WorldWideScience

Sample records for pseudomonas species designated

  1. Diversity of small RNAs expressed in Pseudomonas species

    DEFF Research Database (Denmark)

    Gomez-Lozano, Mara; Marvig, Rasmus Lykke; Molina-Santiago, Carlos

    2015-01-01

    RNA sequencing (RNA-seq) has revealed several hundreds of previously undetected small RNAs (sRNAs) in all bacterial species investigated, including strains of Pseudomonas aeruginosa, Pseudomonas putida and Pseudomonas syringae. Nonetheless, only little is known about the extent of conservation...... of expressed sRNAs across strains and species. In this study, we have used RNA-seq to identify sRNAs in P.putidaDOT-T1E and Pseudomonas extremaustralis 14-3b. This is the first strain of P.extremaustralis and the second strain of P.putida to have their transcriptomes analysed for sRNAs, and we identify...... the presence of around 150 novel sRNAs in each strain. Furthermore, we provide a comparison based on sequence conservation of all the sRNAs detected by RNA-seq in the Pseudomonas species investigated so far. Our results show that the extent of sRNA conservation across different species is very limited...

  2. Pseudomonas wadenswilerensis sp. nov. and Pseudomonas reidholzensis sp. nov., two novel species within the Pseudomonas putida group isolated from forest soil.

    Science.gov (United States)

    Frasson, David; Opoku, Michael; Picozzi, Tara; Torossi, Tanja; Balada, Stefanie; Smits, Theo H M; Hilber, Urs

    2017-08-01

    Within the frame of a biotechnological screening, we isolated two Pseudomonas strains from forest soil. 16S rRNA gene sequence analysis indicated that strain CCOS 864T shared 99.8 % similarity with Pseudomonas donghuensis HYST, while strain CCOS 865T shared 99.0 % similarity with Pseudomonas putida DSM 291T and lower similarity with other P. putida group type strains. Based on multilocus sequence analysis, the two strains were genotypically distinct from each other, each forming a separate clade. Strains CCOS 864T and CCOS 865T were Gram-stain-negative, motile and rod-shaped, growing at a temperature range of 4-37 °C. Strain CCOS 864T could be phenotypically distinguished from P. putida group species by the combination of gelatinase-positive reaction and positive growth on N-acetyl-d-glucosamine, p-hydroxyphenylacetic acid and inosine but lack of fluorescein production on King's B medium, while strain CCOS 865T could be distinguished from P. putida group species by the combination of positive growth with saccharic acid and negative growth with p-hydroxyphenylacetic acid and l-pyroglutamic acid. The major polar lipid for both strains was phosphatidylethanolamine; the major quinone was ubiquinone Q-9. DNA-DNA hybridization and average nucleotide identities confirmed the novel species status for the two strains. The DNA G+C contents of CCOS 864T and CCOS 865T were 62.1 and 63.8 mol%, respectively. The phenotypic, phylogenetic and DNA-DNA relatedness data support the suggestion that CCOS 864T and CCOS 865T represent two novel Pseudomonas species. The names Pseudomonas wadenswilerensis sp. nov. (type strain CCOS 864T=LMG 29327T) and Pseudomonas reidholzensis sp. nov. (type strain CCOS 865T=LMG 29328T) are proposed.

  3. Conservation of the response regulator gene gacA in Pseudomonas species

    NARCIS (Netherlands)

    Souza, J.T.; Mazzola, M.; Raaijmakers, J.M.

    2003-01-01

    The response regulator gene gacA influences the production of several secondary metabolites in both pathogenic and beneficial Pseudomonas spp. In this study, we developed primers and a probe for the gacA gene of Pseudomonas species and sequenced a 425 bp fragment of gacA from ten Pseudomonas strains

  4. PseudoMLSA: a database for multigenic sequence analysis of Pseudomonas species

    Directory of Open Access Journals (Sweden)

    Lalucat Jorge

    2010-04-01

    Full Text Available Abstract Background The genus Pseudomonas comprises more than 100 species of environmental, clinical, agricultural, and biotechnological interest. Although, the recommended method for discriminating bacterial species is DNA-DNA hybridisation, alternative techniques based on multigenic sequence analysis are becoming a common practice in bacterial species discrimination studies. Since there is not a general criterion for determining which genes are more useful for species resolution; the number of strains and genes analysed is increasing continuously. As a result, sequences of different genes are dispersed throughout several databases. This sequence information needs to be collected in a common database, in order to be useful for future identification-based projects. Description The PseudoMLSA Database is a comprehensive database of multiple gene sequences from strains of Pseudomonas species. The core of the database is composed of selected gene sequences from all Pseudomonas type strains validly assigned to the genus through 2008. The database is aimed to be useful for MultiLocus Sequence Analysis (MLSA procedures, for the identification and characterisation of any Pseudomonas bacterial isolate. The sequences are available for download via a direct connection to the National Center for Biotechnology Information (NCBI. Additionally, the database includes an online BLAST interface for flexible nucleotide queries and similarity searches with the user's datasets, and provides a user-friendly output for easily parsing, navigating, and analysing BLAST results. Conclusions The PseudoMLSA database amasses strains and sequence information of validly described Pseudomonas species, and allows free querying of the database via a user-friendly, web-based interface available at http://www.uib.es/microbiologiaBD/Welcome.html. The web-based platform enables easy retrieval at strain or gene sequence information level; including references to published peer

  5. Heterogeneity of heat-resistant proteases from milk Pseudomonas species.

    Science.gov (United States)

    Marchand, Sophie; Vandriesche, Gonzalez; Coorevits, An; Coudijzer, Katleen; De Jonghe, Valerie; Dewettinck, Koen; De Vos, Paul; Devreese, Bart; Heyndrickx, Marc; De Block, Jan

    2009-07-31

    Pseudomonas fragi, Pseudomonas lundensis and members of the Pseudomonas fluorescens group may spoil Ultra High Temperature (UHT) treated milk and dairy products, due to the production of heat-stable proteases in the cold chain of raw milk. Since the aprX gene codes for a heat-resistant protease in P. fluorescens, the presence of this gene has also been investigated in other members of the genus. For this purpose an aprX-screening PCR test has been developed. Twenty-nine representatives of important milk Pseudomonas species and thirty-five reference strains were screened. In 42 out of 55 investigated Pseudomonas strains, the aprX gene was detected, which proves the potential of the aprX-PCR test as a screening tool for potentially proteolytic Pseudomonas strains in milk samples. An extensive study of the obtained aprX-sequences on the DNA and the amino acid level, however, revealed a large heterogeneity within the investigated milk isolates. Although this heterogeneity sets limitations to a general detection method for all proteolytic Pseudomonas strains in milk, it offers a great potential for the development of a multiplex PCR screening test targeting individual aprX-genes. Furthermore, our data illustrated the potential use of the aprX gene as a taxonomic marker, which may help in resolving the current taxonomic deadlock in the P. fluorescens group.

  6. Lipase From Thermoalkalophilic Pseudomonas species as an Additive in Potential Laundry Detergent Formulations

    Directory of Open Access Journals (Sweden)

    Ibrahim, C. O.

    2009-01-01

    Full Text Available Lipase isolated from a thermoalkalophilic Pseudomonas species was used as additive to improve the degree of olive oil removal from cotton fabric in the presence of surfactants. The lipase used in this study was found to be more effective with non ionic surfactants as compared to ionic surfactants. In terms of stability, there was no decrease in activity found in the presence of Tween 85, Span 80 and Span 20. Lipase from Pseudomonas species was most active in the presence of Tween 85, Span 80 and Span 20. The application of lipase from Pseudomonas species as an additive in the formulation containing Span 80 has improved oil removal by 36% using the washing system consisting 5 U/mL lipase, at 70 °C for 20 min and 0.8% of Span 80 as surfactant. Considering that lipase from Pseudomonas species is stable in high pH and temperatures in the presence of various surfactants, therefore it is suitable to be incorporated as additives in potential detergent formulations.

  7. Isolation and evaluation of potent Pseudomonas species for bioremediation of phorate in amended soil.

    Science.gov (United States)

    Jariyal, Monu; Gupta, V K; Jindal, Vikas; Mandal, Kousik

    2015-12-01

    Use of phorate as a broad spectrum pesticide in agricultural crops is finding disfavor due to persistence of both the principal compound as well as its toxic residues in soil. Three phorate utilizing bacterial species (Pseudomonas sp. strain Imbl 4.3, Pseudomonas sp. strain Imbl 5.1, Pseudomonas sp. strain Imbl 5.2) were isolated from field soils. Comparative phorate degradation analysis of these species in liquid cultures identified Pseudomonas sp. strain Imbl 5.1 to cause complete metabolization of phorate during seven days as compared to the other two species in 13 days. In soils amended with phorate at different levels (100, 200, 300 mg kg(-1) soil), Pseudomonas sp. strain Imbl 5.1 resulted in active metabolization of phorate by between 94.66% and 95.62% establishing the same to be a potent bacterium for significantly relieving soil from phorate residues. Metabolization of phorate to these phorate residues did not follow the first order kinetics. This study proves that Pseudomonas sp. strain Imbl 5.1 has huge potential for active bioremediation of phorate both in liquid cultures and agricultural soils. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Pseudomonas putida and Pseudomonas fluorescens Species Group Recovery from Human Homes Varies Seasonally and by Environment.

    Directory of Open Access Journals (Sweden)

    Susanna K Remold

    Full Text Available By shedding light on variation in time as well as in space, long-term biogeographic studies can help us define organisms' distribution patterns and understand their underlying drivers. Here we examine distributions of Pseudomonas in and around 15 human homes, focusing on the P. putida and P. fluorescens species groups. We describe recovery from 10,941 samples collected during up to 8 visits per home, occurring on average 2.6 times per year. We collected a mean of 141 samples per visit, from sites in most rooms of the house, from the surrounding yards, and from human and pet occupants. We recovered Pseudomonas in 9.7% of samples, with the majority of isolates being from the P. putida and P. fluorescens species groups (approximately 62% and 23% of Pseudomonas samples recovered respectively. Although representatives of both groups were recovered from every season, every house, and every type of environment sampled, recovery was highly variable across houses and samplings. Whereas recovery of P. putida group was higher in summer and fall than in winter and spring, P. fluorescens group isolates were most often recovered in spring. P. putida group recovery from soils was substantially higher than its recovery from all other environment types, while higher P. fluorescens group recovery from soils than from other sites was much less pronounced. Both species groups were recovered from skin and upper respiratory tract samples from healthy humans and pets, although this occurred infrequently. This study indicates that even species that are able to survive under a broad range of conditions can be rare and variable in their distributions in space and in time. For such groups, determining patterns and causes of stochastic and seasonal variability may be more important for understanding the processes driving their biogeography than the identity of the types of environments in which they can be found.

  9. Mercury affects the distribution of culturable species of Pseudomonas in soil

    DEFF Research Database (Denmark)

    Holtze, Maria Sommer; Nielsen, Preben; Ekelund, Flemming

    2006-01-01

    Pseudomonas bacteria isolated during 52 days on Gould's S1 agar from soil spiked with 0, 3.5 and 15 mg Hg(II) kg soil(-1) were characterised to reveal whether mercury affected them differently. Isolates from the treatments with 0 and 15 mg Hg kg(-1) were characterised using FT-IR characterisation...... was almost exclusively restricted to P. frederiksbergensis and P. migulae groups. We conclude that Hg caused a shift in the dominating species of culturable Pseudomonas....

  10. Diversity of Aquatic Pseudomonas Species and Their Activity against the Fish Pathogenic Oomycete Saprolegnia.

    Directory of Open Access Journals (Sweden)

    Yiying Liu

    Full Text Available Emerging fungal and oomycete pathogens are increasingly threatening animals and plants globally. Amongst oomycetes, Saprolegnia species adversely affect wild and cultivated populations of amphibians and fish, leading to substantial reductions in biodiversity and food productivity. With the ban of several chemical control measures, new sustainable methods are needed to mitigate Saprolegnia infections in aquaculture. Here, PhyloChip-based community analyses showed that the Pseudomonadales, particularly Pseudomonas species, represent one of the largest bacterial orders associated with salmon eggs from a commercial hatchery. Among the Pseudomonas species isolated from salmon eggs, significantly more biosurfactant producers were retrieved from healthy salmon eggs than from Saprolegnia-infected eggs. Subsequent in vivo activity bioassays showed that Pseudomonas isolate H6 significantly reduced salmon egg mortality caused by Saprolegnia diclina. Live colony mass spectrometry showed that strain H6 produces a viscosin-like lipopeptide surfactant. This biosurfactant inhibited growth of Saprolegnia in vitro, but no significant protection of salmon eggs against Saprolegniosis was observed. These results indicate that live inocula of aquatic Pseudomonas strains, instead of their bioactive compound, can provide new (microbiological and sustainable means to mitigate oomycete diseases in aquaculture.

  11. Diversity of Aquatic Pseudomonas Species and Their Activity against the Fish Pathogenic Oomycete Saprolegnia

    Science.gov (United States)

    Liu, Yiying; Rzeszutek, Elzbieta; van der Voort, Menno; Wu, Cheng-Hsuan; Thoen, Even; Skaar, Ida; Bulone, Vincent; Dorrestein, Pieter C.; Raaijmakers, Jos M.; de Bruijn, Irene

    2015-01-01

    Emerging fungal and oomycete pathogens are increasingly threatening animals and plants globally. Amongst oomycetes, Saprolegnia species adversely affect wild and cultivated populations of amphibians and fish, leading to substantial reductions in biodiversity and food productivity. With the ban of several chemical control measures, new sustainable methods are needed to mitigate Saprolegnia infections in aquaculture. Here, PhyloChip-based community analyses showed that the Pseudomonadales, particularly Pseudomonas species, represent one of the largest bacterial orders associated with salmon eggs from a commercial hatchery. Among the Pseudomonas species isolated from salmon eggs, significantly more biosurfactant producers were retrieved from healthy salmon eggs than from Saprolegnia-infected eggs. Subsequent in vivo activity bioassays showed that Pseudomonas isolate H6 significantly reduced salmon egg mortality caused by Saprolegnia diclina. Live colony mass spectrometry showed that strain H6 produces a viscosin-like lipopeptide surfactant. This biosurfactant inhibited growth of Saprolegnia in vitro, but no significant protection of salmon eggs against Saprolegniosis was observed. These results indicate that live inocula of aquatic Pseudomonas strains, instead of their bioactive compound, can provide new (micro)biological and sustainable means to mitigate oomycete diseases in aquaculture. PMID:26317985

  12. Peritoneal dialysis-related peritonitis caused by Pseudomonas species: Insight from a post-millennial case series.

    Science.gov (United States)

    Lu, Wanhong; Kwan, Bonnie Ching-Ha; Chow, Kai Ming; Pang, Wing-Fai; Leung, Chi Bon; Li, Philip Kam-To; Szeto, Cheuk Chun

    2018-01-01

    Pseudomonas peritonitis is a serious complication of peritoneal dialysis (PD). However, the clinical course of Pseudomonas peritonitis following the adoption of international guidelines remains unclear. We reviewed the clinical course and treatment response of 153 consecutive episodes of PD peritonitis caused by Pseudomonas species from 2001 to 2015. Pseudomonas peritonitis accounted for 8.3% of all peritonitis episodes. The bacteria isolated were resistant to ceftazidime in 32 cases (20.9%), and to gentamycin in 18 cases (11.8%). In 20 episodes (13.1%), there was a concomitant exit site infection (ESI); in another 24 episodes (15.7%), there was a history of Pseudomonas ESI in the past. The overall primary response rate was 53.6%, and complete cure rate 42.4%. There was no significant difference in the complete cure rate between patients who treated with regimens of 3 and 2 antibiotics. Amongst 76 episodes (46.4%) that failed to respond to antibiotics by day 4, 37 had immediate catheter removal; the other 24 received salvage antibiotics, but only 6 achieved complete cure. Antibiotic resistance is common amongst Pseudomonas species causing peritonitis. Adoption of the treatment guideline leads to a reasonable complete cure rate of Pseudomonas peritonitis. Treatment with three antibiotics is not superior than the conventional two antibiotics regimen. When there is no clinical response after 4 days of antibiotic treatment, early catheter removal should be preferred over an attempt of salvage antibiotic therapy.

  13. Development of a real-time TaqMan assay to detect mendocina sublineage Pseudomonas species in contaminated metalworking fluids.

    Science.gov (United States)

    Saha, Ratul; Donofrio, Robert S; Bagley, Susan T

    2010-08-01

    A TaqMan quantitative real-time polymerase chain reaction (qPCR) assay was developed for the detection and enumeration of three Pseudomonas species belonging to the mendocina sublineage (P. oleovorans, P. pseudoalcaligenes, and P. oleovorans subsp. lubricantis) found in contaminated metalworking fluids (MWFs). These microbes are the primary colonizers and serve as indicator organisms of biodegradation of used MWFs. Molecular techniques such as qPCR are preferred for the detection of these microbes since they grow poorly on typical growth media such as R2A agar and Pseudomonas isolation agar (PIA). Traditional culturing techniques not only underestimate the actual distribution of these bacteria but are also time-consuming. The primer-probe pair developed from gyrase B (gyrB) sequences of the targeted bacteria was highly sensitive and specific for the three species. qPCR was performed with both whole cell and genomic DNA to confirm the specificity and sensitivity of the assay. The sensitivity of the assay was 10(1) colony forming units (CFU)/ml for whole cell and 13.7 fg with genomic DNA. The primer-probe pair was successful in determining concentrations from used MWF samples, indicating levels between 2.9 x 10(3) and 3.9 x 10(6) CFU/ml. In contrast, the total count of Pseudomonas sp. recovered on PIA was in the range of <1.0 x 10(1) to 1.4 x 10(5) CFU/ml for the same samples. Based on these results from the qPCR assay, the designed TaqMan primer-probe pair can be efficiently used for rapid (within 2 h) determination of the distribution of these species of Pseudomonas in contaminated MWFs.

  14. Pseudomonas lactis sp. nov. and Pseudomonas paralactis sp. nov., isolated from bovine raw milk.

    Science.gov (United States)

    von Neubeck, Mario; Huptas, Christopher; Glück, Claudia; Krewinkel, Manuel; Stoeckel, Marina; Stressler, Timo; Fischer, Lutz; Hinrichs, Jörg; Scherer, Siegfried; Wenning, Mareike

    2017-06-01

    Five strains, designated WS 4672T, WS 4998, WS 4992T, WS 4997 and WS 5000, isolated from bovine raw milk formed two individual groups in a phylogenetic analysis. The most similar species on the basis of 16S rRNA gene sequences were Pseudomonas azotoformans IAM 1603T, Pseudomonas gessardii CIP 105469T and Pseudomonas libanensis CIP 105460T showing 99.7-99.6 % similarity. Using rpoD gene sequences Pseudomonas veronii LMG 17761T (93.3 %) was most closely related to strain WS 4672T and Pseudomonas libanensis CIP 105460T to strain WS 4992T (93.3 %). The five strains could be differentiated from their closest relatives and from each other by phenotypic and chemotaxonomic characterization and ANIb values calculated from draft genome assemblies. ANIb values of strains WS 4992T and WS4671T to the closest relatives are lower than 90 %. The major cellular polar lipids of both strains are phosphatidylethanolamine, phosphatidylglycerol, a phospholipid and diphosphatidylglycerol, and their major quinone is Q-9. The DNA G+C content of strains WS 4992T and WS 4672T were 60.0  and 59.7  mol%, respectively. Based on these genotypic and phenotypic traits two novel species of the genus Pseudomonas are proposed: Pseudomonas lactis sp. nov. [with type strain WS 4992T (=DSM 29167T=LMG 28435T) and the additional strains WS 4997 and WS 5000], and Pseudomonasparalactis sp. nov. [with type strain WS 4672T (=DSM 29164T=LMG 28439T) and additional strain WS 4998].

  15. Recognition of six additional cystoviruses: Pseudomonas virus phi6 is no longer the sole species of the family Cystoviridae.

    Science.gov (United States)

    Mäntynen, Sari; Sundberg, Lotta-Riina; Poranen, Minna M

    2018-04-01

    Cystoviridae is a family of bacterial viruses (bacteriophages) with a tri-segmented dsRNA genome. It includes a single genus Cystovirus, which has presently only one recognised virus species, Pseudomonas virus phi6. However, a large number of additional dsRNA phages have been isolated from various environmental samples, indicating that such viruses are more widespread and abundant than previously recognised. Six of the additional dsRNA phage isolates (Pseudomonas phages phi8, phi12, phi13, phi2954, phiNN and phiYY) have been fully sequenced. They all infect Pseudomonas species, primarily plant pathogenic Pseudomonas syringae strains. Due to the notable genetic and structural similarities with Pseudomonas phage phi6, we propose that these viruses should be included into the Cystovirus genus (and consequently into the Cystoviridae family). Here, we present an updated taxonomy of the family Cystoviridae and give a short overview of the properties of the type member phi6 as well as the putative new members of the family.

  16. Pseudomonas alkylphenolica sp. nov., a bacterial species able to form special aerial structures when grown on p-cresol.

    Science.gov (United States)

    Mulet, Magdalena; Sánchez, David; Lalucat, Jorge; Lee, Kyoung; García-Valdés, Elena

    2015-11-01

    Pseudomonas sp. KL28T is an aerobic, rod-shaped bacterium that was isolated from the soil of Changwon, South Korea, based on its ability to grow in the presence of linear alkylphenols (C1-C5). Despite several studies on strain KL28T, it could not be assigned to any known species in the genus Pseudomonas. The name 'Pseudomonas alkylphenolia' was proposed for KL28T, but the strain had not until now been characterized taxonomically and the name currently has no standing in the bacterial nomenclature. A 16S rRNA gene sequence based phylogenetic analysis suggested an affiliation of strain KL28T with the Pseudomonas putida group, with Pseudomonas vranovensis DSM 16006T as the most closely related type strain (99.1 % similarity). A multilocus phylogenetic sequence analysis performed by concatenating 16S rRNA, gyrB, rpoD and rpoB partial gene sequences showed that isolate KL28T could be differentiated from P. vranovensis DSM 16006T (sequence similarity 93.7 %). Genomic comparisons of strain KL28T with the type strains of the species in the P. putida group using average nucleotide index based on blast (ANIb) and genome-to genome distances (GGDC) revealed 87.06 % and 32.20 % similarities with P. vranovensis DSM 16006T, respectively, as the closest type strain. Both values are far from the thresholds established for species differentiation. These results, together with differences in phenotypic features and chemotaxonomic analyses [fatty acids and whole-cell matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS], support the proposal of strain KL28T ( = JCM 16553T = KCTC 22206T) as the type strain of a novel species, for which the formerly proposed name, 'P. alkylphenolia', is correctly latinized as Pseudomonas alkylphenolica sp. nov.

  17. Chemical sanitizers to control biofilms formed by two Pseudomonas species on stainless steel surface

    Directory of Open Access Journals (Sweden)

    Danila Soares Caixeta

    2012-03-01

    Full Text Available The biofilm formation of Pseudomonas aeruginosa and Pseudomonas fluorescens on AISI 304 stainless steel in the presence of reconstituted skim milk under different temperatures was conducted, and the potential of three chemical sanitizers in removing the mono-species biofilms formed was compared. Pseudomonas aeruginosa cultivated in skim milk at 28 °C presented better growth rate (10.4 log CFU.mL-1 when compared with 3.7 and 4.2 log CFU.mL-1 for P. aeruginosa and P. fluorescens cultivated at 7 °C, respectively. Pseudomonas aeruginosa formed biofilm when cultivated at 28 °C. However, only the adhesion of P. aeruginosa and P. fluorescens was observed when incubated at 7 °C. The sodium dichloroisocyanurate was the most efficient sanitizer in the reduction of the adhered P. aeruginosa cells at 7 and 28 °C and those on the biofilm, respectively. The hydrogen peroxide was more effective in the reduction of adhered cells of P. fluorescens at 7 °C.

  18. Antimicrobial Activity of Various Plant Extracts on Pseudomonas Species Associated with Spoilage of Chilled Fish

    Directory of Open Access Journals (Sweden)

    Osan Bahurmiz

    2016-11-01

    Full Text Available The antimicrobial activity of various plant extracts on Pseudomonas bacteria isolated from spoiled chilled tilapia (Oreochromis sp. was evaluated in this study. In the first stage of this study, red tilapia was subjected to chilled storage (4°C for 3 weeks, and spoilage bacteria were isolated and identified from the spoiled fish. Pseudomonas was the dominant bacteria isolated from the spoiled fish and further identification revealed that P. putida, P. fluorescens and Pseudomonas spp. were the main species of this group. In the second stage, methanolic extracts of 15 selected plant species were screened for their antimicrobial activity, by agar disc diffusion method, against the Pseudomonas isolates. Results indicated that most of the extracts had different degrees of activity against the bacterial isolates. The strongest activity was exhibited by bottlebrush flower (Callistemon viminalis extract. This was followed by extracts from guava bark (Psidium guajava and henna leaf (Lawsonia inermis. Moderate antimicrobial activities were observed in extracts of clove (Syzygium aromaticum, leaf and peel of tamarind (Tamarindus indica, cinnamon bark (Cinnamomum zeylanicum, wild betel leaf (Piper sarmentosum and fresh thyme (Thymus spp.. Weak or no antimicrobial activity was observed from the remaining extracts. The potential antimicrobial activity shown by some plant extracts in this study could significantly contribute to the fish preservation.

  19. Glyphosate-Induced Specific and Widespread Perturbations in the Metabolome of Soil Pseudomonas Species

    Directory of Open Access Journals (Sweden)

    Ludmilla Aristilde

    2017-06-01

    Full Text Available Previous studies have reported adverse effects of glyphosate on crop-beneficial soil bacterial species, including several soil Pseudomonas species. Of particular interest is the elucidation of the metabolic consequences of glyphosate toxicity in these species. Here we investigated the growth and metabolic responses of soil Pseudomonas species grown on succinate, a common root exudate, and glyphosate at different concentrations. We conducted our experiments with one agricultural soil isolate, P. fluorescens RA12, and three model species, P. putida KT2440, P. putida S12, and P. protegens Pf-5. Our results demonstrated both species- and strain-dependent growth responses to glyphosate. Following exposure to a range of glyphosate concentrations (up to 5 mM, the growth rate of both P. protegens Pf-5 and P. fluorescens RA12 remained unchanged whereas the two P. putida strains exhibited from 0 to 100% growth inhibition. We employed a 13C-assisted metabolomics approach using liquid chromatography-mass spectrometry to monitor disruptions in metabolic homeostasis and fluxes. Profiling of the whole-cell metabolome captured deviations in metabolite levels involved in the tricarboxylic acid cycle, ribonucleotide biosynthesis, and protein biosynthesis. Altered metabolite levels specifically in the biosynthetic pathway of aromatic amino acids (AAs, the target of toxicity for glyphosate in plants, implied the same toxicity target in the soil bacterium. Kinetic flux experiments with 13C-labeled succinate revealed that biosynthetic fluxes of the aromatic AAs were not inhibited in P. fluorescens Pf-5 in the presence of low and high glyphosate doses but these fluxes were inhibited by up to 60% in P. putida KT2440, even at sub-lethal glyphosate exposure. Notably, the greatest inhibition was found for the aromatic AA tryptophan, an important precursor to secondary metabolites. When the growth medium was supplemented with aromatic AAs, P. putida S12 exposed to a lethal

  20. Multiple Pseudomonas species secrete exolysin-like toxins and provoke Caspase-1-dependent macrophage death.

    Science.gov (United States)

    Basso, Pauline; Wallet, Pierre; Elsen, Sylvie; Soleilhac, Emmanuelle; Henry, Thomas; Faudry, Eric; Attrée, Ina

    2017-10-01

    Pathogenic bacteria secrete protein toxins that provoke apoptosis or necrosis of eukaryotic cells. Here, we developed a live-imaging method, based on incorporation of a DNA-intercalating dye into membrane-damaged host cells, to study the kinetics of primary bone marrow-derived macrophages (BMDMs) mortality induced by opportunistic pathogen Pseudomonas aeruginosa expressing either Type III Secretion System (T3SS) toxins or the pore-forming toxin, Exolysin (ExlA). We found that ExlA promotes the activation of Caspase-1 and maturation of interleukin-1β. BMDMs deficient for Caspase-1 and Caspase-11 were resistant to ExlA-induced death. Furthermore, by using KO BMDMs, we determined that the upstream NLRP3/ASC complex leads to the Caspase-1 activation. We also demonstrated that Pseudomonas putida and Pseudomonas protegens and the Drosophila pathogen Pseudomonas entomophila, which naturally express ExlA-like toxins, are cytotoxic toward macrophages and provoke the same type of pro-inflammatory death as does ExlA + P. aeruginosa. These results demonstrate that ExlA-like toxins of two-partner secretion systems from diverse Pseudomonas species activate the NLRP3 inflammasome and provoke inflammatory pyroptotic death of macrophages. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  1. Genetic Detection of Pseudomonas spp. in Commercial Amazonian Fish

    Science.gov (United States)

    Ardura, Alba; Linde, Ana R.; Garcia-Vazquez, Eva

    2013-01-01

    Brazilian freshwater fish caught from large drainages like the River Amazon represent a million ton market in expansion, which is of enormous importance for export to other continents as exotic seafood. A guarantee of bacteriological safety is required for international exports that comprise a set of different bacteria but not any Pseudomonas. However, diarrhoea, infections and even septicaemia caused by some Pseudomonas species have been reported, especially in immune-depressed patients. In this work we have employed PCR-based methodology for identifying Pseudomonas species in commercial fish caught from two different areas within the Amazon basin. Most fish caught from the downstream tributary River Tapajòs were contaminated by five different Pseudomonas species. All fish samples obtained from the River Negro tributary (Manaus markets) contained Pseudomonas, but a less diverse community with only two species. The most dangerous Pseudomonas species for human health, P. aeruginosa, was not found and consumption of these fish (from their Pseudomonas content) can be considered safe for healthy consumers. As a precautionary approach we suggest considering Pseudomonas in routine bacteriological surveys of imported seafood. PMID:24065035

  2. Effects of Pseudomonas species on the release of bound 14C residues from soil treated with [14C]atrazine

    International Nuclear Information System (INIS)

    Khan, S.U.; Behki, R.M.

    1990-01-01

    The release of bound (nonextractable) 14 C residues from soil previously treated with [ 14 C]atrazine was investigated by incubation of the solvent-extracted soil with two species of Pseudomonas capable of metabolizing atrazine. The two species, 192 and 194, released bound 14 C residues from the soil. Addition of glucose, known to increase microbiological activities, to the incubated soil appeared to enhance the release of soil-bound 14 C residues, in particular in the presence of Pseudomonas species 192. The 14 C bound residues in soil, mainly present as the parent compound and its hydroxy and monodealkylated analogues, were released into the incubation mixture and were subsequently metabolized by the two species involving dechlorination and dealkylation

  3. Spoilage potential of Pseudomonas species isolated from goat milk.

    Science.gov (United States)

    Scatamburlo, T M; Yamazi, A K; Cavicchioli, V Q; Pieri, F A; Nero, L A

    2015-02-01

    Pseudomonas spp. are usually associated with spoilage microflora of dairy products due to their proteolytic potential. This is of particular concern for protein-based products, such as goat milk cheeses and fermented milks. Therefore, the goal of the present study was to characterize the proteolytic activity of Pseudomonas spp. isolated from goat milk. Goat milk samples (n=61) were obtained directly from bulk tanks on dairy goat farms (n=12), and subjected to a modified International Organization for Standardization (ISO) protocol to determine the number and proteolytic activity of Pseudomonas spp. Isolates (n=82) were obtained, identified by PCR, and subjected to pulsed-field gel electrophoresis with XbaI macro-restriction. Then, the isolates were subjected to PCR to detect the alkaline protease gene (apr), and phenotypic tests were performed to check proteolytic activity at 7°C, 25°C, and 35°C. Mean Pseudomonas spp. counts ranged from 2.9 to 4.8 log cfu/mL, and proteolytic Pseudomonas spp. counts ranged from 1.9 to 4.6 log cfu/mL. All isolates were confirmed to be Pseudomonas spp., and 41 were identified as Pseudomonas fluorescens, which clustered into 5 groups sharing approximately 82% similarity. Thirty-six isolates (46.9%) were positive for the apr gene; and 57 (69.5%) isolates presented proteolytic activity at 7°C, 82 (100%) at 25°C, and 64 (78%) at 35°C. The isolates were distributed ubiquitously in the goat farms, and no relationship among isolates was observed when the goat farms, presence of apr, pulsotypes, and proteolytic activity were taken into account. We demonstrated proteolytic activity of Pseudomonas spp. present in goat milk by phenotypic and genotypic tests and indicated their spoilage potential at distinct temperatures. Based on these findings and the ubiquity of Pseudomonas spp. in goat farm environments, proper monitoring and control of Pseudomonas spp. during production are critical. Copyright © 2015 American Dairy Science Association

  4. Interactions between biosurfactant-producing Pseudomonas and Phytophthora species

    NARCIS (Netherlands)

    Tran, H.

    2007-01-01

    Fluorescent Pseudomonas bacteria produce a wide variety of antimicrobial metabolites, including soap-like compounds referred to as biosurfactants. The results of this thesis showed that biosurfactant-producing Pseudomonas bacteria are effective in controlling Phytophthora foot rot

  5. Pseudomonas helleri sp. nov. and Pseudomonas weihenstephanensis sp. nov., isolated from raw cow's milk.

    Science.gov (United States)

    von Neubeck, M; Huptas, C; Glück, C; Krewinkel, M; Stoeckel, M; Stressler, T; Fischer, L; Hinrichs, J; Scherer, S; Wenning, M

    2016-03-01

    Analysis of the microbiota of raw cow's milk and semi-finished milk products yielded seven isolates assigned to the genus Pseudomonas that formed two individual groups in a phylogenetic analysis based on partial rpoD and 16S rRNA gene sequences. The two groups could be differentiated from each other and also from their closest relatives as well as from the type species Pseudomonas aeruginosa by phenotypic and chemotaxonomic characterization and average nucleotide identity (ANIb) values calculated from draft genome assemblies. ANIb values within the groups were higher than 97.3 %, whereas similarity values to the closest relatives were 85 % or less. The major cellular lipids of strains WS4917T and WS4993T were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol; the major quinone was Q-9 in both strains, with small amounts of Q-8 in strain WS4917T. The DNA G+C contents of strains WS4917T and WS4993T were 58.08 and 57.30 mol%, respectively. Based on these data, strains WS4917T, WS4995 ( = DSM 29141 = LMG 28434), WS4999, WS5001 and WS5002 should be considered as representatives of a novel species of the genus Pseudomonas, for which the name Pseudomonas helleri sp. nov. is proposed. The type strain of Pseudomonas helleri is strain WS4917T ( = DSM 29165T = LMG 28433T). Strains WS4993T and WS4994 ( = DSM 29140 = LMG 28438) should be recognized as representing a second novel species of the genus Pseudomonas, for which the name Pseudomonas weihenstephanensis sp. nov. is proposed. The type strain of Pseudomonas weihenstephanensis is strain WS4993T ( = DSM 29166T = LMG 28437T).

  6. Pseudomonas fluvialis sp. nov., a novel member of the genus Pseudomonas isolated from the river Ganges, India.

    Science.gov (United States)

    Sudan, Sarabjeet Kour; Pal, Deepika; Bisht, Bhawana; Kumar, Narender; Chaudhry, Vasvi; Patil, Prabhu; Sahni, Girish; Mayilraj, Shanmugam; Krishnamurthi, Srinivasan

    2018-01-01

    A bacterial strain, designated ASS-1 T , was isolated and identified from a sediment sample of the river Ganges, Allahabad, India. The strain was Gram-stain-negative, formed straw-yellow pigmented colonies, was strictly aerobic, motile with a single polar flagellum, and positive for oxidase and catalase. The major fatty acids were C16 : 1ω7c/ 16 : 1 C16 : 1ω6c, C18 : 1ω7c and C16 : 0. Sequence analysis based on the 16S rRNA gene revealed that strain ASS-1 T showed high similarity to Pseudomonas guguanensis CC-G9A T (98.2 %), Pseudomonas alcaligenes ATCC 14909 T (98.2 %), Pseudomonas oleovorans DSM 1045 T (98.1 %), Pseudomonas indolxydans IPL-1 T (98.1 %) and Pseudomonas toyotomiensis HT-3 T (98.0 %). Analysis of its rpoB and rpoD housekeeping genes confirmed its phylogenetic affiliation and showed identities lower than 93 % with respect to the closest relatives. Phylogenetic analysis based on the 16S rRNA, rpoB, rpoD genes and the whole genome assigned it to the genus Pseudomonas. The results of digital DNA-DNA hybridization based on the genome-to-genome distance calculator and average nucleotide identity revealed low genome relatedness to its close phylogenetic neighbours (below the recommended thresholds of 70 and 95 %, respectively, for species delineation). Strain ASS-1 T also differed from the related strains by some phenotypic characteristics, i.e. growth at pH 5.0 and 42 °C, starch and casein hydrolysis, and citrate utilization. Therefore, based on data obtained from phenotypic and genotypic analysis, it is evident that strain ASS-1 T should be regarded as a novel species within the genus Pseudomonas, for which the name Pseudomonasfluvialis sp. nov. is proposed. The type strain is ASS-1 T (=KCTC 52437 T =CCM 8778 T ).

  7. Inhibition of Pseudomonas aeruginosa virulence: characterization of the AprA-AprI interface and species selectivity.

    Science.gov (United States)

    Bardoel, Bart W; van Kessel, Kok P M; van Strijp, Jos A G; Milder, Fin J

    2012-01-20

    Pseudomonas aeruginosa secretes the virulence factor alkaline protease (AprA) to enhance its survival. AprA cleaves one of the key microbial recognition molecules, monomeric flagellin, and thereby diminishes Toll-like receptor 5 activation. In addition, AprA degrades host proteins such as complement proteins and cytokines. P. aeruginosa encodes a highly potent inhibitor of alkaline protease (AprI) that is solely located in the periplasm where it is presumed to protect periplasmic proteins against secreted AprA. We set out to study the enzyme-inhibitor interactions in more detail in order to provide a basis for future drug development. Structural and mutational studies reveal that the conserved N-terminal residues of AprI occupy the protease active site and are essential for inhibitory activity. We constructed peptides mimicking the N-terminus of AprI; however, these were incapable of inhibiting AprA-mediated flagellin cleavage. Furthermore, we expressed and purified AprI of P. aeruginosa and the homologous (37% sequence identity) AprI of Pseudomonas syringae, which remarkably show species specificity for their cognate protease. Exchange of the first five N-terminal residues between AprI of P. syringae and P. aeruginosa did not affect the observed specificity, whereas exchange of only six residues located at the AprI surface that contacts the protease did abolish specificity. These findings are elementary steps toward the design of molecules derived from the natural inhibitor of the virulence factor AprA and their use in therapeutic applications in Pseudomonas and other Gram-negative infections. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Biosurfactant-producing microorganism Pseudomonas sp. SB assists the phytoremediation of DDT-contaminated soil by two grass species.

    Science.gov (United States)

    Wang, Beibei; Wang, Qingling; Liu, Wuxing; Liu, Xiaoyan; Hou, Jinyu; Teng, Ying; Luo, Yongming; Christie, Peter

    2017-09-01

    Phytoremediation together with microorganisms may confer the advantages of both phytoremediation and microbial remediation of soils containing organic contaminants. In this system biosurfactants produced by Pseudomonas sp. SB may effectively help to increase the bioavailability of organic pollutants and thereby enhance their microbial degradation in soil. Plants may enhance the rhizosphere environment for microorganisms and thus promote the bioremediation of contaminants. In the present pot experiment study, dichlorodiphenyltrichloroethane (DDT) residues underwent an apparent decline after soil bioremediation compared with the original soil. The removal efficiency of fertilizer + tall fescue, fertilizer + tall fescue + Pseudomonas, fertilizer + perennial ryegrass, and fertilizer + perennial ryegrass + Pseudomonas treatments were 59.4, 65.6, 69.0, and 65.9%, respectively, and were generally higher than that in the fertilizer control (40.3%). Principal coordinates analysis (PCoA) verifies that plant species greatly affected the soil bacterial community irrespective of inoculation with Pseudomonas sp. SB. Furthermore, community composition analysis shows that Proteobacteria, Acidobacteria and Actinobacteria were the three dominant phyla in all groups. In particular, the relative abundance of Pseudomonas for fertilizer + tall fescue + Pseudomonas (0.25%) was significantly greater than fertilizer + tall fescue and this was related to the DDT removal efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Interactions between biosurfactant-producing Pseudomonas and Phytophthora species

    OpenAIRE

    Tran, H.

    2007-01-01

    Fluorescent Pseudomonas bacteria produce a wide variety of antimicrobial metabolites, including soap-like compounds referred to as biosurfactants. The results of this thesis showed that biosurfactant-producing Pseudomonas bacteria are effective in controlling Phytophthora foot rot disease of black pepper in Vietnam and promote root and shoot development of the ‘King of Spices’. Biosurfactant-producing P. fluorescens strain SS101 was also effective in controlling tomato late blight caused by P...

  10. LETHALITY OF PSEUDOMONAS FLUORESCENS STRAIN CLO145A TO THE 2 ZEBRA MUSSEL SPECIES PRESENT IN NORTH AMERICA

    International Nuclear Information System (INIS)

    Molloy, Daniel P.

    2001-01-01

    These experiments indicated that bacterial strain CL0145A of Pseudomonas fluorescens is equally lethal to the 2 zebra mussel species present in North America, Dreissena polymorpha and Dreissena bugensis. Thus, this bacterial strain should be equally effective at killing zebra mussels in power plant pipes, irrespective of which species is present

  11. LETHALITY OF PSEUDOMONAS FLUORESCENS STRAIN CLO145A TO THE 2 ZEBRA MUSSEL SPECIES PRESENT IN NORTH AMERICA

    Energy Technology Data Exchange (ETDEWEB)

    Daniel P. Molloy

    2001-10-28

    These experiments indicated that bacterial strain CL0145A of Pseudomonas fluorescens is equally lethal to the 2 zebra mussel species present in North America, Dreissena polymorpha and Dreissena bugensis. Thus, this bacterial strain should be equally effective at killing zebra mussels in power plant pipes, irrespective of which species is present.

  12. Computational prediction of the Crc regulon identifies genus-wide and species-specific targets of catabolite repression control in Pseudomonas bacteria

    Directory of Open Access Journals (Sweden)

    O'Gara Fergal

    2010-11-01

    Full Text Available Abstract Background Catabolite repression control (CRC is an important global control system in Pseudomonas that fine tunes metabolism in order optimise growth and metabolism in a range of different environments. The mechanism of CRC in Pseudomonas spp. centres on the binding of a protein, Crc, to an A-rich motif on the 5' end of an mRNA resulting in translational down-regulation of target genes. Despite the identification of several Crc targets in Pseudomonas spp. the Crc regulon has remained largely unexplored. Results In order to predict direct targets of Crc, we used a bioinformatics approach based on detection of A-rich motifs near the initiation of translation of all protein-encoding genes in twelve fully sequenced Pseudomonas genomes. As expected, our data predict that genes related to the utilisation of less preferred nutrients, such as some carbohydrates, nitrogen sources and aromatic carbon compounds are targets of Crc. A general trend in this analysis is that the regulation of transporters is conserved across species whereas regulation of specific enzymatic steps or transcriptional activators are often conserved only within a species. Interestingly, some nucleoid associated proteins (NAPs such as HU and IHF are predicted to be regulated by Crc. This finding indicates a possible role of Crc in indirect control over a subset of genes that depend on the DNA bending properties of NAPs for expression or repression. Finally, some virulence traits such as alginate and rhamnolipid production also appear to be regulated by Crc, which links nutritional status cues with the regulation of virulence traits. Conclusions Catabolite repression control regulates a broad spectrum of genes in Pseudomonas. Some targets are genus-wide and are typically related to central metabolism, whereas other targets are species-specific, or even unique to particular strains. Further study of these novel targets will enhance our understanding of how Pseudomonas

  13. Computational prediction of the Crc regulon identifies genus-wide and species-specific targets of catabolite repression control in Pseudomonas bacteria.

    Science.gov (United States)

    Browne, Patrick; Barret, Matthieu; O'Gara, Fergal; Morrissey, John P

    2010-11-25

    Catabolite repression control (CRC) is an important global control system in Pseudomonas that fine tunes metabolism in order optimise growth and metabolism in a range of different environments. The mechanism of CRC in Pseudomonas spp. centres on the binding of a protein, Crc, to an A-rich motif on the 5' end of an mRNA resulting in translational down-regulation of target genes. Despite the identification of several Crc targets in Pseudomonas spp. the Crc regulon has remained largely unexplored. In order to predict direct targets of Crc, we used a bioinformatics approach based on detection of A-rich motifs near the initiation of translation of all protein-encoding genes in twelve fully sequenced Pseudomonas genomes. As expected, our data predict that genes related to the utilisation of less preferred nutrients, such as some carbohydrates, nitrogen sources and aromatic carbon compounds are targets of Crc. A general trend in this analysis is that the regulation of transporters is conserved across species whereas regulation of specific enzymatic steps or transcriptional activators are often conserved only within a species. Interestingly, some nucleoid associated proteins (NAPs) such as HU and IHF are predicted to be regulated by Crc. This finding indicates a possible role of Crc in indirect control over a subset of genes that depend on the DNA bending properties of NAPs for expression or repression. Finally, some virulence traits such as alginate and rhamnolipid production also appear to be regulated by Crc, which links nutritional status cues with the regulation of virulence traits. Catabolite repression control regulates a broad spectrum of genes in Pseudomonas. Some targets are genus-wide and are typically related to central metabolism, whereas other targets are species-specific, or even unique to particular strains. Further study of these novel targets will enhance our understanding of how Pseudomonas bacteria integrate nutritional status cues with the regulation

  14. Computational prediction of the Crc regulon identifies genus-wide and species-specific targets of catabolite repression control in Pseudomonas bacteria

    LENUS (Irish Health Repository)

    Browne, Patrick

    2010-11-25

    Abstract Background Catabolite repression control (CRC) is an important global control system in Pseudomonas that fine tunes metabolism in order optimise growth and metabolism in a range of different environments. The mechanism of CRC in Pseudomonas spp. centres on the binding of a protein, Crc, to an A-rich motif on the 5\\' end of an mRNA resulting in translational down-regulation of target genes. Despite the identification of several Crc targets in Pseudomonas spp. the Crc regulon has remained largely unexplored. Results In order to predict direct targets of Crc, we used a bioinformatics approach based on detection of A-rich motifs near the initiation of translation of all protein-encoding genes in twelve fully sequenced Pseudomonas genomes. As expected, our data predict that genes related to the utilisation of less preferred nutrients, such as some carbohydrates, nitrogen sources and aromatic carbon compounds are targets of Crc. A general trend in this analysis is that the regulation of transporters is conserved across species whereas regulation of specific enzymatic steps or transcriptional activators are often conserved only within a species. Interestingly, some nucleoid associated proteins (NAPs) such as HU and IHF are predicted to be regulated by Crc. This finding indicates a possible role of Crc in indirect control over a subset of genes that depend on the DNA bending properties of NAPs for expression or repression. Finally, some virulence traits such as alginate and rhamnolipid production also appear to be regulated by Crc, which links nutritional status cues with the regulation of virulence traits. Conclusions Catabolite repression control regulates a broad spectrum of genes in Pseudomonas. Some targets are genus-wide and are typically related to central metabolism, whereas other targets are species-specific, or even unique to particular strains. Further study of these novel targets will enhance our understanding of how Pseudomonas bacteria integrate

  15. The Freshwater Sponge Ephydatia fluviatilis Harbours Diverse Pseudomonas Species (Gammaproteobacteria, Pseudomonadales) with Broad-Spectrum Antimicrobial Activity

    Science.gov (United States)

    Keller-Costa, Tina; Jousset, Alexandre; van Overbeek, Leo; van Elsas, Jan Dirk; Costa, Rodrigo

    2014-01-01

    Bacteria are believed to play an important role in the fitness and biochemistry of sponges (Porifera). Pseudomonas species (Gammaproteobacteria, Pseudomonadales) are capable of colonizing a broad range of eukaryotic hosts, but knowledge of their diversity and function in freshwater invertebrates is rudimentary. We assessed the diversity, structure and antimicrobial activities of Pseudomonas spp. in the freshwater sponge Ephydatia fluviatilis. Polymerase Chain Reaction – Denaturing Gradient Gel Electrophoresis (PCR-DGGE) fingerprints of the global regulator gene gacA revealed distinct structures between sponge-associated and free-living Pseudomonas communities, unveiling previously unsuspected diversity of these assemblages in freshwater. Community structures varied across E. fluviatilis specimens, yet specific gacA phylotypes could be detected by PCR-DGGE in almost all sponge individuals sampled over two consecutive years. By means of whole-genome fingerprinting, 39 distinct genotypes were found within 90 fluorescent Pseudomonas isolates retrieved from E. fluviatilis. High frequency of in vitro antibacterial (49%), antiprotozoan (35%) and anti-oomycetal (32%) activities was found among these isolates, contrasting less-pronounced basidiomycetal (17%) and ascomycetal (8%) antagonism. Culture extracts of highly predation-resistant isolates rapidly caused complete immobility or lysis of cells of the protozoan Colpoda steinii. Isolates tentatively identified as P. jessenii, P. protegens and P. oryzihabitans showed conspicuous inhibitory traits and correspondence with dominant sponge-associated phylotypes registered by cultivation-independent analysis. Our findings suggest that E. fluviatilis hosts both transient and persistent Pseudomonas symbionts displaying antimicrobial activities of potential ecological and biotechnological value. PMID:24533086

  16. Pseudomonas aeruginosa PAO1 exopolysaccharides are important for mixed species biofilm community development and stress tolerance

    Directory of Open Access Journals (Sweden)

    Saravanan ePeriasamy

    2015-08-01

    Full Text Available Pseudomonas aeruginosa PAO1 produces three polysaccharides, alginate, Psl and Pel that play distinct roles in attachment and biofilm formation for monospecies biofilms. Considerably less is known about their role in the development of mixed species biofilm communities. This study has investigated the roles of alginate, Psl and Pel during biofilm formation of P. aeruginosa in a defined and experimentally informative mixed species biofilm community, consisting of P. aeruginosa, Pseudomonas protegens and Klebsiella pneumoniae. Loss of the Psl polysaccharide had the biggest impact on the integration of P. aeruginosa in the mixed species biofilms, where the percent composition of the psl mutant was significantly lower (0.06% than its wild-type parent (2.44%. In contrast, loss of the Pel polysaccharide had no impact on mixed species biofilm development. Loss of alginate or its overproduction resulted in P. aeruginosa representing 8.4% and 18.11%, respectively, of the mixed species biofilm. Dual species biofilms of P. aeruginosa and K. pneumoniae were not affected by loss of alginate, Pel or Psl, while the mucoid P. aeruginosa strain achieved a greater biomass than its parent strain. When P. aeruginosa was grown with P. protegens, loss of the Pel or alginate polysaccharides resulted in biofilms that were not significantly different from biofilms formed by the wild-type PAO1. In contrast, overproduction of alginate resulted in biofilms that were comprised of 35-40% of P. aeruginosa, which was significantly higher than the wild-type (5-20%. Loss of the Psl polysaccharide significantly reduced the percentage composition of P. aeruginosa in dual species biofilms with P. protegens (<1%. Loss of the Psl polysaccharide significantly disrupted the communal stress resistance of the three species biofilms. Thus, the polysaccharide composition of an individual species significantly impacts mixed species biofilm development and the emergent properties of such

  17. Biofilm formation and disinfectant resistance of Salmonella sp. in mono- and dual-species with Pseudomonas aeruginosa.

    Science.gov (United States)

    Pang, X Y; Yang, Y S; Yuk, H G

    2017-09-01

    This study aimed to evaluate the biofilm formation and disinfectant resistance of Salmonella cells in mono- and dual-species biofilms with Pseudomonas aeruginosa, and to investigate the role of extracellular polymeric substances (EPS) in the protection of biofilms against disinfection treatment. The populations of Salmonella in mono- or dual-species biofilms with P. aeruginosa on stainless steel (SS) coupons were determined before and after exposure to commercial disinfectant, 50 μg ml -1 chlorine or 200 μg ml -1 Ecolab ® Whisper™ V (a blend of four effective quaternary ammonium compounds (QAC)). In addition, EPS amount from biofilms was quantified and biofilm structures were observed using scanning electron microscopy (SEM). Antagonistic interactions between Salmonella and P. aeruginosa resulted in lower planktonic population level of Salmonella, and lower density in dual-species biofilms compared to mono-species biofilms. The presence of P. aeruginosa significantly enhanced disinfectant resistance of S. Typhimurium and S. Enteritidis biofilm cells for 2 days, and led to an average of 50% increase in polysaccharides amount in dual-species biofilms than mono-species biofilms of Salmonella. Microscopy observation showed the presence of large microcolonies covered by EPS in dual-species biofilms but not in mono-species ones. The presence of P. aeruginosa in dual-species culture inhibited the growth of Salmonella cells in planktonic phase and in biofilms, but protected Salmonella cells in biofilms from disinfection treatment, by providing more production of EPS in dual-species biofilms than mono-species ones. This study provides insights into inter-species interaction, with regard to biofilm population dynamics and disinfectant resistance. Thus, a sanitation protocol should be designed considering the protective role of secondary species to pathogens in biofilms on SS surface which has been widely used at food surfaces and manufacturers. © 2017 The Society

  18. Presence of VIM-Positive Pseudomonas Species in Chickens and Their Surrounding Environment.

    Science.gov (United States)

    Zhang, Rongmin; Liu, Zhihai; Li, Jiyun; Lei, Lei; Yin, Wenjuan; Li, Mei; Wu, Congming; Walsh, Timothy R; Wang, Yang; Wang, Shaolin; Wu, Yongning

    2017-07-01

    Metallo-β-lactamase gene bla VIM was identified on the chromosome of four Pseudomonas sp. isolates from a chicken farm, including one Pseudomonas aeruginosa isolate from a swallow ( Yanornis martini ), one Pseudomonas putida isolate from a fly, and two P. putida isolates from chickens. The four isolates shared two variants of bla VIM -carrying genomic contexts that resemble the corresponding regions of clinical metallo-β-lactamase-producing Pseudomonas spp. Our study suggests that the surveillance of carbapenemase-producing bacteria in livestock and their surrounding environment is urgently needed. Copyright © 2017 American Society for Microbiology.

  19. Occurrence of pseudomonas aeruginosa in post-operative wound infection

    International Nuclear Information System (INIS)

    Oguntibeju, O.O.; Nwobu, R.A.U.

    2004-01-01

    Objective: To determine the prevalence of Pseudomonas aeruginosa in post-operative wound infection. Results: Out of the 60 bacterial isolates found in post-operative wound infection, 20 (33.3%) were Pseudomonas aeruginosa, followed by Staphylococcus aureus 13(21.7%), Klebsiella species 10(16.7%), Escherichia coli 7(11.7%), Atypical coliform 4(6.7%), Proteus species 4(6.7%), Streptococcus pyogenes 1(1.7%) and Enterococcus faecalis 1(1.7%) in the order. Pseudomonas aeruginosa infections was higher in female than male, ratio 3:2 and was found more among young and elderly debilitated patients. The in vitro sensitivity pattern of 20 isolates of Pseudomonas aeruginosa showed colistin (100%), gentamicin (75%), streptomycin (30%), and tetracycline (10%). Conclusion: The role of Pseudomonas aeruginosa as an agent of nosocomial infection is re-emphasised. (author)

  20. An altered Pseudomonas diversity is recovered from soil by using nutrient-poor Pseudomonas-selective soil extract media

    DEFF Research Database (Denmark)

    Aagot, N.; Nybroe, O.; Nielsen, P.

    2001-01-01

    We designed five Pseudomonas-selective soil extract NAA media containing the selective properties of trimethoprim and sodium lauroyl sarcosine and 0 to 100% of the amount of Casamino Acids used in the classical Pseudomonas-selective Gould's S1 medium. All of the isolates were confirmed to be Pseu......We designed five Pseudomonas-selective soil extract NAA media containing the selective properties of trimethoprim and sodium lauroyl sarcosine and 0 to 100% of the amount of Casamino Acids used in the classical Pseudomonas-selective Gould's S1 medium. All of the isolates were confirmed....... Several of these analyses showed that the amount of Casamino Acids significantly influenced the diversity of the recovered Pseudomonas isolates. Furthermore, the data suggested that specific Pseudomonas subpopulations were represented on the nutrient-poor media. The NAA 1:100 medium, containing ca. 15 mg...... of organic carbon per liter, consistently gave significantly higher Pseudomonas CFU counts than Gould's S1 when tested on four Danish soils. NAA 1:100 may, therefore, be a better medium than Gould's S1 for enumeration and isolation of Pseudomonas from the low-nutrient soil environment....

  1. BOX-PCR-based identification of bacterial species belonging to Pseudomonas syringae: P. viridiflava group

    Directory of Open Access Journals (Sweden)

    Abi S.A. Marques

    2008-01-01

    Full Text Available The phenotypic characteristics and genetic fingerprints of a collection of 120 bacterial strains, belonging to Pseudomonas syringae sensu lato group, P. viridiflava and reference bacteria were evaluated, with the aim of species identification. The numerical analysis of 119 nutritional characteristics did not show patterns that would help with identification. Regarding the genetic fingerprinting, the results of the present study supported the observation that BOX-PCR seems to be able to identify bacterial strains at species level. After numerical analyses of the bar-codes, all pathovars belonging to each one of the nine described genomospecies were clustered together at a distance of 0.72, and could be separated at genomic species level. Two P. syringae strains of unknown pathovars (CFBP 3650 and CFBP 3662 and the three P. syringae pv. actinidiae strains were grouped in two extra clusters and might eventually constitute two new species. This genomic species clustering was particularly evident for genomospecies 4, which gathered P. syringae pvs. atropurpurea, coronafaciens, garçae, oryzae, porri, striafaciens, and zizaniae at a noticeably low distance.

  2. Antimicrobial resistance of Pseudomonas spp. isolated from wastewater and wastewater-impacted marine coastal zone.

    Science.gov (United States)

    Luczkiewicz, Aneta; Kotlarska, Ewa; Artichowicz, Wojciech; Tarasewicz, Katarzyna; Fudala-Ksiazek, Sylwia

    2015-12-01

    In this study, species distribution and antimicrobial susceptibility of cultivated Pseudomonas spp. were studied in influent (INF), effluent (EFF), and marine outfall (MOut) of wastewater treatment plant (WWTP). The susceptibility was tested against 8 antimicrobial classes, active against Pseudomonas spp.: aminoglycosides, carbapenems, broad-spectrum cephalosporins from the 3rd and 4th generation, extended-spectrum penicillins, as well as their combination with the β-lactamase inhibitors, monobactams, fluoroquinolones, and polymyxins. Among identified species, resistance to all antimicrobials but colistin was shown by Pseudomonas putida, the predominant species in all sampling points. In other species, resistance was observed mainly against ceftazidime, ticarcillin, ticarcillin-clavulanate, and aztreonam, although some isolates of Pseudomonas aeruginosa, Pseudomonas fluorescens, Pseudomonas pseudoalcaligenes, and Pseudomonas protegens showed multidrug-resistance (MDR) phenotype. Among P. putida, resistance to β-lactams and to fluoroquinolones as well as multidrug resistance become more prevalent after wastewater treatment, but the resistance rate decreased in marine water samples. Obtained data, however, suggests that Pseudomonas spp. are equipped or are able to acquire a wide range of antibiotic resistance mechanisms, and thus should be monitored as possible source of resistance genes.

  3. Pseudomonas Septic Arthritis | Thanni | Nigerian Journal of ...

    African Journals Online (AJOL)

    BACKGROUND: Septic arthritis due to pseudomonas species is unusual and when it occurs, there is often an underlying cause like immune depression, intravenous drug abuse or a penetrating injury. PATIENT AND METHOD: We report a case of pseudomonas septic arthritis complicating cannulation of a leg vein following ...

  4. Antifouling potential of some marine organisms from India against species of Bacillus and Pseudomonas

    Digital Repository Service at National Institute of Oceanography (India)

    Bhosale, S.H; Nagle, V.L.; Jagtap, T.G.

    Potential of Some Marine Organisms from India Against Species of Bacillus and Pseudomonas S.H. Bhosale, V.L. Nagle, and T.G. Jagtap* National Institute of Oceanography, Dona Paula, Goa-403004, India Abstract: Crude methanolic extracts of 37 marine organisms.... The discs were placed in Zobell marine agar (pH 7.3) plates seeded with different strains of bacteria selected for studies. The cultures were incubated for 24 to 48 hours at room temperature, to obtain maximum growth in the culture media. The zones of inhi...

  5. Reclassification of Serpens flexibilis Hespell 1977 as Pseudomonas flexibilis comb. nov., with Pseudomonas tuomuerensis Xin et al. 2009 as a later heterotypic synonym.

    Science.gov (United States)

    Shin, Su-Kyoung; Hwang, Chung Yeon; Cho, Yong-Joon; Yi, Hana

    2015-12-01

    Serpens flexibilis was proposed in 1977 and approved in 1980 without the 16S rRNA gene sequence information. The sequence of S. flexibilis became available in 2010, after the publication of Pseudomonas tuomuerensis in 2009. Our preliminary phylogenetic analyses indicated that these two strains share high sequence similarity and therefore showed strong potential to be united into a single species. To clarify the taxonomic status of the two species, a polyphasic taxonomy study was conducted including whole genome sequencing. The value of average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) between the genome sequences of S. flexibilis ATCC 29606(T) and P. tuomuerensis JCM 14085(T) were 98.1% and 89.0%, respectively. The phenotypic and chemotaxonomic properties including enzymatic activities, substrate utilization profiles, and fatty acids, supported that the two taxa have no pronounced difference and should thus constitute a single species. Therefore, we propose to transfer Serpens flexibilis Hespell 1977 to the genus Pseudomonas as Pseudomonas flexibilis comb. nov. (type strain=ATCC 29606(T)), with Pseudomonas tuomuerensis Xin et al. 2009 as a later heterotypic synonym of Pseudomonas flexibilis. Copyright © 2015 Elsevier GmbH. All rights reserved.

  6. CXCR1 regulates pulmonary anti-Pseudomonas host defense

    Science.gov (United States)

    Carevic, M.; Öz, H.; Fuchs, K.; Laval, J.; Schroth, C.; Frey, N.; Hector, A.; Bilich, T.; Haug, M.; Schmidt, A.; Autenrieth, S. E.; Bucher, K.; Beer-Hammer, S.; Gaggar, A.; Kneilling, M.; Benarafa, C.; Gao, J.; Murphy, P.; Schwarz, S.; Moepps, B.; Hartl, D.

    2016-01-01

    Pseudomonas aeruginosa is a key opportunistic pathogen causing disease in cystic fibrosis (CF) and other lung diseases such as chronic obstructive pulmonary disease (COPD). However, the pulmonary host defense mechanisms regulating anti-Pseudomonas aeruginosa immunity remain incompletely understood. Here we demonstrate, by studying an airway Pseudomonas aeruginosa infection model, in vivo bioluminescence imaging, neutrophil effector responses and human airway samples, that the chemokine receptor CXCR1 regulates pulmonary host defense against Pseudomonas aeruginosa. Mechanistically, CXCR1 regulated anti-Pseudomonas neutrophil responses through modulation of reactive oxygen species and interference with toll-like receptor 5 expression. These studies define CXCR1 as a novel non-canonical chemokine receptor that regulates pulmonary anti-Pseudomonas host defense with broad implications for CF, COPD and other infectious lung diseases. PMID:26950764

  7. Pseudomonas predators: understanding and exploiting phage-host interactions.

    Science.gov (United States)

    De Smet, Jeroen; Hendrix, Hanne; Blasdel, Bob G; Danis-Wlodarczyk, Katarzyna; Lavigne, Rob

    2017-09-01

    Species in the genus Pseudomonas thrive in a diverse set of ecological niches and include crucial pathogens, such as the human pathogen Pseudomonas aeruginosa and the plant pathogen Pseudomonas syringae. The bacteriophages that infect Pseudomonas spp. mirror the widespread and diverse nature of their hosts. Therefore, Pseudomonas spp. and their phages are an ideal system to study the molecular mechanisms that govern virus-host interactions. Furthermore, phages are principal catalysts of host evolution and diversity, which directly affects the ecological roles of environmental and pathogenic Pseudomonas spp. Understanding these interactions not only provides novel insights into phage biology but also advances the development of phage therapy, phage-derived antimicrobial strategies and innovative biotechnological tools that may be derived from phage-bacteria interactions.

  8. Prevalence of Multiple Antibiotics Resistant (MAR) Pseudomonas Species in the Final Effluents of Three Municipal Wastewater Treatment Facilities in South Africa

    Science.gov (United States)

    Odjadjare, Emmanuel E.; Igbinosa, Etinosa O.; Mordi, Raphael; Igere, Bright; Igeleke, Clara L.; Okoh, Anthony I.

    2012-01-01

    The final effluents of three (Alice, Dimbaza, and East London) wastewater treatment plants (WWTPs) were evaluated to determine their physicochemical quality and prevalence of multiple antibiotics resistant (MAR) Pseudomonas species, between August 2007 and July 2008. The annual mean total Pseudomonas count (TPC) was 1.20 × 104 (cfu/100 mL), 1.08 × 104 (cfu/100 mL), and 2.66 × 104 (cfu/100 mL), for the Alice, Dimbaza, and East London WWTPs respectively. The effluents were generally compliant with recommended limits for pH, temperature, TDS, DO, nitrite and nitrate; but fell short of target standards for turbidity, COD, and phosphate. The tested isolates were highly sensitive to gentamicin (100%), ofloxacin (100%), clindamycin (90%), erythromycin (90%) and nitrofurantoin (80%); whereas high resistance was observed against the penicillins (90–100%), rifampin (90%), sulphamethoxazole (90%) and the cephems (70%). MAR index ranged between 0.26 and 0.58. The study demonstrated that MAR Pseudomonas species were quite prevalent in the final effluents of WWTPs in South Africa; and this can lead to serious health risk for communities that depend on the effluent-receiving waters for sundry purposes. PMID:22829792

  9. Clarification of Taxonomic Status within the Pseudomonas syringae Species Group Based on a Phylogenomic Analysis

    Directory of Open Access Journals (Sweden)

    Margarita Gomila

    2017-12-01

    Full Text Available The Pseudomonas syringae phylogenetic group comprises 15 recognized bacterial species and more than 60 pathovars. The classification and identification of strains is relevant for practical reasons but also for understanding the epidemiology and ecology of this group of plant pathogenic bacteria. Genome-based taxonomic analyses have been introduced recently to clarify the taxonomy of the whole genus. A set of 139 draft and complete genome sequences of strains belonging to all species of the P. syringae group available in public databases were analyzed, together with the genomes of closely related species used as outgroups. Comparative genomics based on the genome sequences of the species type strains in the group allowed the delineation of phylogenomic species and demonstrated that a high proportion of strains included in the study are misclassified. Furthermore, representatives of at least 7 putative novel species were detected. It was also confirmed that P. ficuserectae, P. meliae, and P. savastanoi are later synonyms of P. amygdali and that “P. coronafaciens” should be revived as a nomenspecies.

  10. Genetic Diversity of Nitrogen-Fixing and Plant Growth Promoting Pseudomonas Species Isolated from Sugarcane Rhizosphere.

    Science.gov (United States)

    Li, Hai-Bi; Singh, Rajesh K; Singh, Pratiksha; Song, Qi-Qi; Xing, Yong-Xiu; Yang, Li-Tao; Li, Yang-Rui

    2017-01-01

    The study was designed to isolate and characterize Pseudomonas spp. from sugarcane rhizosphere, and to evaluate their plant- growth- promoting (PGP) traits and nitrogenase activity. A biological nitrogen-fixing microbe has great potential to replace chemical fertilizers and be used as a targeted biofertilizer in a plant. A total of 100 isolates from sugarcane rhizosphere, belonging to different species, were isolated; from these, 30 isolates were selected on the basis of preliminary screening, for in vitro antagonistic activities against sugarcane pathogens and for various PGP traits, as well as nitrogenase activity. The production of IAA varied from 312.07 to 13.12 μg mL -1 in tryptophan supplemented medium, with higher production in AN15 and lower in CN20 strain. The estimation of ACC deaminase activity, strains CY4 and BA2 produced maximum and minimum activity of 77.0 and 15.13 μmoL mg -1 h -1 . For nitrogenase activity among the studied strains, CoA6 fixed higher and AY1 fixed lower in amounts (108.30 and 6.16 μmoL C 2 H 2 h -1 mL -1 ). All the strains were identified on the basis of 16S rRNA gene sequencing, and the phylogenetic diversity of the strains was analyzed. The results identified all strains as being similar to Pseudomonas spp. Polymerase chain reaction (PCR) amplification of nifH and antibiotic genes was suggestive that the amplified strains had the capability to fix nitrogen and possessed biocontrol activities. Genotypic comparisons of the strains were determined by BOX, ERIC, and REP PCR profile analysis. Out of all the screened isolates, CY4 ( Pseudomonas koreensis ) and CN11 ( Pseudomonas entomophila ) showed the most prominent PGP traits, as well as nitrogenase activity. Therefore, only these two strains were selected for further studies; Biolog profiling; colonization through green fluorescent protein (GFP)-tagged bacteria; and nifH gene expression using quantitative real-time polymerase chain reaction (qRT-PCR) analysis. The Biolog

  11. Quick change: post-transcriptional regulation in Pseudomonas.

    Science.gov (United States)

    Grenga, Lucia; Little, Richard H; Malone, Jacob G

    2017-08-01

    Pseudomonas species have evolved dynamic and intricate regulatory networks to fine-tune gene expression, with complex regulation occurring at every stage in the processing of genetic information. This approach enables Pseudomonas to generate precise individual responses to the environment in order to improve their fitness and resource economy. The weak correlations we observe between RNA and protein abundance highlight the significant regulatory contribution of a series of intersecting post-transcriptional pathways, influencing mRNA stability, translational activity and ribosome function, to Pseudomonas environmental responses. This review examines our current understanding of three major post-transcriptional regulatory systems in Pseudomonas spp.; Gac/Rsm, Hfq and RimK, and presents an overview of new research frontiers, emerging genome-wide methodologies, and their potential for the study of global regulatory responses in Pseudomonas. © FEMS 2017.

  12. Differential infectivity of two Pseudomonas species and the immune response in the milkweed bug, Oncopeltus fasciatus (Insecta: Hemiptera).

    Science.gov (United States)

    Schneider, M; Dorn, A

    2001-10-01

    Pseudomonas aeruginosa and Pseudomonas putida show a profound differential infectivity after inoculation in Oncopeltus fasciatus. Whereas P. putida has no significant impact on nymphs, P. aeruginosa kills all experimental animals within 48 h. Both Pseudomonas species, however, induce the same four hemolymph peptides in O. fasciatus. Also injection of saline solution and injury induced these peptides. In general peptide induction was stronger in nymphs than in adult males. A significantly higher number of nymphs survived a challenge with P. aeruginosa when an immunization with P. putida preceded. The antibacterial properties of the hemolymph were demonstrated in inhibition experiments with P. putida. Two of the four inducible peptides (peptides 1 and 4) could be partially sequenced after Edman degradation and were compared with known antibacterial peptides. Peptide 1, of 15 kDa, showed 47.1% identity with the glycine-rich hemiptericin of Pyrrhocoris apterus. Peptide 4, of 2 kDa, had a 77.8% identity with the proline-rich pyrrhocoricin of P. apterus and a 76.9% identity with metalnikowin 1 of Palomena prasina. Peptides 2 and 3 are also small, with molecular weights of 8 and 5 kDa.

  13. Prevalence and risk factors of metallo β-lactamase producing Pseudomonas aeruginosa and Acinetobacter species in burns and surgical wards in a tertiary care hospital

    Directory of Open Access Journals (Sweden)

    Simit H Kumar

    2012-01-01

    Full Text Available Introduction: The production of Metallo-β-lactamases (MBLs is one of the resistance mechanisms of Pseudomonas aeruginosa and Acinetobacter species. There is not much Indian data on the prevalence of MBLs in burns and surgical wards. Materials and Methods: A total of 145 non-duplicate isolates of carbapenem-resistant Pseudomonas aeruginosa and Acinetobacter species, isolated from pus/wound swabs and endotracheal secretions from burns and surgical wards, were tested for MBL production by modified ethylene diamine tetra acetic acid (EDTA disc synergy and double disc synergy tests. Results: Prevalence of MBLs was 26.9% by both the above tests. All MBL-positive isolates were multidrug resistant. Only 6.06% (2/33 P.aeruginosa and 16.67% (1/06 Acinetobacter species were susceptible to piperacillin-tazobactam and netilmycin, respectively. These patients had multiple risk factors like >8 days hospital stay, catheterization, IV lines, previous antibiotic use, mechanical ventilation, etc. Graft application and surgical intervention were significant risk factors in MBL-positive patients. Overall mortality in MBL-positive patients was 34.21%. Conclusion: Emergence of MBL-producing Pseudomonas aeruginosa and Acinetobacter species in this hospital is alarming, which reflect excessive use of carbapenems and at the same time, pose a therapeutic challenge to clinicians as well as to microbiologists. Therefore, a strict antibiotic policy and implementation of proper infection control practices will go a long way to prevent further spread of MBLs. Detection of MBLs should also become mandatory in all hospitals.

  14. Soil mixture composition alters Arabidopsis susceptibility to Pseudomonas syringae infection

    Science.gov (United States)

    Pseudomonas syringae is a Gram-negative bacterial pathogen that causes disease on more than 100 different plant species, including the model plant Arabidopsis thaliana. Dissection of the Arabidopsis thaliana-Pseudomonas syringae pathosystem has identified many factors that contribute to successful ...

  15. Transfer of several phytopathogenic Pseudomonas species to Acidovorax as Acidovorax avenae subsp. avenae subsp. nov., comb. nov., Acidovorax avenae subsp. citrulli, Acidovorax avenae subsp. cattleyae, and Acidovorax konjaci.

    Science.gov (United States)

    Willems, A; Goor, M; Thielemans, S; Gillis, M; Kersters, K; De Ley, J

    1992-01-01

    DNA-rRNA hybridizations, DNA-DNA hybridizations, polyacrylamide gel electrophoresis of whole-cell proteins, and a numerical analysis of carbon assimilation tests were carried out to determine the relationships among the phylogenetically misnamed phytopathogenic taxa Pseudomonas avenae, Pseudomonas rubrilineans, "Pseudomonas setariae," Pseudomonas cattleyae, Pseudomonas pseudoalcaligenes subsp. citrulli, and Pseudomonas pseudoalcaligenes subsp. konjaci. These organisms are all members of the family Comamonadaceae, within which they constitute a separate rRNA branch. Only P. pseudoalcaligenes subsp. konjaci is situated on the lower part of this rRNA branch; all of the other taxa cluster very closely around the type strain of P. avenae. When they are compared phenotypically, all of the members of this rRNA branch can be differentiated from each other, and they are, as a group, most closely related to the genus Acidovorax. DNA-DNA hybridization experiments showed that these organisms constitute two genotypic groups. We propose that the generically misnamed phytopathogenic Pseudomonas species should be transferred to the genus Acidovorax as Acidovorax avenae and Acidovorax konjaci. Within Acidovorax avenae we distinguished the following three subspecies: Acidovorax avenae subsp. avenae, Acidovorax avenae subsp. cattleyae, and Acidovorax avenae subsp. citrulli. Emended descriptions of the new taxa are presented.

  16. 40 CFR 180.1114 - Pseudomonas fluorescens A506, Pseudomonas fluorescens 1629RS, and Pseudomonas syringae 742RS...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Pseudomonas fluorescens A506, Pseudomonas fluorescens 1629RS, and Pseudomonas syringae 742RS; exemptions from the requirement of a tolerance... Tolerances § 180.1114 Pseudomonas fluorescens A506, Pseudomonas fluorescens 1629RS, and Pseudomonas syringae...

  17. Pseudomonas versuta sp. nov., isolated from Antarctic soil.

    Science.gov (United States)

    See-Too, Wah Seng; Salazar, Sergio; Ee, Robson; Convey, Peter; Chan, Kok-Gan; Peix, Álvaro

    2017-06-01

    In this study we analysed three bacterial strains coded L10.10 T , A4R1.5 and A4R1.12, isolated in the course of a study of quorum-quenching bacteria occurring in Antarctic soil. The 16S rRNA gene sequence was identical in the three strains and showed 99.7% pairwise similarity with respect to the closest related species Pseudomonas weihenstephanensis WS4993 T . Therefore, the three strains were classified within the genus Pseudomonas. Analysis of housekeeping genes (rpoB, rpoD and gyrB) sequences showed similarities of 84-95% with respect to the closest related species of Pseudomonas, confirming its phylogenetic affiliation. The ANI values were less than 86% to the closest related species type strains. The respiratory quinone is Q9. The major fatty acids are C16:0, C16:1 ω7c/ C16:1 ω6c in summed feature 3 and C18:1 ω7c / C18:1 ω6c in summed feature 8. The strains are oxidase- and catalase-positive. Growth occurs at 4-30°C, and at pH 4.0-10. The DNA G+C content is 58.2-58.3mol %. The combined genotypic, phenotypic and chemotaxonomic data support the classification of strains L10.10 T , A4R1.5 and A4R1.12 into a novel species of Pseudomonas, for which the name P. versuta sp. nov. is proposed. The type strain is L10.10 T (LMG 29628 T , DSM 101070 T ). Copyright © 2017 Elsevier GmbH. All rights reserved.

  18. Pseudomonas - Fact Sheet

    OpenAIRE

    Public Health Agency

    2012-01-01

    Fact sheet on Pseudomonas, including:What is Pseudomonas?What infections does it cause?Who is susceptible to pseudomonas infection?How will I know if I have pseudomonas infection?How can Pseudomonas be prevented from spreading?How can I protect myself from Pseudomonas?How is Pseudomonas infection treated?

  19. Molecular Determinants of the Thickened Matrix in a Dual-Species Pseudomonas aeruginosa and Enterococcus faecalis Biofilm.

    Science.gov (United States)

    Lee, Keehoon; Lee, Kang-Mu; Kim, Donggeun; Yoon, Sang Sun

    2017-11-01

    Biofilms are microbial communities that inhabit various surfaces and are surrounded by extracellular matrices (ECMs). Clinical microbiologists have shown that the majority of chronic infections are caused by biofilms, following the introduction of the first biofilm infection model by J. W. Costerton and colleagues (J. Lam, R. Chan, K. Lam, and J. W. Costerton, Infect Immun 28:546-556, 1980). However, treatments for chronic biofilm infections are still limited to surgical removal of the infected sites. Pseudomonas aeruginosa and Enterococcus faecalis are two frequently identified bacterial species in biofilm infections; nevertheless, the interactions between these two species, especially during biofilm growth, are not clearly understood. In this study, we observed phenotypic changes in a dual-species biofilm of P. aeruginosa and E. faecalis , including a dramatic increase in biofilm matrix thickness. For clear elucidation of the spatial distribution of the dual-species biofilm, P. aeruginosa and E. faecalis were labeled with red and green fluorescence, respectively. E. faecalis was located at the lower part of the dual-species biofilm, while P. aeruginosa developed a structured biofilm on the upper part. Mutants with altered exopolysaccharide (EPS) productions were constructed in order to determine the molecular basis for the synergistic effect of the dual-species biofilm. Increased biofilm matrix thickness was associated with EPSs, not extracellular DNA. In particular, Pel and Psl contributed to interspecies and intraspecies interactions, respectively, in the dual-species P. aeruginosa and E. faecalis biofilm. Accordingly, targeting Pel and Psl might be an effective part of eradicating P. aeruginosa polymicrobial biofilms. IMPORTANCE Chronic infection is a serious problem in the medical field. Scientists have observed that chronic infections are closely associated with biofilms, and the vast majority of infection-causing biofilms are polymicrobial. Many studies

  20. Pseudomonas aeruginosa inhibits the growth of Cryptococcus species.

    Science.gov (United States)

    Rella, Antonella; Yang, Mo Wei; Gruber, Jordon; Montagna, Maria Teresa; Luberto, Chiara; Zhang, Yong-Mei; Del Poeta, Maurizio

    2012-06-01

    Pseudomonas aeruginosa is a ubiquitous and opportunistic bacterium that inhibits the growth of different microorganisms, including Gram-positive bacteria and fungi such as Candida spp. and Aspergillus fumigatus. In this study, we investigated the interaction between P. aeruginosa and Cryptococcus spp. We found that P. aeruginosa PA14 and, to a lesser extent, PAO1 significantly inhibited the growth of Cryptococcus spp. The inhibition of growth was observed on solid medium by the visualization of a zone of inhibition of yeast growth and in liquid culture by viable cell counting. Interestingly, such inhibition was only observed when P. aeruginosa and Cryptococcus were co-cultured. Minimal inhibition was observed when cell-cell contact was prevented using a separation membrane, suggesting that cell contact is required for inhibition. Using mutant strains of Pseudomonas quinoline signaling, we showed that P. aeruginosa inhibited the growth of Cryptococcus spp. by producing antifungal molecules pyocyanin, a redox-active phenazine, and 2-heptyl-3,4-dihydroxyquinoline (PQS), an extracellular quorum-sensing signal. Because both P. aeruginosa and Cryptococcus neoformans are commonly found in lung infections of immunocompromised patients, this study may have important implication for the interaction of these microbes in both an ecological and a clinical point of view.

  1. Pseudomonas tarimensis sp. nov., an endophytic bacteria isolated from Populus euphratica.

    Science.gov (United States)

    Anwar, Nusratgul; Rozahon, Manziram; Zayadan, Bolatkhan; Mamtimin, Hormathan; Abdurahman, Mehfuzem; Kurban, Marygul; Abdurusul, Mihribangul; Mamtimin, Tursunay; Abdukerim, Muhtar; Rahman, Erkin

    2017-11-01

    An endophytic bacterium, MA-69 T , was isolated from the storage liquid in the stems of Populuseuphratica trees at the ancient Ugan River in Xinjiang, PR China. Strain MA-69 T was found to be short rod-shaped, Gram-stain-negative, non-spore-forming, aerobic and motile by means of a monopolar flagellum. According to phylogenetic analysis based on 16S rRNA gene sequences, strain MA-69 T was assigned to the genus Pseudomonas with highest 16S rRNA gene sequence similarity of 97.5 % to Pseudomonas azotifigens JCM 12708 T , followed by Pseudomonas matsuisoli JCM 30078 T (97.5 %), Pseudomonas balearica DSM 6083 T (97.1 %), Azotobacter salinestris ATCC 49674 T (96.1 %) and Pseudomonas indica DSM 14015 T (95.9 %). Analysis of strain MA-69 T based on the three housekeeping genes, rpoB, rpoD and gyrB, further confirmed the isolate to be distinctly delineated from species of the genus Pseudomonas. The DNA G+C content of strain MA-69 T was 64.1 mol%. DNA-DNA hybridization with Pseudomonas azotifigens JCM 12708 T , Pseudomonas matsuisoli JCM 30078 T and Pseudomonas balearica DSM 6083 T revealed 62.9, 60.1 and 49.0 % relatedness, respectively. The major fatty acids in strain MA-69 T were summed feature 3 (25.7 %), summed feature 8 (24.0 %), C19 : 0cyclo ω8c (19.9 %), C16 : 0 (14.6 %) and C12 : 0 (6.3 %). The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. Q-9 was the major quinone in strain MA-69 T . Based on phenotypic, chemotaxonomic and phylogenetic properties, strain MA-69 T represents a novel species of the genus Pseudomonas, for which the name Pseudomonas tarimensis sp. nov. is proposed. The type strain is MA-69 T (=CCTCC AB 2013065 T =KCTC 42447 T ).

  2. Expression analysis of the gacS mutant of Pseudomonas fluorescens SBW25

    NARCIS (Netherlands)

    Cheng, Xu; Bruijn, de Irene; Voort, van der M.; Raaijmakers, Jos

    2013-01-01

    Pseudomonas species are ubiquitous in plant-associated environments and produce an array of volatiles, enzymes and antimicrobials. The biosynthesis of many metabolites is regulated by the GacS/GacA two-component regulatory system. Transcriptome analysis of Pseudomonas fluorescens SBW25 revealed that

  3. Functional bacterial amyloid increases Pseudomonas biofilm hydrophobicity and stiffness

    DEFF Research Database (Denmark)

    Zeng, Guanghong; Vad, Brian S; Dueholm, Morten S

    2015-01-01

    The success of Pseudomonas species as opportunistic pathogens derives in great part from their ability to form stable biofilms that offer protection against chemical and mechanical attack. The extracellular matrix of biofilms contains numerous biomolecules, and it has recently been discovered...... that in Pseudomonas one of the components includes β-sheet rich amyloid fibrils (functional amyloid) produced by the fap operon. However, the role of the functional amyloid within the biofilm has not yet been investigated in detail. Here we investigate how the fap-based amyloid produced by Pseudomonas affects biofilm...... hydrophobicity and mechanical properties. Using atomic force microscopy imaging and force spectroscopy, we show that the amyloid renders individual cells more resistant to drying and alters their interactions with hydrophobic probes. Importantly, amyloid makes Pseudomonas more hydrophobic and increases biofilm...

  4. The effects of hyperosmosis or high pH on a dual-species biofilm of Enterococcus faecalis and Pseudomonas aeruginosa : an in vitro study

    NARCIS (Netherlands)

    van der Waal, S. V.; van der Sluis, L. W. M.; Ozok, A. R.; Exterkate, R. A. M.; van Marle, J.; Wesselink, P. R.; de Soet, J. J.

    2011-01-01

    van der Waal SV, van der Sluis LWM, Ozok AR, Exterkate RAM, van Marle J, Wesselink PR, de Soet JJ. The effects of hyperosmosis or high pH on a dual-species biofilm of Enterococcus faecalis and Pseudomonas aeruginosa: an in vitro study. International Endodontic Journal, 44, 11101117, 2011. Aim To

  5. Production of Biosurfactants by Pseudomonas Species for Application in the Petroleum Industry.

    Science.gov (United States)

    Silva, Maria Aparecida M; Silva, Aline F; Rufino, Raquel D; Luna, Juliana M; Santos, Valdemir A; Sarubbo, Leonie A

    2017-02-01

      The production of surfactants by microorganisms has become an attractive option in the treatment of oil-contaminated environments because biosurfactants are biodegradable and less toxic than synthetic surfactants, although production costs remain high. With the aim of reducing the cost of biosurfactant production, three strains of Pseudomonas (designated P1, P2, and P3) were cultivated in a low-cost medium containing molasses and corn steep liquor as substrates. Following the selection of the best producer (P3), a rotational central composite design (RCCD) was used to determine the influence of substrates concentration on surface tension and biosurfactant yield. The biosurfactant reduced the surface tension of water to 27.5 mN/m, and its CMC was determined to be 600 mg/L. The yield was 4.0 g/L. The biosurfactant demonstrated applicability under specific environmental conditions and was able to remove 80 to 90% of motor oil adsorbed to sand. The properties of the biosurfactant suggest its potential application in bioremediation of hydrophobic pollutants.

  6. Pseudomonas chlororaphis Produces Two Distinct R-Tailocins That Contribute to Bacterial Competition in Biofilms and on Roots.

    Science.gov (United States)

    Dorosky, Robert J; Yu, Jun Myoung; Pierson, Leland S; Pierson, Elizabeth A

    2017-08-01

    R-type tailocins are high-molecular-weight bacteriocins that resemble bacteriophage tails and are encoded within the genomes of many Pseudomonas species. In this study, analysis of the P. chlororaphis 30-84 R-tailocin gene cluster revealed that it contains the structural components to produce two R-tailocins of different ancestral origins. Two distinct R-tailocin populations differing in length were observed in UV-induced lysates of P. chlororaphis 30-84 via transmission electron microscopy. Mutants defective in the production of one or both R-tailocins demonstrated that the killing spectrum of each tailocin is limited to Pseudomonas species. The spectra of pseudomonads killed by the two R-tailocins differed, although a few Pseudomonas species were either killed by or insusceptible to both tailocins. Tailocin release was disrupted by deletion of the holin gene within the tailocin gene cluster, demonstrating that the lysis cassette is required for the release of both R-tailocins. The loss of functional tailocin production reduced the ability of P. chlororaphis 30-84 to compete with an R-tailocin-sensitive strain within biofilms and rhizosphere communities. Our study demonstrates that Pseudomonas species can produce more than one functional R-tailocin particle sharing the same lysis cassette but differing in their killing spectra. This study provides evidence for the role of R-tailocins as determinants of bacterial competition among plant-associated Pseudomonas in biofilms and the rhizosphere. IMPORTANCE Recent studies have identified R-tailocin gene clusters potentially encoding more than one R-tailocin within the genomes of plant-associated Pseudomonas but have not demonstrated that more than one particle is produced or the ecological significance of the production of multiple R-tailocins. This study demonstrates for the first time that Pseudomonas strains can produce two distinct R-tailocins with different killing spectra, both of which contribute to bacterial

  7. Characterization of initial events in bacterial surface colonization by two Pseudomonas species using image analysis.

    Science.gov (United States)

    Mueller, R F; Characklis, W G; Jones, W L; Sears, J T

    1992-05-01

    The processes leading to bacterial colonization on solid-water interfaces are adsorption, desorption, growth, and erosion. These processes have been measured individually in situ in a flowing system in real time using image analysis. Four different substrata (copper, silicon, 316 stainless-steel and glass) and 2 different bacterial species (Pseudomonas aeruginosa and Pseudomonas fluorescens) were used in the experiments. The flow was laminar (Re = 1.4) and the shear stress was kept constant during all experiments at 0.75 N m(-2). The surface roughness varied among the substrata from 0.002 microm (for silicon) to 0.015 microm (for copper). Surface free energies varied from 25.1 dynes cm(-1) for silicon to 31.2 dynes cm(-1) for copper. Cell curface hydrophobicity, reported as hydrocarbon partitioning values, ranged from 0.67 for Ps. fluorescens to 0.97 for Ps. aeruginosa.The adsorption rate coefficient varied by as much as a factor of 10 among the combinations of bacterial strain and substratum material, and was positively correlated with surface free energy, the surface roughness of the substratum, and the hydrophobicity of the cells. The probability of desorption decreased with increasing surface free energy and surface roughness of the substratum. Cell growth was inhibited on copper, but replication of cells overlying an initial cell layer was observed with increased exposure time to the cell-containing bulk water. A mathematical model describing cell accumulation on a substratum is presented.

  8. Comparison of 432 Pseudomonas strains through integration of genomic, functional, metabolic and expression data

    NARCIS (Netherlands)

    Koehorst, Jasper J.; Dam, van Jesse C.J.; Heck, van Ruben G.A.; Saccenti, Edoardo; Martins dos Santos, Vitor; Suarez-Diez, Maria; Schaap, Peter J.

    2016-01-01

    Pseudomonas is a highly versatile genus containing species that can be harmful to humans and plants while others are widely used for bioengineering and bioremediation. We analysed 432 sequenced Pseudomonas strains by integrating results from a large scale functional comparison using protein

  9. Chemical sanitizers to control biofilms formed by two Pseudomonas species on stainless steel surface Sanificantes químicos no controle de biofilmes formados por duas espécies de Pseudomonas em superfície de aço inoxidável

    Directory of Open Access Journals (Sweden)

    Danila Soares Caixeta

    2012-03-01

    Full Text Available The biofilm formation of Pseudomonas aeruginosa and Pseudomonas fluorescens on AISI 304 stainless steel in the presence of reconstituted skim milk under different temperatures was conducted, and the potential of three chemical sanitizers in removing the mono-species biofilms formed was compared. Pseudomonas aeruginosa cultivated in skim milk at 28 °C presented better growth rate (10.4 log CFU.mL-1 when compared with 3.7 and 4.2 log CFU.mL-1 for P. aeruginosa and P. fluorescens cultivated at 7 °C, respectively. Pseudomonas aeruginosa formed biofilm when cultivated at 28 °C. However, only the adhesion of P. aeruginosa and P. fluorescens was observed when incubated at 7 °C. The sodium dichloroisocyanurate was the most efficient sanitizer in the reduction of the adhered P. aeruginosa cells at 7 and 28 °C and those on the biofilm, respectively. The hydrogen peroxide was more effective in the reduction of adhered cells of P. fluorescens at 7 °C.A capacidade de adesão e formação de biofilme por Pseudomonas aeruginosa e Pseudomonas fluorescens em aço inoxidável AISI 304, na presença de leite desnatado resconstituído sobre diferentes temperaturas foi conduzido e o potencial de três sanificantes químicos na remoção de biofilmes monoespécies foi comparado. Pseudomonas aeruginosa cultivada em leite desnatado a 28 °C apresentou melhor crescimento (10,4 log UFC.mL-1 quando comparado com 3,7 and 4,2 log UFC.mL-1 para P. aeruginosa e P. fluorescens cultivadas a 7 °C, respectivamente. Pseudomonas aeruginosa formou biofilme quando cultivada a 28 °C. Contudo foi observado somente adesão de P. aeruginosa e P. fluorescens quando incubada a 7 °C. O dicloroisocianurato de sódio foi o sanificante mais eficiente na redução de células aderidas e em biofilme de P. aeruginosa a 7 e 28 °C, respectivamente. O peróxido de hidrogênio foi o mais eficiente na redução de células aderidas de P. fluorescens a 7 °C.

  10. Phylogenomics of 2,4-Diacetylphloroglucinol-Producing Pseudomonas and Novel Antiglycation Endophytes from Piper auritum.

    Science.gov (United States)

    Gutiérrez-García, Karina; Neira-González, Adriana; Pérez-Gutiérrez, Rosa Martha; Granados-Ramírez, Giovana; Zarraga, Ramon; Wrobel, Kazimierz; Barona-Gómez, Francisco; Flores-Cotera, Luis B

    2017-07-28

    2,4-Diacetylphloroglucinol (DAPG) (1) is a phenolic polyketide produced by some plant-associated Pseudomonas species, with many biological activities and ecological functions. Here, we aimed at reconstructing the natural history of DAPG using phylogenomics focused at its biosynthetic gene cluster or phl genes. In addition to around 1500 publically available genomes, we obtained and analyzed the sequences of nine novel Pseudomonas endophytes isolated from the antidiabetic medicinal plant Piper auritum. We found that 29 organisms belonging to six Pseudomonas species contain the phl genes at different frequencies depending on the species. The evolution of the phl genes was then reconstructed, leading to at least two clades postulated to correlate with the known chemical diversity surrounding DAPG biosynthesis. Moreover, two of the newly obtained Pseudomonas endophytes with high antiglycation activity were shown to exert their inhibitory activity against the formation of advanced glycation end-products via DAPG and related congeners. Its isomer, 5-hydroxyferulic acid (2), detected during bioactivity-guided fractionation, together with other DAPG congeners, were found to enhance the detected inhibitory activity. This report provides evidence of a link between the evolution and chemical diversity of DAPG and congeners.

  11. Pseudomonas floridensis sp. nov., a bacterial pathogen isolated from tomato.

    Science.gov (United States)

    Timilsina, Sujan; Minsavage, Gerald V; Preston, James; Newberry, Eric A; Paret, Matthews L; Goss, Erica M; Jones, Jeffrey B; Vallad, Gary E

    2018-01-01

    An unusual fluorescent pseudomonad was isolated from tomato exhibiting leaf spot symptoms similar to bacterial speck. Strains were fluorescent, oxidase- and arginine-dihydrolase-negative, elicited a hypersensitive reaction on tobacco and produced a soft rot on potato slices. However, the strains produced an unusual yellow, mucoid growth on media containing 5 % sucrose that is not typical of levan. Based on multilocus sequence analysis using 16S rRNA, gap1, gltA, gyrB and rpoD, these strains formed a distinct phylogenetic group in the genus Pseudomonas and were most closely related to Pseudomonas viridiflava within the Pseudomonassyringae complex. Whole-genome comparisons, using average nucleotide identity based on blast, of representative strain GEV388 T and publicly available genomes representing the genus Pseudomonas revealed phylogroup 7 P. viridiflava strain UASW0038 and P. viridiflava type strain ICMP 2848 T as the closest relatives with 86.59 and 86.56 % nucleotide identity, respectively. In silico DNA-DNA hybridization using the genome-to-genome distance calculation method estimated 31.1 % DNA relatedness between GEV388 T and P. viridiflava ATCC 13223 T , strongly suggesting the strains are representatives of different species. These results together with Biolog GEN III tests, fatty acid methyl ester profiles and phylogenetic analysis using 16S rRNA and multiple housekeeping gene sequences demonstrated that this group represents a novel species member of the genus Pseudomonas. The name Pseudomonas floridensis sp. nov. is proposed with GEV388 T (=LMG 30013 T =ATCC TSD-90 T ) as the type strain.

  12. Detection of extended spectrum β-lactamase in Pseudomonas spp. isolated from two tertiary care hospitals in Bangladesh

    Directory of Open Access Journals (Sweden)

    Begum Shahanara

    2013-01-01

    Full Text Available Abstract Background Extended spectrum ß-lactamases (ESBLs represent a major group of lactamases responsible for resistance, mostly produced by gram-negative bacteria, to newer generations of ß-lactam drugs currently being identified in large numbers worldwide. The present study was undertaken to see the frequency of ESBL producing Pseudomonas spp. isolated from six hundred clinical specimens (wound, pus, aural, urine, sputum, throat and other swabs collected over a period of three years from two tertiary care hospitals in Bangladesh. Findings Aerobic bacterial culture was performed on aseptically collected swabs and only growth of Pseudomonas was considered for further species identification and ESBL production along with serotyping of Pseudomonas aeruginosa. Antimicrobial susceptibility testing was carried out using the Kirby-Bauer agar diffusion method and ESBL production was detected on Mueller Hinton agar by double-disk synergy technique using Amoxicillin-Clavulanic acid with Ceftazidime, Cefotaxime, Ceftriaxone and Aztreonam. Culture yielded 120 Pseudomonas spp. and 82 of them were biochemically characterized for species. Pseudomonas aeruginosa was found to be the predominant (90.2% species. Of 82 isolates tested for ESBL, 31 (37.8% were ESBL positive with 29 (93.5% as Pseudomonas aeruginosa, the remaining 2 (6.5% were Stenotrophomonas maltophilia and Ralstonia pickettii. Antibiogram revealed Imipenem as the most effective drug (93.3% among all antimicrobials used against Pseudomonas spp. followed by Aminoglycosides (63.7%. Conclusion ESBL producing Pseudomonas spp. was found to be a frequent isolate from two tertiary care hospitals in Bangladesh, showing limited susceptibility to antimicrobials and decreased susceptibility to Imipenem in particular, which is a matter of great concern.

  13. Biodegradation of chlorpyrifos by bacterial genus Pseudomonas.

    Science.gov (United States)

    Gilani, Razia Alam; Rafique, Mazhar; Rehman, Abdul; Munis, Muhammad Farooq Hussain; Rehman, Shafiq Ur; Chaudhary, Hassan Javed

    2016-02-01

    Chlorpyrifos is an organophosphorus pesticide commonly used in agriculture. It is noxious to a variety of organisms that include living soil biota along with beneficial arthropods, fish, birds, humans, animals, and plants. Exposure to chlorpyrifos may cause detrimental effects as delayed seedling emergence, fruit deformities, and abnormal cell division. Contamination of chlorpyrifos has been found about 24 km from the site of its application. There are many physico-chemical and biological approaches to remove organophosphorus pesticides from the ecosystem, among them most promising is biodegradation. The 3,5,6-trichloro-2-pyridinol (TCP) and diethylthiophosphate (DETP) as primary products are made when chlorpyrifos is degraded by soil microorganisms which further break into nontoxic metabolites as CO(2), H(2)O, and NH(3). Pseudomonas is a diversified genus possessing a series of catabolic pathways and enzymes involved in pesticide degradation. Pseudomonas putida MAS-1 is reported to be more efficient in chlorpyrifos degradation by a rate of 90% in 24 h among Pseudomonas genus. The current review analyzed the comparative potential of bacterial species in Pseudomonas genus for degradation of chlorpyrifos thus, expressing an ecofriendly approach for the treatment of environmental contaminants like pesticides. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Antagonistic effect of Pseudomonas aeruginosa isolates from various ecological niches on Vibrio species pathogenic to crustaceans

    Institute of Scientific and Technical Information of China (English)

    Prabhakaran Priyaja; Puthumana Jayesh; Neil Scolastin Correya; Balachandran Sreelakshmi; Naduthalmuriparambil S Sudheer; Rosamma Philip; Isaac Sarogeni Bright Singh

    2014-01-01

    Objective: To abrogate pathogenic vibrios in aquaculture by testing the potential of Pseudomonas isolates from fresh water, brackish and marine environments as probiotics.Methods:Antagonistic activity of the compound against 7 Vibrio spp. was performed. Influence of salinity on the production of pyocyanin and the toxicity was done through the compound using brine shrimp lethality assay. Molecular characterization was performed to confirm that the isolates werePseudomonas aeruginosa. Results: Salinity was found to regulate the levels of pyocyanin production, with 5-10 g/L as the optimum. All Pseudomonas isolates grew at salinities ranging from 5 to 70 g/L. Isolates of marine origin produced detectable levels of pyocyanin up to 45 g/L salinity. Brackish and freshwater isolates ceased to produce pyocyanin at salinities above 30 g/L and 20 g/L, respectively. Culture supernatants of all 5 Pseudomonas isolates possessed the ability to restrict the growth of Vibrio spp. and maximum antagonistic effect on Vibrio harveyi was obtained when they were grown at salinities of 5 to 10 g/L. The marine isolate MCCB117, even when grown at a salinity of 45 g/L possessed the ability to inhibit Vibrio spp.Conclusions:Purification and structural elucidation of antagonistic compound were carried out. ideal for application in freshwater, MCCB102 and MCCB103 in brackish water and MCCB117 and The present investigation showed that Pseudomonas aeruginosa MCCB119 would be MCCB118 in marine aquaculture systems as putative probiotics in the management of vibrios.

  15. Insights into the mechanisms of Promysalin, a secondary metabolite with genus-specific antibacterial activity against Pseudomonas

    Science.gov (United States)

    Promysalin, a secondary metabolite produced by Pseudomonas putida RW10S1, has antibacterial activity against a wide variety of Pseudomonas sp., including both human and plant pathogens. Promysalin induces swarming and biofilm formation in the producing species, and inhibits growth of susceptible sp...

  16. Exacerbation of bronchiectasis by Pseudomonas monteilii: a case report.

    Science.gov (United States)

    Aditi; Shariff, Malini; Beri, Kiran

    2017-07-24

    Pseudomonas spp are important opportunistic and nosocomial pathogens. One such species is Pseudomonas monteilii (P. monteilii). It has been described as an environmental contaminant and potential pathogen. We identified this organism as the causative agent of an exacerbation of bronchiectasis and an environmental contaminant in our hospital on two separate occasions. P. monteilii was the cause of an exacerbation of bronchiectasis in a 30-year-old HIV negative male. Patient presented with cough with sputum production and exertional dyspnea. The isolate was recovered from a sputum sample in significant counts and definitively identified by Matrix-Assisted Laser Desorption/Ionisation- Time of Flight Mass Spectrometry (MALDI-TOF MS). He was treated with piperacillin-tazobactam and recovered clinically and microbiologically. Another two isolates of the organism were contaminants from the hospital environment. The three isolates were susceptible to all tested antibiotics. Typing by Random amplification of polymorphic DNA (RAPD) found no clonal relationship between them. Less common species of Pseudomonas need to be identified accurately. This organism is identified by commonly used phenotypic systems as P. putida which may have contributed to a lower reported prevalence. P. monteilii is a known environmental contaminant and must also be considered as a potential pathogen, particularly in patients with chronic lung disease.

  17. Different Ancestries of R Tailocins in Rhizospheric Pseudomonas Isolates

    Science.gov (United States)

    Ghequire, Maarten G.K.; Dillen, Yörg; Lambrichts, Ivo; Proost, Paul; Wattiez, Ruddy; De Mot, René

    2015-01-01

    Bacterial genomes accommodate a variety of mobile genetic elements, including bacteriophage-related clusters that encode phage tail-like protein complexes playing a role in interactions with eukaryotic or prokaryotic cells. Such tailocins are unable to replicate inside target cells due to the lack of a phage head with associated DNA. A subset of tailocins mediate antagonistic activities with bacteriocin-like specificity. Functional characterization of bactericidal tailocins of two Pseudomonas putida rhizosphere isolates revealed not only extensive similarity with the tail assembly module of the Pseudomonas aeruginosa R-type pyocins but also differences in genomic integration site, regulatory genes, and lytic release modules. Conversely, these three features are quite similar between strains of the P. putida and Pseudomonas fluorescens clades, although phylogenetic analysis of tail genes suggests them to have evolved separately. Unlike P. aeruginosa R pyocin elements, the tailocin gene clusters of other pseudomonads frequently carry cargo genes, including bacteriocins. Compared with P. aeruginosa, the tailocin tail fiber sequences that act as specificity determinants have diverged much more extensively among the other pseudomonad species, mostly isolates from soil and plant environments. Activity of the P. putida antibacterial particles requires a functional lipopolysaccharide layer on target cells, but contrary to R pyocins from P. aeruginosa, strain susceptibilities surpass species boundaries. PMID:26412856

  18. Isolasi Dan Identifikasi Pseudomonas Dari Tanah Kebun Biologi Wamena Dan Uji Awal Sebagai Agen Biokontrol Fusarium*[the Isolation and Identification of Pseudomonas From the Wamena Biological Gardens Soil and Its Preliminary Test as Biocontrol Agent on Fusari

    OpenAIRE

    Latupapua, HJD; Nurhidayat, N

    2003-01-01

    Pseudomonas bacteria plays essential role in soil ecology such as decomposer and biological control. The bacteria were isolated on selective media and identified from five soil samples taken within area of Wamena Biological Gardens.There are six species Pseudomonas were indentified based on morphological characters and biochemical reaction.P. striata was found to be common in soil of the area.No pathogen Pseudomonas was indentified in all soil samples. Preliminary study on biological control ...

  19. Antagonistic effect of Pseudomonas aeruginosa isolates from various ecological niches on Vibrio species pathogenic to crustaceans

    Directory of Open Access Journals (Sweden)

    Prabhakaran Priyaja

    2014-01-01

    Full Text Available Objective: To abrogate pathogenic vibrios in aquaculture by testing the potential of Pseudomonas isolates from fresh water, brackish and marine environments as probiotics. Methods: Purification and structural elucidation of antagonistic compound were carried out. Antagonistic activity of the compound against 7 Vibrio spp. was performed. Influence of salinity on the production of pyocyanin and the toxicity was done through the compound using brine shrimp lethality assay. Molecular characterization was performed to confirm that the isolates were Pseudomonas aeruginosa. Results: Salinity was found to regulate the levels of pyocyanin production, with 5-10 g/L as the optimum. All Pseudomonas isolates grew at salinities ranging from 5 to 70 g/L. Isolates of marine origin produced detectable levels of pyocyanin up to 45 g/L salinity. Brackish and freshwater isolates ceased to produce pyocyanin at salinities above 30 g/L and 20 g/L, respectively. Culture supernatants of all 5 Pseudomonas isolates possessed the ability to restrict the growth of Vibrio spp. and maximum antagonistic effect on Vibrio harveyi was obtained when they were grown at salinities of 5 to 10 g/L. The marine isolate MCCB117, even when grown at a salinity of 45 g/L possessed the ability to inhibit Vibrio spp. Conclusions: The present investigation showed that Pseudomonas aeruginosa MCCB119 would be ideal for application in freshwater, MCCB102 and MCCB103 in brackish water and MCCB117 and MCCB118 in marine aquaculture systems as putative probiotics in the management of vibrios.

  20. The sigma(54) regulon (sigmulon) of Pseudomonas putida

    DEFF Research Database (Denmark)

    Cases, I.; Ussery, David; de Lorenzo, V.

    2003-01-01

    , the sigma(54) regulon has been studied both in Escherichia coli, Salmonella typhimurium and several species of the Rhizobiaceae. Here we present the analysis of the sigma(54) regulon (sigmulon) in the complete genome of Pseudomonas putida KT2440. We have developed an improved method for the prediction...

  1. Exposure-related effects of formulated Pseudomonas fluorescens strain CL145A to glochidia from seven unionid mussel species

    Science.gov (United States)

    Luoma, James A.; Weber, Kerry L.; Severson, Todd J.; Schreier, Theresa M.; Mayer, Denise A.; Aloisi, Douglas B.; Eckert, Nathan L.

    2015-01-01

    The study was completed to evaluate the exposure-related effects of a biopesticide for dreissenid mussel (Dreissena polymorpha, zebra mussel and Dreissena rostriformis bugensis, quagga mussel) control on glochidia from unionid mussels endemic to the Great Lakes and Upper Mississippi River Basins. The commercially prepared biopesticide was either a spray-dried powder (SDP) or freeze-dried powder (FDP) formulation of Pseudomonas fluorescens, strain CL145A. Glochidia of the unionid mussel species Lampsilis cardium, Lampsilis siliquoidea,Lampsilis higginsii, Ligumia recta, Obovaria olivaria, and Actinonaias ligamentina were exposed to SDP-formulated P. fluorescens andLampsilis cardium and Megalonaias nervosa were exposed to FDP-formulated P. fluorescens.

  2. Ecofriendly biodegradation and detoxification of Reactive Red 2 textile dye by newly isolated Pseudomonas sp. SUK1

    International Nuclear Information System (INIS)

    Kalyani, D.C.; Telke, A.A.; Dhanve, R.S.; Jadhav, J.P.

    2009-01-01

    The aim of this work is to evaluate textile dyes degradation by novel bacterial strain isolated from the waste disposal sites of local textile industries. Detailed taxonomic studies identified the organisms as Pseudomonas species and designated as strain Pseudomonas sp. SUK1. The isolate was able to decolorize sulfonated azo dye (Reactive Red 2) in a wide range (up to 5 g l -1 ), at temperature 30 deg. C, and pH range 6.2-7.5 in static condition. This isolate also showed decolorization of the media containing a mixture of dyes. Measurements of COD were done at regular intervals to have an idea of mineralization, showing 52% reduction in the COD within 24 h. Induction in the activity of lignin peroxidase and azoreductase was observed during decolorization of Reactive Red 2 in the batch culture, which represented their role in degradation. The biodegradation was monitored by UV-vis, IR spectroscopy, HPLC. The final product, 2-naphthol was characterized by GC-mass spectroscopy. The phytotoxicity study revealed the degradation of Reactive Red 2 into non-toxic product by Pseudomonas sp. SUK1

  3. Genetic and functional characterization of the gene cluster directing the biosynthesis of putisolvin I and II in Pseudomonas putida strain PCL1445

    NARCIS (Netherlands)

    Dubern, J.F.; Coppoolse, E.R.; Stiekema, W.J.; Bloemberg, G.V.

    2008-01-01

    Pseudomonas putida PCL1445 secretes two cyclic lipopeptides, putisolvin I and putisolvin II, which possess a surface-tension-reducing ability, and are able to inhibit biofilm formation and to break down biofilms of Pseudomonas species including Pseudomonas aeruginosa. The putisolvin synthetase gene

  4. Antimicrobial properties of Pseudomonas strains producing the antibiotic mupirocin.

    Science.gov (United States)

    Matthijs, Sandra; Vander Wauven, Corinne; Cornu, Bertrand; Ye, Lumeng; Cornelis, Pierre; Thomas, Christopher M; Ongena, Marc

    2014-10-01

    Mupirocin is a polyketide antibiotic with broad antibacterial activity. It was isolated and characterized about 40 years ago from Pseudomonas fluorescens NCIMB 10586. To study the phylogenetic distribution of mupirocin producing strains in the genus Pseudomonas a large collection of Pseudomonas strains of worldwide origin, consisting of 117 Pseudomonas type strains and 461 strains isolated from different biological origins, was screened by PCR for the mmpD gene of the mupirocin gene cluster. Five mmpD(+) strains from different geographic and biological origin were identified. They all produced mupirocin and were strongly antagonistic against Staphylococcus aureus. Phylogenetic analysis showed that mupirocin production is limited to a single species. Inactivation of mupirocin production leads to complete loss of in vitro antagonism against S. aureus, except on certain iron-reduced media where the siderophore pyoverdine is responsible for the in vitro antagonism of a mupirocin-negative mutant. In addition to mupirocin some of the strains produced lipopeptides of the massetolide group. These lipopeptides do not play a role in the observed in vitro antagonism of the mupirocin producing strains against S. aureus. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  5. Pseudomonas endophytica sp. nov., isolated from stem tissue of Solanum tuberosum L. in Spain.

    Science.gov (United States)

    Ramírez-Bahena, Martha-Helena; Cuesta, Maria José; Tejedor, Carmen; Igual, José Mariano; Fernández-Pascual, Mercedes; Peix, Álvaro

    2015-07-01

    A bacterial strain named BSTT44(T) was isolated in the course of a study of endophytic bacteria occurring in stems and roots of potato growing in a soil from Salamanca, Spain. The 16S rRNA gene sequence had 99.7% identity with respect to that of its closest relative, Pseudomonas psychrophila E-3T, and the next most closely related type strains were those of Pseudomonas fragi, with 99.6% similarity, Pseudomonas deceptionensis, with 99.2% similarity, and Pseudomonas lundensis, with 99.0% similarity; these results indicate that BSTT44(T) should be classified within the genus Pseudomonas. Analysis of the housekeeping genes rpoB, rpoD and gyrB confirmed its phylogenetic affiliation and showed identities lower than 92% in all cases with respect to the above-mentioned closest relatives. Cells of the strain bore one polar-subpolar flagellum. The respiratory quinone was Q-9.The major fatty acids were C16:0, C18:1ω7c and summed feature 3 (C16:1ω7c and/or C16:1ω6c). The strain was oxidase-, catalase- and urease-positive and the arginine dihydrolase system was present, but tests for nitrate reduction, β-galactosidase production and aesculin hydrolysis were negative. It could grow at 35 °C and at pH 5-9.The DNA G+C content was 60.2 mol%. DNA-DNA hybridization results showed less than 48% relatedness with respect to the type strains of the four most closely related species. Therefore, the combined results of genotypic, phenotypic and chemotaxonomic analyses support the classification of strain BSTT44 into a novel species of the genus Pseudomonas, for which the name Pseudomonas endophytica sp. nov. is proposed. The type strain is BSTT44(T) ( = LMG 28456(T) = CECT 8691(T)).

  6. Pseudomonas aestus sp. nov., a plant growth-promoting bacterium isolated from mangrove sediments.

    Science.gov (United States)

    Vasconcellos, Rafael L F; Santos, Suikinai Nobre; Zucchi, Tiago Domingues; Silva, Fábio Sérgio Paulino; Souza, Danilo Tosta; Melo, Itamar Soares

    2017-10-01

    Strain CMAA 1215 T , a Gram-reaction-negative, aerobic, catalase positive, polarly flagellated, motile, rod-shaped (0.5-0.8 × 1.3-1.9 µm) bacterium, was isolated from mangrove sediments, Cananéia Island, Brazil. Analysis of the 16S rRNA gene sequences showed that strain CMAA 1215 T forms a distinct phyletic line within the Pseudomonas putida subclade, being closely related to P. plecoglossicida ATCC 700383 T , P. monteilii NBRC 103158 T , and P. taiwanensis BCRC 17751 T of sequence similarity of 98.86, 98.73, and 98.71%, respectively. Genomic comparisons of the strain CMAA 1215 T with its closest phylogenetic type strains using average nucleotide index (ANI) and DNA:DNA relatedness approaches revealed 84.3-85.3% and 56.0-63.0%, respectively. A multilocus sequence analysis (MLSA) performed concatenating 16S rRNA, gyrB and rpoB gene sequences from the novel species was related with Pseudomonas putida subcluster and formed a new phylogenetic lineage. The phenotypic, physiological, biochemical, and genetic characteristics support the assignment of CMAA 1215 T to the genus Pseudomonas, representing a novel species. The name Pseudomonas aestus sp.nov. is proposed, with CMAA 1215 T (=NRRL B-653100 T  = CBMAI 1962 T ) as the type strain.

  7. Pseudomonas biofilm matrix composition and niche biology

    Science.gov (United States)

    Mann, Ethan E.; Wozniak, Daniel J.

    2014-01-01

    Biofilms are a predominant form of growth for bacteria in the environment and in the clinic. Critical for biofilm development are adherence, proliferation, and dispersion phases. Each of these stages includes reinforcement by, or modulation of, the extracellular matrix. Pseudomonas aeruginosa has been a model organism for the study of biofilm formation. Additionally, other Pseudomonas species utilize biofilm formation during plant colonization and environmental persistence. Pseudomonads produce several biofilm matrix molecules, including polysaccharides, nucleic acids, and proteins. Accessory matrix components shown to aid biofilm formation and adaptability under varying conditions are also produced by pseudomonads. Adaptation facilitated by biofilm formation allows for selection of genetic variants with unique and distinguishable colony morphology. Examples include rugose small-colony variants and wrinkly spreaders (WS), which over produce Psl/Pel or cellulose, respectively, and mucoid bacteria that over produce alginate. The well-documented emergence of these variants suggests that pseudomonads take advantage of matrix-building subpopulations conferring specific benefits for the entire population. This review will focus on various polysaccharides as well as additional Pseudomonas biofilm matrix components. Discussions will center on structure–function relationships, regulation, and the role of individual matrix molecules in niche biology. PMID:22212072

  8. Degradation of polynuclear aromatic hydrocarbons by two strains of Pseudomonas.

    Science.gov (United States)

    Nwinyi, Obinna C; Ajayi, Oluseyi O; Amund, Olukayode O

    2016-01-01

    The goal of this investigation was to isolate competent polynuclear aromatic hydrocarbons degraders that can utilize polynuclear aromatic hydrocarbons of former industrial sites at McDoel Switchyard in Bloomington, Indiana. Using conventional enrichment method based on soil slurry, we isolated, screened and purified two bacterial species strains PB1 and PB2. Applying the ribotyping technique using the 16S rRNA gene analysis, the strains were assigned to the genus Pseudomonas (Pseudomonas plecoglossicida strain PB1 and Pseudomonas sp. PB2). Both isolates showed promising metabolic capacity on pyrene sprayed MS agar plates during the preliminary investigations. Using time course studies in the liquid cultures at calculated concentrations 123, 64, 97 and 94ppm for naphthalene, chrysene, fluroanthene and pyrene, P. plecoglossicida strain PB1 and Pseudomonas sp. PB2 showed partial utilization of the polynuclear aromatic hydrocarbons. Naphthalene was degraded between 26% and 40%, chrysene 14% and 16%, fluroanthene 5% and 7%; pyrene 8% and 13% by P. plecoglossicida strain PB1 and Pseudomonas sp. PB2 respectively. Based on their growth profile, we developed a model R(2)=1 to predict the degradation rate of slow polynuclear aromatic hydrocarbon-degraders where all the necessary parameters are constant. From this investigation, we confirm that the former industrial site soil microbial communities may be explored for the biorestoration of the industrial site. Copyright © 2016. Published by Elsevier Editora Ltda.

  9. Dechlorination of 1,2– dichloroethane by Pseudomonas aeruginosa ...

    African Journals Online (AJOL)

    As part of our attempt at isolating and stocking some indigenous microbial species, we isolated a bacterium from a waste dumpsite with appreciable dechlorination activity. 16S rDNA profiling revealed the isolate to be a strain of Pseudomonas aeruginosa and the sequence has been deposited in the NCBI nucleotide ...

  10. Aspergillus triggers phenazine production in Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Jensen, Britt Guillaume; Jelsbak, Lars; Søndergaard, Ib

    in the contact area of A. niger, A. flavus, A. oryzae, but not A. fumigatus. In addition, other metabolites with UV chromophores similar to the phenazines were only found in the contact zone between Aspergillus and Pseudomonas. No change in secondary metabolite profiles were seen for the Aspergilli, when......Objectives: Pseudomonas aeruginosa is an opportunistic human pathogen, commonly infecting cystic fibrosis (CF) patients. Aspergilli, especially Aspergillus fumigatus, are also frequently isolated from CF patients. Our aim was to examine the possible interaction between P. aeruginosa and different...... Aspergillus species. Methods: A suspension of fungal spores was streaked onto WATM agar plates. After 24 hours incubation at 37 °C, a P. aeruginosa overnight culture was streaked out perpendicular to the fungal streak. The plates were incubated at 37 °C for five days, examined and plugs were extracted...

  11. Atmospheric-pressure air microplasma jets in aqueous media for the inactivation of Pseudomonas fluorescens cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xianhui; Yang, Si-ze [Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, School of Physics and Mechanical and Electrical Engineering, Xiamen University, Xiamen, Fujian 361005 (China); Liu, Dongping [Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, School of Physics and Mechanical and Electrical Engineering, Xiamen University, Xiamen, Fujian 361005 (China); School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); Song, Ying [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116023 (China); Sun, Yue [School of Physics, Changchun University of Science and Technology, Changchun 130022 (China)

    2013-05-15

    The hollow fiber-based cold air microplasma jet array running at atmospheric pressure has been designed to inactivate Pseudomonas fluorescens (P. fluorescens) cells in vitro in aqueous media. The influences of electrode configurations, air flow rate, and applied voltage on the discharge characteristics of the single microplasma jet operating in aqueous media are presented, and the bactericidal efficiency of the hollow fibers-based and large-volume microplasma jet array is reported. Optical emission spectroscopy is utilized to identify excited species during the antibacterial testing of plasma in solutions. These well-aligned and rather stable air microplasma jets containing a variety of short-lived species, such as OH and O radicals and charged particles, are in direct contact with aqueous media and are very effective in killing P. fluorescens cells in aqueous media. This design shows its potential application for atmospheric pressure air plasma inactivation of bacteria cells in aqueous media.

  12. Variation of the Pseudomonas community structure on oak leaf lettuce during storage detected by culture-dependent and -independent methods.

    Science.gov (United States)

    Nübling, Simone; Schmidt, Herbert; Weiss, Agnes

    2016-01-04

    The genus Pseudomonas plays an important role in the lettuce leaf microbiota and certain species can induce spoilage. The aim of this study was to investigate the occurrence and diversity of Pseudomonas spp. on oak leaf lettuce and to follow their community shift during a six day cold storage with culture-dependent and culture-independent methods. In total, 21 analysed partial Pseudomonas 16S rRNA gene sequences matched closely (> 98.3%) to the different reference strain sequences, which were distributed among 13 different phylogenetic groups or subgroups within the genus Pseudomonas. It could be shown that all detected Pseudomonas species belonged to the P. fluorescens lineage. In the culture-dependent analysis, 73% of the isolates at day 0 and 79% of the isolates at day 6 belonged to the P. fluorescens subgroup. The second most frequent group, with 12% of the isolates, was the P. koreensis subgroup. This subgroup was only detected at day 0. In the culture-independent analysis the P. fluorescens subgroup and P. extremaustralis could not be differentiated by RFLP. Both groups were most abundant and amounted to approximately 46% at day 0 and 79% at day 6. The phytopathogenic species P. salmonii, P. viridiflava and P. marginalis increased during storage. Both approaches identified the P. fluorescens group as the main phylogenetic group. The results of the present study suggest that pseudomonads found by plating methods indeed represent the most abundant part of the Pseudomonas community on oak leaf lettuce. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Comparative genomic analysis of four representative plant growth-promoting rhizobacteria in Pseudomonas

    Science.gov (United States)

    2013-01-01

    Background Some Pseudomonas strains function as predominant plant growth-promoting rhizobacteria (PGPR). Within this group, Pseudomonas chlororaphis and Pseudomonas fluorescens are non-pathogenic biocontrol agents, and some Pseudomonas aeruginosa and Pseudomonas stutzeri strains are PGPR. P. chlororaphis GP72 is a plant growth-promoting rhizobacterium with a fully sequenced genome. We conducted a genomic analysis comparing GP72 with three other pseudomonad PGPR: P. fluorescens Pf-5, P. aeruginosa M18, and the nitrogen-fixing strain P. stutzeri A1501. Our aim was to identify the similarities and differences among these strains using a comparative genomic approach to clarify the mechanisms of plant growth-promoting activity. Results The genome sizes of GP72, Pf-5, M18, and A1501 ranged from 4.6 to 7.1 M, and the number of protein-coding genes varied among the four species. Clusters of Orthologous Groups (COGs) analysis assigned functions to predicted proteins. The COGs distributions were similar among the four species. However, the percentage of genes encoding transposases and their inactivated derivatives (COG L) was 1.33% of the total genes with COGs classifications in A1501, 0.21% in GP72, 0.02% in Pf-5, and 0.11% in M18. A phylogenetic analysis indicated that GP72 and Pf-5 were the most closely related strains, consistent with the genome alignment results. Comparisons of predicted coding sequences (CDSs) between GP72 and Pf-5 revealed 3544 conserved genes. There were fewer conserved genes when GP72 CDSs were compared with those of A1501 and M18. Comparisons among the four Pseudomonas species revealed 603 conserved genes in GP72, illustrating common plant growth-promoting traits shared among these PGPR. Conserved genes were related to catabolism, transport of plant-derived compounds, stress resistance, and rhizosphere colonization. Some strain-specific CDSs were related to different kinds of biocontrol activities or plant growth promotion. The GP72 genome

  14. Pseudomonas-related populations associated with reverse osmosis in drinking water treatment.

    Science.gov (United States)

    Sala-Comorera, Laura; Blanch, Anicet R; Vilaró, Carles; Galofré, Belén; García-Aljaro, Cristina

    2016-11-01

    Reverse osmosis membrane filtration technology (RO) is used to treat drinking water. After RO treatment, bacterial growth is still observed in water. However, it is not clear whether those microorganisms belong to species that can pose a health risk, such as Pseudomonas spp. The goal of this study is to characterize the bacterial isolates from a medium that is selective for Pseudomonas and Aeromonas which were present in the water fraction before and after the RO. To this end, isolates were recovered over two years and were identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry. They were then biochemically phenotyped and the population similarity indexes were calculated. The isolates were analysed for their capacity to form biofilms in vitro and antimicrobial susceptibility. There were significant differences between the microbial populations in water before and after RO. Furthermore, the structures of the populations analysed at the same sampling point were similar in different sampling campaigns. Some of the isolates had the capacity to form a biofilm and showed resistance to different antibiotics. A successful level filtration via RO and subsequent recolonization of the membrane with different species from those in the feed water was found. Pseudomonas aeruginosa was not recovered from among the isolates. This study increases the knowledge on the microorganisms present in water after RO treatment, with focus in one of the genus causing problems in RO systems associated with human health risk, Pseudomonas. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Evolutionary Plasticity of AmrZ Regulation in Pseudomonas

    Science.gov (United States)

    Dougherty, Kevin; Diaz, Beatriz; Murillo, Rachel

    2018-01-01

    ABSTRACT amrZ encodes a master regulator protein conserved across pseudomonads, which can be either a positive or negative regulator of swimming motility depending on the species examined. To better understand plasticity in the regulatory function of AmrZ, we characterized the mode of regulation for this protein for two different motility-related phenotypes in Pseudomonas stutzeri. As in Pseudomonas syringae, AmrZ functions as a positive regulator of swimming motility within P. stutzeri, which suggests that the functions of this protein with regard to swimming motility have switched at least twice across pseudomonads. Shifts in mode of regulation cannot be explained by changes in AmrZ sequence alone. We further show that AmrZ acts as a positive regulator of colony spreading within this strain and that this regulation is at least partially independent of swimming motility. Closer investigation of mechanistic shifts in dual-function regulators like AmrZ could provide unique insights into how transcriptional pathways are rewired between closely related species. IMPORTANCE Microbes often display finely tuned patterns of gene regulation across different environments, with major regulatory changes controlled by a small group of “master” regulators within each cell. AmrZ is a master regulator of gene expression across pseudomonads and can be either a positive or negative regulator for a variety of pathways depending on the strain and genomic context. Here, we demonstrate that the phenotypic outcomes of regulation of swimming motility by AmrZ have switched at least twice independently in pseudomonads, so that AmrZ promotes increased swimming motility in P. stutzeri and P. syringae but represses this phenotype in Pseudomonas fluorescens and Pseudomonas aeruginosa. Since examples of switches in regulatory mode are relatively rare, further investigation into the mechanisms underlying shifts in regulator function for AmrZ could provide unique insights into the

  16. Differential impact of some Aspergillus species on Meloidogyne javanica biocontrol by Pseudomonas fluorescens strain CHA0.

    Science.gov (United States)

    Siddiqui, I A; Shaukat, S S; Khan, A

    2004-01-01

    The aim was to determine the influence of some Aspergillus species on the production of nematicidal agent(s) in vitro and biocontrol of Meloidogyne javanica in tomato by Pseudomonas fluorescens strains CHA0 and CHA0/pME3424. Six species of Aspergillus, isolated from the rhizosphere of certain crops, produced a variety of secondary metabolites in vitro. Culture filtrate (CF) obtained from Ps. fluorescens strain CHA0 and its2,4-diacetylphloroglucinol overproducing mutant CHA0/pME3424 grown in King's B liquid medium caused significant mortality of M. javanica juveniles in vitro. Bacterial growth medium amended with CF of A. niger enhanced nematicidal and beta-galactosidase activities of fluorescent pseudomonads while A. quadrilineatus repressed such activities. Methanol or ethyl acetate extracts of the CF of A. niger markedly optimized bacterial efficacy to cause nematode deaths while hexane extract of the fungus had no influence on the nematicidal activity of the bacterial strains. A. niger applied alone or in conjunction with the bacterial inoculants inhibited root-knot nematode galling in tomato. On the other hand, A. quadrilineatus used alone or together with CHA0 did not inhibit nematode galling but when used in combination with strain CHA0/pME3424 did reduce galling intensity. Aspergillus niger enhances the production of nematicidal compounds by Ps. fluorescensin vitro and improves biocontrol potential of the bacterial inoculants in tomato while A. quadrilineatus reduces bacterial performance to suppress root-knot nematodes. Rhizosphere harbours a variety of micro-organisms including bacteria, fungi and viruses. Aspergillus species are ubiquitous in most agricultural soils and generally produce a variety of secondary metabolites. Such metabolites synthesized by Aspergillus species may influence the production of nematicidal agents and subsequent biocontrol performance of the bacterial inoculants against plant-parasitic nematodes. This fact needs to be taken into

  17. Efficacy of lactoferricin B in controlling ready-to-eat vegetable spoilage caused by Pseudomonas spp.

    Science.gov (United States)

    Federico, Baruzzi; Pinto, Loris; Quintieri, Laura; Carito, Antonia; Calabrese, Nicola; Caputo, Leonardo

    2015-12-23

    The microbial content of plant tissues has been reported to cause the spoilage of ca. 30% of chlorine-disinfected fresh vegetables during cold storage. The aim of this work was to evaluate the efficacy of antimicrobial peptides in controlling microbial vegetable spoilage under cold storage conditions. A total of 48 bacterial isolates were collected from ready-to-eat (RTE) vegetables and identified as belonging to Acinetobacter calcoaceticus, Aeromonas media, Pseudomonas cichorii, Pseudomonas fluorescens, Pseudomonas jessenii, Pseudomonas koreensis, Pseudomonas putida, Pseudomonas simiae and Pseudomonas viridiflava species. Reddish or brownish pigmentation was found when Pseudomonas strains were inoculated in wounds on leaves of Iceberg and Trocadero lettuce and escarole chicory throughout cold storage. Bovine lactoferrin (BLF) and its hydrolysates (LFHs) produced by pepsin, papain and rennin, were assayed in vitro against four Pseudomonas spp. strains selected for their heavy spoiling ability. As the pepsin-LFH showed the strongest antimicrobial effect, subsequent experiments were carried out using the peptide lactoferricin B (LfcinB), well known to be responsible for its antimicrobial activity. LfcinB significantly reduced (P ≤ 0.05) spoilage by a mean of 36% caused by three out of four inoculated spoiler pseudomonads on RTE lettuce leaves after six days of cold storage. The reduction in the extent of spoilage was unrelated to viable cell density in the inoculated wounds. This is the first paper providing direct evidence regarding the application of an antimicrobial peptide to control microbial spoilage affecting RTE leafy vegetables during cold storage.

  18. Assessment on the decolourization of textile dye (Reactive Yellow) using Pseudomonas sp. immobilized on fly ash: Response surface methodology optimization and toxicity evaluation.

    Science.gov (United States)

    Roy, Uttariya; Sengupta, Shubhalakshmi; Banerjee, Priya; Das, Papita; Bhowal, Avijit; Datta, Siddhartha

    2018-06-18

    This study focuses on the investigation of removal of textile dye (Reactive Yellow) by a combined approach of sorption integrated with biodegradation using low cost adsorbent fly ash immobilized with Pseudomonas sp. To ensure immobilization of bacterial species on treated fly ash, fly ash with immobilized bacterial cells was characterized using Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and fluorescence microscopy. Comparative batch studies were carried out using Pseudomonas sp, fly ash and immobilized Pseudomonas sp on flyash and were observed that immobilized Pseudomonas sp on flyash acted as better decolourizing agent. The optimized pH, temperature, and immobilized adsorbent dosage for highest percentage of dye removal were observed to be pH 6, 303 K, 1.2 g/L in all the cases. At optimum condition, the highest percentage of dye removal was found to be 88.51%, 92.62% and 98.72% for sorption (flyash), biodegradation (Pseudomonas sp) and integral approach (Pseudomonas sp on flyash) respectively. Optimization of operating parameters of textile dye decolourization was done by response surface methodology (RSM) using Design Expert 7 software. Phytotoxicity evaluation with Cicer arietinum revealed that seeds exposed to untreated dye effluents showed considerably lower growth, inhibited biochemical, and enzyme parameters with compared to those exposed to treated textile effluents. Thus this immobilized inexpensive technique could be used for removal of synthetic dyes present in textile wastewater. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Short communication: Pseudomonas azotoformans causes gray discoloration in HTST fluid milk.

    Science.gov (United States)

    Evanowski, Rachel L; Reichler, Samuel J; Kent, David J; Martin, Nicole H; Boor, Kathryn J; Wiedmann, Martin

    2017-10-01

    Pseudomonas species are well recognized as dairy product spoilage organisms, particularly due to their ability to grow at refrigeration temperatures. Although Pseudomonas-related spoilage usually manifests itself in flavor, odor, and texture defects, which are typically due to production of bacterial enzymes, Pseudomonas is also reported to cause color defects. Because of consumer complaints, a commercial dairy company shipped 4 samples of high temperature, short time (HTST)-pasteurized milk with distinctly gray colors to our laboratory. Bacterial isolates from all 4 samples were identified as Pseudomonas azotoformans. All isolates shared the same partial 16S rDNA sequence and showed black pigmentation on Dichloran Rose Bengal Chloramphenicol agar. Inoculation of one pigment-producing P. azotoformans isolate into HTST-pasteurized fluid milk led to development of gray milk after 14 d of storage at 6°C, but only in containers that had half of the total volume filled with milk (∼500 mL of milk in ∼1,000-mL bottles). We conclusively demonstrate that Pseudomonas can cause a color defect in fluid milk that manifests in gray discoloration, adding to the palette of color defects known to be caused by Pseudomonas. This information is of considerable interest to the dairy industry, because dairy processors and others may not typically associate black or gray colors in fluid milk with the presence of microbial contaminants but rather with product tampering (e.g., addition of ink) or other inadvertent chemical contamination. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. Anti-pseudomona and Anti-bacilli Activity of Some Medicinal Plants of Iran

    Directory of Open Access Journals (Sweden)

    Gholam Hosein Shahidi Bonjar

    2003-10-01

    Full Text Available The use of plants in treatment of burns, dermatophytes, and infectious diseases is common in traditional medicine of Iran. Based on ethno pharmacological and taxonomic information, antibacterial activities of methanol extracts of some medicinal plants of Iran were determined by In Vitro bioassays using agar diffusion-method against standard strains of Pseudomonas aeruginosa, P. fluorescens, Bacillus subtilis, B. cereus and B. pumilis at 20 mg/ml. From 180 plant species of 72 families, 78 species (43.3% in 42 families (58.3% showed antibacterial activities against B. cereus (88.4%, B. subtilis (39.7%, B. pumilis (37.1%, P. fluorescens (37.1% and P. aeruginos (10.2%. The most active plant families were Apiaceae, Compositae and Labiatae with 9, 8 and 7 active plant species respectively. Minimum inhibitory concentrations (MIC of the active plants were determined using two fold serial dilutions. Most active plant against Bacilli was Myrtus communis L. with MIC of 1.87 mg/ml. For Pseudomonas species, Dianthus caryophyllus L. and Terminalia chebula (Gaertner Retz. were more active with the MIC of 0.46 mg/ml for P. fluorescens and of 1.87 mg/ml for P. aeruginosa respectively.

  1. Diversity of Pseudomonas Genomes, Including Populus-Associated Isolates, as Revealed by Comparative Genome Analysis.

    Science.gov (United States)

    Jun, Se-Ran; Wassenaar, Trudy M; Nookaew, Intawat; Hauser, Loren; Wanchai, Visanu; Land, Miriam; Timm, Collin M; Lu, Tse-Yuan S; Schadt, Christopher W; Doktycz, Mitchel J; Pelletier, Dale A; Ussery, David W

    2016-01-01

    The Pseudomonas genus contains a metabolically versatile group of organisms that are known to occupy numerous ecological niches, including the rhizosphere and endosphere of many plants. Their diversity influences the phylogenetic diversity and heterogeneity of these communities. On the basis of average amino acid identity, comparative genome analysis of >1,000 Pseudomonas genomes, including 21 Pseudomonas strains isolated from the roots of native Populus deltoides (eastern cottonwood) trees resulted in consistent and robust genomic clusters with phylogenetic homogeneity. All Pseudomonas aeruginosa genomes clustered together, and these were clearly distinct from other Pseudomonas species groups on the basis of pangenome and core genome analyses. In contrast, the genomes of Pseudomonas fluorescens were organized into 20 distinct genomic clusters, representing enormous diversity and heterogeneity. Most of our 21 Populus-associated isolates formed three distinct subgroups within the major P. fluorescens group, supported by pathway profile analysis, while two isolates were more closely related to Pseudomonas chlororaphis and Pseudomonas putida. Genes specific to Populus-associated subgroups were identified. Genes specific to subgroup 1 include several sensory systems that act in two-component signal transduction, a TonB-dependent receptor, and a phosphorelay sensor. Genes specific to subgroup 2 contain hypothetical genes, and genes specific to subgroup 3 were annotated with hydrolase activity. This study justifies the need to sequence multiple isolates, especially from P. fluorescens, which displays the most genetic variation, in order to study functional capabilities from a pangenomic perspective. This information will prove useful when choosing Pseudomonas strains for use to promote growth and increase disease resistance in plants. Copyright © 2015 Jun et al.

  2. Comparative genomic analysis of two-component regulatory proteins in Pseudomonas syringae

    DEFF Research Database (Denmark)

    Lavin, J.L.; Kiil, Kristoffer; Resano, O.

    2007-01-01

    Background: Pseudomonas syringae is a widespread bacterial plant pathogen, and strains of P. syringae may be assigned to different pathovars based on host specificity among different plant species. The genomes of P. syringae pv. syringae (Psy) B728a, pv. tomato (Pto) DC3000 and pv. phaseolicola...

  3. Physiological and biochemical characterization of a novel nicotine-degrading bacterium Pseudomonas geniculata N1.

    Directory of Open Access Journals (Sweden)

    Yanghui Liu

    Full Text Available Management of solid wastes with high nicotine content, such as those accumulated during tobacco manufacturing, poses a major challenge, which can be addressed by using bacteria such as Pseudomonas and Arthrobacter. In this study, a new species of Pseudomonas geniculata, namely strain N1, which is capable of efficiently degrading nicotine, was isolated and identified. The optimal growth conditions for strain N1 are a temperature of 30°C, and a pH 6.5, at a rotation rate of 120 rpm min(-1 with 1 g l(-1 nicotine as the sole source of carbon and nitrogen. Myosmine, cotinine, 6-hydroxynicotine, 6-hydroxy-N-methylmyosmine, and 6-hydroxy-pseudooxynicotine were detected as the five intermediates through gas chromatography-mass and liquid chromatography-mass analyses. The identified metabolites were different from those generated by Pseudomonas putida strains. The analysis also highlighted the bacterial metabolic diversity in relation to nicotine degradation by different Pseudomonas strains.

  4. Identification of novel transaminases from a 12-aminododecanoic acid-metabolizing Pseudomonas strain.

    Science.gov (United States)

    Wilding, Matthew; Walsh, Ellen F A; Dorrian, Susan J; Scott, Colin

    2015-07-01

    A Pseudomonas species [Pseudomonas sp. strain amino alkanoate catabolism (AAC)] was identified that has the capacity to use 12-aminododecanoic acid, the constituent building block of homo-nylon-12, as a sole nitrogen source. Growth of Pseudomonas sp. strain AAC could also be supported using a range of additional ω-amino alkanoates. This metabolic function was shown to be most probably dependent upon one or more transaminases (TAs). Fourteen genes encoding putative TAs were identified from the genome of Pseudomonas sp. AAC. Each of the 14 genes was cloned, 11 of which were successfully expressed in Escherichia coli and tested for activity against 12-aminododecanoic acid. In addition, physiological functions were proposed for 9 of the 14 TAs. Of the 14 proteins, activity was demonstrated in 9, and of note, 3 TAs were shown to be able to catalyse the transfer of the ω-amine from 12-aminododecanoic acid to pyruvate. Based on this study, three enzymes have been identified that are promising biocatalysts for the production of nylon and related polymers. © 2015 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  5. Detection of Pseudomonas fluorescens from broth, water and ...

    African Journals Online (AJOL)

    Loop mediated isothermal amplification is rapid, highly sensitive and specifically developed method for detection of bacterial infections. AprX gene for alkaline metalloprotease of Pseudomonas fluorescens was used to design four primers and loop mediated isothermal amplification (LAMP) conditions were standardized for ...

  6. Production of a rhamnolipid-type biosurfactant by Pseudomonas ...

    African Journals Online (AJOL)

    The work herewith investigated the effect of the culture medium composition on rhamnolipid production by Pseudomonas aeruginosa LBM10, previously isolated from an estuarine environment in Southern Brazil. Experimental design and surface response methodology were used in order to improve biosurfactant ...

  7. Expression of Pseudomonas aeruginosa transposable phages in Pseudomonas putida cells. I. Establishment of lysogeny and lytic growth efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Gorbunova, S.A.; Yanenko, A.S.; Akhverdyan, V.Z.; Reulets, M.A.; Krylov, V.N.

    1986-03-01

    Expression of the genomes of Pseudomonas aeruginosa transposable phages (TP) in the cells of a heterologous host, P. putida PpGl, was studied. A high efficiency of TP lytic growth in PpGl cells was obtained both after zygotic induction following RP4::TP plasmid transfer and after thermoinduction of PpGl cells lysogenic for thermoinducible prophage D3112cts15. Characteristic for PpGl cells was a high TP yield (20-25 phage D3112cts15 particles per cell), which was evidence of a high level of TP transposition in cells of this species. The frequency of RP4::TP transfer into PpGl and PA01 cells was equal, but the lysogeny detection rat was somewhat lower in PpGl. Pseudomonas aeruginosa TP can integrate into the PpGl chromosome, producing inducible lysogens. The presence of RP4 is not necessary for the expression of the TP genome in PpGl cells. The D3112cts15 TP may be used for interspecific transduction of plasmids and chromosomal markers.

  8. Expression of Pseudomonas aeruginosa transposable phages in Pseudomonas putida cells. I. Establishment of lysogeny and lytic growth efficiency

    International Nuclear Information System (INIS)

    Gorbunova, S.A.; Yanenko, A.S.; Akhverdyan, V.Z.; Reulets, M.A.; Krylov, V.N.

    1986-01-01

    Expression of the genomes of Pseudomonas aeruginosa transposable phages (TP) in the cells of a heterologous host, P. putida PpGl, was studied. A high efficiency of TP lytic growth in PpGl cells was obtained both after zygotic induction following RP4::TP plasmid transfer and after thermoinduction of PpGl cells lysogenic for thermoinducible prophage D3112cts15. Characteristic for PpGl cells was a high TP yield (20-25 phage D3112cts15 particles per cell), which was evidence of a high level of TP transposition in cells of this species. The frequency of RP4::TP transfer into PpGl and PA01 cells was equal, but the lysogeny detection rat was somewhat lower in PpGl. Pseudomonas aeruginosa TP can integrate into the PpGl chromosome, producing inducible lysogens. The presence of RP4 is not necessary for the expression of the TP genome in PpGl cells. The D3112cts15 TP may be used for interspecific transduction of plasmids and chromosomal markers

  9. Complete genome sequence of Pseudomonas rhizosphaerae IH5T (=DSM 16299T), a phosphate-solubilizing rhizobacterium for bacterial biofertilizer.

    Science.gov (United States)

    Kwak, Yunyoung; Jung, Byung Kwon; Shin, Jae-Ho

    2015-01-10

    Pseudomonas rhizosphaerae IH5(T) (=DSM 16299(T)), isolated from the rhizospheric soil of grass growing in Spain, has been reported as a novel species of the genus Pseudomonas harboring insoluble phosphorus solubilizing activity. To understanding the multifunctional biofertilizer better, we report the complete genome sequence of P. rhizosphaerae IH5(T). Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Interactions of methicillin resistant Staphylococcus aureus USA300 and Pseudomonas aeruginosa in polymicrobial wound infection.

    Directory of Open Access Journals (Sweden)

    Irena Pastar

    Full Text Available Understanding the pathology resulting from Staphylococcus aureus and Pseudomonas aeruginosa polymicrobial wound infections is of great importance due to their ubiquitous nature, increasing prevalence, growing resistance to antimicrobial agents, and ability to delay healing. Methicillin-resistant S. aureus USA300 is the leading cause of community-associated bacterial infections resulting in increased morbidity and mortality. We utilized a well-established porcine partial thickness wound healing model to study the synergistic effects of USA300 and P. aeruginosa on wound healing. Wound re-epithelialization was significantly delayed by mixed-species biofilms through suppression of keratinocyte growth factor 1. Pseudomonas showed an inhibitory effect on USA300 growth in vitro while both species co-existed in cutaneous wounds in vivo. Polymicrobial wound infection in the presence of P. aeruginosa resulted in induced expression of USA300 virulence factors Panton-Valentine leukocidin and α-hemolysin. These results provide evidence for the interaction of bacterial species within mixed-species biofilms in vivo and for the first time, the contribution of virulence factors to the severity of polymicrobial wound infections.

  11. Pseudomonas cepacia adherence to respiratory epithelial cells is enhanced by Pseudomonas aeruginosa

    International Nuclear Information System (INIS)

    Saiman, L.; Cacalano, G.; Prince, A.

    1990-01-01

    Pseudomonas aeruginosa and Pseudomonas cepacia are both opportunistic pathogens of patients with cystic fibrosis. The binding characteristics of these two species were compared to determine if they use similar mechanisms to adhere to respiratory epithelial cells. P. cepacia 249 was shown to be piliated, but there was no detectable homology between P. aeruginosa pilin gene probes and P. cepacia genomic DNA. P. cepacia and P. aeruginosa did not appear to compete for epithelial receptors. In the presence of purified P. aeruginosa pili, the adherence of 35S-labeled strain 249 to respiratory epithelial monolayers was unaffected, while that of P. aeruginosa PAO1 was decreased by 55%. The binding of P. cepacia 249 and 715j was increased by 2.4-fold and 1.5-fold, respectively, in the presence of an equal inoculum of PAO1. Interbacterial agglutination contributed to the increased adherence of P. cepacia, as the binding of 249 was increased twofold in the presence of irradiated PAO1. PAO1 exoproducts had a marked effect in enhancing the ability of the P. cepacia strains to adhere to the epithelial monolayers. A PAO1 supernatant increased the binding of 249 by eightfold and that of 715j by fourfold. Thus, there appears to be a synergistic relationship between P. aeruginosa and P. cepacia in which PAO1 exoproducts modify the epithelial cell surface, exposing receptors and facilitating increased P. cepacia attachment

  12. Occurrence of multi-antibiotic resistant Pseudomonas spp. in drinking water produced from karstic hydrosystems.

    Science.gov (United States)

    Flores Ribeiro, Angela; Bodilis, Josselin; Alonso, Lise; Buquet, Sylvaine; Feuilloley, Marc; Dupont, Jean-Paul; Pawlak, Barbara

    2014-08-15

    Aquatic environments could play a role in the spread of antibiotic resistance genes by enabling antibiotic-resistant bacteria transferred through wastewater inputs to connect with autochthonous bacteria. Consequently, drinking water could be a potential pathway to humans and animals for antibiotic resistance genes. The aim of this study was to investigate occurrences of Escherichia coli and Pseudomonas spp. in drinking water produced from a karst, a vulnerable aquifer with frequent increases in water turbidity after rainfall events and run-offs. Water samples were collected throughout the system from the karstic springs to the drinking water tap during three non-turbid periods and two turbid events. E. coli densities in the springs were 10- to 1000-fold higher during the turbid events than during the non-turbid periods, indicating that, with increased turbidity, surface water had entered the karstic system and contaminated the spring water. However, no E. coli were isolated in the drinking water. In contrast, Pseudomonas spp. were isolated from the drinking water only during turbid events, while the densities in the springs were from 10- to 100-fold higher than in the non-turbid periods. All the 580 Pseudomonas spp. isolates obtained from the sampling periods were resistant (to between 1 and 10 antibiotics), with similar resistance patterns. Among all the Pseudomonas isolated throughout the drinking water production system, between 32% and 86% carried the major resistance pattern: ticarcillin, ticarcillin-clavulanic acid, cefsulodin, and/or aztreonam, and/or sulfamethoxazol-trimethoprim, and/or fosfomycin. Finally, 8 Pseudomonas spp. isolates, related to the Pseudomonas putida and Pseudomonas fluorescens species, were isolated from the drinking water. Thus, Pseudomonas could be involved in the dissemination of antibiotic resistance via drinking water during critical periods. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Lettuce and rhizosphere microbiome responses to growth promoting Pseudomonas species under field conditions.

    Science.gov (United States)

    Cipriano, Matheus A P; Lupatini, Manoeli; Lopes-Santos, Lucilene; da Silva, Márcio J; Roesch, Luiz F W; Destéfano, Suzete A L; Freitas, Sueli S; Kuramae, Eiko E

    2016-12-01

    Plant growth promoting rhizobacteria are well described and recommended for several crops worldwide. However, one of the most common problems in research into them is the difficulty in obtaining reproducible results. Furthermore, few studies have evaluated plant growth promotion and soil microbial community composition resulting from bacterial inoculation under field conditions. Here we evaluated the effect of 54 Pseudomonas strains on lettuce (Lactuca sativa) growth. The 12 most promising strains were phylogenetically and physiologically characterized for plant growth-promoting traits, including phosphate solubilization, hormone production and antagonism to pathogen compounds, and their effect on plant growth under farm field conditions. Additionally, the impact of beneficial strains on the rhizospheric bacterial community was evaluated for inoculated plants. The strains IAC-RBcr4 and IAC-RBru1, with different plant growth promoting traits, improved lettuce plant biomass yields up to 30%. These two strains also impacted rhizosphere bacterial groups including Isosphaera and Pirellula (phylum Planctomycetes) and Acidothermus, Pseudolabrys and Singusphaera (phylum Actinobacteria). This is the first study to demonstrate consistent results for the effects of Pseudomonas strains on lettuce growth promotion for seedlings and plants grown under tropical field conditions. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Biosurfactants in plant-Pseudomonas interactions and their importance to biocontrol.

    Science.gov (United States)

    D'aes, Jolien; De Maeyer, Katrien; Pauwelyn, Ellen; Höfte, Monica

    2010-06-01

    Production of biosurfactants is a common feature in bacteria, and in particular in plant-associated species. These bacteria include many plant beneficial and plant pathogenic Pseudomonas spp., which produce primarily cyclic lipopeptide and rhamnolipid type biosurfactants. Pseudomonas-derived biosurfactants are involved in many important bacterial functions. By modifying surface properties, biosurfactants can influence common traits such as surface motility, biofilm formation and colonization. Biosurfactants can alter the bio-availability of exogenous compounds, such as nutrients, to promote their uptake, and of endogenous metabolites, including phenazine antibiotics, resulting in an enhanced biological activity. Antibiotic activity of biosurfactants towards microbes could play a role in intraspecific competition, self-defence and pathogenesis. In addition, bacterial surfactants can affect plants in different ways, either protecting them from disease, or acting as a toxin in a plant-pathogen interaction. Biosurfactants are involved in the biocontrol activity of an increasing number of Pseudomonas strains. Consequently, further insight into the roles and activities of surfactants produced by bacteria could provide means to optimize the use of biological control as an alternative crop protection strategy. © 2009 Society for Applied Microbiology and Blackwell Publishing Ltd.

  15. Bioremediation of Petroleum hydrocarbon by using Pseudomonas species isolated from Petroleum contaminated soil

    OpenAIRE

    Vijay Kumar; Simranjeet Singh; Anu Manhas; Joginder Singh; Sourav Singla; Parvinder Kaur; Shivika Data; Pritika Negi; Arjun Kalia

    2014-01-01

    A newly isolated strain Pseudomonas fluorescens (Accession number KF 279042.1) have potential in diesel degradation and can be recommended for bioremediation of sites that are contaminated with diesel. This bacterium was characterized on the basis of microbiological, biochemical and molecular analysis. Bacterial growth optimization was studied based on carbon source, nitrogen source, pH and temperature. The strain was selected based on its ability to show growth in medium containing diesel. I...

  16. Genetic regulation of phenazine-1-carboxamide synthesis by Pseudomonas chlororaphis strain PCL1391

    NARCIS (Netherlands)

    Girard, Genevieve

    2006-01-01

    A general overview of regulation of secondary metabolism in Pseudomonas species is given in Chapter 1. Several approaches were combined to identify novel genes involved in the regulation of PCN synthesis and to study their interactions with other regulators. Site-directed mutagenesis was used to

  17. Co-Culture with Listeria monocytogenes within a Dual-Species Biofilm Community Strongly Increases Resistance of Pseudomonas putida to Benzalkonium Chloride

    Science.gov (United States)

    Giaouris, Efstathios; Chorianopoulos, Nikos; Doulgeraki, Agapi; Nychas, George-John

    2013-01-01

    Biofilm formation is a phenomenon occurring almost wherever microorganisms and surfaces exist in close proximity. This study aimed to evaluate the possible influence of bacterial interactions on the ability of Listeria monocytogenes and Pseudomonas putida to develop a dual-species biofilm community on stainless steel (SS), as well as on the subsequent resistance of their sessile cells to benzalkonium chloride (BC) used in inadequate (sub-lethal) concentration (50 ppm). The possible progressive adaptability of mixed-culture biofilms to BC was also investigated. To accomplish these, 3 strains per species were left to develop mixed-culture biofilms on SS coupons, incubated in daily renewable growth medium for a total period of 10 days, under either mono- or dual-species conditions. Each day, biofilm cells were exposed to disinfection treatment. Results revealed that the simultaneous presence of L. monocytogenes strongly increased the resistance of P. putida biofilm cells to BC, while culture conditions (mono-/dual-species) did not seem to significantly influence the resistance of L. monocytogenes biofilm cells. BC mainly killed L. monocytogenes cells when this was applied against the dual-species sessile community during the whole incubation period, despite the fact that from the 2nd day this community was mainly composed (>90%) of P. putida cells. No obvious adaptation to BC was observed in either L. monocytogenes or P. putida biofilm cells. Pulsed field gel electrophoresis (PFGE) analysis showed that the different strains behaved differently with regard to biofilm formation and antimicrobial resistance. Such knowledge on the physiological behavior of mixed-culture biofilms could provide the information necessary to control their formation. PMID:24130873

  18. Co-culture with Listeria monocytogenes within a dual-species biofilm community strongly increases resistance of Pseudomonas putida to benzalkonium chloride.

    Directory of Open Access Journals (Sweden)

    Efstathios Giaouris

    Full Text Available Biofilm formation is a phenomenon occurring almost wherever microorganisms and surfaces exist in close proximity. This study aimed to evaluate the possible influence of bacterial interactions on the ability of Listeria monocytogenes and Pseudomonas putida to develop a dual-species biofilm community on stainless steel (SS, as well as on the subsequent resistance of their sessile cells to benzalkonium chloride (BC used in inadequate (sub-lethal concentration (50 ppm. The possible progressive adaptability of mixed-culture biofilms to BC was also investigated. To accomplish these, 3 strains per species were left to develop mixed-culture biofilms on SS coupons, incubated in daily renewable growth medium for a total period of 10 days, under either mono- or dual-species conditions. Each day, biofilm cells were exposed to disinfection treatment. Results revealed that the simultaneous presence of L. monocytogenes strongly increased the resistance of P. putida biofilm cells to BC, while culture conditions (mono-/dual-species did not seem to significantly influence the resistance of L. monocytogenes biofilm cells. BC mainly killed L. monocytogenes cells when this was applied against the dual-species sessile community during the whole incubation period, despite the fact that from the 2nd day this community was mainly composed (>90% of P. putida cells. No obvious adaptation to BC was observed in either L. monocytogenes or P. putida biofilm cells. Pulsed field gel electrophoresis (PFGE analysis showed that the different strains behaved differently with regard to biofilm formation and antimicrobial resistance. Such knowledge on the physiological behavior of mixed-culture biofilms could provide the information necessary to control their formation.

  19. High pressure inactivation of Pseudomonas in black truffle - comparison with Pseudomonas fluorescens in tryptone soya broth

    Science.gov (United States)

    Ballestra, Patricia; Verret, Catherine; Cruz, Christian; Largeteau, Alain; Demazeau, Gerard; El Moueffak, Abdelhamid

    2010-03-01

    Pseudomonas is one of the most common genera in black Perigord truffle. Its inactivation by high pressure (100-500 MPa/10 min) applied on truffles at sub-zero or low temperatures was studied and compared with those of Pseudomonas fluorescens in tryptone soya broth. Pressurization of truffles at 300 MPa/4 °C reduced the bacterial count of Pseudomonas by 5.3 log cycles. Higher pressures of 400 or 500 MPa, at 4 °C or 20 °C, allowed us to slightly increase the level of destruction to the value of ca. 6.5 log cycles but did not permit us to completely inactivate Pseudomonas. The results showed a residual charge of about 10 CFU/g. Pressure-shift freezing of truffles, which consists in applying a pressure of 200 MPa/-18 °C for 10 min and then quickly releasing this pressure to induce freezing, reduced the population of Pseudomonas by 3.3 log cycles. The level of inactivation was higher than those obtained with conventional freezing. Endogenous Pseudomonas in truffle was shown to be more resistant to high pressure treatments than P. fluorescens used for inoculation of broths.

  20. Pseudomonas mesophilica and an unnamed taxon, clinical isolates of pink-pigmented oxidative bacteria.

    OpenAIRE

    Gilardi, G L; Faur, Y C

    1984-01-01

    Twenty-one strains of pink-pigmented bacteria, isolated from human clinical specimens and an environmental source, were compared with Pseudomonas mesophilica ATCC 29983 and Protaminobacter ruber ATCC 8457. These isolates were gram-negative, oxidative rods which were motile by means of a single polar flagellum; gave positive catalase, indophenol oxidase, urease, and amylase reactions; and grew slowly at 30 degrees C. Fourteen isolates conformed to the designated type strains Pseudomonas mesoph...

  1. Pseudomonas oceani sp. nov., isolated from deep seawater.

    Science.gov (United States)

    Wang, Ming-Qing; Sun, Li

    2016-10-01

    In this study, we identified a novel Gram-stain-negative, aerobic, motile, and rod-shaped bacterium, strain KX 20T, isolated from the deep seawater in Okinawa Trough, northwestern Pacific Ocean. Phylogenetic analysis based on 16S rRNA gene sequence showed that strain KX 20T was related to members of the genus Pseudomonas and shares the highest sequence identities with Pseudomonas aestusnigri CECT 8317T (99.4 %) and Pseudomonas pachastrellae JCM 12285T (98.5 %). The 16S rRNA gene sequence identities between strain KX 20T and other members of the genus Pseudomonaswere below 96.6 %. The gyrB and rpoD genes of strain KX 20T shared 82.0 to 89.3 % sequence identity with the gyrB and rpoD genes of the closest phylogenetic neighbours of KX 20T. The predominant cellular fatty acids of strain KX 20T were summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c) (29.2 %), C16 : 0 (24.5 %), summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c) (21.5 %) and C12 : 0 (8.2 %). The major polar lipids of strain KX 20T were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and unknown phospholipids. The genomic DNA G+C content of strain KX 20T was 62.9 mol%. On the basis of phylogenetic analysis and phenotypic characteristics, a novel species, Pseudomonas oceani sp. nov. is proposed. The type strain is KX 20T (=CGMCC 1.15195T=DSM 100277T).

  2. Accumulation of a Polyhydroxyalkanoate Containing Primarily 3-Hydroxydecanoate from Simple Carbohydrate Substrates by Pseudomonas sp. Strain NCIMB 40135

    OpenAIRE

    Haywood, Geoffrey W.; Anderson, Alistair J.; Ewing, David F.; Dawes, Edwin A.

    1990-01-01

    A number of Pseudomonas species have been identified which accumulate a polyhydroxyalkanoate containing mainly 3-hydroxydecanoate monomers from sodium gluconate as the sole carbon source. One of these, Pseudomonas sp. strain NCIMB 40135, was further investigated and shown to accumulate such a polyhydroxyalkanoate from a wide range of carbon sources (C2 to C6); however, when supplied with octanoic acid it produced a polyhydroxyalkanoate containing mainly 3-hydroxyoctanoate monomers. Polymer sy...

  3. Comparative In Vitro Efficacy of Doripenem and Imipenem Against Multi-Drug Resistant Pseudomonas aeruginosa

    International Nuclear Information System (INIS)

    Wali, N.; Mirza, I. A.

    2016-01-01

    Objective: To compare the in vitro efficacy of doripenem and imipenem against multi-drug resistant (MDR) Pseudomonas aeruginosa from various clinical specimens. Study Design: Descriptive cross-sectional study. Place and Duration of Study: Department of Microbiology, Armed Forces Institute of Pathology, Rawalpindi, from November 2012 to November 2013. Methodology: MDR Pseudomonas aeruginosa isolates from various clinical samples were included in the study. Susceptibility of Pseudomonas aeruginosa against doripenem and imipenem was performed by E-test strip and agar dilution methods. The results were interpreted as recommended by Clinical Laboratory Standard Institute (CLSI) guidelines. Results: The maximum number of Pseudomonas aeruginosa were isolated from pure pus and pus swabs. In vitro efficacy of doripenem was found to be more effective as compared to imipenem against MDR Pseudomonas aeruginosa with both E-test strip and agar dilution methods. Overall, p-values of 0.014 and 0.037 were observed when susceptibility patterns of doripenem and imipenem were evaluated with E-test strip and agar dilution methods. Conclusion: In vitro efficacy of doripenem was found to be better against MDR Pseudomonas aeruginosa as compared to imipenem when tested by both E-test and agar dilution methods. (author)

  4. Exposure-related effects of Pseudomonas fluorescens (Pf-CL145A) on juvenile unionid mussels

    Science.gov (United States)

    Weber, Kerry L.; Luoma, James A.; Mayer, Denise A.; Aloisi, Douglas B.; Eckert, Nathan L.

    2015-01-01

    The exposure-related effects of a commercially prepared spray-dried powder (SDP) or freeze-dried powder (FDP) formulation of Pseudomonas fluorescens (strain CL145A) on the survival of seven species of newly metamorphosed (<72 hours old) freshwater unionid mussels was evaluated. Forty unionid mussels of each species were randomly distributed to test chambers and each species independently exposed for 24 hours to a static dose of either SDP (four species: Lampsilis cardium, Lampsilis siliquoidea, Lampsilis higginsii, andLigumia recta) or FDP (three species: Obovaria olivaria, Actinonaias ligamentina, andMegalonaias nervosa).

  5. Pseudomonas Lipopeptide Biosurfactants

    DEFF Research Database (Denmark)

    Bonnichsen, Lise

    Pseudomonas lipopetide biosurfactants are amphiphilic molecules with a broad range of natural functions. Due to their surface active properties, it has been suggested that Pseudomonas lipopetides potentially play a role in biodegradation of hydrophobic compounds and have essential functions...... lipopetide biosurfactants in pollutant biodegradation and natural roles in biofilm formation. The work presented is a combination of environmental microbiology and exploiting genetic manipulation of pure cultures to achieve insightinto the effects and mechanisms of lipopeptides on microbial processes...

  6. Synthesis of rhamnolipid biosurfactant and mode of hexadecane uptake by Pseudomonas species

    Directory of Open Access Journals (Sweden)

    Singh Pooja

    2009-03-01

    Full Text Available Abstract Background Microorganisms have devised ways by which they increase the bioavailability of many water immiscible substrates whose degradation rates are limited by their low water solubility. Hexadecane is one such water immiscible hydrocarbon substrate which forms an important constituent of oil. One major mechanism employed by hydrocarbon degrading organisms to utilize such substrates is the production of biosurfactants. However, much of the overall mechanism by which such organisms utilize hydrocarbon substrate still remains a mystery. Results With an aim to gain more insight into hydrocarbon uptake mechanism, an efficient biosurfactant producing and n-hexadecane utilizing Pseudomonas sp was isolated from oil contaminated soil which was found to produce rhamnolipid type of biosurfactant containing a total of 13 congeners. Biosurfactant action brought about the dispersion of hexadecane to droplets smaller than 0.22 μm increasing the availability of the hydrocarbon to the degrading organism. Involvement of biosurfactant was further confirmed by electron microscopic studies. Biosurfactant formed an emulsion with hexadecane thereby facilitating increased contact between hydrocarbon and the degrading bacteria. Interestingly, it was observed that "internalization" of "biosurfactant layered hydrocarbon droplet" was taking place suggesting a mechanism similar in appearance to active pinocytosis, a fact not earlier visually reported in bacterial systems for hydrocarbon uptake. Conclusion This study throws more light on the uptake mechanism of hydrocarbon by Pseudomonas aeruginosa. We report here a new and exciting line of research for hydrocarbon uptake involving internalization of biosurfactant covered hydrocarbon inside cell for subsequent breakdown.

  7. Occurrence of bla genes encoding carbapenem-resistant Pseudomonas aeruginosa and Acinetobacter baumannii from Intensive Care Unit in a tertiary care hospital.

    Science.gov (United States)

    Subramaniyan, Jayanthi Siva; Sundaram, Jeya Meenakshi

    2018-01-01

    ICU shows increasing incidence of infection associated with the use of invasive procedures for the diagnostic purpose as well as the indiscriminate use of antibiotics. Pseudomonas aeruginosa and Acinetobacter species are "very successful" pathogen and the emergence of the Metallo-β-Lactamases (MBL) is becoming a therapeutic challenge. To isolate the Nonfermenting Gram negative bacilli from the ICU samples. To identify the metallo betalactamase producers and to detect the bla gene presence among the Pseudomonas aeruginosa and Acinetobacter baumannii . The Nonfermenting Gram negative bacilli isolates from the ICU samples were taken over for 5 years (2009-2014) in a tertiary care hospital. The isolates of Pseudomonas species and Acinetobacter species were confirmed by API analyser and processed according to standard procedures. Detection of the MBL producers were done by E strip method and subjected for bla gene detection by PCR method. In our study a total of 195 isolates of NFGNB were obtained from various ICU. Of these MBL producers, 26 % were Pseudomonas aeruginosa and 25 % were Acinetobacter baumannii . The subtypes of bla VIM MBL producing P.aeruginosa were 26%. The predominant gene coding for MBL activity in A.baumannii were found to be bla OXA gene 11.9%. The gene accession numbers were KF975367, KF975372. We have to control the development and dissemination of these superbugs among the ICU's.

  8. Non-Tuberculous Mycobacteria multispecies biofilms in cystic fibrosis: development of an in vitro Mycobacterium abscessus and Pseudomonas aeruginosa dual species biofilm model.

    Science.gov (United States)

    Rodríguez-Sevilla, Graciela; García-Coca, Marta; Romera-García, David; Aguilera-Correa, John Jairo; Mahíllo-Fernández, Ignacio; Esteban, Jaime; Pérez-Jorge, Concepción

    2018-04-01

    Lung disease in cystic fibrosis (CF) is characterized by the progressive colonization of the respiratory tract by different bacteria, which develop polymicrobial biofilms. In the past decades, there has been an increase in the number of CF patients infected with Non-Tuberculous Mycobacteria (NTM). Although Mycobacterium abscessus is the main NTM isolated globally, little is known about M. abscessus multispecies biofilm formation. In the present study we developed an in vitro model to study the phenotypic characteristics of biofilms formed by M. abscessus and Pseudomonas aeruginosa, a major pathogen in CF. For that purpose, dual species biofilms were grown on polycarbonate membranes with a fixed concentration of P. aeruginosa and different inoculums of M. abscessus. The biofilms were sampled at 24, 48, and 72 h and bacteria were quantified in specific media. The results revealed that the increasing initial concentration of M. abscessus in dual species biofilms had an effect on its population only at 24 and 48 h, whereas P. aeruginosa was not affected by the different concentrations used of M. abscessus. Time elapsed increased biofilm formation of both species, specially between 24 and 48 h. According to the results, the conditions to produce a mature dual species biofilm in which the relative species distribution remained stable were 72 h growth of the mixed microbial culture at a 1:1 ratio. A significant decrease in mycobacterial population in dual compared to single species biofilms was found, suggesting that P. aeruginosa has a negative influence on M. abscessus. Finally, in a proof of concept experiment, young and mature dual species biofilms were exposed to clarithromycin. Copyright © 2018 Elsevier GmbH. All rights reserved.

  9. Pseudomonas salina sp. nov., isolated from a salt lake.

    Science.gov (United States)

    Zhong, Zhi-Ping; Liu, Ying; Hou, Ting-Ting; Liu, Hong-Can; Zhou, Yu-Guang; Wang, Fang; Liu, Zhi-Pei

    2015-09-01

    A Gram-staining-negative, facultatively aerobic bacterium, strain XCD-X85(T), was isolated from Xiaochaidan Lake, a salt lake (salinity 9.9%, w/v) in Qaidam basin, Qinghai province, China. Its taxonomic position was determined by using a polyphasic approach. Cells of strain XCD-X85(T) were non-endospore-forming rods, 0.4-0.6 μm wide and 1.0-1.6 μm long, and motile by means of a single polar flagellum. Strain XCD-X85(T) was catalase- and oxidase-positive. Growth was observed in the presence of 0-12.0% (w/v) NaCl (optimum, 1.0-2.0%) and at 4-35 °C (optimum, 25-30 °C) and pH 6.5-10.5 (optimum, pH 8.0-8.5). Strain XCD-X85(T) contained (>10%) summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c), C12 : 0, C16 : 0 and summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c) as the predominant fatty acids. The major respiratory quinone was ubiquinone 9 (Q-9). The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. The DNA G+C content was 57.4 mol%. Phylogenetic trees based on 16S rRNA gene sequences showed that strain XCD-X85(T) was associated with the genus Pseudomonas, and showed highest 16S rRNA gene sequence similarities to Pseudomonas pelagia CL-AP6(T) (99.0%) and Pseudomonas bauzanensis BZ93(T) (96.8%). DNA-DNA relatedness of strain XCD-X85T to P. pelagia JCM 15562(T) was 19 ± 1%. On the basis of the data presented above, it is concluded that strain XCD-X85(T) represents a novel species of the genus Pseudomonas, for which the name Pseudomonas salina sp. nov. is proposed. The type strain is XCD-X85(T) ( = CGMCC 1.12482(T) = JCM 19469(T)).

  10. Pseudomonas species as an uncommon culprit in transbronchial needle aspiration of mediastinal lymph node

    Directory of Open Access Journals (Sweden)

    Avdhesh Bansal

    2016-01-01

    Full Text Available Mediastinal lymphadenopathy due to various infective agents such as Mycobacterium and fungus, due to sarcoidosis, lymphoma, and metastasis is often seen. Ordinary bacteria have rarely been reported to cause necrotizing, usually suppurative granulomatous reactions. We report a case of mediastinal lymphadenopathy due to Pseudomonas infection, in a patient of chronic kidney disease on maintenance hemodialysis, who presented with fever, breathlessness, and low blood pressure.

  11. Multiple bacterial species reside in chronic wounds

    DEFF Research Database (Denmark)

    Gjødsbøl, Kristine; Christensen, Jens Jørgen; Karlsmark, Tonny

    2006-01-01

    species present were identified. More than one bacterial species were detected in all the ulcers. The most common bacteria found were Staphylococcus aureus (found in 93.5% of the ulcers), Enterococcus faecalis (71.7%), Pseudomonas aeruginosa (52.2%), coagulase-negative staphylococci (45.7%), Proteus...

  12. Biotransformation of Tributyltin chloride by Pseudomonas stutzeri strain DN2

    Directory of Open Access Journals (Sweden)

    Dnyanada S. Khanolkar

    2014-12-01

    Full Text Available A bacterial isolate capable of utilizing tributyltin chloride (TBTCl as sole carbon source was isolated from estuarine sediments of west coast of India and identified as Pseudomonas stutzeri based on biochemical tests and Fatty acid methyl ester (FAME analysis. This isolate was designated as strain DN2. Although this bacterial isolate could resist up to 3 mM TBTCl level, it showed maximum growth at 2 mM TBTCl in mineral salt medium (MSM. Pseudomonas stutzeri DN2 exposed to 2 mM TBTCl revealed significant alteration in cell morphology as elongation and shrinkage in cell size along with roughness of cell surface. FTIR and NMR analysis of TBTCl degradation product extracted using chloroform and purified using column chromatography clearly revealed biotransformation of TBTCl into Dibutyltin dichloride (DBTCl2 through debutylation process. Therefore, Pseudomonas stutzeri strain DN2 may be used as a potential bacterial strain for bioremediation of TBTCl contaminated aquatic environmental sites.

  13. Biotransformation of Tributyltin chloride by Pseudomonas stutzeri strain DN2

    Science.gov (United States)

    Khanolkar, Dnyanada S.; Naik, Milind Mohan; Dubey, Santosh Kumar

    2014-01-01

    A bacterial isolate capable of utilizing tributyltin chloride (TBTCl) as sole carbon source was isolated from estuarine sediments of west coast of India and identified as Pseudomonas stutzeri based on biochemical tests and Fatty acid methyl ester (FAME) analysis. This isolate was designated as strain DN2. Although this bacterial isolate could resist up to 3 mM TBTCl level, it showed maximum growth at 2 mM TBTCl in mineral salt medium (MSM). Pseudomonas stutzeri DN2 exposed to 2 mM TBTCl revealed significant alteration in cell morphology as elongation and shrinkage in cell size along with roughness of cell surface. FTIR and NMR analysis of TBTCl degradation product extracted using chloroform and purified using column chromatography clearly revealed biotransformation of TBTCl into Dibutyltin dichloride (DBTCl2) through debutylation process. Therefore, Pseudomonas stutzeri strain DN2 may be used as a potential bacterial strain for bioremediation of TBTCl contaminated aquatic environmental sites. PMID:25763027

  14. Transfer of Pseudomonas pictorum Gray and Thornton 1928 to genus Stenotrophomonas as Stenotrophomonas pictorum comb. nov., and emended description of the genus Stenotrophomonas.

    Science.gov (United States)

    Ouattara, Aboubakar Sidiki; Le Mer, Jean; Joseph, Manon; Macarie, Hervé

    2017-06-01

    A polyphasic taxonomic approach including analysis of phenotypic, physiological and genotypic characteristics, 16S rRNA gene sequence and DNA-DNA hybridization analysis was used to determine the most consistent affiliation of Pseudomonas pictorum. Pseudomonas pictorum ATCC 23328T exhibited phenotypic traits of members of the genus Stenotrophomonas including cellular fatty acid composition, quinone and limited range of substrates that could be used. Antibiotic susceptibility and physiological characteristics were determined. The DNA G+C content was 65.7 mol%. Phylogenetic analysis revealed that the type strains of Stenotrophomonas terrae, Stenotrophomonashumi, Stenotrophomonasnitritireducens and Stenotrophomonasacidaminiphila were the nearest relatives (16S rRNA gene sequence similarity of 98.0 to 98.8 %). All the other type strains of species of the genus Stenotrophomonas showed high 16S rRNA gene sequence similarities (96.8 to 97.2 %). DNA-DNA hybridizations revealed 31.0, 32.0, 43.3 and 43.6 % reassociation between Pseudomonas pictorum ATCC 23328T and the type strains of S. terrae, S. humi, S. nitritireducens and S. acidaminiphila, respectively. Our overall results indicate that Pseudomonas pictorum should be transferred to the genus Stenotrophomonas as a novel species of this genus, Stenotrophomonas pictorum comb. nov. Since the original description of the genus Stenotrophomonaswas made with only one species (Stenotrophomonasmaltophilia), an emendation of the genus description is proposed in order to match better with the characteristics of the eleven novel species assigned to this genus since then.

  15. "Hot Tub Rash" and "Swimmer's Ear" (Pseudomonas)

    Science.gov (United States)

    Facts About “Hot Tub Rash” and “Swimmer’s Ear” (Pseudomonas) What is Pseudomonas and how can it affect me? Pseudomonas (sue-doh- ... a major cause of infections commonly known as “hot tub rash” and “swimmer’s ear.” This germ is ...

  16. Searching for new strategies against biofilm infections: Colistin-AMP combinations against Pseudomonas aeruginosa and Staphylococcus aureus single- and double-species biofilms.

    Directory of Open Access Journals (Sweden)

    Paula Jorge

    Full Text Available Antimicrobial research is being pressured to look for more effective therapeutics for the ever-growing antibiotic-resistant infections, and antimicrobial peptides (AMP and antimicrobial combinations are promising solutions. This work evaluates colistin-AMP combinations against two major pathogens, Pseudomonas aeruginosa and Staphylococcus aureus, encompassing non- and resistant strains. Colistin (CST combined with the AMP temporin A (TEMP-A, citropin 1.1 (CIT-1.1 and tachyplesin I linear analogue (TP-I-L was tested against planktonic, single- and double-species biofilm cultures. Overall synergy for planktonic P. aeruginosa and synergy/additiveness for planktonic S. aureus were observed. Biofilm growth prevention was achieved with synergy and additiveness. Pre-established 24 h-old biofilms were harder to eradicate, especially for S. aureus and double-species biofilms; still, some synergy and addictiveness was observed for higher concentrations, including for the biofilms of resistant strains. Different treatment times and growth media did not greatly influence AMP activity. CST revealed low toxicity compared with the other AMP but its combinations were toxic for high concentrations. Overall, combinations reduced effective AMP concentrations, mainly in prevention scenarios. Improvement of effectiveness and toxicity of therapeutic strategies will be further investigated.

  17. Genomic and Genetic Diversity within the Pseudomonas fluorescens Complex.

    Directory of Open Access Journals (Sweden)

    Daniel Garrido-Sanz

    Full Text Available The Pseudomonas fluorescens complex includes Pseudomonas strains that have been taxonomically assigned to more than fifty different species, many of which have been described as plant growth-promoting rhizobacteria (PGPR with potential applications in biocontrol and biofertilization. So far the phylogeny of this complex has been analyzed according to phenotypic traits, 16S rDNA, MLSA and inferred by whole-genome analysis. However, since most of the type strains have not been fully sequenced and new species are frequently described, correlation between taxonomy and phylogenomic analysis is missing. In recent years, the genomes of a large number of strains have been sequenced, showing important genomic heterogeneity and providing information suitable for genomic studies that are important to understand the genomic and genetic diversity shown by strains of this complex. Based on MLSA and several whole-genome sequence-based analyses of 93 sequenced strains, we have divided the P. fluorescens complex into eight phylogenomic groups that agree with previous works based on type strains. Digital DDH (dDDH identified 69 species and 75 subspecies within the 93 genomes. The eight groups corresponded to clustering with a threshold of 31.8% dDDH, in full agreement with our MLSA. The Average Nucleotide Identity (ANI approach showed inconsistencies regarding the assignment to species and to the eight groups. The small core genome of 1,334 CDSs and the large pan-genome of 30,848 CDSs, show the large diversity and genetic heterogeneity of the P. fluorescens complex. However, a low number of strains were enough to explain most of the CDSs diversity at core and strain-specific genomic fractions. Finally, the identification and analysis of group-specific genome and the screening for distinctive characters revealed a phylogenomic distribution of traits among the groups that provided insights into biocontrol and bioremediation applications as well as their role as

  18. OXIDATION OF POLYCHLORINATED BIPHENYLS BY PSEUDOMONAS SP. STRAIN LB400 AND PSEUDOMONAS PSEUDOALCALIGENES KF707

    Science.gov (United States)

    Biphenyl-grown cells and cell extracts prepared from biphenyl-grown cells of Pseudomonas sp. strain LB400 oxidize a much wider range of chlorinated biphenyls than do analogous preparations from Pseudomonas pseudoalcaligenes KF707. These results are attributed to differences in th...

  19. Statistical media design for efficient polyhydroxyalkanoate production in Pseudomonas sp. MNNG-S.

    Science.gov (United States)

    Saranya, V; Rajeswari, V; Abirami, P; Poornimakkani, K; Suguna, P; Shenbagarathai, R

    2016-07-03

    Polyhydroxyalkanoate (PHA) is a promising polymer for various biomedical applications. There is a high need to improve the production rate to achieve end use. When a cost-effective production was carried out with cheaper agricultural residues like molasses, traces of toxins were incorporated into the polymer, which makes it unfit for biomedical applications. On the other hand, there is an increase in the popularity of using chemically defined media for the production of compounds with biomedical applications. However, these media do not exhibit favorable characteristics such as efficient utilization at large scale compared to complex media. This article aims to determine the specific nutritional requirement of Pseudomonas sp. MNNG-S for efficient production of polyhydroxyalkanoate. Response surface methodology (RSM) was used in this study to statistically design for PHA production based on the interactive effect of five significant variables (sucrose; potassium dihydrogen phosphate; ammonium sulfate; magnesium sulfate; trace elements). The interactive effects of sucrose with ammonium sulfate, ammonium sulfate with combined potassium phosphate, and trace element with magnesium sulfate were found to be significant (p production more than fourfold (from 0.85 g L(-1) to 4.56 g L(-1)).

  20. Effect of degradative plasmid CAM-OCT on responses of Pseudomonas bacteria to UV light

    International Nuclear Information System (INIS)

    McBeth, D.L.

    1989-01-01

    The effect of plasmid CAM-OCT on responses to UV irradiation was compared in Pseudomonas aeruginosa, in Pseudomonas putida, and in Pseudomonas putida mutants carrying mutations in UV response genes. CAM-OCT substantially increased both survival and mutagenesis in the two species. P. aeruginosa strains without CAM-OCT exhibited much higher UV sensitivity than did P. putida strains. UV-induced mutagenesis of plasmid-free P. putida was easily detected in three different assays (two reversion assays and one forward mutation assay), whereas UV mutagenesis of P. aeruginosa without CAM-OCT was seen only in the forward mutation assay. These results suggest major differences in DNA repair between the two species and highlight the presence of error-prone repair functions on CAM-OCT. A number of P. putida mutants carrying chromosomal mutations affecting either survival or mutagenesis after UV irradiation were isolated, and the effect of CAM-OCT on these mutants was determined. All mutations producing a UV-sensitive phenotype in P. putida were fully suppressed by the plasmid, whereas the plasmid had a more variable effect on mutagenesis mutations, suppressing some and producing no suppression of others. On the basis of the results reported here and results obtained by others with plasmids carrying UV response genes, it appears that CAM-OCT may differ either in regulation or in the number and functions of UV response genes encoded

  1. Inhibition of Pseudomonas aeruginosa elastase and Pseudomonas keratitis using a thiol-based peptide.

    OpenAIRE

    Burns, F R; Paterson, C A; Gray, R D; Wells, J T

    1990-01-01

    Pseudomonas aeruginosa elastase is a zinc metalloproteinase which is released during P. aeruginosa infections. Pseudomonas keratitis, which occurs following contact lens-induced corneal trauma, can lead to rapid, liquefactive necrosis of the cornea. This destruction has been attributed to the release of both host-derived enzymes and the bacterial products P. aeruginosa elastase, alkaline protease, exotoxin A, and lipopolysaccharide endotoxin. A synthetic metalloproteinase inhibitor, HSCH2 (DL...

  2. Degradation and metabolism of synthetic plastics and associated products by Pseudomonas sp.: capabilities and challenges.

    Science.gov (United States)

    Wilkes, R A; Aristilde, L

    2017-09-01

    Synthetic plastics, which are widely present in materials of everyday use, are ubiquitous and slowly-degrading polymers in environmental wastes. Of special interest are the capabilities of microorganisms to accelerate their degradation. Members of the metabolically diverse genus Pseudomonas are of particular interest due to their capabilities to degrade and metabolize synthetic plastics. Pseudomonas species isolated from environmental matrices have been identified to degrade polyethylene, polypropylene, polyvinyl chloride, polystyrene, polyurethane, polyethylene terephthalate, polyethylene succinate, polyethylene glycol and polyvinyl alcohol at varying degrees of efficiency. Here, we present a review of the current knowledge on the factors that control the ability of Pseudomonas sp. to process these different plastic polymers and their by-products. These factors include cell surface attachment within biofilms, catalytic enzymes involved in oxidation or hydrolysis of the plastic polymer, metabolic pathways responsible for uptake and assimilation of plastic fragments and chemical factors that are advantageous or inhibitory to the biodegradation process. We also highlight future research directions required in order to harness fully the capabilities of Pseudomonas sp. in bioremediation strategies towards eliminating plastic wastes. © 2017 The Society for Applied Microbiology.

  3. Pseudomonas community structure and antagonistic potential in the rhizosphere : insights gained by combining phylogenetic and functional gene-based analyses

    NARCIS (Netherlands)

    Costa, Rodrigo; Gomes, Newton C. M.; Kroegerrecklenfort, Ellen; Opelt, Katja; Berg, Gabriele; Smalla, Kornelia

    The Pseudomonas community structure and antagonistic potential in the rhizospheres of strawberry and oilseed rape (host plants of the fungal phytopathogen Verticillium dahliae) were assessed. The use of a new PCR-DGGE system, designed to target Pseudomonas-specific gacA gene fragments in

  4. Genome Sequence of the Biocontrol Strain Pseudomonas fluorescens F113

    Science.gov (United States)

    Redondo-Nieto, Miguel; Barret, Matthieu; Morrisey, John P.; Germaine, Kieran; Martínez-Granero, Francisco; Barahona, Emma; Navazo, Ana; Sánchez-Contreras, María; Moynihan, Jennifer A.; Giddens, Stephen R.; Coppoolse, Eric R.; Muriel, Candela; Stiekema, Willem J.; Rainey, Paul B.; Dowling, David; O'Gara, Fergal; Martín, Marta

    2012-01-01

    Pseudomonas fluorescens F113 is a plant growth-promoting rhizobacterium (PGPR) that has biocontrol activity against fungal plant pathogens and is a model for rhizosphere colonization. Here, we present its complete genome sequence, which shows that besides a core genome very similar to those of other strains sequenced within this species, F113 possesses a wide array of genes encoding specialized functions for thriving in the rhizosphere and interacting with eukaryotic organisms. PMID:22328765

  5. Getting the ecology into the interactions between plants and the plant-growth promoting bacterium Pseudomonas fluorescens

    NARCIS (Netherlands)

    Hol, W.H.G.; Bezemer, T.M.; Biere, A.

    2013-01-01

    Plant growth-promoting rhizobacteria (PGPR) are increasingly appreciated for their contributions to primary productivity through promotion of growth and triggering of induced systemic resistance in plants. Here we focus on the beneficial effects of one particular species of PGPR (Pseudomonas

  6. Enhanced annotations and features for comparing thousands of Pseudomonas genomes in the Pseudomonas genome database.

    Science.gov (United States)

    Winsor, Geoffrey L; Griffiths, Emma J; Lo, Raymond; Dhillon, Bhavjinder K; Shay, Julie A; Brinkman, Fiona S L

    2016-01-04

    The Pseudomonas Genome Database (http://www.pseudomonas.com) is well known for the application of community-based annotation approaches for producing a high-quality Pseudomonas aeruginosa PAO1 genome annotation, and facilitating whole-genome comparative analyses with other Pseudomonas strains. To aid analysis of potentially thousands of complete and draft genome assemblies, this database and analysis platform was upgraded to integrate curated genome annotations and isolate metadata with enhanced tools for larger scale comparative analysis and visualization. Manually curated gene annotations are supplemented with improved computational analyses that help identify putative drug targets and vaccine candidates or assist with evolutionary studies by identifying orthologs, pathogen-associated genes and genomic islands. The database schema has been updated to integrate isolate metadata that will facilitate more powerful analysis of genomes across datasets in the future. We continue to place an emphasis on providing high-quality updates to gene annotations through regular review of the scientific literature and using community-based approaches including a major new Pseudomonas community initiative for the assignment of high-quality gene ontology terms to genes. As we further expand from thousands of genomes, we plan to provide enhancements that will aid data visualization and analysis arising from whole-genome comparative studies including more pan-genome and population-based approaches. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. 21 CFR 866.3415 - Pseudomonas spp. serological reagents.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Pseudomonas spp. serological reagents. 866.3415... (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3415 Pseudomonas spp. serological reagents. (a) Identification. Pseudomonas spp. serological reagents are devices that...

  8. Pseudomonas aeruginosa extracellular products inhibit staphylococcal growth, and disrupt established biofilms produced by Staphylococcus epidermidis

    DEFF Research Database (Denmark)

    Qin, Zhiqiang; Yang, Liang; Qu, Di

    2009-01-01

    Multiple bacterial species often coexist as communities, and compete for environmental resources. Here, we describe how an opportunistic pathogen, Pseudomonas aeruginosa, uses extracellular products to interact with the nosocomial pathogen Staphylococcus epidermidis. S. epidermidis biofilms and p...... of a novel strategy for controlling S. epidermidis biofilms....

  9. Biomolecular Mechanisms of Pseudomonas aeruginosa and Escherichia coli Biofilm Formation

    Science.gov (United States)

    Laverty, Garry; Gorman, Sean P.; Gilmore, Brendan F.

    2014-01-01

    Pseudomonas aeruginosa and Escherichia coli are the most prevalent Gram-negative biofilm forming medical device associated pathogens, particularly with respect to catheter associated urinary tract infections. In a similar manner to Gram-positive bacteria, Gram-negative biofilm formation is fundamentally determined by a series of steps outlined more fully in this review, namely adhesion, cellular aggregation, and the production of an extracellular polymeric matrix. More specifically this review will explore the biosynthesis and role of pili and flagella in Gram-negative adhesion and accumulation on surfaces in Pseudomonas aeruginosa and Escherichia coli. The process of biofilm maturation is compared and contrasted in both species, namely the production of the exopolysaccharides via the polysaccharide synthesis locus (Psl), pellicle Formation (Pel) and alginic acid synthesis in Pseudomonas aeruginosa, and UDP-4-amino-4-deoxy-l-arabinose and colonic acid synthesis in Escherichia coli. An emphasis is placed on the importance of the LuxR homologue sdiA; the luxS/autoinducer-II; an autoinducer-III/epinephrine/norepinephrine and indole mediated Quorum sensing systems in enabling Gram-negative bacteria to adapt to their environments. The majority of Gram-negative biofilms consist of polysaccharides of a simple sugar structure (either homo- or heteropolysaccharides) that provide an optimum environment for the survival and maturation of bacteria, allowing them to display increased resistance to antibiotics and predation. PMID:25438014

  10. Biomolecular Mechanisms of Pseudomonas aeruginosa and Escherichia coli Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Garry Laverty

    2014-07-01

    Full Text Available Pseudomonas aeruginosa and Escherichia coli are the most prevalent Gram-negative biofilm forming medical device associated pathogens, particularly with respect to catheter associated urinary tract infections. In a similar manner to Gram-positive bacteria, Gram-negative biofilm formation is fundamentally determined by a series of steps outlined more fully in this review, namely adhesion, cellular aggregation, and the production of an extracellular polymeric matrix. More specifically this review will explore the biosynthesis and role of pili and flagella in Gram-negative adhesion and accumulation on surfaces in Pseudomonas aeruginosa and Escherichia coli. The process of biofilm maturation is compared and contrasted in both species, namely the production of the exopolysaccharides via the polysaccharide synthesis locus (Psl, pellicle Formation (Pel and alginic acid synthesis in Pseudomonas aeruginosa, and UDP-4-amino-4-deoxy-l-arabinose and colonic acid synthesis in Escherichia coli. An emphasis is placed on the importance of the LuxR homologue sdiA; the luxS/autoinducer-II; an autoinducer-III/epinephrine/norepinephrine and indole mediated Quorum sensing systems in enabling Gram-negative bacteria to adapt to their environments. The majority of Gram-negative biofilms consist of polysaccharides of a simple sugar structure (either homo- or heteropolysaccharides that provide an optimum environment for the survival and maturation of bacteria, allowing them to display increased resistance to antibiotics and predation.

  11. Rhizosphere competence of wild-type and genetically-engineered Pseudomonas brassicacearum is affected by the crop species

    Science.gov (United States)

    2,4-diacetylphloroglucinol (2,4-DAPG)-producing Pseudomonas brassicacearum Q8r1-96 is a highly effective biocontrol agent of take-all disease of wheat. Strain Z30-97, a recombinant derivative of Q8r1-96 containing the phzABCDEFG operon from P. synxantha (formerly P. fluorescens) 2-79 inserted into ...

  12. Convergent evolution and adaptation of Pseudomonas aeruginosa within patients with cystic fibrosis.

    Science.gov (United States)

    Marvig, Rasmus Lykke; Sommer, Lea Mette; Molin, Søren; Johansen, Helle Krogh

    2015-01-01

    Little is known about how within-host evolution compares between genotypically different strains of the same pathogenic species. We sequenced the whole genomes of 474 longitudinally collected clinical isolates of Pseudomonas aeruginosa sampled from 34 children and young individuals with cystic fibrosis. Our analysis of 36 P. aeruginosa lineages identified convergent molecular evolution in 52 genes. This list of genes suggests a role in host adaptation for remodeling of regulatory networks and central metabolism, acquisition of antibiotic resistance and loss of extracellular virulence factors. Furthermore, we find an ordered succession of mutations in key regulatory networks. Accordingly, mutations in downstream transcriptional regulators were contingent upon mutations in upstream regulators, suggesting that remodeling of regulatory networks might be important in adaptation. The characterization of genes involved in host adaptation may help in predicting bacterial evolution in patients with cystic fibrosis and in the design of future intervention strategies.

  13. Design and construction of "synthetic species".

    Directory of Open Access Journals (Sweden)

    Eduardo Moreno

    Full Text Available Synthetic biology is an area of biological research that combines science and engineering. Here, I merge the principles of synthetic biology and regulatory evolution to create a new species with a minimal set of known elements. Using preexisting transgenes and recessive mutations of Drosophila melanogaster, a transgenic population arises with small eyes and a different venation pattern that fulfils the criteria of a new species according to Mayr's Biological Species Concept. The population described here is the first transgenic organism that cannot hybridize with the original wild type population but remains fertile when crossed with other identical transgenic animals. I therefore propose the term "synthetic species" to distinguish it from "natural species", not only because it has been created by genetic manipulation, but also because it may never be able to survive outside the laboratory environment. The use of genetic engineering to design artificial species barriers could help us understand natural speciation and may have practical applications. For instance, the transition from transgenic organisms towards synthetic species could constitute a safety mechanism to avoid the hybridization of genetically modified animals with wild type populations, preserving biodiversity.

  14. Pseudomonas-follikulitis efter badning i spabad

    DEFF Research Database (Denmark)

    Uldall Pallesen, Kristine Appel; Andersen, Klaus Ejner; Mørtz, Charlotte Gotthard

    2012-01-01

    . We describe a 23-year-old healthy woman who developed a pustular rash and general malaise after using a spa bath contaminated with Pseudomonas aeruginosa. Bacterial culture from a pustule confirmed Pseudomonas folliculitis and the patient was treated with ciprofloxacin with rapid good effect....

  15. Draft genome sequence of Pseudomonas corrugata, a phytopathogenic bacterium with potential industrial applications.

    Science.gov (United States)

    Licciardello, G; Jackson, R W; Bella, P; Strano, C P; Catara, A F; Arnold, D L; Venturi, V; Silby, M W; Catara, V

    2014-04-10

    Pseudomonas corrugata was first described as the causal agent of a tomato disease called 'pith necrosis' yet it is considered as a biological resource in various fields such as biocontrol of plant diseases and production of industrially promising microbial biopolymers (mcl-PHA). Here we report the first draft genome sequence of this species. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Whole-Genome Sequence of Pseudomonas graminis Strain UASWS1507, a Potential Biological Control Agent and Biofertilizer Isolated in Switzerland.

    Science.gov (United States)

    Crovadore, Julien; Calmin, Gautier; Chablais, Romain; Cochard, Bastien; Schulz, Torsten; Lefort, François

    2016-10-06

    We report here the whole-genome shotgun sequence of the strain UASWS1507 of the species Pseudomonas graminis, isolated in Switzerland from an apple tree. This is the first genome registered for this species, which is considered as a potential and valuable resource of biological control agents and biofertilizers for agriculture. Copyright © 2016 Crovadore et al.

  17. The content and radiosensitivity of bacteria of Pseudomonas and Bacillus genera in soil samples from the sites adjacent to Armenian nuclear power plant

    International Nuclear Information System (INIS)

    Khachatryan, G.E.; Mkrtchyan, N.I.; Simonyan, N.V.; Arakelyan, V.B.

    2014-01-01

    From the samples of soils taken from the sites adjoining to the Armenian Nuclear Power Plant along the predominant direction of winds representatives of rather radiosensitive closely-related species of bacteria Pseudomonas putida and P. fluorescence and rather radioresistant bacilli B. mesentericus and B. subtilis were isolated. Their quantitative content in the soils of monitoring points and radiosensitivity was investigated. It was shown that in soils with the raised quantity of 137 Cs the amount of Pseudomonas cells is understated; contrariwise their radioresistance was a little bit raised. The maintenance of cells of Bacillus species varied without certain law, and survival curves had practically identical characteristics in all the points

  18. Effect of Pseudomonas sp. MT5 baths on Flavobacterium columnare infection of rainbow trout and on microbial diversity on fish skin and gills.

    Science.gov (United States)

    Suomalainen, L R; Tiirola, M A; Valtonen, E T

    2005-01-25

    Use of Pseudomonas sp. strain MT5 to prevent and treat Flavobacterium columnare infection was studied in 2 experiments with fingerling rainbow trout Oncorhynchus mykiss. In the first experiment, length heterogeneity analysis of PCR-amplified DNA fragments (LH-PCR) was used to assess the effect of antagonistic baths on the microbial diversity of healthy and experimentally infected fish. In the 148 samples studied, no difference was found between bathed and unbathed fish, and 3 fragment lengths were detected most frequently: 500 (in 75.7% of the samples), 523 (62.2%) and 517 bp (40.5%). The species contributing to these fragment sizes were Pseudomonas sp., Rhodococcus sp. and F. columnare, respectively. A specific PCR for detection of Pseudomonas sp. MT5 was designed, but none of the tissue samples were found to be positive, most likely indicating poor adhesion of the strain during bathing. LH-PCR was found to be a more powerful tool for detecting F. columnare in fish tissue than traditional culture methods (chi2 = 3.9, df = 1, p < 0.05). Antagonistic baths had no effect on the outbreak of infection or on fish mortality. F. columnare was also detected in healthy fish prior to and after experimental infection, indicating that these fish were carriers of the disease. In the second experiment, intensive Pseudomonas sp. MT5 antagonistic baths were given daily to rainbow trout suffering from a natural columnaris infection. Again, the antagonistic bacteria had no effect on fish mortality, which reached 95 % in both control and antagonist-treated groups in 7 d.

  19. Virulence of Pseudomonas syringae pv. tomato DC3000 is modulated through the Catabolite Repression Control protein Crc

    Science.gov (United States)

    Pseudomonas syringae (P.s.) infects diverse plant species and several P.s. pathovars have been used in the study of molecular events that occur during plant-microbe interactions. Although the relationship between bacterial metabolism, nutrient acquisition and virulence has attracted increasing atten...

  20. Optimizing study design for multi-species avian monitoring programmes

    Science.gov (United States)

    Jamie S. Sanderlin; William M. Block; Joseph L. Ganey

    2014-01-01

    Many monitoring programmes are successful at monitoring common species, whereas rare species, which are often of highest conservation concern, may be detected infrequently. Study designs that increase the probability of detecting rare species at least once over the study period, while collecting adequate data on common species, strengthen programme ability to address...

  1. Competition triggers plasmid-mediated enhancement of substrate utilisation in Pseudomonas putida.

    Directory of Open Access Journals (Sweden)

    Hiren Joshi

    2009-06-01

    Full Text Available Competition between species plays a central role in the activity and structure of communities. Stable co-existence of diverse organisms in communities is thought to be fostered by individual tradeoffs and optimization of competitive strategies along resource gradients. Outside the laboratory, microbes exist as multispecies consortia, continuously interacting with one another and the environment. Survival and proliferation of a particular species is governed by its competitive fitness. Therefore, bacteria must be able to continuously sense their immediate environs for presence of competitors and prevailing conditions. Here we present results of our investigations on a novel competition sensing mechanism in the rhizosphere-inhabiting Pseudomonas putida KT2440, harbouring gfpmut3b-modified Kan(R TOL plasmid. We monitored benzyl alcohol (BA degradation rate, along with GFP expression profiling in mono species and dual species cultures. Interestingly, enhanced plasmid expression (monitored using GFP expression and consequent BA degradation were observed in dual species consortia, irrespective of whether the competitor was a BA degrader (Pseudomonas aeruginosa or a non-degrader (E. coli. Attempts at elucidation of the mechanistic aspects of induction indicated the role of physical interaction, but not of any diffusible compounds emanating from the competitors. This contention is supported by the observation that greater induction took place in presence of increasing number of competitors. Inert microspheres mimicking competitor cell size and concentration did not elicit any significant induction, further suggesting the role of physical cell-cell interaction. Furthermore, it was also established that cell wall compromised competitor had minimal induction capability. We conclude that P. putida harbouring pWW0 experience a competitive stress when grown as dual-species consortium, irrespective of the counterpart being BA degrader or not. The immediate

  2. Dynamics of development and dispersal in sessile microbial communities: examples from Pseudomonas aeruginosa and Pseudomonas putida model biofilms

    DEFF Research Database (Denmark)

    Klausen, M.; Gjermansen, Morten; Kreft, J.-U.

    2006-01-01

    Surface-associated microbial communities in many cases display dynamic developmental patterns. Model biofilms formed by Pseudomonas aeruginosa and Pseudomonas putida in laboratory flow-chamber setups represent examples of such behaviour. Dependent on the experimental conditions the bacteria...

  3. Polymorphisms within the prnD and pltC genes from pyrrolnitrin and pyoluteorin-producing Pseudomonas and Burkholderia spp

    NARCIS (Netherlands)

    Souza, J.T.; Raaijmakers, J.M.

    2003-01-01

    Pyrrolnitrin (PRN) and pyoluteorin (PLT) are broad-spectrum antibiotics produced by several strains of Pseudomonas and Burkholderia species. Both antibiotics play an important role in the suppression of multiple plant pathogenic fungi. Primers were developed from conserved sequences and amplified

  4. Management and treatment of contact lens-related Pseudomonas keratitis

    Directory of Open Access Journals (Sweden)

    Willcox MD

    2012-06-01

    Full Text Available Mark DP WillcoxSchool of Optometry and Vision Science, University of New South Wales, Sydney, AustraliaAbstract: Pubmed and Medline were searched for articles referring to Pseudomonas keratitis between the years 2007 and 2012 to obtain an overview of the current state of this disease. Keyword searches used the terms "Pseudomonas" + "Keratitis" limit to "2007–2012", and ["Ulcerative" or "Microbial"] + "Keratitis" + "Contact lenses" limit to "2007–2012". These articles were then reviewed for information on the percentage of microbial keratitis cases associated with contact lens wear, the frequency of Pseudomonas sp. as a causative agent of microbial keratitis around the world, the most common therapies to treat Pseudomonas keratitis, and the sensitivity of isolates of Pseudomonas to commonly prescribed antibiotics. The percentage of microbial keratitis associated with contact lens wear ranged from 0% in a study from Nepal to 54.5% from Japan. These differences may be due in part to different frequencies of contact lens wear. The frequency of Pseudomonas sp. as a causative agent of keratitis ranged from 1% in Japan to over 50% in studies from India, Malaysia, and Thailand. The most commonly reported agents used to treat Pseudomonas keratitis were either aminoglycoside (usually gentamicin fortified with a cephalosporin, or monotherapy with a fluoroquinolone (usually ciprofloxacin. In most geographical areas, most strains of Pseudomonas sp. (≥95% were sensitive to ciprofloxacin, but reports from India, Nigeria, and Thailand reported sensitivity to this antibiotic and similar fluoroquinolones of between 76% and 90%.Keywords: Pseudomonas, keratitis, contact lens

  5. Pseudomonas mesophilica and an unnamed taxon, clinical isolates of pink-pigmented oxidative bacteria.

    Science.gov (United States)

    Gilardi, G L; Faur, Y C

    1984-10-01

    Twenty-one strains of pink-pigmented bacteria, isolated from human clinical specimens and an environmental source, were compared with Pseudomonas mesophilica ATCC 29983 and Protaminobacter ruber ATCC 8457. These isolates were gram-negative, oxidative rods which were motile by means of a single polar flagellum; gave positive catalase, indophenol oxidase, urease, and amylase reactions; and grew slowly at 30 degrees C. Fourteen isolates conformed to the designated type strains Pseudomonas mesophilica ATCC 29983 and Protaminobacter ruber ATCC 8457. The remaining seven strains represented an undescribed taxon. These pink bacteria appear to be invaders of debilitated patients with an underlying chronic disease.

  6. Type III secretion system and virulence markers highlight similarities and differences between human- and plant-associated Pseudomonads related to Pseudomonas fluorescens and P-putida

    OpenAIRE

    Mazurier, Sylvie; Merieau, Annabelle; Bergeau, Dorian; Decoin, Victorien; Sperandio, Daniel; Crepin, Alexandre; Barbey, Corinne; Jeannot, Katy; Vicre-Gibouin, Maité; Plesiat, Patrick; Lemanceau, Philippe; Latour, Xavier

    2015-01-01

    Pseudomonas fluorescens is commonly considered a saprophytic rhizobacterium devoid of pathogenic potential. Nevertheless, the recurrent isolation of strains from clinical human cases could indicate the emergence of novel strains originating from the rhizosphere reservoir, which could be particularly resistant to the immune system and clinical treatment. The importance of type three secretion systems (T3SSs) in the related Pseudomonas aeruginosa nosocomial species and the occurrence of this se...

  7. Characterization of siderophore produced by Pseudomonas syringae BAF.1 and its inhibitory effects on spore germination and mycelium morphology of Fusarium oxysporum.

    Science.gov (United States)

    Yu, Sumei; Teng, Chunying; Liang, Jinsong; Song, Tao; Dong, Liying; Bai, Xin; Jin, Yu; Qu, Juanjuan

    2017-11-01

    In this study, an antagonistic bacterium against Fusarium oxysporum was identified and designated as Pseudomonas syringae strain BAF.1 on the basis of 16S rDNA sequence analysis and physiological-biochemical characteristics. It produced catechol-species siderophore at a molecular weight of 488.59 Da and a maximum amount of 55.27 μg/ml with glucose as a carbon source and asparagine as a nitrogen source at a C/N ratio of 10:1, 30°C and pH 7. The siderophore exhibited prominent antagonistic activity against Fusarium oxysporum with a maximum inhibition rate of 95.24% and had also suppressive effects on other kinds of 11 phytopathogenic fungi in the absence of FeCl 3 ·6H 2 O. Spore germination was completely inhibited by 50 μl of the siderophorecontaining solution, and the ultrastructures of mycelia and spores were also considerably suppressed by siderophore treatment as established by electron microscopy observation. These results indicate that the siderophore produced by Pseudomonas syringae BAF.1 could be potentially used for biocontrol of pathogenic Fusarium oxysporum.

  8. Arbuscular mycorrhizal fungi and Pseudomonas in reduce drought stress damage in flax (Linum usitatissimum L.): a field study.

    Science.gov (United States)

    Rahimzadeh, Saeedeh; Pirzad, Alireza

    2017-08-01

    Drought stress, which is one of the most serious world environmental threats to crop production, might be compensated by some free living and symbiotic soil microorganisms. The physiological response of flax plants to inoculation with two species of arbuscular mycorrhizal (AM) fungi (Funneliformis mosseae or Rhizophagus intraradices) and a phosphate solubilizing bacterium (Pseudomonas putida P13; PSB) was evaluated under different irrigation regimes (irrigation after 60, 120, and 180 mm of evaporation from Class A pan as well-watered, mild, and severe stress, respectively). A factorial (three factors) experiment was conducted for 2 years (2014-2015) based on a randomized complete block design with three replications at Urmia University, Urmia, located at North-West of Iran (37° 39' 24.82″ N44° 58' 12.42″ E). Water deficit decreased biomass, showing that flax was sensitive to drought, and AM root colonization improved the performance of the plant within irrigation levels. In all inoculated and non-inoculated control plants, leaf chlorophyll decreased with increasing irrigation intervals. Water deficit-induced oxidative damage (hydrogen peroxide, malondialdehyde, and electrolyte leakage) were significantly reduced in dual colonized plants. All enzymatic (catalase, superoxide dismutase, glutathione reductase, and ascorbate peroxidase) and non-enzymatic (glutathione, ascorbic acid, total carotenoids) antioxidants were reduced by water-limiting irrigation. Dual inoculated plants with AM plus Pseudomonas accumulated more enzymatic and non-enzymatic antioxidants than plants with bacterial or fungal inoculation singly. Dual colonized plants significantly decreased the water deficit-induced glycine betaine and proline in flax leaves. These bacterial-fungal interactions in enzymatic and non-enzymatic defense of flax plants demonstrated equal synergism with both AM fungi species. In conclusion, increased activity of enzymatic antioxidants and higher production of non

  9. In vitro efficacy of doripenem against pseudomonas aeruginosa and acinetobacter baumannii by e-test

    International Nuclear Information System (INIS)

    Gilani, M.; Munir, T.; Latif, M.; Rehman, S.

    2015-01-01

    To assess the in vitro efficacy of doripenem against Pseudomonas aeruginosa and Acinetobacter baumannii using Epsilometer strips. Study Design: Cross-sectional study. Place and Duration of Study: Department of Microbiology, Army Medical College, Rawalpindi and National University of Sciences and Technology, Islamabad, from May 2014 to September 2014. Methodology: A total of 60 isolates of Acinetobacter baumannii and Pseudomonas aeruginosa collected from various clinical samples received from Military Hospital were included in the study. The specimens were inoculated onto blood, MacConkey and chocolate agars. The isolates were identified using Gram staining, motility, catalase test, oxidase test and API 20NE (Biomeriux, France). Organisms identified as Acinetobacter baumannii and Pseudomonas aeruginosa were included in the study. Bacterial suspensions equivalent to 0.5 McFarland turbidity standard of the isolates were prepared and applied on Mueller Hinton agar. Epsilometer strip was placed in the center of the plate and incubated for 18-24 hours. Minimum Inhibitory Concentration (MIC) was taken to be the point where the epsilon intersected the E-strip. MIC of all the isolates was noted. Results: For Pseudomonas aeruginosa isolates, MIC50 was 12 micro g/mL and MIC90 was 32 micro g/mL. For Acinetobacter baumannii MIC 50 and MIC90 was 32 micro g/mL. Conclusion: Doripenem is no more effective against Pseudomonas aeruginosa and Acinetobacter baumannii in our setting. (author)

  10. Colony morphology and transcriptome profiling of Pseudomonas putida KT2440 and its mutants deficient in alginate or all EPS synthesis under controlled matric potentials

    DEFF Research Database (Denmark)

    Gülez, Gamze; Altintas, Ali; Fazli, Mustafa

    2014-01-01

    Pseudomonas putida is a versatile bacterial species adapted to soil and its fluctuations. Like many other species living in soil, P. putida often faces water limitation. Alginate, an exopolysaccharide (EPS) produced by P. putida, is known to create hydrated environments and alleviate the effect o...

  11. Binary combination of epsilon-poly-L-lysine and isoeugenol affect progression of spoilage microbiota in fresh turkey meat, and delay onset of spoilage in Pseudomonas putida challenged meat.

    Science.gov (United States)

    Hyldgaard, Morten; Meyer, Rikke L; Peng, Min; Hibberd, Ashley A; Fischer, Jana; Sigmundsson, Arnar; Mygind, Tina

    2015-12-23

    Proliferation of microbial population on fresh poultry meat over time elicits spoilage when reaching unacceptable levels, during which process slime production, microorganism colony formation, negative organoleptic impact and meat structure change are observed. Spoilage organisms in raw meat, especially Gram-negative bacteria can be difficult to combat due to their cell wall composition. In this study, the natural antimicrobial agents ε-poly-L-lysine (ε-PL) and isoeugenol were tested individually and in combinations for their activities against a selection of Gram-negative strains in vitro. All combinations resulted in additive interactions between ε-PL and isoeugenol towards the bacteria tested. The killing efficiency of different ratios of the two antimicrobial agents was further evaluated in vitro against Pseudomonas putida. Subsequently, the most efficient ratio was applied to a raw turkey meat model system which was incubated for 96 h at spoilage temperature. Half of the samples were challenged with P. putida, and the bacterial load and microbial community composition was followed over time. CFU counts revealed that the antimicrobial blend was able to lower the amount of viable Pseudomonas spp. by one log compared to untreated samples of challenged turkey meat, while the single compounds had no effect on the population. However, the compounds had no effect on Pseudomonas spp. CFU in unchallenged meat. Next-generation sequencing offered culture-independent insight into population diversity and changes in microbial composition of the meat during spoilage and in response to antimicrobial treatment. Spoilage of unchallenged turkey meat resulted in decreasing species diversity over time, regardless of whether the samples received antimicrobial treatment. The microbiota composition of untreated unchallenged meat progressed from a Pseudomonas spp. to a Pseudomonas spp., Photobacterium spp., and Brochothrix thermosphacta dominated food matrix on the expense of low

  12. Interaction of bacteria-feeding soil flagellates and Pseudomonas spp

    DEFF Research Database (Denmark)

    Pedersen, Annette; Ekelund, Flemming; Johansen, Anders

    2010-01-01

    Pseudomonas strains may be used as alternatives to fungicides as some of them produce secondary metabolites, which can inhibit growth of plant pathogenic fungi. Increased knowledge of non-target effects of the antagonistic bacteria on other soil organisms as well as of the survival and predation...... resistance of the antagonistic bacteria is necessary for risk assessment and increased performance of antagonistic bacteria as biological control agents. In the present study, we aimed to investigate the difference between Pseudomonas spp. with respect to their predation resistance to and effects...... on the three different and common soil flagellates Bodo caudatus, Cercomonas longicauda, and Neocercomonas jutlandica. Two antagonistic Pseudomonas: Pseudomonas fluorescens CHA0 and P. fluorescens DR54 and two positive control strains: P. fluorescens DSM 50090T and Pseudomonas chlororaphis ATCC 43928 were...

  13. Reserve design to maximize species persistence

    Science.gov (United States)

    Robert G. Haight; Laurel E. Travis

    2008-01-01

    We develop a reserve design strategy to maximize the probability of species persistence predicted by a stochastic, individual-based, metapopulation model. Because the population model does not fit exact optimization procedures, our strategy involves deriving promising solutions from theory, obtaining promising solutions from a simulation optimization heuristic, and...

  14. Pseudomonas syringae enhances herbivory by suppressing the reactive oxygen burst in Arabidopsis.

    Science.gov (United States)

    Groen, Simon C; Humphrey, Parris T; Chevasco, Daniela; Ausubel, Frederick M; Pierce, Naomi E; Whiteman, Noah K

    2016-01-01

    Plant-herbivore interactions have evolved in the presence of plant-colonizing microbes. These microbes can have important third-party effects on herbivore ecology, as exemplified by drosophilid flies that evolved from ancestors feeding on plant-associated microbes. Leaf-mining flies in the genus Scaptomyza, which is nested within the paraphyletic genus Drosophila, show strong associations with bacteria in the genus Pseudomonas, including Pseudomonas syringae. Adult females are capable of vectoring these bacteria between plants and larvae show a preference for feeding on P. syringae-infected leaves. Here we show that Scaptomyza flava larvae can also vector P. syringae to and from feeding sites, and that they not only feed more, but also develop faster on plants previously infected with P. syringae. Our genetic and physiological data show that P. syringae enhances S. flava feeding on infected plants at least in part by suppressing anti-herbivore defenses mediated by reactive oxygen species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Vaccines for preventing infection with Pseudomonas aeruginosa in cystic fibrosis

    DEFF Research Database (Denmark)

    Johansen, Helle Krogh; Gøtzsche, Peter C

    2013-01-01

    Chronic pulmonary infection in cystic fibrosis results in progressive lung damage. Once colonisation of the lungs with Pseudomonas aeruginosa occurs, it is almost impossible to eradicate. Vaccines, aimed at reducing infection with Pseudomonas aeruginosa, have been developed.......Chronic pulmonary infection in cystic fibrosis results in progressive lung damage. Once colonisation of the lungs with Pseudomonas aeruginosa occurs, it is almost impossible to eradicate. Vaccines, aimed at reducing infection with Pseudomonas aeruginosa, have been developed....

  16. Induced systemic resistance in cucumber and Arabidopsis thaliana by the combination of Trichoderma harzianum Tr6 and Pseudomonas sp.

    NARCIS (Netherlands)

    Alizadeh, H.; Behboudi, K.; Amadzadeh, M.; Javan-Nikkhah, M.; Zamioudis, C; Pieterse, C.M.J.; Bakker, P.A.H.M.

    2013-01-01

    Trichoderma species and fluorescent Pseudomonas spp. have been reported to induce systemic resistance in plants. In this study the effectiveness of a combination of these biological control agents on the efficacy of induced resistance was investigated in cucumber and the model plant Arabidopsis

  17. Screening of Gibberellic Acid Production by Pseudomonas SPP

    International Nuclear Information System (INIS)

    Khine Zar Wynn Myint; Khin Mya Lwin; Myo Myint

    2010-12-01

    The microbial gibberellic acid (GA3) production of Pseudomonas spp., was studied and qualitatively indentified by UV spectrophotometer. 20 strains of Pseudomonas spp., were isolated and screened the gibberellic acid productivily in King's B medium. Among them, only four strains can produce microbial gibberellic acid. The Rf values and colour appearance under UV were the same as authentic gibberellic acid. Moreover, the gibberellic acid producer strains were identified as Pseudomonas spp., by cultural, biochemical and drug sensitivity pattern.

  18. Promysalin Elicits Species-Selective Inhibition of Pseudomonas aeruginosa by Targeting Succinate Dehydrogenase.

    Science.gov (United States)

    Keohane, Colleen E; Steele, Andrew D; Fetzer, Christian; Khowsathit, Jittasak; Van Tyne, Daria; Moynié, Lucile; Gilmore, Michael S; Karanicolas, John; Sieber, Stephan A; Wuest, William M

    2018-02-07

    Natural products have served as an inspiration to scientists both for their complex three-dimensional architecture and exquisite biological activity. Promysalin is one such Pseudomonad secondary metabolite that exhibits narrow-spectrum antibacterial activity, originally isolated from the rhizosphere. We herein utilize affinity-based protein profiling (AfBPP) to identify succinate dehydrogenase (Sdh) as the biological target of the natural product. The target was further validated in silico, in vitro, in vivo, and through the selection, and sequencing, of a resistant mutant. Succinate dehydrogenase plays an essential role in primary metabolism of Pseudomonas aeruginosa as the only enzyme that is involved both in the tricarboxylic acid cycle (TCA) and in respiration via the electron transport chain. These findings add credence to other studies that suggest that the TCA cycle is an understudied target in the development of novel therapeutics to combat P. aeruginosa, a significant pathogen in clinical settings.

  19. Optimal design of compact and connected nature reserves for multiple species.

    Science.gov (United States)

    Wang, Yicheng; Önal, Hayri

    2016-04-01

    When designing a conservation reserve system for multiple species, spatial attributes of the reserves must be taken into account at species level. The existing optimal reserve design literature considers either one spatial attribute or when multiple attributes are considered the analysis is restricted only to one species. We built a linear integer programing model that incorporates compactness and connectivity of the landscape reserved for multiple species. The model identifies multiple reserves that each serve a subset of target species with a specified coverage probability threshold to ensure the species' long-term survival in the reserve, and each target species is covered (protected) with another probability threshold at the reserve system level. We modeled compactness by minimizing the total distance between selected sites and central sites, and we modeled connectivity of a selected site to its designated central site by selecting at least one of its adjacent sites that has a nearer distance to the central site. We considered structural distance and functional distances that incorporated site quality between sites. We tested the model using randomly generated data on 2 species, one ground species that required structural connectivity and the other an avian species that required functional connectivity. We applied the model to 10 bird species listed as endangered by the state of Illinois (U.S.A.). Spatial coherence and selection cost of the reserves differed substantially depending on the weights assigned to these 2 criteria. The model can be used to design a reserve system for multiple species, especially species whose habitats are far apart in which case multiple disjunct but compact and connected reserves are advantageous. The model can be modified to increase or decrease the distance between reserves to reduce or promote population connectivity. © 2015 Society for Conservation Biology.

  20. Advances of naphthalene degradation in Pseudomonas putida ND6

    Science.gov (United States)

    Song, Fu; Shi, Yifei; Jia, Shiru; Tan, Zhilei; Zhao, Huabing

    2018-03-01

    Naphthalene is one of the most common and simple polycyclic aromatic hydrocarbons. Degradation of naphthalene has been greatly concerned due to its economic, free-pollution and its fine effect in Pseudomonas putida ND6. This review summarizes the development history of naphthalene degradation, the research progress of naphthalene degrading gene and naphthalene degradation pathway of Pseudomonas putida ND6, and the researching path of this strain. Although the study of naphthalene degradation is not consummate in Pseudomonas putida ND6, there is a potential capability for Pseudomonas putida ND6 to degrade the naphthalene in the further research.

  1. Occurrence of hypermutable Pseudomonas aeruginosa in cystic fibrosis patients is associated with the oxidative stress caused by chronic lung inflammation

    DEFF Research Database (Denmark)

    Ciofu, Oana; Riis, Bente; Pressler, Tacjana

    2005-01-01

    Oxidative stress caused by chronic lung inflammation in patients with cystic fibrosis (CF) and chronic lung infection with Pseudomonas aeruginosa is characterized by the reactive oxygen species (ROS) liberated by polymorphonuclear leukocytes (PMNs). We formulated the hypothesis that oxidation...

  2. Experimental Pseudomonas aeruginosa mediated rhino sinusitis in mink

    DEFF Research Database (Denmark)

    Kirkeby, S.; Hammer, A. S.; Høiby, N.

    2017-01-01

    The nasal and sinus cavities in children may serve as reservoirs for microorganisms that cause recurrent and chronic lung infections. This study evaluates whether the mink can be used as an animal model for studying Pseudomonas aeruginosa mediated rhino-sinusitis since there is no suitable...... in the infected mink shows features of carbohydrate expression comparable to what has been described in the respiratory system after Pseudomonas aeruginosa infection in humans. It is suggested that the mink is suitable for studying Pseudomonas aeruginosa mediated rhino-sinusitis....

  3. Vaccines for preventing infection with Pseudomonas aeruginosa in cystic fibrosis

    DEFF Research Database (Denmark)

    Johansen, H.K.; Gøtzsche, Peter C.; Johansen, Helle Krogh

    2008-01-01

    BACKGROUND: Chronic pulmonary infection in cystic fibrosis results in progressive lung damage. Once colonisation of the lungs with Pseudomonas aeruginosa occurs, it is almost impossible to eradicate. Vaccines, aimed at reducing infection with Pseudomonas aeruginosa, have been developed. OBJECTIVES......: To assess the effectiveness of vaccination against Pseudomonas aeruginosa in cystic fibrosis. SEARCH STRATEGY: We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Trials Register using the terms vaccines AND pseudomonas (last search May 2008) and PubMed using the terms vaccin* AND cystic...... fibrosis (last search May 2008). SELECTION CRITERIA: Randomised trials (published or unpublished) comparing Pseudomonas aeruginosa vaccines (oral, parenteral or intranasal) with control vaccines or no intervention in cystic fibrosis. DATA COLLECTION AND ANALYSIS: The authors independently selected trials...

  4. Vaccines for preventing infection with Pseudomonas aeruginosa in cystic fibrosis

    DEFF Research Database (Denmark)

    Johansen, Helle Krogh; Gøtzsche, Peter C

    2015-01-01

    BACKGROUND: Chronic pulmonary infection in cystic fibrosis results in progressive lung damage. Once colonisation of the lungs with Pseudomonas aeruginosa occurs, it is almost impossible to eradicate. Vaccines, aimed at reducing infection with Pseudomonas aeruginosa, have been developed....... This is an update of a previously published review. OBJECTIVES: To assess the effectiveness of vaccination against Pseudomonas aeruginosa in cystic fibrosis. SEARCH METHODS: We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Trials Register using the terms vaccines AND pseudomonas (last search 30...... March 2015). We previously searched PubMed using the terms vaccin* AND cystic fibrosis (last search 30 May 2013). SELECTION CRITERIA: Randomised trials (published or unpublished) comparing Pseudomonas aeruginosa vaccines (oral, parenteral or intranasal) with control vaccines or no intervention in cystic...

  5. Structural characterization of pyoverdines produced by Pseudomonas putida KT2440 and Pseudomonas taiwanensis VLB120.

    Science.gov (United States)

    Baune, Matthias; Qi, Yulin; Scholz, Karen; Volmer, Dietrich A; Hayen, Heiko

    2017-08-01

    The previously unknown sequences of several pyoverdines (PVD) produced by a biotechnologically-relevant bacterium, namely, Pseudomonas taiwanensis VLB120, were characterized by high performance liquid chromatography (HPLC)-high resolution mass spectrometry (HRMS). The same structural characterization scheme was checked before by analysis of Pseudomonas sp. putida KT2440 samples with known PVDs. A new sample preparation strategy based on solid-phase extraction was developed, requiring significantly reduced sample material as compared to existing methods. Chromatographic separation was performed using hydrophilic interaction liquid chromatography with gradient elution. Interestingly, no signals for apoPVDs were detected in these analyses, only the corresponding aluminum(III) and iron(III) complexes were seen. The chromatographic separation readily enabled separation of PVD complexes according to their individual structures. HPLC-HRMS and complementary fragmentation data from collision-induced dissociation and electron capture dissociation enabled the structural characterization of the investigated pyoverdines. In Pseudomonas sp. putida KT2240 samples, the known pyoverdines G4R and G4R A were readily confirmed. No PVDs have been previously described for Pseudomonas sp. taiwanensis VLB120. In our study, we identified three new PVDs, which only differed in their acyl side chains (succinic acid, succinic amide and malic acid). Peptide sequencing by MS/MS provided the sequence Orn-Asp-OHAsn-Thr-AcOHOrn-Ser-cOHOrn. Of particular interest is the presence of OHAsn, which has not been reported as PVD constituent before.

  6. Expression of recombinant Pseudomonas stutzeri di-heme cytochrome c(4) by high-cell-density fed-batch cultivation of Pseudomonas putida

    DEFF Research Database (Denmark)

    Thuesen, Marianne Hallberg; Nørgaard, Allan; Hansen, Anne Merete

    2003-01-01

    The gene of the di-heme protein cytochrome c(4) from Pseudomonas stutzeri was expressed in Pseudomonas putida. High-yield expression of the protein was achieved by high-cell-density fed-batch cultivation using an exponential glucose feeding strategy. The recombinant cytochrome c(4) protein...

  7. Marine Pseudomonas putida: a potential source of antimicrobial substances against antibiotic-resistant bacteria

    Directory of Open Access Journals (Sweden)

    Palloma Rodrigues Marinho

    2009-08-01

    Full Text Available Bacteria isolated from marine sponges found off the coast of Rio de Janeiro, Brazil, were screened for the production of antimicrobial substances. We report a new Pseudomonas putida strain (designated P. putida Mm3 isolated from the sponge Mycale microsigmatosa that produces a powerful antimicrobial substance active against multidrug-resistant bacteria. P. putida Mm3 was identified on the basis of 16S rRNA gene sequencing and phenotypic tests. Molecular typing for Mm3 was performed by RAPD-PCR and comparison of the results to other Pseudomonas strains. Our results contribute to the search for new antimicrobial agents, an important strategy for developing alternative therapies to treat infections caused by multidrug-resistant bacteria.

  8. Marine Pseudomonas putida: a potential source of antimicrobial substances against antibiotic-resistant bacteria.

    Science.gov (United States)

    Marinho, Palloma Rodrigues; Moreira, Ana Paula Barbosa; Pellegrino, Flávia Lúcia Piffano Costa; Muricy, Guilherme; Bastos, Maria do Carmo de Freire; Santos, Kátia Regina Netto dos; Giambiagi-deMarval, Marcia; Laport, Marinella Silva

    2009-08-01

    Bacteria isolated from marine sponges found off the coast of Rio de Janeiro, Brazil, were screened for the production of antimicrobial substances. We report a new Pseudomonas putida strain (designated P. putida Mm3) isolated from the sponge Mycale microsigmatosa that produces a powerful antimicrobial substance active against multidrug-resistant bacteria. P. putida Mm3 was identified on the basis of 16S rRNA gene sequencing and phenotypic tests. Molecular typing for Mm3 was performed by RAPD-PCR and comparison of the results to other Pseudomonas strains. Our results contribute to the search for new antimicrobial agents, an important strategy for developing alternative therapies to treat infections caused by multidrug-resistant bacteria.

  9. Verspreiding, diversiteit en activiteit van antibioticaproducerende Pseudomonas spp

    NARCIS (Netherlands)

    Souza, J.T.

    2003-01-01

    Pseudomonas bacteriën zijn potentiële antagonisten van diverse plantenpathogene schimmels en oömyceten. De productie van antibiotica speelt een belangrijke rol in de activiteit van diverse Pseudomonas isolaten tegen plantenpathogenen. Dit artikel is een samenvatting van het proefschrift getiteld

  10. Novel Targets for Treatment of Pseudomonas aeruginosa Biofilms

    DEFF Research Database (Denmark)

    Alhede, Morten; Alhede, Maria; Bjarnsholt, Thomas

    2014-01-01

    Pseudomonas aeruginosa causes infection in all parts of the human body. The bacterium is naturally resistant to a wide range of antibiotics. In addition to resistance mechanisms such as efflux pumps, the ability to form aggregates, known as biofilm, further reduces Pseudomonas aeruginosa...

  11. Antimicrobial resistance in Pseudomonas sp. causing infections in trauma patients: A 6 year experience from a south asian country

    Directory of Open Access Journals (Sweden)

    Nonika Rajkumari

    2014-01-01

    Full Text Available Drug resistance to Pseudomonas sp. has spread to such a level irrespective of the type of patients, that its pattern of distribution and antibiotic resistance needs to be studied in detail, especially in trauma patients and hence the study. A 6 year study was carried out among trauma patients to see the trend and type of resistance prevalent in the apex hospital for trauma care in India among nonduplicate isolates where multidrug-resistance (MDR, cross-resistance and pan-drug resistance in Pseudomonas sp. were analyzed. Of the total 2,269 isolates obtained, the species, which was maximally isolated was Pseudomonas aeruginosa (2,224, 98%. The highest level of resistance was seen in tetracycline (2,166, 95.5%, P < 0.001 and chloramphenicol (2,160, 95.2%, P < 0.001 and least in meropenem (1,739, 76.7%, P < 0.003. Of the total, 1,692 (74.6% isolates were MDR in which P. aeruginosa (75% were maximum. MDR Pseudomonas is slowing increasing since the beginning of the study period. Of 1,797 imipenem-resistant P. aeruginosa isolated during the study period, 1,763 (98% showed resistance to ciprofloxacin or levofloxacin, suggesting that cross-resistance may have developed for imipenem due to prior use of fluoroquinolones. Antibiotic resistance in Pseudomonas sp. is fast becoming a problem in trauma patients, especially in those who requires prolong hospital stay, which calls for proper antimicrobial stewardship.

  12. Isolamento e caracterização de Pseudomonas maltophilia (Hugh & Ryschenkow, 1960 de material clínico humano, na cidade do Rio de Janeiro Isolating and characterization of Pseudomonas maltophilia (Hugh & Ryschenkow, 1960 from human clinical specimens, in Rio de Janeiro, Guanabara, Brazil

    Directory of Open Access Journals (Sweden)

    Altair A. Zebral

    1973-01-01

    Full Text Available Os autores estudaram as propriedades morfo-bioquímicas e a sensibilidade às substâncias antimicrobianas, de uma nova e rara espécie de Pseudomonas, a Pseudomonas maltophilia (Hugh & Ryschenkow, 1960, isolada de secração vaginal. Como características marcantes, dentre mais de 65 testadas, as amostras estudadas mostraram ser: oxidase negativa e lisina descarboxilase positiva; produziram desoxiribonuclease e um pigmento escuro que se difunde no meio; atacaram oxidativamente a maltose tanto em meio complexo nitrogenado como em meio de Hugh & Leifson e hidrolisaram a esculina. As amostras foram sensíveis ao cloranfenicol, gentamicina, kanamicina, colistin e gabromicina.The authors have studied the morpho-biochemical properties and the sensibility at antimicrobial drugs, of specie of Pseudomonas, the Pseudomonas maltophilia, (Hugh & Ryschenkow, 1960, isolated from vaginal secretion. Since important characteristics among more of sixty-five tested, the strains studied show to be: oxidase negative and lysine decarboxylase positive; to present deoxyrononuclease activity and produced a diffusible brown pigment: acid was produced by oxidation of maltose as much in nitrogenous complex medium as in Hugh & Leifson medium and they hydrolise the esculin. the strains was sensible, for the colistin chloranfenicol, gabromycin, gentamycin and nalidix acid.

  13. Exposure-related effects of Pseudomonas fluorescens, strain CL145A, on coldwater, coolwater, and warmwater fish

    Science.gov (United States)

    Luoma, James A.; Weber, Kerry L.; Denise A. Mayer,

    2015-01-01

    The exposure-related effects of a commercially prepared spray-dried powder (SDP) formulation of Pseudomonas fluorescens, strain CL145A, were evaluated on coldwater, coolwater, and warmwater fish endemic to the Great Lakes and Upper Mississippi River Basins. Nine species of young-of-the-year fish were exposed to SDP for 24 hours by using continuous-flow, serial-dilution exposure systems at temperatures of 12 degrees Celsius (°C; 2 species; Oncorhynchus mykiss [rainbow trout] and Salvelinus fontinalis [brook trout]), 17 °C (3 species; Perca flavescens [yellow perch], Sander vitreus [walleye], and Acipenser fulvescens [lake sturgeon]), or 22 °C (4 species; Micropterus salmoides [largemouth bass], Micropterus dolomieu [smallmouth bass], Lepomis macrochirus [bluegill sunfish], and Ictalurus punctatus [channel catfish]).

  14. Induced systemic resistance in cucumber and Arabidopsis thaliana by the combination of Trichoderma harzianum Tr6 and Pseudomonas sp. Ps14

    NARCIS (Netherlands)

    Alizadeh, H.; Behboudi, K.; Ahmadzadeh, M.; Javan-Nikkhah, M.; Zamioudis, C.; Pieterse, C.M.J.; Bakker, P.A.H.M.

    2013-01-01

    Trichoderma species and fluorescent Pseudomonas spp. have been reported to induce systemic resistance in plants. In this study the effectiveness of a combination of these biological control agents on the efficacy of induced resistance was investigated in cucumber and the model plant Arabidopsis

  15. Comparative genomics of non-pseudomonal bacterial species colonising paediatric cystic fibrosis patients

    Directory of Open Access Journals (Sweden)

    Kate L. Ormerod

    2015-09-01

    Full Text Available The genetic disorder cystic fibrosis is a life-limiting condition affecting ∼70,000 people worldwide. Targeted, early, treatment of the dominant infecting species, Pseudomonas aeruginosa, has improved patient outcomes; however, there is concern that other species are now stepping in to take its place. In addition, the necessarily long-term antibiotic therapy received by these patients may be providing a suitable environment for the emergence of antibiotic resistance. To investigate these issues, we employed whole-genome sequencing of 28 non-Pseudomonas bacterial strains isolated from three paediatric patients. We did not find any trend of increasing antibiotic resistance (either by mutation or lateral gene transfer in these isolates in comparison with other examples of the same species. In addition, each isolate contained a virulence gene repertoire that was similar to other examples of the relevant species. These results support the impaired clearance of the CF lung not demanding extensive virulence for survival in this habitat. By analysing serial isolates of the same species we uncovered several examples of strain persistence. The same strain of Staphylococcus aureus persisted for nearly a year, despite administration of antibiotics to which it was shown to be sensitive. This is consistent with previous studies showing antibiotic therapy to be inadequate in cystic fibrosis patients, which may also explain the lack of increasing antibiotic resistance over time. Serial isolates of two naturally multi-drug resistant organisms, Achromobacter xylosoxidans and Stenotrophomonas maltophilia, revealed that while all S. maltophilia strains were unique, A. xylosoxidans persisted for nearly five years, making this a species of particular concern. The data generated by this study will assist in developing an understanding of the non-Pseudomonas species associated with cystic fibrosis.

  16. Uranium and thorium uptake by live and dead cells of Pseudomonas Sp

    International Nuclear Information System (INIS)

    Siva Prasath, C.S.; Manikandan, N.; Prakash, S.

    2010-01-01

    This study presents uptake of uranium (U) and thorium (Th) by live and dead cells of Pseudomonas Sp. Increasing concentration of U and Tb showed decrease in absorption by Pseudomonas Sp. Dead cells of Pseudomonas Sp. exhibited same or more uptake of U and Th than living cells. Increasing temperature promotes uptake of U and Th by Pseudomonas Sp. (author)

  17. Genotypische diversiteit en rhizosfeerkolonisatie van DAPG-producerende Pseudomonas spp.

    NARCIS (Netherlands)

    Bergsma-Vlami, M.

    2009-01-01

    Het antibioticum 2,4-diacetylphloroglucinol (DAPG) speelt een belangrijke rol in biologische bestrijding van verschillende plantenpathogenen door fluorescerende Pseudomonas-soorten. DAPG-producerende Pseudomonas-stammen zijn effectief in biologische bestrijding, maar hun saprofytisch vermogen is

  18. Actividad "in vitro" de diferentes antibacterianos sobre bacilos gram-negativos no fermentadores, excluidos Pseudomonas aeruginosa y Acinetobacter spp ‘In vitro' activity of different antimicrobial agents on gram-negative nonfermentative bacilli, excluding Pseudomonas aeruginosa and Acinetobacter spp

    Directory of Open Access Journals (Sweden)

    C.A. Vay

    2005-03-01

    Full Text Available Los bacilos gram-negativos no fermentadores se encuentran ampliamente distribuidos en el medio ambiente. Además de causar dificultades en la identificación, a menudo presentan una marcada multirresistencia a los antimicrobianos incluyendo aquellos activos frente a Pseudomonas aeruginosa. El objetivo de este trabajo fue evaluar la actividad "in vitro" de diferentes antimicrobianos sobre 177 aislamientos de bacilos gram-negativos no fermentadores (excluidos Pseudomonas aeruginosa y Acinetobacter spp. provenientes de especimenes clínicos. Las concentraciones inhibitorias mínimas (CIM se determinaron por el método de dilución en agar Mueller Hinton frente a los siguientes antibacterianos: ampicilina, piperacilina, piperacilina-tazobactama, sulbactama, cefoperazona, cefoperazona-sulbactama, ceftazidima, cefepima, aztreonam, imipenem, meropenem, colistina, gentamicina, amicacina, trimetoprima-sulfametoxazol (TMS, cloranfenicol, eritromicina, rifampicina, norfloxacina, ciprofloxacina y minociclina. Sobre siete aislamientos: Sphingobacterium multivorum (2, Sphingobacterium spiritivorum (1, Empedobacter brevis (1, Weeksella virosa (1, Bergeyella zoohelcum (1 y Oligella urethralis (1 se ensayó la sensibilidad a amoxicilina-ácido clavulánico y ampicilina-sulbactama y no se determinó la actividad de cefoperazona ni de sulbactama. La multirresistencia fue comúnmente observada en los aislamientos de Stenotrophomonas maltophilia, Burkholderia cepacia, Chryseobacterium spp., Myroides spp., Achromobacter xylosoxidans y Ochrobactrum anthropi. En cambio, Pseudomonas stutzeri, Shewanella putrefaciens-algae, Sphingomonas paucimobilis, Pseudomonas oryzihabitans, Bergeyella zoohelcum, Weeksella virosa y Oligella urethralis, fueron ampliamente sensibles a los antibacterianos ensayados. Debido a la gran variabilidad observada en la sensibilidad a los antimicrobianos en las distintas especies, se hace imprescindible realizar la prueba de sensibilidad a los

  19. Aderência in vitro do Staphylococcus epidermidis e da Pseudomonas alcaligenes em lentes intra-oculares In vitro adherence of Staphylococcus epidermidis and Pseudomonas alcaligenes to intraocular lenses

    Directory of Open Access Journals (Sweden)

    Patrícia Ioschpe Gus

    2006-06-01

    used in the experiment. Four of polymethylmethacrylate (PMMA, four of silicone, four of hidrogel and two of acrylic. Eight intraocular lenses were placed in eight test tubes containing 4 ml of Pseudomonas alcaligenes suspension, and six intraocular lenses were placed in six test tubes containing 4 ml of Staphylococcus epidermidis suspension. The bacterial suspension used for adherence tests was 10(8 colony-forming units per milliliter (CFU/mL which corresponds to 0.5 in the scale of McFarland. The lenses were incubated at 37° for two hours. After this, intraocular lenses were removed from the test tubes and dried twice with the use of distilled and sterile water. The material was spread on blood-agar for cultivation at 35-37°C and was evaluated every 24 hours up to 72 hours. In the samples where there was bacterial growth, the colonies were counted using the conventional laboratory methods. All assays were performed in duplicate. RESULTS: Adherence of Staphylococcus epidermidis to PMMA intraocular lenses was lower than to hydrogel and silicone intraocular lenses. Adherence of Pseudomonas alcaligenes to hydrogel intraocular lenses was lower than to PMMA, acrylic and silicone intraocular lenses. CONCLUSIONS: Results suggest that in vitro adherence of Staphylococcus epidermidis and Pseudomonas alcaligenes to intraocular lenses is influenced by type of material of the lens and by microorganism species. Bacterial adherence may play a role in the pathogenesis of some forms of endophthalmitis after cataract surgery. More in vitro and clinical studies are necessary to elucidate the mechanisms by which Staphylococcus epidermidis and Pseudomonas alcaligenes cause endophthalmitis.

  20. Kinetics of biofilm formation and desiccation survival of Listeria monocytogenes in single and dual species biofilms with Pseudomonas fluorescens, Serratia proteamaculans or Shewanella baltica on food-grade stainless steel surfaces.

    Science.gov (United States)

    Daneshvar Alavi, Hessam Edin; Truelstrup Hansen, Lisbeth

    2013-01-01

    This study investigated the dynamics of static biofilm formation (100% RH, 15 °C, 48-72 h) and desiccation survival (43% RH, 15 °C, 21 days) of Listeria monocytogenes, in dual species biofilms with the common spoilage bacteria, Pseudomonas fluorescens, Serratia proteamaculans and Shewanella baltica, on the surface of food grade stainless steel. The Gram-negative bacteria reduced the maximum biofilm population of L. monocytogenes in dual species biofilms and increased its inactivation during desiccation. However, due to the higher desiccation resistance of Listeria relative to P. fluorescens and S. baltica, the pathogen survived in greater final numbers. In contrast, S. proteamaculans outcompeted the pathogen during the biofilm formation and exhibited similar desiccation survival, causing the N21 days of Serratia to be ca 3 Log10(CFU cm(-2)) greater than that of Listeria in the dual species biofilm. Microscopy revealed biofilm morphologies with variable amounts of exopolymeric substance and the presence of separate microcolonies. Under these simulated food plant conditions, the fate of L. monocytogenes during formation of mixed biofilms and desiccation depended on the implicit characteristics of the co-cultured bacterium.

  1. Distribution, diversity, and activity of antibiotic-producing Pseudomonas spp.

    NARCIS (Netherlands)

    Souza, de J.T.

    2002-01-01

    Bacteria of the genus Pseudomonas are potential biocontrol agents of plant diseases caused by various fungi and oomycetes. Antibiotic production is an important trait responsible for the activity of several Pseudomonas

  2. Elicitation of Induced Resistance against Pectobacterium carotovorum and Pseudomonas syringae by Specific Individual Compounds Derived from Native Korean Plant Species

    Directory of Open Access Journals (Sweden)

    Choong-Min Ryu

    2013-10-01

    Full Text Available Plants have developed general and specific defense mechanisms for protection against various enemies. Among the general defenses, induced resistance has distinct characteristics, such as broad-spectrum resistance and long-lasting effectiveness. This study evaluated over 500 specific chemical compounds derived from native Korean plant species to determine whether they triggered induced resistance against Pectobacterium carotovorum supsp. carotovorum (Pcc in tobacco (Nicotiana tabacum and Pseudomonas syringae pv. tomato (Pst in Arabidopsis thaliana. To select target compound(s with direct and indirect (volatile effects, a new Petri-dish-based in vitro disease assay system with four compartments was developed. The screening assay showed that capsaicin, fisetin hydrate, jaceosidin, and farnesiferol A reduced the disease severity significantly in tobacco. Of these four compounds, capsaicin and jaceosidin induced resistance against Pcc and Pst, which depended on both salicylic acid (SA and jasmonic acid (JA signaling, using Arabidopsis transgenic and mutant lines, including npr1 and NahG for SA signaling and jar1 for JA signaling. The upregulation of the PR2 and PDF1.2 genes after Pst challenge with capsaicin pre-treatment indicated that SA and JA signaling were primed. These results demonstrate that capsaicin and jaceosidin can be effective triggers of strong induced resistance against both necrotrophic and biotrophic plant pathogens.

  3. NUCLEOTIDE SEQUENCING AND TRANSCRIPTIONAL MAPPING OF THE GENES ENCODING BIPHENYL DIOXYGENASE, A MULTICOM- PONENT POLYCHLORINATED-BIPHENYL-DEGRADING ENZYME IN PSEUDOMONAS STRAIN LB400

    Science.gov (United States)

    The DNA region encoding biphenyl dioxygenase, the first enzyme in the biphenyl-polychlorinated biphenyl degradation pathway of Pseudomonas species strain LB400, was sequenced. Six open reading frames were identified, four of which are homologous to the components of toluene dioxy...

  4. Isolation and characterization of a new Pseudomonas-related strain ...

    African Journals Online (AJOL)

    % with Pseudomonas putida ()AB680847). The phylogenetic tree formed by 16S rDNA sequences from both strain SKDP-1 and its most related bacteria also proved strain SKDP-1 to be one member of the genus Pseudomonas. Strain SKDP-1 ...

  5. Biosynthesis and regulation of cyclic lipopeptides in Pseudomonas fluorescens

    NARCIS (Netherlands)

    Bruijn, de I.

    2009-01-01

    Cyclic lipopeptides (CLPs) are surfactant and antibiotic metabolites produced by a variety of bacterial
    genera. For the genus Pseudomonas, many structurally different CLPs have been identified. CLPs play an
    important role in surface motility of Pseudomonas strains, but also in virulence

  6. Phospholipids and protein adaptation of Pseudomonas sp. to the xenoestrogen tributyltin chloride (TBT).

    Science.gov (United States)

    Bernat, Przemysław; Siewiera, Paulina; Soboń, Adrian; Długoński, Jerzy

    2014-09-01

    A tributyltin (TBT)-resistant strain of Pseudomonas sp. isolated from an overworked car filter was tested for its adaptation to TBT. The isolate was checked for organotin degradation ability, as well as membrane lipid and cellular protein composition in the presence of TBT. The phospholipid profiles of bacteria, grown with and without increased amounts of TBT, were characterized using liquid chromatography/electrospray ionization/mass spectrometry. The strain reacted to the biocide by changing the composition of its phospholipids. TBT induced a twofold decline in the amounts of many molecular species of phosphatidylglycerol and an increase in the levels of phosphatidic acid (by 58%) and phosphatidylethanolamine (by 70%). An increase in the degree of saturation of phospholipid fatty acids of TBT exposed Pseudomonas sp. was observed. These changes in the phospholipid composition and concentration reflect the mechanisms which support optimal lipid ordering in the presence of toxic xenobiotic. In the presence of TBT the abundances of 16 proteins, including TonB-dependent receptors, porins and peroxidases were modified, which could indicate a contribution of some enzymes to TBT resistance.

  7. QUALIDADE BACTERIOLÓGICA DE OVOS CONTAMINADOS COM PSEUDOMONAS AERUGINOSA E ARMAZENADOS EM TEMPERATURA AMBIENTE OU REFRIGERADOS

    Directory of Open Access Journals (Sweden)

    Fernanda Rodrigues Mendes

    2014-12-01

    Full Text Available The aim of this study was to evaluate the effect of sanitization and storage temperature on the quality of commercial eggs inoculated with Pseudomonas aeruginosa. We used 240 large eggs, without cracks, from Dekalb White laying hens at 30 to 40 weeks of age. The experimental design used was two blocks in a 2 x 2 factorial arrange (washed/non-washed and refrigerated/non-refrigerated with twelve replicates. The eggs were contaminated by handling, with 1.5 x 105 colony-forming units (CFU of Pseudomonas aeruginosa and stored at 5 °C and 25 °C for 30 days. Each ten days the eggshell and contents were submitted to bacteriological analyses. Variance analyses were performed and the data were compared by Tukey test. The results showed that Pseudomonas aeruginosa were isolated from the shells and contents of all eggs. Therefore, when the eggs were sanitized and stored at 5 ºC the contamination was less intense. The correlation between the presences of Pseudomonas aeruginosa in the shell and contents was high, when the eggs were not sanitized nor refrigerated. The conclusion of this study was that the egg must be sanitized and refrigerated when the stored for more than 30 days.

  8. Characterization of Pseudomonas pathovars isolated from rosaceous fruit trees in East Algeria.

    Science.gov (United States)

    Harzallah, D; Sadallah, S; Larous, L

    2004-01-01

    A survey of bacterial diseases due to Pseudomonas on rosaceous fruit trees was conducted. In forty two orchards located in the Constantine region ( East Algeria). Pseudomonas isolates were identified on the bases of their cultural and biochemical characteristics . A total of fifty nine phytopathogenic bacteria were isolated from diseased pome and stone fruit trees. Thirty one strains comparable to Pseudomonas syringae pv. syringae were isolated from cherry (Prunus avium L.), plum (P. domestica L.), apricot (P. armeniaca L.), almond (P. dulcis L.) and pear trees (Pirus communis L.); sixteen strains comparable to Pseudomonas syringae pv. morsprunorum were obtained from samples of cherry and plum. Twelve strains of Pseudomonas viridiflava were isolated from cherry, apricot and peach (Prunus persica L.).

  9. The Arabidopsis thaliana non-specific phospholipase C2 is involved in the response to Pseudomonas syringae attack

    Czech Academy of Sciences Publication Activity Database

    Krčková, Zuzana; Kocourková, Daniela; Daněk, Michal; Brouzdová, Jitka; Pejchar, Přemysl; Janda, Martin; Pokotylo, I.; Ott, P.G.; Valentová, O.; Martinec, Jan

    2018-01-01

    Roč. 121, č. 2 (2018), s. 297-310 ISSN 0305-7364 R&D Projects: GA ČR(CZ) GAP501/12/1942 Institutional support: RVO:61389030 Keywords : Arabidopsis thaliana * effector-triggered immunity * flagellin * MAMP-triggered immunity * non-specific phospholipase C * phosphatidylcholine-specific phospholipase C * Pseudomonas syringae * reactive oxygen species Subject RIV: ED - Physiology OBOR OECD: Plant sciences, botany Impact factor: 4.041, year: 2016

  10. Energetics of binary mixed culture of Pseudomonas aeruginosa and ...

    African Journals Online (AJOL)

    Bioenergetic analysis of the growth of the binary mixed culture (Pseudomonas aeruginosa and Pseudomonas fluorescence) on phenol chemostat culture was carried out. The data were checked for consistency using carbon and available electron balances. When more than the minimum number of variables are measured, ...

  11. Pseudomonas syringae evades host Immunity by degrading flagellin monomers with alkaline protease AprA

    OpenAIRE

    Pel, M.J.C.; Van Dijken, A.J.H.; Bardoel, B.W.; Seidl, M.F; Van der Ent, S.; Van Strijp, J.A.G.

    2014-01-01

    Bacterial flagellin molecules are strong inducers of innate immune responses in both mammals and plants. The opportunistic pathogen Pseudomonas aeruginosa secretes an alkaline protease called AprA that degrades flagellin monomers. Here, we show that AprA is widespread among a wide variety of bacterial species. In addition, we investigated the role of AprA in virulence of the bacterial plant athogen P. syringae pv. tomato DC3000. The AprA-deficient DC3000 ΔaprA knockout mutant was significantl...

  12. Candidate nematicidal proteins in a new Pseudomonas veronii isolate identified by its antagonistic properties against Xiphinema index.

    Science.gov (United States)

    Canchignia, Hayron; Altimira, Fabiola; Montes, Christian; Sánchez, Evelyn; Tapia, Eduardo; Miccono, María; Espinoza, Daniel; Aguirre, Carlos; Seeger, Michael; Prieto, Humberto

    2017-03-17

    The nematode Xiphinema index affects grape vines and transmits important viruses associated with fanleaf degeneration. Pseudomonas spp. are an extensive bacterial group in which important biodegradation and/or biocontrol properties can occur for several strains in the group. The aim of this study was to identify new Pseudomonas isolates with antagonist activity against X. index. Forty bacterial isolates were obtained from soil and root samples from Chilean vineyards. Thirteen new fluorescent pseudomonads were found and assessed for their antagonistic capability. The nematicide Pseudomonas protegens CHA0 was used as a control. Challenges of nematode individuals in King's B semi-solid agar Petri dishes facilitated the identification of the Pseudomonas veronii isolate R4, as determined by a 16S rRNA sequence comparison. This isolate was as effective as CHA0 as an antagonist of X. index, although it had a different lethality kinetic. Milk-induced R4 cultures exhibited protease and lipase activities in cell supernatants using both gelatin/tributyrin Petri dish assays and zymograms. Three proteins with these activities were isolated and subjected to mass spectrometry. Amino acid partial sequences enabled the identification of a 49-kDa protease similar to metalloprotease AprA and two lipases of 50 kDa and 69 kDa similar to LipA and ExoU, respectively. Electron microscopy analyses of challenged nematodes revealed degraded cuticle after R4 supernatant treatment. These results represent a new and unexplored property in this species associated with the presence of secretable lipases and protease, similar to characterized enzymes present in biocontrol pseudomonads.

  13. Efficacy of selected Pseudomonas strains for biocontrol of Rhizoctonia solani in potato

    Directory of Open Access Journals (Sweden)

    Moncef MRABET

    2014-01-01

    Full Text Available Thirty seven bacterial isolates from faba bean (Vicia faba L. root-nodules were screened for their antagonistic activity against eight Rhizoctonia solani strains isolated from infected potato (Solanum tuberosum L. tubers. Two bacterial strains (designated as Kl.Fb14 and S8.Fb11 gave 50% in vitro inhibition of R. solani mycelial growth. 16S rDNA sequence analysis indicated that strain Kl.Fb14 exhibited 99.5% identity with Pseudomonas moraviensis, and that S8.Fb11 exhibited 99.8% identity with Pseudomonas reinekei. Greenhouse trials in soil showed that strain S8.Fb11 reduced the percentage of sclerotia on potato tubers and amounts of tuber infection for the potato cultivars Spunta and Nicola. In a field trial conducted in South Tunisia, infection with R. solani reduced potato yield by approximately 40% for ‘Spunta’ and 17% for ‘Nicola’; about 20% of the total tuber production was severely infected. However, when potato tubers were treated with strain S8.Fb11 prior to sowing, disease incidence was reduced to 6% of total production with low infection levels; potato yield was enhanced by about 6 kg per 10 m row in comparison to R. solani infected plants. The second selected Pseudomonas sp. (strain Kl.Fb14 did not affect either the levels of sclerotia on tubers or potato yield.

  14. Crystallization, diffraction data collection and preliminary crystallographic analysis of DING protein from Pseudomonas fluorescens

    International Nuclear Information System (INIS)

    Moniot, Sebastien; Elias, Mikael; Kim, Donghyo; Scott, Ken; Chabriere, Eric

    2007-01-01

    Crystallization of DING protein from P. fluorescens is reported. A complete data set was collected to 1.43 Å resolution. PfluDING is a phosphate-binding protein expressed in Pseudomonas fluorescens. This protein is clearly distinct from the bacterial ABC transporter soluble phosphate-binding protein PstS and is more homologous to eukaryotic DING proteins. Interestingly, bacterial DING proteins have only been detected in certain Pseudomonas species. Although DING proteins seem to be ubiquitous in eukaryotes, they are systematically absent from eukaryotic genomic databases and thus are still quite mysterious and poorly characterized. PfluDING displays mitogenic activity towards human cells and binds various ligands such as inorganic phosphate, pyrophosphate, nucleotide triphosphates and cotinine. Here, the crystallization of PfluDING is reported in a monoclinic space group (P2 1 ), with typical unit-cell parameters a = 36.7, b = 123.7, c = 40.8 Å, α = 90, β = 116.7, γ = 90°. Preliminary crystallographic analysis reveals good diffraction quality for these crystals and a 1.43 Å resolution data set has been collected

  15. ANTAGONISTIC POTENTIAL OF FLUORESCENT Pseudomonas ...

    African Journals Online (AJOL)

    Prof. Adipala Ekwamu

    GROWTH OF TOMATO CHALLENGED WITH PHTOPATHOGENS ... This study focused on the antagonistic potential of fluorescent Pseudomonas in vitro, and its inoculation effect on growth .... the 5 days old culture in starch agar with Lugol's.

  16. Typing of Pseudomonas aeruginosa strains in Norwegian cystic fibrosis patients

    DEFF Research Database (Denmark)

    Fluge, G; Ojeniyi, B; Høiby, N

    2001-01-01

    OBJECTIVES: Typing of Pseudomonas aeruginosa isolates from Norwegian cystic fibrosis (CF) patients with chronic Pseudomonas lung infection in order to see whether cross-infection might have occurred. METHODS: Isolates from 60 patients were collected during the years 1994-98, and typed by pulsed...

  17. Radionuclide and heavy metal biosorption by Pseudomonas biomass

    International Nuclear Information System (INIS)

    Sar, Pinaki; D'Souza, S.F.; Kazy, Sufia K.; Singh, S.P.

    2001-01-01

    Biosorptive metal (nickel and copper) and radionuclide (uranium) uptake capacity of two Pseudomonas strains was investigated in order to develop biotechnological strategies for toxic metals remediation. Lyophilized Pseudomonas biomass showed a very high uranium loading of 541 mg g -1 dry wt. Compared to this, the other bacterial strain of Pseudomonas aeruginosa used for nickel and copper removal yielded a maximum value of 265 mg g -1 and 137 mg g -1 respectively. Cation binding by both the biomass was fast saturating, pH -dependent process with optimum pH for U, Cu and Ni was pH 5.0, 7.0 and 8.0, respectively. In bimetallic combination, U sorption was inhibited only by Fe 3+ , Al 3+ and Cu 2+ suggesting a selective cation binding by the Pseudomonas biomass. In case of Ni and Cu, presence of Na, K or Ca increased the metal binding while Cd and Pb was antagonistic. Mineral acids could recover more than 75% (on average) of sorbed Ni or Cu. Noticeably, uranium and copper desorption was specifically high (88-90%) with sodium carbonate while calcium carbonate showed a good result for nickel. The overall data are in favour of deployment of the test biomass as efficient metal/radionuclide removal/recovery system. (author)

  18. Pf16 and phiPMW: Expanding the realm of Pseudomonas putida bacteriophages.

    Directory of Open Access Journals (Sweden)

    Damian J Magill

    Full Text Available We present the analysis of two novel Pseudomonas putida phages, pf16 and phiPMW. Pf16 represents a peripherally related T4-like phage, and is the first of its kind infecting a Pseudomonad, with evidence suggesting cyanophage origins. Extensive divergence has resulted in pf16 occupying a newly defined clade designated as the pf16-related phages, lying at the interface of the Schizo T-Evens and Exo T-Evens. Recombination with an ancestor of the P. putida phage AF is likely responsible for the tropism of this phage. phiPMW represents a completely novel Pseudomonas phage with a genome containing substantial genetic novelty through its many hypothetical proteins. Evidence suggests that this phage has been extensively shaped through gene transfer events and vertical evolution. Phylogenetics shows that this phage has an evolutionary history involving FelixO1-related viruses but is in itself highly distinct from this group.

  19. Pseudomonas Exotoxin A: optimized by evolution for effective killing

    Directory of Open Access Journals (Sweden)

    Marta eMichalska

    2015-09-01

    Full Text Available Pseudomonas Exotoxin A (PE is the most toxic virulence factor of the pathogenic bacterium Pseudomonas aeruginosa. This review describes current knowledge about the intoxication pathways of PE. Moreover, PE represents a remarkable example for pathoadaptive evolution, how bacterial molecules have been structurally and functionally optimized under evolutionary pressure to effectively impair and kill their host cells.

  20. 40 CFR 180.1145 - Pseudomonas syringae; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Pseudomonas syringae; exemption from... FOOD Exemptions From Tolerances § 180.1145 Pseudomonas syringae; exemption from the requirement of a tolerance. Pseudomonas syringae is exempted from the requirement of a tolerance on all raw agricultural...

  1. Interleukin-18 impairs the pulmonary host response to Pseudomonas aeruginosa

    NARCIS (Netherlands)

    Schultz, Marc J.; Knapp, Sylvia; Florquin, Sandrine; Pater, Jennie; Takeda, Kiyoshi; Akira, Shizuo; van der Poll, Tom

    2003-01-01

    Interleukin-18 (IL-18) is a potent cytokine with many different proinflammatory activities. To study the role of IL-18 in the pathogenesis of Pseudomonas pneumonia, IL-18-deficient (IL-18(-/-)) and wild-type mice were intranasally inoculated with Pseudomonas aeruginosa. IL-18 deficiency was

  2. Cemaran Staphylococcus aureus dan Pseudomonas aerogenosa Pada Stetoskop dirumah Sakit

    Directory of Open Access Journals (Sweden)

    leka lutpiatina

    2017-10-01

    The result of the research was found contamination of Staphylococcus aureus and Pseudomonas aerogenosa on steteskop. The site home condition of the research data was 66.7% cleaned daily, the storage method was placed on the table 70% and the duration of using the set home more than 1 year as much as 70%. The conclusion of stethoscope at Banjarbaru Hospital was contaminated with Staphylococcus aureus by 70% and Pseudomonas aerogenosa by 17%. The suggestion of research can be continued by knowing the existence of Staphylococcus aureus resistant antibiotic and Pseudomonas aerogenous antibiotic resistant at steteskop at Hospital.

  3. Association of Pectolytic Fluorescent PSeudomonas with Postharvest Rots of Onion

    Directory of Open Access Journals (Sweden)

    H.H. El-Hendawy

    2004-12-01

    Full Text Available Five isolates of pectolytic fluorescent pseudomonads were obtained from a rotted onion bulb and identified as Pseudomonas marginalis. At both 4 and 25oC, all isolates caused soft rot to detached plant parts of onion and to carrot, celery, cucumber, pepper, spinach, tomato and turnip (but not garlic. They did not however cause any symptoms in living plants of these same species. These results suggest that the onion isolates are a postharvest pathogen which is not destructive in the field but becomes a threat to fresh vegetables stored at low-temperature. Analysis of cellulosolytic and pectic enzymes revealed that pectic lyases, but not polygalacturonases, pectin methyl esterases and cellulases were produced in culture by each isolate.

  4. Development and (evidence for) destruction of biofilm with Pseudomonas aeruginosa as architect

    Science.gov (United States)

    Uzcategui, Valerie N.; Donadeo, John J.; Lombardi, Daniel R.; Costello, Michael J.; Sauer, Richard L.

    1991-01-01

    Disinfection and maintenance of an acceptable level of asepsis in spacecraft potable water delivery systems is a formidable task. The major area of research for this project has been to monitor the formation and growth of biofilm, and biofilm attached microorganisms, on stainless steel surfaces (specifically coupons), and the use of ozone for the elimination of these species in a closed loop system. A number of different techniques have been utilized during the course of a typical run. Scraping and sonication of coupon surfaces with subsequent plating as well as epifluorescence microscopy have been utilized to enumerate biofilm protected Pseudomonas aeruginosa. In addition, scanning electron microscopy is the method of choice to examine the integrity of the biofilm. For ozone determinations, the indigo decolorization spectrophotometric method seems most reliable. Both high- and low-nutrient cultured P. aeruginosa organisms were the target species for the ozone disinfection experiments.

  5. Safety of Pseudomonas chlororaphis as a gene source for genetically modified crops.

    Science.gov (United States)

    Anderson, Jennifer A; Staley, Jamie; Challender, Mary; Heuton, Jamie

    2018-02-01

    Genetically modified crops undergo extensive evaluation to characterize their food, feed and environmental safety prior to commercial introduction, using a well-established, science-based assessment framework. One component of the safety assessment includes an evaluation of each introduced trait, including its source organism, for potential adverse pathogenic, toxic and allergenic effects. Several Pseudomonas species have a history of safe use in agriculture and certain species represent a source of genes with insecticidal properties. The ipd072Aa gene from P. chlororaphis encodes the IPD072Aa protein, which confers protection against certain coleopteran pests when expressed in maize plants. P. chlororaphis is ubiquitous in the environment, lacks known toxic or allergenic properties, and has a history of safe use in agriculture and in food and feed crops. This information supports, in part, the safety assessment of potential traits, such as IPD072Aa, that are derived from this source organism.

  6. 45 CFR 670.25 - Designation of specially protected species of native mammals, birds, and plants.

    Science.gov (United States)

    2010-10-01

    ... native mammals, birds, and plants. 670.25 Section 670.25 Public Welfare Regulations Relating to Public... Protected Species of Mammals, Birds, and Plants § 670.25 Designation of specially protected species of native mammals, birds, and plants. The following species has been designated as Specially Protected...

  7. Plant-associated fluorescent Pseudomonas from red lateritic soil: Beneficial characteristics and their impact on lettuce growth.

    Science.gov (United States)

    Maroniche, Guillermo A; Rubio, Esteban J; Consiglio, Adrián; Perticari, Alejandro

    2016-11-25

    Fluorescent Pseudomonas are ubiquitous soil bacteria that usually establish mutualistic associations with plants, promoting their growth and health by several mechanisms. This makes them interesting candidates for the development of crop bio-inoculants. In this work, we isolated phosphate-solubilizing fluorescent Pseudomonas from the rhizosphere and inner tissues of different plant species growing in red soil from Misiones, Argentina. Seven isolates displaying strong phosphate solubilization were selected for further studies. Molecular identification by rpoD genotyping indicated that they belong to different species within the P. fluorescens and P. putida phylogenetic groups. Screening for in vitro traits such as phosphate solubilization, growth regulators synthesis or degradation, motility and antagonism against phytopathogens or other bacteria, revealed a unique profile of characteristics for each strain. Their plant growth-promoting potential was assayed using lettuce as a model for inoculation under controlled and greenhouse conditions. Five of the strains increased the growth of lettuce plants. Overall, the strongest lettuce growth promoter under both conditions was strain ZME4, isolated from inner tissues of maize. No clear association between lettuce growth promotion and in vitro beneficial traits was detected. In conclusion, several phosphate solubilizing pseudomonads from red soil were isolated that display a rich array of plant growth promotion traits, thus showing a potential for the development of new inoculants.

  8. Soil microbial species loss affects plant biomass and survival of an introduced bacterial strain, but not inducible plant defences.

    Science.gov (United States)

    Kurm, Viola; van der Putten, Wim H; Pineda, Ana; Hol, W H Gera

    2018-02-12

    Plant growth-promoting rhizobacteria (PGPR) strains can influence plant-insect interactions. However, little is known about the effect of changes in the soil bacterial community in general and especially the loss of rare soil microbes on these interactions. Here, the influence of rare soil microbe reduction on induced systemic resistance (ISR) in a wild ecotype of Arabidopsis thaliana against the aphid Myzus persicae was investigated. To create a gradient of microbial abundances, soil was inoculated with a serial dilution of a microbial community and responses of Arabidopsis plants that originated from the same site as the soil microbes were tested. Plant biomass, transcription of genes involved in plant defences, and insect performance were measured. In addition, the effects of the PGPR strain Pseudomonas fluorescens SS101 on plant and insect performance were tested under the influence of the various soil dilution treatments. Plant biomass showed a hump-shaped relationship with soil microbial community dilution, independent of aphid or Pseudomonas treatments. Both aphid infestation and inoculation with Pseudomonas reduced plant biomass, and led to downregulation of PR1 (salicylic acid-responsive gene) and CYP79B3 (involved in synthesis of glucosinolates). Aphid performance and gene transcription were unaffected by soil dilution. Neither the loss of rare microbial species, as caused by soil dilution, nor Pseudomonas affect the resistance of A. thaliana against M. persicae. However, both Pseudomonas survival and plant biomass respond to rare species loss. Thus, loss of rare soil microbial species can have a significant impact on both above- and below-ground organisms. © The Author(s) 2018. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Combinatorial efficacy of Trichoderma spp. and Pseudomonas fluorescens to enhance suppression of cell wall degrading enzymes produced by Fusarium wilt of Arachis hypogaea.L

    Directory of Open Access Journals (Sweden)

    P Rajeswari

    2017-12-01

    Full Text Available Fusarium oxysporum, the soil borne pathogen causes vascular wilt, on majority of crop plants. It has been demonstrated that two different species of Trichoderma and Pseudomonas fluorescens suppress disease by different mechanisms. Therefore, application of a mixture of these biocontrol agents, and thus of several suppressive mechanisms, may represent a viable control strategy. A necessity for biocontrol by combinations of biocontrol agents can be the compatibility of the co-inoculated micro-organisms. Hence, compatibility between Trichoderma spp. and Pseudomonas fluorescens that have the ability to suppress Fusarium oxysporum in vitro on the activity of pectinolytic enzymes of Fusarium oxysporum. The activity of pectinolytic enzymes, i.e. pectin methyl esterase, endo and exo polymethylgalacturonases and exo and endo pectin trans eliminases produced by Fusarium oxysporum (Control was higher. Maximum inhibition of pectin methylesterase, exo and endo polymethylgalacturonase and exo and endopectin trans eliminase was shown by culture filtrate of Trichoderma viride + Pseudomonas fluorescens (Tv+Pf (1+2%, followed by Trichoderma harzianum + Pseudomonas fluorescens, (Th +Pf (1.5+2% and Trichoderma viride + Trichoderma harzianum (Tv+Th (1+1.5%. However, pathogenecity suppression of Fusarium oxysporum, a causative of Arachis hypogaea. L by the compatible combination of Trichodema viride + Pseudomonas fluorescens (1+2% was significantly better as compared to the single bio-agent. This indicates that specific interactions between biocontrol agents influence suppression of pathogenicity factors directly by combinations of these compatible bio-agents.

  10. Gentamicin in Pseudomonas aeruginosa

    African Journals Online (AJOL)

    infections by Ps. aeruginosa is contra-indicated. In our study only 2,3 % of the Ps. aeruginosa strains were resistant to gentamicin (MIC 25 Ilg/ml). In view of the synergy reported for combined gentamicin and carbeni- cillin therapy," a combination of these two drugs may be recommended in the treatment of all Pseudomonas.

  11. Ultraviolet-B lethal damage on Pseudomonas aeruginosa

    International Nuclear Information System (INIS)

    Degiorgi, C.F.; Fernandez, R.O.; Pizarro, R.A.

    1996-01-01

    Pseudomonas aeruginosa has shown an increased sensitivity compared with that of Escherichia coli and Enterobacter cloacae, when they were exposed to 0.4 kJ/m2 of ultraviolet-B radiation. The rapid decay in cell viability observed in Pseudomonas aeruginosa after the irradiation was influenced by factors such as culture media and the presence of pyocyanine during the irradiation. The radioinduced lethal damage could be prevented by photoreactivating treatment, indicating that pyrimidine dimer formation was the mechanism causing bacterial death. The results indicate that several environmental conditions may act as protective agents against ultraviolet-B-induced damage

  12. Antibiotics Susceptibility Pattern of Pseudomonas aeruginosa ...

    African Journals Online (AJOL)

    ABSTRACT: This work investigated the prevalence and antibiotics sensitivity of Pseudomonas aeruginosa isolated from ... skin triggers coagulation and an acute inflammatory response ... agents with anti-pseudomonal activity, life-threatening.

  13. Pseudomonas A1 influences the formation of hydroxyapatite and degrades bioglass

    International Nuclear Information System (INIS)

    Papadopoulou, E.; Papadopoulou, L.; Paraskevopoulos, K.M.; Koidis, P.; Sivropoulou, A.

    2009-01-01

    Bacterial infections frequently lead to hard tissue destructions. The purpose of the present study was to address the question as to how the bacteria destroy hard tissues with the use of an in vitro system. A bacterium was isolated from a solution simulating body fluid which was identified as Pseudomonas A1, and is able to solubilize tricalcium phosphate when it grows in IP broth. The presence of Pseudomonas A1 resulted in dose-dependent inhibition of the formation of hydroxyapatite layer, on the surface of bioglass specimens immersed in SBF solution, in contrast to the control. When the bioglass specimens were immersed in IP broth without Ca 3 (PO 4 ) 2 , so as to be present the appropriate inorganic ions for the survival of Pseudomonas but the only source of phosphate be derived from bioactive glass specimens, the formation of hydroxyapatite layer was not observed in any specimen. Additionally the presence of Pseudomonas resulted in 93.4% (w/w) and 85.9% (w/w) reduction on the surface composition of Ca and P, respectively, and further the rate of the decrease of specimen's weight was almost 50% higher in the presence of Pseudomonas compared with the control.

  14. [The effect of biyuanshu oral liquid on the formation of Pseudomonas aeruginosa biofilms in vitro].

    Science.gov (United States)

    Liu, Xiang; Chen, Haihong; Wang, Shengqing

    2012-07-01

    To observe the effect of biyuanshu oral liquid on the formation of pseudomonas aeruginosa biofilms in vitro. Pseudomonas aeruginosa biofilm was established by plate culture and detected by Scanning electron microscopy and AgNO3 staining. After treated with different dosages of biyuanshu oral liquid and erythromycin, the pseudomonas aeruginosa biofilms were observed by AgNO3 staining and the number of viable bacteria were measured by serial dilution. The pseudomonas aeruginosa biofilms could be detected by SEM at the seventh culture day and it was consistent with the detection of AgNO3 staining. The biyuanshu oral liquid and erythromycin have the effect on inhibiting the formation of pseudomonas aeruginosa biofilms. But with the already formed pseudomonas aeruginosa biofilms the inhibition was not significant. The serial dilution method showed that the viable counts of bacteria of biyuanshu oral liquid and erythromycin treated groups were significantly lower than those untreated groups (P formation of pseudomonas aeruginosa biofilms in vitro.

  15. The Pseudomonas Quinolone Signal (PQS)

    DEFF Research Database (Denmark)

    Sams, Thomas; Baker, Ysobel; Hodgkinson, James

    2015-01-01

    Pseudomonas aeruginosa is an opportunistichuman pathogen that routinely appears near the top ofpublic health threat lists worldwide. P. aeruginosa causes in-fections by secreting a wealth of exceptionally active exo-products, leading to tissue damage. The synthesis of manyof these virulence factors...

  16. Bactericidal Activity of TiO2 on Cells of Pseudomonas aeruginosa ATCC 27853

    Directory of Open Access Journals (Sweden)

    J. L. Aguilar Salinas

    2013-01-01

    Full Text Available The photocatalytic activity of semiconductors is increasingly being used to disinfect water, air, soils, and surfaces. Titanium dioxide (TiO2 is widely used as a photocatalyst in thin films, powder, and in mixtures with other semiconductors or metals. This work presents the antibacterial effects of TiO2 and light exposure (at 365 nm on Pseudomonas aeruginosa ATCC 27853. TiO2 powder was prepared from a mixture of titanium isopropoxide, ethanol, and nitric acid using a green and short time sol-gel technique. The obtained gel annealed at 450°C was characterized by X-ray diffraction, Raman spectroscopy, ultraviolet-visible spectroscopy, diffuse reflectance, scanning electron microscopy, and transmission electron microscopy. The nanocomposite effectively catalyzed the inactivation of Pseudomonas aeruginosa. Following 90 minutes exposure to TiO2 and UV light, logarithm of cell density was reduced from 6 to 3. These results were confirmed by a factorial design incorporating two experimental replicates and two independent factors.

  17. Trehalose 6-phosphate phosphatases of Pseudomonas aeruginosa.

    Science.gov (United States)

    Cross, Megan; Biberacher, Sonja; Park, Suk-Youl; Rajan, Siji; Korhonen, Pasi; Gasser, Robin B; Kim, Jeong-Sun; Coster, Mark J; Hofmann, Andreas

    2018-04-24

    The opportunistic bacterium Pseudomonas aeruginosa has been recognized as an important pathogen of clinical relevance and is a leading cause of hospital-acquired infections. The presence of a glycolytic enzyme in Pseudomonas, which is known to be inhibited by trehalose 6-phosphate (T6P) in other organisms, suggests that these bacteria may be vulnerable to the detrimental effects of intracellular T6P accumulation. In the present study, we explored the structural and functional properties of trehalose 6-phosphate phosphatase (TPP) in P. aeruginosa in support of future target-based drug discovery. A survey of genomes revealed the existence of 2 TPP genes with either chromosomal or extrachromosomal location. Both TPPs were produced as recombinant proteins, and characterization of their enzymatic properties confirmed specific, magnesium-dependent catalytic hydrolysis of T6P. The 3-dimensional crystal structure of the chromosomal TPP revealed a protein dimer arising through β-sheet expansion of the individual monomers, which possess the overall fold of halo-acid dehydrogenases.-Cross, M., Biberacher, S., Park, S.-Y., Rajan, S., Korhonen, P., Gasser, R. B., Kim, J.-S., Coster, M. J., Hofmann, A. Trehalose 6-phosphate phosphatases of Pseudomonas aeruginosa.

  18. Variation in extragenic repetitive DNA sequences in Pseudomonas syringae and potential use of modified REP primers in the identification of closely related isolates

    Directory of Open Access Journals (Sweden)

    Elif Çepni

    2012-01-01

    Full Text Available In this study, Pseudomonas syringe pathovars isolated from olive, tomato and bean were identified by species-specific PCR and their genetic diversity was assessed by repetitive extragenic palindromic (REP-PCR. Reverse universal primers for REP-PCR were designed by using the bases of A, T, G or C at the positions of 1, 4 and 11 to identify additional polymorphism in the banding patterns. Binding of the primers to different annealing sites in the genome revealed additional fingerprint patterns in eight isolates of P. savastanoi pv. savastanoi and two isolates of P. syringae pv. tomato. The use of four different bases in the primer sequences did not affect the PCR reproducibility and was very efficient in revealing intra-pathovar diversity, particularly in P. savastanoi pv. savastanoi. At the pathovar level, the primer BOX1AR yielded shared fragments, in addition to five bands that discriminated among the pathovars P. syringae pv. phaseolicola, P. savastanoi pv. savastanoi and P. syringae pv. tomato. REP-PCR with a modified primer containing C produced identical bands among the isolates in a pathovar but separated three pathovars more distinctly than four other primers. Although REP-and BOX-PCRs have been successfully used in the molecular identification of Pseudomonas isolates from Turkish flora, a PCR based on inter-enterobacterial repetitive intergenic concensus (ERIC sequences failed to produce clear banding patterns in this study.

  19. Facial Nerve Paralysis seen in Pseudomonas sepsis with ecthyma gangrenosum

    Directory of Open Access Journals (Sweden)

    Suleyman Ozdemir

    2013-02-01

    Full Text Available Ecthyma gangrenosum is a skin lesion which is created by pseudomonas auriginosa. Peripheral facial paralysis and mastoiditis as a rare complication of otitis media induced by pseudomonas auriginosa.In this study, 4 months child who has ecthyma gangrenosum and facial nerve paralysis was reported. [Cukurova Med J 2013; 38(1.000: 126-130

  20. Hydrolytic potential of a psychrotrophic Pseudomonas isolated from refrigerated raw milk

    Directory of Open Access Journals (Sweden)

    Ana Paula F. Corrêa

    2011-12-01

    Full Text Available The production of extracellular hydrolases by a psychrotrophic bacterium isolated from refrigerated raw milk, and identified as a Pseudomonas sp. belonging to the Pseudomonas jenssenii group, was studied. This bacterium produced proteolytic and lipolytic enzymes in all media investigated (skim milk, cheese whey, casein broth, and tryptone soy broth. High levels of α-glucosidase were produced in skim milk broth. Hydrolytic enzymes detected in skim milk broth are of particular concern, indicating that these enzymes could be produced by Pseudomonas sp. during the cold storage of raw milk, contributing to the spoilage problem in milk and dairy products.

  1. Pseudomonas A1 influences the formation of hydroxyapatite and degrades bioglass

    Energy Technology Data Exchange (ETDEWEB)

    Papadopoulou, E. [Laboratory of General Microbiology, Section of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece); Papadopoulou, L. [School of Geology, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece); Paraskevopoulos, K.M. [Physics Department Solid State Physics Section, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece); Koidis, P. [Department of Fixed Prosthesis and Implant Prosthodontics, School of Dentistry, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece); Sivropoulou, A., E-mail: asivropo@bio.auth.g [Laboratory of General Microbiology, Section of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece)

    2009-12-15

    Bacterial infections frequently lead to hard tissue destructions. The purpose of the present study was to address the question as to how the bacteria destroy hard tissues with the use of an in vitro system. A bacterium was isolated from a solution simulating body fluid which was identified as Pseudomonas A1, and is able to solubilize tricalcium phosphate when it grows in IP broth. The presence of Pseudomonas A1 resulted in dose-dependent inhibition of the formation of hydroxyapatite layer, on the surface of bioglass specimens immersed in SBF solution, in contrast to the control. When the bioglass specimens were immersed in IP broth without Ca{sub 3}(PO{sub 4}){sub 2}, so as to be present the appropriate inorganic ions for the survival of Pseudomonas but the only source of phosphate be derived from bioactive glass specimens, the formation of hydroxyapatite layer was not observed in any specimen. Additionally the presence of Pseudomonas resulted in 93.4% (w/w) and 85.9% (w/w) reduction on the surface composition of Ca and P, respectively, and further the rate of the decrease of specimen's weight was almost 50% higher in the presence of Pseudomonas compared with the control.

  2. 40 CFR 180.1107 - Delta endotoxin of Bacillus thuringiensis variety kurstaki encapsulated into killed Pseudomonas...

    Science.gov (United States)

    2010-07-01

    ... thuringiensis variety kurstaki encapsulated into killed Pseudomonas fluorescens; exemption from the requirement... killed Pseudomonas fluorescens; exemption from the requirement of a tolerance. The delta endotoxin of Bacillus thuringiensis variety kurstaki encapsulated into killed Pseudomonas fluorescens is exempt from the...

  3. Detectie en beheersing van bacterierot veroorzaakt door Pseudomonas cattleyae in Phalaenopsis

    NARCIS (Netherlands)

    Ludeking, D.J.W.; Hamelink, R.; Kromwijk, J.A.M.; Schenk, M.F.; Vermunt, A.; Woets, F.

    2011-01-01

    Phalaenopsis growers suffer from mayor losses up to 20% due to bacterial spot. This bacterial infection in caused by the Acidovorax avenae subsp. cattleyae. In practice this bacterial disease is also known as Pseudomonas. This bacterium is causing black leaf spots with a yellow border. Pseudomonas

  4. Accumulation of a Polyhydroxyalkanoate Containing Primarily 3-Hydroxydecanoate from Simple Carbohydrate Substrates by Pseudomonas sp. Strain NCIMB 40135.

    Science.gov (United States)

    Haywood, G W; Anderson, A J; Ewing, D F; Dawes, E A

    1990-11-01

    A number of Pseudomonas species have been identified which accumulate a polyhydroxyalkanoate containing mainly 3-hydroxydecanoate monomers from sodium gluconate as the sole carbon source. One of these, Pseudomonas sp. strain NCIMB 40135, was further investigated and shown to accumulate such a polyhydroxyalkanoate from a wide range of carbon sources (C(2) to C(6)); however, when supplied with octanoic acid it produced a polyhydroxyalkanoate containing mainly 3-hydroxyoctanoate monomers. Polymer synthesis occurred in batch culture after cessation of growth due to exhaustion of nitrogen. In continuous culture under nitrogen limitation up to 16.9% (wt/wt) polyhydroxyalkanoate was synthesized from glucose as the carbon source. The monomer units are mainly of the R-(-) configuration. Nuclear magnetic resonance studies confirmed the composition of the polymer. Differential scanning calorimetry suggested that the solvent-extracted polymer contained a significant proportion of crystalline material. The weight-average molecular weight of the polymer from glucose-grown cells was 143,000.

  5. Comparative In Vitro Efficacy of Doripenem and Imipenem Against Multi-Drug Resistant Pseudomonas aeruginosa.

    Science.gov (United States)

    Wali, Nadia; Mirza, Irfan Ali

    2016-04-01

    To compare the in vitro efficacy of doripenem and imipenem against multi-drug resistant (MDR) Pseudomonas aeruginosa from various clinical specimens. Descriptive cross-sectional study. Department of Microbiology, Armed Forces Institute of Pathology, Rawalpindi, from November 2012 to November 2013. MDR Pseudomonas aeruginosa isolates from various clinical samples were included in the study. Susceptibility of Pseudomonas aeruginosa against doripenem and imipenem was performed by E-test strip and agar dilution methods. The results were interpreted as recommended by Clinical Laboratory Standard Institute (CLSI) guidelines. The maximum number of Pseudomonas aeruginosa were isolated from pure pus and pus swabs. In vitro efficacy of doripenem was found to be more effective as compared to imipenem against MDR Pseudomonas aeruginosa with both E-test strip and agar dilution methods. Overall, p-values of 0.014 and 0.037 were observed when susceptibility patterns of doripenem and imipenem were evaluated with E-test strip and agar dilution methods. In vitro efficacy of doripenem was found to be better against MDR Pseudomonas aeruginosaas compared to imipenem when tested by both E-test and agar dilution methods.

  6. Isolation and Molecular Characterization of a Model Antagonistic Pseudomonas aeruginosa Divulging In Vitro Plant Growth Promoting Characteristics

    Directory of Open Access Journals (Sweden)

    Bushra Uzair

    2018-01-01

    Full Text Available The use of microbial technologies in agriculture is currently expanding quite rapidly with the identification of new bacterial strains, which are more effective in promoting plant growth. In the present study 18 strains of Pseudomonas were isolated from soil sample of Balochistan coastline. Among isolated Pseudomonas strains four designated as SP19, SP22, PS24, and SP25 exhibited biocontrol activities against phytopathogenic fungi, that is, Rhizopus microsporus, Fusarium oxysporum, Aspergillus niger, Alternaria alternata, and Penicillium digitatum; PS24 identified as Pseudomonas aeruginosa by 16srRNA gene bank accession number EU081518 was selected on the basis of its antifungal activity to explore its potential as plant growth promotion. PS24 showed multiple plant growth promoting attributes such as phosphate solubilization activity, indole acetic acid (IAA, siderophore, and HCN production. In order to determine the basis for antifungal properties, antibiotics were extracted from King B broth of PS24 and analyzed by TLC. Pyrrolnitrin antibiotic was detected in the culture of strain PS24. PS24 exhibited antifungal activities found to be positive for hydrogen cyanide synthase Hcn BC gene. Sequencing of gene of Hcn BC gene of strain PS24 revealed 99% homology with the Pseudomonas aeruginosa strain PA01. The sequence of PS24 had been submitted in gene bank accession number KR605499. Ps. aeruginosa PS24 with its multifunctional biocontrol possessions can be used to bioprotect the crop plants from phytopathogens.

  7. Bidirectional gene sequences with similar homology to functional proteins of alkane degrading bacterium pseudomonas fredriksbergensis DNA

    International Nuclear Information System (INIS)

    Megeed, A.A.

    2011-01-01

    The potential for two overlapping fragments of DNA from a clone of newly isolated alkanes degrading bacterium Pseudomonas frederiksbergensis encoding sequences with similar homology to two parts of functional proteins is described. One strand contains a sequence with high homology to alkanes monooxygenase (alkB), a member of the alkanes hydroxylase family, and the other strand contains a sequence with some homology to alcohol dehydrogenase gene (alkJ). Overlapping of the genes on opposite strands has been reported in eukaryotic species, and is now reported in a bacterial species. The sequence comparisons and ORFS results revealed that the regulation and the genes organization involved in alkane oxidation represented in Pseudomonas frederiksberghensis varies among the different known alkane degrading bacteria. The alk gene cluster containing homologues to the known alkane monooxygenase (alkB), and rubredoxin (alkG) are oriented in the same direction, whereas alcohol dehydrogenase (alkJ) is oriented in the opposite direction. Such genomes encode messages on both strands of the DNA, or in an overlapping but different reading frames, of the same strand of DNA. The possibility of creating novel genes from pre-existing sequences, known as overprinting, which is a widespread phenomenon in small viruses. Here, the origin and evolution of the gene overlap to bacteriophages belonging to the family Microviridae have been investigated. Such a phenomenon is most widely described in extremely small genomes such as those of viruses or small plasmids, yet here is a unique phenomenon. (author)

  8. Combined inoculation of Pseudomonas fluorescens and Trichoderma harzianum for enhancing plant growth of vanilla (Vanilla planifolia).

    Science.gov (United States)

    Sandheep, A R; Asok, A K; Jisha, M S

    2013-06-15

    This study was conducted to evaluate the plant growth promoting efficiency of combined inoculation of rhizobacteria on Vanilla plants. Based on the in vitro performance of indigenous Trichoderma spp. and Pseudomonas spp., four effective antagonists were selected and screened under greenhouse experiment for their growth enhancement potential. The maximum percentage of growth enhancement were observed in the combination of Trichoderma harzianum with Pseudomonas fluorescens treatment followed by Pseudomonas fluorescens, Trichoderma harzianum, Pseudomonas putida and Trichoderma virens, respectively in decreasing order. Combined inoculation of Trichoderma harzianum and Pseudomonas fluorescens registered the maximum length of vine (82.88 cm), highest number of leaves (26.67/plant), recorded the highest fresh weight of shoots (61.54 g plant(-1)), fresh weight of roots (4.46 g plant(-1)) and dry weight of shoot (4.56 g plant(-1)) where as the highest dry weight of roots (2.0806 g plant(-1)) were achieved with treatments of Pseudomonas fluorescens. Among the inoculated strains, combined inoculation of Trichoderma harzianum and Pseudomonas fluorescens recorded the maximum nitrogen uptake (61.28 mg plant(-1)) followed by the combined inoculation of Trichoderma harzianum (std) and Pseudomonas fluorescens (std) (55.03 mg plant(-1)) and the highest phosphorus uptake (38.80 mg plant(-1)) was recorded in dual inoculation of Trichoderma harzianum and Pseudomonas fluorescens.

  9. [Risk factors for Pseudomonas aeruginosa infections, resistant to carbapenem].

    Science.gov (United States)

    Ghibu, Laura; Miftode, Egidia; Teodor, Andra; Bejan, Codrina; Dorobăţ, Carmen Mihaela

    2010-01-01

    Since their introduction in clinical practice,carbapenems have been among the most powerful antibiotics for treating serious infections cased by Gram-negative nosocomial pathogens, including Pseudomonas aeruginosa. The emergence of betalactamases with carbapenem-hydrolyzing activity is of major clinical concern. Pseudomonas aeruginosa is a leading cause of nosocomial infection. Risk factors for colonization with carbapenems-resistant Pseudomonas in hospital are: history of P. aeruginosa infection or colonization within the previous year, (length of hospital stay, being bedridden or in the ICU, mechanical ventilation, malignant disease, and history of chronic obstructive pulmonary disease have all been identified as independent risk factors for MDR P. aeruginosa infection. Long-term-care facilities are also reservoirs of resistant bacteria. Risk factors for colonization of LTCF residents with resistant bacteria included age > 86 years, antibiotic treatment in the previous 3 months, indwelling devices, chronic obstructive pulmonary disease, physical disability, and the particular LTCF unit.

  10. Biosurfactant production by Pseudomonas strains isolated from floral nectar.

    Science.gov (United States)

    Ben Belgacem, Z; Bijttebier, S; Verreth, C; Voorspoels, S; Van de Voorde, I; Aerts, G; Willems, K A; Jacquemyn, H; Ruyters, S; Lievens, B

    2015-06-01

    To screen and identify biosurfactant-producing Pseudomonas strains isolated from floral nectar; to characterize the produced biosurfactants; and to investigate the effect of different carbon sources on biosurfactant production. Four of eight nectar Pseudomonas isolates were found to produce biosurfactants. Phylogenetic analysis based on three housekeeping genes (16S rRNA gene, rpoB and gyrB) classified the isolates into two groups, including one group closely related to Pseudomonas fluorescens and another group closely related to Pseudomonas fragi and Pseudomonas jessenii. Although our nectar pseudomonads were able to grow on a variety of water-soluble and water-immiscible carbon sources, surface active agents were only produced when using vegetable oil as sole carbon source, including olive oil, sunflower oil or waste frying sunflower oil. Structural characterization based on thin layer chromatography (TLC) and ultra high performance liquid chromatography-accurate mass mass spectrometry (UHPLC-amMS) revealed that biosurfactant activity was most probably due to the production of fatty acids (C16:0; C18:0; C18:1 and C18:2), and mono- and diglycerides thereof. Four biosurfactant-producing nectar pseudomonads were identified. The active compounds were identified as fatty acids (C16:0; C18:0; C18:1 and C18:2), and mono- and diglycerides thereof, produced by hydrolysis of triglycerides of the feedstock. Studies on biosurfactant-producing micro-organisms have mainly focused on microbes isolated from soils and aquatic environments. Here, for the first time, nectar environments were screened as a novel source for biosurfactant producers. As nectars represent harsh environments with high osmotic pressure and varying pH levels, further screening of nectar habitats for biosurfactant-producing microbes may lead to the discovery of novel biosurfactants with broad tolerance towards different environmental conditions. © 2015 The Society for Applied Microbiology.

  11. The Pseudomonas community in metal-contaminated sediments as revealed by quantitative PCR: a link with metal bioavailability.

    Science.gov (United States)

    Roosa, Stéphanie; Wauven, Corinne Vander; Billon, Gabriel; Matthijs, Sandra; Wattiez, Ruddy; Gillan, David C

    2014-10-01

    Pseudomonas bacteria are ubiquitous Gram-negative and aerobic microorganisms that are known to harbor metal resistance mechanisms such as efflux pumps and intracellular redox enzymes. Specific Pseudomonas bacteria have been quantified in some metal-contaminated environments, but the entire Pseudomonas population has been poorly investigated under these conditions, and the link with metal bioavailability was not previously examined. In the present study, quantitative PCR and cell cultivation were used to monitor and characterize the Pseudomonas population at 4 different sediment sites contaminated with various levels of metals. At the same time, total metals and metal bioavailability (as estimated using an HCl 1 m extraction) were measured. It was found that the total level of Pseudomonas, as determined by qPCR using two different genes (oprI and the 16S rRNA gene), was positively and significantly correlated with total and HCl-extractable Cu, Co, Ni, Pb and Zn, with high correlation coefficients (>0.8). Metal-contaminated sediments featured isolates of the Pseudomonas putida, Pseudomonas fluorescens, Pseudomonas lutea and Pseudomonas aeruginosa groups, with other bacterial genera such as Mycobacterium, Klebsiella and Methylobacterium. It is concluded that Pseudomonas bacteria do proliferate in metal-contaminated sediments, but are still part of a complex community. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  12. Mangotoxin production of Pseudomonas syringae pv. syringae is regulated by MgoA.

    Science.gov (United States)

    Carrión, Víctor J; van der Voort, Menno; Arrebola, Eva; Gutiérrez-Barranquero, José A; de Vicente, Antonio; Raaijmakers, Jos M; Cazorla, Francisco M

    2014-02-21

    The antimetabolite mangotoxin is a key factor in virulence of Pseudomonas syringae pv. syringae strains which cause apical necrosis of mango trees. Previous studies showed that mangotoxin biosynthesis is governed by the mbo operon. Random mutagenesis led to the identification of two other gene clusters that affect mangotoxin biosynthesis. These are the gacS/gacA genes and mgo operon which harbors the four genes mgoBCAD. The current study shows that disruption of the nonribosomal peptide synthetase (NRPS) gene mgoA resulted in loss of mangotoxin production and reduced virulence on tomato leaves. Transcriptional analyses by qPCR and promoter reporter fusions revealed that mbo expression is regulated by both gacS/gacA and mgo genes. Also, expression of the mgo operon was shown to be regulated by gacS/gacA. Heterologous expression under the native promoter of the mbo operon resulted in mangotoxin production in non-producing P. syringae strains, but not in other Pseudomonas species. Also introduction of the mbo and mgo operons in nonproducing P. protegens Pf-5 did not confer mangotoxin production but did enhance transcription of the mbo promoter. From the data obtained in this study, we conclude that both mbo and mgo operons are under the control of the gacS/gacA two-component system and that the MgoA product acts as a positive regulator of mangotoxin biosynthesis.

  13. Pseudomonas aeruginosa Biofilm, a Programmed Bacterial Life for Fitness.

    Science.gov (United States)

    Lee, Keehoon; Yoon, Sang Sun

    2017-06-28

    A biofilm is a community of microbes that typically inhabit on surfaces and are encased in an extracellular matrix. Biofilms display very dissimilar characteristics to their planktonic counterparts. Biofilms are ubiquitous in the environment and influence our lives tremendously in both positive and negative ways. Pseudomonas aeruginosa is a bacterium known to produce robust biofilms. P. aeruginosa biofilms cause severe problems in immunocompromised patients, including those with cystic fibrosis or wound infection. Moreover, the unique biofilm properties further complicate the eradication of the biofilm infection, leading to the development of chronic infections. In this review, we discuss the history of biofilm research and general characteristics of bacterial biofilms. Then, distinct features pertaining to each stage of P. aeruginosa biofilm development are highlighted. Furthermore, infections caused by biofilms on their own or in association with other bacterial species ( i.e. , multispecies biofilms) are discussed in detail.

  14. Pseudomonas aeruginosa (Family Pseudomonadaceae) is an ...

    African Journals Online (AJOL)

    Pseudomonas aeruginosa (Family Pseudomonadaceae) is an obligate aerobic, motile, gram negative bacillus.which is able to grow and survive in almost any environment and resistant to temperature extremes. It is involved in the etiology of several diseases i.

  15. Vaccines for preventing infection with Pseudomonas aeruginosa in cystic fibrosis.

    Science.gov (United States)

    Johansen, Helle Krogh; Gøtzsche, Peter C

    2015-08-23

    Chronic pulmonary infection in cystic fibrosis results in progressive lung damage. Once colonisation of the lungs with Pseudomonas aeruginosa occurs, it is almost impossible to eradicate. Vaccines, aimed at reducing infection with Pseudomonas aeruginosa, have been developed. This is an update of a previously published review. To assess the effectiveness of vaccination against Pseudomonas aeruginosa in cystic fibrosis. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Trials Register using the terms vaccines AND pseudomonas (last search 30 March 2015). We previously searched PubMed using the terms vaccin* AND cystic fibrosis (last search 30 May 2013). Randomised trials (published or unpublished) comparing Pseudomonas aeruginosa vaccines (oral, parenteral or intranasal) with control vaccines or no intervention in cystic fibrosis. The authors independently selected trials, assessed them and extracted data. Six trials were identified. Two trials were excluded since they were not randomised and one old, small trial because it was not possible to assess whether is was randomised. The three included trials comprised 483, 476 and 37 patients, respectively. No data have been published from one of the large trials, but the company stated in a press release that the trial failed to confirm the results from an earlier study and that further clinical development was suspended. In the other large trial, relative risk for chronic infection was 0.91 (95% confidence interval 0.55 to 1.49), and in the small trial, the risk was also close to one. In the large trial, one patient was reported to have died in the observation period. In that trial, 227 adverse events (4 severe) were registered in the vaccine group and 91 (1 severe) in the control group. In this large trial of a vaccine developed against flagella antigens, antibody titres against the epitopes contained in the vaccine were higher in the vaccine group compared to the placebo group (P Vaccines against

  16. Antimicrobial activity of some Ganoderma species from Nigeria.

    Science.gov (United States)

    Ofodile, L N; Uma, N U; Kokubun, T; Grayer, R J; Ogundipe, O T; Simmonds, M S J

    2005-04-01

    The crude n-hexane:diethyl ether, chloroform:acetone and methanol extracts of four species of Ganoderma (Ganoderma colossum (Fr.) C. F. Baker, G. resinaceum Boud., G. lucidum (cf.) (Curtis) P. Karst. and G. boninense (cf.) Pat.), from Nigeria, were tested for antimicrobial activity. The three solvent extracts of all the species of Ganoderma were active against Pseudomonas syringae and Bacillus subtilis, whereas none of the extracts were active against Cladosporium herbarum. Preliminary thin layer chromatography chemical tests on these extracts of Ganoderma showed that they contained compounds that stained blue-violet and blue or green when sprayed with anisaldehyde-sulphuric acid or Dragendorff, respectively. The profile of compounds in the extracts showed some variation among the four species. (c) 2005 John Wiley & Sons, Ltd.

  17. Comparative genomic analysis of multiple strains of two unusual plant pathogens: Pseudomonas corrugata and Pseudomonas mediterranea

    Science.gov (United States)

    Trantas, Emmanouil A.; Licciardello, Grazia; Almeida, Nalvo F.; Witek, Kamil; Strano, Cinzia P.; Duxbury, Zane; Ververidis, Filippos; Goumas, Dimitrios E.; Jones, Jonathan D. G.; Guttman, David S.; Catara, Vittoria; Sarris, Panagiotis F.

    2015-01-01

    The non-fluorescent pseudomonads, Pseudomonas corrugata (Pcor) and P. mediterranea (Pmed), are closely related species that cause pith necrosis, a disease of tomato that causes severe crop losses. However, they also show strong antagonistic effects against economically important pathogens, demonstrating their potential for utilization as biological control agents. In addition, their metabolic versatility makes them attractive for the production of commercial biomolecules and bioremediation. An extensive comparative genomics study is required to dissect the mechanisms that Pcor and Pmed employ to cause disease, prevent disease caused by other pathogens, and to mine their genomes for genes that encode proteins involved in commercially important chemical pathways. Here, we present the draft genomes of nine Pcor and Pmed strains from different geographical locations. This analysis covered significant genetic heterogeneity and allowed in-depth genomic comparison. All examined strains were able to trigger symptoms in tomato plants but not all induced a hypersensitive-like response in Nicotiana benthamiana. Genome-mining revealed the absence of type III secretion system and known type III effector-encoding genes from all examined Pcor and Pmed strains. The lack of a type III secretion system appears to be unique among the plant pathogenic pseudomonads. Several gene clusters coding for type VI secretion system were detected in all genomes. Genome-mining also revealed the presence of gene clusters for biosynthesis of siderophores, polyketides, non-ribosomal peptides, and hydrogen cyanide. A highly conserved quorum sensing system was detected in all strains, although species specific differences were observed. Our study provides the basis for in-depth investigations regarding the molecular mechanisms underlying virulence strategies in the battle between plants and microbes. PMID:26300874

  18. Activation of Pseudomonas aeruginosa elastase in Pseudomonas putida by triggering dissociation of the propeptide-enzyme complex

    NARCIS (Netherlands)

    Braun, P; Bitter, W; Tommassen, J

    2000-01-01

    The propeptide of Pseudomonas aeruginosa elastase functions both as an intramolecular chaperone required for the folding of the enzyme and as an inhibitor that prevents activity of the enzyme before its secretion into the extracellular medium. Since expression of the lasB gene, which encodes

  19. Growth of Pseudomonas fluorescens on Cassava Starch ...

    African Journals Online (AJOL)

    Michael Horsfall

    ABSTRACT: The potential of local strains of microorganism (Pseudomonas fluorescens) in polyhydroxbutyrate production ... The demand for the use of biopolymers ... This work therefore investigates the production of polyhydroxybutyrate from.

  20. High polyhydroxybutyrate production in Pseudomonas extremaustralis is associated with differential expression of horizontally acquired and core genome polyhydroxyalkanoate synthase genes.

    Directory of Open Access Journals (Sweden)

    Mariela V Catone

    Full Text Available Pseudomonas extremaustralis produces mainly polyhydroxybutyrate (PHB, a short chain length polyhydroxyalkanoate (sclPHA infrequently found in Pseudomonas species. Previous studies with this strain demonstrated that PHB genes are located in a genomic island. In this work, the analysis of the genome of P. extremaustralis revealed the presence of another PHB cluster phbFPX, with high similarity to genes belonging to Burkholderiales, and also a cluster, phaC1ZC2D, coding for medium chain length PHA production (mclPHA. All mclPHA genes showed high similarity to genes from Pseudomonas species and interestingly, this cluster also showed a natural insertion of seven ORFs not related to mclPHA metabolism. Besides PHB, P. extremaustralis is able to produce mclPHA although in minor amounts. Complementation analysis demonstrated that both mclPHA synthases, PhaC1 and PhaC2, were functional. RT-qPCR analysis showed different levels of expression for the PHB synthase, phbC, and the mclPHA synthases. The expression level of phbC, was significantly higher than the obtained for phaC1 and phaC2, in late exponential phase cultures. The analysis of the proteins bound to the PHA granules showed the presence of PhbC and PhaC1, whilst PhaC2 could not be detected. In addition, two phasin like proteins (PhbP and PhaI associated with the production of scl and mcl PHAs, respectively, were detected. The results of this work show the high efficiency of a foreign gene (phbC in comparison with the mclPHA core genome genes (phaC1 and phaC2 indicating that the ability of P. extremaustralis to produce high amounts of PHB could be explained by the different expression levels of the genes encoding the scl and mcl PHA synthases.

  1. Long-Chain 4-Aminoquinolines as Quorum Sensing Inhibitors in Serratia marcescens and Pseudomonas aeruginosa.

    Science.gov (United States)

    Aleksić, Ivana; Šegan, Sandra; Andrić, Filip; Zlatović, Mario; Moric, Ivana; Opsenica, Dejan M; Senerovic, Lidija

    2017-05-19

    Antibiotic resistance has become a serious global threat to public health; therefore, improved strategies and structurally novel antimicrobials are urgently needed to combat infectious diseases. Here we report a new type of highly potent 4-aminoquinoline derivatives as quorum sensing inhibitors in Serratia marcescens and Pseudomonas aeruginosa, exhibiting weak bactericidal activities (minimum inhibitory concentration (MIC) > 400 μM). Through detailed structure-activity study, we have identified 7-Cl and 7-CF 3 substituted N-dodecylamino-4-aminoquinolines (5 and 10) as biofilm formation inhibitors with 50% biofilm inhibition at 69 μM and 63 μM in S. marcescens and P. aeruginosa, respectively. These two compounds, 5 and 10, are the first quinoline derivatives with anti-biofilm formation activity reported in S. marcescens. Quantitative structure-activity relationship (QSAR) analysis identified structural descriptors such as Wiener indices, hyper-distance-path index (HDPI), mean topological charge (MTC), topological charge index (TCI), and log D(o/w) exp as the most influential in biofilm inhibition in this bacterial species. Derivative 10 is one of the most potent quinoline type inhibitors of pyocyanin production described so far (IC 50 = 2.5 μM). While we have demonstrated that 5 and 10 act as Pseudomonas quinolone system (PQS) antagonists, the mechanism of inhibition of S. marcescens biofilm formation with these compounds remains open since signaling similar to P. aeruginosa PQS system has not yet been described in Serratia and activity of these compounds on acylhomoserine lactone (AHL) signaling has not been detected. Our data show that 7-Cl and 7-CF 3 substituted N-dodecylamino-4-aminoquinolines present the promising scaffolds for developing antivirulence and anti-biofilm formation agents against multidrug-resistant bacterial species.

  2. 40 CFR 180.1108 - Delta endotoxin of Bacillus thuringiensis variety San Diego encapsulated into killed Pseudomonas...

    Science.gov (United States)

    2010-07-01

    ... thuringiensis variety San Diego encapsulated into killed Pseudomonas fluorescens; exemption from the requirement... into killed Pseudomonas fluorescens; exemption from the requirement of a tolerance. The delta endotoxin of Bacillus thuringiensis variety San Diego encapsulated into killed Pseudomonas fluorescens is...

  3. Reclassification of the Specialized Metabolite Producer Pseudomonas mesoacidophila ATCC 31433 as a Member of the Burkholderia cepacia Complex.

    Science.gov (United States)

    Loveridge, E Joel; Jones, Cerith; Bull, Matthew J; Moody, Suzy C; Kahl, Małgorzata W; Khan, Zainab; Neilson, Louis; Tomeva, Marina; Adams, Sarah E; Wood, Andrew C; Rodriguez-Martin, Daniel; Pinel, Ingrid; Parkhill, Julian; Mahenthiralingam, Eshwar; Crosby, John

    2017-07-01

    Pseudomonas mesoacidophila ATCC 31433 is a Gram-negative bacterium, first isolated from Japanese soil samples, that produces the monobactam isosulfazecin and the β-lactam-potentiating bulgecins. To characterize the biosynthetic potential of P. mesoacidophila ATCC 31433, its complete genome was determined using single-molecule real-time DNA sequence analysis. The 7.8-Mb genome comprised four replicons, three chromosomal (each encoding rRNA) and one plasmid. Phylogenetic analysis demonstrated that P. mesoacidophila ATCC 31433 was misclassified at the time of its deposition and is a member of the Burkholderia cepacia complex, most closely related to Burkholderia ubonensis The sequenced genome shows considerable additional biosynthetic potential; known gene clusters for malleilactone, ornibactin, isosulfazecin, alkylhydroxyquinoline, and pyrrolnitrin biosynthesis and several uncharacterized biosynthetic gene clusters for polyketides, nonribosomal peptides, and other metabolites were identified. Furthermore, P. mesoacidophila ATCC 31433 harbors many genes associated with environmental resilience and antibiotic resistance and was resistant to a range of antibiotics and metal ions. In summary, this bioactive strain should be designated B. cepacia complex strain ATCC 31433, pending further detailed taxonomic characterization. IMPORTANCE This work reports the complete genome sequence of Pseudomonas mesoacidophila ATCC 31433, a known producer of bioactive compounds. Large numbers of both known and novel biosynthetic gene clusters were identified, indicating that P. mesoacidophila ATCC 31433 is an untapped resource for discovery of novel bioactive compounds. Phylogenetic analysis demonstrated that P. mesoacidophila ATCC 31433 is in fact a member of the Burkholderia cepacia complex, most closely related to the species Burkholderia ubonensis Further investigation of the classification and biosynthetic potential of P. mesoacidophila ATCC 31433 is warranted. Copyright © 2017

  4. Twenty-one genome sequences from Pseudomonas species and 19 genome sequences from diverse bacteria isolated from the rhizosphere and endosphere of Populus deltoides.

    Science.gov (United States)

    Brown, Steven D; Utturkar, Sagar M; Klingeman, Dawn M; Johnson, Courtney M; Martin, Stanton L; Land, Miriam L; Lu, Tse-Yuan S; Schadt, Christopher W; Doktycz, Mitchel J; Pelletier, Dale A

    2012-11-01

    To aid in the investigation of the Populus deltoides microbiome, we generated draft genome sequences for 21 Pseudomonas strains and 19 other diverse bacteria isolated from Populus deltoides roots. Genome sequences for isolates similar to Acidovorax, Bradyrhizobium, Brevibacillus, Caulobacter, Chryseobacterium, Flavobacterium, Herbaspirillum, Novosphingobium, Pantoea, Phyllobacterium, Polaromonas, Rhizobium, Sphingobium, and Variovorax were generated.

  5. Transformation of carbon tetrachloride by Pseudomonas sp. strain KC under denitrification conditions

    International Nuclear Information System (INIS)

    Criddle, C.S.; DeWitt, J.T.; Grbic-Galic, D.; McCarty, P.L.

    1990-01-01

    A denitrifying Pseudomonas sp. (strain KC) capable of transforming carbon tetrachloride (CT) was isolated from groundwater aquifer solids. Major products of the transformation of 14 C-labeled CT by Pseudomonas strain KC under denitrification conditions were 14 CO 2 and an unidentified water-soluble fraction. Little or no chloroform was produced. Addition of dissolved trace metals, notably, ferrous iron and cobalt, to the growth medium appeared to enhance growth of Pseudomonas strain KC while inhibiting transformation of CT. It is hypothesized that transformation of CT by this organism is associated with the mechanism of trace-metal scavenging

  6. Potent Antibacterial Antisense Peptide-Peptide Nucleic Acid Conjugates Against Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Ghosal, Anubrata; Nielsen, Peter E

    2012-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen causing severe infections in hospital settings, especially with immune compromised patients, and the increasing prevalence of multidrug resistant strains urges search for new drugs with novel mechanisms of action. In this study we introduce...... significantly reduced bacterial survival. These results open the possibility of development of antisense antibacterials for treatment of Pseudomonas infections....

  7. Twenty-One Genome Sequences from Pseudomonas Species and 19 Genome Sequences from Diverse Bacteria Isolated from the Rhizosphere and Endosphere of Populus deltoides

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Steven D [ORNL; Utturkar, Sagar M [ORNL; Klingeman, Dawn Marie [ORNL; Johnson, Courtney M [ORNL; Martin, Stanton [ORNL; Land, Miriam L [ORNL; Lu, Tse-Yuan [ORNL; Schadt, Christopher Warren [ORNL; Doktycz, Mitchel John [ORNL; Pelletier, Dale A [ORNL

    2012-01-01

    To aid in the investigation of the Populus deltoides microbiome we generated draft genome sequences for twenty one Pseudomonas and twenty one other diverse bacteria isolated from Populus deltoides roots. Genome sequences for isolates similar to Acidovorax, Bradyrhizobium, Brevibacillus, Burkholderia, Caulobacter, Chryseobacterium, Flavobacterium, Herbaspirillum, Novosphingobium, Pantoea, Phyllobacterium, Polaromonas, Rhizobium, Sphingobium and Variovorax were generated.

  8. Comparative genomic analysis of multiple strains of two unusual plant pathogens: Pseudomonas corrugata and Pseudomonas mediterranea

    Directory of Open Access Journals (Sweden)

    Emmanouil A Trantas

    2015-08-01

    Full Text Available The non-fluorescent pseudomonads, Pseudomonas corrugata (Pcor and P. mediterranea (Pmed, are closely related species that cause pith necrosis, a disease of tomato that causes severe crop losses. However, they also show strong antagonistic effects against economically important pathogens, demonstrating their potential for utilization as biological control agents. In addition, their metabolic versatility makes them attractive for the production of commercial biomolecules and bioremediation. An extensive comparative genomics study is required to dissect the mechanisms that Pcor and Pmed employ to cause disease, prevent disease caused by other pathogens, and to mine their genomes for commercially significant chemical pathways. Here, we present the draft genomes of nine Pcor and Pmed strains from different geographical locations. This analysis covered significant genetic heterogeneity and allowed in-depth genomic comparison. All examined strains were able to trigger symptoms in tomato plants but not all induced a hypersensitive-like response in Nicotiana benthamiana. Genome-mining revealed the absence of a type III secretion system and of known type III effectors from all examined Pcor and Pmed strains. The lack of a type III secretion system appears to be unique among the plant pathogenic pseudomonads. Several gene clusters coding for type VI secretion system were detected in all genomes.

  9. Pseudomonas sp. BUP6, a novel isolate from Malabari goat produces an efficient rhamnolipid type biosurfactant.

    Science.gov (United States)

    Priji, Prakasan; Sajith, Sreedharan; Unni, Kizhakkepowathial Nair; Anderson, Robin C; Benjamin, Sailas

    2017-01-01

    This study describes the characteristics of a biosurfactant produced by Pseudomonas sp. BUP6, a rumen bacterium, and optimization of parameters required for its production. Initial screening of five parameters (pH, temperature, agitation, incubation, and substrate concentration) was carried out employing Plackett-Burman design, which reduced the number of parameters to 3 (pH, temperature, and incubation) according to their significance on the yield of biosurfactant. A suitable statistical model for the production of biosurfactant by Pseudomonas sp. BUP6 was established according to Box-Behnken design, which resulted in 11% increase (at pH 7, 35 °C, incubation 75 h) in the yield (2070 mg L -1 ) of biosurfactant. The biosurfactant was found stable at a wide range of pH (3-9) with 48 mg L -1 critical micelle concentration; and maintained over 90% of its emulsification ability even after boiling and in presence of sodium chloride (0.5%). The highest cell hydrophobicity (37%) and emulsification (69%) indices were determined with groundnut oil and kerosene, respectively. The biosurfactant was found to inhibit the growth and adhesion of E. coli and S. aureus significantly. From the phytotoxicity studies, the biosurfactant did not show any adverse effect on the germinating seeds of rice and green gram. The structural characterization of biosurfactant employing orcinol method, thin layer chromatography and FT-IR indicated that it is a rhamnolipid (glycolipid). Thus, Pseudomonas sp. BUP6, a novel isolate from Malabari goat is demonstrated as a producer of an efficient rhamnolipid type biosurfactant suitable for application in various industries. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Determinación de aislados nativos de pseudomonas desulfurizadoras mediante el estudio del perfil de ácidos grasos

    Directory of Open Access Journals (Sweden)

    Edilberto Silva Gómez

    2010-09-01

    Full Text Available Utilizando CGAR se determinó el contenido de ácidos grasos celulares de doce aislados colombianos, Pseudomonas aeruginosa 17, 18, 19, 20, 21, 22 y 103, Pseudomonas sp 23, 24, 25, 26 y 27 con capacidad desulfurizadora, Pseudomonas aeruginosa ATCC 9027 y 10145, Pseudomonas sp ATCC 39327 y Pseudomonas flúores cens. Se encontraron 53 ácidos grasos diferentes, entre saturados e insaturados de cadena lineal, y principalmente hidroxiácidos y ramificados.

  11. Pseudomonas syringae pv. actinidiae: a re-emerging, multi-faceted, pandemic pathogen.

    Science.gov (United States)

    Scortichini, Marco; Marcelletti, Simone; Ferrante, Patrizia; Petriccione, Milena; Firrao, Giuseppe

    2012-09-01

    Pseudomonas syringae pv. actinidiae is the causal agent of bacterial canker of green-fleshed kiwifruit (Actinidia deliciosa) and yellow-fleshed kiwifruit (A. chinensis). A recent, sudden, re-emerging wave of this disease has occurred, almost contemporaneously, in all of the main areas of kiwifruit production in the world, suggesting that it can be considered as a pandemic disease. Recent in-depth genetic studies performed on P. syringae pv. actinidiae strains have revealed that this pathovar is composed of four genetically different populations which, to different extents, can infect crops of the genus Actinidia worldwide. Genome comparisons of these strains have revealed that this pathovar can gain and lose the phaseolotoxin gene cluster, as well as mobile genetic elements, such as plasmids and putative prophages, and that it can modify the repertoire of the effector gene arrays. In addition, the strains currently causing worldwide severe economic losses display an extensive set of genes related to the ecological fitness of the bacterium in planta, such as copper and antibiotic resistance genes, multiple siderophore genes and genes involved in the degradation of lignin derivatives and other phenolics. This pathogen can therefore easily colonize hosts throughout the year. Bacteria; Proteobacteria, gamma subdivision; Order Pseudomonadales; Family Pseudomonadaceae; Genus Pseudomonas; Pseudomonas syringae species complex, genomospecies 8; Pathovar actinidiae. Gram-negative, aerobic, motile, rod-shaped, polar flagella, oxidase-negative, arginine dihydrolase-negative, DNA 58.5-58.8 mol.% GC, elicits the hypersensitive response on tobacco leaves. Primarily studied as the causal agent of bacterial canker of green-fleshed kiwifruit (Actinidia deliciosa), it has also been isolated from yellow-fleshed kiwifruit (A. chinensis). In both species, it causes severe economic losses worldwide. It has also been isolated from wild A. arguta and A. kolomikta. In green-fleshed and

  12. Biodegradation of resorcinol byPseudomonas sp.

    Institute of Scientific and Technical Information of China (English)

    Nader Hajizadeh; Najibeh Shirzad; Ali Farzi; Mojtaba Salouti; Azra Momeni

    2016-01-01

    ABSTRACT Objective:To investigate the ability ofPseudomonas sp. isolated from East Azarbaijan, Iran in bioremediation of resorcinol. Methods: Resorcinol biodegradation was evaluated using spectrophotometry and confirmed by gas chromatography-mass spectroscopy. Results:This isolate was able to remove up to 37.12% of resorcinol from contaminated water. Reusability experiments had confirmed the biodegradation process which produced seven intermediate compounds. These intermediates were characterized by gas chromatography-mass spectroscopy technique. The products of resorcinol biodegradation were apparently 1, 4-cyclohexadiene, nonadecene, 2-heptadecanone, 1-isopropyl-2-methoxy-4-methylbenzene, hexadecanoic acid, 9-octadecenoic acid, phenol and 5-methyl-2-(1-methylethyl). Conclusions: The findings revealed thatPseudomonas sp. is able to degrade resorcinol. Because of being an indigenous organism, this isolate is more compatible with the climate of the northwest region of Iran and possibly will be used for degradation of other similar aromatic compounds.

  13. Uji produksi biosurfaktan oleh Pseudomonas sp. pada substrat yang berbeda

    Directory of Open Access Journals (Sweden)

    Fatimah Fatimah

    2012-02-01

    Full Text Available Biosurfactant, microbial metabolite whose properties like surfactant, was suggested to replace chemically synthesized surfactant for take in hand environtmental pollution by petroleum hydrocarbon. This work was done to examine potency of Pseudomonas sp. isolated from Tanjung Perak Harbor to produce biosurfactant. Also, to know the effect of different substrates (glucose + yeast extract, lubricating oil and hexadecane toward biosurfactant production. Pseudomonas sp. grown in mineral synthetic water and biosurfactant production was measured on stationary phase. Biosurfactant production based on emulsification activity and surface tension reduction of supernatant (using Du Nouy tensiometer. Solar, lubricating oil, and hexadecane were used to examine emulsification activity. Results indicated that Pseudomonas sp. have a potency to produce biosurfactant. Surface tension of supernatant decreased up to 20 dyne/cm, when grown on hexadecane substrate. Hexadecane is the best growing substrate for biosurfactant production than others.

  14. Effects of hyperbaric oxygen on Pseudomonas aeruginosa susceptibility to imipenem and macrophages.

    Science.gov (United States)

    Lima, Flavia Luna; Joazeiro, Paulo Pinto; Lancellotti, Marcelo; de Hollanda, Luciana Maria; de Araújo Lima, Bruna; Linares, Edlaine; Augusto, Ohara; Brocchi, Marcelo; Giorgio, Selma

    2015-01-01

    The seriousness to treat burn wounds infected with Pseudomonas aeruginosa led us to examine whether the effect of the carbapenem antibiotic imipenem is enhanced by hyperbaric oxygen (HBO). The effects of HBO (100% O2, 3 ATA, 5 h) in combination with imipenen on bacterial counts of six isolates of P. aeruginosa and bacterial ultrastructure were investigated. Infected macrophages were exposed to HBO (100% O2, 3 ATA, 90 min) and the production of reactive oxygen species monitored. HBO enhanced the effects of imipenen. HBO increased superoxide anion production by macrophages and likely kills bacteria by oxidative mechanisms. HBO in combination with imipenem can be used to kill P. aeruginosa in vitro and such treatment may be beneficial for the patients with injuries containing the P. aeruginosa.

  15. Pseudomonas aeruginosa: evaluation of pathogen burden and drug-resistance trends in a tertiary care hospital

    International Nuclear Information System (INIS)

    Saeed, M.; Hussain, S.; Ahmad, A.

    2018-01-01

    To evaluate the pathogen burden and antibiotic-resistance trends of Pseudomonas aeruginosa among hospitalised patients at a tertiary care hospital. Study Design:Retrospective, hospital record-based, cross-sectional study. Place and Duration of Study:Microbiology Laboratory, Allama Iqbal Medical College/Jinnah Hospital, Lahore, from January 2014 to December 2016. Methodology:A total of 5,960 samples were collected from clinically suspected cases of bacterial infections, admitted to the hospital. Microbial identification and antibiotic susceptibility pattern were carried out and analysed. Results:Out of a total of 5,960 samples, Pseudomonas aeruginosawas isolated from 1,268 (21.2%) specimens. Department-wise isolation rate was n=600 (42.9%), n=268 (15.4%), n=201 (12.6%), and n=199 (16.0%) from intensive care unit (ICU), surgical units, medical units, and Gynae wards, respectively (p<0.0001). Sample-wise isolation rate was, wound swabs n=448 (35%), urine n=356 (28%), sputum n=187 (14 %), tracheal aspirate n=127 (10%), blood n=99 (7%), and broncho-alveolar lavage n=51 (4%) (p<0.0001). Drug-resistance pattern showed low rates for carbapenems (meropenem n=440 (35%), Imipenem n=436 (34%) and beta-lactam + beta-lactamase inhibitor combination (piperacillin+ tazobactam n=437 (34%) while alarming rates were observed for cephalosporins (ceftazidime n=716 (56%), fluoroquinolones (ciprofloxacin n=690 (54%), cefoperazone+sulbactam n=685 (54%), aminoglycosides (gentamicin, n=669 (53%), amikacin n=608 (48%), and monobactams (aztreonam n=666 (52%). Decreasing trend was observed only for amikacin 63% to 37%, aztreonam showed similar pattern throughout, while there was an increasing trend of drug resistance in all groups of antibiotics. Conclusion:Emerging drug-resistant strains of Pseudomonas aeruginosaare probably linked to the injudicious use of antibiotics, leading to ineffective empirical therapy. Therefore, we suggest that culture and antimicrobial susceptibility testing should

  16. Bioleaching of copper oxide ore by Pseudomonas aeruginosa

    Science.gov (United States)

    Shabani, M. A.; Irannajad, M.; Azadmehr, A. R.; Meshkini, M.

    2013-12-01

    Bioleaching is an environmentally friendly method for extraction of metal from ores. In this study, bioleaching of copper oxide ore by Pseudomonas aeruginosa was investigated. Pseudomonas aeruginosa is a heterotrophic bacterium that can produce various organic acids in an appropriate culture medium, and these acids can operate as leaching agents. The parameters, such as particle size, glucose percentage in the culture medium, bioleaching time, and solid/liquid ratio were optimized. Optimum bioleaching conditions were found as follows: particle size of 150-177 μm, glucose percentage of 6%, bioleaching time of 8 d, and solid/liquid ratio of 1:80. Under these conditions, 53% of copper was extracted.

  17. Potencial de pseudomonas spp. fluorescentes para biocontrole de alternaria ricini em mamoneira Potential of fluorescent pseudomonas spp. For biological control of alternaria ricini on castorbean

    Directory of Open Access Journals (Sweden)

    Francisco de A.G. da Silva

    1998-06-01

    Full Text Available The potential of fluorescent Pseudomonas spp. to control Alternaria leaf spot on castorbean, caused by Alternaria ricini, was studied under greenhouse conditions. Two periods for antagonist applications were tested: 48h before and simultaneously to the pathogen inoculation. Among the antagonists tested JA4 and BJ22 were the most effectives showing disease severity reduction of 20.9% and 17.8% respectively, when applied simultaneously. The effect of Pseudomonas spp. on the micelial growth and sporulation was also studied throughout three different methods (funel, streak and celophane. Inhibition of micelial growth and sporulation was observed. There was no correlation between in vitro and in vivo data. Antibiosis was showed as a mode of action for Pseudomonas spp. in relation to Alternaria ricini. Ultrastructural studies confirmed the inhibition of spore germination by the bacteria.

  18. Degradation of paracetamol by Pseudomonas aeruginosa strain HJ1012.

    Science.gov (United States)

    Hu, Jun; Zhang, Li L; Chen, Jian M; Liu, Yu

    2013-01-01

    Pseudomonas aeruginosa strain HJ1012 was isolated on paracetamol as a sole carbon and energy source. This organism could completely degrade paracetamol as high as 2200 mg/L. Following paracetamol consumption, a CO₂ yield rate up to 71.4% proved that the loss of paracetamol was mainly via mineralization. Haldane's equation adequately described the relationship between the specific growth rate and substrate concentration. The maximum specific growth rate and yield coefficient were 0.201 g-Paracetamol/g-VSS·h and 0.101 mg of biomass yield/mg of paracetamol consumed, respectively. A total of 8 metabolic intermediates was identified and classified into aromatic compounds, carboxylic acids, and inorganic species (nitrite and nitrate ions). P-aminophenol and hydroquinone are the two key metabolites of the initial steps in the paracetamol catabolic pathway. Paracetamol is degraded predominantly via p-aminophenol to hydroquinone with subsequent ring fission, suggesting partially new pathways for paracetamol-degrading bacteria.

  19. A case of orbital apex syndrome due to Pseudomonas aeruginosa infection

    Directory of Open Access Journals (Sweden)

    Takeshi Kusunoki

    2011-11-01

    Full Text Available Orbital apex syndrome is commonly been thought to have a poor prognosis. Many cases of this syndrome have been reported to be caused by paranasal sinus mycosis. We encountered a very rare case (60-year-old woman of sinusitis with orbital apex syndrome due to Pseudomonas aeruginosa infection. She had received insulin and dialysis for diabtes and diabetic nephropathy, moreover anticoagulants after heart by-pass surgery. She underwent endoscopic sinus operation and was treated with antibiotics, but her loss of left vision did not improve. Recently, sinusitis cases due to Pseudomonas aeruginosa were reported to be a increasing. Therefore, we should consider the possibility of Pseudomonas aeruginosa as well as mycosis as infections of the sinus, especially inpatients who are immunocompromised body.

  20. Inactivation kinetics and efficiencies of UV-LEDs against Pseudomonas aeruginosa, Legionella pneumophila, and surrogate microorganisms.

    Science.gov (United States)

    Rattanakul, Surapong; Oguma, Kumiko

    2018-03-01

    To demonstrate the effectiveness of UV light-emitting diodes (UV-LEDs) to disinfect water, UV-LEDs at peak emission wavelengths of 265, 280, and 300 nm were adopted to inactivate pathogenic species, including Pseudomonas aeruginosa and Legionella pneumophila, and surrogate species, including Escherichia coli, Bacillus subtilis spores, and bacteriophage Qβ in water, compared to conventional low-pressure UV lamp emitting at 254 nm. The inactivation profiles of each species showed either a linear or sigmoidal survival curve, which both fit well with the Geeraerd's model. Based on the inactivation rate constant, the 265-nm UV-LED showed most effective fluence, except for with E. coli which showed similar inactivation rates at 265 and 254 nm. Electrical energy consumption required for 3-log 10 inactivation (E E,3 ) was lowest for the 280-nm UV-LED for all microbial species tested. Taken together, the findings of this study determined the inactivation profiles and kinetics of both pathogenic bacteria and surrogate species under UV-LED exposure at different wavelengths. We also demonstrated that not only inactivation rate constants, but also energy efficiency should be considered when selecting an emission wavelength for UV-LEDs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. 40 CFR 180.1212 - Pseudomonas chlororaphis Strain 63-28; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Pseudomonas chlororaphis Strain 63-28... RESIDUES IN FOOD Exemptions From Tolerances § 180.1212 Pseudomonas chlororaphis Strain 63-28; exemption... for residues of the microbial pesticide Pseudomonas chlororaphis Strain 63-28 in or on all food...

  2. Accelerated storage testing of freeze-dried Pseudomonas ...

    African Journals Online (AJOL)

    Accelerated storage testing of freeze-dried Pseudomonas fluorescens BTP1, ... of all P. fluorescens strains were not significantly different and thermal inactivation ... useful to the development of improved reference materials and samples held ...

  3. Towards large-scale FAME-based bacterial species identification using machine learning techniques.

    Science.gov (United States)

    Slabbinck, Bram; De Baets, Bernard; Dawyndt, Peter; De Vos, Paul

    2009-05-01

    In the last decade, bacterial taxonomy witnessed a huge expansion. The swift pace of bacterial species (re-)definitions has a serious impact on the accuracy and completeness of first-line identification methods. Consequently, back-end identification libraries need to be synchronized with the List of Prokaryotic names with Standing in Nomenclature. In this study, we focus on bacterial fatty acid methyl ester (FAME) profiling as a broadly used first-line identification method. From the BAME@LMG database, we have selected FAME profiles of individual strains belonging to the genera Bacillus, Paenibacillus and Pseudomonas. Only those profiles resulting from standard growth conditions have been retained. The corresponding data set covers 74, 44 and 95 validly published bacterial species, respectively, represented by 961, 378 and 1673 standard FAME profiles. Through the application of machine learning techniques in a supervised strategy, different computational models have been built for genus and species identification. Three techniques have been considered: artificial neural networks, random forests and support vector machines. Nearly perfect identification has been achieved at genus level. Notwithstanding the known limited discriminative power of FAME analysis for species identification, the computational models have resulted in good species identification results for the three genera. For Bacillus, Paenibacillus and Pseudomonas, random forests have resulted in sensitivity values, respectively, 0.847, 0.901 and 0.708. The random forests models outperform those of the other machine learning techniques. Moreover, our machine learning approach also outperformed the Sherlock MIS (MIDI Inc., Newark, DE, USA). These results show that machine learning proves very useful for FAME-based bacterial species identification. Besides good bacterial identification at species level, speed and ease of taxonomic synchronization are major advantages of this computational species

  4. Evaluation of the plant growth-promoting activity of Pseudomonas nitroreducens in Arabidopsis thaliana and Lactuca sativa.

    Science.gov (United States)

    Trinh, Cao Son; Lee, Hyeri; Lee, Won Je; Lee, Seok Jin; Chung, Namhyun; Han, Juhyeong; Kim, Jongyun; Hong, Suk-Whan; Lee, Hojoung

    2018-06-01

    Pseudomonas nitroreducens: strain IHB B 13561 (PnIHB) enhances the growth of Arabidopsis thaliana and Lactuca sativa via the stimulation of cell development and nitrate absorption. Plant growth-promoting rhizobacteria (PGPR) enhance plant development through various mechanisms; they improve the uptake of soil resources by plants to greatly promote plant growth. Here, we used Arabidopsis thaliana seedlings and Lactuca sativa to screen the growth enhancement activities of a purified PGPR, Pseudomonas nitroreducens strain IHB B 13561 (PnIHB). When cocultivated with PnIHB, both species of plants exhibited notably improved growth, particularly in regard to biomass. Quantitative reverse transcription polymerase chain reaction analysis indicated high expression levels of the nitrate transporter genes, especially NRT2.1, which plays a major role in the high-affinity nitrate transport system in roots. Moreover, enhanced activity of the cyclin-B1 promoter was observed when wild-type 'Columbia-0' Arabidopsis seedlings were exposed to PnIHB, whereas upregulation of cyclin-B also occurred in the inoculated lettuce seedlings. Overall, these results suggest that PnIHB improves A. thaliana and L. sativa growth via specific pathways involved in the promotion of cell development and enhancement of nitrate uptake.

  5. Comparative study on the degradation of dibutyl phthalate by two newly isolated Pseudomonas sp. V21b and Comamonas sp. 51F

    Directory of Open Access Journals (Sweden)

    Vinay Kumar

    2017-09-01

    Full Text Available Dibutyl phthalate is (DBP the top priority toxicant responsible for carcinogenicity, teratogenicity and endocrine disruption. This study demonstrates the DBP degradation capability of the two newly isolated bacteria from municipal solid waste leachate samples. The isolated bacteria were designated as Pseudomonas sp. V21b and Comamonas sp. 51F after scanning electron microscopy, transmission electron microscopy, Gram-staining, antibiotic sensitivity tests, biochemical characterization, 16S-rRNA gene identification and phylogenetic studies. They were able to grow on DBP, benzyl butyl phthalate, monobutyl phthalate, diisodecyl phthalate, dioctyl phthalate, and protocatechuate. It was observed that Pseudomonas sp. V21b was more efficient in DBP degradation when compared with Comamonas sp. 51F. It degraded 57% and 76% of the initial DBP in minimal salt medium and in DBP contaminated samples respectively. Kinetics for the effects of DBP concentration on Pseudomonas sp. V21b and Comamonas sp. 51F growth was also evaluated. Stoichiometry for DBP degradation and biomass formation were compared for both the isolates. Two major metabolites diethyl phthalate and monobutyl phthalates were identified using GC–MS in the extracts. Key genes were amplified from the genomes of Pseudomonas sp. V21b and Comamonas sp. 51F. DBP degradation pathway was also proposed.

  6. Pseudomonas sax genes overcome aliphatic isothiocyanate-mediated non-host resistance in Arabidopsis

    Science.gov (United States)

    Jun Fan; Casey Crooks; Gary Creissen; Lionel Hill; Shirley Fairhurst; Peter Doerner; Chris Lamb

    2011-01-01

    Most plant-microbe interactions do not result in disease; natural products restrict non-host pathogens. We found that sulforaphane (4-methylsulfinylbutyl isothiocyanate), a natural product derived from aliphatic glucosinolates, inhibits growth in Arabidopsis of non-host Pseudomonas bacteria in planta. Multiple sax genes (saxCAB/F/D/G) were identified in Pseudomonas...

  7. Diversity and Abundance of Ice Nucleating Strains of Pseudomonas syringae in a Freshwater Lake in Virginia, USA.

    Science.gov (United States)

    Pietsch, Renée B; Vinatzer, Boris A; Schmale, David G

    2017-01-01

    The bacterium Pseudomonas syringae is found in a variety of terrestrial and aquatic environments. Some strains of P. syringae express an ice nucleation protein (hereafter referred to as Ice+) allowing them to catalyze the heterogeneous freezing of water. Though P. syringae has been sampled intensively from freshwater sources in France, little is known about the genetic diversity of P. syringae in natural aquatic habitats in North America. We collected samples of freshwater from three different depths in Claytor Lake, Virginia, USA between November 2015 and June 2016. Samples were plated on non-selective medium (TSA) and on medium selective for Pseudomonas (KBC) and closely related species to estimate the total number of culturable bacteria and of Pseudomonas , respectively. A droplet freezing assay was used to screen colonies for the Ice+ phenotype. Ice+ colonies were then molecularly identified based on the cts (citrate synthase) gene and the 16S rDNA gene. Phylogenetic analysis of cts sequences showed a surprising diversity of phylogenetic subgroups of P. syringae . Frequencies of Ice+ isolates on P. syringae selective medium ranged from 0 to 15% per sample with the highest frequency being found in spring. Our work shows that freshwater lakes can be a significant reservoir of Ice+ P. syringae . Future work is needed to determine the contribution of P. syringae from freshwater lakes to the P. syringae populations present in the atmosphere and on plants and, in particular, if freshwater lakes could be an inoculum source of P. syringae -caused plant disease outbreaks.

  8. Species selectivity in different sized topless trawl designs: Does size matter?

    DEFF Research Database (Denmark)

    Krag, Ludvig Ahm; Herrmann, Bent; Karlsen, Junita Diana

    2015-01-01

    -specific quotas. The toplesstrawl design was developed to improve species-specific selectivity in such fisheries. In a topless trawl,the foot rope is located more forward than the headline to allow fish to escape upwards, whereas theheadline is located in front in traditional trawl designs. In this study we...... Atlantic, topless trawls have been introducedas legal cod-selective trawl designs. However, this study demonstrates that identical gear modificationsmade to similar trawls of different sizes and used in the same fishery can lead to different results....

  9. Pseudomonas aeruginosa Genome Evolution in Patients and under the Hospital Environment

    Directory of Open Access Journals (Sweden)

    Céline Lucchetti-Miganeh

    2014-04-01

    Full Text Available Pseudomonas aeruginosa is a Gram-negative environmental species and an opportunistic microorganism, establishing itself in vulnerable patients, such as those with cystic fibrosis (CF or those hospitalized in intensive care units (ICU. It has become a major cause of nosocomial infections worldwide and a serious threat to Public Health because of overuse and misuse of antibiotics that have selected highly resistant strains against which very few therapeutic options exist. Herein is illustrated the intraclonal evolution of the genome of sequential isolates collected in a single CF patient from the early phase of pulmonary colonization to the fatal outcome. We also examined at the whole genome scale a pair of genotypically-related strains made of a drug susceptible, environmental isolate recovered from an ICU sink and of its multidrug resistant counterpart found to infect an ICU patient. Multiple genetic changes accumulated in the CF isolates over the disease time course including SNPs, deletion events and reduction of whole genome size. The strain isolated from the ICU patient displayed an increase in the genome size of 4.8% with major genetic rearrangements as compared to the initial environmental strain. The annotated genomes are given in free access in an interactive web application WallGene  designed to facilitate large-scale comparative analysis and thus allowing investigators to explore homologies and syntenies between P. aeruginosa strains, here PAO1 and the five clinical strains described.

  10. Dynamics of biofilm formation by Listeria monocytogenes on stainless steel under mono-species and mixed-culture simulated fish processing conditions and chemical disinfection challenges.

    Science.gov (United States)

    Papaioannou, Eleni; Giaouris, Efstathios D; Berillis, Panagiotis; Boziaris, Ioannis S

    2018-02-21

    The progressive ability of a six-strains L. monocytogenes cocktail to form biofilm on stainless steel (SS), under fish-processing simulated conditions, was investigated, together with the biocide tolerance of the developed sessile communities. To do this, the pathogenic bacteria were left to form biofilms on SS coupons incubated at 15°C, for up to 240h, in periodically renewable model fish juice substrate, prepared by aquatic extraction of sea bream flesh, under both mono-species and mixed-culture conditions. In the latter case, L. monocytogenes cells were left to produce biofilms together with either a five-strains cocktail of four Pseudomonas species (fragi, savastanoi, putida and fluorescens), or whole fish indigenous microflora. The biofilm populations of L. monocytogenes, Pseudomonas spp., Enterobacteriaceae, H 2 S producing and aerobic plate count (APC) bacteria, both before and after disinfection, were enumerated by selective agar plating, following their removal from surfaces through bead vortexing. Scanning electron microscopy was also applied to monitor biofilm formation dynamics and anti-biofilm biocidal actions. Results revealed the clear dominance of Pseudomonas spp. bacteria in all the mixed-culture sessile communities throughout the whole incubation period, with the in parallel sole presence of L. monocytogenes cells to further increase (ca. 10-fold) their sessile growth. With respect to L. monocytogenes and under mono-species conditions, its maximum biofilm population (ca. 6logCFU/cm 2 ) was reached at 192h of incubation, whereas when solely Pseudomonas spp. cells were also present, its biofilm formation was either slightly hindered or favored, depending on the incubation day. However, when all the fish indigenous microflora was present, biofilm formation by the pathogen was greatly hampered and never exceeded 3logCFU/cm 2 , while under the same conditions, APC biofilm counts had already surpassed 7logCFU/cm 2 by the end of the first 96h of

  11. Improvement in solvent tolerance by exogenous glycerol in Pseudomonas sp. BCNU 106.

    Science.gov (United States)

    Choi, H J; Lim, B R; Park, Y J; Joo, W H

    2017-08-01

    Solvent hypertolerant Pseudomonas sp. BCNU 106 still has some underlying growth limitation in solvents. Therefore, efficient mass cultivation methods are needed to pursue its applications in biotechnology. Pseudomonas sp. BCNU 106 was cultured in a medium supplemented with 0·05 mol l -1 glycerol and cell survival was monitored during its cultivation in the presence of 1% (v/v) toluene. Exogenously supplemented glycerol provided more protection against damage caused by toluene stress and conferred higher solvent tolerance of Pseudomonas sp. BCNU 106 to toluene compared to control Pseudomonas sp. BCNU 106 without the supplementation of glycerol. This low-cost mass cultivation method can be used to efficiently apply solvent-tolerant bacteria in biotransformation and biodegradation. Protection against toluene and improvement in bacterial cell growth by supplementation of glycerol in the presence of toluene are demonstrated in this study. This result can be used to solve growth-related hindrances of solvent-tolerant bacteria and establish their low-cost mass cultivation, thereby broadening their industrial and environmental applications. © 2017 The Society for Applied Microbiology.

  12. Pseudomonas syringae pv. phaseolicola isolated from weeds in bean crop fields.

    Science.gov (United States)

    Fernández-Sanz, A M; Rodicio, M R; González, A J

    2016-04-01

    Pseudomonas syringae pv. phaseolicola, the causative agent of halo blight in common bean (Phaseolus vulgaris L.), was isolated from weeds associated with bean crops in Spain. The bacterium was recovered from Fumaria sp, Mercurialis annua, Solanum nigrum and Sonchus oleraceus. Ps. s. pv. phaseolicola had previously been isolated from leguminous plants and S. nigrum, but to our knowledge, this is the first time it was recovered from the other three species. The isolates were phenotypically and genetically characterized, and they were compared with isolates recovered from common beans. Five different genotypic profiles were detected by PmeI-PFGE, two of them being of new description. Weed isolates were as pathogenic on bean plants as bean isolates, but they were not pathogenic on S. nigrum. Regarding the survival of the pathogen in weeds, Ps. s. pv. phaseolicola was isolated from So. oleraceus 11 weeks after the end of the bean crop. These results strongly support the idea of weeds as a potential source of inoculum for halo blight in bean. It has traditionally been considered that the main source of inoculum of Pseudomonas syringae pv. phaseolicola causing halo blight disease in Phaseolus vulgaris are the bean seeds, and that the host range of the bacterium is almost restricted to leguminous plants. In this study, the bacterium was recovered from four nonleguminous weed species collected in bean fields, and its permanence in weeds for at least 11 weeks after the harvesting of the beans was demonstrated. We have also proved that the strains isolated from weeds were pathogenic on bean plants. Accordingly, the host range of Ps. s. pv. phaseolicola could be broader than previously thought and weeds appear to be acting as a reservoir of the pathogen until the next crop. © 2016 The Society for Applied Microbiology.

  13. Production and characterization of biosurfactant from Pseudomonas ...

    African Journals Online (AJOL)

    Further characterization of biosurfactant using Fourier transform infrared spectroscopy (FTIR) revealed it as a rhamnolipid. Keywords: Mangrove ecosystems, Pseudomonas aeruginosa, biosurfactant, critical micelle concentration (CMC), FT-IR fourier transform infrared spectroscopy (FTIR). African Journal of Biotechnology, ...

  14. Isolation and identification of Pseudomonas azotoformans for induced calcite precipitation.

    Science.gov (United States)

    Heidari Nonakaran, Siamak; Pazhouhandeh, Maghsoud; Keyvani, Abdullah; Abdollahipour, Fatemeh Zahra; Shirzad, Akbar

    2015-12-01

    Biomineralization is a process by which living organisms produce minerals. The extracellular production of these biominerals by microbes has potential for various bioengineering applications. For example, crack remediation and improvement of durability of concrete is an important goal for engineers and biomineral-producing microbes could be a useful tool in achieving this goal. Here we report the isolation, biochemical characterization and molecular identification of Pseudomonas azotoformans, a microbe that produces calcite and which potentially be used to repair cracks in concrete structures. Initially, 38 bacterial isolates were isolated from soil and cements. As a first test, the isolates were screened using a urease assay followed by biochemical tests for the rate of urea hydrolysis, calcite production and the insolubility of calcite. Molecular amplification and sequencing of a 16S rRNA fragment of selected isolates permitted us to identify P. azotoformans as a good candidate for preparation of biotechnological concrete. This species was isolated from soil and the results show that among the tested isolates it had the highest rate of urea hydrolysis, produced the highest amount of calcite, which, furthermore was the most adhesive and insoluble. This species is thus of interest as an agent with the potential ability to repair cracks in concrete.

  15. Decreased outer membrane permeability in imipenem-resistant mutants of Pseudomonas aeruginosa.

    OpenAIRE

    Trias, J; Dufresne, J; Levesque, R C; Nikaido, H

    1989-01-01

    The outer membrane of imipenem-resistant mutants of Pseudomonas aeruginosa was shown to have decreased permeability to imipenem but not to cephaloridine. These experiments were performed with intact cells and liposomes containing imipenem-hydrolyzing beta-lactamase derived from Pseudomonas maltophilia, in both cases utilizing an imipenem concentration of 50 microM. In contrast, liposome swelling assays using imipenem at 8 mM detected no significant difference between the imipenem-resistant mu...

  16. Biofilm Formation by Pseudomonas Species Onto Graphene Oxide-TiO2 Nanocomposite-Coated Catheters: In vitro Analysis

    Science.gov (United States)

    Deb, Ananya; Vimala, R.

    The present study focuses on the development of an in vitro model system for biofilm growth by Pseudomonas aerouginosa onto small discs of foley catheter. Catheter disc used for the study was coated with graphene oxide-titanium oxide composite (GO-TiO2) and titanium oxide (TiO2) and characterized through XRD, UV-visible spectroscopy. Morphological analysis was done by scanning electron microscopy (SEM). The biofilm formed on the catheter surface was quantified by crystal violet (CV) staining method and a colorimetric assay (MTT assay) which involves the reduction of tetrazolium salt. The catheter coated with GO-TiO2 showed reduced biofilm growth in comparison to the TiO2-coated and uncoated catheter, thus indicating that it could be successfully used in coating biomedical devices to prevent biofilm formation which is a major cause of nosocomial infection.

  17. Pseudomonas moraviensis subsp. stanleyae, a bacterial endophyte of hyperaccumulator Stanleya pinnata, is capable of efficient selenite reduction to elemental selenium under aerobic conditions.

    Science.gov (United States)

    Staicu, L C; Ackerson, C J; Cornelis, P; Ye, L; Berendsen, R L; Hunter, W J; Noblitt, S D; Henry, C S; Cappa, J J; Montenieri, R L; Wong, A O; Musilova, L; Sura-de Jong, M; van Hullebusch, E D; Lens, P N L; Reynolds, R J B; Pilon-Smits, E A H

    2015-08-01

    To identify bacteria with high selenium tolerance and reduction capacity for bioremediation of wastewater and nanoselenium particle production. A bacterial endophyte was isolated from the selenium hyperaccumulator Stanleya pinnata (Brassicaceae) growing on seleniferous soils in Colorado, USA. Based on fatty acid methyl ester analysis and multi-locus sequence analysis (MLSA) using 16S rRNA, gyrB, rpoB and rpoD genes, the isolate was identified as a subspecies of Pseudomonas moraviensis (97.3% nucleotide identity) and named P. moraviensis stanleyae. The isolate exhibited extreme tolerance to SeO3(2-) (up to 120 mmol l(-1)) and SeO4(2-) (>150 mmol l(-1)). Selenium oxyanion removal from growth medium was measured by microchip capillary electrophoresis (detection limit 95 nmol l(-1) for SeO3(2-) and 13 nmol l(-1) for SeO4(2-)). Within 48 h, P. moraviensis stanleyae aerobically reduced SeO3(2-) to red Se(0) from 10 mmol l(-1) to below the detection limit (removal rate 0.27 mmol h(-1) at 30 °C); anaerobic SeO3(2-) removal was slower. No SeO4(2-) removal was observed. Pseudomonas moraviensis stanleyae stimulated the growth of crop species Brassica juncea by 70% with no significant effect on Se accumulation. Pseudomonas moraviensis stanleyae can tolerate extreme levels of selenate and selenite and can deplete high levels of selenite under aerobic and anaerobic conditions. Pseudomonas moraviensis subsp. stanleyae may be useful for stimulating plant growth and for the treatment of Se-laden wastewater. © 2015 The Society for Applied Microbiology.

  18. Pseudomonas fluorescens strain CL145A - a biopesticide for the control of zebra and quagga mussels (Bivalvia: Dreissenidae).

    Science.gov (United States)

    Molloy, Daniel P; Mayer, Denise A; Gaylo, Michael J; Morse, John T; Presti, Kathleen T; Sawyko, Paul M; Karatayev, Alexander Y; Burlakova, Lyubov E; Laruelle, Franck; Nishikawa, Kimi C; Griffin, Barbara H

    2013-05-01

    Zebra mussels (Dreissena polymorpha) and quagga mussels (Dreissena rostriformis bugensis) are the "poster children" of high-impact aquatic invasive species. In an effort to develop an effective and environmentally acceptable method to control their fouling of raw-water conduits, we have investigated the potential use of bacteria and their natural metabolic products as selective biological control agents. An outcome of this effort was the discovery of Pseudomonas fluorescens strain CL145A - an environmental isolate that kills these dreissenid mussels by intoxication (i.e., not infection). In the present paper, we use molecular methods to reconfirm that CL145A is a strain of the species P. fluorescens, and provide a phylogenetic analysis of the strain in relation to other Pseudomonas spp. We also provide evidence that the natural product lethal to dreissenids is associated with the cell wall of P. fluorescens CL145A, is a heat-labile secondary metabolite, and has degradable toxicity within 24 h when applied to water. CL145A appears to be an unusual strain of P. fluorescens since it was the only one among the ten strains tested to cause high mussel mortality. Pipe trials conducted under once-through conditions indicated: (1) P. fluorescens CL145A cells were efficacious against both zebra and quagga mussels, with high mortalities achieved against both species, and (2) as long as the total quantity of bacterial cells applied during the entire treatment period was the same, similar mussel mortality could be achieved in treatments lasting 1.5-12.0 h, with longer treatment durations achieving lower mortalities. The efficacy data presented herein, in combination with prior demonstration of its low risk of non-target impact, indicate that P. fluorescens CL145A cells have significant promise as an effective and environmentally safe control agent against these invasive mussels. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. 40 CFR 180.1200 - Pseudomonas fluorescens strain PRA-25; temporary exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Pseudomonas fluorescens strain PRA-25... RESIDUES IN FOOD Exemptions From Tolerances § 180.1200 Pseudomonas fluorescens strain PRA-25; temporary... established for residues of the microbial pesticide, pseudomonas fluorescens strain PRA-25 when used on peas...

  20. Quorum-Quenching Human Designer Cells for Closed-Loop Control of Pseudomonas aeruginosa Biofilms.

    Science.gov (United States)

    Sedlmayer, Ferdinand; Jaeger, Tina; Jenal, Urs; Fussenegger, Martin

    2017-08-09

    Current antibiotics gradually lose their efficacy against chronic Pseudomonas aeruginosa infections due to development of increased resistance mediated by biofilm formation, as well as the large arsenal of microbial virulence factors that are coordinated by the cell density-dependent phenomenon of quorum sensing. Here, we address this issue by using synthetic biology principles to rationally engineer quorum-quencher cells with closed-loop control to autonomously dampen virulence and interfere with biofilm integrity. Pathogen-derived signals dynamically activate a synthetic mammalian autoinducer sensor driving downstream expression of next-generation anti-infectives. Engineered cells were able to sensitively score autoinducer levels from P. aeruginosa clinical isolates and mount a 2-fold defense consisting of an autoinducer-inactivating enzyme to silence bacterial quorum sensing and a bipartite antibiofilm effector to dissolve the biofilm matrix. The self-guided cellular device fully cleared autoinducers, potentiated bacterial antibiotic susceptibility, substantially reduced biofilms, and alleviated cytotoxicity to lung epithelial cells. We believe this strategy of dividing otherwise coordinated pathogens and breaking up their shielded stronghold represents a blueprint for cellular anti-infectives in the postantibiotic era.

  1. Predictors of Pseudomonas and methicillin-resistant Staphylococcus aureus in hospitalized patients with healthcare-associated pneumonia.

    Science.gov (United States)

    Metersky, Mark L; Frei, Christopher R; Mortensen, Eric M

    2016-01-01

    Patients with healthcare-associated pneumonia (HCAP) are at high risk of infection with multidrug-resistant (MDR) pathogens. Factors discriminating infection with MDR Gram-negative (MDR-GN) organism from infection with methicillin-resistant Staphylococcus aureus (MRSA) are not well understood and patients are often treated for both organisms. This study was performed to determine risk factors predicting pneumonia due to Pseudomonas versus MRSA. Veterans age ≥65 hospitalized with HCAP between 2002 and 2012 were identified from the Veterans Affairs administrative databases. Patients were identified with Pseudomonas pneumonia, MRSA pneumonia or neither according to the International Classification of Diseases, 9th Revision, Clinical Modification codes. We assessed unadjusted and adjusted associations of patient characteristics and HCAP due to Pseudomonas or MRSA. Of the 61,651 patients with HCAP, 1156 (1.9%) were diagnosed with Pseudomonas pneumonia, 641 (1.0%) with MRSA pneumonia and 59,854 (97.1%) with neither. MRSA pneumonia was positively associated with male gender, age >74, diabetes, chronic obstructive pulmonary disease (COPD), recent nursing home or hospital stay, recent exposure to fluoroquinolone or antibiotics treating Gram-positive organisms, and severe pneumonia. MRSA pneumonia was negatively associated with complicated diabetes. Pseudomonas pneumonia was positively associated with recent hospital stay, immunocompromise, COPD, hemiplegia, recent exposure to inhaled corticosteroids, β-lactam/cephalosporin/carbapenem antibiotics, antibiotics against Gram-positive organisms, 'other antibiotics' and severe pneumonia. Pseudomonas pneumonia was negatively associated with age >84, higher socioeconomic status, drug abuse and diabetes. Patient characteristics may assist in identifying patients at risk for HCAP due to Pseudomonas or MRSA. © 2015 Asian Pacific Society of Respirology.

  2. GeMprospector--online design of cross-species genetic marker candidates in legumes and grasses.

    Science.gov (United States)

    Fredslund, Jakob; Madsen, Lene H; Hougaard, Birgit K; Sandal, Niels; Stougaard, Jens; Bertioli, David; Schauser, Leif

    2006-07-01

    The web program GeMprospector (URL: http://cgi-www.daimi.au.dk/cgi-chili/GeMprospector/main) allows users to automatically design large sets of cross-species genetic marker candidates targeting either legumes or grasses. The user uploads a collection of ESTs from one or more legume or grass species, and they are compared with a database of clusters of homologous EST and genomic sequences from other legumes or grasses, respectively. Multiple sequence alignments between submitted ESTs and their homologues in the appropriate database form the basis of automated PCR primer design in conserved exons such that each primer set amplifies an intron. The only user input is a collection of ESTs, not necessarily from more than one species, and GeMprospector can boost the potential of such an EST collection by combining it with a large database to produce cross-species genetic marker candidates for legumes or grasses.

  3. Quantitative approach to track lipase producing Pseudomonas sp. S1 in nonsterilized solid state fermentation.

    Science.gov (United States)

    Sahoo, R K; Subudhi, E; Kumar, M

    2014-06-01

    Proliferation of the inoculated Pseudomonas sp. S1 is quantitatively evaluated using ERIC-PCR during the production of lipase in nonsterile solid state fermentation an approach to reduce the cost of enzyme production. Under nonsterile solid state fermentation with olive oil cake, Pseudomonas sp. S1 produced 57·9 IU g(-1) of lipase. DNA fingerprints of unknown bacterial isolates obtained on Bushnell Haas agar (BHA) + tributyrin exactly matched with that of Pseudomonas sp. S1. Using PCR-based enumeration, population of Pseudomonas sp. S1 was proliferated from 7·6 × 10(4) CFU g(-1) after 24 h to 4·6 × 10(8) CFU g(-1) after 96 h, which tallied with the maximum lipase activity as compared to control. Under submerged fermentation (SmF), Pseudomonas sp. S1 produced maximum lipase (49 IU ml(-1) ) using olive oil as substrate, while lipase production was 9·754 IU ml(-1) when Pseudomonas sp. S1 was grown on tributyrin. Optimum pH and temperature of the crude lipase was 7·0 and 50°C. Crude enzyme activity was 71·2% stable at 50°C for 360 min. Pseudomonas sp. S1 lipase was also stable in methanol showing 91·6% activity in the presence of 15% methanol, whereas 75·5 and 51·1% of activity were retained in the presence of 20 and 30% methanol, respectively. Thus, lipase produced by Pseudomonas sp. S1 is suitable for the production of biodiesel as well as treatment of oily waste water. This study presents the first report on the production of thermophilic organic solvent tolerant lipase using agro-industry waste in nonsterile solid state fermentation. Positive correlation between survival of Pseudomonas sp. S1 and lipase production under nonsterile solid state fermentation was established, which may emphasize the need to combine molecular tools and solid state fermentation in future studies. Our study brings new insights into the lipase production in cost-effective manner, which is an industrially relevant approach. © 2014 The Society for Applied Microbiology.

  4. Fatty acid composition of bacteria associated with the toxic dinoflagellate Ostreopsis lenticularis and with Caribbean Palythoa species.

    Science.gov (United States)

    Carballeira, N M; Emiliano, A; Sostre, A; Restituyo, J A; González, I M; Colón, G M; Tosteson, C G; Tosteson, T R

    1998-06-01

    The fatty acid composition of a Pseudomonas sp. (Alteromonas) and its host, the dinoflagellate Ostreopsis lenticularis, vectors in ciguatera fish poisoning, has been studied. The major fatty acids in O. lenticularis were 16:0, 20:5n-3, and 22:6n-3, but 18:2n-6, 18:3n-3, and 18:n-3 were also identified. In contrast to other dinoflagellates, 1 8:5n-3 was not detected in O. lenticularis. Even-chain fatty acids such as 9-16:1, 11-18:1, and 13-20:1 predominated in the Pseudomonas sp. from O. lenticularis, but 1 6-20% of (E)-11-methyl-12-octadecenoic acid was also identified. The chirality of the latter was confirmed by total synthesis (28% overall yield) starting from oxacyclotridecan-2-one. The fatty acid compositions of two other Pseudomonas species, from the palytoxin-producing zoanthids Palythoa mamillosa and P. caribdea, were also studied and were similar to that of the Pseudomonas sp. from O. lenticularis. The possibility of using some of these fatty acids as chemotaxonomic lipids in identifying marine animals that consume toxic dinoflagellates or zoanthids is discussed.

  5. Impact of biocontrol Pseudomonas fluorescens CHA0 and a genetically modified derivative on the diversity of culturable fungi in the cucumber rhizosphere.

    Science.gov (United States)

    Girlanda, M; Perotto, S; Moenne-Loccoz, Y; Bergero, R; Lazzari, A; Defago, G; Bonfante, P; Luppi, A M

    2001-04-01

    Little is known about the effects of Pseudomonas biocontrol inoculants on nontarget rhizosphere fungi. This issue was addressed using the biocontrol agent Pseudomonas fluorescens CHA0-Rif, which produces the antimicrobial polyketides 2,4-diacetylphloroglucinol (Phl) and pyoluteorin (Plt) and protects cucumber from several fungal pathogens, including Pythium spp., as well as the genetically modified derivative CHA0-Rif(pME3424). Strain CHA0-Rif(pME3424) overproduces Phl and Plt and displays improved biocontrol efficacy compared with CHA0-Rif. Cucumber was grown repeatedly in the same soil, which was left uninoculated, was inoculated with CHA0-Rif or CHA0-Rif(pME3424), or was treated with the fungicide metalaxyl (Ridomil). Treatments were applied to soil at the start of each 32-day-long cucumber growth cycle, and their effects on the diversity of the rhizosphere populations of culturable fungi were assessed at the end of the first and fifth cycles. Over 11,000 colonies were studied and assigned to 105 fungal species (plus several sterile morphotypes). The most frequently isolated fungal species (mainly belonging to the genera Paecilomyces, Phialocephala, Fusarium, Gliocladium, Penicillium, Mortierella, Verticillium, Trichoderma, Staphylotrichum, Coniothyrium, Cylindrocarpon, Myrothecium, and Monocillium) were common in the four treatments, and no fungal species was totally suppressed or found exclusively following one particular treatment. However, in each of the two growth cycles studied, significant differences were found between treatments (e.g., between the control and the other treatments and/or between the two inoculation treatments) using discriminant analysis. Despite these differences in the composition and/or relative abundance of species in the fungal community, treatments had no effect on species diversity indices, and species abundance distributions fit the truncated lognormal function in most cases. In addition, the impact of treatments at the 32-day

  6. Detection of metallo-beta-lactamase producing Pseudomonas ...

    African Journals Online (AJOL)

    sunny t

    2016-02-24

    Feb 24, 2016 ... Since the increasing prevalence of carbapenem-resistant Pseudomonas aeruginosa spp., accurate detection of metallo-β-lactamase (MBL) such as blaVIM type enzyme producing isolates became very important. However, phenotypic MBL detection methods previously reported are not highly sensitive or.

  7. The impact of nosocomially-acquired resistant Pseudomonas aeruginosa infection in a burn unit.

    Science.gov (United States)

    Armour, Alexis D; Shankowsky, Heather A; Swanson, Todd; Lee, Jonathan; Tredget, Edward E

    2007-07-01

    Nosocomially-acquired Pseudomonas aeruginosa remains a serious cause of infection and septic mortality in burn patients. This study was conducted to quantify the impact of nosocomially-transmitted resistant P. aeruginosa in a burn population. Using a TRACS burn database, 48 patients with P. aeruginosa resistant to gentamicin were identified (Pseudomonas group). Thirty-nine were case-matched to controls without resistant P. aeruginosa cultures (control group) for age, total body surface area, admission year, and presence of inhalation injury. Mortality and various morbidity endpoints were examined, as well as antibiotic costs. There was a significantly higher mortality rate in the Pseudomonas group (33% vs. 8%, p products used (packed cells 51.1 +/- 8.0 vs. 21.1 +/- 3.4, p < 0.01; platelets 11.9 +/- 3.0 vs. 1.4 +/- 0.7, p < 0.01) were all significantly higher in the Pseudomonas group. Cost of antibiotics was also significantly higher ($2,658.52 +/- $647.93 vs. $829.22 +/- $152.82, p < 0.01). Nosocomial colonization or infection, or both, of burn patients with aminoglycoside-resistant P. aeruginosa is associated with significantly higher morbidity, mortality, and cost of care. Increased resource consumption did not prevent significantly higher mortality rates when compared with that of control patients. Thus, prevention, identification, and eradication of nosocomial Pseudomonas contamination are critical for cost-effective, successful burn care.

  8. Indigenous Pseudomonas spp. Strains from the Olive (Olea europaea L.) Rhizosphere as Effective Biocontrol Agents against Verticillium dahliae: From the Host Roots to the Bacterial Genomes

    Science.gov (United States)

    Gómez-Lama Cabanás, Carmen; Legarda, Garikoitz; Ruano-Rosa, David; Pizarro-Tobías, Paloma; Valverde-Corredor, Antonio; Niqui, José L.; Triviño, Juan C.; Roca, Amalia; Mercado-Blanco, Jesús

    2018-01-01

    The use of biological control agents (BCA), alone or in combination with other management measures, has gained attention over the past decades, driven by the need to seek for sustainable and eco-friendly alternatives to confront plant pathogens. The rhizosphere of olive (Olea europaea L.) plants is a source of bacteria with potential as biocontrol tools against Verticillium wilt of olive (VWO) caused by Verticillium dahliae Kleb. A collection of bacterial isolates from healthy nursery-produced olive (cultivar Picual, susceptible to VWO) plants was generated based on morphological, biochemical and metabolic characteristics, chemical sensitivities, and on their in vitro antagonistic activity against several olive pathogens. Three strains (PIC25, PIC105, and PICF141) showing high in vitro inhibition ability of pathogens' growth, particularly against V. dahliae, were eventually selected. Their effectiveness against VWO caused by the defoliating pathotype of V. dahliae was also demonstrated, strain PICF141 being the rhizobacteria showing the best performance as BCA. Genotypic and phenotypic traits traditionally associated with plant growth promotion and/or biocontrol abilities were evaluated as well (e.g., phytase, xylanase, catalase, cellulase, chitinase, glucanase activities, and siderophore and HCN production). Multi-locus sequence analyses of conserved genes enabled the identification of these strains as Pseudomonas spp. Strain PICF141 was affiliated to the “Pseudomonas mandelii subgroup,” within the “Pseudomonas fluorescens group,” Pseudomonas lini being the closest species. Strains PIC25 and PIC105 were affiliated to the “Pseudomonas aeruginosa group,” Pseudomonas indica being the closest relative. Moreover, we identified P. indica (PIC105) for the first time as a BCA. Genome sequencing and in silico analyses allowed the identification of traits commonly associated with plant-bacteria interactions. Finally, the root colonization ability of these olive

  9. Resistance patterns of Pseudomonas aeruginosa isolated from HIV ...

    African Journals Online (AJOL)

    negative bacilli in patients with impaired host defences emphasizes the need for information on the antibiotic susceptibility of the organisms that infects such patients. Pseudomonas aeruginosa are becoming increasingly resistant to ...

  10. Growth of Pseudomonas spp. in cottage cheese

    DEFF Research Database (Denmark)

    Østergaard, Nina Bjerre; Dalgaard, Paw

    Cottage cheese is a mixture of cheese curd with pH 4.5-4.8 and an uncultured or cultured cream dressing with a pH as high as 7.0. This results in a final product with microenvironments and a bulk pH of about 4.8 to 5.5. As for other lightly preserved foods microbial contamination and growth...... of spoilage microorganisms in cottage cheese can cause undesirable alterations in flavour, odour, appearance and texture. Contamination and growth of psychrotolerant pseudomonads including Pseudomonas fragi and Pseudomonas putida has been reported for cottage cheese but the influence of these bacteria...... on product spoilage and shelf-life remains poorly described. The present study used a quantitative microbial ecology approach to model and predict the effect of product characteristics and storage conditions on growth of psychrotolerant pseudomonads in cottage cheese. The effect of temperature (5-15˚C) and p...

  11. MEDICINAL PLANTS FROM BRAZILIAN CAATINGA: ANTIBIOFILM AND ANTIBACTERIAL ACTIVITIES AGAINST Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    DANIELLE SILVA TRENTIN

    2014-01-01

    Full Text Available The Caatinga biome covers a vast area in northeastern Brazil and presents a high level of biodiversity. It is known that about 400 plant species are used by semi-arid local communities for medical purposes. Based on ethnopharmacological reports, this study aims to screen 24 species from Caatinga regarding the ability to prevent biofilm formation and to inhibit the growth of Pseudomonas aeruginosa - a major opportunistic human pathogen and an important causative agent of morbidity and mortality. The effects of aqueous extracts, at 0.4 and 4.0 mg mL-1, on biofilm formation and on growth of P. aeruginosa ATCC 27853 were studied using the crystal violet assay and the OD600 absorbance, respectively. The most active extracts were analyzed by thinlayer chromatography and high performance liquid chromatography. Our investigation pointed extracts of four species with potential application for the control of P. aeruginosa: Anadenanthera colubrina (Vell. Brenan, Commiphora leptophloeos (Mart. J.B. Gillett, Myracrodruoun urundeuva Allemão, whose antibiofilm effects (89%, 56% and 79% inhibition of biofilm, respectively were associated with complete inhibition of bacterial growth, and Pityrocarpa moniliformis (Benth. Luckow & R.W. Jobson, which were able avoid 68% of biofilm formation and inhibited 30% bacterial growth. The qualitative phytochemical analyses reveal the complexity of the samples as well as the presence of compounds with high molecular weight.

  12. Antibiotic Sensitivity in Pseudomonas aeruginosa of Diabetic Patient’s Foot Ulcer

    OpenAIRE

    Pratiwi Apridamayanti; Khairunnisa Azani Meilinasary; Rafika Sari

    2016-01-01

    Diabetes Mellitus (DM) patients are at risk to have the diabetic ulcer. The main reason for DM’s patient with ulcer complication to be treated and healed in hospital is bacterial infection. One of many bacteria that infects diabetic ulcer is Pseudomonas aeruginosa. This conditian can be treated by antibiotic. The using antibiotic is often inaccurate causing the microbe resistance. To choose the right antibiotic, it needs to test the antibiotic’s sensitivity towards Pseudomonas aeruginosa. The...

  13. Inhibited growth of Pseudomonas aeruginosa by dextran- and polyacrylic acid-coated ceria nanoparticles

    Directory of Open Access Journals (Sweden)

    Wang Q

    2013-08-01

    Full Text Available Qi Wang,1 J Manuel Perez,2 Thomas J Webster1,3 1Bioengineering Program, College of Engineering, Northeastern University, Boston, MA, USA; 2Nanoscience Technology Center, University of Central Florida, Orlando, FL, USA; 3Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA, USA Abstract: Ceria (CeO2 nanoparticles have been widely studied for numerous applications, but only a few recent studies have investigated their potential applications in medicine. Moreover, there have been almost no studies focusing on their possible antibacterial properties, despite the fact that such nanoparticles may reduce reactive oxygen species. In this study, we coated CeO2 nanoparticles with dextran or polyacrylic acid (PAA because of their enhanced biocompatibility properties, minimized toxicity, and reduced clearance by the immune system. For the first time, the coated CeO2 nanoparticles were tested in bacterial assays involving Pseudomonas aeruginosa, one of the most significant bacteria responsible for infecting numerous medical devices. The results showed that CeO2 nanoparticles with either coating significantly inhibited the growth of Pseudomonas aeruginosa, by up to 55.14%, after 24 hours compared with controls (no particles. The inhibition of bacterial growth was concentration dependent. In summary, this study revealed, for the first time, that the characterized dextran- and PAA-coated CeO2 nanoparticles could be potential novel materials for numerous antibacterial applications. Keywords: antibacterial, biomedical applications

  14. SHORT COMMUNICATION: Non-Fermenters in Human Infections with Special Reference to Acinetobacter Species in a Tertiary Care Hospital from North Karnataka, India

    Directory of Open Access Journals (Sweden)

    Prashant K. Parandekar

    2012-01-01

    Full Text Available Background: Non-fermenters are a group of aerobic non-spore forming gram negative bacilli that are either incapable of utilizingcarbohydrates as a source of energy or degrade them via oxidative rather than fermentative pathway. These are increasingly been reported from the cases of nosocomial infections. Aims and Objectives: This study was undertaken aiming to identify, characterize all nonfermenters and further study of Acinetobacterisolates. Materials and Methods: A total 116 non-fermenters isolated from various specimens obtained from the patients in tertiarycare hospital. Gram negative bacilli which failed to produce acid on Triple Sugar Iron Agar (TSI were identified by employing battery oftests. The Acinetobacter isolates were further speciated and antimicrobial susceptibility testing done by Kirby Bauer disc diffusion technique. Results: Non-fermenters isolated were Pseudomonas aerugionsa (69.8%, Acinetobacter species (18.9%,Stenotrophomonas maltophilia (4.3%, Burkholderia cepacia (3.4%, Alcaligenes fecalis (1.7% and Pseudomonas fluorescens (1.7%. Most of the isolates showed susceptibility to imipenem (86.3% whereasnone of the isolates were sensitive to cephalexin and co-trimoxazole. Conclusion: This study highlights that, after Pseudomonas aeruginosa, Acinetobacter species is the most common non-fermenter. Majority of the isolates of Acinetobacter Species were ofnosocomial origin and were multidrug resistant, which underlines the importance of proper vigilance of these infections in hospital setting.

  15. ANOMALOUS BLUE COLOURING OF MOZZARELLA CHEESE INTENTIONALLY CONTAMINATED WITH PIGMENT PRODUCING STRAINS OF PSEUDOMONAS FLUORESCENS

    Directory of Open Access Journals (Sweden)

    P. Sechi

    2011-04-01

    Full Text Available In summer 2010 a large outbreak of anomalous blue coloration of mozzarella cheese was recorded in Italy and some northern European countries. Official laboratory analysis and health authorities linked the outbreak to the contamination of processing water with strains of Pseudomonas fluorescens, although several expert raised the question of how to unequivocally link the blue coloring to the presence of the micro-organism. In an attempt to set-up a method to determine whether a given Pseudomonas spp. strain is responsible of the defect, an in vitro system for the evaluation of blue colouring of mozzarella cheese intentionally contaminated with strains of Pseudomonas fluorescens. was developed The system is aimed to ascertain whether P. fluorescens strains, isolated from mozzarella cheese with anomalous blue coloration, are able to reproduce the blue coloration under controlled experimental condition. 96 trials of experimental inoculation of mozzarella cheese in different preservation liquids, were conducted using various suspension of Pseudomonas spp. (P. fluorescens ATCC 13525, P. fluorescens CFBP 3150, one P. fluorescens field strain isolated from blue-colored mozzarella cheese and P. aeruginosa ATCC 10145 as positive control at different concentrations and incubated at different temperatures. Growth curve of all Pseudomonas spp. strains tested demonstrated that after three days of incubation the concentration was generally higher than 106 CFU/g of mozzarella cheese incubated in Tryptic Soy Broth (TSB, and higher than 105 CFU/g of mozzarella cheese incubated in preservation liquid. All mozzarella cheeses inoculated with the field strain of Pseudomonas fluorescens showed the characteristic anomalous blue coloration, which is often associated with Pseudomonas fluorescens contamination of water used during mozzarella cheesemaking. With the proposed system, which enabled a considerable amount of samples to be analysed under controlled experimental

  16. Comparative evaluation of organic formulations of Pseudomonas ...

    African Journals Online (AJOL)

    An experiment was conducted in the laboratory and farm of the Department of Biotechnology, Gauhati University, to explore the potentiality of various organic formulations of Pseudomonas fluorescens (Pf) and to manage bacterial wilt disease of brinjal (Solanum melongena L.) under local conditions. Different organic ...

  17. Enhanced alpha-galactosidase expression in pseudomonas chlororaphis

    Science.gov (United States)

    Pseudomonas chlororaphis is a non-pathogenic bacterium useful for fermentative production of biopolymer (i.e., poly(hydroxyalkanoates); PHA) and biosurfactant (i.e., rhamnolipid; RhL). In order to enable P. chlororaphis to better fermentatively utilize the residual soy sugars in soy molasses – a lo...

  18. An inter-species signaling system mediated by fusaric acid has parallel effects on antifungal metabolite production by Pseudomonas protegens Pf-5 and antibiosis of Fusarium spp.

    Science.gov (United States)

    Pseudomonas protegens strain Pf-5 is a rhizosphere bacterium that acts as a biocontrol agent of soilborne plant diseases, and produces at least seven different secondary metabolites with antifungal properties. We derived site-directed mutants of Pf-5 with single and multiple mutations in the biosynt...

  19. Rhizosphere-associated Pseudomonas induce systemic resistance to herbivores at the cost of susceptibility to bacterial pathogens.

    Science.gov (United States)

    Haney, Cara H; Wiesmann, Christina L; Shapiro, Lori R; Melnyk, Ryan A; O'Sullivan, Lucy R; Khorasani, Sophie; Xiao, Li; Han, Jiatong; Bush, Jenifer; Carrillo, Juli; Pierce, Naomi E; Ausubel, Frederick M

    2017-10-31

    Plant-associated soil microbes are important mediators of plant defence responses to diverse above-ground pathogen and insect challengers. For example, closely related strains of beneficial rhizosphere Pseudomonas spp. can induce systemic resistance (ISR), systemic susceptibility (ISS) or neither against the bacterial foliar pathogen Pseudomonas syringae pv. tomato DC3000 (Pto DC3000). Using a model system composed of root-associated Pseudomonas spp. strains, the foliar pathogen Pto DC3000 and the herbivore Trichoplusia ni (cabbage looper), we found that rhizosphere-associated Pseudomonas spp. that induce either ISS and ISR against Pto DC3000 all increased resistance to herbivory by T. ni. We found that resistance to T. ni and resistance to Pto DC3000 are quantitative metrics of the jasmonic acid (JA)/salicylic acid (SA) trade-off and distinct strains of rhizosphere-associated Pseudomonas spp. have distinct effects on the JA/SA trade-off. Using genetic analysis and transcriptional profiling, we provide evidence that treatment of Arabidopsis with Pseudomonas sp. CH267, which induces ISS against bacterial pathogens, tips the JA/SA trade-off towards JA-dependent defences against herbivores at the cost of a subset of SA-mediated defences against bacterial pathogens. In contrast, treatment of Arabidopsis with the ISR strain Pseudomonas sp. WCS417 disrupts JA/SA antagonism and simultaneously primes plants for both JA- and SA-mediated defences. Our findings show that ISS against the bacterial foliar pathogens triggered by Pseudomonas sp. CH267, which is a seemingly deleterious phenotype, may in fact be an adaptive consequence of increased resistance to herbivory. Our work shows that pleiotropic effects of microbiome modulation of plant defences are important to consider when using microbes to modify plant traits in agriculture. © 2017 John Wiley & Sons Ltd.

  20. [Pseudomonas infection: biological risk by occupational exposure and results of an environmental monitoring].

    Science.gov (United States)

    Massoni, Francesco; Giorgi, Doriana Antonella; Palmieri, Sabina; Arcangeli, Luca; Ricci, Serafino

    2014-01-01

    The biological risk of Pseudomonas aeruginosa for activities involving exposure to contaminated water, such as, for example, routine maintenance of swimming pools, is related to the availability of effective prophylactic and therapeutic measures. The authors present the data of the microbiological analyzes made on 2349 samples taken from pools in Rome and province. The contamination by Pseudomonas was found in 191 samples with 13 samples that had a level > 100 cfu/100 ml and 5 samples with level > 200 cfu/100 ml. Useful considerations derived from the analysis of the literature about the profile and prophylactic treatment of infection by Pseudomonas, necessarily to be taken into consideration for an adequate risk assessment.

  1. Effect of Pseudomonas fluorescens on Buried Steel Pipeline Corrosion.

    Science.gov (United States)

    Spark, Amy J; Law, David W; Ward, Liam P; Cole, Ivan S; Best, Adam S

    2017-08-01

    Buried steel infrastructure can be a source of iron ions for bacterial species, leading to microbiologically influenced corrosion (MIC). Localized corrosion of pipelines due to MIC is one of the key failure mechanisms of buried steel pipelines. In order to better understand the mechanisms of localized corrosion in soil, semisolid agar has been developed as an analogue for soil. Here, Pseudomonas fluorescens has been introduced to the system to understand how bacteria interact with steel. Through electrochemical testing including open circuit potentials, potentiodynamic scans, anodic potential holds, and electrochemical impedance spectroscopy it has been shown that P. fluorescens increases the rate of corrosion. Time for oxide and biofilms to develop was shown to not impact on the rate of corrosion but did alter the consistency of biofilm present and the viability of P. fluorescens following electrochemical testing. The proposed mechanism for increased corrosion rates of carbon steel involves the interactions of pyoverdine with the steel, preventing the formation of a cohesive passive layer, after initial cell attachment, followed by the formation of a metal concentration gradient on the steel surface.

  2. Pseudomonas aeruginosa PA14 pathogenesis in Caenorhabditis elegans.

    Science.gov (United States)

    Kirienko, Natalia V; Cezairliyan, Brent O; Ausubel, Frederick M; Powell, Jennifer R

    2014-01-01

    The nematode Caenorhabditis elegans is a simple model host for studying the interaction between bacterial pathogens such as Pseudomonas aeruginosa and the metazoan innate immune system. Powerful genetic and molecular tools in both C. elegans and P. aeruginosa facilitate the identification and analysis of bacterial virulence factors as well as host defense factors. Here we describe three different assays that use the C. elegans-P. aeruginosa strain PA14 host-pathogen system. Fast Killing is a toxin-mediated death that depends on a diffusible toxin produced by PA14 but not on live bacteria. Slow Killing is due to an active infection in which bacteria colonize the C. elegans intestinal lumen. Liquid Killing is designed for high-throughput screening of chemical libraries for anti-infective compounds. Each assay has unique features and, interestingly, the PA14 virulence factors involved in killing are different in each assay.

  3. Engineering Pseudomonas protegens Pf-5 for Nitrogen Fixation and its Application to Improve Plant Growth under Nitrogen-Deficient Conditions

    Science.gov (United States)

    Setten, Lorena; Soto, Gabriela; Mozzicafreddo, Matteo; Fox, Ana Romina; Lisi, Christian; Cuccioloni, Massimiliano; Angeletti, Mauro; Pagano, Elba; Díaz-Paleo, Antonio; Ayub, Nicolás Daniel

    2013-01-01

    Nitrogen is the second most critical factor for crop production after water. In this study, the beneficial rhizobacterium Pseudomonas protegens Pf-5 was genetically modified to fix nitrogen using the genes encoding the nitrogenase of Pseudomonas stutzeri A1501 via the X940 cosmid. Pf-5 X940 was able to grow in L medium without nitrogen, displayed high nitrogenase activity and released significant quantities of ammonium to the medium. Pf-5 X940 also showed constitutive expression and enzymatic activity of nitrogenase in ammonium medium or in nitrogen-free medium, suggesting a constitutive nitrogen fixation. Similar to Pseudomonas protegens Pf-5, Pseudomonas putida, Pseudomonas veronii and Pseudomonas taetrolens but not Pseudomonas balearica and Pseudomonas stutzeri transformed with cosmid X940 showed constitutive nitrogenase activity and high ammonium production, suggesting that this phenotype depends on the genome context and that this technology to obtain nitrogen-fixing bacteria is not restricted to Pf-5. Interestingly, inoculation of Arabidopsis, alfalfa, tall fescue and maize with Pf-5 X940 increased the ammonium concentration in soil and plant productivity under nitrogen-deficient conditions. In conclusion, these results open the way to the production of effective recombinant inoculants for nitrogen fixation on a wide range of crops. PMID:23675499

  4. Biodegradation of nicotine by a novel nicotine-degrading bacterium, Pseudomonas plecoglossicida TND35 and its new biotransformation intermediates.

    Science.gov (United States)

    Raman, Gurusamy; Mohan, KasiNadar; Manohar, Venkat; Sakthivel, Natarajan

    2014-02-01

    Tobacco wastes that contain nicotine alkaloids are harmful to human health and the environment. In the investigation, a novel nicotine-biodegrading bacterium TND35 was isolated and identified as Pseudomonas plecoglossicida on the basis of phenotypic, biochemical characteristics and 16S rRNA sequence homology. We have studied the nicotine biodegradation potential of strain TND35 by detecting the intermediate metabolites using an array of approaches such as HPLC, GC-MS, NMR and FT-IR. Biotransformation metabolites, N-methylmyosmine, 4-hydroxy-1-(3-pyridyl)-1-butanone (HPB) and other three new intermediate metabolites namely, 3,5-bis (1-methylpyrrolidin-2-yl) pyridine, 2,3-dihydro-1-methyl-5-(pyridin-3-yl)-1H-pyrrol-2-ol and 5-(pyridin-3-yl)-1H-pyrrol-2(3H)-one have been identified. Interestingly, these intermediate metabolites suggest that the strain TND35 employs a novel nicotine biodegradation pathway, which is different from the reported pathways of Aspergillus oryzae 112822, Arthrobacter nicotinovorans pAO1, Agrobacterium tumefaciens S33 and other species of Pseudomonas. The metabolite, HPB reported in this study can also be used as biochemical marker for tobacco related cancer studies.

  5. Screening of thermophilic neutral lipase-producing Pseudomonas ...

    African Journals Online (AJOL)

    From oil-contaminated soil, three lipase-producing microorganisms were selected as good lipase producers using rhodamine B-olive oil plate agar and they were identified as from Pseudomonas, Burkholderia and Klebsiella genera by morphology, biochemical characterization and 16S rRNA gene sequencing. Among the ...

  6. Evaluation of gamma irradiation effect and Pseudomonas ...

    African Journals Online (AJOL)

    Antagonistic effect of Pseudomonas fluorescens and influence of gamma irradiation on the development of Penicillium expansum, the causal agent of postharvest disease on apple fruit was studied. P. fluorescens was originally isolated from rhizosphere of the apple trees. Suspension of P. fluorescens and P. expansum ...

  7. Extracytoplasmic function sigma factors in Pseudomonas syringae

    DEFF Research Database (Denmark)

    Kiil, Kristoffer; Oguiza, J.A.; Ussery, D.W.

    2005-01-01

    Genome analyses of the plant pathogens Pseudomonas syringae pv. tomato DC3000, pv. syringae B728a and pv. phaseolicola 1448A reveal fewer extracytoplasmic function (ECF) sigma factors than in related Pseudomonads with different lifestyles. We highlight the presence of a P. syringae-specific ECF...

  8. Plant-expressed pyocins for control of Pseudomonas aeruginosa.

    Directory of Open Access Journals (Sweden)

    Šarūnas Paškevičius

    Full Text Available The emergence, persistence and spread of antibiotic-resistant human pathogenic bacteria heralds a growing global health crisis. Drug-resistant strains of gram-negative bacteria, such as Pseudomonas aeruginosa, are especially dangerous and the medical and economic burden they impose underscore the critical need for finding new antimicrobials. Recent studies have demonstrated that plant-expressed bacteriocins of the colicins family can be efficient antibacterials against all major enteropathogenic strains of E. coli. We extended our studies of colicin-like bacteriocins to pyocins, which are produced by strains of P. aeruginosa for ecological advantage against other strains of the same species. Using a plant-based transient expression system, we expressed six different pyocins, namely S5, PaeM, L1, L2, L3 and one new pyocin, PaeM4, and purified them to homogeneity. Among these pyocins, PaeM4 demonstrated the broadest spectrum of activity by controlling 53 of 100 tested clinical isolates of P. aeruginosa. The activity of plant-made pyocins was confirmed in the agar drop, liquid culture susceptibility and biofilm assays, and in the Galleria mellonella animal infection model.

  9. Anaerobic oxidation of 2-chloroethanol under denitrifying conditions by Pseudomonas stutzeri strain JJ.

    Science.gov (United States)

    Dijk, J A; Stams, A J M; Schraa, G; Ballerstedt, H; de Bont, J A M; Gerritse, J

    2003-11-01

    A bacterium that uses 2-chloroethanol as sole energy and carbon source coupled to denitrification was isolated from 1,2-dichloroethane-contaminated soil. Its 16 S rDNA sequence showed 98% similarity with the type strain of Pseudomonas stutzeri (DSM 5190) and the isolate was tentatively identified as Pseudomonas stutzeri strain JJ. Strain JJ oxidized 2-chloroethanol completely to CO(2) with NO(3)(- )or O(2) as electron acceptor, with a preference for O(2) if supplied in combination. Optimum growth on 2-chloroethanol with nitrate occurred at 30 degrees C with a mu(max) of 0.14 h(-1) and a yield of 4.4 g protein per mol 2-chloroethanol metabolized. Under aerobic conditions, the mu(max) was 0.31 h(-1). NO(2)(-) also served as electron acceptor, but reduction of Fe(OH)(3), MnO(2), SO(4)(2-), fumarate or ClO(3)(-) was not observed. Another chlorinated compound used as sole energy and carbon source under aerobic and denitrifying conditions was chloroacetate. Various different bacterial strains, including some closely related Pseudomonas stutzeri strains, were tested for their ability to grow on 2-chloroethanol as sole energy and carbon source under aerobic and denitrifying conditions, respectively. Only three strains, Pseudomonas stutzeri strain LMD 76.42, Pseudomonas putida US2 and Xanthobacter autotrophicus GJ10, grew aerobically on 2-chloroethanol. This is the first report of oxidation of 2-chloroethanol under denitrifying conditions by a pure bacterial culture.

  10. Interaction between Pseudomonas and CXC Chemokines Increases Risk of Bronchiolitis Obliterans Syndrome and Death in Lung Transplantation

    Science.gov (United States)

    Wang, Xiaoyan; Weigt, S. Sam; Palchevskiy, Vyacheslav; Lynch, Joseph P.; Ross, David J.; Kubak, Bernard M.; Saggar, Rajan; Fishbein, Michael C.; Ardehali, Abbas; Li, Gang; Elashoff, Robert; Belperio, John A.

    2013-01-01

    Rationale: Pseudomonas aeruginosa is the most commonly isolated gram-negative bacterium after lung transplantation and has been shown to up-regulate glutamic acid–leucine–arginine–positive (ELR+) CXC chemokines associated with bronchiolitis obliterans syndrome (BOS), but the effect of pseudomonas on BOS and death has not been well defined. Objectives: To determine if the influence of pseudomonas isolation and ELR+ CXC chemokines on the subsequent development of BOS and the occurrence of death is time dependent. Methods: A three-state model was developed to assess the likelihood of transitioning from lung transplant (state 1) to BOS (state 2), from transplant (state 1) to death (state 3), and from BOS (state 2) to death (state 3). This Cox semi-Markovian approach determines state survival rates and cause-specific hazards for movement from one state to another. Measurements and Main Results: The likelihood of transition from transplant to BOS was increased by acute rejection, CXCL5, and the interaction between pseudomonas and CXCL1. The pseudomonas effect in this transition was due to infection rather than colonization. Movement from transplant to death was facilitated by pseudomonas infection and single lung transplant. Transition from BOS to death was affected by the length of time in state 1 and by the interactions between any pseudomonas isolation and CXCL5 and aspergillus, either independently or in combination. Conclusions: Our model demonstrates that common post-transplantation events drive movement from one post-transplantation state to another and influence outcomes differently depending upon when after transplantation they occur. Pseudomonas and the ELR+ CXC chemokines may interact to negatively influence lung transplant outcomes. PMID:23328531

  11. Pseudomonas putida as a functional chassis for industrial biocatalysis: From native biochemistry to trans-metabolism.

    Science.gov (United States)

    Nikel, Pablo I; de Lorenzo, Víctor

    2018-05-16

    The itinerary followed by Pseudomonas putida from being a soil-dweller and plant colonizer bacterium to become a flexible and engineer-able platform for metabolic engineering stems from its natural lifestyle, which is adapted to harsh environmental conditions and all sorts of physicochemical stresses. Over the years, these properties have been capitalized biotechnologically owing to the expanding wealth of genetic tools designed for deep-editing the P. putida genome. A suite of dedicated vectors inspired in the core tenets of synthetic biology have enabled to suppress many of the naturally-occurring undesirable traits native to this species while enhancing its many appealing properties, and also to import catalytic activities and attributes from other biological systems. Much of the biotechnological interest on P. putida stems from the distinct architecture of its central carbon metabolism. The native biochemistry is naturally geared to generate reductive currency [i.e., NAD(P)H] that makes this bacterium a phenomenal host for redox-intensive reactions. In some cases, genetic editing of the indigenous biochemical network of P. putida (cis-metabolism) has sufficed to obtain target compounds of industrial interest. Yet, the main value and promise of this species (in particular, strain KT2440) resides not only in its capacity to host heterologous pathways from other microorganisms, but also altogether artificial routes (trans-metabolism) for making complex, new-to-Nature molecules. A number of examples are presented for substantiating the worth of P. putida as one of the favorite workhorses for sustainable manufacturing of fine and bulk chemicals in the current times of the 4th Industrial Revolution. The potential of P. putida to extend its rich native biochemistry beyond existing boundaries is discussed and research bottlenecks to this end are also identified. These aspects include not just the innovative genetic design of new strains but also the incorporation of

  12. Optimization of alkaline protease production from Pseudomonas ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-12-15

    Dec 15, 2009 ... protease production was 37°C at pH 9, with 2% inoculum in the medium for 24 h. .... Positive. Catalase test. Positive ... The enzyme activity gradually decreases from ... Effect of temperature on protease production by Pseudomonas fluorescens. 0 .... between RNA polymerase and upstream promotes DNA.

  13. ADHESION OF PSEUDOMONAS-FLUORESCENS TO METALLIC SURFACES

    NARCIS (Netherlands)

    VIEIRA, MJ; OLIVEIRA, R; MELO, L; PINHEIRO, M; VANDERMEI, HC

    1992-01-01

    Deposition of Pseudomonas fluorescens on aluminium, brass and copper plates was studied in a flow system. The number of bacteria deposited on aluminium was greater than on the other two types of metals. The results are discussed in terms of the mechanisms (transport and/or adhesion) that may control

  14. Clinical utilization of genomics data produced by the international Pseudomonas aeruginosa consortium

    DEFF Research Database (Denmark)

    Freschi, Luca; Jeukens, Julie; Kukavica-Ibrulj, Irena

    2015-01-01

    The International Pseudomonas aeruginosa Consortium is sequencing over 1000 genomes and building an analysis pipeline for the study of Pseudomonas genome evolution, antibiotic resistance and virulence genes. Metadata, including genomic and phenotypic data for each isolate of the collection, are a...... implicated in human and animal infections, understand how patients become infected and how the infection evolves over time as well as identify prognostic markers for better evidence-based decisions on patient care....

  15. Pseudomonas aeruginosa Dose-Response and Bathing Water Infection

    Science.gov (United States)

    Pseudomonas aeruginosa is the most commonly identified opportunistic pathogen associated with pool acquired bather disease. To better understand why this microorganism poses this protracted problem we recently appraised P. aeruginosa pool risk management. Much is known about the ...

  16. Caenorhabditis elegans reveals novel Pseudomonas aeruginosa virulence mechanism

    NARCIS (Netherlands)

    Utari, Putri Dwi; Quax, Wim J.

    The susceptibility of Caenorhabditis elegans to different virulent phenotypes of Pseudomonas aeruginosa makes the worms an excellent model for studying host-pathogen interactions. Including the recently described liquid killing, five different killing assays are now available offering superb

  17. CHARACTERIZATION AND NUCLEOTIDE SEQUENCE DETERMINATION OF A REPEAT ELEMENT ISOLATED FROM A 2,4,5,-T DEGRADING STRAIN OF PSEUDOMONAS CEPACIA

    Science.gov (United States)

    Pseudomonas cepacia strain AC1100, capable of growth on 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), was mutated to the 2,4,5-T− strain PT88 by a ColE1 :: Tn5 chromosomal insertion. Using cloned DNA from the region flanking the insertion, a 1477-bp sequence (designated RS1100) wa...

  18. Transcriptome analysis of Pseudomonas mediterranea and P. corrugata plant pathogens during accumulation of medium-chain-length PHAs by glycerol bioconversion.

    Science.gov (United States)

    Licciardello, Grazia; Ferraro, Rosario; Russo, Marcella; Strozzi, Francesco; Catara, Antonino F; Bella, Patrizia; Catara, Vittoria

    2017-07-25

    Pseudomonas corrugata and P. mediterranea are soil inhabitant bacteria, generally living as endophytes on symptomless plants and bare soil, but also capable of causing plant diseases. They share a similar genome size and a high proteome similarity. P. corrugata produces many biomolecules which play an important role in bacterial cell survival and fitness. Both species produce different medium-chain-length PHAs (mcl-PHAs) from the bioconversion of glycerol to a transparent film in P. mediterranea and a sticky elastomer in P. corrugata. In this work, using RNA-seq we investigated the transcriptional profiles of both bacteria at the early stationary growth phase with glycerol as the carbon source. Quantitative analysis of P. mediterranea transcripts versus P. corrugata revealed that 1756 genes were differentially expressed. A total of 175 genes were significantly upregulated in P. mediterranea, while 217 were downregulated. The largest group of upregulated genes was related to transport systems and stress response, energy and central metabolism, and carbon metabolism. Expression levels of most genes coding for enzymes related to PHA biosynthesis and central metabolic pathways showed no differences or only slight variations in pyruvate metabolism. The most relevant result was the significantly increased expression in P. mediterranea of genes involved in alginate production, an important exopolysaccharide, which in other Pseudomonas spp. plays a key role as a virulence factor or in stress tolerance and shows many industrial applications. In conclusion, the results provide useful information on the co-production of mcl-PHAs and alginate from glycerol as carbon source by P. mediterranea in the design of new strategies of genetic regulation to improve the yield of bioproducts or bacterial fitness. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Chitinase activity of Pseudomonas stutzeri PT5 in different fermentation condition

    Science.gov (United States)

    Chalidah, N.; Khotimah, I. N.; Hakim, A. R.; Meata, B. A.; Puspita, I. D.; Nugraheni, P. S.; Ustadi; Pudjiraharti, S.

    2018-03-01

    This study aimed to determine the incubation condition of Pseudomonas stutzeri PT5 in producing chitin degrading enzyme in various pH and temperatures; to compare the production of chitin degrading enzyme in chitin medium supplemented with additional nitrogen, carbon and a mixture of nitrogen and carbon sources and to observe the production of chitin degrading enzyme in 250 mL-shake flasks and 2 L-fermentor. The parameters tested during production were chitinase activity (U·mL-1) of culture supernatant and N-acetylglucosamine concentration (μg·mL-1) in the medium. The results showed that Pseudomonas stutzeri PT5 was able to produce the highest chitinase activity at pH 6 and temperature of 37 °C (0.024 U·mL-1). The addition of 0.1 % of ammonium phosphate and 0.1 % of maltose, increased the chitinase activity of Pseudomonas stutzeri PT5 by 3.24 and 8.08 folds, respectively, compared to the control. The addition of 0.1 % ammonium phosphate and 0.1 % maltose mixture to chitin medium resulted in the shorter time of chitinase production compared to the addition of sole nutrition. The production of chitinase using 2 L-fermentor shows that the highest chitinase activity produced by Pseudomonas stutzeri PT5 was reached at 1-day incubation (0.0283 U·mL-1), which was shorter than in 250 mL-shake flasks.

  20. When genome-based approach meets the ‘old but good’: revealing genes involved in the antibacterial activity of Pseudomonas sp. P482 against soft rot pathogens.

    Directory of Open Access Journals (Sweden)

    Dorota Magdalena Krzyżanowska

    2016-05-01

    Full Text Available Dickeya solani and Pectobacterium carotovorum subsp. brasili¬ense are recently established species of bacterial plant pathogens causing black leg and soft rot of many vegetables and ornamental plants. Pseudomonas sp. strain P482 inhibits the growth of these pathogens, a desired trait considering the limited measures to combat these diseases. In this study, we determined the genetic background of the antibacterial activity of P482, and established the phylogenetic position of this strain.Pseudomonas sp. P482 was classified as Pseudomonas donghuensis. Genome mining revealed that the P482 genome does not contain genes determining the synthesis of known antimicrobials. However, the ClusterFinder algorithm, designed to detect atypical or novel classes of secondary metabolite gene clusters, predicted 18 such clusters in the genome. Screening of a Tn5 mutant library yielded an antimicrobial negative transposon mutant. The transposon insertion was located in a gene encoding an HpcH/HpaI aldolase/citrate lyase family protein. This gene is located in a hypothetical cluster predicted by the ClusterFinder, together with the downstream homologues of four nfs genes, that confer production of a nonfluorescent siderophore by P. donghuensis HYST. Site-directed inactivation of the HpcH/HpaI aldolase gene, the adjacent short chain dehydrogenase gene, as well as a homologue of an essential nfs cluster gene, all abolished the antimicrobial activity of the P482, suggesting their involvement in a common biosynthesis pathway. However, none of the mutants showed a decreased siderophore yield, neither was the antimicrobial activity of the wild type P482 compromised by high iron bioavailability.A genomic region comprising the nfs cluster and three upstream genes is involved in the antibacterial activity of P. donghuensis P482 against D. solani and P. carotovorum subsp. brasiliense. The genes studied are unique to the two known P. donghuensis strains. This study

  1. Detection of Pseudomonas fluorescens from broth, water and ...

    African Journals Online (AJOL)

    sonal

    2015-04-08

    Apr 8, 2015 ... Author(s) agree that this article remains permanently open access under the terms of ... grown in nutrient broth overnight, pond water, mucus and kidney ... a rapid test for detection of Pseudomonas strains in milk is required.

  2. Carbapenem stewardship: does ertapenem affect Pseudomonas susceptibility to other carbapenems? A review of the evidence.

    Science.gov (United States)

    Nicolau, David P; Carmeli, Yehuda; Crank, Christopher W; Goff, Debra A; Graber, Christopher J; Lima, Ana Lucia L; Goldstein, Ellie J C

    2012-01-01

    The group 2 carbapenems (imipenem, meropenem and, more recently, doripenem) have been a mainstay of treatment for patients with serious hospital infections caused by Pseudomonas aeruginosa, Enterobacteriaceae and other difficult-to-treat Gram-negative pathogens as well as mixed aerobic/anaerobic infections. When ertapenem, a group 1 carbapenem, was introduced, questions were raised about the potential for ertapenem to select for imipenem- and meropenem-resistant Pseudomonas. Results from ten clinical studies evaluating the effect of ertapenem use on the susceptibility of Pseudomonas to carbapenems have uniformly shown that ertapenem use does not result in decreased Pseudomonas susceptibility to these antipseudomonal carbapenems. Here we review these studies evaluating the evidence of how ertapenem use affects P. aeruginosa as well as provide considerations for ertapenem use in the context of institutional stewardship initiatives. Copyright © 2011 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  3. Utilization of petroleum hydrocarbons by Pseudomonas sp. and ...

    African Journals Online (AJOL)

    pseudomonas isolated from a petroleum-contaminated soil was instable. In this work, t is shown that when the isolates are immobilized on Perlite, they are more stable for oil egradation. Although the isolate did not have any chemotaxis to ...

  4. Structural, functional, and evolutionary analysis of moeZ, a gene encoding an enzyme required for the synthesis of the Pseudomonas metabolite, pyridine-2,6-bis(thiocarboxylic acid

    Directory of Open Access Journals (Sweden)

    Crawford Ronald L

    2002-04-01

    Full Text Available Abstract Background Pyridine-2,6-bis(thiocarboxylic acid (pdtc is a small secreted metabolite that has a high affinity for transition metals, increases iron uptake efficiency by 20% in Pseudomonas stutzeri, has the ability to reduce both soluble and mineral forms of iron, and has antimicrobial activity towards several species of bacteria. Six GenBank sequences code for proteins similar in structure to MoeZ, a P. stutzeri protein necessary for the synthesis of pdtc. Results Analysis of sequences similar to P. stutzeri MoeZ revealed that it is a member of a superfamily consisting of related but structurally distinct proteins that are members of pathways involved in the transfer of sulfur-containing moieties to metabolites. Members of this family of enzymes are referred to here as MoeB, MoeBR, MoeZ, and MoeZdR. MoeB, the molybdopterin synthase activating enzyme in the molybdopterin cofactor biosynthesis pathway, is the most characterized protein from this family. Remarkably, lengths of greater than 73% nucleic acid homology ranging from 35 to 486 bp exist between Pseudomonas stutzeri moeZ and genomic sequences found in some Mycobacterium, Mesorhizobium, Pseudomonas, Streptomyces, and cyanobacteria species. Conclusions The phylogenetic relationship among moeZ sequences suggests that P. stutzeri may have acquired moeZ through lateral gene transfer from a donor more closely related to mycobacteria and cyanobacteria than to proteobacteria. The importance of this relationship lies in the fact that pdtc, the product of the P. stutzeri pathway that includes moeZ, has an impressive set of capabilities, some of which could make it a potent pathogenicity factor.

  5. 40 CFR 180.1261 - Xanthomonas campestris pv. vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages.

    Science.gov (United States)

    2010-07-01

    ... and Pseudomonas syringae pv. tomato specific Bacteriophages. 180.1261 Section 180.1261 Protection of.... vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages. An exemption from the requirement of... syringae pv. tomato specific bacteriophages in or on pepper and tomato. [74 FR 26536, June 3, 2009] ...

  6. Effect of Iron Availability on Induction of Systemic Resistance to Fusarium Wilt of Chickpea by Pseudomonas spp.

    Science.gov (United States)

    Saikia, Ratul; Srivastava, Alok K; Singh, Kiran; Arora, Dilip K; Lee, Min-Woong

    2005-03-01

    Selected isolates of Pseudomonas fluorescens (Pf4-92 and PfRsC5) and P. aeruginosa (PaRsG18 and PaRsG27) were examined for growth promotion and induced systemic resistance against Fusarium wilt of chickpea. Significant increase in plant height was observed in Pseudomonas treated plants. However, plant growth was inhibited when isolates of Pseudomonas were used in combination with Fusarium oxysporum f. sp. ciceri (FocRs1). It was also observed that the Pseudomonas spp. was colonized in root of chickpea and significantly suppressed the disease in greenhouse condition. Rock wool bioassay technique was used to study the effect of iron availability on the induction of systemic resistance to Fusarium wilt of chickpea mediated by the Pseudomonas spp. All the isolates of Pseudomonas spp. showed greater disease control in the induced systemic resistance (ISR) bioassay when iron availability in the nutrient solution was low. High performance liquid chromatography (HPLC) analysis indicated that all the bacterial isolates produced more salicylic acid (SA) at low iron (10µM EDDHA) than high iron availability (10µFe(3+) EDDHA). Except PaRsG27, all the three isolates produced more pseudobactin at low iron than high iron availability.

  7. Peptidoglycan transpeptidase inhibition in Pseudomonas aeruginosa and Escherichia coli by Penicillins and Cephalosporins.

    Science.gov (United States)

    Moore, B A; Jevons, S; Brammer, K W

    1979-04-01

    Peptidoglycan transpeptidase activity has been studied in cells of Escherichia coli 146 and Pseudomonas aeruginosa 56 made permeable to exogenous, nucleotide-sugar peptidoglycan precursors by ether treatment. Transpeptidase activity was inhibited, in both organisms, by a range of penicillins and cephalosporins, the Pseudomonas enzyme being more sensitive to inhibition in each case. Conversely, growth of E. coli 146 was more susceptible to these antibiotics than growth of P. aeruginosa 56. Furthermore, similar transpeptidase inhibition values were ob-obtained for the four penicillins examined against the Pseudomonas enzyme, although only two of these (carbenicillin and pirbenicillin) inhibited the growth of this organism. We therefore conclude that the high resistance of P. aeruginosa 56 to growth inhibition by most beta-lactam antibiotics cannot be due to an insensitive peptidoglycan transpeptidase.

  8. [Nah-plasmids of IncP-9 group from natural strains of Pseudomonas].

    Science.gov (United States)

    Levchuk, A A; Bulyga, I M; Izmalkova, T Iu; Sevast'ianovich, Ia R; Kosheleva, I A; Thomas, C M; Titok, M A

    2006-01-01

    Use of polymerase chain reaction helped to establish that the most frequent among naphthalene utilizing bacteria, isolated on the territory of Belarus, are Nah-plasmids of IncP-9 incompatibility group and those with indefinite systematic belonging. With the help of classical test of incompatibility, restriction and sequence analyses three new subgroups within the IncP-9 group were discovered (zeta, eta and IncP-9-like replicons). Conducting of restriction analysis for amplification products of nahG and nahAc genes allowed us to reveal, in addition to known sequences of stated determinants, two new types of nahG gene. Restriction analysis performed on amplification products of 16S RNA genes (ARDRA method) showed that native hosts of Nah-plasmids of IncP-9 group are not only fluorescent bacteria from genus Pseudomonas (P. fluorescens, P. putida, P. aeruginosa, P. species), but also non-fluorescent bacteria with indefinite specific belonging.

  9. Effects of the Consortium of Pseudomonas, Bacillus and ...

    African Journals Online (AJOL)

    The effect of the consortium of Pseudomonas, Bacillus and Micrococcus spp on polycyclic aromatic hydrocarbons in crude oil was carried out using standard microbiological methods. Spectrophotometer, gas chromatography and viable count which determined the optical density, the polycyclic aromatic hydrocarbons and ...

  10. Antibacterial effect of the laser-generated Se nanocoatings on Staphylococcus aureus and Pseudomonas aeruginosa biofilms

    Science.gov (United States)

    Ionin, A. A.; Ivanova, A. K.; Khmel'nitskii, R. A.; Klevkov, Yu V.; Kudryashov, S. I.; Levchenko, A. O.; Nastulyavichus, A. A.; Rudenko, A. A.; Saraeva, I. N.; Smirnov, N. A.; Zayarny, D. A.; Gonchukov, S. A.; Tolordava, E. R.

    2018-01-01

    The antibacterial properties of selenium nanoparticles (Se NPs) were successfully demonstrated in vitro for Staphylococcus aureus and Pseudomonas aeruginosa biofilms. The possible mechanisms of antibacterial impact included the emergence of reactive oxygen species, induced by free radicals on the NP surface and accompanied by subsequent oxidative stress, as well as mechanical decomposition of the mitochondrial membrane. Se nanocoatings were deposited on bare and silver-coated silica glass substrates via inkjet printing with concentrated nanoinks, prepared by infrared laser-ablative processing of a solid Se target in a 50%-isopropyl solution. The resulted porous nanofilms with high-percentage surface coverage, consisting of spherical Se NPs and Se nanorods, were characterized by means of standard microscopy techniques (optical, scanning electron, transmission), UV-vis-IR and EDX spectroscopy.

  11. Antimicrobial effect of Al2O3, Ag and Al2O3/Ag thin films on Escherichia coli and Pseudomonas putida

    International Nuclear Information System (INIS)

    Angelov, O; Stoyanova, D; Ivanova, I; Todorova, S

    2016-01-01

    The influence of Al 2 O 3 , Ag and Al 2 O 3 /Ag thin films on bacterial growth of Gramnegative bacteria Pseudomonas putida and Escherichia coli is studied. The nanostructured thin films are deposited on glass substrates without intentional heating through r.f. magnetron sputtering in Ar atmosphere of Al 2 O 3 and Ag targets or through sequential sputtering of Al 2 O 3 and Ag targets, respectively. The individual Ag thin films (thickness 8 nm) have a weak bacteriostatic effect on Escherichia coli expressed as an extended adaptive phase of the bacteria up to 5 hours from the beginning of the experiment, but the final effect is only 10 times lower bacterial density than in the control. The individual Al 2 O 3 film (20 nm) has no antibacterial effect against two strains E. coli - industrial and pathogenic. The Al 2 O 3 /Ag bilayer films (Al 2 O 3 20 nm/Ag 8 nm) have strong bactericidal effect on Pseudomonas putida and demonstrate an effective time of disinfection for 2 hours. The individual films Al2O3 and Ag have not pronounced antibacterial effect on Pseudomonas putida . A synergistic effect of Al2O3/Ag bilayer films in formation of oxidative species on the surface in contact with the bacterial suspension could be a reason for their antimicrobial effect on E. coli and P. putida . (paper)

  12. Some aspects of design and analysis of selection programmes in aquaculture species.

    Science.gov (United States)

    Li, Y; Ponzoni, R W

    2015-04-01

    The aquaculture industry is one of the fastest growing animal food-producing sectors in the world, largely driven by an increasing demand for high-quality protein from developing countries. However, the majority of cultured production of aquatic species currently relies heavily on the collection of wild animals for use as broodstock. Aquatic animal domestication and genetic selection programmes in controlled environments are essential to enable the provision of a continued supply of high-quality food for an ever-expanding world population. Professor John James' significant contributions to the genetic improvement of conventional livestock species are well known. By contrast, his contributions to the aquaculture industry are less well known, especially in the areas of design and conduct of selective breeding programmes in aquatic animal species. In this study, we focus on a few aspects of aquaculture genetics to which Professor James made substantial contributions. His outstanding ability to comprehend, clarify and simplify complex problems with easy-to-understand mathematical derivations is clearly demonstrated in the areas of large-scale strain comparisons, genotype-by-environment interactions (GxE), transformations and interpretation of selection response, as well as in the treatment of economic aspects of designing breeding programmes. © 2015 Blackwell Verlag GmbH.

  13. ANTIMICROBIAL ACTIVITY OF PINEAPPLE (ANANAS COMOSUS L. MERR EXTRACT AGAINST MULTIDRUG-RESISTANT OF PSEUDOMONAS AERUGINOSA: AN IN VITRO STUDY

    Directory of Open Access Journals (Sweden)

    Rahmat Sayyid Zharfan

    2017-08-01

    Full Text Available Pseudomonas aeruginosa is the main cause of nosocomial infection which is responsible for 10% of hospital-acquired infection. Pseudomonas aeruginosa tends to mutate and displays potential for development of antibiotic resistance. Approximately, 10% of global bacterial isolates are found as Multidrug-resistant Pseudomonas aeruginosa. Pseudomonas aeruginosa have a quite tremendous severity index, especially on pneumonia and urinary tract infections, even sepsis, which 50% mortality rate. Pineapple (Ananas comosus L. Merr has antimicrobial properties. The active antimicrobial compounds in Ananas comosus L. Merr include saponin and bromelain. This research aims to find the potency of antimicrobial effect of pineapple (Ananas comosus L. Merr extract towards Multidrug-resistant Pseudomonas aeruginosa. Multidrug-resistant Pseudomonas aeruginosa specimen is obtained from patient’s pus in orthopaedic department, Dr Soetomo Public Hospital, Surabaya. Multidrug-resistant Pseudomonas aeruginosa specimen is resistant to all antibiotic agents except cefoperazone-sulbactam. This research is conducted by measuring the Minimum Inhibitory Concentration (MIC through dilution test with Mueller-Hinton broth medium. Pineapple extract (Ananas comosus L. Merr. is dissolved in aquadest, then poured into test tube at varying concentrations (6 g/ml; 3 g/ml; 1.5 g/ml; 0.75 g/ml, 0.375 g/ml; and 0.1875 g/ml. After 24 hours’ incubation, samples are plated onto nutrient agar plate, to determine the Minimum Bactericidal Concentration (MBC. The extract of pineapple (Ananas comosus L. Merr has antimicrobial activities against Multidrug-resistant Pseudomonas aeruginosa. Minimum Inhibitory Concentration (MIC could not be determined, because turbidity changes were not seen. The Minimum Bactericidal Concentration (MBC of pineapple extract (Ananas comosus L. Merr to Multidrug-resistant Pseudomonas aeruginosa is 0.75 g/ml. Further study of in vivo is needed.

  14. Efflux pump inhibitors (EPIs as new antimicrobial agents against Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Momen Askoura

    2011-05-01

    Full Text Available Pseudomonas aeruginosa is an opportunistic human pathogen and one of the leading causes of nosocomial infections worldwide. The difficulty in treatment of pseudomonas infections arises from being multidrug resistant (MDR and exhibits resistance to most antimicrobial agents due to the expression of different mechanisms overcoming their effects. Of these resistance mechanisms, the active efflux pumps in Pseudomonas aeruginosa that belong to the resistance nodulation division (RND plays a very important role in extruding the antibiotics outside the bacterial cells providing a protective means against their antibacterial activity. Beside its role against the antimicrobial agents, these pumps can extrude biocides, detergents, and other metabolic inhibitors. It is clear that efflux pumps can be targets for new antimicrobial agents. Peptidomimetic compounds such as phenylalanine arginyl β-naphthylamide (PAβN have been introduced as efflux pump inhibitors (EPIs; their mechanism of action is through competitive inhibition with antibiotics on the efflux pump resulting in increased intracellular concentration of antibiotic, hence, restoring its antibacterial activity. The advantage of EPIs is the difficulty to develop bacterial resistance against them, but the disadvantage is their toxic property hindering their clinical application. The structure activity relationship of these compounds showed other derivatives from PAβN that are higher in their activity with higher solubility in biological fluids and decreased toxicity level. This raises further questions on how can we compact Pseudomonas infections. Of particular importance, the recent resurgence in the use of older antibiotics such as polymyxins and probably applying stricter control measures in order to prevent their spread in clinical sittings.

  15. Pseudomonas aeruginosa multiresistente em unidade de cuidados intensivos: desafios que procedem? Pseudomonas aeruginosa multiresistente en una unidad de cuidados intensivos: desafíos que proceden? Multi-resistant pseudomonas aeruginosa among patients from an intensive care unit: persistent challenge?

    Directory of Open Access Journals (Sweden)

    Maria Verônica Guilherme Ferrareze

    2007-03-01

    Full Text Available OBJETIVOS: Avaliar a ocorrência de infecção hospitalar por Pseudomonas aeruginosa multiresistente em pacientes hospitalizados em uma unidade de cuidados intensivos. MÉTODO: estudo retrospectivo realizado de outubro de 2003 a setembro de 2004 em um hospital de emergências. RESULTADOS: Totalizou-se 68 portadores de bactérias multiresistentes sendo 10 (14,7% de P. aeruginosa. Destes, 8 pacientes eram do sexo masculino, as médias de idade e de internação foram respectivamente de 57 anos a média de idade, 43,7 a média de dias de internação e 7 pacientes morreram. Isolaram-se 8 cepas no sangue, cinco na urina, duas em cateteres venosos e uma no líquor, das quais sete sensíveis somente a polimixina e três ao imipenem. CONCLUSÃO: O perfil microbiológico deve ser avaliado periodicamente visto que é específico de uma unidade ou instituição, e demanda ações correlatas.OBJETIVOS: Evaluar la ocurrencia de infección hospitalaria por Pseudomonas aeruginosa multiresistente en pacientes hospitalizados en una unidad de cuidados intensivos. MÉTODO: estudio retrospectivo realizado de octubre del 2003 a setiembre del 2004 en un hospital de emergencias. RESULTADOS: Se tuvo un total de 68 portadores de bacterias multiresistentes de las cuales 10 (14,7% de P. aeruginosa. De éstos, 8 pacientes eran del sexo masculino, los promedios de edad y de internamiento fueron respectivamente de 57 años y 43,7 de días de internamiento y 7 pacientes murieron. Se aislaron 8 cepas en la sangre, cinco en la orina, dos en catéteres venosos y una en el licor, de ellas siete eran sensibles sólo a la polimixina y tres al imipenem. CONCLUSIÓN: El perfil microbiológico debe ser evaluado periódicamente dado que es específico de una unidad o institución, y demanda acciones correlatas.OBJECTIVES: To evaluate the occurrence of multi-resistant Pseudomonas Aeruginosa infection among patients from an Intensive Care Unit. METHODS: This retrospective study was

  16. Pseudomonas biofilms: possibilities of their control

    Czech Academy of Sciences Publication Activity Database

    Masák, J.; Čejková, A.; Schreiberová, O.; Řezanka, Tomáš

    2014-01-01

    Roč. 89, č. 2 (2014), s. 1-14 ISSN 0168-6496 R&D Projects: GA ČR GA14-23597S; GA ČR GA14-00227S Grant - others:Ministry of Industry and Trade(CZ) FR-TI1/456; Ministry of Education, Youth and Sports(CZ) LF11016 Institutional support: RVO:61388971 Keywords : biofilm * pseudomonas * review Subject RIV: EE - Microbiology, Virology Impact factor: 3.568, year: 2014

  17. Effect of Application of Pseudomonas fluorescent Strains on Yield and Yield Components of Rapeseed Cultivars

    Directory of Open Access Journals (Sweden)

    R Najafi

    2015-09-01

    Full Text Available Plant growth promoting rhizobacteria has been identified as an alternative to chemical fertilizer to enhance plant growth and yield directly and indirectly. Use of rhizosphere free living bacteria is one of the methods for crop production and leads to improvement of resources absorption. In order to study of yield, yield components and radiation use efficiency, under application of PGPR condition, an experiment was carried out in 2008 growing season at Agriculture and natural resources research station of Mashhad. The cultivars selected from three rapeseed species belong to Brassica napus, Brassica rapa and Brassica juncea (landrace, BP.18، Goldrush، Parkland، Hyola330، Hyola401. Experimental factorial design was randomized in complete block with three replications. Treatments included six varieties of Rapeseed and inoculations were four levels as non–inoculation, inoculation with P. fluorescens169, P. putida108 and use then together. Results showed that strains of fluorescent pseudomonas bacteria had greatest effects on yield and yield components cultivars. A significant difference in the number of pods per plant and 1000 seed weight observed. The cultivars were different in all treats except 1000 seed weight. Overall results indicated that application of growth stimulating bacteria in combination with different cultivars, had a positive effect growth, yield characteristics of plant varieties of rapeseed plants.

  18. 33 original article infections a pseudomonas aeruginosa dans un

    African Journals Online (AJOL)

    boaz

    COPYRIGHT 2014. AFR. J. CLN. EXPER. .... Effective management of P. aeruginosa infections requires good ... a guide for doctors managing patients with. Pseudomonas .... Principles and practice of infectious diseases.5th edition. Edited by ...

  19. Growth stimulation of Bacillus cereus and Pseudomonas putida using nanostructured ZnO thin film as transducer element

    International Nuclear Information System (INIS)

    Loukanov, Alexandre; Filipov, Chavdar; Valcheva, Violeta; Lecheva, Marta; Emin, Saim

    2015-01-01

    The semiconductor zinc oxide nanomaterial (ZnO or ZnO:H) is widely used in advanced biosensor technology for the design of highly-sensitive detector elements for various applications. In the attempt to evaluate its effect on common microorganisms, two types of nanostructured transducer films have been used (average diameter 600–1000 nm). They have been prepared by using both wet sol–gel method and magnetron sputtering. Their polycrystalline structure and specific surface features have been analyzed by X-ray diffraction (XRD), scanning electron microscope, and atomic force microscope. The assessment of growth stimulation of bacteria was determined using epifluorescent microscope by cell staining with Live/Dead BacLight kit. In our experiments, the growth stimulation of Gram-positive and Gram-negative bacteria on nanostructured ZnO film is demonstrated by Bacillus cereus and Pseudomonas putida. These two bacterial species have been selected, because they are well known and studied in biosensor technologies, with structural difference of their cell walls. These pathogens are easy for with common source in the liquid food or some commercial products. Our data has revealed that the method of transducer film preparation influences strongly bacterial inhibition and division. These results present the transforming signal precisely, when ZnO is used in biosensor applications

  20. Growth stimulation of Bacillus cereus and Pseudomonas putida using nanostructured ZnO thin film as transducer element

    Science.gov (United States)

    Loukanov, Alexandre; Filipov, Chavdar; Valcheva, Violeta; Lecheva, Marta; Emin, Saim

    2015-04-01

    The semiconductor zinc oxide nanomaterial (ZnO or ZnO:H) is widely used in advanced biosensor technology for the design of highly-sensitive detector elements for various applications. In the attempt to evaluate its effect on common microorganisms, two types of nanostructured transducer films have been used (average diameter 600-1000 nm). They have been prepared by using both wet sol-gel method and magnetron sputtering. Their polycrystalline structure and specific surface features have been analyzed by X-ray diffraction (XRD), scanning electron microscope, and atomic force microscope. The assessment of growth stimulation of bacteria was determined using epifluorescent microscope by cell staining with Live/Dead BacLight kit. In our experiments, the growth stimulation of Gram-positive and Gram-negative bacteria on nanostructured ZnO film is demonstrated by Bacillus cereus and Pseudomonas putida. These two bacterial species have been selected, because they are well known and studied in biosensor technologies, with structural difference of their cell walls. These pathogens are easy for with common source in the liquid food or some commercial products. Our data has revealed that the method of transducer film preparation influences strongly bacterial inhibition and division. These results present the transforming signal precisely, when ZnO is used in biosensor applications.

  1. The purification, crystallization and preliminary structural characterization of PhzM, a phenazine-modifying methyltransferase from Pseudomonas aeruginosa

    International Nuclear Information System (INIS)

    Gohain, Neelakshi; Thomashow, Linda S.; Mavrodi, Dmitri V.; Blankenfeldt, Wulf

    2006-01-01

    PhzM, an S-adenosylmethionine-dependent methyltransferase enzyme that catalyzes a reaction involved in the biosynthesis of pyocyanin in P. aeruginosa, was cloned, overexpressed and crystallized. Data collection from native and selenomethionine-labelled crystals is reported. Pyocyanin, phenazine-1-carboxylic acid and more than 70 related compounds collectively known as phenazines are produced by various species of Pseudomonas, including the fluorescent pseudomonad P. aeruginosa, a Gram-negative opportunistic pathogen in humans and animals. P. aeruginosa synthesizes a characteristic blue water-soluble compound called pyocyanin (1-hydroxy-5-methyl-phenazine). Two enzymes designated PhzM and PhzS are involved in the terminal steps of its synthesis and very little is known about these enzymes. In this study, PhzM, a dimeric S-adenosylmethionine-dependent methyltransferase, was purified and crystallized from PEG 3350/sodium cacodylate/sodium citrate pH 6.5. The crystals belong to space group P1, with unit-cell parameters a = 46.1, b = 61.8, c = 69.6 Å, α = 96.3, β = 106.6, γ = 106.9°. They contain one dimer in the asymmetric unit and diffract to a resolution of 1.8 Å. Anomalous data to 2.3 Å resolution have been collected from seleno-l-methionine-labelled PhzM

  2. Growth stimulation of Bacillus cereus and Pseudomonas putida using nanostructured ZnO thin film as transducer element

    Energy Technology Data Exchange (ETDEWEB)

    Loukanov, Alexandre, E-mail: loukanov@mail.saitama-u.ac.jp [Saitama University, Department of Chemistry, Faculty of Science (Japan); Filipov, Chavdar [University of Forestry, Department of Infectious pathology, hygiene, technology and control of food stuffs of animal origin, Faculty of Veterinary Medicine (Bulgaria); Valcheva, Violeta [Bulgarian Academy of Science, Department of Infectious Diseases, Institute of microbiology (Bulgaria); Lecheva, Marta [University of Mining and Geology “St. Ivan Rilski”, Laboratory of Engineering NanoBiotechnology, Department of Engineering Geoecology (Bulgaria); Emin, Saim [University of Nova Gorica, Materials Research Laboratory (Slovenia)

    2015-04-15

    The semiconductor zinc oxide nanomaterial (ZnO or ZnO:H) is widely used in advanced biosensor technology for the design of highly-sensitive detector elements for various applications. In the attempt to evaluate its effect on common microorganisms, two types of nanostructured transducer films have been used (average diameter 600–1000 nm). They have been prepared by using both wet sol–gel method and magnetron sputtering. Their polycrystalline structure and specific surface features have been analyzed by X-ray diffraction (XRD), scanning electron microscope, and atomic force microscope. The assessment of growth stimulation of bacteria was determined using epifluorescent microscope by cell staining with Live/Dead BacLight kit. In our experiments, the growth stimulation of Gram-positive and Gram-negative bacteria on nanostructured ZnO film is demonstrated by Bacillus cereus and Pseudomonas putida. These two bacterial species have been selected, because they are well known and studied in biosensor technologies, with structural difference of their cell walls. These pathogens are easy for with common source in the liquid food or some commercial products. Our data has revealed that the method of transducer film preparation influences strongly bacterial inhibition and division. These results present the transforming signal precisely, when ZnO is used in biosensor applications.

  3. Pseudomonas aeruginosa burn wound infection in a dedicated ...

    African Journals Online (AJOL)

    Background. Pseudomonas aeruginosa infection is a major cause of morbidity in burns patients. There is a paucity of publications dealing with this infection in the paediatric population. We describe the incidence, microbiology and impact of P. aeruginosa infection in a dedicated paediatric burns unit. Methods.

  4. Characterization of starvation-induced dispersion in Pseudomonas putida biofilms: genetic elements and molecular mechanisms

    DEFF Research Database (Denmark)

    Gjermansen, M.; Nilsson, M.; Yang, Liang

    2010-01-01

    P>Pseudomonas putida OUS82 biofilm dispersal was previously shown to be dependent on the gene PP0164 (here designated lapG). Sequence and structural analysis has suggested that the LapG geneproduct belongs to a family of cysteine proteinases that function in the modification of bacterial surface...... proteins. We provide evidence that LapG is involved in P. putida OUS82 biofilm dispersal through modification of the outer membrane-associated protein LapA. While the P. putida lapG mutant formed more biofilm than the wild-type, P. putida lapA and P. putida lapAG mutants displayed decreased surface...

  5. Mutant Prevention Concentrations of Imipenem and Meropenem against Pseudomonas aeruginosa and Acinetobacter baumannii

    Directory of Open Access Journals (Sweden)

    E. Dahdouh

    2014-01-01

    Full Text Available The aim of this study was to determine the usefulness of the MPC of carbapenems against clinical isolates of Pseudomonas spp. and Acinetobacter spp. and to assess its possible relationship with mechanisms of resistance. Detection of the mechanisms of resistance was performed using Antibiotic Susceptibility Testing, Double Disk Synergy, disk antagonism, addition of NaCl to the medium, addition of PBA or EDTA to Carbapenem disks, addition of PBA to Cefoxitin disks, and CCCP test for 10 Pseudomonas spp. and Acinetobacter baumannii strains. The MIC and MPC were determined using the broth macrodilution and plate dilution methods, respectively. Four Acinetobacter baumannii strains produced MBL. Two of them produced Oxacillinase and one produced ESBL. Two Pseudomonas spp. isolates produced both KPC and MBL. The resistant Acinetobacter spp. and Pseudomonas spp. strains had higher MPC values than susceptible ones. However, the Mutant Selection Window was found to be dependent on the degree of resistance but not on a particular mechanism of resistance. The usefulness of the MPC was found to be dependent on its value. Based on our data, we recommend determining the MPC for each isolate before using it during treatment. Furthermore, the use of T>MSW instead of T>MIC is suggested.

  6. Metabolic engineering of Pseudomonas fluorescens for the production of vanillin from ferulic acid.

    Science.gov (United States)

    Di Gioia, Diana; Luziatelli, Francesca; Negroni, Andrea; Ficca, Anna Grazia; Fava, Fabio; Ruzzi, Maurizio

    2011-12-20

    Vanillin is one of the most important flavors in the food industry and there is great interest in its production through biotechnological processes starting from natural substrates such as ferulic acid. Among bacteria, recombinant Escherichia coli strains are the most efficient vanillin producers, whereas Pseudomonas spp. strains, although possessing a broader metabolic versatility, rapidly metabolize various phenolic compounds including vanillin. In order to develop a robust Pseudomonas strain that can produce vanillin in high yields and at high productivity, the vanillin dehydrogenase (vdh)-encoding gene of Pseudomonas fluorescens BF13 strain was inactivated via targeted mutagenesis. The results demonstrated that engineered derivatives of strain BF13 accumulate vanillin if inactivation of vdh is associated with concurrent expression of structural genes for feruloyl-CoA synthetase (fcs) and hydratase/aldolase (ech) from a low-copy plasmid. The conversion of ferulic acid to vanillin was enhanced by optimization of growth conditions, growth phase and parameters of the bioconversion process. The developed strain produced up to 8.41 mM vanillin, which is the highest final titer of vanillin produced by a Pseudomonas strain to date and opens new perspectives in the use of bacterial biocatalysts for biotechnological production of vanillin from agro-industrial wastes which contain ferulic acid. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Biodegradation of propargite by Pseudomonas putida, isolated from tea rhizosphere.

    Science.gov (United States)

    Sarkar, Soumik; Seenivasan, Subbiah; Asir, Robert Premkumar Samuel

    2010-02-15

    Biodegradation of miticide propargite was carried out in vitro by selected Pseudomonas strains isolated from tea rhizosphere. A total number of 13 strains were isolated and further screened based on their tolerance level to different concentrations of propargite. Five best strains were selected and further tested for their nutritional requirements. Among the different carbon sources tested glucose exhibited the highest growth promoting capacity and among nitrogen sources ammonium nitrate supported the growth to the maximum. The five selected Pseudomonas strain exhibited a range of degradation capabilities. Mineral salts medium (MSM) amended with glucose provided better environment for degradation with the highest degradation potential in strain SPR 13 followed by SPR 8 (71.9% and 69.0% respectively).

  8. INTERAKSI ANTARA Trichoderma Harzianum, Penicillium SP. DAN Pseudomonas SP. SERTA KAPASITAS ANTAGONISMENYA TERHADAP Phytophthora CapsicilN VITRO*[Interaction Among Trichoderma Harzianum, Penicillium SP., Pseudomonas SP. and Antagonism Capacities Against Phy

    OpenAIRE

    Suharna, Nandang

    2003-01-01

    A preliminary study has been done to know antagonism capacities of three isolates of Trichoderma harzianum, two isolates of Penicillium sp.and one isolate of Pseudomonas sp.against Phytophthora capsici in vitro and interaction among those six antagonists.The highest antagonism capacity possessed by Penicillium sp. KN1, respectively followed by Penicillium sp.KN2,Pseudomonas sp. GH1 and the three T. harzianum isolates. Except for those three T. harzianum isolates, the two Penicillium sp.isolat...

  9. Pseudomonas aeruginosa outbreak in a pediatric oncology care unit caused by an errant water jet into contaminated siphons.

    Science.gov (United States)

    Schneider, Henriette; Geginat, Gernot; Hogardt, Michael; Kramer, Alexandra; Dürken, Matthias; Schroten, Horst; Tenenbaum, Tobias

    2012-06-01

    We analyzed an outbreak of invasive infections with an exotoxin U positive Pseudomonas aeruginosa strain within a pediatric oncology care unit. Environmental sampling and molecular characterization of the Pseudomonas aeruginosa strains led to identification of the outbreak source. An errant water jet into the sink within patient rooms was observed. Optimized outbreak management resulted in an abundance of further Pseudomonas aeruginosa infections within the pediatric oncology care unit.

  10. Biotransformation of myrcene by Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Hashemi Elham

    2011-05-01

    Full Text Available Abstract Background Dihydrolinalool and terpineol are sources of fragrances that provide a unique volatile terpenoid alcohol of low toxicity and thus are widely used in the perfumery industry, in folk medicine, and in aromatherapy. They are important chemical constituents of the essential oil of many plants. Previous studies have concerned the biotransformation of limonene by Pseudomonas putida. The objective of this research was to study biotransformation of myrcene by Pseudomonas aeruginosa. The culture preparation was done using such variables as different microbial methods and incubation periods to obtain maximum cells of P. aeruginosa for myrcene biotransformation. Results It was found that myrcene was converted to dihydrolinalool and 2,6-dimethyloctane in high percentages. The biotransformation products were identified by Fourier-transform infrared spectroscopy (FT-IR, ultraviolet (UV analysis, gas chromatography (GC, and gas chromatography-mass spectroscopy (GC-MS. Comparison of the different incubation times showed that 3 days was more effective, the major products being 2,6-dimethyloctane (90.0% and α-terpineol (7.7% and comprising 97.7%. In contrast, the main compounds derived for an incubation time of 1.5 days were dihydrolinalool (79.5% and 2,6-dimethyloctane (9.3%, with a total yield of 88.8%.

  11. Reclassification of Alcaligenes latus strains IAM 12599T and IAM 12664 and Pseudomonas saccharophila as Azohydromonas lata gen. nov., comb. nov., Azohydromonas australica sp. nov. and Pelomonas saccharophila gen. nov., comb. nov., respectively.

    Science.gov (United States)

    Xie, Cheng-Hui; Yokota, Akira

    2005-11-01

    The aim of this study was to clarify the taxonomic position of the nitrogen-fixing and hydrogen-oxidizing bacteria Alcaligenes latus strains IAM 12599T, IAM 12664 and IAM 12665 and Pseudomonas saccharophila IAM 14368T. It was found that the type strain of Alcaligenes latus, IAM 12599T, showed 99 x 9 and 96 x 1 % 16S rRNA gene sequence similarity to strains IAM 12665 and IAM 12664, respectively. A comparison using DNA-DNA hybridization suggested that strains IAM 12599T and IAM 12665 belong to a single species (89 x 7 %) and that strain IAM 12664 (35 x 1 %) forms a separate species. The phenotypic characteristics also support the conclusion that these bacteria should be identified as two species of a new genus: Azohydromonas lata gen. nov., comb. nov. (type strain IAM 12599T=DSM 1122T=LMG 3321T=ATCC 29712T; reference strain IAM 12665=DSM 1123=LMG 3325=ATCC 29714) and Azohydromonas australica sp. nov. (type strain IAM 12664T=DSM 1124T=LMG 3324T=ATCC 29713T). Pseudomonas saccharophila IAM 14368T was found to be closely related to the phototrophic bacterium Roseateles depolymerans, with 96 x 8 % 16S rRNA gene sequence similarity, but the two bacteria are quite different with respect to their metabolism and some significant phenotypic characteristics, suggesting that they cannot be included in a single genus. Further studies on their nifH gene sequences, G+C content of the DNA and cellular fatty acid composition confirm that Pseudomonas saccharophila should be reclassified: the name Pelomonas saccharophila gen. nov., comb. nov. is proposed, with the type strain IAM 14368T (=LMG 2256T=ATCC 15946T).

  12. The Enzymes of the Ammonia Assimilation in Pseudomonas aeruginosa

    NARCIS (Netherlands)

    Janssen, Dick B.; Camp, Huub J.M. op den; Leenen, Pieter J.M.; Drift, Chris van der

    1980-01-01

    Glutamine synthetase from Pseudomonas aeruginosa is regulated by repression/derepression of enzyme synthesis and by adenylylation/deadenylylation control. High levels of deadenylylated biosynthetically active glutamine synthetase were observed in cultures growing with limiting amounts of nitrogen

  13. Heavy Metal uptake Potentials of Pseudomonas aeruginosa and ...

    African Journals Online (AJOL)

    Uptake of heavy metals, silver and cadmium by Pseudomonas aeruginosa (a Gram negative bacterium) and Micrococcus luteus (a Gram positive bacterium) was investigated in Cadmium and Silver stock solution using ion selective electrodes. Silver and cadmium uptake by the two organisms was described by Langmuir ...

  14. The LapG protein plays a role in Pseudomonas aeruginosa biofilm formation by controlling the presence of the CdrA adhesin on the cell surface

    DEFF Research Database (Denmark)

    Rybtke, Morten; Berthelsen, Jens; Yang, Liang

    2015-01-01

    Pseudomonas aeruginosa is a clinically relevant species involved in biofilm-based chronic infections. We provide evidence that the P. aeruginosa LapG protein functions as a periplasmic protease that can cleave the protein adhesin CdrA off the cell surface, and thereby plays a role in biofilm...... formation and biofilm dispersal. The P. aeruginosa LapG protein is shown to be a functional homolog of the Pseudomonas putida LapG protein which has previously been shown to function as a periplasmic protease that targets the surface adhesin LapA. Transposon mutagenesis and characterization of defined...... and whole-cell protein fractions showed that CdrA was retained in the whole-cell protein fraction when LapG was absent, whereas it was found in the culture supernatant when LapG was present. The finding that CdrA is a target of LapG in P. aeruginosa is surprising because CdrA has no homology to LapA....

  15. The implication of Pseudomonas aeruginosa biofilms in infections

    DEFF Research Database (Denmark)

    Rybtke, Morten T; Jensen, Peter Østrup; Høiby, Niels

    2011-01-01

    Biofilm formation by bacteria is recognized as a major problem in chronic infections due to their recalcitrance against the immune defense and available antibiotic treatment schemes. The opportunistic pathogen Pseudomonas aeruginosa has drawn special attention in this regard due to its severity o...... treatment strategies where the underlying targets are less prone for resistance development as bacteria, in retrospect, have a unique ability to evade the actions of classic antibiotics.......Biofilm formation by bacteria is recognized as a major problem in chronic infections due to their recalcitrance against the immune defense and available antibiotic treatment schemes. The opportunistic pathogen Pseudomonas aeruginosa has drawn special attention in this regard due to its severity......-up of the extracellular matrix encasing the biofilm-associated bacteria as well as the elaborate signaling mechanisms employed by the bacterium enables it to withstand the continuous stresses imposed by the immune defense and administered antibiotics resulting in a state of chronic inflammation that damages the host...

  16. Spatial transcriptomes within the Pseudomonas aeruginosa biofilm architecture.

    Science.gov (United States)

    Heacock-Kang, Yun; Sun, Zhenxin; Zarzycki-Siek, Jan; McMillan, Ian A; Norris, Michael H; Bluhm, Andrew P; Cabanas, Darlene; Fogen, Dawson; Vo, Hung; Donachie, Stuart P; Borlee, Bradley R; Sibley, Christopher D; Lewenza, Shawn; Schurr, Michael J; Schweizer, Herbert P; Hoang, Tung T

    2017-12-01

    Bacterial cooperative associations and dynamics in biofilm microenvironments are of special interest in recent years. Knowledge of localized gene-expression and corresponding bacterial behaviors within the biofilm architecture at a global scale has been limited, due to a lack of robust technology to study limited number of cells in stratified layers of biofilms. With our recent pioneering developments in single bacterial cell transcriptomic analysis technology, we generated herein an unprecedented spatial transcriptome map of the mature in vitro Pseudomonas aeruginosa biofilm model, revealing contemporaneous yet altered bacterial behaviors at different layers within the biofilm architecture (i.e., surface, middle and interior of the biofilm). Many genes encoding unknown functions were highly expressed at the biofilm-solid interphase, exposing a critical gap in the knowledge of their activities that may be unique to this interior niche. Several genes of unknown functions are critical for biofilm formation. The in vivo importance of these unknown proteins was validated in invertebrate (fruit fly) and vertebrate (mouse) models. We envisage the future value of this report to the community, in aiding the further pathophysiological understanding of P. aeruginosa biofilms. Our approach will open doors to the study of bacterial functional genomics of different species in numerous settings. © 2017 The Authors. Molecular Microbiology Published by John Wiley & Sons Ltd.

  17. Genes for carbon metabolism and the ToxA virulence factor in Pseudomonas aeruginosa are regulated through molecular interactions of PtxR and PtxS.

    Directory of Open Access Journals (Sweden)

    Abdelali Daddaoua

    Full Text Available Homologs of the transcriptional regulator PtxS are omnipresent in Pseudomonas, whereas PtxR homologues are exclusively found in human pathogenic Pseudomonas species. In all Pseudomonas sp., PtxS with 2-ketogluconate is the regulator of the gluconate degradation pathway and controls expression from its own promoter and also from the P(gad and P(kgu for the catabolic operons. There is evidence that PtxS and PtxR play a central role in the regulation of exotoxin A expression, a relevant primary virulence factor of Pseudomonas aeruginosa. We show using DNaseI-footprint analysis that in P. aeruginosa PtxR binds to the -35 region of the P(toxA promoter in front of the exotoxin A gene, whereas PtxS does not bind to this promoter. Bioinformatic and DNaseI-footprint analysis identified a PtxR binding site in the P(kgu and P(gad promoters that overlaps the -35 region, while the PtxS operator site is located 50 bp downstream from the PtxR site. In vitro, PtxS recognises PtxR with nanomolar affinity, but this interaction does not occur in the presence of 2-ketogluconate, the specific effector of PtxS. DNAaseI footprint assays of P(kgu and P(gad promoters with PtxS and PtxR showed a strong region of hyper-reactivity between both regulator binding sites, indicative of DNA distortion when both proteins are bound; however in the presence of 2-ketogluconate no protection was observed. We conclude that PtxS modulates PtxR activity in response to 2-ketogluconate by complex formation in solution in the case of the P(toxA promoter, or via the formation of a DNA loop as in the regulation of gluconate catabolic genes. Data suggest two different mechanisms of control exerted by the same regulator.

  18. Antifungal activity and genetic diversity of selected Pseudomonas spp. from maize rhizosphere in Vojvodina

    Directory of Open Access Journals (Sweden)

    Jošić Dragana

    2012-01-01

    Full Text Available Antibiotic production by plant-associated microorganisms represents an environmentally compatible method of disease control in agriculture. However, a vide application of bacterial strains needs careful selection and genetic characterization. In this investigation, selected Pseudomonas strains were characterized by rep-PCR methods using ERIC and (GTG5 primers, and partial 16S rDNA sequence analysis. None of strains produced homoserine lactones (C4, C6, C8 as quorum sensing signal molecules. Very poor production of phenazines and no significant fungal inhibition was observed for PS4 and PS6 strains. High amount of phenazines were produced by Pseudomonas sp. strain PS2, which inhibited mycelial growth of 10 phytopatogenic fungi in percent of 25 (Verticillium sp. to 65 (Fusarium equiseti. Genetic characterization of the Pseudomonas sp. PS2 and evaluation of phenazines production, as the main trait for growth inhibition of phytopathogenic fungi, will allow its application as a biosafe PGPR for field experiments of plant disease control. [Projekat Ministarstva nauke Republike Srbije, br. III 46007: New indigenous bacterial isolates Lysobacter and Pseudomonas as an important sources of metabolites useful for biotechnology, plant growth stimulation and disease control: From isolates to inoculants

  19. Assessment of Risk Factors, Treatment and Hospital Stay in Complicated Urinary Tract Infections in Men Caused by Pseudomonas: A Case-Control Study

    Directory of Open Access Journals (Sweden)

    Hasan Selçuk Özger

    2017-06-01

    Full Text Available Objective: It is known that Pseudomonas has been isolated more frequently in health care-related urinary tract infections (UTIs. It was aimed to determine the risk factors and empiric therapies due to antibiotic resistance in Pseudomonas-related male UTIs, and assess the effect of Pseudomonas isolation on treatment and length of hospital stay. Materials and Methods: The study was conducted between January 2011 and January 2013 with 228 male health care-related complicated UTI patients hospitalized in the Urology and Infectious Diseases Inpatient Clinics at Gazi University Faculty of Medicine. Three hundred UTI attacks in 228 patients were evaluated retrospectively with regard to agents. Results: Pseudomonas was isolated in 37 of 300 complicated UTI attacks in 228 male patients. Nephrolithiasis, recurrent UTI and internal urinary catheterization were determined as the risk factors for Pseudomonas related with health care-related UTI. It was understood that nephrolithiasis increased Pseudomonas isolated UTI risk 3.5 fold and recurrent UTI increased the risk 8.9 fold. The antibiotic resistance of Pseudomonas was higher than other agents. Pseudomonas related UTIs prolonged the duration of hospital stay and antibiotic treatment. Conclusion: In the presence of nephrolithiasis, recurrent UTI and internal urinary catheterization, drugs against Pseudomonas would be appropriate empiric treatment for health care-related complicated UTI. Ciprofloxacin use should be restricted when local antibiotic resistance, which leads empiric treatment, is taken into consideration. Increases in hospital stay and antibiotic treatment duration were thought to be associated with recurrent infection frequency and high antibiotics resistance in Pseudomonas related UTIs.

  20. Design and Validation of Real-Time PCR: Quantitative Diagnosis of Common Leishmania Species in Iran.

    Science.gov (United States)

    Fekri Soofi Abadi, Maryam; Dabiri, Shahriar; Fotouhi Ardakani, Reza; Fani Malaki, Lina; Amirpoor Rostami, Sahar; Ziasistani, Mahsa; Dabiri, Donya

    2016-07-01

    Design and validation of Real-time PCR on the protected gene region ITS2 to quantify the parasite load in common leishmania (L) species. Probe and primer were designed from the ITS2 region between the rRNA genes with minimum gene variation in three common leishmania species followed by a Real-time PCR using the Taq man probe method in the form of absolute quantification. A series of different concentrations of leishmania were analyzed. After the purified PCR product was successfully placed in a PTG19-T plasmid vector, specialized ITS2 region was cloned in this plasmid. In the last phase, the cloned gene was transferred to the Ecoli.Top10F bacteria. The standard plasmid was provided in 10(7) to 10(1) copies/rxn concentrations. The specification and clinical sensitivity of the data was analyzed using inter and intra scales. The probe and primer were designed using three species, including L. infantum, L. major, and L.tropica. Seven concentrations of purified parasite in culture media showed that the selected region for quantifying the parasite is suitable. Clinical and analytical specificity and sensitivity were both 100%, respectively. The Taq man method for the ITS2 region in leishmania is one the most sensitive diagnostic test for identifying the parasite load and is suggested as a tool for fast identification and quantification of species.

  1. Bacteroides species produce Vibrio harveyi autoinducer 2-related molecules.

    Science.gov (United States)

    Antunes, Luis Caetano Martha; Ferreira, Lívia Queiroz; Ferreira, Eliane Oliveira; Miranda, Karla Rodrigues; Avelar, Kátia Eliane Santos; Domingues, Regina Maria Cavalcanti Pilotto; Ferreira, Maria Candida de Souza

    2005-10-01

    Quorum sensing is a density-dependent gene regulation mechanism that has been described in many bacterial species in the last decades. Bacteria that use quorum sensing as part of their gene regulation circuits produce molecules called autoinducers that accumulate in the environment and activate target genes in a quorum-dependent way. Some specific clues led us to hypothesize that Bacteroides species can produce autoinducers and possess a quorum sensing system. First, Bacteroides are anaerobic bacteria that are frequently involved in polymicrobial infections. These infections often involve Pseudomonas aeruginosa and Staphylococcus aureus, two of the best understood examples of bacteria that employ quorum sensing systems as part of their pathogenesis. Also, studies have detected the presence of a quorum sensing gene involved in the production of autoinducers in Porphyromonas gingivalis, a species closely related to the Bacteroides genus. These and other evidences prompted us to investigate if Bacteroides strains could produce autoinducer molecules that could be detected by a Vibrio harveyi reporter system. In this paper, we show that supernatants of B. fragilis, B. vulgatus and B. distasonis strains are able to stimulate the V. harveyi quorum sensing system 2. Also, we were able to demonstrate that the stimulation detected is due to the production of autoinducer molecules and not the growth of reporter strains after addition of supernatant. Moreover, the phenomenon observed does not seem to represent the degradation of repressors possibly present in the culture medium used. We could also amplify bands from some of the strains tested using primers designed to the luxS gene of Escherichia coli. Altogether, our results show that B. fragilis, B. vulgatus and B. distasonis (but possibly some other species) can produce V. harveyi autoinducer 2-related molecules. However, the role of such molecules in the biology of these organisms remains unknown.

  2. The resistome of Pseudomonas aeruginosa in relationship to phenotypic susceptibility.

    Science.gov (United States)

    Kos, Veronica N; Déraspe, Maxime; McLaughlin, Robert E; Whiteaker, James D; Roy, Paul H; Alm, Richard A; Corbeil, Jacques; Gardner, Humphrey

    2015-01-01

    Many clinical isolates of Pseudomonas aeruginosa cause infections that are difficult to eradicate due to their resistance to a wide variety of antibiotics. Key genetic determinants of resistance were identified through genome sequences of 390 clinical isolates of P. aeruginosa, obtained from diverse geographic locations collected between 2003 and 2012 and were related to microbiological susceptibility data for meropenem, levofloxacin, and amikacin. β-Lactamases and integron cassette arrangements were enriched in the established multidrug-resistant lineages of sequence types ST111 (predominantly O12) and ST235 (O11). This study demonstrates the utility of next-generation sequencing (NGS) in defining relevant resistance elements and highlights the diversity of resistance determinants within P. aeruginosa. This information is valuable in furthering the design of diagnostics and therapeutics for the treatment of P. aeruginosa infections. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  3. Species selection in secondary wood products: implications for product design and promotion

    Science.gov (United States)

    Matthew S. Bumgardner; Scott A. Bowe; Scott A. Bowe

    2002-01-01

    This study investigated the perceptions that people have of several commercially important wood species and determined if word-based and specimen-based evaluations differed. Such knowledge can help secondary wood manufacturers better understand their products and develop more effective design concepts and promotional messages. A sample of more than 250 undergraduate...

  4. Effective Biosurfactants Production by Pseudomonas aeruginosa and its Efficacy on Different Oils

    Directory of Open Access Journals (Sweden)

    Sarita Kumari

    2010-07-01

    Full Text Available A rhamnolipid producing bacterium, Pseudomonas aeruginosa was isolated from contaminated soil with oily wastes. The Pseudomonas aeruginosa grown with glucose and corn oil as a carbon source produced bio-surfactant. This biosurfactant was purified by procedures that included chloroform-ethanol extraction and 0.05M bicarbonate treatments. The active compound was identified as rhamnolipid by using thin layer chromatography. The emulsification activity of bio-surfactant, the coconut oil responded better than the olive oil, groundnut oil and sunflower oil and gave a maximum level of 1 cm.

  5. Isolation and characterization of Pseudomonas putida WLY for ...

    African Journals Online (AJOL)

    Using the BMM medium containing 100 mg/L of reactive brilliant red X-3B, a decolorizing bacterium with higher decolorization activity was isolated and it showed a decolorization zone of 10 mm; this decolorizing bacterium was identified as Pseudomonas putida WLY based on physiological and biochemical characteristics ...

  6. A Carbenicillin R Factor from Pseudomonas aeruginosa | van ...

    African Journals Online (AJOL)

    Of 64 carbenicillin-resistant Pseudomonas aeruginosa strains 40 transferred this resistance to Escherichia coli. R factor RP-638 isolated from Ps. aeruginosa strain 638 conferred resistance to ampicillin, carbenicillin, kanamycin, neomycin and tetracycline. This R factor was transferred at frequencies 01 10-7 to 10-4 between ...

  7. Pseudomonas, Pantoea and Cupriavidus isolates induce calcium carbonate precipitation for biorestoration of ornamental stone.

    Science.gov (United States)

    Daskalakis, M I; Magoulas, A; Kotoulas, G; Catsikis, I; Bakolas, A; Karageorgis, A P; Mavridou, A; Doulia, D; Rigas, F

    2013-08-01

    Bacterially induced calcium carbonate precipitation from various isolates was investigated aiming at developing an environmentally friendly technique for ornamental stone protection and restoration. Micro-organisms isolated from stone samples and identified using 16S rDNA and biochemical tests promoted calcium carbonate precipitation in solid and novel liquid growth media. Biomineral morphology was studied on marble samples with scanning electron microscopy. Most isolates demonstrated specimen weight increase, covering partially or even completely the marble surfaces mainly with vaterite. The conditions under which vaterite precipitated and its stability throughout the experimental runs are presented. A growth medium that facilitated bacterial growth of different species and promoted biomineralization was formulated. Most isolates induced biomineralization of CaCO3 . Micro-organisms may actually be a milestone in the investigation of vaterite formation facilitating our understanding of geomicrobiological interactions. Pseudomonas, Pantoea and Cupriavidus strains could be candidates for bioconsolidation of ornamental stone protection. Characterization of biomineralization capacity of different bacterial species improves understanding of the bacterially induced mineralization processes and enriches the list of candidates for biorestoration applications. Knowledge of biomineral morphology assists in differentiating mineral from biologically induced precipitates. © 2013 The Society for Applied Microbiology.

  8. Hydrocarbonoclastic bacteria of the genus Pseudomonas in Samanea saman (Jacq. Merr. rhizosphere

    Directory of Open Access Journals (Sweden)

    Juliana Coromoto Mayz

    2017-01-01

    Full Text Available The research goal includes isolation, characterization and identification of Pseudomonas species existing in the rhizosphere of a legume present (colonizing or survivor in a savanna soil polluted by an oil spill, in order to explain the support of the growth of this leguminous plant through the reduction of the toxicity of spilled oil (hydrocarbonoclastic effects. The site is located at Amana del Tamarindo village entrance, Monagas State, Venezuela (9 ° 38' 52 "N, 63 ° 7' 20" E, 46 masl. An area of 50 m2 was sampled.  In concordance to the descriptions, keys, and comparison with the UOJ Herbarium exsiccatae, the legume collected was identified as Samanea saman (Jacq. Merr., which belongs to the Fabaceae family. The results of the biochemical characterization and the production of pyocyanine and fluorescein pigments allowed identifying 10 isolates as P. fluorescens, 5 as P. putida and 5 as P. aeruginosa. Samanea saman is recommended for re-vegetation of the contaminated area.

  9. A Mathematical model to investigate quorum sensing regulation and its heterogenecity in pseudomonas syringae on leaves

    Science.gov (United States)

    The bacterium Pseudomonas syringae is a plant-pathogen, which through quorum sensing (QS), controls virulence. In this paper, by means of mathematical modeling, we investigate QS of this bacterium when living on leaf surfaces. We extend an existing stochastic model for the formation of Pseudomonas s...

  10. Emergence of Pseudomonas aeruginosa with KPC-type carbapenemase in a teaching hospital: an 8-year study.

    Science.gov (United States)

    García Ramírez, Dolores; Nicola, Federico; Zarate, Soledad; Relloso, Silvia; Smayevsky, Jorgelina; Arduino, Sonia

    2013-10-01

    An outbreak of Klebsiella pneumoniae carbapenamase (KPC)-producing K. pneumoniae occurred at our institution. Multiresistant Pseudomonas aeruginosa could have acquired this transmissible resistance mechanism, going unnoticed because its phenotypic detection in this species is difficult. We compared P. aeruginosa isolates obtained before and after the KPC-producing K. pneumoniae outbreak. No bla(KPC) genes were detected in the isolates obtained before the outbreak, whereas 33/76 (43%) of the isolates obtained after the outbreak harboured the bla(KPC) gene. P. aeruginosa may thus become a reservoir of this transmissible resistance mechanism. It is very important to understand the epidemiology of these multiresistant isolates, in order to achieve early implementation of adequate control measures to contain and reduce their dissemination in the hospital environment.

  11. Two draft genome sequences of Pseudomonas jessenii strains isolated from a copper contaminated site in Denmark

    DEFF Research Database (Denmark)

    Qin, Yanan; Wang, Dan; Brandt, Kristian Koefoed

    2016-01-01

    Pseudomonas jessenii C2 and Pseudomonas jessenii H16 were isolated from low-Cu and high-Cu industrially contaminated soil, respectively. P. jessenii H16 displayed significant resistance to copper when compared to P. jessenii C2. Here we describe genome sequences and interesting features of these ......Pseudomonas jessenii C2 and Pseudomonas jessenii H16 were isolated from low-Cu and high-Cu industrially contaminated soil, respectively. P. jessenii H16 displayed significant resistance to copper when compared to P. jessenii C2. Here we describe genome sequences and interesting features...... of these two strains. The genome of P. jessenii C2 comprised 6,420,113 bp, with 5814 protein-coding genes and 67 RNA genes. P. jessenii H16 comprised 6,807,788 bp, with 5995 protein-coding genes and 70 RNA genes. Of special interest was a specific adaptation to this harsh copper-contaminated environment as P....... jessenii H16 contained a novel putative copper resistance genomic island (GI) of around 50,000 bp....

  12. New strategies for genetic engineering Pseudomonas syringae using recombination

    Science.gov (United States)

    Here we report that DNA oligonucleotides (oligos) introduced directly into bacteria by electroporation can recombine with the bacterial chromosome. This phenomenon was identified in Pseudomonas syringae and we subsequently found that Escherichia coli, Salmonella typhimurium and Shigella flexneri are...

  13. Metabolite Profiling to Characterize Disease-related Bacteria GLUCONATE EXCRETION BY PSEUDOMONAS AERUGINOSA MUTANTS AND CLINICAL ISOLATES FROM CYSTIC FIBROSIS PATIENTS

    OpenAIRE

    Behrends, V; Bell, TJ; Liebeke, M; Cordes-Blauert, A; Ashraf, SN; Nair, C; Zlosnik, JEA; Williams, HD; Bundy, JG

    2013-01-01

    Metabolic footprinting of supernatants has been proposed as a tool for assigning gene function. We used NMR spectroscopy to measure the exometabolome of 86 single-gene transposon insertion mutant strains (mutants from central carbon metabolism and regulatory mutants) of the opportunistic pathogen Pseudomonas aeruginosa, grown on a medium designed to represent the nutritional content of cystic fibrosis sputum. Functionally related genes had similar metabolic profiles. E.g. for two-component sy...

  14. Nosocomial outbreak of Pseudomonas aeruginosa endophthalmitis.

    Science.gov (United States)

    Mateos, I; Valencia, R; Torres, M J; Cantos, A; Conde, M; Aznar, J

    2006-11-01

    We describe an outbreak of nosocomial endophthalmitis due to a common source, which was determined to be trypan blue solution prepared in the hospital's pharmacy service. We assume that viable bacteria probably gained access to the trypan blue stock solution during cooling after autoclaving. The temporal cluster of Pseudomonas aeruginosa endophthalmitis was readily perceived on the basis of clinical and microbiological findings, and an exogenous source of contamination was unequivocally identified by means of DNA fingerprinting.

  15. Mecanismos de Adherencia de Pseudomonas aeruginosa a nuevos Biomateriales de uso Médico.

    OpenAIRE

    Martínez Martínez, Luis

    2017-01-01

    En 1882 Gessard aisló por primera vez Pseudomonas aeruginosa (Bacillus pyoceaneus) de muestras procedentes de heridas quirúrgicas. Hasta 1947 sólo se conocían 91 casos de bacteriemia por este microorganismo, pero en la década actual, cien años después de su descripción, Pseudomonas aeruginosa, ha pasado a ser un microorganismo de creciente interés en patología humana debido a su estrecha relación con enfermos inmun...

  16. Biofilm Formation Mechanisms of Pseudomonas aeruginosa Predicted via Genome-Scale Kinetic Models of Bacterial Metabolism

    Science.gov (United States)

    2016-03-15

    RESEARCH ARTICLE Biofilm Formation Mechanisms of Pseudomonas aeruginosa Predicted via Genome-Scale Kinetic Models of Bacterial Metabolism Francisco G...jaques.reifman.civ@mail.mil Abstract A hallmark of Pseudomonas aeruginosa is its ability to establish biofilm -based infections that are difficult to...eradicate. Biofilms are less susceptible to host inflammatory and immune responses and have higher antibiotic tolerance than free-living planktonic

  17. Mass spectrometry identification of alkyl-substituted pyrazines produced by Pseudomonas spp. isolates obtained from wine corks.

    Science.gov (United States)

    Bañeras, Lluís; Trias, Rosalia; Godayol, Anna; Cerdán, Laura; Nawrath, Thorben; Schulz, Stefan; Anticó, Enriqueta

    2013-06-15

    We investigated the pyrazine production of 23 Pseudomonas isolates obtained from cork in order to assess their implications in off-flavour development. Off-flavour development in cork stoppers is a crucial process in maintaining the high quality of some wines. Pyrazine production was analyzed by headspace solid-phase-microextraction (HS-SPME) and gas chromatography coupled with mass spectrometry (GC-MS). Five out of the 23 isolates, i.e. Pseudomonas koreensis TCA20, Pseudomonas palleroniana TCA16, Pseudomonas putida TCA23 and N7, and Pseudomonas stutzeri TRA27a were able to produce branched alkyl-substituted pyrazines. For isolates N7 and TCA16, 14 compounds could be identified as pyrazines. The use of mineral media supplemented with different carbon and nitrogen sources resulted in changes in the pyrazine production capacity. In the two strains the amount of pyrazines produced was higher with glucose and decreased significantly with lactate. In all cases, 2,5-di(1-methylethyl)pyrazine was found to be dominant and independent of amino acid addition, suggesting a completely de novo synthesis. Aroma descriptions of most alkyl substituted pyrazines include mild vegetal aromas, not necessarily undesirable for the cork manufacturing industry. Methoxypyrazines, exhibiting earthy and musty aromas, could not be detected in any of the strains analysed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Effect of biosurfactant from two strains of Pseudomonas on ...

    African Journals Online (AJOL)

    Two Pseudomonas strains isolated from oil-contaminated soil which produce biosurfactant were studied. The biosurfactant containing broth formed stable emulsions with liquid light paraffin, cooking medium vegetable oil and toluene. The strains under study produce extra cellular biosurfactant in the culture media.

  19. Matrix evaluation for Pseudomonas spp. immobilisation in phenol bioremediation

    Directory of Open Access Journals (Sweden)

    Leonel Chitiva Urbina

    2003-07-01

    Full Text Available Pseudomonas spp. were cultivated in a free cell suspension and also immobilised in three different matrices to observe the influence of a contaminant like phenol on degradation velocity and compare each one's results. Polyurethane polymers, alginate (Manohar et al, 2001 and a mixture of alginate and polyvinyl alcohol (Doria et al, 2002 were selected and tested as matrices; all of them proved viable as matrices for cell immobilisation. Pseudomonas were cultivated in an initial 10 cfu/ml concentration in each one of the matrices for comparison purposes and in a medium without matrix; all mediums were supplemented with a minimum salt medium and 200 ppm phenol. A removal time of 23 days was observed in the medium without matrix, 15 days in the polyurethane matrix and 7 days in the alginate matrices. Improved removal times were observed in all matrices when compared to the free cell suspension.

  20. Safety of spray-dried powder formulated Pseudomonas fluorescens strain CL145A exposure to subadult/adult unionid mussels during simulated open-water treatments

    Science.gov (United States)

    Luoma, James A.; Weber, Kerry L.; Waller, Diane L.; Wise, Jeremy K.; Mayer, Denise A.; Aloisi, Douglas B.

    2015-01-01

    The exposure effects of a commercially prepared spray dried powder (SDP) formulation ofPseudomonas fluorescens (strain CL145A) on the survival of seven species of unionid mussels endemic to the Great Lakes and Mississippi River basins was evaluated in this study. The study exposures were completed within replicated 350-liter test tanks contained within a mobile bioassay laboratory sited on the shores of the Black River near La Crosse, Wisconsin. The test tanks were supplied with flowing, filtered river water which was interrupted during the exposure period.

  1. Production of Polyhydroxyalkanoates from Sludge Palm Oil Using Pseudomonas putida S12.

    Science.gov (United States)

    Kang, Du-Kyeong; Lee, Cho-Ryong; Lee, Sun Hee; Bae, Jung-Hoon; Park, Young-Kwon; Rhee, Young Ha; Sung, Bong Hyun; Sohn, Jung-Hoon

    2017-05-28

    Polyhydroxyalkanoates (PHAs) are biodegradable plastics produced by bacteria, but their use in diverse applications is prohibited by high production costs. To reduce these costs, the conversion by Pseudomonas strains of P HAs from crude s ludge p alm oil ( SPO) a s an inexpensive renewable raw material was tested. Pseudomonas putida S12 was found to produce the highest yield (~41%) of elastomeric medium-chain-length (MCL)-PHAs from SPO. The MCL-PHA characteristics were analyzed by gas-chromatography/mass spectrometry, gel permeation chromatography, and differential scanning calorimetry. These findings may contribute to more widespread use of PHAs by reducing PHA production costs.

  2. Introduction of Endophytic Pseudomonas rhodesiae and Acinetobacter sp. Effective on Seed Germination and Cucumber Growth Factors Improvement

    Directory of Open Access Journals (Sweden)

    Farkhondeh Amini

    2017-03-01

    microorganisms could have emerged as a result of the clear positive selection exerted on these associations. The current study is conducted in order to evaluate the effectiveness of cucumber root endophytic bacteria on increasing plant growth indexes. Materials and Methods: In this study, 45 strains were isolated from cucumber roots as mentioned in the literature. In the first step, all of them subjected to seed germination assay in lab conditions. Furthermore, they are evaluated for vigor index according to references. Seven strains (En 1 to En7 are selected for complementary research in greenhouse trials using randomized block design with 4 repetitions. Statistical analysis is done using SPSS v.22‌ by Duncan methods under 5% possibility levels. To detect preferred bacterial species, 16S rDNA-PCR product is sent for sequencing to Macrogen, Korea. The sequences are checked in BLAST program in NCBI database. Results and Discussion: Based on medians comparison, cucumber seed cultivar Negin, are treated by 45 endophytic bacteria separately. Among them, seven strains showed a significant difference at 1% possibility level in comparison to control. These strains presented high vigor index from 1954.6 to 572 compared to control. They also showed better seed germination percentage rather than control in the range of 95 to 45 %, and selected for greenhouse trials. The results of medians comparison in pot experiments demonstrated that En1 strains leads to 60% root and shoot length enhancement comparing to control. Furthermore, highest shoot (84.6% and root (55.8% wet weight are recorded for En6 in comparison to control. Molecular data revealed that strains En1 and En6 belonging to Acinetobacter sp. and Pseudomonas rhodesiae, respectively. It is known that variation in endophytic bacteria may reflect differences in agriculture management methods. The P. rhodesiae is categorized in Pseudomonas fluorescent group and is isolated from mineral water for the first time. The positive effect of

  3. Comparative genome and transcriptome analysis reveals distinctive surface characteristics and unique physiological potentials of Pseudomonas aeruginosa ATCC 27853

    KAUST Repository

    Cao, Huiluo; Lai, Yong; Bougouffa, Salim; Xu, Zeling; Yan, Aixin

    2017-01-01

    Pseudomonas aeruginosa ATCC 27853 was isolated from a hospital blood specimen in 1971 and has been widely used as a model strain to survey antibiotics susceptibilities, biofilm development, and metabolic activities of Pseudomonas spp.. Although four

  4. Population Connectivity Measures of Fishery-Targeted Coral Reef Species to Inform Marine Reserve Network Design in Fiji.

    Science.gov (United States)

    Eastwood, Erin K; López, Elora H; Drew, Joshua A

    2016-01-25

    Coral reef fish serve as food sources to coastal communities worldwide, yet are vulnerable to mounting anthropogenic pressures like overfishing and climate change. Marine reserve networks have become important tools for mitigating these pressures, and one of the most critical factors in determining their spatial design is the degree of connectivity among different populations of species prioritized for protection. To help inform the spatial design of an expanded reserve network in Fiji, we used rapidly evolving mitochondrial genes to investigate connectivity patterns of three coral reef species targeted by fisheries in Fiji: Epinephelus merra (Serranidae), Halichoeres trimaculatus (Labridae), and Holothuria atra (Holothuriidae). The two fish species, E. merra and Ha. trimaculatus, exhibited low genetic structuring and high amounts of gene flow, whereas the sea cucumber Ho. atra displayed high genetic partitioning and predominantly westward gene flow. The idiosyncratic patterns observed among these species indicate that patterns of connectivity in Fiji are likely determined by a combination of oceanographic and ecological characteristics. Our data indicate that in the cases of species with high connectivity, other factors such as representation or political availability may dictate where reserves are placed. In low connectivity species, ensuring upstream and downstream connections is critical.

  5. Responses of a soil bacterium, Pseudomonas chlororaphis O6 to commercial metal oxide nanoparticles compared with responses to metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Dimkpa, Christian O., E-mail: cdimkpa@usu.edu [Department of Biological Engineering, Utah State University, Logan, UT 84322 (United States); Calder, Alyssa; Britt, David W. [Department of Biological Engineering, Utah State University, Logan, UT 84322 (United States); McLean, Joan E. [Utah Water Research Laboratory, Utah State University, Logan, UT 84322 (United States); Anderson, Anne J. [Department of Biology, Utah State University, Logan, UT 84322 (United States)

    2011-07-15

    The toxicity of commercially-available CuO and ZnO nanoparticles (NPs) to pathogenic bacteria was compared for a beneficial rhizosphere isolate, Pseudomonas chlororaphis O6. The NPs aggregated, released ions to different extents under the conditions used for bacterial exposure, and associated with bacterial cell surface. Bacterial surface charge was neutralized by NPs, dependent on pH. The CuO NPs were more toxic than the ZnO NPs. The negative surface charge on colloids of extracellular polymeric substances (EPS) was reduced by Cu ions but not by CuO NPs; the EPS protected cells from CuO NPs-toxicity. CuO NPs-toxicity was eliminated by a Cu ion chelator, suggesting that ion release was involved. Neither NPs released alkaline phosphatase from the cells' periplasm, indicating minimal outer membrane damage. Accumulation of intracellular reactive oxygen species was correlated with CuO NPs lethality. Environmental deposition of NPs could create niches for ion release, with impacts on susceptible soil microbes. - Highlights: > Toxicity of metallic nanoparticles (NPs) was evaluated in a beneficial bacterium, Pseudomonas chlororaphis O6 (PcO6). > Aggregated commercial CuO and ZnO NPs released Cu and Zn ions and changed bacterial surface charge, depending on pH. > The NPs were toxic to PcO6 through NP-specific, but also ion release mechanisms. > Reactive oxygen species were produced by CuO NP and Cu ion at lethal concentrations, but bacterial EPS protected against Cu. > The periplasmic marker, alkaline phosphate, activity was increased by the NPs and ions. - Aggregated CuO and ZnO nanoparticles release ions and cause different toxicities in a beneficial soil bacterium.

  6. Responses of a soil bacterium, Pseudomonas chlororaphis O6 to commercial metal oxide nanoparticles compared with responses to metal ions

    International Nuclear Information System (INIS)

    Dimkpa, Christian O.; Calder, Alyssa; Britt, David W.; McLean, Joan E.; Anderson, Anne J.

    2011-01-01

    The toxicity of commercially-available CuO and ZnO nanoparticles (NPs) to pathogenic bacteria was compared for a beneficial rhizosphere isolate, Pseudomonas chlororaphis O6. The NPs aggregated, released ions to different extents under the conditions used for bacterial exposure, and associated with bacterial cell surface. Bacterial surface charge was neutralized by NPs, dependent on pH. The CuO NPs were more toxic than the ZnO NPs. The negative surface charge on colloids of extracellular polymeric substances (EPS) was reduced by Cu ions but not by CuO NPs; the EPS protected cells from CuO NPs-toxicity. CuO NPs-toxicity was eliminated by a Cu ion chelator, suggesting that ion release was involved. Neither NPs released alkaline phosphatase from the cells' periplasm, indicating minimal outer membrane damage. Accumulation of intracellular reactive oxygen species was correlated with CuO NPs lethality. Environmental deposition of NPs could create niches for ion release, with impacts on susceptible soil microbes. - Highlights: → Toxicity of metallic nanoparticles (NPs) was evaluated in a beneficial bacterium, Pseudomonas chlororaphis O6 (PcO6). → Aggregated commercial CuO and ZnO NPs released Cu and Zn ions and changed bacterial surface charge, depending on pH. → The NPs were toxic to PcO6 through NP-specific, but also ion release mechanisms. → Reactive oxygen species were produced by CuO NP and Cu ion at lethal concentrations, but bacterial EPS protected against Cu. → The periplasmic marker, alkaline phosphate, activity was increased by the NPs and ions. - Aggregated CuO and ZnO nanoparticles release ions and cause different toxicities in a beneficial soil bacterium.

  7. Isolation of Fungal Species from Fermentating Pearl Millet Gruel and ...

    African Journals Online (AJOL)

    Escherichia coli, Staphylococcus aureus, Bacillus cereus, Bacillus lichieniformis, Salmonella spp., Pseudomonas fluorescens, Pseudomonas aeruginosa, Pseudomonas syringae, Proteus sp. and Serratia sp. were utilized as indicator organisms. Secondary metabolites were also extracted from the respective moulds and ...

  8. Pseudomonas aeruginosa Infections in a Tertiary Hospital in Nigeria ...

    African Journals Online (AJOL)

    Background: Pseudomonas aeruginosa is a known opportunistic pathogen frequently causing serious infections. It exhibits innate resistance to a wide range of antibiotics thus causing high rates of morbidity and mortality worldwide. Objective: This study was done to determine the distribution and the antibiotic susceptibility ...

  9. Mathematical modelling of temperature effect on growth kinetics of Pseudomonas spp. on sliced mushroom (Agaricus bisporus).

    Science.gov (United States)

    Tarlak, Fatih; Ozdemir, Murat; Melikoglu, Mehmet

    2018-02-02

    The growth data of Pseudomonas spp. on sliced mushrooms (Agaricus bisporus) stored between 4 and 28°C were obtained and fitted to three different primary models, known as the modified Gompertz, logistic and Baranyi models. The goodness of fit of these models was compared by considering the mean squared error (MSE) and the coefficient of determination for nonlinear regression (pseudo-R 2 ). The Baranyi model yielded the lowest MSE and highest pseudo-R 2 values. Therefore, the Baranyi model was selected as the best primary model. Maximum specific growth rate (r max ) and lag phase duration (λ) obtained from the Baranyi model were fitted to secondary models namely, the Ratkowsky and Arrhenius models. High pseudo-R 2 and low MSE values indicated that the Arrhenius model has a high goodness of fit to determine the effect of temperature on r max . Observed number of Pseudomonas spp. on sliced mushrooms from independent experiments was compared with the predicted number of Pseudomonas spp. with the models used by considering the B f and A f values. The B f and A f values were found to be 0.974 and 1.036, respectively. The correlation between the observed and predicted number of Pseudomonas spp. was high. Mushroom spoilage was simulated as a function of temperature with the models used. The models used for Pseudomonas spp. growth can provide a fast and cost-effective alternative to traditional microbiological techniques to determine the effect of storage temperature on product shelf-life. The models can be used to evaluate the growth behaviour of Pseudomonas spp. on sliced mushroom, set limits for the quantitative detection of the microbial spoilage and assess product shelf-life. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Draft Genome Sequence Analysis of a Pseudomonas putida W15Oct28 Strain with Antagonistic Activity to Gram-Positive and Pseudomonas sp. Pathogens

    Science.gov (United States)

    Ye, Lumeng; Hildebrand, Falk; Dingemans, Jozef; Ballet, Steven; Laus, George; Matthijs, Sandra; Berendsen, Roeland; Cornelis, Pierre

    2014-01-01

    Pseudomonas putida is a member of the fluorescent pseudomonads known to produce the yellow-green fluorescent pyoverdine siderophore. P. putida W15Oct28, isolated from a stream in Brussels, was found to produce compound(s) with antimicrobial activity against the opportunistic pathogens Staphylococcus aureus, Pseudomonas aeruginosa, and the plant pathogen Pseudomonas syringae, an unusual characteristic for P. putida. The active compound production only occurred in media with low iron content and without organic nitrogen sources. Transposon mutants which lost their antimicrobial activity had the majority of insertions in genes involved in the biosynthesis of pyoverdine, although purified pyoverdine was not responsible for the antagonism. Separation of compounds present in culture supernatants revealed the presence of two fractions containing highly hydrophobic molecules active against P. aeruginosa. Analysis of the draft genome confirmed the presence of putisolvin biosynthesis genes and the corresponding lipopeptides were found to contribute to the antimicrobial activity. One cluster of ten genes was detected, comprising a NAD-dependent epimerase, an acetylornithine aminotransferase, an acyl CoA dehydrogenase, a short chain dehydrogenase, a fatty acid desaturase and three genes for a RND efflux pump. P. putida W15Oct28 genome also contains 56 genes encoding TonB-dependent receptors, conferring a high capacity to utilize pyoverdines from other pseudomonads. One unique feature of W15Oct28 is also the presence of different secretion systems including a full set of genes for type IV secretion, and several genes for type VI secretion and their VgrG effectors. PMID:25369289

  11. Effect of Garlic Oil on Attenuation of Pseudomonas aeruginosa Infection Induced in Mice

    International Nuclear Information System (INIS)

    Eltablawy, S.Y.; Elhifnawi, H.N.

    2010-01-01

    The antimicrobial activity and other medical benefits of garlic oil have been attributed to the presence of sulphides in it. Pseudomonas aeruginosa is a multidrug resistance opportunistic human pathogen that infect many patients .To control these infections, there is a need for other agents with greater antimicrobial activity and less toxicity. In this study, the effect of irradiated and non-irradiated garlic oil has been evaluated. The irradiation of garlic oil at 10.0 kGy decreased slightly its antibacterial activity against the tested Pseudomonas aeruginosa. The results revealed that there was no effect of garlic oil either irradiated or non-irradiated on the adherent cells formed by Pseudomonas aeruginosa tested organism on tissue culture plate. Garlic oil (irradiated or nonirradiated) was administrated subcutaneously as treatment for a mouse infection model. Bacteriological examination and mortality rate were used as indicators. The treatment with non-irradiated garlic oil decreased the number of bacteria in the infected group in contrast with the placebo group (saline), while, irradiation of garlic oil with 10.0 kGy had no effect on the infected bacteria. Also, the results indicated that, the treatment with non-irradiated garlic oil decreased the mortality in comparison with irradiated garlic oil which did not show any effect. Scanning electron microscopy study revealed that there were morphological changes in the Pseudomonas aeruginosa treated with non- irradiated garlic oil in comparison with untreated one

  12. Ferric-Pyoverdine Recognition by Fpv Outer Membrane Proteins of Pseudomonas protegens Pf-5

    Science.gov (United States)

    Hartney, Sierra L.; Mazurier, Sylvie; Girard, Maëva K.; Mehnaz, Samina; Davis, Edward W.; Gross, Harald; Lemanceau, Philippe

    2013-01-01

    The soil bacterium Pseudomonas protegens Pf-5 (previously called P. fluorescens Pf-5) produces two siderophores, enantio-pyochelin and a compound in the large and diverse pyoverdine family. Using high-resolution mass spectroscopy, we determined the structure of the pyoverdine produced by Pf-5. In addition to producing its own siderophores, Pf-5 also utilizes ferric complexes of some pyoverdines produced by other strains of Pseudomonas spp. as sources of iron. Previously, phylogenetic analysis of the 45 TonB-dependent outer membrane proteins in Pf-5 indicated that six are in a well-supported clade with ferric-pyoverdine receptors (Fpvs) from other Pseudomonas spp. We used a combination of phylogenetics, bioinformatics, mutagenesis, pyoverdine structural determinations, and cross-feeding bioassays to assign specific ferric-pyoverdine substrates to each of the six Fpvs of Pf-5. We identified at least one ferric-pyoverdine that was taken up by each of the six Fpvs of Pf-5. Functional redundancy of the Pf-5 Fpvs was also apparent, with some ferric-pyoverdines taken up by all mutants with a single Fpv deletion but not by a mutant having deletions in two of the Fpv-encoding genes. Finally, we demonstrated that phylogenetically related Fpvs take up ferric complexes of structurally related pyoverdines, thereby establishing structure-function relationships that can be employed in the future to predict the pyoverdine substrates of Fpvs in other Pseudomonas spp. PMID:23222724

  13. Novel AroA from Pseudomonas putida Confers Tobacco Plant with High Tolerance to Glyphosate

    Science.gov (United States)

    Yan, Hai-Qin; Chang, Su-Hua; Tian, Zhe-Xian; Zhang, Le; Sun, Yi-Cheng; Li, Yan; Wang, Jing; Wang, Yi-Ping

    2011-01-01

    Glyphosate is a non-selective broad-spectrum herbicide that inhibits 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS, also designated as AroA), a key enzyme in the aromatic amino acid biosynthesis pathway in microorganisms and plants. Previously, we reported that a novel AroA (PpAroA1) from Pseudomonas putida had high tolerance to glyphosate, with little homology to class I or class II glyphosate-tolerant AroA. In this study, the coding sequence of PpAroA1 was optimized for tobacco. For maturation of the enzyme in chloroplast, a chloroplast transit peptide coding sequence was fused in frame with the optimized aroA gene (PparoA1optimized) at the 5′ end. The PparoA1optimized gene was introduced into the tobacco (Nicotiana tabacum L. cv. W38) genome via Agrobacterium-mediated transformation. The transformed explants were first screened in shoot induction medium containing kanamycin. Then glyphosate tolerance was assayed in putative transgenic plants and its T1 progeny. Our results show that the PpAroA1 from Pseudomonas putida can efficiently confer tobacco plants with high glyphosate tolerance. Transgenic tobacco overexpressing the PparoA1optimized gene exhibit high tolerance to glyphosate, which suggest that the novel PpAroA1 is a new and good candidate applied in transgenic crops with glyphosate tolerance in future. PMID:21611121

  14. Development of a Pseudomonas aeruginosa Agmatine Biosensor

    OpenAIRE

    Gilbertsen, Adam; Williams, Bryan

    2014-01-01

    Agmatine, decarboxylated arginine, is an important intermediary in polyamine production for many prokaryotes, but serves higher functions in eukaryotes such as nitric oxide inhibition and roles in neurotransmission. Pseudomonas aeruginosa relies on the arginine decarboxylase and agmatine deiminase pathways to convert arginine into putrescine. One of the two known agmatine deiminase operons, aguBA, contains an agmatine sensitive TetR promoter controlled by AguR. We have discovered that this pr...

  15. Modular Study of the Type III Effector Repertoire in Pseudomonas syringae pv. tomato DC3000 Reveals a Matrix of Effector Interplay in Pathogenesis

    Directory of Open Access Journals (Sweden)

    Hai-Lei Wei

    2018-05-01

    Full Text Available Summary: The bacterial pathogen Pseudomonas syringae pv. tomato DC3000 suppresses the two-tiered innate immune system of Nicotiana benthamiana and other plants by injecting a complex repertoire of type III secretion effector (T3E proteins. Effectorless polymutant DC3000D36E was used with a modularized system for native delivery of the 29 DC3000 T3Es singly and in pairs. Assays of the performance of this T3E library in N. benthamiana leaves revealed a matrix of T3E interplay, with six T3Es eliciting death and eight others variously suppressing the death activity of the six. The T3E library was also interrogated for effects on DC3000D36E elicitation of a reactive oxygen species burst, for growth in planta, and for T3Es that reversed these effects. Pseudomonas fluorescens and Agrobacterium tumefaciens heterologous delivery systems yielded notably different sets of death-T3Es. The DC3000D36E T3E library system highlights the importance of 13 T3Es and their interplay in interactions with N. benthamiana. : Wei et al. used a Pseudomonas syringae strain lacking all known type III effectors with a modularized library expressing the 29 active effectors in the strain’s native repertoire, individually and in pairs, to comprehensively determine effector actions and interplay in inducing and suppressing responses associated with plant pathogenesis and immunity. Keywords: effector-triggered-immunity, pattern-triggered-immunity, Hop proteins, plant immunity, mini-Tn7

  16. Effect of alternating and direct currents on Pseudomonas ...

    African Journals Online (AJOL)

    The test media were Muller-Hinton agar and eosin methylene blue (EMB) agar. In this research Pseudomonas aeruginosa which was isolated from patients wounds was examined with levels of alternating and direct current (AC and DC) electrical stimulation (1.5V, 3.5V, 5.5V and 10V) to see if these currents could inhibit P.

  17. Bioremediation of coractive blue dye by using Pseudomonas spp. isolated from the textile dye wastewater

    Science.gov (United States)

    Sunar, N. M.; Mon, Z. K.; Rahim, N. A.; Leman, A. M.; Airish, N. A. M.; Khalid, A.; Ali, R.; Zaidi, E.; Azhar, A. T. S.

    2018-04-01

    Wastewater released from the textile industry contains variety substances, mainly dyes that contains a high concentration of color and organic. In this study the potential for bacterial decolorization of coractive blue dye was examined that isolated from textile wastewater. The optimum conditions were determined for pH, temperature and initial concentration of the dye. The bacteria isolated was Pseudomonas spp. The selected bacterium shows high decolorization in static condition at an optimum of pH 7.0. The Pseudomonas spp. could decolorize coractive blue dye by 70% within 24 h under static condition, with the optimum of pH 7.0. Decolorization was confirmed by using UV-VIS spectrophotometer. This present study suggests the potential of Pseudomonas spp. as an approach in sustainable bioremediation that provide an efficient method for decolorizing coractive blue dye.

  18. Pseudomonas aeruginosa biofilm infections

    DEFF Research Database (Denmark)

    Tolker-Nielsen, Tim

    2014-01-01

    Bacteria in natural, industrial and clinical settings predominantly live in biofilms, i.e., sessile structured microbial communities encased in self-produced extracellular matrix material. One of the most important characteristics of microbial biofilms is that the resident bacteria display...... a remarkable increased tolerance toward antimicrobial attack. Biofilms formed by opportunistic pathogenic bacteria are involved in devastating persistent medical device-associated infections, and chronic infections in individuals who are immune-compromised or otherwise impaired in the host defense. Because...... the use of conventional antimicrobial compounds in many cases cannot eradicate biofilms, there is an urgent need to develop alternative measures to combat biofilm infections. The present review is focussed on the important opportunistic pathogen and biofilm model organism Pseudomonas aeruginosa. Initially...

  19. Characterization of Pseudomonas aeruginosa Chitinase, a Gradually Secreted Protein

    NARCIS (Netherlands)

    Folders, J. (Jindra); Algra, J. (Jon); Roelofs, M.S. (Marc); Loon, L.C. van; Tommassen, J.P.M.; Bitter, Wilbert

    2001-01-01

    The gram-negative bacterium Pseudomonas aeruginosa secretes many proteins into its extracellular environment via the type I, II, and III secretion systems. In this study, a gene, chiC, coding for an extracellular chitinolytic enzyme, was identified. The chiC gene encodes a polypeptide of 483 amino

  20. Disruption of transporters affiliated with enantio-pyochelin biosynthesis gene cluster of Pseudomonas protegens Pf-5 has pleiotropic effects

    Science.gov (United States)

    Pseudomonas protegens Pf-5 (formerly Pseudomonas fluorescens) is a biocontrol bacterium that produces the siderophore enantio-pyochelin under conditions of iron starvation in a process that is often accompanied by the secretion of its biosynthesis intermediates, salicylic acid and dihydroaeruginoic ...

  1. Decrease of Pseudomonas aeruginosa biofilm formation by food waste materials

    Czech Academy of Sciences Publication Activity Database

    Maděrová, Z.; Horská, K.; Kim, S.-R.; Lee, Ch.-H.; Pospíšková, K.; Šafaříková, Miroslava; Šafařík, Ivo

    2016-01-01

    Roč. 73, č. 9 (2016), s. 2143-2149 ISSN 0273-1223 Institutional support: RVO:60077344 Keywords : biofilm * food waste materials * magnetic spent grain * Pseudomonas aeruginosa Subject RIV: EI - Biotechnology ; Bionics Impact factor: 1.197, year: 2016

  2. Specific Gene Loci of Clinical Pseudomonas putida Isolates.

    Directory of Open Access Journals (Sweden)

    Lázaro Molina

    Full Text Available Pseudomonas putida are ubiquitous inhabitants of soils and clinical isolates of this species have been seldom described. Clinical isolates show significant variability in their ability to cause damage to hosts because some of them are able to modulate the host's immune response. In the current study, comparisons between the genomes of different clinical and environmental strains of P. putida were done to identify genetic clusters shared by clinical isolates that are not present in environmental isolates. We show that in clinical strains specific genes are mostly present on transposons, and that this set of genes exhibit high identity with genes found in pathogens and opportunistic pathogens. The set of genes prevalent in P. putida clinical isolates, and absent in environmental isolates, are related with survival under oxidative stress conditions, resistance against biocides, amino acid metabolism and toxin/antitoxin (TA systems. This set of functions have influence in colonization and survival within human tissues, since they avoid host immune response or enhance stress resistance. An in depth bioinformatic analysis was also carried out to identify genetic clusters that are exclusive to each of the clinical isolates and that correlate with phenotypical differences between them, a secretion system type III-like was found in one of these clinical strains, a determinant of pathogenicity in Gram-negative bacteria.

  3. Simple screening tests for the detection of metallo-β-lactamase (MBL production in clinical isolates of Pseudomonas and Acinetobacter

    Directory of Open Access Journals (Sweden)

    Shaheda Anwar

    2010-01-01

    Full Text Available There are no standard methods for the detection of metallo-b-lactamase (MBL production in gram negative organism in routine microbiology practice. The present study was undertaken to evaluate the screening tests like double disk synergy test (DDST and disk potentiation test (DPT using ceftazidime (CAZ and imipenem (IPM disks with chelating agents like EDTA, 2-mercaptopropionic acid (2-MPA. A total of 132 Pseudomonas and 76 Acinetobacter isolates were obtained from Bangabandhu Sheikh Mujib Medical University (BSMMU and Bangladesh Institute of Research and Rehabilitation for Diabetes, Endocrine and Metabolic Disorders (BIRDEM hospitals of Dhaka city. A total of 53 and 29 IPM resistant Pseudomonas and Acinetobacter isolates were selected. EDTA-IPM microdilution minimum inhibitory concentration (EDTA-IPM MIC method detected MBL in 44 (83% IPM resistant Pseudomonas and 19 (65.5% Acinetobacter isolates. DDST with CAZ-0.1M EDTA and CAZ-2-MPA detected MBL in 73.6% and 67.9% of IPM resistant Pseudomonas and 55.2% and 48.3% of Acinetobacter isolates respectively. The detection rate was 67.9% and 66.1% in Pseudomonas and 51.7% and 44.8% in Acinetobacter isolates by EDTA-IPM and IPM-2-MPA methods respectively. In comparison to DDST, DPT with CAZ-0.1M EDTA showed higher sensitivity (89.7% and specificity (100% for detection of MBL in Pseudomonas and Acinetobacter. The results showed that simple screening tests like DPT with 0.1M EDTA was able to detect MBL producing Pseudomonas and Acinetobacter from clinical samples with high sensitivity and specificity. Ibrahim Med. Coll. J. 2010; 4(1: 26-30

  4. A biodegradable rubber by crosslinking poly(hydroxyalkanoate) from Pseudomonas oleovorans

    NARCIS (Netherlands)

    DEKONING, GJM; VANBILSEN, HMM; LEMSTRA, PJ; HAZENBERG, W; Witholt, B.; Preusting, H.; VANDERGALIEN, JG; SCHIRMER, A; JENDROSSEK, D

    1994-01-01

    Poly((R)-3-hydroxyalkanoate)s (PHAs) are bacterial storage polyesters, currently receiving much attention because of their potential application as biodegradable and biocompatible plastics. Among them are the PHAs from Pseudomonas oleovorans, which are semicrystalline elastomers. Their applicability

  5. Production of bio surfactants (Rhamnolipids) by pseudomonas aeruginosa isolated from colombian sludges

    International Nuclear Information System (INIS)

    Pimienta, A.L; Diaz M, M. P; Carvajal S, F.G; Grosso V, J.L.

    1997-01-01

    The bio surfactant production by strains of Pseudomonas aeruginosa isolated from Colombian hydrocarbon contaminated sludge has been determined. The methodology included the isolation of microorganisms, standardization of batch culture conditions for good surfactant production and characterization of the produced rhamnolipid. Several carbon sources were evaluated with regard to the growth and production curves. The stability of the rhamnolipid was also determined under variable conditions of pH, temperature and salt concentration. The strain Pseudomonas aeruginosa BS 3 showed bio surfactant production capabilities of rhamnolipid resulting in concentrations up to 2 g-dm with surface tensions of 30 - 32 mN-m in batch cultures with commercial nutrients

  6. Rapid detection of rRNA group I pseudomonads in contaminated metalworking fluids and biofilm formation by fluorescent in situ hybridization.

    Science.gov (United States)

    Saha, Ratul; Donofrio, Robert S; Goeres, Darla M; Bagley, Susan T

    2012-05-01

    Metalworking fluids (MWFs), used in different machining operations, are highly prone to microbial degradation. Microbial communities present in MWFs lead to biofilm formation in the MWF systems, which act as a continuous source of contamination. Species of rRNA group I Pseudomonas dominate in contaminated MWFs. However, their actual distribution is typically underestimated when using standard culturing techniques as most fail to grow on the commonly used Pseudomonas Isolation Agar. To overcome this, fluorescent in situ hybridization (FISH) was used to study their abundance along with biofilm formation by two species recovered from MWFs, Pseudomonas fluorescens MWF-1 and the newly described Pseudomonas oleovorans subsp. lubricantis. Based on 16S rRNA sequences, a unique fluorescent molecular probe (Pseudo120) was designed targeting a conserved signature sequence common to all rRNA group I Pseudomonas. The specificity of the probe was evaluated using hybridization experiments with whole cells of different Pseudomonas species. The probe's sensitivity was determined to be 10(3) cells/ml. It successfully detected and enumerated the abundance and distribution of Pseudomonas indicating levels between 3.2 (± 1.1) × 10(6) and 5.0 (± 2.3) × 10(6) cells/ml in four different industrial MWF samples collected from three different locations. Biofilm formation was visualized under stagnant conditions using high and low concentrations of cells for both P. fluorescens MWF-1 and P. oleovorans subsp. lubricantis stained with methylene blue and Pseudo120. On the basis of these observations, this molecular probe can be successfully be used in the management of MWF systems to monitor the levels and biofilm formation of rRNA group I pseudomonads.

  7. Glyphosate catabolism by Pseudomonas sp

    International Nuclear Information System (INIS)

    Shinabarger, D.L.

    1986-01-01

    The pathway for the degradation of glyphosate (N-phosphonomethylglycine) by Pseudomonas sp. PG2982 has been determined using metabolic radiolabeling experiments. Radiorespirometry experiments utilizing [3- 14 C] glyphosate revealed that approximately 50-59% of the C3 carbon was oxidized to CO 2 . Fractionation of stationary phase cells labeled with [3- 14 C]glyphosate revealed that from 45-47% of the assimilated C3 carbon is distributed to proteins and that amino acids methionine and serine are highly labeled. The nucleic acid bases adenine and guanine received 90% of the C3 label that was incorporated into nucleic acids, and the only pyrimidine base labeled was thymine. Pulse labeling of PG2982 cells with [3- 14 C]glyphosate revealed that [3- 14 C]sarcosine is an intermediate in glyphosate degradation. Examination of crude extracts prepared from PG2982 cells revealed the presence of an enzyme that oxidizes sarcosine to glycine and formaldehyde. These results indicate that the first step in glyphosate degradation by PG2982 is cleavage of the carbon-phosphorus bond, resulting in the release of sarcosine and a phosphate group. The phosphate group is utilized as a source of phosphorus, and the sarcosine is degraded to glycine and formaldehyde. Phosphonate utilization by Pseudomonas sp. PG2982 was investigated. Each of the ten phosphonates tested were utilized as a sole source of phosphorus by PG2982. Representative compounds tested included alkylphosphonates, 1-amino-substituted alkylphosphonates, amino-terminal phosphonates, and an arylphosphonate. PG2982 cultures degraded phenylphosphonate to benzene and produced methane from methylphosphonate. The data indicate that PG2982 is capable of cleaving the carbon-phosphorus bond of several structurally different phosphonates

  8. Structure of a putative acetyltransferase (PA1377) from Pseudomonas aeruginosa

    International Nuclear Information System (INIS)

    Davies, Anna M.; Tata, Renée; Chauviac, François-Xavier; Sutton, Brian J.; Brown, Paul R.

    2008-01-01

    The crystal structure of an acetyltransferase encoded by the gene PA1377 from Pseudomonas aeruginosa has been determined at 2.25 Å resolution. Comparison with a related acetyltransferase revealed a structural difference in the active site that was taken to reflect a difference in substrate binding and/or specificity between the two enzymes. Gene PA1377 from Pseudomonas aeruginosa encodes a 177-amino-acid conserved hypothetical protein of unknown function. The structure of this protein (termed pitax) has been solved in space group I222 to 2.25 Å resolution. Pitax belongs to the GCN5-related N-acetyltransferase family and contains all four sequence motifs conserved among family members. The β-strand structure in one of these motifs (motif A) is disrupted, which is believed to affect binding of the substrate that accepts the acetyl group from acetyl-CoA

  9. Enzyme-mediated quenching of the Pseudomonas quinolone signal (PQS promotes biofilm formation of Pseudomonas aeruginosa by increasing iron availability

    Directory of Open Access Journals (Sweden)

    Beatrix Tettmann

    2016-12-01

    Full Text Available The 2-alkyl-3-hydroxy-4(1H-quinolone 2,4-dioxygenase HodC was previously described to cleave the Pseudomonas quinolone signal, PQS, which is exclusively used in the complex quorum sensing (QS system of Pseudomonas aeruginosa, an opportunistic pathogen employing QS to regulate virulence and biofilm development. Degradation of PQS by exogenous addition of HodC to planktonic cells of P. aeruginosa attenuated production of virulence factors, and reduced virulence in planta. However, proteolytic cleavage reduced the efficacy of HodC. Here, we identified the secreted protease LasB of P. aeruginosa to be responsible for HodC degradation. In static biofilms of the P. aeruginosa PA14 lasB::Tn mutant, the catalytic activity of HodC led to an increase in viable biomass in newly formed but also in established biofilms, and reduced the expression of genes involved in iron metabolism and siderophore production, such as pvdS, pvdL, pvdA and pvdQ. This is likely due to an increase in the levels of bioavailable iron by degradation of PQS, which is able to sequester iron from the surrounding environment. Thus, HodC, despite its ability to quench the production of virulence factors, is contraindicated for combating P. aeruginosa biofilms.

  10. Pseudomonas cichorii as the causal agent of midrib rot, an emerging disease of greenhouse-grown butterhead lettuce in Flanders.

    Science.gov (United States)

    Cottyn, Bart; Heylen, Kim; Heyrman, Jeroen; Vanhouteghem, Katrien; Pauwelyn, Ellen; Bleyaert, Peter; Van Vaerenbergh, Johan; Höfte, Monica; De Vos, Paul; Maes, Martine

    2009-05-01

    Bacterial midrib rot of greenhouse-grown butterhead lettuce (Lactuca sativa L. var. capitata) is an emerging disease in Flanders (Belgium) and fluorescent pseudomonads are suspected to play an important role in the disease. Isolations from infected lettuces, collected from 14 commercial greenhouses in Flanders, yielded 149 isolates that were characterized polyphasically, which included morphological characteristics, pigmentation, pathogenicity tests by both injection and spraying of lettuce, LOPAT characteristics, FAME analysis, BOX-PCR fingerprinting, 16S rRNA and rpoB gene sequencing, as well as DNA-DNA hybridization. Ninety-eight isolates (66%) exhibited a fluorescent pigmentation and were associated with the genus Pseudomonas. Fifty-five of them induced an HR+ (hypersensitive reaction in tobacco leaves) response. The other 43 fluorescent isolates were most probably saprophytic bacteria and about half of them were able to cause rot on potato tuber slices. BOX-PCR genomic fingerprinting was used to assess the genetic diversity of the Pseudomonas midrib rot isolates. The delineated BOX-PCR patterns matched quite well with Pseudomonas morphotypes defined on the basis of colony appearance and variation in fluorescent pigmentation. 16S rRNA and rpoB gene sequence analyses allowed most of the fluorescent isolates to be allocated to Pseudomonas, and they belonged to either the Pseudomonas fluorescens group, Pseudomonas putida group, or the Pseudomonas cichorii/syringae group. In particular, the isolates allocated to this latter group constituted the vast majority of HR+ isolates and were identified as P. cichorii by DNA-DNA hybridization. They were demonstrated by spray-inoculation tests on greenhouse-grown lettuce to induce the midrib rot disease and could be re-isolated from lesions of inoculated plants. Four HR+ non-fluorescent isolates associated with one sample that showed an atypical midrib rot were identified as Dickeya sp.

  11. The role of gluconate production by Pseudomonas spp. in the mineralization and bioavailability of calcium-phytate to Nicotiana tabacum.

    Science.gov (United States)

    Giles, Courtney D; Hsu, Pei-Chun Lisa; Richardson, Alan E; Hurst, Mark R H; Hill, Jane E

    2015-12-01

    Organic phosphorus (P) is abundant in most soils but is largely unavailable to plants. Pseudomonas spp. can improve the availability of P to plants through the production of phytases and organic anions. Gluconate is a major component of Pseudomonas organic anion production and may therefore play an important role in the mineralization of insoluble organic P forms such as calcium-phytate (CaIHP). Organic anion and phytase production was characterized in 2 Pseudomonas spp. soil isolates (CCAR59, Ha200) and an isogenic mutant of strain Ha200, which lacked a functional glucose dehydrogenase (Gcd) gene (strain Ha200 gcd::Tn5B8). Wild-type and mutant strains of Pseudomonas spp. were evaluated for their ability to solubilize and hydrolyze CaIHP and to promote the growth and assimilation of P by tobacco plants. Gluconate, 2-keto-gluconate, pyruvate, ascorbate, acetate, and formate were detected in Pseudomonas spp. supernatants. Wild-type pseudomonads containing a functional gcd could produce gluconate and mineralize CaIHP, whereas the isogenic mutant could not. Inoculation with Pseudomonas improved the bioavailability of CaIHP to tobacco plants, but there was no difference in plant growth response due to Gcd function. Gcd function is required for the mineralization of CaIHP in vitro; however, further studies will be needed to quantify the relative contribution of specific organic anions such as gluconate to plant growth promotion by soil pseudomonads.

  12. Modular Study of the Type III Effector Repertoire in Pseudomonas syringae pv. tomato DC3000 Reveals a Matrix of Effector Interplay in Pathogenesis.

    Science.gov (United States)

    Wei, Hai-Lei; Zhang, Wei; Collmer, Alan

    2018-05-08

    The bacterial pathogen Pseudomonas syringae pv. tomato DC3000 suppresses the two-tiered innate immune system of Nicotiana benthamiana and other plants by injecting a complex repertoire of type III secretion effector (T3E) proteins. Effectorless polymutant DC3000D36E was used with a modularized system for native delivery of the 29 DC3000 T3Es singly and in pairs. Assays of the performance of this T3E library in N. benthamiana leaves revealed a matrix of T3E interplay, with six T3Es eliciting death and eight others variously suppressing the death activity of the six. The T3E library was also interrogated for effects on DC3000D36E elicitation of a reactive oxygen species burst, for growth in planta, and for T3Es that reversed these effects. Pseudomonas fluorescens and Agrobacterium tumefaciens heterologous delivery systems yielded notably different sets of death-T3Es. The DC3000D36E T3E library system highlights the importance of 13 T3Es and their interplay in interactions with N. benthamiana. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  13. The isolation and functional identification on producing cellulase of Pseudomonas mendocina

    Science.gov (United States)

    Zhang, Jianfeng; Hou, Hongyan; Chen, Guang; Wang, Shusheng; Zhang, Jiejing

    2016-01-01

    ABSTRACT The straw can be degraded efficiently into humus by powerful enzymes from microorganisms, resulting in the accelerated circulation of N,P,K and other effective elements in ecological system. We isolated a strain through screening the straw degradation strains from natural humic straw in the low temperature area in northeast of china, which can produce cellulase efficiently. The strain was identified as Pseudomonas mendocina by using morphological, physiological, biochemical test, and molecular biological test, with the functional clarification on producing cellulase for Pseudomonas mendocina for the first time. The enzyme force constant Km and the maximum reaction rate (Vmax) of the strain were 0.3261 g/L and 0.1525 mg/(min.L) through the enzyme activity detection, and the molecular weight of the enzyme produced by the strain were 42.4 kD and 20.4 kD based on SDS-PAGE. The effects of various ecological factors such as temperature, pH and nematodes on the enzyme produced by the strain in the micro ecosystem in plant roots were evaluated. The result showed that the optimum temperature was 28°C, and the best pH was 7.4∼7.8, the impact heavy metal was Pb2+ and the enzyme activity and biomass of Pseudomonas mendocina increased the movement and predation of nematodes. PMID:27710430

  14. The high-affinity peptidoglycan binding domain of Pseudomonas phage endolysin KZ144

    Energy Technology Data Exchange (ETDEWEB)

    Briers, Yves [Division of Gene Technology, Department of Biosystems, Katholieke Universiteit Leuven, Kasteelpark Arenberg 21, B-3001 Leuven (Belgium); Schmelcher, Mathias; Loessner, Martin J. [Institute of Food Science and Nutrition, ETH Zuerich, Schmelzbergstrasse 7, CH-8092 Zuerich (Switzerland); Hendrix, Jelle; Engelborghs, Yves [Laboratory of Biomolecular Dynamics, Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200G, B-3001 Leuven (Belgium); Volckaert, Guido [Division of Gene Technology, Department of Biosystems, Katholieke Universiteit Leuven, Kasteelpark Arenberg 21, B-3001 Leuven (Belgium); Lavigne, Rob, E-mail: rob.lavigne@biw.kuleuven.be [Division of Gene Technology, Department of Biosystems, Katholieke Universiteit Leuven, Kasteelpark Arenberg 21, B-3001 Leuven (Belgium)

    2009-05-29

    The binding affinity of the N-terminal peptidoglycan binding domain of endolysin KZ144 (PBD{sub KZ}), originating from Pseudomonas aeruginosa bacteriophage {phi}KZ, has been examined using a fusion protein of PBD{sub KZ} and green fluorescent protein (PBD{sub KZ}-GFP). A fluorescence recovery after photobleaching analysis of bound PBD{sub KZ}-GFP molecules showed less than 10% fluorescence recovery in the bleached area within 15 min. Surface plasmon resonance analysis confirmed this apparent high binding affinity revealing an equilibrium affinity constant of 2.95 x 10{sup 7} M{sup -1} for the PBD{sub KZ}-peptidoglycan interaction. This unique domain, which binds to the peptidoglycan of all tested Gram-negative species, was harnessed to improve the specific activity of the peptidoglycan hydrolase domain KMV36C. The chimeric peptidoglycan hydrolase (PBD{sub KZ}-KMV36C) exhibits a threefold higher specific activity than the native catalytic domain (KMV36C). These results demonstrate that the modular assembly of functional domains is a rational approach to improve the specific activity of endolysins from phages infecting Gram-negatives.

  15. Rapid detection of Pseudomonas aeruginosa from positive blood cultures by quantitative PCR

    Directory of Open Access Journals (Sweden)

    Cattoir Vincent

    2010-08-01

    Full Text Available Abstract Background Pseudomonas aeruginosa is responsible for numerous bloodstream infections associated with severe adverse outcomes in case of inappropriate initial antimicrobial therapy. The present study was aimed to develop a novel quantitative PCR (qPCR assay, using ecfX as the specific target gene, for the rapid and accurate identification of P. aeruginosa from positive blood cultures (BCs. Methods Over the period August 2008 to June 2009, 100 BC bottles positive for gram-negative bacilli were tested in order to evaluate performances of the qPCR technique with conventional methods as gold standard (i.e. culture and phenotypic identification. Results Thirty-three strains of P. aeruginosa, 53 strains of Enterobactericaeae, nine strains of Stenotrophomonas maltophilia and two other gram-negative species were isolated while 3 BCs were polymicrobial including one mixture containing P. aeruginosa. All P. aeruginosa clinical isolates were detected by qPCR except a single strain in mixed culture. Performances of the qPCR technique were: specificity, 100%; positive predictive value, 100%; negative predictive value, 98.5%; and sensitivity, 97%. Conclusions This reliable technique may offer a rapid (

  16. Enriquecimiento diferencial de Pseudomonas spp. en el rizoplano de distintas especies cultivadas

    Directory of Open Access Journals (Sweden)

    Mariana A Marrero

    2015-06-01

    Full Text Available En contraste con la simbiosis entre rizobios y leguminosas, la especificidad de las Pseudomonas en la colonización radicular parece menos estricta. Sin embargo, estudios sobre la diversidad bacteriana del nicho rizosférico resaltan la influencia de la especie vegetal en la selección específica de ciertos microorganismos a partir de la flora residente del suelo. Para evaluar el efecto que los cultivos extensivos de nuestro país tienen sobre la estructura de las comunidades de Pseudomonas, se realizaron experimentos con plantas trampa, partiendo de semillas de trigo, maíz y soja desinfectadas superficialmente y sembradas en un mismo suelo prístino. A partir de las suspensiones representativas de la microflora del rizoplano, se realizaron recuentos en placa en medio selectivo para Pseudomonas. El conjunto de colonias originado a partir de los distintos rizoplanos se utilizó como fuente de ADN para analizar la estructura de comunidad a través del perfil de restricción de amplicones de los genes oprF y gacA. El análisis comparativo de estos perfiles agrupó a las muestras por especie de planta y las distinguió del patrón obtenido a partir del suelo prístino. La secuenciación parcial del gen 16S ADNr de aislamientos bacterianos representativos confirmó la existencia de genotipos enriquecidos diferencialmente en el rizoplano de cada especie vegetal. Estos resultados apoyan la hipótesis de la existencia de mecanismos de selección específica de estirpes de Pseudomonas a partir de la flora nativa del suelo en la interacción cooperativa entre estas PGPR y las raíces de diferentes cultivos como trigo, soja y maíz.

  17. Serotyping and analysis of produced pigments kinds by Pseudomonas aeruginosa clinical isolates

    Directory of Open Access Journals (Sweden)

    Stanković-Nedeljković Nataša

    2011-01-01

    Full Text Available Background/Aim. Pseudomonas aeruginosa (P. aeruginosa is devided into 20 serotypes on the base of the International Antigenic Typing Scheme. P. aeruginosa serotyping is important because of few reasons but epidemiological is the most important. The aim of the study was serotyping of P. aeruginosa clinical isolates, analysing of single clinical isolates P. aeruginosa present in the particular samples, and analysing of pyocianin and fluorescin production in different isolates of P. aeruginosa. Methods. A total of 223 isolates of P. aeruginosa, isolated in the microbiological laboratory of the Health Center “Aleksinac”, Aleksinac, were examinated. P. aeruginosa isolates were put on the pseudomonas isolation agar, pseudomonas agar base, acetamid agar, asparagin prolin broth, pseudomonas asparagin broth, Bushnnell-Haas agar, cetrimid agar base, King A and King B plates, plates for pyocianin production, plates for fluorescin production and tripticasa soya agar (Himedia. Polyvalent and monovalent serums were used in the agglutination (Biorad. Pigment production was analysed on the bases of growth on the plates for pyocianin and fluorescin production. Results. Serologically, we identificated the serovars as follows: O1, O3, O4, O5, O6, O7, O8, O10, O11 and O12. O1 (38% was the most often serovar, then O11 (19% and O6 (8.6%. A total of 18.6% (42 isolates did not agglutinate with any serum, whereas 21 isolates agglutinated only with polyvalent serum. The majority of P. aeruginosa isolates produced fluorescin, 129 (58.54%, 53 (22.94% produced pyocianin whereas 49 (21.21% isolates produced both pigments. Conclusion. P. aeruginosa was isolated most of the from urine, sputum and other materials. The majority often serovars were O1, O6 and O11. The most of isolates produced fluorescin (58.54%, while 22.94% producted pyocianin and 21.21% both pigments.

  18. Modified Thomson spectrometer design for high energy, multi-species ion sources

    International Nuclear Information System (INIS)

    Gwynne, D.; Kar, S.; Doria, D.; Ahmed, H.; Hanton, F.; Cerchez, M.; Swantusch, M.; Willi, O.; Fernandez, J.; Gray, R. J.; MacLellan, D. A.; McKenna, P.; Green, J. S.; Neely, D.; Najmudin, Z.; Streeter, M.; Ruiz, J. A.; Schiavi, A.; Zepf, M.; Borghesi, M.

    2014-01-01

    A modification to the standard Thomson parabola spectrometer is discussed, which is designed to measure high energy (tens of MeV/nucleon), broad bandwidth spectra of multi-species ions accelerated by intense laser plasma interactions. It is proposed to implement a pair of extended, trapezoidal shaped electric plates, which will not only resolve ion traces at high energies, but will also retain the lower energy part of the spectrum. While a longer (along the axis of the undeflected ion beam direction) electric plate design provides effective charge state separation at the high energy end of the spectrum, the proposed new trapezoidal shape will enable the low energy ions to reach the detector, which would have been clipped or blocked by simply extending the rectangular plates to enhance the electrostatic deflection

  19. Structural basis of the chiral selectivity of Pseudomonas cepacia lipase

    NARCIS (Netherlands)

    Lang, Dietmar A.; Mannesse, Maurice L.M.; Haas, Gerard H. de; Verheij, Hubertus M.; Dijkstra, Bauke W.

    1998-01-01

    To investigate the enantioselectivity of Pseudomonas cepacia lipase, inhibition studies were performed with S(c)-and R(c)-(R(p),S(p))-1,2-dialkylcarbamoylglycero-3-O-p-nitrophenyl alkylphosphonates of different alkyl chain lengths. P. cepacia lipase was most rapidly inactivated by

  20. Chronic Pseudomonas aeruginosa lung infection in normal and athymic rats

    DEFF Research Database (Denmark)

    Johansen, H K; Espersen, F; Pedersen, S S

    1993-01-01

    We have compared a chronic lung infection with Pseudomonas aeruginosa embedded in alginate beads in normal and athymic rats with an acute infection with free live P. aeruginosa bacteria. The following parameters were observed and described: mortality, macroscopic and microscopic pathologic changes...

  1. Abundance and diversity of culturable Pseudomonas constitute sensitive indicators for adverse long-term copper impacts in soil

    DEFF Research Database (Denmark)

    Thorsen, Maja Kristine; Brandt, Kristian Koefoed; Nybroe, Ole

    2013-01-01

    heterotrophic bacteria. This indicates that the Pseudomonas population is not resilient towards copper stress and that culturable Pseudomonas spp. comprise sensitive bio-indicators of adverse copper impacts in contaminated soils. Further this study shows that copper exposure decreases bacterial diversity...

  2. Effect of Pseudomonas spp on infection of Peronosporaparasitica (Pers. Fr), the pathogen of downy mildew on Chinese cabbage

    Science.gov (United States)

    Damiri, N.; Mulawarman; Umayah, A.; Agustin, S. E.; Rahmiyah, M.

    2018-01-01

    This research was conducted to study the effect of the application of Pseudomonasspp on infection of Peronosporaparasitica (Pers. Fr), the pathogen of Downy mildew on Chinese cabbage. The research was conducted in the laboratory and greenhouse Department of Plant Pests and Diseases Faculty of Agriculture Sriwijaya University, Inderalaya, OganIlir South Sumatra Indonesia. The research was conducted in the laboratory and greenhouse Department of Plant Pests and Diseases Faculty of Agriculture Sriwijaya University, Inderalaya, Ogan Ilir South Sumatra Indonesia. The research was conducted using Completely Randomized Design with ten treatments including control. ie: isolate A, Isolate B, isolate C, isolate D, isolate E, isolate F, isolate G, isolate H, isolate I and control. Each treatment consists of four replications. Results of the study showed that the application of Pseudomonas spp. can suppress the infection of P. parasitica on Chinese cabbage. The lowest disease intensity was shown by treatment C (isolate Pseudomonas sp.) which was significantly different from control. The best treatment in suppressing disease severity of downy mildew on chinese cabbage was isolate H which had disease severity of 37.07 percent, which was significantly different from control and other treatment.

  3. IDENTIFIKASI SURFAKTIN PADA PSEUDOMONAS FLUORESCENS ST1 PENGENDALI EFEKTIF PENYAKIT PUSTUL KEDELAI

    Directory of Open Access Journals (Sweden)

    Suskandini Ratih Dirmawati .

    2011-11-01

    Full Text Available Identification of surfactin in Pseudomonas fluorescens ST1 which effectively suppres soybean bacterial pustule.   Identification of surfactin in Pseudomonas fluorescens ST1 filtrate was conducted in Plant Pest and Disease Laboratory, Bogor Agriculture University.  The 48 hours cultured suspension of  P. fluorescens ST1 with 108 CFU/ml density was centrifuged to obtain the supernatant.  The supernatant was analyzed for its surfactin content by High Performance Liquid Chromatography with Colum ODS-5 and eluen acetonitril and acetat acid.  The result showed  that  surfactin was producted by P. fluorescens ST1 and this bioactive substance could suppres the bacterial pustule on soybean.

  4. Dissemination of metallo-β-lactamase in Pseudomonas aeruginosa isolates in Egypt: mutation in blaVIM-4.

    Science.gov (United States)

    Hashem, Hany; Hanora, Amro; Abdalla, Salah; Shaeky, Alaa; Saad, Alaa

    2017-05-01

    This study was designed to investigate the prevalence of metallo-β-lactamase (MBL) in Pseudomonas aeruginosa isolates collected from Suez Canal University Hospital in Ismailia, Egypt. Antibiotic susceptibility testing and phenotypic and genotypic screening for MBLs were performed on 147 isolates of P. aeruginosa. MICs were determined by agar dilution method for carbapenem that was ≥2 μg/mL for meropenem. MBL genes were detected by multiplex and monoplex PCR for P. aeruginosa-harbored plasmids. Mutation profile of sequenced MBL genes was screened using online software Clustal Omega. Out of 147 P. aeruginosa, 39 (26.5%) were carbapenem-resistant isolates and 25 (64%) were confirmed to be positive for MBLs. The susceptibility rate of P. aeruginosa toward polymyxin B and norfloxacin was 99% and 88%, respectively. Identification of collected isolates by API analysis and constructed phylogenetic tree of 16S rRNA showed that the isolates were related to P. aeruginosa species. The frequency of blaGIM-1, blaSIM-1, and blaSPM-1 was 52%, 48%, and 24%, respectively. BlaVIM and blaIMP-like genes were 20% and 4% and the sequences confirm the isolate to be blaVIM-1, blaVIM-2, blaVIM-4, and blaIMP-1. Three mutations were identified in blaVIM-4 gene. Our study emphasizes the high occurrence of multidrug-resistant P. aeruginosa-producing MBL enzymes. © 2017 APMIS. Published by John Wiley & Sons Ltd.

  5. Adhesion of Pseudomonas aeruginosa to orthokeratology and alignment lenses.

    Science.gov (United States)

    Choo, Jennifer D; Holden, Brien A; Papas, Eric B; Willcox, Mark D P

    2009-02-01

    To determine whether contact lenses designed for orthokeratology (OK) are colonized by greater numbers of bacteria compared with standard (alignment fitted) design rigid gas permeable lenses before and after lens wear. Eighteen 1-year-old cats were randomly fitted with an OK lens in one eye and an alignment fitted (AF) lens in the other eye. Both lenses were made in the same diameter and central thickness and of the same material. Two separate wearing periods of 2 weeks and 6 weeks were used. After each wearing period, lenses were soaked in Pseudomonas aeruginosa (6294 or 6206) for 10 min. The lenses were then reinserted onto their respective corneas for a wearing period of 16 hours after which lenses were collected and remaining adhered bacteria quantified. Unworn control lenses were also soaked and bacteria enumerated for comparison. There were no significant differences in the number of bacteria adherent to unworn AF and OK lenses. Analysis of lenses after wear showed OK lenses retained significantly higher numbers of viable bacteria than AF lenses in all studies. OK lenses retain more bacteria than AF rigid gas permeable lenses after bacteria-loaded overnight lens wear. This may increase the risk for an infection in OK patients should suitable conditions be present. Specific education on the cleaning of OK lenses is essential.

  6. Computer simulation of uranyl uptake by the rough lipopolysaccharide membrane of Pseudomonas aeruginosa.

    Science.gov (United States)

    Lins, Roberto D; Vorpagel, Erich R; Guglielmi, Matteo; Straatsma, T P

    2008-01-01

    Heavy metal environmental contaminants cannot be destroyed but require containment, preferably in concentrated form, in a solid or immobile form for recycling or final disposal. Microorganisms are able to take up and deposit high levels of contaminant metals, including radioactive metals such as uranium and plutonium, into their cell wall. Consequently, these microbial systems are of great interest as the basis for potential environmental bioremediation technologies. The outer membranes of Gram-negative microbes are highly nonsymmetric and exhibit a significant electrostatic potential gradient across the membrane. This gradient has a significant effect on the uptake and transport of charged and dipolar compounds. However, the effectiveness of microbial systems for environmental remediation will depend strongly on specific properties that determine the uptake of targeted contaminants by a particular cell wall. To aid in the design of microbial remediation technologies, knowledge of the factors that determine the affinity of a particular bacterial outer membrane for the most common ionic species found in contaminated soils and groundwater is of great importance. Using our previously developed model for the lipopolysaccharide (LPS) membrane of Pseudomonas aeruginosa, this work presents the potentials of mean force as the estimate of the free energy profile for uptake of sodium, calcium, chloride, uranyl ions, and a water molecule by the bacterial LPS membrane. A compatible classical parameter set for uranyl has been developed and validated. Results show that the uptake of uranyl is energetically a favorable process relative to the other ions studied. At neutral pH, this nuclide is shown to be retained on the surface of the LPS membrane through chelation with the carboxyl and hydroxyl groups located in the outer core.

  7. Methylphosphonate metabolism by Pseudomonas sp. populations contributes to the methane oversaturation paradox in an oxic freshwater lake.

    Science.gov (United States)

    Wang, Qian; Dore, John E; McDermott, Timothy R

    2017-06-01

    The 'CH 4 oversaturation paradox' has been observed in oxygen-rich marine and lake waters, and viewed to significantly contribute to biosphere cycling of methane, a potent greenhouse gas. Our study focused on the intriguing well-defined pelagic methane enriched zone (PMEZ) in freshwater lakes. Spiking Yellowstone Lake PMEZ samples with 13 C-labeled potential methanogenesis substrates found only 13 C-methylphosphonate (MPn) resulted in 13 CH 4 generation. In 16S rRNA gene Illumina libraries, four Pseudomonas sp. operational taxonomic units surprisingly accounted for ∼11% abundance in the PMEZ community. Pseudomonas sp. isolates were also obtained from MPn enrichments with PMEZ water; they were most aggressive in MPn metabolism and their 16S rRNA gene sequences matched 35% of the Illumina PMEZ Pseudomonas reads. Further, two key genes encoding C-P lyase (phnJL, an important enzyme for dealkylation of MPn), were only amplifiable from PMEZ DNA and all PCR generated phnJL clones matched those of the Pseudomonas sp. isolates. Notably, methanogen 16S rRNA signatures were absent in all Illumina libraries and mcrA was not detected via PCR. Collectively, these observations are consistent with the conclusion that MPn metabolism contributes significantly to CH 4 oversaturation in Yellowstone Lake and likely other oxic freshwater lake environments, and that Pseudomonas sp. populations are critical participants. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  8. Sensitivity patterns of pseudomonas aeruginosa isolates obtained from clinical specimens in peshawar

    International Nuclear Information System (INIS)

    Abbas, S.H.; Khan, M.Z.U.; Naeem, M.

    2015-01-01

    Pseudomonas aeruginosa (P. aeruginosa) is a highly virulent opportunistic pathogen and a leading cause of nosocomial infections.Affected patients are often hospitalized in an intensive care unit, and are immuno-compromised as a result of disease and treatment. Suspected P. aeruginosa require timely, adequate and empirical antibiotic therapy to ensure improved outcomes. The purpose of the study was to find the sensitivity and resistance pattern of P. aeruginosa to various groups of drugs, in clinical isolates collected from two major tertiary care hospitals of Peshawar. Methods: Different clinical isolate were taken from patients admitted in various wards of Khyber Teaching Hospital and Lady Reading Hospital Peshawar. Results: A total of 258 clinical isolates were positive for P. aeruginosa out of 2058 clinical isolates. Pseudomonas showed high degree of resistance to third generation Cephalosporins (Ceftazidime, and Ceftriaxone) and moderate degree of resistance to Quinolones and Aminoglycosides (Ofloxacin, Ciprofloxacin, Levofloxacin and Amikacin). Low resistance was observed to different combinations (Cefoperazone + Sulbactum, Piperacillin + Tazobactum). Meropenem and Imipenem had negligible resistance. Conclusion: There is growing resistance to different classes of antibiotics. Combination drugs are useful approach for empirical treatment in suspected Pseudomonas infection. Imipenem and Meropenem are extremely effective but should be in reserve. (author)

  9. Isolation of Crude Oil from Polluted Waters Using Biosurfactants Pseudomonas Bacteria: Assessment of Bacteria Concentration Effects

    Directory of Open Access Journals (Sweden)

    A. Khalifeh

    2013-04-01

    Full Text Available Biological decomposition techniques and isolation of environmental pollutions using biosurfactants bacteria are effective methods of environmental protection. Surfactants are amphiphilic compounds that are produced by local microorganisms and are able to reduce the surface and the stresses between surfaces. As a result, they will increase solubility, biological activity, and environmental decomposition of organic compounds. This study analyzes the effects of biosurfactants on crude oil recovery and its isolation using pseudomonas sea bacteria species. Preparation of biosurfactants was done in glass flasks and laboratory conditions. Experiments were carried out to obtain the best concentration of biosurfactants for isolating oil from water and destroying oil-in-water or water-in-oil emulsions in two pH ranges and four saline solutions of different concentrations. The most effective results were gained when a concentration of 0.1% biosurfactants was applied.

  10. Antibacterial Activity of Desert Truffles from Saudi Arabia Against Staphylococcus aureus and Pseudomonas aeruginosa.

    Science.gov (United States)

    Schillaci, Domenico; Cusimano, Maria Grazia; Cascioferro, Stella Maria; Di Stefano, Vita; Arizza, Vincenzo; Chiaramonte, Marco; Inguglia, Luigi; Bawadekji, Abdulhakim; Davino, Salvatore; Gargano, Maria Letizia; Venturella, Giuseppe

    2017-01-01

    Medicinal mushrooms represent an unlimited source of polysaccharides with nutritional, antitumoral, antibacterial, and immune-stimulating properties. Traditional studies of epigeous higher Basidiomycetes have recently been joined by studies of hypogeous fungi and, in particular, of so-called desert truffles. With the aim to obtain novel agents against bacteria of clinical importance, we focused on the edible desert truffle mushrooms Tirmania pinoyi, Terfezia claveryi, and Picoa juniperi as sources of new antimicrobial agents. In particular, we investigated the in vitro antibacterial activity of acid-soluble protein extracts (aqueous extracts) of these 3 species against the Gram-positive human pathogenic reference strain Staphylococcus aureus ATCC 29213 and the Gram-negative strain Pseudomonas aeruginosa ATCC 15442. The acid-soluble protein extracts of T. pinoyi and T. claveryi showed minimum inhibitory concentrations of 50 μg/mL against tested pathogens. We believe that such preliminary results are promising to obtain a valuable antibiotic alternative to fight antibiotic-resistant pathogens.

  11. Eksperimentel bakteriofagterapi til behandling af kronisk Pseudomonas aeruginosaotitis hos hund

    DEFF Research Database (Denmark)

    Moodley, Arshnee; Mølgaard, Jesper

    2016-01-01

    Vi beskriver en case med anvendelsen af bakteriofager til behandling af kronisk otitis forårsaget af multiresistente Pseudomonas aeruginosa som en sidste behandlingsmulighed før aflivning. Trods gentagne behandlinger, både topikalt og systemisk, med op til seks forskellige antibiotika over en...

  12. 50 CFR 21.44 - Depredation order for designated species of depredating birds in California.

    Science.gov (United States)

    2010-10-01

    ... of depredating birds in California. 21.44 Section 21.44 Wildlife and Fisheries UNITED STATES FISH AND..., BARTER, EXPORTATION, AND IMPORTATION OF WILDLIFE AND PLANTS (CONTINUED) MIGRATORY BIRD PERMITS Control of Depredating and Otherwise Injurious Birds § 21.44 Depredation order for designated species of depredating...

  13. PAMDB: a comprehensive Pseudomonas aeruginosa metabolome database.

    Science.gov (United States)

    Huang, Weiliang; Brewer, Luke K; Jones, Jace W; Nguyen, Angela T; Marcu, Ana; Wishart, David S; Oglesby-Sherrouse, Amanda G; Kane, Maureen A; Wilks, Angela

    2018-01-04

    The Pseudomonas aeruginosaMetabolome Database (PAMDB, http://pseudomonas.umaryland.edu) is a searchable, richly annotated metabolite database specific to P. aeruginosa. P. aeruginosa is a soil organism and significant opportunistic pathogen that adapts to its environment through a versatile energy metabolism network. Furthermore, P. aeruginosa is a model organism for the study of biofilm formation, quorum sensing, and bioremediation processes, each of which are dependent on unique pathways and metabolites. The PAMDB is modelled on the Escherichia coli (ECMDB), yeast (YMDB) and human (HMDB) metabolome databases and contains >4370 metabolites and 938 pathways with links to over 1260 genes and proteins. The database information was compiled from electronic databases, journal articles and mass spectrometry (MS) metabolomic data obtained in our laboratories. For each metabolite entered, we provide detailed compound descriptions, names and synonyms, structural and physiochemical information, nuclear magnetic resonance (NMR) and MS spectra, enzymes and pathway information, as well as gene and protein sequences. The database allows extensive searching via chemical names, structure and molecular weight, together with gene, protein and pathway relationships. The PAMBD and its future iterations will provide a valuable resource to biologists, natural product chemists and clinicians in identifying active compounds, potential biomarkers and clinical diagnostics. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Variation in hydrogen cyanide production between different strains of Pseudomonas aeruginosa

    Czech Academy of Sciences Publication Activity Database

    Gilchrist, F. J.; Alcock, A.; Belcher, J.; Brady, M.; Jones, A.; Smith, D.; Španěl, Patrik; Webb, K.; Lenney, W.

    2011-01-01

    Roč. 38, č. 2 (2011), s. 409-414 ISSN 0903-1936 Institutional research plan: CEZ:AV0Z40400503 Keywords : microbiology * pseudomonas aeruginosa Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.895, year: 2011

  15. WLIP, a lipodepsipeptide of Pseudomonas 'reactans', as inhibitor of the symptoms of the brown blotch disease of Agaricus bisporus

    NARCIS (Netherlands)

    Soler Rivas, C.; Arpin, N.; Olivier, J.M.; Wichers, H.J.

    1999-01-01

    A cell-free crude extract containing the white line inducing principle (WLIP), a lipodepsipeptide produced by Pseudomonas 'reactans', could inhibit browning of mushrooms caused by Pseudomonas tolaasii. Mushrooms inoculated with Ps. tolaasii at concentrations of 2.7 x 106 cfu ml-1 or higher showed

  16. BOX-PCR is an adequate tool for typing of clinical Pseudomonas aeruginosa isolates

    Directory of Open Access Journals (Sweden)

    Katarzyna Rymuza

    2012-01-01

    Full Text Available In this study, the BOX-PCR fingerprinting technique was evaluated for the discrimination of clinical Pseudomonas aeruginosa isolates. All isolates were typeable and nearly half showed unique banding patterns. According to our results, BOX-PCR fingerprinting is applicable for typing of Pseudomonas aeruginosa isolates and can be considered a useful complementary tool for epidemiological studies of members of this genus. (Folia Histochemica et Cytobiologica 2011; Vol. 49, No. 4, pp. 734–738

  17. Attenuation of quorum-sensing-dependent virulence factors and biofilm formation by medicinal plants against antibiotic resistant Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    P. Sankar Ganesh

    2018-01-01

    Full Text Available Pseudomonas aeruginosa use small signaling molecules such as acyl homoserine lactones (AHLs, which play an important role in release virulence factors and toxin for further establishment of host infection. Thus, involving with the QS system would provide alternative ways of preventing the pathogenicity. In the present study, totally six medicinal plants (Terminalia bellerica, Celastrus paniculatus, Kingiodendron pinnatum, Schleichera oleosa, Melastoma malabathricum, Garcinia gummi-gutta were screened for anti-QS activity using biomonitor strain of Chromobacterium violaceum CV12472. The primary screening of antimicrobial activity of all the plant extracts have inhibited the growth of tested bacterial species. Of these at the sub-minimum inhibitory concentration the methanol extract of T. bellerica (0.0625–0.5 mg/ml has significantly inhibited violacein production (20.07–66.22% in C. violaceum (CV12472. Consequently, the extract of T. bellerica has reduced the production of pyocyanin, exopolysaccharide and biofilm formation in P. aeruginosa strains. Fluorescence and scanning electron microscopy analysis confirmed the reduction of biofilm formation in P. aeruginosa strains when treated with T. bellerica. GC–MS analysis showed the active compounds inhibited the production of virulence factors of P. aeruginosa. The results suggest the possible use of this T. bellerica as an anti-QS and anti-biofilm agent to control Pseudomonas infection. Interference of QS provides an important means for the inhibition of bacterial virulence and thus aids in treatment strategies.

  18. T helper cell subsets specific for Pseudomonas aeruginosa in healthy individuals and patients with cystic fibrosis.

    Directory of Open Access Journals (Sweden)

    Hannah K Bayes

    Full Text Available We set out to determine the magnitude of antigen-specific memory T helper cell responses to Pseudomonas aeruginosa in healthy humans and patients with cystic fibrosis.Peripheral blood human memory CD4(+ T cells were co-cultured with dendritic cells that had been infected with different strains of Pseudomonas aeruginosa. The T helper response was determined by measuring proliferation, immunoassay of cytokine output, and immunostaining of intracellular cytokines.Healthy individuals and patients with cystic fibrosis had robust antigen-specific memory CD4(+ T cell responses to Pseudomonas aeruginosa that not only contained a Th1 and Th17 component but also Th22 cells. In contrast to previous descriptions of human Th22 cells, these Pseudomonal-specific Th22 cells lacked the skin homing markers CCR4 or CCR10, although were CCR6(+. Healthy individuals and patients with cystic fibrosis had similar levels of Th22 cells, but the patient group had significantly fewer Th17 cells in peripheral blood.Th22 cells specific to Pseudomonas aeruginosa are induced in both healthy individuals and patients with cystic fibrosis. Along with Th17 cells, they may play an important role in the pulmonary response to this microbe in patients with cystic fibrosis and other conditions.

  19. Purification and characterization of a chlorite dismutase from Pseudomonas chloritidismutans

    NARCIS (Netherlands)

    Mehboob, F.; Wolterink, A.F.W.M.; Vermeulen, A.J.; Jiang, B.; Hagedoorn, P.L.; Stams, A.J.M.; Kengen, S.W.M.

    2009-01-01

    The chlorite dismutase (Cld) of Pseudomonas chloritidismutans was purified from the periplasmic fraction in one step by hydroxyapatite chromatography. The enzyme has a molecular mass of 110 kDa and consists of four 31-kDa subunits. Enzyme catalysis followed Michaelis-Menten kinetics, with Vmax and

  20. Induction of beta-lactamase production in Pseudomonas aeruginosa biofilm

    DEFF Research Database (Denmark)

    Giwercman, B; Jensen, E T; Høiby, N

    1991-01-01

    Imipenem induced high levels of beta-lactamase production in Pseudomonas aeruginosa biofilms. Piperacillin also induced beta-lactamase production in these biofilms but to a lesser degree. The combination of beta-lactamase production with other protective properties of the biofilm mode of growth c...... could be a major reason for the persistence of this sessile bacterium in chronic infections....

  1. Paracetamol - toxicity and microbial utilization. Pseudomonas moorei KB4 as a case study for exploring degradation pathway.

    Science.gov (United States)

    Żur, Joanna; Wojcieszyńska, Danuta; Hupert-Kocurek, Katarzyna; Marchlewicz, Ariel; Guzik, Urszula

    2018-09-01

    Paracetamol, a widely used analgesic and antipyretic drug, is currently one of the most emerging pollutants worldwide. Besides its wide prevalence in the literature only several bacterial strains able to degrade this compound have been described. In this study, we isolated six new bacterial strains able to remove paracetamol. The isolated strains were identified as the members of Pseudomonas, Bacillus, Acinetobacter and Sphingomonas genera and characterized phenotypically and biochemically using standard methods. From the isolated strains, Pseudomonas moorei KB4 was able to utilize 50 mg L -1 of paracetamol. As the main degradation products, p-aminophenol and hydroquinone were identified. Based on the measurements of specific activity of acyl amidohydrolase, deaminase and hydroquinone 1,2-dioxygenase and the results of liquid chromatography analyses, we proposed a mechanism of paracetamol degradation by KB4 strain under co-metabolic conditions with glucose. Additionally, toxicity bioassays and the influence of various environmental factors, including pH, temperature, heavy metals at no-observed-effective-concentrations, and the presence of aromatic compounds on the efficiency and mechanism of paracetamol degradation by KB4 strain were determined. This comprehensive study about paracetamol biodegradation will be helpful in designing a treatment systems of wastewaters contaminated with paracetamol. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. PSEUDOMONAS AERUGINOSA IN CHRONIC SUPPURATIVE OTITIS MEDIA- A DRUGSENSITIVITY STUDY

    Directory of Open Access Journals (Sweden)

    Anoop M

    2017-05-01

    Full Text Available BACKGROUND Chronic suppurative otitis media is one among the commonest ENT disease seen in day-to-day practice. It is seen mainly among low socioeconomic class. MATERIALS AND METHODS The present study was conducted in the Department of ENT, Shadan Institute of Medical Sciences. Fifty patients with CSOM of all age groups and both sexes attending the Outpatient Department of ENT were selected randomly for the study. RESULTS From our study, we found mainly children of age group 10-11 years commonly affected. They belong to poor socioeconomic background. Pseudomonas aeruginosa is the most common organism isolated in the present study. Ciprofloxacin was found to be the most sensitive antibiotic to Pseudomonas aeruginosa. CONCLUSION We noticed that drug resistance is on the rise due to misuse of antibiotics, over-the-counter treatment, inadequate period of therapy and less awareness among public regarding drug resistance. Constant monitoring of antibiotic sensitivity is needed to prevent drug resistance in CSOM.

  3. Mechanisms of humoral immune response against Pseudomonas aeruginosa biofilm infection in cystic fibrosis

    DEFF Research Database (Denmark)

    Mauch, Renan Marrichi; Jensen, Peter Østrup; Moser, Claus

    2018-01-01

    P. aeruginosa chronic lung infection is the major cause of morbidity and mortality in patients with cystic fibrosis (CF), and is characterized by a biofilm mode of growth, increased levels of specific IgG antibodies and immune complex formation. However, despite being designed to combat...... this infection, such elevated humoral response is not associated with clinical improvement, pointing to a lack of anti-pseudomonas effectiveness. The mode of action of specific antibodies, as well as their structural features, and even the background involving B-cell production, stimulation and differentiation...... into antibody-producing cells in the CF airways are poorly understood. Thus, the aim of this review is to discuss studies that have addressed the intrinsic features of the humoral immune response and provide new insights regarding its insufficiency in the CF context....

  4. Molecular confirmation of shampoo as the putative source of Pseudomonas aeruginosa-induced postgrooming furunculosis in a dog.

    Science.gov (United States)

    Tham, Heng L; Jacob, Megan E; Bizikova, Petra

    2016-08-01

    An acute onset furunculosis due to Pseudomonas aeruginosa following grooming is a well recognized entity. Although contaminated shampoos have been suspected to be the source of the infection, a molecular confirmation of this association has been missing. This case report describes a dog with postgrooming furunculosis in which Pseudomonas aeruginosa with an identical genetic fingerprint was isolated from the skin lesions as well as from the shampoo used prior to the disease onset. The dog presented for lethargy, anorexia, pain and rapidly progressing skin lesions consistent with haemorrhagic papules, pustules, coalescing ulcers and crusts localized to the dorsal and lateral aspects of the thorax and gluteal region, which developed within 24 h after a bath. Cytology demonstrated suppurative inflammation with occasional intracellular rod-shaped bacteria. Bacterial culture from skin lesions and the shampoo bottle yielded Pseudomonas aeruginosa with an identical pulsed-field gel electrophoresis pattern. Treatment with oral ciprofloxacin and topical antimicrobial shampoo resulted in a complete resolution of skin lesions within eight weeks. Our clinical investigation suggests a link between Pseudomonas-contaminated shampoo and development of postgrooming furunculosis, and underscores the need for hygienic management of shampoos to help limit this disease. © 2016 ESVD and ACVD.

  5. Differentiation of isolated native of desulphurizators Pseudomonas by means of the study of the profile of fatty acids

    International Nuclear Information System (INIS)

    Silva Gomez, Edelberto; Morales P, Alicia Lucia; Callejas Castro Solange; Florez Sandoval Maria Cecilia; Rodriguez Wilson

    2000-01-01

    The content of cellular fatty acids was determined by HRGC of twelve Colombian isolated Pseudomonas aeruginosa 17,18, 19, 20, 21, 22 and 103 pseudomonas sp 23,24,25,26 and 27 with desulphurization capacity, pseudomonas aeruginosa ATCC 9027 and 10145, pseudomonas sp ATCC 39327 and pseudomonas fluorescens. Fifty-three different types of fatty acids were found, among saturated and unsaturated of lineal chain, and mainly hydroxy acids and ramified. Of these, 17 have not been described in the literature for this genus. A group of 6 acids was presented with more frequency (15:0; 16:0; 16:1; 17:1; 3-OH 16:0 and 2-OH 15:0) in more than 75% of the pseudomonas studied. The studied microorganisms are related because they share the presence of some characteristic fatty acids, that which allows assuring that they belong to same taxonomic unit. The analysis cluster developed by means of plotting in dendrograms of the qualitative and quantitative contents of the acids fatty totals showed the formation of two attaches, the I conformed by ATCC 39327 and the isolated 17 and 25, and the II by Ps. Fluorescens and the isolated one 27. The dendrogram of the hydroxy acids shows the formation of four attaches, the I attache, (isolated 17 and 20), the II A (isolated 22 and 103), the II B (isolated 27 and ps. fluorescens) and the attache III (isolated 18 and 19). In that of the ramified fatty acids the formation of a main attache is observed conformed by four sub-groups, the IA (isolated 17), the I B (isolated 18 and 24), the I C (isolated 19 and 25 and Ps. fluorescens) and I D (isolated 27). These results show that the isolated 27,25,24, 19, 18 and 17, in their order, have narrow relationship to Ps. fluorescens

  6. SANITATION PROCESS OPTIMALIZATION IN RELATION TO THE MICROBIAL BIOFILM OF PSEUDOMONAS FLUORESCENS

    Directory of Open Access Journals (Sweden)

    Vladimír Vietoris

    2012-02-01

    Full Text Available Biofilms have been of considerable interest in the context of food hygiene. Extracellular polymeric substances play an important role in the attachment and colonization of microorganisms to food-contact surfaces. If the microorganisms from food-contact surfaces are not completely removed, they may lead to biofilm formation and also increase the biotransfer potential. The experimental part was focused on the adhesion of bacterial cells under static conditions and testing the effectiveness of disinfectants on created biofilm. In laboratory conditions we prepared and formed the bacterial biofilms Pseudomonas fluorescens in the test surfaces of stainless steel. Over the 72 hours and the next 72 hours were observed numbers of adhesion bacterial cells of Pseudomonas fluorescens on solid surfaces of tested materials.

  7. Convergent Metabolic Specialization through Distinct Evolutionary Paths in Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    La Rosa, Ruggero; Johansen, Helle Krogh; Molin, Søren

    2018-01-01

    fibrosis (CF) infection. In this work, we investigated how and through which trajectories evolution of Pseudomonas aeruginosa occurs when migrating from the environment to the airways of CF patients, and specifically, we determined reduction of growth rate and metabolic specialization as signatures...... of adaptive evolution. We show that central metabolic pathways of three distinct Pseudomonas aeruginosa lineages coevolving within the same environment become restructured at the cost of versatility during long-term colonization. Cell physiology changes from naive to adapted phenotypes resulted in (i......) alteration of growth potential that particularly converged to a slow-growth phenotype, (ii) alteration of nutritional requirements due to auxotrophy, (iii) tailored preference for carbon source assimilation from CF sputum, (iv) reduced arginine and pyruvate fermentation processes, and (v) increased oxygen...

  8. A novel enterocin T1 with anti-Pseudomonas activity produced by Enterococcus faecium T1 from Chinese Tibet cheese.

    Science.gov (United States)

    Liu, Hui; Zhang, Lanwei; Yi, Huaxi; Han, Xue; Gao, Wei; Chi, Chunliang; Song, Wei; Li, Haiying; Liu, Chunguang

    2016-02-01

    An enterocin-producing Enterococcus faecium T1 was isolated from Chinese Tibet cheese. The enterocin was purified by SP-Sepharose and reversed phase HPLC. It was identified as unique from other reported bacteriocins based on molecular weight (4629 Da) and amino acid compositions; therefore it was subsequently named enterocin T1. Enterocin T1 was stable at 80-100 °C and over a wide pH range, pH 3.0-10.0. Protease sensitivity was observed to trypsin, pepsin, papain, proteinase K, and pronase E. Importantly, enterocin T1 was observed to inhibit the growth of numerous Gram-negative and Gram-positive bacteria including Pseudomonas putida, Pseudomonas aeruginosa, Pseudomonas fluorescens, Escherichia coli, Salmonella typhimurium, Shigella flexneri, Shigella sonnei, Staphylococcus aureus, Listeria monocytogenes. Take together, these results suggest that enterocin T1 is a novel bacteriocin with the potential to be used as a bio-preservative to control Pseudomonas spp. in food.

  9. Elongation factor P is dispensable in Escherichia coli and Pseudomonas aeruginosa.

    Science.gov (United States)

    Balibar, Carl J; Iwanowicz, Dorothy; Dean, Charles R

    2013-09-01

    Elongation factor P (EF-P) is a highly conserved ribosomal initiation factor responsible for stimulating formation of the first peptide bond. Its essentiality has been debated and may differ depending on the organism. Here, we demonstrate that EF-P is dispensable in Escherichia coli and Pseudomonas aeruginosa under laboratory growth conditions. Although knockouts are viable, growth rates are diminished compared with wild-type strains. Despite this cost in fitness, these mutants are not more susceptible to a wide range of antibiotics; including ribosome targeting antibiotics, such as lincomycin, chloramphenicol, and streptomycin, which have been shown previously to disrupt EF-P function in vitro. In Pseudomonas, knockout of efp leads to an upregulation of mexX, a phenotype previously observed with other genetic lesions affecting ribosome function and that can be induced by the treatment with antibiotics affecting protein synthesis.

  10. Soil burial method for plastic degradation performed by Pseudomonas PL-01, Bacillus PL-01, and indigenous bacteria

    Science.gov (United States)

    Shovitri, Maya; Nafi'ah, Risyatun; Antika, Titi Rindi; Alami, Nur Hidayatul; Kuswytasari, N. D.; Zulaikha, Enny

    2017-06-01

    Lately, plastic bag is becoming the most important pollutant for environment since it is difficult to be naturally degraded due to it consists of long hydrocarbon polymer chains. Our previous study indicated that our pure isolate Pseudomonas PL-01 and Bacillus PL-01 could degrade about 10% plastic bag. This present study was aimed to find out whether Pseudomonas PL01 and Bacillus PL01 put a positive effect to indigenous bacteria from marginal area in doing plastic degradation with a soil burial method. Beach sand was used as a representative marginal area, and mangrove sediment was used as a comparison. Plastics were submerged into unsterile beach sand with 10% of Pseudomonas PL-01 or Bacillus PL-01 containing liquid minimal salt medium (MSM) separately, while other plastics were submerged into unsterile mangrove sediments. After 4, 8, 12 and 16 weeks, their biofilm formation on their plastic surfaces and plastic degradation were measured. Results indicated that those 2 isolates put positive influent on biofilm formation and plastic degradation for indigenous beach sand bacteria. Bacillus PL-01 put higher influent than Pseudomonas PL-01. Plastic transparent was preferable degraded than black and white plastic bag `kresek'. But anyhow, indigenous mangrove soil bacteria showed the best performance in biofilm formation and plastic degradation, even without Pseudomonas PL-01 or Bacillus PL-01 addition. Fourier Transform Infrared (FTIR) analysis complemented the results; there were attenuated peaks with decreasing peaks transmittances. This FTIR peaks indicated chemical functional group changes happened among the plastic compounds after 16 weeks incubation time.

  11. Molecular Cloning and Functional Expression of a Δ9- Fatty Acid Desaturase from an Antarctic Pseudomonas sp. A3

    Science.gov (United States)

    Garba, Lawal; Mohamad Ali, Mohd Shukuri; Oslan, Siti Nurbaya; Rahman, Raja Noor Zaliha Raja Abd

    2016-01-01

    Fatty acid desaturase enzymes play an essential role in the synthesis of unsaturated fatty acids. Pseudomonas sp. A3 was found to produce a large amount of palmitoleic and oleic acids after incubation at low temperatures. Using polymerase Chain Reaction (PCR), a novel Δ9- fatty acid desaturase gene was isolated, cloned, and successfully expressed in Escherichia coli. The gene was designated as PA3FAD9 and has an open reading frame of 1,185 bp which codes for 394 amino acids with a predicted molecular weight of 45 kDa. The activity of the gene product was confirmed via GCMS, which showed a functional putative Δ9-fatty acid desaturase capable of increasing the total amount of cellular unsaturated fatty acids of the E. coli cells expressing the gene. The results demonstrate that the cellular palmitoleic acids have increased two-fold upon expression at 15°C using only 0.1 mM IPTG. Therefore, PA3FAD9 from Pseudomonas sp.A3 codes for a Δ9-fatty acid desaturase-like protein which was actively expressed in E. coli. PMID:27494717

  12. Sampling designs matching species biology produce accurate and affordable abundance indices

    Directory of Open Access Journals (Sweden)

    Grant Harris

    2013-12-01

    Full Text Available Wildlife biologists often use grid-based designs to sample animals and generate abundance estimates. Although sampling in grids is theoretically sound, in application, the method can be logistically difficult and expensive when sampling elusive species inhabiting extensive areas. These factors make it challenging to sample animals and meet the statistical assumption of all individuals having an equal probability of capture. Violating this assumption biases results. Does an alternative exist? Perhaps by sampling only where resources attract animals (i.e., targeted sampling, it would provide accurate abundance estimates more efficiently and affordably. However, biases from this approach would also arise if individuals have an unequal probability of capture, especially if some failed to visit the sampling area. Since most biological programs are resource limited, and acquiring abundance data drives many conservation and management applications, it becomes imperative to identify economical and informative sampling designs. Therefore, we evaluated abundance estimates generated from grid and targeted sampling designs using simulations based on geographic positioning system (GPS data from 42 Alaskan brown bears (Ursus arctos. Migratory salmon drew brown bears from the wider landscape, concentrating them at anadromous streams. This provided a scenario for testing the targeted approach. Grid and targeted sampling varied by trap amount, location (traps placed randomly, systematically or by expert opinion, and traps stationary or moved between capture sessions. We began by identifying when to sample, and if bears had equal probability of capture. We compared abundance estimates against seven criteria: bias, precision, accuracy, effort, plus encounter rates, and probabilities of capture and recapture. One grid (49 km2 cells and one targeted configuration provided the most accurate results. Both placed traps by expert opinion and moved traps between capture

  13. Sampling designs matching species biology produce accurate and affordable abundance indices.

    Science.gov (United States)

    Harris, Grant; Farley, Sean; Russell, Gareth J; Butler, Matthew J; Selinger, Jeff

    2013-01-01

    Wildlife biologists often use grid-based designs to sample animals and generate abundance estimates. Although sampling in grids is theoretically sound, in application, the method can be logistically difficult and expensive when sampling elusive species inhabiting extensive areas. These factors make it challenging to sample animals and meet the statistical assumption of all individuals having an equal probability of capture. Violating this assumption biases results. Does an alternative exist? Perhaps by sampling only where resources attract animals (i.e., targeted sampling), it would provide accurate abundance estimates more efficiently and affordably. However, biases from this approach would also arise if individuals have an unequal probability of capture, especially if some failed to visit the sampling area. Since most biological programs are resource limited, and acquiring abundance data drives many conservation and management applications, it becomes imperative to identify economical and informative sampling designs. Therefore, we evaluated abundance estimates generated from grid and targeted sampling designs using simulations based on geographic positioning system (GPS) data from 42 Alaskan brown bears (Ursus arctos). Migratory salmon drew brown bears from the wider landscape, concentrating them at anadromous streams. This provided a scenario for testing the targeted approach. Grid and targeted sampling varied by trap amount, location (traps placed randomly, systematically or by expert opinion), and traps stationary or moved between capture sessions. We began by identifying when to sample, and if bears had equal probability of capture. We compared abundance estimates against seven criteria: bias, precision, accuracy, effort, plus encounter rates, and probabilities of capture and recapture. One grid (49 km(2) cells) and one targeted configuration provided the most accurate results. Both placed traps by expert opinion and moved traps between capture sessions

  14. Sampling designs matching species biology produce accurate and affordable abundance indices

    Science.gov (United States)

    Farley, Sean; Russell, Gareth J.; Butler, Matthew J.; Selinger, Jeff

    2013-01-01

    Wildlife biologists often use grid-based designs to sample animals and generate abundance estimates. Although sampling in grids is theoretically sound, in application, the method can be logistically difficult and expensive when sampling elusive species inhabiting extensive areas. These factors make it challenging to sample animals and meet the statistical assumption of all individuals having an equal probability of capture. Violating this assumption biases results. Does an alternative exist? Perhaps by sampling only where resources attract animals (i.e., targeted sampling), it would provide accurate abundance estimates more efficiently and affordably. However, biases from this approach would also arise if individuals have an unequal probability of capture, especially if some failed to visit the sampling area. Since most biological programs are resource limited, and acquiring abundance data drives many conservation and management applications, it becomes imperative to identify economical and informative sampling designs. Therefore, we evaluated abundance estimates generated from grid and targeted sampling designs using simulations based on geographic positioning system (GPS) data from 42 Alaskan brown bears (Ursus arctos). Migratory salmon drew brown bears from the wider landscape, concentrating them at anadromous streams. This provided a scenario for testing the targeted approach. Grid and targeted sampling varied by trap amount, location (traps placed randomly, systematically or by expert opinion), and traps stationary or moved between capture sessions. We began by identifying when to sample, and if bears had equal probability of capture. We compared abundance estimates against seven criteria: bias, precision, accuracy, effort, plus encounter rates, and probabilities of capture and recapture. One grid (49 km2 cells) and one targeted configuration provided the most accurate results. Both placed traps by expert opinion and moved traps between capture sessions, which

  15. A two-phase sampling design for increasing detections of rare species in occupancy surveys

    Science.gov (United States)

    Pacifici, Krishna; Dorazio, Robert M.; Dorazio, Michael J.

    2012-01-01

    1. Occupancy estimation is a commonly used tool in ecological studies owing to the ease at which data can be collected and the large spatial extent that can be covered. One major obstacle to using an occupancy-based approach is the complications associated with designing and implementing an efficient survey. These logistical challenges become magnified when working with rare species when effort can be wasted in areas with none or very few individuals. 2. Here, we develop a two-phase sampling approach that mitigates these problems by using a design that places more effort in areas with higher predicted probability of occurrence. We compare our new sampling design to traditional single-season occupancy estimation under a range of conditions and population characteristics. We develop an intuitive measure of predictive error to compare the two approaches and use simulations to assess the relative accuracy of each approach. 3. Our two-phase approach exhibited lower predictive error rates compared to the traditional single-season approach in highly spatially correlated environments. The difference was greatest when detection probability was high (0·75) regardless of the habitat or sample size. When the true occupancy rate was below 0·4 (0·05-0·4), we found that allocating 25% of the sample to the first phase resulted in the lowest error rates. 4. In the majority of scenarios, the two-phase approach showed lower error rates compared to the traditional single-season approach suggesting our new approach is fairly robust to a broad range of conditions and design factors and merits use under a wide variety of settings. 5. Synthesis and applications. Conservation and management of rare species are a challenging task facing natural resource managers. It is critical for studies involving rare species to efficiently allocate effort and resources as they are usually of a finite nature. We believe our approach provides a framework for optimal allocation of effort while

  16. Phenotypic detection of metallo-β-lactamase among the clinical isolates of imipenem resistant Pseudomonas and Acinetobacter in tertiary care hospitals of Dhaka city

    Directory of Open Access Journals (Sweden)

    Shaheda Anwar

    2010-07-01

    Full Text Available The rapid spread of Metallo-b-lactamase (MBL producing Gram negative bacilli represents a matter of great concern worldwide. The study analyzed the occurrence of MBL production in carbapenem resistant Pseudomonas and Acinetobacter isolates over one year period. A total of 132 Pseudomonas and 76 Acinetobacter isolates were obtained from two tertiary care hospitals of Dhaka city. A total of 53 Pseudomonas and 29 Acinetobacter isolates were selected because of their resistance to carbapenem specially imipenem (IPM. Screening for MBL production was performed in these isolates by IPM-EDTA microdilution MIC method. 44 (83% IPM resistant Pseudomonas and 19 (65.5% Acinetobacter isolates were MBL producer by IPM-EDTA microdilution MIC method. These results suggest that MBL producing Pseudomonas and Acinetobacter isolates are emerging in our country and it is essential to screen carbapenem resistant isolates for MBL production. Ibrahim Med. Coll. J. 2010; 4(2: 63-65

  17. Streptococcus pneumoniae and Pseudomonas aeruginosa pneumonia induce distinct host responses.

    Science.gov (United States)

    McConnell, Kevin W; McDunn, Jonathan E; Clark, Andrew T; Dunne, W Michael; Dixon, David J; Turnbull, Isaiah R; Dipasco, Peter J; Osberghaus, William F; Sherman, Benjamin; Martin, James R; Walter, Michael J; Cobb, J Perren; Buchman, Timothy G; Hotchkiss, Richard S; Coopersmith, Craig M

    2010-01-01

    Pathogens that cause pneumonia may be treated in a targeted fashion by antibiotics, but if this therapy fails, then treatment involves only nonspecific supportive measures, independent of the inciting infection. The purpose of this study was to determine whether host response is similar after disparate infections with similar mortalities. Prospective, randomized controlled study. Animal laboratory in a university medical center. Pneumonia was induced in FVB/N mice by either Streptococcus pneumoniae or two different concentrations of Pseudomonas aeruginosa. Plasma and bronchoalveolar lavage fluid from septic animals was assayed by a microarray immunoassay measuring 18 inflammatory mediators at multiple time points. The host response was dependent on the causative organism as well as kinetics of mortality, but the pro-inflammatory and anti-inflammatory responses were independent of inoculum concentration or degree of bacteremia. Pneumonia caused by different concentrations of the same bacteria, Pseudomonas aeruginosa, also yielded distinct inflammatory responses; however, inflammatory mediator expression did not directly track the severity of infection. For all infections, the host response was compartmentalized, with markedly different concentrations of inflammatory mediators in the systemic circulation and the lungs. Hierarchical clustering analysis resulted in the identification of five distinct clusters of the host response to bacterial infection. Principal components analysis correlated pulmonary macrophage inflammatory peptide-2 and interleukin-10 with progression of infection, whereas elevated plasma tumor necrosis factor sr2 and macrophage chemotactic peptide-1 were indicative of fulminant disease with >90% mortality within 48 hrs. Septic mice have distinct local and systemic responses to Streptococcus pneumoniae and Pseudomonas aeruginosa pneumonia. Targeting specific host inflammatory responses induced by distinct bacterial infections could represent a

  18. Improved Performance of Pseudomonas fluorescens lipase by covalent immobilization onto Amberzyme

    NARCIS (Netherlands)

    Aslan, Yakup; Handayani, Nurrahmi; Stavila, Erythrina; Loos, Katja

    2013-01-01

    Objective: In this study, the conditions of covalent immobilization of Pseudomonas fluorescens lipase onto an oxirane-activated support (Amberzyme) were optimized to obtain a high activity yield. Furthermore, the operational and storage stabilities of immobilized lipase were tested. Methods: Optimum

  19. Insights into catalytic action mechanism of Pseudomonas mendocina 3121-1 lipase

    Czech Academy of Sciences Publication Activity Database

    Bendikiene, V.; Surinenaite, B.; Juodka, B.; Šafaříková, Miroslava

    2004-01-01

    Roč. 34, - (2004), s. 572-577 ISSN 0141-0229 R&D Projects: GA AV ČR KSK4055109 Institutional research plan: CEZ:AV0Z6087904 Keywords : Pseudomonas mendocina * lipase Subject RIV: CE - Biochemistry Impact factor: 1.759, year: 2004

  20. Targeting quorum sensing in Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Jakobsen, Tim Holm; Bjarnsholt, Thomas; Jensen, Peter Østrup

    2013-01-01

    Bacterial resistance to conventional antibiotics combined with an increasing acknowledgement of the role of biofilms in chronic infections has led to a growing interest in new antimicrobial strategies that target the biofilm mode of growth. In the aggregated biofilm mode, cell-to-cell communication...... alternative antibacterial strategies. Here, we review state of the art research of quorum sensing inhibitors against the opportunistic human pathogen Pseudomonas aeruginosa, which is found in a number of biofilm-associated infections and identified as the predominant organism infecting the lungs of cystic...

  1. Antibiotic and biosurfactant properties of cyclic lipopeptides produced by fluorescent Pseudomonas spp. from the sugar beet rhizosphere

    DEFF Research Database (Denmark)

    Nielsen, T.H.; Sørensen, D.; Tobiasen, C.

    2002-01-01

    Cyclic lipopeptides (CLPs) with antibiotic and biosurfactant properties are produced by a number of soil bacteria, including fluorescent Pseudomonas spp. To provide new and efficient strains for the biological control of root-pathogenic fungi in agricultural crops, we isolated approximately 600...... fluorescent Pseudomonas spp. from two different agricultural soils by using three different growth media. CLP production was observed in a large proportion of the strains (approximately 60%) inhabiting the sandy soil, compared to a low proportion (approximately 6%) in the loamy soil. Chemical structure...... in the peptide moiety. Production of specific CLPs could be affiliated with Pseudomonas fluorescens strain groups belonging to biotype I, V, or VI. In vitro analysis using both purified CLPs and whole-cell P. fluorescens preparations demonstrated that all CLPs exhibited strong biosurfactant properties...

  2. Diversity of aquatic Pseudomonas species and their activity against the fish pathogenic oomycete Saprolegnia

    NARCIS (Netherlands)

    Liu, Y.; Rzeszutek, E.; Voort, van der M.; Wu, C.H.; Thoen, E.; Skaar, I.; Bulone, V.; Dorrestein, P.C.; Raaijmakers, J.M.; Bruijn, de I.

    2015-01-01

    Emerging fungal and oomycete pathogens are increasingly threatening animals and plants globally. Amongst oomycetes, Saprolegnia species adversely affect wild and cultivated populations of amphibians and fish, leading to substantial reductions in biodiversity and food productivity. With the ban of

  3. Characterization of CMR5c and CMR12a, novel fluorescent Pseudomonas strains from the cocoyam rhizosphere with biocontrol activity

    NARCIS (Netherlands)

    Perneel, M.; Heyrman, J.; Adiobo, A.; Maeyer, de K.; Raaijmakers, J.M.; Vos, de P.; Höfte, M.

    2007-01-01

    Aim: To screen for novel antagonistic Pseudomonas strains producing both phenazines and biosurfactants that are as effective as Pseudomonas aeruginosa PNA1 in the biocontrol of cocoyam root rot caused by Pythium myriotylum. Material and Results: Forty pseudomonads were isolated from the rhizosphere

  4. Arsenic-contaminated soils. Genetically modified Pseudomonas spp. and their arsenic-phytoremediation potential

    Energy Technology Data Exchange (ETDEWEB)

    Sizova, O.I.; Kochetkov, V.V.; Validov, S.Z.; Boronin, A.M. [Inst. of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Moscow (Russian Federation); Kosterin, P.V.; Lyubun, Y.V. [Inst. of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov (Russian Federation)

    2002-07-01

    Sorghum was inoculated with Pseudomonas bacteria, including strains harboring an As-resistance plasmid, pBS3031, to enhance As-extraction by the plants. Pseudomonas strains (P. fluorescens 38a, P. putida 53a, and P. aureofaciens BS1393) were chosen because they are antagonistic to a wide range of phytopathogenic fungi and bacteria, and they can stimulate plant growth. The resistance of natural rhizospheric pseudomonads to sodium arsenite was assessed. Genetically modified Pseudomonas strains resistant to As(III)/As(V) were obtained via conjugation or transformation. The effects of the strains on the growth of sorghum on sodium-arsenite-containing soils were assessed. The conclusions from this study are: (1) It is possible to increase the survivability of sorghum growing in sodium-arsenite-containing soil by using rhizosphere pseudomonads. (2) The presence of pBS3031 offers the strains a certain selective advantage in arsenite-contaminated soil. (3) The presence of pBS3031 impairs plant growth, due to the As-resistance mechanism determined by this plasmid: the transformation of the less toxic arsenate into the more toxic, plant-root-available arsenite by arsenate reductase and the active removal of arsenite from bacterial cells. (4) Such a mechanism makes it possible to develop a bacteria-assisted phytoremediation technology for the cleanup of As-contaminated soils and is the only possible way of removing the soil-sorbed arsenates from the environment. (orig.)

  5. Pseudomonas savastanoi pv. savastanoi: some like it knot.

    Science.gov (United States)

    Ramos, Cayo; Matas, Isabel M; Bardaji, Leire; Aragón, Isabel M; Murillo, Jesús

    2012-12-01

    . Pseudomonas syringae pv. savastanoi. Kingdom Bacteria; Phylum Proteobacteria; Class Gammaproteobacteria; Family Pseudomonadaceae; Genus Pseudomonas; included in genomospecies 2 together with at least P. amygdali, P. ficuserectae, P. meliae and 16 other pathovars from the P. syringae complex (aesculi, ciccaronei, dendropanacis, eriobotryae, glycinea, hibisci, mellea, mori, myricae, phaseolicola, photiniae, sesami, tabaci, ulmi and certain strains of lachrymans and morsprunorum); when a formal proposal is made for the unification of these bacteria, the species name P. amygdali would take priority over P. savastanoi. Gram-negative rods, 0.4-0.8 × 1.0-3.0 μm, aerobic. Motile by one to four polar flagella, rather slow growing, optimal temperatures for growth of 25-30 °C; oxidase negative, arginine dihydrolase negative; elicits the hypersensitive response on tobacco; most isolates are fluorescent and levan negative, although some isolates are nonfluorescent and levan positive. P. savastanoi pv. savastanoi causes tumours in cultivated and wild olive and ash (Fraxinus excelsior). Although strains from olive have been reported to infect oleander (Nerium oleander), this is generally not the case; however, strains of P. savastanoi pv. nerii can infect olive. Pathovars fraxini and nerii are differentiated from pathovar savastanoi mostly in their host range, and were not formally recognized until 1996. Literature before about 1996 generally names strains of the three pathovars as P. syringae ssp. savastanoi or P. savastanoi ssp. savastanoi, contributing to confusion on the host range and biological properties. Symptoms of infected trees include hyperplastic growths (tumorous galls or knots) on the stems and branches of the host plant and, occasionally, on leaves and fruits. The pathogen can survive and multiply on aerial plant surfaces, as well as in knots, from where it can be dispersed by rain, wind, insects and human activities, entering the plant through

  6. Management of root rot and root knot disease of mungbean with the application of mycorrhizospheric fluorescent pseudomonas under field condition

    International Nuclear Information System (INIS)

    Bokhari, S.S.; Tariq, S.; Ali, S.A.

    2014-01-01

    The mycorrhizosphere is the region around a mycorrhizal fungus in which nutrients released from the hyphae increases microbial population and its activities. In this study five mycorrhizospheric fluorescent Pseudomonas (MRFP) were evaluated for biocontrol potential under field condition using mungbean (Vigna radiata) as test plant. MRFP-249 significantly reduced Fusarium solani, Rhizoctonia solani and Macrophomina phaseolina. Whereas MRFP246 and MRFP-247 were also found effective against M. phaseolina. Mycorrhizospheric fluorescent Pseudomonas were also found effective against root knot nematode by reducing the galls on roots and nematode's penetration in roots. Highest fresh shoot weight and plant height was produced by MRFP-248. Plants grown in soil treated with Pseudomonas showed higher number of VAM spores around the mungbean roots than untreated control plants. The mycorrhizal symbiosis should not be considered merely as bipartite, plant-fungus interaction, but should instead include the associated microorganisms, particularly fluorescent Pseudomonas. (author)

  7. Modulation of epithelial sodium channel (ENaC expression in mouse lung infected with Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Radzioch Danuta

    2005-01-01

    Full Text Available Abstract Background The intratracheal instillation of Pseudomonas aeruginosa entrapped in agar beads in the mouse lung leads to chronic lung infection in susceptible mouse strains. As the infection generates a strong inflammatory response with some lung edema, we tested if it could modulate the expression of genes involved in lung liquid clearance, such as the α, β and γ subunits of the epithelial sodium channel (ENaC and the catalytic subunit of Na+-K+-ATPase. Methods Pseudomonas aeruginosa entrapped in agar beads were instilled in the lung of resistant (BalB/c and susceptible (DBA/2, C57BL/6 and A/J mouse strains. The mRNA expression of ENaC and Na+-K+-ATPase subunits was tested in the lung by Northern blot following a 3 hours to 14 days infection. Results The infection of the different mouse strains evoked regulation of α and β ENaC mRNA. Following Pseudomonas instillation, the expression of αENaC mRNA decreased to a median of 43% on days 3 and 7 after infection and was still decreased to a median of 45% 14 days after infection (p 1Na+-K+-ATPase mRNA, the catalytic subunit of the sodium pump, was recorded. The distinctive expression profiles of the three subunits were not different, between the susceptible and resistant mouse strains. Conclusions These results show that Pseudomonas infection, by modulating ENaC subunit expression, could influence edema formation and clearance in infected lungs.

  8. Effects of PslG on the surface movement of Pseudomonas aeruginosa.

    Science.gov (United States)

    Zhang, Jingchao; He, Jing; Zhai, Chunhui; Ma, Luyan Z; Gu, Lichuan; Zhao, Kun

    2018-05-04

    PslG attracted a lot of attention recently due to its great potential abilities in inhibiting biofilms of Pseudomonas aeruginosa However, how PslG affects biofilm development still remains largely unexplored. Here, we focused on the surface motility of bacterial cells, which is critical for biofilm development. We studied the effect of PslG on bacterial surface movement in early biofilm development at a single-cell resolution by using a high-throughput bacterial tracking technique. The results showed that compared with no exogenous PslG addition, when PslG was added to the medium, bacterial surface movement was significantly faster by 4 ∼ 5 times, and was in a more random way with no clear preferred direction. A further study revealed that the fraction of walking mode increased when PslG was added, which then resulted in an elevated average speed. The differences of motility due to PslG addition led to a clear distinction in patterns of bacterial surface movement, and retarded microcolony formation greatly. Our results provide insight into developing new PslG-based biofilm-control techniques. IMPORTANCE Biofilms of Pseudomonas aeruginosa are a major cause for hospital-acquired infections. They are notoriously difficult to eradicate and pose serious health hazard to our human society. So finding new ways to control biofilms are urgently needed. Recent work on PslG showed that PslG might be a good candidate for inhibiting/disassembling biofilms of Pseudomonas aeruginosa through Psl-based regulation. However, to fully explore PslG functions in biofilm-control, a better understanding of PslG-Psl interactions is needed. Toward this end, we examined the effect of PslG on the surface movement of Pseudomonas aeruginosa in this work. The significance of our work is in greatly enhancing our understanding of the inhibiting mechanism of PslG on biofilms by providing a detailed picture of bacterial surface movement at a single-cell level, which will allow a full understanding

  9. Diagnostic significance of measurements of specific IgG antibodies to Pseudomonas aeruginosa by three different serological methods

    DEFF Research Database (Denmark)

    Pressler, T.; Karpati, F.; Granstrom, M.

    2008-01-01

    to characterize patients with different infection status. Elevated levels of specific anti-Pseudomonas antibodies showed to be the risk factor for developing chronic Pa infection. Due to the specificity of the tests, antibiotic treatment based on serology might be considered in selected cases. There is a window...... of opportunity for suppression and eradication of initial P. aeruginosa infection making measurement of specific anti-Pseudomonas antibodies helpful Udgivelsesdato: 2009/1...

  10. Reduced intracellular c-di-GMP content increases expression of quorum sensing-regulated genes in Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Chua, Song Lin; Liu, Yang; Li, Yingying

    2017-01-01

    Cyclic-di-GMP (c-di-GMP) is an intracellular secondary messenger which controls the biofilm life cycle in many bacterial species. High intracellular c-di-GMP content enhances biofilm formation via the reduction of motility and production of biofilm matrix, while low c-di-GMP content in biofilm...... cells leads to increased motility and biofilm dispersal. While the effect of high c-di-GMP levels on bacterial lifestyles is well studied, the physiology of cells at low c-di-GMP levels remains unclear. Here, we showed that Pseudomonas aeruginosa cells with high and low intracellular c-di-GMP contents...... possessed distinct transcriptome profiles. There were 535 genes being upregulated and 432 genes downregulated in cells with low c-di-GMP, as compared to cells with high c-di-GMP. Interestingly, both rhl and pqs quorum-sensing (QS) operons were expressed at higher levels in cells with low intracellular c-di-GMP...

  11. Metabolic commensalism and competition in a two-species microbial consortium

    DEFF Research Database (Denmark)

    Christensen, Bjarke Bak; Haagensen, Janus Anders Juul; Heydorn, Arne

    2002-01-01

    We analyzed metabolic interactions and the importance of specific structural relationships in a benzyl alcohol-degrading microbial consortium comprising two species, Pseudomonas putida strain R1 and Acinetobacter strain C6, both of which are able to utilize benzyl alcohol as their sole carbon...... alcohol, which apparently gives Acinetobacter strain C6 a growth advantage, probably because it converts benzyl alcohol to benzoate with a higher yield per time unit than P. putida R1. In biofilms, however, the organisms establish structured, surface-attached consortia, in which heterogeneous ecological...... niches develop, and under these conditions competition for the primary carbon source is not the only determinant of biomass and population structure....

  12. Within-host microevolution of Pseudomonas aeruginosa in Italian cystic fibrosis patients

    DEFF Research Database (Denmark)

    Marvig, Rasmus Lykke; Dolce, Daniela; Madsen Sommer, Lea Mette

    2015-01-01

    Chronic infection with Pseudomonas aeruginosa is a major cause of morbidity and mortality in cystic fibrosis (CF) patients, and a more complete understanding of P. aeruginosa within-host genomic evolution, transmission, and population genomics may provide a basis for improving intervention strate...

  13. Pseudomonas aeruginosa with lasI quorum-sensing deficiency during corneal infection

    DEFF Research Database (Denmark)

    Zhu, H.; Bandara, R.; Conibear, T.C.

    2004-01-01

    To understand the importance of Pseudomonas aeruginosa quorum-sensing systems in the development of corneal infection, the genotypic characteristics and pathogenesis of seven ocular isolates with low-protease and acyl homoserine lactone (AHL) activity and quorum-sensing mutants of PAO1 deficient...

  14. Antibacterial efficacies of some plant extracts against Aeromonas and Pseudomonas diseases of farmed catfish (Heterobranchus longifilis

    Directory of Open Access Journals (Sweden)

    Albert P. Ekanem

    2011-11-01

    Full Text Available Aeromonas and Pseudomonas diseases are responsible for mortalities of some farmed catfish in Nigeria. The objective of the study is to investigate the efficacies of extracts of some plants against Aeromonas and Pseudomonas diseases of Heterobranchus longifilis. Ethanol extracts of Phyllanthus amarus, Allium sativum, Artemisia annua, Citrus limon, Moringa oleifera, Allium cepa and Azadirachta indica were tested against Aeromonas hydrophila and Pseudomonas flourescens of H. longifilis by disc diffusion assay. Extracts of P. amarus, A. sativum, A. annua and C. limon were significantly (P<0.05 more sensitive to A. hydrophila and P. flourescens than M. oleifera, A. cepa and A. indica which were effective against P. flourescens. Minimum inhibitory concentrations (MIC of the extracts were 25mg/ml for P. amarus and A. annua; 25 and 100mg/ml for C. lemon and A. cepa respectively and 50mg/ml for A. indica.  Alkaloid was demonstrated in all plants except A. annua by qualitative methods. Moderate amount (++ of cardiac glycosides was demonstrated in A. sativum, M. oleifera and P. amarus. Saponin (+++ was present in M. oleifera and A. indica while, tannin (++ was present in M. oleifera, P. amarus and A. indica respectively. Phlobatanins and Anthraquinones (++ were present in P. amarus and M. oleifera respectively.  Extracts of aforementioned plants have potentials as therapy against Aeromonas hydrophila and Pseudomonas flourescens of farmed catfish.

  15. Two cases of Pseudomonas aeruginosa epidural abscesses and cervical osteomyelitis after dental extractions.

    Science.gov (United States)

    Walters, Heather L; Measley, Robert

    2008-04-20

    Case report. To report 2 unusual cases of Pseudomonas aeruginosa epidural abscesses and cervical osteomyelitis after routine dental extractions and to review relevant literature. Pseudomonas aeruginosa is a rare cause of cervical osteomyelitis in patients after dental extractions. Only 1 prior case could be found in the literature. The cases of an 18-year-old male and a 23-year-old female are presented. PubMed was used to search for relevant literature. Our 2 patients presented with excruciating neck pain within 24 hours of routine dental extractions and, by imaging were found to have cervical epidural abscesses and osteomyelitis. Both patients were taken to the operating room for drainage and corpectomy and treated with prolonged courses of intravenous antibiotics. When seen in follow up 3 months later, neither patient demonstrated any neurologic sequelae. Pseudomonas aeruginosa epidural abscesses and osteomyelitis of the cervical spine have only rarely been reported in healthy patients after dental extractions. To our knowledge, the 2 patients reported here are only the second 2 such cases reported in the literature. Unfortunately, as in prior cases, these 2 patients had a significant delay in diagnosis. Therefore, a strong suspicion must be maintained for all patients presenting with neck pain after a recent dental extraction and appropriate imaging must be obtained urgently.

  16. Biotransformation of isoeugenol to vanillin by Pseudomonas putida IE27 cells.

    Science.gov (United States)

    Yamada, Mamoru; Okada, Yukiyoshi; Yoshida, Toyokazu; Nagasawa, Toru

    2007-01-01

    The ability to produce vanillin and/or vanillic acid from isoeugenol was screened using resting cells of various bacteria. The vanillin- and/or vanillic-acid-producing activities were observed in strains belonging to the genera Achromobacter, Aeromonas, Agrobacerium, Alcaligenes, Arthrobacter, Bacillus, Micrococcus, Pseudomonas, Rhodobacter, and Rhodococcus. Strain IE27, a soil isolate showing the highest vanillin-producing activity, was identified as Pseudomonas putida. We optimized the culture and reaction conditions for vanillin production from isoeugenol using P. putida IE27 cells. The vanillin-producing activity was induced by adding isoeugenol to the culture medium but not vanillin or eugenol. Under the optimized reaction conditions, P. putida IE27 cells produced 16.1 g/l vanillin from 150 mM isoeugenol, with a molar conversion yield of 71% at 20 degrees C after a 24-h incubation in the presence of 10% (v/v) dimethyl sulfoxide.

  17. Pseudomonas aeruginosa septic shock associated with ecthyma gangrenosum in an infant with agammaglobulinemia Choque séptico por Pseudomonas aeruginosa associado a éctima gangrenosa em criança com agamaglobulinemia

    Directory of Open Access Journals (Sweden)

    João Fernando Lourenço de ALMEIDA

    2002-01-01

    Full Text Available Ecthyma gangrenosum (EG due to Pseudomonas aeruginosa is a rare and invasive infection that can be associated with agammaglobulinemia. The cornerstone of the treatment is based on prompt recognition with appropriate antibiotic coverage and intravenous immunoglobulin. The authors report a case of EG emphasizing the clinical and therapeutic aspects of this condition.Éctima Gangrenosa (EG por Pseudomonas aeruginosa é uma infecção rara e invasiva que pode ser associada com agamaglobulinemia. O tratamento fundamental é baseado no pronto reconhecimento com cobertura de antibiótico apropriada e imunoglobulina intravenosa. Os autores relatam caso de EG dando ênfase aos aspectos clínicos e terapêuticos desta condição.

  18. Developing a Genetically Encoded, Cross-Species Biosensor for Detecting Ammonium and Regulating Biosynthesis of Cyanophycin.

    Science.gov (United States)

    Xiao, Yi; Jiang, Wen; Zhang, Fuzhong

    2017-10-20

    Responding to nitrogen status is essential for all living organisms. Bacteria have evolved various complex and exquisite regulatory systems to control nitrogen metabolism. However, natural nitrogen regulatory systems, owing to their complexity, often function only in their original hosts and do not respond properly when transferred to another species. By harnessing the Lactococcus GlnRA system, we developed a genetically encoded, cross-species ammonium biosensor that displays a dynamic range up to 9-fold upon detection of ammonium ion. We demonstrated applications of this ammonium biosensor in three different species (Escherichia coli, Pseudomonas putida, and Synechocystis sp.) to detect different nitrogen sources. This ammonium sensor was further used to regulate the biosynthesis of a nitrogen-rich polymer, cyanophycin, based on ammonium concentration. Given the importance of nitrogen responses, the developed biosensor should be broadly applicable to synthetic biology and bioengineering.

  19. Specific primer design of mitochondrial 12S rRNA for species identification in raw meats

    Science.gov (United States)

    Cahyadi, M.; Puruhita; Barido, F. H.; Hertanto, B. S.

    2018-01-01

    Polymerase chain reaction (PCR) is a molecular technique that widely used in agriculture area including species identification in animal-based products for halalness and food safety reasons. Amplification of DNA using PCR needs a primer pair (forward and reverse primers) to isolate specific DNA fragment in the genome. This objective of this study was to design specific primer from mitochondrial 12S rRNA region for species identification in raw beef, pork and chicken meat. Three published sequences, HQ184045, JN601075, and KT626857, were downloaded from National Center for Biotechnology Information (NCBI) website. Furthermore, those reference sequences were used to design specific primer for bovine, pig, and chicken species using primer3 v.0.4.0. A total of 15 primer pairs were picked up from primer3 software. Of these, an universal forward primer and three reverse primers which are specific for bovine, pig, and chicken species were selected to be optimized using multiplex-PCR technique. The selected primers were namely UNIF (5’-ACC GCG GTC ATA CGA TTA AC-3’), SPR (5’-AGT GCG TCG GCT ATT GTA GG-3’), BBR (5’-GAA TTG GCA AGG GTT GGT AA-3’), and AR (5’-CGG TAT GTA CGT GCC TCA GA-3’). In addition, the PCR products were visualized using 2% agarose gels under the UV light and sequenced to be aligned with reference sequences using Clustal Omega. The result showed that those primers were specifically amplified mitochondrial 12S rRNA regions from bovine, pig, and chicken using PCR. It was indicated by the existence of 155, 357, and 611 bp of DNA bands for bovine, pig, and chicken species, respectively. Moreover, sequence analysis revealed that our sequences were identically similar with reference sequences. It can be concluded that mitochondrial 12S rRNA may be used as a genetic marker for species identification in meat products.

  20. Pseudomonas aeruginosa: disseminação de resistência antimicrobiana em efluente hospitalar e água superficial Pseudomonas aeruginosa: spread of antimicrobial resistance in hospital effluent and surface water

    Directory of Open Access Journals (Sweden)

    Daiane Bopp Fuentefria

    2008-10-01

    Full Text Available O objetivo deste estudo foi comparar amostras de efluente do Hospital São Vicente de Paulo com amostras de água do Rio Passo Fundo, quanto ao perfil de susceptibilidade de isolados de Pseudomonas aeruginosa, para inferir sobre a presença de isolados de origem hospitalar em amostras de água superficial. A significância estatística entre os perfis de susceptibilidade das amostras foi testada por análise de variância e a comparação das amostras foi feita por contrastes de interesse. Foram identificados 198 isolados de Pseudomonas aeruginosa a partir das amostras analisadas. O fenótipo de multirresistência não foi observado nas amostras do Rio Passo Fundo, embora alguns isolados resistentes a carbapenêmicos tenham sido identificados, indicando a presença de contaminação com bactérias provenientes de um ambiente sob forte pressão seletiva. Diferenças significativas entre as amostras de água e efluente hospitalar foram observadas a partir da análise de variância por contrastes de interesse.The aim of this study was to compare sewage samples from Hospital São Vicente de Paulo with water samples from the Passo Fundo river, with regard to the susceptibility profile of Pseudomonas aeruginosa isolates, in order to make inferences about the presence of strains of hospital origin in surface water samples. The statistical significance between the susceptibility profiles of the samples was tested using analysis of variance, and the samples were compared by means of contrasts of interest. One hundred and ninety-eight isolates of Pseudomonas aeruginosa were recovered from the samples analyzed. No phenotype for multiresistance was found in the samples from the Passo Fundo river, although some carbapenem-resistant isolates were identified, thereby indicating the presence of contamination with bacteria derived from an environment under strong selection pressure. Significant differences between the water and hospital effluent samples were