Shape memory and pseudoelastic properties of Fe-Mn-Si and Ti-Ni based alloys
International Nuclear Information System (INIS)
Guenin, G.
1997-01-01
The aim of this presentation is to analyse and discuss some recent advances in shape memory and pseudoelastic properties of different alloys. Experimental work in connection with theoretical ones will be reviewed. The first part is devoted to the microstructural origin of shape memory properties of Fe-Mn-Si based alloys (γ-ε transformation); the second part is a synthetic analysis of the effects of thermomechanical treatments on shape memory and pseudoelastic effects in Ti-Ni alloys, with some focus on the behaviour of the R phase introduced. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Zhang, T.; Li, D.Y. [Alberta Univ., Edmonton, AB (Canada). Dept. of Chemical Engineering
2000-11-30
The corrosive erosion behavior of Ti-51at.%Ni alloy under different erosion conditions was studied and compared to that of 304 stainless steel. Erosion tests were performed in a slurry-pot tester with dry sand, 3.5% NaCl slurry and 0.1 moll{sup -1} H{sub 2}SO{sub 4} slurry containing 30% silica sand, respectively. Synergistic effects of corrosion and erosion were studied in steady corrosion, polarization, dry sand erosion and micro-wear experiments. An electrochemical-scratching test characterized the failure and recovery of the passive film formed on TiNi alloy in 3.5% NaCl and 0.1 mol l{sup -1} H{sub 2}SO{sub 4} solutions, respectively. In both dry sand and the corrosive media, the TiNi alloy exhibited considerably greater erosion resistance than 304 stainless steel. (orig.)
Gu, Dongdong; Ma, Chenglong
2018-05-01
Selective laser melting (SLM) additive manufacturing technology was applied to synthesize NiTi-based composites via using ball-milled Ti, Ni, and TiC mixed powder. By transmission electron microscope (TEM) characterization, it indicated that the B2 (NiTi) matrix was obtained during SLM processing. In spite of more Ti content (the Ti/Ni ratio >1), a mass of Ni-rich intermetallic compounds containing Ni4Ti3 with nanostructure features and eutectic Ni3Ti around in-situ Ti6C3.75 dendrites were precipitated. Influence of the applied laser volume energy density (VED) on the morphology and content of Ni4Ti3 precipitate was investigated. Besides, nanoindentation test of the matrix was performed in order to assess pseudoelastic recovery behavior of SLM processed NiTi-based composites. At a relatively high VED of 533 J/mm3, the maximum pseudoelastic recovery was obtained due to the lowest content of Ni4Ti3 precipitates. Furthermore, the precipitation mechanism of in-situ Ni4Ti3 was present based on the redistribution of titanium element and thermodynamics analysis, and then the relationship of Ni4Ti3 precipitate, VED and pseudoelastic recovery behavior was also revealed.
International Nuclear Information System (INIS)
Dong, Peng; Wang, Zhe; Wang, Wenxian; Chen, Shaoping; Zhou, Jun
2017-01-01
Embedding of shape memory alloy (SMA) fibers into materials to fabricate SMA composites has attracted considerable attention because of the potential applicability of these composites in smart systems and structures. In this study, 2024Al matrix composites reinforced by continuous TiNi SMA fibers were fabricated using spark plasma sintering (SPS). The interface between the fibers and matrix consisted of a bilayer. The layer close to the fiber consisted of a multiple phase mixture, and the other layer exhibited a periodic morphology resulting from the alternating phases of Al 3 Ti and Al 3 Ni. In addition, a small quantity of TiO 2 phases was also observed in the interface layer. Based on detailed interface studies of the orientation relationships between the Al 3 Ti, Al 3 Ni, and TiO 2 phases and the atomic correspondence at phase boundaries, the effects of the interface phases on the fracture behavior of the composites were demonstrated.
Energy Technology Data Exchange (ETDEWEB)
Dong, Peng, E-mail: dongpeng@tyut.edu.cn [College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Shanxi Key Laboratory of Advanced Magnesium-Based Materials, Taiyuan 030024 (China); Wang, Zhe [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Wang, Wenxian [College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Shanxi Key Laboratory of Advanced Magnesium-Based Materials, Taiyuan 030024 (China); Chen, Shaoping [College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Zhou, Jun [Department of Mechanical Engineering, Pennsylvania State University Erie, Erie, PA 16563 (United States)
2017-04-13
Embedding of shape memory alloy (SMA) fibers into materials to fabricate SMA composites has attracted considerable attention because of the potential applicability of these composites in smart systems and structures. In this study, 2024Al matrix composites reinforced by continuous TiNi SMA fibers were fabricated using spark plasma sintering (SPS). The interface between the fibers and matrix consisted of a bilayer. The layer close to the fiber consisted of a multiple phase mixture, and the other layer exhibited a periodic morphology resulting from the alternating phases of Al{sub 3}Ti and Al{sub 3}Ni. In addition, a small quantity of TiO{sub 2} phases was also observed in the interface layer. Based on detailed interface studies of the orientation relationships between the Al{sub 3}Ti, Al{sub 3}Ni, and TiO{sub 2} phases and the atomic correspondence at phase boundaries, the effects of the interface phases on the fracture behavior of the composites were demonstrated.
Pseudo-elasticity and shape memory effect on the TiNiCoV alloy
International Nuclear Information System (INIS)
Hsu, S.E.; Yeh, M.T.; Hsu, I.C.; Chang, S.K.; Dai, Y.C.; Wang, J.Y.
2000-01-01
Unlike most of the structural intermetallic compound, TiNi is an exceptional case of inherent ductility. Besides its amusing behavior of high damping capacity due to martensitic transformation, the duel properties of shape memory and pseudo-elasticity co-exhibited in the same V and Co-modified TiNi-SMA at various temperature will attract another attention in modern manufacturing technology. The objective of this paper is to investigate the pseudo-elasticity and strain rate effect on TiNiCoV-SMA. The presence of dual behavior of super-elasticity and shape memory effect is technological significant for application of advanced materials on the structural component. An illustration of application of TiNiCoV shape memory alloy on the face of golf club head will be presented in this paper. (orig.)
DEFF Research Database (Denmark)
Hansen, Morten Tranberg
2011-01-01
Debugging embedded wireless systems can be cumbersome due to low visibility. To ease the task of debugging this paper present TinyDebug which is a multi-purpose passive debugging framework for developing embedded wireless sys- tems. TinyDebug is designed to be used throughout the entire system...... logging to extraction and show how the frame- work improves upon existing message based and event log- ging debugging techniques while enabling distributed event processing. We also present a number of optional event anal- ysis tools demonstrating the generality of the TinyDebug debug messages....
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 5. The Tiny Terminators - Mosquitoes and Diseases. P K Sumodan. General Article Volume 6 Issue 5 May 2001 pp 48-55. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/006/05/0048-0055 ...
DEFF Research Database (Denmark)
Bonnet, Philippe; Culler, David; Estrin, Deborah
2006-01-01
This memo describes the goals and organization structure of the TinyOS Alliance. It covers membership, the working group forums for contribution, intellectual property, source licensing, and the TinyOS Steering Committee (TSC)....
International Nuclear Information System (INIS)
Goldreich, P.; Nicholson, P.
1977-01-01
Reference is made to Dermott and Gold (Nature 267: 590 (1977)) who proposed a resonance model for the rings of Uranus. They assumed that the rings are composed of small particles librating about stable resonances determined by pairs of satellites, either Ariel and Titania or Ariel and Oberon. They dismissed as insignificant resonances involving 'tiny Miranda'. It is reported here that, by a wide margin, the strongest resonances are all associated with Miranda. It is also shown that the hypothesis that the rings are made up of librating particles, whilst original and ingenious, is incorrect. (author)
Atomistic characterization of pseudoelasticity and shape memory in NiTi nanopillars
International Nuclear Information System (INIS)
Zhong Yuan; Gall, Ken; Zhu Ting
2012-01-01
Molecular dynamics simulations are performed to study the atomistic mechanisms governing the pseudoelasticity and shape memory in nickel–titanium (NiTi) nanostructures. For a 〈1 1 0〉 – oriented nanopillar subjected to compressive loading–unloading, we observe either a pseudoelastic or shape memory response, depending on the applied strain and temperature that control the reversibility of phase transformation and deformation twinning. We show that irreversible twinning arises owing to the dislocation pinning of twin boundaries, while hierarchically twinned microstructures facilitate the reversible twinning. The nanoscale size effects are manifested as the load serration, stress plateau and large hysteresis loop in stress–strain curves that result from the high stresses required to drive the nucleation-controlled phase transformation and deformation twinning in nanosized volumes. Our results underscore the importance of atomistically resolved modeling for understanding the phase and deformation reversibilities that dictate the pseudoelasticity and shape memory behavior in nanostructured shape memory alloys.
Böttcher, J.; Jahn, M.; Tatzko, S.
2017-12-01
Pseudoelastic shape memory alloys exhibit a stress-induced phase transformation which leads to high strains during deformation of the material. The stress-strain characteristic during this thermomechanical process is hysteretic and results in the conversion of mechanical energy into thermal energy. This energy conversion allows for the use of shape memory alloys in vibration reduction. For the application of shape memory alloys as vibration damping devices a dynamic modeling of the material behavior is necessary. In this context experimentally determined material parameters which accurately represent the material behavior are essential for a reliable material model. Subject of this publication is the declaration of suitable material parameters for pseudoelastic shape memory alloys and the methodology of their identification from experimental investigations. The used test rig was specifically designed for the characterization of pseudoelastic shape memory alloys.
Nonlinear dynamics of a pseudoelastic shape memory alloy system - theory and experiment
DEFF Research Database (Denmark)
Enemark, Søren; A Savi, M.; Santos, Ilmar
2014-01-01
In this work, a helical spring made from a pseudoelastic shape memory alloy was embedded in a dynamic system also composed of a mass, a linear spring and an excitation system. The mechanical behaviour of shape memory alloys is highly complex, involving hysteresis, which leads to damping capabilit...
DEFF Research Database (Denmark)
Enemark, Søren; Santos, Ilmar; Savi, M. A.
2016-01-01
The thermo-mechanical behaviour of pseudoelastic shape memory alloy helical springs is of concern discussing stabilised and cyclic responses. Constitutive description of the shape memory alloy is based on the framework developed by Lagoudas and co-workers incorporating two modifications related t...
Nonlinear dynamics and chaos in a pseudoelastic two-bar truss
International Nuclear Information System (INIS)
Savi, Marcelo A; Nogueira, Jefferson B
2010-01-01
Stability aspects of structures are usually treated by archetypal models that provide global comprehension of the system behavior. The two-bar truss is an example of this kind of model that presents snap-through behavior. This paper deals with the dynamical response of a pseudoelastic two-bar truss, representing an archetypal model of a structural system that exhibits both geometrical and constitutive nonlinearities. Adaptive trusses with shape memory alloy actuators are examples of dynamical systems that may behave like the structure considered in this paper. A constitutive model is employed in order to describe the SMA behavior, presenting close agreement with experimental data. An iterative numerical procedure based on the operator split technique, the orthogonal projection algorithm and the classical fourth order Runge–Kutta method is developed to deal with nonlinearities in the formulation. Numerical investigation is carried out considering free and forced responses of the pseudoelastic two-bar truss showing complex behaviors
An experimental study on pseudoelasticity of a NiTi-based damper for civil applications
Nespoli, Adelaide; Bassani, Enrico; Della Torre, Davide; Donnini, Riccardo; Villa, Elena; Passaretti, Francesca
2017-10-01
In this work, a pseudoelastic damper composed by NiTi wires is tested at 0.5, 1 and 2 Hz for 1000 mechanical cycles. The damping performances were evaluated by three key parameters: the damping capacity, the dissipated energy per cycle and the maximum force. During testing, the temperature of the pseudoelastic elements was registered as well. Results show that the damper assures a bi-directional motion throughout the 1000 cycles together with the maintenance of the recentering. It was observed a stabilization process in the first 50 mechanical cycles, where the key parameters reach stable values; in particular it was found that the damping capacity and the dissipated energy both decrease with frequency. Besides, the mean temperature of the pseudoleastic elements reaches a stable value during tests and confirms the different response of the pseudoelastic wires accordingly with the specific length and stain. Finally, interesting thermal effects were observed at 1 and 2 Hz: at these frequencies and at high strains, the maximum force increases but the temperature of the NiTi wire decreases being in contraddiction with the Clausius-Clapeyron law.
The pseudoelasticity of a Ni45Ti50Cu5 alloy
International Nuclear Information System (INIS)
Ranucci, T.; Airoldi, G.
2000-01-01
Since several years the Ni (50-X) Ti 50 Cu X alloys are attentively considered for the interesting features related to the B2=>B19' transformation involved in the pseudoelastic behavior. In contrast with the binary NiTi, where two martensitic transformations, B2=>R-phase and R-phase=>B19' can overlap, in the ternary alloy a single transformation is expected with a narrower hysteresis. The pseudoelastic behavior of a Ni 45 Ti 50 Cu 5 is here thoroughly investigated both as a function of different thermal treatments and of the maximum applied strain. The minimum hysteresis width of the pseudoelastic cycle appears for a thermal treatment of 450 C and decreases with stress cycling. The stress induced transformation involves, however, a single process whenever the maximum applied strain is smaller than the transformation strain. When the attained strain exceeds the transformation strain, another transformation sets in as supported by electrical resistance measurements performed concomitantly to stress-strain tests. (orig.)
Directory of Open Access Journals (Sweden)
Y. M. Parulekar
2012-01-01
Full Text Available Recently, there has been increasing interest in using superelastic shape memory alloys for applications in seismic resistant-design. Shape memory alloys (SMAs have a unique property by which they can recover their original shape after experiencing large strains up to 8% either by heating (shape memory effect or removing stress (pseudoelastic effect. Many simplified shape memory alloy models are suggested in the past literature for capturing the pseudoelastic response of SMAs in passive vibration control of structures. Most of these models do not consider the cyclic effects of SMA's and resulting residual martensite deformation. Therefore, a suitable constitutive model of shape memory alloy damper which represents the nonlinear hysterical dynamic system appropriately is essential. In this paper a multilinear hysteretic model incorporating residual martensite strain effect of pseudoelastic shape memory alloy damper is developed and experimentally validated using SMA wire, based damper device. A sensitivity analysis is done using the proposed model along with three other simplified SMA models. The models are implemented on a steel frame representing an SDOF system and the comparison of seismic response of structure with all the models is made in the numerical study.
International Nuclear Information System (INIS)
Haberland, Christoph; Elahinia, Mohammad; Walker, Jason M; Meier, Horst; Frenzel, Jan
2014-01-01
Additive manufacturing provides an attractive processing method for nickel–titanium (NiTi) shape memory and pseudoelastic parts. In this paper, we show how the additive manufacturing process affects structural and functional properties of additively manufactured NiTi and how the process parameter set-up can be optimized to produce high quality NiTi parts and components. Comparisons of shape recovery due to shape memory and pseudoelasticity in additively manufactured and commercial NiTi exhibit promising potential for this innovative processing method. (paper)
Impurity levels and fatigue lives of pseudoelastic NiTi shape memory alloys
International Nuclear Information System (INIS)
Rahim, M.; Frenzel, J.; Frotscher, M.; Pfetzing-Micklich, J.; Steegmüller, R.; Wohlschlögel, M.; Mughrabi, H.; Eggeler, G.
2013-01-01
In the present work we show how different oxygen (O) and carbon (C) levels affect fatigue lives of pseudoelastic NiTi shape memory alloys. We compare three alloys, one with an ultrahigh purity and two which contain the maximum accepted levels of C and O. We use bending rotation fatigue (up to cycle numbers >10 8 ) and scanning electron microscopy (for investigating microstructural details of crack initiation and growth) to study fatigue behavior. High cycle fatigue (HCF) life is governed by the number of cycles required for crack initiation. In the low cycle fatigue (LCF) regime, the high-purity alloy outperforms the materials with higher number densities of carbides and oxides. In the HCF regime, on the other hand, the high-purity and C-containing alloys show higher fatigue lives than the alloy with oxide particles. There is high experimental scatter in the HCF regime where fatigue cracks preferentially nucleate at particle/void assemblies (PVAs) which form during processing. Cyclic crack growth follows the Paris law and does not depend on impurity levels. The results presented in the present work contribute to a better understanding of structural fatigue of pseudoelastic NiTi shape memory alloys
Finite Element Analysis of the Pseudo-elastic Behavior of Shape Memory Alloy Truss and Beam
Directory of Open Access Journals (Sweden)
Kamal M. Bajoria
2010-07-01
Full Text Available The pseudo-elastic behavior of Shape memory alloy (SMA truss and cantilever beam are investigated. Brinson’s one-dimensional material model, which uses the twinned and detwinned martensite fractions separately as internal variables, is applied in the algorithm to establish the SMA stress-strain characteristics. This material model also incorporates different young’s modulus for austenitic and martensite phase to represent the true SMA characteristics. In this model, a cosine function was used to express the evolution of the stress induced martensite fractions during the forward and reverse martensite phase transformation. A finite element formulation for the SMA truss member considering the geometric nonlinearity is proposed and the results are compared with the corresponding linear analysis. As a step forward, a finite element formulation for an SMA cantilever beam with an applied end moment is proposed. The load displacement characteristic for both the loading and unloading phases are considered to check the full pseudo-elastic hysteretic loop. In the numerical investigation, the stress-strain variation along the beam depth is also examined during the loading and unloading process to investigate the forward and reverse martensite phase transformation phenomena. Newton-Raphson’s iterative method is applied to get convergence to the equilibrium for each loading steps. During a complete loading-unloading process, the temperature is kept constant as the model is essentially an isothermal model. Numerical simulation is performed considering two different temperatures to demonstrate the effect of temperature on the hysteretic loop.
Nonlinear dynamics of a pseudoelastic shape memory alloy system—theory and experiment
International Nuclear Information System (INIS)
Enemark, S; F Santos, I; A Savi, M
2014-01-01
In this work, a helical spring made from a pseudoelastic shape memory alloy was embedded in a dynamic system also composed of a mass, a linear spring and an excitation system. The mechanical behaviour of shape memory alloys is highly complex, involving hysteresis, which leads to damping capabilities and varying stiffness. Besides, these properties depend on the temperature and pretension conditions. Because of these capabilities, shape memory alloys are interesting in relation to engineering design of dynamic systems. A theoretical model based on a modification of the 1D Brinson model was established. Basically, the hardening and the sub-loop behaviour were altered. The model parameters were extracted from force–displacement tests of the spring at different constant temperatures as well as from differential scanning calorimetry. Model predictions were compared with experimental results of free and forced vibrations of the system setup under different temperature conditions. The experiments give a thorough insight into dynamic systems involving pseudoelastic shape memory alloys. Comparison between experimental results and the proposed model shows that the model is able to explain and predict the overall nonlinear behaviour of the system. (paper)
Diffusive phenomena and pseudoelasticity in Cu-Al-Be single crystals
Energy Technology Data Exchange (ETDEWEB)
Sade, M., E-mail: sade@cab.cnea.gov.ar [Centro Atómico Bariloche (CNEA), Av. E. Bustillo km. 9500, 8400 S.C. de Bariloche (Argentina); CONICET (Argentina); Instituto Balseiro, Universidad Nacional de Cuyo, Av. E. Bustillo km. 9500, 8400 S.C. de Bariloche (Argentina); Pelegrina, J.L., E-mail: jlp201@cab.cnea.gov.ar [Centro Atómico Bariloche (CNEA), Av. E. Bustillo km. 9500, 8400 S.C. de Bariloche (Argentina); CONICET (Argentina); Instituto Balseiro, Universidad Nacional de Cuyo, Av. E. Bustillo km. 9500, 8400 S.C. de Bariloche (Argentina); Yawny, A., E-mail: yawny@cab.cnea.gov.ar [Centro Atómico Bariloche (CNEA), Av. E. Bustillo km. 9500, 8400 S.C. de Bariloche (Argentina); CONICET (Argentina); Instituto Balseiro, Universidad Nacional de Cuyo, Av. E. Bustillo km. 9500, 8400 S.C. de Bariloche (Argentina); Lovey, F.C., E-mail: lovey@cab.cnea.gov.ar [Centro Atómico Bariloche (CNEA), Av. E. Bustillo km. 9500, 8400 S.C. de Bariloche (Argentina); Instituto Balseiro, Universidad Nacional de Cuyo, Av. E. Bustillo km. 9500, 8400 S.C. de Bariloche (Argentina)
2015-02-15
Highlights: • Diffusive phenomena occurring under load were analyzed in Cu-Al-Be single crystals. • Stabilization of stress induced martensite was detected in a range of temperatures. • Ageing the austenite under load shifts the austenite/martensite stability field. • A free energy model is proposed considering interchanges between Cu and Be atoms. • Different kinetics for the recovery of the austenite are rationalized. - Abstract: Cu-Al-Be single crystals show pseudoelasticity and the shape memory effect in a well-defined composition range. The β{sub 3}-18R martensitic transition is the origin of these phenomena. The transformation temperatures and the critical stresses to induce the martensitic transition are affected by diffusive phenomena taking place both in the parent phase and in martensite. Pseudoelastic cycles were used to obtain quantitative data concerning the effect of diffusive phenomena like stabilization of martensite, ordering of the parent phase under load and recovery of this phase on the critical stresses to transform. Information was then obtained on changes in the relative phase stability. A model is presented to explain those changes taking place in the parent phase aged under load and in the martensitic 18R structure. Experimental data on the kinetics of diffusive phenomena is also presented and analyzed.
Numerical simulation of pseudoelastic shape memory alloys using the large time increment method
Gu, Xiaojun; Zhang, Weihong; Zaki, Wael; Moumni, Ziad
2017-04-01
The paper presents a numerical implementation of the large time increment (LATIN) method for the simulation of shape memory alloys (SMAs) in the pseudoelastic range. The method was initially proposed as an alternative to the conventional incremental approach for the integration of nonlinear constitutive models. It is adapted here for the simulation of pseudoelastic SMA behavior using the Zaki-Moumni model and is shown to be especially useful in situations where the phase transformation process presents little or lack of hardening. In these situations, a slight stress variation in a load increment can result in large variations of strain and local state variables, which may lead to difficulties in numerical convergence. In contrast to the conventional incremental method, the LATIN method solve the global equilibrium and local consistency conditions sequentially for the entire loading path. The achieved solution must satisfy the conditions of static and kinematic admissibility and consistency simultaneously after several iterations. 3D numerical implementation is accomplished using an implicit algorithm and is then used for finite element simulation using the software Abaqus. Computational tests demonstrate the ability of this approach to simulate SMAs presenting flat phase transformation plateaus and subjected to complex loading cases, such as the quasi-static behavior of a stent structure. Some numerical results are contrasted to those obtained using step-by-step incremental integration.
Tiny plastic lung mimics human pulmonary function
Careers Inclusion & Diversity Work-Life Balance Career Resources Apply for a Job Postdocs Students Goals Recycling Green Purchasing Pollution Prevention Reusing Water Resources Environmental Management Releases - 2016 Â» April Â» Tiny plastic lung mimics human pulmonary function Tiny plastic lung mimics
Tiny Molybdenites Tell Diffusion Tales
Stein, H. J.; Hannah, J. L.
2014-12-01
Diffusion invokes micron-scale exchange during crystal growth and dissolution in magma chambers on short time-scales. Fundamental to interpreting such data are assumptions on magma-fluid dynamics at all scales. Nevertheless, elemental diffusion profiles are used to estimate time scales for magma storage, eruption, and recharge. An underutilized timepiece to evaluate diffusion and 3D mobility of magmatic fluids is high-precision Re-Os dating of molybdenite. With spatially unique molybdenite samples from a young ore system (e.g., 1 Ma) and a double Os spike, analytical errors of 1-3 ka unambiguously separate events in time. Re-Os ages show that hydrous shallow magma chambers locally recharge and expel Cu-Mo-Au-silica as superimposed stockwork vein networks at time scales less than a few thousand years [1]. Re-Os ages provide diffusion rates controlled by a dynamic crystal mush, accumulation and expulsion of metalliferous fluid, and magma reorganization after explosive crystallization events. Importantly, this approach has broad application far from ore deposits. Here, we use Re-Os dating of molybdenite to assess time scales for generating and diffusing metals through the deep crust. To maximize opportunity for chemical diffusion, we use a continental-scale Sveconorwegian mylonite zone for the study area. A geologically constrained suite of molybdenite samples was acquired from quarry exposures. Molybdenite, previously unreported, is extremely scarce. Tiny but telling molybdenites include samples from like occurrences to assure geologic accuracy in Re-Os ages. Ages range from mid-Mesoproterozoic to mid-Neoproterozoic, and correspond to early metamorphic dehydration of a regionally widespread biotite-rich gneiss, localized melting of gneiss to form cm-m-scale K-feldspar ± quartz pods, development of vapor-rich, vuggy mm stringers that serve as volatile collection surfaces in felsic leucosomes, and low-angle (relative to foliation) cross-cutting cm-scale quartz veins
The martensitic transformation in Ti-rich TiNi shape memory alloys
International Nuclear Information System (INIS)
Lin, H.C.; Wu, S.K.; Lin, J.C.
1994-01-01
The martensitic (Ms) transformation temperatures and their ΔH values of Ti 51 Ni 49 and Ti 50.5 Ni 49.5 alloys are higher than those of equiatomic or Ni-rich TiNi alloys. The Ti-rich TiNi alloys exhibit good shape recovery in spite of a great deal of second phase Ti 2 Ni or Ti 4 Ni 2 O existing around B2 grain boundaries. The nearly identical transformation temperatures indicate that the absorbed oxygen in Ti-rich TiNi alloys may react with Ti 2 Ni particles, instead of the TiNi matrix, to form Ti 4 Ni 2 O. Martensite stabilization can be induced by cold rolling at room temperature. Thermal cycling can depress the transformation temperatures significantly, especially in the initial 20 cycles. The R-phase transformation can be promoted by both cold rolling and thermal cycling in Ti-rich TiNi alloys due to introduced dislocations depressing the Ms temperature. The strengthening effects of cold rolling and thermal cycling on the Ms temperature of Ti-rich TiNi alloys are found to follow the expression Ms = To - KΔσ y . The K values are affected by different strengthening processes and related to the as-annealed transformation temperatures. The higher the as-annealed Ms (or As), the larger the K value. (orig.)
Effect of ageing temperatures on pseudoelasticity of Ni-rich NiTi shape memory alloy
Mohamad, Hishamiakim; Mahmud, Abdus Samad; Nashrudin, Muhammad Naqib; Razali, Muhammad Fauzinizam
2018-05-01
The shape memory behavior of NiTi alloy is very sensitive to alloy composition and heat treatments, particularly annealing and ageing. This paper analysed the effect of ageing towards the thermomechanical behaviour of Ti-51at%Ni wire. The analysis focused on the effect of ageing at the different temperature on thermal transformation sequence and tensile deformation behaviour with respect to the recoverability of the alloy. It was found that B2-R transformation peak appeared in the differential scanning calorimetry (DSC) measurement when the alloys were aged at the temperature between 400°C to 475°C for 30 minutes. Further ageing at 500°C to 550°C yielded two stage transformation, B2-R-B19' in cooling. All aged wires exhibited good pseudoelastic behaviour when deformed at room temperature and yielded below 1% residual strain upon unloading. Ageing at 450°C resulted the smallest unrecovered strain of about 0.4%.
Dynamical Behavior of a Pseudoelastic Vibration Absorber Using Shape Memory Alloys
Directory of Open Access Journals (Sweden)
Hugo De S. Oliveira
2017-01-01
Full Text Available The tuned vibration absorber (TVA provides vibration reduction of a primary system subjected to external excitation. The idea is to increase the number of system degrees of freedom connecting a secondary system to the primary system. This procedure promotes vibration reduction at its design forcing frequency but two new resonance peaks appear introducing critical behaviors that must be avoided. The use of shape memory alloys (SMAs can improve the performance of the classical TVA establishing an adaptive TVA (ATVA. This paper deals with the nonlinear dynamics of a passive pseudoelastic tuned vibration absorber with an SMA element. In this regard, a single degree of freedom elastic oscillator is used to represent the primary system, while an extra oscillator with an SMA element represents the secondary system. Temperature dependent behavior of the system allows one to change the system response avoiding undesirable responses. Nevertheless, hysteretic behavior introduces complex characteristics to the system dynamics. The influence of the hysteretic behavior due to stress-induced phase transformation is investigated. The ATVA performance is evaluated by analyzing primary system maximum vibration amplitudes for different forcing amplitudes and frequencies. Numerical simulations establish comparisons of the ATVA results with those obtained from the classical TVA. A parametric study is developed showing the best performance conditions and this information can be useful for design purposes.
Physicists tackles questions of tiny dimensions
Moran, Barbara
2003-01-01
Today's physicists have a dilemna: they are using two separate theories to describe the universe. General relativity, which describes gravity, works for large objects like planets. Quantum mechanics, which involves the other forces, works for tiny objects like atoms. Unfortunately, the two theories don't match up.
A 'tiny-orange' spectrometer for electrons
International Nuclear Information System (INIS)
Silva, N.C. da.
1990-01-01
An tiny-orange electron spectrometer was designed and constructed using flat permanent magnets and a surface barrier detector. The transmission functions of different system configurations were determined for energies in the 200-1100 KeV range. A mathematical model for the system was developed. (L.C.J.A.)
Leros: A Tiny Microcontroller for FPGAs
DEFF Research Database (Denmark)
Schoeberl, Martin
2011-01-01
Leros is a tiny microcontroller that is optimized for current low-cost FPGAs. Leros is designed with a balanced logic to on-chip memory relation. The design goal is a microcontroller that can be clocked in about half of the speed a pipelined on-chip memory and consuming less than 300 logic cells...
Advances in developing TiNi nanoparticles
International Nuclear Information System (INIS)
Castro, A. Torres; Cuellar, E. Lopez; Mendez, U. Ortiz; Yacaman, M. Jose
2006-01-01
The elaboration of nanoparticles has become a field of great interest for many scientists. Nanoparticles possess different properties than those ones shown in bulk materials. Shape memory alloys have the exceptional ability to recuperate its original shape by simple heating after being 'plastically' deformed. When this process is originated, important changes in properties, as mechanical and electrical, are developed in bulk material. If there is possible to obtain nanoparticles with shape memory effects, these nanoparticles could be used in the elaboration of nanofluids with the ability to change their electrical and thermal conductivity with temperature changes, i.e., smart nanofluids. In this work, some recent results and discussion of TiNi nanoparticles obtained by ion beam milling directly from a TiNi wire with shape memory are presented. The nanoparticles obtained by this process are about 2 nm of diameter with a composition of Ti-41.0 at.% Ni. Synthesized nanoparticles elaborated by this method have an ordered structure
Tiny Devices Project Sharp, Colorful Images
2009-01-01
Displaytech Inc., based in Longmont, Colorado and recently acquired by Micron Technology Inc. of Boise, Idaho, first received a Small Business Innovation Research contract in 1993 from Johnson Space Center to develop tiny, electronic, color displays, called microdisplays. Displaytech has since sold over 20 million microdisplays and was ranked one of the fastest growing technology companies by Deloitte and Touche in 2005. Customers currently incorporate the microdisplays in tiny pico-projectors, which weigh only a few ounces and attach to media players, cell phones, and other devices. The projectors can convert a digital image from the typical postage stamp size into a bright, clear, four-foot projection. The company believes sales of this type of pico-projector may exceed $1.1 billion within 5 years.
From tiny microalgae to huge biorefineries
Gouveia, L.
2014-01-01
Microalgae are an emerging research field due to their high potential as a source of several biofuels in addition to the fact that they have a high-nutritional value and contain compounds that have health benefits. They are also highly used for water stream bioremediation and carbon dioxide mitigation. Therefore, the tiny microalgae could lead to a huge source of compounds and products, giving a good example of a real biorefinery approach. This work shows and presents examples of experimental...
Nanocellulose, a tiny fiber with huge applications.
Abitbol, Tiffany; Rivkin, Amit; Cao, Yifeng; Nevo, Yuval; Abraham, Eldho; Ben-Shalom, Tal; Lapidot, Shaul; Shoseyov, Oded
2016-06-01
Nanocellulose is of increasing interest for a range of applications relevant to the fields of material science and biomedical engineering due to its renewable nature, anisotropic shape, excellent mechanical properties, good biocompatibility, tailorable surface chemistry, and interesting optical properties. We discuss the main areas of nanocellulose research: photonics, films and foams, surface modifications, nanocomposites, and medical devices. These tiny nanocellulose fibers have huge potential in many applications, from flexible optoelectronics to scaffolds for tissue regeneration. We hope to impart the readers with some of the excitement that currently surrounds nanocellulose research, which arises from the green nature of the particles, their fascinating physical and chemical properties, and the diversity of applications that can be impacted by this material. Copyright © 2016 Elsevier Ltd. All rights reserved.
Thermal and pseudoelastic cycling in Cu-14.1Al-4.2Ni (wt%) single crystals
International Nuclear Information System (INIS)
Gastien, R.; Corbellani, C.E.; Sade, M.; Lovey, F.C.
2005-01-01
Thermally and stress induced martensitic transformations between β and a mixture of martensitic structures, β' and γ', were studied in Cu-14.1Al-4.2Ni (wt%) single crystals. In this way information on the relative stability between β' and γ' martensites, compared to the β phase, was obtained. The measurement of electrical resistance as a function of temperature was used to follow the evolution of thermally induced transitions. The stress induced transformations were analyzed in the small temperature range at which the pseudoelastic behavior between β and a mixture of both martensites plays the main role. A clear inhibition of the γ' martensite is detected as the number of cycles increases, no matter which thermodynamic coordinate is varied to induce the phase transition, i.e., temperature or stress. An evaluation of the magnitude of the relative stabilization of the β' martensite compared with γ' was obtained by a suitably designed experiment
DEFF Research Database (Denmark)
Enemark, Søren; Santos, Ilmar
2016-01-01
A kinetic law for constitutive modelling of shape memory alloys is proposed in order to increase model predictability in comparison with experimental data. The proposed law is based on cubic Bézier curves and contains curvature controlling parameters. The kinetic law and also the Duhem–Madelung sub......-loop model are implemented in a state-of-the-art constitutive model based on the framework by Lagoudas and coworkers. The original and modified models are fitted to consistent experimental results from mechanical cyclic loading under isothermal conditions (0–800 MPa, 30–70 °C) of a trained pseudoelastic...... shape memory alloy wire. Quantitative measures of goodness of fit show that both models perform well, but use of the modified model results in 31% reduction of the residual standard deviation compared with the original model (21.4 versus 14.8 MPa) in model calibration and 23% in model validation...
Detection of tiny amounts of fissile materials in large-sized containers with radioactive waste
Batyaev, V. F.; Skliarov, S. V.
2018-01-01
The paper is devoted to non-destructive control of tiny amounts of fissile materials in large-sized containers filled with radioactive waste (RAW). The aim of this work is to model an active neutron interrogation facility for detection of fissile ma-terials inside NZK type containers with RAW and determine the minimal detectable mass of U-235 as a function of various param-eters: matrix type, nonuniformity of container filling, neutron gen-erator parameters (flux, pulse frequency, pulse duration), meas-urement time. As a result the dependence of minimal detectable mass on fissile materials location inside container is shown. Nonu-niformity of the thermal neutron flux inside a container is the main reason of the space-heterogeneity of minimal detectable mass in-side a large-sized container. Our experiments with tiny amounts of uranium-235 (<1 g) confirm the detection of fissile materials in NZK containers by using active neutron interrogation technique.
Structural analysis of an off-grid tiny house
Calluari, Karina Arias; Alonso-Marroquín, Fernando
2017-06-01
The off-grid technologies and tiny house movement have experimented an unprecedented growth in recent years. Putting both sides together, we are trying to achieve an economic and environmental friendly solution to the higher cost of residential properties. This solution is the construction of off-grid tiny houses. This article presents a design for a small modular off-grid house made by pine timber. A numerical analysis of the proposed tiny house was performed to ensure its structural stability. The results were compared with the suggested serviceability limit state criteria, which are contended in the Australia Guidelines Standards making this design reliable for construction.
Struggling to Hear? Tiny Devices Can Keep You Connected
... Human Services Search form Search Site Menu Home Latest Issue Past Issues Special Issues Subscribe May 2018 Print this issue Struggling to Hear? Tiny Devices Can Keep You Connected En español Send us ...
Preliminary investigations on TINI based distributed instrumentation systems
International Nuclear Information System (INIS)
Bezboruah, T.; Kalita, M.
2006-04-01
A prototype web enabled distributed instrumentation system is being proposed in the Department of Electronics Science, Gauhati University, Assam, India. The distributed instrumentation system contains sensors, legacy hardware, TCP/IP protocol converter, TCP/IP network Ethernet, Database Server, Web/Application Server and Client PCs. As part of the proposed work, Tiny Internet Interface (TINI, TBM390: Dallas Semiconductor) has been deployed as TCP/IP stack, and java programming language as software tools. A feature supported by Java, that is particularly relevant to the distributed system is its applet. An applet is a java class that can be downloaded from the web server and can be run in a context application such as web browser or an applet viewer. TINI has been installed as TCP/IP stack, as it is the best suited embedded system with java programming language and it has been uniquely designed for communicating over One Wire Devices (OWD) over network. Here we will discuss the hardware and software aspects of TINI with OWD for the present system. (author)
Virginia Tech researchers find tiny bubbles a storehouse of knowledge
Trulove, Susan
2005-01-01
Fluid inclusions -- tiny bubbles of fluid or vapor trapped inside rock as it forms-- are clues to the location of ores and even petroleum; and they are time capsules that contain insights on the power of volcanos and hints of life in the universe.
Detection of tiny amounts of fissile materials in large-sized containers with radioactive waste
Directory of Open Access Journals (Sweden)
Batyaev V.F.
2018-01-01
Full Text Available The paper is devoted to non-destructive control of tiny amounts of fissile materials in large-sized containers filled with radioactive waste (RAW. The aim of this work is to model an active neutron interrogation facility for detection of fissile ma-terials inside NZK type containers with RAW and determine the minimal detectable mass of U-235 as a function of various param-eters: matrix type, nonuniformity of container filling, neutron gen-erator parameters (flux, pulse frequency, pulse duration, meas-urement time. As a result the dependence of minimal detectable mass on fissile materials location inside container is shown. Nonu-niformity of the thermal neutron flux inside a container is the main reason of the space-heterogeneity of minimal detectable mass in-side a large-sized container. Our experiments with tiny amounts of uranium-235 (<1 g confirm the detection of fissile materials in NZK containers by using active neutron interrogation technique.
Origins of tiny neutrino mass and large flavor mixings
International Nuclear Information System (INIS)
Haba, Naoyuki
2015-01-01
Active neutrino masses are extremely smaller than those of other quarks and leptons, and there are large flavor mixings in the lepton sector, contrary to the quark sector. They are great mysteries in the standard model, but also excellent hints of new physics beyond the standard model. Thus, questions 'What is an origin of tiny neutrino mass?' and 'What is an origin of large lepton flavor mixings?' are very important. In this paper, we overview various attempts to solve these big questions. (author)
Laser welding of Ti-Ni type shape memory alloy
International Nuclear Information System (INIS)
Hirose, Akio; Araki, Takao; Uchihara, Masato; Honda, Keizoh; Kondoh, Mitsuaki.
1990-01-01
The present study was undertaken to apply the laser welding to the joining of a shape memory alloy. Butt welding of a Ti-Ni type shape memory alloy was performed using 10 kW CO 2 laser. The laser welded specimens showed successfully the shape memory effect and super elasticity. These properties were approximately identical with those of the base metal. The change in super elasticity of the welded specimen during tension cycling was investigated. Significant changes in stress-strain curves and residual strain were not observed in the laser welded specimen after the 50-time cyclic test. The weld metal exhibited the celler dendrite. It was revealed by electron diffraction analysis that the phase of the weld metal was the TiNi phase of B2 structure which is the same as the parent phase of base metal and oxide inclusions crystallized at the dendrite boundary. However, oxygen contamination in the weld metal by laser welding did not occur because there was almost no difference in oxygen content between the base metal and the weld metal. The transformation temperatures of the weld metal were almost the same as those of the base metal. From these results, laser welding is applicable to the joining of the Ti-Ni type shape memory alloy. As the application of laser welding to new shape memory devices, the multiplex shape memory device of welded Ti-50.5 at % Ni and Ti-51.0 at % Ni was produced. The device showed two-stage shape memory effects due to the difference in transformation temperature between the two shape memory alloys. (author)
The science of tiny things: physics at the nanoscale
Energy Technology Data Exchange (ETDEWEB)
Copp, Stacy Marla [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-06-07
Nanoscience is the study of tiny objects that are only a billionth of a meter in size, or about 1,000 to 10,000 times smaller than a human hair. From the electronics in your smartphone to the molecular motors that are in your body’s cells, nanoscientists study and design materials that span a huge range of subjects, from physics to chemistry to biology. I will talk about some of what we do at LANL’s Center for Integrated Technologies, as well as how I first got interested in nanoscience and how I became a nanoscientist at LANL.
Ultrahigh Sensitivity Piezoresistive Pressure Sensors for Detection of Tiny Pressure.
Li, Hongwei; Wu, Kunjie; Xu, Zeyang; Wang, Zhongwu; Meng, Yancheng; Li, Liqiang
2018-05-31
High sensitivity pressure sensors are crucial for the ultra-sensitive touch technology and E-skin, especially at the tiny pressure range below 100 Pa. However, it is highly challenging to substantially promote sensitivity beyond the current level at several to two hundred kPa -1 , and to improve the detection limit lower than 0.1 Pa, which is significant for the development of pressure sensors toward ultrasensitive and highly precise detection. Here, we develop an efficient strategy to greatly improve the sensitivity near to 2000 kPa -1 by using short channel coplanar device structure and sharp microstructure, which is systematically proposed for the first time and rationalized by the mathematic calculation and analysis. Significantly, benefiting from the ultrahigh sensitivity, the detection limit is improved to be as small as 0.075 Pa. The sensitivity and detection limit are both superior to the current levels, and far surpass the function of human skin. Furthermore, the sensor shows fast response time (50 μs), excellent reproducibility and stability, and low power consumption. Remarkably, the sensor shows excellent detection capacity in the tiny pressure range including LED switching with a pressure of 7 Pa, ringtone (2-20 Pa) recognition, and ultrasensitive (0.1 Pa) electronic glove. This work represents a performance and strategic progress in the field of pressure sensing.
Swimming of a Tiny Subtropical Sea Butterfly with Coiled Shell
Murphy, David; Karakas, Ferhat; Maas, Amy
2017-11-01
Sea butterflies, also known as pteropods, include a variety of small, zooplanktonic marine snails. Thecosomatous pteropods possess a shell and swim at low Reynolds numbers by beating their wing-like parapodia in a manner reminiscent of insect flight. In fact, previous studies of the pteropod Limacina helicina have shown that pteropod swimming hydrodynamics and tiny insect flight aerodynamics are dynamically similar. Studies of L. helicina swimming have been performed in polar (0 degrees C) and temperate conditions (12 degrees C). Here we present measurements of the swimming of Heliconoides inflatus, a smaller yet morphologically similar pteropod that lives in warm Bermuda seawater (21 degrees C) with a viscosity almost half that of the polar seawater. The collected H. inflatus have shell sizes less than 1.5 mm in diameter, beat their wings at frequencies up to 11 Hz, and swim upwards in sawtooth trajectories at speeds up to approximately 25 mm/s. Using three-dimensional wing and body kinematics collected with two orthogonal high speed cameras and time-resolved, 2D flow measurements collected with a micro-PIV system, we compare the effects of smaller body size and lower water viscosity on the flow physics underlying flapping-based swimming by pteropods and flight by tiny insects.
Stress transmission through Ti-Ni alloy, titanium and stainless steel in impact compression test.
Yoneyama, T; Doi, H; Kobayashi, E; Hamanaka, H; Tanabe, Y; Bonfield, W
2000-06-01
Impact stress transmission of Ti-Ni alloy was evaluated for biomedical stress shielding. Transformation temperatures of the alloy were investigated by means of DSC. An impact compression test was carried out with use of split-Hopkinson pressure-bar technique with cylindrical specimens of Ti-Ni alloy, titanium and stainless steel. As a result, the transmitted pulse through Ti-Ni alloy was considerably depressed as compared with those through titanium and stainless steel. The initial stress reduction was large through Ti-Ni alloy and titanium, but the stress reduction through Ti-Ni alloy was more continuous than titanium. The maximum value in the stress difference between incident and transmitted pulses through Ti-Ni alloy or titanium was higher than that through stainless steel, while the stress reduction in the maximum stress through Ti-Ni alloy was statistically larger than that through titanium or stainless steel. Ti-Ni alloy transmitted less impact stress than titanium or stainless steel, which suggested that the loading stress to adjacent tissues could be decreased with use of Ti-Ni alloy as a component material in an implant system. Copyright 2000 Kluwer Academic Publishers
SCADA SYSTEM SIMULATION USING THE TINY TIGER 2 DEVELOPMENT BOARD
Directory of Open Access Journals (Sweden)
AGAPE C.P.
2015-12-01
Full Text Available This paper presents a new design for a surveillance and control system of a medium voltage cell. The accent is on the acquisition of information of the consumer’s state, the instantaneous current consumption, power and voltage apparent to the consumer. The proposed design is based on Wilke Technology development board at its basis being a Tiny-tiger 2 Multitasking Microcontroller. This computer has 2 MByte or 4 MByte Flash for programming, and 1 MByte SRAM with backup input for data. On the software’s behalf we managed to create a Delphi Interface which communicates with the serial port on the development board. The interface takes information about the consumer and its capacity to load with voltage.
Prospect of Ti-Ni shape memory alloy applied in reactor structures
International Nuclear Information System (INIS)
Duan Yuangang
1995-01-01
Shape memory effect mechanism, physical property, composition, manufacturing process and application in mechanical structure of Ti-Ni shape memory alloy are introduced. Applications of Ti-Ni shape memory alloy in reactor structure are prospected and some necessary technical conditions of shape memory alloy applied in the reactor structure are put forward initially
Tiny Ultraviolet Polarimeter for Earth Stratosphere from Space Investigation
Nevodovskyi, P. V.; Morozhenko, O. V.; Vidmachenko, A. P.; Ivakhiv, O.; Geraimchuk, M.; Zbrutskyi, O.
2015-09-01
One of the reasons for climate change (i.e., stratospheric ozone concentrations) is connected with the variations in optical thickness of aerosols in the upper sphere of the atmosphere (at altitudes over 30 km). Therefore, aerosol and gas components of the atmosphere are crucial in the study of the ultraviolet (UV) radiation passing upon the Earth. Moreover, a scrupulous study of aerosol components of the Earth atmosphere at an altitude of 30 km (i.e., stratospheric aerosol), such as the size of particles, the real part of refractive index, optical thickness and its horizontal structure, concentration of ozone or the upper border of the stratospheric ozone layer is an important task in the research of the Earth climate change. At present, the Main Astronomical Observatory of the National Academy of Sciences (NAS) of Ukraine, the National Technical University of Ukraine "KPI"and the Lviv Polytechnic National University are engaged in the development of methodologies for the study of stratospheric aerosol by means of ultraviolet polarimeter using a microsatellite. So fare, there has been created a sample of a tiny ultraviolet polarimeter (UVP) which is considered to be a basic model for carrying out space experiments regarding the impact of the changes in stratospheric aerosols on both global and local climate.
A tiny tick can cause a big health problem
Directory of Open Access Journals (Sweden)
Manuel John
2017-01-01
Full Text Available Ticks are tiny crawling bugs in the spider family that feed by sucking blood from animals. They are second only to mosquitoes as vectors of human disease, both infectious and toxic. Infected ticks spread over a hundred diseases, some of which are fatal if undetected. They spread the spirochete (which multiplies in the insect's gut with a subsequent bite to the next host. We describe the only reported cases of peri ocular tick bite from India that presented to us within a span of 3 days and its management. Due suspicion and magnification of the lesions revealed the ticks which otherwise masqueraded as small skin tags/moles on gross examination. The ticks were firmly latched on to the skin and careful removal prevented incarceration of the mouth parts. Rickettsial diseases that were believed to have disappeared from India are reemerging and their presence has recently been documented in at least 11 states in the country. Among vector borne diseases, the most common, Lyme disease, also known as the great mimicker, can present with rheumatoid arthritis, fibromyalgia, depression, attention deficit hyperactivity disorder, multiple sclerosis, chronic fatigue syndrome, cardiac manifestations, encephalitis, and mental illness, to name some of the many associations. Common ocular symptoms and signs include conjunctivitis, keratitis, uveitis, and retinitis. Early detection and treatment of tick borne diseases is important to prevent multi system complications that can develop later in life.
SMS Security System on Mobile Devices Using Tiny Encryption Algorithm
Novelan, M. S.; Husein, A. M.; Harahap, M.; Aisyah, S.
2018-04-01
The development of telecommunications technology is so rapid has given such great benefits. With the telecommunication technology, distance and time no longer be a significant obstacle. One of the results of telecommunications technology that is well known is the Short Message Service. In this study developed an application on the mobile phone to modify the SMS message into ciphertext so that the information content of the SMS is not known by others. SMS delivery system for encrypting messages into ciphertext using a key that is entered by the sender then sends to the destination number. SMS reception system to decrypt it to others via SMS without the fear of information from these messages will be known by others. The method used in the system encrypt and decrypt the message is the algorithm Tiny Encryption Algorithm and implemented using the Java programming language. JDK 1.7 as the Java programming language ciphertext into plaintext using the key entered by the receiver and displays the original message to the recipient. This application can be used by someone who wants to send a confidential information and the Java compiler. Eclipse, a Java SDK and the Android SDK as a Java source code editor.
Tiny timekeepers witnessing high-rate exhumation processes.
Zhong, Xin; Moulas, Evangelos; Tajčmanová, Lucie
2018-02-02
Tectonic forces and surface erosion lead to the exhumation of rocks from the Earth's interior. Those rocks can be characterized by many variables including peak pressure and temperature, composition and exhumation duration. Among them, the duration of exhumation in different geological settings can vary by more than ten orders of magnitude (from hours to billion years). Constraining the duration is critical and often challenging in geological studies particularly for rapid magma ascent. Here, we show that the time information can be reconstructed using a simple combination of laser Raman spectroscopic data from mineral inclusions with mechanical solutions for viscous relaxation of the host. The application of our model to several representative geological settings yields best results for short events such as kimberlite magma ascent (less than ~4,500 hours) and a decompression lasting up to ~17 million years for high-pressure metamorphic rocks. This is the first precise time information obtained from direct microstructural observations applying a purely mechanical perspective. We show an unprecedented geological value of tiny mineral inclusions as timekeepers that contributes to a better understanding on the large-scale tectonic history and thus has significant implications for a new generation of geodynamic models.
Purple Salt and Tiny Drops of Water in Meteorites
Taylor, G. J.
1999-12-01
Some meteorites, especially those called carbonaceous chondrites, have been greatly affected by reaction with water on the asteroids in which they formed. These reactions, which took place during the first 10 million years of the Solar System's history, formed assorted water-bearing minerals, but nobody has found any of the water that caused the alteration. Nobody, that is, until now. Michael Zolensky and team of scientists from the Johnson Space Center in Houston and Virginia Tech (Blacksburg, Virginia) discovered strikingly purple sodium chloride (table salt) crystals in two meteorites. The salt contains tiny droplets of salt water (with some other elements dissolved in it). The salt is as old as the Solar System, so the water trapped inside the salt is also ancient. It might give us clues to the nature of the water that so pervasively altered carbonaceous chondrites and formed oceans on Europa and perhaps other icy satellites. However, how the salt got into the two meteorites and how it trapped the water remains a mystery - at least for now.
Spark plasma sintering of TiNi nano-powders for biological application
International Nuclear Information System (INIS)
Fu, Y Q; Gu, Y W; Shearwood, C; Luo, J K; Flewitt, A J; Milne, W I
2006-01-01
Nano-sized TiNi powder with an average size of 50 nm was consolidated using spark plasma sintering (SPS) at 800 deg. C for 5 min. A layer of anatase TiO 2 coating was formed on the sintered TiNi by chemical reaction with a hydrogen peroxide (H 2 O 2 ) solution at 60 deg. C followed by heat treatment at 400 deg. C to enhance the bioactivity of the metal surface. Cell culture using osteoblast cells and a biomimetic test in simulated body fluid proved the biocompatibility of the chemically treated SPS TiNi
XPS characterization of surface and interfacial structure of sputtered TiNi films on Si substrate
International Nuclear Information System (INIS)
Fu Yongqing; Du Hejun; Zhang, Sam; Huang Weimin
2005-01-01
TiNi films were prepared by co-sputtering TiNi and Ti targets. X-ray photoelectron spectroscopy (XPS) was employed to study surface chemistry of the films and interfacial structure of Si/TiNi system. Exposure of the TiNi film to the ambient atmosphere (23 deg. C and 80% relatively humidity) facilitated quick adsorption of oxygen and carbon on the surface. With time, carbon and oxygen content increased drastically at the surface, while oxygen diffused further into the layer. After a year, carbon content at the surface became as high as 65.57% and Ni dropped below the detection limit of XPS. Depth profiling revealed that significant inter-diffusion occurred between TiNi film and Si substrate with a layer of 90-100 nm. The detailed bond changes of different elements with depth were obtained using XPS and the formation of titanium silicides at the interface were identified
Crystal structure of TiNi nanoparticles obtained by Ar ion beam deposition
International Nuclear Information System (INIS)
Castro, A. Torres; Cuellar, E. Lopez; Mendez, U. Ortiz; Yacaman, M. Jose
2008-01-01
Nanoparticles are a state of matter that have properties different from either molecules or bulk solids, turning them into a very interesting class of materials to study. In the present work, the crystal structure of TiNi nanoparticles obtained by ion beam deposition is characterized. TiNi nanoparticles were obtained from TiNi wire samples by sputtering with Ar ions using a Gatan precision ion polishing system. The TiNi nanoparticles were deposited on a Lacey carbon film that was used for characterization by transmission electron microscopy. The nanoparticles were characterized by high-resolution transmission electron microscopy, high-angle annular dark-field imaging, electron diffraction, scanning transmission electron microscopy and energy-dispersive X-ray spectroscopy. Results of nanodiffraction seem to indicate that the nanoparticles keep the same B2 crystal structure as the bulk material but with a decreased lattice parameter
Galled by the Gallbladder?: Your Tiny, Hard-Working Digestive Organ
... Galled by the Gallbladder? Your Tiny, Hard-Working Digestive Organ En español Send us your comments Most ... among the most common and costly of all digestive system diseases. By some estimates, up to 20 ...
The kinetics of Cr layer coated on TiNi films for hydrogen absorption
Indian Academy of Sciences (India)
Abstract. The effect of hydrogen absorption on electrical resistance with temperature ... pressure by thermal evaporation on the glass substrate at room temperature. ... and charging rate becomes faster in comparison to FeTi and TiNi thin films.
The kinetics of Cr layer coated on TiNi films for hydrogen absorption
Indian Academy of Sciences (India)
The effect of hydrogen absorption on electrical resistance with temperature for TiNi and TiNi–Cr thin films was investigated. The TiNi thin films of thickness 800 Å were deposited at different angles ( = 0°, 30°, 45°, 60° and 75°) under 10−5 Torr pressure by thermal evaporation on the glass substrate at room temperature.
TinyOS-based quality of service management in wireless sensor networks
Peterson, N.; Anusuya-Rangappa, L.; Shirazi, B.A.; Huang, R.; Song, W.-Z.; Miceli, M.; McBride, D.; Hurson, A.; LaHusen, R.
2009-01-01
Previously the cost and extremely limited capabilities of sensors prohibited Quality of Service (QoS) implementations in wireless sensor networks. With advances in technology, sensors are becoming significantly less expensive and the increases in computational and storage capabilities are opening the door for new, sophisticated algorithms to be implemented. Newer sensor network applications require higher data rates with more stringent priority requirements. We introduce a dynamic scheduling algorithm to improve bandwidth for high priority data in sensor networks, called Tiny-DWFQ. Our Tiny-Dynamic Weighted Fair Queuing scheduling algorithm allows for dynamic QoS for prioritized communications by continually adjusting the treatment of communication packages according to their priorities and the current level of network congestion. For performance evaluation, we tested Tiny-DWFQ, Tiny-WFQ (traditional WFQ algorithm implemented in TinyOS), and FIFO queues on an Imote2-based wireless sensor network and report their throughput and packet loss. Our results show that Tiny-DWFQ performs better in all test cases. ?? 2009 IEEE.
Fast Response Shape Memory Effect Titanium Nickel (TiNi) Foam Torque Tubes
Jardine, Peter
2014-01-01
Shape Change Technologies has developed a process to manufacture net-shaped TiNi foam torque tubes that demonstrate the shape memory effect. The torque tubes dramatically reduce response time by a factor of 10. This Phase II project matured the actuator technology by rigorously characterizing the process to optimize the quality of the TiNi and developing a set of metrics to provide ISO 9002 quality assurance. A laboratory virtual instrument engineering workbench (LabVIEW'TM')-based, real-time control of the torsional actuators was developed. These actuators were developed with The Boeing Company for aerospace applications.
Surface characterization of TiNi deformed by high-pressure torsion
Energy Technology Data Exchange (ETDEWEB)
Awang Shri, Dayangku Noorfazidah [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Structural Materials Unit, National Institute for Materials Science, Tsukuba, Ibaraki 305-0047 (Japan); Tsuchiya, Koichi, E-mail: tsuchiya.koichi@nims.go.jp [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Structural Materials Unit, National Institute for Materials Science, Tsukuba, Ibaraki 305-0047 (Japan); Yamamoto, Akiko [Biomaterials Unit, International Center for Material Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044 (Japan)
2014-01-15
Effect of grain refinements and amorphization by high-pressure torsion (HPT) on surface chemistry was investigated on TiNi. X-ray diffraction and micro-Vickers tests were used to check the phase changes and hardness before and after HPT. X-ray photoelectron spectroscopy was used to observe the changes in the natural passive film formation on the surface. Phase analysis reveals the change of crystalline TiNi to nanostructured one with increased hardness with straining by HPT. Grain refinement and amorphization caused by HPT reduce the amount of metallic Ni in the passive films and also increase the thickness of the film.
Fabrication, microstructure and stress effects in sputtered TiNi thin films
International Nuclear Information System (INIS)
Grummon, D.S.
2000-01-01
Sputtered thin films of equiatomic TiNi and TiNiX ternary alloys have excellent mechanical properties and exhibit robust shape-memory and transformational superelasticity. Furthermore, the energetic nature of the sputter deposition process allows the creation of highly refined microstructures that are difficult to achieve by melt-solidification. The present paper will present recent work on the relationship between processing, microstructure and properties of binary TiNi thin films, focusing primarily on residual stresses, kinetics of stress-relaxation and crystallization, and fine grain sizes achievable using hot-substrate direct crystallization. (orig.)
A study on the shape memory characteristics of Ti-Ni50-x-Pdx alloys
International Nuclear Information System (INIS)
Lee, H. W.; Chun, B. S.; Oh, S. J.; Kuk, I.H.
1991-01-01
The shape memory characteristics in TiNi alloys are greatly effected by the alloy composition and heat treatment condition. The present work was aimed to investigate the effect of Pd x (x=5,10,15,20) addition on the shape memory chracteristics of TiNi alloys by means of electrical resistance measurement. X-ray diffraction, differential scanning calorimetry and electron dispersive analysis X-ray measurement. The results obtained from this study are as follows; 1. The martensitic transformation start temperature, Ms of Ti-Ni 50-x -Pd x alloys decreased considerably with the increase of Pd content up to 10at%, whereas increased largely with the increase of Pd content in the alloys with Pd content more than 15at%. 2. The Ms temperature of Ti-Ni 50-x -Pd x alloys with cold working was significantly lower than that of the fully annealed alloys because high density dislocation has been introduced by the cold working which suppressed the martensitic transformation. (Author)
Homogenization of stationary Navier–Stokes equations in domains with tiny holes
Czech Academy of Sciences Publication Activity Database
Feireisl, Eduard; Lu, Y.
2015-01-01
Roč. 17, č. 2 (2015), s. 381-392 ISSN 1422-6928 Keywords : compressible Navier - Stokes system * homogenization * tiny holes Subject RIV: BA - General Mathematics Impact factor: 1.023, year: 2015 http://link.springer.com/article/10.1007%2Fs00021-015-0200-2
Micromechanical Analysis of Crack Closure Mechanism for Intelligent Material Containing TiNi Fibers
Araki, Shigetoshi; Ono, Hiroyuki; Saito, Kenji
In our previous study, the micromechanical modeling of an intelligent material containing TiNi fibers was performed and the stress intensity factor KI at the tip of the crack in the material was expressed in terms of the magnitude of the shape memory shrinkage of the fibers and the thermal expansion strain in the material. In this study, the value of KI at the tip of the crack in the TiNi/epoxy material is calculated numerically by using analytical expressions obtained in our first report. As a result, we find that the KI value decreases with increasing shrink strain of the fibers, and this tendency agrees with that of the experimental result obtained by Shimamoto etal.(Trans. Jpn. Soc. Mech. Eng., Vol. 65, No. 634 (1999), pp. 1282-1286). Moreover, there exists an optimal value of the shrink strain of the fibers to make the KI value zero. The change in KI with temperature during the heating process from the reference temperature to the inverse austenitic finishing temperature of TiNi fiber is also consistent with the experimental result. These results can be explained by the changes in the shrink strain, the thermal expansion strain, and the elastic moduli of TiNi fiber with temperature. These results may be useful in designing intelligent materials containing TiNi fibers from the viewpoint of crack closure.
Tiny Integrated Network Analyzer for Noninvasive Measurements of Electrically Small Antennas
DEFF Research Database (Denmark)
Buskgaard, Emil Feldborg; Krøyer, Ben; Tatomirescu, Alexandru
2016-01-01
the system. The tiny integrated network analyzer is a stand-alone Arduino-based measurement system that utilizes the transmit signal of the system under test as its reference. It features a power meter with triggering ability, on-board memory, universal serial bus, and easy extendibility with general...
Long the fixation of physicists worldwide, a tiny particle is found
2006-01-01
"After decades of intensive effort by both experimental and theoretical physicists worldwide, a tiny particle with no charge, a very low mass and a lifetime much shorter than a nanosecond, dubbed the "axion", has now been detected by the University at Buffalo physicist who first suggested its existence in a little-read paper as early as 194." (2 pages)
International Nuclear Information System (INIS)
Hattori, Shuji; Fujisawa, Seiji; Owa, Tomonobu
2007-01-01
In this study, cavitation erosion tests were carried out by using thermal spraying and deposition of Ti-Ni shape memory alloy for the surface coating. The results show the test speciment of Ti-Ni thermal spraying has many initial defects, so that the erosion resistance is very low. The erosion resistance of Ti-Ni deposit is about 5-10 times higher than that of SUS 304, thus erosion resistance of Ti-Ni deposit is better than that of Ti-Ni thermal spraying. The cavitation erosion tests were carried out by using Fe-Mn-Si with shape memory and gunmetal with low elastic modulus. The erosion resistance of Fe-Mn-Si shape memory alloy solid is about 9 times higher than that of SUS 304. The erosion resistance of gunmetal is almost the same as SUS 304, because the test specimen of gunmetal has many small defects on the original surface. (author)
Franklin, Joel N
2003-01-01
Mathematically rigorous introduction covers vector and matrix norms, the condition-number of a matrix, positive and irreducible matrices, much more. Only elementary algebra and calculus required. Includes problem-solving exercises. 1968 edition.
Alloying process of sputter-deposited Ti/Ni multilayer thin films
International Nuclear Information System (INIS)
Cho, H.; Kim, H.Y.; Miyazaki, S.
2006-01-01
Alloying process of a Ti/Ni multilayer thin film was investigated in detail by differential scanning calorimetry (DSC), X-ray diffractometry (XRD) and transmission electron microscopy (TEM). The Ti/Ni multilayer thin film was prepared by depositing Ti and Ni layers alternately on a SiO 2 /Si substrate. The number of each metal layer was 100, and the total thickness was 3 μm. The alloy composition was determined as Ti-51 at.%Ni by electron probe micro analysis (EPMA). The DSC curve exhibited three exothermic peaks at 621, 680 and 701 K during heating the as-sputtered multilayer thin film. In order to investigate the alloying process, XRD and TEM observation was carried out for the specimens heated up to various temperatures with the heating rate same as the DSC measurement. The XRD profile of the as-sputtered film revealed only diffraction peaks of Ti and Ni. But reaction layers of 3 nm in thickness were observed at the interfaces of Ti and Ni layers in cross-sectional TEM images. The reaction layer was confirmed as an amorphous phase by the nano beam diffraction analysis. The XRD profiles exhibited that the intensity of Ti diffraction peak decreased in the specimen heat-treated above 600 K. The peak from Ni became broad and shifted to lower diffraction angle. The amorphous layer thickened up to 6 nm in the specimen heated up to 640 K. The diffraction peak corresponding to Ti-Ni B2 phase appeared and the peak from Ni disappeared for the specimen heated up to 675 K. The Ti-Ni B2 crystallized from the amorphous reaction layer. After further heating above the third exothermic peak, the intensity of the peak from the Ti-Ni B2 phase increased, the peak from Ti disappeared and the peaks corresponding to Ti 2 Ni appeared. The Ti 2 Ni phase was formed by the reaction of the Ti-Ni B2 and Ti
Solid-state reaction in Ti/Ni multilayered films studied by using magneto-optical spectroscopy
Lee, Y P; Kim, K W; Kim, C G; Kudryavtsev, Y V; Nemoshkalenko, V V; Szymanski, B
2000-01-01
A comparative study of the solid-state reaction (SSR) in a series of Ti/Ni multilayered films (MLDs) with bilayer periods of 0.65-22.2 nm and a constant Ti to Ni sublayer thickness ratio was performed by using experimental and computer-simulated magneto-optical (MO) spectroscopy based on different models of MLFs, as well as x-ray diffraction (XRD). The spectral and sublayer thickness dependences of the MO properties of the Ti/Ni MLFs were explained on the basis of the electromagnetic theory. The existence of a threshold nominal Ni-sublayer thickness of about 3 nm for the as-deposited Ti/Ni MLF to observe of the equatorial Kerr effect was explained by a solid-state reaction which formed nonmagnetic alloyed regions between pure components during the MLF deposition. The SSR in the Ti/Ni MLFs, which was caused by the low temperature annealing, led to the formation of an amorphous Ti-Ni alloy and took place mainly in the Ti/Ni MLFs with ''thick'' sublayers. For the caes of Ti/Ni MLFs, the MO approach turned out to...
Limitations of constitutive relations for TiNi shape memory alloys
International Nuclear Information System (INIS)
Tang, W.; Sandstroem, R.
1995-01-01
Phase transformation tensor Ω in the constitutive equation proposed by Tanaka has been evaluated by employing experimental data of TiNi alloys in a constrained recovery process. It demonstrates that the absolute value of Ω for the constrained recovery process is typically about 0.6 ∼ 0.7 x 10 3 MPa, which is much smaller than that for the stress - induced martensitic transformation (typically 2.5 ∼ 3.5 x 10 3 ). Based on the evaluated results for Ω, predicted recovery stress - temperature relations by the constitutive equation are compared with the experimental data for TiNi rods under different strains. Big discrepancy exists for large strain conditions. Several transformation kinetic expressions are examined for the constitutive relation of the constrained recovery process. (orig.)
Directory of Open Access Journals (Sweden)
Carlos Augusto do N. Oliveira
2013-01-01
Full Text Available The development of shape memory actuators has enabled noteworthy applications in the mechanical engineering, robotics, aerospace, and oil industries and in medicine. These applications have been targeted on miniaturization and taking full advantage of spaces. This article analyses a Ti-Ni shape memory actuator used as part of a flow control system. A Ti-Ni spring actuator is subjected to thermomechanical training and parameters such as transformation temperature, thermal hysteresis and shape memory effect performance were investigated. These parameters were important for understanding the behavior of the actuator related to martensitic phase transformation during the heating and cooling cycles which it undergoes when in service. The multiple regression methodology was used as a computational tool for analysing data in order to simulate and predict the results for stress and cycles where the experimental data was not developed. The results obtained using the training cycles enable actuators to be characterized and the numerical simulation to be validated.
The application of Tiny Triplet Finder (TTF) in BTeV pixel trigger
International Nuclear Information System (INIS)
Wu, Jin-Yuan; Wang, M.; Gottschalk, E.; Shi, Z.; Fermilab
2006-01-01
We describe a track segment recognition scheme called the Tiny Triplet Finder (TTF) that involves grouping of three hits satisfying a constraint such as forming of a straight line. The TTF performs this O(n 3 ) function in O(n) time, where n is number of hits in each detector plane. The word ''tiny'' reflects the fact that the FPGA resource usage is small. The number of logic elements needed for the TTF is O(Nlog(N)), where N is the number of bins in the coordinate considered, which for large N, is significantly smaller than O(N 2 ) needed for typical implementations of similar functions. The TTF is also suitable for software implementations as well as many other pattern recognition problems
The application of Tiny Triplet Finder (TTF) in BTeV pixel trigger
Energy Technology Data Exchange (ETDEWEB)
Wu, Jin-Yuan; Wang, M.; Gottschalk, E.; Shi, Z.; /Fermilab
2006-03-01
We describe a track segment recognition scheme called the Tiny Triplet Finder (TTF) that involves grouping of three hits satisfying a constraint such as forming of a straight line. The TTF performs this O(n{sup 3}) function in O(n) time, where n is number of hits in each detector plane. The word ''tiny'' reflects the fact that the FPGA resource usage is small. The number of logic elements needed for the TTF is O(Nlog(N)), where N is the number of bins in the coordinate considered, which for large N, is significantly smaller than O(N{sup 2}) needed for typical implementations of similar functions. The TTF is also suitable for software implementations as well as many other pattern recognition problems.
Schriml, Lynn
2017-01-01
Betsy Pugel, National Aeronautics and Space Administration Tiny houses: Planetary protection-focused materials selection for spaceflight hardware surfacesOn October 10-12th, 2017 the Alfred P. Sloan Foundation and The National Academies of Sciences, Engineering and Medicine co-hosting MoBE 2017 (Microbiology of the Built Environment Research and Applications Symposium) at the National Academy of Sciences Building to present the current state-of-the-science in understanding the formation and ...
(Updated) Nanotechnology: Understanding the Tiny Particles That May Save a Life | Poster
By Nathalie Walker, Guest Writer Could nanotechnology—the study of tiny matter ranging in size from 1 to 200 nanometers—be the future of cancer treatment? Although it is a relatively new field in cancer research, nanotechnology is not new to everyday life. Have you ever thought about the tennis ball you’ve thrown with your dog at the park and wondered what it is made of?
International Nuclear Information System (INIS)
Qiao, Guofu; Sun, Guodong; Li, Hui; Ou, Jinping
2014-01-01
Highlights: • Ultra-low ambient energy was scavenged to power the first of its kind wireless corrosion sensors. • Three feasible tiny-energy sources were exploited for long-term corrosion monitoring. • Automatic recharging control of heterogeneous tiny energy was proposed for human-free monitoring. • Corrosion itself was applied as an energy source to power the wireless corrosion-monitoring motes. - Abstract: Reinforcing steel corrosion is a significant factor leading to the durability deterioration of reinforced concrete (RC) structures. The on-line monitoring of the corrosion of RC structures in a long-term, human-free manner is not only valuable in industry, but also a significant challenge in academia. This paper presents the first of its kind corrosion-monitoring approach that only exploits three heterogeneous tiny energy sources to power commercial-off-the-shelf wireless sensor motes such that the corrosion-related data are automatically and autonomously captured and sent to users via wireless channels. We first investigated the availability of these three tiny energy sources: corrosion energy, a cement battery, and a weak solar energy. In particular, the two former energy sources inherently exist in RC structures and can be generated continually in the service-life of RC structures, which beneficial for the prospects of long-term corrosion monitoring. We then proposed a proof-of-concept prototype, which consisted of a Telosb wireless sensor mote and an energy harvester in order to evaluate the feasibility and effectiveness of the ultralow-power ambient energy as a type of power supply in corrosion monitoring applications. The critical metrics for the holographic monitoring of RC structures, including electrochemical noise, humidity and temperature, were successfully acquired and analysed using a post-processing program. This paper describes a unique and novel approach towards the realisation of smart structural monitoring and control system in the
In situ crystallization of sputter-deposited TiNi by ion irradiation
International Nuclear Information System (INIS)
Ikenaga, Noriaki; Kishi, Yoichi; Yajima, Zenjiro; Sakudo, Noriyuki
2013-01-01
Highlights: ► We developed a sputtering deposition process equipped with an ion irradiation system. ► Ion irradiation enables crystallization at lower substrate temperature. ► Ion fluence has an effective range for low-temperature crystallization. ► Crystallized films made on polyimide by the process show the shape memory effect. -- Abstract: TiNi is well known as a typical shape-memory alloy, and the shape-memory property appears only when the structure is crystalline. Until recently, the material has been formed as amorphous film by single-target sputtering deposition at first and then crystallized by being annealed at high temperature over 500 °C. Therefore, it has been difficult to make crystalline TiNi film directly on a substrate of polymer-based material because of the low heat resistance of substrate. In order to realize an actuator from the crystallized TiNi film on polymer substrates, the substrate temperature should be kept below 200 °C throughout the whole process. In our previous studies we have found that deposited film can be crystallized at very low temperature without annealing but with simultaneous irradiation of Ar ions during sputter-deposition. And we have also demonstrated the shape-memory effect with the TiNi film made by the new process. In order to investigate what parameters of the process contribute to the low-temperature crystallization, we have focused to the ion fluence of the ion irradiation. Resultantly, it was found that the transition from amorphous structure to crystal one has a threshold range of ion fluence
Fabrication of TiNi/CFRP smart composite using cold drawn TiNi wires
Xu, Ya; Otsuka, Kazuhiro; Toyama, Nobuyuki; Yoshida, Hitoshi; Jang, Byung-Koog; Nagai, Hideki; Oishi, Ryutaro; Kishi, Teruo
2002-07-01
In recent years, pre-strained TiNi shape memory alloys (SMA) have been used for fabricating smart structure with carbon fibers reinforced plastics (CFRP) in order to suppress microscopic mechanical damages. However, since the cure temperature of CFRP is higher than the reverse transformation temperatures of TiNi SMA, special fixture jigs have to be used for keeping the pre-strain during fabrication, which restricted its practical application. In order to overcome this difficulty, we developed a new method to fabricate SMA/CFRP smart composites without using special fixture jigs by controlling the transformation temperatures of SMA during fabrication. This method consists of using heavily cold-worked wires to increase the reverse transformation temperatures, and of using flash electrical heating of the wires after fabrication in order to decrease the reverse transformation temperatures to a lower temperature range again without damaging the epoxy resin around SMA wires. By choosing proper cold-working rate and composition of TiNi alloys, the reverse transformation temperatures were well controlled, and the TiNi/CFRP hybrid smart composite was fabricated without using special fixture jigs. The damage suppressing effect of cold drawn wires embedded in CFRP was confirmed.
Cytocompatibility evaluation and surface characterization of TiNi deformed by high-pressure torsion
Energy Technology Data Exchange (ETDEWEB)
Awang Shri, Dayangku Noorfazidah, E-mail: AWANGSHRI.Dayangku@nims.go.jp [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Structural Materials Unit, National Institute for Materials Science, Tsukuba, Ibaraki 305-0047 (Japan); Tsuchiya, Koichi [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Structural Materials Unit, National Institute for Materials Science, Tsukuba, Ibaraki 305-0047 (Japan); Yamamoto, Akiko [Biomaterials Unit, International Center for Material Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044 (Japan)
2014-10-01
Effect of high-pressure torsion (HPT) deformation on biocompatibility and surface chemistry of TiNi was systematically investigated. Ti–50 mol% Ni was subjected to HPT straining for different numbers of turns, N = 0.25, 0.5, 1, 5 and 10 at a rotation speed of 1 rpm. X-ray photoelectron spectroscopy observations after 7 days of cell culture revealed the changes in the surface oxide composition, enrichment of Ti and detection of nitrogen derived from organic molecules in the culture medium. Plating efficiency of L929 cells was slightly increased by HPT deformation though no significant difference was observed. Albumin adsorption was higher in HPT-deformed samples, while vitronectin adsorption was peaked at N = 1. HPT deformation was also found to effectively suppress the Ni ion release from the TiNi samples into the cell culture medium even after the low degree of deformation at N = 0.25. - Highlights: • Nanostructured Ti–50 mol%Ni alloy was produced using high-pressure torsion. • HPT deformation improved L929 growth on TiNi samples. • Changes in surface chemistry were observed in HPT deformed samples. • Protein adsorption behavior was influenced by the surface chemistry. • Ni ion release was suppressed in HPT deformed samples.
THE ROLE OF TINY GRAINS ON THE ACCRETION PROCESS IN PROTOPLANETARY DISKS
International Nuclear Information System (INIS)
Bai Xuening
2011-01-01
Tiny grains such as polycyclic aromatic hydrocarbons (PAHs) have been thought to dramatically reduce the coupling between the gas and magnetic fields in weakly ionized gas such as in protoplanetary disks (PPDs) because they provide a tremendous surface area to recombine free electrons. The presence of tiny grains in PPDs thus raises the question of whether the magnetorotational instability (MRI) is able to drive rapid accretion consistent with observations. Charged tiny grains have similar conduction properties as ions, whose presence leads to qualitatively new behaviors in the conductivity tensor, characterized by n-bar /n e >1, where n e and n-bar denote the number densities of free electrons and all other charged species, respectively. In particular, Ohmic conductivity becomes dominated by charged grains rather than by electrons when n-bar /n e exceeds about 10 3 , and Hall and ambipolar diffusion (AD) coefficients are reduced by a factor of ( n-bar /n e ) 2 in the AD-dominated regime relative to that in the Ohmic regime. Applying the methodology of Bai, we find that in PPDs, when PAHs are sufficiently abundant (∼> 10 -9 per H 2 molecule), there exists a transition radius r trans of about 10-20 AU, beyond which the MRI active layer extends to the disk midplane. At r trans , the optimistically predicted MRI-driven accretion rate M-dot is one to two orders of magnitude smaller than that in the grain-free case, which is too small compared with the observed rates, but is in general no smaller than the predicted M-dot with solar-abundance 0.1 μm grains. At r > r trans , we find that, remarkably, the predicted M-dot exceeds the grain-free case due to a net reduction of AD by charged tiny grains and reaches a few times 10 -8 M sun yr -1 . This is sufficient to account for the observed M-dot in transitional disks. Larger grains (∼> 0.1 μm) are too massive to reach such high abundance as tiny grains and to facilitate the accretion process.
High temperature annealing effect on structural and magnetic properties of Ti/Ni multilayers
International Nuclear Information System (INIS)
Bhatt, Pramod; Ganeshan, V.; Reddy, V.R.; Chaudhari, S.M.
2006-01-01
High temperature annealing effect on structural and magnetic properties of Ti/Ni multilayer (ML) up to 600 deg. C have been studied and reported in this paper. Ti/Ni multilayer samples having constant layer thicknesses of 50 A each are deposited on float glass and Si(1 1 1) substrates using electron-beam evaporation technique under ultra-high vacuum (UHV) conditions at room temperatures. The micro-structural parameters and their evolution with temperature for as-deposited as well as annealed multilayer samples up to 600 deg. C in a step of 100 deg. C for 1 h are determined by using X-ray diffraction (XRD) and grazing incidence X-ray reflectivity techniques. The X-ray diffraction pattern recorded at 300 deg. C annealed multilayer sample shows interesting structural transformation (from crystalline to amorphous) because of the solid-state reaction (SSR) and subsequent re-crystallization at higher temperatures of annealing, particularly at ≥400 deg. C due to the formation of TiNi 3 and Ti 2 Ni alloy phases. Sample quality and surface morphology are examined by using atomic force microscopy (AFM) technique for both as-deposited as well as annealed multilayer samples. In addition to this, a temperature dependent dc resistivity measurement is also used to study the structural transformation and subsequent alloy phase formation due to annealing treatment. The corresponding magnetization behavior of multilayer samples after each stage of annealing has been investigated by using Magneto-Optical Kerr Effect (MOKE) technique and results are interpreted in terms of observed micro-structural changes
Effects of Surface Dipole Lengths on Evaporation of Tiny Water Aggregation
International Nuclear Information System (INIS)
Wang Shen; Wan Rongzheng; Fang Haiping; Tu Yusong
2013-01-01
Using molecular dynamics simulation, we compared evaporation behavior of a tiny amount of water molecules adsorbed on solid surfaces with different dipole lengths, including surface dipole lengths of 1 fold, 2 folds, 4 folds, 6 folds and 8 folds of 0.14 nm and different charges from 0.1e to 0.9e. Surfaces with short dipole lengths (1-fold system) can always maintain hydrophobic character and the evaporation speeds are not influenced, whether the surface charges are enhanced or weakened; but when surface dipole lengths get to 8 folds, surfaces become more hydrophilic as the surface charge increases, and the evaporation speeds increase gradually and monotonically. By tuning dipole lengths from 1-fold to 8-fold systems, we confirmed non-monotonic variation of the evaporation flux (first increases, then decreases) in 4 fold system with charges (0.1e–0.7e), reported in our previous paper [S. Wang, et al., J. Phys. Chem. B 116 (2012) 13863], and also show the process from the enhancement of this unexpected non-monotonic variation to its vanishment with surface dipole lengths increasing. Herein, we demonstrated two key factors to influence the evaporation flux of a tiny amount of water molecules adsorbed on solid surfaces: the exposed surficial area of water aggregation from where the water molecules can evaporate directly and the attraction potential from the substrate hindering the evaporation. In addition, more interestingly, we showed extra steric effect of surface dipoles on further increase of evaporation flux for 2-folds, 4-folds, 6-folds and 8-folds systems with charges around larger than 0.7e. (The steric effect is first reported by parts of our authors [C. Wang, et al., Sci. Rep. 2 (2012) 358]). This study presents a complete physical picture of the influence of surface dipole lengths on the evaporation behavior of the adsorbed tiny amount of water. (condensed matter: structural, mechanical, and thermal properties)
Tiny intracranial aneurysms: Endovascular treatment by coil embolisation or sole stent deployment
International Nuclear Information System (INIS)
Lu Jun; Liu Jiachun; Wang Lijun; Qi Peng; Wang Daming
2012-01-01
Purpose: Tiny intracranial aneurysms pose a significant therapeutic challenge for interventional neuroradiologists. The authors report their preliminary results of endovascular treatment of these aneurysms. Methods: Between January 2002 and December 2009, 52 tiny intracranial aneurysms (defined as ≤3 mm in maximum diameter) in 46 patients (22 men; mean age, 57.9 years) were treated by endosaccular coil embolisation or sole stent deployment in the parent artery. Of 52 aneurysms, 29 had ruptured and 23 remained unruptured. The initial angiographic results, procedural complications, and clinical outcomes were assessed at discharge. Imaging follow-up was performed with cerebral angiography. Results: One aneurysm coiling procedure failed because of unsuccessful micro-catheterization. Forty-three aneurysms were successfully coil embolized, of which complete occlusion was obtained in 14, subtotal occlusion in 18 and incomplete occlusion in 11. The other 8 aneurysms were treated by sole stent deployment in the parent artery. Procedural complications (2 intraprocedural ruptures and 3 thromboembolic events) occurred in 5 (9.6%) of 52 aneurysms, resulting in permanent morbidity in only 1 (2.2%, 1/46) patient. No rebleeding occurred during clinical follow-up (mean duration, 46.7 months). Of the 16 coiled aneurysms that receiving repetitive angiography, 6 initially completely and 3 subtotally occluded aneurysms remained unchanged, 4 initially subtotally and 3 incompletely occluded aneurysms progressed to total occlusion. Five sole stent deployed aneurysms received angiographic follow-up (mean duration, 10.0 months), of which 3 remained unchanged, 1 became smaller and 1 progressed to total occlusion. Conclusion: Endovascular treatment of tiny intracranial aneurysms is technical feasible and relatively safe. Coil embolisation seems to be effective in preventing early recanalisation, whereas sole stenting technique needs further investigation to determine its effectiveness.
Bian, Qiang; Song, Zhangqi; Song, Dongyu; Zhang, Xueliang; Li, Bingsheng; Yu, Yang; Chen, Yuzhong
2018-03-01
The temperature-dependent refractive index of zinc telluride film can be used to develop a tiny, low cost and film-coated optical fiber temperature sensor. Pulse reference-based compensation technique is used to largely reduce the background noise which makes it possible to detect the minor reflectivity change of the film in different temperatures. The temperature sensitivity is 0.0034dB/° and the background noise is measured to be 0.0005dB, so the resolution can achieve 0.2°.
Mechanical properties and related substructure of TiNi shape memory alloys
International Nuclear Information System (INIS)
Filip, P.; Kneissl, A.C.
1995-01-01
The mechanical properties of binary near equiatomic TiNi shape memory alloys were investigated after different types of mechanical and heat treatments. The changes of deformation behaviour are explained on the basis of substructure differences after work hardening. The ''elastic moduli'' of both the high-temperature phase B2 and the martensite B19' as well as the ''easy stage of deformation'' are dependent on the work hardening intensity and these changes are related to the mobility of B2/B19' interfaces. The martensite changes its morphology after work hardening. In contrast to a twinned martensite, typical for annealed alloys, the internally slipped martensite was detected after work hardening. (orig.)
Bodewig, E
1959-01-01
Matrix Calculus, Second Revised and Enlarged Edition focuses on systematic calculation with the building blocks of a matrix and rows and columns, shunning the use of individual elements. The publication first offers information on vectors, matrices, further applications, measures of the magnitude of a matrix, and forms. The text then examines eigenvalues and exact solutions, including the characteristic equation, eigenrows, extremum properties of the eigenvalues, bounds for the eigenvalues, elementary divisors, and bounds for the determinant. The text ponders on approximate solutions, as well
Growth and surface morphology of ion-beam sputtered Ti-Ni thin films
International Nuclear Information System (INIS)
Rao, Ambati Pulla; Sunandana, C.S.
2008-01-01
Titanium-nickel thin films have been deposited on float glass substrates by ion beam sputtering in 100% pure argon atmosphere. Sputtering is predominant at energy region of incident ions, 1000 eV to 100 keV. The as-deposited films were investigated by X-ray photoelectron spectroscopy (XPS) and atomic force microscope (AFM). In this paper we attempted to study the surface morphology and elemental composition through AFM and XPS, respectively. Core level as well as valence band spectra of ion-beam sputtered Ti-Ni thin films at various Ar gas rates (5, 7 and 12 sccm) show that the thin film deposited at 3 sccm possess two distinct peaks at binding energies 458.55 eV and 464.36 eV mainly due to TiO 2 . Upon increasing Ar rate oxidation of Ti-Ni is reduced and the Ti-2p peaks begin approaching those of pure elemental Ti. Here Ti-2p peaks are observed at binding energy positions of 454.7 eV and 460.5 eV. AFM results show that the average grain size and roughness decrease, upon increasing Ar gas rate, from 2.90 μm to 0.096 μm and from 16.285 nm to 1.169 nm, respectively
Shape memory characteristics of sputter-deposited Ti-Ni thin films
International Nuclear Information System (INIS)
Miyazaki, Shuichi; Ishida, Akira.
1994-01-01
Ti-Ni shape memory alloy thin films were deposited using an RF magnetron sputtering apparatus. The as-sputtered films were heat-treated in order to crystallize and memorize. After the heat treatment, the shape memory characteristics have been investigated using DSC and thermomechanical tests. Upon cooling the thin films, the solution-treated films showed a single peak in the DSC curve indicating a single stage transformation occurring from B2 to the martensitic phase, while the age-treated films showed double peaks indicating a two-stage transformation, i.e., from B2 to the R-phase, then to the martensitic phase. A perfect shape memory effect was achieved in these sputter-deposited Ti-Ni thin films in association both with the R-phase and martensitic transformations. Transformation temperatures increased linearly with increasing applied stress. The transformation strain also increased with increasing stress. The shape memory characteristics were strongly affected by heat-treatment conditions. (author)
Kim, Donghwan; Lee, Hyunsuk; Bae, Joohyeon; Jeong, Hyomin; Choi, Byeongkeun; Nam, Taehyun; Noh, Jungpil
2018-09-01
Ti-Ni shape memory alloy (SMA) thin films are very attractive material for industrial and medical applications such as micro-actuator, micro-sensors, and stents for blood vessels. An important property besides shape memory effect in the application of SMA thin films is the adhesion between the film and the substrate. When using thin films as micro-actuators or micro-sensors in MEMS, the film must be strongly adhered to the substrate. On the other hand, when using SMA thin films in medical devices such as stents, the deposited alloy thin film must be easily separable from the substrate for efficient processing. In this study, we investigated the effect of substrate roughness on the adhesion of Ti-Ni SMA thin films, as well as the structural properties and phase-transformation behavior of the fabricated films. Ti-Ni SMA thin films were deposited onto etched glass substrates with magnetron sputtering. Radio frequency plasma was used for etching the substrate. The adhesion properties were investigated through progressive scratch test. Structural properties of the films were determined via Feld emission scanning electron microscopy, X-ray diffraction measurements (XRD) and Energy-dispersive X-ray spectroscopy analysis. Phase transformation behaviors were observed with differential scanning calorimetry and low temperature-XRD. Ti-Ni SMA thin film deposited onto rough substrate provides higher adhesive strength than smooth substrate. However the roughness of the substrate has no influence on the growth and crystallization of the Ti-Ni SMA thin films.
International Nuclear Information System (INIS)
Craps, Ben; Evnin, Oleg; Nguyen, Kévin
2017-01-01
Matrix quantum mechanics offers an attractive environment for discussing gravitational holography, in which both sides of the holographic duality are well-defined. Similarly to higher-dimensional implementations of holography, collapsing shell solutions in the gravitational bulk correspond in this setting to thermalization processes in the dual quantum mechanical theory. We construct an explicit, fully nonlinear supergravity solution describing a generic collapsing dilaton shell, specify the holographic renormalization prescriptions necessary for computing the relevant boundary observables, and apply them to evaluating thermalizing two-point correlation functions in the dual matrix theory.
Craps, Ben; Evnin, Oleg; Nguyen, Kévin
2017-02-01
Matrix quantum mechanics offers an attractive environment for discussing gravitational holography, in which both sides of the holographic duality are well-defined. Similarly to higher-dimensional implementations of holography, collapsing shell solutions in the gravitational bulk correspond in this setting to thermalization processes in the dual quantum mechanical theory. We construct an explicit, fully nonlinear supergravity solution describing a generic collapsing dilaton shell, specify the holographic renormalization prescriptions necessary for computing the relevant boundary observables, and apply them to evaluating thermalizing two-point correlation functions in the dual matrix theory.
Energy Technology Data Exchange (ETDEWEB)
Craps, Ben [Theoretische Natuurkunde, Vrije Universiteit Brussel (VUB), and International Solvay Institutes, Pleinlaan 2, B-1050 Brussels (Belgium); Evnin, Oleg [Department of Physics, Faculty of Science, Chulalongkorn University, Thanon Phayathai, Pathumwan, Bangkok 10330 (Thailand); Theoretische Natuurkunde, Vrije Universiteit Brussel (VUB), and International Solvay Institutes, Pleinlaan 2, B-1050 Brussels (Belgium); Nguyen, Kévin [Theoretische Natuurkunde, Vrije Universiteit Brussel (VUB), and International Solvay Institutes, Pleinlaan 2, B-1050 Brussels (Belgium)
2017-02-08
Matrix quantum mechanics offers an attractive environment for discussing gravitational holography, in which both sides of the holographic duality are well-defined. Similarly to higher-dimensional implementations of holography, collapsing shell solutions in the gravitational bulk correspond in this setting to thermalization processes in the dual quantum mechanical theory. We construct an explicit, fully nonlinear supergravity solution describing a generic collapsing dilaton shell, specify the holographic renormalization prescriptions necessary for computing the relevant boundary observables, and apply them to evaluating thermalizing two-point correlation functions in the dual matrix theory.
International Nuclear Information System (INIS)
Bhatt, Pramod; Chaudhari, S.M.
2006-01-01
This paper presents investigation of Ti-Ni alloy phase formation and its effect on valence band (VB) photoemission and photoresonance study of as-deposited as well as annealed Ti/Ni multilayers (MLs) up to 600 deg. C using synchrotron radiation. For this purpose [Ti (50 A)/Ni (50 A)]X 10 ML structures were deposited by using electron-beam evaporation technique under ultra-high vacuum (UHV) conditions. Formation of different phases of Ti-Ni alloy due to annealing treatment has been confirmed by the X-ray diffraction (XRD) technique. The XRD pattern corresponding as-deposited ML sample shows crystalline nature of both Ti and Ni deposited layers, whereas 300 deg. C annealed ML sample show solid-state reaction (SSR) leading to amorphization and subsequent recrystallisation at higher temperatures of annealing (≥400 deg. C) with the formation of TiNi, TiNi 3 and Ti 2 Ni alloy phases. The survey scans corresponding to 400, 500 and 600 deg. C annealed ML sample shows interdiffusion and intermixing of Ni atoms into Ti layers leading to chemical Ti-Ni alloys phase formation at interface. The corresponding recorded VB spectra using synchrotron radiation at 134 eV on as-deposited ML sample with successive sputtering shows alternately photoemission bands due to Ti 3d and Ni 3d, respectively, indicating there is no mixing of the consequent layers and any phase formation at the interface during deposition. However, ML samples annealed at higher temperatures of annealing, particularly at 400, 500 and 600 deg. C show a clear shift in Ni 3d band and its satellite peak position to higher BE side indicates Ti-Ni alloy phase formation. In addition to this, reduction of satellite peak intensity and Ni 3d density of states (DOS) near Fermi level is also observed due to Ti-Ni phase formation with higher annealing temperatures. The variable photon energy VB measurements on as-deposited and ML samples annealed at 400 deg. C confirms existence and BE position of observed Ni 3d satellite
Evaporation of tiny water aggregation on solid surfaces with different wetting properties.
Wang, Shen; Tu, Yusong; Wan, Rongzheng; Fang, Haiping
2012-11-29
The evaporation of a tiny amount of water on the solid surface with different wettabilities has been studied by molecular dynamics simulations. From nonequilibrium MD simulations, we found that, as the surface changed from hydrophobic to hydrophilic, the evaporation speed did not show a monotonic decrease as intuitively expected, but increased first, and then decreased after it reached a maximum value. The analysis of the simulation trajectory and calculation of the surface water interaction illustrate that the competition between the number of water molecules on the water-gas surface from where the water molecules can evaporate and the potential barrier to prevent those water molecules from evaporating results in the unexpected behavior of the evaporation. This finding is helpful in understanding the evaporation on biological surfaces, designing artificial surfaces of ultrafast water evaporating, or preserving water in soil.
Geology and geochronology of the Sub-Antarctic Snares Islands/Tini Heke, New Zealand
DEFF Research Database (Denmark)
Scott, JM; Turnbull, IM; Sagar, MW
2015-01-01
are prismatic and yield an essentially unimodal age population of c. 116 Ma that is within error of the granodiorite. These properties suggest that the dated raft represents a meta-igneous rock despite its mica-rich nature. Some schistose rocks on the Western Chain contain coarse relict plagioclase phenocrysts...... and appear to have an igneous protolith. No conclusive metasedimentary rocks have been identified, although sillimanite-bearing mica-rich schist occurs on Rua. Deformation of the crystalline rocks occurred after Snares Granite intrusion and before cooling below muscovite K–Ar closure at 400 ± 50 °C at 95 Ma......The first comprehensive geological map, a summary of lithologies and new radiogenic isotope data (U–Pb, Rb–Sr) are presented for crystalline rocks of the Sub-Antarctic Snares Islands/Tini Heke, 150 km south of Stewart Island. The main lithology is Snares Granite (c. 109 Ma from U–Pb dating...
Tiny individuals attached to a new Silurian arthropod suggest a unique mode of brood care
Briggs, Derek E. G.; Siveter, Derek J.; Siveter, David J.; Sutton, Mark D.
2016-04-01
The ˜430-My-old Herefordshire, United Kingdom, Lagerstätte has yielded a diversity of remarkably preserved invertebrates, many of which provide fundamental insights into the evolutionary history and ecology of particular taxa. Here we report a new arthropod with 10 tiny arthropods tethered to its tergites by long individual threads. The head of the host, which is covered by a shield that projects anteriorly, bears a long stout uniramous antenna and a chelate limb followed by two biramous appendages. The trunk comprises 11 segments, all bearing limbs and covered by tergites with long slender lateral spines. A short telson bears long parallel cerci. Our phylogenetic analysis resolves the new arthropod as a stem-group mandibulate. The evidence suggests that the tethered individuals are juveniles and the association represents a complex brooding behavior. Alternative possibilities—that the tethered individuals represent a different epizoic or parasitic arthropod—appear less likely.
Tiny Grains Give Huge Gains: Nanocrystal–Based Signal Amplification for Biomolecule Detection
Tong, Sheng; Ren, Binbin; Zheng, Zhilan; Shen, Han; Bao, Gang
2013-01-01
Nanocrystals, despite their tiny sizes, contain thousands to millions of atoms. Here we show that the large number of atoms packed in each metallic nanocrystal can provide a huge gain in signal amplification for biomolecule detection. We have devised a highly sensitive, linear amplification scheme by integrating the dissolution of bound nanocrystals and metal-induced stoichiometric chromogenesis, and demonstrated that signal amplification is fully defined by the size and atom density of nanocrystals, which can be optimized through well-controlled nanocrystal synthesis. Further, the rich library of chromogenic reactions allows implementation of this scheme in various assay formats, as demonstrated by the iron oxide nanoparticle linked immunosorbent assay (ILISA) and blotting assay developed in this study. Our results indicate that, owing to the inherent simplicity, high sensitivity and repeatability, the nanocrystal based amplification scheme can significantly improve biomolecule quantification in both laboratory research and clinical diagnostics. This novel method adds a new dimension to current nanoparticle-based bioassays. PMID:23659350
Directory of Open Access Journals (Sweden)
Landweber Laura F
2008-12-01
Full Text Available Abstract Background Nyctotherus ovalis is a single-celled eukaryote that has hydrogen-producing mitochondria and lives in the hindgut of cockroaches. Like all members of the ciliate taxon, it has two types of nuclei, a micronucleus and a macronucleus. N. ovalis generates its macronuclear chromosomes by forming polytene chromosomes that subsequently develop into macronuclear chromosomes by DNA elimination and rearrangement. Results We examined the structure of these gene-sized macronuclear chromosomes in N. ovalis. We determined the telomeres, subtelomeric regions, UTRs, coding regions and introns by sequencing a large set of macronuclear DNA sequences (4,242 and cDNAs (5,484 and comparing them with each other. The telomeres consist of repeats CCC(AAAACCCCn, similar to those in spirotrichous ciliates such as Euplotes, Sterkiella (Oxytricha and Stylonychia. Per sequenced chromosome we found evidence for either a single protein-coding gene, a single tRNA, or the complete ribosomal RNAs cluster. Hence the chromosomes appear to encode single transcripts. In the short subtelomeric regions we identified a few overrepresented motifs that could be involved in gene regulation, but there is no consensus polyadenylation site. The introns are short (21–29 nucleotides, and a significant fraction (1/3 of the tiny introns is conserved in the distantly related ciliate Paramecium tetraurelia. As has been observed in P. tetraurelia, the N. ovalis introns tend to contain in-frame stop codons or have a length that is not dividable by three. This pattern causes premature termination of mRNA translation in the event of intron retention, and potentially degradation of unspliced mRNAs by the nonsense-mediated mRNA decay pathway. Conclusion The combination of short leaders, tiny introns and single genes leads to very minimal macronuclear chromosomes. The smallest we identified contained only 150 nucleotides.
Pollination networks of oil-flowers: a tiny world within the smallest of all worlds.
Bezerra, Elisângela L S; Machado, Isabel C; Mello, Marco A R
2009-09-01
1. In the Neotropics, most plants depend on animals for pollination. Solitary bees are the most important vectors, and among them members of the tribe Centridini depend on oil from flowers (mainly Malpighiaceae) to feed their larvae. This specialized relationship within 'the smallest of all worlds' (a whole pollination network) could result in a 'tiny world' different from the whole system. This 'tiny world' would have higher nestedness, shorter path lengths, lower modularity and higher resilience if compared with the whole pollination network. 2. In the present study, we contrasted a network of oil-flowers and their visitors from a Brazilian steppe ('caatinga') to whole pollination networks from all over the world. 3. A network approach was used to measure network structure and, finally, to test fragility. The oil-flower network studied was more nested (NODF = 0.84, N = 0.96) than all of the whole pollination networks studied. Average path lengths in the two-mode network were shorter (one node, both for bee and plant one-mode network projections) and modularity was lower (M = 0.22 and four modules) than in all of the whole pollination networks. Extinctions had no or small effects on the network structure, with an average change in nestedness smaller than 2% in most of the cases studied; and only two species caused coextinctions. The higher the degree of the removed species, the stronger the effect and the higher the probability of a decrease in nestedness. 4. We conclude that the oil-flower subweb is more cohesive and resilient than whole pollination networks. Therefore, the Malpighiaceae have a robust pollination service in the Neotropics. Our findings reinforce the hypothesis that each ecological service is in fact a mosaic of different subservices with a hierarchical structure ('webs within webs').
Zhan, Xingzhi
2002-01-01
The main purpose of this monograph is to report on recent developments in the field of matrix inequalities, with emphasis on useful techniques and ingenious ideas. Among other results this book contains the affirmative solutions of eight conjectures. Many theorems unify or sharpen previous inequalities. The author's aim is to streamline the ideas in the literature. The book can be read by research workers, graduate students and advanced undergraduates.
Jung, Eui-Hyun; Park, Yong-Jin
2008-01-01
In recent years, a few protocol bridge research projects have been announced to enable a seamless integration of Wireless Sensor Networks (WSNs) with the TCP/IP network. These studies have ensured the transparent end-to-end communication between two network sides in the node-centric manner. Researchers expect this integration will trigger the development of various application domains. However, prior research projects have not fully explored some essential features for WSNs, especially the reusability of sensing data and the data-centric communication. To resolve these issues, we suggested a new protocol bridge system named TinyONet. In TinyONet, virtual sensors play roles as virtual counterparts of physical sensors and they dynamically group to make a functional entity, Slice. Instead of direct interaction with individual physical sensors, each sensor application uses its own WSN service provided by Slices. If a new kind of service is required in TinyONet, the corresponding function can be dynamically added at runtime. Beside the data-centric communication, it also supports the node-centric communication and the synchronous access. In order to show the effectiveness of the system, we implemented TinyONet on an embedded Linux machine and evaluated it with several experimental scenarios. PMID:27873968
Self-gated fetal cardiac MRI with tiny golden angle iGRASP: A feasibility study.
Haris, Kostas; Hedström, Erik; Bidhult, Sebastian; Testud, Frederik; Maglaveras, Nicos; Heiberg, Einar; Hansson, Stefan R; Arheden, Håkan; Aletras, Anthony H
2017-07-01
To develop and assess a technique for self-gated fetal cardiac cine magnetic resonance imaging (MRI) using tiny golden angle radial sampling combined with iGRASP (iterative Golden-angle RAdial Sparse Parallel) for accelerated acquisition based on parallel imaging and compressed sensing. Fetal cardiac data were acquired from five volunteers in gestational week 29-37 at 1.5T using tiny golden angles for eddy currents reduction. The acquired multicoil radial projections were input to a principal component analysis-based compression stage. The cardiac self-gating (CSG) signal for cardiac gating was extracted from the acquired radial projections and the iGRASP reconstruction procedure was applied. In all acquisitions, a total of 4000 radial spokes were acquired within a breath-hold of less than 15 seconds using a balanced steady-state free precession pulse sequence. The images were qualitatively compared by two independent observers (on a scale of 1-4) to a single midventricular cine image from metric optimized gating (MOG) and real-time acquisitions. For iGRASP and MOG images, good overall image quality (2.8 ± 0.4 and 2.6 ± 1.3, respectively, for observer 1; 3.6 ± 0.5 and 3.4 ± 0.9, respectively, for observer 2) and cardiac diagnostic quality (3.8 ± 0.4 and 3.4 ± 0.9, respectively, for observer 1; 3.6 ± 0.5 and 3.6 ± 0.9, respectively, for observer 2) were obtained, with visualized myocardial thickening over the cardiac cycle and well-defined myocardial borders to ventricular lumen and liver/lung tissue. For iGRASP, MOG, and real time, left ventricular lumen diameter (14.1 ± 2.2 mm, 14.2 ± 1.9 mm, 14.7 ± 1.1 mm, respectively) and wall thickness (2.7 ± 0.3 mm, 2.6 ± 0.3 mm, 3.0 ± 0.4, respectively) showed agreement and no statistically significant difference was found (all P > 0.05). Images with iGRASP tended to have higher overall image quality scores compared with MOG and particularly
Corrosion behavior of HPT-deformed TiNi alloys in cell culture medium
Shri, D. N. Awang; Tsuchiya, K.; Yamamoto, A.
2017-09-01
In recent years there are growing interest in fabrication of bulk nanostructured metals and alloys by using severe plastic deformation (SPD) techniques as new alternative in producing bulk nanocrystalline materials. These techniques allows for processing of bulk, fully dense workpiece with ultrafine grains. Metal undergoes SPD processing in certain techniques such as high pressure torsion (HPT), equal-channel angular pressing (ECAP) or multi-directional forging (MDF) are subjected to extensive hydrostatic pressure that may be used to impart a very high strain to the bulk solid without the introduction of any significant change in overall dimension of the sample. The change in the structure (small grain size and high-volume fraction of grain boundaries) of the material may result in the corrosion behavior different from that of the coarse-grained material. Electrochemical measurements were done to understand the corrosion behavior of TiNi alloys before and after HPT deformation. The experiment was carried out using standard three electrode setup (a sample as working electrode; a platinum wire as a counter electrode and a saturated calomel electrode in saturated KCl as a reference electrode) with the surface area of 26.42 mm2 exposed to the EMEM+10% FBS cell culture medium. The measurements were performed in an incubator with controlled environment at 37 °C and 5% CO2, simulating the cell culture condition. The potential of the specimen was monitored over 1 hour, and the stabilized potential was used as the open-circuit potential (EOCP). Potentiodynamic curves were scanned in the potential range from -0.5 V to 1.5 V relative to the EOCP, at a rate of 0.5 mV/s. The result of OCP-time measurement done in the cell culture medium shows that the OCP of HPT-deformed samples shifts towards to the more positive rather than that of BHPT samples. The OCP of deformed samples were ennobled to more than +70 mV for Ti-50mol%. The shift of OCP towards the nobler direction
Bhatia, Rajendra
1997-01-01
A good part of matrix theory is functional analytic in spirit. This statement can be turned around. There are many problems in operator theory, where most of the complexities and subtleties are present in the finite-dimensional case. My purpose in writing this book is to present a systematic treatment of methods that are useful in the study of such problems. This book is intended for use as a text for upper division and gradu ate courses. Courses based on parts of the material have been given by me at the Indian Statistical Institute and at the University of Toronto (in collaboration with Chandler Davis). The book should also be useful as a reference for research workers in linear algebra, operator theory, mathe matical physics and numerical analysis. A possible subtitle of this book could be Matrix Inequalities. A reader who works through the book should expect to become proficient in the art of deriving such inequalities. Other authors have compared this art to that of cutting diamonds. One first has to...
Tiny intraplate earthquakes triggered by nearby episodic tremor and slip in Cascadia
Vidale, J.E.; Hotovec, A.J.; Ghosh, A.; Creager, K.C.; Gomberg, J.
2011-01-01
Episodic tremor and slip (ETS) has been observed in many subduction zones, but its mechanical underpinnings as well as its potential for triggering damaging earthquakes have proven difficult to assess. Here we use a seismic array in Cascadia of unprecedented density to monitor seismicity around a moderate 16 day ETS episode. In the 4 months of data we examine, we observe five tiny earthquakes within the subducting slab during the episode and only one more in the same area, which was just before and nearby the next ETS burst. These earthquakes concentrate along the sides and updip edge of the ETS region, consistent with greater stress concentration there than near the middle and downdip edge of the tremor area. Most of the seismicity is below the megathrust, with a similar depth extent to the background intraslab seismicity. The pattern of earthquakes that we find suggests slow slip has a more continuous temporal and spatial pattern than the tremor loci, which notoriously appear in bursts, jumps, and streaks. Copyright 2011 by the American Geophysical Union.
Tuning Valley Polarization in a WSe_{2} Monolayer with a Tiny Magnetic Field
Directory of Open Access Journals (Sweden)
T. Smoleński
2016-05-01
Full Text Available In monolayers of semiconducting transition metal dichalcogenides, the light helicity (σ^{+} or σ^{-} is locked to the valley degree of freedom, leading to the possibility of optical initialization of distinct valley populations. However, an extremely rapid valley pseudospin relaxation (at the time scale of picoseconds occurring for optically bright (electric-dipole active excitons imposes some limitations on the development of opto-valleytronics. Here, we show that valley pseudospin relaxation of excitons can be significantly suppressed in a WSe_{2} monolayer, a direct-gap two-dimensional semiconductor with the exciton ground state being optically dark. We demonstrate that the already inefficient relaxation of the exciton pseudospin in such a system can be suppressed even further by the application of a tiny magnetic field of about 100 mT. Time-resolved spectroscopy reveals the pseudospin dynamics to be a two-step relaxation process. An initial decay of the pseudospin occurs at the level of dark excitons on a time scale of 100 ps, which is tunable with a magnetic field. This decay is followed by even longer decay (>1 ns, once the dark excitons form more complex pseudo-particles allowing for their radiative recombination. Our findings of slow valley pseudospin relaxation easily manipulated by the magnetic field open new prospects for engineering the dynamics of the valley pseudospin in transition metal dichalcogenides.
The splicing of tiny introns of Paramecium is controlled by MAGO.
Contreras, Julia; Begley, Victoria; Marsella, Laura; Villalobo, Eduardo
2018-07-15
The exon junction complex (EJC) is a key element of the splicing machinery. The EJC core is composed of eIF4A3, MAGO, Y14 and MLN51. Few accessory proteins, such as CWC22 or UPF3, bind transiently to the EJC. The EJC has been implicated in the control of the splicing of long introns. To ascertain whether the EJC controls the splicing of short introns, we used Paramecium tetraurelia as a model organism, since it has thousands of very tiny introns. To elucidate whether EJC affects intron splicing in P. tetraurelia, we searched for EJC protein-coding genes, and silenced those genes coding for eIF4A3, MAGO and CWC22. We found that P. tetraurelia likely assembles an active EJC with only three of the core proteins, since MLN51 is lacking. Silencing of eIF4A3 or CWC22 genes, but not that of MAGO, caused lethality. Silencing of the MAGO gene caused either an increase, decrease, or no change in intron retention levels of some intron-containing mRNAs used as reporters. We suggest that a fine-tuning expression of EJC genes is required for steady intron removal in P. tetraurelia. Taking into consideration our results and those published by others, we conclude that the EJC controls splicing independently of the intron size. Copyright © 2018 Elsevier B.V. All rights reserved.
Enhanced water collection through a periodic array of tiny holes in dropwise condensation
Song, Kyungjun; Kim, Gyeonghee; Oh, Sunjong; Lim, Hyuneui
2018-02-01
This paper introduces a simple method of water collection by increasing the coalescence effects in dropwise condensation with the use of microscale holes. The tiny holes modified the surface free energy states of the droplets on the plate, yielding a surface free energy barrier between the flat solid surface and the holes. The spatial difference in the surface free energy of the droplets enabled the droplets to move toward the adjacent droplets, thus increasing the possibility of coalescence. The water collection experiments were performed using a Peltier-based cooling system at 2 °C inside a chamber at 30 °C and 70% humidity. The results demonstrated that the perforated plates without any additional treatment provided the water collection rate of up to 22.64 L/m2 day, which shows an increase of 30% compared to that demonstrated by the bare plate. By comparing the experimental results for the surface of filmwise condensation, it was proved that the dominant water collecting improvement results from the increased coalescence effects. This simple technique can enhance the performance of systems exposed to water condensation, including water collection, heat-transfer, and dehumidifying systems.
ARECIBO MULTI-EPOCH H I ABSORPTION MEASUREMENTS AGAINST PULSARS: TINY-SCALE ATOMIC STRUCTURE
International Nuclear Information System (INIS)
Stanimirovic, S.; Weisberg, J. M.; Pei, Z.; Tuttle, K.; Green, J. T.
2010-01-01
We present results from multi-epoch neutral hydrogen (H I) absorption observations of six bright pulsars with the Arecibo telescope. Moving through the interstellar medium (ISM) with transverse velocities of 10-150 AU yr -1 , these pulsars have swept across 1-200 AU over the course of our experiment, allowing us to probe the existence and properties of the tiny-scale atomic structure (TSAS) in the cold neutral medium (CNM). While most of the observed pulsars show no significant change in their H I absorption spectra, we have identified at least two clear TSAS-induced opacity variations in the direction of B1929+10. These observations require strong spatial inhomogeneities in either the TSAS clouds' physical properties themselves or else in the clouds' galactic distribution. While TSAS is occasionally detected on spatial scales down to 10 AU, it is too rare to be characterized by a spectrum of turbulent CNM fluctuations on scales of 10 1 -10 3 AU, as previously suggested by some work. In the direction of B1929+10, an apparent correlation between TSAS and interstellar clouds inside the warm Local Bubble (LB) indicates that TSAS may be tracing the fragmentation of the LB wall via hydrodynamic instabilities. While similar fragmentation events occur frequently throughout the ISM, the warm medium surrounding these cold cloudlets induces a natural selection effect wherein small TSAS clouds evaporate quickly and are rare, while large clouds survive longer and become a general property of the ISM.
Quadrupolar order, hidden octupolar order and tiny magnetic moment in URu2Si2
International Nuclear Information System (INIS)
Tsuruta, Atsushi; Matsuura, Tamifusa; Kuroda, Yoshihiro
2000-01-01
Possible orders in URu 2 Si 2 are investigated using a two-channel degenerate Anderson model. The ground state of uranium ions is the non-Kramers quadrupolar doublet Γ 5 with (5f) 2 , and its relevant excited state is the Kramers dipolar doublet Γ 7 with (5f) 1 . These states mix with each other via conduction electrons. At low temperatures, the system forms renormalized bands with both quadrupole and dipole degrees of freedom due to the quadrupolar Kondo effect which slightly mixes quadrupolar Γ 5 , a primary state of uranium ions, with dipolar Γ 7 . At a certain low temperature, conduction electrons in the renormalized bands undergo quadrupolar ordering with a large quadrupolar moment. At a further lower temperature, octupolar ordering occurs, accompanied by a tiny dipolar moment which is attributed to the property of the renormalized bands with primarily the Γ 5 -character slightly mixed with the Γ 7 -character. These phenomena are well described by the 1/N-expansion method with pseudo-fermions for the non-Kramers doublet Γ 5 and slave bosons for the Kramers doublet Γ 7 . (author)
Transformation-Induced Relaxation and Stress Recovery of TiNi Shape Memory Alloy
Directory of Open Access Journals (Sweden)
Kohei Takeda
2014-03-01
Full Text Available The transformation-induced stress relaxation and stress recovery of TiNi shape memory alloy (SMA in stress-controlled subloop loading were investigated based on the local variation in temperature and transformation band on the surface of the tape in the tension test. The results obtained are summarized as follows. (1 In the loading process, temperature increases due to the exothermic martensitic transformation (MT until the holding strain and thereafter temperature decreases while holding the strain constant, resulting in stress relaxation due to the MT; (2 In the unloading process, temperature decreases due to the endothermic reverse transformation until the holding strain and thereafter temperature increases while holding the strain constant, resulting in stress recovery due to the reverse transformation; (3 Stress varies markedly in the initial stage followed by gradual change while holding the strain constant; (4 If the stress rate is high until the holding strain in the loading and unloading processes, both stress relaxation and stress recovery are large; (5 It is important to take into account this behavior in the design of SMA elements, since the force of SMA elements varies even if the atmospheric temperature is kept constant.
Pieczyska, Elżbieta A.; Kowalewski, Zbigniew L.; Dunić, Vladimir Lj.
2017-12-01
This paper presents an investigation of thermomechanical effects related to the phenomena of stress relaxation occurring in TiNi SMA subjected to modified program of displacement-controlled tension. The deformation data were taken from testing machine, whereas the temperature changes accompanying the exothermic/endothermic martensite forward/reverse transformation were measured by infrared camera. At the advanced stages of the transformations, the strain was kept constant for a few minutes and the SMA load and temperature were recorded continuously. As a consequence, the stress and temperature changed significantly during the loading stops. A large stress drop, caused by the transformation, was observed during the relaxation stage in both courses of the SMA loading and unloading. Moreover, the non-uniform temperature distribution, reflecting macroscopically inhomogeneous transformation, lapsed while the strain was kept constant, yet restarted at the end of the relaxation stop and developed at the reloading stage. Along with the experimental results, the mechanical and thermal responses induced by the transformation were obtained by 3D coupled thermomechanical numerical analysis, realized in partitioned approach. Latent heat production was correlated with an amount of the martensitic volume fraction. The stress and temperature drops recorded during the experiment were satisfactorily reproduced by the model proposed for the SMA thermomechanical coupling.
An Improved Task Scheduling Algorithm for Intelligent Control in Tiny Mechanical System
Directory of Open Access Journals (Sweden)
Jialiang Wang
2014-01-01
Full Text Available Wireless sensor network (WSN has been already widely used in many fields in terms of industry, agriculture, and military, and so forth. The basic composition is WSN nodes that are capable of performing processing, gathering information, and communicating with other connected nodes in the network. The main components of a WSN node are microcontroller, transceiver, and some sensors. Undoubtedly, it also can be added with some actuators to form a tiny mechanical system. Under this case, the existence of task preemption while executing operating system will not only cost more energy for WSN nodes themselves, but also bring unacceptable system states caused by vibrations. However for these nodes, task I/O delays are inevitable due to the existence of task preemption, which will bring extra overhead for the whole system, and even bring unacceptable system states caused by vibrations. This paper mainly considers the earliest deadline first (EDF task preemption algorithm executed in WSN OS and proposes an improved task preemption algorithm so as to lower the preemption overhead and I/O delay and then improve the system performance. The experimental results show that the improved task preemption algorithm can reduce the I/O delay effectively, so the real-time processing ability of the system is enhanced.
A tiny short-legged bird from the early Oligocene of Poland
Directory of Open Access Journals (Sweden)
Bochenski Zbigniew M.
2016-10-01
Full Text Available We describe an articulated partial leg of an Oligocene bird. It is one of the smallest avian fossils ever recorded. Its slender and exceptionally short tarsometatarsus, hallux as long as the tarsometatarsus and stout moderately curved claws agree with stem-group Apodidae (swifts, stem-group Trochilidae (hummingbirds, and stem-group Upupidae/Phoeniculidae (hoopoes/woodhoopoes. Unfortunately, due to the poor preservation of the specimen its more precise affinities remain unresolved. The specimen differs in many details from all other tiny Palaeogene birds and therefore most probably it represents a new taxon but it is too fragmentary to describe it. It is just the twelfth avian fossil from the Oligocene marine deposits of the Outer Carpathians and Central Palaeogene Basin — a huge area that covers south-eastern Poland, north-eastern Czech Republic and northern Slovakia — and therefore it adds to our very limited knowledge on the avifauna of that region. The remains of land birds from Jamna Dolna and other sites of the region can be attributed to the general sea level fall at that time, which led to limitation of the connection with the open ocean and resulted in many shallow shoals, temporary islands and exposed dry land areas along the coast.
Bomont, Jean-Marc; Costa, Dino; Bretonnet, Jean-Louis
2017-06-14
We use Monte Carlo simulations to carry out a thorough analysis of structural correlations arising in a relatively dense fluid of rigid spherical particles with prototype competing interactions (short-range attractive and long-range repulsive two-Yukawa model). As the attraction strength increases, we show that the local density of the fluid displays a tiny reversal of trend within specific ranges of interparticle distances, whereupon it decreases first and increases afterwards, passing through a local minimum. Particles involved in this trend display, accordingly, distinct behaviours: for a sufficiently weak attraction, they seem to contribute to the long-wave oscillations typically heralding the formation of patterns in such fluids; for a stronger attraction, after the reversal of the local density has occurred, they form an outer shell of neighbours stabilizing the existing aggregation seeds. Following the increment of attraction, precisely in correspondence of the local density reversal, the local peak developed in the structure factor at small wavevectors markedly rises, signalling-in agreement with recent structural criteria-the onset of a clustered state. A detailed cluster analysis of microscopic configurations fully validates this picture.
Belitsky, A. V.
2017-10-01
The Operator Product Expansion for null polygonal Wilson loop in planar maximally supersymmetric Yang-Mills theory runs systematically in terms of multi-particle pentagon transitions which encode the physics of excitations propagating on the color flux tube ending on the sides of the four-dimensional contour. Their dynamics was unraveled in the past several years and culminated in a complete description of pentagons as an exact function of the 't Hooft coupling. In this paper we provide a solution for the last building block in this program, the SU(4) matrix structure arising from internal symmetry indices of scalars and fermions. This is achieved by a recursive solution of the Mirror and Watson equations obeyed by the so-called singlet pentagons and fixing the form of the twisted component in their tensor decomposition. The non-singlet, or charged, pentagons are deduced from these by a limiting procedure.
Directory of Open Access Journals (Sweden)
A.V. Belitsky
2017-10-01
Full Text Available The Operator Product Expansion for null polygonal Wilson loop in planar maximally supersymmetric Yang–Mills theory runs systematically in terms of multi-particle pentagon transitions which encode the physics of excitations propagating on the color flux tube ending on the sides of the four-dimensional contour. Their dynamics was unraveled in the past several years and culminated in a complete description of pentagons as an exact function of the 't Hooft coupling. In this paper we provide a solution for the last building block in this program, the SU(4 matrix structure arising from internal symmetry indices of scalars and fermions. This is achieved by a recursive solution of the Mirror and Watson equations obeyed by the so-called singlet pentagons and fixing the form of the twisted component in their tensor decomposition. The non-singlet, or charged, pentagons are deduced from these by a limiting procedure.
International Nuclear Information System (INIS)
Wang, Z.G.; Zu, X.T.; Fu, Y.Q.; Zhu, S.; Wang, L.M.
2005-01-01
In this work, Ti-Ni shape memory alloy thin films were irradiated by 1.7 MeV electron with three types of fluences: 4 x 10 20 , 7 x 10 20 and 1 x 10 21 /m 2 . The influence of electron irradiation on the transformation behavior of the TiNi thin films were investigated by differential scanning calorimetry. The transformation temperatures A s and A f shifted to higher temperature after electron irradiation, the martensite was stabilized. The electron irradiation effect can be easily eliminated by one thermal cycle. The shifts of the transformation temperatures can be explained from the change of potential energy barrier and coherency energy between parent phase and martensite after irradiation
Effects of post-irradiation annealing on the transformation behavior of Ti-Ni alloys
International Nuclear Information System (INIS)
Kimura, A.; Tsuruga, H.; Morimura, T.; Misawa, T.; Miyazaki, S.
1993-01-01
Recovery processes of martensitic transformation of neutron irradiated Ti-50.0, 50.5 and 51.0 at.%Ni alloys during post-irradiation annealing were investigated by means of differential scanning calorimetry (DSC), tensile tests and transmission electron microscope (TEM) observations. Neutron irradiation up to a fluence of 1.2x10 24 n/cm 2 at 333 K suppressed the martensitic transformation as well as the stress-induced martensitic transformation of these alloys above 150 K. The TEM observations revealed that the disordered zones containing small defect clusters in high density were formed in the neutron irradiated Ti-Ni alloys. The DSC measurements also showed that the post-irradiation annealing caused recovery of the transformation of which the progress depended on the annealing temperature and period. A significant retardation of the recovery was recognized in the Ti-51.0 at.%Ni alloy in comparison with the Ti-50.0 at.%Ni alloy. From the shifts in the transformation temperature upon isothermal annealing at various annealing temperatures, the activation energies of the recovery process of the transformation in the neutron irradiated Ti-50.0 and 51.0 at.%Ni alloys were evaluated by a cross-cut method to be 1.2 eV and 1.5 eV, respectively. The recovery of the transformation was ascribed to the re-ordering resulting from decomposition of vacancy clusters, and those obtained values of the activation energy were considered to be the sum of the migration energy of vacancy and the binding energy of vacancy-vacancy cluster. The retardation of the recovery in the Ti-51.0 at%Ni alloy was interpreted in terms of large binding energy in this alloy due to the off-stoichiometry. (author)
Geology and geochronology of the sub-Antarctic Snares Islands/Tini Heke, New Zealand
International Nuclear Information System (INIS)
Scott, J.M.; Turnbull, I.M.; Sagar, M.W.; Tulloch, A.J.; Waight, T.E.; Palin, J.M.
2015-01-01
The first comprehensive geological map, a summary of lithologies and new radiogenic isotope data (U-Pb, Rb-Sr) are presented for crystalline rocks of the Sub-Antarctic Snares Islands/Tini Heke, 150 km south of Stewart Island. The main lithology is Snares Granite (c. 109 Ma from U-Pb dating of zircon), which intrudes Broughton Granodiorite (c. 114 Ma from U-Pb zircon) on Broughton Island. Rafts of schist within Snares Granite are common on the outlying Western Chain islets, and rare on North East and Broughton islands. Zircon grains extracted from one schistose raft on Broughton Island are prismatic and yield an essentially unimodal age population of c. 116 Ma that is within error of the granodiorite. These properties suggest that the dated raft represents a meta-igneous rock despite its mica-rich nature. Some schistose rocks on the Western Chain contain coarse relict plagioclase phenocrysts and appear to have an igneous protolith. No conclusive metasedimentary rocks have been identified, although sillimanite-bearing mica-rich schist occurs on Rua. Deformation of the crystalline rocks occurred after Snares Granite intrusion and before cooling below muscovite K-Ar closure at 400 ± 50 degrees C at 95 Ma. This period overlaps the age of extensional ductile shear zones on Stewart Island. The discovery of several basaltic dykes, which cut across fabrics and are unmetamorphosed, indicates that volcanic rocks are associated with all Sub-Antarctic island groups. The larger of the islands are overlain by peat, which on North East Island also contains gravel deposits. (author).
Modeling Pseudo-elastic Behavior of Springback
International Nuclear Information System (INIS)
Xia, Z. Cedric
2005-01-01
One of the principal foundations of mathematical theory of conventional plasticity for rate-independent metals is that there exists a well-defined yield surface in stress space for any material point under deformation. A material point can undergo further plastic deformation if the applied stresses are beyond current yield surface which is generally referred as 'plastic loading'. On the other hand, if the applied stress state falls within or on the yield surface, the metal will deform elastically only and is said to be undergoing 'elastic unloading'. Although it has been always recognized throughout the history of development of plasticity theory that there is indeed inelastic deformation accompanying elastic unloading, which leads to metal's hysteresis behavior, its effects were thought to be negligible and were largely ignored in the mathematical treatment.Recently there have been renewed interests in the study of unloading behavior of sheet metals upon large plastic deformation and its implications on springback prediction. Springback is essentially an elastic recovery process of a formed sheet metal blank when it is released from the forming dies. Its magnitude depends on the stress states and compliances of the deformed sheet metal if no further plastic loading occurs during the relaxation process. Therefore the accurate determination of material compliances during springback and its effective incorporation into simulation software are important aspects for springback calculation. Some of the studies suggest that the unloading curve might deviate from linearity, and suggestions were made that a reduced elastic modulus be used for springback simulation.The aim of this study is NOT to take a position on the debate of whether elastic moduli are changed during sheet metal forming process. Instead we propose an approach of modeling observed psuedoelastic behavior within the context of mathematical theory of plasticity, where elastic moduli are treated to be constant. In the context of this investigation we refer psuedoelastic behavior in the most general sense as any deviation from linearity in the unloading curve. The non-linearity leads to a hysteresis loop upon reloading. The approach is based on the non-conventional theory with a vanishing elastic region as advanced by Dafalias and Popov. The treatment is purely phenomenological where we don't distinguish between macroscopic plasticity and micro-plasticity. The macroscopic uniaxial stress-strain curve is used to define effective plastic response in the same manner as classical plasticity theory except that the nonlinearity during unloading and reloading are incorporated into plasticity. It is shown that such models can be easily formulated within the context of elastoplasticity without violating any physical mechanisms of deformation. Springback for a plane strain bending model is used to demonstrate the potential effect if such a model is applied
Beisser, K.; Cruikshank, D. P.; McFadden, T.
2013-12-01
Is Pluto a planet? Some creative low income Bay-area middle-schoolers put a musical spin on this hot science debate with a video rap ';battle' over tiny Pluto's embattled planetary standing. The students' timing was perfect, with NASA's New Horizons mission set to conduct the first reconnaissance of Pluto and its moons in July 2015. Pluto - the last of the nine original planets to be explored by spacecraft - has been the subject of scientific study and speculation since Clyde Tombaugh discovered it in 1930, orbiting the Sun far beyond Neptune. Produced by the students and a very creative educator, the video features students 'battling' back and forth over the idea of Pluto being a planet. The group collaborated with actual space scientists to gather information and shot their video before a 'green screen' that was eventually filled with animations and visuals supplied by the New Horizons mission team. The video debuted at the Pluto Science Conference in Maryland in July 2013 - to a rousing response from researchers in attendance. The video marks a nontraditional approach to the ongoing 'great planet debate' while educating viewers on a recently discovered region of the solar system. By the 1990s, researchers had learned that Pluto possessed multiple exotic ices on its surface, a complex atmosphere and seasonal cycles, and a large moon (Charon) that likely resulted from a giant impact on Pluto itself. It also became clear that Pluto was no misfit among the planets - as had long been thought - but the largest and brightest body in a newly discovered 'third zone' of our planetary system called the Kuiper Belt. More recent observations have revealed that Pluto has a rich system of satellites - five known moons - and a surface that changes over time. Scientists even speculate that Pluto may possess an internal ocean. For these and other reasons, the 2003 Planetary Decadal Survey ranked a Pluto/Kuiper Belt mission as the highest priority mission for NASA's newly created
Type II pp-wave matrix models from point-like gravitons
International Nuclear Information System (INIS)
Lozano, Yolanda; RodrIguez-Gomez, Diego
2006-01-01
The BMN Matrix model can be regarded as a theory of coincident M-theory gravitons, which expand by Myers dielectric effect into the 2-sphere and 5-sphere giant graviton vacua of the theory. In this note we show that, in the same fashion, Matrix String theory in Type IIA pp-wave backgrounds arises from the action for coincident Type IIA gravitons. In Type IIB, we show that the action for coincident gravitons in the maximally supersymmetric pp-wave background gives rise to a Matrix model which supports fuzzy 3-sphere giant graviton vacua with the right behavior in the classical limit. We discuss the relation between our Matrix model and the Tiny Graviton Matrix theory
Energy Technology Data Exchange (ETDEWEB)
Ali, Mubarak, E-mail: mubarak74@comsats.edu.pk, E-mail: mubarak74@mail.com [COMSATS Institute of Information Technology, Department of Physics (Pakistan); Lin, I-Nan [Tamkang University, Department of Physics (China)
2017-01-15
In addition to self-governing properties, tiny-sized particles of metallic colloids are the building blocks of large-sized particles; thus, their study has been the subject of a large number of publications. In the present work, it has been discussed that geometry structure of tiny particle made through atom-to-atom amalgamation depends on attained dynamics of gold atoms along with protruded orientations. The localized process conditions direct two-dimensional structure of a tiny particle at atomically flat air-solution interface while heating locally dynamically approached atoms, thus, negate the role of van der Waals interactions. At electronphoton-solution interface, impinging electrons stretch or deform atoms of tiny particles depending on the mechanism of impingement. In addition, to strike regular grid of electrons ejected on split of atoms not executing excitations and de-excitations of their electrons, atoms of tiny particles also deform or stretch while occupying various sites depending on the process of synergy. Under suitable impinging electron streams, those tiny particles in monolayer two-dimensional structure electron states of their atoms are diffused in the direction of transferred energy, thus, coincide to the next adjacent atoms in each one-dimensional array dealing the same sort of behavior. Instantaneously, photons of adequate energy propagate on the surfaces of such electronic structures and modify those into smooth elements, thus, disregard the phenomenon of localized surface plasmons. This study highlights the fundamental process of formation of tiny particles where the role of localized dynamics of atoms and their electronic structure along with interaction to light are discussed. Such a tool of processing materials, in nonequilibrium pulse-based process, opens a number of possibilities to develop engineered materials with specific chemical, optical, and electronic properties.
Hoang, H.; Røed, K.; Bekkeng, T. A.; Trondsen, E.; Clausen, L. B. N.; Miloch, W. J.; Moen, J. I.
2017-11-01
A method for evaluating electron density using a single fixed-bias Langmuir probe is presented. The technique allows for high-spatio-temporal resolution electron density measurements, which can be effectively carried out by tiny spacecraft for multi-point observations in the ionosphere. The results are compared with the multi-needle Langmuir probe system, which is a scientific instrument developed at the University of Oslo comprising four fixed-bias cylindrical probes that allow small-scale plasma density structures to be characterized in the ionosphere. The technique proposed in this paper can comply with the requirements of future small-sized spacecraft, where the cost-effectiveness, limited space available on the craft, low power consumption and capacity for data-links need to be addressed. The first experimental results in both the plasma laboratory and space confirm the efficiency of the new approach. Moreover, detailed analyses on two challenging issues when deploying the DC Langmuir probe on a tiny spacecraft, which are the limited conductive area of the spacecraft and probe surface contamination, are presented in the paper. It is demonstrated that the limited conductive area, depending on applications, can either be of no concern for the experiment or can be resolved by mitigation methods. Surface contamination has a small impact on the performance of the developed probe.
International Nuclear Information System (INIS)
Hoshiya, Taiji; Ando, Hiroei; Den, Shoji; Katsuta, Hiroshi.
1992-01-01
Transformation characteristics and deformation behavior of hydrogenated Ti-50.5 at% Ni alloys, which were occluded in a low pressure range of hydrogen between 1.1 and 78.5 kPa, have been studied by electrical resistivity measurement, tensile test, X-ray diffraction analysis and microstructural observation. M S temperature of the Ti-Ni alloys decreased with an increase in hydrogen content. This corresponds to the stabilization of the parent phase during cooling, which was confirmed by X-ray diffraction: The suppression effect of hydrogen takes place on the martensitic transformation. Critical stress for slip deformation of hydrogenated Ti-Ni alloys changed with hydrogen content and thus hydrogen had a major influence on deformation behavior of those alloys. With hydrogen contents above 0.032 mol%, hardening was distinguished from softening which was pronounced in the contents from 0 to 0.032 mol% H. Hydrides were formed in hydrogen contents over 1.9 mol%. The hydride formation results in the reorientation in variants of the R phase and increase in the lattice strains of the parent phase. (author)
Efficiency criterion for teleportation via channel matrix, measurement matrix and collapsed matrix
Directory of Open Access Journals (Sweden)
Xin-Wei Zha
Full Text Available In this paper, three kinds of coefficient matrixes (channel matrix, measurement matrix, collapsed matrix associated with the pure state for teleportation are presented, the general relation among channel matrix, measurement matrix and collapsed matrix is obtained. In addition, a criterion for judging whether a state can be teleported successfully is given, depending on the relation between the number of parameter of an unknown state and the rank of the collapsed matrix. Keywords: Channel matrix, Measurement matrix, Collapsed matrix, Teleportation
Extended biorthogonal matrix polynomials
Directory of Open Access Journals (Sweden)
Ayman Shehata
2017-01-01
Full Text Available The pair of biorthogonal matrix polynomials for commutative matrices were first introduced by Varma and Tasdelen in [22]. The main aim of this paper is to extend the properties of the pair of biorthogonal matrix polynomials of Varma and Tasdelen and certain generating matrix functions, finite series, some matrix recurrence relations, several important properties of matrix differential recurrence relations, biorthogonality relations and matrix differential equation for the pair of biorthogonal matrix polynomials J(A,B n (x, k and K(A,B n (x, k are discussed. For the matrix polynomials J(A,B n (x, k, various families of bilinear and bilateral generating matrix functions are constructed in the sequel.
Matrix completion by deep matrix factorization.
Fan, Jicong; Cheng, Jieyu
2018-02-01
Conventional methods of matrix completion are linear methods that are not effective in handling data of nonlinear structures. Recently a few researchers attempted to incorporate nonlinear techniques into matrix completion but there still exists considerable limitations. In this paper, a novel method called deep matrix factorization (DMF) is proposed for nonlinear matrix completion. Different from conventional matrix completion methods that are based on linear latent variable models, DMF is on the basis of a nonlinear latent variable model. DMF is formulated as a deep-structure neural network, in which the inputs are the low-dimensional unknown latent variables and the outputs are the partially observed variables. In DMF, the inputs and the parameters of the multilayer neural network are simultaneously optimized to minimize the reconstruction errors for the observed entries. Then the missing entries can be readily recovered by propagating the latent variables to the output layer. DMF is compared with state-of-the-art methods of linear and nonlinear matrix completion in the tasks of toy matrix completion, image inpainting and collaborative filtering. The experimental results verify that DMF is able to provide higher matrix completion accuracy than existing methods do and DMF is applicable to large matrices. Copyright © 2017 Elsevier Ltd. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Pina, E.A.C.; Araujo Filho, O.O. de; Urtiga Filho, S.L.; Gonzalez, C.H., E-mail: kikipina@hotmail.co [Universidade Federal de Pernambuco (DEM/CTG/UFPE), Recife, PE (Brazil). Centro de Tecnologia e Geociencias. Dept. de Engenharia Mecanica
2010-07-01
This work aims to characterize the wire commercial Ti-Ni of 1.27 mm in diameter with shape memory effect for the development of helical springs with the function of sensor / actuator. After heat treatment, the transformation temperatures, the presence of precipitates, the degree of damping, maximum stress of rupture, modulus of elasticity, the presence of phase R, the behavior of the alloy under tension, will be analyzed and compared in each situation. For characterization we used several methods including: heat treatment, Differential Scanning Calorimetry (DSC), tensile, dynamic mechanical analysis (DMA), X-ray diffraction, thermomechanical cycling. The wires were cut into pieces and heat-treated at 400 deg C with variation of time in muffle furnaces and quenching in water at 25 deg C. (author)
Energy Technology Data Exchange (ETDEWEB)
Barashkov, G.A.; Neshpor, V.S.; Berdikov, V.F.; Pushkarev, O.I.; Lavrenova, E. A.
1987-03-01
The micromechanical characteristics of an Al/sub 2/O/sub 3/-TiNi ceramic produced in high-pressure chambers under conditions of forced mass transfer are investigated experimentally using the microindentation method. The objective of the study is to use micromechanical characteristics to determine the time required for producing an Al/sub 2/O/sub 3/-TiNi ceramic with a fully formed structure. It is found that the process of forced mass transfer and crystallization is completed within 60-120 s.
Kulturní hodnoty tzv. Mariánského trojúhelníku - Sloup, Vranov, Křtiny
Bezděková, Veronika
2009-01-01
In the Moravian Karst there are three big churches consecrated to The Virgin Mary. These are visited by many pilgrims and have their own calendar of pilgrimages. They are Vranov, Křtiny and Sloup. Churches in these towns are consecrated to The Virgin Mary: Vranov commemorates the birth of The Virgin Mary, Křtiny commemorates the name of The Virgin Mary and Sloup commemorates the sufferings of The Virgin Mary. So we talk about the triangle of The Virgin Mary. This term is the main point of my ...
Effect of Ni4Ti3 precipitation on martensitic transformation in Ti-Ni
International Nuclear Information System (INIS)
Zhou, N.; Shen, C.; Wagner, M.F.-X.; Eggeler, G.; Mills, M.J.; Wang, Y.
2010-01-01
Precipitation of Ni 4 Ti 3 plays a critical role in determining the martensitic transformation path and temperature in Ni-Ti shape memory alloys. In this study, the equilibrium shape of a coherent Ni 4 Ti 3 precipitate and the concentration and stress fields around it are determined quantitatively using the phase field method. Most recent experimental data on lattice parameters, elastic constants, precipitate-matrix orientation relationship and thermodynamic database are used as model inputs. The effects of the concentration and stress fields on subsequent martensitic transformations are analyzed through interaction energy between a nucleating martensitic particle and the existing microstructure. Results indicate that R-phase formation prior to B19' phase could be attributed to both direct elastic interaction and stress-induced spatial variation in concentration near Ni 4 Ti 3 precipitates. The preferred nucleation sites for the R-phase are close to the broad side of the lenticular-shaped Ni 4 Ti 3 precipitates, where tension normal to the habit plane is highest, and Ni concentration is lowest.
International Nuclear Information System (INIS)
Wang, Qi; Wang, Junting; Lu, Qingyou; Hou, Yubin
2013-01-01
We present a novel homebuilt scanning tunneling microscope (STM) with high quality atomic resolution. It is equipped with a small but powerful GeckoDrive piezoelectric motor which drives a miniature and detachable scanning part to implement coarse approach. The scanning part is a tiny piezoelectric tube scanner (industry type: PZT-8, whose d 31 coefficient is one of the lowest) housed in a slightly bigger polished sapphire tube, which is riding on and spring clamped against the knife edges of a tungsten slot. The STM so constructed shows low back-lashing and drifting and high repeatability and immunity to external vibrations. These are confirmed by its low imaging voltages, low distortions in the spiral scanned images, and high atomic resolution quality even when the STM is placed on the ground of the fifth floor without any external or internal vibration isolation devices
Wang, Qi; Hou, Yubin; Wang, Junting; Lu, Qingyou
2013-11-01
We present a novel homebuilt scanning tunneling microscope (STM) with high quality atomic resolution. It is equipped with a small but powerful GeckoDrive piezoelectric motor which drives a miniature and detachable scanning part to implement coarse approach. The scanning part is a tiny piezoelectric tube scanner (industry type: PZT-8, whose d31 coefficient is one of the lowest) housed in a slightly bigger polished sapphire tube, which is riding on and spring clamped against the knife edges of a tungsten slot. The STM so constructed shows low back-lashing and drifting and high repeatability and immunity to external vibrations. These are confirmed by its low imaging voltages, low distortions in the spiral scanned images, and high atomic resolution quality even when the STM is placed on the ground of the fifth floor without any external or internal vibration isolation devices.
Wang, Qi; Hou, Yubin; Wang, Junting; Lu, Qingyou
2013-11-01
We present a novel homebuilt scanning tunneling microscope (STM) with high quality atomic resolution. It is equipped with a small but powerful GeckoDrive piezoelectric motor which drives a miniature and detachable scanning part to implement coarse approach. The scanning part is a tiny piezoelectric tube scanner (industry type: PZT-8, whose d31 coefficient is one of the lowest) housed in a slightly bigger polished sapphire tube, which is riding on and spring clamped against the knife edges of a tungsten slot. The STM so constructed shows low back-lashing and drifting and high repeatability and immunity to external vibrations. These are confirmed by its low imaging voltages, low distortions in the spiral scanned images, and high atomic resolution quality even when the STM is placed on the ground of the fifth floor without any external or internal vibration isolation devices.
Heat treatments and thermomechanical cycling influences on the R-phase in Ti-Ni shape memory alloys
Directory of Open Access Journals (Sweden)
Cezar Henrique Gonzalez
2010-09-01
Full Text Available This article studies changes observed on the R-phase thermoelastic behavior in a near-equiatomic Ti-Ni shape memory alloy. Three kinds of procedures have been performed: different treatments, thermomechanical cycling under constant loading in shape memory helical springs and thermal cycling in as-treated and trained samples. Several heat treatments were carried out to investigate evolution of the R-phase by differential scanning calorimetry (DSC. A heat treatment was chosen on which R-phase is absent. Shape memory springs were produced and submitted to a training process in an apparatus by tensioning the springs under constant loading. Thermal cycling in DSC was realized in as-treated and trained samples. Several aspects of one-step (B2→B19' and two-steps (B2→R→B19' martensitic transformations and R-phase formation and their evolution during tests were observed and discussed.
Effect of plastic strain on shape memory characteristics in sputter-deposited Ti-Ni thin films
International Nuclear Information System (INIS)
Nomura, K.
1995-01-01
The plastic strain which is introduced during cooling and heating under a constant stress has an influence upon the transformation and deformation characteristics of sputter-deposited Ti-Ni shape memory alloy thin films. With increasing the accumulated plastic strain, Ms rises and recovery strain increases. The changes in such characteristics are due to the internal stress field that is formed by plastic deformation. However, the change in Ms in Ti-50.5at%Ni is larger than that in Ti-48.9at%Ni, although the plastic strain in the former is lower than that in the latter. In order to understand this point, the effective internal stresses were estimated in both alloys; the internal stress in the former is more effectively created by the introduction of plastic strain than in the latter. (orig.)
International Nuclear Information System (INIS)
Feng Miao; Zhan Hongbing; Sun Ruiqing; Chen Yu
2010-01-01
The implantation and growth of metal nanoparticles on graphene nanosheets (GNS) leads directly to severe damage to the regular structure of the graphene sheets, which disrupts the extended π conjugation, resulting in an impaired device performance. In this paper, we describe a facile approach for achieving the lossless formation of graphene composite decorated with tiny cadmium sulfide quantum dots (QDs) with excellent nonlinear optical properties by using benzyl mercaptan (BM) as the interlinker. The mercapto substituent of BM binds to the CdS QDs during their nucleation and growth process, and then the phenyl comes into contact with the GNS via the π-π stacking interaction. Using this strategy, CdS QDs with an average diameter of 3 nm are uniformly dispersed over the surface of graphene, and the resulting QD-graphene composite exhibits excellent optical limiting properties, mainly contributed by nonlinear scattering and nonlinear absorption, upon both 532 and 1064 nm excitations, in the nanosecond laser pulse regime.
International Nuclear Information System (INIS)
Senba, Hiromasa; Yamaji, Toru; Okita, Keisuke; Okabe, Nagatoshi; Yamauchi, Kiyoshi; Matsumoto, Kenya
2005-01-01
This paper deals with the bulge process for forming the single-stage bellows of TiNi shape memory alloys, which is proposed as a new type of seismic applications, and especially considering the material's special behavior. Thin walled tubes with 20% cold work, whose composition is Ti-51.0 at% Ni, were prepared. First they are appropriately heat-treated and then the rubber bulge process is introduced for the tubes under the condition of austenite phase at room temperature. Displacement control method is adapted to the process. Theoretical prediction of change in outer diameter of the tube on compression is derived, and modified taking into account the progress of the stress-induced martensite transformation on tube's surface by observing the detachment of the oxide layer of the surface. Finally theoretical relationship between compressive displacement and the outer diameter of the tube, which is the most important for the design of the bellows shape, is cleared. (author)
International Nuclear Information System (INIS)
Pina, E.A.C.; Araujo Filho, O.O. de; Urtiga Filho, S.L.; Gonzalez, C.H.
2010-01-01
This work aims to characterize the wire commercial Ti-Ni of 1.27 mm in diameter with shape memory effect for the development of helical springs with the function of sensor / actuator. After heat treatment, the transformation temperatures, the presence of precipitates, the degree of damping, maximum stress of rupture, modulus of elasticity, the presence of phase R, the behavior of the alloy under tension, will be analyzed and compared in each situation. For characterization we used several methods including: heat treatment, Differential Scanning Calorimetry (DSC), tensile, dynamic mechanical analysis (DMA), X-ray diffraction, thermomechanical cycling. The wires were cut into pieces and heat-treated at 400 deg C with variation of time in muffle furnaces and quenching in water at 25 deg C. (author)
DEFF Research Database (Denmark)
Petersen, Kaare Brandt; Pedersen, Michael Syskind
Matrix identities, relations and approximations. A desktop reference for quick overview of mathematics of matrices.......Matrix identities, relations and approximations. A desktop reference for quick overview of mathematics of matrices....
Franz, Marcel; Spohn, Dorothee; Ritter, Alexander; Rolke, Roman; Miltner, Wolfgang H R; Weiss, Thomas
2012-08-01
Patients suffering from postherpetic neuralgia often complain about hypo- or hypersensation in the affected dermatome. The loss of thermal sensitivity has been demonstrated by quantitative sensory testing as being associated with small-fiber (Aδ- and C-fiber) deafferentation. We aimed to compare laser stimulation (radiant heat) to thermode stimulation (contact heat) with regard to their sensitivity and specificity to detect thermal sensory deficits related to small-fiber dysfunction in postherpetic neuralgia. We contrasted detection rate of laser stimuli with 5 thermal parameters (thresholds of cold/warm detection, cold/heat pain, and sensory limen) of quantitative sensory testing. Sixteen patients diagnosed with unilateral postherpetic neuralgia and 16 age- and gender-matched healthy control subjects were tested. Quantitative sensory testing and laser stimulation of tiny skin areas were performed in the neuralgia-affected skin and in the contralateral homologue of the neuralgia-free body side. Across the 5 thermal parameters of thermode stimulation, only one parameter (warm detection threshold) revealed sensory abnormalities (thermal hypoesthesia to warm stimuli) in the neuralgia-affected skin area of patients but not in the contralateral area, as compared to the control group. In contrast, patients perceived significantly less laser stimuli both in the affected skin and in the contralateral skin compared to controls. Overall, laser stimulation proved more sensitive and specific in detecting thermal sensory abnormalities in the neuralgia-affected skin, as well as in the control skin, than any single thermal parameter of thermode stimulation. Thus, laser stimulation of tiny skin areas might be a useful diagnostic tool for small-fiber dysfunction. Copyright © 2012 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Farooque, Mohammad; Yuh, Chao-Yi
1996-01-01
A carbonate fuel cell matrix comprising support particles and crack attenuator particles which are made platelet in shape to increase the resistance of the matrix to through cracking. Also disclosed is a matrix having porous crack attenuator particles and a matrix whose crack attenuator particles have a thermal coefficient of expansion which is significantly different from that of the support particles, and a method of making platelet-shaped crack attenuator particles.
Matrix with Prescribed Eigenvectors
Ahmad, Faiz
2011-01-01
It is a routine matter for undergraduates to find eigenvalues and eigenvectors of a given matrix. But the converse problem of finding a matrix with prescribed eigenvalues and eigenvectors is rarely discussed in elementary texts on linear algebra. This problem is related to the "spectral" decomposition of a matrix and has important technical…
Indian Academy of Sciences (India)
Much of linear algebra is devoted to reducing a matrix (via similarity or unitary similarity) to another that has lots of zeros. The simplest such theorem is the Schur triangularization theorem. This says that every matrix is unitarily similar to an upper triangular matrix. Our aim here is to show that though it is very easy to prove it ...
International Nuclear Information System (INIS)
Meisner, L. L.; Meisner, S. N.; Markov, A. B.; Yakovlev, E. V.; Ozur, G. E.; Rotshtein, V. P.; Mironov, Yu. P.
2015-01-01
This work comprises a study of the influence of the pulse number of low-energy high-current electron beam (LEHCEB) exposure on the value and character of distribution of residual elastic stresses, texturing effects and the relationship between structural-phase states and physical and mechanical properties of the modified surface layers of TiNi alloy. LEHCEB processing of the surface of TiNi samples was carried out using a RITM-SP [3] installation. Energy density of electron beam was constant at E s = 3.9 ± 0.5 J/cm 2 ; pulse duration was 2.8 ± 0.3 μs. The number of pulses in the series was changeable, (n = 2–128). It was shown that as the result of multiple LEHCEB processing of TiNi samples, hierarchically organized multilayer structure is formed in the surface layer. The residual stress field of planar type is formed in the modified surface layer as following: in the direction of the normal to the surface the strain component ε ⊥ < 0 (compressing strain), and in a direction parallel to the surface, the strain component ε || > 0 (tensile deformation). Texturing effects and the level of residual stresses after LEHCEB processing of TiNi samples with equal energy density of electron beam (∼3.8 J/cm 2 ) depend on the number of pulses and increase with the rise of n > 10
Hsieh, Shy-Feng; Ou, Shih-Fu; Chou, Chia-Kai
2017-01-01
TiNi shape memory alloys (SMAs), used as long-term implant materials, have a disadvantage. Ni-ion release from the alloys may trigger allergies in the human body. Micro-arc oxidation has been utilized to modify the surface of the TiNi SMA for improving its corrosion resistance and biocompatibility. However, there are very few reports investigating the essential adhesive strength between the micro-arc oxidized film and TiNi SMA. Two primary goals were attained by this study. First, Ti50Ni48.5Mo1.5 SMA having a phase transformation temperature (Af) less than body temperature and good shape recovery were prepared. Next, the Ti50Ni50 and Ti50Ni48.5Mo1.5 SMA surfaces were modified by micro-arc oxidation in phosphoric acid by applying relatively low voltages to maintain the adhesive strength. The results indicated that the pore size, film thickness, and P content increased with applied voltage. The micro-arc oxidized film, comprising Ti oxides, Ni oxide, and phosphate compounds, exhibited a glassy amorphous structure. The outmost surface of the micro-arc oxidized film contained a large amount of P (>12 at%) but only a trace of Ni (micro-arc oxidized films exceeded the requirements of ISO 13779. Furthermore, Mo addition into TiNi SMAs was found to be favorable for improving the adhesive strength of the micro-arc oxidized film.
Parallelism in matrix computations
Gallopoulos, Efstratios; Sameh, Ahmed H
2016-01-01
This book is primarily intended as a research monograph that could also be used in graduate courses for the design of parallel algorithms in matrix computations. It assumes general but not extensive knowledge of numerical linear algebra, parallel architectures, and parallel programming paradigms. The book consists of four parts: (I) Basics; (II) Dense and Special Matrix Computations; (III) Sparse Matrix Computations; and (IV) Matrix functions and characteristics. Part I deals with parallel programming paradigms and fundamental kernels, including reordering schemes for sparse matrices. Part II is devoted to dense matrix computations such as parallel algorithms for solving linear systems, linear least squares, the symmetric algebraic eigenvalue problem, and the singular-value decomposition. It also deals with the development of parallel algorithms for special linear systems such as banded ,Vandermonde ,Toeplitz ,and block Toeplitz systems. Part III addresses sparse matrix computations: (a) the development of pa...
International Nuclear Information System (INIS)
Strobel, E.L.
1985-01-01
Given the many conflicting experimental results, examination is made of the neutrino mass matrix in order to determine possible masses and mixings. It is assumed that the Dirac mass matrix for the electron, muon, and tau neutrinos is similar in form to those of the quarks and charged leptons, and that the smallness of the observed neutrino masses results from the Gell-Mann-Ramond-Slansky mechanism. Analysis of masses and mixings for the neutrinos is performed using general structures for the Majorana mass matrix. It is shown that if certain tentative experimental results concerning the neutrino masses and mixing angles are confirmed, significant limitations may be placed on the Majorana mass matrix. The most satisfactory simple assumption concerning the Majorana mass matrix is that it is approximately proportional to the Dirac mass matrix. A very recent experimental neutrino mass result and its implications are discussed. Some general properties of matrices with structure similar to the Dirac mass matrices are discussed
Kennedy, May G; Genderson, Maureen Wilson; Sepulveda, Allison L; Garland, Sheryl L; Wilson, Diane Baer; Stith-Singleton, Rose; Dubuque, Susan
2013-05-01
Pregnant African American women are at disproportionately high risk of premature birth and infant mortality, outcomes associated with cigarette smoking. Telephone-based, individual smoking cessation counseling has been shown to result in successful quit attempts in the general population and among pregnant women, but "quitlines" are underutilized. A social marketing campaign called One Tiny Reason to Quit (OTRTQ) promoted calling a quitline (1-800-QUIT-NOW) to pregnant, African American women in Richmond, Virginia, in 2009 and was replicated there 2 years later. The campaign disseminated messages via radio, interior bus ads, posters, newspaper ads, and billboards. Trained volunteers also delivered messages face-to-face and distributed branded give-away reminder items. The number of calls made from pregnant women in the Richmond area during summer 2009 was contrasted with (a) the number of calls during the seasons immediately before and after the campaign, and (b) the number of calls the previous summer. The replication used the same evaluation design. There were statistically significant spikes in calls from pregnant women during both campaign waves for both types of contrasts. A higher proportion of the calls from pregnant women were from African Americans during the campaign. A multimodal quitline promotion like OTRTQ should be considered for geographic areas with sizable African American populations and high rates of infant mortality.
Genderson, Maureen Wilson; Sepulveda, Allison L.; Garland, Sheryl L.; Wilson, Diane Baer; Stith-Singleton, Rose; Dubuque, Susan
2013-01-01
Abstract Introduction Pregnant African American women are at disproportionately high risk of premature birth and infant mortality, outcomes associated with cigarette smoking. Telephone-based, individual smoking cessation counseling has been shown to result in successful quit attempts in the general population and among pregnant women, but “quitlines” are underutilized. A social marketing campaign called One Tiny Reason to Quit (OTRTQ) promoted calling a quitline (1-800-QUIT-NOW) to pregnant, African American women in Richmond, Virginia, in 2009 and was replicated there 2 years later. Methods The campaign disseminated messages via radio, interior bus ads, posters, newspaper ads, and billboards. Trained volunteers also delivered messages face-to-face and distributed branded give-away reminder items. The number of calls made from pregnant women in the Richmond area during summer 2009 was contrasted with (a) the number of calls during the seasons immediately before and after the campaign, and (b) the number of calls the previous summer. The replication used the same evaluation design. Results There were statistically significant spikes in calls from pregnant women during both campaign waves for both types of contrasts. A higher proportion of the calls from pregnant women were from African Americans during the campaign. Conclusion A multimodal quitline promotion like OTRTQ should be considered for geographic areas with sizable African American populations and high rates of infant mortality. PMID:23621745
DEFF Research Database (Denmark)
Hansen, Kristoffer Arnsfelt; Ibsen-Jensen, Rasmus; Podolskii, Vladimir V.
2013-01-01
For matrix games we study how small nonzero probability must be used in optimal strategies. We show that for image win–lose–draw games (i.e. image matrix games) nonzero probabilities smaller than image are never needed. We also construct an explicit image win–lose game such that the unique optimal...
DEFF Research Database (Denmark)
Schneider, Jesper Wiborg; Borlund, Pia
2007-01-01
The present two-part article introduces matrix comparison as a formal means for evaluation purposes in informetric studies such as cocitation analysis. In the first part, the motivation behind introducing matrix comparison to informetric studies, as well as two important issues influencing such c...
Saleem, M
2002-01-01
The Unitarity of the CKM matrix is examined in the light of the latest available accurate data. The analysis shows that a conclusive result cannot be derived at present. Only more precise data can determine whether the CKM matrix opens new vistas beyond the standard model or not.
International Nuclear Information System (INIS)
Markowski, Adam S.; Mannan, M. Sam
2008-01-01
A risk matrix is a mechanism to characterize and rank process risks that are typically identified through one or more multifunctional reviews (e.g., process hazard analysis, audits, or incident investigation). This paper describes a procedure for developing a fuzzy risk matrix that may be used for emerging fuzzy logic applications in different safety analyses (e.g., LOPA). The fuzzification of frequency and severity of the consequences of the incident scenario are described which are basic inputs for fuzzy risk matrix. Subsequently using different design of risk matrix, fuzzy rules are established enabling the development of fuzzy risk matrices. Three types of fuzzy risk matrix have been developed (low-cost, standard, and high-cost), and using a distillation column case study, the effect of the design on final defuzzified risk index is demonstrated
International Nuclear Information System (INIS)
Baron, Jorge H.; Rivera, S.S.
2000-01-01
The so-called vulnerability matrix is used in the evaluation part of the probabilistic safety assessment for a nuclear power plant, during the containment event trees calculations. This matrix is established from what is knows as Numerical Categories for Engineering Judgement. This matrix is usually established with numerical values obtained with traditional arithmetic using the set theory. The representation of this matrix with fuzzy numbers is much more adequate, due to the fact that the Numerical Categories for Engineering Judgement are better represented with linguistic variables, such as 'highly probable', 'probable', 'impossible', etc. In the present paper a methodology to obtain a Fuzzy Vulnerability Matrix is presented, starting from the recommendations on the Numerical Categories for Engineering Judgement. (author)
International Nuclear Information System (INIS)
Motemani, Y.; Tan, M.J.; White, T.J.; Huang, W.M.
2011-01-01
This paper reports the rapid thermal annealing (RTA) of Ti-rich TiNi thin films, synthesized by the co-sputtering of TiNi and Ti targets. Long-range order of aperiodic alloy could be achieved in a few seconds with the optimum temperature of 773 K. Longer annealing (773 K/240 s), transformed the film to a poorly ordered vitreous phase, suggesting a novel method for solid state amorphization. Reitveld refinement analyses showed significant differences in structural parameters of the films crystallized by rapid and conventional thermal annealing. Dependence of the elastic modulus on the valence electron density (VED) of the crystallized films was studied. It is suggested that RTA provides a new approach to fabricate patterned shape memory thin films.
International Nuclear Information System (INIS)
Krenciglowa, E.M.; Kung, C.L.; Kuo, T.T.S.; Osnes, E.; and Department of Physics, State University of New York at Stony Brook, Stony Brook, New York 11794)
1976-01-01
Different definitions of the reaction matrix G appropriate to the calculation of nuclear structure are reviewed and discussed. Qualitative physical arguments are presented in support of a two-step calculation of the G-matrix for finite nuclei. In the first step the high-energy excitations are included using orthogonalized plane-wave intermediate states, and in the second step the low-energy excitations are added in, using harmonic oscillator intermediate states. Accurate calculations of G-matrix elements for nuclear structure calculations in the Aapprox. =18 region are performed following this procedure and treating the Pauli exclusion operator Q 2 /sub p/ by the method of Tsai and Kuo. The treatment of Q 2 /sub p/, the effect of the intermediate-state spectrum and the energy dependence of the reaction matrix are investigated in detail. The present matrix elements are compared with various matrix elements given in the literature. In particular, close agreement is obtained with the matrix elements calculated by Kuo and Brown using approximate methods
Directory of Open Access Journals (Sweden)
Magdalena Kucewicz
2012-12-01
Full Text Available Vicia hirsuta (L. Gray S.F. (tiny vetch is a common and persistent segetal weed. Tiny vetch seeds and pods reach different stages of maturity during the crop harvest season. Some seeds that mature before cereal harvest are shed in the field and deposited in the soil seed bank, while others become incorporated into seed material. The objective of this study was to describe selected aspects of tiny vetch seed ecology: to determine the rate of individual reproduction of vetch plants growing in winter and spring grain crops and to evaluate the germination of seeds at different stages of maturity, subject to storage conditions. The seeds and pods of V. hirsuta were sorted according to their development stages at harvest and divided into two groups. The first group was stored under laboratory conditions for two months. In the autumn of the same year, the seeds were subjected to germination tests. The remaining seeds were stored in a storeroom, and were planted in soil in the spring. The germination rate was evaluated after 8 months of storage. Potential productivity (developed pods and flowers, fruit buds was higher in plants fruiting in winter wheat than in spring barley. Vetch plants produced around 17-26% more pods (including cracked, mature, greenish-brown and green pods and around 25% less buds in winter wheat than in spring barley. Immature seeds were characterized by the highest germination capacity. Following storage under laboratory conditions and stratification in soil, mature seeds germinated at a rate of several percent. After storage in a storeroom, seeds at all three development stages broke dormancy at a rate of 72- 75%. The high germination power of tiny vetch seeds stored in a storeroom indicates that this plant can be classified as an obligatory speirochoric weed species.
Matrix Metalloproteinase Enzyme Family
Directory of Open Access Journals (Sweden)
Ozlem Goruroglu Ozturk
2013-04-01
Full Text Available Matrix metalloproteinases play an important role in many biological processes such as embriogenesis, tissue remodeling, wound healing, and angiogenesis, and in some pathological conditions such as atherosclerosis, arthritis and cancer. Currently, 24 genes have been identified in humans that encode different groups of matrix metalloproteinase enzymes. This review discuss the members of the matrix metalloproteinase family and their substrate specificity, structure, function and the regulation of their enzyme activity by tissue inhibitors. [Archives Medical Review Journal 2013; 22(2.000: 209-220
Matrix groups for undergraduates
Tapp, Kristopher
2005-01-01
Matrix groups touch an enormous spectrum of the mathematical arena. This textbook brings them into the undergraduate curriculum. It makes an excellent one-semester course for students familiar with linear and abstract algebra and prepares them for a graduate course on Lie groups. Matrix Groups for Undergraduates is concrete and example-driven, with geometric motivation and rigorous proofs. The story begins and ends with the rotations of a globe. In between, the author combines rigor and intuition to describe basic objects of Lie theory: Lie algebras, matrix exponentiation, Lie brackets, and maximal tori.
Eves, Howard
1980-01-01
The usefulness of matrix theory as a tool in disciplines ranging from quantum mechanics to psychometrics is widely recognized, and courses in matrix theory are increasingly a standard part of the undergraduate curriculum.This outstanding text offers an unusual introduction to matrix theory at the undergraduate level. Unlike most texts dealing with the topic, which tend to remain on an abstract level, Dr. Eves' book employs a concrete elementary approach, avoiding abstraction until the final chapter. This practical method renders the text especially accessible to students of physics, engineeri
Directory of Open Access Journals (Sweden)
Adriana Sandoval-Comte
Full Text Available Worldwide, one in every three species of amphibian is endangered, 39 species have gone extinct in the last 500 years and another 130 species are suspected to have gone extinct in recent decades. Of the amphibians, salamanders have the highest portion of their species in one of the risk categories, even higher than the frogs. To date there have been few studies that have used recent field data to examine the status of populations of endangered salamanders. In this study we evaluate the current situation of two tiny salamanders, Parvimolge townsendi and Thorius pennatulus, both of which are distributed at intermediate elevations in the mountains of the northern Neotropics and are considered to be critically endangered; the first has been proposed as possibly extinct. By carrying out exhaustive surveys in both historical and potentially suitable sites for these two species, we evaluated their abundance and the characteristics of their habitats, and we estimated their potential geographic distribution. We visited 22 sites, investing 672 person-hours of sampling effort in the surveys, and found 201 P. townsendi salamanders in 11 sites and only 13 T. pennatulus salamanders in 5 sites. Both species were preferentially found in cloud forest fragments that were well conserved or only moderately transformed, and some of the salamanders were found in shade coffee plantations. The potential distribution area of both species is markedly fragmented and we estimate that it has decreased by more than 48%. The results of this study highlight the importance of carrying out exhaustive, systematic field surveys to obtain accurate information about the current situation of critically endangered species, and help us better understand the crisis that amphibians are facing worldwide.
Sandoval-Comte, Adriana; Pineda, Eduardo; Aguilar-López, José L
2012-01-01
Worldwide, one in every three species of amphibian is endangered, 39 species have gone extinct in the last 500 years and another 130 species are suspected to have gone extinct in recent decades. Of the amphibians, salamanders have the highest portion of their species in one of the risk categories, even higher than the frogs. To date there have been few studies that have used recent field data to examine the status of populations of endangered salamanders. In this study we evaluate the current situation of two tiny salamanders, Parvimolge townsendi and Thorius pennatulus, both of which are distributed at intermediate elevations in the mountains of the northern Neotropics and are considered to be critically endangered; the first has been proposed as possibly extinct. By carrying out exhaustive surveys in both historical and potentially suitable sites for these two species, we evaluated their abundance and the characteristics of their habitats, and we estimated their potential geographic distribution. We visited 22 sites, investing 672 person-hours of sampling effort in the surveys, and found 201 P. townsendi salamanders in 11 sites and only 13 T. pennatulus salamanders in 5 sites. Both species were preferentially found in cloud forest fragments that were well conserved or only moderately transformed, and some of the salamanders were found in shade coffee plantations. The potential distribution area of both species is markedly fragmented and we estimate that it has decreased by more than 48%. The results of this study highlight the importance of carrying out exhaustive, systematic field surveys to obtain accurate information about the current situation of critically endangered species, and help us better understand the crisis that amphibians are facing worldwide.
Wheeler, Coral; Oñorbe, Jose; Bullock, James S.; Boylan-Kolchin, Michael; Elbert, Oliver D.; Garrison-Kimmel, Shea; Hopkins, Philip F.; Kereš, Dušan
2015-10-01
We present Feedback in Realistic Environment (FIRE)/GIZMO hydrodynamic zoom-in simulations of isolated dark matter haloes, two each at the mass of classical dwarf galaxies (Mvir ≃ 1010 M⊙) and ultra-faint galaxies (Mvir ≃ 109 M⊙), and with two feedback implementations. The resulting central galaxies lie on an extrapolated abundance matching relation from M⋆ ≃ 106 to 104 M⊙ without a break. Every host is filled with subhaloes, many of which form stars. Each of our dwarfs with M⋆ ≃ 106 M⊙ has 1-2 well-resolved satellites with M⋆ = 3-200 × 103 M⊙. Even our isolated ultra-faint galaxies have star-forming subhaloes. If this is representative, dwarf galaxies throughout the Universe should commonly host tiny satellite galaxies of their own. We combine our results with the Exploring the Local Volume in Simulations (ELVIS) simulations to show that targeting ˜ 50 kpc regions around nearby isolated dwarfs could increase the chances of discovering ultra-faint galaxies by ˜35 per cent compared to random pointings, and specifically identify the region around the Phoenix dwarf galaxy as a good potential target. The well-resolved ultra-faint galaxies in our simulations (M⋆ ≃ 3-30 × 103 M⊙) form within Mpeak ≃ 0.5-3 × 109 M⊙ haloes. Each has a uniformly ancient stellar population ( > 10 Gyr) owing to reionization-related quenching. More massive systems, in contrast, all have late-time star formation. Our results suggest that Mhalo ≃ 5 × 109 M⊙ is a probable dividing line between haloes hosting reionization `fossils' and those hosting dwarfs that can continue to form stars in isolation after reionization.
Energy Technology Data Exchange (ETDEWEB)
Tsuchiyama, Tomoya; Terasaki, Shuichi; Kaneko, Shuichi; Kaji, Kyosuke; Kobayashi, Kenichi; Matsui, Osamu [Kanazawa Univ. (Japan). Hospital
2002-10-01
It is important to distinguish small lesions with increased arterial perfusion observed by computed tomographic arteriography (CT-A) from hepatocellular carcinoma (HCC). However, the clinical characteristics and prognosis of such lesions have not been clarified. We retrospectively examined 200 patients with cirrhosis related to hepatitis C virus (HCV) infection who had undergone both CT-A and CT arterioportography between 1995 and 1998, and found 80 tiny staining spots (TSS)s, with a diameter of 5-10 mm, by CT-A (35 patients). The mean TSS observation period was 29.0 months. If the major axis was larger than 10 mm and showed a 1.5-fold or more increase, the lesion was regarded as tumor growth (TG). The TSS lesions were divided into two groups according to whether the patient had or did not have HCC. The prognosis of TSS was classified into three groups; HCC-suspected group, nontumor group, and unclassified group, in which TG was negative although transcatheter arterial embolization (TAE) had been performed. Of the 40 TSSs in 14 patients without HCC, 2 (5%) were suspected as HCC. Of the 40 TSSs in 21 patients with HCC, 13 (32.5%) were suspected as HCC. There were no significant differences in the size, position, and morphology of TSSs among the three prognostic groups. Of the 7 TSSs with a high signal intensity on T2-weighted magnetic resonance (MR) images, 5 were in the HCC-suspected group. We recommend early treatment of TSSs accompanying HCC or showing features of malignancy at the imaging workup. (author)
Digital Repository Service at National Institute of Oceanography (India)
Bhat, S.R.
contaminated fish and shellfish before they reach market. But it is not so everywhere and therefore toxic blooms are taking a heavy toll. Fish and shellfish losses total tens of millions of dollars every year. While the wild fish can swim away from blooms... for monitoring toxin level in shellfish and accordingly closes or allows its harvest from shellfish beds. Marketable shellfish are generally considered to be safe, but in spite of these precautions, there are known illnesses. One dramatic example is from 1990...
DEFF Research Database (Denmark)
Hansen, Morten Tranberg; Kusy, Branislav
Most of wireless sensor network (WSN) operating systems today provide IPv6 as their standard communication primitive. As a consequence, sensor data can be seamlessly accessed by users through their PCs or mobile devices. Growth of WSNs into this potentially large domain, however, has been limited...
Indian Academy of Sciences (India)
humid and hot areas of Africa, the Americas, Asia and numerous ... traordinary enlargement of many parts of the body. It is a .... related to acute dengue fever. ... Table 2. Potential mosquito-borne viral diseases. 1. Apeu. Brazil. 22. Mayaro.
Czerwinski, Michael; Spence, Jason R
2017-01-05
Recently in Nature, Gjorevski et al. (2016) describe a fully defined synthetic hydrogel that mimics the extracellular matrix to support in vitro growth of intestinal stem cells and organoids. The hydrogel allows exquisite control over the chemical and physical in vitro niche and enables identification of regulatory properties of the matrix. Copyright © 2017 Elsevier Inc. All rights reserved.
The Matrix Organization Revisited
DEFF Research Database (Denmark)
Gattiker, Urs E.; Ulhøi, John Parm
1999-01-01
This paper gives a short overview of matrix structure and technology management. It outlines some of the characteristics and also points out that many organizations may actualy be hybrids (i.e. mix several ways of organizing to allocate resorces effectively).......This paper gives a short overview of matrix structure and technology management. It outlines some of the characteristics and also points out that many organizations may actualy be hybrids (i.e. mix several ways of organizing to allocate resorces effectively)....
Koo, H.; Falsetta, M.L.; Klein, M.I.
2013-01-01
Many infectious diseases in humans are caused or exacerbated by biofilms. Dental caries is a prime example of a biofilm-dependent disease, resulting from interactions of microorganisms, host factors, and diet (sugars), which modulate the dynamic formation of biofilms on tooth surfaces. All biofilms have a microbial-derived extracellular matrix as an essential constituent. The exopolysaccharides formed through interactions between sucrose- (and starch-) and Streptococcus mutans-derived exoenzymes present in the pellicle and on microbial surfaces (including non-mutans) provide binding sites for cariogenic and other organisms. The polymers formed in situ enmesh the microorganisms while forming a matrix facilitating the assembly of three-dimensional (3D) multicellular structures that encompass a series of microenvironments and are firmly attached to teeth. The metabolic activity of microbes embedded in this exopolysaccharide-rich and diffusion-limiting matrix leads to acidification of the milieu and, eventually, acid-dissolution of enamel. Here, we discuss recent advances concerning spatio-temporal development of the exopolysaccharide matrix and its essential role in the pathogenesis of dental caries. We focus on how the matrix serves as a 3D scaffold for biofilm assembly while creating spatial heterogeneities and low-pH microenvironments/niches. Further understanding on how the matrix modulates microbial activity and virulence expression could lead to new approaches to control cariogenic biofilms. PMID:24045647
Bhatia, Rajendra
2013-01-01
This book is an outcome of the Indo-French Workshop on Matrix Information Geometries (MIG): Applications in Sensor and Cognitive Systems Engineering, which was held in Ecole Polytechnique and Thales Research and Technology Center, Palaiseau, France, in February 23-25, 2011. The workshop was generously funded by the Indo-French Centre for the Promotion of Advanced Research (IFCPAR). During the event, 22 renowned invited french or indian speakers gave lectures on their areas of expertise within the field of matrix analysis or processing. From these talks, a total of 17 original contribution or state-of-the-art chapters have been assembled in this volume. All articles were thoroughly peer-reviewed and improved, according to the suggestions of the international referees. The 17 contributions presented are organized in three parts: (1) State-of-the-art surveys & original matrix theory work, (2) Advanced matrix theory for radar processing, and (3) Matrix-based signal processing applications.
Praeger, Cheryl; Tao, Terence
2018-01-01
MATRIX is Australia’s international, residential mathematical research institute. It facilitates new collaborations and mathematical advances through intensive residential research programs, each lasting 1-4 weeks. This book is a scientific record of the five programs held at MATRIX in its first year, 2016: Higher Structures in Geometry and Physics (Chapters 1-5 and 18-21); Winter of Disconnectedness (Chapter 6 and 22-26); Approximation and Optimisation (Chapters 7-8); Refining C*-Algebraic Invariants for Dynamics using KK-theory (Chapters 9-13); Interactions between Topological Recursion, Modularity, Quantum Invariants and Low-dimensional Topology (Chapters 14-17 and 27). The MATRIX Scientific Committee selected these programs based on their scientific excellence and the participation rate of high-profile international participants. Each program included ample unstructured time to encourage collaborative research; some of the longer programs also included an embedded conference or lecture series. The artic...
Energy Technology Data Exchange (ETDEWEB)
Pan, Feng [Los Alamos National Laboratory; Kasiviswanathan, Shiva [Los Alamos National Laboratory
2010-01-01
In the matrix interdiction problem, a real-valued matrix and an integer k is given. The objective is to remove k columns such that the sum over all rows of the maximum entry in each row is minimized. This combinatorial problem is closely related to bipartite network interdiction problem which can be applied to prioritize the border checkpoints in order to minimize the probability that an adversary can successfully cross the border. After introducing the matrix interdiction problem, we will prove the problem is NP-hard, and even NP-hard to approximate with an additive n{gamma} factor for a fixed constant {gamma}. We also present an algorithm for this problem that achieves a factor of (n-k) mUltiplicative approximation ratio.
DEFF Research Database (Denmark)
Frandsen, Gudmund Skovbjerg; Frandsen, Peter Frands
2009-01-01
We consider maintaining information about the rank of a matrix under changes of the entries. For n×n matrices, we show an upper bound of O(n1.575) arithmetic operations and a lower bound of Ω(n) arithmetic operations per element change. The upper bound is valid when changing up to O(n0.575) entries...... in a single column of the matrix. We also give an algorithm that maintains the rank using O(n2) arithmetic operations per rank one update. These bounds appear to be the first nontrivial bounds for the problem. The upper bounds are valid for arbitrary fields, whereas the lower bound is valid for algebraically...... closed fields. The upper bound for element updates uses fast rectangular matrix multiplication, and the lower bound involves further development of an earlier technique for proving lower bounds for dynamic computation of rational functions....
Pérez López, César
2014-01-01
MATLAB is a high-level language and environment for numerical computation, visualization, and programming. Using MATLAB, you can analyze data, develop algorithms, and create models and applications. The language, tools, and built-in math functions enable you to explore multiple approaches and reach a solution faster than with spreadsheets or traditional programming languages, such as C/C++ or Java. MATLAB Matrix Algebra introduces you to the MATLAB language with practical hands-on instructions and results, allowing you to quickly achieve your goals. Starting with a look at symbolic and numeric variables, with an emphasis on vector and matrix variables, you will go on to examine functions and operations that support vectors and matrices as arguments, including those based on analytic parent functions. Computational methods for finding eigenvalues and eigenvectors of matrices are detailed, leading to various matrix decompositions. Applications such as change of bases, the classification of quadratic forms and ...
Hohn, Franz E
2012-01-01
This complete and coherent exposition, complemented by numerous illustrative examples, offers readers a text that can teach by itself. Fully rigorous in its treatment, it offers a mathematically sound sequencing of topics. The work starts with the most basic laws of matrix algebra and progresses to the sweep-out process for obtaining the complete solution of any given system of linear equations - homogeneous or nonhomogeneous - and the role of matrix algebra in the presentation of useful geometric ideas, techniques, and terminology.Other subjects include the complete treatment of the structur
International Nuclear Information System (INIS)
Brown, T.W.
2010-11-01
The same complex matrix model calculates both tachyon scattering for the c=1 non-critical string at the self-dual radius and certain correlation functions of half-BPS operators in N=4 super- Yang-Mills. It is dual to another complex matrix model where the couplings of the first model are encoded in the Kontsevich-like variables of the second. The duality between the theories is mirrored by the duality of their Feynman diagrams. Analogously to the Hermitian Kontsevich- Penner model, the correlation functions of the second model can be written as sums over discrete points in subspaces of the moduli space of punctured Riemann surfaces. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Brown, T.W.
2010-11-15
The same complex matrix model calculates both tachyon scattering for the c=1 non-critical string at the self-dual radius and certain correlation functions of half-BPS operators in N=4 super- Yang-Mills. It is dual to another complex matrix model where the couplings of the first model are encoded in the Kontsevich-like variables of the second. The duality between the theories is mirrored by the duality of their Feynman diagrams. Analogously to the Hermitian Kontsevich- Penner model, the correlation functions of the second model can be written as sums over discrete points in subspaces of the moduli space of punctured Riemann surfaces. (orig.)
Mepham, B.; Kaiser, M.; Thorstensen, E.; Tomkins, S.; Millar, K.
2006-01-01
The ethical matrix is a conceptual tool designed to help decision-makers (as individuals or working in groups) reach sound judgements or decisions about the ethical acceptability and/or optimal regulatory controls for existing or prospective technologies in the field of food and agriculture.
Mitjana, Margarida
2018-01-01
This book contains the notes of the lectures delivered at an Advanced Course on Combinatorial Matrix Theory held at Centre de Recerca Matemàtica (CRM) in Barcelona. These notes correspond to five series of lectures. The first series is dedicated to the study of several matrix classes defined combinatorially, and was delivered by Richard A. Brualdi. The second one, given by Pauline van den Driessche, is concerned with the study of spectral properties of matrices with a given sign pattern. Dragan Stevanović delivered the third one, devoted to describing the spectral radius of a graph as a tool to provide bounds of parameters related with properties of a graph. The fourth lecture was delivered by Stephen Kirkland and is dedicated to the applications of the Group Inverse of the Laplacian matrix. The last one, given by Ángeles Carmona, focuses on boundary value problems on finite networks with special in-depth on the M-matrix inverse problem.
Visualizing Matrix Multiplication
Daugulis, Peteris; Sondore, Anita
2018-01-01
Efficient visualizations of computational algorithms are important tools for students, educators, and researchers. In this article, we point out an innovative visualization technique for matrix multiplication. This method differs from the standard, formal approach by using block matrices to make computations more visual. We find this method a…
DEFF Research Database (Denmark)
Jørnø, Rasmus Leth Vergmann; Gynther, Karsten; Christensen, Ove
2014-01-01
useful information, we question whether the axis of time and space comprising the matrix pertains to relevant defining properties of the tools, technology or learning environments to which they are applied. Subsequently we offer an example of an Adobe Connect e-learning session as an illustration...
Directory of Open Access Journals (Sweden)
Lesław B. Lahuta
2011-01-01
Full Text Available In the present study we have investigated the effect of exogenous cyclitols on the accumulation of their galactosides and raffinose family oligosaccharides (RFOs, as well as on some enzymes important for their biosynthesis in seeds of tiny vetch (Vicia hirsuta [L.] S.F. Gray. Immature seeds during 6-day incubation with D-chiro-inositol (naturally does not appear in seeds of tiny vetch were accumulated cyclitol and its galactosides (fagopyritols: B1 and B2. Short 4-hour incubation with D-chiro-inositol, and subsequent slow desiccation process caused accumulation of free cyclitol only, without biosynthesis of its galactosides. Feeding D-chiro-inositol to pods of tiny vetch induced accumulation of high levels of its galactosides (fagopyritol B1, B2 and B3 in maturing seeds. Similarly, feeding D-pinitol increased accumulation of its mono-, di- and tri-galactosides: GPA, GPB, DGPA and TGPA in tiny vetch seed. Accumulation of both cyclitols and their galactosides drastically reduced accumulation of verbascose. Inhibition of RFOs biosynthesis by elevated levels of free cyclitols suggests some competition between formation of both types of galactosides and similarity of both biosynthetic routes in tiny vetch seeds. Galactinol synthase (GolS from tiny vetch seeds demonstrated ability to utilize D-chiro-inositol as galactosyl acceptor, instead of myo-inositol. Presence of both cyclitols, as substrates for GolS, caused synthesis of their galactosides: fagopyritol B1 and galactinol. However, formation of galactinol was more efficient than fagopyritol B1. D-chiro-Inositol and D-pinitol at concentrations several-fold higher than myo-inositol had inhibitory effect on GolS. Thus, we suggest that a level of free cyclitols can have an influence on the rate of galactinol biosynthesis and further accumulation of RFOs and galactosyl cyclitols in tiny vetch seeds.
SenStick: Comprehensive Sensing Platform with an Ultra Tiny All-In-One Sensor Board for IoT Research
Directory of Open Access Journals (Sweden)
Yugo Nakamura
2017-01-01
Full Text Available We propose a comprehensive sensing platform called SenStick, which is composed of hardware (ultra tiny all-in-one sensor board, software (iOS, Android, and PC, and 3D case data. The platform aims to allow all the researchers to start IoT research, such as activity recognition and context estimation, easily and efficiently. The most important contribution is the hardware that we have designed. Various sensors often used for research are embedded in an ultra tiny board with the size of 50 mm (W × 10 mm (H × 5 mm (D and weight around 3 g including a battery. Concretely, the following sensors are embedded on this board: acceleration, gyro, magnetic, light, UV, temperature, humidity, and pressure. In addition, this board has BLE (Bluetooth low energy connectivity and capability of a rechargeable battery. By using 110 mAh battery, it can run more than 15 hours. The most different point from other similar boards is that our board has a large flash memory for logging all the data without a smartphone. By using SenStick, all the users can collect various data easily and focus on IoT data analytics. In this paper, we introduce SenStick platform and some case studies. Through the user study, we confirmed the usefulness of our proposed platform.
Keshavarzi, Ezat; Helmi, Abbas
2015-02-26
The modified fundamental measure theory (MFMT) has been employed to investigate the effects of inserting a tiny sphere in the center of a nanospherical pore on the structure, adsorption, and capillary condensation of fluids confined in it. In the first part of this Article, we have solved the weighted density integrals for all pores with spherical symmetries, including spherical and bispherical pores. In the second part, we show that the structure, amount of adsorption, and position of the fluid's capillary condensation change drastically when even a very thin sphere, R(s) = 0.01σ, is inserted into the center of a spherical pore (SP). In fact, the existence of a forbidden region around the inner sphere for the case of bispherical pores, even when R(s) = 0.01σ, causes a remarkable shift in both the amount of adsorption and the bulk density at which the capillary condensation occurs. Moreover, the insertion causes a sudden increase in the value of the contact density of the liquid, or the liquid in equilibrium with its vapor, at the wall of the outer sphere compared to that for an SP. In other words, the insertion of a tiny sphere in an SP causes the liquid droplet, which is formed in the center of the SP, to sprinkle throughout the whole nanopore. Also, we have demonstrated that the critical temperature and densities decrease with decreasing radius of the inner sphere.
Zhu, Chengzhang; Gong, Tingting; Xian, Qiming; Xie, Jimin
2018-06-01
Novel well-dispersed tiny Bi2S3 nanoparticles (NPs) with an average sizes of approximately 16.2 nm were used to decorate layered g-C3N4 nanosheets (NSs), with the purpose of constructing highly efficient 0D/2D heterojunction photocatalyst by a simple hydrothermal method in one step. The fabricated Bi2S3/g-C3N4 heterostructures exhibited superior visible-light-driven photocatalytic activity toward methyl orange (MO) degradation in contrast to that of individual Bi2S3 and g-C3N4, which could be mainly ascribed to the synergistic effect of the tiny size effect of 0D Bi2S3 NPs and 2D g-C3N4 NSs, the matched energy level positions, and the abundant coupling heterointerfaces between two moieties. More importantly, the photodegradation of methylene blue (MB), rhodamine B (RhB) and colorless tetracycline (TC), ciprofloxacin (CIP) further revealed the broad-spectrum photodegradation capacities of the heterojunction materials. The possible photoinduced charge transfer and pollutant degradation process over Bi2S3/g-C3N4 heterojunctions under visible-light irradiation were proposed. This work may provide a platform for constructing new visible light 0D/2D intimate contact heterostructures with stable and efficient photocatalytic performance.
Qian, Weixian; Zhou, Xiaojun; Lu, Yingcheng; Xu, Jiang
2015-09-15
Both the Jones and Mueller matrices encounter difficulties when physically modeling mixed materials or rough surfaces due to the complexity of light-matter interactions. To address these issues, we derived a matrix called the paths correlation matrix (PCM), which is a probabilistic mixture of Jones matrices of every light propagation path. Because PCM is related to actual light propagation paths, it is well suited for physical modeling. Experiments were performed, and the reflection PCM of a mixture of polypropylene and graphite was measured. The PCM of the mixed sample was accurately decomposed into pure polypropylene's single reflection, pure graphite's single reflection, and depolarization caused by multiple reflections, which is consistent with the theoretical derivation. Reflection parameters of rough surface can be calculated from PCM decomposition, and the results fit well with the theoretical calculations provided by the Fresnel equations. These theoretical and experimental analyses verify that PCM is an efficient way to physically model light-matter interactions.
International Nuclear Information System (INIS)
Sasakawa, T.; Okuno, H.; Ishikawa, S.; Sawada, T.
1982-01-01
The off-shell t matrix is expressed as a sum of one nonseparable and one separable terms so that it is useful for applications to more-than-two body problems. All poles are involved in this one separable term. Both the nonseparable and the separable terms of the kernel G 0 t are regular at the origin. The nonseparable term of this kernel vanishes at large distances, while the separable term behaves asymptotically as the spherical Hankel function. These properties make our expression free from defects inherent in the Jost or the K-matrix expressions, and many applications are anticipated. As the application, a compact expression of the many-level formula is presented. Also the application is suggested to the breakup threebody problem based on the Faddeev equation. It is demonstrated that the breakup amplitude is expressed in a simple and physically interesting form and we can calculate it in coordinate space
International Nuclear Information System (INIS)
Raju Viswanathan, R.
1991-09-01
We study examples of one dimensional matrix models whose potentials possess an energy spectrum that can be explicitly determined. This allows for an exact solution in the continuum limit. Specifically, step-like potentials and the Morse potential are considered. The step-like potentials show no scaling behaviour and the Morse potential (which corresponds to a γ = -1 model) has the interesting feature that there are no quantum corrections to the scaling behaviour in the continuum limit. (author). 5 refs
Brenner, Barbara; Schlegelmilch, Bodo B.; Ambos, Björn
2013-01-01
This case describes how Nike, a consumer goods company with an ever expanding portfolio and a tremendous brand value, manages the tradeoff between local responsiveness and global integration. In particular, the case highlights Nike's organizational structure that consists of a global matrix organization that is replicated at a regional level for the European market. While this organizational structure allows Nike to respond to local consumer tastes it also ensures that the company benefits f...
Wilkinson, Michael; Grant, John
2018-03-01
We consider a stochastic process in which independent identically distributed random matrices are multiplied and where the Lyapunov exponent of the product is positive. We continue multiplying the random matrices as long as the norm, ɛ, of the product is less than unity. If the norm is greater than unity we reset the matrix to a multiple of the identity and then continue the multiplication. We address the problem of determining the probability density function of the norm, \
Dijkgraaf, R; Verlinde, Herman L
1997-01-01
Via compactification on a circle, the matrix model of M-theory proposed by Banks et al suggests a concrete identification between the large N limit of two-dimensional N=8 supersymmetric Yang-Mills theory and type IIA string theory. In this paper we collect evidence that supports this identification. We explicitly identify the perturbative string states and their interactions, and describe the appearance of D-particle and D-membrane states.
Matrix groups for undergraduates
Tapp, Kristopher
2016-01-01
Matrix groups touch an enormous spectrum of the mathematical arena. This textbook brings them into the undergraduate curriculum. It makes an excellent one-semester course for students familiar with linear and abstract algebra and prepares them for a graduate course on Lie groups. Matrix Groups for Undergraduates is concrete and example-driven, with geometric motivation and rigorous proofs. The story begins and ends with the rotations of a globe. In between, the author combines rigor and intuition to describe the basic objects of Lie theory: Lie algebras, matrix exponentiation, Lie brackets, maximal tori, homogeneous spaces, and roots. This second edition includes two new chapters that allow for an easier transition to the general theory of Lie groups. From reviews of the First Edition: This book could be used as an excellent textbook for a one semester course at university and it will prepare students for a graduate course on Lie groups, Lie algebras, etc. … The book combines an intuitive style of writing w...
Extracellular matrix structure.
Theocharis, Achilleas D; Skandalis, Spyros S; Gialeli, Chrysostomi; Karamanos, Nikos K
2016-02-01
Extracellular matrix (ECM) is a non-cellular three-dimensional macromolecular network composed of collagens, proteoglycans/glycosaminoglycans, elastin, fibronectin, laminins, and several other glycoproteins. Matrix components bind each other as well as cell adhesion receptors forming a complex network into which cells reside in all tissues and organs. Cell surface receptors transduce signals into cells from ECM, which regulate diverse cellular functions, such as survival, growth, migration, and differentiation, and are vital for maintaining normal homeostasis. ECM is a highly dynamic structural network that continuously undergoes remodeling mediated by several matrix-degrading enzymes during normal and pathological conditions. Deregulation of ECM composition and structure is associated with the development and progression of several pathologic conditions. This article emphasizes in the complex ECM structure as to provide a better understanding of its dynamic structural and functional multipotency. Where relevant, the implication of the various families of ECM macromolecules in health and disease is also presented. Copyright © 2015 Elsevier B.V. All rights reserved.
Standard Errors for Matrix Correlations.
Ogasawara, Haruhiko
1999-01-01
Derives the asymptotic standard errors and intercorrelations for several matrix correlations assuming multivariate normality for manifest variables and derives the asymptotic standard errors of the matrix correlations for two factor-loading matrices. (SLD)
The cellulose resource matrix.
Keijsers, Edwin R P; Yılmaz, Gülden; van Dam, Jan E G
2013-03-01
The emerging biobased economy is causing shifts from mineral fossil oil based resources towards renewable resources. Because of market mechanisms, current and new industries utilising renewable commodities, will attempt to secure their supply of resources. Cellulose is among these commodities, where large scale competition can be expected and already is observed for the traditional industries such as the paper industry. Cellulose and lignocellulosic raw materials (like wood and non-wood fibre crops) are being utilised in many industrial sectors. Due to the initiated transition towards biobased economy, these raw materials are intensively investigated also for new applications such as 2nd generation biofuels and 'green' chemicals and materials production (Clark, 2007; Lange, 2007; Petrus & Noordermeer, 2006; Ragauskas et al., 2006; Regalbuto, 2009). As lignocellulosic raw materials are available in variable quantities and qualities, unnecessary competition can be avoided via the choice of suitable raw materials for a target application. For example, utilisation of cellulose as carbohydrate source for ethanol production (Kabir Kazi et al., 2010) avoids the discussed competition with easier digestible carbohydrates (sugars, starch) deprived from the food supply chain. Also for cellulose use as a biopolymer several different competing markets can be distinguished. It is clear that these applications and markets will be influenced by large volume shifts. The world will have to reckon with the increase of competition and feedstock shortage (land use/biodiversity) (van Dam, de Klerk-Engels, Struik, & Rabbinge, 2005). It is of interest - in the context of sustainable development of the bioeconomy - to categorize the already available and emerging lignocellulosic resources in a matrix structure. When composing such "cellulose resource matrix" attention should be given to the quality aspects as well as to the available quantities and practical possibilities of processing the
Deift, Percy
2009-01-01
This book features a unified derivation of the mathematical theory of the three classical types of invariant random matrix ensembles-orthogonal, unitary, and symplectic. The authors follow the approach of Tracy and Widom, but the exposition here contains a substantial amount of additional material, in particular, facts from functional analysis and the theory of Pfaffians. The main result in the book is a proof of universality for orthogonal and symplectic ensembles corresponding to generalized Gaussian type weights following the authors' prior work. New, quantitative error estimates are derive
Eisenman, Richard L
2005-01-01
This outstanding text and reference applies matrix ideas to vector methods, using physical ideas to illustrate and motivate mathematical concepts but employing a mathematical continuity of development rather than a physical approach. The author, who taught at the U.S. Air Force Academy, dispenses with the artificial barrier between vectors and matrices--and more generally, between pure and applied mathematics.Motivated examples introduce each idea, with interpretations of physical, algebraic, and geometric contexts, in addition to generalizations to theorems that reflect the essential structur
Directory of Open Access Journals (Sweden)
Abdelhakim Chillali
2017-05-01
Full Text Available In classical cryptography, the Hill cipher is a polygraphic substitution cipher based on linear algebra. In this work, we proposed a new problem applicable to the public key cryptography, based on the Matrices, called “Matrix discrete logarithm problem”, it uses certain elements formed by matrices whose coefficients are elements in a finite field. We have constructed an abelian group and, for the cryptographic part in this unreliable group, we then perform the computation corresponding to the algebraic equations, Returning the encrypted result to a receiver. Upon receipt of the result, the receiver can retrieve the sender’s clear message by performing the inverse calculation.
Matrix string partition function
Kostov, Ivan K; Kostov, Ivan K.; Vanhove, Pierre
1998-01-01
We evaluate quasiclassically the Ramond partition function of Euclidean D=10 U(N) super Yang-Mills theory reduced to a two-dimensional torus. The result can be interpreted in terms of free strings wrapping the space-time torus, as expected from the point of view of Matrix string theory. We demonstrate that, when extrapolated to the ultraviolet limit (small area of the torus), the quasiclassical expressions reproduce exactly the recently obtained expression for the partition of the completely reduced SYM theory, including the overall numerical factor. This is an evidence that our quasiclassical calculation might be exact.
Matrix algebra for linear models
Gruber, Marvin H J
2013-01-01
Matrix methods have evolved from a tool for expressing statistical problems to an indispensable part of the development, understanding, and use of various types of complex statistical analyses. This evolution has made matrix methods a vital part of statistical education. Traditionally, matrix methods are taught in courses on everything from regression analysis to stochastic processes, thus creating a fractured view of the topic. Matrix Algebra for Linear Models offers readers a unique, unified view of matrix analysis theory (where and when necessary), methods, and their applications. Written f
General property of neutrino mass matrix and CP-violation
International Nuclear Information System (INIS)
Aizawa, Ichiro; Yasue, Masaki
2005-01-01
It is found that the atmospheric neutrino mixing angle of θ atm is determined to be tanθ atm =Im(B)/Im(C) for B=M ν e ν μ and C=M ν e ν τ , where M ij is the ij element of M ν - bar M ν with M ν as a complex symmetric neutrino mass matrix in the (ν e , ν μ , ν τ )-basis. Another mixing angle, θ 13 , defined as U e3 =sinθ 13 e -iδ is subject to the condition: tan2θ 13 ∝|sinθ atm B+cosθ atm C| and the CP-violating Dirac phase of δ is identical to the phase of sinθ atm B*+cosθ atm C*. The smallest value of |sinθ 13 | is achieved at tanθ atm =-Re(C)/Re(B) that yields the maximal CP-violation and that implies C=-κB* for the maximal atmospheric neutrino mixing of tanθ atm =κ=+/-1. The generic smallness of |sinθ 13 | can be ascribed to the tiny violation of the electron number conservation
Characterization of supercapacitors matrix
Energy Technology Data Exchange (ETDEWEB)
Sakka, Monzer Al, E-mail: Monzer.Al.Sakka@vub.ac.b [Vrije Universiteit Brussel, pleinlaan 2, B-1050 Brussels (Belgium); FEMTO-ST Institute, ENISYS Department, FCLAB, UFC-UTBM, bat.F, 90010 Belfort (France); Gualous, Hamid, E-mail: Hamid.Gualous@unicaen.f [Laboratoire LUSAC, Universite de Caen Basse Normandie, Rue Louis Aragon - BP 78, 50130 Cherbourg-Octeville (France); Van Mierlo, Joeri [Vrije Universiteit Brussel, pleinlaan 2, B-1050 Brussels (Belgium)
2010-10-30
This paper treats supercapacitors matrix characterization. In order to cut off transient power peaks and to compensate for the intrinsic limitations in embedded sources, the use of supercapacitors as a storage system is quite suitable, because of their appropriate electrical characteristics (huge capacitance, small series resistance, high specific energy, high specific power), direct storage (energy ready for use), and easy control by power electronic conversion. This use requires supercapacitors modules where several cells connected in serial and/or in parallel, thus a bypass system to balance the charging or the discharging of supercapacitors is required. In the matrix of supercapacitors, six elements of three parallel BCAP0350 supercapacitors in serial connections have been considered. This topology permits to reduce the number of the bypass circuits and it can work in degraded mode. Actually, it allows the system to have more reliability by providing power continually to the load even when there are one or more cells failed. Simulation and experimental results are presented and discussed.
Characterization of supercapacitors matrix
International Nuclear Information System (INIS)
Sakka, Monzer Al; Gualous, Hamid; Van Mierlo, Joeri
2010-01-01
This paper treats supercapacitors matrix characterization. In order to cut off transient power peaks and to compensate for the intrinsic limitations in embedded sources, the use of supercapacitors as a storage system is quite suitable, because of their appropriate electrical characteristics (huge capacitance, small series resistance, high specific energy, high specific power), direct storage (energy ready for use), and easy control by power electronic conversion. This use requires supercapacitors modules where several cells connected in serial and/or in parallel, thus a bypass system to balance the charging or the discharging of supercapacitors is required. In the matrix of supercapacitors, six elements of three parallel BCAP0350 supercapacitors in serial connections have been considered. This topology permits to reduce the number of the bypass circuits and it can work in degraded mode. Actually, it allows the system to have more reliability by providing power continually to the load even when there are one or more cells failed. Simulation and experimental results are presented and discussed.
Directory of Open Access Journals (Sweden)
Petr Čermák
2004-01-01
Full Text Available The paper deals with determination of the rate of damage by red deer barking, determination of the rate of damage by a subsequent rot caused by Stereum sanguinolentum and the rate of its progress. The paper elucidates causes of the damage and quantifies depreciation of wood by rots in the Proklest Forest Range, the Křtiny Training Forest Enterprise “Masaryk Forest“. The deer barking caused damage to 85% of stands. In the most damaged 2nd and 4th age classes, rot caused by Stereum sanguinolentum was noticed in 89% of damaged trees. The greatest proportion is made by damage from the 70s of the last century. After the 80s, the damage occurred only exceptionally. The average percentage loss of wood is highest in the 2nd age class, viz. 38%. The determined progress of the rot ranged from 1 to 36.4 cm.year-1.
International Nuclear Information System (INIS)
Kolomytsev, V.; Musienko, R.; Nevdacha, V.; Panarin, V.; Pasko, A.; Cesari, E.; Segui, C.; Humbeeck, J. van
2000-01-01
The TiNi- and CuAl-based shape memory alloy thin films and wear/corrosion resistant surface coats have been produced by the ion-plasma deposition method with an arc dispersion of the cathode/target. This technique was widely used for production of the coats from a sprayed pure metal or a single-phase alloy. We have offered to use this process for dispersion of the heterophase alloys like shape memory alloys. The arguments for choosing of this technique are discussed with respect to creation of the conditions for preservation not only chemical composition, but also phase structure of an alloy in a covering, thus the shape memory/superelastic effects to be kept in a coat. (orig.)
International Nuclear Information System (INIS)
Wang, Z.G.; Zu, X.T.; Feng, X.D.; Zhu, S.; Deng, J.; Wang, L.M.
2004-01-01
In this work, the effect of electrothermal annealing on the transformation characterization of TiNi shape memory alloy and the electrothermal actuating characteristics of a two-way shape memory effect (TWSME) extension spring were investigated with direct electrical current. The results showed that with increasing direct electrical current density, the B2→R-phase transformation shifts to a lower temperature and R-phase→B19' shifts to a higher temperature in the cooling process. When annealing electrical current density reached 12.2 A/mm 2 , the R-phase disappeared and austenite transformed into martensite directly. The electrothermal annealing was an effective method of heat treatment in a selected part of shape memory alloy device. The electrothermal actuating characteristics of a TWSME spring showed that the time response and the maximum elongation greatly depended on the magnitude of the electrical current
Directory of Open Access Journals (Sweden)
Lesław B. Lahuta
2011-01-01
Full Text Available The role of the abscisic acid (ABA in biosynthesis of raffinose family oligosaccharides (RFOs and galactosyl cyclitols (Gal-C in tiny vetch (Vicia hirsuta [L.] S.F. Gray seeds was investigated. The ABA was applied through incubation of seed at various stage of its development. The level of RFOs and Gal-C was determined in seed maturing on plant and in seed maturing in vitro. In early stages of V. hirsuta seed development, the ABA activated the biosynthesis of galactinol, although the level of arisen galactinol quickly declined. In the later stages of V. hirsuta seed development ABA had stimulatory effect of RFOs and Gal-C biosynthesis. Influence of ABA on biosynthesis of a-galactosides in Vicia hirsuta seed seems to be dependent on abscisic acid concentration. Low concentration of ABA had stimulatory effect on a-galactosides biosynthesis, but high concentration of ABA inhibited the process.
Shaw, Alexandra P. M.; Tirados, Inaki; Mangwiro, Clement T. N.; Esterhuizen, Johan; Lehane, Michael J.; Torr, Stephen J.; Kovacic, Vanja
2015-01-01
Introduction To evaluate the relative effectiveness of tsetse control methods, their costs need to be analysed alongside their impact on tsetse populations. Very little has been published on the costs of methods specifically targeting human African trypanosomiasis Methodology/Principal Findings In northern Uganda, a 250 km2 field trial was undertaken using small (0.5 X 0.25 m) insecticide-treated targets (“tiny targets”). Detailed cost recording accompanied every phase of the work. Costs were calculated for this operation as if managed by the Ugandan vector control services: removing purely research components of the work and applying local salaries. This calculation assumed that all resources are fully used, with no spare capacity. The full cost of the operation was assessed at USD 85.4 per km2, of which USD 55.7 or 65.2% were field costs, made up of three component activities (target deployment: 34.5%, trap monitoring: 10.6% and target maintenance: 20.1%). The remaining USD 29.7 or 34.8% of the costs were for preliminary studies and administration (tsetse surveys: 6.0%, sensitisation of local populations: 18.6% and office support: 10.2%). Targets accounted for only 12.9% of the total cost, other important cost components were labour (24.1%) and transport (34.6%). Discussion Comparison with the updated cost of historical HAT vector control projects and recent estimates indicates that this work represents a major reduction in cost levels. This is attributed not just to the low unit cost of tiny targets but also to the organisation of delivery, using local labour with bicycles or motorcycles. Sensitivity analyses were undertaken, investigating key prices and assumptions. It is believed that these costs are generalizable to other HAT foci, although in more remote areas, with denser vegetation and fewer people, costs would increase, as would be the case for other tsetse control techniques. PMID:25811956
Directory of Open Access Journals (Sweden)
Bünyamin Alım
2018-04-01
Full Text Available K shell X-ray fluorescence cross-sections (σKα, σKβ and σK, and K shell fluorescence yields (ωK of Ti, Ni both in pure metals and in different alloy compositions (TixNi1-x; x = 0.3, 0.4, 0.5, 0.6, 0.7 were measured by using energy dispersive X-ray fluorescence (EDXRF technique. The samples were excited by 22.69 keV X-rays from a 10 mCi Cd-109 radioactive point source and K X rays emitted by samples were counted by a high resolution Si(Li solid-state detector coupled to a 4 K multichannel analyzer (MCA. The alloying effects on the X-ray fluorescence (XRF parameters of Ti-Ni shape memory alloys (SMAs were investigated. It is clearly observed that alloying effect causes to change in K shell XRF parameter values in Ti-Ni based SMAs for different compositions of x. Also, the present investigation makes it possible to perform reliable interpretation of experimental σKα, σKβ and ωK values for Ti and Ni in SMAs and can also provide quantitative information about the changes of K shell X-ray fluorescence cross sections and fluorescence yields of these metals with alloy composition. Keywords: Alloying effect, XRF, K X-ray fluorescence cross-section, K shell fluorescence yield, Shape memory alloy
Cao, Liyun; He, Juju; Li, Jiayin; Yan, Jingwen; Huang, Jianfeng; Qi, Ying; Feng, Liangliang
2018-07-01
In order to improve the rate performance of MoO3, a novel MoO3 nanobelt with tiny grains on surface (named as d-MoO3) is fabricated via one-step facile hydrothermal method with citric acid adding, in which citric acid (CA) serves as a weak reductant as well as surface modification agent. When tested as an anode in LIBs, d-MoO3 displays an improved discharge capacity of 787 mAh·g-1 at 0.1 A g-1 over 100 cycles with capacity retention of ∼91% while MoO3 decays to 50 mAh·g-1 in the 100th cycle. Notably, d-MoO3 delivers enhanced rate capability (536 and 370 mAh·g-1 at high rates of 5 and 10 A g-1 respectively). We consider these excellent electrochemical properties of d-MoO3 electrode are associated with the tiny grains on MoO3 surface, which effectively maintains the electrode's structural integrity. Even though d-MoO3 nanobelt suffers from a degree of in-situ pulverization after several cycles, these pulverized active particles can still maintain stable electrochemical contact and are highly exposed to electrolyte, realizing ultrahigh e-/Li+ diffusion kinetics. In addition, part extrinsic pseudocapacitance contribution to the Li+ storage also explains the high-rate performance. Combining all these merits, d-MoO3 is potentially a high-energy, high-power and well-stable anode material for Li ion batteries (LIBs).
International Nuclear Information System (INIS)
Olier, P.
1996-01-01
In order to promote the development of Ti-Ni shape memory alloys, we have studied the correlation between the fabrication route, the chemical composition (O 2 content, Zr or Hf additions), the metallurgical characteristics and the thermomechanical properties. A conventional sintering does not allow to obtain a homogeneous compound of pure Ti 50 Ni 50 alloy because of the occurrence of Kirkendall porosities which act as a diffusion barrier. An original process including combustion synthesis and hot-extrusion was successfully developed. Resulting products exhibit a smaller grain size (15-20μm) and an enhanced workability in comparison with products obtained by arc-melting and subsequent hot rolling. The presence of oxygen in equiatomic Ti-Ni alloy induces the oxide precipitation of Ti 4 Ni 2 O x type (with x ≤ 1). The precipitated particle fraction is proportional to the oxygen nominal content of the alloy. We show that the decrease of the transformation temperatures is correlated with the decrease of Ti in solid solution due to Ti 4 Ni 2 O precipitation. Moreover, we find that a fine and homogenous oxide dispersion is suitable to decrease the grain size during hot rolling and to enhance to the one way shape memory properties. An increase of the typical transformation temperatures is obtained through of Zr or Hf (in substitution to Ti). But, an increase of the hardness is measured, and consequently the workability of the ternary alloys becomes reduced. However, it is worthwhile to point out that a Ti 38 Ni 50 Hf 12 product obtained by arc melting and hot extrusion is able to fully recover an apparent plastic strain of more than 4% during tensile tests performed under special loading conditions. Such as behaviour is of great interest with respect to potential applications in a temperature range higher that 100 deg. C. (author)
Ceramic matrix and resin matrix composites - A comparison
Hurwitz, Frances I.
1987-01-01
The underlying theory of continuous fiber reinforcement of ceramic matrix and resin matrix composites, their fabrication, microstructure, physical and mechanical properties are contrasted. The growing use of organometallic polymers as precursors to ceramic matrices is discussed as a means of providing low temperature processing capability without the fiber degradation encountered with more conventional ceramic processing techniques. Examples of ceramic matrix composites derived from particulate-filled, high char yield polymers and silsesquioxane precursors are provided.
Ceramic matrix and resin matrix composites: A comparison
Hurwitz, Frances I.
1987-01-01
The underlying theory of continuous fiber reinforcement of ceramic matrix and resin matrix composites, their fabrication, microstructure, physical and mechanical properties are contrasted. The growing use of organometallic polymers as precursors to ceramic matrices is discussed as a means of providing low temperature processing capability without the fiber degradation encountered with more conventional ceramic processing techniques. Examples of ceramic matrix composites derived from particulate-filled, high char yield polymers and silsesquioxane precursors are provided.
International Nuclear Information System (INIS)
Craps, Ben; Sethi, Savdeep; Verlinde, Erik
2005-01-01
The light-like linear dilaton background represents a particularly simple time-dependent 1/2 BPS solution of critical type-IIA superstring theory in ten dimensions. Its lift to M-theory, as well as its Einstein frame metric, are singular in the sense that the geometry is geodesically incomplete and the Riemann tensor diverges along a light-like subspace of codimension one. We study this background as a model for a big bang type singularity in string theory/M-theory. We construct the dual Matrix theory description in terms of a (1+1)-d supersymmetric Yang-Mills theory on a time-dependent world-sheet given by the Milne orbifold of (1+1)-d Minkowski space. Our model provides a framework in which the physics of the singularity appears to be under control
Energy Technology Data Exchange (ETDEWEB)
Craps, Ben [Instituut voor Theoretische Fysica, Universiteit van Amsterdam, Valckenierstraat 65, 1018 XE Amsterdam (Netherlands); Sethi, Savdeep [Enrico Fermi Institute, University of Chicago, Chicago, IL 60637 (United States); Verlinde, Erik [Instituut voor Theoretische Fysica, Universiteit van Amsterdam, Valckenierstraat 65, 1018 XE Amsterdam (Netherlands)
2005-10-15
The light-like linear dilaton background represents a particularly simple time-dependent 1/2 BPS solution of critical type-IIA superstring theory in ten dimensions. Its lift to M-theory, as well as its Einstein frame metric, are singular in the sense that the geometry is geodesically incomplete and the Riemann tensor diverges along a light-like subspace of codimension one. We study this background as a model for a big bang type singularity in string theory/M-theory. We construct the dual Matrix theory description in terms of a (1+1)-d supersymmetric Yang-Mills theory on a time-dependent world-sheet given by the Milne orbifold of (1+1)-d Minkowski space. Our model provides a framework in which the physics of the singularity appears to be under control.
Matrix metalloproteinases outside vertebrates.
Marino-Puertas, Laura; Goulas, Theodoros; Gomis-Rüth, F Xavier
2017-11-01
The matrix metalloproteinase (MMP) family belongs to the metzincin clan of zinc-dependent metallopeptidases. Due to their enormous implications in physiology and disease, MMPs have mainly been studied in vertebrates. They are engaged in extracellular protein processing and degradation, and present extensive paralogy, with 23 forms in humans. One characteristic of MMPs is a ~165-residue catalytic domain (CD), which has been structurally studied for 14 MMPs from human, mouse, rat, pig and the oral-microbiome bacterium Tannerella forsythia. These studies revealed close overall coincidence and characteristic structural features, which distinguish MMPs from other metzincins and give rise to a sequence pattern for their identification. Here, we reviewed the literature available on MMPs outside vertebrates and performed database searches for potential MMP CDs in invertebrates, plants, fungi, viruses, protists, archaea and bacteria. These and previous results revealed that MMPs are widely present in several copies in Eumetazoa and higher plants (Tracheophyta), but have just token presence in eukaryotic algae. A few dozen sequences were found in Ascomycota (within fungi) and in double-stranded DNA viruses infecting invertebrates (within viruses). In contrast, a few hundred sequences were found in archaea and >1000 in bacteria, with several copies for some species. Most of the archaeal and bacterial phyla containing potential MMPs are present in human oral and gut microbiomes. Overall, MMP-like sequences are present across all kingdoms of life, but their asymmetric distribution contradicts the vertical descent model from a eubacterial or archaeal ancestor. This article is part of a Special Issue entitled: Matrix Metalloproteinases edited by Rafael Fridman. Copyright © 2017 Elsevier B.V. All rights reserved.
Phenomenology of the CKM matrix
International Nuclear Information System (INIS)
Nir, Y.
1989-01-01
The way in which an exact determination of the CKM matrix elements tests the standard Model is demonstrated by a two-generation example. The determination of matrix elements from meson semileptonic decays is explained, with an emphasis on the respective reliability of quark level and meson level calculations. The assumptions involved in the use of loop processes are described. Finally, the state of the art of the knowledge of the CKM matrix is presented. 19 refs., 2 figs
On matrix fractional differential equations
Adem Kılıçman; Wasan Ajeel Ahmood
2017-01-01
The aim of this article is to study the matrix fractional differential equations and to find the exact solution for system of matrix fractional differential equations in terms of Riemann–Liouville using Laplace transform method and convolution product to the Riemann–Liouville fractional of matrices. Also, we show the theorem of non-homogeneous matrix fractional partial differential equation with some illustrative examples to demonstrate the effectiveness of the new methodology. The main objec...
Matrix transformations and sequence spaces
International Nuclear Information System (INIS)
Nanda, S.
1983-06-01
In most cases the most general linear operator from one sequence space into another is actually given by an infinite matrix and therefore the theory of matrix transformations has always been of great interest in the study of sequence spaces. The study of general theory of matrix transformations was motivated by the special results in summability theory. This paper is a review article which gives almost all known results on matrix transformations. This also suggests a number of open problems for further study and will be very useful for research workers. (author)
Multivariate Matrix-Exponential Distributions
DEFF Research Database (Denmark)
Bladt, Mogens; Nielsen, Bo Friis
2010-01-01
be written as linear combinations of the elements in the exponential of a matrix. For this reason we shall refer to multivariate distributions with rational Laplace transform as multivariate matrix-exponential distributions (MVME). The marginal distributions of an MVME are univariate matrix......-exponential distributions. We prove a characterization that states that a distribution is an MVME distribution if and only if all non-negative, non-null linear combinations of the coordinates have a univariate matrix-exponential distribution. This theorem is analog to a well-known characterization theorem...
International Nuclear Information System (INIS)
Dorey, Nick; Tong, David; Turner, Carl
2016-01-01
We study a U(N) gauged matrix quantum mechanics which, in the large N limit, is closely related to the chiral WZW conformal field theory. This manifests itself in two ways. First, we construct the left-moving Kac-Moody algebra from matrix degrees of freedom. Secondly, we compute the partition function of the matrix model in terms of Schur and Kostka polynomials and show that, in the large N limit, it coincides with the partition function of the WZW model. This same matrix model was recently shown to describe non-Abelian quantum Hall states and the relationship to the WZW model can be understood in this framework.
International Nuclear Information System (INIS)
Perdicakis, Michel
2012-01-01
Document available in extended abstract form only. In many countries, it is planned that the long life highly radioactive nuclear spent fuel will be stored in deep argillaceous rocks. The sites selected for this purpose are anoxic and satisfy several recommendations as mechanical stability, low permeability and low redox potential. Pyrite (FeS 2 ), iron(II) carbonate, iron(II) bearing clays and organic matter that are present in very small amounts (about 1% w:w) in soils play a major role in their reactivity and are considered today as responsible for the low redox potential values of these sites. In this communication, we describe an electrochemical technique derived from 'Salt matrix voltammetry' and allowing the almost in-situ voltammetric characterization of air-sensitive samples of soils after the only addition of the minimum humidity required for electrolytic conduction. Figure 1 shows the principle of the developed technique. It consists in the entrapment of the clay sample between a graphite working electrode and a silver counter/quasi-reference electrode. The sample was previously humidified by passing a water saturated inert gas through the electrochemical cell. The technique leads to well-defined voltammetric responses of the electro-active components of the clays. Figure 2 shows a typical voltammogram relative to a Callovo-Oxfordian argillite sample from Bure, the French place planned for the underground nuclear waste disposal. During the direct scan, one can clearly distinguish the anodic voltammetric signals for the oxidation of the iron (II) species associated with the clay and the oxidation of pyrite. The reverse scan displays a small cathodic signal for the reduction of iron (III) associated with the clay that demonstrates that the majority of the previously oxidized iron (II) species were transformed into iron (III) oxides reducible at lower potentials. When a second voltammetric cycle is performed, one can notice that the signal for iron (II
Features of film growth during plasma anodizing of Al 2024/SiC metal matrix composite
Energy Technology Data Exchange (ETDEWEB)
Xue Wenbin [Key Laboratory for Radiation Beam Technology and Materials Modification, Institute of Low Energy Nuclear Physics, Beijing Normal University, Beijing 100875 (China)]. E-mail: xuewb@bnu.edu.cn
2006-07-15
Plasma anodizing is a novel promising process to fabricate corrosion-resistant protective films on metal matrix composites. The corrosion-resistant films were prepared by plasma anodizing on SiC reinforced aluminum matrix composite. The morphology and microstructure of films were analyzed by scanning electron microscopy. Specifically, the morphology of residual SiC reinforcement particles in the film was observed. It is found that the most SiC reinforcement particles have been molten to become silicon oxide, but a few tiny SiC particles still remain in the film close to the composite/film interface. This interface is irregular due to the hindering effect of SiC particles on the film growth. Morphology and distribution of residual SiC particles in film provide direct evidence to identify the local melt occurs in the interior of plasma anodizing film even near the composite/film interface. A model of film growth by plasma anodizing on metal matrix composites was proposed.
Features of film growth during plasma anodizing of Al 2024/SiC metal matrix composite
International Nuclear Information System (INIS)
Xue Wenbin
2006-01-01
Plasma anodizing is a novel promising process to fabricate corrosion-resistant protective films on metal matrix composites. The corrosion-resistant films were prepared by plasma anodizing on SiC reinforced aluminum matrix composite. The morphology and microstructure of films were analyzed by scanning electron microscopy. Specifically, the morphology of residual SiC reinforcement particles in the film was observed. It is found that the most SiC reinforcement particles have been molten to become silicon oxide, but a few tiny SiC particles still remain in the film close to the composite/film interface. This interface is irregular due to the hindering effect of SiC particles on the film growth. Morphology and distribution of residual SiC particles in film provide direct evidence to identify the local melt occurs in the interior of plasma anodizing film even near the composite/film interface. A model of film growth by plasma anodizing on metal matrix composites was proposed
Ceramic matrix composite article and process of fabricating a ceramic matrix composite article
Cairo, Ronald Robert; DiMascio, Paul Stephen; Parolini, Jason Robert
2016-01-12
A ceramic matrix composite article and a process of fabricating a ceramic matrix composite are disclosed. The ceramic matrix composite article includes a matrix distribution pattern formed by a manifold and ceramic matrix composite plies laid up on the matrix distribution pattern, includes the manifold, or a combination thereof. The manifold includes one or more matrix distribution channels operably connected to a delivery interface, the delivery interface configured for providing matrix material to one or more of the ceramic matrix composite plies. The process includes providing the manifold, forming the matrix distribution pattern by transporting the matrix material through the manifold, and contacting the ceramic matrix composite plies with the matrix material.
Strategy BMT Al-Ittihad Using Matrix IE, Matrix SWOT 8K, Matrix SPACE and Matrix TWOS
Directory of Open Access Journals (Sweden)
Nofrizal Nofrizal
2018-03-01
Full Text Available This research aims to formulate and select BMT Al-Ittihad Rumbai strategy to face the changing of business environment both from internal environment such as organization resources, finance, member and external business such as competitor, economy, politics and others. This research method used Analysis of EFAS, IFAS, IE Matrix, SWOT-8K Matrix, SPACE Matrix and TWOS Matrix. our hope from this research it can assist BMT Al-Ittihad in formulating and selecting strategies for the sustainability of BMT Al-Ittihad in the future. The sample in this research is using purposive sampling technique that is the manager and leader of BMT Al-IttihadRumbaiPekanbaru. The result of this research shows that the position of BMT Al-Ittihad using IE Matrix, SWOT-8K Matrix and SPACE Matrix is in growth position, stabilization and aggressive. The choice of strategy after using TWOS Matrix is market penetration, market development, vertical integration, horizontal integration, and stabilization (careful.
Jairam, Dharmananda; Kiewra, Kenneth A.; Kauffman, Douglas F.; Zhao, Ruomeng
2012-01-01
This study investigated how best to study a matrix. Fifty-three participants studied a matrix topically (1 column at a time), categorically (1 row at a time), or in a unified way (all at once). Results revealed that categorical and unified study produced higher: (a) performance on relationship and fact tests, (b) study material satisfaction, and…
Bulk metallic glass matrix composites
International Nuclear Information System (INIS)
Choi-Yim, H.; Johnson, W.L.
1997-01-01
Composites with a bulk metallic glass matrix were synthesized and characterized. This was made possible by the recent development of bulk metallic glasses that exhibit high resistance to crystallization in the undercooled liquid state. In this letter, experimental methods for processing metallic glass composites are introduced. Three different bulk metallic glass forming alloys were used as the matrix materials. Both ceramics and metals were introduced as reinforcement into the metallic glass. The metallic glass matrix remained amorphous after adding up to a 30 vol% fraction of particles or short wires. X-ray diffraction patterns of the composites show only peaks from the second phase particles superimposed on the broad diffuse maxima from the amorphous phase. Optical micrographs reveal uniformly distributed particles in the matrix. The glass transition of the amorphous matrix and the crystallization behavior of the composites were studied by calorimetric methods. copyright 1997 American Institute of Physics
Machining of Metal Matrix Composites
2012-01-01
Machining of Metal Matrix Composites provides the fundamentals and recent advances in the study of machining of metal matrix composites (MMCs). Each chapter is written by an international expert in this important field of research. Machining of Metal Matrix Composites gives the reader information on machining of MMCs with a special emphasis on aluminium matrix composites. Chapter 1 provides the mechanics and modelling of chip formation for traditional machining processes. Chapter 2 is dedicated to surface integrity when machining MMCs. Chapter 3 describes the machinability aspects of MMCs. Chapter 4 contains information on traditional machining processes and Chapter 5 is dedicated to the grinding of MMCs. Chapter 6 describes the dry cutting of MMCs with SiC particulate reinforcement. Finally, Chapter 7 is dedicated to computational methods and optimization in the machining of MMCs. Machining of Metal Matrix Composites can serve as a useful reference for academics, manufacturing and materials researchers, manu...
Quantum mechanics in matrix form
Ludyk, Günter
2018-01-01
This book gives an introduction to quantum mechanics with the matrix method. Heisenberg's matrix mechanics is described in detail. The fundamental equations are derived by algebraic methods using matrix calculus. Only a brief description of Schrödinger's wave mechanics is given (in most books exclusively treated), to show their equivalence to Heisenberg's matrix method. In the first part the historical development of Quantum theory by Planck, Bohr and Sommerfeld is sketched, followed by the ideas and methods of Heisenberg, Born and Jordan. Then Pauli's spin and exclusion principles are treated. Pauli's exclusion principle leads to the structure of atoms. Finally, Dirac´s relativistic quantum mechanics is shortly presented. Matrices and matrix equations are today easy to handle when implementing numerical algorithms using standard software as MAPLE and Mathematica.
Directory of Open Access Journals (Sweden)
Zhaolin Liu
2012-08-01
Full Text Available Assimilating hydrophilic hollow polymer spheres (HPS into Nafion matrix by a loading of 0.5 wt % led to a restructured hydrophilic channel, composed of the pendant sulfonic acid groups (–SO_{3}H and the imbedded hydrophilic hollow spheres. The tiny hydrophilic hollow chamber was critical to retaining moisture and facilitating proton transfer in the composite membranes. To obtain such a tiny cavity structure, the synthesis included selective generation of a hydrophilic polymer shell on silica microsphere template and the subsequent removal of the template by etching. The hydrophilic HPS (100–200 nm possessed two different spherical shells, the styrenic network with pendant sulfonic acid groups and with methacrylic acid groups, respectively. By behaving as microreservoirs of water, the hydrophilic HPS promoted the Grotthus mechanism and, hence, enhanced proton transport efficiency through the inter-sphere path. In addition, the HPS with the –SO_{3}H borne shell played a more effective role than those with the –CO_{2}H borne shell in augmenting proton transport, in particular under low humidity or at medium temperatures. Single H_{2}-PEMFC test at 70^{ }°C using dry H_{2}/O_{2} further verified the impactful role of hydrophilic HPS in sustaining higher proton flux as compared to pristine Nafion membrane.
Containment Code Validation Matrix
International Nuclear Information System (INIS)
Chin, Yu-Shan; Mathew, P.M.; Glowa, Glenn; Dickson, Ray; Liang, Zhe; Leitch, Brian; Barber, Duncan; Vasic, Aleks; Bentaib, Ahmed; Journeau, Christophe; Malet, Jeanne; Studer, Etienne; Meynet, Nicolas; Piluso, Pascal; Gelain, Thomas; Michielsen, Nathalie; Peillon, Samuel; Porcheron, Emmanuel; Albiol, Thierry; Clement, Bernard; Sonnenkalb, Martin; Klein-Hessling, Walter; Arndt, Siegfried; Weber, Gunter; Yanez, Jorge; Kotchourko, Alexei; Kuznetsov, Mike; Sangiorgi, Marco; Fontanet, Joan; Herranz, Luis; Garcia De La Rua, Carmen; Santiago, Aleza Enciso; Andreani, Michele; Paladino, Domenico; Dreier, Joerg; Lee, Richard; Amri, Abdallah
2014-01-01
The Committee on the Safety of Nuclear Installations (CSNI) formed the CCVM (Containment Code Validation Matrix) task group in 2002. The objective of this group was to define a basic set of available experiments for code validation, covering the range of containment (ex-vessel) phenomena expected in the course of light and heavy water reactor design basis accidents and beyond design basis accidents/severe accidents. It was to consider phenomena relevant to pressurised heavy water reactor (PHWR), pressurised water reactor (PWR) and boiling water reactor (BWR) designs of Western origin as well as of Eastern European VVER types. This work would complement the two existing CSNI validation matrices for thermal hydraulic code validation (NEA/CSNI/R(1993)14) and In-vessel core degradation (NEA/CSNI/R(2001)21). The report initially provides a brief overview of the main features of a PWR, BWR, CANDU and VVER reactors. It also provides an overview of the ex-vessel corium retention (core catcher). It then provides a general overview of the accident progression for light water and heavy water reactors. The main focus is to capture most of the phenomena and safety systems employed in these reactor types and to highlight the differences. This CCVM contains a description of 127 phenomena, broken down into 6 categories: - Containment Thermal-hydraulics Phenomena; - Hydrogen Behaviour (Combustion, Mitigation and Generation) Phenomena; - Aerosol and Fission Product Behaviour Phenomena; - Iodine Chemistry Phenomena; - Core Melt Distribution and Behaviour in Containment Phenomena; - Systems Phenomena. A synopsis is provided for each phenomenon, including a description, references for further information, significance for DBA and SA/BDBA and a list of experiments that may be used for code validation. The report identified 213 experiments, broken down into the same six categories (as done for the phenomena). An experiment synopsis is provided for each test. Along with a test description
Oehlmann, Dietmar; Ohlmann, Odile M.; Danzebrink, Hans U.
2005-04-01
perform this exchange, as a matrix, understood as source, of new ideas.
Measuring methods of matrix diffusion
International Nuclear Information System (INIS)
Muurinen, A.; Valkiainen, M.
1988-03-01
In Finland the spent nuclear fuel is planned to be disposed of at large depths in crystalline bedrock. The radionuclides which are dissolved in the groundwater may be able to diffuse into the micropores of the porous rock matrix and thus be withdrawn from the flowing water in the fractures. This phenomenon is called matrix diffusion. A review over matrix diffusion is presented in the study. The main interest is directed to the diffusion of non-sorbing species. The review covers diffusion experiments and measurements of porosity, pore size, specific surface area and water permeability
Maximal quantum Fisher information matrix
International Nuclear Information System (INIS)
Chen, Yu; Yuan, Haidong
2017-01-01
We study the existence of the maximal quantum Fisher information matrix in the multi-parameter quantum estimation, which bounds the ultimate precision limit. We show that when the maximal quantum Fisher information matrix exists, it can be directly obtained from the underlying dynamics. Examples are then provided to demonstrate the usefulness of the maximal quantum Fisher information matrix by deriving various trade-off relations in multi-parameter quantum estimation and obtaining the bounds for the scalings of the precision limit. (paper)
Energy Technology Data Exchange (ETDEWEB)
Kim, Seung Soo [Sungkyunkwan University School of Medicine, Department of Radiology and Center for Imaging Science, Samsung Medical Center, Seoul (Korea, Republic of); Cheonan Hospital, Department of Radiology, Soonchunhyang University College of Medicine, Cheonan-si, Chungcheongnam-do (Korea, Republic of); Song, Kyoung Doo; Kim, Young Kon [Sungkyunkwan University School of Medicine, Department of Radiology and Center for Imaging Science, Samsung Medical Center, Seoul (Korea, Republic of); Kim, Hee Cheol; Huh, Jung Wook [Sungkyunkwan University School of Medicine, Department of Surgery, Samsung Medical Center, Seoul (Korea, Republic of); Park, Young Suk; Park, Joon Oh; Kim, Seung Tae [Sungkyunkwan University School of Medicine, Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Seoul (Korea, Republic of)
2017-07-15
To evaluate the clinical course of disappearing colorectal liver metastases (DLM) or residual tiny (≤5 mm) colorectal liver metastases (RTCLM) on gadoxetic acid-enhanced magnetic resonance imaging (MRI) and diffusion-weighted imaging (DWI) in patients who had colorectal liver metastases (CLM) and received chemotherapy. Among 137 patients who received chemotherapy for CLM and underwent gadoxetic acid-enhanced MRI and DWI between 2010 and 2012, 43 patients with 168 DLMs and 48 RTCLMs were included. The cumulative in situ recurrence rate of DLM and progression rate of RTCLM and their predictive factors were evaluated. A total of 150 DLMs and 26 RTCLMs were followed up without additional treatment. At 1 and 2 years, respectively, the cumulative in situ recurrence rates for DLM were 10.9 % and 15.7 % and the cumulative progression rates for RTCLM were 27.2 % and 33.2 %. The in situ recurrence rate at 2 years was 4.9 % for the DLM group that did not show reticular hypointensity of liver parenchyma on hepatobiliary phase. DLM on gadoxetic acid-enhanced liver MRI and DWI indicates a high possibility of clinical complete response, especially in patients without chemotherapy-induced sinusoidal obstruction syndrome. Thirty-three percent of RTCLMs showed progression at 2 years. (orig.)
Shigeaki, Matsumoto
2003-12-01
The shape of a dew droplet deposited on the mirror surface of a copper plate was measured accurately using an interference microscope that employed a phase-shift technique. The microscope was constructed by adding a piezoelectric transducer to an interference microscope. A simple method that uses a conventional speaker horn and an optical fibre cable was used to depress any speckle noise. The shape of a dew droplet deposited at dew point on the plate surface with average roughness of 0.1 µm was measured with an accuracy of ± 3 nm. The mass of a tiny dew droplet could be determined from the volume of its shape and was of the order of 10-9 g. The total mass of a dew droplet deposited per unit area and the deposition velocity under a gentle wind were also obtained in a similar way. The total mass was of the order of 10-5 g cm-2 at the beginning of deposition and the deposition velocity ranged from 1 × 10-5 to 6 × 10-5 g cm-2 min-1 at room temperature.
International Nuclear Information System (INIS)
Pieczyska, E A; Kulasinski, K; Tobushi, H
2013-01-01
TiNi shape memory alloy (SMA) was subjected to tension at various strain rates for stress- and strain-controlled tests. The nucleation, development and saturation of the stress-induced martensitic transformation were investigated, based on the specimen temperature changes, measured by a fast and sensitive infrared camera. It was found that the initial, macroscopically homogeneous phase transformation occurs at the same stress level for all strain rates applied, regardless of the loading manner, while the stress of the localized transformation increases with the strain rate. At higher strain rate, a more dynamic course of the transformation process was observed, revealed in the creation of numerous fine transformation bands. An inflection point was noticed on the stress–strain curve, dividing the transformation range into two stages: the first heterogeneous, where transformation bands nucleate and evolve throughout the sample; the second, where the bands overlap, related to significant temperature increase and an upswing region of the curve. In the final part of the SMA loading a decrease of the average sample temperature revealed the saturation stage of the transformation. It was also observed that nucleation of the localized martensitic forward transformation takes place in the weakest area of the sample in both approaches, whereas the reverse transformation always initiates in its central part. (paper)
Huang, Ying; Zhao, Yunong; Wang, Yang; Guo, Xiaohui; Zhang, Yangyang; Liu, Ping; Liu, Caixia; Zhang, Yugang
2018-03-01
Strain sensors used as flexible and wearable electronic devices have improved prospects in the fields of artificial skin, robotics, human-machine interfaces, and healthcare. This work introduces a highly stretchable fiber-based strain sensor with a laminated structure made up of a graphene nanoplatelet layer and a carbon black/single-walled carbon nanotube synergetic conductive network layer. An ultrathin, flexible, and elastic two-layer polyurethane (PU) yarn substrate was successively deposited by a novel chemical bonding-based layered dip-coating process. These strain sensors demonstrated high stretchability (˜350%), little hysteresis, and long-term durability (over 2400 cycles) due to the favorable tensile properties of the PU substrate. The linearity of the strain sensor could reach an adjusted R-squared of 0.990 at 100% strain, which is better than most of the recently reported strain sensors. Meanwhile, the strain sensor exhibited good sensibility, rapid response, and a lower detection limit. The lower detection limit benefited from the hydrogen bond-assisted laminated structure and continuous conductive path. Finally, a series of experiments were carried out based on the special features of the PU strain sensor to show its capacity of detecting and monitoring tiny human motions.
Zhao, Zhong-Xun; Ma, Xiao; Cao, Shan-Shan; Ke, Chang-Bo; Zhang, Xin-Ping
2018-03-01
The present study focuses on the anisotropic negative thermal expansion (NTE) behaviors of Ti-rich (Ti54Ni46) and equiatomic Ti-Ni (Ti50Ni50) alloys fabricated by vacuum arc melting and without subsequent plastic deformation. Both alloys exhibit NTE responses in vertical and horizontal directions, and the total strains and CTEs of the NTE stage along the two mutually perpendicular measuring directions are obviously different, indicating obvious anisotropic NTE behavior of the alloys. Besides, the numerical differences between the starting temperature of NTE and austenitic transformation and between the finishing temperature of NTE and austenitic transformation are very small, which indicates that an apparent relationship exists between the NTE behavior and the phase transformation. The microstructure in the vertical cross sections shows obviously preferential orientation characteristics: Ti2Ni phases of both alloys grow along the vertical direction, and B19' martensite of Ti50Ni50 alloy has distinct preferential orientation, which results from a large temperature gradient between the top and the bottom of the button ingots during solidification. The microstructure with preferential orientation induces the anisotropic NTE behavior of the samples.
Chan, Garnet Kin-Lic; Keselman, Anna; Nakatani, Naoki; Li, Zhendong; White, Steven R.
2016-07-01
Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational parallelism. The connections and correspondences described here serve to link the future developments with the past and are important in the efficient implementation of continuing advances in ab initio DMRG and related algorithms.
National Oceanic and Atmospheric Administration, Department of Commerce — This data set was taken from CRD 08-18 at the NEFSC. Specifically, the Gulf of Maine diet matrix was developed for the EMAX exercise described in that center...
On matrix fractional differential equations
Directory of Open Access Journals (Sweden)
Adem Kılıçman
2017-01-01
Full Text Available The aim of this article is to study the matrix fractional differential equations and to find the exact solution for system of matrix fractional differential equations in terms of Riemann–Liouville using Laplace transform method and convolution product to the Riemann–Liouville fractional of matrices. Also, we show the theorem of non-homogeneous matrix fractional partial differential equation with some illustrative examples to demonstrate the effectiveness of the new methodology. The main objective of this article is to discuss the Laplace transform method based on operational matrices of fractional derivatives for solving several kinds of linear fractional differential equations. Moreover, we present the operational matrices of fractional derivatives with Laplace transform in many applications of various engineering systems as control system. We present the analytical technique for solving fractional-order, multi-term fractional differential equation. In other words, we propose an efficient algorithm for solving fractional matrix equation.
Electromagnetic matrix elements in baryons
International Nuclear Information System (INIS)
Lipkin, H.J.; Moinester, M.A.
1992-01-01
Some simple symmetry relations between matrix elements of electromagnetic operators are investigated. The implications are discussed for experiments to study hyperon radiative transitions and polarizabilities and form factors. (orig.)
International Nuclear Information System (INIS)
Descouvemont, P; Baye, D
2010-01-01
The different facets of the R-matrix method are presented pedagogically in a general framework. Two variants have been developed over the years: (i) The 'calculable' R-matrix method is a calculational tool to derive scattering properties from the Schroedinger equation in a large variety of physical problems. It was developed rather independently in atomic and nuclear physics with too little mutual influence. (ii) The 'phenomenological' R-matrix method is a technique to parametrize various types of cross sections. It was mainly (or uniquely) used in nuclear physics. Both directions are explained by starting from the simple problem of scattering by a potential. They are illustrated by simple examples in nuclear and atomic physics. In addition to elastic scattering, the R-matrix formalism is applied to inelastic and radiative-capture reactions. We also present more recent and more ambitious applications of the theory in nuclear physics.
Random matrix improved subspace clustering
Couillet, Romain; Kammoun, Abla
2017-01-01
This article introduces a spectral method for statistical subspace clustering. The method is built upon standard kernel spectral clustering techniques, however carefully tuned by theoretical understanding arising from random matrix findings. We show
Matrix Effects in XRF Measurements
International Nuclear Information System (INIS)
Kandil, A.T.; Gabr, N.A.; El-Aryan, S.M.
2015-01-01
This research treats the matrix effect on XRF measurements. The problem is treated by preparing general oxide program, which contains many samples that represent all materials in cement factories, then by using T rail Lachance m ethod to correct errors of matrix effect. This work compares the effect of using lithium tetraborate or sodium tetraborate as a fluxing agent in terms of accuracy and economic cost
Matrix analysis of electrical machinery
Hancock, N N
2013-01-01
Matrix Analysis of Electrical Machinery, Second Edition is a 14-chapter edition that covers the systematic analysis of electrical machinery performance. This edition discusses the principles of various mathematical operations and their application to electrical machinery performance calculations. The introductory chapters deal with the matrix representation of algebraic equations and their application to static electrical networks. The following chapters describe the fundamentals of different transformers and rotating machines and present torque analysis in terms of the currents based on the p
Staggered chiral random matrix theory
International Nuclear Information System (INIS)
Osborn, James C.
2011-01-01
We present a random matrix theory for the staggered lattice QCD Dirac operator. The staggered random matrix theory is equivalent to the zero-momentum limit of the staggered chiral Lagrangian and includes all taste breaking terms at their leading order. This is an extension of previous work which only included some of the taste breaking terms. We will also present some results for the taste breaking contributions to the partition function and the Dirac eigenvalues.
TinyPower – Power conversion on a tiny scale
DEFF Research Database (Denmark)
Han, Anpan; Jørgensen, Anders Michael
2014-01-01
The world surrounding us is filled with devices relying on electrical power and the rise of internet-of-thingswill mean that powering devices will remain important in the future. The size and cost of the power supplyhas become a dominant factor in many applications. At the same time, most of the ...... project is an ambitious approach to taking miniature power converters into a new domainand the trickle-down effect on micro fabricated inductors can hopefully benefit other projects....
EISPACK, Subroutines for Eigenvalues, Eigenvectors, Matrix Operations
International Nuclear Information System (INIS)
Garbow, Burton S.; Cline, A.K.; Meyering, J.
1993-01-01
1 - Description of problem or function: EISPACK3 is a collection of 75 FORTRAN subroutines, both single- and double-precision, that compute the eigenvalues and eigenvectors of nine classes of matrices. The package can determine the Eigen-system of complex general, complex Hermitian, real general, real symmetric, real symmetric band, real symmetric tridiagonal, special real tridiagonal, generalized real, and generalized real symmetric matrices. In addition, there are two routines which use the singular value decomposition to solve certain least squares problem. The individual subroutines are - Identification/Description: BAKVEC: Back transform vectors of matrix formed by FIGI; BALANC: Balance a real general matrix; BALBAK: Back transform vectors of matrix formed by BALANC; BANDR: Reduce sym. band matrix to sym. tridiag. matrix; BANDV: Find some vectors of sym. band matrix; BISECT: Find some values of sym. tridiag. matrix; BQR: Find some values of sym. band matrix; CBABK2: Back transform vectors of matrix formed by CBAL; CBAL: Balance a complex general matrix; CDIV: Perform division of two complex quantities; CG: Driver subroutine for a complex general matrix; CH: Driver subroutine for a complex Hermitian matrix; CINVIT: Find some vectors of complex Hess. matrix; COMBAK: Back transform vectors of matrix formed by COMHES; COMHES: Reduce complex matrix to complex Hess. (elementary); COMLR: Find all values of complex Hess. matrix (LR); COMLR2: Find all values/vectors of cmplx Hess. matrix (LR); CCMQR: Find all values of complex Hessenberg matrix (QR); COMQR2: Find all values/vectors of cmplx Hess. matrix (QR); CORTB: Back transform vectors of matrix formed by CORTH; CORTH: Reduce complex matrix to complex Hess. (unitary); CSROOT: Find square root of complex quantity; ELMBAK: Back transform vectors of matrix formed by ELMHES; ELMHES: Reduce real matrix to real Hess. (elementary); ELTRAN: Accumulate transformations from ELMHES (for HQR2); EPSLON: Estimate unit roundoff
A survey of matrix theory and matrix inequalities
Marcus, Marvin
2010-01-01
Written for advanced undergraduate students, this highly regarded book presents an enormous amount of information in a concise and accessible format. Beginning with the assumption that the reader has never seen a matrix before, the authors go on to provide a survey of a substantial part of the field, including many areas of modern research interest.Part One of the book covers not only the standard ideas of matrix theory, but ones, as the authors state, ""that reflect our own prejudices,"" among them Kronecker products, compound and induced matrices, quadratic relations, permanents, incidence
Elements of Tiny Plasma Spectrometers
National Aeronautics and Space Administration — We propose to advance major elements of a miniaturized plasma spectrometer for flight on future missions. This type of instrument has been developed and successfully...
Octonionic matrix representation and electromagnetism
Energy Technology Data Exchange (ETDEWEB)
Chanyal, B. C. [Kumaun University, S. S. J. Campus, Almora (India)
2014-12-15
Keeping in mind the important role of octonion algebra, we have obtained the electromagnetic field equations of dyons with an octonionic 8 x 8 matrix representation. In this paper, we consider the eight - dimensional octonionic space as a combination of two (external and internal) four-dimensional spaces for the existence of magnetic monopoles (dyons) in a higher-dimensional formalism. As such, we describe the octonion wave equations in terms of eight components from the 8 x 8 matrix representation. The octonion forms of the generalized potential, fields and current source of dyons in terms of 8 x 8 matrix are discussed in a consistent manner. Thus, we have obtained the generalized Dirac-Maxwell equations of dyons from an 8x8 matrix representation of the octonion wave equations in a compact and consistent manner. The generalized Dirac-Maxwell equations are fully symmetric Maxwell equations and allow for the possibility of magnetic charges and currents, analogous to electric charges and currents. Accordingly, we have obtained the octonionic Dirac wave equations in an external field from the matrix representation of the octonion-valued potentials of dyons.
International Nuclear Information System (INIS)
Heggarty, J.W.
1999-06-01
For almost thirty years, sequential R-matrix computation has been used by atomic physics research groups, from around the world, to model collision phenomena involving the scattering of electrons or positrons with atomic or molecular targets. As considerable progress has been made in the understanding of fundamental scattering processes, new data, obtained from more complex calculations, is of current interest to experimentalists. Performing such calculations, however, places considerable demands on the computational resources to be provided by the target machine, in terms of both processor speed and memory requirement. Indeed, in some instances the computational requirements are so great that the proposed R-matrix calculations are intractable, even when utilising contemporary classic supercomputers. Historically, increases in the computational requirements of R-matrix computation were accommodated by porting the problem codes to a more powerful classic supercomputer. Although this approach has been successful in the past, it is no longer considered to be a satisfactory solution due to the limitations of current (and future) Von Neumann machines. As a consequence, there has been considerable interest in the high performance multicomputers, that have emerged over the last decade which appear to offer the computational resources required by contemporary R-matrix research. Unfortunately, developing codes for these machines is not as simple a task as it was to develop codes for successive classic supercomputers. The difficulty arises from the considerable differences in the computing models that exist between the two types of machine and results in the programming of multicomputers to be widely acknowledged as a difficult, time consuming and error-prone task. Nevertheless, unless parallel R-matrix computation is realised, important theoretical and experimental atomic physics research will continue to be hindered. This thesis describes work that was undertaken in
Numerical methods in matrix computations
Björck, Åke
2015-01-01
Matrix algorithms are at the core of scientific computing and are indispensable tools in most applications in engineering. This book offers a comprehensive and up-to-date treatment of modern methods in matrix computation. It uses a unified approach to direct and iterative methods for linear systems, least squares and eigenvalue problems. A thorough analysis of the stability, accuracy, and complexity of the treated methods is given. Numerical Methods in Matrix Computations is suitable for use in courses on scientific computing and applied technical areas at advanced undergraduate and graduate level. A large bibliography is provided, which includes both historical and review papers as well as recent research papers. This makes the book useful also as a reference and guide to further study and research work. Åke Björck is a professor emeritus at the Department of Mathematics, Linköping University. He is a Fellow of the Society of Industrial and Applied Mathematics.
Lectures on matrix field theory
Ydri, Badis
2017-01-01
These lecture notes provide a systematic introduction to matrix models of quantum field theories with non-commutative and fuzzy geometries. The book initially focuses on the matrix formulation of non-commutative and fuzzy spaces, followed by a description of the non-perturbative treatment of the corresponding field theories. As an example, the phase structure of non-commutative phi-four theory is treated in great detail, with a separate chapter on the multitrace approach. The last chapter offers a general introduction to non-commutative gauge theories, while two appendices round out the text. Primarily written as a self-study guide for postgraduate students – with the aim of pedagogically introducing them to key analytical and numerical tools, as well as useful physical models in applications – these lecture notes will also benefit experienced researchers by providing a reference guide to the fundamentals of non-commutative field theory with an emphasis on matrix models and fuzzy geometries.
Supersymmetry in random matrix theory
International Nuclear Information System (INIS)
Kieburg, Mario
2010-01-01
I study the applications of supersymmetry in random matrix theory. I generalize the supersymmetry method and develop three new approaches to calculate eigenvalue correlation functions. These correlation functions are averages over ratios of characteristic polynomials. In the first part of this thesis, I derive a relation between integrals over anti-commuting variables (Grassmann variables) and differential operators with respect to commuting variables. With this relation I rederive Cauchy- like integral theorems. As a new application I trace the supermatrix Bessel function back to a product of two ordinary matrix Bessel functions. In the second part, I apply the generalized Hubbard-Stratonovich transformation to arbitrary rotation invariant ensembles of real symmetric and Hermitian self-dual matrices. This extends the approach for unitarily rotation invariant matrix ensembles. For the k-point correlation functions I derive supersymmetric integral expressions in a unifying way. I prove the equivalence between the generalized Hubbard-Stratonovich transformation and the superbosonization formula. Moreover, I develop an alternative mapping from ordinary space to superspace. After comparing the results of this approach with the other two supersymmetry methods, I obtain explicit functional expressions for the probability densities in superspace. If the probability density of the matrix ensemble factorizes, then the generating functions exhibit determinantal and Pfaffian structures. For some matrix ensembles this was already shown with help of other approaches. I show that these structures appear by a purely algebraic manipulation. In this new approach I use structures naturally appearing in superspace. I derive determinantal and Pfaffian structures for three types of integrals without actually mapping onto superspace. These three types of integrals are quite general and, thus, they are applicable to a broad class of matrix ensembles. (orig.)
Supersymmetry in random matrix theory
Energy Technology Data Exchange (ETDEWEB)
Kieburg, Mario
2010-05-04
I study the applications of supersymmetry in random matrix theory. I generalize the supersymmetry method and develop three new approaches to calculate eigenvalue correlation functions. These correlation functions are averages over ratios of characteristic polynomials. In the first part of this thesis, I derive a relation between integrals over anti-commuting variables (Grassmann variables) and differential operators with respect to commuting variables. With this relation I rederive Cauchy- like integral theorems. As a new application I trace the supermatrix Bessel function back to a product of two ordinary matrix Bessel functions. In the second part, I apply the generalized Hubbard-Stratonovich transformation to arbitrary rotation invariant ensembles of real symmetric and Hermitian self-dual matrices. This extends the approach for unitarily rotation invariant matrix ensembles. For the k-point correlation functions I derive supersymmetric integral expressions in a unifying way. I prove the equivalence between the generalized Hubbard-Stratonovich transformation and the superbosonization formula. Moreover, I develop an alternative mapping from ordinary space to superspace. After comparing the results of this approach with the other two supersymmetry methods, I obtain explicit functional expressions for the probability densities in superspace. If the probability density of the matrix ensemble factorizes, then the generating functions exhibit determinantal and Pfaffian structures. For some matrix ensembles this was already shown with help of other approaches. I show that these structures appear by a purely algebraic manipulation. In this new approach I use structures naturally appearing in superspace. I derive determinantal and Pfaffian structures for three types of integrals without actually mapping onto superspace. These three types of integrals are quite general and, thus, they are applicable to a broad class of matrix ensembles. (orig.)
Polychoric/Tetrachoric Matrix or Pearson Matrix? A methodological study
Directory of Open Access Journals (Sweden)
Dominguez Lara, Sergio Alexis
2014-04-01
Full Text Available The use of product-moment correlation of Pearson is common in most studies in factor analysis in psychology, but it is known that this statistic is only applicable when the variables related are in interval scale and normally distributed, and when are used in ordinal data may to produce a distorted correlation matrix . Thus is a suitable option using polychoric/tetrachoric matrices in item-level factor analysis when the items are in level measurement nominal or ordinal. The aim of this study was to show the differences in the KMO, Bartlett`s Test and Determinant of the Matrix, percentage of variance explained and factor loadings in depression trait scale of Depression Inventory Trait - State and the Neuroticism dimension of the short form of the Eysenck Personality Questionnaire -Revised, regarding the use of matrices polychoric/tetrachoric matrices and Pearson. These instruments was analyzed with different extraction methods (Maximum Likelihood, Minimum Rank Factor Analysis, Unweighted Least Squares and Principal Components, keeping constant the rotation method Promin were analyzed. Were observed differences regarding sample adequacy measures, as well as with respect to the explained variance and the factor loadings, for solutions having as polychoric/tetrachoric matrix. So it can be concluded that the polychoric / tetrachoric matrix give better results than Pearson matrices when it comes to item-level factor analysis using different methods.
Towards Google matrix of brain
Energy Technology Data Exchange (ETDEWEB)
Shepelyansky, D.L., E-mail: dima@irsamc.ups-tlse.f [Laboratoire de Physique Theorique (IRSAMC), Universite de Toulouse, UPS, F-31062 Toulouse (France); LPT - IRSAMC, CNRS, F-31062 Toulouse (France); Zhirov, O.V. [Budker Institute of Nuclear Physics, 630090 Novosibirsk (Russian Federation)
2010-07-12
We apply the approach of the Google matrix, used in computer science and World Wide Web, to description of properties of neuronal networks. The Google matrix G is constructed on the basis of neuronal network of a brain model discussed in PNAS 105 (2008) 3593. We show that the spectrum of eigenvalues of G has a gapless structure with long living relaxation modes. The PageRank of the network becomes delocalized for certain values of the Google damping factor {alpha}. The properties of other eigenstates are also analyzed. We discuss further parallels and similarities between the World Wide Web and neuronal networks.
Towards Google matrix of brain
International Nuclear Information System (INIS)
Shepelyansky, D.L.; Zhirov, O.V.
2010-01-01
We apply the approach of the Google matrix, used in computer science and World Wide Web, to description of properties of neuronal networks. The Google matrix G is constructed on the basis of neuronal network of a brain model discussed in PNAS 105 (2008) 3593. We show that the spectrum of eigenvalues of G has a gapless structure with long living relaxation modes. The PageRank of the network becomes delocalized for certain values of the Google damping factor α. The properties of other eigenstates are also analyzed. We discuss further parallels and similarities between the World Wide Web and neuronal networks.
Inverse Interval Matrix: A Survey
Czech Academy of Sciences Publication Activity Database
Rohn, Jiří; Farhadsefat, R.
2011-01-01
Roč. 22, - (2011), s. 704-719 E-ISSN 1081-3810 R&D Projects: GA ČR GA201/09/1957; GA ČR GC201/08/J020 Institutional research plan: CEZ:AV0Z10300504 Keywords : interval matrix * inverse interval matrix * NP-hardness * enclosure * unit midpoint * inverse sign stability * nonnegative invertibility * absolute value equation * algorithm Subject RIV: BA - General Mathematics Impact factor: 0.808, year: 2010 http://www.math.technion.ac.il/iic/ ela / ela -articles/articles/vol22_pp704-719.pdf
Symmetries and Interactions in Matrix String Theory
Hacquebord, F.H.
1999-01-01
This PhD-thesis reviews matrix string theory and recent developments therein. The emphasis is put on symmetries, interactions and scattering processes in the matrix model. We start with an introduction to matrix string theory and a review of the orbifold model that flows out of matrix string theory
Matrix theory selected topics and useful results
Mehta, Madan Lal
1989-01-01
Matrices and operations on matrices ; determinants ; elementary operations on matrices (continued) ; eigenvalues and eigenvectors, diagonalization of normal matrices ; functions of a matrix ; positive definiteness, various polar forms of a matrix ; special matrices ; matrices with quaternion elements ; inequalities ; generalised inverse of a matrix ; domain of values of a matrix, location and dispersion of eigenvalues ; symmetric functions ; integration over matrix variables ; permanents of doubly stochastic matrices ; infinite matrices ; Alexander matrices, knot polynomials, torsion numbers.
Parallel Sparse Matrix - Vector Product
DEFF Research Database (Denmark)
Alexandersen, Joe; Lazarov, Boyan Stefanov; Dammann, Bernd
This technical report contains a case study of a sparse matrix-vector product routine, implemented for parallel execution on a compute cluster with both pure MPI and hybrid MPI-OpenMP solutions. C++ classes for sparse data types were developed and the report shows how these class can be used...
Unravelling the nuclear matrix proteome
DEFF Research Database (Denmark)
Albrethsen, Jakob; Knol, Jaco C; Jimenez, Connie R
2009-01-01
The nuclear matrix (NM) model posits the presence of a protein/RNA scaffold that spans the mammalian nucleus. The NM proteins are involved in basic nuclear function and are a promising source of protein biomarkers for cancer. Importantly, the NM proteome is operationally defined as the proteins...
Amorphous metal matrix composite ribbons
International Nuclear Information System (INIS)
Barczy, P.; Szigeti, F.
1998-01-01
Composite ribbons with amorphous matrix and ceramic (SiC, WC, MoB) particles were produced by modified planar melt flow casting methods. Weldability, abrasive wear and wood sanding examinations were carried out in order to find optimal material and technology for elevated wear resistance and sanding durability. The correlation between structure and composite properties is discussed. (author)
Hyper-systolic matrix multiplication
Lippert, Th.; Petkov, N.; Palazzari, P.; Schilling, K.
A novel parallel algorithm for matrix multiplication is presented. It is based on a 1-D hyper-systolic processor abstraction. The procedure can be implemented on all types of parallel systems. (C) 2001 Elsevier Science B,V. All rights reserved.
Matrix Metalloproteinases in Myasthenia Gravis
Helgeland, G.; Petzold, A.F.S.; Luckman, S.P.; Gilhus, N.E.; Plant, G.T.; Romi, F.R.
2011-01-01
Introduction: Myasthenia gravis (MG) is an autoimmune disease with weakness in striated musculature due to anti-acetylcholine receptor (AChR) antibodies or muscle specific kinase at the neuromuscular junction. A subgroup of patients has periocular symptoms only; ocular MG (OMG). Matrix
Concept for Energy Security Matrix
International Nuclear Information System (INIS)
Kisel, Einari; Hamburg, Arvi; Härm, Mihkel; Leppiman, Ando; Ots, Märt
2016-01-01
The following paper presents a discussion of short- and long-term energy security assessment methods and indicators. The aim of the current paper is to describe diversity of approaches to energy security, to structure energy security indicators used by different institutions and papers, and to discuss several indicators that also play important role in the design of energy policy of a state. Based on this analysis the paper presents a novel Energy Security Matrix that structures relevant energy security indicators from the aspects of Technical Resilience and Vulnerability, Economic Dependence and Political Affectability for electricity, heat and transport fuel sectors. Earlier publications by different authors have presented energy security assessment methodologies that use publicly available indicators from different databases. Current paper challenges viability of some of these indicators and introduces new indicators that would deliver stronger energy security policy assessments. Energy Security Matrix and its indicators are based on experiences that the authors have gathered as high-level energy policymakers in Estonia, where all different aspects of energy security can be observed. - Highlights: •Energy security should be analysed in technical, economic and political terms; •Energy Security Matrix provides a framework for energy security analyses; •Applicability of Matrix is limited due to the lack of statistical data and sensitivity of output.
The COMPADRE Plant Matrix Database
DEFF Research Database (Denmark)
2014-01-01
COMPADRE contains demographic information on hundreds of plant species. The data in COMPADRE are in the form of matrix population models and our goal is to make these publicly available to facilitate their use for research and teaching purposes. COMPADRE is an open-access database. We only request...
Czech Academy of Sciences Publication Activity Database
Rohn, Jiří
2013-01-01
Roč. 26, 15 December (2013), s. 836-841 ISSN 1537-9582 Institutional support: RVO:67985807 Keywords : two-matrix alternative * solution * algorithm Subject RIV: BA - General Mathematics Impact factor: 0.514, year: 2013 http://www.math.technion.ac.il/iic/ ela / ela -articles/articles/vol26_pp836-841.pdf
Regularization in Matrix Relevance Learning
Schneider, Petra; Bunte, Kerstin; Stiekema, Han; Hammer, Barbara; Villmann, Thomas; Biehl, Michael
A In this paper, we present a regularization technique to extend recently proposed matrix learning schemes in learning vector quantization (LVQ). These learning algorithms extend the concept of adaptive distance measures in LVQ to the use of relevance matrices. In general, metric learning can
Wang, Qin; Hou, Shunyong; Xu, Liang; Yin, Jianping
2016-02-21
To meet some demands for realizing precise measurements of an electric dipole moment of electron (eEDM) and examining cold collisions or cold chemical physics, we have proposed a novel, versatile electrostatic Stark decelerator with an array of true 3D electric potential wells, which are created by a series of horizontally-oriented, U-shaped electrodes with time-sequence controlling high voltages (± HV) and two guiding electrodes with a constant voltage. We have calculated the 2D electric field distribution, the Stark shifts of the four lowest rotational sub-levels of PbF molecules in the X1(2)Π1/2(v = 0) electronic and vibrational ground states as well as the population in the different rotational levels. We have discussed the 2D longitudinal and transverse phase-space acceptances of PbF molecules in our decelerator. Subsequently, we have simulated the dynamic processes of the decelerated PbF molecules using the 3D Monte-Carlo method, and have found that a supersonic PbF beam with a velocity of 300 m s(-1) can be efficiently slowed to about 5 m s(-1), which will greatly enhance the sensitivities to research a parity violation and measure an eEDM. In addition, we have investigated the dependences of the longitudinal velocity spread, longitudinal temperature and bunching efficiency on both the number of guiding stages and high voltages, and found that after bunching, a cold packet of PbF molecules in the J = 7/2, MΩ = -7/4 state with a longitudinal velocity spread of 0.69 m s(-1) (corresponding to a longitudinal temperature of 2.35 mK) will be produced by our high-efficient decelerator, which will generate a high energy-resolution molecular beam for studying cold collision physics. Finally, our novel decelerator can also be used to efficiently slow NO molecules with a tiny electric dipole moment (EDM) of 0.16 D from 315 m s(-1) to 28 m s(-1). It is clear that our proposed new decelerator has a good slowing performance and experimental feasibility as well as wide
Omentin-1 prevents cartilage matrix destruction by regulating matrix metalloproteinases.
Li, Zhigang; Liu, Baoyi; Zhao, Dewei; Wang, BenJie; Liu, Yupeng; Zhang, Yao; Li, Borui; Tian, Fengde
2017-08-01
Matrix metalloproteinases (MMPs) play a crucial role in the degradation of the extracellular matrix and pathological progression of osteoarthritis (OA). Omentin-1 is a newly identified anti-inflammatory adipokine. Little information regarding the protective effects of omentin-1 in OA has been reported before. In the current study, our results indicated that omentin-1 suppressed expression of MMP-1, MMP-3, and MMP-13 induced by the proinflammatory cytokine interleukin-1β (IL-1β) at both the mRNA and protein levels in human chondrocytes. Importantly, administration of omentin-1 abolished IL-1β-induced degradation of type II collagen (Col II) and aggrecan, the two major extracellular matrix components in articular cartilage, in a dose-dependent manner. Mechanistically, omentin-1 ameliorated the expression of interferon regulatory factor 1 (IRF-1) by blocking the JAK-2/STAT3 pathway. Our results indicate that omentin-1 may have a potential chondroprotective therapeutic capacity. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
q-Virasoro constraints in matrix models
Energy Technology Data Exchange (ETDEWEB)
Nedelin, Anton [Dipartimento di Fisica, Università di Milano-Bicocca and INFN, sezione di Milano-Bicocca, Piazza della Scienza 3, I-20126 Milano (Italy); Department of Physics and Astronomy, Uppsala university,Box 516, SE-75120 Uppsala (Sweden); Zabzine, Maxim [Department of Physics and Astronomy, Uppsala university,Box 516, SE-75120 Uppsala (Sweden)
2017-03-20
The Virasoro constraints play the important role in the study of matrix models and in understanding of the relation between matrix models and CFTs. Recently the localization calculations in supersymmetric gauge theories produced new families of matrix models and we have very limited knowledge about these matrix models. We concentrate on elliptic generalization of hermitian matrix model which corresponds to calculation of partition function on S{sup 3}×S{sup 1} for vector multiplet. We derive the q-Virasoro constraints for this matrix model. We also observe some interesting algebraic properties of the q-Virasoro algebra.
Immobilization of cellulase using porous polymer matrix
International Nuclear Information System (INIS)
Kumakura, M.; Kaetsu, I.
1984-01-01
A new method is discussed for the immobilization of cellulase using porous polymer matrices, which were obtained by radiation polymerization of hydrophilic monomers. In this method, the immobilized enzyme matrix was prepared by enzyme absorbtion in the porous polymer matrix and drying treatment. The enzyme activity of the immobilized enzyme matrix varied with monomer concentration, cooling rate of the monomer solution, and hydrophilicity of the polymer matrix, takinn the change of the nature of the porous structure in the polymer matrix. The leakage of the enzymes from the polymer matrix was not observed in the repeated batch enzyme reactions
Minimal solution for inconsistent singular fuzzy matrix equations
Directory of Open Access Journals (Sweden)
M. Nikuie
2013-10-01
Full Text Available The fuzzy matrix equations $Ailde{X}=ilde{Y}$ is called a singular fuzzy matrix equations while the coefficients matrix of its equivalent crisp matrix equations be a singular matrix. The singular fuzzy matrix equations are divided into two parts: consistent singular matrix equations and inconsistent fuzzy matrix equations. In this paper, the inconsistent singular fuzzy matrix equations is studied and the effect of generalized inverses in finding minimal solution of an inconsistent singular fuzzy matrix equations are investigated.
Giddings, Steven B
2010-01-01
We investigate the hypothesized existence of an S-matrix for gravity, and some of its expected general properties. We first discuss basic questions regarding existence of such a matrix, including those of infrared divergences and description of asymptotic states. Distinct scattering behavior occurs in the Born, eikonal, and strong gravity regimes, and we describe aspects of both the partial wave and momentum space amplitudes, and their analytic properties, from these regimes. Classically the strong gravity region would be dominated by formation of black holes, and we assume its unitary quantum dynamics is described by corresponding resonances. Masslessness limits some powerful methods and results that apply to massive theories, though a continuation path implying crossing symmetry plausibly still exists. Physical properties of gravity suggest nonpolynomial amplitudes, although crossing and causality constrain (with modest assumptions) this nonpolynomial behavior, particularly requiring a polynomial bound in c...
Matrix metalloproteinases in lung biology
Directory of Open Access Journals (Sweden)
Parks William C
2000-12-01
Full Text Available Abstract Despite much information on their catalytic properties and gene regulation, we actually know very little of what matrix metalloproteinases (MMPs do in tissues. The catalytic activity of these enzymes has been implicated to function in normal lung biology by participating in branching morphogenesis, homeostasis, and repair, among other events. Overexpression of MMPs, however, has also been blamed for much of the tissue destruction associated with lung inflammation and disease. Beyond their role in the turnover and degradation of extracellular matrix proteins, MMPs also process, activate, and deactivate a variety of soluble factors, and seldom is it readily apparent by presence alone if a specific proteinase in an inflammatory setting is contributing to a reparative or disease process. An important goal of MMP research will be to identify the actual substrates upon which specific enzymes act. This information, in turn, will lead to a clearer understanding of how these extracellular proteinases function in lung development, repair, and disease.
Structural properties of matrix metalloproteinases.
Bode, W; Fernandez-Catalan, C; Tschesche, H; Grams, F; Nagase, H; Maskos, K
1999-04-01
Matrix metalloproteinases (MMPs) are involved in extracellular matrix degradation. Their proteolytic activity must be precisely regulated by their endogenous protein inhibitors, the tissue inhibitors of metalloproteinases (TIMPs). Disruption of this balance results in serious diseases such as arthritis, tumour growth and metastasis. Knowledge of the tertiary structures of the proteins involved is crucial for understanding their functional properties and interference with associated dysfunctions. Within the last few years, several three-dimensional MMP and MMP-TIMP structures became available, showing the domain organization, polypeptide fold and main specificity determinants. Complexes of the catalytic MMP domains with various synthetic inhibitors enabled the structure-based design and improvement of high-affinity ligands, which might be elaborated into drugs. A multitude of reviews surveying work done on all aspects of MMPs have appeared in recent years, but none of them has focused on the three-dimensional structures. This review was written to close the gap.
Random matrix improved subspace clustering
Couillet, Romain
2017-03-06
This article introduces a spectral method for statistical subspace clustering. The method is built upon standard kernel spectral clustering techniques, however carefully tuned by theoretical understanding arising from random matrix findings. We show in particular that our method provides high clustering performance while standard kernel choices provably fail. An application to user grouping based on vector channel observations in the context of massive MIMO wireless communication networks is provided.
Coherence matrix of plasmonic beams
DEFF Research Database (Denmark)
Novitsky, Andrey; Lavrinenko, Andrei
2013-01-01
We consider monochromatic electromagnetic beams of surface plasmon-polaritons created at interfaces between dielectric media and metals. We theoretically study non-coherent superpositions of elementary surface waves and discuss their spectral degree of polarization, Stokes parameters, and the for...... of the spectral coherence matrix. We compare the polarization properties of the surface plasmonspolaritons as three-dimensional and two-dimensional fields concluding that the latter is superior....
The Biblical Matrix of Economics
Grigore PIROŞCĂ; Angela ROGOJANU
2012-01-01
The rationale of this paper is a prime pattern of history of economic thought in the previous ages of classic ancient times of Greek and Roman civilizations using a methodological matrix able to capture the mainstream ideas from social, political and religious events within the pages of Bible. The economic perspective of these events follows the evolution of the seeds of economic thinking within the Fertile Crescent, focused on the Biblical patriarchic heroes’ actions, but a...
The Euclid Statistical Matrix Tool
Directory of Open Access Journals (Sweden)
Curtis Tilves
2017-06-01
Full Text Available Stataphobia, a term used to describe the fear of statistics and research methods, can result from a lack of improper training in statistical methods. Poor statistical methods training can have an effect on health policy decision making and may play a role in the low research productivity seen in developing countries. One way to reduce Stataphobia is to intervene in the teaching of statistics in the classroom; however, such an intervention must tackle several obstacles, including student interest in the material, multiple ways of learning materials, and language barriers. We present here the Euclid Statistical Matrix, a tool for combatting Stataphobia on a global scale. This free tool is comprised of popular statistical YouTube channels and web sources that teach and demonstrate statistical concepts in a variety of presentation methods. Working with international teams in Iran, Japan, Egypt, Russia, and the United States, we have also developed the Statistical Matrix in multiple languages to address language barriers to learning statistics. By utilizing already-established large networks, we are able to disseminate our tool to thousands of Farsi-speaking university faculty and students in Iran and the United States. Future dissemination of the Euclid Statistical Matrix throughout the Central Asia and support from local universities may help to combat low research productivity in this region.
Redesigning Triangular Dense Matrix Computations on GPUs
Charara, Ali; Ltaief, Hatem; Keyes, David E.
2016-01-01
A new implementation of the triangular matrix-matrix multiplication (TRMM) and the triangular solve (TRSM) kernels are described on GPU hardware accelerators. Although part of the Level 3 BLAS family, these highly computationally intensive kernels
Analytic matrix elements with shifted correlated Gaussians
DEFF Research Database (Denmark)
Fedorov, D. V.
2017-01-01
Matrix elements between shifted correlated Gaussians of various potentials with several form-factors are calculated analytically. Analytic matrix elements are of importance for the correlated Gaussian method in quantum few-body physics.......Matrix elements between shifted correlated Gaussians of various potentials with several form-factors are calculated analytically. Analytic matrix elements are of importance for the correlated Gaussian method in quantum few-body physics....
A quenched c = 1 critical matrix model
International Nuclear Information System (INIS)
Qiu, Zongan; Rey, Soo-Jong.
1990-12-01
We study a variant of the Penner-Distler-Vafa model, proposed as a c = 1 quantum gravity: 'quenched' matrix model with logarithmic potential. The model is exactly soluble, and exhibits a two-cut branching as observed in multicritical unitary matrix models and multicut Hermitian matrix models. Using analytic continuation of the power in the conventional polynomial potential, we also show that both the Penner-Distler-Vafa model and our 'quenched' matrix model satisfy Virasoro algebra constraints
Confocal microscopy imaging of the biofilm matrix
DEFF Research Database (Denmark)
Schlafer, Sebastian; Meyer, Rikke L
2017-01-01
The extracellular matrix is an integral part of microbial biofilms and an important field of research. Confocal laser scanning microscopy is a valuable tool for the study of biofilms, and in particular of the biofilm matrix, as it allows real-time visualization of fully hydrated, living specimens...... the concentration of solutes and the diffusive properties of the biofilm matrix....
Matrix algebra for higher order moments
Meijer, Erik
2005-01-01
A large part of statistics is devoted to the estimation of models from the sample covariance matrix. The development of the statistical theory and estimators has been greatly facilitated by the introduction of special matrices, such as the commutation matrix and the duplication matrix, and the
MatrixPlot: visualizing sequence constraints
DEFF Research Database (Denmark)
Gorodkin, Jan; Stærfeldt, Hans Henrik; Lund, Ole
1999-01-01
MatrixPlot: visualizing sequence constraints. Sub-title Abstract Summary : MatrixPlot is a program for making high-quality matrix plots, such as mutual information plots of sequence alignments and distance matrices of sequences with known three-dimensional coordinates. The user can add information...
Ellipsoids and matrix-valued valuations
Ludwig, Monika
2003-01-01
We obtain a classification of Borel measurable, GL(n) covariant, symmetric-matrix-valued valuations on the space of n-dimensional convex polytopes. The only ones turn out to be the moment matrix corresponding to the classical Legendre ellipsoid and the matrix corresponding to the ellipsoid recently discovered by E. Lutwak, D. Yang, and G. Zhang.
Construction of covariance matrix for experimental data
International Nuclear Information System (INIS)
Liu Tingjin; Zhang Jianhua
1992-01-01
For evaluators and experimenters, the information is complete only in the case when the covariance matrix is given. The covariance matrix of the indirectly measured data has been constructed and discussed. As an example, the covariance matrix of 23 Na(n, 2n) cross section is constructed. A reasonable result is obtained
The COMPADRE Plant Matrix Database
DEFF Research Database (Denmark)
Salguero-Gomez, Roberto; Jones, Owen; Archer, C. Ruth
2015-01-01
growth or decline, such data furthermore help us understand how different biomes shape plant ecology, how plant populations and communities respond to global change, and how to develop successful management tools for endangered or invasive species. 2. Matrix population models summarize the life cycle......1. Schedules of survival, growth and reproduction are key life history traits. Data on how these traits vary among species and populations are fundamental to our understanding of the ecological conditions that have shaped plant evolution. Because these demographic schedules determine population...
Hexagonal response matrix using symmetries
International Nuclear Information System (INIS)
Gotoh, Y.
1991-01-01
A response matrix for use in core calculations for nuclear reactors with hexagonal fuel assemblies is presented. It is based on the incoming currents averaged over the half-surface of a hexagonal node by applying symmetry theory. The boundary conditions of the incoming currents on the half-surface of the node are expressed by a complete set of orthogonal vectors which are constructed from symmetrized functions. The expansion coefficients of the functions are determined by the boundary conditions of incoming currents. (author)
Distributively generated matrix near rings
International Nuclear Information System (INIS)
Abbasi, S.J.
1993-04-01
It is known that if R is a near ring with identity then (I,+) is abelian if (I + ,+) is abelian and (I,+) is abelian if (I*,+) is abelian [S.J. Abbasi, J.D.P. Meldrum, 1991]. This paper extends these results. We show that if R is a distributively generated near ring with identity then (I,+) is included in Z(R), the center of R, if (I + ,+) is included in Z(M n (R)), the center of matrix near ring M n (R). Furthermore (I,+) is included in Z(R) if (I*,+) is included in Z(M n (R)). (author). 5 refs
Geometric phase from dielectric matrix
International Nuclear Information System (INIS)
Banerjee, D.
2005-10-01
The dielectric property of the anisotropic optical medium is found by considering the polarized photon as two component spinor of spherical harmonics. The Geometric Phase of a polarized photon has been evaluated in two ways: the phase two-form of the dielectric matrix through a twist and the Pancharatnam phase (GP) by changing the angular momentum of the incident polarized photon over a closed triangular path on the extended Poincare sphere. The helicity in connection with the spin angular momentum of the chiral photon plays the key role in developing these phase holonomies. (author)
Matrix regularization of 4-manifolds
Trzetrzelewski, M.
2012-01-01
We consider products of two 2-manifolds such as S^2 x S^2, embedded in Euclidean space and show that the corresponding 4-volume preserving diffeomorphism algebra can be approximated by a tensor product SU(N)xSU(N) i.e. functions on a manifold are approximated by the Kronecker product of two SU(N) matrices. A regularization of the 4-sphere is also performed by constructing N^2 x N^2 matrix representations of the 4-algebra (and as a byproduct of the 3-algebra which makes the regularization of S...
Random Matrix Theory and Econophysics
Rosenow, Bernd
2000-03-01
Random Matrix Theory (RMT) [1] is used in many branches of physics as a ``zero information hypothesis''. It describes generic behavior of different classes of systems, while deviations from its universal predictions allow to identify system specific properties. We use methods of RMT to analyze the cross-correlation matrix C of stock price changes [2] of the largest 1000 US companies. In addition to its scientific interest, the study of correlations between the returns of different stocks is also of practical relevance in quantifying the risk of a given stock portfolio. We find [3,4] that the statistics of most of the eigenvalues of the spectrum of C agree with the predictions of RMT, while there are deviations for some of the largest eigenvalues. We interpret these deviations as a system specific property, e.g. containing genuine information about correlations in the stock market. We demonstrate that C shares universal properties with the Gaussian orthogonal ensemble of random matrices. Furthermore, we analyze the eigenvectors of C through their inverse participation ratio and find eigenvectors with large ratios at both edges of the eigenvalue spectrum - a situation reminiscent of localization theory results. This work was done in collaboration with V. Plerou, P. Gopikrishnan, T. Guhr, L.A.N. Amaral, and H.E Stanley and is related to recent work of Laloux et al.. 1. T. Guhr, A. Müller Groeling, and H.A. Weidenmüller, ``Random Matrix Theories in Quantum Physics: Common Concepts'', Phys. Rep. 299, 190 (1998). 2. See, e.g. R.N. Mantegna and H.E. Stanley, Econophysics: Correlations and Complexity in Finance (Cambridge University Press, Cambridge, England, 1999). 3. V. Plerou, P. Gopikrishnan, B. Rosenow, L.A.N. Amaral, and H.E. Stanley, ``Universal and Nonuniversal Properties of Cross Correlations in Financial Time Series'', Phys. Rev. Lett. 83, 1471 (1999). 4. V. Plerou, P. Gopikrishnan, T. Guhr, B. Rosenow, L.A.N. Amaral, and H.E. Stanley, ``Random Matrix Theory
Integrins and extracellular matrix in mechanotransduction
Directory of Open Access Journals (Sweden)
Ramage L
2011-12-01
Full Text Available Lindsay RamageQueen’s Medical Research Institute, University of Edinburgh, Edinburgh, UKAbstract: Integrins are a family of cell surface receptors which mediate cell–matrix and cell–cell adhesions. Among other functions they provide an important mechanical link between the cells external and intracellular environments while the adhesions that they form also have critical roles in cellular signal-transduction. Cell–matrix contacts occur at zones in the cell surface where adhesion receptors cluster and when activated the receptors bind to ligands in the extracellular matrix. The extracellular matrix surrounds the cells of tissues and forms the structural support of tissue which is particularly important in connective tissues. Cells attach to the extracellular matrix through specific cell-surface receptors and molecules including integrins and transmembrane proteoglycans. Integrins work alongside other proteins such as cadherins, immunoglobulin superfamily cell adhesion molecules, selectins, and syndecans to mediate cell–cell and cell–matrix interactions and communication. Activation of adhesion receptors triggers the formation of matrix contacts in which bound matrix components, adhesion receptors, and associated intracellular cytoskeletal and signaling molecules form large functional, localized multiprotein complexes. Cell–matrix contacts are important in a variety of different cell and tissue properties including embryonic development, inflammatory responses, wound healing, and adult tissue homeostasis. This review summarizes the roles and functions of integrins and extracellular matrix proteins in mechanotransduction.Keywords: ligand binding, α subunit, ß subunit, focal adhesion, cell differentiation, mechanical loading, cell–matrix interaction
Form of multicomponent Fickian diffusion coefficients matrix
International Nuclear Information System (INIS)
Wambui Mutoru, J.; Firoozabadi, Abbas
2011-01-01
Highlights: → Irreversible thermodynamics establishes form of multicomponent diffusion coefficients. → Phenomenological coefficients and thermodynamic factors affect sign of diffusion coefficients. → Negative diagonal elements of diffusion coefficients matrix can occur in non-ideal mixtures. → Eigenvalues of the matrix of Fickian diffusion coefficients may not be all real. - Abstract: The form of multicomponent Fickian diffusion coefficients matrix in thermodynamically stable mixtures is established based on the form of phenomenological coefficients and thermodynamic factors. While phenomenological coefficients form a symmetric positive definite matrix, the determinant of thermodynamic factors matrix is positive. As a result, the Fickian diffusion coefficients matrix has a positive determinant, but its elements - including diagonal elements - can be negative. Comprehensive survey of reported diffusion coefficients data for ternary and quaternary mixtures, confirms that invariably the determinant of the Fickian diffusion coefficients matrix is positive.
Interpolation of rational matrix functions
Ball, Joseph A; Rodman, Leiba
1990-01-01
This book aims to present the theory of interpolation for rational matrix functions as a recently matured independent mathematical subject with its own problems, methods and applications. The authors decided to start working on this book during the regional CBMS conference in Lincoln, Nebraska organized by F. Gilfeather and D. Larson. The principal lecturer, J. William Helton, presented ten lectures on operator and systems theory and the interplay between them. The conference was very stimulating and helped us to decide that the time was ripe for a book on interpolation for matrix valued functions (both rational and non-rational). When the work started and the first partial draft of the book was ready it became clear that the topic is vast and that the rational case by itself with its applications is already enough material for an interesting book. In the process of writing the book, methods for the rational case were developed and refined. As a result we are now able to present the rational case as an indepe...
CdS/CdSSe quantum dots in glass matrix
Indian Academy of Sciences (India)
CdSSe and melted at 1200–1300°C. The glass samples were transparent and pale yellow in colour due to presence of CdS/CdSSe tiny nano crystal (Q-dots). in situ growth of CdS/CdSSe nano crystals imparts the yellow/orange/red colour to ...
The Biblical Matrix of Economics
Directory of Open Access Journals (Sweden)
Grigore PIROŞCĂ
2012-05-01
Full Text Available The rationale of this paper is a prime pattern of history of economic thought in the previous ages of classic ancient times of Greek and Roman civilizations using a methodological matrix able to capture the mainstream ideas from social, political and religious events within the pages of Bible. The economic perspective of these events follows the evolution of the seeds of economic thinking within the Fertile Crescent, focused on the Biblical patriarchic heroes’ actions, but also on the empires which their civilization interacted to. The paper aims to discover the path followed by the economic doctrines from the Bible in order to find a match with economic actuality of present days.
Inequalities Involving Upper Bounds for Certain Matrix Operators
Indian Academy of Sciences (India)
Home; Journals; Proceedings – Mathematical Sciences; Volume 116; Issue 3. Inequalities Involving Upper Bounds for Certain Matrix Operators. R Lashkaripour D Foroutannia. Volume ... Keywords. Inequality; norm; summability matrix; Hausdorff matrix; Hilbert matrix; weighted sequence space; Lorentz sequence space.
Petz recovery versus matrix reconstruction
Holzäpfel, Milan; Cramer, Marcus; Datta, Nilanjana; Plenio, Martin B.
2018-04-01
The reconstruction of the state of a multipartite quantum mechanical system represents a fundamental task in quantum information science. At its most basic, it concerns a state of a bipartite quantum system whose subsystems are subjected to local operations. We compare two different methods for obtaining the original state from the state resulting from the action of these operations. The first method involves quantum operations called Petz recovery maps, acting locally on the two subsystems. The second method is called matrix (or state) reconstruction and involves local, linear maps that are not necessarily completely positive. Moreover, we compare the quantities on which the maps employed in the two methods depend. We show that any state that admits Petz recovery also admits state reconstruction. However, the latter is successful for a strictly larger set of states. We also compare these methods in the context of a finite spin chain. Here, the state of a finite spin chain is reconstructed from the reduced states of a few neighbouring spins. In this setting, state reconstruction is the same as the matrix product operator reconstruction proposed by Baumgratz et al. [Phys. Rev. Lett. 111, 020401 (2013)]. Finally, we generalize both these methods so that they employ long-range measurements instead of relying solely on short-range correlations embodied in such local reduced states. Long-range measurements enable the reconstruction of states which cannot be reconstructed from measurements of local few-body observables alone and hereby we improve existing methods for quantum state tomography of quantum many-body systems.
Neutrino mass matrix and hierarchy
International Nuclear Information System (INIS)
Kaus, Peter; Meshkov, Sydney
2003-01-01
We build a model to describe neutrinos based on strict hierarchy, incorporating as much as possible, the latest known data, for Δsol and Δatm, and for the mixing angles determined from neutrino oscillation experiments, including that from KamLAND. Since the hierarchy assumption is a statement about mass ratios, it lets us obtain all three neutrino masses. We obtain a mass matrix, Mν and a mixing matrix, U, where both Mν and U are given in terms of powers of Λ, the analog of the Cabibbo angle λ in the Wolfenstein representation, and two parameters, ρ and κ, each of order one. The expansion parameter, Λ, is defined by Λ2 = m2/m3 = √(Δsol/Δatm) ≅ 0.16, and ρ expresses our ignorance of the lightest neutrino mass m1, (m1 ρΛ4m3), while κ scales s13 to the experimental upper limit, s13 = κΛ2 ≅ 0.16κ. These matrices are similar in structure to those for the quark and lepton families, but with Λ about 1.6 times larger than the λ for the quarks and charged leptons. The upper limit for the effective neutrino mass in double β-decay experiments is 4 x 10-3eV if s13 = 0 and 6 x 10-3eV if s13 is maximal. The model, which is fairly unique, given the hierarchy assumption and the data, is compared to supersymmetric extension and texture zero models of mass generation
Optimized Projection Matrix for Compressive Sensing
Directory of Open Access Journals (Sweden)
Jianping Xu
2010-01-01
Full Text Available Compressive sensing (CS is mainly concerned with low-coherence pairs, since the number of samples needed to recover the signal is proportional to the mutual coherence between projection matrix and sparsifying matrix. Until now, papers on CS always assume the projection matrix to be a random matrix. In this paper, aiming at minimizing the mutual coherence, a method is proposed to optimize the projection matrix. This method is based on equiangular tight frame (ETF design because an ETF has minimum coherence. It is impossible to solve the problem exactly because of the complexity. Therefore, an alternating minimization type method is used to find a feasible solution. The optimally designed projection matrix can further reduce the necessary number of samples for recovery or improve the recovery accuracy. The proposed method demonstrates better performance than conventional optimization methods, which brings benefits to both basis pursuit and orthogonal matching pursuit.
Response matrix method for large LMFBR analysis
International Nuclear Information System (INIS)
King, M.J.
1977-06-01
The feasibility of using response matrix techniques for computational models of large LMFBRs is examined. Since finite-difference methods based on diffusion theory have generally found a place in fast-reactor codes, a brief review of their general matrix foundation is given first in order to contrast it to the general strategy of response matrix methods. Then, in order to present the general method of response matrix technique, two illustrative examples are given. Matrix algorithms arising in the application to large LMFBRs are discussed, and the potential of the response matrix method is explored for a variety of computational problems. Principal properties of the matrices involved are derived with a view to application of numerical methods of solution. The Jacobi iterative method as applied to the current-balance eigenvalue problem is discussed
COMPOSITION OF FOWLPOX VIRUS AND INCLUSION MATRIX.
RANDALL, C C; GAFFORD, L G; DARLINGTON, R W; HYDE, J
1964-04-01
Randall, Charles C. (University of Mississippi School of Medicine, Jackson), Lanelle G. Gafford, Robert W. Darlington, and James M. Hyde. Composition of fowlpox virus and inclusion matrix. J. Bacteriol. 87:939-944. 1964.-Inclusion bodies of fowlpox virus infection are especially favorable starting material for the isolation of virus and inclusion matrix. Electron micrographs of viral particles and matrix indicated a high degree of purification. Density-gradient centrifugation of virus in cesium chloride and potassium tartrate was unsatisfactory because of inactivation, and clumping or disintegration. Chemical analyses of virus and matrix revealed significant amounts of lipid, protein, and deoxyribonucleic acid, but no ribonucleic acid or carbohydrate. Approximately 47% of the weight of the virus and 83% of the matrix were extractable in chloroform-methanol. The lipid partitions of the petroleum ether extracts were similar, except that the phospholipid content of the matrix was 2.2 times that of the virus. Viral particles were sensitive to diethyl ether and chloroform.
Convex nonnegative matrix factorization with manifold regularization.
Hu, Wenjun; Choi, Kup-Sze; Wang, Peiliang; Jiang, Yunliang; Wang, Shitong
2015-03-01
Nonnegative Matrix Factorization (NMF) has been extensively applied in many areas, including computer vision, pattern recognition, text mining, and signal processing. However, nonnegative entries are usually required for the data matrix in NMF, which limits its application. Besides, while the basis and encoding vectors obtained by NMF can represent the original data in low dimension, the representations do not always reflect the intrinsic geometric structure embedded in the data. Motivated by manifold learning and Convex NMF (CNMF), we propose a novel matrix factorization method called Graph Regularized and Convex Nonnegative Matrix Factorization (GCNMF) by introducing a graph regularized term into CNMF. The proposed matrix factorization technique not only inherits the intrinsic low-dimensional manifold structure, but also allows the processing of mixed-sign data matrix. Clustering experiments on nonnegative and mixed-sign real-world data sets are conducted to demonstrate the effectiveness of the proposed method. Copyright © 2014 Elsevier Ltd. All rights reserved.
Garoufalidis, S; Garoufalidis, Stavros; Marino, Marcos
2006-01-01
The contribution of reducible connections to the U(N) Chern-Simons invariant of a Seifert manifold $M$ can be expressed in some cases in terms of matrix integrals. We show that the U(N) evaluation of the LMO invariant of any rational homology sphere admits a matrix model representation which agrees with the Chern-Simons matrix integral for Seifert spheres and the trivial connection.
Covariance matrix estimation for stationary time series
Xiao, Han; Wu, Wei Biao
2011-01-01
We obtain a sharp convergence rate for banded covariance matrix estimates of stationary processes. A precise order of magnitude is derived for spectral radius of sample covariance matrices. We also consider a thresholded covariance matrix estimator that can better characterize sparsity if the true covariance matrix is sparse. As our main tool, we implement Toeplitz [Math. Ann. 70 (1911) 351–376] idea and relate eigenvalues of covariance matrices to the spectral densities or Fourier transforms...
A companion matrix for 2-D polynomials
International Nuclear Information System (INIS)
Boudellioua, M.S.
1995-08-01
In this paper, a matrix form analogous to the companion matrix which is often encountered in the theory of one dimensional (1-D) linear systems is suggested for a class of polynomials in two indeterminates and real coefficients, here referred to as two dimensional (2-D) polynomials. These polynomials arise in the context of 2-D linear systems theory. Necessary and sufficient conditions are also presented under which a matrix is equivalent to this companion form. (author). 6 refs
Fragmentation of extracellular matrix by hypochlorous acid
DEFF Research Database (Denmark)
Woods, Alan A; Davies, Michael Jonathan
2003-01-01
/chloramide decomposition, with copper and iron ions being effective catalysts, and decreased by compounds which scavenge chloramines/chloramides, or species derived from them. The effect of such matrix modifications on cellular behaviour is poorly understood, though it is known that changes in matrix materials can have...... profound effects on cell adhesion, proliferation, growth and phenotype. The observed matrix modifications reported here may therefore modulate cellular behaviour in diseases such as atherosclerosis where MPO-derived oxidants are generated....
Matrix orderings and their associated skew fields
International Nuclear Information System (INIS)
Mahdavi-Hezavehi, M.
1990-08-01
Matrix orderings on rings are investigated. It is shown that in the commutative case they are essentially positive cones. This is proved by reducing it to the field case; similarly one can show that on a skew field, matrix positive cones can be reduced to positive cones by using the Dieudonne determinant. Our main result shows that there is a natural bijection between the matrix positive cones on a ring R and the ordered epic R-fields. (author). 7 refs
MDL, Collineations and the Fundamental Matrix
Maybank , Steve; Sturm , Peter
1999-01-01
International audience; Scene geometry can be inferred from point correspondences between two images. The inference process includes the selection of a model. Four models are considered: background (or null), collineation, affine fundamental matrix and fundamental matrix. It is shown how Minimum Description Length (MDL) can be used to compare the different models. The main result is that there is little reason for preferring the fundamental matrix model over the collineation model, even when ...
Extracellular matrix component signaling in cancer
DEFF Research Database (Denmark)
Multhaupt, Hinke A. B.; Leitinger, Birgit; Gullberg, Donald
2016-01-01
Cell responses to the extracellular matrix depend on specific signaling events. These are important from early development, through differentiation and tissue homeostasis, immune surveillance, and disease pathogenesis. Signaling not only regulates cell adhesion cytoskeletal organization and motil...... as well as matrix constitution and protein crosslinking. Here we summarize roles of the three major matrix receptor types, with emphasis on how they function in tumor progression. [on SciFinder(R)]...
Matrix-assisted peptide synthesis on nanoparticles.
Khandadash, Raz; Machtey, Victoria; Weiss, Aryeh; Byk, Gerardo
2014-09-01
We report a new method for multistep peptide synthesis on polymeric nanoparticles of differing sizes. Polymeric nanoparticles were functionalized via their temporary embedment into a magnetic inorganic matrix that allows multistep peptide synthesis. The matrix is removed at the end of the process for obtaining nanoparticles functionalized with peptides. The matrix-assisted synthesis on nanoparticles was proved by generating various biologically relevant peptides. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.
Random Correlation Matrix and De-Noising
Ken-ichi Mitsui; Yoshio Tabata
2006-01-01
In Finance, the modeling of a correlation matrix is one of the important problems. In particular, the correlation matrix obtained from market data has the noise. Here we apply the de-noising processing based on the wavelet analysis to the noisy correlation matrix, which is generated by a parametric function with random parameters. First of all, we show that two properties, i.e. symmetry and ones of all diagonal elements, of the correlation matrix preserve via the de-noising processing and the...
Risk matrix model for rotating equipment
Directory of Open Access Journals (Sweden)
Wassan Rano Khan
2014-07-01
Full Text Available Different industries have various residual risk levels for their rotating equipment. Accordingly the occurrence rate of the failures and associated failure consequences categories are different. Thus, a generalized risk matrix model is developed in this study which can fit various available risk matrix standards. This generalized risk matrix will be helpful to develop new risk matrix, to fit the required risk assessment scenario for rotating equipment. Power generation system was taken as case study. It was observed that eight subsystems were under risk. Only vibration monitor system was under high risk category, while remaining seven subsystems were under serious and medium risk categories.
Hartree--Fock density matrix equation
International Nuclear Information System (INIS)
Cohen, L.; Frishberg, C.
1976-01-01
An equation for the Hartree--Fock density matrix is discussed and the possibility of solving this equation directly for the density matrix instead of solving the Hartree--Fock equation for orbitals is considered. Toward that end the density matrix is expanded in a finite basis to obtain the matrix representative equation. The closed shell case is considered. Two numerical schemes are developed and applied to a number of examples. One example is given where the standard orbital method does not converge while the method presented here does
Titanium Matrix Composite Pressure Vessel, Phase II
National Aeronautics and Space Administration — For over 15 years, FMW Composite Systems has developed Metal Matrix Composite manufacturing methodologies for fabricating silicon-carbide-fiber-reinforced titanium...
Basic matrix algebra and transistor circuits
Zelinger, G
1963-01-01
Basic Matrix Algebra and Transistor Circuits deals with mastering the techniques of matrix algebra for application in transistors. This book attempts to unify fundamental subjects, such as matrix algebra, four-terminal network theory, transistor equivalent circuits, and pertinent design matters. Part I of this book focuses on basic matrix algebra of four-terminal networks, with descriptions of the different systems of matrices. This part also discusses both simple and complex network configurations and their associated transmission. This discussion is followed by the alternative methods of de
A Generalization of the Alias Matrix
DEFF Research Database (Denmark)
Kulahci, Murat; Bisgaard, S.
2006-01-01
The investigation of aliases or biases is important for the interpretation of the results from factorial experiments. For two-level fractional factorials this can be facilitated through their group structure. For more general arrays the alias matrix can be used. This tool is traditionally based...... on the assumption that the error structure is that associated with ordinary least squares. For situations where that is not the case, we provide in this article a generalization of the alias matrix applicable under the generalized least squares assumptions. We also show that for the special case of split plot error...... structure, the generalized alias matrix simplifies to the ordinary alias matrix....
Interfaces between a fibre and its matrix
DEFF Research Database (Denmark)
Lilholt, Hans; Sørensen, Bent F.
2017-01-01
in polyester matrix. The analysis of existing experimental literature data is demonstrated for steel fibres in epoxy matrix and for tungsten wires in copper matrix. These latter incomplete analyses show that some results can be obtained even if all three experimental parameters are not recorded....... parameters (applied load, debond length and relative fibre/matrix displacement) are rather similar for these test modes. A simplified analysis allows the direct determination of the three interface parameters from two plots for the experimental data. The complete analysis is demonstrated for steel fibres...
Matrix Krylov subspace methods for image restoration
Directory of Open Access Journals (Sweden)
khalide jbilou
2015-09-01
Full Text Available In the present paper, we consider some matrix Krylov subspace methods for solving ill-posed linear matrix equations and in those problems coming from the restoration of blurred and noisy images. Applying the well known Tikhonov regularization procedure leads to a Sylvester matrix equation depending the Tikhonov regularized parameter. We apply the matrix versions of the well known Krylov subspace methods, namely the Least Squared (LSQR and the conjugate gradient (CG methods to get approximate solutions representing the restored images. Some numerical tests are presented to show the effectiveness of the proposed methods.
Multiscale Modeling of Ceramic Matrix Composites
Bednarcyk, Brett A.; Mital, Subodh K.; Pineda, Evan J.; Arnold, Steven M.
2015-01-01
Results of multiscale modeling simulations of the nonlinear response of SiC/SiC ceramic matrix composites are reported, wherein the microstructure of the ceramic matrix is captured. This micro scale architecture, which contains free Si material as well as the SiC ceramic, is responsible for residual stresses that play an important role in the subsequent thermo-mechanical behavior of the SiC/SiC composite. Using the novel Multiscale Generalized Method of Cells recursive micromechanics theory, the microstructure of the matrix, as well as the microstructure of the composite (fiber and matrix) can be captured.
Zhong, Zai-Zhe
2004-01-01
The partial separability of multipartite qubit density matrixes is strictly defined. We give a reduction way from N-partite qubit density matrixes to bipartite qubit density matrixes, and prove a necessary condition that a N-partite qubit density matrix to be partially separable is its reduced density matrix to satisfy PPT condition.
TRASYS form factor matrix normalization
Tsuyuki, Glenn T.
1992-01-01
A method has been developed for adjusting a TRASYS enclosure form factor matrix to unity. This approach is not limited to closed geometries, and in fact, it is primarily intended for use with open geometries. The purpose of this approach is to prevent optimistic form factors to space. In this method, nodal form factor sums are calculated within 0.05 of unity using TRASYS, although deviations as large as 0.10 may be acceptable, and then, a process is employed to distribute the difference amongst the nodes. A specific example has been analyzed with this method, and a comparison was performed with a standard approach for calculating radiation conductors. In this comparison, hot and cold case temperatures were determined. Exterior nodes exhibited temperature differences as large as 7 C and 3 C for the hot and cold cases, respectively when compared with the standard approach, while interior nodes demonstrated temperature differences from 0 C to 5 C. These results indicate that temperature predictions can be artificially biased if the form factor computation error is lumped into the individual form factors to space.
Green's matrix for a second-order self-adjoint matrix differential operator
International Nuclear Information System (INIS)
Sisman, Tahsin Cagri; Tekin, Bayram
2010-01-01
A systematic construction of the Green's matrix for a second-order self-adjoint matrix differential operator from the linearly independent solutions of the corresponding homogeneous differential equation set is carried out. We follow the general approach of extracting the Green's matrix from the Green's matrix of the corresponding first-order system. This construction is required in the cases where the differential equation set cannot be turned to an algebraic equation set via transform techniques.
Differential analysis of matrix convex functions II
DEFF Research Database (Denmark)
Hansen, Frank; Tomiyama, Jun
2009-01-01
We continue the analysis in [F. Hansen, and J. Tomiyama, Differential analysis of matrix convex functions. Linear Algebra Appl., 420:102--116, 2007] of matrix convex functions of a fixed order defined in a real interval by differential methods as opposed to the characterization in terms of divided...
Towards Matrix Models in IIB Superstrings
Olesen, P.
1997-01-01
I review the properties of a matrix action of relevance for IIB superstrings. This model generalizes the action proposed by Ishibashi, Kawai, Kitazawa, and Tsuchiya by introducing an auxillary field Y, which is the matrix version of the auxillary field g in the Schild action.
Indecomposability of polynomials via Jacobian matrix
International Nuclear Information System (INIS)
Cheze, G.; Najib, S.
2007-12-01
Uni-multivariate decomposition of polynomials is a special case of absolute factorization. Recently, thanks to the Ruppert's matrix some effective results about absolute factorization have been improved. Here we show that with a jacobian matrix we can get sharper bounds for the special case of uni-multivariate decomposition. (author)
Multimedia Matrix: A Cognitive Strategy for Designers.
Sherry, Annette C.
This instructional development project evaluates the effect of a matrix-based strategy to assist multimedia authors in acquiring and applying principles for effective multimedia design. The Multimedia Matrix, based on the Park and Hannafin "Twenty Principles and Implications for Interactive Multimedia" design, displays a condensed…
Advances in HTR fuel matrix technology
International Nuclear Information System (INIS)
Voice, E.H.; Sturge, D.W.
1974-02-01
Progress in the materials and technology of matrix consolidation in recent years is summarised, noting especially the development of an improved resin and the introduction of a new graphite powder. An earlier irradiation programme, the Matrix Test Series, is recalled and the fabrication of the most recent experiment, the directly-cooled homogeneous Met. VI, is described. (author)
A marketing matrix for health care organizations.
Weaver, F J; Gombeski, W R; Fay, G W; Eversman, J J; Cowan-Gascoigne, C
1986-06-01
Irrespective of the formal marketing structure successful marketing for health care organizations requires the input on many people. Detailed here is the Marketing Matrix used at the Cleveland Clinic Foundation in Cleveland, Ohio. This Matrix is both a philosophy and a tool for clarifying and focusing the organization's marketing activities.
QUEUEING DISCIPLINES BASED ON PRIORITY MATRIX
Directory of Open Access Journals (Sweden)
Taufik I. Aliev
2014-11-01
Full Text Available The paper deals with queueing disciplines for demands of general type in queueing systems with multivendor load. A priority matrix is proposed to be used for the purpose of mathematical description of such disciplines, which represents the priority type (preemptive priority, not preemptive priority or no priority between any two demands classes. Having an intuitive and simple way of priority assignment, such description gives mathematical dependencies of system operation characteristics on its parameters. Requirements for priority matrix construction are formulated and the notion of canonical priority matrix is given. It is shown that not every matrix, constructed in accordance with such requirements, is correct. The notion of incorrect priority matrix is illustrated by an example, and it is shown that such matrixes do not ensure any unambiguousness and determinacy in design of algorithm, which realizes corresponding queueing discipline. Rules governing construction of correct matrixes are given for canonical priority matrixes. Residence time for demands of different classes in system, which is the sum of waiting time and service time, is considered as one of the most important characteristics. By introducing extra event method Laplace transforms for these characteristics are obtained, and mathematical dependencies are derived on their basis for calculation of two first moments for corresponding characteristics of demands queueing
Matrix Management: An Organizational Alternative for Libraries.
Johnson, Peggy
1990-01-01
Describes various organizational structures and models, presents matrix management as an alternative to traditional hierarchical structures, and suggests matrix management as an appropriate organizational alternative for academic libraries. Benefits that are discussed include increased flexibility, a higher level of professional independence, and…
Rovibrational matrix elements of the multipole moments
Indian Academy of Sciences (India)
Rovibrational matrix elements of the multipole moments ℓ up to rank 10 and of the linear polarizability of the H2 molecule in the condensed phase have been computed taking into account the effect of the intermolecular potential. Comparison with gas phase matrix elements shows that the effect of solid state interactions is ...
Explicit Covariance Matrix for Particle Measurement Precision
Karimäki, Veikko
1997-01-01
We derive explicit and precise formulae for 3 by 3 error matrix of the particle transverse momentum, direction and impact parameter. The error matrix elements are expressed as functions of up to fourth order statistical moments of the measured coordinates. The formulae are valid for any curvature and track length in case of negligible multiple scattering.
Modeling and Simulation of Matrix Converter
DEFF Research Database (Denmark)
Liu, Fu-rong; Klumpner, Christian; Blaabjerg, Frede
2005-01-01
This paper discusses the modeling and simulation of matrix converter. Two models of matrix converter are presented: one is based on indirect space vector modulation and the other is based on power balance equation. The basis of these two models is• given and the process on modeling is introduced...
Hamiltonian formalism, quantization and S matrix for supergravity. [S matrix, canonical constraints
Energy Technology Data Exchange (ETDEWEB)
Fradkin, E S; Vasiliev, M A [AN SSSR, Moscow. Fizicheskij Inst.
1977-12-05
The canonical formalism for supergravity is constructed. The algebra of canonical constraints is found. The correct expression for the S matrix is obtained. Usual 'covariant methods' lead to an incorrect S matrix in supergravity since a new four-particle interaction of ghostfields survives in the Lagrangian expression of the S matrix.
[Penile augmentation using acellular dermal matrix].
Zhang, Jin-ming; Cui, Yong-yan; Pan, Shu-juan; Liang, Wei-qiang; Chen, Xiao-xuan
2004-11-01
Penile enhancement was performed using acellular dermal matrix. Multiple layers of acellular dermal matrix were placed underneath the penile skin to enlarge its girth. Since March 2002, penile augmentation has been performed on 12 cases using acellular dermal matrix. Postoperatively all the patients had a 1.3-3.1 cm (2.6 cm in average) increase in penile girth in a flaccid state. The penis had normal appearance and feeling without contour deformities. All patients gained sexual ability 3 months after the operation. One had a delayed wound healing due to tight dressing, which was repaired with a scrotal skin flap. Penile enlargement by implantation of multiple layers of acellular dermal matrix was a safe and effective operation. This method can be performed in an outpatient ambulatory setting. The advantages of the acellular dermal matrix over the autogenous dermal fat grafts are elimination of donor site injury and scar and significant shortening of operation time.
Noniterative MAP reconstruction using sparse matrix representations.
Cao, Guangzhi; Bouman, Charles A; Webb, Kevin J
2009-09-01
We present a method for noniterative maximum a posteriori (MAP) tomographic reconstruction which is based on the use of sparse matrix representations. Our approach is to precompute and store the inverse matrix required for MAP reconstruction. This approach has generally not been used in the past because the inverse matrix is typically large and fully populated (i.e., not sparse). In order to overcome this problem, we introduce two new ideas. The first idea is a novel theory for the lossy source coding of matrix transformations which we refer to as matrix source coding. This theory is based on a distortion metric that reflects the distortions produced in the final matrix-vector product, rather than the distortions in the coded matrix itself. The resulting algorithms are shown to require orthonormal transformations of both the measurement data and the matrix rows and columns before quantization and coding. The second idea is a method for efficiently storing and computing the required orthonormal transformations, which we call a sparse-matrix transform (SMT). The SMT is a generalization of the classical FFT in that it uses butterflies to compute an orthonormal transform; but unlike an FFT, the SMT uses the butterflies in an irregular pattern, and is numerically designed to best approximate the desired transforms. We demonstrate the potential of the noniterative MAP reconstruction with examples from optical tomography. The method requires offline computation to encode the inverse transform. However, once these offline computations are completed, the noniterative MAP algorithm is shown to reduce both storage and computation by well over two orders of magnitude, as compared to a linear iterative reconstruction methods.
Development of a Java Package for Matrix Programming
Lim, Ngee-Peng; Ling, Maurice HT; Lim, Shawn YC; Choi, Ji-Hee; Teo, Henry BK
2003-01-01
We had assembled a Java package, known as MatrixPak, of four classes for the purpose of numerical matrix computation. The classes are matrix, matrix_operations, StrToMatrix, and MatrixToStr; all of which are inherited from java.lang.Object class. Class matrix defines a matrix as a two-dimensional array of float types, and contains the following mathematical methods: transpose, adjoint, determinant, inverse, minor and cofactor. Class matrix_operations contains the following mathematical method...
A matrix model from string field theory
Directory of Open Access Journals (Sweden)
Syoji Zeze
2016-09-01
Full Text Available We demonstrate that a Hermitian matrix model can be derived from level truncated open string field theory with Chan-Paton factors. The Hermitian matrix is coupled with a scalar and U(N vectors which are responsible for the D-brane at the tachyon vacuum. Effective potential for the scalar is evaluated both for finite and large N. Increase of potential height is observed in both cases. The large $N$ matrix integral is identified with a system of N ZZ branes and a ghost FZZT brane.
NLTE steady-state response matrix method.
Faussurier, G.; More, R. M.
2000-05-01
A connection between atomic kinetics and non-equilibrium thermodynamics has been recently established by using a collisional-radiative model modified to include line absorption. The calculated net emission can be expressed as a non-local thermodynamic equilibrium (NLTE) symmetric response matrix. In the paper, this connection is extended to both cases of the average-atom model and the Busquet's model (RAdiative-Dependent IOnization Model, RADIOM). The main properties of the response matrix still remain valid. The RADIOM source function found in the literature leads to a diagonal response matrix, stressing the absence of any frequency redistribution among the frequency groups at this order of calculation.
A transilient matrix for moist convection
Energy Technology Data Exchange (ETDEWEB)
Romps, D.; Kuang, Z.
2011-08-15
A method is introduced for diagnosing a transilient matrix for moist convection. This transilient matrix quantifies the nonlocal transport of air by convective eddies: for every height z, it gives the distribution of starting heights z{prime} for the eddies that arrive at z. In a cloud-resolving simulation of deep convection, the transilient matrix shows that two-thirds of the subcloud air convecting into the free troposphere originates from within 100 m of the surface. This finding clarifies which initial height to use when calculating convective available potential energy from soundings of the tropical troposphere.
The Matrix exponential, Dynamic Systems and Control
DEFF Research Database (Denmark)
Poulsen, Niels Kjølstad
The matrix exponential can be found in various connections in analysis and control of dynamic systems. In this short note we are going to list a few examples. The matrix exponential usably pops up in connection to the sampling process, whatever it is in a deterministic or a stochastic setting...... or it is a tool for determining a Gramian matrix. This note is intended to be used in connection to the teaching post the course in Stochastic Adaptive Control (02421) given at Informatics and Mathematical Modelling (IMM), The Technical University of Denmark. This work is a result of a study of the litterature....
Matrix-exponential description of radiative transfer
International Nuclear Information System (INIS)
Waterman, P.C.
1981-01-01
By appling the matrix-exponential operator technique to the radiative-transfer equation in discrete form, new analytical solutions are obtained for the transmission and reflection matrices in the limiting cases x >1, where x is the optical depth of the layer. Orthongonality of the eigenvectors of the matrix exponential apparently yields new conditions for determining. Chandrasekhar's characteristic roots. The exact law of reflection for the discrete eigenfunctions is also obtained. Finally, when used in conjuction with the doubling method, the matrix exponential should result in reduction in both computation time and loss of precision
48 CFR 2152.370 - Use of the matrix.
2010-10-01
... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Use of the matrix. 2152.370... CONTRACT CLAUSES Provision and Clause Matrix 2152.370 Use of the matrix. (a) The matrix in this section... clause is to be used only when the applicable conditions are met. FEGLI Program Clause Matrix Clause No...
The deviation matrix of a continuous-time Markov chain
Coolen-Schrijner, P.; van Doorn, E.A.
2001-01-01
The deviation matrix of an ergodic, continuous-time Markov chain with transition probability matrix $P(.)$ and ergodic matrix $\\Pi$ is the matrix $D \\equiv \\int_0^{\\infty} (P(t)-\\Pi)dt$. We give conditions for $D$ to exist and discuss properties and a representation of $D$. The deviation matrix of a
The deviation matrix of a continuous-time Markov chain
Coolen-Schrijner, Pauline; van Doorn, Erik A.
2002-01-01
he deviation matrix of an ergodic, continuous-time Markov chain with transition probability matrix $P(.)$ and ergodic matrix $\\Pi$ is the matrix $D \\equiv \\int_0^{\\infty} (P(t)-\\Pi)dt$. We give conditions for $D$ to exist and discuss properties and a representation of $D$. The deviation matrix of a
Residual, restarting and Richardson iteration for the matrix exponential
Bochev, Mikhail A.; Grimm, Volker; Hochbruck, Marlis
2013-01-01
A well-known problem in computing some matrix functions iteratively is the lack of a clear, commonly accepted residual notion. An important matrix function for which this is the case is the matrix exponential. Suppose the matrix exponential of a given matrix times a given vector has to be computed.
Residual, restarting and Richardson iteration for the matrix exponential
Bochev, Mikhail A.
2010-01-01
A well-known problem in computing some matrix functions iteratively is a lack of a clear, commonly accepted residual notion. An important matrix function for which this is the case is the matrix exponential. Assume, the matrix exponential of a given matrix times a given vector has to be computed. We
Binding of matrix metalloproteinase inhibitors to extracellular matrix: 3D-QSAR analysis.
Zhang, Yufen; Lukacova, Viera; Bartus, Vladimir; Nie, Xiaoping; Sun, Guorong; Manivannan, Ethirajan; Ghorpade, Sandeep R; Jin, Xiaomin; Manyem, Shankar; Sibi, Mukund P; Cook, Gregory R; Balaz, Stefan
2008-10-01
Binding to the extracellular matrix, one of the most abundant human protein complexes, significantly affects drug disposition. Specifically, the interactions with extracellular matrix determine the free concentrations of small molecules acting in tissues, including signaling peptides, inhibitors of tissue remodeling enzymes such as matrix metalloproteinases, and other drug candidates. The nature of extracellular matrix binding was elucidated for 63 matrix metalloproteinase inhibitors, for which the association constants to an extracellular matrix mimic were reported here. The data did not correlate with lipophilicity as a common determinant of structure-nonspecific, orientation-averaged binding. A hypothetical structure of the binding site of the solidified extracellular matrix surrogate was analyzed using the Comparative Molecular Field Analysis, which needed to be applied in our multi-mode variant. This fact indicates that the compounds bind to extracellular matrix in multiple modes, which cannot be considered as completely orientation-averaged and exhibit structural dependence. The novel comparative molecular field analysis models, exhibiting satisfactory descriptive and predictive abilities, are suitable for prediction of the extracellular matrix binding for the untested chemicals, which are within applicability domains. The results contribute to a better prediction of the pharmacokinetic parameters such as the distribution volume and the tissue-blood partition coefficients, in addition to a more imminent benefit for the development of more effective matrix metalloproteinase inhibitors.
On renormalization group flow in matrix model
International Nuclear Information System (INIS)
Gao, H.B.
1992-10-01
The renormalization group flow recently found by Brezin and Zinn-Justin by integrating out redundant entries of the (N+1)x(N+1) Hermitian random matrix is studied. By introducing explicitly the RG flow parameter, and adding suitable counter terms to the matrix potential of the one matrix model, we deduce some interesting properties of the RG trajectories. In particular, the string equation for the general massive model interpolating between the UV and IR fixed points turns out to be a consequence of RG flow. An ambiguity in the UV region of the RG trajectory is remarked to be related to the large order behaviour of the one matrix model. (author). 7 refs
Development of a Compact Matrix Converter
Directory of Open Access Journals (Sweden)
J. Bauer
2009-01-01
Full Text Available This paper deals with the development of a matrix converter. Matrix converters belong to the category of direct frequency converters. A converter does not contain DC-link and the output voltage is provided by direct switching of voltage from the input phases. This is enabled by 9 bidirectional switches, which are provided by anti-serial connection of 18 IGBT transistors. The absence of a DC-link is great advantage of the matrix converter, but it also increases the requirements on the converter control. For this reason a new prototype of a matrix converter is being developed with sophisticated modern components (FPGA, Power PC equipped in the control part of the converter. The converter will be used for testing new control algorithms and commutation methods.
Nuclear waste storage container with metal matrix
International Nuclear Information System (INIS)
Sump, K.R.
1978-01-01
The invention relates to a storage container for high-level waste having a metal matrix for the high-level waste, thereby providing greater impact strength for the waste container and increasing heat transfer properties
Random matrix model for disordered conductors
Indian Academy of Sciences (India)
In the interpretation of transport properties of mesoscopic systems, the multichannel ... One defines the random matrix model with N eigenvalues 0. λТ ..... With heuristic arguments, using the ideas pertaining to Dyson Coulomb gas analogy,.
GB Diet matrix as informed by EMAX
National Oceanic and Atmospheric Administration, Department of Commerce — This data set was taken from CRD 08-18 at the NEFSC. Specifically, the Georges Bank diet matrix was developed for the EMAX exercise described in that center...
Microstructure of Matrix in UHTC Composites
Johnson, Sylvia; Stackpoole, Margaret; Gusman, Michael I.; Chavez-Garia Jose; Doxtad, Evan
2011-01-01
Approaches to controlling the microstructure of Ultra High Temperature Ceramics (UHTCs) are described.. One matrix material has been infiltrated into carbon weaves to make composite materials. The microstructure of these composites is described.
Focal adhesions and cell-matrix interactions
DEFF Research Database (Denmark)
Woods, A; Couchman, J R
1988-01-01
Focal adhesions are areas of cell surfaces where specializations of cytoskeletal, membrane and extracellular components combine to produce stable cell-matrix interactions. The morphology of these adhesions and the components identified in them are discussed together with possible mechanisms...
CERN. Geneva
2016-01-01
In this talk I will describe recent work aiming to reinvigorate the 50 year old S-matrix program, which aims to constrain scattering of massive particles non-perturbatively. I will begin by considering quantum fields in anti-de Sitter space and show that one can extract information about the S-matrix by considering correlators in conformally invariant theories. The latter can be studied with "bootstrap" techniques, which allow us to constrain the S-matrix. In particular, in 1+1D one obtains bounds which are saturated by known integrable models. I will also show that it is also possible to directly constrain the S-matrix, without using the CFT crutch, by using crossing symmetry and unitarity. This alternative method is simpler and gives results in agreement with the previous approach. Both techniques are generalizable to higher dimensions.
Spectrophotometric determination of silicon in silumin matrix
International Nuclear Information System (INIS)
Samanta, Papu; Pandey, K.L.; Kumar, Pradeep; Bagchi, A.C.; Abdulla, K.K.
2015-01-01
In dispersion fuel, fissile material is dispersed in inert matrix. Aluminum-silicon-nickel (silumin) alloy is employed as inert matrix owing to its high thermal conductivity, high castability, high corrosion resistance. All these properties depend on the chemical composition and the structure of silumin. Silicon is stringent specification in silumin. A spectrophotometric method has been developed for the determination of silicon content in silumin matrix. Silumin matrix was fused with LiOH and subsequent dissolution in water along with few drops of conc. sulphuric acid. The molybodo-silicic formed by the addition of ammonium molybdate is reduced to molybdenum blue by ascorbic acid in the presence of antimony. The absorbance was measured at 810 nm. Aluminum and nickel were found to be non-interfering with the silicon determination. (author)
International Nuclear Information System (INIS)
Marzban, C.; Viswanathan, R.R.
1990-12-01
Within the framework of c = 1 matrix models, we consider multi-matrix models. A connection is established between a D-dimensional gas of fermions (bosons) for odd (even) values of D. A statistical mechanical analysis yields the scaling law for the free energy, and hence the susceptibility exponents for the various models. The exponents turn out to be positive for the multi-matrix models, suggesting that these could represent models of 2 d-gravity coupled to c>1 matter. Whereas in the c=1 case the density of states itself diverges as one approaches the critical point, in the D-matrix models various derivatives of the density of states diverge, with the order of the derivative depending on D. This qualitatively different behaviour of the density of states could be a signal of the conjectured ''phase transition'' at c=1. (author). 14 refs
The finite element response matrix method
International Nuclear Information System (INIS)
Nakata, H.; Martin, W.R.
1983-02-01
A new technique is developed with an alternative formulation of the response matrix method implemented with the finite element scheme. Two types of response matrices are generated from the Galerkin solution to the weak form of the diffusion equation subject to an arbitrary current and source. The piecewise polynomials are defined in two levels, the first for the local (assembly) calculations and the second for the global (core) response matrix calculations. This finite element response matrix technique was tested in two 2-dimensional test problems, 2D-IAEA benchmark problem and Biblis benchmark problem, with satisfatory results. The computational time, whereas the current code is not extensively optimized, is of the same order of the well estabilished coarse mesh codes. Furthermore, the application of the finite element technique in an alternative formulation of response matrix method permits the method to easily incorporate additional capabilities such as treatment of spatially dependent cross-sections, arbitrary geometrical configurations, and high heterogeneous assemblies. (Author) [pt
Celsian Glass-Ceramic Matrix Composites
Bansal, Narottam P.; Dicarlo, James A.
1996-01-01
Glass-ceramic matrix reinforced fiber composite materials developed for use in low dielectric applications, such as radomes. Materials strong and tough, exhibit low dielectric properties, and endure high temperatures.
Study of theophylline stability on polymer matrix
International Nuclear Information System (INIS)
Rodrigues, Kiriaki M.S.; Parra, Duclerc F.; Oliveira, Maria Jose A.; Bustillos, Oscar V.; Lugao, Ademar B.
2007-01-01
Theophylline is a bronchodilator, commonly known and used as a drug model in the development of pharmaceutical formulations. The stability of the drug and the matrix, scope of this study, was evaluated in the solid formulation. Polymeric matrix based on PHB containing the drug (theophylline) was prepared and submitted to radiation sterilization at different doses of: 5, 10, 20 and 25 kGy using a Cobalt- 60 source. The modified drug release of theophylline sterilized tablets has been studied. Modern techniques of HPLC (High Pressure Liquid Chromatography), DSC (Differential scanning calorimetry) and TGA (Thermogravimetry analysis) were employed. The results have shown the influence of sterilization by radiation process in both the theophylline and the polymeric drug delivery matrix samples. The increasing of polymeric matrix crosslinking under radiation conditions retards the drug release while the theophylline structure is stable under the radiation (author)
Nuclear waste storage container with metal matrix
Sump, Kenneth R.
1978-01-01
The invention relates to a storage container for high-level waste having a metal matrix for the high-level waste, thereby providing greater impact strength for the waste container and increasing heat transfer properties.
Exercises with the universal R-matrix
International Nuclear Information System (INIS)
Boos, Herman; Goehmann, Frank; Kluemper, Andreas; Nirov, Khazret S; Razumov, Alexander V
2010-01-01
Using the formula for the universal R-matrix proposed by Khoroshkin and Tolstoy, we give a detailed derivation of L-operators for the quantum groups associated with the generalized Cartan matrices A (1) 1 and A (1) 2 .
Matrix-exponential distributions in applied probability
Bladt, Mogens
2017-01-01
This book contains an in-depth treatment of matrix-exponential (ME) distributions and their sub-class of phase-type (PH) distributions. Loosely speaking, an ME distribution is obtained through replacing the intensity parameter in an exponential distribution by a matrix. The ME distributions can also be identified as the class of non-negative distributions with rational Laplace transforms. If the matrix has the structure of a sub-intensity matrix for a Markov jump process we obtain a PH distribution which allows for nice probabilistic interpretations facilitating the derivation of exact solutions and closed form formulas. The full potential of ME and PH unfolds in their use in stochastic modelling. Several chapters on generic applications, like renewal theory, random walks and regenerative processes, are included together with some specific examples from queueing theory and insurance risk. We emphasize our intention towards applications by including an extensive treatment on statistical methods for PH distribu...
International Nuclear Information System (INIS)
Ginsparg, P.
1991-01-01
These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date
Analytic vibrational matrix elements for diatomic molecules
International Nuclear Information System (INIS)
Bouanich, J.P.; Ogilvie, J.F.; Tipping, R.H.
1986-01-01
The vibrational matrix elements and expectation values for a diatomic molecule, including the rotational dependence, are calculated for powers of the reduced displacement in terms of the parameters of the Dunham potential-energy function. (orig.)
Integrated optic vector-matrix multiplier
Watts, Michael R [Albuquerque, NM
2011-09-27
A vector-matrix multiplier is disclosed which uses N different wavelengths of light that are modulated with amplitudes representing elements of an N.times.1 vector and combined to form an input wavelength-division multiplexed (WDM) light stream. The input WDM light stream is split into N streamlets from which each wavelength of the light is individually coupled out and modulated for a second time using an input signal representing elements of an M.times.N matrix, and is then coupled into an output waveguide for each streamlet to form an output WDM light stream which is detected to generate a product of the vector and matrix. The vector-matrix multiplier can be formed as an integrated optical circuit using either waveguide amplitude modulators or ring resonator amplitude modulators.
Applied matrix algebra in the statistical sciences
Basilevsky, Alexander
2005-01-01
This comprehensive text offers teachings relevant to both applied and theoretical branches of matrix algebra and provides a bridge between linear algebra and statistical models. Appropriate for advanced undergraduate and graduate students. 1983 edition.
A matrix of social accounting for Asturias
Directory of Open Access Journals (Sweden)
Margarita Argüelles
2003-01-01
Full Text Available A Social Accounting Matrix is an integrated system of accounts that presents in a double-entry table all the transactions made in an economy among productive sectors, production factors, institutional sectors and the rest of the world. In comparison with an Input-Output Table, it offers a greater deal of information and shows completely the circular process of income, captivating more precisely the effects of exogenous changes. One of the main profits of a Social Accounting Matrix is to serve as a database for the development and application of a computable general equilibrium model. This is, in fact, the aim pursued with the elaboration of the Social Accounting Matrix for the Asturian economy presented here. This Matrix has been constructed with data from the 1995 Regional Accounts of Asturias, and its structure has been adapted to its future use as a database for a computable general equilibrium model of this regional economy.
Photogeneration of heptacene in a polymer matrix.
Mondal, Rajib; Shah, Bipin K; Neckers, Douglas C
2006-08-02
Heptacene (1) was generated by the photodecarbonylation of 7,16-dihydro-7,16-ethanoheptacene-19,20-dione (2) in a polymer matrix using a UV-LED lamp (395 +/- 25 nm). Compound 1 showed a long wavelength absorption band extending from 600 to 825 nm (lambdamax approximately 760 nm) and was found to be stable up to 4 h in the polymer matrix. However, irradiation of a solution of 2 in toluene produced only oxygen adducts.
Phenomenological model of nanocluster in polymer matrix
International Nuclear Information System (INIS)
Oksengendler, B.L.; Turaeva, N.N.; Azimov, J.; Rashidova, S.Sh.
2010-01-01
The phenomenological model of matrix nanoclusters is presented based on the Wood-Saxon potential used in nuclear physics. In frame of this model the following problems have been considered: calculation of width of diffusive layer between nanocluster and matrix, definition of Tamm surface electronic state taking into account the diffusive layer width, receiving the expression for specific magnetic moment of nanoclusters taking into account the interface width. (authors)
Ubiquitination of specific mitochondrial matrix proteins
International Nuclear Information System (INIS)
Lehmann, Gilad; Ziv, Tamar; Braten, Ori; Admon, Arie; Udasin, Ronald G.; Ciechanover, Aaron
2016-01-01
Several protein quality control systems in bacteria and/or mitochondrial matrix from lower eukaryotes are absent in higher eukaryotes. These are transfer-messenger RNA (tmRNA), The N-end rule ATP-dependent protease ClpAP, and two more ATP-dependent proteases, HslUV and ClpXP (in yeast). The lost proteases resemble the 26S proteasome and the role of tmRNA and the N-end rule in eukaryotic cytosol is performed by the ubiquitin proteasome system (UPS). Therefore, we hypothesized that the UPS might have substituted these systems – at least partially – in the mitochondrial matrix of higher eukaryotes. Using three independent experimental approaches, we demonstrated the presence of ubiquitinated proteins in the matrix of isolated yeast mitochondria. First, we show that isolated mitochondria contain ubiquitin (Ub) conjugates, which remained intact after trypsin digestion. Second, we demonstrate that the mitochondrial soluble fraction contains Ub-conjugates, several of which were identified by mass spectrometry and are localized to the matrix. Third, using immunoaffinity enrichment by specific antibodies recognizing digested ubiquitinated peptides, we identified a group of Ub-modified matrix proteins. The modification was further substantiated by separation on SDS-PAGE and immunoblots. Last, we attempted to identify the ubiquitin ligase(s) involved, and identified Dma1p as a trypsin-resistant protein in our mitochondrial preparations. Taken together, these data suggest a yet undefined role for the UPS in regulation of the mitochondrial matrix proteins. -- Highlights: •Mitochondrial matrix contains ubiquitinated proteins. •Ubiquitination occurs most probably in the matrix. •Dma1p is a ubiquitin ligase present in mitochondrial preparations.
Multifaceted role of matrix metalloproteinases (MMPs)
Singh, Divya; Srivastava, Sanjeev K.; Chaudhuri, Tapas K.; Upadhyay, Ghanshyam
2015-01-01
Matrix metalloproteinases (MMPs), a large family of calcium-dependent zinc-containing endopeptidases, are involved in the tissue remodeling and degradation of the extracellular matrix. MMPs are widely distributed in the brain and regulate various processes including microglial activation, inflammation, dopaminergic apoptosis, blood-brain barrier disruption, and modulation of ?-synuclein pathology. High expression of MMPs is well documented in various neurological disorders including Parkinson...
Heteroscedasticity resistant robust covariance matrix estimator
Czech Academy of Sciences Publication Activity Database
Víšek, Jan Ámos
2010-01-01
Roč. 17, č. 27 (2010), s. 33-49 ISSN 1212-074X Grant - others:GA UK(CZ) GA402/09/0557 Institutional research plan: CEZ:AV0Z10750506 Keywords : Regression * Covariance matrix * Heteroscedasticity * Resistant Subject RIV: BB - Applied Statistics, Operational Research http://library.utia.cas.cz/separaty/2011/SI/visek-heteroscedasticity resistant robust covariance matrix estimator.pdf
Orbifold matrix models and fuzzy extra dimensions
Chatzistavrakidis, Athanasios; Zoupanos, George
2011-01-01
We revisit an orbifold matrix model obtained as a restriction of the type IIB matrix model on a Z_3-invariant sector. An investigation of its moduli space of vacua is performed and issues related to chiral gauge theory and gravity are discussed. Modifications of the orbifolded model triggered by Chern-Simons or mass deformations are also analyzed. Certain vacua of the modified models exhibit higher-dimensional behaviour with internal geometries related to fuzzy spheres.
Piezoelectric ceramic-reinforced metal matrix composites
2004-01-01
Composite materials comprising piezoelectric ceramic particulates dispersed in a metal matrix are capable of vibration damping. When the piezoelectric ceramic particulates are subjected to strain, such as the strain experienced during vibration of the material, they generate an electrical voltage that is converted into Joule heat in the surrounding metal matrix, thereby dissipating the vibrational energy. The piezoelectric ceramic particulates may also act as reinforcements to improve the mec...
Embedded Lattice and Properties of Gram Matrix
Directory of Open Access Journals (Sweden)
Futa Yuichi
2017-03-01
Full Text Available In this article, we formalize in Mizar [14] the definition of embedding of lattice and its properties. We formally define an inner product on an embedded module. We also formalize properties of Gram matrix. We formally prove that an inverse of Gram matrix for a rational lattice exists. Lattice of Z-module is necessary for lattice problems, LLL (Lenstra, Lenstra and Lov´asz base reduction algorithm [16] and cryptographic systems with lattice [17].
Correlation matrix for quartet codon usage
Frappat, L; Sorba, Paul
2005-01-01
It has been argued that the sum of usage probabilities for codons, belonging to quartets, that have as third nucleotide C or A, is independent of the biological species for vertebrates. The comparison between the theoretical correlation matrix derived from these sum rules and the experimentally computed matrix for 26 species shows a satisfactory agreement. The Shannon entropy, weakly depending on the biological species, gives further support. Suppression of codons containing the dinucleotides CG or AU is put in evidence.
Lattice results for heavy light matrix elements
International Nuclear Information System (INIS)
Soni, A.
1994-09-01
Lattice results for heavy light matrix elements are reviewed and some of their implications are very briefly discussed. Despite the fact that in most cases the lattice results for weak matrix elements at the moment have only a modest accuracy of about 20--30% they already have important phenomenological repercussions; e.g. for V td /V ts , x s /x d and B → K*γ
Matrix Elements in Fermion Dynamical Symmetry Model
Institute of Scientific and Technical Information of China (English)
LIU Guang-Zhou; LIU Wei
2002-01-01
In a neutron-proton system, the matrix elements of the generators for SO(8) × SO(8) symmetry areconstructed explicitly, and with these matrix elements the low-lying excitation spectra obtained by diagonalization arepresented. The excitation spectra for SO(7) nuclei Pd and Ru isotopes and SO(6) r-soft rotational nuclei Xe, Ba, andCe isotopes are calculated, and comparison with the experimental results is carried out.
Matrix Elements in Fermion Dynamical Symmetry Model
Institute of Scientific and Technical Information of China (English)
LIUGuang－Zhou; LIUWei
2002-01-01
In a neutron-proton system,the matrix elements of the generators for SO(8)×SO(8) symmetry are constructed exp;icitly,and with these matrix elements the low-lying excitation spsectra obtained by diagonalization are presented.The excitation spectra for SO(7) nuclei Pd and Ru isotopes and SO(6) r-soft rotational nuclei Xe,Ba,and Ce isotopes are calculated,and comparison with the experimental results is carried out.
Nanophosphor composite scintillator with a liquid matrix
McKigney, Edward Allen; Burrell, Anthony Keiran; Bennett, Bryan L.; Cooke, David Wayne; Ott, Kevin Curtis; Bacrania, Minesh Kantilal; Del Sesto, Rico Emilio; Gilbertson, Robert David; Muenchausen, Ross Edward; McCleskey, Thomas Mark
2010-03-16
An improved nanophosphor scintillator liquid comprises nanophosphor particles in a liquid matrix. The nanophosphor particles are optionally surface modified with an organic ligand. The surface modified nanophosphor particle is essentially surface charge neutral, thereby preventing agglomeration of the nanophosphor particles during dispersion in a liquid scintillator matrix. The improved nanophosphor scintillator liquid may be used in any conventional liquid scintillator application, including in a radiation detector.
Fibre-Matrix Interaction in Soft Tissue
International Nuclear Information System (INIS)
Guo, Zaoyang
2010-01-01
Although the mechanical behaviour of soft tissue has been extensively studied, the interaction between the collagen fibres and the ground matrix has not been well understood and is therefore ignored by most constitutive models of soft tissue. In this paper, the human annulus fibrosus is used as an example and the potential fibre-matrix interaction is identified by careful investigation of the experimental results of biaxial and uniaxial testing of the human annulus fibrosus. First, the uniaxial testing result of the HAF along the axial direction is analysed and it is shown that the mechanical behaviour of the ground matrix can be well simulated by the incompressible neo-Hookean model when the collagen fibres are all under contraction. If the collagen fibres are stretched, the response of the ground matrix can still be described by the incompressible neo-Hookean model, but the effective stiffness of the matrix depends on the fibre stretch ratio. This stiffness can be more than 10 times larger than the one obtained with collagen fibres under contraction. This phenomenon can only be explained by the fibre-matrix interaction. Furthermore, we find that the physical interpretation of this interaction includes the inhomogeneity of the soft tissue and the fibre orientation dispersion. The dependence of the tangent stiffness of the matrix on the first invariant of the deformation tensor can also be explained by the fibre orientation dispersion. The significant effect of the fibre-matrix interaction strain energy on mechanical behaviour of the soft tissue is also illustrated by comparing some simulation results.
About the solvability of matrix polynomial equations
Netzer, Tim; Thom, Andreas
2016-01-01
We study self-adjoint matrix polynomial equations in a single variable and prove existence of self-adjoint solutions under some assumptions on the leading form. Our main result is that any self-adjoint matrix polynomial equation of odd degree with non-degenerate leading form can be solved in self-adjoint matrices. We also study equations of even degree and equations in many variables.
Quantized Matrix Algebras and Quantum Seeds
DEFF Research Database (Denmark)
Jakobsen, Hans Plesner; Pagani, Chiara
2015-01-01
We determine explicitly quantum seeds for classes of quantized matrix algebras. Furthermore, we obtain results on centres and block diagonal forms of these algebras. In the case where is an arbitrary root of unity, this further determines the degrees.......We determine explicitly quantum seeds for classes of quantized matrix algebras. Furthermore, we obtain results on centres and block diagonal forms of these algebras. In the case where is an arbitrary root of unity, this further determines the degrees....
Matrix parameters and storage conditions of manure
Energy Technology Data Exchange (ETDEWEB)
Weinfurtner, Karlheinz [Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Schmallenberg (Germany)
2011-01-15
The literature study presents an overview of storage conditions for manure and information about important matrix parameters of manure such as dry matter content, pH value, total organic carbon, total nitrogen and ammonium nitrogen. The presented results show that for matrix parameters a dissimilarity of cattle and pig manure can be observed but no difference within the species for different production types occurred with exception of calves. A scenario for western and central European countries is derived. (orig.)
Whitby Mudstone, flow from matrix to fractures
Houben, Maartje; Hardebol, Nico; Barnhoorn, Auke; Boersma, Quinten; Peach, Colin; Bertotti, Giovanni; Drury, Martyn
2016-04-01
Fluid flow from matrix to well in shales would be faster if we account for the duality of the permeable medium considering a high permeable fracture network together with a tight matrix. To investigate how long and how far a gas molecule would have to travel through the matrix until it reaches an open connected fracture we investigated the permeability of the Whitby Mudstone (UK) matrix in combination with mapping the fracture network present in the current outcrops of the Whitby Mudstone at the Yorkshire coast. Matrix permeability was measured perpendicular to the bedding using a pressure step decay method on core samples and permeability values are in the microdarcy range. The natural fracture network present in the pavement shows a connected network with dominant NS and EW strikes, where the NS fractures are the main fracture set with an orthogonal fracture set EW. Fracture spacing relations in the pavements show that the average distance to the nearest fracture varies between 7 cm (EW) and 14 cm (NS), where 90% of the matrix is 30 cm away from the nearest fracture. By making some assumptions like; fracture network at depth is similar to what is exposed in the current pavements and open to flow, fracture network is at hydrostatic pressure at 3 km depth, overpressure between matrix and fractures is 10% and a matrix permeability perpendicular to the bedding of 0.1 microdarcy, we have calculated the time it takes for a gas molecule to travel to the nearest fracture. These input values give travel times up to 8 days for a distance of 14 cm. If the permeability is changed to 1 nanodarcy or 10 microdarcy travel times change to 2.2 years or 2 hours respectively.
Texture zeros in neutrino mass matrix
Energy Technology Data Exchange (ETDEWEB)
Dziewit, B., E-mail: bartosz.dziewit@us.edu.pl; Holeczek, J., E-mail: jacek.holeczek@us.edu.pl; Richter, M., E-mail: monikarichter18@gmail.com [University of Silesia, Institute of Physics (Poland); Zajac, S., E-mail: s.zajac@uksw.edu.pl [Cardinal Stefan Wyszyński University in Warsaw, Faculty of Mathematics and Natural Studies (Poland); Zralek, M., E-mail: marek.zralek@us.edu.pl [University of Silesia, Institute of Physics (Poland)
2017-03-15
The Standard Model does not explain the hierarchy problem. Before the discovery of nonzero lepton mixing angle θ{sub 13} high hopes in explanation of the shape of the lepton mixing matrix were combined with non-Abelian symmetries. Nowadays, assuming one Higgs doublet, it is unlikely that this is still valid. Texture zeroes, that are combined with abelian symmetries, are intensively studied. The neutrino mass matrix is a natural way to study such symmetries.
Matrix metalloproteinases in exercise and obesity
Jaoude, Jonathan; Koh, Yunsuk
2016-01-01
Jonathan Jaoude,1 Yunsuk Koh2 1Department of Biology, 2Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX, USA Abstract: Matrix metalloproteinases (MMPs) are zinc- and calcium-dependent endoproteinases that have the ability to break down extracellular matrix. The large range of MMPs’ functions widens their spectrum of potential role as activators or inhibitors in tissue remodeling, cardiovascular diseases, and obesity. In particular, MMP-1, -2, and ...
Ubiquitination of specific mitochondrial matrix proteins
Energy Technology Data Exchange (ETDEWEB)
Lehmann, Gilad [The Janet and David Polak Tumor and Vascular Biology Research Center and the Technion Integrated Cancer Center (TICC), The Rappaport Faculty of Medicine and Research Institute, Haifa, 31096 (Israel); Ziv, Tamar [The Smoler Proteomics Center, Faculty of Biology – Technion-Israel Institute of Technology, Haifa, 32000 (Israel); Braten, Ori [The Janet and David Polak Tumor and Vascular Biology Research Center and the Technion Integrated Cancer Center (TICC), The Rappaport Faculty of Medicine and Research Institute, Haifa, 31096 (Israel); Admon, Arie [The Smoler Proteomics Center, Faculty of Biology – Technion-Israel Institute of Technology, Haifa, 32000 (Israel); Udasin, Ronald G. [The Janet and David Polak Tumor and Vascular Biology Research Center and the Technion Integrated Cancer Center (TICC), The Rappaport Faculty of Medicine and Research Institute, Haifa, 31096 (Israel); Ciechanover, Aaron, E-mail: aaroncie@tx.technion.ac.il [The Janet and David Polak Tumor and Vascular Biology Research Center and the Technion Integrated Cancer Center (TICC), The Rappaport Faculty of Medicine and Research Institute, Haifa, 31096 (Israel)
2016-06-17
Several protein quality control systems in bacteria and/or mitochondrial matrix from lower eukaryotes are absent in higher eukaryotes. These are transfer-messenger RNA (tmRNA), The N-end rule ATP-dependent protease ClpAP, and two more ATP-dependent proteases, HslUV and ClpXP (in yeast). The lost proteases resemble the 26S proteasome and the role of tmRNA and the N-end rule in eukaryotic cytosol is performed by the ubiquitin proteasome system (UPS). Therefore, we hypothesized that the UPS might have substituted these systems – at least partially – in the mitochondrial matrix of higher eukaryotes. Using three independent experimental approaches, we demonstrated the presence of ubiquitinated proteins in the matrix of isolated yeast mitochondria. First, we show that isolated mitochondria contain ubiquitin (Ub) conjugates, which remained intact after trypsin digestion. Second, we demonstrate that the mitochondrial soluble fraction contains Ub-conjugates, several of which were identified by mass spectrometry and are localized to the matrix. Third, using immunoaffinity enrichment by specific antibodies recognizing digested ubiquitinated peptides, we identified a group of Ub-modified matrix proteins. The modification was further substantiated by separation on SDS-PAGE and immunoblots. Last, we attempted to identify the ubiquitin ligase(s) involved, and identified Dma1p as a trypsin-resistant protein in our mitochondrial preparations. Taken together, these data suggest a yet undefined role for the UPS in regulation of the mitochondrial matrix proteins. -- Highlights: •Mitochondrial matrix contains ubiquitinated proteins. •Ubiquitination occurs most probably in the matrix. •Dma1p is a ubiquitin ligase present in mitochondrial preparations.
The NUMEN project: NUclear Matrix Elements for Neutrinoless double beta decay
Cappuzzello, F.; Agodi, C.; Cavallaro, M.; Carbone, D.; Tudisco, S.; Lo Presti, D.; Oliveira, J. R. B.; Finocchiaro, P.; Colonna, M.; Rifuggiato, D.; Calabretta, L.; Calvo, D.; Pandola, L.; Acosta, L.; Auerbach, N.; Bellone, J.; Bijker, R.; Bonanno, D.; Bongiovanni, D.; Borello-Lewin, T.; Boztosun, I.; Brunasso, O.; Burrello, S.; Calabrese, S.; Calanna, A.; Chávez Lomelí, E. R.; D'Agostino, G.; De Faria, P. N.; De Geronimo, G.; Delaunay, F.; Deshmukh, N.; Ferreira, J. L.; Fisichella, M.; Foti, A.; Gallo, G.; Garcia-Tecocoatzi, H.; Greco, V.; Hacisalihoglu, A.; Iazzi, F.; Introzzi, R.; Lanzalone, G.; Lay, J. A.; La Via, F.; Lenske, H.; Linares, R.; Litrico, G.; Longhitano, F.; Lubian, J.; Medina, N. H.; Mendes, D. R.; Moralles, M.; Muoio, A.; Pakou, A.; Petrascu, H.; Pinna, F.; Reito, S.; Russo, A. D.; Russo, G.; Santagati, G.; Santopinto, E.; Santos, R. B. B.; Sgouros, O.; da Silveira, M. A. G.; Solakci, S. O.; Souliotis, G.; Soukeras, V.; Spatafora, A.; Torresi, D.; Magana Vsevolodovna, R.; Yildirim, A.; Zagatto, V. A. B.
2018-05-01
The article describes the main achievements of the NUMEN project together with an updated and detailed overview of the related R&D activities and theoretical developments. NUMEN proposes an innovative technique to access the nuclear matrix elements entering the expression of the lifetime of the double beta decay by cross section measurements of heavy-ion induced Double Charge Exchange (DCE) reactions. Despite the fact that the two processes, namely neutrinoless double beta decay and DCE reactions, are triggered by the weak and strong interaction respectively, important analogies are suggested. The basic point is the coincidence of the initial and final state many-body wave functions in the two types of processes and the formal similarity of the transition operators. First experimental results obtained at the INFN-LNS laboratory for the 40Ca(18O,18Ne)40Ar reaction at 270MeV give an encouraging indication on the capability of the proposed technique to access relevant quantitative information. The main experimental tools for this project are the K800 Superconducting Cyclotron and MAGNEX spectrometer. The former is used for the acceleration of the required high resolution and low emittance heavy-ion beams and the latter is the large acceptance magnetic spectrometer for the detection of the ejectiles. The use of the high-order trajectory reconstruction technique, implemented in MAGNEX, allows to reach the experimental resolution and sensitivity required for the accurate measurement of the DCE cross sections at forward angles. However, the tiny values of such cross sections and the resolution requirements demand beam intensities much larger than those manageable with the present facility. The on-going upgrade of the INFN-LNS facilities in this perspective is part of the NUMEN project and will be discussed in the article.
Pseudomonas biofilm matrix composition and niche biology
Mann, Ethan E.; Wozniak, Daniel J.
2014-01-01
Biofilms are a predominant form of growth for bacteria in the environment and in the clinic. Critical for biofilm development are adherence, proliferation, and dispersion phases. Each of these stages includes reinforcement by, or modulation of, the extracellular matrix. Pseudomonas aeruginosa has been a model organism for the study of biofilm formation. Additionally, other Pseudomonas species utilize biofilm formation during plant colonization and environmental persistence. Pseudomonads produce several biofilm matrix molecules, including polysaccharides, nucleic acids, and proteins. Accessory matrix components shown to aid biofilm formation and adaptability under varying conditions are also produced by pseudomonads. Adaptation facilitated by biofilm formation allows for selection of genetic variants with unique and distinguishable colony morphology. Examples include rugose small-colony variants and wrinkly spreaders (WS), which over produce Psl/Pel or cellulose, respectively, and mucoid bacteria that over produce alginate. The well-documented emergence of these variants suggests that pseudomonads take advantage of matrix-building subpopulations conferring specific benefits for the entire population. This review will focus on various polysaccharides as well as additional Pseudomonas biofilm matrix components. Discussions will center on structure–function relationships, regulation, and the role of individual matrix molecules in niche biology. PMID:22212072
Matrix method for acoustic levitation simulation.
Andrade, Marco A B; Perez, Nicolas; Buiochi, Flavio; Adamowski, Julio C
2011-08-01
A matrix method is presented for simulating acoustic levitators. A typical acoustic levitator consists of an ultrasonic transducer and a reflector. The matrix method is used to determine the potential for acoustic radiation force that acts on a small sphere in the standing wave field produced by the levitator. The method is based on the Rayleigh integral and it takes into account the multiple reflections that occur between the transducer and the reflector. The potential for acoustic radiation force obtained by the matrix method is validated by comparing the matrix method results with those obtained by the finite element method when using an axisymmetric model of a single-axis acoustic levitator. After validation, the method is applied in the simulation of a noncontact manipulation system consisting of two 37.9-kHz Langevin-type transducers and a plane reflector. The manipulation system allows control of the horizontal position of a small levitated sphere from -6 mm to 6 mm, which is done by changing the phase difference between the two transducers. The horizontal position of the sphere predicted by the matrix method agrees with the horizontal positions measured experimentally with a charge-coupled device camera. The main advantage of the matrix method is that it allows simulation of non-symmetric acoustic levitators without requiring much computational effort.
Salient Object Detection via Structured Matrix Decomposition.
Peng, Houwen; Li, Bing; Ling, Haibin; Hu, Weiming; Xiong, Weihua; Maybank, Stephen J
2016-05-04
Low-rank recovery models have shown potential for salient object detection, where a matrix is decomposed into a low-rank matrix representing image background and a sparse matrix identifying salient objects. Two deficiencies, however, still exist. First, previous work typically assumes the elements in the sparse matrix are mutually independent, ignoring the spatial and pattern relations of image regions. Second, when the low-rank and sparse matrices are relatively coherent, e.g., when there are similarities between the salient objects and background or when the background is complicated, it is difficult for previous models to disentangle them. To address these problems, we propose a novel structured matrix decomposition model with two structural regularizations: (1) a tree-structured sparsity-inducing regularization that captures the image structure and enforces patches from the same object to have similar saliency values, and (2) a Laplacian regularization that enlarges the gaps between salient objects and the background in feature space. Furthermore, high-level priors are integrated to guide the matrix decomposition and boost the detection. We evaluate our model for salient object detection on five challenging datasets including single object, multiple objects and complex scene images, and show competitive results as compared with 24 state-of-the-art methods in terms of seven performance metrics.
Fast matrix multiplication and its algebraic neighbourhood
Pan, V. Ya.
2017-11-01
Matrix multiplication is among the most fundamental operations of modern computations. By 1969 it was still commonly believed that the classical algorithm was optimal, although the experts already knew that this was not so. Worldwide interest in matrix multiplication instantly exploded in 1969, when Strassen decreased the exponent 3 of cubic time to 2.807. Then everyone expected to see matrix multiplication performed in quadratic or nearly quadratic time very soon. Further progress, however, turned out to be capricious. It was at stalemate for almost a decade, then a combination of surprising techniques (completely independent of Strassen's original ones and much more advanced) enabled a new decrease of the exponent in 1978-1981 and then again in 1986, to 2.376. By 2017 the exponent has still not passed through the barrier of 2.373, but most disturbing was the curse of recursion — even the decrease of exponents below 2.7733 required numerous recursive steps, and each of them squared the problem size. As a result, all algorithms supporting such exponents supersede the classical algorithm only for inputs of immense sizes, far beyond any potential interest for the user. We survey the long study of fast matrix multiplication, focusing on neglected algorithms for feasible matrix multiplication. We comment on their design, the techniques involved, implementation issues, the impact of their study on the modern theory and practice of Algebraic Computations, and perspectives for fast matrix multiplication. Bibliography: 163 titles.
International Nuclear Information System (INIS)
Nangia, Shivangi; Garrison, Barbara J.
2011-01-01
There is synergy between matrix assisted laser desorption ionization (MALDI) experiments and molecular dynamics (MD) simulations. To understand analyte ejection from the matrix, MD simulations have been employed. Prior calculations show that the ejected analyte molecules remain solvated by the matrix molecules in the ablated plume. In contrast, the experimental data show free analyte ions. The main idea of this work is that analyte molecule ejection may depend on the microscopic details of analyte interaction with the matrix. Intermolecular matrix-analyte interactions have been studied by focusing on 2,5-dihydroxybenzoic acid (DHB; matrix) and amino acids (AA; analyte) using Chemistry at HARvard Molecular Mechanics (CHARMM) force field. A series of AA molecules have been studied to analyze the DHB-AA interaction. A relative scale of AA molecule affinity towards DHB has been developed.
Multi-threaded Sparse Matrix Sparse Matrix Multiplication for Many-Core and GPU Architectures.
Energy Technology Data Exchange (ETDEWEB)
Deveci, Mehmet [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Trott, Christian Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rajamanickam, Sivasankaran [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2018-01-01
Sparse Matrix-Matrix multiplication is a key kernel that has applications in several domains such as scientific computing and graph analysis. Several algorithms have been studied in the past for this foundational kernel. In this paper, we develop parallel algorithms for sparse matrix- matrix multiplication with a focus on performance portability across different high performance computing architectures. The performance of these algorithms depend on the data structures used in them. We compare different types of accumulators in these algorithms and demonstrate the performance difference between these data structures. Furthermore, we develop a meta-algorithm, kkSpGEMM, to choose the right algorithm and data structure based on the characteristics of the problem. We show performance comparisons on three architectures and demonstrate the need for the community to develop two phase sparse matrix-matrix multiplication implementations for efficient reuse of the data structures involved.
Multi-threaded Sparse Matrix-Matrix Multiplication for Many-Core and GPU Architectures.
Energy Technology Data Exchange (ETDEWEB)
Deveci, Mehmet [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rajamanickam, Sivasankaran [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Trott, Christian Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2017-12-01
Sparse Matrix-Matrix multiplication is a key kernel that has applications in several domains such as scienti c computing and graph analysis. Several algorithms have been studied in the past for this foundational kernel. In this paper, we develop parallel algorithms for sparse matrix-matrix multiplication with a focus on performance portability across different high performance computing architectures. The performance of these algorithms depend on the data structures used in them. We compare different types of accumulators in these algorithms and demonstrate the performance difference between these data structures. Furthermore, we develop a meta-algorithm, kkSpGEMM, to choose the right algorithm and data structure based on the characteristics of the problem. We show performance comparisons on three architectures and demonstrate the need for the community to develop two phase sparse matrix-matrix multiplication implementations for efficient reuse of the data structures involved.
Study of ionization process of matrix molecules in matrix-assisted laser desorption ionization
Energy Technology Data Exchange (ETDEWEB)
Murakami, Kazumasa; Sato, Asami; Hashimoto, Kenro; Fujino, Tatsuya, E-mail: fujino@tmu.ac.jp
2013-06-20
Highlights: ► Proton transfer and adduction reaction of matrix in MALDI were studied. ► Hydroxyl group forming intramolecular hydrogen bond was related to the ionization. ► Intramolecular proton transfer in the electronic excited state was the initial step. ► Non-volatile analytes stabilized protonated matrix in the ground state. ► A possible mechanism, “analyte support mechanism”, has been proposed. - Abstract: Proton transfer and adduction reaction of matrix molecules in matrix-assisted laser desorption ionization were studied. By using 2,4,6-trihydroxyacetophenone (THAP), 2,5-dihydroxybenzoic acid (DHBA), and their related compounds in which the position of a hydroxyl group is different, it was clarified that a hydroxyl group forming an intramolecular hydrogen bond is related to the ionization of matrix molecules. Intramolecular proton transfer in the electronic excited state of the matrix and subsequent proton adduction from a surrounding solvent to the charge-separated matrix are the initial steps for the ionization of matrix molecules. Nanosecond pump–probe NIR–UV mass spectrometry confirmed that the existence of analyte molecules having large dipole moment in their structures is necessary for the stabilization of [matrix + H]{sup +} in the electronic ground state.
Method of forming a ceramic matrix composite and a ceramic matrix component
de Diego, Peter; Zhang, James
2017-05-30
A method of forming a ceramic matrix composite component includes providing a formed ceramic member having a cavity, filling at least a portion of the cavity with a ceramic foam. The ceramic foam is deposited on a barrier layer covering at least one internal passage of the cavity. The method includes processing the formed ceramic member and ceramic foam to obtain a ceramic matrix composite component. Also provided is a method of forming a ceramic matrix composite blade and a ceramic matrix composite component.
Experimental study on mechanical behavior of fiber/matrix interface in metal matrix composite
International Nuclear Information System (INIS)
Wang, Q.; Chiang, F.P.
1994-01-01
The technique SIEM(Speckle Interferometry with Electron Microscopy) was employed to quantitatively measure the deformation on the fiber/matrix interface in SCS-6/Ti-6-4 composite at a microscale level. The displacement field within the fiber/matrix interphase zone was determined by in-situ observation with sensitivity of 0.003(microm). The macro-mechanical properties were compared with micro-mechanical behavior. It is shown that the strength in the interphase zone is weaker than the matrix tensile strength. The deformation process can be characterized by the uniform deformation, interface strain concentration and debond, and matrix plastic deformation
Energy Technology Data Exchange (ETDEWEB)
Olier, P.
1996-12-31
In order to promote the development of Ti-Ni shape memory alloys, we have studied the correlation between the fabrication route, the chemical composition (O{sub 2} content, Zr or Hf additions), the metallurgical characteristics and the thermomechanical properties. A conventional sintering does not allow to obtain a homogeneous compound of pure Ti{sub 50}Ni{sub 50} alloy because of the occurrence of Kirkendall porosities which act as a diffusion barrier. An original process including combustion synthesis and hot-extrusion was successfully developed. Resulting products exhibit a smaller grain size (15-20{mu}m) and an enhanced workability in comparison with products obtained by arc-melting and subsequent hot rolling. The presence of oxygen in equiatomic Ti-Ni alloy induces the oxide precipitation of Ti{sub 4}Ni{sub 2}O{sub x} type (with x {<=} 1). The precipitated particle fraction is proportional to the oxygen nominal content of the alloy. We show that the decrease of the transformation temperatures is correlated with the decrease of Ti in solid solution due to Ti{sub 4}Ni{sub 2}O precipitation. Moreover, we find that a fine and homogenous oxide dispersion is suitable to decrease the grain size during hot rolling and to enhance to the one way shape memory properties. An increase of the typical transformation temperatures is obtained through of Zr or Hf (in substitution to Ti). But, an increase of the hardness is measured, and consequently the workability of the ternary alloys becomes reduced. However, it is worthwhile to point out that a Ti{sub 38}Ni{sub 50}Hf{sub 12} product obtained by arc melting and hot extrusion is able to fully recover an apparent plastic strain of more than 4% during tensile tests performed under special loading conditions. Such as behaviour is of great interest with respect to potential applications in a temperature range higher that 100 deg. C. (author). 105 refs.
Google matrix analysis of DNA sequences.
Kandiah, Vivek; Shepelyansky, Dima L
2013-01-01
For DNA sequences of various species we construct the Google matrix [Formula: see text] of Markov transitions between nearby words composed of several letters. The statistical distribution of matrix elements of this matrix is shown to be described by a power law with the exponent being close to those of outgoing links in such scale-free networks as the World Wide Web (WWW). At the same time the sum of ingoing matrix elements is characterized by the exponent being significantly larger than those typical for WWW networks. This results in a slow algebraic decay of the PageRank probability determined by the distribution of ingoing elements. The spectrum of [Formula: see text] is characterized by a large gap leading to a rapid relaxation process on the DNA sequence networks. We introduce the PageRank proximity correlator between different species which determines their statistical similarity from the view point of Markov chains. The properties of other eigenstates of the Google matrix are also discussed. Our results establish scale-free features of DNA sequence networks showing their similarities and distinctions with the WWW and linguistic networks.
Google matrix analysis of DNA sequences.
Directory of Open Access Journals (Sweden)
Vivek Kandiah
Full Text Available For DNA sequences of various species we construct the Google matrix [Formula: see text] of Markov transitions between nearby words composed of several letters. The statistical distribution of matrix elements of this matrix is shown to be described by a power law with the exponent being close to those of outgoing links in such scale-free networks as the World Wide Web (WWW. At the same time the sum of ingoing matrix elements is characterized by the exponent being significantly larger than those typical for WWW networks. This results in a slow algebraic decay of the PageRank probability determined by the distribution of ingoing elements. The spectrum of [Formula: see text] is characterized by a large gap leading to a rapid relaxation process on the DNA sequence networks. We introduce the PageRank proximity correlator between different species which determines their statistical similarity from the view point of Markov chains. The properties of other eigenstates of the Google matrix are also discussed. Our results establish scale-free features of DNA sequence networks showing their similarities and distinctions with the WWW and linguistic networks.
Loop Transfer Matrix and Loop Quantum Mechanics
International Nuclear Information System (INIS)
Savvidy, George K.
2000-01-01
The gonihedric model of random surfaces on a 3d Euclidean lattice has equivalent representation in terms of transfer matrix K(Q i ,Q f ), which describes the propagation of loops Q. We extend the previous construction of the loop transfer matrix to the case of nonzero self-intersection coupling constant κ. We introduce the loop generalization of Fourier transformation which allows to diagonalize transfer matrices, that depend on symmetric difference of loops only and express all eigenvalues of 3d loop transfer matrix through the correlation functions of the corresponding 2d statistical system. The loop Fourier transformation allows to carry out the analogy with quantum mechanics of point particles, to introduce conjugate loop momentum P and to define loop quantum mechanics. We also consider transfer matrix on 4d lattice which describes propagation of memebranes. This transfer matrix can also be diagonalized by using the generalized Fourier transformation, and all its eigenvalues are equal to the correlation functions of the corresponding 3d statistical system. In particular the free energy of the 4d membrane system is equal to the free energy of 3d gonihedric system of loops and is equal to the free energy of 2d Ising model. (author)
Contribution to high voltage matrix switches reliability
International Nuclear Information System (INIS)
Lausenaz, Yvan
2000-01-01
Nowadays, power electronic equipment requirements are important, concerning performances, quality and reliability. On the other hand, costs have to be reduced in order to satisfy the market rules. To provide cheap, reliability and performances, many standard components with mass production are developed. But the construction of specific products must be considered following these two different points: in one band you can produce specific components, with delay, over-cost problems and eventuality quality and reliability problems, in the other and you can use standard components in a adapted topologies. The CEA of Pierrelatte has adopted this last technique of power electronic conception for the development of these high voltage pulsed power converters. The technique consists in using standard components and to associate them in series and in parallel. The matrix constitutes high voltage macro-switch where electrical parameters are distributed between the synchronized components. This study deals with the reliability of these structures. It brings up the high reliability aspect of MOSFETs matrix associations. Thanks to several homemade test facilities, we obtained lots of data concerning the components we use. The understanding of defects propagation mechanisms in matrix structures has allowed us to put forwards the necessity of robust drive system, adapted clamping voltage protection, and careful geometrical construction. All these reliability considerations in matrix associations have notably allowed the construction of a new matrix structure regrouping all solutions insuring reliability. Reliable and robust, this product has already reaches the industrial stage. (author) [fr
Transfer matrix representation for periodic planar media
Parrinello, A.; Ghiringhelli, G. L.
2016-06-01
Sound transmission through infinite planar media characterized by in-plane periodicity is faced by exploiting the free wave propagation on the related unit cells. An appropriate through-thickness transfer matrix, relating a proper set of variables describing the acoustic field at the two external surfaces of the medium, is derived by manipulating the dynamic stiffness matrix related to a finite element model of the unit cell. The adoption of finite element models avoids analytical modeling or the simplification on geometry or materials. The obtained matrix is then used in a transfer matrix method context, making it possible to combine the periodic medium with layers of different nature and to treat both hard-wall and semi-infinite fluid termination conditions. A finite sequence of identical sub-layers through the thickness of the medium can be handled within the transfer matrix method, significantly decreasing the computational burden. Transfer matrices obtained by means of the proposed method are compared with analytical or equivalent models, in terms of sound transmission through barriers of different nature.
Formic acid dimers in a nitrogen matrix
Lopes, Susy; Fausto, Rui; Khriachtchev, Leonid
2018-01-01
Formic acid (HCOOH) dimers are studied by infrared spectroscopy in a nitrogen matrix and by ab initio calculations. We benefit from the use of a nitrogen matrix where the lifetime of the higher-energy (cis) conformer is very long (˜11 h vs. 7 min in an argon matrix). As a result, in a nitrogen matrix, a large proportion of the cis conformer can be produced by vibrational excitation of the lower-energy (trans) conformer. Three trans-trans, four trans-cis, and three cis-cis dimers are found in the experiments. The spectroscopic information on most of these dimers is enriched compared to the previous studies in an argon matrix. The cis-cis dimers of ordinary formic acid (without deuteration) are reported here for the first time. Several conformational processes are obtained using selective excitation by infrared light, some of them also for the first time. In particular, we report on the formation of cis-cis dimers upon vibrational excitation of trans-cis dimers. Tunneling decays of several dimers have been detected in the dark. The tunneling decay of cis-cis dimers of formic acid as well as the stabilization of cis units in cis-cis dimers is also observed for the first time.
Thermal stress effects in intermetallic matrix composites
Wright, P. K.; Sensmeier, M. D.; Kupperman, D. S.; Wadley, H. N. G.
1993-01-01
Intermetallic matrix composites develop residual stresses from the large thermal expansion mismatch (delta-alpha) between the fibers and matrix. This work was undertaken to: establish improved techniques to measure these thermal stresses in IMC's; determine residual stresses in a variety of IMC systems by experiments and modeling; and, determine the effect of residual stresses on selected mechanical properties of an IMC. X ray diffraction (XRD), neutron diffraction (ND), synchrotron XRD (SXRD), and ultrasonics (US) techniques for measuring thermal stresses in IMC were examined and ND was selected as the most promising technique. ND was demonstrated on a variety of IMC systems encompassing Ti- and Ni-base matrices, SiC, W, and Al2O3 fibers, and different fiber fractions (Vf). Experimental results on these systems agreed with predictions of a concentric cylinder model. In SiC/Ti-base systems, little yielding was found and stresses were controlled primarily by delta-alpha and Vf. In Ni-base matrix systems, yield strength of the matrix and Vf controlled stress levels. The longitudinal residual stresses in SCS-6/Ti-24Al-llNb composite were modified by thermomechanical processing. Increasing residual stress decreased ultimate tensile strength in agreement with model predictions. Fiber pushout strength showed an unexpected inverse correlation with residual stress. In-plane shear yield strength showed no dependence on residual stress. Higher levels of residual tension led to higher fatigue crack growth rates, as suggested by matrix mean stress effects.
Max–min distance nonnegative matrix factorization
Wang, Jim Jing-Yan; Gao, Xin
2014-01-01
Nonnegative Matrix Factorization (NMF) has been a popular representation method for pattern classification problems. It tries to decompose a nonnegative matrix of data samples as the product of a nonnegative basis matrix and a nonnegative coefficient matrix. The columns of the coefficient matrix can be used as new representations of these data samples. However, traditional NMF methods ignore class labels of the data samples. In this paper, we propose a novel supervised NMF algorithm to improve the discriminative ability of the new representation by using the class labels. Using the class labels, we separate all the data sample pairs into within-class pairs and between-class pairs. To improve the discriminative ability of the new NMF representations, we propose to minimize the maximum distance of the within-class pairs in the new NMF space, and meanwhile to maximize the minimum distance of the between-class pairs. With this criterion, we construct an objective function and optimize it with regard to basis and coefficient matrices, and slack variables alternatively, resulting in an iterative algorithm. The proposed algorithm is evaluated on three pattern classification problems and experiment results show that it outperforms the state-of-the-art supervised NMF methods.
Nuclear reaction matrix and nuclear forces
International Nuclear Information System (INIS)
Nagata, Sinobu; Bando, Hiroharu; Akaishi, Yoshinori.
1979-01-01
An essentially exact method of solution is presented for the reaction- matrix (G-matrix) equation defined with the orthogonalized plane-wave intermediate spectrum for high-lying two-particle states. The accuracy is examined for introduced truncations and also in comparison with the Tsai-Kuo and Sauer methods. Properties of the G-matrix are discussed with emphasis on the relation with the saturation mechanism, especially overall saturation from light to heavy nuclei. Density and starting-energy dependences of the G-matrix are separately extracted and discussed. It is demonstrated that the triplet-even tensor component of the nuclear force is principally responsible for these dependences and hence for the saturation mechanism. In this context different nuclear potentials are used in the renormalized Brueckner calculation for energies of closed-shell nuclei in the harmonic oscillator basis. A semi-phenomenological ''two-body potential'' is devised so that it can reproduce the saturation energies and densities of nuclear matter and finite nuclei in the lowest-order Brueckner treatment. It is composed of a realistic N-N potential and two additional parts; one incorporates the three-body force effect and the other is assumed to embody higher-cluster correlations in G. The tensor component in the triplet-even state of this potential is enhanced by the three-body force effect. The G-matrix is represented in the effective local form and decomposed into central, LS and tensor components. (author)
Convex Banding of the Covariance Matrix.
Bien, Jacob; Bunea, Florentina; Xiao, Luo
2016-01-01
We introduce a new sparse estimator of the covariance matrix for high-dimensional models in which the variables have a known ordering. Our estimator, which is the solution to a convex optimization problem, is equivalently expressed as an estimator which tapers the sample covariance matrix by a Toeplitz, sparsely-banded, data-adaptive matrix. As a result of this adaptivity, the convex banding estimator enjoys theoretical optimality properties not attained by previous banding or tapered estimators. In particular, our convex banding estimator is minimax rate adaptive in Frobenius and operator norms, up to log factors, over commonly-studied classes of covariance matrices, and over more general classes. Furthermore, it correctly recovers the bandwidth when the true covariance is exactly banded. Our convex formulation admits a simple and efficient algorithm. Empirical studies demonstrate its practical effectiveness and illustrate that our exactly-banded estimator works well even when the true covariance matrix is only close to a banded matrix, confirming our theoretical results. Our method compares favorably with all existing methods, in terms of accuracy and speed. We illustrate the practical merits of the convex banding estimator by showing that it can be used to improve the performance of discriminant analysis for classifying sound recordings.
Max–min distance nonnegative matrix factorization
Wang, Jim Jing-Yan
2014-10-26
Nonnegative Matrix Factorization (NMF) has been a popular representation method for pattern classification problems. It tries to decompose a nonnegative matrix of data samples as the product of a nonnegative basis matrix and a nonnegative coefficient matrix. The columns of the coefficient matrix can be used as new representations of these data samples. However, traditional NMF methods ignore class labels of the data samples. In this paper, we propose a novel supervised NMF algorithm to improve the discriminative ability of the new representation by using the class labels. Using the class labels, we separate all the data sample pairs into within-class pairs and between-class pairs. To improve the discriminative ability of the new NMF representations, we propose to minimize the maximum distance of the within-class pairs in the new NMF space, and meanwhile to maximize the minimum distance of the between-class pairs. With this criterion, we construct an objective function and optimize it with regard to basis and coefficient matrices, and slack variables alternatively, resulting in an iterative algorithm. The proposed algorithm is evaluated on three pattern classification problems and experiment results show that it outperforms the state-of-the-art supervised NMF methods.
Redesigning Triangular Dense Matrix Computations on GPUs
Charara, Ali
2016-08-09
A new implementation of the triangular matrix-matrix multiplication (TRMM) and the triangular solve (TRSM) kernels are described on GPU hardware accelerators. Although part of the Level 3 BLAS family, these highly computationally intensive kernels fail to achieve the percentage of the theoretical peak performance on GPUs that one would expect when running kernels with similar surface-to-volume ratio on hardware accelerators, i.e., the standard matrix-matrix multiplication (GEMM). The authors propose adopting a recursive formulation, which enriches the TRMM and TRSM inner structures with GEMM calls and, therefore, reduces memory traffic while increasing the level of concurrency. The new implementation enables efficient use of the GPU memory hierarchy and mitigates the latency overhead, to run at the speed of the higher cache levels. Performance comparisons show up to eightfold and twofold speedups for large dense matrix sizes, against the existing state-of-the-art TRMM and TRSM implementations from NVIDIA cuBLAS, respectively, across various GPU generations. Once integrated into high-level Cholesky-based dense linear algebra algorithms, the performance impact on the overall applications demonstrates up to fourfold and twofold speedups, against the equivalent native implementations, linked with cuBLAS TRMM and TRSM kernels, respectively. The new TRMM/TRSM kernel implementations are part of the open-source KBLAS software library (http://ecrc.kaust.edu.sa/Pages/Res-kblas.aspx) and are lined up for integration into the NVIDIA cuBLAS library in the upcoming v8.0 release.
Performance evaluation of matrix gradient coils.
Jia, Feng; Schultz, Gerrit; Testud, Frederik; Welz, Anna Masako; Weber, Hans; Littin, Sebastian; Yu, Huijun; Hennig, Jürgen; Zaitsev, Maxim
2016-02-01
In this paper, we present a new performance measure of a matrix coil (also known as multi-coil) from the perspective of efficient, local, non-linear encoding without explicitly considering target encoding fields. An optimization problem based on a joint optimization for the non-linear encoding fields is formulated. Based on the derived objective function, a figure of merit of a matrix coil is defined, which is a generalization of a previously known resistive figure of merit for traditional gradient coils. A cylindrical matrix coil design with a high number of elements is used to illustrate the proposed performance measure. The results are analyzed to reveal novel features of matrix coil designs, which allowed us to optimize coil parameters, such as number of coil elements. A comparison to a scaled, existing multi-coil is also provided to demonstrate the use of the proposed performance parameter. The assessment of a matrix gradient coil profits from using a single performance parameter that takes the local encoding performance of the coil into account in relation to the dissipated power.
Nam, Kwangwoo; Sakai, Yuuki; Funamoto, Seiichi; Kimura, Tsuyoshi; Kishida, Akio
2011-01-01
In this study, we aimed to replicate the function of native tissues that can be used in tissue engineering and regenerative medicine. The key to such replication is the preparation of an artificial collagen matrix that possesses a structure resembling that of the extracellular matrix. We, therefore, prepared a collagen matrix by fibrillogenesis in a NaCl/Na(2)HPO(4) aqueous solution using a dialysis cassette and investigated its biological behavior in vitro and in vivo. The in vitro cell adhesion and proliferation did not show any significant differences. The degradation rate in the living body could be controlled according to the preparation condition, where the collagen matrix with high water content (F-collagen matrix, >98%) showed fast degradation and collagen matrix with lower water content (T-collagen matrix, >80%) showed no degradation for 8 weeks. The degradation did not affect the inflammatory response at all and relatively faster wound healing response was observed. Comparing this result with that of collagen gel and decellularized cornea, it can be concluded that the structural factor is very important and no cell abnormal behavior would be observed for quaternary structured collagen matrix.
Matrix transformation of Fibonacci band matrix on generalized $bv$-space and its dual spaces
Directory of Open Access Journals (Sweden)
Anupam Das
2018-07-01
Full Text Available In this paper we introduce a new sequence space $bv(\\hat{F}$ by using the Fibonacci band matrix $\\hat{F}.$ We also establish a few inclusion relations concerning this space and determine its $\\alpha-,\\beta-,\\gamma-$duals. Finally we characterize some matrix classes on the space $bv(\\hat{F}.$
ACORNS, Covariance and Correlation Matrix Diagonalization
International Nuclear Information System (INIS)
Szondi, E.J.
1990-01-01
1 - Description of program or function: The program allows the user to verify the different types of covariance/correlation matrices used in the activation neutron spectrometry. 2 - Method of solution: The program performs the diagonalization of the input covariance/relative covariance/correlation matrices. The Eigen values are then analyzed to determine the rank of the matrices. If the Eigen vectors of the pertinent correlation matrix have also been calculated, the program can perform a complete factor analysis (generation of the factor matrix and its rotation in Kaiser's 'varimax' sense to select the origin of the correlations). 3 - Restrictions on the complexity of the problem: Matrix size is limited to 60 on PDP and to 100 on IBM PC/AT
Breaking Megrelishvili protocol using matrix diagonalization
Arzaki, Muhammad; Triantoro Murdiansyah, Danang; Adi Prabowo, Satrio
2018-03-01
In this article we conduct a theoretical security analysis of Megrelishvili protocol—a linear algebra-based key agreement between two participants. We study the computational complexity of Megrelishvili vector-matrix problem (MVMP) as a mathematical problem that strongly relates to the security of Megrelishvili protocol. In particular, we investigate the asymptotic upper bounds for the running time and memory requirement of the MVMP that involves diagonalizable public matrix. Specifically, we devise a diagonalization method for solving the MVMP that is asymptotically faster than all of the previously existing algorithms. We also found an important counterintuitive result: the utilization of primitive matrix in Megrelishvili protocol makes the protocol more vulnerable to attacks.
Electrolyte matrix for molten carbonate fuel cells
Huang, C.M.; Yuh, C.Y.
1999-02-09
A matrix is described for a carbonate electrolyte including a support material and an additive constituent having a relatively low melting temperature and a relatively high coefficient of thermal expansion. The additive constituent is from 3 to 45 weight percent of the matrix and is formed from raw particles whose diameter is in a range of 0.1 {micro}m to 20 {micro}m and whose aspect ratio is in a range of 1 to 50. High energy intensive milling is used to mix the support material and additive constituent during matrix formation. Also disclosed is the use of a further additive constituent comprising an alkaline earth containing material. The further additive is mixed with the support material using high energy intensive milling. 5 figs.
Betatron coupling: Merging Hamiltonian and matrix approaches
Directory of Open Access Journals (Sweden)
R. Calaga
2005-03-01
Full Text Available Betatron coupling is usually analyzed using either matrix formalism or Hamiltonian perturbation theory. The latter is less exact but provides a better physical insight. In this paper direct relations are derived between the two formalisms. This makes it possible to interpret the matrix approach in terms of resonances, as well as use results of both formalisms indistinctly. An approach to measure the complete coupling matrix and its determinant from turn-by-turn data is presented. Simulations using methodical accelerator design MAD-X, an accelerator design and tracking program, were performed to validate the relations and understand the scope of their application to real accelerators such as the Relativistic Heavy Ion Collider.
International Nuclear Information System (INIS)
Chen Zhenpeng; Qi Huiquan
1990-01-01
A comprehensive R-matrix analysis code has been developed. It is based on the multichannel and multilevel R-matrix theory and runs in VAX computer with FORTRAN-77. With this code many kinds of experimental data for one nuclear system can be fitted simultaneously. The comparisions between code RAC and code EDA of LANL are made. The data show both codes produced the same calculation results when one set of R-matrix parameters was used. The differential cross section of 10 B (n, α) 7 Li for E n = 0.4 MeV and the polarization of 16 O (n,n) 16 O for E n = 2.56 MeV are presented
Electrolyte matrix for molten carbonate fuel cells
Huang, Chao M.; Yuh, Chao-Yi
1999-01-01
A matrix for a carbonate electrolyte including a support material and an additive constituent having a relatively low melting temperature and a relatively high coefficient of thermal expansion. The additive constituent is from 3 to 45 weight percent of the matrix and is formed from raw particles whose diameter is in a range of 0.1 .mu.m to 20 .mu.m and whose aspect ratio is in a range of 1 to 50. High energy intensive milling is used to mix the support material and additive constituent during matrix formation. Also disclosed is the use of a further additive constituent comprising an alkaline earth containing material. The further additive is mixed with the support material using high energy intensive milling.
Renormalon ambiguities in NRQCD operator matrix elements
International Nuclear Information System (INIS)
Bodwin, G.T.; Chen, Y.
1999-01-01
We analyze the renormalon ambiguities that appear in factorization formulas in QCD. Our analysis contains a simple argument that the ambiguities in the short-distance coefficients and operator matrix elements are artifacts of dimensional-regularization factorization schemes and are absent in cutoff schemes. We also present a method for computing the renormalon ambiguities in operator matrix elements and apply it to a computation of the ambiguities in the matrix elements that appear in the NRQCD factorization formulas for the annihilation decays of S-wave quarkonia. Our results, combined with those of Braaten and Chen for the short-distance coefficients, provide an explicit demonstration that the ambiguities cancel in the physical decay rates. In addition, we analyze the renormalon ambiguities in the Gremm-Kapustin relation and in various definitions of the heavy-quark mass. copyright 1999 The American Physical Society
Interface matrix method in AFEN framework
Energy Technology Data Exchange (ETDEWEB)
Pogosbekyan, Leonid; Cho, Jin Young; Kim, Young Jin [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
1997-12-31
In this study, we extend the application of the interface-matrix(IM) method for reflector modeling to Analytic Flux Expansion Nodal (AFEN) method. This include the modifications of the surface-averaged net current continuity and the net leakage balance conditions for IM method in accordance with AFEN formula. AFEN-interface matrix (AFEN-IM) method has been tested against ZION-1 benchmark problem. The numerical result of AFEN-IM method shows 1.24% of maximum error and 0.42% of root-mean square error in assembly power distribution, and 0.006% {Delta} k of neutron multiplication factor. This result proves that the interface-matrix method for reflector modeling can be useful in AFEN method. 3 refs., 4 figs. (Author)
A review of Indirect Matrix Converter Topologies
Directory of Open Access Journals (Sweden)
Salem Rahmani
2015-08-01
Full Text Available Abstract—Matrix Converter (MC is a modern direct AC/AC electrical power converter without dc-link capacitor. MC is operated in four quadrant, assuring a control of the output voltage, amplitude and frequency. The matrix converter has recently attracted significant attention among researchers and it has become increasing attractive for applications of wind energy conversion, military power supplies, induction motor drives, etc. Recently, different MC topologies have been proposed and developed which have their own advantages and disadvantages. Matrix converter can be classified as direct and indirect structures. The direct one has been elaborated in previous work. In this paper the indirect MCs are reviewed. Different characteristics of the indirect MC topologies are mentioned to show the strengths and weaknesses of such converter topologies.
Entanglement in Gaussian matrix-product states
International Nuclear Information System (INIS)
Adesso, Gerardo; Ericsson, Marie
2006-01-01
Gaussian matrix-product states are obtained as the outputs of projection operations from an ancillary space of M infinitely entangled bonds connecting neighboring sites, applied at each of N sites of a harmonic chain. Replacing the projections by associated Gaussian states, the building blocks, we show that the entanglement range in translationally invariant Gaussian matrix-product states depends on how entangled the building blocks are. In particular, infinite entanglement in the building blocks produces fully symmetric Gaussian states with maximum entanglement range. From their peculiar properties of entanglement sharing, a basic difference with spin chains is revealed: Gaussian matrix-product states can possess unlimited, long-range entanglement even with minimum number of ancillary bonds (M=1). Finally we discuss how these states can be experimentally engineered from N copies of a three-mode building block and N two-mode finitely squeezed states
Interface matrix method in AFEN framework
Energy Technology Data Exchange (ETDEWEB)
Pogosbekyan, Leonid; Cho, Jin Young; Kim, Young Jin [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
1998-12-31
In this study, we extend the application of the interface-matrix(IM) method for reflector modeling to Analytic Flux Expansion Nodal (AFEN) method. This include the modifications of the surface-averaged net current continuity and the net leakage balance conditions for IM method in accordance with AFEN formula. AFEN-interface matrix (AFEN-IM) method has been tested against ZION-1 benchmark problem. The numerical result of AFEN-IM method shows 1.24% of maximum error and 0.42% of root-mean square error in assembly power distribution, and 0.006% {Delta} k of neutron multiplication factor. This result proves that the interface-matrix method for reflector modeling can be useful in AFEN method. 3 refs., 4 figs. (Author)
Random matrix theory with an external source
Brézin, Edouard
2016-01-01
This is a first book to show that the theory of the Gaussian random matrix is essential to understand the universal correlations with random fluctuations and to demonstrate that it is useful to evaluate topological universal quantities. We consider Gaussian random matrix models in the presence of a deterministic matrix source. In such models the correlation functions are known exactly for an arbitrary source and for any size of the matrices. The freedom given by the external source allows for various tunings to different classes of universality. The main interest is to use this freedom to compute various topological invariants for surfaces such as the intersection numbers for curves drawn on a surface of given genus with marked points, Euler characteristics, and the Gromov–Witten invariants. A remarkable duality for the average of characteristic polynomials is essential for obtaining such topological invariants. The analysis is extended to nonorientable surfaces and to surfaces with boundaries.
t matrix of metallic wire structures
International Nuclear Information System (INIS)
Zhan, T. R.; Chui, S. T.
2014-01-01
To study the electromagnetic resonance and scattering properties of complex structures of which metallic wire structures are constituents within multiple scattering theory, the t matrix of individual structures is needed. We have recently developed a rigorous and numerically efficient equivalent circuit theory in which retardation effects are taken into account for metallic wire structures. Here, we show how the t matrix can be calculated analytically within this theory. We illustrate our method with the example of split ring resonators. The density of states and cross sections for scattering and absorption are calculated, which are shown to be remarkably enhanced at resonant frequencies. The t matrix serves as the basic building block to evaluate the interaction of wire structures within the framework of multiple scattering theory. This will open the door to efficient design and optimization of assembly of wire structures
Google matrix analysis of directed networks
Ermann, Leonardo; Frahm, Klaus M.; Shepelyansky, Dima L.
2015-10-01
In the past decade modern societies have developed enormous communication and social networks. Their classification and information retrieval processing has become a formidable task for the society. Because of the rapid growth of the World Wide Web, and social and communication networks, new mathematical methods have been invented to characterize the properties of these networks in a more detailed and precise way. Various search engines extensively use such methods. It is highly important to develop new tools to classify and rank a massive amount of network information in a way that is adapted to internal network structures and characteristics. This review describes the Google matrix analysis of directed complex networks demonstrating its efficiency using various examples including the World Wide Web, Wikipedia, software architectures, world trade, social and citation networks, brain neural networks, DNA sequences, and Ulam networks. The analytical and numerical matrix methods used in this analysis originate from the fields of Markov chains, quantum chaos, and random matrix theory.
Thermal and mechanical behavior of metal matrix and ceramic matrix composites
Kennedy, John M. (Editor); Moeller, Helen H. (Editor); Johnson, W. S. (Editor)
1990-01-01
The present conference discusses local stresses in metal-matrix composites (MMCs) subjected to thermal and mechanical loads, the computational simulation of high-temperature MMCs' cyclic behavior, an analysis of a ceramic-matrix composite (CMC) flexure specimen, and a plasticity analysis of fibrous composite laminates under thermomechanical loads. Also discussed are a comparison of methods for determining the fiber-matrix interface frictional stresses of CMCs, the monotonic and cyclic behavior of an SiC/calcium aluminosilicate CMC, the mechanical and thermal properties of an SiC particle-reinforced Al alloy MMC, the temperature-dependent tensile and shear response of a graphite-reinforced 6061 Al-alloy MMC, the fiber/matrix interface bonding strength of MMCs, and fatigue crack growth in an Al2O3 short fiber-reinforced Al-2Mg matrix MMC.
Assessment of Matrix Metalloproteinases by Gelatin Zymography.
Cathcart, Jillian
2016-01-01
Matrix metalloproteinases are endopeptidases responsible for remodeling of the extracellular matrix and have been identified as critical contributors to breast cancer progression. Gelatin zymography is a valuable tool which allows the analysis of MMP expression. In this approach, enzymes are resolved electrophoretically on a sodium dodecyl sulfate-polyacrylamide gel copolymerized with the substrate for the MMP of interest. Post electrophoresis, the enzymes are refolded in order for proteolysis of the incorporated substrate to occur. This assay yields valuable information about MMP isoforms or changes in activation and can be used to analyze the role of MMPs in normal versus pathological conditions.
The Lehmer Matrix and Its Recursive Analogue
2010-01-01
LU factorization of matrix A by considering det A = det U = ∏n i=1 2i−1 i2 . The nth Catalan number is given in terms of binomial coefficients by Cn...for failing to comply with a collection of information if it does not display a currently valid OMB control number . 1. REPORT DATE 2010 2. REPORT...TYPE 3. DATES COVERED 00-00-2010 to 00-00-2010 4. TITLE AND SUBTITLE The Lehmer matrix and its recursive analogue 5a. CONTRACT NUMBER 5b
Hybrid Ceramic Matrix Fibrous Composites: an Overview
Naslain, R.
2011-10-01
Ceramic-Matrix Composites (CMCs) consist of a ceramic fiber architecture in a ceramic matrix, bonded together through a thin interphase. The present contribution is limited to non-oxide CMCs. Their constituents being oxidation-prone, they are protected by external coatings. We state here that CMCs display a hybrid feature, when at least one of their components is not homogeneous from a chemical or microstructural standpoint. Hybrid fiber architectures are used to tailor the mechanical or thermal CMC-properties whereas hybrid interphases, matrices and coatings to improve CMC resistance to aggressive environments.
Some remarks on unilateral matrix equations
International Nuclear Information System (INIS)
Cerchiai, Bianca L.; Zumino, Bruno
2001-01-01
We briefly review the results of our paper LBNL-46775: We study certain solutions of left-unilateral matrix equations. These are algebraic equations where the coefficients and the unknown are square matrices of the same order, or, more abstractly, elements of an associative, but possibly noncommutative algebra, and all coefficients are on the left. Recently such equations have appeared in a discussion of generalized Born-Infeld theories. In particular, two equations, their perturbative solutions and the relation between them are studied, applying a unified approach based on the generalized Bezout theorem for matrix polynomials
Analytical solutions to matrix diffusion problems
Energy Technology Data Exchange (ETDEWEB)
Kekäläinen, Pekka, E-mail: pekka.kekalainen@helsinki.fi [Laboratory of Radiochemistry, Department of Chemistry, P.O. Box 55, FIN-00014 University of Helsinki (Finland)
2014-10-06
We report an analytical method to solve in a few cases of practical interest the equations which have traditionally been proposed for the matrix diffusion problem. In matrix diffusion, elements dissolved in ground water can penetrate the porous rock surronuding the advective flow paths. In the context of radioactive waste repositories this phenomenon provides a mechanism by which the area of rock surface in contact with advecting elements is greatly enhanced, and can thus be an important delay mechanism. The cases solved are relevant for laboratory as well for in situ experiments. Solutions are given as integral representations well suited for easy numerical solution.
Overall determination of the CKM matrix
International Nuclear Information System (INIS)
Plaszczynski, S.; Schune, M.H.
1999-11-01
We discuss the problem of theoretical uncertainties in the combination of observables related to the CKM matrix elements and propose a statistically sensible method for combining them. The overall fit is performed on present data, and constraints on the matrix elements are presented as well as on ∫ B d √B B d . We then explore the implications of recent measurements and developments: J/ψK 0 s asymmetry, ε'/ε and B → Kπ branching fractions. Finally, we extract from the overall fit the Standard Model expectations for the rare kaon decays K → πνν-bar. (authors)
Polymeric matrix materials for infrared metamaterials
Dirk, Shawn M; Rasberry, Roger D; Rahimian, Kamyar
2014-04-22
A polymeric matrix material exhibits low loss at optical frequencies and facilitates the fabrication of all-dielectric metamaterials. The low-loss polymeric matrix material can be synthesized by providing an unsaturated polymer, comprising double or triple bonds; partially hydrogenating the unsaturated polymer; depositing a film of the partially hydrogenated polymer and a crosslinker on a substrate; and photopatterning the film by exposing the film to ultraviolet light through a patterning mask, thereby cross-linking at least some of the remaining unsaturated groups of the partially hydrogenated polymer in the exposed portions.
Matrix metalloproteinase-12 (MMP-12) in osteoclasts
DEFF Research Database (Denmark)
Hou, Peng; Troen, Tine; Ovejero, Maria C
2004-01-01
Osteoclasts require matrix metalloproteinase (MMP) activity and cathepsin K to resorb bone, but the critical MMP has not been identified. Osteoclasts express MMP-9 and MMP-14, which do not appear limiting for resorption, and the expression of additional MMPs is not clear. MMP-12, also called...... bone show MMP-12 expression in osteoclasts in calvariae and long bones. We also demonstrate that recombinant MMP-12 cleaves the putative functional domains of osteopontin and bone sialoprotein, two bone matrix proteins that strongly influence osteoclast activities, such as attachment, spreading...
Random matrix theories and chaotic dynamics
International Nuclear Information System (INIS)
Bohigas, O.
1991-01-01
A review of some of the main ideas, assumptions and results of the Wigner-Dyson type random matrix theories (RMT) which are relevant in the general context of 'Chaos and Quantum Physics' is presented. RMT are providing interesting and unexpected clues to connect classical dynamics with quantum phenomena. It is this aspect which will be emphasised and, concerning the main body of RMT, the author will restrict himself to a minimum. However, emphasis will be put on some generalizations of the 'canonical' random matrix ensembles that increase their flexibility, rendering the incorporation of relevant physical constraints possible. (R.P.) 112 refs., 35 figs., 5 tabs
Matrix diffusion user guide (release 2)
International Nuclear Information System (INIS)
Herbert, A.W.; Preece, T.E.
1989-04-01
This report presents an introduction to the use of the matrix diffusion option of the finite-element package NAMMU. The facilities available in the package are described; and the process of preparing the necessary input data is illustrated with an example. The matrix diffusion option of NAMMU models the transport of radionuclides in groundwater in a flow field governed by Darcy's Law. A detailed description of the mathematical model used for this option is given. The package uses the finite-element method. This allows the easy modelling of complex geological structures. (author)
A random matrix model of relaxation
International Nuclear Information System (INIS)
Lebowitz, J L; Pastur, L
2004-01-01
We consider a two-level system, S 2 , coupled to a general n level system, S n , via a random matrix. We derive an integral representation for the mean reduced density matrix ρ(t) of S 2 in the limit n → ∞, and we identify a model of S n which possesses some of the properties expected for macroscopic thermal reservoirs. In particular, it yields the Gibbs form for ρ(∞). We also consider an analog of the van Hove limit and obtain a master equation (Markov dynamics) for the evolution of ρ(t) on an appropriate time scale
Hybrid Ceramic Matrix Fibrous Composites: an Overview
International Nuclear Information System (INIS)
Naslain, R
2011-01-01
Ceramic-Matrix Composites (CMCs) consist of a ceramic fiber architecture in a ceramic matrix, bonded together through a thin interphase. The present contribution is limited to non-oxide CMCs. Their constituents being oxidation-prone, they are protected by external coatings. We state here that CMCs display a hybrid feature, when at least one of their components is not homogeneous from a chemical or microstructural standpoint. Hybrid fiber architectures are used to tailor the mechanical or thermal CMC-properties whereas hybrid interphases, matrices and coatings to improve CMC resistance to aggressive environments.
Matrix Tricks for Linear Statistical Models
Puntanen, Simo; Styan, George PH
2011-01-01
In teaching linear statistical models to first-year graduate students or to final-year undergraduate students there is no way to proceed smoothly without matrices and related concepts of linear algebra; their use is really essential. Our experience is that making some particular matrix tricks very familiar to students can substantially increase their insight into linear statistical models (and also multivariate statistical analysis). In matrix algebra, there are handy, sometimes even very simple "tricks" which simplify and clarify the treatment of a problem - both for the student and
Massive Asynchronous Parallelization of Sparse Matrix Factorizations
Energy Technology Data Exchange (ETDEWEB)
Chow, Edmond [Georgia Inst. of Technology, Atlanta, GA (United States)
2018-01-08
Solving sparse problems is at the core of many DOE computational science applications. We focus on the challenge of developing sparse algorithms that can fully exploit the parallelism in extreme-scale computing systems, in particular systems with massive numbers of cores per node. Our approach is to express a sparse matrix factorization as a large number of bilinear constraint equations, and then solving these equations via an asynchronous iterative method. The unknowns in these equations are the matrix entries of the factorization that is desired.
Stability of wavelet frames with matrix dilations
DEFF Research Database (Denmark)
Christensen, Ole; Sun, Wenchang
2006-01-01
(j,k) are perturbed. As a special case of our result, we obtain that if {Tau(A(j), A(j)Bn)psi} (j is an element of Z, n is an element of Zd) is a frame for an expansive matrix A and an invertible matrix B, then {Tau(A'(j), A(j)B lambda(n))psi}(j is an element of Z,) (n is an element of) (Zd) is a frame if vertical...... bar vertical bar A(-j)A'(j) - I vertical bar vertical bar(2) lambda(n) - n vertical bar vertical bar infinity 0....
Parametrization of the Kobayashi-Maskawa matrix
International Nuclear Information System (INIS)
Wolfenstein, L.
1983-01-01
The quark mixing matrix (Kobayashi-Maskawa matrix) is expanded in powers of a small parameter lambda equal to sintheta/sub c/ = 0.22. The term of order lambda 2 is determined from the recently measured B lifetime. Two remaining parameters, including the CP-nonconservation effects, enter only the term of order lambda 3 and are poorly constrained. A significant reduction in the limit on epsilon'/epsilon possible in an ongoing experiment would tightly constrain the CP-nonconservation parameter and could rule out the hypothesis that the only source of CP nonconservation is the Kobayashi-Maskawa mechanism
Ceramic Matrix Composite (CMC) Materials Characterization
Calomino, Anthony
2001-01-01
Under the former NASA EPM Program, much initial progress was made in identifying constituent materials and processes for SiC/SiC ceramic composite hot-section components. This presentation discusses the performance benefits of these approaches and elaborates on further constituent and property improvements made under NASA UEET. These include specific treatments at NASA that significantly improve the creep and environmental resistance of the Sylramic(TM) SiC fiber as well as the thermal conductivity and creep resistance of the CVI Sic matrix. Also discussed are recent findings concerning the beneficial effects of certain 2D-fabric architectures and carbon between the BN interphase coating and Sic matrix.
Ceramic Matrix Composite (CMC) Materials Development
DiCarlo, James
2001-01-01
Under the former NASA EPM Program, much initial progress was made in identifying constituent materials and processes for SiC/SiC ceramic composite hot-section components. This presentation discusses the performance benefits of these approaches and elaborates on further constituent and property improvements made under NASA UEET. These include specific treatments at NASA that significantly improve the creep and environmental resistance of the Sylramic(TM) Sic fiber as well as the thermal conductivity and creep resistance of the CVI Sic matrix. Also discussed are recent findings concerning the beneficial effects of certain 2D-fabric architectures and carbon between the BN interphase coating and Sic matrix.
A diode matrix is an extremely low-density form of read-only memory. It's one of the earliest forms of ROMs (dating back to the 1950s). Each bit in the ROM is represented by the presence or absence of one diode. The ROM is easily user-writable using a soldering iron and pair of wire cutters.This diode matrix board is a floppy disk boot ROM for a PDP-11, and consists of 32 16-bit words. When you access an address on the ROM, the circuit returns the represented data from that address.
A diode matrix is an extremely low-density form of read-only memory. It's one of the earliest forms of ROMs (dating back to the 1950s). Each bit in the ROM is represented by the presence or absence of one diode. The ROM is easily user-writable using a soldering iron and pair of wire cutters.This diode matrix board is a floppy disk boot ROM for a PDP-11, and consists of 32 16-bit words. When you access an address on the ROM, the circuit returns the represented data from that address.
P-matrix description of charged particles interaction
International Nuclear Information System (INIS)
Babenko, V.A.; Petrov, N.M.
1992-01-01
The paper deals with formalism of the P-matrix description of two charged particles interaction. Separation in the explicit form of the background part corresponding to the purely Coulomb interaction in the P-matrix is proposed. Expressions for the purely Coulomb P-matrix, its poles, residues and purely Coulomb P-matrix approach eigenfunctions are obtained. (author). 12 refs
Inverse Operation of Four-dimensional Vector Matrix
H J Bao; A J Sang; H X Chen
2011-01-01
This is a new series of study to define and prove multidimensional vector matrix mathematics, which includes four-dimensional vector matrix determinant, four-dimensional vector matrix inverse and related properties. There are innovative concepts of multi-dimensional vector matrix mathematics created by authors with numerous applications in engineering, math, video conferencing, 3D TV, and other fields.
Generating Nice Linear Systems for Matrix Gaussian Elimination
Homewood, L. James
2004-01-01
In this article an augmented matrix that represents a system of linear equations is called nice if a sequence of elementary row operations that reduces the matrix to row-echelon form, through matrix Gaussian elimination, does so by restricting all entries to integers in every step. Many instructors wish to use the example of matrix Gaussian…
48 CFR 1652.370 - Use of the matrix.
2010-10-01
... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Use of the matrix. 1652.370... HEALTH BENEFITS ACQUISITION REGULATION CLAUSES AND FORMS CONTRACT CLAUSES FEHBP Clause Matrix 1652.370 Use of the matrix. (a) The matrix in this section lists the FAR and FEHBAR clauses to be used with...
How to get the Matrix Organization to Work
DEFF Research Database (Denmark)
Burton, Richard M.; Obel, Børge; Håkonsson, Dorthe Døjbak
2015-01-01
a matrix to work, taking a multi-contingency perspective. We translate the matrix concept for designers and managers who are considering a matrix organization and argue that three factors are critical for its success: (1) Strong purpose: Only choose the matrix structure if there are strong reasons...... for doing so, (2) Alignment among contingencies: A matrix can only be successful if key contingencies are aligned with the matrix’s purpose, and (3) Management of junctions: The success of a matrix depends on how well activities at the junctions of the matrix are managed....
Information matrix estimation procedures for cognitive diagnostic models.
Liu, Yanlou; Xin, Tao; Andersson, Björn; Tian, Wei
2018-03-06
Two new methods to estimate the asymptotic covariance matrix for marginal maximum likelihood estimation of cognitive diagnosis models (CDMs), the inverse of the observed information matrix and the sandwich-type estimator, are introduced. Unlike several previous covariance matrix estimators, the new methods take into account both the item and structural parameters. The relationships between the observed information matrix, the empirical cross-product information matrix, the sandwich-type covariance matrix and the two approaches proposed by de la Torre (2009, J. Educ. Behav. Stat., 34, 115) are discussed. Simulation results show that, for a correctly specified CDM and Q-matrix or with a slightly misspecified probability model, the observed information matrix and the sandwich-type covariance matrix exhibit good performance with respect to providing consistent standard errors of item parameter estimates. However, with substantial model misspecification only the sandwich-type covariance matrix exhibits robust performance. © 2018 The British Psychological Society.
M(atrix) theory: matrix quantum mechanics as a fundamental theory
International Nuclear Information System (INIS)
Taylor, Washington
2001-01-01
This article reviews the matrix model of M theory. M theory is an 11-dimensional quantum theory of gravity that is believed to underlie all superstring theories. M theory is currently the most plausible candidate for a theory of fundamental physics which reconciles gravity and quantum field theory in a realistic fashion. Evidence for M theory is still only circumstantial -- no complete background-independent formulation of the theory exists as yet. Matrix theory was first developed as a regularized theory of a supersymmetric quantum membrane. More recently, it has appeared in a different guise as the discrete light-cone quantization of M theory in flat space. These two approaches to matrix theory are described in detail and compared. It is shown that matrix theory is a well-defined quantum theory that reduces to a supersymmetric theory of gravity at low energies. Although its fundamental degrees of freedom are essentially pointlike, higher-dimensional fluctuating objects (branes) arise through the non-Abelian structure of the matrix degrees of freedom. The problem of formulating matrix theory in a general space-time background is discussed, and the connections between matrix theory and other related models are reviewed
Hierarchical matrix approximation of large covariance matrices
Litvinenko, Alexander; Genton, Marc G.; Sun, Ying
2015-01-01
We approximate large non-structured Matérn covariance matrices of size n×n in the H-matrix format with a log-linear computational cost and storage O(kn log n), where rank k ≪ n is a small integer. Applications are: spatial statistics, machine learning and image analysis, kriging and optimal design.
Baryoniums - the S-matrix approach
International Nuclear Information System (INIS)
Roy, D.P.
1979-08-01
In this series of lectures the question of how the baryoniums are related to charmoniums and strangoniums is discussed and it is pointed out that in the S-matrix framework, they all follow from the same pair of hypotheses, duality and no exotics. Invoking no underlying quark structure, except that inherent in the assumption of no exotics, it is shown that there are no mesons outside the singlet and octet representation of SU(3) and no baryons outside the singlet, octet and decaplet. In other words all mesons occur within the quantum number of a q-antiq system and all baryons within those of qqq. This seems to be an experimental fact, which has no natural explanation within the S-matrix framework except that it is the minimal non-zero solution to the duality constraints. The approach in the past has been to take it as an experimental input and build up a phenomenological S-matrix framework. Lately it has been realised that the answer may come from the colour dynamics of quarks. If true this would provide an important link between the fundamental but invisible field theory of quarks and gluons and the phenomenological but visible S-matrix theory overlying it. The subject is discussed under the headings; strangonium and charmonium, baryonium, spectroscopy, baryonium resonances, FESR constraint, baryonium exchange, phenomenological estimate of ω - baryonium mixing at t = 0, and models of ω - baryonium mixing. (UK)
Marriage as Matrix, Metaphor or Mysticism
DEFF Research Database (Denmark)
Pedersen, Else Marie Wiberg
2015-01-01
Taking Julia Kristeva's 'Tales of Love' with its more or less slight treatment of Bernard's and Luther's peceptions of love as its point of departure, this article shows that both the monk Bernard and the married theologian Luther use conjugal love as a matrix for an abundant, heterogenous love b...
Silica gel matrix immobilized Chlorophyta hydrodictyon africanum ...
African Journals Online (AJOL)
Chlorophyta hydrodictyon africanum was immobilized on a silica gel matrix to improve its mechanical properties. The algae-silica gel adsorbent was used for batch sorption studies of a cationic dye, methylene blue (MB). Optimum adsorption was obtained with a dosage of 0.8 g bio sorbent. Results from sorption studies ...
TURKISH SOCIAL ACCOUNTING MATRIX FOR 1996
ASLAN, MURAT
2015-01-01
This study is aimed at constructing detail social accounting matrix (SAM) for Turkey by using the most recent available data. In order to reconcile the inconsistency in data which are gathered from various official institutions, the study employs Cross Entropy method
Interpreting the change detection error matrix
Oort, van P.A.J.
2007-01-01
Two different matrices are commonly reported in assessment of change detection accuracy: (1) single date error matrices and (2) binary change/no change error matrices. The third, less common form of reporting, is the transition error matrix. This paper discuses the relation between these matrices.
Random matrix analysis of human EEG data
Czech Academy of Sciences Publication Activity Database
Šeba, Petr
2003-01-01
Roč. 91, - (2003), s. 198104-1 - 198104-4 ISSN 0031-9007 R&D Projects: GA ČR GA202/02/0088 Institutional research plan: CEZ:AV0Z1010914 Keywords : random matrix theory * EEG signal Subject RIV: BE - Theoretical Physics Impact factor: 7.035, year: 2003
Matrix regulators in neural stem cell functions.
Wade, Anna; McKinney, Andrew; Phillips, Joanna J
2014-08-01
Neural stem/progenitor cells (NSPCs) reside within a complex and dynamic extracellular microenvironment, or niche. This niche regulates fundamental aspects of their behavior during normal neural development and repair. Precise yet dynamic regulation of NSPC self-renewal, migration, and differentiation is critical and must persist over the life of an organism. In this review, we summarize some of the major components of the NSPC niche and provide examples of how cues from the extracellular matrix regulate NSPC behaviors. We use proteoglycans to illustrate the many diverse roles of the niche in providing temporal and spatial regulation of cellular behavior. The NSPC niche is comprised of multiple components that include; soluble ligands, such as growth factors, morphogens, chemokines, and neurotransmitters, the extracellular matrix, and cellular components. As illustrated by proteoglycans, a major component of the extracellular matrix, the NSPC, niche provides temporal and spatial regulation of NSPC behaviors. The factors that control NSPC behavior are vital to understand as we attempt to modulate normal neural development and repair. Furthermore, an improved understanding of how these factors regulate cell proliferation, migration, and differentiation, crucial for malignancy, may reveal novel anti-tumor strategies. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties. Copyright © 2014 Elsevier B.V. All rights reserved.
Differential analysis of matrix convex functions
DEFF Research Database (Denmark)
Hansen, Frank; Tomiyama, Jun
2007-01-01
We analyze matrix convex functions of a fixed order defined in a real interval by differential methods as opposed to the characterization in terms of divided differences given by Kraus [F. Kraus, Über konvekse Matrixfunktionen, Math. Z. 41 (1936) 18-42]. We obtain for each order conditions for ma...
Silver Matrix Composites - Structure and Properties
Directory of Open Access Journals (Sweden)
Wieczorek J.
2016-03-01
Full Text Available Phase compositions of composite materials determine their performance as well as physical and mechanical properties. Depending on the type of applied matrix and the kind, amount and morphology of the matrix reinforcement, it is possible to shape the material properties so that they meet specific operational requirements. In the paper, results of investigations on silver alloy matrix composites reinforced with ceramic particles are presented. The investigations enabled evaluation of hardness, tribological and mechanical properties as well as the structure of produced materials. The matrix of composite material was an alloy of silver and aluminium, magnesium and silicon. As the reinforcing phase, 20-60 μm ceramic particles (SiC, SiO2, Al2O3 and Cs were applied. The volume fraction of the reinforcing phase in the composites was 10%. The composites were produced using the liquid phase (casting technology, followed by plastic work (the KOBO method. The mechanical and tribological properties were analysed for plastic work-subjected composites. The mechanical properties were assessed based on a static tensile and hardness tests. The tribological properties were investigated under dry sliding conditions. The analysis of results led to determination of effects of the composite production technology on their performance. Moreover, a relationship between the type of reinforcing phase and the mechanical and tribological properties was established.
Partial chord diagrams and matrix models
DEFF Research Database (Denmark)
Andersen, Jørgen Ellegaard; Fuji, Hiroyuki; Manabe, Masahide
In this article, the enumeration of partial chord diagrams is discussed via matrix model techniques. In addition to the basic data such as the number of backbones and chords, we also consider the Euler characteristic, the backbone spectrum, the boundary point spectrum, and the boundary length spe...
On affine non-negative matrix factorization
DEFF Research Database (Denmark)
Laurberg, Hans; Hansen, Lars Kai
2007-01-01
We generalize the non-negative matrix factorization (NMF) generative model to incorporate an explicit offset. Multiplicative estimation algorithms are provided for the resulting sparse affine NMF model. We show that the affine model has improved uniqueness properties and leads to more accurate id...
Matrix compliance and the regulation of cytokinesis
Directory of Open Access Journals (Sweden)
Savitha Sambandamoorthy
2015-07-01
Full Text Available Integrin-mediated cell adhesion to the ECM regulates many physiological processes in part by controlling cell proliferation. It is well established that many normal cells require integrin-mediated adhesion to enter S phase of the cell cycle. Recent evidence indicates that integrins also regulate cytokinesis. Mechanical properties of the ECM can dictate entry into S phase; however, it is not known whether they also can affect the successful completion of cell division. To address this issue, we modulated substrate compliance using fibronectin-coated acrylamide-based hydrogels. Soft and hard substrates were generated with approximate elastic moduli of 1600 and 34,000 Pascals (Pa respectively. Our results indicate that dermal fibroblasts successfully complete cytokinesis on hard substrates, whereas on soft substrates, a significant number fail and become binucleated. Cytokinesis failure occurs at a step following the formation of the intercellular bridge connecting presumptive daughter cells, suggesting a defect in abscission. Like dermal fibroblasts, mesenchymal stem cells require cell-matrix adhesion for successful cytokinesis. However, in contrast to dermal fibroblasts, they are able to complete cytokinesis on both hard and soft substrates. These results indicate that matrix stiffness regulates the successful completion of cytokinesis, and does so in a cell-type specific manner. To our knowledge, our study is the first to demonstrate that matrix stiffness can affect cytokinesis. Understanding the cell-type specific contribution of matrix compliance to the regulation of cytokinesis will provide new insights important for development, as well as tissue homeostasis and regeneration.
Hyperon beta decay and the CKM matrix
International Nuclear Information System (INIS)
Ratcliffe, P.G.
2004-01-01
I shall present a pedagogical discussion of hyperon semileptonic decays, covering some of the historical background, the basics notions of hyperon semileptonic decays, deeply inelastic scattering and the CKM matrix, and the description of SU(2) and SU(3) breaking. I shall also present a prediction for a process under current experimental study. (author)
Critical State of Sand Matrix Soils
Marto, Aminaton; Tan, Choy Soon; Makhtar, Ahmad Mahir; Kung Leong, Tiong
2014-01-01
The Critical State Soil Mechanic (CSSM) is a globally recognised framework while the critical states for sand and clay are both well established. Nevertheless, the development of the critical state of sand matrix soils is lacking. This paper discusses the development of critical state lines and corresponding critical state parameters for the investigated material, sand matrix soils using sand-kaolin mixtures. The output of this paper can be used as an interpretation framework for the research on liquefaction susceptibility of sand matrix soils in the future. The strain controlled triaxial test apparatus was used to provide the monotonic loading onto the reconstituted soil specimens. All tested soils were subjected to isotropic consolidation and sheared under undrained condition until critical state was ascertain. Based on the results of 32 test specimens, the critical state lines for eight different sand matrix soils were developed together with the corresponding values of critical state parameters, M, λ, and Γ. The range of the value of M, λ, and Γ is 0.803–0.998, 0.144–0.248, and 1.727–2.279, respectively. These values are comparable to the critical state parameters of river sand and kaolin clay. However, the relationship between fines percentages and these critical state parameters is too scattered to be correlated. PMID:24757417
CNTs Modified and Enhanced Cu Matrix Composites
Directory of Open Access Journals (Sweden)
ZHANG Wen-zhong
2016-12-01
Full Text Available The composite powders of 2%-CNTs were prepared by wet ball milling and hydrogen annealing treatment-cold pressing sintering was used to consolidate the ball milled composite powders with different modifications of the CNTs. The results show that the length of the CNTs is shortened, ports are open, and amorphous carbon content is increased by ball milling. And after a mixed acid purification, the impurity on the surface of the CNTs is completely removed,and a large number of oxygen-containing reactive groups are introduced; the most of CNTs can be embedded in the Cu matrix and the CNTs have a close bonding with the Cu matrix, forming the lamellar composite structure, then, ultrafine-grained composite powders can be obtained by hydrogen annealing treatment. Shortening and purification of the CNTs are both good for dispersion and bonding of CNTs in the Cu matrix, and the tensile strength and hardness of the composites after shortening and purification reaches the highest, and is 296MPa and 139.8HV respectively, compared to the matrix, up to 123.6% in tensile strength and 42.9% in hardness, attributed to the fine grain strengthening and load transferring.
Physiology and pathophysiology of matrix metalloproteases
Klein, T.; Bischoff, R.
Matrix metalloproteases (MMPs) comprise a family of enzymes that cleave protein substrates based on a conserved mechanism involving activation of an active site-bound water molecule by a Zn(2+) ion. Although the catalytic domain of MMPs is structurally highly similar, there are many differences with
Physiology and pathophysiology of matrix metalloproteases
Klein, T; Bischoff, Rainer
2010-01-01
Matrix metalloproteases (MMPs) comprise a family of enzymes that cleave protein substrates based on a conserved mechanism involving activation of an active site-bound water molecule by a Zn(2+) ion. Although the catalytic domain of MMPs is structurally highly similar, there are many differences with
Matrix metalloproteinase activity assays: Importance of zymography.
Kupai, K; Szucs, G; Cseh, S; Hajdu, I; Csonka, C; Csont, T; Ferdinandy, P
2010-01-01
Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases capable of degrading extracellular matrix, including the basement membrane. MMPs are associated with various physiological processes such as morphogenesis, angiogenesis, and tissue repair. Moreover, due to the novel non-matrix related intra- and extracellular targets of MMPs, dysregulation of MMP activity has been implicated in a number of acute and chronic pathological processes, such as arthritis, acute myocardial infarction, chronic heart failure, chronic obstructive pulmonary disease, inflammation, and cancer metastasis. MMPs are considered as viable drug targets in the therapy of the above diseases. For the development of selective MMP inhibitor molecules, reliable methods are necessary for target validation and lead development. Here, we discuss the major methods used for MMP assays, focusing on substrate zymography. We highlight some problems frequently encountered during sample preparations, electrophoresis, and data analysis of zymograms. Zymography is a widely used technique to study extracellular matrix-degrading enzymes, such as MMPs, from tissue extracts, cell cultures, serum or urine. This simple and sensitive technique identifies MMPs by the degradation of their substrate and by their molecular weight and therefore helps to understand the widespread role of MMPs in different pathologies and cellular pathways. Copyright 2010 Elsevier Inc. All rights reserved.
A hierarchical model for ordinal matrix factorization
DEFF Research Database (Denmark)
Paquet, Ulrich; Thomson, Blaise; Winther, Ole
2012-01-01
This paper proposes a hierarchical probabilistic model for ordinal matrix factorization. Unlike previous approaches, we model the ordinal nature of the data and take a principled approach to incorporating priors for the hidden variables. Two algorithms are presented for inference, one based...