wang; Liu, Cheng-Yang; Yang, Shu-Lin; Li, Xiao-Kun

    2014-11-01

    Ca-alginate-poly-l-lysine-alginate (APA-Ca) and Ba-alginate-poly-l-lysine-alginate (APA-Ba) microcapsules were prepared and their thickness and surface were examined by light microscopy and scanning electron microscopy. Specifically, light microscopy with frozen section was used to visualize and quantify the thickness of APA membrane, and monitor temporal changes in the thickness of microcapsules during a month long culture in vitro. The section graph of APA microcapsule represents the accurate measurement of layer thickness of APA-Ca with diameter 900 ± 100 and 500 ± 100 μm at 6.01 ± 1.02 and 9.54 ± 2.42 μm (p microcapsules. The microcapsule was stable during the culture for 30 days in vitro. Field emission scanning electron microscopy with freeze drying method was used to detect the surface and thickness of dried microcapsules. From the results, the outer surface of APA-Ca and APA-Ba membrane were smooth and dense, the film thickness of the APA-Ca was about 450-690 nm, while the APA-Ba was approximately 335 nm. In vivo experiment, little significant difference was seen in the change of film thickness of microcapsules in intrapertioneal site for 30 days after transplantation (p > 0.05), except that the recovery of APA-Ba was higher than the APA-Ca microcapsules. The paper showed an easy method to prepare APA-Ca and APA-Ba, and examine their thickness and surface, which could be utilized to study other types of microcapsules.

  20. Effect of alginate and alginate-cimetidine combination therapy on stimulated postprandial gastro-oesophageal reflux.

    Science.gov (United States)

    Washington, N; Denton, G

    1995-11-01

    This randomized, single-blind cross-over study compared the effectiveness of a conventional alginate reflux barrier formulation (20 mL single dose of Liquid Gaviscon; sodium alginate, sodium bicarbonate, calcium carbonate) with a 20 mL single dose of an alginate-cimetidine combination formulation (Algitec Suspension; sodium alginate, cimetidine) in the suppression of food and acid reflux into the oesophagus after a test meal in 12 healthy volunteers. Subjects were fasted overnight before the study. A pH electrode and gamma detector were accurately positioned 5 cm above the cardia. The volunteers received a 99mTc-labelled meal designed to provoke reflux and then either remained untreated, or 30 min later were given either Algitec Suspension or Liquid Gaviscon. Reflux of both food and acid into the oesophagus was measured for 3 h. There was a seven day wash-out period between each treatment. Food reflux in the control group was 22,878 +/- 14,385 counts x 10(3) and this was significantly suppressed by both Liquid Gaviscon (174 +/- 128 (s.e.) counts x 10(3); P = 0.003); however, although the reduction of food reflux to 3812 +/- 2322 counts x 10(3) observed after Algitec treatment was considerable, this did not reach statistical significance (P > 0.05) due to the large intersubject variation. Liquid Gaviscon was significantly better at reducing food reflux than Algitec (P = 0.001). Gaviscon also significantly reduced acid reflux when compared with the control group (1.08 +/- 0.73 vs 5.87 +/- 3.27% recording time oesophageal pH pH Gaviscon treatment was also not significant.

  1. Alginate-sterculia gum gel-coated oil-entrapped alginate beads for gastroretentive risperidone delivery.

    Science.gov (United States)

    Bera, Hriday; Kandukuri, Saisharan Goud; Nayak, Amit Kumar; Boddupalli, Shashank

    2015-04-20

    Novel floating-mucoadhesive oil-entrapped alginate beads coated with crossslinked alginate-sterculia gum gel membrane was developed for gastroretentive risperidone delivery. Oil-entrapped alginate beads containing risperidone as core were prepared by ionotropic gelation technique. Effects of polymer to drug ratio and oil to water ratio on drug entrapment efficiency (%) and cumulative drug release after 8h (%) were studied to optimize the core beads by a 3(2) factorial design. The optimized beads (F-O) demonstrated drug entrapment efficiency of 83.73±0.81% and cumulative drug release of 70.84±0.27% after 8h. The biopolymeric-coated optimized beads exhibited excellent buoyancy, better ex vivo mucoadhesion and slower drug release rate. The drug release profiles of risperidone-loaded uncoated and coated beads were best fitted in Korsmeyer-Peppas model with Fickian diffusion mechanism. The beads were also examined for the drug-excipients compatibility, drug crystallinity and surface morphology by FTIR, P-XRD and SEM analyses, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Elastic, superporous hydrogel hybrids of polyacrylamide and sodium alginate.

    Science.gov (United States)

    Omidian, Hossein; Rocca, Jose G; Park, Kinam

    2006-09-15

    A novel approach was developed to prepare a superporous hydrogel with superior mechanical and elastic properties. According to this method, a synthetic monomer was polymerized and crosslinked in the presence of a water-soluble alginate polymer. Later in the process, the alginate part of the synthesized hydrogel was treated with metal cations, which resulted in a hydrogel hybrid with an interpenetrating network structure. In this article, a hydrogel hybrid of acrylamide and alginate is highlighted because of its unique swelling and mechanical properties. This hydrogel hybrid shows resilience and a rubbery property in its fully water-swollen state, which not previously been reported. To help understand the underlying mechanism responsible for such unique properties with hydrogel hybrids, the ionotropic gelation of the alginate polymer was also studied in more detail.

  3. Characterization of Gelatin-Sodium Alginate Complex Coacervation System

    Science.gov (United States)

    Shinde, Ujwala A.; Nagarsenker, Mangal S.

    2009-01-01

    A gelatin and sodium alginate complex coacervation system was studied and an effect of pH and colloid mixing ratios on coacervation was investigated. A colloid mixing ratio at which optimum coacervation occurred varied with the coacervation pH. Viscometric, turbidity and coacervate dry yield investigations were used to investigate optimum conditions for complex coacervation. Optimum coacervation occurred at pH 3.5 at a gelatin sodium alginate ratio 4:1. Coacervate and equilibrium fluid was analyzed for gelatin and sodium alginate contents and yields calculated on the basis of chemical analysis showed that optimum coacervation occurred at 25% sodium alginate fraction at pH 3.5. PMID:20490302

  4. Role of alginate in antibacterial finishing of textiles.

    Science.gov (United States)

    Li, Jiwei; He, Jinmei; Huang, Yudong

    2017-01-01

    Antibacterial finishing of textiles has been introduced as a necessary process for various purposes especially creating a fabric with antimicrobial activities. Currently, the textile industry continues to look for textiles antimicrobial finishing process based on sustainable biopolymers from the viewpoints of environmental friendliness, industrialization, and economic concerns. This paper reviews the role of alginate, a sustainable biopolymer, in the development of antimicrobial textiles, including both basic physicochemical properties of alginate such as preparation, chemical structure, molecular weight, solubility, viscosity, and sol-gel transformation property. Then different processing routes (e.g. nanocomposite coating, ionic cross-linking coating, and Layer-by-Layer coating) for the antibacterial finishing of textiles by using alginate are revised in some detail. The achievements in this area have increased our knowledge of alginate application in the field of textile industry and promoted the development of green textile finishing. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Enzyme-entrapping behaviors in alginate fibers and their papers

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Y.; Matsuo, R.; Ohya, T.; Yokoi, N.

    1987-01-01

    Enzyme immobilization in the form of fiber and paper was easily achieved by wet spinning of aqueous admixture of sodium alginate and enzymes into divalent metallic ion solution as a coagulating bath, followed by paper making of resultant shortly cut fibers. Entrapment yields of enzymes used, e.g., glucoamylase, cyclodextrin glucanotransferase, endo-polygalacturonase, and protease, were always higher in calcium alginate fibers and their papers than those in corresponding beads. It was found that the yields increased with an increase of the discharge rate through the spinning nozzle because the higher discharge rate could provide more highly oriented metal-chelate linear polymer molecules along the fiber axis for preventing leakage of entrapped enzymes. Divalent metallic ions affected greatly the entrapment of glucoamylase in alginate fibers, the order of which followed rougly the ionotropic series of Thiele. Entrapment of glucoamylase in bicomponent systems comprising alginate and other water-soluble polymers was also investigated. (Refs. 41).

  6. In situ growth of gold colloids within alginate films

    Energy Technology Data Exchange (ETDEWEB)

    Jaouen, Vincent; Lantiat, David; Steunou, Nathalie; Coradin, Thibaud [UPMC Univ Paris 06, CNRS, Laboratoire de Chimie de la Matiere Condensee de Paris (LCMCP), College de France, 11 place Marcellin Berthelot, F-75005 Paris (France); Brayner, Roberta, E-mail: thibaud.coradin@upmc.fr [Interfaces, Traitements, Organisation et Dynamique des Systemes (ITODYS), Universite Paris Diderot, UMR-CNRS 7086, F-75205 Paris (France)

    2010-05-07

    Gold-alginate bionanocomposite films were prepared by impregnation of alginate films with HAuCl{sub 4} followed by reduction with glucose. The mannuronate over guluronate ratio (M/G) of the polymer as well as the initial polymer concentration were shown to influence the film thickness, the amount of trapped Au{sup 3+} ions, and the volume fraction of Au(0) nanoparticles but not the size of these colloids (about 4 nm). The homogeneity of the gold colloid dispersion within the alginate gels was studied by transmission electron microscopy (TEM) and confirmed by simulation of the surface plasmon resonance (SPR) spectra using the Maxwell-Garnett model. The calculated spectra also provided fruitful information about the gold colloid/alginate interface. Overall, the whole process is controlled by the balance between the M/G ratio, defining the polymer affinity for Au(III) species, and the solution viscosity, controlling the diffusion phenomena.

  7. Ca alginate as scaffold for iron oxide nanoparticles synthesis

    Directory of Open Access Journals (Sweden)

    P. V. Finotelli

    2008-12-01

    Full Text Available Recently, nanotechnology has developed to a stage that makes it possible to process magnetic nanoparticles for the site-specific delivery of drugs. To this end, it has been proposed as biomaterial for drug delivery system in which the drug release rates would be activated by a magnetic external stimuli. Alginate has been used extensively in the food, pharmaceutical and biomedical industries for their gel forming properties in the presence of multivalent cations. In this study, we produced iron oxide nanoparticles by coprecipitation of Fe(III and Fe(II. The nanoparticles were entrapped in Ca alginate beads before and after alginate gelation. XRD analysis showed that particles should be associated to magnetite or maghemite with crystal size of 9.5 and 4.3 nm, respectively. Studies using Mössbauer spectroscopy corroborate the superparamagnetic behavior. The combination of magnetic properties and the biocompatibility of alginate suggest that this biomaterial may be used as biomimetic system.

  8. Alginate oligosaccharides: enzymatic preparation and antioxidant property evaluation.

    Science.gov (United States)

    Falkeborg, Mia; Cheong, Ling-Zhi; Gianfico, Carlo; Sztukiel, Katarzyna Magdalena; Kristensen, Kasper; Glasius, Marianne; Xu, Xuebing; Guo, Zheng

    2014-12-01

    Alginate oligosaccharides (AOs) prepared from alginate, by alginate lyase-mediated depolymerization, were structurally characterized by mass spectrometry, infrared spectrometry and thin layer chromatography. Studies of their antioxidant activities revealed that AOs were able to completely (100%) inhibit lipid oxidation in emulsions, superiorly to ascorbic acid (89% inhibition). AOs showed radical scavenging activity towards ABTṠ, hydroxyl, and superoxide radicals, which might explain their excellent antioxidant activity. The radical scavenging activity is suggested to originate mainly from the presence of the conjugated alkene acid structure formed during enzymatic depolymerization. According to the resonance hybrid theory, the parent radicals of AOs are delocalized through allylic rearrangement, and as a consequence, the reactive intermediates are stabilized. AOs were weak ferrous ion chelators. This work demonstrated that AOs obtained from a facile enzymatic treatment of abundant alginate is an excellent natural antioxidant, which may find applications in the food industry. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Glucose oxidase release from calcium alginate gel capsules.

    Science.gov (United States)

    Blandino; Macías; Cantero

    2000-08-01

    Diffusion of glucose oxidase within calcium alginate gel capsules has been assayed and the experimental data fitted to a simple semi-empirical power equation, which is used to analyse the solute release from polymeric devices. It was found that an increase in the concentration of sodium alginate and calcium chloride gives rise to a reduction in the enzyme leakage. This was verified when glucose oxidase (GOD) diffusion percentages were compared in capsules with thicknesses of the same order of magnitude but obtained under different experimental conditions. So, the use of sodium alginate and calcium chloride solutions of concentrations 0.5% w/v and 2.6% w/v, respectively, lead to a diffusion percentage of 25 +/- 2. This percentage was reduced to 8 +/- 3 when sodium alginate and calcium chloride concentrations were fixed at 1% w/v and 4% w/v, respectively, even though the thicknesses of the capsules were of the same order of magnitude.

  10. [Meningoencephalitis caused by Pseudomonas cepacia].

    Science.gov (United States)

    Pérez Monrás, Miriam Fina; Batlle Almodóvar, María del Carmen; González, Cernero; Tamargo Martínez, Isis; Meneses, Félix Dickinson

    2006-01-01

    A case of meningoencephalitis of bacterial etiology caused by Pseudomonas cepacia was described. The strain was received at the Reference Laboratory of Bacterial Acute Respiratory Infections of "Pedro Kouri" Institute of Tropical Medicine, where its microbiological identification was confirmed. This isolation was a finding in an adult immunocompetent patient. The evolution was favourable with no sequelae for his future life. Pseudomona cepacia has been associated with respiratory infections in patients with cystic fibrosis. Patients with Pseudomonas cepacia may be asymptomatic or present fatal acute and fulminant infection.

  11. Pseudomonas aeruginosa biofilm infections

    DEFF Research Database (Denmark)

    Tolker-Nielsen, Tim

    2014-01-01

    Bacteria in natural, industrial and clinical settings predominantly live in biofilms, i.e., sessile structured microbial communities encased in self-produced extracellular matrix material. One of the most important characteristics of microbial biofilms is that the resident bacteria display...... a remarkable increased tolerance toward antimicrobial attack. Biofilms formed by opportunistic pathogenic bacteria are involved in devastating persistent medical device-associated infections, and chronic infections in individuals who are immune-compromised or otherwise impaired in the host defense. Because...... the use of conventional antimicrobial compounds in many cases cannot eradicate biofilms, there is an urgent need to develop alternative measures to combat biofilm infections. The present review is focussed on the important opportunistic pathogen and biofilm model organism Pseudomonas aeruginosa. Initially...

  12. Quantitative Assessment of Islets of Langerhans Encapsulated in Alginate

    OpenAIRE

    Johnson, Amy S.; O'Sullivan, Esther; D'Aoust, Laura N.; Omer, Abdulkadir; Bonner-Weir, Susan; Fisher, Robert J.; Weir, Gordon C.; Colton, Clark K.

    2011-01-01

    Improved methods have recently been developed for assessing islet viability and quantity in human islet preparations for transplantation, and these measurements have proven useful for predicting transplantation outcome. The objectives of this study were to adapt these methods for use with microencapsulated islets, to verify that they provide meaningful quantitative measurements, and to test them with two model systems: (1) barium alginate and (2) barium alginate containing a 70% (w/v) perfluo...

  13. Boost for Alginate Encapsulation in Beta Cell Transplantation.

    Science.gov (United States)

    Pipeleers, Daniel; Keymeulen, Bart

    2016-05-01

    A recent study reported that encapsulation of human embryonic stem cell (hESC)-derived beta cells by a novel alginate formula protects against foreign body reactivity in immune-competent mice. Intraperitoneal implants corrected a diabetic state for at least 6 months. These observations will stimulate the development of alginate encapsulation towards novel cell therapy protocols for treating type 1 diabetes (T1DM). Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Development of a Novel Alginate-Based Pleural Sealant

    Science.gov (United States)

    2016-07-01

    official Department of the Army position, policy or decision unless so designated by other documentation. REPORT DOCUMENTATION PAGE Form Approved...purify. It was then collected and stored in -20˚C freezer . Alginate Medium Viscosity Methacrylate (Lot# UV60705FAJ) Alginate methacrylate was...dried to purify. It was then collected and stored in -20˚C freezer . Gelatin (300 bloom, type A) Methacrylate (Lot# UV60706FAJ) In a 2-neck, 1000ml

  15. Alginate/Chitosan Nanoparticles are Effective for Oral Insulin Delivery

    OpenAIRE

    B.; Sarmento; Ribeiro, A.; Veiga, F.; Sampaio, P.; Neufeld, R; Ferreira, D.

    2007-01-01

    Abstract Purpose To evaluate the pharmacological activity of insulin-loaded alginate/chitosan nanoparticles following oral dosage in diabetic rats. Methods Nanoparticles were prepared by ionotropic pre-gelation of an alginate core followed by chitosan polyelectrolyte complexation. In vivo activity was evaluated by measuring the decrease in blood glucose concentrations in streptozotocin induced, diabetic rats after oral administration and flourescein (FITC)-labelled insulin tracked by con...

  16. Alginate microparticles as novel carrier for oral insulin delivery

    OpenAIRE

    Reis, Catarina Pinto; Ribeiro, António J.; Neufeld, Ronald J.; Veiga, Francisco

    2007-01-01

    Alginate microparticles produced by emulsification/internal gelation were investigated as a promising carrier for insulin delivery. The procedure involves the dispersion of alginate solution containing insulin protein, into a water immiscible phase. Gelation is triggered in situ by instantaneous release of ionic calcium from carbonate complex via gentle pH adjustment. Particle size is controlled through the emulsification parameters, yielding insulin-loaded microparticles. Particle recovery w...

  17. Effect of sodium alginate coating incorporated with nisin, Cinnamomum zeylanicum, and rosemary essential oils on microbial quality of chicken meat and fate of Listeria monocytogenes during refrigeration.

    Science.gov (United States)

    Raeisi, Mojtaba; Tabaraei, Alijan; Hashemi, Mohammad; Behnampour, Nasser

    2016-12-05

    The present study was conducted to preserve the microbial quality of chicken meat fillets during storage time by using sodium alginate active coating solutions incorporated with different natural antimicrobials including nisin, Cinnamomum zeylanicum (cinnamon), and rosemary essential oils (EOs) which were added individually and in combination. The samples were stored in refrigeration condition for 15days and were analyzed for total viable count, Enterobacteriaceae count, lactic acid bacteria count, Pseudomonas spp. count, psychrotrophic count, and yeast and mold count, as well as fate of inoculated Listeria monocytogenes at 3-day intervals. Results indicated that values of tested microbial indicators in all samples increased during storage. Antimicrobial agents, when used in combination, had stronger effect in preserving the microbial quality of chicken meat samples rather than their individual use and the strongest effect was observed in samples coated with alginate solution containing both cinnamon and rosemary EOs (CEO+REO). However, all treatments significantly inhibited microbial growth when compared to the control (P<0.05). Therefore, based on the results of this study, application of alginate coating solutions containing nisin, cinnamon, and rosemary EOs as natural preservatives is recommended in meat products especially in chicken meats. Copyright © 2016. Published by Elsevier B.V.

  18. Fabrication, characterization and in vitro profile based interaction with eukaryotic and prokaryotic cells of alginate-chitosan-silica biocomposite.

    Science.gov (United States)

    Balaure, Paul Catalin; Andronescu, Ecaterina; Grumezescu, Alexandru Mihai; Ficai, Anton; Huang, Keng-Shiang; Yang, Chih-Hui; Chifiriuc, Carmen Mariana; Lin, Yung-Sheng

    2013-01-30

    This work is focused on the fabrication of a new drug delivery system based on polyanionic matrix (e.g. sodium alginate), polycationic matrix (e.g. chitosan) and silica network. The FT-IR, SEM, DTA-TG, eukaryotic cell cycle and viability, and in vitro assay of the influence of the biocomposite on the efficacy of antibiotic drugs were investigated. The obtained results demonstrated the biocompatibility and the ability of the fabricated biocomposite to maintain or improve the efficacy of the following antibiotics: piperacillin-tazobactam, cefepime, piperacillin, imipenem, gentamicin, ceftazidime against Pseudomonas aeruginosa ATCC 27853 and cefazolin, cefaclor, cefuroxime, ceftriaxone, cefoxitin, trimethoprim/sulfamethoxazole against Escherichia coli ATCC 25922 reference strains. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Nanocellulose-alginate hydrogel for cell encapsulation.

    Science.gov (United States)

    Park, Minsung; Lee, Dajung; Hyun, Jinho

    2015-02-13

    TEMPO-oxidized bacterial cellulose (TOBC)-sodium alginate (SA) composites were prepared to improve the properties of hydrogel for cell encapsulation. TOBC fibers were obtained using a TEMPO/NaBr/NaClO system at pH 10 and room temperature. The fibrillated TOBCs mixed with SA were cross-linked in the presence of Ca(2+) solution to form hydrogel composites. The compression strength and chemical stability of the TOBC/SA composites were increased compared with the SA hydrogel, which indicated that TOBC performed an important function in enhancing the structural, mechanical and chemical stability of the composites. Cells were successfully encapsulated in the TOBC/SA composites, and the viability of cells was investigated. TOBC/SA composites can be a potential candidate for cell encapsulation engineering. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Transcriptome Analysis of Syringa oblata Lindl. Inflorescence Identifies Genes Associated with Pigment Biosynthesis and Scent Metabolism.

    Directory of Open Access Journals (Sweden)

    Jian Zheng

    Full Text Available Syringa oblata Lindl. is a woody ornamental plant with high economic value and characteristics that include early flowering, multiple flower colors, and strong fragrance. Despite a long history of cultivation, the genetics and molecular biology of S. oblata are poorly understood. Transcriptome and expression profiling data are needed to identify genes and to better understand the biological mechanisms of floral pigments and scents in this species. Nine cDNA libraries were obtained from three replicates of three developmental stages: inflorescence with enlarged flower buds not protruded, inflorescence with corolla lobes not displayed, and inflorescence with flowers fully opened and emitting strong fragrance. Using the Illumina RNA-Seq technique, 319,425,972 clean reads were obtained and were assembled into 104,691 final unigenes (average length of 853 bp, 41.75% of which were annotated in the NCBI non-redundant protein database. Among the annotated unigenes, 36,967 were assigned to gene ontology categories and 19,956 were assigned to eukaryoticorthologous groups. Using the Kyoto Encyclopedia of Genes and Genomes pathway database, 12,388 unigenes were sorted into 286 pathways. Based on these transcriptomic data, we obtained a large number of candidate genes that were differentially expressed at different flower stages and that were related to floral pigment biosynthesis and fragrance metabolism. This comprehensive transcriptomic analysis provides fundamental information on the genes and pathways involved in flower secondary metabolism and development in S. oblata, providing a useful database for further research on S. oblata and other plants of genus Syringa.

  1. Ag/alginate nanofiber membrane for flexible electronic skin

    Science.gov (United States)

    Hu, Wei-Peng; Zhang, Bin; Zhang, Jun; Luo, Wei-Ling; Guo, Ya; Chen, Shao-Juan; Yun, Mao-Jin; Ramakrishna, Seeram; Long, Yun-Ze

    2017-11-01

    Flexible electronic skin has stimulated significant interest due to its widespread applications in the fields of human-machine interactivity, smart robots and health monitoring. As typical elements of electrical skin, the fabrication process of most pressure sensors combined nanomaterials and PDMS films are redundant, expensive and complicated, and their unknown biological toxicity could not be widely used in electronic skin. Hence, we report a novel, cost-effective and antibacterial approach to immobilizing silver nanoparticles into-electrospun Na-alginate nanofibers. Due to the unique role of carboxyl and hydroxyl groups in Na-alginate, the silver nanopaticles with 30 nm size in diameter were uniformly distributed inside and outside the alginate nanofibers, which obtained pressure sensor shows stable response, including an ultralow detection limited (1 pa) and high durability (>1000 cycles). Notably, the pressure sensor fabricated by these Ag/alginate nanofibers could not only follow human respiration but also accurately distinguish words like ‘Nano’ and ‘Perfect’ spoke by a tester. Interestingly, the pixelated sensor arrays based on these Ag/alginate nanofibers could monitor distribution of objects and reflect their weight by measuring the different current values. Moreover, these Ag/alginate nanofibers exhibit great antibacterial activity, implying the great potential application in artificial electronic skin.

  2. Encapsulation of fibroblasts causes accelerated alginate hydrogel degradation.

    Science.gov (United States)

    Hunt, N C; Smith, A M; Gbureck, U; Shelton, R M; Grover, L M

    2010-09-01

    Calcium-alginate hydrogel has been widely studied as a material for cell encapsulation for tissue engineering. At present, the effect that cells have on the degradation of alginate hydrogel is largely unknown. We have shown that fibroblasts encapsulated at a density of 7.5 x 10(5) cells ml(-1) in both 2% and 5% w/v alginate remain viable for at least 60 days. Rheological analysis was used to study how the mechanical properties exhibited by alginate hydrogel changed during 28 days in vitro culture. Alginate degradation was shown to occur throughout the study but was greatest within the first 7 days of culture for all samples, which correlated with a sharp release of calcium ions from the construct. Fibroblasts were shown to increase the rate of degradation during the first 7 days when compared with acellular samples in both 2% and 5% w/v gels, but after 28 days both acellular and cell-encapsulating samples retained disc-shaped morphologies and gel-like spectra. The results demonstrate that although at an early stage cells influence the mechanical properties of encapsulating alginate, over a longer period of culture, the hydrogels retain sufficient mechanical integrity to exhibit gel-like properties. This allows sustained immobilization of the cells at the desired location in vivo where they can produce extracellular matrix and growth factors to expedite the healing process. 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. Novel alginate based nanocomposite hydrogels with incorporated silver nanoparticles.

    Science.gov (United States)

    Obradovic, Bojana; Stojkovska, Jasmina; Jovanovic, Zeljka; Miskovic-Stankovic, Vesna

    2012-01-01

    Alginate colloid solution containing electrochemically synthesized silver nanoparticles (AgNPs) was investigated regarding the nanoparticle stabilization and possibilities for production of alginate based nanocomposite hydrogels in different forms. AgNPs were shown to continue to grow in alginate solutions for additional 3 days after the synthesis by aggregative mechanism and Ostwald ripening. Thereafter, the colloid solution remains stable for 30 days and could be used alone or in mixtures with aqueous solutions of poly(vinyl alcohol) (PVA) and poly(N-vinyl-2-pyrrolidone) (PVP) while preserving AgNPs as verified by UV-Vis spectroscopy studies. We have optimized techniques for production of Ag/alginate microbeads and Ag/alginate/PVA beads, which were shown to efficiently release AgNPs decreasing the Escherichia coli concentration in suspensions for 99.9% over 24 h. Furthermore, Ag/hydrogel discs based on alginate, PVA and PVP were produced by freezing-thawing technique allowing adjustments of hydrogel composition and mechanical properties as demonstrated in compression studies performed in a biomimetic bioreactor.

  4. Study of the interpolyelectrolyte reaction between chitosan and alginate: influence of alginate composition and chitosan molecular weight.

    Science.gov (United States)

    Becherán-Marón, L; Peniche, C; Argüelles-Monal, W

    2004-04-01

    The interpolyelectrolyte reaction between chitosan (CHI) and alginate (ALG) was followed by conductimetry and potentiometry. Five chitosan samples, all with almost the same degree of N-acetylation (DA approximately 0.20) and molecular weights ranging from 5 x 10(3) to 2.5 x 10(5) Da were used. The polyelectrolyte complex was formed using alginate samples with three different M/G values (0.44, 1.31 and 1.96). The composition of the complex, Z (Z = [CHI]/[ALG]) resulted 0.70 +/- 0.02, independently of the molecular weight of chitosan and the composition of the alginate used. The degree of complexation was 0.51 with no dependence on the alginate composition. Copyright 2004 Elsevier B.V.

  5. Mucoid conversion of Pseudomonas aeruginosa by hydrogen peroxide: a mechanism for virulence activation in the cystic fibrosis lung

    DEFF Research Database (Denmark)

    Mathee, K; Ciofu, O; Sternberg, C

    1999-01-01

    The leading cause of mortality in patients with cystic fibrosis (CF) is respiratory failure due in large part to chronic lung infection with Pseudomonas aeruginosa strains that undergo mucoid conversion, display a biofilm mode of growth in vivo and resist the infiltration of polymorphonuclear...... of alginate, (ii) exhibited no detectable differences in growth rate, (iii) showed an unaltered LPS profile, (iv) were approximately 72% reduced in the amount of inducible-beta-lactamase and (v) secreted little or no LasA protease and only showed 44% elastase activity. A characteristic approximately 54 k...

  6. Pseudomonas folliculitis in Arabian baths.

    Science.gov (United States)

    Molina-Leyva, Alejandro; Ruiz-Ruigomez, Maria

    2013-07-14

    A 35-year-old man presented with a painful cutaneous skin eruption that was localized on the upper trunk. He stated that the previous weekend he had attended an Arabian bath. The physical examination revealed multiple hair follicle-centered papulopustules surrounded by an erythematous halo. A clinical diagnosis of pseudomonas folliculitis was made and treatment was prescribed. Afterwards Pseudomonas aeruginosa was isolated from a pustule culture. Pseudomonas folliculitis is a bacterial infection of the hair follicles. The most common reservoirs include facilities with hot water and complex piping systems that are difficult to clean, such as hot tubs and bathtubs. Despite adequate or high chlorine levels, Pseudomonas aeruginosa can grow within a biofilm.

  7. Final screening assessment for Pseudomonas putida ATCC 12633, Pseudomonas putida ATCC 31483, Pseudomonas putida ATCC 31800, Pseudomonas putida ATCC 700369

    National Research Council Canada - National Science Library

    2017-01-01

    "Pursuant to paragraph 74(b) of the Canadian Environmental Protection Act, 1999 (CEPA), the Minister of the Environment and the Minister of Health have conducted a screening assessment on four strains of Pseudomonas putida...

  8. Chronic Pseudomonas aeruginosa cervical osteomyelitis

    Directory of Open Access Journals (Sweden)

    Sujeet Kumar Meher

    2016-01-01

    Full Text Available Pseudomonas aeruginosa is a rare cause of osteomyelitis of the cervical spine and is usually seen in the background of intravenous drug use and immunocompromised state. Very few cases of osteomyelitis of the cervical spine caused by pseudomonas aeruginosa have been reported in otherwise healthy patients. This is a case presentation of a young female, who in the absence of known risk factors for cervical osteomyelitis presented with progressively worsening neurological signs and symptoms.

  9. Smart designing of new hybrid materials based on brushite-alginate and monetite-alginate microspheres: Bio-inspired for sequential nucleation and growth

    Energy Technology Data Exchange (ETDEWEB)

    Amer, Walid [MAScIR Foundation, INANOTECH, Rabat Design, Rue Mohamed El Jazouli, Madinat El Irfane 10100 Rabat (Morocco); Abdelouahdi, Karima [Centre National pour la Recherche Scientifique et Technique (CNRST), Division UATRS, Angle Allal Fassi/FAR, B.P. 8027, Hay Riad, 10000 Rabat (Morocco); Ramananarivo, Hugo Ronald; Fihri, Aziz; El Achaby, Mounir [MAScIR Foundation, INANOTECH, Rabat Design, Rue Mohamed El Jazouli, Madinat El Irfane 10100 Rabat (Morocco); Zahouily, Mohamed [Laboratoire de Matériaux, Catalyse et Valorisation des Ressources Naturelles, URAC 24, Faculté des Sciences et Techniques, Université Hassan II, Mohammedia B.P. 146, 20650 (Morocco); Barakat, Abdellatif [SUPAGRO-INRA-CIRAD-UMR IATE 1208, Ingenierie des Agropolymères et Technologies Emergentes, 2, Place Pierre Viala-Bât 31, 34060 Montpellier cedex 1 (France); Djessas, Kamal [CNRS-PROMES Tecnosud, F-66100 Perpignan (France); Clark, James [Green Chemistry, Centre of Excellence, University of York, York YO10 5DD (United Kingdom); Solhy, Abderrahim, E-mail: a.solhy@mascir.com [MAScIR Foundation, INANOTECH, Rabat Design, Rue Mohamed El Jazouli, Madinat El Irfane 10100 Rabat (Morocco)

    2014-02-01

    In this report new hybrid materials based on brushite-alginate and monetite-alginate were prepared by self-assembling alginate chains and phosphate source ions via a gelation process with calcium ions. The alginate served as nanoreactor for nucleation and growth of brushite or/and monetite due to its gelling and swelling properties. The alginate gel framework, the crystalline phase and morphology of formed hybrid biomaterials were shown to be strongly dependent upon the concentration of the phosphate precursors. These materials were characterized by thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive x-ray analysis (EDX). - Graphical abstract: A new class of hybrid materials based on brushite{sub a}lginate and monetite{sub a}lginate were prepared for the first time by adopting a soft and clean route. Thanks to their gelling and swelling properties, alginate porous polysaccharide microspheres behave as nanoreactors for nucleating, growing and hosting of the phosphate cements such as brushite or monetite. - Highlights: • New structured hybrid materials are prepared from biopolymer and phosphates. • Evidence for a new route for the synthesis of hybrid materials alginate-brushite and alginate-monetite via ionotropic gel of alginate. • The concentration of phosphate has a role crucial for selectivity to monetite or brushite.

  10. Phosphorylcholine Phosphatase: A Peculiar Enzyme of Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo Domenech

    2011-01-01

    Full Text Available Pseudomonas aeruginosa synthesizes phosphorylcholine phosphatase (PchP when grown on choline, betaine, dimethylglycine or carnitine. In the presence of Mg2+ or Zn2+, PchP catalyzes the hydrolysis of p-nitrophenylphosphate (p-NPP or phosphorylcholine (Pcho. The regulation of pchP gene expression is under the control of GbdR and NtrC; dimethylglycine is likely the metabolite directly involved in the induction of PchP. Therefore, the regulation of choline metabolism and consequently PchP synthesis may reflect an adaptive response of P. aeruginosa to environmental conditions. Bioinformatic and biochemistry studies shown that PchP contains two sites for alkylammonium compounds (AACs: one in the catalytic site near the metal ion-phosphoester pocket, and another in an inhibitory site responsible for the binding of the alkylammonium moiety. Both sites could be close to each other and interact through the residues 42E, 43E and 82YYY84. Zn2+ is better activator than Mg2+ at pH 5.0 and it is more effective at alleviating the inhibition produced by the entry of Pcho or different AACs in the inhibitory site. We postulate that Zn2+ induces at pH 5.0 a conformational change in the active center that is communicated to the inhibitory site, producing a compact or closed structure. However, at pH 7.4, this effect is not observed because to the hydrolysis of the [Zn2+L2−1L20(H2O2] complex, which causes a change from octahedral to tetrahedral in the metal coordination geometry. This enzyme is also present in P. fluorescens, P. putida, P. syringae, and other organisms. We have recently crystallized PchP and solved its structure.

  11. Magnesium Oxide Nanoparticles Reinforced Electrospun Alginate-Based Nanofibrous Scaffolds with Improved Physical Properties

    Directory of Open Access Journals (Sweden)

    R. T. De Silva

    2017-01-01

    Full Text Available Mechanically robust alginate-based nanofibrous scaffolds were successfully fabricated by electrospinning method to mimic the natural extracellular matrix structure which benefits development and regeneration of tissues. Alginate-based nanofibres were electrospun from an alginate/poly(vinyl alcohol (PVA polyelectrolyte complex. SEM images revealed the spinnability of the complex composite nanofibrous scaffolds, showing randomly oriented, ultrafine, and virtually defects-free alginate-based/MgO nanofibrous scaffolds. Here, it is shown that an alginate/PVA complex scaffold, blended with near-spherical MgO nanoparticles (⌀ 45 nm at a predetermined concentration (10% (w/w, is electrospinnable to produce a complex composite nanofibrous scaffold with enhanced mechanical stability. For the comparison purpose, chemically cross-linked electrospun alginate-based scaffolds were also fabricated. Tensile test to rupture revealed the significant differences in the tensile strength and elastic modulus among the alginate scaffolds, alginate/MgO scaffolds, and cross-linked alginate scaffolds (P<0.05. In contrast to cross-linked alginate scaffolds, alginate/MgO scaffolds yielded the highest tensile strength and elastic modulus while preserving the interfibre porosity of the scaffolds. According to the thermogravimetric analysis, MgO reinforced alginate nanofibrous scaffolds exhibited improved thermal stability. These novel alginate-based/MgO scaffolds are economical and versatile and may be further optimised for use as extracellular matrix substitutes for repair and regeneration of tissues.

  12. Effect of alginate composition on profile release and characteristics of chitosan-alginate microparticles loaded with mangosteen extract

    Science.gov (United States)

    Mulia, Kamarza; Halimah, Nur; Krisanti, Elsa

    2017-03-01

    Preparation of mangostin-loaded chitosan-alginate microparticles, chemical and physical characterization of the particles, and mangostin release profiles, are described herein. Mangostin rich fraction was obtained from Garcinia mangostana L. pericarp by extraction followed by fractionation. Mangostin-loaded chitosan-alginate microparticles were prepared by ionic gelation method using tripolyphosphate as the linking agent and various concentration of alginate. Mangostin was effectively loaded in all microparticle formulations, resulting in ˜97% encapsulation efficiencies. The loading of mangostin and the in-vitro release profiles in simulated gastrointestinal fluids were affected by the chitosan to alginate ratios used in the preparation of the microparticles. Increased alginate concentration resulted in lowered release of mangostin from microparticles immersed in simulated gastric fluid (pH 1.2) up to two hours. Low release of mangostin in acidic fluid but high release in simulated colon fluid, indicated that the chitosan-alginate microparticles are prospective carrier for extended release of active compound in gastrointestinal system.

  13. Human adipose-derived stromal cells in a clinically applicable injectable alginate hydrogel

    DEFF Research Database (Denmark)

    Larsen, Bjarke Follin; Juhl, Morten; Cohen, Smadar

    2015-01-01

    is to inject the cells in an in situ cross-linked alginate hydrogel. METHODS: ASCs from abdominal human tissue were embedded in alginate hydrogel and alginate hydrogel modified with Arg-Gly-Asp motifs (RGD-alginate) and cultured for 1 week. Cell viability, phenotype, immunogenicity and paracrine activity were...... determined by confocal microscopy, dendritic cell co-culture, flow cytometry, reverse transcriptase quantitative polymerase chain reaction, Luminex multiplex, and lymphocyte proliferation experiments. RESULTS: ASCs performed equally well in alginate and RGD-alginate. After 1 week of alginate culture, cell...... viability was >93%. Mesenchymal markers CD90 and CD29 were reduced compared with International Society for Cellular Therapy criteria. Cells sedimented from the alginates during cultivation regained the typical level of these markers, and trilineage differentiation was performed by standard protocols...

  14. The influence of storage duration on the setting time of type 1 alginate impression material

    Science.gov (United States)

    Rahmadina, A.; Triaminingsih, S.; Irawan, B.

    2017-08-01

    Alginate is one of the most commonly used dental impression materials; however, its setting time is subject to change depending on storage conditions and duration. This creates problems because consumer carelessness can affect alginate shelf life and quality. In the present study, the setting times of two groups of type I alginate with different expiry dates was tested. The first group consisted of 11 alginate specimens that had not yet passed the expiry date, and the second group consisted of alginates that had passed the expiry date. The alginate powder was mixed with distilled water, poured into a metal ring, and tested with a polished rod of poly-methyl methacrylate. Statistical analysis showed a significant difference (palginate that had not passed the expiry date (157 ± 3 seconds) and alginate that had passed the expiry date (144 ± 2 seconds). These findings indicate that storage duration can affect alginate setting time.

  15. Theoretical Analysis of Interaction Energy in Alginate-Capped Gold Nanoparticles Colloidal System

    Directory of Open Access Journals (Sweden)

    Foliatini Foliatini

    2014-10-01

    Full Text Available Stability of Au/alginate nanocomposite was theoretically evaluated by computing various interactions energy which contributes in the system, including attraction and repulsion interaction. The results revealed that both polymer and electrostatic charges played a significant role in the stabilization, but the steric repulsion comes from polymer chain is a more effective stabilization mechanism than the electrostatic repulsion. Higher pH yielded in stronger electrostatic repulsion but when the alginate thickness is low the resulting nanocomposite was less stable in a long time period. Interaction energies for Au/alginate nanocomposite colloidal system was up to ~60 kT for alginate thickness of 1 nm, at very short particle-particle separation distance (< 1 nm. As the alginate thickness can be controlled by adjusting the alginate concentration, it can be concluded that the high stability of Au/alginate nanocomposite can be achieved by employing an appropriate amount of alginate concentration.

  16. Kinetic and isotherm study of hexavalent chromium removal from aqueous solutions using calcium alginate beads

    Directory of Open Access Journals (Sweden)

    ghodratollah Shams Khorramabadi

    2011-08-01

    Conclusion: It can be stated that biosorption of Cr (VI onto calcium alginate occurs through a chemical mechanism. Also, according to maximum biosorption capacity, it can be stated that calcium alginate is an effective and efficient biosorbent.

  17. Novel experimental Pseudomonas aeruginosa lung infection model mimicking long-term host-pathogen interactions in cystic fibrosis

    DEFF Research Database (Denmark)

    Moser, Claus; van Gennip, Maria; Bjarnsholt, Thomas

    2009-01-01

    Moser C, van Gennip M, Bjarnsholt T, Jensen PO, Lee B, Hougen HP, Calum H, Ciofu O, Givskov M, Molin S, Hoiby N. Novel experimental Pseudomonas aeruginosa lung infection model mimicking long-term host-pathogen interactions in cystic fibrosis. APMIS 2009; 117: 95-107. The dominant cause of premature...... death in patients suffering from cystic fibrosis (CF) is chronic lung infection with Pseudomonas aeruginosa. The chronic lung infection often lasts for decades with just one clone. However, as a result of inflammation, antibiotic treatment and different niches in the lungs, the clone undergoes...... and 2003) of the chronic lung infection of one CF patient using the seaweed alginate embedment model. The results showed that the non-mucoid clones reduced their virulence over time, resulting in faster clearing of the bacteria from the lungs, improved pathology and reduced pulmonary production...

  18. Ca2+ released from calcium alginate gels can promote inflammatory responses in vitro and in vivo

    Science.gov (United States)

    Chan, Gail; Mooney, David J.

    2013-01-01

    In general, alginate hydrogels are considered to be biologically inert and are commonly used for biomedical purposes that require minimum inflammation. However, Ca2+, which is commonly used to crosslink alginate, is a critical second messenger in immune cell signaling, and little has been done to understand its effect on immune cell fate when delivered as a component of alginate gels. We found that dendritic cells (DCs) encapsulated in Ca2+-crosslinked alginate (calcium alginate) secreted at least fivefold more of the inflammatory cytokine IL-1β when compared to DCs encapsulated in agarose and collagen gels, as well as DCs plated on tissue-culture polystyrene (TCPS). Plating cells on TCPS with the alginate polymer could not reproduce these results, whereas culturing DCs on TCPS with increasing concentrations of Ca2+ increased IL-1β, MHC class II and CD86 expression in a dose-dependent manner. In agreement with these findings, calcium alginate gels induced greater maturation of encapsulated DCs compared to barium alginate gels. When injected subcutaneously in mice, calcium alginate gels significantly upregulated IL-1β secretion from surrounding tissue relative to barium alginate gels, and similarly, the inflammatory effects of LPS were enhanced when it was delivered from calcium alginate gels rather than barium alginate gels. These results confirm that the Ca2+ used to crosslink alginate gels can be immunostimulatory and suggest that it is important to take into account Ca2+’s bioactive effects on all exposed cells (both immune and non-immune) when using calcium alginate gels for biomedical purposes. This work may strongly impact the way people use alginate gels in the future as well as provide insights into past work utilizing alginate gels. PMID:23938198

  19. Ca(2+) released from calcium alginate gels can promote inflammatory responses in vitro and in vivo.

    Science.gov (United States)

    Chan, Gail; Mooney, David J

    2013-12-01

    In general, alginate hydrogels are considered to be biologically inert and are commonly used for biomedical purposes that require minimum inflammation. However, Ca(2+), which is commonly used to crosslink alginate, is a critical second messenger in immune cell signaling, and little has been done to understand its effect on immune cell fate when delivered as a component of alginate gels. We found that dendritic cells (DCs) encapsulated in Ca(2+)-crosslinked alginate (calcium alginate) secreted at least fivefold more of the inflammatory cytokine IL-1β when compared to DCs encapsulated in agarose and collagen gels, as well as DCs plated on tissue-culture polystyrene (TCPS). Plating cells on TCPS with the alginate polymer could not reproduce these results, whereas culturing DCs on TCPS with increasing concentrations of Ca(2+) increased IL-1β, MHC class II and CD86 expression in a dose-dependent manner. In agreement with these findings, calcium alginate gels induced greater maturation of encapsulated DCs compared to barium alginate gels. When injected subcutaneously in mice, calcium alginate gels significantly upregulated IL-1β secretion from surrounding tissue relative to barium alginate gels, and similarly, the inflammatory effects of LPS were enhanced when it was delivered from calcium alginate gels rather than barium alginate gels. These results confirm that the Ca(2+) used to crosslink alginate gels can be immunostimulatory and suggest that it is important to take into account Ca(2+)'s bioactive effects on all exposed cells (both immune and non-immune) when using calcium alginate gels for biomedical purposes. This work may strongly impact the way people use alginate gels in the future as well as provide insights into past work utilizing alginate gels. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. In vivo degradation of alginate in the presence and in the absence of resistant starch

    NARCIS (Netherlands)

    Jonathan, M.C.; Souza Da Silva, C.; Bosch, G.; Schols, H.A.; Gruppen, H.

    2015-01-01

    This study evaluated the intestinal degradability of alginate during 74 days intake in pigs as models for humans. Diets contained pregelatinized starch, retrograded starch, alginate, or a mix of retrograded starch and alginate. Faeces were collected on day 1, 3, 7, 14, 39 and 74. Clear trends in

  1. Chondrocyte Culture in Three Dimensional Alginate Sulfate Hydrogels Promotes Proliferation While Maintaining Expression of Chondrogenic Markers

    Science.gov (United States)

    Mhanna, Rami; Kashyap, Aditya; Palazzolo, Gemma; Vallmajo-Martin, Queralt; Becher, Jana; Möller, Stephanie; Schnabelrauch, Matthias

    2014-01-01

    The loss of expression of chondrogenic markers during monolayer expansion remains a stumbling block for cell-based treatment of cartilage lesions. Here, we introduce sulfated alginate hydrogels as a cartilage biomimetic biomaterial that induces cell proliferation while maintaining the chondrogenic phenotype of encapsulated chondrocytes. Hydroxyl groups of alginate were converted to sulfates by incubation with sulfur trioxide–pyridine complex (SO3/pyridine), yielding a sulfated material cross-linkable with calcium chloride. Passage 3 bovine chondrocytes were encapsulated in alginate and alginate sulfate hydrogels for up to 35 days. Cell proliferation was five-fold higher in alginate sulfate compared with alginate (p=0.038). Blocking beta1 integrins in chondrocytes within alginate sulfate hydrogels significantly inhibited proliferation (p=0.002). Sulfated alginate increased the RhoA activity of chondrocytes compared with unmodified alginate, an increase that was blocked by β1 blocking antibodies (p=0.017). Expression and synthesis of type II collagen, type I collagen, and proteoglycan was not significantly affected by the encapsulation material evidenced by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and immunohistochemistry. Alginate sulfate constructs showed an opaque appearance in culture, whereas the unmodified alginate samples remained translucent. In conclusion, alginate sulfate provides a three dimensional microenvironment that promotes both chondrocyte proliferation and maintenance of the chondrogenic phenotype and represents an important advance for chondrocyte-based cartilage repair therapies providing a material in which cell expansion can be done in situ. PMID:24320935

  2. A VERSATILE ALGINATE DROPLET GENERATOR APPLICABLE FOR MICROENCAPSULATION OF PANCREATIC-ISLETS

    NARCIS (Netherlands)

    WOLTERS, GHJ; FRITSCHY, WM; GERRITS, D; VANSCHILFAGAARDE, R

    1992-01-01

    Alginate beads for immunoisolation of pancreatic islets by microencapsulation should be small, smooth, and spherical in order to ensure that around the islets a strong alginate-polylysine-alginate capsule will be formed with optimal biocompatibility and diffusion of nutrients and hormones. However,

  3. Improved biocompatibility but limited graft survival after purification of alginate for microencapsulation of pancreatic islets

    NARCIS (Netherlands)

    DeVos, P; DeHaan, BJ; Wolters, GHJ; Strubbe, JH; VanSchilfgaarde, R; van Schilfgaarde, P.

    Graft failure of alginate-polylysine microencapsulated islets is often interpreted as the consequence of a non-specific foreign body reaction against the microcapsules, initiated by impurities present in crude alginate. The aim of the present study was to investigate if purification of the alginate

  4. Characterization of alginates from Ghanaian brown seaweeds: Sargassum spp. and Padina spp

    DEFF Research Database (Denmark)

    Rhein-Knudsen, Nanna; Ale, Marcel Tutor; Ajalloueian, Fatemeh

    2017-01-01

    , alginate samples from Laminaria digitata and Macrocystis pyrifera, used commercially for alginate extraction, contained 29% and 27% by weight of the two constituent uronic acids (M + G), respectively. Alginate extraction yields of the Ghanaian seaweeds ranged from 17 to 23% by weight of dry material...

  5. Mobile genetic elements in the genome of the beneficial rhizobacterium Pseudomonas fluorescens Pf-5.

    Science.gov (United States)

    Mavrodi, Dmitri V; Loper, Joyce E; Paulsen, Ian T; Thomashow, Linda S

    2009-01-13

    Pseudomonas fluorescens Pf-5 is a plant-associated bacterium that inhabits the rhizosphere of a wide variety of plant species and and produces secondary metabolites suppressive of fungal and oomycete plant pathogens. The Pf-5 genome is rich in features consistent with its commensal lifestyle, and its sequence has revealed attributes associated with the strain's ability to compete and survive in the dynamic and microbiologically complex rhizosphere habitat. In this study, we analyzed mobile genetic elements of the Pf-5 genome in an effort to identify determinants that might contribute to Pf-5's ability to adapt to changing environmental conditions and/or colonize new ecological niches. Sequence analyses revealed that the genome of Pf-5 is devoid of transposons and IS elements and that mobile genetic elements (MGEs) are represented by prophages and genomic islands that collectively span over 260 kb. The prophages include an F-pyocin-like prophage 01, a chimeric prophage 03, a lambdoid prophage 06, and decaying prophages 02, 04 and 05 with reduced size and/or complexity. The genomic islands are represented by a 115-kb integrative conjugative element (ICE) PFGI-1, which shares plasmid replication, recombination, and conjugative transfer genes with those from ICEs found in other Pseudomonas spp., and PFGI-2, which resembles a portion of pathogenicity islands in the genomes of the plant pathogens Pseudomonas syringae and P. viridiflava. Almost all of the MGEs in the Pf-5 genome are associated with phage-like integrase genes and are integrated into tRNA genes. Comparative analyses reveal that MGEs found in Pf-5 are subject to extensive recombination and have evolved in part via exchange of genetic material with other Pseudomonas spp. having commensal or pathogenic relationships with plants and animals. Although prophages and genomic islands from Pf-5 exhibit similarity to MGEs found in other Pseudomonas spp., they also carry a number of putative niche-specific genes that

  6. Oxidized alginate hydrogels as niche environments for corneal epithelial cells

    Science.gov (United States)

    Wright, Bernice; De Bank, Paul A; Luetchford, Kim A; Acosta, Fernando R; Connon, Che J

    2014-01-01

    Chemical and biochemical modification of hydrogels is one strategy to create physiological constructs that maintain cell function. The aim of this study was to apply oxidised alginate hydrogels as a basis for development of a biomimetic niche for limbal epithelial stem cells that may be applied to treating corneal dysfunction. The stem phenotype of bovine limbal epithelial cells (LEC) and the viability of corneal epithelial cells (CEC) were examined in oxidised alginate gels containing collagen IV over a 3-day culture period. Oxidation increased cell viability (P ≤ 0.05) and this improved further with addition of collagen IV (P ≤ 0.01). Oxidised gels presented larger internal pores (diameter: 0.2–0.8 µm) than unmodified gels (pore diameter: 0.05–0.1 µm) and were significantly less stiff (P ≤ 0.001), indicating that an increase in pore size and a decrease in stiffness contributed to improved cell viability. The diffusion of collagen IV from oxidised alginate gels was similar to that of unmodified gels suggesting that oxidation may not affect the retention of extracellular matrix proteins in alginate gels. These data demonstrate that oxidised alginate gels containing corneal extracellular matrix proteins can influence corneal epithelial cell function in a manner that may impact beneficially on corneal wound healing therapy. © 2013 The Authors. Journal of Biomedical Materials Research Part A Published byWiley Periodicals, Inc. Part A: 102A: 3393–3400, 2014. PMID:24142706

  7. Preparation of alginate beads containing a prodrug of diethylenetriaminepentaacetic acid

    Science.gov (United States)

    Yang, Yu-Tsai; Di Pasqua, Anthony J.; He, Weiling; Tsai, Tsuimin; Sueda, Katsuhiko; Zhang, Yong; Jay, Michael

    2012-01-01

    A penta-ethyl ester prodrug of the radionuclide decorporation agent diethylenetriaminepentaacetic acid (DTPA), which exists as an oily liquid, was encapsulated in alginate beads by the ionotropic gelation method. An optimal formulation was found by varying initial concentrations of DTPA pentaethyl ester, alginate polymer, Tween 80 surfactant and calcium chloride. All prepared alginate beads were ~1.6 mm in diameter, and the optimal formulation had loading and encapsulation efficiencies of 91.0 ± 1.1 and 72.6 ± 2.2%, respectively, and only 3.2 ± 0.8% water absorption after storage at room temperature in ~80% relative humidity. Moreover, Fourier transform infrared spectroscopy showed that DTPA penta-ethyl ester did not react with excipients during formation of the DTPA penta-ethyl ester-containing alginate beads. Release of prodrug from alginate beads was via anomalous transport, and its stability enhanced by encapsulation. Collectively, these data suggest that this solid dosage form may be suitable for oral administration after radionuclide contamination. PMID:23399237

  8. Encapsulation optimization of lemon balm antioxidants in calcium alginate hydrogels.

    Science.gov (United States)

    Najafi-Soulari, Samira; Shekarchizadeh, Hajar; Kadivar, Mahdi

    2016-11-01

    Calcium alginate hydrogel beads were used to encapsulate lemon balm extract. Chitosan layer was used to investigate the effect of hydrogel coating. To determine the interactions of antioxidant compounds of extract with encapsulation materials and its stability, microstructure of hydrogel beads was thoroughly monitored using scanning electron microscopy and Fourier transform infrared (FTIR). Total polyphenols content and antiradical activity of lemon balm extract were also evaluated before and after encapsulation. Three significant parameters (lemon balm extract, sodium alginate, and calcium chloride concentrations) were optimized by response surface methodology to obtain maximum encapsulation efficiency. The FTIR spectra showed no interactions between extract and polymers as there were no new band in spectra of alginate hydrogel after encapsulation of active compounds of lemon balm extract. The antioxidant activity of lemon balm extract did not change after encapsulation. Therefore, it was found that alginate is a suitable material for encapsulation of natural antioxidants. Sodium alginate solution concentration, 1.84%, lemon balm extract concentration, 0.4%, and calcium chloride concentration, 0.2% was determined to be the optimum condition to reach maximum encapsulation efficiency.

  9. Applications of Alginate-Based Bioinks in 3D Bioprinting

    Directory of Open Access Journals (Sweden)

    Eneko Axpe

    2016-11-01

    Full Text Available Three-dimensional (3D bioprinting is on the cusp of permitting the direct fabrication of artificial living tissue. Multicellular building blocks (bioinks are dispensed layer by layer and scaled for the target construct. However, only a few materials are able to fulfill the considerable requirements for suitable bioink formulation, a critical component of efficient 3D bioprinting. Alginate, a naturally occurring polysaccharide, is clearly the most commonly employed material in current bioinks. Here, we discuss the benefits and disadvantages of the use of alginate in 3D bioprinting by summarizing the most recent studies that used alginate for printing vascular tissue, bone and cartilage. In addition, other breakthroughs in the use of alginate in bioprinting are discussed, including strategies to improve its structural and degradation characteristics. In this review, we organize the available literature in order to inspire and accelerate novel alginate-based bioink formulations with enhanced properties for future applications in basic research, drug screening and regenerative medicine.

  10. Release Kinetics of Nisin from Chitosan-Alginate Complex Films.

    Science.gov (United States)

    Chandrasekar, Vaishnavi; Coupland, John N; Anantheswaran, Ramaswamy C

    2016-10-01

    Understanding the release kinetics of antimicrobials from polymer films is important in the design of effective antimicrobial packaging films. The release kinetics of nisin (30 mg/film) from chitosan-alginate polyelectric complex films prepared using various fractions of alginate (33%, 50%, and 66%) was investigated into an aqueous release medium. Films containing higher alginate fractions showed significantly lower (P nisin released from films into an aqueous system decreased significantly (P nisin from all films was found to be Fickian, and diffusion coefficients varied from 0.872 × 10-9 to 8.034 ×10-9 cm2 /s. Strong complexation was confirmed between chitosan and alginate polymers within the films using isothermal titration calorimetry and viscosity studies, which affects swelling of films and subsequent nisin release. Complexation was also confirmed between nisin and alginate, which limited the amount of free nisin available for diffusion from films. These low-swelling biopolymer complexes have potential to be used as antimicrobial packaging films with sustained nisin release characteristics. © 2016 Institute of Food Technologists®.

  11. Microwave-Assisted Synthesis of Alginate-Stabilized Gold Nanoparticles

    Directory of Open Access Journals (Sweden)

    Foliatini Foliatini

    2014-12-01

    Full Text Available An efficient and rapid method for preparation of Au nanoparticles (Au-NP has been developed by direct microwave irradiation of metal precursor and alginate mixed solution in a single step. Here, alginate molecules act as both the reducing and stabilizing agents of Au-NP. The obtained nanoparticles were characterized by ultraviolet-visible (UV-Vis spectroscopy, particle size analyzer, fourier transform infrared spectroscopy, and transmission electron microscopy. The nanoparticles have a spherical form and perfectly capped with alginate when using alginate and chloro auric acid (HAuCl4 precursor in the concentration range of 0.50 to 0.75% (w/v and 0.40 mM, respectively. The use of a lower concentration of alginate and/or higher concentration of HAuCl4 caused agglomeration to occur, thereby resulting in a bigger size of Au-NP and red shifting of surface plasmon resonance (SPR peak to a higher wavelength.

  12. Nanostructured magnetic alginate composites for biomedical applications

    Directory of Open Access Journals (Sweden)

    Pedro Marins Bedê

    Full Text Available Abstract This is a study of the preparation and characterization of polymeric-magnetic nanoparticles. The nanoparticles used were magnetite (Fe3O4 and the chosen polymers were alginate and chitosan. Two types of samples were prepared: uncoated magnetic nanoparticles and magnetic nanoparticles encapsulated in polymeric matrix. The samples were analyzed by XRD, light scattering techniques, TEM, and magnetic SQUID. The XRD patterns identified magnetite (Fe3O4 as the only crystalline phase. TEM analyses showed particle sizes between 10 and 20nm for magnetite, and 15 and 30nm for the encapsulated magnetite. The values of magnetization ranged from 75 to 100emu/g for magnetite nanoparticles, and 8 to 12emu/g for coated with chitosan, at different temperatures of 20K and 300K. The saturation of both samples was in the range of 49 to 50KOe. Variations of results between the two kinds of samples were attributed to the encapsulation of magnetic nanoparticles by the polymers.

  13. Alginate-Dependent Gene Expression Mechanism in Sphingomonas sp. Strain A1

    Science.gov (United States)

    Hayashi, Chie; Takase, Ryuichi; Momma, Keiko; Maruyama, Yukie; Murata, Kousaku

    2014-01-01

    Sphingomonas sp. strain A1, a Gram-negative bacterium, directly incorporates alginate polysaccharide into the cytoplasm through a periplasmic alginate-binding protein-dependent ATP-binding cassette transporter. The polysaccharide is degraded to monosaccharides via the formation of oligosaccharides by endo- and exotype alginate lyases. The strain A1 proteins for alginate uptake and degradation are encoded in both strands of a genetic cluster in the bacterial genome and inducibly expressed in the presence of alginate. Here we show the function of the alginate-dependent transcription factor AlgO and its mode of action on the genetic cluster and alginate oligosaccharides. A putative gene within the genetic cluster seems to encode a transcription factor-like protein (AlgO). Mutant strain A1 (ΔAlgO mutant) cells with a disrupted algO gene constitutively produced alginate-related proteins. DNA microarray analysis indicated that wild-type cells inducibly transcribed the genetic cluster only in the presence of alginate, while ΔAlgO mutant cells constitutively expressed the genetic cluster. A gel mobility shift assay showed that AlgO binds to the specific intergenic region between algO and algS (algO-algS). Binding of AlgO to the algO-algS intergenic region diminished with increasing alginate oligosaccharides. These results demonstrated a novel alginate-dependent gene expression mechanism. In the absence of alginate, AlgO binds to the algO-algS intergenic region and represses the expression of both strands of the genetic cluster, while in the presence of alginate, AlgO dissociates from the algO-algS intergenic region via binding to alginate oligosaccharides produced through the lyase reaction and subsequently initiates transcription of the genetic cluster. This is the first report on the mechanism by which alginate regulates the expression of the gene cluster. PMID:24816607

  14. Bioactive apatite incorporated alginate microspheres with sustained drug-delivery for bone regeneration application

    Energy Technology Data Exchange (ETDEWEB)

    Li, Haibin; Jiang, Fei; Ye, Song; Wu, Yingying; Zhu, Kaiping; Wang, Deping, E-mail: wdpshk@tongji.edu.cn

    2016-05-01

    The strontium-substituted hydroxyapatite microspheres (SrHA) incorporated alginate composite microspheres (SrHA/Alginate) were prepared via adding SrHA/alginate suspension dropwise into calcium chloride solution, in which the gel beads were formed by means of crosslinking reaction. The structure, morphology and in vitro bioactivity of the composite microspheres were studied by using XRD, SEM and EDS methods. The biological behaviors were characterized and analyzed through inductively coupled plasma optical emission spectroscopy (ICP-OES), CCK-8, confocal laser microscope and ALP activity evaluations. The experimental results indicated that the synthetic SrHA/Alginate showed similar morphology to the well-known alginate microspheres (Alginate) and both of them possessed a great in vitro bioactivity. Compared with the control Alginate, the SrHA/Alginate enhanced MC3T3-E1 cell proliferation and ALP activity by releasing osteoinductive and osteogenic Sr ions. Furthermore, vancomycin was used as a model drug to investigate the drug release behaviors of the SrHA/Alginate, Alginate and SrHA. The results suggested that the SrHA/Alginate had a highest drug-loading efficiency and best controlled drug release properties. Additionally, the SrHA/Alginate was demonstrated to be pH-sensitive as well. The increase of the pH value in phosphate buffer solution (PBS) accelerated the vancomycin release. Accordingly, the multifunctional SrHA/Alginate can be applied in the field of bioactive drug carriers and bone filling materials. - Highlights: • The pH-sensitive composite alginate beads incorporating Sr-doped HA microspheres (SrHA) have been prepared. • The incorporation of the SrHA enhanced the drug loading and release properties of the alginate microspheres. • The composite microspheres showed excellent osteogenic effect by releasing osteogenic Sr ions.

  15. Characterization of methacrylated alginate and acrylic monomers as versatile SAPs.

    Science.gov (United States)

    Mignon, Arn; Vermeulen, Jolien; Graulus, Geert-Jan; Martins, José; Dubruel, Peter; De Belie, Nele; Van Vlierberghe, Sandra

    2017-07-15

    Superabsorbent polymers (SAPs) based on polysaccharides, especially alginate, could offer a valuable solution in a plethora of applications going from drug delivery to self-healing concrete. This has already been proven with both calcium alginate and methacrylated alginate combined with acrylic acid. In this manuscript, the effect of varying the degree of methacrylation and use of a combination of acrylic acid and acrylamide is investigated to explore the effects on the relevant SAP characteristics. The materials showed high gel fractions and a strong swelling capacity up to 630gwater/gSAP, especially for superabsorbent polymers with a low degree of substitution. The SAPs also showed only a limited hydrolysis in aqueous and cement filtrate solutions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Nanocrystalline cellulose (NCC) reinforced alginate based biodegradable nanocomposite film.

    Science.gov (United States)

    Huq, Tanzina; Salmieri, Stephane; Khan, Avik; Khan, Ruhul A; Le Tien, Canh; Riedl, Bernard; Fraschini, Carole; Bouchard, Jean; Uribe-Calderon, Jorge; Kamal, Musa R; Lacroix, Monique

    2012-11-06

    Nanocrystalline cellulose (NCC) reinforced alginate-based nanocomposite film was prepared by solution casting. The NCC content in the matrix was varied from 1 to 8% ((w/w) % dry matrix). It was found that the nanocomposite reinforced with 5 wt% NCC content exhibits the highest tensile strength which was increased by 37% compared to the control. Incorporation of NCC also significantly improved water vapor permeability (WVP) of the nanocomposite showing a 31% decrease due to 5 wt% NCC loading. Molecular interactions between alginate and NCC were supported by Fourier Transform Infrared Spectroscopy. The X-ray diffraction studies also confirmed the appearance of crystalline peaks due to the presence of NCC inside the films. Thermal stability of alginate-based nanocomposite films was improved after incorporation of NCC. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Discovery of ADP-ribosylation and other plant defense pathway elements through expression profiling of four different Arabidopsis-Pseudomonas R-avr interactions.

    Science.gov (United States)

    Adams-Phillips, Lori; Wan, Jinrong; Tan, Xiaoping; Dunning, F Mark; Meyers, Blake C; Michelmore, Richard W; Bent, Andrew F

    2008-05-01

    A dissection of plant defense pathways was initiated through gene expression profiling of the responses of a single Arabidopsis thaliana genotype to isogenic Pseudomonas syringae strains expressing one of four different cloned avirulence (avr) genes. Differences in the expression profiles elicited by different resistance (R)-avr interactions were observed. A role for poly(ADP-ribosyl)ation in plant defense responses was suggested initially by the upregulated expression of genes encoding NUDT7 and poly(ADP-ribose) glycohydrolase in multiple R-avr interactions. Gene knockout plant lines were tested for 20 candidate genes identified by the expression profiling, and Arabidopsis NUDT7 mutants allowed less growth of virulent P. syringae (as previously reported) but also exhibited a reduced hypersensitive-response phenotype. Inhibitors of poly(ADP-ribose) polymerase (PARP) disrupted FLS2-mediated basal defense responses such as callose deposition. EIN2 (ethylene response) and IXR1 and IXR2 (cellulose synthase) mutants impacted the FLS2-mediated responses that occur during PARP inhibition, whereas no impacts were observed for NPR1, PAD4, or NDR1 mutants. In the expression profiling work, false-positive selection and grouping of genes was reduced by requiring simultaneous satisfaction of statistical significance criteria for each of three separate analysis methods, and by clustering genes based on statistical confidence values for each gene rather than on average fold-change of transcript abundance.

  18. Gallium induces the production of virulence factors in Pseudomonas aeruginosa.

    Science.gov (United States)

    García-Contreras, Rodolfo; Pérez-Eretza, Berenice; Lira-Silva, Elizabeth; Jasso-Chávez, Ricardo; Coria-Jiménez, Rafael; Rangel-Vega, Adrián; Maeda, Toshinari; Wood, Thomas K

    2014-02-01

    The novel antimicrobial gallium is a nonredox iron III analogue with bacteriostatic and bactericidal properties, effective for the treatment of Pseudomonas aeruginosa in vitro and in vivo in mouse and rabbit infection models. It interferes with iron metabolism, transport, and presumably its homeostasis. As gallium exerts its antimicrobial effects by competing with iron, we hypothesized that it ultimately will lead cells to an iron deficiency status. As iron deficiency promotes the expression of virulence factors in vitro and promotes the pathogenicity of P. aeruginosa in animal models, it is anticipated that treatment with gallium will also promote the production of virulence factors. To test this hypothesis, the reference strain PA14 and two clinical isolates from patients with cystic fibrosis were exposed to gallium, and their production of pyocyanin, rhamnolipids, elastase, alkaline protease, alginate, pyoverdine, and biofilm was determined. Gallium treatment induced the production of all the virulence factors tested in the three strains except for pyoverdine. In addition, as the Ga-induced virulence factors are quorum sensing controlled, co-administration of Ga and the quorum quencher brominated furanone C-30 was assayed, and it was found that C-30 alleviated growth inhibition from gallium. Hence, adding both C-30 and gallium may be more effective in the treatment of P. aeruginosa infections. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  19. Evaluation of Three-Dimensional Porous Iron-Cross-Linked Alginate as a Scaffold for Cell Culture

    OpenAIRE

    Machida-Sano, Ikuko; Ogawa, Sakito; Hirakawa, Makoto; Namiki, Hideo

    2014-01-01

    We investigated the efficacy of three-dimensional porous ferric-ion-cross-linked alginate (Fe-alginate) gels as cell scaffolds, in comparison with calcium-ion-cross-linked alginate (Ca-alginate) gels. In a previous study, we had demonstrated that two-dimensional Fe-alginate film was an efficient material for use as a scaffold, allowing good cell adhesion and proliferation, unlike Ca-alginate film. In the present study, we fabricated three-dimensional porous Fe- and Ca-alginate gels by freeze-...

  20. Injectable hydrogels derived from phosphorylated alginic acid calcium complexes.

    Science.gov (United States)

    Kim, Han-Sem; Song, Minsoo; Lee, Eun-Jung; Shin, Ueon Sang

    2015-06-01

    Phosphorylation of sodium alginate salt (NaAlg) was carried out using H3PO4/P2O5/Et3PO4 followed by acid-base reaction with Ca(OAc)2 to give phosphorylated alginic acid calcium complexes (CaPAlg), as a water dispersible alginic acid derivative. The modified alginate derivatives including phosphorylated alginic acid (PAlg) and CaPAlg were characterized by nuclear magnetic resonance spectroscopy for (1)H, and (31)P nuclei, high resolution inductively coupled plasma optical emission spectroscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis. CaPAlg hydrogels were prepared simply by mixing CaPAlg solution (2w/v%) with NaAlg solution (2w/v%) in various ratios (2:8, 4:6, 6:4, 8:2) of volume. No additional calcium salts such as CaSO4 or CaCl2 were added externally. The gelation was completed within about 3-40min indicating a high potential of hydrogel delivery by injection in vivo. Their mechanical properties were tested to be ≤6.7kPa for compressive strength at break and about 8.4kPa/mm for elastic modulus. SEM analysis of the CaPAlg hydrogels showed highly porous morphology with interconnected pores of width in the range of 100-800μm. Cell culture results showed that the injectable hydrogels exhibited comparable properties to the pure alginate hydrogel in terms of cytotoxicity and 3D encapsulation of cells for a short time period. The developed injectable hydrogels showed suitable physicochemical and mechanical properties for injection in vivo, and could therefore be beneficial for the field of soft tissue engineering. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. The Use of Alginate in Lemon Extract Effervescent Powder Production

    Directory of Open Access Journals (Sweden)

    Murdinah

    2015-11-01

    Full Text Available Study on the use of alginate in lemon (Citrus medica var lemon extract effervescent powder production has conducted. The aims of the research are to determine the optimum concentration of alginate used in lemon extract effervescent powder to produced best product and acceptance consumen.The lemon extract effervescent powder formula consisted of lemon extract powder, sucrose, aspartame, salt and effervescent mix (citric acid-tartrat acid-sodium bicarbonat. The alginate used in this study was extracted from Sargassum filipendula sea weed. The concentration of alginate used in lemon effervescent powder production was varied from 1; 2; 3 and 4%. The parameters observed to see the quality of the product were moisture content, ash content, pH, viscosity and organoleptic value (flavor, taste, viscosity, effec effervescent, effect sparkle and acceptance. Analysis of dietary fiber, sugar content, vitamin C content, total titratable acids, TPC and E.Coli to the best product. The result showed that the higher the concentration of alginate used in lemon effervescent powder production, the higher viscousness and the lower the organoleptic value. The optimum concentration of alginate used in the lemon extract effervescent powder processing was 1%. The characteristic this product 7.60% moisture content, 0.86% insoluble dietary fiber , 7.92% soluble dietary fiber, 3.74% sugar content, 55,26 mg/100 g vitamin C, 134.15 mL 0.1 NaOH/100 mL total titratable acids, 20 cPs viscosity, <2.5x102 coloni/mL TPC and E.Coli negative.

  2. Alginate Biosynthesis in Azotobacter vinelandii: Overview of Molecular Mechanisms in Connection with the Oxygen Availability

    Directory of Open Access Journals (Sweden)

    Ivette Pacheco-Leyva

    2016-01-01

    Full Text Available The Gram-negative bacterium Azotobacter vinelandii can synthetize the biopolymer alginate that has material properties appropriate for plenty of applications in industry as well as in medicine. In order to settle the foundation for improving alginate production without compromising its quality, a better understanding of the polymer biosynthesis and the mechanism of regulation during fermentation processes is necessary. This knowledge is crucial for the development of novel production strategies. Here, we highlight the key aspects of alginate biosynthesis that can lead to producing an alginate with specific material properties with particular focus on the role of oxygen availability linked with the molecular mechanisms involved in the alginate production.

  3. The antibacterial activity of syringopicroside, its metabolites and natural analogues from syringae folium

    KAUST Repository

    Zhou, Zhengyuan

    2016-02-18

    In the present study, the in vitro antibacterial activity of an effective fraction (ESF) from Syringae Folium (SF) on Methicillin-resistant Staphylococcus aureus (MRSA) was evaluated and then its in vivo activity was evaluated by using the MRSA-infected mouse peritonitis model. The ESF showed a significant in vitro and in vivo activity on decreasing the Minimum Inhibitory Concentrations (MICs) and increasing the survival rate of mouse from 42.8% to 100%. Six iridoid glucosides (IGs) of ESF were characterized by UPLC-TOF-MS method and also isolated by column chromatography. Most of them showed in vitro anti MRSA activity. Syringopicroside (Sy), the major compound of IGs, was found to increase the survival rate from 42.8% to 92.8% of the MRSA-infected mouse, which revealed Sy is also the main active components of ESF. In order to know why the effect of oral administration of SF is better than its injections in clinic and the metabolites of Sy, seven metabolites of Sy were isolated from rat urine and identified on the basis of NMR and MS spectra. Most of metabolites possessed stronger in vitro anti-MRSA activity than that of Sy, which furtherly proved the clinical result.

  4. [Clinico-pharmacological trial of the preparation streptobicillin depot-syringae mammariae].

    Science.gov (United States)

    Tsolov, S; Lashev, L; Gerganova, E

    1982-01-01

    Streptobicillin depot-syringae mammariae contains: benzathin-penicillin--1,200,000 UI, streptomycin sulfa--1,000,000 UI, vitamin A oleosum--15,000 UI in a suitable base up to 10 ml. It is intended for the therapy and prophylaxis of inapparent mastitis of cows during the dry period. The preparation was tested in a total of 301 udder quarts of cows in terms of tolerance (general and local), depot effect, residual amounts, bactericidic effect, and therapeutic effect. The preparation was found to be well tolerated by the body and the parenchyma of the udder. The duration of its effect was 25 days. No residual amounts were found in the milk during the following lactation. The bactericidic effect in vitro reached 92.4 per cent, and in vivo--87.3 per cent of the cases. Positive therapeutic effect was found in 87.1 per cent of the cases, with subclinical mastitis it being 80.2 per cent, with latent infections--96.2 per cent, with secretion disturbances--94.3 per cent. Results revealed that the preparation was suitable to control inapparent mastitis in cows during the dry period.

  5. Transcriptional profile of P. syringae pv. phaseolicola NPS3121 at low temperature: physiology of phytopathogenic bacteria.

    Science.gov (United States)

    Arvizu-Gómez, Jackeline Lizzeta; Hernández-Morales, Alejandro; Aguilar, Juan Ramiro Pacheco; Álvarez-Morales, Ariel

    2013-04-12

    Low temperatures play key roles in the development of most plant diseases, mainly because of their influence on the expression of various virulence factors in phytopathogenic bacteria. Thus far, studies regarding this environmental parameter have focused on specific themes and little is known about phytopathogenic bacteria physiology under these conditions. To obtain a global view regarding phytopathogenic bacteria strategies in response to physiologically relevant temperature changes, we used DNA microarray technology to compare the gene expression profile of the model bacterial pathogen P. syringae pv. phaseolicola NPS3121 grown at 18°C and 28°C. A total of 236 differentially regulated genes were identified, of which 133 were up-regulated and 103 were down-regulated at 18°C compared to 28°C. The majority of these genes are involved in pathogenicity and virulence processes. In general, the results of this study suggest that the expression profile obtained may be related to the fact that low temperatures induce oxidative stress in bacterial cells, which in turn influences the expression of iron metabolism genes. The expression also appears to be correlated with the profile expression obtained in genes related to motility, biofilm production, and the type III secretion system. From the data obtained in this study, we can begin to understand the strategies used by this phytopathogen during low temperature growth, which can occur in host interactions and disease development.

  6. Effect of alginate in patients with GERD hiatal hernia matters.

    Science.gov (United States)

    Vardar, R; Keskin, M; Valitova, E; Bayrakci, B; Yildirim, E; Bor, S

    2017-10-01

    Alginate-based formulations are frequently used as add-on proton pump inhibitor (PPI) therapy to help control of heartburn and regurgitation. There are limited data regarding the mechanisms and effects of alginate-based formulations. We aimed to evaluate the effects of the sodium alginate intake and its likely temporal relations on intraesophageal reflux events by MII-pH in patients with and without hiatal hernia (HH). Fifty GERD patients (18 with HH, 32 without HH) with heartburn or regurgitation once a week or more common were included. After combined multichannel intraluminal impedance and pH-metry (MII-pH) had been performed, all patients were asked to eat the same standard meal (double cheeseburger, 1 banana, 100 g regular yoghurt, and 200 mL water with total energy value of 744 kcal: 37.6% of carbohydrates, 21.2% of proteins, and 41.2% of lipids) during two consecutive days. On separate random two consecutive days, all patients took 10 mL of sodium alginate (GA; Gaviscon Advance; Reckitt Benckiser Healthcare, Hull, UK) or 10 mL of water, 30 minutes after the refluxogenic meal. After eating refluxogenic meal, patients were examined ½ hour for basal conditions, 1 hour in upright, and 1 hour in supine positions. Alginate significantly decreased acid reflux after intake at the first hour in comparison to water in patients with HH (6.1 vs. 13.7, P = 0.004) and without HH (3.5 vs. 5.5, P = 0.001). Weakly acid reflux were increased at the first hour in patients with HH (3.4 vs. 1.3, P = 0.019) and without HH (1.7 vs. 5, P = 0.02) compared to water. There was no distinctive effect of alginate on the height of proximal migration of reflux events in patients with HH and without HH. Alginate decreases acid reflux events within a limited time period, especially at the first hour both in patients with and without HH. Alginate has no effect on the height of reflux events along the esophagus both in patients with and without HH. © The Authors 2017. Published by Oxford

  7. Characterization and properties of sodium alginate from brown algae used as an ecofriendly superabsorbent

    Science.gov (United States)

    Helmiyati; Aprilliza, M.

    2017-04-01

    Sodium alginate obtained from the extraction of brown algae is used as the backbone for the synthesis of superabsorbent nanocomposite copolymerization. The first stage of extraction is the demineralization process using 0.1 M HCl solution and then 2% Na2CO3 solution for 2 hours at 60°C. The rendement of sodium alginate obtained was 44.32% with molecular weight of 40680 g/mol with measurement of the intrinsic viscosity. FTIR spectra of sodium alginate showed mannuronic acid functional group at wavenumber 884 cm-1 and the uronic acid at wavenumber 939 cm-1, OH functional group at wavenumber 3200-3400 cm-1, and CH2 stretching at wavenumber 2928 cm-1. The diffraction pattern of isolated sodium alginate has specific 2θ at 13.068 and 21.096, amorphous intensity found specific 2θ at 18.058, and the obtained crystallinity degree of the sodium alginate is equal to 29.292% from the XRD analysis. The morphological analysis by SEM shows fibrils of isolated sodium alginate. The success isolation of sodium alginate from brown algae is supported by DSC which shows the decomposition temperature of pure sodium alginate and isolated alginate have close values, namely 251.12°C for pure sodium alginate and 229.90°C for isolated sodium alginate.

  8. Bio-based barium alginate film: Preparation, flame retardancy and thermal degradation behavior.

    Science.gov (United States)

    Liu, Yun; Zhang, Chuan-Jie; Zhao, Jin-Chao; Guo, Yi; Zhu, Ping; Wang, De-Yi

    2016-03-30

    A bio-based barium alginate film was prepared via a facile ionic exchange and casting approach. Its flammability, thermal degradation and pyrolysis behaviors, thermal degradation mechanism were studied systemically by limiting oxygen index (LOI), vertical burning (UL-94), microscale combustion calorimetry (MCC), thermogravimetric analysis (TGA) coupled with Fourier transform infrared analysis (FTIR) and pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS). It showed that barium alginate film had much higher LOI value (52.0%) than that of sodium alginate film (24.5%). Moreover, barium alginate film passed the UL-94 V-0 rating, while the sodium alginate film showed no classification. Importantly, peak of heat release rate (PHRR) of barium alginate film in MCC test was much lower than that of sodium alginate film, suggested that introduction of barium ion into alginate film significantly decreased release of combustible gases. TG-FTIR and Py-GC-MS results indicated that barium alginate produced much less flammable products than that of sodium alginate in whole thermal degradation procedure. Finally, a possible degradation mechanism of barium alginate had been proposed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Controlled release of metronidazole from composite poly-ε-caprolactone/alginate (PCL/alginate) rings for dental implants.

    Science.gov (United States)

    Lan, Shih-Feng; Kehinde, Timilehin; Zhang, Xiangming; Khajotia, Sharukh; Schmidtke, David W; Starly, Binil

    2013-06-01

    Dental implants provide support for dental crowns and bridges by serving as abutments for the replacement of missing teeth. To prevent bacterial accumulation and growth at the site of implantation, solutions such as systemic antibiotics and localized delivery of bactericidal agents are often employed. The objective of this study was to demonstrate a novel method of controlled localized delivery of antibacterial agents to an implant site using a biodegradable custom fabricated ring. The study involved incorporating a model antibacterial agent (metronidazole) into custom designed poly-ε-caprolactone/alginate (PCL/alginate) composite rings to produce the intended controlled release profile. The rings can be designed to fit around the body of any root form dental implants of various diameters, shapes and sizes. In vitro release studies indicate that pure (100%) alginate rings exhibited an expected burst release of metronidazole in the first few hours, whereas Alginate/PCL composite rings produced a medium burst release followed by a sustained release for a period greater than 4 weeks. By varying the PCL/alginate weight ratios, we have shown that we can control the amount of antibacterial agents released to provide the minimal inhibitory concentration (MIC) needed for adequate protection. The fabricated composite rings have achieved a 50% antibacterial agent release profile over the first 48 h and the remaining amount slowly released over the remainder of the study period. The PCL/alginate agent release characteristic fits the Ritger-Peppas model indicating a diffusion-based mechanism during the 30-day study period. The developed system demonstrates a controllable drug release profile and the potential for the ring to inhibit bacterial biofilm growth for the prevention of diseases such as peri-implantitis resulting from bacterial infection at the implant site. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  10. Silver against Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Kirketerp-Møller, K.; Kristiansen, S.

    2007-01-01

    bacteria in both the planktonic and biofilm modes of growth. The action of silver on mature in vitro biofilms of Pseudomonas aeruginosa, a primary pathogen of chronic infected wounds, was investigated. The results show that silver is very effective against mature biofilms of P. aeruginosa...

  11. In vitro evaluation of alginate/halloysite nanotube composite scaffolds for tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Mingxian [Department of Materials Science and Engineering, Jinan University, Guangzhou 510632 (China); Dai, Libing [Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital Medical College, Jinan University, Guangzhou 510220 (China); Shi, Huizhe; Xiong, Sheng [Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632 (China); Zhou, Changren, E-mail: tcrz9@jnu.edu.cn [Department of Materials Science and Engineering, Jinan University, Guangzhou 510632 (China)

    2015-04-01

    In this study, a series of alginate/halloysite nanotube (HNTs) composite scaffolds were prepared by solution-mixing and freeze-drying method. HNTs are incorporated into alginate to improve both the mechanical and cell-attachment properties of the scaffolds. The interfacial interactions between alginate and HNTs were confirmed by the atomic force microscope (AFM), transmission electron microscope (TEM) and FTIR spectroscopy. The mechanical, morphological, and physico-chemical properties of the composite scaffolds were investigated. The composite scaffolds exhibit significant enhancement in compressive strength and compressive modulus compared with pure alginate scaffold both in dry and wet states. A well-interconnected porous structure with size in the range of 100–200 μm and over 96% porosity is found in the composite scaffolds. X-ray diffraction (XRD) result shows that HNTs are uniformly dispersed and partly oriented in the composite scaffolds. The incorporation of HNTs leads to increase in the scaffold density and decrease in the water swelling ratio of alginate. HNTs improve the stability of alginate scaffolds against enzymatic degradation in PBS solution. Thermogravimetrica analysis (TGA) shows that HNTs can improve the thermal stability of the alginate. The mouse fibroblast cells display better attachment to the alginate/HNT composite than those to the pure alginate, suggesting the good cytocompatibility of the composite scaffolds. Alginate/HNT composite scaffolds exhibit great potential for applications in tissue engineering. - Highlights: • We fabricated HNTs reinforced alginate composite scaffolds for biomedical applications. • The hydrogen bond interactions between HNTs and alginate are confirmed. • HNTs can significantly enhance the mechanical properties of alginate scaffold. • The scaffolds exhibit a highly porous structure with interconnected pores. • HNTs can improve the cell attachment and proliferation on alginate.

  12. Alginate microbeads are coagulation compatible, while alginate microcapsules activate coagulation secondary to complement or directly through FXII.

    Science.gov (United States)

    Gravastrand, Caroline; Hamad, Shamal; Fure, Hilde; Steinkjer, Bjørg; Ryan, Liv; Oberholzer, Josè; Lambris, John D; Lacík, Igor; Mollnes, Tom Eirik; Espevik, Terje; Brekke, Ole-Lars; Rokstad, Anne Mari

    2017-08-01

    Alginate microspheres are presently under evaluation for future cell-based therapy. Their ability to induce harmful host reactions needs to be identified for developing the most suitable devices and efficient prevention strategies. We used a lepirudin based human whole blood model to investigate the coagulation potentials of alginate-based microspheres: alginate microbeads (Ca/Ba Beads), alginate poly-l-lysine microcapsules (APA and AP microcapsules) and sodium alginate-sodium cellulose sulfate-poly(methylene-co-cyanoguanidine) microcapsules (PMCG microcapsules). Coagulation activation measured by prothrombin fragments 1+2 (PTF1.2) was rapidly and markedly induced by the PMCG microcapsules, delayed and lower induced by the APA and AP microcapsules, and not induced by the Ca/Ba Beads. Monocytes tissue factor (TF) expression was similarly activated by the microcapsules, whereas not by the Ca/Ba Beads. PMCG microcapsules-induced PTF1.2 was abolished by FXII inhibition (corn trypsin inhibitor), thus pointing to activation through the contact pathway. PTF1.2 induced by the AP and APA microcapsules was inhibited by anti-TF antibody, pointing to a TF driven coagulation. The TF induced coagulation was inhibited by the complement inhibitors compstatin (C3 inhibition) and eculizumab (C5 inhibition), revealing a complement-coagulation cross-talk. This is the first study on the coagulation potentials of alginate microspheres, and identifies differences in activation potential, pathways and possible intervention points. Alginate microcapsules are prospective candidate materials for cell encapsulation therapy. The material surface must be free of host cell adhesion to ensure free diffusion of nutrition and oxygen to the encapsulated cells. Coagulation activation is one gateway to cellular overgrowth through deposition of fibrin. Herein we used a physiologically relevant whole blood model to investigate the coagulation potential of alginate microcapsules and microbeads. The

  13. Leaf extract of Azadirachta indica (neem): a potential antibiofilm agent for Pseudomonas aeruginosa.

    Science.gov (United States)

    Harjai, Kusum; Bala, Anju; Gupta, Ravi K; Sharma, Radhika

    2013-10-01

    Pseudomonas aeruginosa is well known for its ability to form biofilm on indwelling medical devices. These biofilms are difficult to remove because of their high tolerance to conventional antibiotics. Therefore, there is a need to look for alternative agents such as medicinal plants, which can eradicate or inhibit biofilm effectively. This study evaluated the role of neem in inhibiting biofilm formation by P aeruginosa Factors contributing to adherence and biofilm formation were also studied. Results demonstrated that neem leaves extract was quite effective in disrupting formation and structure of biofilms. Moreover, the level of exopolysaccharide, alginate, hydrophobic interactions and uroepithelial cell attachment, which contributes to biofilm formation, was also affected significantly. Results confirm the effectiveness of neem extract in inhibiting biofilm formation. Such studies can lead to the discovery of safe antimicrobial drugs from natural sources without the risk of resistance. © 2013 Federation of European Microbiological Societies.

  14. Polysaccharides serve as scaffold of biofilms formed by mucoid Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Yang, Liang; Hengzhuang, Wang; Wu, Hong

    2012-01-01

    Chronic lung infection by mucoid Pseudomonas aeruginosa is one of the major pathologic features in patients with cystic fibrosis. Mucoid P. aeruginosa is notorious for its biofilm forming capability and resistance to immune attacks. In this study, the roles of extracellular polymeric substances...... from biofilms formed by mucoid P. aeruginosa were investigated. Alginate is not an essential structure component for mucoid P. aeruginosa biofilms. Genetic studies revealed that Pel and Psl polysaccharides serve as essential scaffold and mediate macrocolony formation in mucoid P. aeruginosa biofilms....... The Psl polysaccharide is more important than Pel polysaccharide in mucoid P. aeruginosa biofilm structure maintenance and phagocytosis resistance. The polysaccharides were further found to protect mucoid P. aeruginosa strain from host immune clearance in a mouse model of acute lung infection....

  15. Sound waves effectively assist tobramycin in elimination of Pseudomonas aeruginosa biofilms in vitro.

    Science.gov (United States)

    Bandara, H M H N; Harb, A; Kolacny, D; Martins, P; Smyth, H D C

    2014-12-01

    Microbial biofilms are highly refractory to antimicrobials. The aim of this study was to investigate the use of low-frequency vibration therapy (20-20 kHz) on antibiotic-mediated Pseudomonas aeruginosa biofilm eradication. In screening studies, low-frequency vibrations were applied on model biofilm compositions to identify conditions in which surface standing waves were observed. Alginate surface tension and viscosity were also measured. The effect of vibration on P. aeruginosa biofilms was studied using a standard biofilm assay. Subminimal inhibitory concentrations (sub-MIC) of tobramycin (5 μg/ml) were added to biofilms 3 h prior, during, and immediately after vibration and quantitatively assessed by (2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide) reduction assay (XTT) and, qualitatively, by confocal laser scanning microscopy (CLSM). The standing waves occurred at frequencies sound waves together with antibiotics are a promising approach in eliminating pathogenic biofilms.

  16. [Biodegradation of tetrahydrofuran by combined immobilized of Pseudomonas oleovorans DT4].

    Science.gov (United States)

    Shao, Qian; Ye, Jie-Xu; Ouyang, Du-Juan; Chen, Jian-Meng; Chen, Dong-Zhi

    2013-08-01

    A new composite matrix, calcium alginate (CA) coupled with activated carbon fiber (ACF) was designed to immobilize the cells of Pseudomonas oleovorans DT4 for tetrahydrofuran (THF) degradation. The average removal rate of the CA-ACF immobilized cells reached 24.0 mg x (L x h)(-1) with an initial THF concentration of 360 mg x L(-1) when the concentration of CA and ACF was 3% and 1.5% respectively. The mechanical strength of the mobilized cells was also significantly improved with the addition of ACF. Compared to the free suspended cells, higher stable removal efficiency (more than 80%) of CA-ACF cells was detected under different conditions of temperature and pH. The feasibility of the newly designed matrix was also reflected by the repeated batch degradation which showed that the removal activity decreased insignificantly after 80 cycles with the modified reaction system (PNS).

  17. Sequence determination and analysis of three plasmids of Pseudomonas sp. GLE121, a psychrophile isolated from surface ice of Ecology Glacier (Antarctica).

    Science.gov (United States)

    Dziewit, Lukasz; Grzesiak, Jakub; Ciok, Anna; Nieckarz, Marta; Zdanowski, Marek K; Bartosik, Dariusz

    2013-09-01

    Pseudomonas sp. GLE121 (a psychrophilic Antarctic strain) carries three plasmids: pGLE121P1 (6899 bp), pGLE121P2 (8330 bp) and pGLE121P3 (39,583 bp). Plasmids pGLE121P1 and pGLE121P2 show significant sequence similarity to members of the IncP-9 and IncP-7 incompatibility groups, respectively, while the largest replicon, pGLE121P3, is highly related to plasmid pNCPPB880-40 of Pseudomonas syringae pathovar tomato NCPPB880. All three plasmids have a narrow host range, limited to members of the genus Pseudomonas. Plasmid pGLE121P3 encodes a conjugal transfer system, while pGLE121P1 carries only a putative MOB module, conserved in many mobilizable plasmids. Plasmid pGLE121P3 contains an additional load of genetic information, including a pair of genes with homology to the rulAB operon, responsible for ultraviolet radiation (UVR) tolerance. Given the increasing UV exposure in Antarctic regions, the expression of these genes is likely to be an important adaptive response. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Pseudomonas aeruginosa C5-mannuronan epimerase: steady-state kinetics and characterization of the product.

    Science.gov (United States)

    Jerga, Agoston; Raychaudhuri, Aniruddha; Tipton, Peter A

    2006-01-17

    Alginate is a major constituent of mature biofilms produced by Pseudomonas aeruginosa. The penultimate step in the biosynthesis of alginate is the conversion of some beta-D-mannuronate residues in the polymeric substrate polymannuronan to alpha-L-guluronate residues in a reaction catalyzed by C5-mannuronan epimerase. Specificity studies conducted with size-fractionated oligomannuronates revealed that the minimal substrate contained nine monosaccharide residues. The maximum velocity of the reaction increased from 0.0018 to 0.0218 s(-1) as the substrate size increased from 10 to 20 residues, and no additional increase in kcat was observed for substrates up to 100 residues in length. The Km decreased from 80 microM for a substrate containing fewer than 15 residues to 4 microM for a substrate containing more than 100 residues. In contrast to C5-mannuronan epimerases that have been characterized in other bacterial species, P. aeruginosa C5-mannuronan epimerase does not require Ca2+ for activity, and the Ca2+-alginate complex is not a substrate for the enzyme. Analysis of the purified, active enzyme by inductively coupled plasma-emission spectroscopy revealed that no metals were present in the protein. The pH dependence of the kinetic parameters revealed that three residues on the enzyme which all have a pKa of approximately 7.6 must be protonated for catalysis to occur. The composition of the polymeric product of the epimerase reaction was analyzed by 1H NMR spectroscopy, which revealed that tracts of adjacent guluronate residues were readily formed. The reaction reached an apparent equilibrium when the guluronate composition of the polymer was 75%.

  19. Pseudomonas aeruginosa C5-Mannuronan Epimerase: Steady-State Kinetics and Characterization of the Product†

    Science.gov (United States)

    Jerga, Agoston; Raychaudhuri, Aniruddha; Tipton, Peter A.

    2008-01-01

    Alginate is a major constituent of mature biofilms produced by Pseudomonas aeruginosa. The penultimate step in the biosynthesis of alginate is the conversion of some β-D-mannuronate residues in the polymeric substrate polymannuronan to α-L-guluronate residues in a reaction catalyzed by C5-mannuronan epimerase. Specificity studies conducted with size-fractionated oligomannuronates revealed that the minimal substrate contained 9 monosaccharide residues. The maximum velocity of the reaction increased from 0.0018 s−1 to 0.0218 s−1 as the substrate size increased from 10 to 20 residues, and no additional increase in kcat was observed for substrates up to 100 residues in length. The Km decreased from 80 μM for substrate containing fewer than 15 residues to 4 μM for substrate containing over 100 residues. In contrast to C5-mannuronan epimerases that have been characterized in other bacterial species, P. aeruginosa C5-mannuronan epimerase does not require Ca2+ for activity, and the Ca2+-alginate complex is not a substrate for the enzyme. Analysis of purified, active enzyme by inductively coupled plasma-emission spectroscopy revealed that no metals were present in the protein. The pH dependence of the kinetic parameters revealed that 3 residues on the enzyme which all have a pKa of about 7.6 must be protonated for catalysis to occur. The composition of the polymeric product of the epimerase reaction was analyzed by 1H-NMR spectroscopy, which revealed that tracts of adjacent guluronate residues were readily formed. The reaction reached an apparent equilibrium when the guluronate composition of the polymer was 75%. PMID:16401084

  20. Immobilization of a Plant Lipase from Pachira aquatica in Alginate and Alginate/PVA Beads

    Directory of Open Access Journals (Sweden)

    Bárbara M. Bonine

    2014-01-01

    Full Text Available This study reports the immobilization of a new lipase isolated from oleaginous seeds of Pachira aquatica, using beads of calcium alginate (Alg and poly(vinyl alcohol (PVA. We evaluated the morphology, number of cycles of reuse, optimum temperature, and temperature stability of both immobilization methods compared to the free enzyme. The immobilized enzymes were more stable than the free enzyme, keeping 60% of the original activity after 4 h at 50°C. The immobilized lipase was reused several times, with activity decreasing to approximately 50% after 5 cycles. Both the free and immobilized enzymes were found to be optimally active between 30 and 40°C.

  1. Dexamethasone and N-acetyl-cysteine attenuate Pseudomonas aeruginosa-induced mucus expression in human airways.

    Science.gov (United States)

    Sprenger, Lisa; Goldmann, Torsten; Vollmer, Ekkehard; Steffen, Armin; Wollenberg, Barbara; Zabel, Peter; Hauber, Hans-Peter

    2011-04-01

    Infection with Pseudomonas aeruginosa (PA) induces mucus hypersecretion in airways. Therapeutic options to attenuate excessive mucus expression are sparse. To investigate the effect of steroids and N-acetyl-cysteine (NAC) on PA-induced mucus expression. Calu-3 cells and explanted human mucosa from the upper airways were stimulated with either PA, lipopolysaccharide from alginate producing PA (smooth, sPA-LPS) or non-alginate producing PA (rough, rPA-LPS). Dexamethasone (DEX) and NAC were added in different concentrations. Expression of mucin (MUC5AC) gene and mucin protein expression was quantified using PAS (periodic acids Schiff) staining and real time PCR. PA, sPA-LPS or rPA-LPS significantly induced mucin protein and MUC5AC gene expression in Calu-3 cells and explanted mucosal tissue (P NAC significantly decreased PA-, sPA-LPS- and rPA-LPS-induced mucin protein expression both in vitro and ex vivo (P 0.05). Our data show that both an anti-inflammatory drug (DEX) and an anti-oxidative agent (NAC) can attenuate PA-induced mucus expression in human airways. These results support the use of steroids and NAC in clinical practice to treat PA-induced mucus hypersecretion. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. In vitro propagation of Acacia hybrid through alginate-encapsulated ...

    African Journals Online (AJOL)

    Seed collected from Acacia hybrid trees yields highly variable and poorly performing offspring and are not commonly used in regeneration. The present study described the incapsulation of Acacia hybrid shoots and axillary buds in the calcium alginate gel. The aim of the study was to evaluate the germination of the buds in ...

  3. Use of antacids, alginates and proton pump inhibitors

    DEFF Research Database (Denmark)

    Lødrup, Anders; Reimer, Christine; Bytzer, Peter

    2014-01-01

    OBJECTIVE: Both over-the-counter medicine, such as antacids or alginates, and proton pump inhibitors (PPI) are used for treating acid-related disorders. We sought to describe what characterizes users of these different medicines, including long-term PPI users within the general population. METHOD...

  4. Continuous removal and recovery of lead by alginate beads, free ...

    African Journals Online (AJOL)

    This study examines the possibility of using Chlorella vulgaris cells in repeated lead adsorption/desorption cycles. Alginate beads and immobilized with algal cells were more effective and suitable than free cells. Consistently high lead removal (>90%) and recovery (about 100%) were achieved. Lead adsorption was mainly ...

  5. Development of Alginate/Chitosan Microparticles for Dust Mite Allerge

    African Journals Online (AJOL)

    The highest allergen content (0.30 ± 0.07 mg/g) was obtained with 2.5 % initial allergen loading in chitosan- triphosphate (CS-TPP) microparticles. Sustained allergen release (approx. 50 % over 24 h) was observed from alginate-coated chitosan microparticles. Allergen incorporation method and initial drug-loading could ...

  6. the potential of alginic acid and polygal for soil stabilization

    African Journals Online (AJOL)

    user

    1985-09-01

    Sep 1, 1985 ... and the changes in the engineering properties of the soils with additives admixed are discussed. The possibility of using alginic acid and polygal as ..... Soil Mechanics. McGraw Hill Univ. Series In Civ. Engineering, 1978. 18. Schofield, A.N. and Wroth, C.P.. Critical State Soil Mechanics. McGraw Hill Bk. Co.

  7. Alginate Sulfate-Nanocellulose Bioinks for Cartilage Bioprinting Applications.

    Science.gov (United States)

    Müller, Michael; Öztürk, Ece; Arlov, Øystein; Gatenholm, Paul; Zenobi-Wong, Marcy

    2017-01-01

    One of the challenges of bioprinting is to identify bioinks which support cell growth, tissue maturation, and ultimately the formation of functional grafts for use in regenerative medicine. The influence of this new biofabrication technology on biology of living cells, however, is still being evaluated. Recently we have identified a mitogenic hydrogel system based on alginate sulfate which potently supports chondrocyte phenotype, but is not printable due to its rheological properties (no yield point). To convert alginate sulfate to a printable bioink, it was combined with nanocellulose, which has been shown to possess very good printability. The alginate sulfate/nanocellulose ink showed good printing properties and the non-printed bioink material promoted cell spreading, proliferation, and collagen II synthesis by the encapsulated cells. When the bioink was printed, the biological performance of the cells was highly dependent on the nozzle geometry. Cell spreading properties were maintained with the lowest extrusion pressure and shear stress. However, extruding the alginate sulfate/nanocellulose bioink and chondrocytes significantly compromised cell proliferation, particularly when using small diameter nozzles and valves.

  8. Alginate Hydrogels Coated with Chitosan for Wound Dressing

    Directory of Open Access Journals (Sweden)

    Maria Cristina Straccia

    2015-05-01

    Full Text Available In this work, a coating of chitosan onto alginate hydrogels was realized using the water-soluble hydrochloride form of chitosan (CH-Cl, with the dual purpose of imparting antibacterial activity and delaying the release of hydrophilic molecules from the alginate matrix. Alginate hydrogels with different calcium contents were prepared by the internal setting method and coated by immersion in a CH-Cl solution. Structural analysis by cryo-scanning electron microscopy was carried out to highlight morphological alterations due to the coating layer. Tests in vitro with human mesenchymal stromal cells (MSC were assessed to check the absence of toxicity of CH-Cl. Swelling, stability in physiological solution and release characteristics using rhodamine B as the hydrophilic model drug were compared to those of relative uncoated hydrogels. Finally, antibacterial activity against Escherichia coli was tested. Results show that alginate hydrogels coated with chitosan hydrochloride described here can be proposed as a novel medicated dressing by associating intrinsic antimicrobial activity with improved sustained release characteristics.

  9. Alginate nanoparticles protect ferrous from oxidation: Potential iron delivery system.

    Science.gov (United States)

    Katuwavila, Nuwanthi P; Perera, A D L C; Dahanayake, Damayanthi; Karunaratne, V; Amaratunga, Gehan A J; Karunaratne, D Nedra

    2016-11-20

    A novel, efficient delivery system for iron (Fe2+) was developed using the alginate biopolymer. Iron loaded alginate nanoparticles were synthesized by a controlled ionic gelation method and was characterized with respect to particle size, zeta potential, morphology and encapsulation efficiency. Successful loading was confirmed with Fourier Transform Infrared spectroscopy and Thermogravimetric Analysis. Electron energy loss spectroscopy study corroborated the loading of ferrous into the alginate nanoparticles. Iron encapsulation (70%) was optimized at 0.06% Fe (w/v) leading to the formation of iron loaded alginate nanoparticles with a size range of 15-30nm and with a negative zeta potential (-38mV). The in vitro release studies showed a prolonged release profile for 96h. Release of iron was around 65-70% at pH of 6 and 7.4 whereas it was less than 20% at pH 2.The initial burst release upto 8h followed zero order kinetics at all three pH values. All the release profiles beyond 8h best fitted the Korsmeyer-Peppas model of diffusion. Non Fickian diffusion was observed at pH 6 and 7.4 while at pH 2 Fickian diffusion was observed. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Transformation of brushite to hydroxyapatite and effects of alginate additives

    Science.gov (United States)

    Ucar, Seniz; Bjørnøy, Sindre H.; Bassett, David C.; Strand, Berit L.; Sikorski, Pawel; Andreassen, Jens-Petter

    2017-06-01

    Phase transformations are important processes during mineral formation in both in vivo and in vitro model systems and macromolecules are influential in regulating the mineralization processes. Calcium phosphate mineralized alginate hydrogels are potential candidates for hard tissue engineering applications and transformation of the resorbable calcium phosphate phases to apatitic bone mineral in vivo enhances the success of these composite materials. Here, the transformation of brushite to hydroxyapatite (HA) and the effects of alginate additives on this process are studied by the investigation of supersaturation profiles with HA-seeded and unseeded experiments. This experimental design allows for detailed kinetic interpretation of the transformation reactions and deduction of information on the nucleation stage of HA by evaluating the results of seeded and unseeded experiments together. In the experimental conditions of this work, transformation was controlled by HA growth until the point of near complete brushite dissolution where the growth and dissolution rates were balanced. The presence of alginate additives at low concentration were not highly influential on transformation rates during the growth dominated region but their retardant effect became more pronounced as the dissolution and growth rates reached an equilibrium where both reactions were effective on transformation kinetics. Decoupling of seeded and unseeded transformation experiments suggested that alginate additives retard HA nucleation and this was most evident in the presence of G-block oligomers.

  11. Alginate-Chitosan Particulate System for Sustained Release of ...

    African Journals Online (AJOL)

    Erah

    Available online at http://www.tjpr.org. Research Article ... diffraction (XRD), and atomic absorption spectroscopy (AAS) were also applied to investigate the physicochemical characteristics of the drug in ... Both calcium alginate beads and the beads treated with chitosan failed to release the drug at pH 1.2 over the period of ...

  12. Comparison Of The Dimensional Stability Of Alginate Impressions ...

    African Journals Online (AJOL)

    Methodology: Alginate impressions of a master model of truncated metal cones were made and disinfected with 1% sodium hypochlorite constituted from 3.5% household bleach using the spray and immersion technique for 10;20 and 30 minutes. Impressions were cast in dental stone and the linear dimensional differences ...

  13. Magnetic alginate microparticles for purification of .alpha.-amylases

    Czech Academy of Sciences Publication Activity Database

    Šafaříková, Miroslava; Roy, I.; Gupta, M. N.; Šafařík, Ivo

    2003-01-01

    Roč. 105, - (2003), s. 255-260 ISSN 0168-1656 R&D Projects: GA MŠk OC 523.80; GA AV ČR IBS6087204 Institutional research plan: CEZ:AV0Z6087904 Keywords : alginate * ferrofluid * amalyses Subject RIV: CE - Biochemistry Impact factor: 2.543, year: 2003

  14. Removal of Uranium from Aqueous Solution by Alginate Beads

    Directory of Open Access Journals (Sweden)

    Jing Yu

    2017-04-01

    Full Text Available The adsorption of uranium (VI by calcium alginate beads was examined by batch experiments. The effects of environmental conditions on U (VI adsorption were studied, including contact time, pH, initial concentration of U (VI, and temperature. The alginate beads were characterized by using scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy. Fourier transform infrared spectra indicated that hydroxyl and alkoxy groups are present at the surface of the beads. The experimental results showed that the adsorption of U (VI by alginate beads was strongly dependent on pH, the adsorption increased at pH 3∼7, then decreased at pH 7∼9. The adsorption reached equilibrium within 2 minutes. The adsorption kinetics of U (VI onto alginate beads can be described by a pseudo first-order kinetic model. The adsorption isotherm can be described by the Redlich-Peterson model, and the maximum adsorption capacity was 237.15 mg/g. The sorption process is spontaneous and has an exothermic reaction.

  15. Adsorption studies of phosphate ions on alginate-calcium carbonate ...

    African Journals Online (AJOL)

    Alginate-calcium carbonate composite beads was prepared by the sol-gel method and characterized by Fourier transform infra-red spectroscopy (FT-IR) and scanning electron microscope (SEM) instruments. Adsorption potential of phosphate ions have been studied on laboratory scale. The effects of contact time, adsorbent ...

  16. Genome Sequence Analyses of Pseudomonas savastanoi pv. glycinea and Subtractive Hybridization-Based Comparative Genomics with Nine Pseudomonads

    Science.gov (United States)

    Qi, Mingsheng; Wang, Dongping; Bradley, Carl A.; Zhao, Youfu

    2011-01-01

    Bacterial blight, caused by Pseudomonas savastanoi pv. glycinea (Psg), is a common disease of soybean. In an effort to compare a current field isolate with one isolated in the early 1960s, the genomes of two Psg strains, race 4 and B076, were sequenced using 454 pyrosequencing. The genomes of both Psg strains share more than 4,900 highly conserved genes, indicating very low genetic diversity between Psg genomes. Though conserved, genome rearrangements and recombination events occur commonly within the two Psg genomes. When compared to each other, 437 and 163 specific genes were identified in B076 and race 4, respectively. Most specific genes are plasmid-borne, indicating that acquisition and maintenance of plasmids may represent a major mechanism to change the genetic composition of the genome and even acquire new virulence factors. Type three secretion gene clusters of Psg strains are near identical with that of P. savastanoi pv. phaseolicola (Pph) strain 1448A and they shared 20 common effector genes. Furthermore, the coronatine biosynthetic cluster is present on a large plasmid in strain B076, but not in race 4. In silico subtractive hybridization-based comparative genomic analyses with nine sequenced phytopathogenic pseudomonads identified dozens of specific islands (SIs), and revealed that the genomes of Psg strains are more similar to those belonging to the same genomospecies such as Pph 1448A than to other phytopathogenic pseudomonads. The number of highly conserved genes (core genome) among them decreased dramatically when more genomes were included in the subtraction, suggesting the diversification of pseudomonads, and further indicating the genome heterogeneity among pseudomonads. However, the number of specific genes did not change significantly, suggesting these genes are indeed specific in Psg genomes. These results reinforce the idea of a species complex of P. syringae and support the reclassification of P. syringae into different species. PMID

  17. Characterization of molecular mechanisms controlling fabAB transcription in Pseudomonas aeruginosa.

    Directory of Open Access Journals (Sweden)

    Herbert P Schweizer

    Full Text Available BACKGROUND: The FabAB pathway is one of the unsaturated fatty acid (UFA synthesis pathways for Pseudomonas aeruginosa. It was previously noted that this operon was upregulated in biofilms and repressed by exogenous UFAs. Deletion of a 30 nt fabA upstream sequence, which is conserved in P. aeruginosa, P. putida, and P. syringae, l